
@)

PWB/UNIX

User's Manual

Edition 1.0

T. A. Dolotta
R. C. Haight
E. M. Piskorik

Editors

May 1977

The enclosed PWB/l!!NlX documentation is supplied
in accordance with the Software Agreement you
have with the Western Electric Com'pany. '

Bell Telephone Laboratories. Incorporated

UNIX is a Trade/Service Mark of the Bell System.

This manual was set 011 a Graphic Systems, Inc.
phototypesetter driven by 1he TROFF formatting program
operatmg zmder the PWB!L'.VIX system. The text of me
ma11ua/ was prepared usmg the ED text editor.

ACKNOWLEDGEMENTS

The form and organization of this manual, as well as a major fraction of its contents, have been
copied from the UNIX Programmer's Manual-Sixth Edition. by K. Thompson and D. M. Ritchie
(Bell Telephone Laboratories, May 1975). The number of our colleagues who have contributed
to UNIX and PWB/UNIX software and documentation is, by now, too large to list here, but the use­
fulness and acceptance of UNIX and of PWB/UNIX is a true measure of their collective success.

Piscataway, New Jersey
May 1977

. iii •

T.A.D.
R.C.H.
E.M.P .

INTRODUCTION

This manual describes the features of PWB/UNJX. It provides neither a general overview of UNIX
(for that, see "The UNIX Time-Sharing System," Comm. ACM 17(7):365-75, July 1974, by
D. M. Ritchie and K. Thompson), nor details of the implementation of the system.

This manual is divided into eight sections:

I. Commands and Application Programs
II. System CaUs
III. Subroutines
IV. Special Files
V. File Formats and Conventions
VI. Games
VII. Miscellaneous
VIII. System Maintenance

Section I (Commands and Application Programs) describes programs intended to be invoked
directly by the user or by command language procedures, in contradistinction to subroutines,
which are intended to be called by the user's programs. Commands generally reside in the
directory /bin (for binary programs). Some programs also reside in lusrlbin, to save space in /bin.
These directories are searched automatically by the command interpreter called the Shell.

Section II (System Calls) describes the entries into the UNIX supervisor, including the assembler
and the C language interfaces. In the assembler, these system calls are invoked by the sys
operation code, which is a synonym for the trap instruction.

Section III (Subroutines) describes the available subroutines. Their binary versions reside in
various system libraries in directory /lib. The subroutines available for C and for Fortran are
also included there; they reside in llib/libc.a and !lib/liq{.a, respectively.

Section IV (Special Files) discusses the characteristics of each system "file" that actually refers
to an input/ output device. The names in that section ref er to the Digital Equipment
Corporation's device names for the hardware, instead of the names of the special files them­
selves.

Section V (File Formals and Conventions) documents the structure of particular kinds of files;
for example, the form of the output of the assembler and the loader is given. Excluded are
files used by only one command, for example, the assembler's intermediate files.

Section VIII <Svstem Maifllenance) discusses commands that are not intended for use by the
ordinary user, in some cases because they disclose information in which he or she is presum­
ably not interested, and in others because they perform privileged functions.

Each section consists of a number of independent entries of a page or so each. The name of
the entry is in the upper corners of its pages. Entries within each section are alphabetized. The
page numbers of each entry start at l.

All entries are based on a common format, not all of whose parts always appear:

The NAME part repeats the name of the entry and states (very briefly) its purpose.

The SYNOPSIS part summarizes the use of the program being described. A few conven­
tions are used, particularly in Section I (Commands):

Boldface strings are considered literals, and are to be typed just as they appear
(they are usually underlined in the typed version of the manual entries unless
they are juxtaposed with an 11alic string).

- v -

Italic strings usually represent substitutable arguments (they are underlined in
the typed version of the manual entries).

Square brackets "[]" around an argument indicate that the argument is
optional. When an argument is given as "name" or "file", it always refers to a
.file name.

Ellipses " ... " are used to show that the previous argument-prototype may be
repeated.

A final convention is used by the commands themselves. An argument begin­
ning with a minus sign "-" or a plus sign "+" is often taken to be some sort
of flag argument even if it appears in a position where a file name could appear.
Therefore, it is unwise to have files whose names begin with "-"
or"+".

The DESCRIPTION part discusses in detail the subject at hand.

The FILl:S part gives the file names that are built into the program.

The SEE ALSO part gives pointers to related information.

The DIAGNOSTICS part discusses the diagnostic indications that may be produced. Mes­
sages that are intended to be self-explanatory are not listed.

The BUGS part gives known bugs and sometimes deficiencies. Occasionally, the sug­
gested fix is also described.

A table of contents (organized by section and alphabetized within each section} and a permuted
index derived from that table precede Section I. Within each index entry, the title of the
manual entry to which it refers is followed by the appropriate section number in parentheses.
This fact is important because there is considerable name duplication among the sections, aris­
ing principally from commands that exist only to exercise a particular system call.

All manual entries are available on-line via the man(I) command (q.v.).

• VI •

HOW TO GET STARTED

This section provides the basic information you need to get started on UNIX (we will use
.. UNIX" in this section to mean both ••uNIX" and .. PWB/UNIX", unless the distinction matters):
how to log in and log out, how to communicate through your terminal, and how to run a pro­
gram. See UNIX .tor Beginners by B. W. Kernighan for a more complete introduction to the sys­
tem.

Logging in. You must call UNIX from an appropriate terminal. UNIX supports f ull--duplex ASCII
terminals. You mµst also have a valid user name, which may be obtained, together with the
telephone number, from the system administrator. The same telephone number serves termi­
nals operating at speeds of 110, 150, and 300 baud. After a data connection is established, the
log in procedure depends on the kind of terminal you are using.

300-baud terminals: These terminals generally have a speed switch that should be set to
.. 300" (or .. 30", for 30 characters per second) and a half-/full-duplex switch that
should be set to full-duplex. When a connection is established, the system types
.. login:"~ you type your user name, followed by the ••return" key. If you have a pass­
word (and you should!), the system asks for it, but does not print (.. echo") it on the
terminal. After you have' logged in, the "return", .. new-line", and "line-feed" keys
will give exactly the same result.

Model 37 TELETYP£9 : When you have established a data connection, the system types
out a few garbage characters (the ••1ogin:" message at the wrong speed). Depress the
.. break" (or .. interrupt") key; this is a speed-independent signal to UNIX that a 150-
baud terminal is in use. The system then will type ••1ogin:", this time at ISO baud
(another .. break" at this point will get you down to 110 baud)~ you respond with your
user name. From the Model 37 TELETYPE. and any other terminal that has the .. new­
line" function (combined .. carriage-return" and .. line-feed" pair), terminate each line
you type with the "new-line" key (not the .. return" key).

It is important that you type your name in lower case if possible; if you type upper-case letters,
UNIX will assume that your terminal cannot generate lower-case letters and will translate all sub­
sequent upper-case input to lower case. When you have logged in successfully. the Shell pro­
gram will type a "%" to you. (The Shell is described below under How to run a pro!(ram.)

For more information, consult /ogm(I) and gC't{Y(VUI), which discuss the login sequence in
more detail. and l{v(IV). which discusses terminal input/ oulput. See termma/s(Vll) for infor­
mation about various terminals.

loggmg our. There are three ways to log out:

You can simply hang up the phone.

You can log out by typing an end-of-file indication (ASCII EOT character. usually typed
as "'control d") to the Shell. The Shell will terminate a~d the "login:" message will
appear again.

You can also log in directly as another user by giving a login command.

Hon· ro commwm:are through your termmal. When you type to UNIX, a gnome deep in the sys­
tem is gathering your characters and saving them. These characters will not be given to a pro­
gram until you type a "return" (or "new-line"), as described above in Loggmg in.

UNIX terminal input/output is full-duplex. It has full read-ahead, which means that you can
type at any time, even while a program is typing at you. Of course, if you type during output,
the output will have the input characters interspersed. However, whatever you type will be
saved and interpreted in correct sequence. There is a limit to the amount of read-ahead, but it

- vii -

' " '

is generous and not likely to be exceeded unless the system is in trouble. When the read-ahead
limit is exceeded, the system throws away all the saved characters.

On a terminal input line, the character "@" kills all the characters typed before it, so typing
mistakes can be repaired on a single line. The character "#" erases the last character typed.
Successive uses of "#" erase characters back to, but not beyond, the beginning of the line.
"@" and "#" can be transmitted to a program by preceding them with "\". (Thus, to erase
"\",you need two "#"s).

The ASCII "delete" (a.k.a. "rubout") character is not passed to programs but instead generates
an interrupt s1xnal. just like the ''break", "interrupt", or "attention" signal. This signal gen­
erally causes whatever program you are running to terminate. It is typically used to stop a long
printout that you don't want. However, programs can arrange either to ignore this signal alto­
gether, or to be notified when it happens (instead of being terminated). The editor ed(I), for
example, catches interrupts and stops what it is doing, instead of terminating, so that an inter­
rupt can be used to halt an editor printout without losing the file being edited. ·

The quit signal is generated by typing the ASCII FS character. It not only causes a running pro­
gram to terminate but also generates a file with the core image of the terminated process. Qut1
is useful for debugging.

Besides adapting to the speed of the terminal, UNIX tries to be intelligent about whether you
have a terminal with the "new-line" function, or whether it must be simulated with. a
"carriage-return" and "line-feed" pair. In the latter case, all input "carriage-return" characters
are changed to "line-feed" characters (the standard line delimiter), and a "carriage-return" and
"line-feed" pair is echoed to the terminal. If you get into the wrong mode, the suy(l) com­
mand will rescue you.

Tab characters are used freely in UNIX source programs. If your terminal does not have the tab
function, you can arrange to have tab characters changed into spaces during output, and echoed
as spaces during input. Again, the stty(I) command will set or reset this mode. The system
assumes that tabs are set every eight columns. The tabs(I) command will set tab stops on your
terminal, i.f that is possible.

-How io run a program; the Shell. When you have successfully logged into UNIX, a program
called the Shell is listening to your terminal. The Shell reads typed-in lines, splits them up into
a command name and arguments, and executes the command. A command is simply an exe­
cutable program. Normally, the Shell looks first in your current directory (see The current direc­
tory below) for a program with the given name, and if none is there, then in system directories.
There is nothing special about system-provided commands except that they are kept in direc­
tories where the Shell can find them. The command name is always the first word on an input
line to the Shell; it and its arguments are separated from one another by space or tab characters.

When a program terminates, the Shell will ordinarily regain control and type a '·%" at you to
indicate that it is ready for another command. The Shell has many other capabilities, which are
described in detail in sh (l).

The current directory. UNIX has a file system arranged in a hierarchy of directories. When the
system administrator gave you a user name, he or she also created a dfrectory for you (ordi­
narily ~ith the same name as your user name). When you log in, any file name you type is by
default assumed to be in this directory. Since you are the owner of this directory, you have full
permissions to read, write, alter, or destroy its contents. Permissions to have your will with
other cJircctorics and files will have been granted or denied to you by their respective owners.
As a matter of observed fact, many UNIX users do not protect their files from destruction, let
alone perusal, by other users.

To change the current directory (but not the set of permissions you were endowed with at
l_ogin) use chdir(l).

- viii -

Path names. To refer to files not in the current directory, you must use a path name. Full path
names begin with .. /", which is the name of the root directory of the whole file system. After
the slash comes the name of each directory containing the next sub-directory (followed by a
"/"), until finally the file name is reached. E.g.: lusrllem/filex refers to the file ./ilex in the direc­
tory /em: /em is itself a subdirectory of usr; usr springs directly from the root directory.

If your current directory has subdirectories, the path names of files therein begin with the name
of the corresponding subdirectory (without a prefixed .. /").

Without important exception, a path name may be used anywhere a file name is required.

Important commands that modify the contents of files are cp(l), mv(I), and rm(I), which
respectively copy, move (i.e., rename), and remove files. To find out the status of files or
directories, use ls(I). See mkdir(I) for making directories and rmdir(I) for destroying them.

For a fuller discussion of the file system, see .. The UNIX Time-Sharing System" (Comm. ACM

17(7):365-75, July 1974) by D. M. Ritchie and K. Thompson. It may also be useful to glance
through Section II of this manual, which discusses system calls, even if you don't ir.tend to deal
with the system at that level.

Writmg a program. To enter the text of a source program into a UNIX file, use ed(l). The three
principal languages available under UNIX are C (see cc(I)), Fortran (see ./HD), and assembly
language (see as(I)). After the program text has been entered through the editor and written
in a file (whose name has the appropriate suffix), you can give the name of that file to the
appropriate language processor as an argument. Normally, the output of the language processor
will be left in a file in the current directory named "a.out". (If the output is precious, use
mv(I) to move it to a less exposed name soon.) If you wrote in assembly language, you will
probably need to load the program with library subroutines~ see ld(l). The other two language
processors call the loader automatically.

When you have finally gone through this entire process without provoking any diagnostics, the
resulting program can be run by giving its name to the Shell in response to the "%" prompt.

Next, you will need cdb(l) or db(I) to examine the remains of your program. The former is
useful for C programs, the latter for assembly-language. No debugger is much help for Fortran.

Your programs can receive arguments from the command line just as system programs do. See
exedm.

Text processing. Almost all text is entered through the editor ed(I). The commands most often
used to write text on a terminal are: cat(l), pr(I), and nroff(!). The cat(J) command simply
dumps ASCH text on the terminal, with no processing at all. The pr(I) command paginates the
text, supplies headings, and has a facility for multi-column output. Nro.fj{I) is an elaborate text
formatting program, and requires careful forethought in entering both the text and the format­
ting commands into the input file; it produces output on a typewriter-like terminal. Ro.lf(D is a
less elaborate text formatting program, and requires somewhat less forethought; it is obsoles­
cent. Trqlf(l) is similar to nro.ff(D. but drives a Graphic Systems, Inc. phototypesetter. It was
used to typeset this manual. ·

Surprises. Certain commands provide mrer-user communication. Even if you do not plan to use
them, it would be well to learn something about them, because someone else may aim them at
you. To communicate with another user currently logged in, wrire(l) is used; mail(l) will leave
a message whose presence will be announced to another user when he or she next logs in. The
corresponding entries in this manual also suggest how to respond to these two commands if you
are their target.

When you log in, a message-of-the-day may greet you before the first " 1Yr1".

- ix -

TABLE OF CONTENTS

I. COMMANDS AND APPLICATION PROGRAMS

450
adb
admin
ar
as
banner
bas
be
bdiff
bfs
cal
cat
cb
cc
cd
cdb
chdir
chghist
chgrp
chmod
chown
cmp
col
comb
comm
cp
cpio
cpx
cref
crypt
c:split
date
db
de
dd
delta
deroif
df
ditf
di1f.3
dilfmark
dsw
du
echo
ed
egrep
eqn

• •

- (equals)
exit

• xi.

handle special functions of DASI4SO terminal
debugger

administer SCCS files
archive and library maintainer

assembler
print in block letters

basic
arbitrary precision interactive language

big di1f
big file scanner

print calendar
concatenate and print

C beautifier
C compiler

change working directory
C debugger

change working directory
change the history entry of an SCCS delta

change group
change mode
change owner

compare two files
filter reverse line feeds

combine SCCS deltas
print lines common to two files

copy
copy file archives in and out

copy a file exactly
make cross reference listing

encode/ decode
context split

print and set the date
debug

desk calculator
convert and copy a file

make an SCCS delta
remove nrotr, trot!', and eqn constructs

report disk free space
dilf erential file comparator

3-way difi"erential file comparison
mark changes between versions of a file

delete interactively
summarize disk usage

echo arguments
text editor

search a file for lines containing a pattern
typeset mathematics

shell assignment command
terminate command file

expr
f c
fd2
fgrep
file
find
gath
get
goto
graph
grep
gsi
help
hp
if
kill
Id
lex
In
log.in
lopwne, logdir, logtty
Is
m4
mail
make
man
mesg
mkdir
mm
mv
neqn
newgrp
next
nice
nm
nohup
nroff. troff
od
onintr
puswd
plot: t300, t300s, t4SO
pr
prof
prt
ps
ptX
pump
pwd
quiz
l'C

reform
regcmp
rgrep

. .

..
• XU •

evaluate arguments as an algebraic expression . . Fortran compiler
redirect file descriptor 2 (diagnostic output)

search a file for lines containing keywords
determine file type

find files
gather real and virtual files

get generation from SCCS tile
command transfer

draw a graph search a file for a pattern
handle special functions of GSIJOO terminal

ask for help
handle special functions of HP 2640 terminal

conditional command
terminate a process

link editor
generate programs for simple lexical tasks

make a link
sign onto UNIX

information from login
list contents of directory

. .
macro processor

send mail to designated users
make a program

print on-line documentation
permit or deny messages make a directory

run oft' document with PWB/MM
move or rename a file

typeset mathematics on terminal
log in to a new group

new standard input for shell procedure
run a command at low priority

print name list
run a command immune to hangups

text f onnatters
octal dump

handle intenuptS in shell tiles
change login password

graphics filters
print file

display profile data
print secs file
process status

permuted index
Shell data transfer command

working directory name
• test your knowledge

Ratfor compiler
reformat text file

regular expression compile
search a file for a pattem

rjestat
rm
rmdel
rmdir
rotf
rsh
sccsditf
sed
send
sh
shift
size
sleep
sno
sort
spell
spline
split
strip
stty
SU

sum
switch
sync
tabs
tail
tbl
tee
time
tp
tr
tr oft'
tty
typO
uname
uniq
units
vp
wait
WC

what
whatsnew
while ••••
who
write
xargs
yacc

II. SYSTEM CALLS

intro
access
alarm

RJE status and enquiries
remove (unlink) files

remove a delta from an SCCS file
. remove directory

. • . . • format text
restricted shell (command interpreter)
compare two versions of an SCCS file

. • . . • • . stream editor
• submit RJE job
sheU (command interpreter)

adjust Sheil arguments
size of an object file

suspend execution for an interval
Snobol interpreter
son or merge files
find spelling errors

interpolate smooth curve
split a file into pieces

remove symbols and relocation bits
. . . . set terminal options

become privileged user
print checksum of a file

• . . . shell multi-way branch command
update the super block

• • • . . • . . . • set tabs on terminal
deliver the last part of a file

format tables for nroff or troff
. • • . • . . • • . • . • pipe fitting

• • • • . • • time a command
manipulate DECtape and magtape

. • • • transliterate
text formatter

get terminal name
find possible typos

printnameofcurrentUNIX
report repeated lines in a file

conversion program
. • . • . . Versatec print

await completion of process
. word count
. identify files

compare file modification dates
• • • . shell iteration command

• • • . • • • . . . who is on the system
. • • . write to another user

construct argument list(s) and execute command
. • • • • . . • • • yet another compiler-compiler

introduction to system calls
. . • . . determine accessibility of file

. • • • schedule signal after specified time

• xiii -

break, bric:, sbrk
chdir
chmod
chown
close
c:reat
csw
dup
exec, exec!, execv
exit
fork.
fstat
getgid
getpid
getuid
gtty
indir
kill
link

.. .

.. .

...

logname, logclir. logtty. logpost
m.lmod
mou.nt
nice
open
pause
pipe
profil
ptrace
read
seek
setgid
setpgrp
setuid.
signal
stat
stime
stty
sync
tell
time
times
udata
umount
uname
unlink
ustat
utime
wait
write

. .

. .
. . .

..
• • a. • •

......
.

. .

. . .

. .

. . . .

.

xiv

change core allocation
change working directory

change mode of file
chan&e owner and group of a tile

close a file
create a new tile

read console switches
duplicate an open file descriptor

execute a file
terminate process

spawn new process
get status of open file

get group identifications
get process identification

get user identifications
get terminal status
indirect system call

send signal to a process
link to a file

login information
make a directory or a special file

mou.nt file system
set program priority

open for reading or writing
indetinite wait

create an interprocess channel
execution time profile

process trace
read from file

. . move read/write pointer
set process group m

set process group number
set proceu user m

catch or ignore signals
get file status

set time
set mode of terminal

update super-block
get file otfset

get date and time
get process times.
get per-user data

dismount file system
get name of current PWB/UNIX

remove directory entry
get file system statistics

update times in file
wait for process to terminate

write on a file

ill. SUBROUTINES

abort
abs, fabs
alloc, free
atan, atan2
at of
atoi
cgetpid

. . . .

crypt • • • •
ctime, localtime, gmtime
descend •••.•
ecvt, fcvt • . • •
en~ etext, edata
exp
floor, ceil
fniod ••••
fptrap • . • • .
gamma ••••
getarg, iargc • • • • •
getc, getw, fopen
getcbar ••••
getpw
gmateh ••••
hmul
ierror
.ldiv, lrem
locv
log
monitor
nargs
nlist

generate an IOT fault
absolute value
core allocator

arc tangent function
convert ASCII to floating
convert ASCII to integer

return character form of process ID
. password encoding

. . . • convert date and time to ASCII
search UNIX file system directories

output conversion
last locations in program

exponential function
floor and ceiling functions

floating modulo function
floating point interpreter

log gamma function
get command arguments from Fortran

buffered input
read character

get name from UID
match a string with a pattern (like glob(VIIl))
. • high-order product

• • • • • • • catch Fortran errors
long division

long output conversion
• • • • • • • natural logarithm

prepare execution profile
• • • • • argument count

get entries from name list
perror, sys_ erriist, sys_ nerr, errno • • • • • • • • • • . . system messages
pexec • • • • • . • • • • . . • • . path search and execute a file
plot: openpl et al. • • • •
pow ••....
printf
putc, putw, f creat, ffiush
puu:har, flush • . . .
qsort

• • • • graphics interface
floating exponentiation

. . . • . formatted print
buffered output
\Vl'ite character

quicker sort
random number generator

compile and execute regular expressions
ian~ srand
regcmp, regex
reset, setexit
setfil

• • • • ••• "1 • • • . • • . execute non-local goto

setjmp, longjmp
sin, cos • . . • .
steep • • • • • • • • • • • • •
sqrt • • • . . • • • . • . •
strcpy, strcat, strcmp, strlen
ttyn • • • • • • • • • • • •

- xv -

• • , specify Fortran file name
• • • • • • • . . execute non-local goto

• . . • trigonometric functions
suspend execution for interval

square root function
operations on ASCII strings

return name of current tenninal

IV. SPECIAL FILES

cat
dh
dn
dp
hp
bs
ht
kl
lp
mem. kmem, ·null
rje
rp
tm
tty

phototypesetter interface
DH· 11 communications multiplexer

DN·ll ACU interface
DP· 11, DU-11 synchronous line interface

RP04/RPOS/RP06 moving·head disk
RS03/RS04 fixed·head disk

TU16 magtape interface
KL· 11 or DL-11 asynchronous interface

line printer
core memory

DQS·llB interface for remote job entry
RP-l l/RP03 moving-head disk
TMl 1/TUlO magtape interface

general terminal interface

V. FILE FORMATS AND CONVENTIONS

a.out
ar
ascii
chec1clist
core
cpio
directory
dump
ebc:dic
fs
fspec
greek
group
master
mnttab
pmwd
plot
sccsfile
Sha
tp
ttyS
utmp
wtmp

VI. GAMES

azel
bio
bj
chess
cubic
factor
moo
othello
sky

..

assembler and link editor output
archive (library) file format
map of ASCll character set

list of file systems processed by check
format of core image file

format of cpio archive
format of directories . . incremental dump tape f onnat

file format
format of file system volume

format specification in text files
graphics for extended TELETYPE Model 37 type-box

·xvi -

. . group file
master device information table

mounted file system table
password file

graphics interface
format of secs file
Shell accounting file

mag tape format
terminal initialization data

user information
user login history

satellite predictions
biorhythm analysis

the game of black jack
the game of chess

three dimensional tic-tac-toe
discover prime factors of a number

guessing game
a game of dramatic reversals

obtain ephemerides

ttt
wump

Vll. MISCELLANEOUS

tenninaJs
DASI4SO
GSI300
HP2640
TermiNet
Tl700
tmac.name .

VIII. SYSTEM MAINTENANCE

70boot
ac
bcopy
check
clri
c1rm
config
crash
cron
cu

• . • • the game of tic-tac-toe
the game of hunt-the~wumpus

• . • . descriptions of commonly-u5ed terminals
DASI450, DIABLO 1620, XEROX 1700 terminals

GSI300 (DTC300 or DASI300) hard-copy terminals
Hewlett-Packard 2640 CRT terminal family

GE fermiNet 300 (and 1200) terminals
. • . . . TI 745, 735, and 725 terminals

standard nroff and troff macro packages

11170 bootstrap procedures
. . . • login accounting
. • • . • disk block copy

file system consistency check
clear i-node

clear mode of i-node
• • • • configure a system

what to do when the system crashes .
• . • . • clock daemon

• • • • • • • • • • • • call UNIX.
read/write synchronous line dcat

dcbeck
devnm
disk boot
dump
fsdb
getty
glob
hasp
icheck

.init

. . . •... file system directory consistency check • • • • • • • device name
disk bootstrap programs

incremental file system dump
• • • • • file system debugger

• • • • • • • • • set terminal mode
generate command arguments

PWB/UNIX IBM Remote Job Entry
file system storage consistency check

process control initialization
lastcom
mkfs
mknod
mount
ncheck
patch up
reg en
restor
rmall

. . . • • • • • • • • • . search shell accounting records

romboot
sa
setmnt
setuid
shutdown
tape boot
umount
unixboot

. . .
. . .

. • • • • • • • • • • construct a tile system
• • • • • • • • build special file

• • • • . • • • • mount file system
. • • • • • • • generate names from i-numbers

• • • • patch up a damaged file system
• • • • regenerate system directories

• • • • ineremental file system restore

- xvii -

. remove all
special ROM bootstrap loaders

Shell accounting
establish mnttab table

set user id of command
terminate all processing

magnetic tape bootstrap programs
• • • • • • . • • dismount file system

UNIX startup and boot procedures

volcopy,, labelit • • • • copy tilesystems with label checking
wall • • • • • • • • • • • • • write to all users

• xviii •

PERMUTED INDEX

- (equals) (I): shell assignment command
70boot(VIII): 11170 bootstrap procedures

TermiNet(VII): GE TermiNet 300 (and 1200) terminals
DASI450(VII): DASI450, DIABLO 1620, XEROX 1700 terminals
DASI450, DIABLO 1620, XEROX 1700 terminals ... DASI4SO(VUI):

fd.2(1): redirect file descriptor 2 (diagnostic output)
HP2640(VIl): Hewlett-Packard 2640 CRT terminal family

hp(l): handle special functions of HP 2640 terminal -
TermiNet(VlI): GE TermiNet 300 (and 1200) terminals

graphics for extended TELETYPE Model 37 type-box ... greek(V):
ditfJ(I): 3-way differential file comparison

450(1): handle special functions of DASI450 terminal
70boot(V1II): 11170 bootstrap procedures

TI700(VII): TI 745, 735, and 725 terminals
TI700(V11): TI 745, 735, and 725 terminals

TI700(VII): TI 745, 735, and 725 terminals
abort(III): generate an IOT fault
abs, fabs(ill): absolute value

abs, fabs(ID): absolute value
acc:ess(Il): determine accessibility of file

access(ll): determine accessibility of file
sba{V): Shell accounting file

lastcom(Vlll): search shell accounting ~ecords
ac(Vlll): login accounting
sa(VllI): Shell accounting

dn(M: DN·ll ACU interface
ac(VIIl): login accounting
adb(I): debugger

shift(l): adjust Shell arguments
admin (I): administer SCCS files

admin (I): administer SCCS files
alarm(II): schedule signal after specified time

alarm (II): schedule signal after specified time
expr(I): evaluate arguments as an algebraic expression

plot: openpi et al. (Ill): graphics interface
alloc, free(ill): core allocator

break, brk, sbrk(Il): change core allocation
alloc, free(fil): core allocator
rmal1 (VIlI): remove all
bio(Vl): biorhythm analysis

TermiNet(VII): GE TermiNet 300 (and 1200) terminals
yacc(!}: yet another compiler-compiler

write{I): write to another user
a.out(V): assembler and link editor output

bc(I): arbitrary precision interactive language
atan, atan2(III): arc tangent function

ar(I): archive and library maintainer
ar(V): archive (library) file format

cpio{V): format of cpio archive
cpio(l): copy file archives in and out

nargs(lli): argument count

• xix •

xargs(I): construct
expr(l): evaluate

getarg, iargc(III): getconunand
echo(I): echo

glob(VDI): generate command
shift(l): adjust Shell

ascii (V): map of
strcat, stn:mp, strlen(III): operations on

atof(III): convert
. atoi(III): convert

gmtime(llD: convert· date and time to

help(I):
a.out(V):

as(I):
• (equals)(I): shell

lc1(1V): KL-11 or DL·ll

at.an,

wait(I):

bas(D:

cb(D: C
su(l):

diff'mark(l): mark changes

bdiff'(I):
bfs(I):

bio(VI):

strip(I): remove symbols and relocation

bjM): the game of
bcopy(VIll): disk

banner(I): print in
sync(D: update the super

W1ixboot(VIlI): UNIX startup and
romboot(VIlI): special ROM

70boot(Vlll): 11170
diskboot(Vlll): disk

tapeboot(VIlI): magnetic tape
switch(I): shell multi-way

argument list(s) and execute command
arguments as an algebraic expnmion
arguments from Fortran
arguments
arguments
arguments
ar(I): archive and library maintainer
ar(V): archive (library) tile format
ASCII character set
ASCII strings. •• strcpy,
ASCII to floating
ASCII to integer
ASCII ... ctime, localtime,
ascii (V): map of ASCII character set
as<D: assembler
ask for help
assembler and link editor output
assembler
assignment command
asynchronous interface
atan. atan2 (III): arc tangent function
atanl(ID): arc tangent function
atof(III): convert ASCII to tloating
atoi(III): convert ASCII to integer
await completion of process
azel (VI): satellite predictions
banner(I): print in block letters
bas(I): basic
basic
bc(I): arbitrary precision interactive language
bcopy(VIIl): disk block copy
bditf(I): big diff
beautifier
become privileged user
between versions of a die
bfs(l): big file scam:1er
bi& dift'
big ftle scanner
biorhythm analysis
bio(VI): biorhythm analysis
bits .
bj(VI): the game of black jack
blackjack
block copy
block letters
block
boot procedures
bootstrap loaders
bootstrap procedures
bootstrap programs
bootstrap programs
branch command
break, bric, sbrk(ll): change core allocation

.• xx.

·break. brk, sbrk(II): change core allocation
getc, getw, fopen(ill): buffered input

putc, putw, fcreat, tilush(ill): buffered output
mknod(VIIl): build special file

list of file systems processed by check ... checklist (V):
cb(I): C beautifier
cc(I): C compiler

cdb(I): C debugger
dc(I): desk calculator

cal(!): print calendar
cal (I): print calendar

cu(VIll): call UNIX
indir(II): indirect system call

intro(Il): introduction to system calls
ierror(fil): catch Fortran errors
signal(II}: catch or ignore signals

cat(I): concatenate and print
cat(IV): phototypesetter interface
cb(l): C beautifier
cc(I): C compiler
cdb(l): C debuger
cd (1): change working directory

floor, ceil(III): floor and ceiling functions
tloor, ceil(III): floor and ceiling functions

cgetpid(lll): return character form of process ID
break, brk, sbrk(Il): change core allocation.

chg:rp(I}: change group
passwd(I}: change login pas.sword

chmod(Il): change mode of file
chmod(l): change mode
chown(Il): change owner and group of a file
chown (l): change owner

chghist(I): change the history entry of an SCCS delta
cd(l): change working directory

chdir(I): change working directory
chdir(II): change working directory

diffmark(l): mark changes between versions of a file
pipe(ll): create an interprocess channel

cgetpid (Ill): return character form of process ID
ascii (V): map of ASCII character set

getchar(III): re.ad character
putchar, tlush(ill): write character

chdir(I): change working directory
chdir(Il): change working c:ijrectory

list of file systems processed by check ... checklist(V):
check(VllI): file system consistency check

file system directory consistency check ... dcheck(VIll):
file system storage consistency check. . .icheck(VIll):

labelit (VIII): copy filesystems with label checking ... volcopy,
checklist (V): list of file systems processed by check

sum (I): print checksum of a file
check(VTII): file system consistency check

chess(VI): the game of chess

• xxi.

chess (VI): the game of chess
chghist(I): change the history entry of an SCCS delta
chgrp(I): change group
chmod(l): change mode
chmod(II): change mode of file
chown (I): change owner
chown(II): change owner and group of a file

clri (VIII): clear i-node
cirm(VIIl): clear mode of i-node
cron(VIIl): clock daemon

close(II): close a file
close(II): close a file
clri(VIII): clear i-node
clnn (VIII): clear mode of i-node
cmp(I): compare two files
col(I): filter reverse line feeds
comb(!): combine SCCS deltas

comb(!): combine SCCS deltas
getarg, iargc(III): get command arguments from Fortran
glob(VIII): generate command arguments

nice(I): run a command at low priority
- {equals)(I): shell assignment command

exit(I): terminate command file
nohup(I): run a command immune to hangups

rsh(I): restricted shell (command interpreter)
sh(I): shell (command interpreter)

goto(l): command transfer
if(I): conditional command

pump(l): Shell data transfer command
setuid(Vlll): set user id of command

switch (I): shell multi-way branch command
time(I): time a command

while(!): shell iteration command
construct argument list (s) and execute command. .. xargs(I):

comm (I): print lines common -to two files
comm (I): pr.int lines common to two files

terminals(VII): descriptions of commonly-used terminals
dh(N): DH-11 communications multiplexer

ditf(I): differential file comparator
whatsnew(I): compare file modification dates

cmp(I): compare two files
sccsditfU>: compare two versions of an SCCS file

diff.3(I): 3-way differential file comparison
regcmp, regex(ill): compile and execute regutar, expressions

cc(I): C compiler ,
yacc(I): yet another compiler-compiler

regcmp(I): regular expression compile
fc(I): Fortran compiler
rc(I): Ratfor compiler

wait(!): await completion of process
cat (I): concatenate and print

if (I): conditional command
conftg (VIII): configure a system

• xxii •

con.fig (VIII): configure a system
check(VIIl): file system consistency check

dcheck(VIIl): file system directory consistency check
icheck(VIll): file system storage consistency check

c;w(Il): read console switches
mkfs(VID): construct a file system

xargs(l): construct argument list(s) and execute command
derotr(I): remove nroff, troff, and eqn constructs

egrep(l): search a tile for tines containing a pattern
fgrep(l): search a tile for lines containing keywords

ls(I): list contents of directory
csplitCO: context split

init(VIII}: process control initialization
units(!): conversion program

ecvt, f cvt (III): output conversion
locv(ill): long output conversion

dd(I): convert and copy a file
atof(Ill): convert ASCII to floating
atoi (ill): convert ASCII to integer

ctime, localtime, gmtime(III): convert date and time to ASCII
cpx(I): copy a file exactly

dd(I): convert and copy a file
cpio(l): copy file archives in and out

volcopy, labelit(VIII): copy filesystems with label checking
bcopy(VIII): disk block copy

cp(I): copy
break, brk, sbrk(II): change core allocation

alloc:, free(m): core allocator
core(V): format of core image file

mem, kmem, null (IV): core memory
core(V): format of core image file

sin. cos{III): trigonometric functions
nargs(ill): argument count

wc(I): word count
cp(I): copy

cpio(V): format of cpio archive
cpio(l): copy file archives in and out
cpio(V): format of cpio archive
cpx(l): copy a file exactly

crash (VIII): what to do when the system crashes
crash (VIII): what to do when the system crashes

creat (II): create a new file
pipe(II): create an interprocess channel

creat(Il): create a new file
cref(I): make cross referente listing
cron(VIII): clock daemon

cref(l): make cross reference listing
HP2640(VII): Hewlett-Packard 2640 CRT terminal family

crypt (I): encode/ decode
crypt(ill): password encoding
csplit (I) : context' split
csw(II): read console switches

ASCII... ctime, localtime, gmtime(III): convert date and time to

- xxiii •

cubic(Vl): three dimensional tic-tac-toe
uname(Il): get name of current PWB/UNIX

ttyn (Ill): return name of current terminal
uname(I): print name of current UNIX

spline(!): interpolate smooth curve
cu(VIIl): call UNIX

cron (VIlI): clock daemon
patchup(VIII): patch up a damaged file system

GSI300(VIl): GSI300 (DTC300 or DASI300) hard-copy terminals
DASI4SO(VIl): DASI450, DIABLO 1620, XEROX 1700 terminals

450(1): handle special functions of DASI450 terminal
terminals... DASI450(Vll): DASI450, DIABLO 1620, XEROX 1700

prof (I): display profile data
uys(V): terminal initialization data

udata(II): get per-user data
ctime, localtime, gmtime(III): convert date and time to ASCII

time(II): get date and time
date(I): print and set the date

date(!): print and set the date-
whatsnew(I): compare file mod.i1ication dates

db(I): debug
dcat(VIII): read/write synchronous line
dcheck(VIIl): file system directory consistency check
dc{l): desk calculator
dd(I): convert and copy a file

db(I): debug
adb(l): debugger

cdb(I): C debugger
fsdb(Vlll): file system debugger

tp(I): manipulate DECtape and magtape
dSw(I}: delete interactively

- tail a>: deliver the last part of a file
rmdel (I): remove a delta from an SCCS file

change the history entry of an SCCS delta. .. chgbist(I):
delta(D: make an SCCS delta

delta(I): make an SCCS delta
comb(I): combine SCCS deltas

mesg(I): permit or deny messages
derotf(I): remove nroff, troff, and eqn constructs
descend(fil}: search UNIX tile system directories

terminaJs(VIl): descriptions of commonly-used terminals
fd2(1): redirect file descriptor 2 (diagnostic output)

dup(ll}: duplicate an open file descriptor
mail (I): send mail to designated users

dc(I) :' desk calculator
access(II): determine accessibility of file

file(I): determine file type
master(V}: master device information table

devnm(VIID: d~vice name
devnrn (VIII): device name
df{I): report disk free space

dh(IV): DH-11 communications multiplexer
dh(IV): DH-11 communications multiplexer

• xxiv -

t
!

DASl4SO(Vll): DASI4SO, DIABLO 1620, XEROX 1700 terminals
fd2(1): redirect file descriptor 2 (diagnostic output)

diff3(I): 3-way differential file comparison
bdilf (l}: big diff

diff(I): differential file comparator
diff3 (I): 3-way differential file comparison

diff (l): differential file comparator
diffmark(I): mark changes between versions of a file

cubic(VI): three dimensional tic-tac-toe
descend(ll): search UNIX file system directories

directory(V): format of directories
regen (Vlll): regenerate system directories

dcheck(VJII): tile system directory consistency check
unlinir(Il): remove directory entry

pwd (1): working directory name
mknod (II): make a directory or a spet:ial file

cd(l): change working directory
chdir(I): change working directory

chdir(II): change working directory
ls(I): list contents of directory

mkdir(I): make a directory
rmdir(l): remove directory

directory(V): format of directories
f actor(VI): discover prime factors of a number

bcopy(VIII): disk block copy
diskboot(Vlll): disk bootstrap programs

df(I): report disk free space
du (I): summarize disk usage

diskboot(VIII): disk bootstrap programs
hp(IV): RP04/RPOS/RP06 moving-head disk

hs(IV): RS03/RS04 fixed·head disk
rp(IV): RP-11/RP03 moving-head disk

umount(Il): dismount file system
umount(Vlll): dismount file system

prof (I): display profile data
ldiv, lrem(ill): long division

kl(IV): KL-11 or DL-11 asynchronous interface
dn(IV): DN-11 ACU interface

dn(IV): DN-11 ACU interface
mm(I): run off document with PWB/MM

man(l): print on-line documentation
dp(M: DP-11, DU-11 synchronous line interface

dp(IV): DP-11. DU-11 synchronous line interface
rje{IV): DQS-1 lB interface for remote job entry

othello(Vl): a game of dramatic reversals
graph(I): draw a graph

dsw(I): delete interactively
GSDOO(Vll): GSDOO (DTCJOO or DASI300) hard-copy terminals

dp(IV): DP·ll, DU-11 synchronous line interface
du (I): summarize disk usage

dump(V): incremental dump tape format
dump(VIIl): incremental file system dump

od(l): octal dump

dump(V): incremental dump tape format
dump(VIII): incremental file system dump
dup(Il): duplicate an open file descriptor

d.up(ll): duplicate an open file descriptor
ebcdic(V): file format

echo(I): echo arguments
echo(l): echo arguments
ecvt.. fcvt(m): output conversion

e~ et~ edata(llD: last locations in program
ed(I): text editor

a.out(V): assembler and link editor output
eel (I): text editor
ld(I): link editor

sed(D: stream editor
egrep(l): search a file for lines containina a pattem

crypt(I): encode/decode
crypt(W): password encoding

rjestat(I): RJE status and
nlist(ill): get

chghist(I): change the history
basp(VUD: PWB/UNIX IBM Remote Job
rje(IV): DQS-UB interface for remote job

unlink(Il): remove directory
sky(Vl): obtain

deroft'(I): remove nroft', troft', and

end. etext. edata(III): last locations in program
enquiries
entries from name list
entry of an SCCS delta
Entry
entry
entry
ephemerides
eqn constructs
eqn(I): typeset mathematics

• - (equals) CD: shell assignment command
perror, sys_errl~ sys_nerr, ermo(llI): system msqes

ierror(III): catch Fortran errors
spell (I): find spelling errors

setmnt(VUI): establish mnttab table
plot: openpl et al. (ID): graphics interface

end. etext, edata(ID): lut locations in program
expr(I): evaluate arguments as an algebraic expression

cpx(I): copy a file exactly

e~

exec, execl, execv(II):
pexec(m>: path search and

xargs(I): construct argument list(s) and
reset, setexit (ID):

setjmp, longjmp(ID):
regcm:p, regex(m): compile and

sleep(D: suspend
sleep(ID): suspend

monitor(ID): prepare
profil(ID:

exec, execl,

exP(ID):

exec, exect, execv(ID: execute a file
execl. execv(ll): execute a fUe
execute a file
execute a file
execute command
execute non-local soto
execute non-local goto
execute regular exprmiom
execution for an interval
execution for interVal
execution profile
execution time proile
execv(Il): execute a file
exit(I): termnu.te command file
exit(II): terminate process
exp(ID): exponential function
exponential function

• xxvi.

pow(ill): floating exponentiation
regcmp(I): regular expression compile

expr(I): evaluate arguments as an algebraic expression
regex (ill): compile and execute regular expressions ... regcmp,

expr(I): evaluate arguments as an algebraic expression
greek(V): graphics for extended TELETYPE Model 37 type-box

abs, fabs(Ill): absolute value
factor(VI): discover prime factors of a number

factor(VI): discover prime factors of a number
Hewlett-Packard 2640 CRT terminal family ... HP2640(VII):

abort(III): generate an IOT faulr
fc(I): Fonran compiler

putc, putw, fcreat, ffiusb(ill): buffered output
ecvt, fcvt(Ill): output conversion

fd2(I): redirect file descriptor 2 (diagnostic output)
col(I): filter reverse line feeds

putc, putw, f creat, ftlush (III): butrered output
f grep(l): search a file for lines containing keywords

cpio(I): copy file archives in and out
dit'f(l): ditrerential file comparator

diftJ{l): 3·way differential file comparison
· fd.2(1): redirect file descriptor 2 (diagnostic output)

dup(ll): duplicate an open file descriptor
cpx{I): copy a file exactly

grep(I): search a file for a pattern
rgrep(I): search a file for a pattern
egrep(I): search a file for lines containing a pattern
fgrep(l): search a file for lines containing keywords

ar(V): archive {library) file format
ebcdic(V): file format

splitCO: split a file i!ltO pieces
wbat.mew(I): compare file modification dates

setfil (ill): specify Fortran file name
tell (Il): get tile off set
bfs(I): big file scanner

stat (ll): get file status
check(VID): file system consistency check

fsdb(Vlll): file system debuaer
descend(ID): search UNIX file system directories

dcheck(VllD: file system directory consistency check
dump(VIII): incremental file system dump
restor(VIII): incremental file system restore

ustat (II): get file system statistics
icheck(Vlll): file system storage consistency check

mnttab(V): mounted file ~tem table '
fs(V): format of file system volume

mkfs(Vlll): construct a file system
mount (II): mount file system

mount(VIIl): mount tile system
patchup(VIII): patch up a damaged file system

checklist {V): list of file systems processed by check
umount(II): dismount file system

umount (VIll): dismount file system

• xxvii •

file{!): determine file type
access(II): determine accessibility of file

chmocl(II): change mode of file
chown (II): change owner and group of a file

close(II): close a file
core(V): format of core image file

creat(II): create a new file
dd(I): convert and copy a file

mark changes between versions of a file ... ditfmark(I):
exec, execl, execv(Il): execute a file

exit(!): tenpinate command file
f stat (II): get status of open file

get(I): get generation from SCCS file
group(V): group file

file(l): determine file type
link(II): link to a file

mknod (II): make a directory or a special file
mknod (VIIl): build special file
mv(I): move or rename a file

passwd (V): password file
pexec(ill): path search and execute a file

pr(I): print file
prt(I): print SCCS file

read(II): read from file
reform(I): reformat text file

rmdel(I): remove a delta from an SCCS file
admin (I): administer SCCS files

compare two versions of an SCCS file ..• sccsditf(I}:
sa:sflle(V): fonnat of SCCS file

cmp(I): compare two files
comm(I): print lines common to two files

find(I): find files
fspec(V): format specification in text files

gath(I): gather real and virtual files
sba(V): Shell accounting file
size(l): size of an object file

onintr(I): handle interrupts in shell files
rm (I): remove (unlink) files

sort(!): sort or merge files
sum (I): print checksum of a file

what(!): identify files
volcopy, labelit(VIII): copy filesystems with label checking

tail (I): deliver the last part of a file
uniq(I): report repeated lines in a file

utime (II): update times in file
write(II): write on a file

col(I): tilter reverse line feeds
plot: t300, t300s, t4SO(I): graphics filters

find(!): find files
typo(I): find possible typos
spell (I): find spelling errors

find (I): find files
tee(I): pipe fitting

• xxviil •

hs(IV): RS03/RS04 fixed-head disk
pow(ID): floating exponentiation

fmod(Ill): floating modulo function
f ptrap(ill): floating point interpreter

atof(ffi): convert ASCII to floating
floor, ceil(ill): floor and ceiling functions

floor, cell (III): floor and ceiling functions
putchar, flush(Ill): write character

f mod(lll): floating modulo function
getc, getw, fopen(III): buffered input

fork(Il): spawn new process
cgetpid(ID): return character form of process ID

core(V): format of core image file
cpio(V): format of cpio archive

directory(V): format of directories
fs(V): format of file system volume

sccsfile(V): format of SCCS file
f spec(V): format specification in text files

tbl (I): format tables for nroff or troff
roft"(I): format text

ar(V): archive (library) file format
dump(V): incremental dump tape format

ebcdic(V): file format
printf(fil): formatted print

nroff, trotr(I): text formatters
troff (I): text formatter

tp(V): mag tape format
f c(l): Fortran compiler

ierror(Ill): catch Fortran errors
setfil(ill): specify Fortran file name

iargc(ill): get command arguments from Fortran •.. getarg..
fptrap(Ill): floating point interpreter

df(l): report disk free space
alloc, free(ill): core allocator

rmdel (I): remove a delta from an SCCS file
· read(Il): read from file

getarg. iargc(ill): get command arguments from Fortran
ncheck(VIII): generate names from i-numbers

logname, logd.ir, logtty(l): information from login
nlist(lll): get entries from name list

get(I): get generation from SCCS file
getpw(il): get name from UlD

fsdb(VIII): file system debugger
fspec(V): format specification in text files
fstat(Il): get status of open file
fs(V): format of file system volume

atan, atan2 (ill): arc tan1ent function
exp(IH): exponential function

fmod(llI): floating modulo function
gamma(llI): log gamma function

450(1): handle special functions of DASI450 terminal
gsi (1): handle special functions of GSI300 terminal
hp(I): handle special functions of HP 2640 tenninal

• xxix •

floor. ceil(ll): floor and ceiling functions
sqrt(IIl): square root function

sin, CO£(IIl): trigonometric functions
bj(Vl): the game of black jack

chess(Vl): the game of chess
othello(Vl): a game of dramatic reversals

wump(Vl): the game of hunt-th~wumpus
ttt(Vl): the game of tic-tac-toe

moo(Vl): guessing game
gamma(ill): log gamma function

gamma(ill): log gamma function
gath(l): gather real and virtual files

gath (l): gather real and virtual files
TermiNet(Vll): GE TermiNet 300 (and 1200) terminals

tty(IV): general terminal interface
abort(IIl): generate an IOT fault

glob(Vlll): generate command arguments
ncheck(VIII): generate n~es from i-numbers

lex(I): generate programs for simple lexical tasks
get(I): get generation from secs tile

rand. srand(ll): random number generator
getarg, iargc(ill): get command arguments from Fortran

time(ll): get date and time
nlist(ill): get entries from name list

tell(ll): get tile offset
stat(ll): get tile status

ustat (ll): get tile system statisti~
get(l): get generation from secs file

getgid(ll): get group identifications
getpw(IID: get name from U1D
uname(ll): get name of current PWB/UNIX

udata(ll): get per-user data
getpid(ll): get process identification
times(ll): get process times
fstat(ll): get status of open file

tty(l): get terminal name
gtty(ll): get terminal status

getuid (ll): get user identifications
getarg, iargc(ill): get command arguments from Fortran
getc, getw, fopen(ill): butfered input
getchar(ill): read character
getgid (II): get group identifications
get(!): get generation from SCCS file
getpid(II): get process identification
getpw(III): get name from UID
getty(VIII): set terminal mode
getuid(ll): get user identifications

getc, getw, fopcn(ill): buifered input
glob(VIII): generate command arguments

match a string with a pattern (like glob(VIII)) ... gmatch(ill):
glob(Vlll))... gxnatch(Ill): match a string with a pattern (like

ctime, localtime, gmtime(III): convert date and time to ASCII
goto(I): command transfer

• xxx -

reset, setexit(ill): execute non-local goto
setjmp, longjmp(ill): execute non-local goto

graph(!): draw a graph·
graph (I): draw a graph

plot: tJOO, t300s, t4SO(I): graphics filters
greek(V): graphics for extended TELETYPE Model 37 type-box

plot: openpl et al. (Ill): graphics interface
plot(V): graphics interface

type·box... greek(V): graphics for extended TELETYPE Model 37
grep(I): search a file for a pattern

group(V): group file
getgid (II): get group identifications

setgid (II): set process group ID
setpgrp(II): set process group number

chown(ll): change owner and group of a file
chgrp(I): change group

newgrp(I): log in to a new group
group(V): group file

GSI300(V1I): GSI300 (0TC300 or DASI300) hard-copy terminals
· gsi(I): handle special functions of GSI300 terminal

terminals... GSI300(V1I): 051300 (DTC300 or DASI300) hard-copy
gsi (I): handle special functions of GSI300 terminal
gtty(ll): get terminal status

moo(VI): guessing game
onintr(I): handle interrupts in shell files

450(1): handle special functions of DASI450 terminal
gsi (I): handle special functions of GSI300 terminal
hp(l): handle special functions of HP 2640 terminal

nohup(l): run a command immune to hangups
GSDOO(VII): 051300 (DTC300 or DASI300) hard-copy terminals

hasp(VIII): PWB/UNIX IBM Remote Job Entry
help(I): ask for help

help(l): ask for help·
HP2640(VII): Hewlett-Packard 2640 CRT terminal family

hmul (Ill): high-order product
chghist(l): change the history entry of an SCCS delta

wtmp(V): user login history
hmuJ(IIl): high-order product

hp(I): handle special functions of HP 2640 terminal
HP2640(VII): B:ewlett-Packard 2640 CRT termiital family
hp(I): handle special functions of HP 2640 terminal
hp(IV): RP04/RPOS/RP06 moving-head disk
hs(IV): RS03/RS04 fixed-head disk
ht(IV): TU16 magtape interface

wump(VI): the game of hunt-the-wumpus '
getarg, iargc(Ill): get command arguments from Fortran

hasp(VIII): PWB/UNIX IBM Remote Job Entry
icheck(VIII): file system storage consistency check

setuid(VIII): set user id of command
return character form of process ID ... cgetpid(lll):

getpid(ll): get process identification
getgid(II): get group identifications

getuid(Il): get user identifications

• xxxi -

what(l): identify files
setgid (ll): set process group ID

setuid (Il): set process user ID
ierror(lli): catch Fortran errors
if (I): conditional command

signal(Il): catch or ignore signals
core(V): format of core image file

nohup(I): run a command immune to h&:igups
dump(V): incremental dump tape format

dump(Vlll): incremental file system dump
restor(VIll): incremental file system restore

pause(ll}: indefinite wait
ptx (1): permuted index

indir{Il): indirect system call
indir(ll): indirect system call

togname, logdir, logtty(I): information from login
master(V): master device information table

logname, logdir, logtl}', logpost(Il): login information
utmp(V): user information

ttys(V): terminal initialization data
init(VIll): process control initialization

init(VIII): process control initialization
clri(VUI): clear i·node

clrm(VIII): clear mode of i·node
next(I): new standard input for shell procedure

getc, getw, fopen(Ill): buifered input
atoi(IIl): convert ASCII to integer

bc(I}: arbitrary precision interactive language
dsw(l): delete interactively

rje(IV): DQS· 11 B interface for remote job entry
cat(M: phototypesetter interface

dn(IV): DN-11 ACU interface
dp(IV): DP-11, DU-11 synchronous line interface

ht(IV): TU16 magtape interface
k:l(IV): K.L-11 or DL-11 asynchronous interface

plot: openpi et al. (ID): graphics interface
plot(V): graphics interface

tm(IV): TMll/TUIO magtape interface
tty(IV): general terminal interface

spiine(l): interpolate smooth curve
fptrap(lli): ftoating point interpreter

rsh (D: restricted shell (command interpreter)
sh(I): shell (command interpreter)

sno(I): Snobol interpreter
pipe(Il): create an interprocess channel
onintr(I): handle interrupts in shell files

sleep(l): suspend execution for an interval
sleep(lli): suspend execution for interval

intro(Il): introduction to system calls
intro(II): introduction to system calls

ncheck(VIIl): generate names from i-numbers
abon(Ul): generate an IOT fault

while(I): shell iteration command

• xxxii •

bj (VI): the game of black jack
hasp(VIII): PWB/UNIX IBM Remote Job Entry

rje(IV): DQS-llB interface for remote job entry
send(!): submit RJE job

search a file for lines containing keywords .• .fgrep(I):
kill (I): terminate a process
kill(ll): send signal to a process

kl(IV): KL-11 or DL-11 asynchronous interface
kl(IV): KL-11 or DL-11 asynchronous interface

mem. kmem. null(IV): core memory
quiz(I): test your knowledge

labelit(VIII): copy filesystems with label checking. .. volcopy,
. volcopy, labelit(VIIl): copy filesystems with label checking

bc(I): arbitrary precision interactive language
end, etext, edata(IIl): last locations in program

tail(!): deliver the last part of a file
lastcom(VUI): search shell accounting records
ld(I): link editor
ldiv, lrem(III): long division

banner(I): print in block letters
lex (I): generate programs for simple lexical tasks

lex(I): generate programs for simple lexical tasks
ar(V): archive (library) file format

ar(I): archive and library maintainer
gmatch(ill): match a string with a pattern (like glob(Vlll))

col (I): filter reverse iine feeds
dp(IV): DP-11, DU-11 synchronous line interface

lp(IV): line printer
dcat(Vlll): read/write synchronous line

comm (I): print lines common to two tiles
egrep(I): search a file for lines containing a pattern
fgrep(I): search a file for lines containing keywords

uniq (I): report repeated lines in a file
a.out(V): assembler and link editor output

ld(I): link editor
link(Il): link to a file

link(II): link to a file
ln (I): make a link

ls(I): list contents of dir~ory
dlecidist(V): list of file systems processed by check

cref(D: make cross reference listing
nlist(ffi): get entries from name list

nm<D: print name list .
xargs(I): construct argument list(s) and execute comman~

ln (I}: make a link
romboot(Vill): special ROM bootstrap loaders

ctime, localtime, gmtime(Ill): convert date and time to ASCII
end, etext, edata(lli): last locations in program

locv(III): long output conversion
gamma(III): log gamma function

newgrp(I): log in to a new group
log(lll): natural logarithm

logname, logdir, logtty, logpost(II): login information

- xxxiii -

logname, logdir, logtty(I): information from login
log(Ul): natural logarithm

ac(VIII>: login accounting
wtmp(V): user login history

logname, logclir, logtty, logpost (II): login information
passwd(l): change login password

login(l): sign onto UNIX
logdir, logtty(l): information from login .. .logname,

logname, logclir, logtty, logpost(II): login information
logname, logdir, logtty(l): information from login

logname, logdir, logtty, logpost(Il): login information
'logname, logdir, logtty, logpost(Il): login information
logname, logclir, logtty(I): infomtation from login

ldiv, lrem(III): long division
locv(Ill): long output conversion

setjmp, longjmp(IIl): execute non-local goto
nice(I): run a oommand at low priority

lp(IV): line printer
Id.iv, lrem(III): long division

ls (I): list contents of directory
m4(1): macro processor

tmac.name{Vll): standard nroff and troff macro packages
m4(I): macro processor
tp(V): mag tape format

tapeboot (Vlll): magnetic tape bootstrap programs
ht(IV): TU16 magtape interface

tm(IV): TMI l/TUIO magtape interface
tp(I): manipulate DECtape and magtape

mail (I): send mail to designated users
mail (1): send mail to designated users

ar(I): archive and library maintainer
mknod(II): make a directory or a special file

mkdir(I): make a directory
In (I): make a link

make(!): make a program
delta(I): make an SCCS delta
cref (I): make cross reference listing

make(l): make a program
man (I): print on-line documentation

tp(I): manipulate DECtape and magtape
ascii (V): map of ASCII characler set

diffmark(l): mark changes between versions of a file
master(V): master device information table

master(V): master device information table
gmatch (Ill): match a string with a pattern (like glob{VIII))

neqn (I): typeSet mathematics on terminal
eqn (I): typeset mathematics

mem, kmem, null CM: core memory
mem, kmem, null (IV): core memory

sort (I): sort or merge files
mesg(I): permit or deny messages

mesg(I): permit or deny messages
sys_errlist, sys_nerr, ermo(III): system messa.ges ... perror,

• xxxiv •

mkdir(I): make a directory
mkfs(VIII): construct a file system
mknod(Il): make a directory or a special file
mknod (VIII): build special file
mm(I): run off document with PWB/MM

setmnt(VIII): establish mnttab table
mnttab(V): mounted file system table

chmod (II): change mode of file
clnn (VIII): clear mode of i-node

stty(Il): set mode of terminal
chmod(I): change mode

getty(VIII): set terminal mode
greek(V): graphics for extended TELETYPE Model 37 type-box

wbatsnew(I): compare file modification dates
fmod(ill): floating modulo function

monitor(Ill): prepare execution profile
moo(Vl): guessing game

mount (II): mount file system
mount(VIII): mount file system

mnttab(V): mounted file system table
mount (II): mount file system
mount(vtll): mount file system

mv(I): move or rename a file
seek(II): move reacVwrite pointer

hp(M: RP04/RPOS/RP06 moving-head disk
. rp(M: RP~ll/RPOJ moving-head disk

dh(M: DH-11 communications multiplexer
switch(!): shell multi-way branch command

mv(I): move or rename a file
getpw(m): get name from UID

nlist(fil): get entries from name list
nm(I): print name list

uname(ll): get name of current PWB/UNIX
ttyn(ID): return name of current terminal
uname(I): print name of current UNIX

devnm (vtll): device name
pwd(l): working directory name

ncheclc(vtll): generate names from i-numbers
setfil(ID): specify Fortran file name

tty(I): get terminal name
nargs(ill): argument count

log(ID): natural logarithm
ncheck(vtll): generate names from i-numbers
neqn (I): typeset mathematics on terminal

creat(II): create a new file
newgrp(I): log in to a new group

fork(II): spawn new process
next(I): new standard input for shell procedure

newgrp(I): log in to a new group
next(I): new standard input for shell procedure
nice(I): run a command at low priority
nice(ll): set program priority
nlist (Ill): get entries from name list

• xxxv -

nm(l): print name list
nohup(I): run a command immune to hangups

reset, setexit (III): execute non-local goto
setjmp, longjmp(III): execute non-local goto

tmac.name(vtl): standard nroff and troff macro packages
tbl (I): format tables for nroff or trot!'

deroff(I): remove nroff. troff, and eqn constructs
nro1f. tro1f(I): text formatters

mem, k:mem. null(IV): core memory
rand, srand(III): random number generator

factor(VD: discover prime factors of a number
setpgrp(Il): set process group number

size(I}: size of an object file
sky(Vl): obtain ephemerides

od(I): octal dump
od(l): octal dump

mm(I): run off document with PWB/MM
telHII): get file offset

onintr(I): handle interrupts in shell files
man(I): print on-line documentation
login CD: sipi onto UNIX

dup(II): duplicate an open file descriptOr
fstat{Il): get status of open file

open (II): open for reading or writing
open(II): open for reading or writing

plot: openpl et al. (Ill): graphics interface
strcpy, strcat, strcmp, strlen (III): operations on ASCll strings

suy(I): set terminal options
othello(VI): a game of dramatic reversals

cpioO): copy file archives in and out
ecvt, fcvt(III): output conversion
loc:v(III): long output conversion

a.out(V): assembler and link editor output
redirect file descriptor 2 (diagnostic output) •.. fd2(1):

putc, putw, fcreat, ftlush(lll): bu1fered output
chown (II): change owner and group of a file
chown(I): change owner

standard nroff and troff macro packages •.. tmac.name(VII):
tail (I): deliver the last part of a file

passwd(I): chanp login. password
passwd(V): password file

crypt(III): password encoding
passwd(V): password file

passwd(l): change login password
patchup(Vlll): patch up a damaged file system

patchup(VIII): patch up a damaged file system
pexec(III): path search and execute a file

gmatch(ID): match a string with a pattern (like glob(Vlll))
search a file for lines containing a pattern. .. egrep(I):

grep(l): search a file for a pattern
rgrep(l): search a file for a pattern

pause(II): indefinite wait
mesg(I}: permit or deny messages

• :icxxvi • ·

ptx{I):
messages ...

udata(Il): get

cat(IV):
split(!): split a file into

tee(I):

fptrap(ill): floating
seek(Il): move read/write

typo(!): find

bc(I): arbitrary
azel (VI): satellite

monitor(ill):

factor(VI): diseover
date(!):

cal(!):
sum(I):

pr(I):
banner(I):
comm(!):

nm(I):
uname(I):

man(l):
prt(I}:

cat(!): concatenate and
lp(IV): line

printf(ill): formatted
vp(I): Versatec

nice(I): run a command at low
nice(Il): set program

su(I): become
next (I): new standard input for shell

70boot(Vlll): 11170 bootstrap
unixboot(Vlll): UNIX startup and boot

init(Vlll):
setgid (II): set

setpgrp(Il): set
cgetpid (ill): return character form of

getpid (II): get
ps(l):

times (II): get
wait(II): wait for

ptrace(Il):
setuid (Il) : set

checklist(V): list of file systems
exit(II): terminate

permuted index
perror, sys_errlist, sys_nerr, errno(III): system
per-user data
pexec(III): path search and execute a file
phototypesetter interface
pieces
pipe fitting
pipe(Il): create an interprocess channel
plot: open pl et al. (III): graphics interface
plot: t300, t300s, t4SO(l): graphics filters
plot(V): graphics interface
point interpreter
pointer
possible typos
pow(III): floating exponentiation
precision interactive language
predictions
prepare execution profile
pr(I): print file
prime factors of a number
print and set the date
print calendar
print checksum of a file
print file
print in block letters
print lines common to two files
print name list
print name of current UNIX
print on-line documentation
print SCCS file
print
printer
printf(ill): formatted print
print
print
priority
priority
privileged user
procedure
procedures
procedures
process control initialization
process group ID
process group number
process ID
process identification
process status
process times
process to terminate
process trace
process user ID
processed by check
process

• xxxvii -

fork(ll): spawn new process
shutdown (Vlll): terminate all processing

kill (I): terminate a process
kill ffi): send signal to a process

m4(1): macro processor
wait(I): await completion of process

hmul (ID): high-order product
prof (I): display profil~ data

prof (I): display profile data
monitor(ID): prepare execution profile

profil(II}: execution time profile .
protil (II): execution time profile

nice(II): set program priority
end. ete~ edata(ID): last locations in program

make(I): make a program
lex(I): generate programs for simple lexical tasks

diskboot(VIIl): disk bootstrap programs
tapeboot(VIIl): magnetic tape bootstrap programs

units(I): conversion program
pn(I): print secs file
ps(I): process status
ptrace(II): process trace
ptx(I}: permuted index
pump(I): Shell data transfer command
pule, putw, fcreat, tllush(W): butrered output
putchar, ftush(ID): write character

pule, putw, fcreat, tllush(ID): buft"ered output
mm(I): run off document with PWB/MM

basp(Vlll): PWB/UNIX mM Remote Job Entry
uname(II): get name of CWTeDt PWB/UNIX

pwd(I): working directory name
qsort(ID): quicker sort

qsort (ID): quicker sort
quiz(l): test your knowledge
rand, srand(ID): random number generator

rand. srand(lli): random number generator
rc(I): Ratfor compiler

rc(I): Ratfor compiler
;elehar(lli): read character

csw(II): read console switches
read(II): read from file

read(II): read from file
open(II): open for reading or writing

seek(II): move read/write Pointer
dcat(VIII): read/write synchronous line

gath(l): gather real and virtual files
lastcom(vtll): search shell accountin1 records

fd.2(1): redirect file descriptor 2 (diagnostic output)
cref(I): make cross reference listing

refonn(I): reformat text file
reform(l): reformat text file

expressions... regcmp, regex(ill): compile and execute regular
regcmp(l): regular expression compile

- xxxviii •

regen(Vlll): regenerate system directories
regen (VIII): regenerate system directories

regcmp, regex(Ill): compile and execute regular expressions
regcmp(I): regular expression compile

regcmp, regex(ill): compile and execute reguJar expressions
strip(I): remove symbols and relocation bits
basp(VIII): PWB/UNIX IBM Remote Job Entry

rje(IV): DQS-llB interface for remote job entry
rmde! (I): remove a delta from an SCCS file

rmall (VIIl): remove all
unli.nlc(Il): remove directory entry

rmdir(I): remove directory
derofl'(I): remove nroff, troff, and eqn constructs

strip(I): remove symbols and relocation bits
nn (I): remove (unlink) tiles

mv(l): move or rename a file
uniq(l): report repeated lines in a file

df {I): report disk free space
uniq(l): report repeated lines in a file

reset, setexit (III): execute non-local goto
restor(VIII): incremental file system restore

restor(Vlll): incremental file system restore
rsh(I): restricted shell (command interpreter)

cgetpid(ID}: return character form of process ID
ttyn(ll): return name of current terminal

othello(VI): a game of dramatic reversals
col(I): filter reverse line feeds

rgrep(I): search a file for a pattern
send(I): submit RJE job

rjestat(I): RJE status and enquiries
rje(IV): DQS-llB.interface for remote job entry
rjestat(l): RJE status and enquiries
rmall (VIIl): remove all
rmdel{I): remove a delta from an SCCS file
rmdir(I): remove directory
rm (1): remove (unlink} files
roff (I): format text

romboot(VIIl): special ROM bootstrap loaders
romboot(VIII): special ROM bootstrap loaders

sqrt(ill): square root function
hp(M: RP04/RPOS/RP06 moving-head disk
rp(IV): RP-ll/RP03 moving-head disk

rp(IV): RP-ll/RP03 moving-head disk
hs(M: RS03/RS04 fixed-head disk'

rsh(I): restricted shell (command interpreter)
nice(!): run a command at low priority

nohup(I): run a command immune to hangups
mm(I): run off document with PWB/MM

azel (VI): satellite predictions
sa(Vlll): Shell accounting

break, brk, sbrk(Il): change core allocation
bfs(I): big file scanner

chghist (I): change the history entry of an SCCS delta

• xxxix -

delta(l): make an SCCS delta
comb(I): combine SCCS deltas

get(I): get generation from SCCS file
prt(I): print SCCS file

rmdel(l): remove a delta from an SCCS file
admin (I): administer secs files

sccsdift"(I): compare two versions of an SCCS file
sccstile(V): format of SCCS file

sccsdifi'(I): compare two versions of an SCCS file
sccsfile(V): format of SCCS file

alarm(II): schedule signal after specified time
grep(I): search a file for a pattern

rgrep(I): search a file for a pattern
egrep(l): search a file for lines containing a pattern
f grep(I): search a file for lines containing keywords

pexec(IIl): path search and execute a file
lastcom (V1II): search shell accounting records

descend (Ill): search UNIX file system directories
sed (I): stream editor
seek(II): move read/write pointer

mail (I): send mail to designated users
kill (Il): send signal to a process

send(I): submit RlE job
stty(ll): set mode of terminal

setgid(ll): set process group ID
setpgrp(Il): set process group number
setuid(Il): set process user ID

nice(II): set program priority
tabsO): set tabs on terminal

getty(Vlll): set terminal mode
stty(I): set terminal options

date(I): print and set the date
stime(II): set time

setuid(Vlll): set user id of command
ascii (V): map of ASCII character set

reset, setexit(ffi): execute non-local goto
setfil (Ill): specify Fortran file name
setgid(ll): set process group ID
setjmp, longjmp(ffi): execute non-local goto
setmnt (VUI): establish mnttab table
setpgrp(Il): set process group number
setuid (II): set process user ID
setuid(V1II): set user id of command
sha(V): Shell accounting file

sha(V): Shell accounting file
lastcom(VIII): search shell accounting records

sa(VIII): Shell accounting
shift (I): adjust Shell arguments
- (equals) m: shell assignment command

rsh(I): restricted shell (command interpreter)
sh(I): shell (command interpreter)

pump(!): Shell data transfer command
onintr(I): handle interrupts in shell files

• xl •

(

while(I): shell iteration command
switch(!): shell multi-way branch command

next (I): new standard input for shell procedure
sh(I): shell (command interpreter)
shift(l): adjust Shell arguments
shutdown(VIII): terminate all processing

login (I): sign onto UNIX
alarm(Il): schedule signal after specified time

kill (II): send signal to a process
signal (II): catch or ignore signals

signal (II): catch or ignore signals
lex(I): generate programs for simple lexical tasks

sin, cos(Ill): trigonometric functions
size(I): size of an object file

size(I): size of an object file
sky(Vl): obtain ephemerides
sleep(l): suspend execution for an interval
sleep(III): suspend execution for interval

spline(I): interpolate smooth curve
sno(I): Snobol interpreter

sno(I): Snobol interpreter
sort(!): sort or merge files

sort (I): sort or merge files
qsort (ID): quicker sort

df (I): report disk free space
fork(Il): spawn new process

mknod(Il): make a directory or a special file
mknod(Vlll): build special file

450(1): handle special functions of DASI450 tenninal
gsi(I): handle special functions of GSDOO terminal
hp(I): handle special functions of HP 2640 terminal

romboot(VllD: special ROM bootstrap loaders
fspec (V): format specification in text files

alarm (II): schedule signal after specified time
· setfil (ID): specify Fortran file name

spell (I): find spelling errors
spell (I): find spelling errors

spline(!): interpolate smooth curve
split(!): split a file into pieces

csplit(I): context split
split(!): split a file into pieces
sqrt(ID): square root function

sqrt(ID): square root function
rand, srand(Ill): random number generator

next(!): new standard input for shell procedure
tmac.name(VII): standard nroff and troff macro packages

unixboot(VIIl): UNIX startup and boot procedures
stat(II): get file status

ustat (II) : get file system statistics
rjestat(I): RJE status and enquiries

f stat (II) : get status of open file
gtty(II): get terminal status

ps (I): process status

• xli •

stat (II): get file

icheck(VIII): file system
stn:py.

strcpy, strcat,
ASCil strinp •.•

sed(I):
gmatch (ill): match a

strcmp, strlen (ill): operations on ASCII

strcpy, strcat, strcmp,

send(I):

du(l):
sync(!): update the

sync(Il): update
sleep(!):

sleep(ID):
csw(ll): read console

strip(I): remove
dp(IV): DP·ll, DU·ll

dcat(Vlll): read/write

perror,
perror, sys errlist,
indir(ll): indirect

intro(ll): introduction to
check(VIII): file

crash (VIll): what to do when the
fsdb(VIll): file

descend(Ill): search UNIX file
regen(Vlll): regenerate

dcheck(VIll): file
dump(VIII): incremental file

perror, sys_errlist, sys_nerr, errno(ID):
restor(Vlll): incremental file

ustat (ll): get file
icheck(VIII): file

mnttab(V): mounted file
fs(V): format of file

config(VIIl): configure a
mlc:fs(Vlll): construct a file

mount{Il): mount file
mount (VIII): mount file

patchup{VIII): patch up a damaged file
checklist (V): list of file

umount(Il): dismount file
umount(VIII): dismount file

status
stime(II): set time
storage consistency check
strcat, strcmp, strlen(ill): operations on ASCil strings
strcmp, strlen (Ill): operations on ASCil strinp
strcpy, strcat. strcmp, strlen (Ill): operations on
stream editor
string with a ir.ttem (like glob(VIll))
strings ... strcpy, ~
strip(!): remove symbols and relocation bits
strlen(IIl): o~tions on ASCll strings
sny(I): set temunal options
stty(Il): set mode of terminal
submit RJE job
su(I): become privileged user
sum (I): print checksum of a file
summarize disk usage
super block
super-block
suspend execution for an interval
suspend execution for interval
switches
switch(I): shell multi-way branch command
symbols and relocation bits
synchronous line interface
synchronous line
sync(l): update the super block
sync(Il): update super-block
sys_errlist, sys_nerr, ermo(ID): system messages
sys_nerr, ermo(ID): system messages
system call
system calls
system consistency check
system crashes
system debugger
system directories
system directories
system directory consistency check
system dump
system messaaes
system restore
system statistics
system storage consistency check
system table
system volume
system
system
system
system
system
systems processed by check
system
system

• xiii •

.•:i

who(I): who is on the system
plot: t300, t300s, t4SO(I): graphics filters

plot t300, t300s, t4SO(l): graphics filters
plot: t300, t300s, t4SO(I): graphics filters

master{V): master device information table
mnttab(V): mounted file system table

tbl (I): format tables for nroff or troff
setmnt (VIIl): establish mnttab table

tabs(I): set tabs on termi'lal
tabs(!): set tabs on terminal
tail (I): deliver the last part of a file

atan, atan2(Ill): arc tangent function
tapeboot(VIII): magnetic tape bootstrap programs

dump(V): incremental dump tape format
tp(V): mag tape format

tapeboot(VIlI): magnetic tape bootstrap programs
generate programs for simple lexical tasks .. .lex(I):

tbl (I): format tables for nroff or troff
tee(I): pipe fitting

greek(V): graphics for extended TELETYPE Model 37 type-box
tell(II): get file offset

HP2640(Vll): Hewlett-Packard 2640 CRT terminal family
ttys(V): terminal initialization data

tty(IV): general terminal interface
getty(VIII): set terminal mode

tty(!): get terminal name
stty(I): set terminal options

gtty(Il): get terminal status
450(1): handle special functions of DASI4SO terminal

gsi(I): handle special functions of GSI300 terminal
hp(I): handle special functions of HP 2640 terminal

neqn(I): typeset mathematics on terminal
DASI450, DIABLO 1620, XEROX 1700 terminals ... DASI450(Vll):

GSl300 (DTCJOO or DASI300) hard.copy terminals ... GSI300(VII):
descriptions of commonly-used terminals ... tenninals(Vll):

TermiNet(VII): GE TermiNet 300 (and 1200) terminals
TI700(VII}: TI 745, 735, and 725 terminals

stty(II): set mode of terminal
terminals(VII): descriptions of commonly-used terminals

tabs(!): set tabs on terminal
ttyn{lli): return name of current terminal

kill (I): terminate a process
shutdown (VIII): terminate all processing

exit{l): terminate command file
exit (II): terminate process

wait(Il): wait for process to terminate
TermiNet(VII): GE TermiNet 300 (and 1200) terminals

TermiNet(VII): GE TermiNet 300 (and 1200) terminals
quiz(I): test your knowledge

ed(I): text editor
reform (I) : reformat text file

f spec(V): format specification in text files
nroff, troff (I): text formatters

· • xliii •

troff'(l): text formatter
roft'(l): format text

cubic(Vl): three dimensional tic-tac-toe
TI700(VII): n 745, 735, and 725 terminals

TI700(Vll): TI 745, 735, and 725 terminals
cubic(Vl): three dimensional tic·tac·toe

ttt(Vl): the game of tic-tac-toe
time(I): time a command

protil (II): execution time profile
localtime, 1?11time(fil): convert date and time to AScn. •• c:mne.
alann(ll): schedule signal after specified time

time(l): time· a command
time(Il): get date and time

utime(II): update times in tile
times(ll): get process times

stime(II): set time
times(ll): get process times
time(ll): get date and time

tm(IV): TMll/TUlO magtape interface
tmac.name(Vll): standard nroff and trotr macro packages
tm(M: TMt11n110 magtape interface
tp(l): manipulate DECtape and masrape
tp(V): mag tape format

ptrace(ll): process trace
pumt>(I): Shell data transfer command

goto(l): command transfer
tr(I}: transliterate •

trCD: transliterate
sin, cos(llI): trigonometric functions

derotr(l): remove nrotr, trotr, and eqn constructs
tmac.name(Vll): standard nroff and trotr macro packaps

trotrCD: text rormauer
nrotr, trotf(l): text formatters

tbl(D: format tables for nrotf or trotr
ttt(Vl): the game of tic-tac·toe
tty(l): get terminal name
tty(IV): general terminal interface
ttyn (III): return name of current terminal
tty!(V): terminal initialization data

htCIV>: rut 6 magupe interface
cmp(I): compare two tiles

comm(I): print lines common to two tiles
sa:sdift'(l): compare two versions of an SCCS file

araphics for extended TELETYPE Model 37 type·box~ •• greek(V): ·
tile(I): determine file type

neqn (I): typeSet mathematics on terminal
eqn (1): typeset mathematics

typo(I}: find possible typos
typo(I): find possible typOs

udata(II): get per-user data
getpw(III): get name from UID

umount(II): dismount file system
umount(VIII): dismount file system

• xliv •

uname(I): print name of current UNIX
uname(ll): get name of current PWB/UNIX
uniq(I): repon repeated lines in a file
units(I): conversion program

descend (Ill): search UNIX file system directories
unixboot(VIIl): UNIX stanup and boot procedures

unixboot(VIII): UNIX startup and boot procedures
cu (VIII): call UNIX

login(I): sign onto UNIX
uname(I): print name of current UNIX

rm(D: remove (unlink) files
unlink(II): remove directory entry

sync(ll): update super-block
sync(I): update the super block

utime(II): update times in tile
du(I): summarize disk usage

setuid (VIIl): set user id of command
getuid(ll): get user identifications

setuid(Il): set process user ID
utmp(V): user information
wtmp(V): user login history

mail (I): send mail to designated users
su(I): become privileged user

wall (VIIl): write to all users
write(D: write to another user

ustat(II): get file system statistics
utime(Il): update times in tile
utmp(V): user information

abs, fabs(ID): absolute value
vp(I): Versatec print

dift'mark(I): mark changes between versions of a file
sccsdiff{l): compare two versions of an SCCS file
gath(l): gather real and vinual files

checking... volcopy, labelit(Vlll): copy filesystems with label
fs(V): format of file system volume

vp(l): Versatec print
wait(II): wait for process to terminate

wait(!): await completion of process
wait(II): wait for process to terminate

pause(Il): indefinite wait
wall(VIII): write to all users
wc(I): word count

crash(VIII): what to do when the system crashes
what(I): identify files
wbatsnew(I): compare file modification dates
while(I): shell iteration command

who(!): who is on the system
who(l): who is on the system

gmatch(III): match a string with a pattern (like glob(VIII))
volcopy, labelit(VIII): copy filesystems with label checking

mm(!): run off document with PWB/MM
wc(I): word count

pwd(I): working directory name

·xiv -

cd(I): change working directory
chdir(I): change working directory

chdir(ll): change working directory
putchar, fiush(lll): write character

write(II): write on a tile
wall(VUI): write to all users

write(I): write to another user
write(I): write to another user
write(II): write on a tile

open(II): open for reading or writing
wtmp(V): user login history
wump(Vl): the game of bunt-the-wumpus
xargs(I): construct argument list(s) and execute command

DASI4SO(Vll): DASI4SO, DIABLO 1620, XEROX 1700 terminals
yacc(I): yet another compiler-compiler

yacc(I): yet another compiler-compiler
quiz(I): test your knowledge

• xlvi •

450 (I) PWB/UNIX Edition 1.0 450 (I)

NAME
450 - handle special functions of OASl450 terminal

SYNOPSIS
450

DESCRIPTION
450 supports special functions of, and optimizes the use of the DASI450 terminal, or any terminal
that is functionally identical, such as the DIABLO 1620 or XEROX 1700. It converts half-line
forward, half-line reverse, and full-line reverse motions to the correct vertical motions. It also
attempts to draw Greek letters and other special symbols in the same manner as gsiW. 450 can
be used to print equations neatly, in the sequence:

neqn file ... I nroff I 450

NOTE: 450 can be used with the nroff -s flag or .rd requests when it is necessary to insert paper
manually or change fonts in the middle of a document. Instead of hitting the RETURN key in
these cases, you must use the LINE FEED key to get any response.

However, in most cases, 450 can be eliminated in favor of the following:

nroff -T450 files ... or nroff -T4S0-12 files ...

In a few cases, the additional movement optimization of 450 may produce better-aligned output.

The SPACING switch may be in either 10-pitch or 12-pitch position (but that setting can be over­
ridden dynamically). In either case, vertical spacing is 6 lines/inch, unless dynamically changed to
8 lines per inch by an appropriate escape sequence.

SEE ALSO

BUGS

graph(!), gsi(l), mesg(I), neqn(I), stty(I), tabs(I), greek(V), DASI450(VII), terminals(VII)

Some Greek characters can't be correctly printed in column 1 because the print head cannot be
moved to the left from there. If your output contains much Greek and/ or reverse line feeds, use
friction feed instead of a forms tractor. Although good enough for drafts, the latter has a ten­
dency to slip when reversing direction, distorting Greek characters, and misaligning the first line
after a long set of reverse line feeds.

. I .

...,......_,..._ ., ~-·

ADB(l) PWB/UNIX Edition 1.0 ADB(I)

NAME
adb - debugger

SYNOPSIS
adb [-w) [objfil [corfil)]

DESCRIPTION
Adb is a general-purPC>Se debugging program. It may be used to examine files and to provide a con­
trolled environment for the execution of UNIX programs.

Obi/ii is normally an executable program file, preferably containing a symbol table~ if not then the sym­
bolic features of adb cannot be used although the file can still be examined. The default for obj/ii is
a.out. Cor./il is assumed to be a core image file produced after executing obj/ii; the default for cot:/il is
core.

Requests to adb are read from the standard input and responses are to the standard output. If the -w
flag is present then both obj/ii and cor./il are created if necessary and opened for reading and writing so
that files can be modified using adb. Adb ignores QUIT signals; INTERRUPT causes return to the next
adb command.

In general, requests to adb are of the form

(address J [, count] (command} [;]

If address is present then dot is set to address. Initially dot is set to 0. For most commands, count
specifies how many times the command will be executed. The default countis 1; Address and count are
expressions.

The interpretation of an address depends on the context it is used in. If a sub-process is being
debugged then addresses are interpreted in the usual way in the address space of the sub-process. For
further details of address mapping see ADDRESSES.

EXPRESSIONS

The value of dot.

+ The value of dot incremented by the current increment.

The value of dot decremented by the current increment.

The last address typed.

integer An octal number if integer begins with a 0; a hexadecimal number if preceded by '#'; oth·
erwise a decimal number.

integer •. fraction
A 32-bit floating point number.

'cccc· The ASCII value of up to 4 characters. '\' may be used to escape '".

< name The value of name, which is either a variable name or a register name. Adb maintains a
number of variables (q. v.) that are referred to by the letters a to z or the digits 0 to 9 (see
v ARIABLES below). If name is a register name, then the value of the register is obtained
from the system header in cor./il The register names are rO ••• rS sp pc ps.

symbol A symbol is a sequence of upper or lower case letters, underscores or digits, not starting
with a digit. •\' may be used to escape other characters. The value of the symbol is taken
from the symbol table in obj/il An initial '_' or •-• will be prepended to symbol if needed.

• 1 -

ADB (I> PWB/UNIX Edition 1.0 ADB(I)

routine. name
The address of the variable name in the specified C routine. Both routine and name are
!iymbols. If name is omitted, the value is the address of the most recently activated C stack
frame corresponding to routine.

(exp) The value of exp.

Monadic operators

• exp The contents of the location addressed by exp in cor:/il.

@exp The contents of ~he location addressed by exp in obj{ll.

-exp

- exp

Integer negation.

Bitwise complement.

Dyadic operators are left associative and are less binding than monadic operators.

el + e2 Integer addition.

el - e2 Integer subtraction.

el • el Integer multiplication.

el o/oe2 Integer division.

e I & e 2 Bitwise conjunction.

el I e2 Bitwise disjunction.

e J # e 2 e J rounded up to the next multiple of e 2.

COMMANDS
Most commands consist of a verb followed by a modifier or list of modifiers. The following verbs are
available. (The commands'?' and '/' may be followed by ···~see ADDRESSES for further details.)

? f Locations starting at address in obj/ii are printed according to the format f. Dot is incremented
by the sum of the increments for each format letter (q.v.).

I f Locations starting at address in cotfil are printed according to the format f and dot is incre·
mented as for'?'.

- f The value of address itself is printed in the styles indicated by the format f. (For i format '?' is
printed for the parts of the instruction that reference subsequent words.)

Formats
A format consists of one or more characters that specify a style of printing. Each format character may
be preceded by a decimal integer that is a repeat count for the format character. While stepping
through a format, dot is incremented by the amount given for each format letter. If no format is given
then the last format is used. The format letters available are as follows.

0 2 Print 2 bytes in octal. All octal numbers output by adb are preceded by 0.

0 4 Print 4 bytes in octal.

q 2 Print in signed octal.

Q 4 Print long signed octal.

d 2 Print in decimal.

D 4 Print long decimal.

x 2 Print 2 bytes in hexadecimal.

• 2 •

ADB(I)

x 4

u 2

u 4

f 4

F 8

b

PWB/UNIX Edition 1.0

Print 4 bytes in hexadecimal.

Print as an unsigned decimal number.

Print long unsigned decimal.

Print the 32-bit value as a floating point number.

Print double floating point.

Print the addressed byte in octal.

c Print the aadressed character.

ADB(I)

C Print the addressed character using the following escape convention. Character values 000
to 040 are printed as @ followed by the corresponding character in the range 0100 to 0140.
The character @ is printed as @@.

s n Print the addressed characters until a zero character is reached.

S n Print a string using the @ escape convention~ n is the length of the string including its
zero terminator.

Y 4 Print 4 bytes in date format (see rime(II)).

n Print as PDP-11 instructions~ n is the number of bytes occupied by the instruction. This
style of printing causes variables I and 2 to be set to the off set parts of the source and des­
tination respectively.

a 0 Print the value of dot in symbolic form. Symbols are checked to ensure that they have an
appropriate type as indicated below.

I local or global data symbol
? local or global text symbol
• local or global absolute symbol

p 2 Print the addressed value in symbolic form using the same rules for symbol lookup as a.

t O When preceded by an integer, tabs to the next appropriate tab stop. For example, St
moves to the next 8 space tab stop.

r 0 Print a space.

n 0 Print a newline.

" .•. " 0 Print the en!=losed string.

dot is decremented by the current increment. Nothing is printed.

+ dot is incremented by 1. Nothing is printed.

dot is decremented by 1. Nothing is printed.

MORE COMMANDS
Here are a few more commands~ '[?/)'means the command can start with either'?', for addresses in
obj/ii. or'/', for addresses in cot:/il.

[? /] l value mask
Words starting at dot are masked with mask and compared with. value until a match is found. If
L is used, then the match is for 4 bytes at a time instead of 2. If no match is found. then dot is
unchanged~ otherwise dot is set to the matched location. If mask is omitted, then -1 is used.

- 3 -

ADB(I) PWB/UNIX Edition 1.0 AOB(I)

[? /) w value •••
value is written into the addressed location. If W is used then 4 bytes are written, otherwise 2
bytes are written. Odd addresses are not allowed when writing to the sub-process address space.

[?/] m bl el fl[?/]
New values for (bl, el ,fl) are recorded. If less than three expressions are given then the
remaining map parameters are left unchanged. If the '?' or '/' is followed by ·•· then the
second segment (b2, e2 ,J2) of the mapping is changed. If the list is terminated by '?' or ·r
then the file (obj/ii or codil respectively) is used for subsequent requests. (So that, for exam­
ple, '/m?' will cause'/' to refer to obj/ii.)

> name dot is assigned to the variable or register named.

A shell is called to read the rest of the line following'!'.

$modifier

< f Read commands from the file fand return.

> f Send output to the file f which is created if it does not exist.

r Print the general registers and the instruction addressed by pc; dot is set to pc.

f Print the floating registers in single or double length. If the floating point status of ps is set to
double (0200 bit) then double length is used anyway.

b Print all breakpoints and their associated counts and commands.

a ALGOL 68 stack backtrace. If address is given then it is taken to be the address of the current
frame (instead of r4). If count is given then only the first count frames are printed.

c C stack backtrace. If address is given then it is taken as the address of the current frame
(instead of rS). If C is used then the names and (16-bit) values of all automatic and static vari­
ables are printed for each active function. If count is given then only the first count frames are
printed.

e The names and values of external variables are printed.

w Set the page width for output to address (default 80).

s Set the limit for symbol matches to address (default 255).

o All integers input are regarded as octal.

d Reset integer-input as described in EXPRESSIONS.

q Exit from adb.

v Print all non-zero variables in octal.

m The values used for mapping addresses into file addresses are printed.

: modifier

b c Set breakpoint at address. The breakpoint is executed c-1 times before causing a stop. Each
time the breakpoint is encountered, the command c is executed. If this command sets dot to
zero then the breakpoint causes a stop.

d Delete breakpoint at address.

r ,. Run o~ifil as a sub-process. If address is given explicitly, then the program is entered at this
point~ otherwise, the program is entered at its standard entry point; c specifies how many break­
points are to be ignored before stopping. Arguments to the sub-process may be supplied on the
same line as the command. An argument starting with < or > causes the standard input or

- 4 -

AOB(I) PWB/UNIX Edition 1.0 ADB(l)

output to be established for the command. All signals are turned on on entry to the sub­
process.

c s The sub-process is continued with signal s. If address is given then the sub-process is continued
at this address. If no signal is specified then the signal that caused the sub-process to stop is
sent. Breakpoint skipping is the same as for r.

s s As for c except that the sub-process is single stepped count times. If there is no current sub­
process then obj/ii is run as a sub-process as for r. In this case no signal can be sent; the
remainder of the line is treated as arguments to the sub-process.

k The current sub-process, if any, is terminated.

VARIABLES
Adb provides a number of variables. Named variables are set initially by adb but are not used subse­
quently. Numbered variables are reserved for communication as follows.

0 The last value printed.
1 The last off set part of an instruction source.
2 The previous value of variable 1.

On entry the following are set from the system header in the corfil If corfil does not appear to be a
core file then these values are set from obj/ii.

b The base address of the data segment.
d The data segment size.
e The entry point.
m The •magic' number (0405, 0407, 0410 or 0411).
s The stack segment size.
t The text segment size.

ADDRESSES
The address in a file associated with a written address is determined by a mapping associated with that
file. Each mapping is represented by two triples (bl, el ,fl) and (b2, e2 JJJ and the file address
corresponding to a written address is calculated as follows.

~J~address<el -> file address-address+j]-bl, otherwise,

b2~address<e2 -> file address-address+P-b2,

otherwise, the requested address is not legal. In some cases (e.g. for programs with separated I and D
space) the two segments foe a file may overlap. If a'?' or'/' is followed by an'•' then only the second
triple is used.

The initial setting of both mappings is suitable for normal a.out and core files. If either file is not of
the kind expected then, for that file, bl is set to 0, el is set to the maximum file size and fl is set to O;
in this way the whole file can be examined with no address translation. ,

So that adb may be used on large files all appropriate values are kept as signed 32-bit integers.

EXIT STATUS
If the last command was successful then the exit status is zero; otherwise it is non-zero.

FILES
/dev/mem
/dev/swap

- 5 -

,_

ADB (I) PWB/UNIX Edition 1.0 ADB (I)

SEE ALSO
cdb(I), db(l), ptrace(II), a.out(V), core(V)

BUGS

a) A breakpoint set at the entry point is not effective on initial entry to the program.

b) When single stepping, system calls do not count as an executed instruction.

. 6 .

ADMIN (1) PWB/UNIX Edition 1.0 ADMIN (I)

"!AME
admin - administer SCCS files

~Y~OPSIS

admin I-n) {-i[name) [-rrel}) [-t[nameJJ [-fadd-flag[flag-val]] ... [-ddelete-flag] ...
[-aadd-loginl ... [-eerase-login] ... [-hl I-zl name ...

DESCRIPTION
Admin is used to create new SCCS files and change parameters of existing ones. Arguments to
admin, which may appear in any order. consist of keyletter arguments, which begin with "-", and
named files. If a named file doesn't exist, it is created, and its parameters are initialized according
to the specified keyletter arguments. Parameters not initialized by a keyletter argument are
assigned a default value. If a named file does exist, parameters corresponding to specified
keyletter arguments are changed, and other parameters are left as is.

If a directory is named, admin behaves as though each file in the directory were specified as a
named file, except that non-SCCS files {last component of the pathname does not begin with
"s."), and unreadable files, are silently ignored. If a name of"-" is given, the standard input is
read~ each line of the standard input is taken to be the name of an SCCS file to be processed.
Again, non-SCCS files and unreadable files are silently ignored.

The keyletter arguments are as follows. Each is explained as though only one named file is to be
processed, but the effects of any keyletter argument other than i and r apply independently to
each named file.

-n This argument indicates that new files are to be created. This argument must be
specified when creating new SCCS files. The i argument implies an n argument.

-i The name of a file from which the text of an initial delta is to be taken. If this argu­
ment is supplied, but the file name is omitted, the text is obtained by reading the stan­
dard input until an end-of-file is encountered. If this argument is omitted, and the
admin command creates one or more SCCS files, then their initial deltas must be
inserted in the normal manner, using get and de/tam. Only one SCCS .file may be
created by an admm command on which the i argument is supplied.

-r The release into which the initial delta will be inserted. This argument may only be
supplied if the i argument is also supplied. If this argument is omitted, the initial delta
will be inserted into release 1. The level of the initial delta will always be 1.

-t The name of a file from which descriptive text for the SCCS file is to be taken. If this
argument is supplied and admm is creating a new secs file, the descriptive-text file­
name must also be supplied. In the case of existing SCCS files, if this argument is
supplied but the file name is omitted, the descriptive text (if any) currently in the
SCCS rue will be removed. If the file name is supplied, the text in the file named will
replace the descriptive text (if any) currently in the secs file.

-f This argument specifies a flag, and, possibly, a value for the flag, to be added to the
SCCS file. Several f arguments may be supplied on a single admin command. The
allowable flags and their values are as follows:

. - l -

ADMIN (l) PWB/UNIX Edition 1.0 ADMIN (I)

b The presence of this flag indicates that the use of the b argument on a ger
command will cause a branch to be taken in the delta tree ..

cceil The "ceiling:" the highest release (less than or equal to 9999) which may
be specified by the r argument on a get with an e argument. If this flag is
not specified, the ceiling is 9999.

dSID The default SID to be used on a get when the r argument is not supplied.

ffloor The "floor:" the lowest release (greater than 0) which may be specified by
the r argument on a get with an e argument. If this flag is not specified. the
floor is 1.

The presence of this flag causes the "No id keywords (ge6)" message issued
by get or delta to be treated as a fatal error. In the absence of this flag, the
message is only a warning.

mmod This flag specifies the module name of the SCCS file. Its value will be used
by get as the replacement for the %M% keyword.

ttype This flag specifies the type of the module. Its value will be used by get as a
replacement for the % Y% keyword.

v{pgm] The presence of this flag indicates that delta is to prompt for MR numbers
in addition to comments. If the optional value of this flag is present, it
specifies the name of an MR number validity checking program.

-d This argument specifies a Rag to be completely removed from an SCCS file. This argu­
ment may only be specified when processing existing SCCS files. Several d arguments
may be supplied on a single admin command. See the f argument for the allowable
flags.

-a A login name to be added to the list of logins which may add deltas. Several a argu­
ments may be supplied on a single admin command. As many logins as desired may be
on the list simultaneously. If the list of logins is empty, then anyone may add deltas.

-e A login name to be erased from the list of logins. Several e arguments may be sup­
plied on a single admin command.

-h This argument provides a convenient mechanism for checking for corrupted files.
With this argument, admin will check that the sum of all the characters in the SCCS
file (the check-sum) agrees with the sum which is stored in the first line of the file. If
the sums are not in agreement a "corrupted file" message will be produced. This argu­
ment inhibits writing on the file, so that it will nullify the effect of any other argu­
ments supplied, and is, therefore, only meaningful when processing existing files.

-z This argument will cause admi11 Lo ignore any discrep;tncy in th1: check-sum or th1:
SCCS file (see h argument), and to replace it with the new one. <The same dfoct may
be had by first editing the SCCS file with ed(I) in order to replace the tive-charact1.:r
check-sum in the first line of the file with five zeroes. A subsequent invocation or an
secs command which modifies the file (e.g., adm111, del!a). will cause check-sum vali­
dation to be by-passed, and a new check-sum to be computed.) The purpose of this is

- 2 -

ADMIN(I) PWBLUNIX Edition 1.0 ADMIN (I)

to correct the check-sum in those files which may have been edited by the user. Note
that use of this argument on a truly corrupted file will prevent f uturc detection of the
corruption. ·

fo'IU:S

The last component of all SCCS file names must be of the form "s.modulename". New SCCS
files are given mode 444. Write permission in the pertinent directory is, of course, required to
create a file. All writing done by admin is to a temporary x-file (see get(I}), created with mode
444 if the admin command is creating a new SCCS file, or with the same mode as the SCCS file if
it exists. After successful execution of admin, the SCCS file will be deleted, if it exists, and the
x-file will be renamed with the name of the SCCS fiie. This ensures that changes will be made to
the SCCS file only if no errors occurred.

It is recommended that directories containing SCCS files be mode 755 and that SCCS files them­
selves be mode 444. The mode of the directories will allow only the owner to modify SCCS files
contained in the directories. The mode of the SCCS files will prevent any modification at all
except by secs commands. .

If it should be necessary to patch an SCCS file for any reason, the mode may be changed to 644
by the owner, and then the owner may edit the file at will with ed(I).

Admin also makes use of the z-file, which is used to prevent simultaneous updates to the SCCS
file by different users. See ger(I) for further information.

SEE ALSO
get(I), delta(I), prt{l), what(I), help(I), ed(l), sccsfile(V)
SCCS/PWB User's Manual by L. E. Bonanni and A. L. Glasser.

DIAGNOSTICS
Use help(I) for explanations.

- 3 -

f
;

AR (I) PWB/UNIX Edition 1.0 AR(I)

NAME
ar - archive and library maintainer

SYNOPSIS
ar key [posname] afile name ...

DESCRIPTION

FILES

Ar maintains groups of files combined into a single archive file. Its main use is to create and
update library files as used by the Jd(l). It can be used, though, for any similar purpose.

Key is one character from the set drtpmx, optionally concatenated with vuabin. A.file is the
archive file. The names are constituent files in the archive file. The meanings of the key charac­
ters are:

d means delete the named files from the archive file.

r means replace the named files in the archive file. If the optional character u is used with r, then
only those files with modified dates later than the archive files are replaced. If the optional posi­
tioning character a (also i or b) is used, then the posname- argument must be present and specifies
a file in the archive after (before for i and b) which new files are placed. Without a, i, or b, new
files are placed at the end.

t prints a table of contents of the archive file. If no names are given, all files in the archive are
tabled. If names are given, only those files are tabled.

p prints the nam~ files in the archive.

m moves the named files to the end of the archive. If the options a, i, or b are used, then the
posname argument must be present and, as in r, specifies where the files are to be moved.

x extracts the named files. If no names are given, all files in the archive are extracted. In neither
case does x alter the archive file.

v means verbose. Under the verbose option, ar gives a file-by-file description of the making of a
new archive file from the old archive and the constituent files. When used with t, it gives a long
listing of all information about the files.

n is accepted with no effect whatsoever.

In all cases, the archive file is created mode 644.

/tmp/v?????
/tmp/vl ?????
/tmp/v2?????

temporary
temporary
temporary

DIAGNOSTICS
Most diagnostics are self-explanatory. The message "no space in xxX' means that the file system
xxx does not have enough space to contain the temporary files or the new archive file.

SEE ALSO
ld(I), archive(V)

BUGS
If the same file is mentioned twice in an argument list, it may be put in the archive twice.

. I .

·-

AS(I) PWB/UNIX Edition 1.0 AS(I)

NAME
as - assembler

SYNOPSIS
as [-] [-o objfil } name ...

DESCRimON
As assembles tne concatenation of the named files. If the optional first argument - is used, all
undefined symbols in the assembly are treated as global.

The output of the assembly is left on the file obj/ii; if that is omitted, a.out is used. It is execut­
able if no errors occurred during the assembly, and if there were no unresolved external refer­
ences.

FILES
/lib/as2 pass 2 of the assembler
/tmp/atm{l-3}? temparary
a.out object

SEE ALSO
ld(I), nm(I), db(I), a.out(V), UNIX Assembler Reference Manual by D. M. Ritchie.

DIAGNOSTICS

BUGS

When an input file cannot be read, its name' followed by a question mark is typed and assembly
ceases. When syntactic or semantic errors occur, a single-character diagnostic is typed out
together with the line number and the file name in which it occurred. Errors in pass 1 cause can­
cellation of pass 2. The possible errors are:

)
]
<
•

A
B
E
F
G
I
M
0
p
R
u
x

Parentheses error
Parentheses error
String not terminated properly
Indirection used illegally ·
IUegal assignment to •.'
Error in address
Branch instruction is odd or too remote
Error in expression
Error in local ('f or •b') type symbol
Garbage (unknown) character
End of file inside an if
Multiply defined symbol as label
Word quantity assembled at odd address
•: different in pass 1 and 2
Relocation error
Undefined symbol
Syntax error

Symbol table overflow is not checked. x errors can cause incorrect line numbers in following
diagnostics.

• 1 •

' ~ '·

BANNER (l) PWB/UNIX Edition 1.0 BANNER (I)

NAME
banner - print in block letters

SYNOPSIS
banner arg ...

DESCRIPTION
Banner writes characters as large block letters, 7 characters by 7 characters, on the standard output
file. Each argument may be up to ten characters, and is printed on a separate row.

- 1 -

BAS(I) PWBf.UNIX Edition 1.0 BAS (I)

NAME
bas - basic

SYNOPSIS
bas [file]

DESCRIPTION
Bas is a dialect of Basic. If a file argument is provided, the file is used for input before the con­
sole is read. Bas accepts lines of the form:

statement
integer statement

Integer numbered statements (known as internal statements) are stored for later execution. They
·are stored in sorted ascending order. Non-numbered statements are immediately executed. The
result of an immediate expression statement (that does not have ' ... ' as its highest operator) is
printed.

Statements have the following syntax:

expression
The expression is executed for its side effects (assignment or function cam or for printing as
described above.

comment ...
This statement is ignored. It is used to interject commentary in a program.

done
Return to system level.

draw expression expression expression
A line is drawn on the Tektronix 611 display '/dev/vtO' from the current display position to
the XY co-ordinates specified by the first two expressions. The scale is zero to one in both
X and Y directions. If the third expression is zero, the line is invisible. The current display
position is set to the end point.

display list
The list of expressions and strings is concatenated and displayed 0.e. printed) on the 611
starting at the current display position. The current display position is not changed.

dump

edit

erase

The name and current value of every variable is printed.

The UNIX editor, ed. is invoked with the .file argument. After the editor exits, this file is
recompiled.

The 611 screen is erased.

for name = expression expression statement
for name = expression expression

next
The ./i>r statement repetitively executes a statement (first form) or a group of statements
(second form) under control of a named variable. The variable takes on the value of the
first expression, then is incremented by one on each loop, not to exceed the value of the

- 1 •

BAS (I) PWB/UNIX Edition 1.0 BAS (I)

second expression.

goto expression
The expression is evaluated, truncated to an integer and execution goes to the corresponding
integer numbered statment. If executed from immediate mode, the internal statements are
compiled first.

if expression statement
if expression

[else

fi
... 1

The statement (first form) or group of statements (second form) is executed if the expres­
sion evaluates to non-zero. In the second form, an optional else allows for a group of state­
ments to be executed when the first group is not.

list (expression [expression))
is used to print out the stored internal statements. If no arguments are given, all internal
statements are printed. If one argument is given, only that internal statement is listed. If
two arguments are given, all internal statements inclusively between the arguments are
printed.

print list
The list of expressions and strings are concatenated and printed. (A string is delimited by "
characters.)

prompt list
Prompr is the same as print except that no newline character is printed.

return [expression]

run

The expression is evaluated and the result is passed back as the value of a function call. If
no expression is given, zero is returned.

The internal statements are compiled. The symbol table is re-initialized. The rnndom
number generator is reset. Control is passed to the lowest numbered internal statement.

save [expression [expressionll
Save is like list except that the output is written on the .file argument. If no argument is
given on the command, b.out is used.

Expressions have the following syntax:

name
A name is used to specify a variable. Names are composed of a letter followed by letters
and digits. The first four characters of a name are significant.

number
A number is used to represent a constant value. A number is written in Fortran style, and
contains digits, an optional decimal point, and possibly a scale factor consisting of an e fol­
lowed by a possibly signed exponent.

(expression)
Parentheses are used to alter normal order of evaluation.

_ expression
The result is the negation of the expression.

- 2 -

BAS (I) PWB/UNIX Edition 1.0 BAS (I)

expression operator expression
Common functions of two argumenlS are abbreviated by the two arguments separated by an
operator denoting the function. A complete list of operators is given below.

expression ([expression { , expression] ... J)
Functions of an arbitrary number of arguments can be called by an expression followed by
the argumenlS in parentheses separated by commas. The expression evaluates to the line
number of the entry of the function in the internally stored statements. This causes the
internal statements to be compiled. If the expression evaluates negative, a builtin function
is called. The list of builtin functions appears below.

name I expression [, expression] ... I
Each expression is truncated to an integer and used as a specifier for the name. The result
is syntactically identical to a name. a(l,21 is the same as a(Ul21. The truncated expressions
are restricted to values between 0 and 32767.

The following is the list of operators:

-
&I

- is the assignment operator. The left operand must be a name or an array element. The
result is the right operand. Assignment binds right to left, all other operators bind left to
right.

& (logical and) has result zero if either of its arguments are zero. It has result one if both
its arguments are non-zero. I (logical or) has result zero if both of its arguments are zero. It
has result one if either of its arguments are non-zero.

< <- > >- -- <>
The relational operators (< less than, <= less than or equal, > greater than, >= greater
than or equal, -= equal to, < > not equal to) return one if their arguments are in the
specified relation. They return zero otherwise. Relational operators at the same level
extend as follows: a>b>c is the same as a>b&b>c.

+-
Add and subtract.

•I
Multiply and divide.

Exponentiation.

The following is a list of builtin functions:

arg(i)
is the value of the i ·th actual parameter on the current lev~I of function call.

exp(x)
is the exponential function of x.

log(x)
is the natural logarithm of x.

sqr(x)
is the square root of x.

sin(x)
is the sine of x (radians).

• 3 .

IAS (I) PWB/UNIX Edition 1.0 BAS (I)

cos(x)
is the cosine of x (radians).

atn(x)
is the arctangent of x. Its value is between -1'f/2 and 1T/2.

rnd()
is a uniformly distributed random number between zero and one.

expr()
is the only form of program input. A line is read from the input and evaluated as an expres­
sion. The resultant value is returned.

abs(x)
is the absolute value of x.

int(x)
returns x truncated (towards 0) to an integer.

q1.ES
/tmp/btm?
b.out

lllA(iNOSTl<.:S

temporary
save file

Syntax errors cause the incorrect line to be typed with an underscore where the parse failed. All
other diagnostics are self explanatory.

llUGS
Has been known to give core images.

- 4 -

-

-

-

BC(I) PW'iYUNIX Edition 1.0 BC(I)

NAME
be - arbitrary precision interactive language

SYNOPSIS
be [-I] [file ... J

DESCRIPTION
Be is an interactive processor for a language which resembles C but provides unlimited precision
arithmetic. It takes input from any files given, then reads the standard input. The '-I' argument
stands for the name of a library of mathematical subroutines which contains sine (named 's'},
cosine ('c'), arctangent ('a'), natural logarithm ('I'), and exPonential ('e'). The syntax for be
programs is as follows; E means expression, S means statement.

Comments
are enclosed in /• and • 1.

Names
letters a-z
array elements: letter[E]
The words 'ibase', 'obase', and 'scale'

Other operands
arbitrarily long numbers with optional sign and decimal point.
(E)
sqn(E)
<letter> (E , ... , E)

Operators
+-*/%~

++ - (prefix and Postfix; apply to names)
- <- >- ,_ < >
- -+ -- -· _, -% -·

Statements
E
{S; ... ;S}
if (E) S
while (E) S
for(E;E;E)S
null statement
break
quit

Function definitions are exemplified by
define <letter> (<letter> , ... , <letter>) (

auto <letter>, ... , <letter>
S; ... S
return (E)

All function arguments are passed by value.

The value of a statement that is an expression is printed unless the main operator is an assign­
ment. Either semicolons or newlines may separate statements. Assignment to scale influences
the number of digits to be retained on arithmetic operations. Assignments to ibase or obase set "·

. I -

BC (I) PWB/UNIX Edition 1.0 BC (I J

FILES

the input and output number radix respectively.

The same letter may be used as an array name, a function name. and a simple variable simultane­
ously. 'Auto' variables are saved and restored during function calls. All other variables are global
to the program. When using arrays as function arguments or defining them as automatic variables
empty square brackets must follow the array name.

For example

scale= 20
define e{x) I

auto a, b, c, i, s
a - 1
b "" 1
s - l
for(i=l; 1--1; i++)(

a = a•x
b- b*i
c -alb
if(c -- 0) retum(s)
s-= s+c

defines a function to compute an approximate value of the exponential function and

for(i=l; i<=lO; i++) e(i)

prints approximate values of the exponential function of the first ten integers.

/usr/lib/lib.b mathematical library

SEI ALSO
dc(I)
C Reference Manual by D. M. Ritchie.
BC - An Arbitrary Precision Desk Calculator Language by L. L. Cherry and R. Morris.

BUGS
No &&, 11 yet.
for statement must have ali three E's
quit is interpreted when read, not when executed.

- 2 -

BDIFF (I) PWBt-t.:JNIJC Edition 1.0 BDIFF(I)

NAME
bdiff - big diff

SYNOPSIS
bdiff name l name2

DESCRIPTION
Bdiff is used in a.manner analogous to diffU) to find which lines must be changed in two files to
bring them into agreement. Its purpose is to allow processing of files which are too large for
diff(.I}. Bdiff splits the files into 4000-line segments, and invokes diff(l) on corresponding seg­
ments (4000-lines is a reasonable upper limit for di.ff(!)). If namel (name]) is••-", the standard
input is read. The output of bdiff is exactly that of diff(I), with line numbers adjusted to account
for the segmenting (that is, to make it look as if the files had been processed whole) .•

Note that unlike diff(D, bdi.ffsupports no optional keyletter arguments. In addition, because of the
segmenting of the files, bdi.ff does not necessarily find a smallest sufficient set of file differences.

1o·11.F.S
/tmp/bd'!????

Slo:t: Al.SO
ditf(l)

DIAGNOSTICS
Use help(I) for explanations.

- 1 -

BFS (I) PWB/UNIX Edition 1.0 BFS (I)
l.; -··

NAME
bf s - big file scanner

SYNOPSIS
bfs [-] name

DESCRIPTION
Bjs is (almost) like ed(I) except that it is read-only and processes much bigger files. Files can be
up 1024K bytes (the maximum possible size) and 32K lines, with up to 255 characters per line.
Bfs is usually more efficient than ed for scanning a file, since the file is not copied to a buffer.

Normally, the size of the file being scanned is printed, as is the size of any file written with the w
command. The optional - suppresses printing of sizes. Input is prompted with ••• if 'P' and a
carriage return is typed as in ed. Prompting can be turned off again by inputting another 'P' and
carriage return. Note that messages are given in response to errors if prompting is turned on.

All address expressions described under ed are supported. In addition, regular expressions may be
surrounded with two symbols besides '/' and '?': '>' indicates downward search without wrap­
around, and • <' indicates upward search without wrap-around. Since q/s uses a different regular
expression-matching routine from ed. the regular expressions accepted are slightly wider in scope
(see regex(III)). There is a slight difference in mark names: only the letters 'a' through 'z' may
be used, and all 26 marks are remembered.

The e, g, v, k, n, p, q, w, -. ! and null commands operate as described under ed. Commands
such as '--', '+++-', '+++-', '-12', and '+4p' are accepted. Note that '1,lOp' and '1,10'
will both print the first ten lines. The /command only prints the name of the file being scanned~
there is no remembered file name. The w command is independent of output diversion, truncation
or crunching (see the xo, xt and xc commands, below). The following additional commands are
available:

xf file
Further commands are taken from the named file. When an end-of-file is reached, an
interrupt signal is received or an error occurs, reading resumes with the file containing
the xf X/commands may be nested to a depth of 10.

XO (file)
Further output from the p and null commands is diverted to the named file, which, if
necessary, is created mode 666. Plain 'xo' diverts output back to the standard output.
Note that each diversion causes truncation or creation of the file.

: label
This positions a label in a command file. The label is terminated by newline. and
blanks between the ':' and the start of the label are ignored. This command may also
be used to insert comments into a command file, since labels need not be referenced.

(• , .) xb/regular expression/label
A jump (either upward or downward) is made to the named label if the command
succeeds. It fails under any of the following conditions:

1. Either address is not between 1 and $.
2. The second address is less than the first.
3. The regular expression doesn't match at least one line in the specified range,

including the first and last lines .

• 1 •

BFS (I) PWB/UNIX Edition 1.0 BFS (I)

On success, '.' is set to the line matched and a jump is made to the label. This com­
mand is the only one that doesn't issue an error message on bad addresses, so it may
be used to test whether addresses are bad before other commands are executed. Note
that the command

xbr/ label

is an unconditional jump.

The xb command is allowed only if it is read from someplace other than a terminal. If
it is read from a pipe only a downward jump is possible.

xt number
Output from the p and null commands is truncated to at most number characters. The
initial number is 255.

xv{digit: 0-9) [optional spaces) [value]
The variable name is the specified digit following the •xv'. 'xv5100' or 'xvS 100' both
assign the value '100' to the variable '5'. 'xv61,100p' assigns· the value 'l,lOOp' to vari­
able '6'. To reference the variable put a '%' in front of the variable name. For exam­
ple, using the above assignments for the variables '5' and'6':

l,%Sp
l, %5
%6

will all print the first I 00 lines.

g/%5/p
;.

would globally search for the characters '100' and print each line containing a match.
To escape the special meaning of •Ofo', a '\' must precede it.

g/".*\%(cds]/p

could be used to match and list lines containing prinif of characters, decimal integers, or
strings.

Another feature of the xv command is that the first line of output from a UNIX com­
mand can be stored into a variable. The only requirement is that the first character of
value be an·'!'. For example:

.w junk
xv5!cat junk
!rm junk
!echo "%5"
xv6!expr %6 + l

would put the current line into variable •s•. print it, and increment the variable '6' by
one. To escape the special meaning of'!' as the first character of value. precede it with
a '\ '.

xv7\!date

stores the value '!date' into variable '7'.

xbz label
xbn label

These two commands will test the last saved return code from the execution of a unix
command (!UNIX command) and branch on a zero or nonzero value, respectively, to
the specified label. The two examples below both search for the next five lines

- 2 .

BFS (I) PWB/UNIX Edition 1.0

containing the string 'size'.

xv SS
: I
/size/
xvS!expr %5 - 1
!if 0%5 !- 0 exit 2
xbn I

xv45
: I
/size/
xv4!expr %4 - 1
!if 0%4 - 0 exit 2
xbz I

BFS (I)

xc [switch)

SEE ALSO

If switch is 1, output from the p and null commands is crunched; if sw11,·h is 0 it isn't.
Plain 'xc' reverses the switch. Initially the switch is set for no crunching. Crunched
output has strings of tabs and blanks reduced to one blank and blank lines suppressed.

ed (1), regex (III)

DIAGNOSTICS
'?' for errors in commands, if prompting is turned off. Self-explanatory error messages when
prompting is on.

- 3 -

CAL (I) PWBIUNIX Edition 1.0 CAL(I)

NAME
cal - print calendar

SYNOPSIS
cal [month l year

DESCRIPTION
Cal prints a calendar for the specified year. If a month is also specified, a calendar just for that
month is printed. Year can be between 1 and 9999. The month is a number between 1 and 12.
The calendar produced is that for England and her colonies.

Try September 1752.

BUGS

The year is always considered to start in January even though this is historically naive.

- 1 -

I

CAT (I) PWB/UNIX Edition 1.0 CAT (I)

NAME
cat - concatenate and print

SYNOPSIS
cat [-s 1 [-u] file ...

DESCRIPTION

Car reads each file in sequence and writes it on the standard output. Thus

cat file

prints the file, and

cat filel file2 >file3

concatenates the first two files and places the result on the third.

If no input file is given, or if the argument '-' is encountered, cat reads from the standard input
file.

The -s flag suppresses the error messages that car would otherwise give for non-existent (or
unreadable) files. The -u flag causes cat to work in an unbuffered fashion (read one character,
then write that character).

SEE ALSO
pr(I), cp(l)

DIAGNOSTICS
file not found

RUGS
cat x y >x and cat x "! >y cause strange results (because of sh(I)).

- I -

CB(l)

NAME
cb - C beautifier

SYNOPSIS
cb

DESCRIPTION

PWB/UNIX Edition 1.0 CB(I)

cb reads a C program from the standard input, adds the proper indentation, and writes it on the
standard output.

- 1 -

CC (I) PWB/UNIX Edition 1.0 CC(I)

NAME
cc - C compiler

SY!'IOPSIS
cc [-c] [-p] [-f) [-Dn=v] [-ldir] [-0] [-SJ [-Pl [-Un] files ...

DESCRIPTION

FIU:S

Cc is the UNIX C compiler. It accepts three types of arguments:

Arguments whose names end with •.c' are taken to be C source programs~ they are compiled, and
each object program is left on the file whose name is that of the source with '.o' substituted for
'.c'. The '.o' file is normally deleted, however, if a single C program is compiled and loaded all at
one go.

The following flags are interpreted by cc. See /d(I) for load-time flags.

-c Suppress the loading phase of the compilation, and force an object file to be produced even
if only one program is compiled.

-p Arrange for the compiler to produce code which counts the number of times each routine
is called~ also, if loading takes place, replace the standard startup routine by one which
automatically calls the monitor(III) subroutine at the start and arranges to write out a
mon. out file at normal termination of execution of the object program. An execution
profile can then be generated by use of proj(l).

-f In systems without hardware floating-point, use a version of the C compiler which handles
floating-point constants and loads the object program with the floating-point interpreter.
Do not use if the hardware is present.

- D The name n is defined, and is given the value v, if specified.

-0 Invoke an object-code optimizer.

-S Compile the named C programs, and leave the assembler-language output on corresponding
files suffixed '.s'.

- P Run only the macro preprocessor on the named C programs, and leave the output on
corresponding files suffixed •,j'.

- U The name n is undefined.

-I The include preprocessor statement looks in directory dir if it can't find the specified file in
the local directory or in /usr/include.

Other arguments are taken to be either loader flag arguments, or C-compatible object programs,
typically produced by an earlier cc run, or perhaps libraries of C-compatible routines. These pro­
grams, together with the results of any compilations specified, are loaded (in the order given) to

produce an executable program with name a.out. If desired, a ditf erent name can be used; see
the -o option of ld(J).

filc.c
filc.o
a.out
/tmp/ctm?
/lib/c[Ol)
/lib/fc[Ol]

input file
object file
loaded output
temporary
compiler
floating-point compiler

- 1 -

CC (I)

/lib/c2
/lib/cpp
/lib/crtO.o
/lih/nicrtO.o
/lib/fcrtO.o
/lib/libc.a
/lib/liba.a

SEE ALSO

PWB/UNIX Edition· 1.0

optional optimizer
pre-processor
runtime startoff
runtime startoff of profiling
runtime startoff for floating-point interpretation
C library~ see section III.
Assembler library used by some routines in libc.a

C Reference Manual by 0. M. Ritchie.
Programming in C - A Tutorial by B. W. Kernighan.
adb(I), cdb(I), ld(I). prof(I), monitor(III)

DIAGNOSTICS

CC(I)

The diagnostics produced by C itself are intended to be self-explanatory. Occasional messages
may be produced by the assembler or loader (see as(I) and /d(I)). Of these, the most mystifying
are from the assembler. in particular ''m," which means a multiply-defined external symbol
(function or data).

• 2 •

I

'

CD(I) PWB/UNIX Edition 1.0 CD (I>

~AME

cd - change working directory

SY~OPSIS

cd directory

Dt:l.iC.:RJPTION
Cd is an alias for chdir(I).

SEE ALSO
chdir(I), sh (I), pwd (I)

- 1 -

CDS(l) PWB/lJNIX Edition l .0 CDB(I)

NAME
cdb - C debugger

SYNOPSIS

cdb (a.out [core]]

DESCRIPTION
Cdb is a debugger for use with C programs. It is useful for both post-mortem and interactive
debugging. An important feature of cdb is that even in the interactive case no advance planning is
necessary to use it: in particular it is not necessary to compile or load the program in any special
way nor to include any special routines in the object file.

The first argument to cdb is an object program, preferably containing a symbol table: if not given
"a.out" is used. The second argument is the name of a core-image file: if it is not given, "core"
is used. The core file need not be present.

Commands to alb .consist of an address. followed by a single command character, possibly fol­
lowed by a command modifier. Usually if no address is given the last-printed address is used. An
address may be followed by a comma and a number, in which case the command applies to the
appropriate number of successive addresses.

Addresses are expressions composed of names, decimal numbers, and octal numbers (which begin
with "0"), separated by"+" and··-". Evaluation proceeds left-to-right.

Names of external variables are written just as they are in C. For various reasons the external
names generated by C all begin with an underscore, which is automatically tacked on by cdb.
Currently it is not possible to suppress this feature. so symbols (defined in assembly-language pro­
grams} which do not begin with underscore are inaccessible.

Variables local to a function (automatic, static, and arguments) are accessible by writing the name
of the function, a colon "': ", and the name of the local variable (e.g. "'main:argc"). There is no
notion of the "current" function~ its name must always be written explicitly.

A number which begins with "O" is taken to be octal; otherwise numbers are decimal, just as in
C. There is no provision for input of floating numbers.

The construction "name[expression]" assumes that name is a pointer to an integer and is
equivalent to the contents of the named cell plus twice the expression. Notice that name has to
be a genuine pointer and that arrays are not accessible in this way. This is a consequence of the
fact that types of variables are not currently saved in the symbol table.

The command characters are:

Im print the addressed words. m indicates the mode of printout: specifying a mode sets the
mode until it is explicitly changed again:
o octal (default)
i decimal
f single-precision floating-point
d double-precision floating-point

\ Print the specified bytes in octal.

- print the value of the addressed expression in octal.

print the addressed bytes as characters. Control and non-ASCII characters are escaped in
octal.

. I .

CDB(I) PWB/UNIX Edition 1.0 COB (I)

&

?

Sm

take the contents of the address as a pointer to a sequence of characters, and print the charac­
ters up to a null byte. Control and non-ASCII characters are escaped as octal.

Try to interpret the contents of the address as a pointer, and print symbolically where the
pointer points. The printout contains the name of an external symbol and, if required. the
smallest possible positive offset. Only external symbols are considered.

Interpret the addressed location as a PDP-11 instruction.

If no mis given, print a stack trace of the terminated or stopped program. The last call made
is listed first; the actual arguments to each routine are given in octal. (If this is inappropriate,
the arguments may be examined by name in the desired format using"/".) If mis "r", the
con Lents of the PDP-11 general registers are listed. If m is "r', the contents of the floating­
point registers are listed. In all cases, the reason why the program stopped or terminated is
indicated.

%m According to m, set or delete a breakpoint, or run or continue the program:

b An address within the program must be given; a breakpoint is set there. Ordinarily,
breakpoints will be set on the entry points of functions, but any location is possible as
long as it is the first word of an instruction. (Labels don't appear in the symbol table
yet.) Stopping at the actual first instruction of a function is undesirable because to make
symbolic printouts work, the function's save sequence has to be completed; therefore cdb
automatically moves breakpoints at the start of functions down to the first real code.

It is impossible to set breakpoints on pure-procedure programs (-n flag on cc or Id (I))
because the program text is write-protected.

d An address must be given; the breakpoint at that address is removed.

r Run the program being debugged. Following the "o/or", arguments may be given; they
cannot specify VO redirection (" > ", "< ") or filters. No address is permissible, and
the program is restarted from scratch, not continued. Breakpoints should have been set
if any were desired. The program will stop if any signal is generated, such as illegal
instruction (including simulated floating point), bus error, or interrupt (see s1gna/(ll)); it
will also stop when a breakpoint occurs and in any case announce the reason. Then a
stack trace can be printed, named locations examined. etc.

c Continue after a breakpoint. It is possible but probably useless to continue after an error
since there is no way to repair the cause of the error.

SEE ALSO

BUGS

cc(I), db(I), C Reference Manual by D. M. Ritchie.

Use caution in believing values of register variables at the lowest levels of the call stack; the value
of a register is found by looking at the place where it was supposed to have been saved by the
callee.

Some things are still needed to make cdb uniformly better than db: non-C symbols, patching files.
patching core images of programs being run. It would be desirable to have the types of variables
around lo make lhe correct style printout more automatic. Structure members shoui<l he avail­
able.

Naturally, there are all sorts of neat features not handled, like conditional breakpoints, optional
stopping on certain signals (like illegal instructions, to allow breakpointing of simulated floating­
point programs).

- 2 -

CHOIR (I)

NAME
~:hdir - change working directory

SYNOPSIS

chdir directory
cd directory

DESCRIPTION

Pw'B/UNIX Edition 1.0 CHOIR (I)

Directory becomes the new working directory. The process must have execute (search) permission
in directory.

Because a new process is created to execute each command, chdir would be ineffective if it were
written as a normal command. It is therefore recognized and executed by the Shell.

Cd is a synonym for chdir and acts identically.

SEE ALSO
sh (I) , pwd (I)

- 1 •

CHG HIST (I) PWB/UNIX Edition 1.0 CHGHIST(I)

NAME
chghist - change the history entry of an SCCS delta

SYNOPSIS
chghist -rSID name ...

DESCRIPTION
Chghisr changes the history information, for the delta specified by the SID, of each named SCCS
file.

If a directory is named, chghist behaves as though each file in the directory were specified as a
named file, except that non-SCCS files (last component of the pathname does not begin with
.. s. "), and unreadable files, are silently ignored. If a name of "-" is given, the standard input is
read; each line of the standard input is taken to be the name of an SCCS file to be processed.
Again, non-SCCS files, and unreadable files, are silently ignored.

The exact permissions necessary to change the history entry of a delta are documented in the
SCCS/PWB User's Manual. Simply stated, they are either (U if you made a delta, you can change
its history entry~ or (2) if you own the file and directory you can change a history entry.

The new history is read from the standard input. If the standard input is a terminal (as deter­
mined by a successful g101(11) call), the program will prompt (on the standard output) with
.. MRs? ", if the file has a v flag (see admin(I)), and with "comments? ". If the standard input is
not a terminal, no prompt(s) is (are) printed. A newline preceded by a .. , .. is read as a blank,
and may be used to make the entering of the history more convenient. The first newline not pre­
ceded by a .. , ., terminates the response for the corresponding prompt.

When the history entry of a delta table record (see prr(I)) is changed, all old MR entries (if any)
are converted to comments, and both these and the original comments are preceded by a com­
ment line that indicates who made the change and when it was made. The new information is
entered preceding the old. No other changes are made to the delta table ,entry.

FILES
x-file
z-file

SEE ALSO

(see delta(l))
(see delta(I))

admin(I), get{l), delta(!), prt(I), help(I), sccsfile(V)
SCCS/PWB User's Manual by L. E. Bonanni and A. L. Glasser.

DIAGNOSTICS
Use help(I) for explanations.

- 1 -

CHG RP (I) PWB/UNIX Edition 1.0 CHGRP(t}

NAMt:
chgrp - change group

SYNOPSIS

chgrp group file ...

DESCRIPTION
The group-ID of the files is changed to group. The group may be either a decimal GID or a group
name found in the group-ID file.

SEE ALSO
chown (I), group(V)

FILES
/etc/group

• 1 •

f._

• .

CHMOD (I) PWB/UNIX Edition 1.0 CHMOD(I)

NAME
chmod - change mode

SYNOPSIS
chmod octal file ...

DESCRIPTION
The octal mode replaces the mode of each of the files. The mode is constructed from the OR of
the following modes:

4000 set user ID on execution
2000 set group ID on execution'
I 000 sticky bit for shared, pure-procedure programs (see below)
0400 read by owner
0200 write by owner
0100 execute (search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

Only the owner of a file (or the super-user) may change its mode.

If an executable file is set up for sharing (.. -n'of /d(I)), then mode 1000 prevents the system
from abandoning the swap-space image of the program-text portion of the file when its last user
terminates. Thus when the next user of the file executes it, the text need not be read from the
file system but can simply be swapped in, saving time. Ability to set this bit is restricted to the
super-user since swap space is consumed by the images~ it is only worth while for heavily used
commands. ·

SEE ALSO
ls(I), chmod(II)

- 1 -

CHOWN (I) PWB/UNIX Edition 1.0 CHOWN (I)

NAME
chown - change owner

SYNOPSIS
chown owner file ...

DESCRIPTION
The user-ID of the files is changed to owner. The owner may be either a decimal UIO or a login
name found in. the password file.

FILES
I etc/ passwd

SEE ALSO
chgrp(I), passwd(V)

. I .

I
' \

CMP(I> PWB/UNIX Edition 1.0 CMP (I)

'AMI::
cmp - compare two files

S\''.\OPSIS
cmp [-I] [-s] filel file2

DESCRIPTION
The -two files are compared. (If ./ile I is ·-'. the standard input is used.) Under default options.
,·mp makes no comment if the files are the same; if they differ. it announces the byte and line
number at which the difference occurred. If one file is an initial subsequence of the other. that
fact is noted. Moreover. return code 0 is yielded for identical files, l for diiTerent files, and 2 for
an inaccessible or missing argument.

Options:

-I Print the byte number (decimal) and the differing bytes (octal) for each difference.

-sPrint nothing for differing files; return codes only.

S t:t: A L<;O

<liff((), comm(I)

. l .

COL (I}

NAME
col - filter reverse line feeds

SYNOPSIS

col

DF.SCRIPTION

PWBtUNIX Edition LO COL(I)

Col reads the standard input and writes the standard output. It performs the line overlays implied
by reverse line feeds (ASCII code ESC· 7). Col is particularly useful for filtering multicolumn out·
put made with the '.rt' command of nroff.

SEE ALSO
nroff(I)

BUGS
Can't back up more than 102 lines.

The input file must not have ASCII tab characters; col does not handle them properly (see
r~form(I)}.

- l .

I .
'

COMB (l) PWB/UNlX Edition 1.0 COMB(I)

NAME
comb - combine SCCS deltas

SYNOPSIS
comb [-o] [-s] [-psid] [-clist] name ...

DESCRIPTION

FILES

Comb generates a· shell procedure (see sh(I)) which, when run, will reconstruct the given SCCS
files. The reconstructed files will, hopefully, be smaller than the original files. The arguments
may be specified in any order, but all keyletter arguments apply to all named SCCS files. If a
directory is named, comb behaves as though each file in the directory were specified as a named
file, except that non-SCCS files {last component of the pathname does not begin with "s. "), and
unreadable files are silently ignored. If a name of " - " is given, the standard input is read; each
line of the standard input is taken to be the name of an SCCS file to be processed. Again, non­
SCCS files, and unreadable files are silently ignored.

The generated shell procedure is written on the standard output.

The keyletter arguments are as follows. Each is explained as though only one named file is to be
processed, but the effects of any keyletter argument apply independently to each named file.

-p The SCCS identification string (SID) of the oldest delta to be preserved. All older del­
tas are discarded in the reconstructed file.

-c A list (see ger(I) for the syntax of a list) of deltas to be preserved. All other deltas are
discarded.

-o This argument causes the reconstructed file to be accessed at the release of the delta to
be created for each "get -e" generated. Without this argument, the reconstructed file
is accessed at the most recent ancestor for each "get -e" generated. Use of the o
keyletter may decrease the size of the reconstructed SCCS file. It may also alter the
shape of the delta tree of the original file.

-s This argument causes comb to generate a shell procedure which, when run, will pro­
duce a report giving, for each file, the file name, size after combining, original size,
and pecemage change computed by:

100 • (original - combined) I original
(Sizes are in blocks.) We recommend that before any SCCS files are actually combined
one should use this option to determine exactly how much space is saved by the com­
bining process.

If no keyletter arguments are specified, comb will preserve only leaf deltas and the minimal
number of ancestors needed to preserve the tree.

s.COMB
comb?????

The name of the reconstructed SCCS file.
Temporary.

SEE ALSO
get(I), delta{I), admin(I), prt(I), he!p(l), sccsfile(V), SCCS/PWB User's Manual by L. E. Bonanni
and A. L. Glasser.

• 1 •

COMB(I) PWB/UNIX Edition 1.0 COMB(I)

DIAGNOSTICS
Use help(I) for explanations.

HtlCiS

Comb may rearrdnge the shape of the tree of deltas. It may not save any space~ in fact, it is possi·
ble for the reconstructed file to actually be larger than the original.

• 2 .

COMM (I) PWB/UNIX Edition 1.0 COMM (1)

NAME
comm - print lines common to two files

SYNOPSIS

comm [- [123] 1 file l file2

DESCRIPTION
Comm reads .filel and file2, which should be sorted in the same order. and produces a three
column output: lines only in .filel; lines only in file]; and lines in both files. The filename ·-·
means the standard input.

Flags 1, 2, or 3 suppress printing of the corresponding column. Thus comm -12 prints only the
lines common to the two files~ comm -23 prints only Jines in the first file but not in the second;
comm -123 is a no-op.

SEE ALSO·
cmp(I), diff(I), uniq(I)

- I -

CP (I) PWB/UNIX Edition 1.0 CP(I)

NAME
cp - copy

SYNOPSIS

cp file 1 file2

DESCRIPTION
The first file is copied onto the second. The mode and owner of the target file are preserved if it
already existed; the mode of the source file is used otherwise.

If .filel is a directory, then the target file is a file in that directory with the file-name of.file/.

It is forbidden to copy a file onto itself.

SEE ALSO
cpx((), ln(l), cat(I), pr(l), mv(l)

. I .

CPIO(I) PWB/UNIX Edition 1.0 CPIO (I)

NAME
cpio - copy file archives in and out

SYNOPSIS
cpio -o[v]

cpio -i[drtuvJ I pattern J

cpio -p[dlruv] [pattern] -directory

DESC.:RIPTION

Cp10 -o (copy out) reads the standard input for a list of pathnames and copies those files onto
the standard output together with pathname and status information.

Cpio -1 (copy in) extracts from the standard input, which is the product of a previous "cpio -o ",
files whose names are selected by a pa11ern given in the name-generating syntax of sh(!). The pat­
tern meta-characters'?', '*', '[...]'will match '/'characters. The pattern argument defaults to

Cp10 -p (pass) copies out and in in a single operation. Destination pathnames are interpreted
relative to the named directory.

The options are:

d Directories are to be created as needed.

r Interactively rename files. If the user types a null line, the file is skipped.

t Print a table of contents of the input. No files are created.

u Copy uncondirionally (normally, an older file will not replace a newer file with the same
name).

v Verbose: causes a list of file names to be printed. When used with the t option, the
table of contents looks like an "'ls -I" (see /s(I)).

Whenever possible, link files rather than copying them. Usable only with the -p
option.

m Retain previous file modified time (only for the super-user).

The first example below copies the contents of a directory into an archive; the second duplicates a
directory hierarchy:

ls I cpio -o >/dev/mtO

chdir olddir
find • -print I cpio -pdl newdir

SEE ALSO

BUGS

ar(I), cpio(V)

Path names are restricted to 128 characters.
If there are too many unique linked files, the program runs out of memory to keep track or them
and subsequent linking information is lost.

- I -

CPX(l) PWB/UNIX Edition 1.0 CPX {I)

NAME
cpx - copy a file exactly

SYNOPSIS
cpx - [filel 1-1 [file2 t -)

DESCRIPTION
· Cpx copies file I onto file 2. The mode, owner and time of last modification of the source file are
preserved. ·

Either fife/ or file2 may be represented as a .. _ • ., which uses the standard UNIX input/output
pipe mechanism. instead of the correspanding file. A file read from a pipe or written to a pipe
will be preceded with a header. containing the mode, owner, time of last modification, number of
characters, and a summed total of the characters in the file. The case where a pipe is read and a
file is written, both the number of characters and the summed total are compared to similar values
after the copy. If there are no differences between the comparisons. the message .. ok" is printed.

Cpx prohibits copying a file onto itself.

Cpx does not allow file! to be a directory. If .file2 is a directory, then the target file is a file in that
directory with the file name of file/.

Examples to copy a file to the current directory:

cpx . ./filel - I cpx - .

SEE ALSO
cp(l)

cpx . .I file 1 •
cpx . ./ftlel file2

- 1 -

CREF(I) PWB/UNIX Edition 1.0 CREF (I)

!'IAME
cref - make cross ref er:ence listing

SY:'-IOPSIS

cref [-acilnostux123] name ...

OESCRIPTIO:"i

FILES

Cref makes a cross reference listing of program files.in assembler or C format. The files named as
arguments in the command line are searched for symbols in the appropriate syntax.

The output report is in four columns:

(3) (4) (1) (2)
symbol file see text as it appears in file

below

Cre/'uses either an ignore file or an 011(v file. If the -i option is given. the next argument is tako.:n
to hi! an 1.i:1111rc' tile: if the -o option is given, the next argument is taken to be an 1111/v fik. /g111J1<'

and 1111/v files are lists of symbols separated by new lines. All symbols in an 1.~1111rc file an.: 1gnoro.:d
in columns (1) and (J) of the output. If an 011/y file is given. only symbols in that file appear in
column {1). Al most one of -i and -o may be used. The default setting is -i. Assembler
predefined symbols or C keywords are ignored.

The -s option causes current symbols to be put in column 3. In the assembler. the current sym­
bol is the most recent name symbol: in C, the current function name. The - I option causes the
line number within the file to be put in column 3.

The -t option causes the next available argument to be used as the name of the intermediate
temporary file (instead of /tmp/crt??). The file is created and is not removed at the end of the
process.

Options:

a assembler format (default)
c C format input

use 1gm1re file (sec above)
put line number in col. 3 (instead of current symbol)

n omit column 4 ("no context")
o use 011/v file (see above)
s current symbol in col. 3 (default)
t user supplied temporary file
u print only symbols that occur exactly once
x print only C external symbols
1 sort output on column 1 (default)
2 sort output on column 2
3 sort output on column 3

/tmp/crt'?? temporaries
/usr/lib/aign default assembler ignore file
/usr/lib/atab grammar table for assembler files
/usr/lib/cign default C ignore file
/usr/bin/crpost post processor
/usr/lib/ctab grammar table for C files

- 1 -

CREF <I> PWB/UNIX Edition 1.0 CREF(l)

/usr/bin/upost post processor for -u option
/bin/sort used to sort temporaries

SEE Al.SO

asll). ccm

:::

. 2 .

CRYPT(I) PWB/UNIX Edition 1.0 CRYPT(l)

NAME
crypt - encode/ decode

SYNOPSIS
crypt [password)

DESCRIPTION
crypt simulates a cryptographic machine.

crypt reads from the standard input file and writes on the standard output. It is thus suitable for
use as a filter.' For a given password, the encryption process is idempotent; that is,

crypt znorkle <clear >cypher
crypt znorkle <cypher

will print the clear.

- 1 -

CSPLIT (I) PWB/UNIX Edition 1.0 CSPLIT(l)

NAME
t..'Split - context split

SYNOPSIS
csplit [-s] [-f prefix} file [REOI RE02 ••• REn]

DESCRIPTION
Csplit reads .file and separates it into n+ 1 sections, defined by the regular expressions REOI, .•• ,
REn, where n is less than 100. If the -f option is used, the sections are placed in prefixOO •••
prdixn. The default is xxOO .•• xxn. These sections get the following pieces of file:

00: from the start of the file up to (but not including) the first line matched by REOl
01: from the line matched by REOl up to the first line that is matched by RE02

n+l: line matched by REn to the end of the file

Enclose by double quotes (") all RE's that contain blanks or other characters meaningful to the
Shell.

Csp/11 tells the size of the original file, as well as of each "split" file as it creates it. It also prints
any appropriate diagnostics. If the -s option is present, esp/it suppresses the printing of all char­
acter counts.

EXAMPLE:

csplit -f zz file "procedure division" parS. parl6.

After editing the "split" files, they can be recombined as foUows:

cat zz0(0:31 >file

It should be noted that esp/it does not affect in any way the original file. The responsibility for
removing it is the user's.

St:t: Al.SO
ed (I) • sh (l)

- l -

DATE (I) PWB/UNIX Edition 1.0 DATE(l)

NAME
date - print and set the date

SYNOPSIS
date [mmddhhmm[yy]] [+format]

DESCRIPTION
If no argument is given, or if the argument begins with "+", the current date and time are
printed. Otherwise, the current date is set. The first mm is the month number; dd is the day
number in the month; hh is the hour number (24 hour system); the second mm is· the minute
number; yy is the last 2 digits of the year number and is optional. For example:

date 10080045

sets the date to Oct 8, 12:45 AM. The current year is the default if no year is mentioned. The
system operates in GMT. Date takes care of the conversion to and from local standard and day­
light time.

If the argument begins with "+," the output of date is under the control of the user. The format
for the output is similar to that of the first argument to prm(f(lll). All output fields are of fixed
size (zero padded if necessary). Each field descriptor is preceded by "%" and will be replaced in
the output by its corresponding value. A single "%" is encoded by "%%". All other characters
are copied to the output without change. The string is always terminated with a newline character.

Field Descriptors:

n insert a newline character
t insert a tab character
m month of year - 01 to 12
d day of month - 01 to 31
y last 2 digits of year - 00 to 99
H hour - 00 to 23
M minute - 00 to 59
S second - 00 to 59
j julian date - 001 to 366
w day of week - Sunday = 0
a abbreviated weekday - Sun to Sat
h abbreviated month - Jan to Dec
r time in AM I PM notation

For example:

date "+DATE: o/om/o/od/O/oyo/onTIME: %H:%M:%S~

would generate as output:

DATE: 08/01/76
TIME: 14:45:05

OIA<;NOSTICS
"No permission" if you aren't the super-user and you try to change the date; "bad conversion" if
the date set is syntactically incorrect; "invalid option" if the field descriptor is not recognizable.

FILES
/dev/kmem

- 1 -

I

DB(I) PWB/UNIX Edition 1.0 DB (I)

!'111\M~:

ub - debug

SYNOPSIS

db [core [namelist J] [- l

DESCRIPTION
Unlike many debugging packages (including the Digital Equipment Corporation's ODT, on which
db is loosely based), db is not loaded as part of the .core image which it is used to examine~
instead it examines files. Typically, the file will be either a core image produced after a fault or
the binary output of the assembler. Core is the file being debugged~ if omitted core is assumed.
Namelist is a file containing a symbol table. If it is omitted, the symbol table is obtained from the
file being debugged, or if not there from a.out. If no appropriate name list file can be found, db
can still be used but some of its symbolic facilities become unavailable.

For the meaning of the optional third argument, see the last paragraph below.

The format for most db requests is an address followed by a one character command. Addresses
are expressions built up as follows:

l. A name has the value assigned to it when the input file was assembled. It may be relocatable
or not depending on the use of the name during the assembly.

2. An octal number is an absolute quantity with the appropriate value.

3. A decimal number immediately followed by ·: is an absolute quantity with the appropriate
value.

4. An octal number immediately followed by r is a relocatable quantity with the appropriate
value.

5. The symbol . indicates the current pointer of db. The current pointer is set by many db
requests.

6. A • before an expression forms an expression whose value is the number in the word
addressed by the first expression. A * alone is equivalent to ••. '.

7. Expressions separated by + or blank are expressions with value equal to the sum of the com­
ponents.. At most one of the components may be relocatable.

8. Expressions separated· by - form an expression with value equal to the difference lo the
components. If the right component is relocatable, the left component must be relocatable.

9. Expressions are evaluated left to right.

Names for registers are built in:

rO ... r5 sp pc frO .•• frS

These may be examined. Their values are deduced from the contents of the stack in a core image file.
They are meaningless in a file that is not a core image.

If no address is given for a command, the current address (also specified by ". ") is assumed. In gen­
eral, "." points to the last word or byte printed by db.

There are db commands for examining locations interpreted as numbers. machine instructions, ASCII
characters. and addresses. For numbers and characters, either bytes or words may be examined. The
following commands are used to examine the specified file.

. l .

•.

\.

DB (I) PWB/UNIX Edition 1.0 DB (I)

I The addressed word is printed in octal.

\ The addressed byte is printed in octal.

The addressed word is printed as two ASCII characters.

The addressed byte is printed as an ASCII character.

The addressed word is printed in decimal.

? The addressed word is interpreted as a machine instruction and a symbolic form of the
instruction, including symbolic addresses, is printed. Often, the result will appear exactly as it
was written in the source program.

& The addressed word is interpreted as a symbolic address and is printed as the name of the
symbol whose value is closest to the addressed word, possibly followed by a signed off set.

<nl>(i. e., the character "new line") This command advances the current location counter
"." and prints the resulting location in the mode last specified by one of the above requests.

This character decrements "." and prints the resulting location in the mode last selected one
of the above requests. It is a converse to < nl >.

% Exit.

Odd addresses to word·oriented commands are rounded down. The incrementing and decrementing of
"." done by the < nl > and A requests is by one or two depending on whether the last command was
word or byte oriented.

The address portion of any of the above commands may be followed by a comma and then by an
expression. In this case that number of sequential words or bytes specified by the expression is printed .
.. . " is advanced so that it points at the last thing printed.

There are two commands to interpret the value of expressions.

= When preceded by an expression, the value of the expression is typed in octal. When not
preceded by an expression, the value of "." is indicated. This command does not change the
value of ". ".

An attempt is made to print the given expression as a symbolic address. If the expression is
relocatable, that symbol is found whose value is nearest that of the expression, and the sym·
bol is typed, followed by a sign and the appropriate offset. If the value of the expression is
absolute, a symbol with exactly the indicated value is sought and printed if found; if no
matching symbol is discovered, the octal value of the expression is given.

The following command may be used to patch the file being debugged.

This command must be preceded by an expression. The value of the expression is stored at
the location addressed by the current value of".". The opcodes do not appear in the symbol
table, so the user must assemble them by hand.

The following command is used after a fault has caused a core image file to be produced.

$ causes the fault type and the contents of the general registers and several other registers to be
printed both in octal and symbolic format. The values are as they were at the time of the
fault.

For some purposes, it is important to know how addresses typed by the user correspond with locations
in the file being debugged. The mapping algorithm employed by db is non-trivial for two reasons: First,
in an a.out file, there is a 20(8) byte header which will not appear when the file is loaded into core for
execution. Therefore, apparent loca.tion 0 should correspond with actual file offset 20. Second,
addresses in core images do not correspond with the addresses used by the program because in a core

. 2 -

DB(I) f~~-µ~IX Edition 1.0 08(1)
~

I

image there is a header containing the system's per-process data for the dumped process, and also
because the stack is stored contiguously with the text and data part of the core image rather than at the
highest possible locations. Db obeys the following rules: ·

If exactly one argument is given, and if it appears to be an a.out file, the 20-byte header is skipped dur­
ing addressing, i.e., 20 is addecl to ~II addresses typed. As a consequence, the header can be examined
beginning at focation -20. ... · · · · · ·

If exactly one argument is given and if t~e file does not ~ppear to be an a.out file, no mappin~ is done.

If zero or two arguments are given, the mapping appropriate to a core image file is employed. This
means that locations above the program break and below the stack effectively do not exist (and are not,
in fact, recorded in the core file). Locations above the user's stack pointer are mapped, in looking at
the core file, to the place where they are really stored. The per-proceS$ data kept by the system, which
is stored in the first part of the core file, cannot currently be examined (except by $). . . , . . . '

[f one wants to examine a file which has an associated name list, but is not a c<;>re image file, the last
argument ··-" can be used (actually the only purpose of the last argument is to make the number of
arguments not equal to two). This feature· is used most frequently in examining the memory file
/dev/mem.

SEE ALSO
as(l), core(V), a.out(V), od(I)

DIAGNOSTICS
"File not found" if the first argument cannot be read~ qtherwise ''?". . .

BUGS
There should be some way to examine the registers and other per.process data in a core image; al~o
there should be some way of specifying double-precision addresses. It does not know yet about shared
text segments. · · · · · · · · ..

- 3 -

DC(IJ PWB/UNIX Edition l .O DC< I>

:"A~tE

de - desk calculator

SY:\OPSIS
de [file l

DESCRIPTIO'.'.

De is an arbitrary precision arithmetic package. Ordinarily it operates on decimal integers. but one
may specify an input base, output base, and a number of fractional digits to be maintained. The
overall structure of de is a stacking (reverse Polish) calculator. If an argument is given, input is
taken from that file until its end, then from the standard input. The following constructtons are
recognized:

number
The value of the number is pushed on the stack. A number is an unbroken •ming or the
digits ().9. IL may be preceded by an underscore _to input a negative number. Number..,
may <.:<>nlain decimal points.

+ - .. 'Yi1 •
The top two values on the stack are added (+), subtracted (-). multipiied (*), di v1dcd (/ l,
remaindered (%), or exponentiated n. The two entries are popped off the stack; the
result is pushed on the stack in their place. Any fractional part of an exponent is ignored.

sx The top of the stack is popped and stored into a register named x. where x may be any
character. If the s is capitalized, xis treated as a stack and the value is pushed on it.

Ix The value in register x is pushed on the stack. The register x is not altered. All registers
start with zero value. If the I is capitalized, register xis treated as a stack and its top value
is popped onto the main stack.

d The top value on the stack is duplicated.

p The top value on the stack is printed. The Lop value remains unchanged.

f All values on the stack and in registers are printed.

q exits the program. If executing a string. the recursion level is popped hy two. Jr q is capi­
talized, the top value on the stack is popped and the string execution level is poppcJ by
that value.

x treats the top element of the stack as a character string and executes it as a string of Jc
commands.

I ... I puts the bracketed ascii string onto the top of the stack.

<x >x =x
The top two elements of the stack are popped and compared. Register x is executed if th~y
obey the stated relation.

v replaces the top element on the stack by its square root. Any existing fractional part of the
argument is taken into account, but otherwise the scale factor is ignored.

interprets the rest of the line as a UNIX command.

c All values on the stack are popped.

The top value on the stack is popped and used as the number radix for further input.

. 1 .

DC(I) PWB/UNIX Edrtion l.O OC(J)

0 The top value on the stack is popped and used as the number radix for further.output.

k the top of the stack is popped, and that value is used as a non·negative scale factor: the
appropriate number of places are printed on output, and maintained during multiplication,
division, and exponentiation. The interaction of scale factor, input base, and output base
will be reasonable if all are changed together.

z The stack level is pushed onto the stack.

? A line of input is taken from the ·input source (usually the console) and executed.

An example which prints the first ten values of n! is:

SEE ALSO

[la I +dsa*pla 10 > y }sy
Osal
lyx

bc(l). which is a preprocessor for de providing infix notation and a C·like syntax which imple·
men ts functions and reasonable control structures for programs.

DIAGNOSTICS
(x) ? for unrecognized character x..
(x) ? for not enough elements on the stack to do what was asked by command x.
'Out of space' when the free list is exhausted (too many digits).
'Out of headers' for too many numbers being kept around.
'Out of pushdown' for too many items on the stack.
'Nesting Depth' for too many levels of nested execution .

• 2 -

t
\,

DD (I) PWB/UNIX Edition 1.0 DD(I)

NAME
dd - convert and copy a file

SYNOPSIS
dd [option-value] .••

DESCRIPTION

Dd copies the specified input file to the specified output with possible conversions. The standard
input and output are used by default. The input and output block size may be specified to take
advantage of raw physical 1/0.

optton
if­
of-
ibs­
obs-
bs-

values
input file name; standard input is default
output file name; standard output is default
input block size (default 512)
output block size (default 512)
set both input and output block size, superseding ibs and obs; also, if no conver­
sion is specified, it is particularly efficient since no copy need be done

cbs-11 conversion buffer size
skip-n skip n input records before starting copy
count=-n copy only n input records
conv-ascii convert EBCDIC to ASCII

ebcdic convert ASCII to EBCDIC
lease map alphabetics to lower case
ucase map alphabetics to upper case
swab swap every pair of bytes
noerror do not stop processing on an error
sync pad every input record to ibs
.•. , ••. several conversions separated by commas

Where sizes are specified, a number of bytes is expected. A number may end with k. b or w to
specify multiplication by 1024, 512, or 2 respectively; a pair of numbers may be separated by x to
indicate a product.

Cbs is used only if ascii or ebcdtc conversion is specified. In the former case cbs characters are
placed into the conversion buffer, converted to ASCII, and trailing blanks trimmed and new-line
added before sending the line to the output. In the latter case ASCII characters are read into the
conversion buffer, converted to EBCDI~. and blanks added to make up ap output record of size
cbs.

After completion, dd reports the number of whole and partial input and output blocks.

For example, to read an EBCDIC tape blocked ten 80-byte EBCDIC card images per record into
the ASCII file x:

dd if-/dev/rmtO of-x ibs-800 cbs-80 conv-ascii,lcase

Note the use of raw magtape. Dd is especially suited to 1/0 on the raw physical devices because it
allows reading and writing in arbitrary record sizes.

SEE ALSO
cp(I)

I

DD (I) PWB/UNIX Edition 1.0 DD(I)

BUGS
The ASCII/EBCDIC conversion tables are taken from the 256 character standard in the CACM
Nov. 1968. It is not clear how this relates to real life.

Newlines arc inserted only on conversion lo ASCII; padding is done only on conversion lo
EBCDIC. These should be separate options.

- 2 •

DELTA (I J PWB/UNIX Edition 1.0 DELTA (I)

!llAME
delta - make an SCCS delta

SYSOPSIS
delta [-sJ [-n) [-rsid] [-glist] (-yhistory] [-mmrs] [-pl name ...

DESCRIPTION
Delta adds a delta to each named SCCS file. If a directory is named, delta behaves as though each
file in the directory were specified as a named file, except that non-SCCS files (last component of
the pathname does not begin with ··s. "), and unreadable files are silently ignored. If a name or
.. - " is given, the standard input is read; each line of the standard input is taken to be the name
of an SCCS file to be processed. Again, non-SCCS files, and unreadable files are silently ignored.
Cir u name or"-" is given they keyleller must be present; see below.)

A gt•(or muny secs files, followed by a tlt'lta or those files should be avoided when the g1·(~Cll·

crnlcs a lurgc •1mount or duta. Instead, multiple g1·t-tlC'ltt1 sequences 'ihould be USl.!d.

Comments about the purpose of the delta(s) are supplied (once, and only once> either from the
standard input, or by using the y argument. If one supplies the comments through the standard
input, and the standard input is a terminal (as determined by a successful grry(ll) call), the pro­
gram will prompt (on the standard output) with "comments? ". Otherwise, no prompt is printed.
A newline preceded by a "\" may be used to make the entering of the comments more con­
venient. The first newline not preceded by a "\" terminates the comments response. The y
argument is used to supply comments on the command line; if it is given the ·•comments'!" ques­
tion is not printed, and the standard input is not read.

If there is a v flag in the file (see admm(I)) the prompting is somewhat different. As the com­
ments are solicited only once, if the first file processed has a v flag then all files processed must
have a v flag (any files that don't will cause a diagnostic message and won't be processed; process­
ing will continue with the next file). The inverse is also true.

When a file has a v flag, before prompting for "comments? " delta will prompt for "'MRs'! ..
C again, the prompt is only printed if the standard input is a terminal). MR numbers are read from
the standard input separated by blanks and/or tabs. The same continuation rules apply as above.
When an unadorned newline is read, delta will prompt for "comments? " as described above. If
the v flag has a value, it is taken to be the name of a program (or shell procedure) which will vali­
date t~e correctness of the MR numbers. This program is executed with the first argument hav­
ing the value of the %M% identification keyword, a second argument of the value of the %Y1Vr1

identification keyword, and third and subsequent arguments being the MR numbers. lf a non­
zero exit status is returned from this program delta will terminate (it is assumed that the MR
numbers were not all valid). The m argument is used to supply MR numbers on the command
line: if it is given the "MRs? " question is not printed, and the siandard input is not read.

The following description is written as though only one SCCS file were named; the process of
making a delta is equivalent for each file. (Note that the effects of any keyletter arguments apply
independently to each SCCS file, and that the same comments are used for all files.)

The IC argument specifies a list (see getW for the definition of <list>) of deltas which arc 10 hi:
nuarkc<l 1g11(Jrt•cl when the file is accessed at the change level rn.:ati:J by this ddta. (Sec the
description of the l~filC' formal in ge1(1)). A delta should only be ignored whcn the prohlcm that
caused the creation of the delta being ignored is no longer a problem at the change level crcutcd

- 1 -

DELTA(l) PWB/UNIX Ed•tion 1.0 DELTA([)

by this delta.

The p argument causes delta to print the differences that constitute the delta on the standard out­
put.

Delra makes a delta by "getting~· the named file (see get(I}) at the SID specified by the r keyletter
(thi~ SIP mus1 be listed in the p-jile), or at the same SID that was used when the get command
was executed with the e argument by the user executing delta (if the user executing delta is listed
more than. once in the. tJ-.file. the r argument must be supplied). The .. gotten" file is then com­
pared with the g~file, the differences between the two files constitute the delta.

When the comparison is finished, delta prints the SID of the new delta, followed by the number
of lines inserted, deleted, and unchanged. The s argument suppresses this printing. Normally,
the g~/ile is removed after the delta is made. The n argument suppresses the removal.

Delta will ignore hangups if it is already ignoring interrupts.

FILES
g-file
p-file
x-file

z-file
d-file

See get for an explanation of the g~file.
Information from get.
Replacement for the SCCS file. The naming convention is the same as that for
~he tJ-.file (see get).
Lockout file~ see getO>.
"'Gotten" file; temporary. The naming convention is the same as that for the p­
file (see ge1).

/usr/bin/bdiff Program to compute differences between the "gotten" file and the g-jile.

SEE ALSO
get(I), admin(l), prt(I), help(I), sccsfile(V), bdiff(l)
SCCS/PWB User's Manual by L. E. Bonanni and A. L. Glasser.

. - .
OIAG_NOSTICS

Use help(!) for explanations.

- 2 .

...

DEROFF(I) PWB/UNIX Edition 1.0 DEROFF(I)

NAME
deroff - remove nroff, troff, and eqn constructs

SYNOPSIS
derotf [-w] file ...

DESCRIPTION
Deroff reads each file in sequence and removes all nroff and troff command lines, backslash con­
structions, macro definitions, and equations (between ".EQ" and ".EN" lines or between delim­
iters) and writes the remainder on the standard output. Deroff follows chains of included files
(".so" and ".nx" commands)~ if a file has already been included, a ".so" is ignored and a ".nx"
terminates execution. If no input file is given, deroff reads from the standard input file.

If the -w flag is given, the output is a word list, one "word" (string of letters, digits, and apos­
trophes, beginning with a letter; apostrophes are removed) per line, and all other characters
ignored. Otherwise, the output follows the original, with the deletions mentioned above.

SEE ALSO
nroff (I) , troff (I) , eqn (I)

DIAGNOSTICS
Complains if a file cannot be opened.

BUGS
Does not handle recursive backslash constructions like \h'\w'c".

- l -

OF(I) PWB/UNIX Edition 1.0 DF(I)

NAME
df - report disk free space

SYNOPSIS
df [-uqs 1 [-tnumber] [arg ...]

DESCRIPTION

FILES

DJ prints the number of free blocks on a file system. If no args are· specified, the free counts of
all the mounted file systems are printed.

The -u flag prints the total block size, number of blocks allocated for system information,
number of free blocks, number of blocks used and the number of free inodes.

The -q flag determines and prints the number of free blocks on a file system by extracting the
free count directly from the file system's superblock.

The -s flag is a silent option which prohibits printing of any results. Error messages and exit
status are not effected. '

The -t flag followed by a decimal number (5 digit maximum) is compared with the number of
free blocks. The result of the comparison returns the file system's major and minor device
numbers and a single character either Y or N, to indicate if the number of free blocks is greater
or less than the requested number, respectively (e.g., df -t 1000 /u8 returns "O 12 Y"). An exit
status of 0 is returned for Y and l for N.

The arg can be specified as either the root name of the mounted file system, e.g., "/u8" or the
name of the special file corresponding to the particular device (must refer to a disk), e.g.,
"/dev/rpl4".

/dev/rf?, /dev/rk?, /dev/rp?, /etc/mnttab

SEE ALSO
icheck{VIII)

/

DIFF(I) PWB/UNIX Edition 1.0 DIFF (l)

NAME
diff - differential file comparator

SYNOPSIS
diff [-etb] namel name2

DESCRIPTION
Difftells what lines must be changed in two files to bring them into agreement. If namel (name2)
is '-', the. standard input is used. If name 1 (name2) is a directory, then a file in that directory
whose file-name is the same as the file-name of name2 (namel) is used. The normal output con­
tains lines of these forms:

nl a n3,n4
nl,n2 d n3
nl,n2 c n3,n4

These lines resemble ed commands to convert file namel into file name2. The numbers after the
letters pertain to file name2. In fact, by exchanging 'a' for 'd' and reading backward one may
ascertain equally how to convert file name2 into namel. As in ed, identical pairs where nl = n2 or
nJ =- n4 are abbreviated as a single number.

Following each of these lines come all the lines that are affected in the first file flagged by '< ',
then all the lines that are affected in the second file flagged by '> '.
The -b option causes trailing blanks (spaces and tabs) to be ignored and other strings of blanks
to compare equal. The -e option produces a script of a, c and d commands for the editor ed.
which will recreate file name2 from file namel. The -f option produces a similar script, not use­
ful with ed, in the opposite order. In connection with -e, the following shell program may help
maintain multiple versions of a file. Only an ancestral file ($1) and a chain of version-to-version
ed scripts ($2,$3, .. .) made by diff need be on hand. A 'latest version' appears on the standard
output.

(cat $2 ... $9~ echo 'l,Sp') I ed- $1

Except for occasional 'jackpots', difffinds a smallest sufficient set of file differences.

FILES
/tmp/d?????

SEE ALSO
cmp(I), comm(I), ed(I), uniq(I)

DIAGNOSTICS

BUGS

'jackpot' - To speed things up, the program uses hashing. You have stumbled on a case where
there is a chance that this has resulted in a difference being called where none actually existed.
Sometimes reversing the order of files will make a jackpot go away.

Editing scripts produced under the -e or -f options are naive about creating lines consisting of a
single '. '.

- 1 -

DIFF3 (I) PWB/tJNIX Edition 1.0 DIFF3 (I)

NAME
diff3 - 3-way ditf erential file comparison

SYNOPSIS

diff3 [-ex3 l file! file2 file3

DESCRIPTION
Di.ffJ compares .three versions of a file. and publishes disagreeing ranges of text flagged with these
codes:

-=
-1

--2

--3

an three files differ

.file/ is different

./i.le2 is different

./i.le3 is different

The type of change suffered in converting a given range of a given file to some other is indicated
in one of these ways:

/: nl a Text is to be appended after line number nl in file/, where/- 1, 2, or 3.

' . ..

/: nl,n2 c- Text is to be changed in the range line nl to line n2. If n/ - n2, the range may -
be abbreviated to n J.

The origi·nal contents of the range· follows immediately after a c indication. When the contents of
two files. are identical, the contents of the lower-numbered file is suppressed.

Under the -e option, difj3 pubtishes a script for the editor ed that will incorporate into file/ an
changes between· fiie2 and ftle3, i.e. the changes that normally would be flagged -- and
-J. Option -x (-3'} produces a script to incorporate only changes flagged -­
(-3). The foll'owing command wilf -apply the resulting script to 'file l '.

(cat script; ech·o 't,$p'fr ed - fitel

SEE ALSO
diff(I):

BUGS

FILES

Text lines that< consist of a· single '.' wm def eat -e.

/tmpl d3a-T????
/tmp/d3b?????

- I -

DIFFMARK (I) PWB/UNIX Edition 1.0 DIFFMARK (I)

NAME
di ff mark - mark changes. between versions of a file

SYNOPSIS
dift'mark [code" string"] ... [name]

DESCRIPTION
Diffmark is a filter used to modify the editor command version of diff(/) output so that it can be
used to mark the changes between successive versions of a file. Its most common use is to
automatically insert change mark commands into a file of text for nroif(IJ or trojf(IJ. The follow­
ing is a typical command sequence:

diff -e oldfile newfile I diffmark markedfile I ed - oldfile

The generated file markeq/ile is the same as ne't\!/ile, except that it has the needed change mark
requests inserted. The user would normally print marked,/ile. and later remove it an~ old/ill' when
no longer n~eded.

Di.ff mark adds extra lines to the output of diff. It inserts one line at both the beginning and end of
each sequence of appended or changed lines, and appends two lines following each deletion. The
default values of these lines are chosen to make u§e of the "margin character" request of the
formatters. The user may override any such value by supplying an option string, which is con­
catenated with a newline to make up the line. Any null option string causes its corresponding line
to be omitted completely. The option codes and their defaults·are as follows:

-ab".mc I" - "append" beginning - insert at beginning of an addition

-ae".mc" - "append" end - insert at end of an addition

-cb" .me I" - "change" beginning - insert at beginning of a change

-ce".mc" - .. change" end - insert at end of a change'

-db".mc *" - "delete" 1st line - insert as first line of deletion

-de".mc" - "delete" 2nd line - insert as 2nd line of deletion

Although not a necessity, the following option is convenient:

name causes di./fmark to append "w namf!' to the end of its output. For safety's sake, this name
should not be the same as that of the file being edited.

Here is an example. Suppose you run the following sequence of commands:

diff -e oldfile newfile >diffl
diffmark diff3 -cb".mc +" <diffl >diff2
ed - oidfiie <diff2
nroff diff3 >diff4

Of course, the only reason for doing this rather than using pipelines is to see what ail the files
look like:

- I -

DIFFMARK (I)

oldfile:
.nf
CCC
eee
ggg
hhh
zzz

newfile:
.nf
aaa
eee
fff
ggg
zzz

diffl (output from diff):
Sd
Ju
fff

2c
aaa

ditf2 (output from ditfmark):
Sc
.me•
.me

3a
.mcl
fff
.me

2c
.me+
aaa
.me

w ditf3

ditf3 (edited version of oldfile):
.nf
.me+
aaa
.me
eee
.mcl
fff
.me
ggg

PWB/UNIX Edition 1.0 DIFFMARK (I)

- 2 -

DIFFMARK (I) PWB/UNIX Edition 1.0 DIFFMARK (I)

.me•

.me
zzz

diff4 (formatted output, with line length set to 10):
aaa +
eee
fff
ggg
zzz •
If you are so inclined, you can use diffmark to produce listings of C (or other) programs with
changes marked. A typical shell procedure is:

cdiffmk: shell proc to show C program differences
called: cdiff mk old new

diff-e $1 $2 I (diffmark~echo 'l,Sp') I cd - SI I nroff macs - I pr -h $2

The file macs looks like this:
.pll
.ll 77
.nf
.eo
.nc

The II request might specify a different line length, depending on the nature of the program being
printed. The eo and nc requests are probably needed only for C programs.

DIAGNOSTICS
"input not from diff"
"line too long" (>512 characters)
Up to 72 characters of the off ending line are printed immediately following the diagnostic.

EXIT CODES
0 - normal completion
l - input did not appear to be from diff, or other error

SEE ALSO

BUGS

diff (I), nroff(I), troff(I)

Esthetic considerations may dictate manual adjustment of some output. File differences involving
only formatting requests may produce undesirable output. I.e., replacing ".sp" by ".sp2" will pro­
duce a change mark on the preceding or following line of output.

For those who use diffmark to produce UNIX Manual pages, extra handling may be needed to get
vertical bars to appear. This results from the choice of the bar as the character translated to a
nonadjustable blank for use with tabs. When you use diffmark, override the default choice of "I"
by "!" instead, causing the latter to appear in your final output. If you prefer the vertical bar, you
can get it on the final output by adding the following to the beginning of your file:

.if n .tr !I

.if n .ds v !
which may be mysterious, but works.

- 3 -

DSW(I)

NAME
dsw

SYNOl"SIS

delete interactively

dsw [directory)

DESCRIPTION

PWBIUNlX Edition 1.0 DSW(I)

For each file in the given directory (' .' if not specified) dsw types its name. If y is typed, the file
is deleted; if x~ dsw exits; if new-line, the file is not deleted; if anything else, dsw asks again.

SEE ALSO
rm(I)

BUGS
The name dsw is a carryover from the ancient past. Its etymology is amusing.

. I -

/'
l

DU (I) PWB/UNIX Edition 1.0 DU (I)

NAME

du summarize disk usage

SYNOPSIS
du [-s 1 [-a] [name ...]

DESCRIPTION

BUGS

Du gives the number of blocks contained in all files and (recursively) directories within each
specified directory or file name. If name is missing, '.' is used.

The optional argument -s causes oflly the grand total to be given. The optional argument -a
causes an entry to be generated for each file. Absence of either causes an entry to be generated
for each directory only.

A file which has two links to it is only counted once.

Non-directories given as arguments (not under. -a option) are not listed.

Removable file systems do not work correctly since i-numbers may be repeated while the
corresponding files are distinct. Du should maintain an i-number list per root directory encoun­
tered.

- l -

ECHO(I) PWB/UNIX Edition 1.0 ECHO(I)

NAME
echo - echo arguments

SYNOl'SIS

echo (arg ...]

DESCRIPTION
Echo writes its arguments in order as a line on the standard output file. It is mainly useful for
producing diagnostics in command files.

Certain escape sequences are recognized:

"\n" causes the newline character to be written.

SEE ALSO
pump(I)

"\c" terminates echo without a newline.

"\ON" causes the octal number N to be written.

• 1 •

{
'

ED (I) PWB/UNIX Edition 1.0 ED (I)

~AME

ed - text editor

~Y,OPSIS

ed [- l [+] [name l

Dt.:SL'RIPTIO~

Ed is the standard text editor.

If the name argument is given, ed simulates an e command (see below) on the named file; that is
to say, the file is read into ed's buffer so that it can be edited. The optional ·-' suppresses the
printing of character counts by e. r. and w (or :) commands.

Ed operates on a copy of the file it is editing: changes made in the copy have no effect on the file
until a w or : (write) command is given. The copy of the text being edited resides in a temporary
file called the bqffer. There is only one buffer .

.If changes have been made in the buffer since the last w or : command, ed warns the user if an
attempt is made to destroy ed's buffer via the q or e commands. Ed prints 'q'?' or 'e'?', respec­
tively, and allows one to continue editing. A second q or e command at this point will take etf ect.
This warning feature may be inhibited by specifying the ·+' option (e.g., ed + file). The ·-·
option also inhibits this f ea tu re.

Commands to ed have a simple and regular structure: zero, one, or two addresses followed by a
single character command, possibly followed by parameters to that command. These addresses
specify one or more lines in the buffer. Every command that requires addresses has default
addresses, so that the addresses can often be omitted.

In general, only one command may appear on a line. Certain commands allow the input or text.
This text is placed in the appropriate place in the buff er. While ed is accepting text, it is said to be
in input mode. ln this mode, no commands are recognized; all input is merely collected. Input
mode is left by typing a period '.' alone at the beginning of a line.

Ed supports a limited form of regular expression notation: regular expressions are used in addresses
to specify lines and in some commands (e.g., s) to specify portions of a line that are to be
replaced. A regular expression specifies a set of strings of characters. A member of this set of
strings is said to be ma1ched by the regular expression. The regular expressions allowed by ed are
constructed as follows:

The following one-character regular expressions match a single character:

1.1 An ordinary character (not one of those discussed in 1.2 below) is a one-character regular
expression that matches itself.

1.2 A backslash '\' followed by any special character is a one-character regular expression that
matches the special character itself. The special characters are:

a. '. ', ••'. ·+', '[', and '\' (period, asterisk, plus sign, left square bracket, and backslash,
respectively), which are always special, except when they appear within square bra1:kcts
•[]'(see 1.4 below).

b. •A• (caret or circumflex), which is special at the beginning of an C'1111re regular <'.\1m·ssw11
(see 3.1 and 3.2 below), or when it immediately follows the left of a pair of square
brackets ' []' (see 1.4 below).

c. '$' (currency symbol), which special at the end of an entire regular expression (see 3.2
below).

- l -

ED (I) PWB/UNIX Edition 1.0 EO(I)

d. The character used to bound (i.e., delimit) an entire regular expression, which is sp~­
cial for that regular expression (for example, see how •r is used in the g command,
below.)

1.3 A period •.' is a one-character regular expression that matches any character except the
new-line character. ·

1.4 A non-empty string of characters enclosed in square brackets • [) • is a one-character regu­
lar expression that matches any one character in that string. If, however, the first· charac­
ter of the string is .a circumflex '"'. the one-character regular expression matches any char­
acter except new-line and the remaining characters in the string. The , .. , has this special
meaning only if it occurs first in the string. The minus '-' may be used to indicate a
range of consecutive ASCII characters~ for example, [0-91 is equivalent to [0123456789).
The'-' loses this special meaning if it occurs first (after an initial '"',if any) or last in the
string. The ')' does not terminate such a string when it occurs first (after an initial ·'"', if
any), in it, e.g., '[)a)' matches either a right square bracket']' or the letter 'a'. The five
characters listed in 1.2.a above stand for themselves within such a string of characters:

The following rules may be used to construct rC'l(ular expressions from one-character r£1Ku/ar e.xprt·s­
.~um.~

2.1 A one-character regular expression is a regular expression that matches whatever the one­
character regular expression matches.

2.2 A one-charactet regular expression followed by an asterisk ••• is a regular expression that
matches zero or more occurrences of the one-character regular expression. If there is any
choice, this regular expression matches as many occurrences as possible.

2.3 A one-character regular expression followed by a plus •+• is a regular expression that
matches one or more occurrences of the one-character regular expression. If there is any
choice, this regular expression matches as many occurrences as possible.

2.4 A one-character regular expression followed by '\Im\}', '\(m, \}', or'\{ m,n\}' is a regular
expression that matches a range of occurrences of the one-character regular expression.
The values of m and n must be non-negative integers less than 256; '\(m\)' matches
exactly m occurrences; '\(m. \}' matches at least m occurrences; '\I m,n\}' matches any
number of occurrences between m and n inclusive. Whenever a choice exists. the regular
expression matches as many occurrences as possible.

2.5 The concatenation of regular expressions is a regular expression that matches the concate­
nation of the strings matched by each component of the regular expression.

2.6 A regular expression enclosed between the character sequences '\(' and '\)' is a regular
expression that matches whatever the unadorned regular expression matches; this con­
struction has side effects discussed under the s command, below.

Finally, an entire regular expression may be constrained to match only an'initial segment or final
segment of a line (or both):

3.1 A circumflex •"• at the beginning of an entire regular expression constrains that regular
expression to match an initial segment of a line.

3.2 A currency symbol '$' at the end of an entire regular expression constrains that regular
expression to match a .final segment of a line. The construction "entire regular expressio11$
constrains the entire regular expression to match the entire line.

The null regular expression standing alone (e.g., '/ /') is equivalent to the last regular expression
encountered.

. 2 -

ED(l) PWB/UNIX Edition 1.0 ED (I)

To understand addressing in ed it is necessary to know that at any time there is a currem /me.
Generally speaking. the current line is the last line affected by a command; the exact effect on the
current line is discussed under the description of the command. Addresses are constructed as fol­
lows:

1. The character '.' addresses the current line.

2. The character '$' addresses the last line of the buff er.

3. A decimal number /1 addresses the 11-th line of the buffer .
.

4. '· x' addresses the line marked with the mark name character x, which must be a lower-case
letter. Unes are marked with the k command described below.

5. A regular expression enclosed by slashes '/' addresses the first line found by searching for­
ward from the line ./bl/owing the current line toward the end of the buff er and stopping at
the first line containing a string matching the regular expression. If necessary, the search
wraps around to the beginning of the buffer and continues through the current line, so that
the entire buff er is searched.

6. A regular expression enclosed in queries '?' addresses the first line found by searching
backward from the line preceding the current line toward the beginning of the buffer and
stopping at the first line containing a string matching the regular expression. If necessary
the search wraps around to the end of the buffer and continues through the current line.

7. An address followed by a plus sign '+' or a minus sign '-' followed by a decimal number
specifies that address plus (respectively minus) the indicated number of lines. The plus
sign may be omitted.

8. If an address begins with '+' or'-', the addition or subtraction is taken with respect to the
current line~ e.g. '-5' is understood to mean • .-5'.

9. If an address ends with ·+· or·-·, then 1 is added or subtracted, respectively. As a conse­
quence of this rule and of rule 8, the address '-' refers to the line preceding the current
line. Moreover, trailing '+' and '-' characters have a cumulative effect, so ·-· refers to
the current line less 2.

10. To maintain compatibility with earlier versions of the editor, the character ·-· in addresses
is entirely equivalent to·-·.

Commands may require zero, one, or two addresses. Commands that require no addresses regard
the presence of an address as an error. Commands that accept one or two addresses assume
default addresses when an insufficient number of addresses is given; if more addresses are given
than such a command requires, the last one(s) are used.

Typically, addresses are separated from each other by a comma • ,'. They may also be separated by
a semicolon •; •. In the latter case, the current line • .' is set to the first address before the second
address is interpreted. This feature can be used to determine the starting line for forward and
backward searches (see items 5. and 6. in the list above). The second address of any two-address
sequence must correspond to a line that follows, in the buffer, the line corresponding to the first
address.

In the following list of eel commands, the default addresses are shown in parentheses. The
parentheses are 1101 part of the address, but are used to show that the given addresses arc the
default.

It is generally illegal for more than one command to appear on a line. However, any command
may be suffixed by 'p' or by 'I', in which case the current line is either printed or listed, respec­
tively. as discussed below under the p and I commands.

- 3 -

ED (I> PWB/UNIX Edition 1.0 ED(I)

(•) a
<text>

The append command reads the given text and appends it after the addressed line. •. • is left
at the last inserted line; or. if there were none, at the addressed line. Address 'O' is legal for
this command: text is placed at the beginning of the buffer.

(. •.) c
<text>

The change command deletes the addressed lines, then accepts input text which replaces
these lines. •.' is left at the last line input; if there were none, it is left at the first line not
deleted.

(.•.) d
The delete command deletes the addressed lines from the buffer. The line after the last line
deleted becomes the current line~ if the lines deleted were originally at the end of the buffer,
the new last line becomes the current line.

e name
The edit command causes the entire contents of the buffer to be deleted, and then the
named file to be read in; '.' is set to the last line of the buffer. If no file name is given. the
remembered file name, if any, is used (see the/command). The number of characters read
is typed; name is remembered for possible use as a default file name in subsequent e or r or
w or : commanqs.

f name
If name is given. the filename command changes the currently remembered file name to
name; otherwise, it prints the c4rrently remembered file name.

(1.$) g/ regular expression/ command list
In the Klo~I command, the first step is to mark every line that matches the given regular
, •. ,·wc•ssm11. Then. for every such line, the given command list is executed with '.' initially set
to that line. A single command or the first of a list of commands appears on the same line
••s the glob~! command. All lines of a multi-line list except the last line must be ended with
a '\'; a. 1, and r commands and associated input are permitted~ the '.' terminating input
mode may be omitteq if it would be the last line of the command list. The (global) com­
mands (g, v; G. and V) are not permitted in th~ command list.

(.) h
The date as returned by date(I} is appended after the addressed line.

(.) i
<text>

The insert command inserts the given text before the addressed line. •.' is left at the last
inserted line; or. if there were none, at the addressed line. This command differs from the a
command only in the placement of the input text.

(... + l) j
The join command joins contiguous lines by removing the appropriate new-tine characters.

(. >kx
The mark command marks the addressed line with name x, which must be a lower-case
letter. The address form ''x' then addresses this line .

• 4 -

ED (I J PWB/UNIX Edition 1.0 ED< I)

(• • • J I
The list command prints the addressed lines in an unambiguous way: a few non-printing
characters (e.g., tab. back.space) are represented by (hopefully) mnemonic overstrikes. all
other non-printing characters are printed in octal, and long lines are folded. An I command
may also be appended to any other command.

(••.)ma
The move command repositions the addressed line(s) after the line addressed by a. .l..Jdr~ss
·o· is legal for a and causes the addressed line(s) to be moved to the beginning of the tile; it
is an error if address a falls within the range of moved lines. The last line so moved
becomes the current line.

(.••) p
The print command prints the addressed lines~ • .' is left at the last line printed. The I' com­
mand may be appended to any other command <e.g., 'dp' deletes the current line and prints
the new current ljne).

The quit command causes ed to exit. No automatic write of a file is done.

($) r name
The read command reads in the given file after the addressed line. If no file name is given.
the remembered file name, if any, is used (see e and f commands). The remembered file
name is not changed unless name is the very first file name mentioned since ed was invoked.
Address ·o· is legal for rand causes the file to be read at the beginning of the buffer. If the
read is successful, the number of characters read is typed~ •. • is set to the last line read in.

(.•.) s/regular expression/replacement/ or,
(.•.) s/regular expression/replacement/g

The substitute command searches each addressed line for an occurrence of the specified reg­
ular expression. On each line in which a match is found, all (non-overlapped) matched
strings are replaced by the replacement if the global replacement indicator 'g' appears after
the command. If the global indicator does not appear, only the first occurrence of the
matched string is replaced. It is an error for the substitution to fail on all addressed lines.
Any character other than space or new-line may be used instead of'/' to delimit the regular
expression and the replacement: •.' is left at the last line on which a substitution occurred.

An ampersand '&' appearing in the replace111e111 is replaced by the string matching the regular
expression on the current line. The special meaning or '&' in this context may he
suppressed by preceding it by '\'. As a more general reature, the characters '\11'. where /1 is
a digit, are replaced by the texi matched by the 11-th regular subexpression of the specified
regular expression enclosed between '\ (' and • \) '. When nested parenthesized subexpres­
sions are present, n is determined by counting occurrences of '\ (' starting from the left.

A line may be split by substituting e new-line character into it. The new-line in the replace­
ment must be escaped by preceding it by • \'. Such substitution cannot be done as part of a g
or v command list.

(.,.)ta

u

This command acts just like the m command, except that a copy of the addressed lines is
placed after address a (which may be '0'); '.' is left at the last line of the copy.

This command reverses the effect of the last s command. The u command affects only the
last line changed by the most recent' s command.

- 5 -

ED(I) PWBIUNIX Edition 1.0 ED(I)

(1,$) v/regular expression/command list
This command is the same as the global command g except that the command list is executed
with •.' initially set to every line that does not match the regular expression.

(1.$) w name
(1,$) z name

The write command writes the addressed lines onto the named file. If the file does not
exist, it is created with mode 644 (readable by everyone, writable by you). The remem­
bered file name is hot changed unless name is the very first file name mentioned since ed was
invoked. If no file· name is given, the remembered file name. if any, is used (see e and .f
commands)~ ·.' is unchanged. If the command is successful, the number of characters writ·
ten is typed. The z command is identical to w but, on most keyboards, the 'z' key is farther
from the 'q' key than is the 'w' key.

(l ,S) G/regular expression/

p

Q

In the interactive Global command, the first step is to mark every line that matches the
given regular expression. Then, for every such line, that line is printed, •.' is changed to that
line, and any one command, other than a global command (g, v, G, and V), must be input.
After the execution of that command, the next marked line is printed, and so on. A new­
line acts as a null command; an '&' causes the re-execution of the most recent command
executed within this invocation of G. Note that the commands input after the G command
prints each marked line may address and affect any lines in the buffer. The G command can
be terminated by an interrupt signal (ASCH DEL or BREAK).

The editor will prompt with a ••• for all subsequent commands. This command alternately
turns the mode on and off; it is initially off.

The editor exits without checking if changes have been made in the buffer since the last w
or z command.

(1,$) V /regular expression/

($) •

This command is the same as the interactive global command G except that the lines that
are marked during the first step are those that do not match the regular expression.

The line number of the addressed line is typed; •. • is unchanged by this command.

! UNIX command
The remainder of the line after the •r is sent to the UNIX shell (sh(I)) to be interpreted as a
command; •.' is unchanged.

(.+l) <new-line>
An address alone on a line causes the addressed line to be printed. A blank line alone is
equivalent to 4.+lp'; it is useful for stepping through text.

If an interrupt signal (ASCII DEL or BREAK) is sent, ed prints a '?' and returns to its command
level.

Some size limitations: 512 characters per line, 256 characters per global command list, 64 charac­
ters per file name, and 128K characters in the buffer. The limit on the number of lines depends
on the amount of user memory: each line takes 1 word.

Ed allows the user to include, in the first line of each text file, a specification to control the line
length and the tab-to-space conversion. For example, <:t5,10.15s72:> sets tabs at columns 5,
10, and 15; it will also truncate the printing of all lines to a length of 72 characters and warn when
a truncation has occurred. For the specification to take effect, the user's terminal must be in echo

. 6 •

I
' ,,,

,.

'::.:

ED(I) PWB/UNIX Edition 1.0 ED (I)

and -tabs modes (see suy(I)). Only the 't' and 's' parameters may be used as described in
./Spec(V). If the 's' parameter is used, all referenced lines are checked for maximum length on
file read and write operations and on line print operations. Appropriate diagnostics are generated.
Truncation occurs only on printing.

If the user attempts a w or z command and the destination file system does not have enough space
available, a diagnostic is printed with an error number (i.e. "No SPACE: el") . Ed will not per­
form the write. The UNIX command "help el" (see he!p(I)) prints out a full description of what
to do. Help should be executed before leaving the editor (e.g., "!help el").

FILES
/tmp/e#, temporary: '#' is the process number (in octal).

DIAGNOSTICS
'?' for errors in commands: 'TMP?' for temporary file (buffer) overflow; he/p(I) error numbers in
all other cases. Commands in error should be re-entered properly. On temporary file overflow,
the buffer should be written to a file and then an e command executed on that file. This will re­
initialize the buffer: note that if the buffer overflows during the execution of a command that, in
the absence of the TMP? diagnostic, would have done several changes, only some of the changes
may have been done. Help error messages are self-explanatory.

SEE ALSO

BUGS

A Tutoflal Introduction to the UNIX Text Editor by B. W. Kernighan.
Advanced Editing on UNIX by B. W. Kernighan.

If the s command succeeds on (i.e., modifies) a line that was marked by a g, v, G. or V command,
then that mark is effectively removed. The editor deletes all ASCII null characters whenever it
reads text- into the buffer.

- 7 -

EGREP (I) PWB/UNIX Edition 1.0 EGREP(l)

NAME
egrep - search a file for lines containing a pattern

SYNOPSIS
egrep [-b] [-c) [-f] [-n 1 [-v] pattern [file 1 ...

DESCRIPTION
egrep searches the input files (standard input default) for all lines containing an instance of the
regular expression pattern. Normally, each line matched is copied to the standard output. The
pattern matches a line whenever the line contains a substring denoted by the pattern.

The flags modify the normal behavior as follows:

-b causes each printed line to be preceded by the block number on which it was found
-c causes only a count of matching lines to be printed
-f causes the regular expression to come from a file named pattern
-n causes each printed line to be preceded by its relative line number in the file
-v causes all lines but those matching the pattern to be printed

In all cases the file name is shown if there is more than one input file.

A pattern is one of the following:

1. an ordinary character {denoting itselO

2. a circumflex ·-· (denoting the beginning of a line)

3. a dollar sign '$' (denoting the end of a line)

4. a period '.' (denoting any character but a newline)

5. '[' followed by a string of characters followed by ']' (denoting any character in the string; if
the first character in this string is ·-·, the pattern denotes any character except newline and the
characters in the string) ·

6. '(' followed by a pattern followed by ')' (denoting the enclosed pattern)

7. a pattern followed by '*', or by '+', or by "?' (denoting zero or more, one or more, or zero or
one instances, respectively, of the preceding pattern)

8. a pattern followed by a pattern (denoting concatenation of the two patterns)

9. a pattern followed by i' followed by another pattern (denoting the alternation of the two pat-
terns); a newline may be used in place of i'.

In parsing a pattern, the rules are applied in the order given.

A pattern metacharacter can be used as an ordinary character by preceding it by '\'. The meta­
characters are:·-·.'$','.','[',']','*','+','?','(',')','\'.

Care should be taken when using the characters $ * [- I () and \ in the regular expression as they
are also meaningful to the Shell. When pattern is a regular expression other than a simple string,
it is generally necessary to enclose the entire pattern argument in quotes.

SEE ALSO
grep(l), fgrep(I), lex(I), rgrep(I), sed(I), ed(I), sh(l)

BUGS

Lines longer than 512 characters are not printed completely.

- 1 -

EQN(l) PWB/UNIX Edition 1.0 EQN {I)

NAME
eqn typeset mathematics

SYNOPSIS
eqn [file] ...

DES<.:RIPTION
Eqn is a troffil) preprocessor for typesetting mathematics on the Graphics Systems, Inc. photo­
typesetter. Usage is almost always

eqn file .:.1 troff

If no files are specified, eqn reads from the standard input. A line beginning with ".EQ" marks
the start of an equation: the end of an equation is marked by a line beginning with ".EN". Nei­
ther of these lines is altered or defined by eqn, so you can define them yourself in trqffTJ) to get
centering, numbering, etc. All other lines are treated as comments, and passed through
untouched.

Spaces, tabs, new-lines, braces, double quotes, tilde, and circumflex are the only delimiters.
Braces "{l" are used for grouping. Use tildes ... ,, to get extra spaces in an equation.

Subscripts and superscripts are produced with the keywords sub and sup. Thus x sub 1 makes x,, a

sub r sup 2 produces a,2, and e sup {x sup 2 + y sup 21 gives e·' 2+"2• Fractions are made with over.

a over bis ab and J over sqrt {ax sup 2 +bx+cl is .J 1 : sqrt makes square roots.
ax2+bx+c

II

The keywords from and to introduce lower and upper limits on arbitrary things: lim :Lx, is made
11-co 0

with lim from {n-> i11/I sum .from 0 to n x sub i. Left and right brackets, braces, etc., of the right
height are made with left and right: left [x sup 2 + y sup 2 over alpha right } - --1 produces

[x'+ :'] - 1. The right clause is optional. ·

Vertical piles of things are made with pile, lpile, cpile, and rpile: pile {a above b above cl produces
a
b. There can be an arbitrary number of elements in a pile. lpile left-justifies, pile and cpile
c
center, with different vertical spacing, and rpile right justifies.

Diacritical marks are made with dot, dotdot, hat, bar: x h~t = .f(r) bar is -~= f"(r). Default sizes
and fonts can be changed with size n and various of roman, italic, and bold.

Keywords like sum <:L). mt <J>. mf(oo), and shorthands like>=. (~). ->, (-). !=.(;:)are
recognized. Spell out Greek letters in the desired case, as in alpha. GAMMA. Mathematical
words like sin, cos, log are made Roman automatically. TroffiD four-character escapes like \ (ua (f
- for "up arrow") can be used anywhere. Strings enclosed in double quotes " ... " are passed
through untouched.

St:t: ALSO

Typesetting Mathematics - User's Guide (2nd Edit1011) by B. W. Kernighan and L. L. Cherry
New Graphic Symbols.for EQN and NEQN by C. Scrocca
NROFF/TROFF User's Manual by J. F. Ossanna
troff(l), neqn (I)

- l -

EQN (I) PWB/UNfX Edition 1.0 EQN(I)

RUGS

Undoubtedly. Watch out for small or large point sizes - it's tuned too well for size 10. Be cau­
tious if inserting horizontal or vertical motions. and of backslashes in general.

• 2 •

-......

EQUALS (I) PWB/UNIX Edition 1.0 EQUALS (I>

NAME
- (equals) - shell assignment command

SYNOPSIS
= letter [arg 1 [arg2]]

DESCRIPTION
The command provides shell string variables. The 26 letter variables (•a'-•z') are referenced
in later commands in the manner of shell arguments, i.e.: $a, $:. If no arguments are given.
the standard input is read to newline or EOT for the value. The exit code is set to 0 if a newline
is found in the ·input; it is set to 1 otherwise, thus providing and end-of-file indicator. If argl is
the only argument. or if two non-null arguments are given, the variable is set to arid. and the exit
code set to 0. If two arguments are given, and if argl is a null string. the value of arg] is
assigned to the variable, and the exit code is set to I, permitting a convenient default mechanism:

=a "SI" "default value" && shift

The ••,." command works either at the terminal, or in shell command files. The variables can be
assigned repeatedly. Storage is assigned as needed, but there is no recovery.

Some letter variables have predefined meanings and are initialized once at the time the 5hell
begins execution:

Sn The argument count. "sh file argl arg2 arg3" has the value 3. The shift command does not
change the value of Sn.

$p This variable holds the shell search sequence of pathname prefixes for command execution.

Sr

$s

St

$w

Sz

Alternatives are separated by ":,.. The default initial value is:

- p ":/bin:/usr/bin"

which prepends successively
the null pathname (execute from current dir.),
/bin,
/usr/bin.

Using the same type of specification, users may choose their own scqucrn:e by storing it in a
file named ••.path" in their login directory. The ".path" information passes to successive
shells (and other commands like time(I) or nohup(l)); the $p value does not. In any case.
no prepending occurs when a command name contains a'/'.

exit(status) of the most recent command executed by the Shell. The value is ASCII
numeric, and is initially ·o·. At end-of-file the shell exits with the value of Sr.

Name of login (starting) directory.

Terminal identification letter or number: /dev/tty$t is a file name for the terminal.

First component in $s pathname, i.e., file system name (such as /usr).
•

Is the name of the Shell. Its default value is '/bin/sh', but this can be overridden by sup­
plying a name as the second line of the •.path' file.

Note that variables ('a' - ·m') are guaranteed to be initialized to null strings and usable in any
way desired. Variables ('n' - •z') may acquire special uses in the future. The values of Sn, Ss.
St, and Sw may reasonably be modified; it is catastrophic to change Sp~ it is possible, but use1ess
to modify Sr.

- l .

EQUALS (l) PWB/UNIX Edition 1.0 EQUALS (I)

The command is executed within the shell. Note that it is commonly used to read the first
line of output from a pipe or a line from the terminal, for example:

grep -c string file I • a
or:

- a </dev/tty

EXIT CODES
0 - normal read, or first of two arguments is not null.
1 - end-of-file, or first of two arguments is null.

SEE ALSO
expr(l), sh (I)

- 2 -

EXIT (I) PWB/UNIX Edition 1.0 EXIT (I)

NAME
exit terminate command file

SYNOPSIS
exit [integer]

DESCRIPTION
Ex11 performs a seek to the end of its standard input file. Thus. if it is invoked inside a file of
commands, upon return from exit the shell will discover an end-of-file and terminate.

The optional argument will be returned to the shell as the exit status code.

SEE ALSO
if(I), goto(I), sh(I)

- 1 -

EXPR (I) PWBfUNIX Edition 1.0 EXPR(l)

NAME
expr - evaluate arguments as an algebraic expression.

SYNOPSIS

expr arg ...

DESCRIPTION
The arguments are taken as an expression. After evaluation, the result is written on the standard
output. Terms of the expression must be separated by blanks. Characters special to the Shell.,
i.e.,'*', 1', '&','(',and')', must be escaped.

The operators and keywords are listed below. Characters that need to be escaped are preceded by
'\'. The list is in order of increasing precedence, with equal precedence operators grouped within
' {) ' symbols.

expr \I expr

expr\& expr

expr { +, - J expr

expr { \ •, I, % } expr

substr expr expr expr

length expr

index expr expr

\(expr \)

The result of substr is that portion of the first expression (possibly null) which· is defined by the
offset (second expression, starting at 'l ') and the span (third expression). A large span value can
be given to obtain the remainder of the string.

length returns the length in characters of the expression that follows.

Index searches the first expression for the first character that matches a character from the second
expression. It returns the character position number if it succeeds, or 'O' if it fails.

The expr command is handy with Shell variables. For example:

expr substr xxxSa "(" length xxxSa - 2 ")" 3 l - b

assigns the last three characters of the Shell variable $a into the variable $b.

Note that 'O' is returned to indicate a zero value, rather than the null string. Strings containing
blanks or other special characters should be quoted.

DIAGNOSTICS
Grumbles from yacc(I) for syntax violations.
"Non·numeric argument" if the argument needs to be, but is not, an integer.

- 1 •

FC (I) PWB/UNIX Edition 1.0 FC (I)

NAME
f c - Fortran compiler

SYNOPSIS

fc [-c] sfilel.f ... ofilel ...

DESCRIPTION

Fe is the UNIX Fortran compiler. It accepts three types of arguments:

Arguments whose names end with '.r are assumed to be Fortran source program files~ they are
compiled, and the object program is left on the file 'sfilel.o' (i.e., the file whose name is that of
the source with '.o' substituted for • .r).
Other arguments (except for -c) are assumed to be either loader flags, or object programs, typi­
cally produced by an earlier .IC run, or perhaps libraries of Fortran-compatible routines. These
programs, together with the results of any compilations specified, arc loaded (in the order given)
to produce an executable program with name a.out.

The -c argument suppresses the loading phase, as does any syntax error in any of the routines
being compiled.

The following is a list of differences between Jc and ANSI standard Fortran (also see the BUGS
section):

l. Arbitrary combination of types is allowed in expressions. Not all combinations are expected
to be supported at runtime. All of the normal conversions involving integer, real, double
precision and complex are allowed.

2. Two forms of "implicit" statements are recognized: implicit integer /i - n/ or implicit
integer (i-n).

3. The types doublecomplex, logical*l, integer*!, integer*2, integer*4 (same as integer),
real*4 (real), and real*8 (double precision) are supported.

4. & as the first character of a line signals a continuation card.

5. c as the first character of a line signals a comment.

6. All keywords are recognized in lower case.

7. The notion of 'column 7' is not implemented.

8. G-format input is free form~ leading blanks are ignored, the first blank after the start of the
number terminates the field.

9. A comma in any numeric or logical input field terminates the field.

I 0. There is no carriage control on output.

11. A sequence of n characters in double quotes "" is equivalent to n h followed by those charac­
ters.

12. In data statements, a hollerith string may initialize an array or a sequence of array elements.

13. The number of storage units requested by a binary read must be identical to the number con­
tained in the record being read.

14. If the first character in an input file is "#", a preprocessor which implements "#define" and
"#include" preprocessor statements is called. These preprocessor statements are similar to
the corresponding C preprocessor statements; see the C reference manual for details. The

• 1 -

FC (I) PWB/UNIX Edition 1.0 l:'C l l J

FILES

preprocessor does not recognize Hollerith strings written with nh.

In 110 statements, only unit numbers 0-19 are supported. Unit number n refers to file fortnn:
(e.g. unit 9 is file 'fort09'). For input, the file must exist; for output, it will be created. Unit 5 is
permanently associated with the standard input file; unit 6 with the standard output file. Also see
.<i<'t/i/(111) f'or a way to associate unit numbers with named files.

a.out
f.tmp{123]
I usr I fort/ errors
/usr/fort/fcl
/lib/frO.o
/lib/filib.a
/lib/libf.a
/lib/liba.a

loaded output
temporary (deleted)
compile-time error messages
compiler proper
runtime startoff
interpreter library
builtin functions, etc.
system library

SEE Al.SO

rcW, which announces a pleasant Fortran dialect; the ANSI standard; td(l) for loader flags. For
some subroutines, try ierror. l(etarx. serfil(lll}.

OIA<iNOSTICS
Compile-time diagnostics are given in English, accompanied if possible with the offending line
number and source line with an underscore where the error occurred. Runtime diagnostics are
given by number as follows:

I invalid log argument
2 bad arg count to amod
3 bad arg count to atan2
4 excessive argument to cabs
5 exp too large in cexp
6 . bad arg count to cmplx
7 bad arg count to dim
8 excessive argument to exp
9 bad arg count to idim
I 0 bad arg count to isign
11 bad arg count to mod
12 bad arg count to sign
13 illegal argument to sqrt
14 assigned/computed goto out of range
15 subscript out of range
16 real**real overflow
17 (negative real)**real
100 illegal 1/0 unit number
101 inconsistent use of I/O unit
102 cannot create output file
103 cannot open input file
104 EOF on input file
105 illegal character in format
106 format does not begin with (
107 no conversion in format but non-empty list
108 excessive parenthesis depth in format
l 09 illegal format specification

• 2 •

FC(I) PWB/UNIX Edition 1.0

BUGS

110 illegal character in input field
111 end of format in hollerith specification
112 bad argument to setfil
120 bad argument to ierror
999 unimplemented input conversion

The following is a list of those features not yet implemented:
arithmetic statement functions
scale factors on input
Backspace statement.

. - 3 -

FC (I)

FD2 (I) PWB/UNIX Edition 1.0 FD2(1)

NAME
fd2 - redirect file descriptor 2 (diqnostic output)

SYNOPSIS
fdl r fd2arg 1 command [command-ara 1 •••

D£SCRIPTION
Fd2 executes command with file descriptor 2 (the diagnostic output) redirected to a file or to the
standard output. There are three forms:

fd2 -file comd .••
fd2 --file comd •••
fd2 + comd •••

[write on file}
[append to file]
[causes file descriptor 2 to be made the same as file descriptor 1J

In either of the first two cases, omission of file causes msa.o~t to be used as the output file.
Omission of fd2arg bas the effect of -msa.oat.

• 1 •

FGREP(I) PWB/UNIX Edition 1.0 FGREP (I)

NAME
fgrep - search a file for lines containing keywords

SYNOPSIS
fgrep { -b] [-c] [-e] [-f] [-n] [-v 1 pattern [file] ...

DESCRIPTION
.fgrep searches the input files (standard input default) for all lines containing one or more key­
words denoted by pattern. Normally, each containing line is copied to the standard output. The
bcfnv flags modify the normal behavior as in egrep(l). The -e flag causes a match to occur if and
only if a keyword matches an input line exactly. Without the -f flag, pattern can be only a single
keyword. With the -f flag, pattern is the name of a file containing a sequence of keywords ter­
minated by newlines. The keywords in this file then constitute the search pattern. A keyword is
any string of characters except '\O' and newline. No metacharacters are assumed.

SEt: ALSO
egrep(I)

BUGS
Lines longer than 512 characters are not printed completely .

• 1 •

FILE (I) PWBIUNIX Edition 1.0 FILE(I)

NAMF.
file - determine file type

SYNOPSIS

file file ...

DESCRIPTION
File performs a series of tests on each argument in an attempt to classify it. If an argument
appears to be ascii, file examines the first 512 bytes and tries to guess its language .

•

- 1 -

FIND (I J PWB/UNIX Edition 1.0 FIND (I)

:'llAME

find - find files

SY!'liOPSIS

find pathname-list expression

DES<.:RIPTIO"I

F111d recursively descends the directory hierarchy for each pathname in the paf/mame-list (i.e., one
or more pathnames) seeking files that match a boolean express1011 written in the primaries given
below. In the descriptions, the argument /1 is used as a decimal integer where +11 means more
than 11, -n means less than n and n means exactly 11.

-name filename True if the .filename argument matches the current file name. Normal Shell
argument syntax may be used if escaped (watch out for'[', ''!'anti '*').

-perm onum True if the file permission flags exactly match the octal number 111w111 (~l.!l!
chmod(I)). If onum is prefixed by a minus sign, more flag bits (017777, sec
srar(ll)) become significant and the flags are compared: (ffags&o11u111J = =01111111.

-type c True if the type of the file is c, where c is b, c, d or f for block special file, char-
acter special file, directory or plain file.

-links n · True if the file has /1 links.

-user uname True if: the file belongs to the user uname.

-group gname As it is for -user so shall it be for -group (someday).

-size n True if the file is n blocks long (512 bytes per block).

-atime n True if the file has been accessed in n days.

-mtime n True if the file has been modified in n days.

-exec command True if the executed command returns a zero value as exit status. The end or
the command must be punctuated by an escaped semicolon. A command argu­
ment '{}' is replaced by the current pathname.

-ok command Like -exec except that the generated command line is printed with a question
mark first, and is executed only if the user responds y.

-print Always true~ causes the current pathname to be printed.

The primaries may be combined with these operators (ordered by precedence):

-a

-o

(expression)

Prefix not.

Infix and, second operand evaluated only if first is true.

Infix or, second operand evaluated only if first is false.

Parentheses for grouping. (Must be escaped.)

To remove all files named 'a.out' or '* .o' that have not been accessl."d for a week:

find I "(" -name a.out -o -name"* .o" "l" -a -a time + 7 -a -ext:~: rm 0 "."

Fl I.ES

/etc/passwd

- 1 -

FIND (I) PWB/UNIX Edition 1.0 FIND (I)

Sl-:f. Al.SO
sh(I), if(I). fs(V)

Rll<iS
Tc>.w (see (/0)) can be useful with .find. However, since test is implemented within the Shell, you
must use something like:

-exec sh -c "test arp" ·~·

- 2 -

..
~

GATH (I) PWB/UNIX Edition 1.0 GATH (I)

N.AME
gath - gather real and virtual files

.SYNOPSIS

gath [-ih] file ...

DESCRIPTION
Gath concatenates the named files and writes them to standard output. Tabs are expanded into
spaces according to the format specification for each file (see ftpec(V)). The size 1imit and margin
parameters- of a format specification are also respected. Non-graphic characters other than tabs are
identified by a diagnostic message and excised. The output of gath contains no tabs unless the
-h flag is set, in which case it is written with standard tabs (every eighth column).

Any line of any of the files which begins with ·-• is interpreted by garh as a control line. A line
beginning ·- ' (tilde,space) specifies a sequence of files to be included at that point. A line begin­
ning ·-!' specifies a UNIX command; that command is executed, and its output replaces the ·-!'
line in the garh output.

Setting the -i flag prevents control lines from being interpreted and causes them to be output
literally.

A file name of '-' at any point refers to standard input, and a control line consisting of ·-: is a
software end-of-file. Keywords may be defined by specifying a replacement string which is to be
substituted for each occurrence of the keyword. Input may be collected directly from the termi­
nal, with several alternatives for prompting.

In fact, all of the special arguments and flags recognized by the send command are also recognized
and treated identically by gath. Several of them are only useful, however, in the context where an
RJE job is being submitted. The same program implements the two commands, so gath has a
potential which is not apparent from its name. Refer to the description of send for definitive
information about gath.

SEE ALSO
send (1), f spec (V)

- l -

GET(I) · PWB/UNIX Edition 1.0 GET(l)

NAME
get - get generation from secs file

SYNOPSIS
get [-rrel[.lev{.br(.seq]]]] [-ccutoff] [-iincl-list] {-xexcl-list] [-aserial] [-kl [-e] [-l[p)J
[-p] [-ml {-nl [-s] [-b] [-g] {-t] name ...

DESCRIPTION
Get generates an ASCII text file from each named SCCS file according to the specifications given
by its keyletter arguments, which begin with .. _ ... The arguments may be specified in any order,
but all keyletter arguments apply to all named SCCS files. If a directory is named, get behaves as
though each file in the directory were specified as a named file, except that non-SCCS files (last
component of the pathname does not begin with .. s. "), and unreadable files are silently ignored.
If a name of " - " is given, the standard input is read~ each line of the standard input is taken to
be the name of an SCCS file to be processed. Again, non-SCCS files, and unreadable files are
silently ignored.

The generated text is normally written into a file called the g~file. See FILES, below, for an expla­
nation of how the name of this file is determined.

The keyletter arguments are as follows. Each is explained as though only one named file is to be
processed, but the effects of any keyletter argument apply independently to each named file.

-r The SCCS identification string (SID) of the change level to be generated. If the entire
argument is omitted, the meaning is the same as if the default SID were specified (see
admin(I)). If there is no default SID in the SCCS file the highest release which has
deltas is used. If only the release is specified, the level defaults to the highest level in
that release. A release and level completely identifies a specific change level. If a
branch is also specified and the sequence is omitted, the sequence defaults to the
highest sequence in the branch. A release, level, branch, and sequence also com­
pletely identifies a specific change level. (All deltas are identified either by a 2 com­
ponent SID-release and level, or by a 4 component SID-release, level, branch, and
sequem:e. SID's with 4 components identify deltas which have heretofore been called
"non-propagating".) ·

-c Cutoff date·time, in the form YYIMMIDDIHHIMM!SSIJJJI. No delta which was created
after the specified cutoff date-time will be applied. Units omitted from the date-time
default to their maximum possible values: that is, "-c7502" is equivalent to
"-c750228235959". Any number of non-numeric characters may separate the vari­
ous 2 digit pieces of the cutoff date-time. This feature allows one to specify a cutoff
date in the form: .. " .-.c77 /2/2 9:22:25"". Note that this implies that one may use the
%E% and %U% identification keywords (see below) for nested gets within, say the
input to a send(l) command:

-!get "-c%E% %U%" s.file

-i This argument is used to specify a list of deltas to be included (forced to be applied).
The list has the following syntax:

<list> ::= <range>
<list> , <range>

<range> ::== <delta>

- 1 -

GET (I) PWB/UNIX Edition 1.0 GET (I)

<delta> - <delta>
<delta> ::- <rel>

<rel> • <lev>
<rel> • <lev> •

<rel> • <lev> •
 • <seq>

If a level is omitted from a delta specification the highest level of the specified release
is assumed. If a branch is specified, but the sequence is omitted the highest sequence
of the specified branch is assumed.

-x This argument is similar to i except that it is followed by a list of deltas to be excluded
(forced to not be applied).

-a The serial number of the change level to be generated (see scc$/ile(V)). This keyletter
is used by the comb(I) command~ it is not a generally useful keyletter, and most users
will probably never use it. If both the r and a keyletters are specified. the a keyletter
is used. Care should be taken when using the a keyletter in conjunction with the e
keyletter, as the SID of the delta to be created may not be what one expects. The r
keyletter can be used with the a and e keyletters to control the naming of the SID of
the delta to be created.

-k This argument suppresses replacement of identification keywords (see below) by
specific values. The k argument is implied by the i, x or e arguments.

-e This argument indicates that this get is for the purpose of making a delta with a later
execution of delta. It causes creation, or 1,1pdating of a p-file (see FILES). Another gc>t
with an e argument, if at the same delta or for the same new SID, may not be exe­
cuted until the delta is made. If the K:file generated by a ge1 with an e argument is
ruined, a new one may be obtained by executing another get with a k argument instead
of an e. Note that although the c argument may be used in combination with e. d£'11a
will not use it when regenerating the g:file for the purpose of determining what
changed. When the e argument is supplied the protection restrictions determined by
the ceiling, the floor, and the list of users authorized to make deltas are enforced.

-l This argument causes a delta summary to be written into an !:file (see FILES). If -Ip
is used then an !:file is not created~ the delta summary is written on the standard out­
put instead. The r~form(I) command can be used to truncate lines of the l~/ile.

-p This argument causes the generated text to be written to the standard output insteaq of
to a g:file. All output which normally goes to·the standard output goes to file descrip­
tor 2 instead, unless the s argument is supplied, in which case it disappears.

-s This argument suppresses all output normally written on the standard output. How­
ever, fatal error messages (which always go to file descriptor 2) remain unaffected.

-m This argument causes each generated text line to be preceded by the SID of the delta
which inserted that text line. The format is: SID, followed by a horizontal tab, l"ol­
lowed by the text line.

-n This argument causes each generated text line to be preceded with the %M{Yti
identification keyword (see below). The format is: %M% identification keyword, fol­
lowed by a horizontal tab, followed by the text line. When both the m and n

- 2 -

GET (I) PWB/UNIX Edition 1.0 GET(I)

FILES

arguments are supplied the formal is: <7:1M1Yo identification keyword, followed by a hor­
izontal tab. followed by the m argument format.

-h This argument is used with the e argument lo indi<.:ule thut the new delta should huve
an SI[) in a new branch. This argument is allowed only if the b ll<tg exists in the tile:
see admin(11.

-g The g argument suppresses the actual getting of source. It is primarily used to gen­
erate a!1 /~file. or to verify the existence of a particular SID.

-t The t argument is used to access the most recent ("top") delta in a given release (i.e.,
when nor argument is supplied, or an argument of the form rrel is supplied).

For each file processed, !(et responds (on the standard output) with the SID being accessed and
with the number of lines generated. If there is more than one named file or if a directory or stan­
dard input is named. each file name is printed (preceded by a newline) before it is processed. If
the i argument is supplied included deltas are listed following the notation "Included": if the x
argument is supplied excluded deltas are listed following the notation "Excluded".

Identifying information is inserted into the generated text by replacing idenrt/icat1011 keywords by
appropriate values, wherever they occur. The following keywords are available:

Keyword

o/oM%

%1%
1YuR%
%L0Ai
%8%
%S%
1YoD%
%H%
%Eo/o
%Go/11
%T%
%U%
%Y%
%F%
o/11C%

%Z%

%Wo/o

1YoA%

Value

Module name: either the value of the m flag in the file (see admm<I»,
or the g~file name-see FILES.
SCCS identification string (Sl0)-%R%.%L%.%B%.%S%.
Release.
Level.
Branch.
Sequence.
Current date (YY/MM/00).
Current date (MM/DO/YY).
Date of newest applied delta (YY/MM/DO).
Date of newest applied delta (MM/DD/YY).
Current time (HH:MM:SS).
Time of newest applied delta (HH:MM:SS).
The value of the t flag in the file (see adm;n(I)).
File name.
Current line number. This keyword is intended for identifying mes­
sages output by the program such as "this shouldn't have happened"
type errors. It is not intended to be used on every line to provide
sequence numbers.
The 4 characters @(#) (used to construct strings recognizable by
whar(I)).
A shorthand notation for constructing whar(I) strings for UNIX pro­
gram files. %W% = %Z%%M%<horizontal-tab>%1%
Another shorthand notation for constructing whar(l) strings for non­
UNIX program files. %A%= %Zo/o%Y% %M% %1%%Z%

Several auxiliary files may be created by get. These files are known generically as the g~file. /~file,

- 3 -

GET(I) PWB/UNIX Edition 1.0 GET (I)

p-_{lle, and :-:file. The letter before the hyphen is called the tag. An auxiliary file name is formed
from the SCCS file name: the last component of all SCCS file names must be of the form
"s.modulename", the auxiliary files are named by replacing the leading "s" with the tag. The g­
./ile is an exception to this scheme: the g-:file is named by removing the "s. ". For example, if the
secs file name is "s.xyz.c", the auxiliary file names would be "xyz.c", "l.xyz.c", "p.xyz.c", and
"z.xyz.c", respectively.

The g-/ile, which contains the generated text, is created in the current directory (unless the p
argument is supplied, or zero lines of text were generated). It is owned by the real user. If the k
argument is supplied or implied its mode is 644: otherwise its mode is 444. Only the real user
need have write permission in the current directory.

The 1-:file is also created (unless a p follows the -I} in the current directory, if the I argument is
supplied; its mode is 444 and it is owned by the real user. Only the real user need have write per­
mission in the current directory. The !-:file contains a table showing which deltas were applied.
The following is printed for each delta in the SCCS file:

a) Blank if the delta was applied: "*" otherwise.
b) Blank if the delta was applied or wasn't applied and ignored; "*" if the delta

wasn't applied and wasn't ignored.
c) A code indicating a "special" reason why the delta was or was not applied:

d) Blank.

"I": Included.
"X": Excluded.
"C": Cut off (by a c argument).

e) SCCS identification string (SID).
f) Tab character.
g) Date and time (in the form YY /MM/DD HH:MM:SS) of creation.
h) Blank.
i) Creator.

The comments and MR data follow on subsequent lines, indented one horizontal
tab character. A blank line terminates each entry.

The P-:file is used to pass information resulting from a get with an e argument along to delta. Its
contents are used to prevent a subsequent execution of get with an e argument until delta is exe­
cuted (subject to the conditions described above under the e keyletter description). The p-file is
created in the directory containing the SCCS file (which might, of course, also be the current
directory). and the effective user must have write permission in that directory. Its mode is 644
and it is owned by the effective user. The format of the p-file is: the gotten SID, followed by a
blank, followed by the SID this delta will have when it is made, followed by a blank, followed by
the login name of the real user, followed by a blank, followed by the date-time of the get (not
the cutoff date·time), followed by a blank and the -i keyletter argument if it was present, fol­
lowed by a blank and the -x keyletter argument if it was present, follo:vved by a newline. There
can be an .arbitrary number of lines in the P-:file at any time; no two lines can have the same got­
ten SID or the same new SID.

The :-:file is created in the directory containing the SCCS file for the duration of updating the p­
./ile. The same protection restrictions as those for the P-:file apply for the z-:file. The :-:tile is
created mode 444. It serves as a lock-out mechanism against simultaneous updates. Its contents
are (in binary; 2 bytes) the process ID of the command (i.e., get) that created it.

- 4 .

GET(I) PWB/UNIX Edition 1.0 GET(I)

SEE ALSO
admin(I), delta(I), prt(I), what(I), help(l), sccsfile(V),
SCCWl'WH U.-.n 's Mc11111al by L. E. Bonanni and A. L. Glasser.

UIM;NOSTl("S

BUGS

Use he/p(I) for explanations.

If the effective user has write permission (either explicitly or implicitly) in the directory contain­
ing the SCCS files, but the real user doesn't, then only one file may be named when the e argu­
ment is supplied.

- s -

GOTO(I) PWB/UNIX Edition 1.0 GOTO(J)

NAME
goto - command transfer

SYNOPSIS
goto label

DESCRIPTION
Goto is allowed only when the Shell is taking commands from a file. The file is searched from the
beginning for a. line beginning with ':' followed by one or more spaces followed by the label. If
such a line is found, the goto command returns. Since the read pointer in the command file
points to the line after the label, the effect is to cause the Shell to transfer to the labelled line.

':' is a do-nothing command that is ignored by the Shell and only serves to place a label.

SEE ALSO
sh(I)

- 1 -

GRAPH(l) PWB/UNIX Edition 1.0 GRAPH (I)

NAM•:
graph - drnw a graph

SYNOPSIS
graph { option] ... I plotter

DESCRIPTION
Graph with no options takes pairs of numbers from the standard input as abscissas and ordinates
of a graph. The· graph is written on the standard output to be piped to the plorter program for a
particular device; see plor(I).

If the coordinates of a point are followed by a nonnumeric string. that string is printed as a label
beginning at the point. Labels may be surrounded with quotes" ... ", in which case they may con­
tain blanks or begin with numeric characters; labels never contain newlines.

The following options are recognized. each as a separate argument.

-a Supply abscissas automatically (they are missing from the input); spacing is given by the
next argument, or is assumed to be I if next argument is not a number. A second optional
argument is the starting point for the automatic abscissa.

-c Character string given by next argument is default label for each point.

-d Omit connections between points. (Disconnect.)

-g11 Grid style:
,pr=:(), no grid
n-1, axes only
11'=2, complete grid (default).

-I Next argument is label for graph.

-s Save screen, don't erase before plotting.

-x Next l (or 2) arguments are lower (and upper) x (abcissa) limits. Third argument. if
present, is grid spacing on x axis. Normally these quantities are determined automatically.

-y Similarly for y (ordinate) axis.

-h Next argument is fraction of space for height.

-w Similarly for width.

-r Next argument is fraction of space to move right before plotting.

-u Similarly to move up before plotting.

-t Transpose horizontal and vertical axes.

Points are connected by straight line segments in the order they appear in input. If a specified
lower limit exceeds the upper limit, or if the automatic increment is negative, the graph is plotted
upside down. Automatic abscissas begin with the lower x limit. or with 0 if no limit is specified.
Labels are placed so that the center of an initial letter such as + will fall approximately on the
plotting point.

SEE ALSO
plot(I). spline(I)

. l .

GRAPH (I) PWB/UNIX Edition 1.0 GRAPH(l)

BUGS
Graph stores all points internally even when limits are explicit, so utterly enormous graphs can fail
unnecessarily.

- 2 -

GREP (I) PWB/UNIX Edition 1.0 GREP (I)

NAME .
grep - search a file for a pattern

SYNOPSIS

grep [-v J [-b J [-c] { -n] { -s J expression [file J •••

DESCRIPTION
Grep searches t~e input files (standard input default) for lines matching the regular expression.
Normally, each line found is copied to the standard output. If the -v flag is used, all lines but
those matching are printed. If the -c flag is used, only a count of matching lines is printed. If
the -n flag is used, each line is preceded by its relative line number in the file. If the -b flag is
used, each line is preceded by the block number on which it was found. This is sometimes useful
in locating disk block numbers by context.

The -s flag suppresses the error messages that grep would otherwise give for non-existent (or
unreadable) files.

In all cases the file name is shown if there is more than one input file.

For a complete description of the regular expression, see ed(I). Care should be taken when using
the characters $ • [A I () and \ in the expression, as they are also meaningful to the Shell. It is
generally necessary to enclose the entire expression argument in quotes. ·

SEE ALSO
ed (I) , egrep (I) , f grep (I) , rgrep (I) , sed (I) , sh (I)

BUGS
Lines are limited to 256 characters; longer lines are truncated.
Unfortunately, grep does not recognize all of the regular expression operators that ed(I) does.

. I .

OSI (I> PWB/UNIX Edition l.O OSI (I)

:\A,H:
gsi - handle special functions of GSl300 terminal

~Y'\O~IS

gsi I+ 12) [-n) [-dr,/,d

l>ESCRIPTIOi'i

Gs1 supports special functions. and optimizes the use. of the GSIJOO (DASIJOO or DTCJOO> ter­
minal. It converts half-line forward, half-line reverse. and full-line reverse motions to the correct
vertical motions. It also attempts to draw Greek letters and other special symbols. It permits con­
venient use of 12-pitch text. It also reduces printing time t5 to 70%). Gs1 can be used to print
equations neatly, in the sequence:

neqn file ••• I nroff I gsi

WARNING: if your terminal has a PLOT switch, make sure it is turned ON before gs1 is used.

The behavior of !(Si can be modified by the optional flug arguments to handle 12-pitch tl.!xt. t"ra1:­

tional line spacings, messages, and delays.

+12 permits use of 12-pitch, 6 lines/inch text. GSI terminals nprmally allow only two com­
binations: IO-pitch, 6 lines/inch, or 12-pitch, 8 lines/inch. To obtain the 12-pitch. 6
lines per inch combination, the user should turn the PITCH switch to 12, and use the
+12 option.

-11 controls the size of half-line spacing. A half-line is by default equal to 4 vertical plot
increments. Because each increment equals 1/48 of an inch, a IO-pitch line-teed
requires 8 increments, while a 12-pitch line-feed needs only 6. The first digit of /1 over­
rides the default value, thus allowing for individual taste in the appearance of subscripts
and superscripts. For example, 11rojf(J) half-lines could be made to act as qua,rter-lines
by using -2. The user could also obtain appropriate half-lines for 12-pitch, 8 lines/inch
mode by using the option -3 alone, having set the PITCH switch to 12-pitch.

-dr,l.c controls delay factors. The default setting is -d3,90,30. OSI terminals sometimes pro­
duce peculiar output when faced with very long lines, too many tab characters, or long
strings of blankless, non-identical characters. One·null (delay) character is inserted in a
line for every set of t tabs, and for every contiguous string of c non-blank, non-tab char­
acters. If a line is longer than I bytes, l+(total length)/20 nulls are inserted at the end
of that line. Items can be omitted from the end of the list, implying use of the default
values. Also, a value of zero for t {c) requests 2 null bytes per tab (character). The
former may be needed for C programs, the latter for files like /erclpasswd. Because ter­
minal behavior varies according to the specific characters printed and the load on a sys­
t:m, the user may have to experiment with these values to get correct output. The -d
option exists only as a last resort for those few cases that do not otherwise print prop­
erly. For example, the file letclpasswd may be prin~ed using -d3,30,5. The value
-dO, 1 is a good one to use for C programs that have many levels of indentation.

Note that the delay control interacts heavily with the carriage return and line feed delays
being used at the time: see GS/JOO(V/f). The st(v(/) modes nlO c:r2 or nlO c:r3 arc
recommended for most uses.

NOTE: gs1 always synchronizes its buffering so that it can be used with the nro_/f" -s flag or .rd
requests, when it is necessary to insert paper manually or change fonts in the middle of a docu­
ment. Instead of hitting the RETURN key in these cases, you must use the LINE FEED key Lo

get any response.

. I .

OSI (I) PWB/UNIX Edition 1.0 OSI (I)

In many cases, the following sequences are equivalent:

nroff -T300 files ••• and nroff files ••• I gsi
nroff -T3~- l 2 files .•. and nroff files •.• I gsi + 12

The use of gsi can thus often be avoided unless spe.cial delays or options are required.

Here are the neqn(/) names and resulting output for the special characters supported:

Name :Symbol Name Symbol

alpha a OMEGA n
beta {3 partial a
delta a phi q,
DELTA i:1 PHI 4>
epsilon E psi I/I
eta 11 PSI 'I'
gamma \
GAMMA r
infinity co

integral J
lambda >.
LAMBDA A
mu µ.
nabla (de!) '7
not
nu
omega

11

(tJ

pi 1T

PI n
rho p
sigma <T

SIGMA t
tau T

theta 6
THETA e
xi t
zeta '

SEE ALSO

BUGS

450(1). graph(I), greek(V), GSIJOO(VII), mesg(I), neqn(l), plot(I), stty(I), tabs(l)

Some characters in the above table can't be correctly printed in column 1 because the print head
cannot be moved to the left from there. If your output contains much Greek and/ or reverse line
feeds. use friction feed instead of a forms tractor. Although good enough for drafts, the latter has
a tendency to slip when reversing direction, distorting Greek characters, and misaligning the first
line after a long set of reverse line feeds. •
Gs1 is definitely ""' usable with the "second generation" models of the 051300, such as the
GSl300S or DASl450.

• 2 .

·-

HELP (l) PWB/UNIX Edition 1.0 HELP {I)

NAME
help - ask for help

SYNOPSIS
help [arg] ...

DES<.:RIPTION

FILES

Help finds information to explain a message from a command or explain the use of a command.
Zero or more arguments may be supplied. If no arguments are given, help will prompt for one.

The arguments may be either message numbers (which normally appear in parentheses following
messages) or command names, of one of the following types:

type 1

type 2

type 3

Begins with non-numerics, ends in numerics. The non-numeric prefix is
usually an abbreviation for the' program or set of routines which produced
the message (e.g., "ge6", for message 6 from the get command).

Does not contain numerics (as a command, such as ger)

ls all numeric (e.g., "212")

The response of the program will be the explanatory information related to the argument, if there
is any.

When all else fails, try ••help stuck".

The ASCII file searched for the explanatory information for each type of argument is as follows:

type 1

type 2

type 3

/usr/lib/help/ prefix-of-argument

/usr/lib/help/cmds

/usr/lib/sccs.hf

If the file to be searched for either a type I or a type 2 argument does not exist, the search will be
attempted on the file for the type 3 argument. In no case, however, will more than one file be
searched per argument.

Anyone wishing to modify the files should list out portions of them - the format will be obvious.

DIAGNOSTICS
Use help for help.

. I -

HP (I) PWB/UNIX Edition 1.0 HP (l)

NAME
hp - handle special functions of HP 2640 terminal

SYNOPSIS
hp [-e] [-m]

DESCRIPTION
Hp supports special functions of the Hewlett-Packard 2640 family of terminals, with the primary
purpose of producing accurate representations of most nroff(D output. Typical uses are:

nroff -h files ... I hp or: nroff -h -s files ... I hp

In the latter case, nroff will stop at the beginning of each page including the first and wait for you
to hit LINE FEED to initiate output. Regardless of the hardware options on your terminal, hp
does sensible things with underlining and reverse line feeds. If the terminal has the display
enhancements feature, subscripts and superscripts can be indicated in distinct ways. If it has the
mathematical-symbol option, you can see Greek and other special characters.

The flags are as follows:

-e it is assumed that your terminal has the display enhancements f ea tu re, and so maximal use
is made of the added display modes. Overstruck characters are presented in the Underline
mode. Superscripts are shown in Half-Bright mode, and subscripts in Half-Bright, Under­
lined mode. If this flag is omitted, hp assumes that your terminal lacks the display enhance­
ments feature. In this case, all overstruck characters, subscripts, and superscripts are
displayed in Inverse Video mode, i.e., dark on light, rather than the usual light on dark.

-m requests minimization of output by removal of newlines. Any contiguous sequence of 3 or
more newlines is converted into a sequence of only 2 newlines; i.e., any number of succes­
sive blank lines produces only a single blank output line. This allows you to retain more
actual text on the screen.

With regard to Greek and other scientific characters, hp provides the same set as does gsi(l).
except that "not" is approximated by a right arrow, and only the top half of the integral sign is
shown. The display is adequate for examining output from neqn(l).

DIAGNOSTICS
"line too long" if representation of a line exceeds 300 characters, which would occur, for
instance, if you underlined every other character in an 80-character line containing many Greek
characters.

EXIT CODES
0 - normal
l - for any error

SEF. ALSO
gsi (I), HP2640(Vll), neqn (I), nroff(l)

Note that the second or later characters in an overstriking sequence are always assumed to be
underlines. For example, a bullet made from lower-case "o" overstruck with "+"appears as an "o"
that is either underlined or shown in Inverse Video. Although some terminals do provide numer­
ical superscript characters, no effort is made to display them. The programming is ugly, and most
terminals do not possess this feature.

- 1 -

IF (I)

NAME
if - conditional command

SYNOPSIS
if expr command [arg ...]

if expr then
command(s)

{ else [command]
...]

end if

test expr

DESCRIPTION

PWB/UNIX Edition 1.0 IF (I)

(f evaluates the expression expr. In' the first form above. if expr is true, the given command is·
executed with the given arguments. The command may be another if

In the second form, if expr is true. the commands between the then and the next unmatched else
or endif are executed. If expr is false, the commands after then are skipped, and the commands
after the optional else are executed. Zero or one commands may be written on the same line as
the else. In particular, if may be used this way. The pseudo commands else and endif (whichever
occurs first) must not be hidden behind semicolons or other commands. This form may be
nested: every then needs a matching endif

Test is an entry to if that evaluates the expression and returns exit code 0 if it is true, and code l
if it .is false or in error.

The following primitives are used to construct the expr:

-r file true if the file exists and is readable.

-w file

-s file

-f file

-d file

-z sl

-n sl

sl = s2

sl != s2

nl -eq n2
nl -ne n2
nl -gt n2
nl -ge n2
nl -It n2
nl -le n2

true if the file exists and is writable.

true if the file exists and has a size greater than zero.

true if the file exists and is an ordinary file.

true if the file exists and is a directory.

true if the length of string sl is zero.

true if the length of string sl is nonzero.

true if the strings sl and s2 are equal.

true if the strings sl and s2 are not equal.

true if the stated algebraic relationship exists. The arguments 11 I and 112 must he
integers.

{ command } The bracketed command is executed to obtain the exit status. Status zero is con­
sidered true. The command must not be another 1/:

. l .

IF (I) PWB/UNIX Edition 1.0 IF (I)

These primaries may be combined with the foil owing operators:

unary negation operator

-a

-o
(expr)

binary and operator

binary or operator

parentheses for grouping.

-a has higher preceden~ than -o. Notice that all the operators and flags are separate arguments
to {/'and hence must be surrounded by spaces. Notice also that parentheses are meaningful to the
Shell and must be escaped.

EXIT CODES
0 - true expression, no error.
l - false condition or error.

SEE ALSO
exit(I), goto(l), sh(I), switch(I), while(I), exit(II)

DIAGNOSTICS

BU<iS

if:missing endif,
if:syntax error: value
if:non-numeric arg: value
if:no command: name
else:missing endif

Test may issue any of the {/'messages above, except the first.

In general, ({. else. endif. and test must not be hidden behind semicolons on a command-line.
Many of the effects are obtained by searching the input file and adjusting the read pointer
appropriately. Thus, including any of these commands in a part of the file intended to be read by
a command other than the shell may cause strange results if they are encountered while searching.
These commands ignore redirection or piping of their standard input or output. Commands exe­
cuted by if or test may be affected by redirections, but this ·practice is undesirable and should be
avoided.

• 2 -

KILL (I) PWB/UNIX Edition 1.0 KILL (l)

NAME
kill - terminate a process

SYNOPSIS
kill [-signo] processid ...

DESCRIPTION
Kill sends signal 15 (terminate) to the specified processes. This will normally terminate the pro­
cess. unless it is caught. The process number of each asynchronous process started with '&' is
reported by the Shell. Process numbers can also be found by using ps(l).

The details of the kill are described in ki/1(11). For example, if process number 0 is specified. all
processes in the process group are signaled.

If a signal number preceded by .. _,, is given as the first argument, that signal is sent instead. For
example, -9 will guarantee a kill.

SEE ALSO
ps(I), sh(I), kill(Il), signal (II)

- 1 -

LD(I) PWB/UNIX Edition 1.0 LD(I)

NAME
Id - link editor

SYNOPSIS
Id [-sulxrdni] [-o name J file ...

DESCRIPTION
ld combines several object programs into one~ resolves external references~ and searches libraries.
In the simplest case several object .flies are given, and Id combines them, producing an object
module which can be either executed or become the input for a further Id run. (In the latter case,
the -r option must be given to preserve the relocation bits.) The output of Id is left on a.out.
This file is made executable only if no errors occurred during the load.

The argument routines are concatenated in the order specified. The entry point of the output is
the function named main.

If any argument is a library, it is searched exactly once at the point it is encountered in the argu­
ment list. Only those routines defining an unresolved external reference are loaded. If a routine
from a librdry references another routine in the library, the referenced routine must appear after
the referencing routine in the library. Thus the order of programs within libraries is important.

Ld understands several flag arguments which are written preceded by-a '-'. Except for -1, they
should appear before the file names.

-s 'Strip' the output, that is, remove the symbol table and relocation bits to save space (but
impair the usefulness of the debugger). This information can also be removed by srrip(I).

-u Take the following argument as a symbol and enter it as undefined in the symbol table. This
is useful for loading wholly from a library, since initially the symbol table is empty and an
unresolved reference is needed to force the loading of the first routine.

-I This option is an abbreviation for a library name. -I alone stands for '/lib/liba.a', which is
the standard system library for assembly language programs. -Ix stands for '/lib/libx.a',
where xcan be a string. If that does not exist, Id tries '/usr/lib/libx.a'. A library is searched
when its name is encountered, so the placement of a -I is significant.

-x Do not prcscl'vc local (non-.glohl) symbols in the output symbol table~ only enter external
symbols. This option saves some space in the output file.

- X Save local symbols except for those whose names begin with 'L'. This option is used by cc to
discard internally generated labels while retaining symbols local to routines.

-r Generate relocation bits in the output file so that it can be the subject of another Id run. This
flag also prevents final definitions from being given to common symbols, and suppresses the
'undefined symbol' diagnostics.

-d Force definition of common storage even if the -r flag is present.

-n Arrange that when the output file is executed, the text portion will be read-only and shared
among all users executing the file. This involves moving the data areas up to the first possi­
ble 4K word boundary following the end of the text.

-i When the output file is executed, the program text and data areas will live in separate address
spaces. The only difference between this option and - n is that here the data starts at loca·
tion 0.

. l .

LD(I) PWB/UNIX Edition 1.0 LD (I)

-o The name argument after -o is used as the name of the Id output file, instead of a.out.

FILES
/lib/lib? .a
/usr/lib/lib? .a
a.out

SEE ALSO
as (I) , ar(I) , cc(I)

libraries
more libraries
output file

- 2 -

LEX.(I) PWBJ,UNIX Edition 1.0 LEX (I)

NAME
lex - generate programs for simple lexical tasks

SYNOPSIS
lex [-[rctvfn]] [file] ...

DESCRIPTION
Lex generates programs to be used in simple lexical analysis of text.

The input file(s) contain strings and expressions to be searched for, and C text to be executed
when found. A file .. lex.yy.c" is generated which, when loaded with the library, copies the input
to the output except when a string specified in the file is found; then the corresponding program
text is executed. The actual string matched is left in yytext, an external character array. Match­
ing is done in order of the strings in the file. The strings may contain square brackets to indicate
character classes, as in

[abx-zl
to indicate a, b, x, y, and z; and the operators •, +, and ? mean respectively any non-negative
number of, any positive number of, and either zero or one occurrences of, the previous character
or character class. The character '.' is the class of all ASCII characters except newline.
Parentheses for grouping and vertical bar for alternation are also supported. The character A at the
beginning of an expression permits a successful match only immediately after a newline, and the
character % at the end of an expression requires a _trailing newline. The character I in an expres­
sion indicates trailing context; only the part of the expression up to the slash is returned in yytext,
but the remainder of the expression must follow in the input stream. An operator character may
be used as an ordinary symbol if it is within " symbols or preceded by \. Thus

[a-zA-Zl+
matches a string of letters.

Three subroutines defined as macros are expected: input() to read a character; unput(c) to replace
a character read;-and output(c) to place an output character. They are defined in terms of the
~andard streams (and the -IS standard 1/0 library), but you can override them. The program
generated is named yylexO, and the library contains a main(} which calls it. The action REJECT
on the right side of the rule causes this match to be rejected and the next suitable match exe­
cuted; the function yymoreO accumulates additional characters into the same yytext; and the
function yyless(p) pushes back the portion of the string matched beginning at p, which should be
between yytext and yytext+yyleng. The macros input and output use files "yyin" and "yyout" to
read from and write to, defaulted to "stdin" and "stdout", respectively.

Any line beginning with a blank is assumed to contain only C text and is copied; if it precedes %%
it is copied into the external definition area of the "lex.yy.c" file. All rules should follow a %%,
as in YA.CC. Lines preceding %% which begin with a non-blank character define the string on
the left to be the remainder of the line; it can be called out later by surrounding it with {}. Note
that curly brackets do not imply parentheses; only string substitu'tion is done. Example:

D [0-9) .
%%
if printf("IF statement\n");
[a-z]+ printf("tag. value o/os\n" ,yytext);
O{ D }+ printf(" octal number %s\n" ,yytext);
ID}+ printf("decimal number O/os\n",yytext);
"++" printf("unary op\n");
"+" printf("binary op\n");
"/*" { loop:

while (input() !== '*');

- 1 •

" - -·- ------- ______ , _____ - ------- ---- --------~·-~--- -~-- -~-~- -·- ~..::...~- ::~ ~~~~-~*-~

LEX (J) PWB/UNIX Edition 1.0 LEX (l)

switch (input 0)
{
case 'I': break;
case'*': unput('*');
default: go to loop;
)

The external names generated by lex all begin with the prefix "yy" or "YY".

The flags must appear· before any files. The flag -r indicates Ratfor actions. -c indicates C
actions and is the default, -t causes the "lex.yy.c" program to be written instead to standard out­
put, -v provides a one-line summary of statistics of the machine generated, -f indicates "faster"
compilation, so no packing is done, but it can handle much smaller machines only, -n will not
print out the - summary. Multiple files are treated as a single file. If no files are specified, stan­
dard input is used.

This is intended to replace the older version of Lex. The new standard 1/0 library is used, -;o
actions must use it, and an "include" statement is automatically provided. A definition in the
definitions section may refer to other definitions (but not to itselO. The "'141+" option has been
eliminated. The notation r{d,e} in a rule indicates between d and e instances of regular expression
r. It has higher precedence then i'. but lower than '*', '?', '+', and concatenation.

In the definitions section,
o/op num sets the max. - of positions to num (dft = 2000)
o/on num sets the max. - of states to num (dft - 500)
%t num sets the max. - of parse tree nodes to num (dft == 1000)
%a num sets the max. - of transitions to num (dft == 3000)

The use of one or more of the above automatically implies the -v option, unless the -n option is
used.

SE'E ALSO
yacc(!)
LEX - Lexical Analyzer Generator by M. E. Lesk and E. Schmidt.

Bt;GS
The Ratfor option is not yet fully operational.

- 2 -

LN (l) PWB/UNIX Edition 1.0 LN(I)

NAME
In make a link

SYNOPSIS
In name I [name2 1

DESCRIPTION
A link is a directory entry referring to a file; the same file (together with its size, all its protection
information, etc.) may have several links to it. There is no way to distinguish a link to a file from
its original ·directory entry; any changes in the file ·are effective independently of the name by
which the file is known.

Ln creates a link to an existing file namel. If name2 is given, the link has that name; otherwise it
is placed in the current directory and its name is the last component of namel.

It is forbidden to link to a directory or to link across file systems.

SEE ALSO
rm(I)

BUGS

There is nothing particularly wrong with In. but tp doesn't understand about links and makes one
copy for each name by which a file is known; thus if the tape is extracted several copies are
restored and the information that links were involved is lost.

- 1 -

LOGIN (I) PWB/UNIX Edition 1.0 LOGIN (I)

NAME
login - sign onto UNIX

SYNOPSIS
lolin { usemarne 1

DESCRIPTION

FILES

The login command is used when a user initially signs onto UNIX, or it may be used at any time
to change from one user to another. The latter case is the one summarized above and described
here. See •How to Get Started' for how to dial up initially.

If login is invoked without an argument, it asks for a user name, and, if appropriate, a password.
Echoing is turned off (if possible) during the typing of the password, so it will not appear on the
written record of the session.

After a successful login, accounting files are updated and the user is informed of the existence of
.mai/'and message-of-the-day files. Login initializes the user and group IDs and the working direc·
tory, then executes a command interpreter (usually sh(I)) according to specifications found in a
password file.

Login is recognized by the Shell and executed directly (without forking).

/etc/utmp accounting
/usr/adm/wtmpaccounting
.mail mail
I etc/motd message-of-the-day
I etc/ passwd password file

SEE ALSO
init(VIII), getty(Vlll), mail(I), passwd(l);passwd(V), sh(I), su(I)

DIAGNOSTICS
•1ogin incorrect,' if the name or the password is bad. 'No Shell', 'cannot open password file,' 'no
directory': consult a UNIX programming counselor. System hangs up a line left in login state.

- 1 -

SCCSDIFF (I) PWB/UNIX Edition 1.0 SCCSDIFF (I)

NAME
sccsdiff - compare two versions of an secs file

SVN{H'SIS

sccsdiff old-spec new-spec I pr-args l sccsfilc ...

DES<.:RIPTION
Sccsd;jf compares two versions of an SCCS file and generates the differences between the two ver­
sions. The old-spec is any valid ger(I) specifier (e.g.,_ -rl.l) for the old version to be gotten.
Similarly, new-spec is any valid get(I) specifier (e.g .. -rl.4) for the new version to be gotten.
The pr-args are any valid pr(I) arguments which begin with a"-'', except for "-h" (the output
of sccsdi/f is piped through pr(I)). Any number of SCCS files may be specified, but the old-spec
and new-spec apply to all files.

Sccsdi/f is a simple shell procedure~ interested persons should "cat /usr/bin/sccsdiff" to discover
how it works.

FILES
/tmp/get?????
/usr/bin/bdiff

SEE ALSO

temporary for old gotten version
program that generates differences

get (I), hel p(I), pr(I), bdiff(I)
SCCS/PWB User's Manual by L. E. Bonanni and A. L. Glasser.

DIAGNOSTICS
Use help(I) for explanations.

- l -

------~--------------~--

LOGINFO(I) PWB/UNIX Edition 1.0

NAME
logname, logdir, logtty - information from login

SYNOPSIS
logname
logdir
log tty

DESCRIPTION
lof(name prints the user's login name.

logdir prints the login directory pathname.

LoKtty prints the single character tty letter (and never prints 'x').

These 9ata are created by login(I).

- l -

LOGINFO (I)

LS (I) PWB/UNIX Edition 1.0 LSO>

"lAl\U:

Is - list l'Ollh.:nts of directory

SYNOPSIS

Is [- ltasdruifg] name ...

DESCRIPTION
For each directoFY argument, Is lists the contents of the directory; for each file argument, ts
repeats its name and any other information requested. The output is sorted alphabetically by
default. When no argument is given, the current directory is listed. When several arguments are
given, the arguments are first sorted appropriately, but file arguments appear before directories
and their contents. There are several options:

-I list in long format, giving mode, number of links, owner, size in bytes, and time of last
modification for each file. (See below.) If the file is a special file the size field will instead
contain the major and minor device numbers.

-t sort by time modified (latest first) instead of by name, as is normal

-a list all entries; usually those beginning with '.' are suppressed

-s give size in blocks for each entry

-d if argument is a directory, list only its name, not its contents (mostly used with -I to gel
status on directory)

-r reverse the order of sort to get reverse alphabetic or oldest first as appropriate

-u use time of last access instead of last modification for sorting (-t) or printing (-1)

-i print i-number in first column of the report for each file listed

-f force each argument to be interpreted as a directory and list the name found in each slot.
This option turns otf -I~ -t, -s, and -r, and turns on -a; the order is the order in which
entries appear in the directory.

-g Give group ID instead of owner ID in long listing.

The mode printed under the -I option contains 11 characters which are interpreted as follows:
the first character is

d if the entry is a directory:
b if the entry is a block-type special file~
c if the entry is a character-type special file:

if the entry is a plain file.

The next 9 characters are interpreted as three sets of three bits each. The first set refers to owner
permissions: the next to permissions to others in the same user-group: and the last to all others.
Within each set the three characters indicate permission respectively to read, to write, or to exe­
cute the file as a program. For a directory, 'execute' permission is interpreted to mean permission
to search the directory for a specified file. The permissions are indicated as follows:

r if the file is readable
w if the file is writable
x if the file is executable

if the indicated permission is not granted

. l .

LS (I) PWB/UNIX Edition l .O LS (I)

FILES

The group-execute permission character is given as s if the file has set-group-10 mode~ likewise
the user-execute permission character is given as s if the file has set-user-ID mode . .
The last character of the mode is normally blank but is printed as "t" if the 1000 bit of the mode
is on. See chmod(l) for the current meaning of this mode.

/etc/passwd to get user ID's for ls -1.

- 2 -

M4([) PWB/UNIX Edition 1.0 M4(1)

NAMF.
m4 - macro processor

SYNOPSIS
m4 [files)

DESCRIPTION
M4 is a macro processor intended as a front end for Ratfor, C, and other languages. Each of the
argument files is processed in order~ if there are no arguments, or if an argument is '-'. the stan­
dard input is read. The processed text is written on the standard output.

Macro calls have the form

name(argl,arg2, .. : , argn)

The • (' must immediately follow the name of the macro. If a defined macro name is not followed
by a '(', it is deemed to have no arguments. Leading unquoted blanks, tabs, and newlines are
ignored while collecting arguments. Potential macro names consist of alphabetic letters, digits,
and underscore '_', where the ·first character is not a digit.

Left and right single quotes (") are used to quote strings. The value of a quoted string is the
string stripped of the quotes.

When a macro name is recognized, its arguments are collected by searching for a matching right
parenthesis. Macro evaluation proceeds normally during the collection of the arguments, and any
commas or right parentheses which happen to tum up within the value of a nested call are as
effective as those in the original input text. After argument collection, the value of the macro is
pushed back onto the input stream and rescanned.

M4 makes available the following built-in macros. They may be redefined, but once this is done
the original meaning is lost. Their values are null unless otherwise stated.

define The second argument is installed as the value of the macro whose name is the first
argument. Each occurrence of Sn in the replacement text, where n is a digit, is
replaced by the n-th argument. Argument 0 is the name of the macro~ missing argu­
ments are replaced by the null string.

undefine removes the definition of the macro named in its argument.

if def If the first argument is defined. the value is the second argument, otherwise the third.
If there is no third argument, the value is null.

changequote Change quote characters to the first and second arguments. Changequote without
arguments restores the original values (i.e., ").

divert M4 maintains 10 output streams, numbered 0-9. The final output is the concatenation
of the streams in numerical order, initially stream 0 is the current stream. The divert
macro changes the current output 'stream to its (digit-string) argument. Output
diverted to a stream other than ') through 9 is discarded.

undivert causes immediate output of text from diversions named as arguments, or all diversions
if no argument. Text may be undiverted ·into another diversion. Undiverting discards
the diverted text.

divnum returns the value of the current output stream.

dnl reads and discards characters up to and including the next newline.

• 1 •

M4(1) PWB/UNIX Edition 1.0 M4(1)

ifelse has three or more arguments. If the first argument is the same string as the second,
then the value is the third argument. If not, and if there are more than four argu­
ments, the process is repeated with arguments 4, 5, 6 and 7. Otherwise, the value is
either the fourth string, or, if it is not present, null.

incr returns the value of its argument incremented by 1. The value of the argument is cal­
culated by interpreting an initial digit-string as a decimal number.

eval evaluates its argument as an arithmetic expression, using 32-bit arithmetic. Operators
include +, -, •, I, %, • (exponentiation); relationals~ parentheses.

len returns the ~umber of characters in its argument.

index returns the position in its first argument where the second argument begins (zero ori­
gin), or -1 if the second argument does not occur.

substr returns a substring of its first argument. The second argument is a zero origin number
selecting the first character; the third argument indicates the length of the substring.
A missing third argument is taken to be large enough to extend to the end of the first
string.

include returns the contents of the file named in the argument.

sinclude is identical to include, except that it says nothing if the file is inaccessible.

syscmd executes the UNIX command given in the first argument.

errprint prints its argument on the diagnostic output file.

dumpdef prints current names and definitions, for the named items, or for all if no arguments
are given.

SEE ALSO
The M4 Macro Processor by 8. W. Kernighan and 0. M. Ritchie.

- 2 •

MAIL(I) PWB/UNIX Edition 1.0 MAIL (l)

NAME
mail - send mail to designated users

SYNOPSIS
mail [-yn] [person ... 1
mail -f file

DESCRIPTION

FILES

Mail with no argument searches for a file called .mail9 prints it in reverse chronological order if it
is nonempty, then asks if it should be saved. If the answer is y, the mail is added to mbox. In
either case, .mail is truncated to zero length. To leave .mail untouched, hit 'delete.' The ques­
tion can be answered on the command line with the argument -y or -n.

Mail tries to use .mail and mbox in the current directory. But if .mail doesn't exist, mail uses
.mail and mbox in your login directory instead.

When persons are named, mail takes the standard input up to an end-of-file (or a line with just '.')
and adds it to each person's .mail file. The message is preceded by the sender's name and a post­
mark. A fH'r.wm is a user name recognized by login(I). Mail is sent to the l01~in directory of that

' user.

The -f option causes the named file to be printed as if it were mail.

When a user logs in he is informed of the presence of mail.

To receive mail, a .mail file must exist in your login directory, and it must be writable by every­
one. However, it need not be readable by everyone.

I etc/ passwd
.mail
mbox
/tmp/m?????

to identify sender and locate persons
input mail
saved mail

temp file

SEE ALSO
write(I)

. l .

MAKE (l) PWB/UNIX Edition 1.0 MAKE (I)

NAME
make - make a program

SYNOPSIS
make [-f descfile] [-p] [-i] [-s] [-r] [-n] [-tl file ...

DESCRIPTION
Make may be used to mechanize program creation and maintenance, while ensuring that all con­
stituents are current. A graph of dependencies is specified in the descfile(s). The standard input
will be read if - is given for descfile. If no -f options are present, the file named makefile or. if
absent, the file named Maketlle in the current directory is used. The -p option prints out a ver­
sion of that graph. Each file name argument is 'made', as described below. If no such arguments
are present, the initial node in the description file is made.

The descfile consists of a sequence of entries that describe the prerequisites and operations for
creating an object (usually a file). The first line of each entry contains the names of the objects to
be made, followed by a colon, optionally followed by a list of other files that must be available
and current in order to remake it. Text following a semicolon on the first tine, and alt immedi­
ately following lines that begin with a tab, are fed to the Shell to make the object. Each line is fed
to a separate instance of the Shell. All text following a sharp is taken to be a comment. For
example: ·

pgm: x.o y.o ; cc x.o y.o -Ip
mv a.out pgm # command to be done

x.o: dcls

Make walks the graph of dependencies. If a needed object depends on another that is not present
or is younger than itself, it is remade. If an object's name ends in '.o', the description file, and
then the current directory, are searched for a corresponding name ending in '.r', '.r, '.c', '.s', '.l'
(Lex), '.y' (Yacc-C). (These default rules are not applied if the -r option is specified). If such a
file is found and is younger than the object, a compilation command is executed. In the example
above, if 'dcls' has been changed since 'pgm' was last made, 'x.c' will be recompiled and 'pgm'
will be reloaded.

Each command tine is printed before it is executed unless the -s option is specified on the com­
mand line or the special name '.SILENT' appears in the description. The command lines are
printed but not executed if the -n option is specified. The date last modified is updated but the
commands given are not executed for each file if the -t option is specified. (This option is use­
ful when a source change is known to be incremental or benign).

Make examines the exit(II) status returned by each executed command. If the status is non-zero
(i.e., if an error occurred), make aborts, unless either (a) the -i option was specified. or (b) the
command name in the descfile was prefixed by'-'.

SEE ALSO
Make - A Program for Maintaining Computer Programs by S. I. Feldman.

DIAG~OSTICS

No description file argument
Cannot find description file
Syntax error
Don't know how to make xxx.

- l -

MAKE(I) PWB/UNIX Edition 1.0 MAKE(I)

BUGS
Many UNIX commands return random status, which will cause make to assume that the com­
mand failed. In case of trouble, use the -i option or a minus sign on the command line.

- 2 -

/

-------~

MAN(I) PWB/UNIX Edition 1.0 MAN(I)

NAME
man - print on-line documentation

SYNOPSIS
man [options] documents .••

DESCRIPTION
Man is a Shell command file that prints on-line documentation on the standard output by means
of nro.tlU> or ,troff(I). On-line documentation consists of manual pages from the PWB/UNIX
User's Manual.·

The command line to print manual pages consists of:

man [term] [-s] [section 1 title .•.

where .. term" is one of the following:

-t produces photocomposed output;

-1 adapts the output to a DASI300 terminal in 12-pitch mode;

-450 adapts the output to the DASl450 terminal in IO-pitch mode;

-hp adapts the output to a Hewlett-Packard terminal;

-v followed by a space and a bin number, produces output on the Versatec printer. Exactly
one bin number must be specified when the -v option is used.

The -s option prints only the SYNOPSIS portion of a manual page.

Section is the section number in the PWB/UNIX User's Manual in which a manual page is filed; it
is specified as a single Arabic decimal digit. If section is omitted on the command line, the section
number defaults to 1. If the page is not in the given section, then a search is made of all sections
of the manual. If the page is not found (i.e., does not exist), an error message is produced.

Title is the name of the manual page. One or more titles may be specified in a single command.

Thus, the command line:

man -g 1 ed man tbl

would print out (in 12-pitch on a DASI300 terminal) the pages for the commands ed. man, and
tbl. all of which can be found in Section I of the PWB/UNIX User's Manual.

DIAGNOSTICS
"man page for xxx not found"

FILES
/usr/man/man(0-8]

SEE ALSO

A manual page for xxx does not exist.

Installed PWB/UNIX pages.

Anyone who wishes to write manual pages like those accessed by this command should read
PWB/UN/X Manual Page Macros by E. M. Piskorik.

• 1 •

·--

MESG(l)

NAME
mesg - permit or deny messages

SYNOPSIS
mesg[n][y]

DESCRIPTION

PWB/UNIX Edition 1.0 MESG (I)

Mesg with argument n forbids messages via write(!) by revoking non-user write permission on the
user's terminal. , Mesg with argument y reinstates permission. All by itself, mesg reverses the
current permission. In all cases the previous state is reported.

FILES
/dev/tty?

SEE ALSO
write(I)

DIAGNOSTICS
'?' if the standard input file is not a terminal.

• 1 •

-

-

.-

.)

MKDIR (I) PWB/UNIX Edition 1.0 MKDIR (0

NAME
mkdir - make a directory

SYNOPSIS
mkdir dimame ...

OESCRJmON
Mkdir creates specified directories in mode 755. The standard entries '.' and ' ' are made
automaticaU~.

SEE ALSO
rmdir(I)

- 1 -

MM(l)· PWB'/UNIX Edition· 1.0 MM'(I)

NAME
mm - rurr otr document witn PWB/MM

SYNOPSIS
mm {options) [files]

DESCRIPTION
The mm commanQ can be used to run off documents using nroffO> and ih~ PWB/MM text for­
matting codes. It has aptions· to specify preprocessing by tb/(I) or by neqn(I) and for postprocess­
ing by various output filters. The proper pipe sequences and the required arguments and flags for
nroff(I) and PWB/MM are generated, depending on the options selected. For example, inclusion
of the -h nroff(!) flag. occurs unless col(I) is to be used or unless the -450 option is specified.

The options for mm· are listed below. Any other arguments or flags, e.g. -rC3, are passed to
nroff(I) or to PWB/MM, as appropriate. The options can occur in any order, but they must
appear before the files.

-e

-t

-c

-12

-300.

-hp

-450

-3008

-300s

-tn

-tn300

-ti

-37

neqn(l) processing is needed.

rN(l) is needed.

col(I} is needed.

want 12 pitch mode. (Be sure that the 12-pitch switch is set on the terminal.)

output onto a DASI 300 terminal. This is the default terminal type.

output onto a HP 2640A.

output onto a DASI 450.

output onto a DASI 300S.

output onto a DASI 300S.

output onto a GE TermiNet 300.

output onto a GE TermiNet 300.

output onto a Texas Instrument terminal.

output onto a TTY 37.

If several terminal types are specified, the last one takes precedence. Note that -ti, -tn, and
-tn300 all do the same thing~ they all imply -c, and work for any terminal that lacks reverse
line feed capability.

As an e1~ample,

mm -t -450 -rC3 -12 qqsv*

generates

tbl qqsv* I nroff -h -mm -rTl -rC3 - I 450

If no arguments are given, mm prints a list of options.

If only options and unreadable files are specified, then mm terminates silently.

HINTS
1. mm may invoke nroff(!) with the - h flag. With this flag, nroff(!) assumes that the terminal

has tabs set at every 8 character positions .

• 1 •

MM(I) PWB/UNIX Edition 1.0 MM (I)

2. Use the -olist option of nroffil) to specify ranges of pages to be output.

3. When either -t or -e or both are specified and the -olist does not cause the last page of
the document to be printed, a "broken pipe" message from the Shell will result.

SEE ALSO
nroff(l)
PWBIMM - Programmer's Workbench Memorandum Macros by D. W. Smith and J. R. Mashey.
Typing Documents with PWBIMM by 0. W. Smith and E. M. Piskorik.

- 2 -

MV(I) PWB/UNIX Edition 1.0 MV{I)

NAME
mv move or rename a file

SYNOPSIS
nrv namel name2

DESCRIPTION
Mv changes the name of name I to name2. If name2 is a directory, namel is moved to that direc­
tory with its original file-name. Directories may only be moved within the same parent directory
(just renamed).

If name2 already exists, it is removed before namel is renamed. If name2 has a mode which for­
bids writing, mv prints the mode and reads the standard input to obtain a line; if the line begins
with y, the move takes place~ if not, mv exits.

If name2 would lie on a different file system, so that a simple rename is impossible, mv copies the
file and deletes the original.

SEE ALSO
cp(l), cpio(I)

BUGS _

It should take a -f flag, like rm, to suppress the question if the target exists and is not writable.

- 1 -

NEQN(I) PWB/UNIX Edition 1.0 NEQN(I)

NAME
neqn - typeset mathematics on terminal

SYNOPSIS
neqn [file] ...

DESCRIPTION
Neqn is an nroff(!) preprocessor. The input language is the same as that of eqn(I). Normal usage
is almost always:

neqn file ... I nroff

Output is meant for terminals with forward and reverse capabilities, such as the Model 37
TELETYPE.., or GSI (DASI or DIABLO) terminals.

If no arguments are specified, neqn reads the standard input, so it may be used as a filter.

SEE ALSO

BUGS

eqn(I}, gsi(I), mm(I), DASl450(VII), GSI300(VII)
Typesetting Mathematics - User's Guide (2nd Edition) by B. W. Kernighan and L. L. Cherry.
New Graphic Symbols for EQN and NEQN by C. Scrocca.

Because of some interactions with nroff(I}, there may not always be enough space left before and
after lines containing equations.

- I -

NEWGRP(I) PWB/UNIX Edition 1.0 NEWGRP(I)

NAME
newgrp - log in to a new group

SYNOPSIS
newgrp group

DESCRIPTION
Newgrp changes, the group identification of its caller, analogously to login(I). The same person
remains togged in, and the current directory is unchanged, but calculations of access permissions
to files are performed with respect to the new group ID.

FILES

A password is demanded if the group has a password and the user himself does not.

When most users log in, they are members of the group named •other.'

/etc/group, /etc/passwd

SEE ALSO
login (I), group(V)

-
/

NEXT(I) PWB/UNIX Edition 1.0 NEXT (I)

NAME
next - new standard input for shell procedure

SYNOPSIS
next [filename]

DESCRIPTION
This command causes filename to become standard input. The current input is never resumed. If
no filename js given, the real tei:minal is assumed.

Next is executed within the shell.

SEE ALSO
sh(I)

- l -

NICE(I) P.W8/UNIX Edition 1.0
,,_ . . " . NlCE(l)

NAME
· nice - run a command at low priority . ~ . . .

SYNOPSIS
nice [-nµmber 1 command [arguments 1

DESCRlntON
· Nice. execut~ command with low scheduling priority. If ~be number argument is given. ihat prior-
i~ (in ~he ~ge 1-2-0) i~ ~d; .. if nQ~, griority 1 is used. · · · · · . ,

The super-user nµiy run commands with priority higher th~ normal by using a negative priority,
e.~ ·~tP'. · ·

SEE ALSO
· nohup(I), nice{II)

I • • • , •

• 1 •

NM(l) PWB/UNIX Edition 1.0 NM(l)

NAME
nm - print name list

SYNOPSIS
nm [-cnrupg] [name]

DESCRIPTION

FlLES

Nm prints the symbol table from the output file of a compiler or loader run. Each symbol name is
preceded by its value (blanks if undefined) and one of the letters U (undefined) A (absolute) T
(text segment symbol), D (data segment symbol), B (bss segment symbol), or C (common sym­
bol). If the symbol is local (non-external) the type letter is in lower case. The output is sorted
alphabetically.

If no file is given, the symbols in a.out are listed.

Options are:

-c list only C-style external symbols, that is those beginning with underscore '_'.

-g print only global (external) symbols

-n sort by value instead of by name

-p don't sort; print in symbol-table order

-r sort in reverse order

-u print only undefined symbols.

a.out

- 1 -

--
·-·

NOHUP(l) PWB/UNIX Edition 1.0 NOHUP (I)

NAME
nohup - run a command immune to hangups

SYNOPSIS
nobup command [arguments 1

DESCRIPTION
Nohup executes command with hangups, quits and interrupts all ignored. If output is not re­
directed by the tiser, it will be sent to ldev/null (a "write-only" file).

SEE ALSO
nice (I), signal (II)

- 1 -

-

-

NROFF/TROFF (I) PWB/UNIX Edition l.0 NROFF/TROFF (I)

NAME
nroff, troff - text formatters

SYNOPSIS
nroff (or troff) [options] files

DESCRIPTION
NROFF and TROFF accept lines of text interspersed with lines of format control information and
format the text into a printable, paginated document having a user-designed style. NROFF and
TROFF are highly compatible with each other and it is almost always possible to prepare input
acceptable to both. Conditional input is provided that enables the user to embed input expressly
destined for either program. NROFF can prepare output directly for a variety of terminal types and
is capable of utilizing the full resolution of each terminal.

An argument consisting of a single minus (-) is taken to be a file name corresponding to the
standard input. If no file names are given, input is taken from the standard inpuc. The options,
which may appear in any order so long as they appear before the filenames, are:

Option

-olist

-nN
-sN

-mname

-raN

-i

-q

-Ttype

-e

-h

£jfect

Print only pages whose page numbers appear in list, which consists of numbers
and number ranges separated by commas. A number range has the form N-M
and means pages N through M inclusive; an initial -N means from the beginning
to page N; and a final N- means from N to the end.

Number first generated page N.

Stop every N pages. NROFF will halt prior to every N pages (default N-1) to
allow paper loading or changing, and will resume upon receipt of a new-line char­
acter. TROFF will stop the phototypesetter every N pages, produce a trailer to
allow the changing of cassettes, and will resume after the phototypesetter ST ART
button is pressed.

Prepends the macro file /usr/lib/tmac.name to the input files.

Register a (one-character name) is set to N.

Read standard input after the input files are exhausted.

Invoke the simultaneous input-output mode of the rd request.

NROFF Only

Specifies the output terminal type. Currently defined values for type are 37 for the
(default) Model 37 TELETYPE':i, tn300 for the GE TermiNet 300 (or any terminal
without half-line capabilities), 300 for the DASI-300, 450 for the DASI-450 (or
Oiablo Hyterm) and JOOS for the DASI-JOOS. For 12-pitch, use 300-12, 300S-12,
and 450-12.

Produce equally-spaced words in adjusted lines, using full terminal resolution.

Use output tabs during horizontal spacing to speed output and reduce output char­
acter count. Tab settings are assumed to be every 8 nominal character widths.

TROFF Only

-t Direct output to the standard output instead of the phototypesetter.

-f Refrain from feeding out paper and stopping phototypesetter at the end of the
run.

- 1 -

NROFF/TROFF (1) PWB/UNIX Edition l.0 NROFF/TROFF { 1)

-w Wait until phototypesetter is available, if it is currently busy.

-b TROFF will report whether the phototypesetter is busy or available. No text pro-

FILES

cessing is done.

-a Send a printable (ASCII) approximation of the results to the standard output.

-pN Print all characters in point size N while retaining all prescribed spacings and
motions, to reduce phototypesetter e!asped time.

-a Prepare output for the Murray Hill Computation Center phototypesetter and direct
it to the standard output.

/usr/lib/suftab suffix hyphenation tables
/tmp/taOOOOO temporary file
/usr/lib/tmac.* standard macro files .
/usr/lib/term/* (NROFF only) terminal driving tables
/usr/lib/font/* (TROFF only) font width tables

SEE ALSO
NROFF/TROFF User's Manual by J. F. Ossanna.
A TROFF Tutorial by B. W. Kernighan.
tbl(I).
For NROFF, see neqn(I), col(I), and tabs(I)
For TROFF, see eqn(I).

-

-

OD (I) PWB/UNIX Edition 1.0 OD(I)

NAME
od - octal dump

SYNOPSIS

od [-abcdho 1 [file 1 [[+ 1 offset[.][b 1 1

DESCRIPTION
Od dumps file in one or more formats as selected by the first argument. If the first argument is
missing, -o is default. The meanings of the format argument characters are:

a interprets words as PDP-11 instructions and dis-assembles the operation code. Unknown
operation codes print as???.

b interprets bytes in octal.

c interprets bytes in ascii. Unknown ascii characters are printed as \?.
d interprets words in decim~l.

h interprets words in hex.

o interprets words in octal.

The file argument specifies which file is to be dumped. If no file argument is specified, the stan­
dard input is used. Thus od can be used as a filter.

The offset argument specifies the offset in the file where dumping is to commence. This argu­
ment is normally interpreted as octal bytes. If'.' is appended, the offset is interpreted in decimal.
If 'b' is appended, the offset is interpreted in blocks. (A block is 512 bytes.} If the file argument
is omitted, the offset argument must be preceded by '+ '.
Dumping continues until end-of-file.

SEE ALSO
db(I)

-

ONINTR(I) PWB/UNIX Edition 1.0 ONINTR(I)

NAME
onintr - handle interrupts in shell files

SYNOPSIS
onintr [label]

DESCRinION
The onintr command catches interrupts received while the Shell is reading from a file. After the
interrupt, and after any active process has completed, the Shell procedure is transferred to the·
label specified. Unless another onintr command is processed, the next interrupt will kill the Shell.
The command without a label turns interrupts back on. The special case "onintr - " causes inter­
rupts to be totally ignored, both by the Shell itself and by subsequent commands invoked by the
Shell.

Onintr is executed within the Shell.

SEE ALSO
sh(I)

- 1 -

-

. ..-

-

,•

PASSWD (I) PWB/UNIX Edition 1.0 PASSWD (I)

NAME
passwd - change login password

SYNOPSIS
passwd name password

DESCRIPTION
The password becomes associated with the given login name. This can only be done by the user
who has that login name, or by the super-user. An explicit null argument ("") for the password
argument ren_ioves any password.

FILES
/etc/passwd

SEE ALSO
login(I), passwd(V), crypt(III)

• 1 •

PLOT(I} PWB/UNIX Edition 1.0

NAME
plot: t300, t300s, t450 - graphics filters

SYNOPSIS

t300
t300s
t45t

DESCRIPTION

PLOT(l)

These commands' read plotting instructions (see p/ot<,V)) from the standard input, and produce
device-dependent plotting instructions on the standard output.

TJOO produces a plot for a GSI 300 terminal on the standard output.

TJOOs produces a plot for a GSI 300s terminal on the standard output.

T450 produces a plot for a DASI 450 terminal on the standard output.

SEE ALSO
graph(!), plot(III}, plot(V)

- 1 -

.-

-

-

-

PR (I) PWB/UNIX Edition 1.0

PR([) '

NAME
pr - print file

SYNOPSIS
pr [-b header] [-n] [+n J [-wn] [-In] [-t] [-sc] [-m] name ...

DESCRIPTION
Pr produces a printed listing of one or more files. The output is separated into pages headed by a
date, the name of the file or a specified header, and the page number. If there are no file argu­
ments, pr prin.ts its standard input, and is thus usable as a filter.

FILES

Options apply to all following files but may be reset between files:

- n produce n-column output

+ n begin printing with page n

-b treat the next argument as a header to be used instead of the file name

-w n for purposes of multi-column output, take the width of the page to be 11 characters instead of
the default 72

-In take the length of the page to be n lines instead of the default 66

-t do not print the 5-line header or the 5-line trailer normall~ supplied for each page

-sc separate columns by the single character c instead of by the appropriate amount of white
space. A missing c is taken to be a tab.

-m print all files simultaneously, each in one column

Inter-terminal messages via write(I) are forbidden during a pr.

/dev/tty? to suspend messages.

SEE ALSO
cat(l), cp(I)

DIAGNOSTICS
none; files not found are ignored.

- 1 -

·-·

-

-

PROF(I) PWB/UNIX Edition 1.0 PROF(I)

NAME
prof - displaY,. profile data

SYNOPSIS
prof [-a 1 [-11 [file 1

DESCRIPflON

fl LES

Prof interprets the file man.out produced by the monitor(III) subroutine. Under default modes,
the symbol table ih the named object file (a.out default) is read and correlated with the mon.out
profile file. For eaeh external symbol, the percentage- of time spent executing between that sym­
bol and the next is printed (in decreasing order), together with the number of times that routine
was caUed and the number of milliseconds per call.

If the -a option is used, all symbols are reported rather than just external symbols. If the -I
option is used, the output is listed by symbol value rather than decreasing percentage.

In order for the number of calls to a routine to be tallied, the - p option of cc must have been
given when the file containing the routine was compiled. This option also arranges for the
moo.out file to be produced automatically.

moo.out
a.out

for profile
for namelist

SEE ALSO
monitor(III). profit (U), cc(I)

BllGS
Beware of quantization errors.

- 1 -

,-.

-

)

PRT(I) PWB/UNIX Edition 1.0 PRT (I)

NAME
prt - print SCCS file

SYNOPSIS
prt [-d) [-sJ [-a] [-i] [-u] [-f] [-tJ [-b) [-e) [-y(SID))
[-c[cutoft'J) [-r[reverse-cutoft'J] name ...

DESCRIPTION •
Prt prints part or all of an SCCS file in a useful format. If a directory is named, prt behaves as
though each file in the directory were specified as a named file, except that non-SCCS files (last
component of the pathname does not begin with "s. "), and unreadable files are silently ignored.
If a name of •4 - " is given, the standard input is read; each line of the standard input is taken to
be the name of an SCCS file to be processed. Again, non-SCCS files and unreadable files are
silently ignored.

The keyletter arguments are as follows. Each is explained as though only one named file is to be
processed, but the effects of any keyletter argument apply independently to each named file.

-d This keyletter normally causes the printing of delta table entries of the "D" type.

-s Causes only the first line of the delta table entries to be printed; that is, only llP to the
statistics. This keyletter is effective only if the d keyletter is also specified (or
assumed).

-a Causes those types of deltas normally not printed by the d keyletter to be printed.
These are types "R" (removed) and "H" (changed history). This keyletter is
effective. only if the d keyletter is also specified (or assumed).

-i Causes the printing of the serial numbers of those deltas included, excluded, and
ignored. This keyletter is effective only if the d keyletter is also specified (or
assumed).

The following format is used to print those portions of the SCCS file as specified by the above
keyletters. The printing of each delta table entry is preceded by a newline character.

a) Type of delta ("D", "R", or "H").
b) Space.
c) SCCS identification string (SID).
d) Tab.
e) Date and time of creation.

(in the form YY /MM/DD HH:MM:SS)
0 Tab.
g) Creator.
h) Tab.
i) Serial number.
j) Tab.
k) Predecessor delta's serial number.
I) Tab.
m) Statistics.

(in the form inserted/deleted/unchanged)
n) Newline.

- 1 -

PRT (I) PWB/UNIX Edition 1.0 PRT (I)

o) "lncluded:tab", followed by SID's of deltas included, followed by newline (only if
there were any such deltas and if i keyletter was supplied).

p) ''Excluded:tab", followed by SID's of deltas excluded, followed by newline (see
note above).

q) "lgnored:tah". followed by SIO's of deltas ignored, followed by newline (sec note
above).

r) "MRs:tab ", followed by MR numbers related to the delta, followed by newline
(only if any MR numbers were supplied).

s) Lines of comments (history), followed by newline (if any were supplied).

-u Causes the printing of the logio-names of those users allowed to make deltas.

-f Causes the printing of the flags of the named file.

-t Causes the printing of the descriptive text contained in the file.

-b Causes the printing of the body of the SCCS file.

-e This key letter implies the d, i, u, f, and t keyletters and is provided for convenience.

-Y This keyletter will cause the printing of the delta table entries to stop when the delta
just printed has the specified SID. If no delta in the table has the specified SID, the
entire table is printed. If no SID is specified, the first delta in the delta table is printed.
This keyletter will cause the entire delta table entry for each delta to be printed as a
single line (the newlines in the normal multi-line format of the d keyletter are replaced
by blanks) preceded by the name of the SCCS file being processed, followed by a ": ",
followed by a tab. This keyletter is effective only if the d keyletter is also specified (or
assumed).

-c This keyletter will cause the printing of the delta table entries to stop if the delta about
to be printed is older than the specified cutoff date-time (see ger(l) for the format of
date-time). If no date-time is supplied, the epoch 0000 GMT Jan. l, 1970 is used. As
with the y keyletter, this keyletter will cause the entire delta table entry to be printed
as a single line and to be preceded by the name of the secs file being processed, fol­
lowed by a ":", followed by a tab. This keyletter is effective only if the d keyletter is
also specified (or assumed).

-r This keyletter will cause the printing of the delta table entries to begin when the delta
about to be printed is older than or equal to the specified cutoff dace-time (see germ
for the format of date-time). If no date-time is supplied, the epoch 0000 GMT Jan. l,
1970 is used. (In this case, nothing will be printed). As with the y keyletter, this
keyletter will cause the entire delta table entry to be printed as a single line and to be
preceded by the name of the SCCS file being processed, followed by a ": ", followed by '
a tab. This keyletter is effective only if the d key letter is also specified (or assumed).

If any keyletter but y, c, or r is supplied, the name of the file being processed (preceded by one
newline and followed by two newlines) is printed before its contents.

If none of the u. f, t, or b key letters is supplied, the d keyletter is assumed.

Note that the s and i keyletters. and the c and r keyletters are mutually exclusive; therefore, they
may not be specified together on the same prt command. _.,

- 2 -

PRT(I) PWB/UNIX Edition 1.0 PRT(l)

The form of the delta table as produced by they, c, and r keyletters makes it easy to sort multiple
delta tables by time order. For example, the following will print the delta tables of all SCCS files
in directory secs in reverse chronological order: ·

prt -c sccs I grep • I sort · -rttalf +2 -3

When both the y and c or the y and r keyletters are supplied, prt will stop printing when the first
of the two conditions is met.

The reform(I) command can be used to truncate long lines.

See admin(I); scc~le(V), and SCCS/PWB User's Manual for more information about the meaning
of the output of prt.

SEE ALSO
admin(I), get(I), delta(I), what(I), help(I), sccsfile(V)
SCCS/PWB User's Manual by L. E. Bonanni and A. L. Glasser.

DIAGNOSTICS
Use hetp(I) for explanations.

- 3 -

PS (I) PWB/UNIX Edition 1.0 PS (I)

NAME
ps - process status

SYNOPSIS
ps [aklxt] [namelist]

DESCRlnION
Ps prints certain-indicia about active processes. The a flag asks for information about all processes
with terminals (oi:dinarily only one's own processes are displayed); x asks even about processes
with no terminal; I asks for a long listing. The short listing contains the process ID, tty letter, the
cumulative execution time of the process and an approximation to the command line. If the k
flag is specified, the file /sys/sys/core is used in place of /devlmem. This is used for postmortem sys­
tem debugging. If a second argument is given, it is taken to be the file containing the system's
nameHst. If the t flag is used, the following character is taken to be the specific tty for which
information is to be printed.

The long listing is columnar and contains.

FILES

F Flags associated with the process. 01: in core; 02: system process~ 04: locked in
core (e.g. for physical UO); 10: being swapped~ 20: being traced by another pro­
cess.

s

UID

PIO

PPID

CPU

PRI

NICE

ADDR

sz

The state of the process. 0: nonexistent~ S: sleepin~ W: waiting; R: running; I:
intermediate; ~ terminated; T: stopped.

The user ID of the process owner.

The process ID of the process; as in certain cults it is possible to kill a process if
you know its true name.

The process ID- of the parent process.

Processor utilization for scheduling.

The priority of the process~ high numbers mean low priority.

Used in priority computation.

The core address of the process if resident, otherwise the disk address.

The size in blocks of the core image of the process.

WCHAN The event for which the process is waiting or sleeping; if blank, the process is
running.

TIY The controlling tty for the process.

TIME The cumulative execution time for the process.

COMMANOThe command and its arguments.

Ps makes an educated guess as to the file name and arguments given when the process was
created by examining core memory or the swap area. The method is inherently somewhat unreli­
able and in any event a process is entitled to destroy this information, so the names cannot be
counted on too much.

/unix
/dev/mem

system namelist
core memory

PS (I) PWB/UNIX Edition 1.0

I sys/ sys/ core alternate core file
I dev searched to find swap device and tty names

SEE ALSO
kill (J)

- 2 •

PS (I)

PTX (I) PWB/UNIX Edition 1.0 PTX (I)

NAME
ptx - permuted index

SYNOPSIS
ptx [-t] input [output]

DESCRIPTION
Ptx geaerates a permuted index from file input on file output. It has three phases: the first does
the permutation, generating one line for each keyword in an input line. The keyword is rotated to
the front. The permuted file is then sorted. Finally the sorted lines are rotated so the keyword
comes at the middle of the page.

Input should be edited to remove useless lines. The following words are suppressed: 'a', 'an',
'and', 'as', 'is', 'for', ·or, 'on', 'or', 'the', 'to', 'up'.

The optional argument -t causes ptx to prepare its output for the phototypesetter.

The index for this manual was generated using pvc.

FILES
/bin/sort

- l -

PUMP (I) PWB/UNIX Edition 1.0 PUMP (I)

NAME
pump - Shell data transfer command

SYNOPSIS
pump [-[subchar]] [+] [eofstr]

DESCRIPTION
Pump is a filter that copies its standard input to standard output with possible substitution of Shell
arguments and variables. It reads its input to end-of-file, or until it finds eo.fstr alone on a line. If
not specified~ eq/srr is assumed to be '!'. Normally, Shell variable and argument values are substi­
tuted in the data stream. using '$' as the character to indicate their presence. The argument '-'
alone suppresses all substitution, ·-subchar' causes subchar to be used as the indicator character
for substitution in place of '$'. Escaping is handled as in double quoted(") strings: the indicator
character may be hidden by preceding it with a '\'. Otherwise, '\' and other characters are
transmitted unchanged. The '+' flag causes all leading tab characters in the input to be thrown
away, in order to permit readable indentation of text and eq/str. Pump may be used interactively
and in pipelines. A common use is to get variable values into editor scripts. If $a, $b. and Sc
have the values A, B, and C respectively, the two sequences below are equivalent:

pump - -1 ed file
i,ssraSrb/
re?.

ed file
l,Ss/ AS/B/
?C?
q

The sequence above will work at the terminal as well as in Shell procedures. Pump is an efficient
and convenient replacement for multiple uses of echo(!); e.g., the following are equivalent:

pump >file
$1
$2

echo "$1" >file
echo "$2" > >file

Pump is actually implemented inside the Shell, although it executes as a separate process.

SEE ALSO
echo(I), sh (I)

BUGS
The size of eojstr is limited to 95 bytes, and it may not begin with '+'.

~ l -

PWD(I)

NAME
pwd - working directory name

SYNOPSIS
pwd

DESCRIPTION

PWB/UNIX Edition 1.0

Pwd prints the pathname of the working (current) directory.

SEE ALSO
chdir(I)

. I .

PWD(I)

-
,_..

;

QUIZ (I) PWB/UNIX Edition 1.0 QUIZ (1)

NAME
quiz - test your knowledge

SYNOPSIS
quiz [-i file] [-t I [category! categQry2 I

DESCRIPTION
Quiz gives associative knowledge tests on various subjects. It asks items chosen from category J

· and expects answers from category2. If no categories are specified, quiz gives instructions and lists
the available categories.

FILES

Quiz tells a correct answer whenever you type a bare newline. At the end of input, upon inter­
rupt, or when questions run out, quiz. reports a score and terminates.

The -.t flag specifies 'tutorial' mode, where missed questions are repeated later, and material is
gradually introduced as you learn.

The -i flag causes the named file to be substituted for the default index file. The lines of these
files have the syntax:

line - category newline I category •:' line
category - alternate I category 1' alternate
alternate • empty I alternate primary
primary • character I '[' category •]' I option
option - • (' category '}'

The first category on each line of an index file names an information file. The remammg
categories specify the order and contents of the data in each line of the information file. Informa­
tion files have the same syntax. Backslash '\' is used as with sh(I) to quote syntactically
significant characters or to insert transparent newtines into a line. When either a question or its
answer is empty, quiz will refrain from asking it.

I usr/lib/ quiz/index
/usr/lib/quiz/"'

RC(I) PWB/UNIX Edition 1.0 RC(I)

NAME
re - Ratfor compiler

SYNOPSIS
re { -c l [-rI [-fl [-v] file ...

DESCIUmON

FILES

Re invokes the Ratf~r preprocessor on a set of Ralf or source files. It accepts three types of argu­
ments:

Arguments whose names end with • .r' are taken to be Ratfor source programs; they are prepro­
cessed into Fortran and compiled. Each subroutine or function 'name' is placed on a separate file
name./, and its object code is left on name.a. The main routine is on MAIN.fand MAIN.a; block
data subprograms go on blockdata?.f and blockdata?.o. The files resulting from a '.r' file are
loaded into a single object file .file.o, and the intermediate object and Fortran files are removed.

The following flags are interpreted by re. See ld(l) for load-time flags.

-c Suppresses the loading phase of the compilation, as does any error in anything.

-f Save Fortran intermediate files. This is primarily for debugging.

-r Ratfor only; don't try to compile the Fortran. This implies -f.

-v Don't list intermediate file names while compiling.

Arguments whose names end with • .r are taken to be Fortran source programs; they are compiled
in the normal manner. (Only one Fortran routine is allowed in a '.r file.)

Other arguments are taken to be either loader flag arguments, or Fortran-compatible object pro­
grams, typically produced by an earlier re run, or perhaps libraries of Fortran-compatible routines.
These programs, together with the results of any compilations specified, are loaded to produce an
executable program with name a.out.

ratjunk temporary
/usr/bin/ratfor preprocessor
/usr/fort/fcl Fortran compiler

SEE ALSO
RATFOR - A Preprocessor for a Rational Fortran by B. W. Kernighan.
fc(I) for Fortran error messages.

DIAGNOSTICS
Yes. both from re itself and from Fortran.

BUGS
Limit of about 50 arguments, 10 block data files.

#define and #include lines in ".r· files are not processed.

- 1 -

.-

--

-

-

REFORM (I) PWB/UNIX Edition 1.0 REFORM (I)

NAME
reform - reformat text file

SYNOPSIS
reform [tabspecl [tabspec2}] [+bn] [+en] [+fl [+in] [+mn] l +pn] [+s) [+tn]

DESCRIPTION
Reform rea~ each line of the standard input file, reformats it, and then writes it to the standard
output. Various combinations of reformatting operations can be selected, of which the most com­
mon involve rearrangement of tab characters. It is often used to trim trailing blanks, truncate
lines to a specified length, or prepend blanks to lines.

Reform first scans its arguments, which may be given in any order. It then processes its input file,
performing the following actions upon each line, in the order given:

- A line is read from the standard input.

- If +s is given, all characters up to the first tab are stripped off and saved for later addition to
the end of the line. Presumably, these characters comprise an SCCS SID produced by gerW.

- The line is expanded into a tabless form, by replacing tabs with blanks according to the 111pur
tab specification tabspecl.

- If +pn is given, n blanks are prepended to the line.

- If +t n is given. the line is truncated to a length of n characters.

- All trailing blanks are now removed.

- If +en is included, the line is extended out with blanks to the length of n characters.

- If +s is given, the previou.sly-saved SCCS SID is added to the end of the line.

- If +bn is given, the n characters at the beginning of the line are converted to blanks. if and
only if all of them are either digits or blanks.

- If +mn is included, the line is moved left, i.e., n characters are removed from the beginning
of the line.

-The line is now contracted by replacing some blanks with tab characters according to the list of
tabs indicated by the output tab specification rabspec2, and is written to the standard output file.

· Option +i controls the method of contraction (see below).

The various arguments accepted by reform are as follows:

rabspec I describes the tab stops assumed for the input file. This tab specification may take on
any of the forms described in rabs(I). In addition, the operand "- - " indicates thac
the tab specification is to be found in the first line read from the standard input. If no
legal tab specification is found there, -8 is assumed. If tabspecl is omitced entirely,
.. - - " is assumed.

tabspec2 describes the tabs assumed for the output file. It is interpreted in the same way as
tabsped. except that omission of tabspec2 causes the value of 1abs1wcl to bl! used for
rab.vJ<•cl.

The remaining arguments are all optional and may be used in any combination, although only a
few combinations make much sense. Specifying an argument causes an action to be performed, as
opposed to the usual default of not performing the action. Some options include numeric values,
which also have default values. Option actions are applied to each line in the order described

- I -

REFORM (I) PWB/UNIX Edition 1.0 REFORM (I)

above. Any line length mentioned applies to the length of a line just before the execution of the
option described, and the terminating newline is never counted in the line length.

+bn causes the first n characters of a line to be converted to blanks, if and only if those
characters include only blanks and digits. If 11 is omitted, the default value is 6, which
is useful in deleting sequenc~ numbers from COBOL programs.

+e11 causes each line shorter than n characters to be extended out with blanks to that
length. Omitting n implies a default value of 72. This option is useful for those rare
cases in which sequence numbers need to be added to an existing unnumbered file.
The use of S 'in editor regular expressions is more convenient if all lines have equal
length, so that the user can issue editor commands such as:

s/$/0000 l 000/

+f causes a format line to be written to the standard output, preceding any other lines
written. See fspedVJ for details regarding format specifications. The format line is
taken from rabspec2, i.e., the line normally appears as follows:

<:t-1absped d:>

If rabspecl is of the form - -.filename (i.e., an indirect reference to a tab specification
in the first line of the named file), then that tab specification line is written to the stan­
dard output.

+in controls the technique used to compress interior blanks into tabs. Unless this option is
specified, any sequence of l or more blanks may be converted to a single tab character
if that sequence occurs just before a tab stop. This causes no problems for blanks that
occur before the first nonblank character in a line, and it is always possible to convert
the result back to an equivalent tabless form. However, occasionally an interior blank
(one occurring after the first nonblank) is converted to a tab when this is not intended.
For instance, this might occur in any program written in a language utilizing blanks as
delimiters. Any single blank might be converted to a tab if it occurred just before a
tab stop. Insertion or deletion of characters preceding such a tab may cause it to be
interpreted in an unexpected way at a later time. If the +i option is used, no string of
blanks may be converted to a tab unless there are n or more contiguous blanks. The
default value is 2. Note that leading blanks are always converted to tabs when possi­
ble. It is recommended that conversion of programs from non-PWB to PWB sys­
tems use this option.

+mn causes each line to be moved left /1 characters, with a default value of 6. This can be
useful for crunching COBOL programs.

+pn causes /1 blanks to be prepended (default of 6 if 11 is omitted). This option is
effectively the inverse of +mn, and is often useful for adjusting the position of nrq/f(f)
output for terminals lacking both forms tractor positioning and a settable left margin.

+s is used with the -m option of ger(l). The -m option causes ger to prepend to each
generated line the appropriate SCCS SID, followed by a tab. The +s option causes
reform to remove the SID from the front of the line, save it, then add it later to the
end of the line. Because +e72 is implied by this option, the effect is to produce 80-
character card images with SCCS SID in columns 73-80. Up to 8 characters of the
SID are shown: if it is longer, the eighth character is replaced by '*' and any characters
to the right of it are discarded.

+t11 causes any line longer than n characters to be truncated to that length. If n is omitted,
the length defaults to 72. Sequence numbers can thus be removed and any blanks
immediately preceding them deleted.

- 2 -

-

/

REFORM(I) PWB/UNIX Edition 1.0 REFORM (1)

..

The following illustrate typical uses of reform. The terms "PWB" and "OBJEcr below ref er to
UNIX and non-UNIX computer systems, respectively. Each arrow indicates the direction of
conversion. The character •?' indicates an arbitrary tab specification; see tabs(/) for descriptions
of legal specifications.

OBJECT-> PWB (i.e., manipulation of RJE output):

Note that files transferred by RJE from OBJECT to PWB materialize with format -8.

reform -8 ? +t +f <oldfile >newfile (into arbitrary format)
reform -8 ...:C +t +b +i <oldfile >newfile (into COBOL}
reform -8 -c3 +t +m +i <oldfile >newfile (into COBOL, crunched)

NOTE: -c3 is the preferred format for COBOL; it uses the least disk space of the COBOL for­
mats.

PWB --> OBJECT (i.e., preparation of files for RJE submission):

reform ? -8 <oldfile :;>newfile (from arbitrary format into -8)
get -p -m sccsfile I reform +s I send ...

PWB ONLY (i.e .• no involvement with other systems):

pr file I reform ? -0 <oldfile (print on terminal without hardware iabs)
reform ? -0 <oldfile >newfile (convert file to tabless format)

DIAGNOSTICS
All diagnostics are fatal, and the offending line is displayed following the message.
"line too long" a line exceeds S 12 characters (in tabless form).
"not SCCS -m" a line does not have at least one tab when +s flag is used.
Any of the diagnostics of tabs(/) can also appear.

EXIT CODES

0 - normaJ
1 - any error

SEE ALSO

Bl.:GS

fspec(V), get(I), nroff(l), send(I), tabs(I)

Re./brm is aware of the meanings of backspaces and escape sequences, so that it can be used as a
postprocessor for nroff. However, be warned that the +e, +m, +t options only count characters,
not positions. Anyone using these options on output containing backspaces or halfline motions
will probably obtain unexpected results.

• 3 •

--

REGCMP(l) PWB/UNIX Edition 1.0 REGCMP(I)
•

NAME
regcmp - regular expression compile

SYNOPSIS

regcmp f-1 file ...

DESCRIPTION
Regcmp, in most cases. precludes the need for calling regcmp (see regex(Ill)) from C programs.
This saves on bo.th execution time and program size. The command regcmp compiles the regular
expressions in file and places the output in file.i. If the .. _,. option is used, the output will be
placed in file.c.

The format of entries in file is a name (C variable), followed by one or more blanks, followed by
a regular expression enclosed in double quotes. The output of regcmp is C source, which declares
each variable name as an extern char array, and initializes that array with the compiled form of the
corresponding regular expression. File.i files may thus be included into C programs, or file.c files
may be compiled and later loaded. Diagnostics are self-explanatory.

Example:

name "([A-Za-z] [A-Za-z0-9 1*)$0"
telno "\ \({0,1 }([2-9]{0I][l-9})SO\\) {0,1} *"

"([2-9)[0-91{2})$1{ -1{0, l }"
"([0-91{4})$2"

In the C program which uses the regcmp output,

regex(telno, line, area, exch, rest)

will apply the regular expression named tefno to line.

SEE ALSO
regex(III)

- 1 -

.-

RGREP (I) PWB/UNIX Edition 1.0 RGREP (I)

NAME

rgrep - search a file for a pattern

SYNOPSIS

rgrep [-v J [-b 1 [-c] [-n 1 expression [file 1 ...

DESCRIPTION

Rgrep is an extended form of grep which uses the facilities of the rege.x(III) routine. Rgrep
searches the input files (standard input default) for lines matching the regular expression. Nor­
mally, each line found is copied to the standard output. If the -v flag is used, all lines but those
matching are printed. If the -c flag is used, only a count of matching lines is printed. If the - n
flag is used, each line is preceded its relative line number in the file. If the -b flag is used, each
line is preceded by the block number on which it was found. This is sometimes useful in locatin~
disk block numbers by context.

In all cases the file name is shown if there is more than one input file.

For a complete description of the regular expression, see ed(l) and regex(Ill). Care should be
taken when using the characters $ • [~ I () and \ in the regular expression as they are also mean­
ingful to the Shell. It is generally necessary to enclose the entire expression argument in quotes.

SEE ALSO
ed (I), sh (I), regex (III)

- l -

RJESTAT(l) PWB/UNIX Edition 1.0 RJESTAT(I)

NAME
rjestat - RJE status and enquiries

SYNOPSIS
rjestat { -) [A 1 [B 1 [1110]

DESCRlmON
When invoked without the ·-· argument, rjestat reports the current status of RJE links to the
specified host computers. When invoked with the '-' argument, rjestat sets up an interactive
status terminal. If no hosts are cited explicitly, the specification defaults to ail those for which a
given PWB/UNIX is configured. The .. host" pseudonyms A, B, and 1110 are built into the RJE
software. A and B may be used to represent any IBM host machine. Their actual destinations are
immaterial to RJE. The pseudonym 1110 is built into RJE to represent any UNIVAC host.

' To enter an enquiry via such a status terminal, you must first generate an interrupt. This can be
done by hitting the DEL key or the BREAK/INTERRUPT key. Rjestat will respond by prompting
for enquiries directed to each host in tum. The line on which a prompt appears may be com­
pleted to f orrn a legitimate display command for that particular host. If the line is terminated with
a '\', the prompt will be repeated, otherwise it will advance to the next host. A carriage return
alone indicates that no enquiry is to be directed to a particular host. You should expect to wait at

FILES

least 30 seconds for a response. -

An interrupt will temporarily halt the display of responses. It can therefore be used to inhibit
roll-up on a CRT terminal. The display of responses will resume after all prompts have been
satisfied (perhaps by null completions).

To exit from the status terminal, generate a quit signal or type DEL followed by EOT.

The UNIV AC 1110 capability is only supported at the BTL Piscataway location.

/dev/rje• DQS·l l's used by RJE
/usr/rje/sys PWB/UNIX system name
/usr/rje/lines configuration table

And. in the directory for each RJE subsystem:

log activity log
resp concatenated responses
status message of the day
xmit* files queued
•mesg enquiry slot
*init boot program

SEE ALSO
Gwde to IBM Remote Job Emry for PWBIUNIX Users by A. L. Sabsevitz.
OS/VS:! HASP II Version 4 Operator's Guide. IBM SRL #GC27-6993.
Operator's library: OS/VS2 Reference {J£S2), IBM SRL #GC38-0210.

- 1 -

-

.-

RM(I) PWB/UNIX Edition 1.0 RM(I)

NAME
rm - remove (unlink) files

SYNOPSIS
rm (-f] (-r] name ...

DESCRIPTION

FILES

Rm removes the entries for one or more files from a directory. If an entry was the last link to the
file, the file is destroyed. Removal of a file requires write permission in its directory, but neither
read nor write permission on the file itself.

(f the user does not have write permission on a file, rm prints the file name and its mode, then
reads a line from the standard input. If the line begins with y, the file is removed, otherwise it is
not. The question is not asked if option -f was given or if the standard input is not a terminal.

If a designated file is a directory, an error comment is printed unless the optional argument -r
has been used. In that case, rm recursively deletes the entire contents of the specified directory.
To remove directories per se see rmdir(I).

/etc/glob to implement the -r flag

SEE ALSO
rmdir(I}

BUGS
When rm removes the contents of a directory under the -r flag, full pathnames are not printed in
diagnostics.

- I -

RMDEL (I) PWB/UNIX Edition 1.0 RMDEL (I)

NAME
rmdel - remove a delta from an $CCS file

SYNOl'SIS

rmdel -rSID name ...

DESCRIPTION
Rmdel removes the delta specified by the SID from each named SCCS file. The delta to be
removed must be the newest (most recent) delta in its branch in the delta chain of each named
SCCS file.

If a directory is named, rmdel behaves as though each file in the directory were specified as a
named file, except that non-SCCS files (last component of the pathname does not begin with
.. s. "), and unreadable files, are silently ignored. If a name of••-" is given, the standard input is
read; each line of the standard input is taken to be the name of an secs file to be processed.
Again, non-SCCS files, and unreadable files, are silently ignored.

The exact permissions necessary to remove a delta are documented in the SCCS/PWB User's
Manual. Simply stated, they are either (1) if you make a delta you can remove it; or (2) if you
own the file and directory you can remove a delta.

FILES
x-file
z-file

SEE ALSO

(see delra(I))
(see delta (I))

get(I), delta(I), prt(I), help(I), sccsfile(V)
SCCS/PWB User's Manual by L. E. Bonanni and A. L. Glasser

DIAGNOSTICS
Use hetp(I) for explanations.

- 1 -

-

-

RMOIR(I) PWB/UNIX Edition 1.0 RMDIR(l)

NAME
rmdir - remove directory

SYNOPSIS
rmdir dir ...

DESCRIPTION

BUGS

Rmdir removes (deletes) directories. The directory must be empty (except for the standard
entries • .' and • . .', which rmdir itself removes). Write permission is required in the directory in
which the· direc,tory to be removed appears.

Needs a - r flag.
Actually, write permission in· the directory's parent is not required.
Mildly unpleasant consequences can follow removal of your own or someone else's current direc­
tory.

• 1 •

ROFF(I) PWB/UNIX Edition 1.0 ROFF(I)

NAME
roff - format text

SYNOPSIS
roff [+ n] (- n l (-s] (-h] file ...

DESCRIPTION
Roffformats tex~ according to control lines embedded in the text in the given files. Encountering
a nonexistent file terminates printing. Incoming interconsole messages are turned off during
printing. The optional flag arguments mean:
+ n Start printing at the first page with number n.
- n Stop printing at the first page numbered higher than n.
-s Stop before each page (including the first) to allow paper manipulation~ resume on receipt of

an interrupt signal.
-h Insert tabs in the output stream to replace spaces whenever appropriate.

Input consists of intermixed text lines, which contain information to be formatted, and request
lines, which contain instructions about how to format it. Request lines begin with a distinguished
control character, normally a period.

Output lines may be .filled as nearly as possible with words without regard to input lineation. Line
breaks may be caused at specified places by certain commands, or by the appearance of an empty
input line or an input line beginning with a space.

The capabilities of roff are specified in the attached Request Summary. Numerical values are
denoted there by n or +n. titles by t, and single characters by c. Numbers denoted +n ,may be
signed +or-, in which case they signify relative changes to a quantity, otherwise they signify an
absolute resetting. Missing n fields are ordinarily taken to be 1, missing t fields to be empty, and
c fields to shut off the appropriate special interpretation.

Running titles usually appear at top and bottom of every page. They are set by requests like

.he 'part 1 'part2'part3'

Part 1 is left justified. part2 is centered. and part3 is right justified on the page. Any % sign in a
title is replaced by the current page number. Any nonblank may serve as a quote.

ASCII tab characters are replaced in the input by a replacement character, normally a space, accord­
ing to the column settings given by a .ta command. (See .tr for how to convert this character on
output.)

Automatic hyphenation of filled output is done under control of .hy. When a word contains a
designated hyphenation character, that character disappears from the output and hyphens can be
introduced into the word at the marked places only.

FILES
/usr/lib/suftab suffix hyphenation tables
/tmp/rtm? temporary

SEE ALSO
nroff(I) , troff (I)

BUGS

Roff is the simplest of the run-off programs, but is utterly frozen and quite obsolescent.

- 1 -

ROFF(I) PWB/UNIX Edition 1.0 ROFF (I)

REQUEST SUMMARY

Request Break Initial Meaning
. ad yes yes Begin adjusting right margins .
.ar no arabic Arabic page numbers.
. br yes Causes a line break - the filling of the current line is stopped .
. bl n yes Insert of n blank lines, on new page if necessary .
.bp+n yes n-1 Begin new page and number it n~ no n means •+ l '.
.cc c no c-. Control character becomes 'c'.
. ce n yes Center the next n input lines, without filling .
.de xx no Define parameterless macro to be invoked by request '.xx'

(definition ends on line beginning • •. ').
. ds yes no Double space; same as '.Is 2' .
.ef t no t:111"""" Even foot title becomes t.
.eh·t no t-"""" Even head title becomes t.
. ti yes yes Begin filling output lines .
.fo no t=-"""" All foot titles are t.
. he c no none Hyphenation character becomes 'c' .
. he t no t=-"""" All head titles are t .
. hx no Title lines are suppressed .
.hy n no n-1 Hyphenation is done, if n-1; and is not done, if n-0.
.ig no Ignore input lines through a line beginning with ' .• ' .
.in +n yes Indent n spaces from left margin .
.ix +n no Same as '.in' but without break .
.Ii n no Literal, treat next n tines as text.
.ll+n no n-65 Line length including indent is n characters.
.Is +n yes n-1 Line spacing set to n lines per output line.
.ml n no n•2 Put n blank lines between the top of page and head title.
.m2 n no n-2 n blanlC lines put between head title and beginning of text on page.
.m3 n no n-1 n blank lines put between end of text and foot title.
.m4 n no n-3 · n blank lines put between the foot title and the bottom of page.
.na yes no Stop adjusting the right margin.
. ne n no Begin new page, if n output lines cannot fit on present page .
. nn +n no The next n output lines are not numbered .
. nl no no Add 5 to page offset~ number lines in margin from l on each page .
. n2 n no no Add 5 to page offset; number lines from n~ stop if n-0 .
.ni +n no n-0 Line numbers are indented n.
. nf yes no Stop filling output lines .
. nx filename Change to input file 'filename' .
.oft no (9:"""" Odd foot title becomes t.
.oh t no t-"""" Odd head title becomes t.
.pa +n yes n-1 Same as '.bp'.
.pl +n no n-66 Total paper length taken to be n lines.
. po +n no n•O Page off set. All lines are preceded by n spaces .
.ro no arabic Roman page numbers.
. sk n no Produce n blank pages starting next page .
. Sp n yes Insert block of n blank lines, except at top of page .
.SS yes yes Single space output lines, equivalent to '.Is l '.
. tan n .. Pseudotab settings. Initial tab settings are columns 9 17 25 ...
. tc c no space Tab replacement character becomes 'c' .
.ti +n yes Temporarily indent next output line n spaces.
.tr cdef .. no Translate c into d, e into f, etc.
. ul n no Underline the letters and numbers in the next n input lines .

- 2 -

RSH(I) PWB/UNIX Edition 1.0 RSH(I)

NAME
rsh - restricted shell (command interpreter)

SYNOPSIS
rsh (-x l [- 1 [-ct] [name [argl ... 1 J

DESCRIPTION ,

FILES

Rsh is a restricted v-ersion of the standard command interpreter sh(/). It is used to set up login
names or execution environments whose capabilities are more controlled than that of the standard
shell. The actions of rsh are identical to those of sh, except for the foil owing restrictions:

1) chdir is not allowed.

2) changes to the shell variable 'Sp' are not permitted.

3) it is illegal to use'/' in the name of a command.

4) next is not permitted.

5) • >' and • > >' are disallowed.

These restrictions combine to lock a user into the login directory, limit the set of invokable com­
mands to those found in directories included in the '.path' file, and eliminate the direct creation
or modification of files. When a command to be executed is found to be a shell procedure, rsh
invokes sh to execute it. Thus, it is possible to write shell procedures using the full power of the
standard shell, while the end user is restricted to a limited menu of commands.

Rsh is actually just a link to sh.

/etc/glob, which interprets ••', '?', and '{'.
/dev/null as a source of end-of-file .
. path in login directory to initialize Sp .
. profile in login directory for general initialization.
/etc/sha for accounting information.

SEE ALSO
sh(I)

BUGS
It would be better to have a flag for opt which changed sh into rsh dynamically. With a non­
interruptable '.profile', it would be possible to act as sh, use chdir (for example), and then change
into rsh at the end of initialization.

• 1 -

,-

SCCSDIFF (I) PWB/UNIX Edition 1.0 SCCSDIFF (I)

NAME
sccsdiff - compare two versions of an secs file

SYNOPSIS
sccsditf old-spec new-spec [pr-args] secs.file ...

DESCRIPTION
Sccsdiff compares two versions of an SCCS file and generates the differences between the two ver­
sions. The ,old-spec is any valid get(I) specifier (e.g., -rl. l) for the old version to be gotten.
Similarly, new-spec is any valid ger(I) specifier (e.g., -rl.4) for the new version to be gotten.
The pr-args are any valid pr(I) arguments which begin with a "-", except for "-h" (the output
of sccsdrff is piped through pr(I)). Any number of SCCS files may be specified, but the old-spec
and new-spec apply to-all files .

.
Sccsdijf is a simple shell procedure~ interested persons should "cat /usr/bin/sccsdiff" to discover
how it works.

FILES
/tmp/get?????
I usr/bin/bdiff

SEE ALSO

temporary for old gotten version
program that generates differences

get (I), he!p(I), pr(I), bditf(I)
SCCS/PWB User's Manual by L. E. Bonanni and A. L. Glasser.

DIAGNOSTICS
Use he!p(I) for explanations.

- l -

SEO (0 PWB/UNlX Edition 1.0 SEO (I)

NAMt:
scd - stream editor

SYNOPSIS
sed [-g 1 [-n 1 [-f commandfile 1 ... [[-e J command] ... [file] ...

DESCRIPTION
Sed copies the input .files (default is standard input) to the standard output, perhaps performing
one or more editor commands (see ed(I)) on each line.

The -g flag indicates that all s commands should be executed as though followed by a g. If only
some substitutions are to be done globally, leave out the -g flag and put the g's at the end of the
appropriate command lines.

The -n flag indicates that only lines that are explicitly printed by p commands are to be copied to
the standard output. In order to avoid getting double copies of some lines in the standard output,
the p command is ignored unless the -n flag is set.

The -e flag indicates that the next argument is an editor command.

The -f flag indicates that the next argument is a file name; the file contains editor commands,
one to a line. Commands that are inherently multi·line, like a or c. should have the interior new­
lines escaped by '\'. Append, insert, and change modes are terminated by an non-escaped new­
line.

The -e and -f flags may be intermixed in any order.

If no -e or -f flags are given, the first argument is taken by default to be an editor command.

Addresses are allowed. The meaning of two addresses is: "Attempt this command on the first line
that matches the first address, and on all subsequent lines up to and including the first subsequent
line that matches the second address; then search for a match of the first address and iterate."
One address means: "Attempt this command on all tines that match the address." Either line­
n umbers or regular expressions are allowed as addresses. Line numbers increase monotonically
throughout all the input files, so that, if n is the number of the last line of the first input file, then
11+ I is the number of the first line of the second file, etc. A '$' as an address matches the fasr
line of the last input file.

The intention is to simulate the editor as exactly as possible, but the line-at·a-time operation
makes certain differences unavoidable or desirable:

1. There is no notion of '.' and no relative addressing.

2. Commands with no addresses are defaulted to /,$rather than to dot.

3. Addresses specified as regular expressions must be delimited by'/'; '?' is an error.

4. Expressions in addresses are not aJlowed (i.e.,'+','-').

5. Commands may have only as many addresses as they can use. That is, no command may
have more than two addresses; the a. i. and r commands may have only one address.

6. A pat the end of a command only works with the s command. For other commands, or if
the -n flag is not in effect, a pat the end of a command line is ignored.

7. A w may appear at the end of a s command. It should be followed by a single space and a
file name. If the s command succeeds, the modified line is appended to the file. All files
are opened when the commands are being compiled, and closed when the program ter­
minates. Only ten distinct file names may appear in w commands in a single execution of

. l .

SEO (I J PWB/UNIX Edition 1.0 SEO (l l

sed. Unlike p, w takes effect regardless of the -n flag. If both p and ware appended to the
same substitute command, they must be in the order pw.

8. The only editor commands available are a, c, d, r. s. p, q. r. w. !(, 1·. and ==. A successful
execution of a q command causes the current line to be written out if it should be. and
execution terminated. When a line is deleted by a d or c command, no further commands
are attempted on its corpse, but another line is· immediately read from the input (but see
item 10. below).

9. The next line command, 11, replaces the current line by the next line from the input file.
The list of edi,ting commands is continued after th.e 11 command is executed.

10. If an a, i, or r command is successfully executed, the text is inserted into the standard out·
put whether or not the line on which the match was made is later deleted or not. Thus the
commands:

lb/a\
xxx
/b/ ,/c/d

applied to the file
a
b
c
d

will produce

on the output.

a
xxx
d

11. Text inserted in the output stream by the a. i, c. or r commands is not scanned for any pat·
tern match~, nor are any editor commands applied to it.

Sed supports three commands to control the flow of processing. These commands do no editing
on the input line, but serve to control the order in which multiple editing commands are applied
to an input line. ·

12. The label command, : label, marks a place in the list of editing commands which may be
referred to by j and t commands (see 13. and 14. below); the label may be any sequence of
eight or fewer characters; if two different colon commands have identical labels, a compile·
time diagnostic will be generated and no execution attempted.

13. The jump command, .i label, causes the sequence of editing commands being applied to the
current input line to be restarted immediately after the place where a colon command with
the same label was encountered. 1r·no colon command with the same label can be found
after all editing commands have been compiled, a compile·time diagnostic is produced and
no execution is attempted. A j command with no label is taken to be a jump to the end of
the list of editing commands~ whatever should be done with the current input line is done.
and another input line is read~ the list of editing commands is restarted from the beginning
of that line.

14. The test command, t label, tests whether any successful substitutions have been made on
the current input line; if so. it jumps to label; if not, it does nothing. The flag that indi·
cates that a successful substitution has occurred on the current input line is reset by either
reading a new line or by executing the / command.

. 2 .

-

SEO(l) PWB/UNIX Edition 1.0 SEO (I)

Sed also supports command grouping and several operations that can build lines into a pattern
space to be operated upon by other commands.

IS. Commands may be grouped by curly braces. The opening brace must appear in the place
where a command would ordinarily appear. the closing brace must appear on a line by itself
(except for leading blanks or tabs). If the first line of a command file has #11 as its first
two characters. the no-copy flag is set, as though the - n option had been given on the
command line. The remainder of this first line is ignored and may be used for a title or a
commenL As, an example:

#n Print first non-blank line after a blank line, and first line, if non-blank.
1(

/./p
}
rs1{
: loop

n
I./{

p
j

}
j loop

16. The Next command, N, appends the next input line to the current line; the two lines are
separated by a new-line character, that may be matched by '\n'.

17. The Delete command, D. deletes up to and including the first (leftmost) new-line in the
current pattern space. If the pattern space becomes empty (the only new-line is at the end
of the space), Delete reads another line from the input. The list of e9iting commands is
restarted from the beginning.

18. The Print command, P. prints on standard output up to and including the first new-line in
the pattern space.

SEE Al.SO
ed(I)

BUGS
Lines are silently truncated to a maximum length of 512 characters. The "plus", "range", and
."through" regular expression operators("+","\{\}","[-]") of ed(I) are not implemented in
sed.

- 3 -

.-

SEND (I) PWB/UNIX Edition 1.0 SEND (I)

NAME
send - submit RJE job

SY:'-iOPSIS
send argument ...

DESCRIPTION
Send is a command-level interface to the RJE subsystems hasp(VIII) and u1•ac(VIll). It allows
the user to collect input from various sources in order to create a run stream consisting of card
images. Sen<J. creates a temporary file, with a special format, to contain the collected run stream,
and then queues the file for transmission by invoking haspqer or uvacqer. as appropriate. Further
processing of the job is controlled by the appropriate PWB/UNIX RJE subsystem and the host
c;omputer to whic;h the job is submitted.

Possible sources of input to send are: ordinary files, standard input, the terminal, and' the output
of a command or shell file. Each source of input is treated as a virtual file, and no distinction is
made based upon its origin. Typical input is an ASCII text file of the sort that is created by the
editor ed(I). An optional format specification appearing in the first line of a file (see /spec(V))

determines the settings according to which tabs are expanded into spaces. In addition. lines that
begin with ... ,, are normally interpreted as commands controlling the execution of send. They
may be used to set or reset flags, to define keyword substitutions, and to open new sources of
input in the midst of the current source. Other text lines are translated one-for-one into card
images of the run stream.

The run stream that results from this collection is treated as one job by the RJE subsystems. Send
provides a card count for the run stream, and the queuer that is invoked announces the position
that the job has been assigned in the queue of)obs waiting to be transmitted. The initial card of a
job submitted to an IBM system must have a "/" in the first column. The initial card of a job
submitted to a UNIV AC system must begin with a "@RUN" or ""run", etc. Any cards preced­
ing these will be excised. If a host computer is not specified before the first card of the runstream
is ready to be sent, send will select a reasonable default. In the case of i:.n IBM job, all cards
beginning "/*$" will be excised from the runstream, because they arc HASP command c~1rds.

The arguments that send accepts are described below. An argument is interpreted according to the
first pattern that it matches. Preceding a character with "\" causes it to lose any special meaning
it might otherwise have when matching against an argument pattern.

+
:spec:

:message

-:prompt

+:prompt

-.!fags

+.flags

Close the current source.

Open standard input as a new source.

Open the terminal as a new source.

Establish a default format specification for included sources, e.g.,
:m6t-12:.

Print message on the terminal.

Open standard input and, if it is a terminal, print prompt.

Open the terminal and print prompt.

Set the specified flags, which are described below.

Reset the specified flags.

- l -

SEND(I)

-.flags

!mmmand

Sime

-comment

-:keyword

keyword- A xx

keyword-string

host

. !ilc•11ame

PWB/UNIX Edition 1.0 SEND (I)

Restore the specified flags to their state at the previous level.

Execute the specified PWB/UNIX command via the one-line Shell, with
input redirected to /devlnull as a default. Open the standard output of
the command as a new source.

Collect contiguous arguments of this form and write them as consecu·
tive lines to a temporary file; then have the file executed by the Shell.
Open the standard output of the Shell as a new source.

Iariore this argument.

Prompt for a definition of keywordfrom the terminal.

Define keyword as a two-digit hexadecimal character code.

Define keyword in terms of a replacement string.

Job is to be submitted to: A, B, 1110. The pseudonyms A and B are
built into RJE to represent any IBM host connection. Their actual desti·
nations are immaterial to RJE. The pseudonym 1110 is built into RJE
to represent any UNIV AC host.

Open the specified file as a new source of input .

Arguments of the form .. !chdir directory" will be trapped so that the send process can execute the
specified chdir itself. The original directory will be restored at the end of any source that contains
a chdir.

The flags. recognized by send are described in terms of the special processing that occurs when
they are set:

-I List card images on standard output. EBCDIC characters are translated back to ASCII.

-q Do not output card images.

-f Do not fold lower case to upper.

-t Trace progress on diagnostic output, by announcing the opening of input sources.

- k Ignore the keywords that are active at the previous level and erase any keyword definitions
that have been made at the current level.

-r Process included sources in raw mode; pack arbitrary 8-bit bytes one per column (80
columns per card) until an end-of-file.

-i Do not interpret control lines in included sources; treat them as text.

-s Make keyword substitutions before detecting and interpreting control lines.

-y Suppress error diagnostics and submit job anyway.

-g Gather mode. qualifying -I flag; list text lines before converting them to card images.

-h Write listing with standard tabs.

-p Prompt with when taking input from the terminal.

-m When input returns to the terminal from a lower level, repeat the prompt, if any.

-a Make -k flag propagate to included sources. thereby protecting them from keyword sub-
stitutions.

- 2 •

-

-·

SEND (I) PWB/UNIX Edition 1.0 SEND (I)

-c List control lines on diagnostic output.

-d Extend the current set of keyword definitions by adding those active at the end of
included sources.

Control lines are input lines that begin with In the default mode + ir, they are interpreted
as commands to send. Normally they are detected immediately and read literally. The -s flag
forces keyword substitutions to be made before control lines are intercepted and interpreted.
Arguments appearing in control tines are handled exactly like the command arguments to se11cl.
except that they are processed at a nested level of input.

The two possible formats for a control line are: "·argument" and ··- argument ... ". In the first
case, where the is not followed by a space, the remainder of the tine is taken as a single argu­
ment to send. In the second case, the line is parsed to obtain a sequence of arguments delimited
by spaces. In this case the quotes ·~·" and """ may be employed to pass embedded spaces.

The interpretation of the argument ".'' is chosen so that an input line consisting of --- . " is
treated as a logical end-of-file. The following example illustrates some of the above conventions:

send -
- argument ...

This sequence of three lines is equivalent to the command synopsis at the beginning of this
description. In fact, the "-" is not even required. By convention, the send command reads stan­
dard input if no other input source is specified. Send may therefore be employed as a filter with
side-effects. ·

The execution of the send command is controlled at each instant by a current environment, which
includes the format specification for the input source, a default format specification for ·included
sources, the settings of the mode flags, and the active set of keyword definitions. This environ­
ment can be altered dynamically. When a control line opens a new source of input, the current
environment is pushed onto a· stack, to be restored when input resumes from the old source. The
initial format specification for the new source is taken from the first line of the file. If none is
provided, the established default is used or, in its absence, standard tabs. The initial mode set­
tings and active keywords are copied from the old environment. Changes made while processing
the new source will not affect the environment of the old source, with one exception: if -d mode
is set in the old environment, the old keyword context will be augmented by those definitions that
are active at the end of the new source. When send first begins execution, all mode tlags are
reset, and no keywords are defined.

The initial, reset state for all mode flags is the "+" state. In general, special processing associated
with a mode x is invoked by flag -x and is revoked by flag +x. Most mode settings have an
immediate effect on the processing of the current source. Exceptions to this are the -rand -i
flags, which apply only to included source, causing it to be processed in an uninterpreted manner.

A keyword is an arbitrary ASCII string for which a replacement has been defined. The replace·
ment may be another string, or (for IBM RJE only) the hexadecimal code for a single 8·bit byte.
At any instant, a given set of keyword definitions is active. Input text lines are scanned, in one
pass from left to right, and longest matches are attempted between substrings of the line and the
active set of keywords. Characters that do not match are output, subject to folding and the stan­
dard translation. Keywords arc replaced by the specified hexadecimal code or replacement string.,
which is then output character by character. The expansion of tabs and length checking. act:ord·
ing to the format specification of an input source, are delayed until substitutions have been made
in a line.

- 3 -

SEND (I> PWB/UNIX Edition 1.0 SEND(I)

All of the keywords definitions made in the current source may be dele.ted by setting the -k flag.
It then becomes possible to reuse them, although this is not recommended. Setting the -k flag
also causes keyword definitions active at the previous source level to be ignored. Setting the + k
flag causes keywords at the previous level to be ignored but does not delete the definitions made
at the current level. The =k argument reactivates the definitions of the previous level.

A keyword may not be redefined, except redundantly, if it is active at some level of source input
and its repfacement is not null. Prompts for keywords that have already been defined at some
higher level will simply cause the definitions to be copied down to the current level~ new
definitions will not be solicited. Only in the case where a keyword is defined by a null replace­
ment, A-, is a redefinition ·allowed, A-a. Prompts for the keyword, -:A, will be satisfied by
either definition.

Keyword substitution is an elementary macro facility that is easily explained and that appears use­
ful enough to warrant its inclusion in the send command. More complex replacements are the
function of a general macro processor(m4([), perhaps. To reduce the overhead of string compari­
son, it is recommended that keywords be chosen so that their initial characters are unusual. For
example, let them all be upper case.

Send performs two types of error checking on input text lines. Firstly, only ASCII graphics and
tabs are permitted in input text. Secondly, the length of a text line, after substitutions have been
made, may not exceed 80 bytes for IBM, or 132 bytes for UNIV AC. The length of each line may
be additionally constrained by a size parameter in the format specification for an input source.
Diagnostic output provides the location of each erroneous line, by line number and input source,
a description of the error, and the card image that results. Other routine errors that are
announced are the inability to open or write files, and abnormal exits from the Shell. Normally,
the occurrence of any error causes send, before invoking the queuer, to prompt for positive
affirmation that the suspect run stream should be submitted.

The hasp subsystem, which supports IBM RJE, operates in EBCDIC code. The send command is
therefore required to translate ASCII characters into their EBCDIC equivalents. The standard
conversion is based on the character set described in "Appendix H" of I BM Sysrem/J 70 Pmrcipl<'s
of Operat1m1 (IBM SRL G A22-7000). Each ASCII character in the octal range 040-176 possesses ,
an EBCDIC graphic equivalent into which it is mapped, with four exceptions: broken vertical bar ·
into "!", into "-. '', "{" into "C". ")" into broken vertical bar. In listings requested from
send and in printed output returned by hasp, the reverse translation is made from EBCDIC to
ASCII, with the qualification that EBCDIC codes that do not have ASCH equivalents are
translated into The uvac subsystem, on the other hand, operates in ASCII code, and any
translations between ASCII and field-data are made, in accordance with the UNIV AC standard, by
the host computer.

Additional control over the translation process is afforded by the -f flag and hexadecimal charac­
ter codes. As a default, send folds lower-case letters into upper case. For UNIV AC RJE it does
more: the entire ASCII range 140-176 is folded into 100-136, so that •"",for example, becomes
"@". In either case, setting the -f flag inhibits any folding. Non-standard character codes are
obtained as a special case of keyword substitution.

When invoked under the name gath. the send command establishes initial flag settings -lgq and
suppresses announcement of a zero card count. While in -gq mode, long lines that are detected
elicit a diagnostic but are not truncated. Also, in this mode. it is potentially useful to convey
non-graphics to standard output. To prevent garh from deleting non-printing characters, each may
be declared as a single character keyword whose replacement is itself. To retain backspaces. for
example, supply the argument "BS=BS", where BS denotes the ASCII character whose octal code
is 010.

- 4 -

-

SEND (I) PWB/UNIX Edition 1.0

The UNIVAC 1110 capability is only supported at the BTL Piscataway location.

FILES
/bin/sh
/tmp/sh*
/usr/rje/sys
/usr/rje/lines

Shell
Shell temporary
PWB/UNIX system name, e.g., '•A"
RJE configuration table

And, where ..a:xx is either hasp or uvac:

/usr/xxxx/pool/stm* temporary
/usr/xxxx/xmit??? queued output
/usr/xxxx/xxxxqer queueing program
/usr/xxxx/xxxxlock null file for lockout
/usr/xxxx/xxxxstat queue status record

SEE ALSO
help(!). m4(1), sh(I), ascii(V), ebcdic(V), fspec(V). hasp(VIII)
Guide 10 IBM Remote Job Entry for PWBIUNIX Users by A. L. Sabsevitz.

DIAGNOSTICS

SEND (I)

"non-graphic deleted", "undefined tab deleted", "long line detected". "long line truncated",
"illegal card excised" - followed by the resulting card image.
"Errors detected" - type "y" to submit anyway.

Use help(I) for explanations of error messages.

BUGS ..
Standard input is read in blocks, and unused byies are returned via seek(ll). If standard input is a
pipe, multiple arguments of the form ''-" and "-:prompt" should not be used, nor should the
logical end-of-file • ..-• ".

• 5 •

SH (I) PWB/UNIX Edition 1.0 SH(I)

NAME
sh - shell (command interpreter)

SYNOPSIS
sh [-v 1 [- 1 [-ct I [name [argl ...) l

DESCRIPTION
Sh is the standard command interpreter. It is the program which reads and arranges the execution
of the command li~es typed by most users. It may itself be called as a command to interpret files
of commands. Before discussing the arguments to the Shell when it is used as a command. the
structure of command lines themselves will be given.

Commands. Each command is a sequence of non-blank command arguments separated by
blariks. The first argument specifies the name of a command to be executed. Except for cenain
types of special arguments discussed below, the arguments other than the command name are
passed without interpretation to the invoked command.

By default. if the ·first argument is the name of an executable file, it is invoked; otherwise the
string .. /bin/" is prepended to the argument. (In this way most standard commands, which
reside in .. /bin", are found.) If no such command is found. the string ''/usr" is funher
prepended (to give "/usr/bin/command") and another attempt is made to execute the resulting
file. (Certain lesser-used commands live in "/usr/bin".) If a command name contains a"/", it is
invoked as is, and no prepending ever occurs. This standard command search sequence may be
changed by the user. See the description of the Shell variable .. Sp" below.

If a non.(firectory file exists that matches the command name and has executable mode, but not
the form of an executable program (does not begin with the proper magic number) then it is
assumed to be an ASCII file of commands and a new Shell is created to execute it. See .. Argu­
ment passing" below.

If the file cannot be found. a diagnostic is printed.

Command lines. One or more commands separated by ·r· or constitute a chain of filters, or
a pipeline. The standard output of each command but the last is taken as the standard input of the
next command. Each command is run as a separate process, connected by pipes (see pipe(II)) to
its neighbors. A command line contained in parentheses .. () " may appear in place of a simple
command as a filter.

A command line consists of one or more pipelines separated, and perhaps terminated by .. ;" or
"&", or separated by ·~I" or "&&". The semicolon designates sequential execution. The
ampersand causes the following pipeline to be executed without waiting for the preceding pipeline
to finish. lhe process id of the preceding pipeline is reponed, so that it may be used if necessary
for a subsequent wait or kill. A pipeline following "&&" is executed only if the preceding pipe­
line completed successfully (exit code zero), while that following .. II" is executed only if the
preceding one did not execute successfully (exit code non-zero). The exit code tested is that of
the last command in the pipeline. The"&&" operator has higher precedence.

Termination Reporting. If a command (not followed by "&") terminates abnormally, a message
is printed. (All terminations other than exit and interrupt are considered abnormal). Termination
reports for commands followed by "&" are given upon receipt of the first command subsequent
to the termination of the command, or when a wait is executed. The following is a list of the
abnormal termination messages:

Bus error
Trace/BPT trap

- 1 -

/

SH (1)

Illegal instruction
IOT trap
EMT trap
Bad system call
Quit
Floating exception
Memory violation
Killed
Broken Pipe
Alarm clock
Terminated ·.

PWB/UNIX Edition 1.0 SH (l)

If a core image is produced, ··- Core dumped" is appended to the appropriate message.

Redirection of 110. There are three character sequences that cause the immediately following
string to be interpreted as a special argument to the Shell itself. Such an argument may appear
anywhere among the arguments of a simple command, or before or after a parenthesized com­
mand list, and is associated with that command or command list.

An argument of the form "<arg" causes the file .. arg" to be used as the standard input (file
descriptor 0) of the associated command.

An argument of the form •• >arg" causes file "arg" to be used as the standard output (file
descriptor 1) for the associated command ... Arg" is created if it did not exist, and in any case is
truncated at the outset.

An argument of the form "> >arg" causes file "arg" to be used as the standard output for the
associated command. If "arg" did not exist, it is created; if it did exist, the command output is
appended to the file.

For example, either of the command lines

Is >junk; cat tail > >junk
(Is; cat tail) >junk

creates, on file "junk", a listing of the working directory, followed immediately by the contents of
file "tail".

Either of the constructs ">arg" or ">>arg" associated with any but the last command of a
pipeline is ineffectual, as is "<arg" in any but the first.

In commands called by the Shell, file descriptor 2 refers to the standard output of the Shell
regardless of any redirection of standard output. Thus filters may write diagnostics to a location
where they have a chance to be seen.

A redirection of the form "<-" requests input from the standard input that existed when the
instance of the Shell was created. This permits a command file to be treated as a filter. The pro­
cedure "lower" could be used in a pipeline to convert characters to lower case:

tr "[A-Z]" "[a-z}" <­
A typical invocation might be:

reform -8 -c < pmtO I lower > prntOa

Generation of argument lists. If any argument contains any of the characters "?", "*" or "[".
it is treated specially as follows. The current directory is searched for files which march the given
argument.

- 2 -

SH (I> PWB/UNIX Edition 1.0 SH (I)

The character •••" in an argument matches any string of characters in a file name (including the
null string).

The character .. ?" matches any single non-null character in a file name.

Square brackets .. [. . .)" specify a class of characters which matches any single file name character
in the class. Within the brackets, each ordinary character is taken to be a member of the class. A
pair of characters separated by .. _,, places in the class each character lexically greater than or
equal to the first and less than or equal to the second member of the pair.

Other characters match only the same character in the file name.

If an argument starts with , .. ?". or .. [", that argument will not match any file name that
starts with •• :·.

For example matches all file names~ .. ?" matches all one-character file names~ .. [ab]*.s"
matches all file names beginning with .. a" or "'b" and ending with ••.s"~ .. ?[zi-m)" matches all

· two-character file names ending with "z" or the letters '"i" through "m". None of these exam­
ples match names that start with ... ".

If the argument with •••" or "?" also contains a .. /", a slightly different procedure is used:
instead of the current directory, the directory used is the one obtained by taking the unmodified
argument to the .. /" preceding the first "*?[". The matching process matches the remainder of
the argument after this '"/" against the files in the derived directory. For example:
'"/usr/dmr/a*.s" matches all files in directory .. /usr/dmr" which begin with '"a" and end with
\.to ~s''.

In any event, a list of names is obtained which match the argument. This list is sorted into alpha·
betical order. and the resulting sequence of arguments replaces the single argument containing the
"'*'', "[", or "?". The same process is carried out for each argument (the resulting lists are not
merged) and finally the command is called with the resulting list of arguments.

If a command has one argument with ... ,, ... ?", or .. [", a diagnostic is printed if no file names
match that argument. If a command has several such arguments, a diagnostic is only printed if
they all fail to match any files.

Quoting. The character .. \" causes the immediately following character to lose any special mean­
ing it may have to the Shell~ in this way •• < ", •• > ", and other characters meaningful to the
Shell may be passed as part of arguments. A special case of this feature allows the continuation of
commands onto more than one line: a new-line preceded by .. , " is translated into a blank.

A sequence of characters enclosed in single quotes (') is taken literally. with no substitution or
special processing whatsoever.

Sequences of characters enclosed in double quotes (") are also taken literally, except that .. , ",
""", and "S" are handled specially. The sequences .. , and "\S" yield and .. S", respec­
tively. The sequence .. \x", where .. x .. is any character except """ or "S", yields "\x". A "$"
within a quoted string is processed in the same manner as a "S" that is not in a quoted string (see
below), unless it is preceded by a .. \ ... For example:

Is I pr -h "\\"My directory\"\$"

causes a directory listing to be produced by Is. and passed on to pr to be printed with the heading
"\"My directory"$". Quotes permit the inclusion of blanks in the heading, which is a single argu­
ment to pr. Note that .. , " inside quotes disappears only when preceding ''$" or """.

Argument passing. When the Shell is invoked as a command, it has additional string processing
capabilities. Recall that the form in which the Shell is invoked is

• 3 •

SH (I) PWB/UNIX Edition 1.0 SH (I)

sh [-v] [name [argl ...] 1
The name is the name of a file which is read and interpreted. If not given, this subinstance of the
Shell continues to read the standard input file.

In command lines in the file (and also in command input), character sequences of th~ !'orm
"SN'', where N is a digit, are replaced by the 11th argument to the invocation of the Shell (arg11).

"$0" is replaced by name. Shell variables ("$a" - "$z"), described below. are replaced in ~:1.;
same way.

The special argument .. $•" is a name for the currem sequence of all arguments from "$1"
through the last argu,ment, each argument separated from the previous by a single blank.

The special argument .. $$" is the ASCII representation of the unique process number of the
current Shell. This string is useful for creating temporary file names within command files.

The sequence '"$x", where .. x" is any character except one of the 38 characters mentioned
above. is taken to ref er to a variable .. x" whose value is the null string. All substitution on a
command line occurs lx~/im• the line is interpreted: no action that alters the value of any variable
can have any effect on a reference to that variable that occurs on the same line.

The argument -t, used alone, causes sh to read the standard input for a single line, execute it as
a command, and then exit. It is useful for interactive programs which allow users to execute sys­
tem commands.

The argument -c (used with one following argument) causes the next argument to be taken as a
command line and executed. No new-line need be present, but new-line characters are treated
appropriately. This facility is useful as an alternative to -t where the caller has already read some
of the characters of the command to be executed.

The argument -v (.. verbose") causes every command line to be printed after all substitution
occurs, but before execution. Each argument is preceded by a single blank. When given. the -v
must be the first argument.

Used alone, the argument .. _,, suppresses prompting, and is commonly used when piping com­
mands into the Shell:

Is I sed "s/.*/echo &:~cat&/" I sh -

prints all files in a directory, each prefaced by its name.

Initialization. When the Shell is invoked under the name "-" (as it is when you login), it
attempts to read the file ".profile" in the current directory and execute the commands found
there. When it finishes with ".profile", the Shell prompts the user for input as usual. Typical
files contain commands to set terminal tabs and modes, initialize values of Shell variables. look at
mail. etc.

End of file. An end-of-file in the Shell's input causes it to exit. A side effect of this fact means
that the way to log out from UNIX is to type an EQT.

Command file errors; interrupts. Any Shell-detected error, or an interrupt signal, during the
execution of a command file causes the Shell to cease execution of that file. (Except after on111rr;
see below.)

Processes that are created with "&" ignore interrupts. Also if such a process has not redirected
its input with a "< ", its input is automatically redirected to come from the zero length file
"/dev/null".

Special commands. The following commands are treated specially by the Shell. These com­
mands generally do not work when named as arguments to programs like 1m1e. 11: or 110/wp

- 4 -

SH (I) PWB/UNIX Edition 1.0

because in these cases they are not invoked directly by the Shell.

chdir and ,.c/ are done without spawning a new process by executing clulir(m.
ltlft{tn is done by executing .. /bin/login" without creating a new process.

wait is done without spawning a new process by executing wait(ll).

SH (I)

shi/i (integer] is done by manipulating the arguments to the Shell. In the normal case, sh!/i has
the effect of decrementing the Shell argument names by one ("$1" disappears, ··s2" becomes
"SI", etc.). When the optional integer is given, only arguments equal to or greater than that
number are shifted' .

.. :" is simply ignored .

.. _,, name [argi [argl 1]
The. single character Shell variable (name) is assigned a value. either from the optional
argument(s), or from standard input. If a single argument is given, its value is used. If a second
argument is included, its value is used only if the first argument has a null value. This permits a
simple way of setting up default values for arguments:

- a "$1" default

causing default to be used if ••st" is null or omitted entirely.

Such variables are ref erred to later with a .. $" prefix. The variables .. Sa" through "Sm" are
guaranteed to be initialized to null, and will never have special meanings. The variables "Sn"
through "Sz'' are 1101 guaranteed to be initialized to null, and may, at some time in the future,
acquire special meanings. Currently, these variables have predefined meanings:

Sn is the argument count to the Shell command.

Sp contains the Shell directory search sequence for command execution. Alternatives are
separated by .. :". The default initial value is:

• p ":/bin:/usr/bin"
which executes from the current direetory (the null pathname), then from .. /bin", then
from "/usr/bin", as described above. For the super-user, the value is:

- p "/bin:/ etc:/"
Using the same syntax, users may choose their own sequence by storing it in a file named
••.path" in their login directory. The ".path" information is available to successive Shells;
the "Sp" value is not. If the ".path" file contains a second line, it is interpreted as the
name of the Shell to be invoked to interpret Shell procedures. (See "Sz" below).

Sr is the exit status code of the preceding command. "O" is the normal return from most
commands.

Ss is your login directory.

St is your login tty letter.

Sw is your file system name (first component of ••ss").

Sz is the name of the program to be invoked when a Shell procedure is to be executed. Its
default value is "/bin/sh", but it can be overridden by supplying a second line in the
".path" file. It can be used to achieve consistent use of a specific Shell during periods when
several distinct Shells are present in the system. For safety in the presence of change, use
"Sz" as a command rather than "sh".

No substitution of variables (or arguments) occurs within single quotes ('). Within double. quotes
("). a variable string is substituted unchanged, even if it contains characters (""", "\,., or "$")
that might otherwise be treated specially. In particular, the argument "$1" can be passed

- 5 -

SH (I) PWB/UNIX Edition 1.0 SH (I>

Fii.ES

unchanged to another command by using ""$1 '"'. Outside quotes, substituted characters possess
the same speciaJ meanings they have as if typed directly.

To illustrate, suppose that the shell procedure "mine" is called with two arguments:

sh mine ·a; echo "$2"' '"'

Then sample commands in .. mine" and their output are as follows:

echo 'SI'
echo "SI"
echo $1

Sl
a; echo "S2"
a
$2

echo S2a" a
echo "$2a" "a
echo $2 syntax error

The appearance of the string "$2" (rather than """) occurs because the Shell performs only one
level of substitution, i.e., no rescanning is done.

onintr [label]
Causes control to pass to the label named (using a goto command) if the Shell command file is
interrupted. After such a transfer, interrupts are re-enabled. Onintr without an argument also
enables interrupts. The special label "-"will cause any number of interrupts to be ignored.

next [name]
This command causes name to become the standard input. Current input is never effectively
resumed. If the argument is omitted, your terminal keyboard is assumed.

pump [-[subchar]] { + 1 [eofstr]
This command reads its standard input until it finds eofstr (defaults to "!" if not specified) alone
on a line. It normally substitutes the values of arguments and variables (marked with "$" as
usual). If"-" is given alone, substitution is suppressed, and "-subchar" causes subchar to be
used in place of"$" as the indicator character for substitution. Escaping is handled as in quoted
strings: the indicator character may be escaped by preceding it by "\". Otherwise, "\" and other
characters are transmitted unchanged. If "+" is used, leading tabs in the input are thrown away.
allowing indentation. This command may be used interactively and in pipelines.

opt [-v] [+v] [-p prompt-str]
The argument -v turns on tracing, in the same style as a -v argument for the Shell. The argu­
ment +v turns it off. The argument -p causes the next argument string to be used as the
prompt sering for an interactive shell.

Commands implementing control structure. Control structure is provided by a set of commands that
happen currently to be built into the Shell, although no guarantee is given that this will remain so.
They are documented separately as follows:

if (I) - if, else, endif, and test.
switch(I) - switch, breaksw, endsw.
while(I) - while, end, break, continue.
goto(I) - goto.
exit(I) - exit.

/etc/sha, for shell accounting.
/dev/null as a source of end-of-file .
. path in login directory to initialize Sp and name of Shell .
. profile in login directory for general initialization.

- 6 -

SH (I) PWB/UNIX Edition 1.0 SH (1)

SEE ALSO
The UNIX Time-Sharing System by D. M. Ritchie and K. Thompson, CACM, July, 1974, which
gives the theory of operation of the Shell.
PWBIUNIX Shell Tutorial by J. R. Mashey.
chdir(I), equals(!), exit(I), expr(l), fd2(l), if(I), login(I), loginfo(I), onintr(I), pump(I), shift(I},
switch(l), wait(I), while(I), pexec(III), sha(V), glob(VIII)

EXIT CODE

BUGS

If an error occurs in a command file, the Shell returns the exit value "1" to the parent process.
Otherwise, the current value of the Shell variable $r is returned. Execution of a command file is
terminated by an error.

Thete is no built-in way to redirect the ·diagnostic output; fd2(J) must be used.
A single command line is limited to 1000 total characters, 50 arguments, and approximately 20
operators.

. 7 -

SHIFT (I) PWB/UNIX Edition 1.0 SHIFT (I)

NAME
shift - adjust Shell arguments

SYNOPSIS
shift [digit]

DESCRIPTION
Shift is used in Shell command files to shift the argument list left by 1, so that old $2 can now be
referred to by $1 and so forth. Shift is useful to iterate over several arguments to a command file.
For example, the command file

while "$1"

end

pr -3 $1
shift

prints each of its arguments in 3-column format.

Shift is executed within the Shell.

The optional argument causes shift to leave shell arguments numbered lower than $digit alone on
shifts~ shift alone and shift 1 are identical in effect.

SEE ALSO
sh(I)

. l .

SIZE (I) PWB/UNIX Edition 1.0 SIZE (I)

NAMI<:
size - size of an object file

SYNOPSIS

size [object ... 1

DESCRIPTION
Size prints the (decimal) number of bytes required by the text, data, and bss portions, and their
sum in octal and deCimal, of each object-file argument. If no file is specified, a.out is used.

SEE ALSO
a.out(V)

- l -

-

__ :. -· - -- . -- - -.:..- ------ -- - __ ..., - __ .. __

SLEEP (I) PWB/UNIX Edition 1.0 SLEEP (I)

NAME

sleep - suspend execution for an interval

SYNOPSIS
sleep time

DESCRIPTION

Sleep suspends execution for time seconds. It is used to execute a command in a certain amount
of time as in:·

(sleep 105; command)&

Or to execute a command every so often, as in this shell command file:

while 1

Sfo:E Al.SO

sleep(l)

BUGS

end

command
sleep 37

Time must be less than 65536 seconds.

;' '
•J' '...,,...,.)

",..,,
.... """} 'J .._;

t c.......,(v ,J

• 1 •

SNO{I) PWB/UNIX Edition 1.0 SNO(l)

NAME
sno - Snobol interpreter

SYNOPSIS

sno (file 1

DESCRIPTJON
Sno is a Snobol III (with slight differences) compiler and interpreter. Sno obtains input from the
concatenation of ./i'I'! and the standard input. All input through a statement containing the label
'end' is considered program and is compiled. The rest is available to 'syspit'.

Sno differs from Snobol III in the following ways.

There are no unanchored searches. To get the same effect:

a ** b unanchored search for b
a *x* b = x c unanchored assignment

There is no back referencing.

x - "abc"
a *x* x is an unanchored search for 'abc'

Function declaration is different. The function declaration is done at compile time by the use of
the label 'define'. Thus there is no ability to define functions at run time and the use of the name
'define' is preempted. There is also no provision for automatic variables other than the parame­
ters. For example:

define f()

or

define f (a,b,c)

AH labels except 'define' (even 'end') must have a non-empty statement.

If 'start' is a label in the program, program execution will start there. If not, execution begins
with the first executable statement. 'define' is not an executable statement.

There are no builtin functions.

Parentheses for arithmetic are not needed. Normal precedence applies. Because of this, the arith­
metic operators '/' and '*' must be set off by space.

The right side of assignments must be non-empty.

Either '" or "'' may be used for literal quotes.

The pseudo-variable 'sysppt' is not available.

SEE ALSO
Snobol III Manual (JACM Vol. 11, No. L Jan. 1964; pp. 21.tf.)

- l .

-

-

SORT (J) PWB/UNIX Edition 1.0 SORT(I)

NAME
sort - sort or merge files

SYNOPSIS
sort [-mubdfinr] [-tx] [+pos [-pos]] ... [-o name] [name] ...

DESCRIPTION

FILES

Sorr sorts lines of all the named files together and writes the result on the standard output. The
name ·-' means the standard input. The standard input is also used if no input file names are
given. Thus sort may be used as a filter.

The default sort key is an entire line. Default ordering is lexicographic by bytes in machine col­
lating sequence. The ordering is affected by the following flags one or more of which may appear.

b Leading blanks (spaces and tabs) are not included in keys.
d 'Dictionary' order: only letters, digits and blanks are significant in comparisons.
f Fold lower case letters onto upper case.

Ignore all nonprinting nonblank characters in nonnumeric comparisons.
n An initial numeric string. consisting of optional minus sign, digits and optionally included

decimal point, is sorted by arithmetic value.
r Reverse the sense of comparisons.
tx Tab character between fields is x.

Selected parts of the line, specified by + pos and - pos, may be used as sort keys. Pos has the
form m.n optionally followed by one or more of the flags bdfinr, where m specifies a number of
fields to skip, 11 a number of characters to skip further into the next field, and the flags specify a
special ordering rule for the key. A missing .n is taken to be 0. +pos denotes the beginning of
the key~ - pos denotes the first position after the key (end of line by default). Later keys are
compared only when all earlier keys compare equal.

When no tab character has been specified, a field consists of nonblanks and any preceding blanks.
Under the -b flag, leading blanks are excluded from a field. When a tab character has been
specified, fields are strings separated by tab characters.

Lines that otherwise compare equal are ordered with all bytes significant.

These flag arguments are also understood:

m Merge only, the input files are already sorted.

o The next argument is the name of an output file to use instead of the standard output. This
file may be the same as one of the inputs, except under the merge flag - m.

u Suppress all but one in each set of contiguous equal lines. Ignored bytes and bytes outside
keys do not participate in this comparison.

Examples. Print a list of all the distinct ro.ftU> commands in a given document:

grep qA\." document I sort -u +O -0.3

Print the password file passwd(V) sorted by user id:

sort -t: +2n /etc/passwd

/tmp/stm???

- 1 -

SPELL (I) PWB/UNIX Edition 1.0 SPELL (I)

NAME
spell - find spelling errors

SYNOPSIS
spell [-v] [-J] file .••

DESCRIPTION

FILES

Spell collects words from the named files, and looks them up in a spelling list. Words that neither
occur among nor are derivable (by applying certain inflections, prefixes, or suffixes) from words in
the spelling list are printed on the standard output. If no files are named, words are collected
from the standard input.

Spell omits 11rQtf{J), trqffW, 11eq11(1), and eqn(I) constructions from the input . .
The process may take several minutes.

Under the -v flag. all words not literally in the spelling list are printed. and plausible derivations
from spelling list words are indicated.

The -1 option causes the finaJ output to appear in a single column instead of three columns.
The normal header and pagination is also suppressed.

The spelling list is based primarily on Kucera and Francis, Computatio11al Analysis of Presem-Day
£11glisll and the Merriam Webster New lmernational Dictionary, 2nd edition. Other sources include
lists of chemical elements, states, countries, province~. capital cities, major cities; given names
from Kucera and Francis; the most common surnames from a large telephone book; common
names from the index of Fieldbook of Natural History by E. L. Palmer and H. S. Fowler; selected
names from Bulfi11ch's Mythology: Bell System Practices; Bell Laboratories technical papers and
manuals; the Federalist papers; random literary fragments; etc.

If the file ''/usr/dict/spellhist'' is writable, spell accumulates copies of its output there.

/bin/deroff, /usr/lib/spell[OI23J: programs
/usr/lib/w2006: list of common words for primary filtering
/usr/dict/spellinglist
/usr/dict/stoplist: likely misspellings (e.g. thier=thy-y+ier} that would otherwise pass
/usr/dict/spellhist

SEE ALSO
typo(I)

BUGS
The coverage of the spelling list is uneven~ new installations will probably wish to monitor the
output for a few months to gather local additions.

- I .

SPLINE (I) PWB/UNIX Edition 1.0 SPLINE (I)

NAME
spline - interpolate smooth curve

SYNOPSIS
spline [option] ...

DESCRIPTION
Spline takes pairs of numbers from the standard input as abcissas and ordinates of a function. It
produces a similar set, which is approximately equally spaced and includes the input set, on the
standard output. The cubic spline output (R. W. Hamming, Numencal Methods for Sc1e1111sts and
£11g111eers, 2nd ed., 349ff) has two continuous derivatives, and sufficiently many points to look
smooth when plotted, for example by p/01(1}.

The following options are recognized, each as a separate argument.

a Supply abscissas automatically (they are missing from the input)~ spacing is given by the
next argument, or is assumed to be 1 if next argument is not a number.

k The next argument is used as the constant k used in the boundary value computation

is set by the next argument. By default k = 0.

n Space output points so that approximately n points occur between the lower and upper x lim­
its, where /1 is the next argument. (Default n = 100.)

p Make output periodic, i.e. match derivatives at ends. First and last input values should nor­
mally agree.

x Next l (or 2) arguments are lower (and upper) x limits. Normally these limits are calcu­
lated from the data. Automatic abcissas start at the lower limit (default 0>°.

SEE ALSO
plot(I)

BUGS

A limit of 1000 input points is enforced silently.

- I -

SPLIT (l) PWB/UNIX Edition 1.0 SPLIT (l)

NAME
split - split a file into pieces

SYNOPSIS
split -n [file [name 1 1

DESCRIPTION
Split reads file and writes it in n-line pieces (default 1000), as many as necessary, onto a set of
output files. The name of the first output file is name with aa appended, and so on lexicographi­
cally. If no output name is given, x is default.

If no input file is given, or if - is given in its stead, then the standard input file is used.

- 1 -

---- - .. ---·- ---- ---~--------· -----:~-:......:~--.:. ---·---···------- ______________ _.,~, ._ --

STRIP (I) PWB/UNIX Edition 1.0 STRIP (l >

NAME
strip remove symbols and relocation bits

SYNOPSIS
strip name ...

DESCRIPTION
Strip removes the symbol table and relocation bits ordinarily attached to the output of the assem­
bler and loader. This is useful to save space after a program has been debugged.

The eff~t of strip is the same as use of the -s option of Id.

FILES
/tmp/stm?

SEE ALSO

temporary file

ld(l), as(I), nm(I)

. l .

STIY (I) PWB/UNIX Edition 1.0 STTY (1)

NAME
stty - set terminal options

SYNOPSIS
stty [option ...]

DESCRIPTION
Stty sets certain 1/0 options on the current output terminal. With no argument, it reports the
current settings of.the options. The option strings are selected from the following set:

even allow even parity
-even disallow even parity
odd allow odd parity
-odd disallow odd parity
raw raw mode input (no erase, kill, interrupt, quit, EOT; parity bit passed back)
- raw negate raw mode
cooked same as '-raw'
-nl allow carriage return for new-line, and output CR-LF for carriage return or new-line
nl accept only new-line to end lines
echo echo back every character typed
-echo do not echo characters
lease map upper case to lower case
-lease do not map case
-tabs replace tabs by spaces when printing
tabs preserve tabs
ek reset erase and kill characters back to normal # and @.
erase c set erase character to c.
kill c set kill character to c.
crO crl cr2 cr3

select style of delay for carriage return (see s11y(II))
nlO nil nl2 nl3

select style of delay for Iinef eed (see stty (II))
tabO tabl tab2 tab3

select style of delay for tab (see stty(lI))
tfO ff1

select style of delay for form feed (see stty(Il))
tty33 set all modes suitable for the Model 33 TELETYPE~
tty37 set all modes suitable for the Model 37 TELETYPE
vt05 set all modes suitable for Digital Equipment Corp. VTOS terminal
tn300 set all modes suitable for a General Electric TermiNet 300
ti700 set all modes suitable for Texas Instruments 700 series terminal
tek set all modes suitable for Tektronix 4014 terminal
hup hang up dataphone on last close.
-hup do not hang up dataphone on last close.
0 hang up phone line immediately
50 75 110 134 150 200 300 600 1200 1800 2400 4800 9600 exta extb

SEE ALSO
stty(Il)

Set terminal baud rate to the number given, if possible. (These are the speeds sup­
ported by the DH-11 interface).

. I -

SU (I) PWB/UNIX Edition 1.0 SU (I)

NAME
SU become privileged user

SYNOPSIS
su [name]

DESCRIPTION

FILES

Su allows one to become the super-user, who has all sorts of marvelous (and correspondingly
dangerous)· powers. In order for su to do its magic, the user must supply a password. If the pass­
word is correct, su will execute the Shell with the user-id set to that of the super-user. To restore
normal user-id privileges, type an end-of-file to the super-user Shell.

The password demanded is that of the entry "root" in the system's password file.

To remind the super-user of his responsibilities, the Shell substitutes "#" for its usual prompt
("%"). The ordinary user's command path search sequence does not apply to the super-user.
The super-user gets "/bin", "/etc", and"/" instead (no current directory).

The optional argument allows logging in as name without logging off as yourself. That is, you get
the powers and privileges, if any, of the user whose login name is name. In this case (unless you
already are the super-user), su asks for that user's password, rather than for the super-user pass­
word.

I etc/ passwd system's password file

SEE ALSO

BUGS

sh (I), pexec (Ill)

If you are the super-user and invoke su with an invalid argument (i.e., a non-existent login name),
you will get the powers and privileges, if any, of the user whose user-id is 255 (regardless of
whether there actually is such a user).

- 1 -

SUM (I) PWB/UNIX Edition 1.0 SUM (I)

NAME
sum - print checksum of a file

SYNOPSIS

sum [file l ...

DESCRIPTION ,
Sum sums the contents of the bytes (mod 2Al6) of each .file specified. Sum prints the file name,
the number of whole or partial 512-byte disk blocks read, and the summed value of its bytes in
decimal.

In practice, sum is often used to vertify that all of a special file can be read without error.

• 1 •

SWITCH (I) PWB/UNIX Edition 1.0 SWITCH (I>

NAME
switch - shell multi-way branch command

SYNOPSIS
switch arg
: labell

: labeln

commands ...
breaksw

commands ...
breaksw

: default
commands ...

endsw

Of:S<.:R I PTION
Switch searches forward in the input file for the first one of:

1. a label that pattern-matches arg. The pattern-matching used is that of the Shell in general·
ing argument lists.

2. the label default.
3. a matching endsw command.

The Shell resumes reading commands from the next line after the location where the search
stopped. Thus, switch supplies a 'case' or 'computed goto' statement similar to that of C.
Because ':' is ignored by the Shell, several labels may occur in order, so that the same sequence
of commands is executed for several different values of arg.

The breaksw command searches forward to the next unmatched e11dsw, and is normallv used at the
end of the sequence of commands following each label. It may be omitted to allow c~mmon. code
to be shared among label values. Several breaksw commands may be written on the same line to
exit from that many levels of nested switch-endsw pairs.

The optional label default should be placed last, since switch always stops upon discovering it. The
construct can be nested: any labels enclosed by a switch-endsw pair are ignored by an outer wNch.
The most common use of swi1ch is to process 'flag' arguments in a shell procedure.

SEE ALSO
if(I), sh(I), while(l)

DIAGNOSTICS

BUGS

switch: missing endsw
breaksw: missing endsw

None of these commands should be hidden behind semicolons. Nested groups hidden behind 1(

or else may also cause trouble.

- l -

SYNC (I)

NAME
sync - update the super block

SYNOPSIS

sync

DESCRIPTION

PWB/UNIX Edition 1.0 SYNC(l)

Sync executes the sync system primitive. If the system is to be stopped, sync must be called to
insure file system ,integrity. See syncUIJ for details.

SEE ALSO
sync(II)

- 1 •

\
/

TABS (I) PWB/UNIX Edition 1.0 TABS (I)

NAME
tabs - set tabs on terminal

SYNOPSIS
tabs [tabspecl [+fl [+mn) [+In] [+ttype] [+q]

DESCRIPTION
Tabs sets the tab stops on the user's terminal according to the tab specification tabspec, after clear­
ing any previous settings. The user must of course be logged in on a terminal with remotely­
settable hardware tabs, including the DASl450 (DIABLO 1620 or XEROX 1700). GSIJOO
(DTC300 or DASI300), DASl300S (DTC300S), HP2640B (HP2640A, HP2644A, HP2645A,
etc.), TELETYPE!! Model 40/2, and General Electric TermiNet terminals.

Users of TermiNet terminals should be aware that they behave in a different way than most other
terminals for some tab settings~ the first number in a list of tab settings becomes the le/i 111urg111
on a TermiNet terminal. Thus, any list of tab numbers whose first element is other than I causes
a margin to be left by a TermiNet, but not by other terminals. A tab list beginning with I causes
the same effect regardless of terminal type. It is also possible to set a left margin on the DASI450
and DASBOOS, although in a different way.

Four types of tab specification are accepted for tabspec: 'canned', repetitive, arbitrary, and file. If
no arguments are given, the default value is -8, i.e., UNIX 'standard' tabs. The lowest column
number is I and the highest is 158. Note that for tabs, column 1 always refers to the leftmost
column on a terminal, even one whose column markers begin at 0, e.g., the DASIJOO,
DASI300S, and DASl450.

- code Gives the name of one of a set of 'canned' tabs. The legal codes and their meanings are
as follows:

-a 1,10,16,36,72
Assembler, IBM S/370, first format

-a2 1,10,16,40,72
Assembler, IBM S/370, second format

-c 1,8,12,16,20,55
COBOL, normal format

-c2 1,6,10,14,49
COBOL compact format (columns 1-6 omitted). Using this code, the first typed charuc·
ter corresponds to card column 7, one space gets you to column 8, and a tab reaches
column 12. In order to get send(/) to prepend the blanks at the beginning, files using
this tab setup should include a format specification (see fspec(V)) as follows:
<:t-c2 m6 s66 d:>

-c3 1,6, 10, 14, ! 8,22.26,30,34,38,42,46,50,54,58 ,62 ,6 7
COBOL compact format (columns 1-6 omitted). with more tabs than -c2. THIS IS
THE RECOMMENDED FORMAT FOR COBOL. The appropriate format specification
is:
<:t-c3 m6 s66 d:>

. I -

TABS (I) PWB/UNIX Edition 1.0

-f 1,7,11.15,19,23
FORTRAN

-p I ,5,9, 13, 17,21,25.29.33,37 ,41,45,49,53,57,61
PL/I

-s 1.10 .. 55
SNOBOL

-u 1,12,20,44
UNIV AC 1100 Assembler

In addition to these 'canned' formats, three other types exist:

TABS (I>

- 11 A repetitive specification requests tabs at columns 1 +11, 1+2*11, etc. Note that such a set­
ting leaves a left margin of /1 columns on TermiNet terminals 011{v. Of particular impor­
tance is the value -8: this represents the UNIX 'standard' tab setting. and is the most
likely tab setting to be found at a terminal. It is required for use with the nrQ/f(I) -h
option for high-speed output (about 10% speed increase). Another special case is the
value -o, implying no tabs at all.

11/.11.2 The arbitrary format permits the user to type any chosen set of numbers, separated by
commas, in ascending order. Up to 40 numbers are allowed. The maximum tab value
accepted is 158. If any number (except the first one) is preceded by a plus sign, it is
taken as an increment to be added to the previous value. Thus. the tab lists 1.10,20,30
and 1,10,+10.+10 are considered identical.

- -.file If the name of a file is given, tabs reads the first line of the file, searching for a format
specification {see Jspec(V)). If it finds one there, it sets the tab stops according to it, oth­
erwise it sets them as -8. If an actual format specification is found in the file. it is
printed at the terminal to remind the user what it is. unless the +f flag is also included
to suppress this output. This type of specification may be used to make sure that a
tabbed file is printed with correct tab settings, and would be used with the pd/J com­
mand:

tabs --file~ pr file

Any of the following may be used also~ if a given flag occurs more than once, the last value given
takes effect.

+f If the -.file type of tab specification 1s used and this option given, no tab specification is
printed at the terminal, but the tab stops are set. This option is most useful when tabs is
invoked from a shell procedure or another command, rather than directly from a termi­
nal. This option has no effect unless a -file form of specification is used.

+In The length argument gives the number of the rightmost column at which a tab will be set
by a repetitive-style specification. The default value is 132, but may be different if the
+t argument implies a more appropriate value for the specific type of terminal being
used. When examining printed output obtained from another computer, it is helpful to
have tabs across the entire width of the terminal. Maximum usable values of /1 are 118
(TermiNet), 132 (any DASI in 10-pitch mode), 158 (any DASI in 12-pitch mode). and
80 (HP2640). Although tabs will accept larger values without diagnostics. using them.
may cause a terminal (especially a DASO to behave strangely.

+m11 The margin argument may be used for TermiNet, DASI450. and DASl300S terminals. It
causes all tabs to be moved over /1 columns by making column 11+ I the left margin. If

- 2 .

-

. -

TABS (1) PWB/UNIX Edition 1.0 TAB.5 (I)

+m is given without a value of 11, the value assumed is 10. For a TermiNet, the first
value in the tab list should be 1. or the margin will move even further to the right.

To reset the left margin of a OASI450 to the normal(Ieftmost) position, type:

tabs +t4SO +mo

The margin on a OASI450 or OASl300S is reset only when the +m flag is given expli­
citly. The margin is not settable on a DASI300, and is settable on the DASl450 and
DASIJOOS only when the +t option is used (see below).

+q The ('quick') flag suppresses the emission of characters to clear previously set tabs. It
can be used if the terminal is know to be clear already, i.e., just after it has been powered
up or reset. -

+ttype The terminal type can be supplied to help tabs optimize its output for specific kinds of
terminals, and is sometimes required when certain functions of some terminals arc
desired. This argument interacts with +I by setting different defaults for different termi­
nals, and different maximum lengths. It interacts with +m because different methods
must be used to set margins on the various terminals.

Value
+t300
+tgsi
+t300S
+tgsis
+t4SO
+tl620
+ttn
+thp
+t40-2
+t
omitted

Given below are the possible cases for +t argument, listing argument value. maximum
length, default length if +l is omitted, and notes. The notes give the following codes:
'S' for a short (several characters) clearing sequence, 'L' for a long sequence (about 60
characters), 'M' for a settable margin, and a list of the terminal types expected.

Maximum Default S/L M Terminal (s)
158 132 L GSI300 (OTCJOO or DASBOO>

"
158 132 s M DASI300S (DTCJOOS>

" " " "
158 132 s M 0ASl450 (OIABLO 1620 or XEROX 1700)

" " "
118 118 s M TermiNet 300 or 1200
80 80 L HP2640A, HP26408
80 80 s TELETYPE 40/2
158 132 s any with settable tabs
158 132 L any with settable tabs

Omitting the +t argument entirely will work for most situations. You should probably
try to type the least that will work, and be more specific only when necessary.

Tab-setting is performed using the standard output.

DIAG:"i!OSTICS
"illegal tabs" when arbitrary tabs are ordered incorrectly, or include any value greater than 158.
"illegal increment" when a zero or missing increment value is found in an arbitrary specification.
"unknown tab code" when a ·canned' code cannot be found.
"can't open" if--filc option used, and file can't be opened.
"file indirection" if --file option used and the specification in that file points to yet <tnothcr lik.
Indirection of this form is not permitted .

- 3 -

TABS (J) PWB/UNIX Edition 1.0 TABS (I)

EXIT CODES
0 - normal
l - for any error

SEE ALSO

BUGS

fspec(V), nrotf(J}. reform(I). send(I)
GSl300(VII), DASl450(VII), HP2640(VII), TERMINET(VII)

It is sad, but true, that it is often necessary to specify the terminal type. Various terminals use
totally inconsistent ways of clearing tabs and setting margins. Tabs clears only 20 tabs (on termi­
nals requiring a long sequence), but is willing to set 40.

- 4 -

-

---------

TAIL (I) PWB/UNIX Edition 1.0 TAIL (I)

NAME
tail - deliver the last part of a file

SYNOPSIS
tail [±number[lbc]] [file]

DESCRlmON
Tail copies the named file to the standard output beginning at a designated place. If no file is
named, the .standard input is used.

Copying begins at distance +number from the beginning, or -number from the end of the input.
Number is counted in units of lines, blocks or characters, according to the appended option I, b or
c. When no units are specified, counting is by lines.

St:t: Al.SO
dd(J)

BUGS
Tails relative to the end of the file are treasured up in a buffer, and thus are limited in length.
Various kinds of anomalous behavior may happen with character special files.

- l .

TBL (l) PWB/UNIX Edition 1.0 TBL (l)

NAMF.
tbl - format tables for nroff or troff

SYNOPSIS
tbl { files] ...

DESCRIPTION
Tb/ is an nroff(l) or m~ff(I) preprocessor for formatting tables. The input files are copied to the
standard output. 'except for lines between .TS and .TE command lines, which are assumed to
describe tables, and which are reformatted. There are several global options: if any are desired,
they are specified on the first line after .TS as a series of keywords separated by blanks or commas
and followed by a semicolon. The possible words are:

center - center the table
expand - format the table to fill the current line length
box - enclose the table in a box
allbox - draw all possible lines so that every item is in a box

After this line (or after .TS if no global options are given) are the lines describing the table for­
mat. Each line describes a line of the actual table. One letter is used for each column. As many
lines are as needed to describe the table are given~ the last line should end with the character "." .
to signal the end of the format information. The last line of the description will apply to all fol·
lowing lines of the table. The legal characters to describe a column are:

c center within the column

r right-adjust

left-adjust

n numerical adjustment: the units digits of numbers are aligned.

s span the previous entry over this column.

replace this entry with a horizontal line

- replace this entry with a double horizontal line

A column letter may be followed by an integer giving the number of spaces between this column
and the next: 3 is default. A column letter may be preceded by a "!" character to indicate that a
vertical line is to be drawn to the left of this column. Letting \t represent a tab (which must be
typed as a genuine tab). the input:

.TS
css
ccs
CCC
Inn.
Household Population
Town\tHouseholds
\tNumber\tSize
Bedminster\t789\t3.26
Bernards Twp.\t3087\t3. 74
Bernardsville\t2018\tJ.30
Bound Brook\t3425\t3.04
Branchburg\t 1644\tJ.49
Bridgewater\t7897\t3.8 l
Far Hills\t240\t3. l 9
.TE

- l -

·---------- --- ----· -----

TBL (I)

yields:

PWBIUNIX Edition 1.0

Household Population
Town Households

Bedminster
Bernards Twp.
Bernardsville
Bound Brook
Branch burg'.
Bridgewater
Far Hills

Number Size
789 3.26

3087 3.74
2018 3.30
3425 3.04
1644 3.49
7897 3.81
240 3.19

TBL (I)

If a table element contains only"_" or , a single or double line (respectively) is drawn across
the column at that point. If a table line contains only"_" or"-", a single or double line (respec­
tively) is drawn all the way across the table.

If a column describer contains the character 'i", a vertical line is drawn to the left of that column
beginning at the point in the column corresponding to the position of the vertical bar in the
describer, and extending to the bottom of the table.

If no arguments are given, tbl reads the standard input, so it may be used as a filter. When it is
used with eqn or neqn. the tbl command should be first, to minimize the volume of data passed
through pipes.

SEE ALSO

TBL - A Program to Format Tables by M. E. Lesk.

. 2 -

TEE (I) PWB/UNIX Edition 1.0 TEE{ I)

NAME
tee - pipe fitting

SYNOPSIS
tee [name ...]

DESCRIPTION
Tee transcribes the standard input to the standard output and makes copies in the named files.

• 1 •

.--
TIME (I) PWB/UNIX Edition 1.0 TIME (I)

!'IAME
time - time a command

SYNOPSIS
time command

DESCRIPTION

BUGS

The given command is executed~ after it is complete, time prints the elapsed time during the com­
mand, the time spent in the system, and the time spent in execution of the command.

The times are printed on the diagnostic output stream.

Elapsed time is accurate to the second, while the CPU times are measured to the 60th second.
Thus the sum of the CPU times can be up to a second larger than the elapsed time.

- 1 -

-

TP(l)

NAME
lp

SYNOPSIS

PWB/UNIX Edition 1.0 TP(l)

manipulate DECtape and magtape

tp (key] [name . . .]

DESCRIPTION
Tp saves and restores files on DECtape or magtape. Its actions are controlled by the key argu­
ment. The key is ll' string of characters containing at most one function letter and possibly one or
more function modifiers. Other arguments to the command are file or directory names specifying
which files are to be dumped, restored, or listed. In all cases, appearance of a directory name
refers to the files and (recursively) subdirectories of that directory.

The function portion of the key is specified by one of the following letters:

r The named files are written on the tape. If files with the same names already exist, they
are replaced. 'Same' is determined by string comparison, so './abc' c~ never be the
same as '/usr/dmr/abc' even if '/usr/dmr' is the current directory. If no file argument is
given, '.' is the default.

u updates the tape. U is like r, but a file is replaced only if its modification date is later
than the date stored on the tape~ that is to say, if it has changed since it was dumped. U
is the default command if none is given. -

d deletes the named files from the tape. At least one name argument must be given. This
function is not permitted on magtapes.

x extracts the named files from the tape to the file system. The owner and mode are
restored. If no file argument is given, the entire contents of the tape are extracted.

lists the names of the specified files. If no file argument is given, the entire contents of
the tape is listed.

The following characters may be used in addition to the letter which selects the function desired.

m Specifies magtape as opposed to DECtape.

0, ••• ,7 This modifier selects the drive on which the tape is mounted. For DECtape, 'x' is
default; for magtape 'O' is the default.

v Normally tp does its work silently. The v (verbose) option causes it to type the name
of each file it treats preceded by the function letter. With the t function, v gives more
information about the tape entries than just the name.

c means a fresh dump is being created; the tape directory is zeroed before beginning.
Usable only with r and u. This option is assumed with magtape since it is impossible
to selectively overwrite magtape.

f causes new entries on tape to be 'fake' in that no data is present for these entries.
Such fake entries cannot be extracted. Usable only with r and u.

Errors reading and writing the tape are noted, but no action is taken. Normally, errors
cause a return to the command level.

w causes tp to pause before treating each file, type the indicative letter and the file name
{as with v) and await the user's response. Response y means 'yes', so the file is
treated. Null response means 'no', and the file does not take part in whatever is being
done. Response x means 'exit'; the tp command terminates immediately. In the x

- 1 -

TP(I)

FILES
/dev/tap'?
/dev/mt'!

DIAGNOSTICS,

PWB/UNIX Edition 1.0 TP (I)

function, files previously asked about have been extracted already. With r, u, and d no
change has been made to the tape.

Several~ the non-obvious one is 'Phase error', which means the file changed after it was selected
for dumping but before it was dumped.

BUGS
A single file with several links to it is treated like several files.

- 2 -

TR(I) PWB/UNIX Edition 1.0 TR(I)

NAME
tr - transliterate

SYNOPSIS
tr [-eds] [string! [string2 1]

DESCRIPTION
Tr copies the standard input to the standard output with substitution or deletion of selected char­
acters. Input characters found in string J are mapped into the corresponding characters of string2.
Any combination of the options -eds may be used: -c complements the set of characters in
s1ringl with_respect to the universe of characters whose ascii codes are 001 through 377 octal; -d
deletes all. input characters in stringJ; -s squeezes all strings of repeated output characters that are
in string2 to single characters.

The following abbreviation conventions may be used to introduce ranges of characters or repeated
characters into the strings:

la - b I stands for the string of characters whose ascii codes run from character a to character b.

(a*nl. where n is an integer or empty, stands for n--fold repetition of character a. N is taken to be
octal or decimal according as its first digit is or is not zero. A zero or missing n is taken to be
huge; this facility is useful for padding string2.

The escape character '\' may be used as in the Shell to remove special meaning from any charac­
ter in a string. In addition, '\' followed by 1, 2. or 3 octal digits stands for the character whose
ascii code is given by those digits.

The following example creates a list of all the words in 'file I' one per line in 'file2', where a word
is taken to be a maximal string of alphabetics. The strings are quoted to protect the special char­
acters from interpretation by the Shell; 012 is the ascii code for newline.

tr -cs "(A-Z][a-z]" "{\012*]" <filel >file2

SEE ALSO
sh (I), ed(I), ascii (V)

BUGS
Won't handle ascii NUL in string I or string2: always deletes NUL from input.

- 1 -

NROFF/TROFF (I) PWB/UNIX Edition 1.0 NROFF/TROFF (I)

NAME
nroff, troff - text formatters

SYNOPSIS
nroff (or troff) [options] files

DESCRIPTION

NROFF and TROFF accept lines of. text interspersed with lines of format control information and
format the ,text into a printable, paginated document having a user-designed style. NROFF and
TROFF are highly compatible with each other and it is almost always possible to prepare input
acceptable to both. Conditional input is provided that enables the user to embed inpuc expressly
destined for either program. NROFF can prepare output directly for a variety of terminal types and
is capable of utilizing the fuJI resolution of each terminal.

An argument consisting of a single minus (-) is taken to be a file name corresponding to the
standard input. If no file names are given, input is taken from the standard input. The options,
which may appear in any order so long as they appear before the filenames, are:

Option

-olist

-nN
-sN

£jfect

Print only pages whose page numbers appear in list, which consists of numbers
and number ranges separated by commas. A number range has the form N- :'vf
and means pages N through M inclusive~ an initial -N means from the beginning
to page N; and a final N - means from N to the end.

Number first generated page N.

Stop every N pages. NROFF will halt prior to every N pages (default N=l) to
allow paper loading or changing, and will resume upon receipt of a new-line char-
acter. TROFF will stop the phototypesetter every N pages, produce a trailer to
allow the changing of cassettes, and will resume after the phototypesetter START
button is pressed.

-mname Prepends the macro file /usr/lib/tmac.name to the input files.

-raN

-i

-q

Register a (one-character name) is set to N.

Read standard input after the input files are exhausted.

Invoke the simultaneous input-output mode of the rd request.

NROFF Only

-T Type Specifies the output terminal type. Currently defined values for rype are 3i for the
(default) Model 37 TELETYPEiil, tn300 for the GE TermiNet 300 (or any terminal
without half-line capabilities), 300 for the DASI-300, 450 for the DASI-450 (or
Diablo Hyterm) and JOOS for the DASI-JOOS. For 12-pitch, use 300-12. 3005-12,
and 450-12.

-e Produce equally-spaced words in adjusted lines, using full terminal resolution.

-h Use output tabs during horizontal spacing to speed output and reduce output char-
acter count. Tab settings are assumed to be every 8 nominal character widths.

TROFF Only

-t Direct output to the standard output instead of the phototypesetter.

-f Refrain from feeding out paper and stopping phototypesetter at the end of the
run.

- 1 -

NROFF/TROFF (I) PWB/UNIX Edition 1.0 NROFF/TROFF (l)

FILF.S

-w Wait until phototypesetter is available, if it is currently busy.

-b TROFF will report whether the phototypesetter is busy or available. No text pro·
cessing is done.

-a Send a printable (ASCII) approximation of the results to the standard output.

-pN Print all characters in point size N while retaining all prescribed spacings and
motions, to reduce phototypesetter elasped time.

-g Prepare output for the Murray Hill Computation Center phototypesetter and direct
it to the standard output.

/usr/lib/suftab suffix hyphenation tables
/tmp/taOOOOO temporary file
/usr/lib/tmac.! standard macro files
/usr/lib/term/"' (NROFF only) terminal driving tables
/usr/lib/font/"' (TROFF only) font width tables

SEE ALSO
NROFF/TROFF User's Manual by J. F. Ossanna.
A TROFF Tutorial by B. W. Kernighan.
tbl(l).
For NROFF, see neqn (I) , col (I) , and tabs (I)
For TROFF, see eqn(I).

• 2 •

~~ '"tS,.,,=•M.,dlitt,-~.:~a-·m•···1,.,~.._....,. ~" -=..

-·

. -

.-

TTY(I)

NAME
tty - get terminal name

SYNOPSIS
tty

PWB/UNIX Edition 1.0 TTY (I)

DESCRIPTION
Tty gives the name of the user's terminal in the form 'ttyn' for n a digit or letter. The actual path
name is then 'fdev/ttyn'.

DIAGNOSTICS
'not a tty' if the standard input file is not a terminal .

• 1 •

TYPO(l) PWB/UNIX Edition 1.0 TYPO(I)

NAME
typo - find possible typos

SYNOPSIS

typo [-1 1 [- n 1 file ...

DESCRIPTION

FILES

Typo hunts through· a document for unusual words, typographic errors, and hapax legomena and
prints them on the standard output.

The words used in the document are printed out in decreasing order of peculiarity along with an
index of peculiarity. An index of 10 or more is considered peculiar. Printing of certain very com­
mon English words is suppressed.

The statistics for judging words are taken from the document itself, with some help from known
statistics of Engiish. The -n option suppresses the help from English and should be used if the
document is written in, for example, Urdu.

The -1 option causes the final output to appear in a single column instead of three columns.
The normal header and pagination is also suppressed.

RQtf(I) and nrQtf(l) control lines are ignored. Upper case is mapped into lower case. Quote
marks, vertical bars, hyphens, and ampersands within words are equivalent to spaces. Words
hyphenated across lines are put back together.

/tmp/ttmp'?'?
/usr/lib/salt
/usr/lib/w2006

SEE Ai.SO
speli(I)

BUGS
Because of the mapping into lower case and the stripping of special characters, words may be hard
to locate in the original text.

The escape sequences of trQ{f(l) are not correctly recognized.

SEE ALSO
spell (I)

- 1 •

UNAME(I) PWB/UNIX Edition 1.0

NAME
uname - print name of current UNIX

SYNOPSIS
uname

DESCRIPTION

UNAME(I)

Uname prints the current name of UNIX on the standard output file. It is mainly useful to deter­
mine what sys'tem one is using.

SEE ALSO
uname(II)

. l -

UNIQ (I) PWB/UNIX Edition 1.0 UNIQ(l)

NAME
uniq - report repeated lines in a file

SYNOPSIS
uniq [-udc [+n 1 [-n 1] [input [output]]

DESCRIPTION
Uniq reads the input file comparing adjacent lines. In the normal case, the second and succeeding
copies of repeated, lines are removed; the remainder is written on the output file. Note that
repeated lines must be adjacent in order to be found; see sort(I). If the -u flag is used, just the
lines that are not repeated in the original file are output. The -d option specifies that one copy
of just the repeated lines is to be written. The normal mode output is the union of the -u and
-d mode outputs.

The -c option supersedes -u and -d and generates an output report in default style but with
each line preceded by a count of the number of times it occurred.

The n arguments specify skipping an initial portion of each line in the comparison:

SEE ALSO

- n The first n fields together with any blanks before each are ignored. A field is defined as a
string of non-space, non-tab characters separated by tabs and spaces from its neighbors.

+ n The first n characters are ignored. Fields are skipped before characters.

sort (I) , comm (I)

- 1 •

. -

-
.- -

r-1· ·~i"'';,'Y"' k•·•,·-±~~::.. ___ :;..._ --· --·-·-· .. ---···--- __ ..._..:,_,_ .. .: ... -.

UNITS (I}

NAME
units - conversion program

.SY:'llOPSIS
units

DF.SCRIPTION

PWB/UNIX Edition 1.0 UNITS (I)

Units converts quantities expressed in various standard scales to their equivalents in other scales.
It works interactively in this fashion:

You have: inch
You want: cm

• 2.54000e+OO
I J. 9J70le-Ol

A quantity is specified as a multiplicative combination of units optionally preceded by a numerk
multiplier. Powers are indicated by suffixed positive integers, division by the usual sign:

You have: 15 pounds force/in2
You want: atm

• J.02069e+OO
I 9. 79730e-Ol

Units only does multiplicative scale changes. Thus it can convert Kelvin to Rankine, out not Cen­
tigrade to Fahrenheit. Most familiar units, abbreviations, and metric prefixes are recognized,
together with a generous leavening of exotica and a few constants of nature including:

pi ratio of circumference to diameter
c speed of light
e charge on an electron
g acceleration of gravity
force same as g
mole Avogadro's number
water pressure head per unit height of water
au astronomical unit

'Pound' is a unit of mass. Compound names are run together, e.g. 'lightyear'. British units that
differ from their US counterparts are prefixed thus: 'brgallon'. For a complete list of units, 'cat
/usr/lib/units' .

FILES
/usr/lib/units

- l -

VP(I) PWB/UNIX Edition 1.0 VP(I)

NAME
vp - Versatec print

SYNOPSIS
vp [-bbin} [-ootfset} [-ttspec] [-n] (-rname] cmd [args]

DESCRIPTION
Vp builds a sh(I) .command file in directory /usr/vpd, and invokes /etc/vpd (the Versatec dae­
mon). The command file has the form:

: logname
vpbrk bin logname
chdir curdir
- p < logdir/ .path
cmd args A reform tspec -0 +poffset
cat /usr/vpd/.X
[echo sltfile finished A mail logname >ldev/null]
[echo sltfile finished A write logname >/dev/null]
rm· -f slt/ile

Here logname is your login name, curdir is your current directory when you executed vp, logdir is
your login directory, sltfile is the name that vp selects for the generated command file, bin is your
data station bin (see below), offset is the offset for reform(I) (see below), and cmd and args are the
command and optional arguments specified on the command line.

The Versatec daemon, letdvpd, invokes sh(I) on the command files that vp queues up in /usr/vpd.
The daemon redirects the standard output of each command file to the Versatec printer.

The keyletter arguments are as follows:

-b Your data station bin.
-o The offset for reform. The default is 12.
-t The first tabspec for reform. The default is'-'.
-n A flag that includes the optional "mail" and "write" lines in the command file.
-r The file named name is to be removed after printing is completed.

Example:

vp -bxl23 pr -184 myfile

OPERATIONS NOTE:

FILES

81.iGS

Execute /etc/vpd after replacing paper in the Versatec printer.

/usr/vpd/*
/usr/vpd/.X
I usr/bin/ vpbrk
/dev/vpO
/etc/vpd

queued command files
terminator
break page generator
Versatec printer
daemon program

There should be a vp(IV) and a vpd(VUI).
Only printers with OMA interfaces are handled; plotting is tolerated, but not supported.
You cannot pipe into vp.

• 1 •

--

______ ,,_. ---- ~--b- -- ------··--··--·--

WAIT (I) PWB/UNIX Edition 1.0

NAME
wait - await completion of process

SYNOPSIS
wait

DESCRIPTION

WAIT(I)

Wait until all processes started with & have completed. and report on abnormal terminations.

Because the · wait(II) system call must be executed in the parent process, the Shell itself executes
wait, without creating a new process.

SEE ALSO
sh(I)

BUGS
After executing wait you are committed to waiting until termination, because interrupts and quits
are ignored by all processes concerned. The only out, if the process does not terminate, is to kill
it (see kill (I)) from· another terminal or to hang up.

- I -

WC(I) PWB/UNIX Edition 1.0 WC(I)

NAME
wc - word count

SYNOPSIS
we [-I] { name ...]

DESCRIPTION
We counts lines and words in the named files, or in the standard input if no name appears. A
word is a maximill string of printing characters delimited by spaces, tabs or newlines. All other
characters are simply ignored.

The -I flag suppresses all output except the line count.

\
J

-

-

/

WHAT(I) PWB/UNIX Edition 1.0 WHAT(l)

NAME
what - identify files

SYNOPSIS
what name ...

DESCRIPTION
What searches the given files for aU occurrences of the pattern which get(I} substitutes for %Z%
(this is @(#) at this printing) and prints out what follows until the first '"', '> ', newline. or null
character. For example, if the C program in file 'f.c' contains

char iden_(] "@{#)identification information";

and f.c is compiled to yield 'f.o' and 'a.out', then the command

what f.c f.o a.out

will print

f.c:
identification information

f.o:
identification information

a.out
identification information

What is intended to be used in conjunction with the SCCS command ger(l), which automatically
inserts identifying information, but it can also be used where the information is inserted manually.

SEE ALSO
get (I), he!p(I)

DIAGNOSTICS

BUGS

Use help(I) for explanations.

It's possible that an unintended occurrence of the pattern @(#) could be found just by chance.
but this causes no harm in nearly all cases.

- l -

WHA TSNEW (I) PWB/UNIX Edition 1.0 WHATSNEW (I)

NAME
whatsnew - compare file modification dates

SYNOPSIS
whatsnew [-yymmdd] (listfile]

DESCRIPTION

FILES

Whatsnew wiH compare the modification dates of files listed in list.file against the date supplied and
report those files that have changed. since that date. By default, the modification time of the file
.newdate in the user's login directory will be used as the comparison date. Similarly, the file .newl­
ist in the user's login directory will be used if list.file is omitted.

If a date is not supplied and .newlist exists, it will be re-created. This will essentially update the
default comparison date used by subsequent whatsnew commands.

Entries in the list file should be relative to the login directory, one per line. If an entry is a direc­
tory, files in that directory will be compared. Only one level of directory searching is performed.

/logindir/ .newlist
/logindir/ .newdate

DIAGNOSTICS
'"bad date" if the supplied date is earlier than 1970.
"'cannot read list" if the list file is not readable.
"cannot access file status" if it can't.

- 1 -

"""'""~--·---------·----------·-·-----------

-

-

WHILE(!) PWB/UNIX Edition 1.0 . WHILE(I)

NAME
while - shell iteration command

SYNOPSIS
while expr

commands... (may include break or continue)
end

DESCRIPTION
While evaluates the expression expr, which is similar to (and a superset oO the expression
described in ij(I). If the expression is true, while does nothing, permitting the command(s) on
following lines to be read and executed by the Shell. If the expression is false, the input file is
etf ectively searched for the matching end command, and the Shell resumes execution of the
command(s) on the line following the end. The while-end grouping may be nested up to three
levels deep.

In addition to the type of expression permitted by if, while treats a single, nonnull argument as a
true expression, and treats a single null argument or lack of arguments as a false expression.

The break command terminates the nearest enclosing while-end group, causing execution to
resume after the nearest succeeding unmatched end. Exit from n levels is obtained by writing n
br!ak commands on the same line.

The continue command causes execution to resume at a preceding while, i.e., the while that begins
the smallest loop containing the continue.

A common loop is that of processing arguments one at a time: see shift(/).

The following is a shell procedure that is also a filter. It reads a line at a time from the standard
input that existed when the procedure was invoked, exiting on end-of-file.

while 1

end

•a <-II exit
commands using $a .•.

SEE ALSO
goto(I), if(I), onintr(l}, sh(I), shift(I), switch(I)

DIAGNOSTICS

BUGS

while: missing end
while: > 3 levels
while: syntax errors like those of if.
break: missing end
break: used outside loop
continue: used outside loop
end: used outside loop

A goto may be used to terminate one or more while-end groupings. Those who use it to branch
into a loop will receive appropriately peculiar results. When an interrupt is caught and transfer to
a label caused by use of onintr(/), all currently effective while-end loops are cancelled, i.e.. the
onintr performs a goto that breaks all loops. Neither while nor end may be hidden behind
semicolons or used within other commands.

WHO(l) PWB/UNIX Edition 1.0 WHO(l)

NAM ft:
who - who is on the system

SYNOPSIS
who [who-file 1 [am I)

DESCRIPTION ,
Who, without an argument, lists the name, terminal channel, and login time for each current
UNIX user.

Without an argument, who examines the /etc/utmp file to obtain its information. If a file is
given, that file is examined. Typically the given file will be /usr/adm/wtmp, which .. contains a
record of all the logins since it was created. Then who lists logins, logouts, and crashes since the
creation of the wtmp file. Each login is listed with user name, terminal name (with '/dev/'
suppressed), and date and time. When an argument is given, logouts produce a similar line
without a user name. Reboots produce a line with 'x' in the place of the device name, and a fos­
sil time indicative of when the system went down.

With two arguments, who behaves as if it had no arguments except for restricting the printout to
the line for the current terminal. Thus 'who am I' (and also 'who are you') tells you who you are
logged in as.

FILES
/etc/utmp

SEE ALSO
login(I), init(VUI)

• 1 •

-

WRITE{I) PWB/UNIX Edition 1.0 WRITE(l)

NAME
write - write to another user

SYNOPSIS
write user [ttyno]

DESCRIPTION
Write copies lines from your terminal to that of another user. When first called. it sends the mes­
sage

message from youmame ..•

The recipient of the message should write back at this point. Communication continues until an
end of file is read from the terminal or an interrupt is sent. At that point wme writes • EOT' or
the other terminal and exits.

If you want to write to a user who is logged in more than once, the rryno argument may be used
to indicate the last character of the appro~riate terminal name.

Permission to write may be denied or granted by use of the mesg(I) command. At the outset
writing is allowed. Certain commands, in particular nroff and pr, disallow messages in order to
prevo.nt messy output.

If the character '!' is found at the beginning of a line, write calls the Shell to execute the rest of
the line as a command.

The following protocol is suggested for using write: when you first write to another user, wait for
that user to write back before starting to send. Each party should end each message with a dis­
tinctive signal ((o) for 'over' is conventional) that t.he other may reply. (oo) (for 'over and out')
is suggested when conversation is about to be terminated.

FILES
/etc/utmp
/bin/sh

SEE ALSO

to find user
to execute '!'

mesg{I), who(I), mail(I)

- l -

XARGS (I) PWB/UNIX Edition 1.0 XARGS (1)

NAME
xargs - construct argument list(s) and execute command

SYNOPSIS
xarp (flags] [command I initia1-args 1]

DESCIUPTION

Xargs combines the fixed initial·arrs with args read from standard input to execute the specified
command one or more 'times. The command can either be executed for each line of args read.
with ail args read for each automatically-determined group of (at most size characters oO args
read. or for each user-specifiable number of a.rgs read.

Specifically, xargs reads the standard input for arguments, using them to construct one or more
arg lists with initial-args (if any), and executes command with each such constructed argument list~
the directory containing command, which may also be a Shell file .. must be in one's .path file. If
command is omitted. /bin/echo is used. Excepting the use of the insert option (-i flag, see
below), arguments read in from standard input are defined to be contiguous strings of c~..ers
delimited by one or more blanks, tabs, or newlines; how.:ver, quoted strings (including embedded
blanks or tabs) may also fonn ail or part of an argument.

Excepting the -i option. each argument list will be constructed-starting with the initial-args. fol·
lowed by an appropriate number of arguments read from standard input. Flags -i~ -1, and -u
modify how args are selected for each command invocation; when none of these flags are coded,
each arg list is built from the continuously-read args from standard input. up to size characters per
list maximum, until there are no more args. When there are flag con.ilicts (e.g., -l vs. -u), the
last t1ag has pre=dence. Flag values are:

-i:

-I

-lreplstr

-nnumber

-t

-p

Causes ~ to terminate if any arg list would be greater than size characters: -x
is forced by the options -i and -1. When neither of the options -i, -1, or -11
are coded. the total length of all args must be within the size limit.

Command is executed for each non-null line of args from standard input A line
is considered to end with the first newline unless the last character of the line is a
blank or a tab; in either of these cases, the blank/tab signals continuation
through the next non-null line. Option-xis forced.

Insert mode: command is executed for each line from standard input. ta.Icing the
entire line as one entity, inserting it in initial-args for each occurrence of repisu.
A maximum of 5 args in initiaJ-args may each contain one or more instances of
rep/m'. Blanks and tabs at the beginnin1 of each line are thrown away, as are
empty lines. ConstrUcted args may not grow larger than 255 characters, and
option -i: is also forced. '{ }' is assumed for replstr if not specified.

Execute command using as many standard input args as possible, up to number
args maximum. Fewer args will be used if their total size is greater th.an size
characters, and for the last invocation if there are fewer than number args remain·
ing. If option -x is also coded, each number args must ftt in the size limitation,
else xargs tenninates execution.

Trace mode: the command and each constructed ari list are echoed to file descrip­
tor 2 just prior to their execution.

Prompt mode: the user is asked whether to execute command each invocation.
Trace mode (-t) is turned on to print the command instance to be executed.
foUowed by the prompt '? •. .'. A reply of y (optionally followed by anything)

• 1 •

XARGS (I)

-ssize

-eeofstr

PWB/UNIX Edition 1.0 XARGS(I)

will execute the command; anything eise, including just a carriage return. skips
that particular invocation of command.

The maximum total size of each arg list is set to size characters; size must be a
positive integer less than or equaJ to 470. If -s is not coded, 470 is taken as the
default. Note that the character count for size includes one extra character for
each arg and the count of characters in the command name.

Eo/sll' is taken as the logical end-of-file string. Underbar (_) is assumed for the
logical EOF string if -e is not coded. -e with no eoftu coded turns off the logi­
cal EOF string capability (underbar is taken literally). Xargs reads standard input
until either end-of-file or the logical EOF string is encountered.

In args read from standard input, characters may be escaped (by a '\') outside of quoted strings:
quoted strings are stripped of the delimiting quotes, with the contents taken literally.

Xargs will terminate if either it receives a return code of minus one from, or if it cannot execute,
command.

EXAMPLES

The following will copy all files from directory $1 to directory S2, and echo each move command
just before doing it

ls $1 I xargs -i -t mv Sl/{} $2/(}

The following will combine the output of the parenthesized commands onto one line, which is
then echoed to the file log:

(logname; date; echo so s•) l xargs >>log

The user is asked which files in the current directory 8re to be archived and archives them into
arch {l.) one at a time, or (2.) many at a time.

1. ls I xargs -9 -t ar r arch
2. ls xargs -p -I I xarp ar r arch

The foflowing will execute com with successive pairs of args originally typed as Shell arguments:

echo s• I xaras -n2 com

DIAGNOSTICS

arg list too long
command not executed or returned -1
Missing quote? <string>
too many args with replsu
insert-buff er overflow
max arg size with insertion via replsll' exceeded
unknown option: <option>
0 < max-line-size <- 470: <-s option as coded>
#args must be positive int: <-n option as coded>
can't read from tty for -p

• 2 -

-·

YACC(I) PWB/UNIX Edition 1.0 YACC(O

NAME
yacc - yet another compiler-compiler

SYNOPSIS
yacc [-vrd 1 [grammar]

DESCRIPTION
Yacc converts a context-free grammar into a set of tables for a simple automaton which executes
an LR (I) parsing. algorithm. The grammar may be ambiguous; specified precedence rules are
used to break ambiguities.

The output is y.tab.c. which must be compiled by the C compiler and loaded with any other rou­
tines required (perhaps a lexical analyzer) and the yacc library:

cc y.tab.c other.a -ly

If the -v flag is given, the file y.output is prepared, which contains a description of the parsing
tables and a report on conflicts generated by ambiguities in the grammar.

The -r flag causes yacc to accept grammars with Ratfor actions, and produce Ratfor output on
y.tab.r. Typical usage is then

re y.tab.r other.a

If the -d flag is used, the file y.tab.h is generated with the define statements that associate the
yacc-assigned "token codes" with the user.declared "token names". This allows source files
other than y.tab.c to access the token codes.

SEE ALSO
lex(I)

FILES

LR Parsing by A. V. Aho and S. C. Johnson, Computing Surveys, June, 1974.
YACC - Yet Another Compiler Compiler by S. C. Johnson.

y.output
y.tab.c
y.tab.r
y.tab.h
yacc.tmp, yacc.acts
/lib/Ii by.a
/usr/tib/yaccopar
/usr/lib/yaccrpar

when ratfor output is obtained
defines for token names
temporary files
runtime library for compiler
parser prototype for C programs
parser prototype for Ratfor programs

DIAGNOSTICS

BUGS

The number of reduce-reduce and shift-reduce conflicts is reported on the standard output~ a
more detailed report is found in they.output file.

Because file names are fixed, at most one yacc process can be active in a given directory at a time.

- 1 -

\

--

INTRO (II) PWB/UNIX Edition l.O INTRO (II)

INTRODUCTION TO SYSTEM CALLS

Section II of this manual lists all the entries into the system. In most cases two calling sequences are
specified, one of which is usable from assembly language, and the other from C. Most of these calls
have an error return. From assembly language an erroneous call is always indicated by turning; on the
c-bit of the condition codes. The presence of an error is most easily tested by the instructions bes and
bee ("branch on error set (or clear)"). These are synonyms for the bes and bee instructions.

From C, an error condition is indicated by an otherwise impossible returned value. Almost always this
is -1; the individual sections specify the details.

In both cases an error number is also available. In assembly language, this number is returned in rO on
erroneous calls. From C, the external variable errno is set to the error number. Errno is not cleared on
successful calls, so it should be tested only after an error has occurred. There is a table of messages
associated with each error, and a routine for printing the message. See perror011J.

The possible error numbers are not recited with each writeup in section II, since many errors are possi­
ble for most of the calls. Here is a list of the error numbers, their names inside the system (for the
benefit of system-readers), and the messages available using perror. A short explanation is also pro­
vided.

0 (unused)

1 EPERM Not owner and not super-user
Typically this error indicates an attempt to modify a file in some way forbidden except to its
owner. It is also returned for attempts by ordinary users to do things allowed only to the super­
user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file should exist but doesn't, or when one
of the directories in a path name does not exist.

J ESRCH No such process
The process whose number was given to signal does not exist, or is already dead.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the user has elected to catch, occurred
during a system call. If execution is resumed after processing the signal, it will appear as if the
interrupted system call returned this error condition.

5 EIO 110 error
Some physical 1/0 error occurred during a read or write. This error may in some cases occur on
a call following the one to which it actually applies.

6 ENXIO No such device or address

7

110 on a special file refers to a subdevice which does not exist. or beyond the limits or the dev­
ice. It may also occur when, for example, a tape drive is not dialed in or no disk pack is loaJed
on a drive.

E2BIG Arg list too long

- I -

INTRO (II) PWB/UNIX Edition 1.0 INTRO(II)

An argument list longer than the maximum allowable (counting the null at the end of each argu­
ment) is presented to exec. The maximum is a configuration dependent parameter.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the appropriate permissions, does not
start with one of the magic numbers 407, 410, or 411.

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read (resp. write) request is made to a file
which is open only for writing (resp. reading).

10 ECHILD No children
Wait and the process has no living or unwaited-for children.

11 EAGAIN No more processes
In a Jbrk, the system's process table is full and no more processes can for the moment be
created.

12 ENOMEM Not enough core
During an exec or break, a program asks for more core than the system is able to supply. This is
not a temporary condition; the maximum core size is a system parameter. The error may also
occur if the arrangement of text, data, and stack segments is ~uch as to require more than the
existing 8 segmentation registers.

13 EACCES Permission denied .
An attempt was made to access a file in a way forbidden by the protection system.

14 EFAULT Memory fault
A memory fault occurred while passing data between the user and the system. Most likely the
result of bad arguments to the system call.

15 ENOTBLK Block device required
A plain file was mentioned where a block device was required, e.g., in mount.

'
16 EBUSY Mount device busy

An attempt to mount a device that was already mounted or an attempt was made to dismount a
device on which there is an open file or some process's current directory.

17 EEXIST File exists
An existing file was mentioned in an inappropriate context, e.g., link.

18 EXDEV Cross-device link
A link to a file on another device was attempted.

19 ENODEV No such device
An attempt was made to apply an inappropriate system call to a device; e.g., read a write-only
device.

20 ENOTDIR Not a directory
A non-directory was specified where a directory is required, for example in a path name or as an
argument to chdir.

·,

-

-

- - ·-'-· -·-. - -- -· =·-----~-~'..'_.;. ·::· ___ _

INTRO (II) PWB/UNIX Edition 1.0 INTRO (II)

21 EISDIR Is a directory
An attempt to write on a directory.

22 EINV AL Invalid argument
Some invalid argument: currently, dismounting a non-mounted device, mentioning an unknown
signal in signal, and giving an unknown request in stry to the TIU special file.

23 ENFILE File table overflow
The system's table of open files is full, and temporarily no more opens can be accepted.

24 EMFILE Too many open files
Only 15 files can be open per process.

25 ENOTIY Not a terminal
The file mentioned in stry or gtry is not a terminal or one of the other devices to which these '
calls apply.

26 ETXTBSY Text file busy
An attempt to execute a pure-procedure program which is currently open for writing (or r~-~J­
ing!). Also an attempt to open for writing a pure-procedure program that is being executed.

27 EFBIG File too large
An attempt to make a file larger than the maximum of 32768 blocks.

28 ENOSPC No space left on device
During a write to an ordinary file, there is no free space left on the device.

29 ESPIPE Seek on pipe _
A seek was issued to a pipe. This error should also be issued for other non-seekable devices.

30 EROFS Read-only file system
An attempt to modify a file or directory was made on a device mounted read-only.

31 EMLINK Too many links
An attempt to make more than 127 links to a file.

32 EPIPE Write on broken pipe
A write on a pipe for which there is no process to read the data. This condition normally gen­
erates a signal~ the error is returned if the signal is ignored.

- 3 -

ACCESS (II) PWB/UNIX Edition 1.0 ACCESS (II)

NAME
access - determine accessibility of file

SYNOPSIS
(access - 33.)
sys access; name; mode

access(name, mode)
char *name;

DESCRIPTION
Access checks the given file name for accessibility according to mode. which is 4 (read), 2 (write)
or l (execute) or a combination thereof. An appropriate error indication is returned if one or
more of the desired access modes would not be granted.

The user and group IDs with respect to which permission is checked are the real UID and GID of
the process. so this call is useful to set-UID programs.

Notice that it is only access bits that are checked. A directory may be announced as writable by
access. but an attempt to open it for writing will fail (although .files may be created there); a file
may look excutable, but exec(ll) will fail unless it is in proper format.

SEE ALSO
stat(ll)

DIAGNOSTICS
C-bit is set on disallowed accesses, and the error code is in rO~ from C, -1 is returned and the
error code is in errno. 0 is returned from successful tests.

- 1 -

-
ALARM (II) PWB/UNIX -Edition 1.0

NAME
alarm - schedule signal after specified time

SYNOPSIS
(alarm - 27.)
(seconds in rO)
sys alarm

alarm (seconds)
int seconds;

DESCRIPTION

ALARM (II)

Alarm causes signal number 14 to be sent to the invoking process in a number of seconds given
by the argument. Unless caught, the signal terminates the process.

Alarm requests are not stacked; successive ca!ls reset the alarm clock. If the argument is 0, any
alarm request is cancelled. Because the clock has a I-second resolution, the signal may occur up
to one second early; because of scheduling delays, resumption of execution of when the signal is
caught may be delayed an arbitrary amount. The longest specifiable delay time is 65535 seconds.
The old value of the alarm dock is returned in rO. In C, that value is returned.

SEE ALSO
pause(II), sleep(III)

- I -

BREAK { ll) PWB/UNIX Edition 1.0 BREAK{II)

NAME
break, brk, sbrk - change core allocation

SYNOPSIS
(break - 17.)
sys break; addr

char •brk (addr)

char *sbrk Oner>',

DESCRIPTION
Break sets the system's idea of the lowest location not used by the program (called the break) to
addr (rounded up to the next multiple of 64 bytes). Locations not less than addr and below the
stack pointer are not in the address space and will thus cause a memory violation if accessed.

From C, brk will set the break to addr. The old break is returned.

In the alternate entry sbrk, incr more bytes are added to the program's data space and a pointer to
the start of the new area is returned.

When a program begins execution via exec the break is set at the highest location defined by the
program and data storage areas. Ordinarily, therefore, only programs with growing data areas
need to use break.

SEE ALSO
exec(II), alloc(III), end(III)

DIAGNOSTICS

BUGS

The c-bit is set if the program requests more memory than the system limit or if more than 8 seg­
mentation registers would be required to implement the break. From C, -1 is returned for these
errors.

Setting the break in the range 0177700 to 0177777 is the same as setting it to zero.

- 1 -

CHOIR (II)

:"'AME
chdir - change working directory

SYNOPSIS

(chdir - 12.)
sys chdir; dimame

chdir(dimame)
char *dimame;

DESCRIPTION

PWB/UNIX Edition 1.0 CHOIR (II)

Dirname is the address of the pathname of a directory, terminated by a null byte. Chdir causes
this directory to become the current working directory.

SEE ALSO
chdir(I)

DIAGNOSTICS
The error bit (c-bit) is set if the given name is not that of a directory or is not readable. From C,
a -1 retu~ed value indicates an error. 0 indicates success.

• 1 •

CHMOD(II)

NAME
chmod - change mode of file

SYNOPSIS

(chmod - 15.)
sys chmod; name; mode

ch mod (name, mqde)
char •name;

DESCRIPTION

PWB/UNIX Edition 1.0 CHMOD(ll)

The file whose name is given as the null-terminated string pointed to by name has its mode
changed to mode. Modes are constructed by ORing together some combination of the following:

4000 set user ID on execution
2000 set group ID on execution
1000 save text image after execution
0400 read by owner
0200 write by owner
0100 execute (search on directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

Only the owner of a file (or the super-user) may change the mode. Only the super-user can set
the I 000 mode.

SEE ALSO
chmod(I)

DIAGNOSTIC
Error bit (c-bit) set if name cannot be found or if current user is neither the owner of the file nor
the super-user. From C, a -1 returned value indicates an error, 0 indicates success.

\

I'

-

-

-

__ .,..,..... i,.· --~~-....a.:=i......'!.d... • .:....~-----_..,,_._...,,_.-....... _. • .._.-'""----.ca •..,.+,.;;-··;o,:...· ____ _....-..,. . ..-._..re r·,..• ~-.......,,., --~~--~ --·-

CHOWN(ll) PWB/UNIX Edition 1.0

NAME
chown - change owner and group of a file

SYNOPSIS
(chown - 16.)
sys cbown; name; owner

cbown(name, owner)
char *name;.

DESCRIPTION

CHOWN (11)

The file whose name is given by the null-terminated string pointed to by name has its owner and
group changed to the low and high bytes of owner respectively. · ·

SEE ALSO
chown (I), chgrp(I), passwd (V)

DIAGNOSTICS

I

The error bit (c-bit) is set on illegal owner changes. From C, a -1 returned value indicates error,
0 indicates success.

- 1 -

CLOSE (II)

NAME
close - close a file

SYNOPSIS
(close -6.)
(file descriptor in rO)
sys close

dose(fildes}

DESCRIPTION

PWB/UNIX Edition 1.0 CLOSE(II)

Given a file descriptor such as returned from an open, creat, or pipe call, close closes the associated
file. A close of aU files is automatic on exit, but since processes are limited to 15 simultaneously
open files, close is necessary for programs which deal with many files.

SEE ALSO
creat(Il), open(II), pipe(II)

DIAGNOSTICS
The error bit (c-bit) is set for an unknown file descriptor. From C, a -1 indicates an error, 0
indicates success.

-

CREAT(Il)

NAME
creat - create a new file

SYNOPSIS
(creat - 8.)
sys creat; name; mode
(file descriptor in rO)

creat (name, mode)
char •name;

DESCRIPTION

PWB/UNIX Edition l.O CREAT(II)

Crear creates a new file or prepares to rewrite an existing file called name, given as the address of
a null-terminated string. lf the file did not exist, it is given mode mode. See chmod(llJ for the
construction of the mode argument.

lf the file did exist, its mode and owner remain unchanged but it is truncated to 0 length.

The file is also operied for writing, and its file descriptor is returned (in rO).

The mode given is arbitrary~ it need not allow writing. This feature is used by programs which
deal with temporary files of fixed names. The creation is done with a mode that forbids writing.
Then if a second instance of the program attempts a crear. an error is returned and the program
knows that the name is unusable for the moment.

SEE ALSO
write(Il), close(lI}, stat(Il)

DIAGNOSTICS
The error bit (c-bit) may be set if: a needed directory is not searchable; the file does not exist and
the directory in which it is to be created is not writable; the file does exist and is unwritable; the
file is a directory; there are already too many files open.

From C, a -1 return indicates an error.

. I .

CSW (II)

NAME
csw - read console switches

SYNOPSIS
(csw ~ 38.)
sys csw

getcsw()

DESCRIPTION

PWB/UNIX Edition 1.0

The setting of the console switches is returned (in rO).

- 1 -

CSW (II)

_l___....;_. - ----..:..-:.~::.""""'- _;_,~,_, ~,..;;.;;::. __

_,,--

DUP (II) PWB/UNIX Edition 1.0

NAME
dup - duplicate an open file descriptor

SYNOPSIS
(dup - 41.)
(file descriptor in rO)
sys dup

dup(ftldes)
int tildes;

DESCRIPTION

DUP(II)

Given a file descriptor returned from an open, pipe, or crear call, dup will allocate another file
descriptor synonymous with the original. The new file descriptor is returned in rO.

Dup is used more to reassign the value of file descriptors than to genuinely duplicate a file descrip­
tor. Since the algorithm to allocate file descriptors returns the lowest available value, combina­
tions of dup and close can be used to manipulate file ~escriptors in a general way. This is handy
for manipulating standard input and/ or standard output.

SEE ALSO
creat(ll), open(II), close(Il), pipe(Il)

DIAGNOSTICS
The error bit (c-bit) is set if: the given file descriptor is invalid~ there are already too many open
files. From C, a -1 returned value indicates an error.

- 1 -

EXEC(Il) PWB/UNIX Edition 1.0

NAME
exec, exec!, execv - execute a file

SYNOPSIS

(exec - 11.)
sys exec; name; args

name: < ... \0>

args: argO; argl; ... ; 0
argO: < ... \O>
argl: < ... \0>

execHname, argO, argl, .•. , argn, ())
char *name, "'argO, •argl, .•• , •argn;

execv(name, argv)
char •name;
char •argv I I;

DESCRIPTION

EXEC(II)

Exec overlays the calling process with the named file, then transfers to the beginning of the core
image of the file. There can be no return from the file; the calling core image is lost.

Files remain open across exec calls. Ignored signals remain ignored across exec, but signals that
are caught are reset to their default values.

Each user has a real user ID and group ID and an effective user ID and group ID. The real ID
identifies the person using the system; the effective ID determines his access privileges. Exec
changes the effective user and group ID to the owner of the executed file if the file has the "set­
user-ID" or "set-group-ID" modes. The real user ID is not affected.

The form of this call differs somewhat depending on whether it is called from assembly language
or C~ see below for the C version.

The first argument to exec is a pointer to the name of the file to be executed. The second is the
address of a null-terminated list of pointers to arguments to be passed to the file. Conventionally,
the first argument is the name of the file. Each pointer addresses a string terminated by a null
byte.

Once the called file starts execution, the arguments are available as follows. The stack pointer
points to a word containing the number of arguments. Just above this number is a list of pointers
to the argument strings. The arguments are placed as high as possible in core.

sp- nargs
argO

~argn
~t~"',

argO: <argO_Q> ,
... ~~~~,~~

argn: <argn\0>

- 1 -

/

EXEC(II) PWB/UNIX Edition 1.0 EXEC(ll)

From C, two interfaces are available. exec/ is useful when a known file with known arguments is
being called: the arguments to exec/ are the character strings constituting the file and the argu­
ments: as in the basic call, the first argument is conventionally the same as the file name (or its·
last component). A 0 argument must end the argument list.

The execv version is useful when the number of arguments is unknown in advance; the arguments
to execv are the name of the file to be executed and a vector of strings containing the arguments.
The last argument string must be followed by a 0 pointer.

When a C program is. executed, it is called as follows:

main(argc, argv)
int argc;
char **argv;

where argc is the argument count and argv is an array of character pointers to the arguments
themselves. As indic:&ted, ar;:c is conventionally at least one and the first member of the array
points to a string containing the name of the file.

Argv is not directly usable in another execv, since argv{argcl is - l and not 0.

SEE ALSO
fork(ll), pexec(III)

DIAGNOSTICS

BUGS

If the file cannot be found, if it is not executable, if it does not have a valid header (407, 410, or
411 octal as first word), if maximum memory is exceeded, or if the arguments require more than
5120 bytes a return from exec constitutes the diagnostic; the error bit (c-bit) is set. Even for the
super-user, at least one of the execute-permission bits must be set for a file to be executed. From
C the returned value is -1.

Only 5120 characters of arguments are allowed.

. 2 .

EXIT (II)

NAME
exit - terminate process

SYNOPSIS

(exit - 1.)
(status in rO)
sys exit

exit(status)
int status;

m:s<.:RIPTJON

PWB/UNIX Edition 1.0 EXIT(II)

Exit is the normal means of terminating a process. Exlt closes all open files of the process, and
notifies the parent process, if it is executing a wait. The low byte of rO (resp. the argument to
exit) is available as status to the parent process.

This call can never return.

SEE ALSO
wait(II)

- 1 -

.-

-

--

-------··------~- ·-- ----;·~·-

FORK(II)

NAME
fork - spawn new process

SYNOPSIS
(fork - 2.)
sys fork
(new process return)
(old process return)

fork()

DESCRIPTION

PWB/UNIX Edition 1.0 FORK(ll)

Fork is the only way new processes are created. The new process's core image is a copy of that of
the caller of fork. The only distinction is the return location and the fact that rO in the old
(parent) process contains the process ID of the new {child) process. This process ID is used by
wait.

The two returning processes share all open files that existed before the call. In particular, this is
the way that standard input and output files are passed and also how pipes are set up.

From C. the child process receives a 0 return, and the parent receives a non-zero number which
is the process ID of the child; a return of -1 indicates inability to create a new process.

SEE ALSO
wait(II), exec(II), pexec(III)

DIAGNOSTICS
The error bit (c-bit) is set in the old process if a new process could not be created because of lack
of process space. From C, a return of -1 indicates an error.

- l -

FSTAT (II)

NAMt:
f stat - get status of open file

SYNOPSIS
(fstat - 28.)
(file descriptor in rO)
sys fstat; buf

fstat(ftldes, buf)
struct in ode *buf;

DESCRIPTION

PWB/UNIX Edition i .0 FSTAT(ll)

\

This call is identical to stat, except that it operates on open files instead of files given by name. It
is most often used to get the status of the standard input and output files, whose names are
unknown.

SEE ALSO
stat(II)

DIAGNOSTICS
The error bit (c·bit) is set if the file descriptor is unknown~ fr9m C, a -1 return indicates an
error, 0 indicates success.

• 1 •

.--

--

GETGID (II)

NAME
getgid - get group identifications

SYNOPSIS
(getgid • 47.)
sys getgid

getgid()

DESCRIPTION

PWB/UNIX Edition 1.0 GETGID (11)

Gerg1d returns a word (in rO), the low byte of which contains the real group ID of the current pro­
cess. The high byte contains the effective group ID of the current process. The real group ID
identifies the group of the person who is logged in, in contradistinction to the effective group ID,
which determines his access permission at the moment. It is thus useful to programs which
operate using the .. set group ID" mode, to find out who invoked them.

I

SEE ALSO .
setgid(IU

- 1 -

GETPID {II) PWB/UNIX Edition 1.0

NAM•:
getpid get process identification

SYNOPSIS
(getpid - 20.)
sys getpid
(pid in rO)

getpid()

DESCRIPTION

GETPID (II)

Gerp1d returns the process ID of the current process. Most often it is used to generate uniquely­
named temporary files.

- l -

-

GETUID (II)

NAME
getuid - get user identifications

SYNOPSIS
(getuid - 24.)
sys getuid

getuid()

DESCRIPTION

PWB/UNIX Edition 1.0 GETUID (II)

Geruid returns a word (in rO), the low byte of which contains the real user ID of the current pro­
cess. The high byte contains the effective user ID of the current process. The real user ID
identifies the person who is logged in, in contradistinction to the effective user ID, which deter.
mines hi.> access permission at the moment. It is thus useful to programs which operate using the
"set user ID" mode, to find out who invoked them.

SEE ALSO
setuid(Il)

- 1 -

GTIY (II}

NAME
gtty

SYNOPSIS

get terminal status

(gtty - 32.)
(file descriptor in rO)
sys gtty; arg

arg: .•.+6

gtty(fildes, arg)
int arg(31;

DESCRIPTION

PWB/UNIX Edition 1.0 GTTY (II)

Guy stores in the three words addressed by arg the status of the terminal whose file descriptor is
given in rO (resp. given as the first argument). The format is the same as that passed by stty.

Sfo:E ALSO
stty(ll)

DIAGNOSTICS
Error bit (c-bit) is set if the file descriptor does not refer to a terminal. From C, a -1 value is
returned for an error, 0, for a successful call.

- 1 -

\
.I

- - --·------. - -~····~/'.'._--,..-· ... ~··

IND IR (II) PWB/UNIX Edition 1.0 INDIR (II)

NAM.E
indir - indirect system call

SYNOPSIS
(indir • 0.)
sys indir; syscall

DESCRIPTION .
The system call at the location sysca/I is executed. Execution resumes after the indir call.

The main purpose of indir is to allow a program to store arguments in system calls and execute
them out of line in the data segment. This preserves the purity of the text segment.

If indir is executed indirectly, it is a no-op. If the instruction at the indirect location is not a sys­
tem call, the executing process will get a fault.

• 1 -

KILL (II)

NAME
kill

SYNOPSIS

send signal to a process

(kill - 37.)
(process number in rO)
sys kill; sig

kill (pid~ sig);

DESCRIPTION

PWB/UNIX Edition 1.0 KILL (II)

Kill sends the signal sig to the process specified by the process number in rO. See s1gnal(IJ) for a
list of signals.

The ·sending and receiving processes must have the same effective user ID. The super-user can
kill any process.

If the process number is 0, the signal is sent to all processes which have the same process group
number as the sender. If the process number is less than 0, the signal is sent to all processes for
which the sender has permission. In both of the above cases, process 0 and process 1 are
excluded. Note, process 0 is really the scheduler, and process numbers must be positive to avoid·
confusion with error indications in C.

SEE ALSO
kill (I) , signal (11)

DIAGNOSTICS
The error bit (c-bit) is set if the process does not have permission, or if the process does not
exist. From C, a -1 return indicates an error.

- 1 -

*---=.....:....~ ~ - .=;.i....fi..-~ .. ~--· -·----- ~-----· -~--- ----···-------- _____ .. ___ _..... ~------£.-.- _.:..~.-....~

LINK (II)

NAME
link - link to a file

SYNOPSIS
(link• 9.)
sys link; namel; name2

link(namel, name2)
char •namel, "'name2;

DESCRIPTION

PWB/UNIX Edition 1.0 LINK (II)

A link to name/ is created; the link has the name 11amel. Either name may be an arbitrary path
name.

S.:t: Al~<;<>
ln(I), unlink(II)

DIAGNOSTICS
The error bit (c-bit) is set when name I cannot be found~ when namel already exists: when the
directory of name2 cannot be written; when an attempt is made to link to a directory by a user
other than th~ super-user; when an attempt is made to link to a file on another file system: when
more than 127 links are made. From C, a -1 return indicates an error, a 0 return indicates suc­
cess.

- 1 -

LOG INFO (II) PWB/UNIX Edition 1.0 LOGINFO (II)

NAME
logname, logdir, logtty, logpost - login information

SYNOPSIS
char "'lognameO, *logdirO, "'logttyO;
logpost (buf)
char *buf;

DESCRIPTION
Logname returns a pointer to the null-terminated login name (fits in 8 characters).

logdir returns a pointer to the null-terminated login directory pathname (fits in 22 char).

logtty returns a pointer to the tty letter.

These data are created by login(I) using the function logpost which is executable only by (he
super-user.

This function is kept in the -IPW library.

SEE ALSO
login (I) , udata (II)

DIAGNOSTICS
Same as for udata(Il).

- l -

\

MKNOD(II) PWB/UNIX Edition 1.0 MKNOD (Il)

NAME
mknod - make a directory or a special file

SYNOPSIS
(mknod =-· 14.)
sys mknod; name; mode; addr

mknod(name, mode, addr)
char *name;

DESCRIPTION
Mknod creates a new file whose name is the null-terminated string pointed to by name. The mode
of the new file (including directory and special file bits) is initialized from mode. The first physical
address of the file is initialized from addr. Note that in the case of a directory, addr should be
zero. In the case of a special file, addr specifies which special file.

Mknod may be invoked only by the super-user.

SEE ALSO
mkdir(D, mknod(VIII), fs(V)

DIAGNOSTICS
Error bit (c-bit) is set if the file already exists or if the user is not the super-user. From C, a -1
value indicates an error.

- I -

MOUNT(Il) PWB/UNIX Edition 1.0

NAME
mount - mount file system

SYNOPSIS
(mount - 21.)
sys mount; special; name; rwftJlg

mount (special, name, rwftag}­
char •special, •name;

DESCRIPTION

MOUNT(II)

Mount announces to the system that a removable file system has been mounted on the block­
structured special file special; from now on, references to file name will ref er to the root file on the
newly mounted file system. Special and name are pointers to null-terminated strings containing
the appropriate path names.

Name must exist already. Its old contents are inaccessible while the file system is mounted.

The rwftag argument determines whether the file system can be written on; if it is 0 writing is
allowed, if non-zero no writing is done. Physically write-protected and magnetic tape file systems
must be mounted read-only or errors will occur when access times are updated, whether or not
any explicit write is attempted.

Only the super-user can execute mount.

SEE ALSO
mount(VIII), umount(II)

DIAGNOSTICS
Error bit (c-bit) set if: special is inaccessible or not an appropriate file; name does not exist; special
is already mounted; name is in use; there are already too many file systems mounted.

- 1 -

\
j

--

NICE (II)

NAME
nice - set program priority

SYNOPSIS

(nice - 34.)
(priority in rO)
sys nice

nice(priority)

DESCRIPTION

--- ---------~

PWB/UNIX Edition 1.0 NICE (11)

The scheduling priority of the process is changed to the argument. Positive priorities get less ser­
vice than normal; 0 is default. Only the super-user may specify a negative priority. The valitl
range of priority is 20 to -128. The value of 4 is recommended to users who wish to cxcrntc
long-running programs without flak from the administration.

The effect of this call is passed to a child process by the jbrk system call. The effect can be can­
celled by another call to mce with a priority of 0.

The actual running priority of a process is the prJoriry argument plus a number that ranges from
100 to 127 depending on the cpu usage of the process.

SEE ALSO
nice{I)

DIAGNOSTICS
The error bit (c-bit) is set if the user requests a priority outside the range of 0 to 20 and is not the
super-user.

- l -

OPEN (II) PWB/UNIX Edition 1.0

NAME
open - open for reading or writing

SYNOPSIS
(open - 5.)
sys. open; name; mode
(file descriptor in rO)

open (name, mode)· .
char •name;

DESCRIPTION

OPEN (II)

Open opens the file name for reading (if mode is 0), writing (if mode is 1) or for both reading and
writing (if mode is 2). Name is the address of a string of ASCII characters representing a path
name, terminated by a null character.

The returned file descriptor should be saved for subsequent calls to read, write, and close.

SEE ALSO
creat (II), read (II), write(Il), close (II)

DIAGNOSTICS
The error bit (c-bit) is set if the file does not exist, if one of the necessary directories does not
exist or is unreadable, if the file is not readable (resp. writable), or if too many files are open.
From C, a -1 value is returned on an error.

- 1 •

PAUSE(Il)

NAME
pause - indefinite wait

SYNOPSIS
(pause - 29.)
sys pause

pause ();

DESCRIPTION

PWB/UNIX Edition 1.0 PAUSE (II)

Pause causes its caller to suspend execution indefinitely. A caught signal is processed normally.
The most plausible use of pause is in conjunction with an alarm-clock signal: alarm(JJ).

SEE ALSO
alarm (II), signal (II)

. l .

PIPE (II) PWB/UNIX Edition 1.0

NAME
pipe - create an interprocess channel

SYNOPSIS
(pipe - 42.)
sys pipe ,
(read file descrip,tor in rO)

(write file descriptor in rl)

pipe(fildes)
in1 ft:ldesl21;

DESCRIPTION

PIPE (II)

The pipe system call creates an 1/0 'mechanism called a pipe. The file descriptors returned can be
used in read and write operations. When the pipe is written using the descriptor returned in rl
(resp. fildes[l]), up to 4096 bytes of data are buffered before the writing process is suspended. A
read using the descriptor returned in rO (resp. fildes[O]) will pick up the data.

It is assumed that after the pipe has been set up, two (or more) cooperating processes (created by
subsequent fork ca!ls) will pass data through the pipe with read and write calls.

The Shell has a syntax to set up a linear array of processes connected by pipes.

Read calls on an empty pipe (no buffered data) with only one end (all write file descriptors
closed) return an end-of-file. Write calls under similar conditions generate a fatal signal
(signal(Il)) ~ if the signal is ignored, an error is returned on the write.

SEE ALSO
sh(I}, read(Il), write(Il), fork(Il)

DIAGNOSTICS
The error bit (c-bit) is set if too many files are already open. From C, a -1 returned value indi­
cates an error. A signal is generated if a write on a pipe with only one end is attempted.

- 1 -

-- -·-------------- ·- --·---·---- -------~-~--- ---- --·----

PROFIL (II) PWB/UNIX Edition 1.0 PROFIL (II)

NAME
profit - execution time profile

SYNOPSIS
(profil - 44.)
sys profil; buff; bufsiz; offset; scale

profit (buff, buf siz, offset, scale)
char buffl I;
int bufsiz, offset, scale;

DESCRIPTION
Buff points to an area of core whose length (in bytes) is given by bujs1z. After this call, the user's
program counter (pc) is examined each clock tick (60th second); o.Uset is subtracted from it. and
the result multiplied by scale. If the resulting number corresponds to a word inside butt: that word
is incremented.

The scale is interpreted as an unsigned, fixed-point fraction with binary point at the left:
177777(8) gives a 1-1 mapping of pc's to words in biljf; 77777(8) maps each pair of instrw.:tion
words together. 2(8) maps all instructions onto the beginning of biljf (producing a non­
interrupting core clock).

Profiling is turned off by giving a scale of 0 or l. It is rendered ineffective by giving a bu/s1z of 0.
Profili.ng is also turned off when an exec is executed but remains on in child and parent both after
a JiJrk.

SEE ALSO
monitor(UI), prof(l)

• 1 •

PTRACE (II)

NAME
ptrace - process trace

SYNOPSIS

(ptrace = 26.)
(data in rO>
sys ptrace; pid; addr; request
(value in rO)

ptrace(request, pid, addr, data);

DESCRIPTION

PWB/UNIX Edition 1.0 PTRACE(II)

Ptrace provides a means by which a parent process may control the execution of a child process.
and examine and change its core image. Its primary use is for the implementation of breakpoint
debugging, but it should be adaptable for simulation of non-UNIX environments. There are four
arguments whose interpretation depends on a request argument. Generally. ptd is the process ID
of the traced process, which must be a child (no more distant descendant) of the tracing process.
A process being traced behaves normally until it encounters some signal whether internally gen­
erated like "illegal instruction" or externally generated like "interrupt." See signa/(ll) for the list.
Then the traced process enters a stopped state and its parent is notified via waidl!J. When the
child is in the stopped state; its core image can be examined and modified using ptrace. If desired,
another ptrace request can then cause th~ child either to terminate or to continue, possibly ignor­
ing the signal.

The value of the request argument determines the precise action of the call:

0 This request is the only one used by the child process; it declares that the process is to be
traced by its parent. All the other arguments are ignored. Peculiar results will ensue if the
parent does not expect to trace the child.

1,2 The word in the child process's address space at addr is returned (in rO). Request l indicates
the instruction space, 2 indicates the data space. addr must be even. The child must be
stopped. The input data is ignored.

3 The word of the system's per-process data area corresponding to addr is returned. Addr must
be even and in the data area. This space contains the registers and other information about
the process: its layout corresponds to the user structure in the system.

4,5 The given data is written at the word in the process's address space corresponding to addr,
which must be even. No useful value is returned. Request 4 specifies instruction space, 5
specifies data space. Attempts to write in pure procedure result in termination of the child,
instead of going through or causing an error for the parent.

6 The process's system data is written, as it is read with request 3. Only a few locations can be
written in this way: the general registers, the floating point status and registers, and certain
bits of the processor status word.

7 The data argument is taken as a signal number and the child's execution continues as if it had
incurred that signal. Normally the signal number will be either 0 to indicate that the signal
which caused the stop should be ignored, or that value fetched out of the process's image
indicating which signal caused the stop.

8 The traced process terminates.

As indicated, these calls (except for request 0) can be used only when the subject process has
stopped. The wait call is used to determine when a process stops; in such a case the

- 1 -

/

PTRACE (II) PWB/UNIX Edition 1.0 PTRACE (II)

"termination" status returned by wait has the value 0177 to indicate stoppage rather than genuine
termination.

To forestall possible fraud, prrace inhibits the set-user-id facility on subsequent exedm calls.

SEE ALSO
wait(II), signal(II), cdb(I)

DIAGNOSTICS

BUGS

From assembler, the c-bit (error bit) is set on errors; from C, -1 is returned and errno has the
error code.

The request 0 call should be able to specify signals which are to be treated normally and not cause
a stop. In this way, for example, programs with simulated floating point (which use "illegal
instruction" signals at a very high rate) could be efficiently debugged.

Also, it should be possible to stop a process on occurrence of a system call; in this way a com­
pletely concrolled environment could be provided.

- 2 -

READ(II)

NAME
read - read from file

SYNOPSIS
(read - J.)
(file descriptor in rO)
sys read; buffer; nbytes

read(ftldes, buffer, nbytes)
char *buffer;

DESCRIPTION

PWB/UNIX Edition 1.0 READ(II)

A file descriptor is a word returned from a successful open, creat, dup, or pipe ~all. Buffer is the
location of nbytes contiguous bytes into which the input will be placed. It is not guaranteed that
all nbytes bytes will be read; for example if the file refers to a terminal at most one line will be
returned. In any event the number of characters read is returned (in rO).

If the returned value is 0, then end-of-file has been reached.

SEE ALSO
open(II), creat(IU. dup(Il), pipe(II)

DIAGNOSTICS
As mentioned, 0 is returned when the end of the file has been reached. If the read was otherwise
unsuccessful the error bit (c-bit) is set. Many conditions can generate an error: physical 1/0
errors, bad buffer address, preposterous nbytes. file descriptor not that of an input file. From C, a
-1 return indicates the error.

- I .

--- - _., -- - - ----- ---- -- - ------ - - -·------ ~ -- - - --- ----

SEEK (II) PWB/UNIX Edition 1.0 SEEK (II)

NAME
seek - move read/write pointer

SYNOPSIS
(seek - 19.)
(file descriptor in rO)
sys seek; offset; ptmame

seek (fildes, offs.et, ptrname)

DESCRIPTION
The file descriptor refers to a file open for reading or writing: The read (resp. write) pointer for
the file is set as follows:

if ptrname is 0, the pointer is set to offset.

if ptrname is 1, the pointer is set to its current location plus offset.

if ptrname is 2. the pointer is set to the size of the file plus offset.

if ptrname is 3, 4 or 5, the meaning is as above for 0, I and 2 except that the offset is multi·
plied by 512.

If ptrname is 0 or 3, offset is unsigned, otherwise it is signed.

SEE ALSO
open (II) , creat (II) , tell (II)

DIAGNOSTICS
The error bit (c-bit) is set for an undefined file descriptor. From C, a -1 return indicates an
error.

• 1 -

SETGID (II)

NAME
setgid - set process group ID

SYNOPSIS
(setgid - 46.)
(group ID in rO)
sys setgid

setgid (gid)

DESClUPTION

PWB/UNIX Edition 1.0 SETGID(II)

The group ID of the current process is set to the argument. Both the effective and the real group
ID are set. This call is only permitted to the super-user or if the argument is the real group ID.

SEE ALSO
getgid(II)

DIAGNOSTICS
Error bit (c-bit) is set as indicated~ from C, a -1 value is returned.

_____ .. ___ , _____ ... __________ ----- - - ______ ... _. ,_~..........___ _____ ___;_-_,.._..,~~'.Z..!:,~

SETUID (II)

NAME
setuid - set process user ID

SYNOPSIS
(setuid - 23.)
(user ID in rO)
sys setuid

setuid (uid)

DESCRIPTION

PWB/UNIX Edition 1.0 SETUID (11)

The user ID of the current process is set to the argument. Both the effective and the real user ID
are set. This call is only permitted to the super-user or if the argument is the real user ID.

SEE ALSO
getuid(ll)

DIAGNOSTICS
Error bit (c-bit) is set as indicated; from C, a -l value is returned.

(_

.-

-

SETPGRP (II) PWB/UNIX Edition 1.0

NAME
setpgrp - set process group number

SYNOPSIS
(setpgrp • 39.~ not in assembler)
sys setP8l'P
setpgrp()

DESCRIPTION

SETPGRP (II)

Setpgrp sets the process group number of the process to the process ID of the process. The pro­
cess ID is guaranteed to be unique among the current process IDs and process group numbers, so
that the new process group number will be unique. Process group numbers are used to group
processes for catching signals.

SEE ALSO
kill(Il), signal(Il)

---· _ _..._.;:.; __ . ___ .. ___ ···------ - -- ---·-----4 .. --.:--~~~-----~.:"'-----~:~.,:-:..."! !.·'-~·· :,-,•:;,... __ ,,.:··~>.!

SIGNAL (II) PWB/UNIX Edition 1.0 SIGNAL (II)

The value of the call is the old action defined for the signal.

After a fork(//) the child inherits all signals. Exec{I/) resets all caught signals to default action.

SEE ALSO
kill(l), kill(Il), ptrace(II), reset(III)

DIAGNOSTICS
The error bit (c-bit) is set if the given signal is out of range. In C, a -1 indicates an error.

- 2 -

SIGNAL (II) PWB/UNIX Edition 1.0 SIGNAL (II)

The value of the call is the old action defined for the signal.

After a fork(//) the child inherits all signals. Exec(/[) resets all caught signals to default action.

SEE ALSO
kill(I), kiil(ll), ptrace(ll), reset(Ill)

DIAGNOSTICS
The error bit (c-bit) is set if the given signal is out of range. In C, a -1 indicates an error.

- 2 - ..

STAT (II)

NAME
stat - get file status

SYNOPSIS
(stat - 18.)
sys stat; name; buf

stat (name, buf)
char •name;
struct in ode "'buf;

DESCRIPTION

PWB/UNIX Edition 1.0 STAT(Il)

Name points to a null-terminated string naming a file; bu/ is the address of a 36(10) byte buffer
into which information is placed concerning the file. ll is unnecessary to have any permissions al
all with respect to the file, but all directories leading to the file must be readable. After stat. hu/
has the following structure (starting offset given in bytes):

struct inode {
char
char

};

int
int
char
char
char
char
int
int
int
int

minor;
major;
in umber;
flags;
nlinks;
uid;
gid;
sizeO;
sizel;
addr[8};
actime[2];
modtime{2);

The flags are as follows:

100000 i-node is allocated
060000 2-bit file type:

000000 plain file
040000 directory

/* +0: minor device of i-node */
/* + l: major device *I
/* +2 "/
/* +4: see below *I
/* +6: number of links to file •I
/* + 7: user ID of owner *I
/* +8: group ID of owner *I
I* +9: high byte of 24-bit size "/
/* + 10: low word of 24-bit size "I
I* +12: block numbers or device number*/
/* +28: time of last access*/
/" +32: time of last modification */

020000 character-type special file
060000 block-type special file.

010000 large file
004000 set user-ID on execution
002000 set group-ID on execution
001000 save text image after execution
000400 read (owner)
000200 write (owner)
000100 execute (owner)
000070 read, write, execute (group)
000007 read, write, execute (others)

SEE ALSO
Is(!), fstat (II), f s(V)

- 1 -

STAT(ll) PWB/UNIX Edition 1.0 STAT(II)

DIAGNOSTICS
Error bit (c-bit) is set if the file cannot be found. From C, a -l return indicates an error.

. 2 .

STIME (II)

NAME
stime - set time

SYNOPSIS
(stime - 25.)
(time in rO-rl)
sys stime

stime(tbuf)
int tbuf(2J;

DESCRIPTION

PWB/UNIX Edition 1.0 STIME (II)

S1ime sets the system's idea of the time and date. Time is measured in seconds from 0000 GMT
Jan I, 1970. Only the super-user may use this call.

SEE ALSO
date(l), time(II), ctime(Ill)

DIAGNOSTICS
Error bit (c-bit) set if user is not the super-user.

- 1 -

S1TY (II)

NAME
stty - set mode of terminal

SYNOPSIS
(stty - 31.)
(file descriptor in rO)
sys stty; arg

PWB/UNIX Edition 1.0

arg: .byte ispeed, ospeed; .byte erase, kill; mode

stty(ftldes, arg)
struct {

I *arg;

DESCRIPTION

char
char
int

ispeed, ospeed;
erase, kill;
mode;

STTY (11)

Stty sets mode bits and character speeds for the terminal whose file descriptor is passed in rO
{resp. is the first argument to the caJI). First, the system delays until the terminal is quiescent.
The input and output speeds are set from the first two bytes of the argument structure as indi­
cated by the following table, which corresponds to the speeds supported.by the DH-11 interfac~.

0 (hang up modem)
I 50 baud
2 75 baud
3 110 baud
4 134.5 baud
5 150 baud
6 200 baud
7 300 baud
8 600 baud
9 1200 baud
10 1800 baud
11 2400 baud
12 4800 baud
13 9600 baud
14 External A
15 External B

In the current configuration, only 110, 150 and 300 baud are really supported on dial-up lines.
The half-duplex line discipline required for the 202 modem {1200 baud) is not supplied.

The next two characters of the argument structure specify the erase and kill characters respec­
tively. (Defaults are #and @.)

The mode contains several bits that determine the system's treatment of the terminal:

100000 select one of two types of backspace delays
040000 select one of two types of form-feed and vertical-tab delays
030000 select one of four types of carriage-return delays
006000 select one of four types of tab delays
001400 select one of four types of new-line delays
000200 even parity allowed on input

- 1 -

STTY (II l PWB/UNIX Edition 1.0

000100 odd parity allowed on input
000040 raw mode
000020 map CR into LF; echo LF or CR as CR-LF
000010 echo (full duplex)
000004 map upper case to lower on input
000002 echo and print tabs as spaces
000001 hang up (drop 'data terminal ready') after last close

STTY (II)

The delay bits specify how long transmission stops to allow for mechanical or other mo1vement
when certain characters are sent to the terminal. In all cases a value of 0 indicates no delay.

Backspace delays are currently unimplemented.

Form-feed/vertical·tab delay type 1 lasts about 2 seconds.

Carriage-return delay types 1 and 2 last about .09 seconds, and type 3 lasts about .15 seconds.
Types 2 an<l 3 have the side effect of nol transmitting a carriage-return if at the leftmost column.

New-line delay type 1 is dependent on the current column and is tuned for the Model 37 ·1LLL­
TYPE'". Type 2 lasts about .03 seconds and type 3 lasts about .15 seconds.

Tab delay type l is dependent on the amount of movement :ind is tuned for the Model 37 TELE­
TYPE. Other types are unimplemented and are 0.

Characters with the wrong parity, as determined by bits 0200 and 0100, are ignored.

In raw mode, every character is passed immediately to the program without waiting until a full
line has been typed. No erase or kill processing is done; the end-of -file character (EQT), the
interrupt character (DEL) and the quit character (FS) are not treated specially.

Mode 020 causes input carriage returns to be turned into new-lines; input of either CR or LF
causes LF-CR both to be echoed (used for terminals without the newline function, i.e. most).

The upper case mode is used on terminals without lower case, see rry(/VJ.

The hangup mode 01 causes the line to be disconnected when the last process with the line open
closes it or terminates. It is useful when a port is to be used for some special purpose~ ·for exam­
ple, if it is associated with an ACU used to place outgoing calls.

This system call is also used with certain special files other than terminals, and is system depen­
dent.

SH ALSO
stty({). gtty(Il), tty(IV)

DIAG~OSTICS

The error bit (c-bit) is set if the file descriptor does not refer to a terminal. From C, a negative
value indicates an error.

. 2 .

SYNC(Il)

NAME
sync - update super-block

SYNOPSIS
(sync - 36.)
sys sync

DESCRIPTION

PWB/UNIX Edition 1.0 SYNC(II)

Sync causes all information in core memory that should be on disk to be written out. This
includes modified super blocks. modified i-nodes, and delayed block I/O.

It should be used by programs which examine a file system, for example icheck, df,' etc. It is man­
datory before a boot.

SF.E ALSO

sync(l)

TELL (II) PWB/UNIX Edition 1.0 TELL (II)

NAME
tell - get file offset

SYNOPSIS
(tell - 40.)
(file descriptor in rO)
sys tell
(offset in rO-rl}

long tell (~e)
int file;

DESCRIPTION
Tell returns the current read/write pointer associated with the open file whose descriptor is
specified as argument.

SEE ALSO
seek (II)

DIAGNOSTICS
C-bit set or -1 returned for an unknown file descriptor.

- l -

TIME (II)

NAME
time - get date and time

SYNOPSIS
(time== 13.)
sys time

time(tvec)
long •tvec;

DF..SCRIPTJON

PWB/UNIX Edition 1.0 TIME (II)

Time returns the time since 00:00:00 GMT, Jan. 1, 1970, measured in seconds. From as. the high
order word is in the rO register and the low order is in rl. From C, the user-supplied vector is
filled in.

SEE ALSO
date(l), stime(II), ctime(III)

- 1 .

TIMES (II) PWB/UNIX Edition 1 ~o TIMES (II)

NAME
times - get process times

SY~OPSJS

(times== 43.)
sys times; buffer

times (buffer)
struct tbuffer *buffer;

DESCRIPTION
Times returns time-accounting information for the current process and for the terminated child
processes of the current process. All times are in 1/60 seconds.

After the call, the buffer will appear as follows:

struct tbutTer {
long
long
long
long

proc _user_ time~
proc _system_ time;
child_user _time;
child_ system_ time;

The children times are the sum of the children's process times and their children's times.

SEE ALSO

time(l)

- 1 -

UDATA(Il)

NAME
udata - get per-user data

SYNOPSIS
(pwbsys = 57.; udata"" 1)
(pointer to buffer in rO)
(function in rl)
sys pwbsys; udata

nt:St"RIPTION

PWB/UNIX Edition 1.0 UDATA(Il)

Udata is used to access a 32 byte section of the per-user process data region. If the fimctwn is
zero, the section is read into the buffer given by the pointer. If the function is non-zero, the sec­
tion is written from the buffer if super-user. The structure of the section is left to the user.

SEE ALSO
loginfo(l), loginfo(ll)

DIAGNOSTICS
The error bit(c-bit) is set if the buffer can not be read or written, or if not super-user for write.
From C, a -1 return indicates an error.

• 1 -

UMOUNT(II) PWB/t:NIX Edition 1.0 UMOUNT(Il)

NAM£
umount - dismount file system

SYNOPSIS

(umount - 22.)
sys umount; special

DESC.:RIPTION
Umount announces to the system that special file special is no longer to contain a removable file
system. The file associated with the special file reverts to its ordinary interpretation; see
mound!/}.

Only the super-user can execute umount.

SEE ALSO
umount(VIII), mount(II)

DIAGNOSTICS
Error bit (c-bit) set if no filP. system was mounted on the special file or if there are still active fill!s
on the mounted file system.

- l -

UNAME(II) PWB/UNIX Edition 1.0

NAM•:
unamc - gel name of current PWB/UNIX

SYNOPSIS

(pwbsys - 51.; uname - 0)
(pointer to name in r0)
sys pwbsys; uname

uname(name)
char *name;

DESCRIPTION

L'N:\~fE; ;; l

Uname returns in name the 8 byte character name of the current PWB/UNIX. Th~ n:lme is not
null-terminated. By convention, the name is of the form pwb?date. For exarr.i~:e. pw'"iaO..!.O l
would indicate that this is PWB/UNIX System A and that its operating system wa~ ~~:.t m0u1:;·,;d
on April I.

This function is kept in the -IPW library.

SEE ALSO
uname(I)

DIAGNOSTICS
The error bit(c-bit) is set if name can not be written. From C, ·a -1 return indicates an error.

• 1 •

UNLINK (II)

NAME
unlink - remove directory entry

SYNOPSIS
(unlink =- 1 O.)
sys unlink; name

unlink(name)
char •name;

m:sCRI PTION

PWB/UNIX Edition 1.0 UNLINK (II)

Name points to a null-terminated string. Unlink removes the entry for the file pointed to by name
from its directory. If this entry was the last link to the file, the contents of the file are freed and
the file is destroyed. If, however, the file was open in any process, the actual destruction is
delayed until it is closed, even though the directory entry has disappeared.

SEE ALSO
rm(l), rmdir(I), link(ll)

DIAGNOSTICS
The error bit (c-bit) is set to indicate that the file does not exist or that its directory cannot be
written. Write permission is not required on the file itself.- It is also illegal to unlink a directory
(except for the super-user). From C, a -1 return indicates an error.

- I -

UST AT (II)

NAME
ustat - get file system statistics

SYNOPSIS
(pwbsys - 57.; ustat = 2)
(pointer to buf in r0)
(device number in rl)
sys pwbsys; ustat

ustat(device, buf)
char *buf;

DESCRIPTION

PWB/UNIX Edition 1.0 t !STAT< II>

Ustat is designed to return a section of the super block of the mounted file system specified by.
device. Device is addr{O] of the inode of the mounted block·type special file. The structure of bt{f
is:

struct {
int
int
char
char

s_tfree;
s tinode~
s-fname[6};
s)pack[6];

/"' total free *I
/* total inodes free * /
/* filsys name * /
/* filsys pack name * /

This function is kept in the -IPW library.

Sl':Jo: Al.SO
fs{V)

DIAGNOSTICS
The error bit(c-bit) is set if device is not mounted or bu/can not be written. From C. a -t return
indicates an error.

--- - - ---~- - .. -·---··--- . ----- - ·- ---- ____ .. _._. -- a,,·-:- ' •• .ii# ' ':.. ,.,. - • - ~.-_...,_o'_,..-' -~--:~·· --· -· ;....:.:U

UTIME (II)

NAMt:

utime - update times in file

SYNOPSIS

(pwbsys - 57.; utime • 3)
(pointer to times in rO)

(pointer to name in rl)
sys pwbsy~; utime

utime<name, times)
char •name, *times;

OES<.:RIPTION

PWB/UNIX Edition 1.0 UTIME (11)

Uttme is used to set both the access and modification times of a file. Only the super-user may use
this call. Name points to a null-terminated string naming a file, and times points to a structure
containing two long integer time values:

struct (
long int actime~ I* access time *I
long int modtime; /* modification time *I

This function is kept in the -IPW library.

SEE ALSO
stat(II)

l>IA<iNOSTU.:S

The error bit(c-bit) is set if name does not exist, if not super-user, or if a read-only file system.
From C, a -1 return indicates an error.

. I .

WAIT(ll) PWIJ/UNIX Edition l.O

NAME
wait - wait for process to terminate

SYNOPSIS
(wait - 7.)
sys wait
(process ID in rO)
(status in rl) ·

wait (status)
int *status;

Ot:.'iCRIPTION

· ·WAIT<ll>

Wait causes its c-.tller lo delay until one of its child proces.~es'terminates. If any child ha.Ii died
since the last wait, return is immediate; if there are no children, return is immediate with the
error bit set (resp. with a value of -1 returned). The normal return yields the proces.~ ID of lhe
terminated child (in rO). In the case of several children several wait calls are needed to learn of
all the deaths. '

If no error is indicated on return, the rl high byte (resp. the high byte stored into status) con·
tains the low byte of the child process rO (resp. the argument of exit) when it terminated. The rl
(resp. status) low byte contains the termination status of the process. See signa/(11) for a list of
termination statuses (signals)~ 0 status indicates normal termination. A special status (0177) is
returned. for a stopped process which has not terminated and can be restarted. See ptrace(II). If
the 0200 bit of the termination status is set, a core image of the process was produced by the sys­
tem.

If the parent process terminates without waiting on its children, the initialization process (process
ID - 1) inherits the children.

SU Al . .SO
. exit(II), fork(II), signal(ll)

l>IMiNOSTICS
The error bit (c-bit) is set if there are no children not previously waited for. From <.;, a returned
value of -1 indicates an error.

• 1 •

WRITE (II>

NAME
write - write on a file

SYNOPSIS
(write - 4.)
(file descriptor in r0)
sys write; buffer; nbytes

write(tildes, buffer, nbytes)
char •buffer;

Jn:."i('RIPTION

PWB/UNIX Edition 1.0

A life descriplor is a word returned from a successful open, crear. dup, or pipe call.

WRITE (11)

BwJer is the address of nbytes contiguous bytes which are written on the output file. The number
of characters actually written is returned (in r0). It should be regarded as an error if this is not
the same as requested.

Writes which are multiples of 512 characters long and begin on a 512-byce boundary in the file are
more efficient than any others.

SEE ALSO
creat(Il), open(II), pipe(II)

DIAGNOSTICS
The error bit (c-bit) is set on an error: bad descriptor, buffer address, or count~ physical 1/0
errors. From C, a returned value of -1 indicates an error.

- I -

ABORT (111)

NAME
abort - generate an IOT fault

SYNOPSIS
abort()

1n:.'KRIPTION

PWB/UNIX Edition 1.0 · ABORT(III)

Ahort executes the'IOT instruction. This is usually considered a program fault by the system and
results in termination with a core dump. It is used to generate a core image for debugging.

SU•: Al.SO

dbW, cdb(I), sigrtaHll)

DI AGNOSTICS

usually "IOT trap -- core dumped" from the Shell.

ABS (III)

NAME-

abs, fabs - absolute vaJue

SYNOl'SIS

abs(i)
int i;

double fabs(x)
double x;

PWB/UNIX Edition 1.0

. l .

ALLOC(III) PWB/UNIX Edition- 1.0 ALLOC ("Iii)

NAMfo:

alloc. free - core allocator

.. ·:
SYNOPSIS ·,.,., !"'~:"

char •aUoc(size)

frt'\•(ptr)
char •ptr; : .. ~·{·~~~~j~

.t~ ·i ~_;;.~~~:.
DESCRIPTION . . .

A/foe and free provide a simple general-purpose core management package. Alloc is given a size in ; .~:::
bytes~ it returns a pointer to an area at least that size which is even and' hence can hold an objea:·:::r:
of any type. The argument to free is a pointer to an area previously allocated by alloc: this space iS: .,_ ,· :
ma~e available for further ailocation. . ·:~_; ·:::~~~
Needless to say, grave disorder will result if the space assigned by allot· is overrun or it: somc. ran-: . .;.:(;-::
dom number is handed to .free. · ·~·'.!~:~'.

The routine uses a first-fit algorithm which coalesces blocks being freed with other blocks already
free. It calls sbrk (see break(//)) to get more core from the system when there is no suitable ·
space already free.

DIAGNOSTICS

Returns -l if there is no available core.

1nic;s

All1wa1cd 111c111ory n1111a111s ~arhi1gc inslc.:ad ol hcing cleared.

\.,.

ATAN (Ill)

NAMt:
a tan, atan2 - arc tangent function

SYNOPSIS
jsr pc,atan{2]

double at an (x)
double x;

double 11tan2(x, y>
doubll· x, y;

,,. ;I II II' f It 1•.1

PWB/UNIX Edition 1.0 ATAN(lll)

I he all/11 entry retu111s the arc: tangent 111 frll rn frO. from< rlw :1n- rarigL'lll ,.f , 1. ,, 111111· ·I 111··

range is -1J'/2 to rr/2. The ata112 entry returns the arc tangent of frO/f'rl in lrO, lro111 (·• the arl·
tangent of x/y is returned. The range is -rr to ..,,.,

l>l AC ;N< >STI('

There is no 1.:rror return.

- I -

ATOF(lll) PWB/UNIX Edition 1.0 ATOf (Illi

NAME
atof - convert ASCII to floating

SYNOl"SIS
double atof (nptr)
char •nptr;

nt~-;C'Rll'TION •
Alt!/' converts a string to a floating number. Nptr should point lo a string containing the number ..
the first unrecognized character ends the number.

The only numbers recognized are: an optional minus sign followed by a string of digits optionally
containing one decimal point. then followed optionally by the leller e followed by a signed integer.

DIAGNOSTICS

BUGS

There are none~ overflow results in a very large number and iµirbage chara..:tcrs h:rminut~ tru:
scan.

The routine should accept initial +, initial blanks, and E for e. Overflow should be signaled.

....

ATOIC Ill)

NAMt:
atoi - convert ASCII to integer

SYNOPSIS
atoi(nptr)
char •nptr;

DESCRIPTION

I

PWB/UNIX Edition 1.0 ATOI (III)

Aim converts the slrinM 11ointed to by 111J1r lo an integer. The string can l'Ollh1in h:atlinJ.t hlanl..'i or
lahs, (lll Ojlliom1I ·' •• aml then llll Ullhl'llkCll 'ilrlllJ.t of tliJ.tils (0 llllVt'l''illlll 'illll'" al lh1· 1t1 ... 1 111111

digit.

SE1': Al.SO
atof(llI)

BUGS

There is no provision for overflow .

CGETPIO (III) · PWB/UNIX Edition 1.0

NAME
cgetpid - return character form of process ID

S'iNOPSIS
~etpid(sptr) char •sptr;

·.· ~ ::~·.
- ::·~::.
: .. ~
.........

···.•.
~ .. ~

. ~~~~;
~~ 7~~; . . ~· i

Uf.St'Rll'TION ..
- The <'l«'tpid function appends the current UNIX process number to the string passed by the. ·U!if:t

The character value is zero padded on the left to five digits. --::-~J'-:·

The passed string is scanned left-to-right for the first NUL byte. If the process number: were
.. 123" and the function called as . · ··

s • "abc\Oxxxxx";
cgetpid (s) ;

the value returned would be

"abcOO 123\0".

This function is kept in the -IPW libr.try.

.:
. - -.

\

CRYPT (III) PWB/UNIX Edition 1.0 CRYPT (111)

NAMt:

crypt - pussword 1.:ncoding

SYNOPSIS

mov Skey,rO
jsr pc,crypt

char •crypt(key}
char *key;

DESCRIPTION

On entry. rO points to a string of characters terminated by •tn ASCII NU L. The rout int: PL't forms
an opcrution on the key which is diflic.:ull lo 111vcrt (i.e. Clll't'YP'' ii) anti h.:aVl"' 1111· 11· 111111~ 1·h-w11
bytes of ASCII alplmnumcrics in a stalk lc>e.ilion.

From C, the key argument is a string and the value returned is a pointer to the eleven-character
result.

This routine is used to encrypt all passwords.

sn: Al.SO

8l14iS

passwd(I), passwd(V), login(I)

Short or otherwise simple passwords can be decrypted easily by exhaustive scan.:h. Six chunactcrs
of gibberish is reasonably safe.

. I .

C.TIME< Ill) PWB/UNIX Edition 1.0

NAM•:
ctime, localtime, gmthne - convert dale and time lo ASCII

SYNOPSIS
char •ctime(tvec)
int tvecf 21;

[from Fortran] ·
double precision ctime
.•• • ctime(dummy)

int "'localtime(tvec)
int tvecfll;

int *gmtime(tvec)
int tvecl21; ·

DESCRIPTION

C'IlN!E'(Ill)

Crime converts a time in the vector tvec such as returned by 11me(ll) into ASCII and retums a
pointer to a character string in the form

Sun Sep 16 01:03:52 1973\n\O

All the fields have constant width.

The localt1me and gmtmre entries return pointers to integer vectors containing the broken.clown
time. localtime corrects for the time zone and possible daylight savings tim~ gmti~ converts
directly to GMT, which is the time UNIX uses. The value is a pointer to an array whose com­
ponents are

0 seconds
I minutes
2 hours
3 day of the month (1-31)
4 month (0-11)
5 year - 1900
6 day of the week (Sunday - 0)
7 day of the year (0-365)
8 Daylight Saving Time flag if non-zero

The external variable 1tm£':nne contains the difference, in seconds, between GMT and local stan­
dard time (in Et.iT, is s•60*60>: the external variable dc~vhg/11 is non-zero if the slundurd U.S.A.
I >ayli1d11 Savin~-. Time n111vcrsion ,"ihould he applied. The Jlrottrnm knows about the ll\!culiarities
111' lhis 1.·onw1·si1111 in 1''74 aml 1975: if nc1.·cssary, a Hable for these years can be extcndt.:d.

:\ 11111t1111.· nnnwd 1'11m1· 1s also availuhli: frnm Fortran. Actuully it more rcscmhlcs the tmrf'(JI) sys­
ll'lll l'lltry in 1ha1 il Mums the numh\!r of scl.'onc.is since the epoch 0000 GMT Jan. I. 1970 (as a
l10:1t t11lt·Point number}.

St:lo: Al~'iO
time(IH, regen(VllI)

~-~ ··~\~
.,

-

-

DESCEND (III) PWB/UNIX Edition 1.0

NAME
descend - search UNIX file system directories

SYNOPSIS
int descend(name, goal, function, arg)
char *name, goal;
int (*function) 0;
'??? arg;

Ot:SC.:RIPTJON

DESCEND (Ill)

The desC'e11cl function requires a file or directory name as first argument. lf name is a dirc1.:lory
name, des<"end recurses until regular files arc found. Depcn<ling on the KOt1! argument. lhl! uscr-
11assed function .Jimctmn is called as· follows:

(*function) (arg, name)

In addition to these arguments, statf/[) information is available for the current file. The external
file status buffer is named "_Dstalb".

The goal argument is defined as:
·r call user function when name is a file.
'd' call user function when name is a directory.
'b' call user function for both.

This function is kept in the -lPW library.

DIMiNOSTJ<.:S .
Des,·end returns zero on failure. It also writes error messages on file descriptor 2 (such as
"--unreadable" for private files).

. l -

ECVT(Ill) PWB/UNIX Edition 1.0

NAME
ecvt, f cvt - output conversion

SYNOPSIS
jsr pc,ecvt

jsr pc,f cvt

char •ecvt(value, 'ndigit, decpt, sign)
double value;
int ndigit, •decpt, •sign;

char •fcvt(value, ndigit, decpt, sign)

DESCRIPTION
Ecvt is called with a floating point number in frO.

ECVT"(UI)

On exit, the number has been converted into a string of ascii digits in a buffer pointed to by rO.
The number of digits produced is controlled by a global variable _ndiKits.

Moreover, the position of the decimal point is contained in r2: r2-0 means the d.p. is at the left
hand end of the string of digits; r2 >0 means the d.p. is within or to the right of the string.

The sign of the number is indicated by rt (0 for+~ 1 for-).

The low order digit has suffered decimal rounding (i. e. may have been carried into).

From C. the value is convened and a pointer to a null-terminated string of ndiKtl digits is returned.
The position of the decimal point is stored indirectly through dc•cpt (negative means to the left of
the returned digits). If the sign of the result is negative. the word pointed to by sig11 is non-zero.
otherwise it is zero.

frvt is identical to ecvt, except that the correct digit been rounded for F-style output of the
number of digits specified by ndigits.

SU: Al.SO
printf{lll)

--

-·....:.....-....:: ___ --- ------·---------··- - ..__~..:.-....-.-....-- _.; __ ..,_, _ _ ,:;

END (III) PWB/UNIX Edition 1.0

NAME
end, etext, edata - last locations in program

SYNOPSIS

extern end;
extern etext;
extern edata;

nt•:st·RIPTION

l·NIH 111 l

Th1.:se names refer neither to routines nor lo locations with 111tcr1.:sting i..:01111.:nts. Instead, tllc1r
addresses coincide with the first address above the program tl.!xt region fetext), above the initial­
ized data region (edata), or uninitialized data region (end). The last is the same as the program
break. Values are given to these symbols by the link editor Id(/) when, and only when, they arc
ref erred to but not defined in the set of programs loaded.

The usage of these symbols is rather specialized, but one plausible possibility is

extern end~

... - brk(&end+ .. J;

The problem with this is that it ignores any other subroutines which may want to extend i..:·ore for
thei.r purposes~ these include sbrk. alloc(//I), and also secret subroutines invoked by the profile
(-p) option of cc. Of course it was for the benefit of such systems that the symbols were
invented, and user programs, unless they are in firm control of their environment, are wise not to
refer to the absolute symbols directly.

One technique sometimes useful is to call sbrk(O), which returns the value of the current program
break, instead of referring to &end, which yields the progrnm break at the instant execution
'itarted.

These symbols are accessible from assembly language if it is remembered that they should 'be
prefixed by "_".

SEE ALSO
break(ID, alloc(III)

- I -

EXP (lll)

NAM•:
exp - exponential function

S\'NOPSIS
jsr pc.exp

double exp(x)
double~;

DESCRIPTION

P,WB/.UNI X Edition 1.0

The exponential of frO is returned in frO. From C, the exponential of xis retumed.

DIAGNOSTICS

H;>OPtHll)

If the result is not representable, the c-bit is set and the largest pcsiti-ve number is re.turned.
From C, no diagnostic is available.

Zero is returned if the result would underflow.

- l -

-· ·--------- -------------·-----~--- --------· ---~--- ----·----.

-

-

FLOOR(Ill) PWB/UNIX Edition l .O

NAM•:
floor, ceil - floor and ceiling functions

SYNOPSIS
double ftoor(x)
double x;

double ceil(x)
double x~

DES<.:RJPTION

FLOOR (Ill)

The floor function returns the largest integer (as a double precision number) not grl.!atl.!r than x.

The ceil function returns the smallest integer not less than x.

- 1 -

FMOO (III)

NAME
f mod - floating modulo function

S\'NOPSIS

double fmod(x, y)
double x, y;

DESCRIPTION

PWB/UNIX Edition 1.0

Fmod returns the number f such that x - iy + f. i is an integer, and 0 ~ f < y .

. I .

. FMOD" (III)

FPTRAP (III) PWB/UNIX Edition 1.0 FPTRAP (111 >

NAMI-:
fptrap - floating point interpreter

SYNOPSIS
sys signal; 4; fptrap

DESCRIPTION
Fptrap is a simulator of the 11/45 FPl 1-8 floating point unit. It works by intercepting illegal
instruction trapS and decoding and executing the floating point operation codes.

rn.1-:s
In systems with real floating point, there is a fake routine in /lib/liba.a with this name~ when
simulation is desired, the real version should be put in liba.a.

DIMiNOSTICS
A break point trap is given when a real illegal instruction trap occurs.

SE(o; ALSO .
signalOI), the ·-r option of cc(I)

BUGS
Rounding mode is not interpreted. It's slow.

- t -

GAMMA (lIJ)

NAME
gamma - log gamma function

SYNOPSIS
jsr pc,gamma

double gamma(x).
double x;

DESCRIPTION

PWB/UNI X Edition 1.0 GAMMA(IU)

If x is passed (in f rO) gamma returns ln Ir (x) I (in f rO). The sign of r< x) is returned in the
external integer signgam. The following C program might be used to calculate r:

y - gamma(x);
if (y > 88.)

error();
y ... exp(y);
if(signgam)

Y- -y;

DIAGNOSTICS

srn;s

The c-bit is set on negative integral arguments and the maximum value is returned. There is no
error return for C programs.

No error return from C.

;

~-~ -- ----- ---

GETARG (III) PWB/UNIX Edition 1.0 GETARG(Ul)

NAMt:
gctarg, iargc - gel command arguments from Fortran

SYNOPSIS
call getarg (i, iarray [, isize])

.•• • iargc(dummy)

DESCRIPTION
The getarg entry 'fills in iarray (which is considered to be integer) with the Hollerith string
representing the i th argument to the command in which it it is caJled. If no is1:e argument is
specified, al least one blank is placed after the argument, and the last word affected is blank pad­
ded. The user should make sure that the array is big enough.

If the isize argume.nt is given, the argument will be followed by blanks to fill up 1S1Ze words, but
even if the argument is long no more than that many words will be filled in.

The blank-padded array is suitable for use as an argument to seffil{//IJ.

The iargc entry returns the number of arguments to the command, counting the first <file-name)
argument.

SU: Al.SO
exec(II), setfiHIII>

- I -

GETC (Ill} PWB/UNIX Edition 1.0 .QETC.UU)

NAME
getc. getw, fopen - buffered input

SYNOPSIS
mov SftJenam~rO
jsr rS,fopen; iobuf

. '

fopen (filename, iobuf}
char "filename;
struct buf *iobuf:

jsr rS,getc; iobuf
(character in rO) .
getc(iobuO
struct buf *iobuf;

jsr rS,getw; iobuf
(word in rO)

icetw (iobuf)
struct buf *iobuf;

DESCRIPTION
These routines provide a buffered input facility. lobufis the address of a 518(10) byte buffer area
whose contents are maintained by these routines. Its structure is

struct buf (

};

int ftldes; /* FiJe descriptor "'I
int nleft; /* Chars left in buffer * /
char *nextp; /* Ptr to next character * /
char buft'IS121; /*The buffer•/

Fopen may be called initially to open the file. On return, the error bit (c-bit) is set if the open
failed. If /open is never called, get will read from the standard input file. From C, the value is
negative if the open failed.

Getc returns the next byte from the file in rO. The error bit is set on end of file or a read error.
From C. the character is returned as an integer, without sign extension; it is -1 on end-of-file or
error.

Getw returns the next word in rO. Getc and getw may be used alternately; there are no odd/even
problems. Getw is may be called from C; - I is returned on end-of -file or error, but of course is
also a legitimate value.

lobufmust be provided by the user~ it must be on a word boundary.

To reuse the same buff er for another file, it is sufficient to close the original file and call /open
again.

Use the new "Standard 110" instead.

SF.Jo: Al~"iO
open(ll), read(ll), getchar(llD, putc(III)
A N(•w /11pm-Ou1pu1 Pac·kaJ(e by 0. M. Rilchie.

- 1 -

... ·.·

GETC (Ill) PWB/UNIX Edition 1.0 GETC (111 >

DIAGNOSTl<:S .
c-bit set on EOF or error~ from C, negative return indicates error or EOF. Moreover, £'"'"'is set
by this routine just as it is for a system call (see mtro(ll)).

- 2 •

GETCllAR (Ill)

NAME
getchar - read character

SYNOPSIS
getchar()

l>F.liCRI PTION

PWB/UNIX Edition 1.0 GETCHAR (Ill)

Getchar provides the simplest means of reading characters from the standard input for C pro­
grams. It returns successive characters until end-of-file, when it returns .. \0".

Associated with this routine is an external variable called fin, which is a structure containing a
buffer such as described under getc(/ll).

Generally speaking, getchar should be used only for the simplest applications; gerc is better when
there are multiple input files. ·

Use the new "Standard l/O" instead.

SEE ALSO
getc(Ill)
A New Input-Output Package by D. M. Ritchie.

OIAGNOSTICS
Null character returned on EOF or error.

Bll(iS
-I sh.ould be returned on EOF; null is a legitimate character.

- l .

-

-

)

GETPW(III)

NAME
getpw - get name from UID

SYNOPSIS
getpw(uid, buf)
char *buf;

D•:SCRIPTION

PWB/UNIX Edition 1.0 GETPW(IU)

Getpw searches. the password file for the (numerical) uid, and fills in bu/with the corresponding
line~ it returns non-zero if uid could not be found. The line is null-terminated.

FILES
I etc/ passwd

SEE AISO
passwd(V)

DIAGNOSTICS
non-zero return on error.

.w•,-1(

UMATCJI (Ill) PWB/UNIX Edition l.0 GMATCH"(un '.,

NAME ,
gmatch - match a s1ring with a pattern (like glob(VIII))

SYNOPSIS
gmatch (string, pattern)
char *string, *pattern;

DESCRlmON
Gmatch acts just like (is copied from) the glob command. It returns zero on failure and on~ on
success. The characters'?', '[' and'*' have the usual meanings.

This function is kept in the -IPW library.

s•:t: AISO
sh((), glob(Vlll)

- I -

-~ ·.

-

-

- _::~- _---...::..., _____ ___ - - __ ..__. -· -=--~·'----------...z-~---- -

HMUL (Ill) PWB/UNIX Edition 1.0

NAME
hmul - high-order product

SYNOPSIS
hmul(x, y)

DESCRIPTION

HMUL (Ill)

Hmul returns the high-order 16 bits of the product of x and y. (The binary multiplication opera­
tor generates' ~he low-order 16 bits of a product.)

. I -

IERROR(IIl} PWB/UNIX Edition 1.0 IERROR(ltl

NAME
ierror - catch Fortran errors

SYNOPSIS
if (ierror (ermo) .ne. 0) goto label

DESCRIPTION
/error provides .a way of detecting errors during the running of a Fortran program. Its argument is
a run-time error number such as enumerated in jc(/).

When ierror is called, it returns a 0 value~ thus the goto statement in the synopsis is not executed.
However, the routine stores inside itself the call point and invocation level. If and when the indi­
cated error occurs, a return is simulated from ierror with a non-zero value; thus the goto 4or other
statement) is executed. It is a ghastly error to call ierror from a subroutine which- has already
returned when the error occurs.

This routine is essentially tailored to catching end-of-file situations. Typically it is called just
before th.e start of the loop which reads the input file, and the goto jumps to a graceful termina­
tion of the program.

There is a limit of 5 on the number of different error numbers which can be caught.

SEE ALSO
fc(I)

BUGS
There is no way to ignore errors.

- 1 -

-.

/

LDCV (Ill) . PWB/UNIX Edition 1.0 LDCV (Ill)

NAME
ldiv, lrem - long division

SYNOPSIS
ldiY (hidividend, lodividend, divisor)

lrem (hidividend, lodividend, divisor)

DESCRIPTION

BUGS

The concatenation of the signed 16-bit hidi11idend and the unsigned 16-bit lodividend is divided by
di111sor. The 16-bit signed quotient is returned by /div and the 16-bit signed remainder is returned
by /rem. Divide check and erroneous resuJts will occur unless the magnitude of the divisor is
greater than that of the high-order dividend.

An integer division of an unsigned dividend by a signed divisor may be accomplished by

quo - ldiv(O, dividend, divisor);

and similarly for the remainder operation.

Often both the quotient and the remainder are wanted. Therefore /div leaves a remainder in the
external cell ldivr.

No divide check check.

- 1 -

LOCV(III)

NAME
locv - long output conversion

SYNOPSIS
char *locv(hi. lo)
int hi. lo;

DESCRJnION

PWB/UNIX Edition 1.0 LOCV(IIl)

Locv converts a signed double-precision integer, whose parts are passed as arguments, to the
equivalent ASCII character string and returns a pointer to that string.

BUGS
Since locv returns a pointer to a static buffer containing the converted result, it cannot be used
twice in the same expression~ the second result overwrites the first.

- 1 -

LOG (III)

NAME
log - natural logarithm

SYNOPSIS
jsr pc, log

double log (x}
double x;

ut:SCRIPTION

PWB/UNIX Edition 1.0 LOG (III)

The natural Iogarilhm of frO is returned in frO. From C, the natural logarithm of x is returned.

DIAGNOSTICS
The error bit (c-bit) is set if the input argument is less than or equal to zero and the result is a
negative number very large in magnitude. From C, there is no error indication.

- l -

MONITOR (Ill) PWB/UNIX Edition 1.0 MONITOR (111 }

NAM•:
monitor - prepare execution profile

SYNOPSIS
monitor(lowpc, highpc, buffer, bufsize)
int lowpc() , highpc() , buft'erl), bufsize;

DESCRIPTION

m,F.S

Monitor is an interface to the projiJ(II) system call. Lowpc and highpc are the names of two func­
tions; buffer js the address of a (user supplied} array of bufsize integers. Monitor arranges for the
system to sample the user's program counter periodically and record the execution histogram in
the buffer. The lowest address sampled is that of lowpc and the highest is just below hi~hpc. For
the results to be significant, especially where there are small, heavily used routines, it is suggested·
that the buff er be no more than a few times smaller than the range of locations sampled.

To profile the entire program, it is sufficient to use

extern etext;

monitor<2, &etext, buf, bufsize);

Etext is a loader-defined symbol which lies just above all the program text.

To stop execution monitoring and write the results on the file mon. out, use

monitor(O);

Then, when the program exits, profll) can be used to examine the results.

It is seldom necessary to caJI this routine directly~ the -p option of cc is simpler if one is satisfied
with its default profile range and resolution.

man.out

so; ALSO
prof(I), profil (II), cc(l)

- 1 -

·-- - ~

-

-

~ _ .• •.::"'"...>.!--""£...~----~·~..:. ... - --~ _ _..._...__ --~-- --- ·----------·- ----··
·-- - _ _;. .. ~--::..-::.: ..

NARGS (III) PWB/UNIX Edition 1.0 NARGS (III)

NAMli:
nargs - argument count

SYNOPSIS
nargs()

I> ES(.' RI PTION

Rll<iS

Narf(s returns the number of actual parameters supplied by the caller of the routine which calls
nargs.

The argument count is accurate only when none of the actual parameters is float or double. Such
parameters count as four argumc:nts instead of one.

As indicated. Also, this routine does not work (and cannot be made to work) in programs with
separated I and D space. Altogether it is best to avoid using this routine and depend, for exam­
ple, on passing an explicit argument count.

- l .

NLIST {Ill)

NAME
nlist - get entries from name list

SYNOPSIS
nlist(filename, nl)
char *filename;
struct (

I nil I;

DESCRIPTION

char name{SI;
int
int

type;
value;

PWB/UNIX Edition 1.0 NLIST(Ill)

Nlist examines the name list in the given executable output file and selectively extracts a list of
values. The name list consists of a list of 8-character names (null padded) each followed by two
words. The list is terminated with a null name. Each name is looked up in the name list of the
file. If the name is found, the type and value of the name are placed in the two words following
the name. If the name is not found, the type entry is set to -1.

This subroutine is useful for examining the system name list kept in the file /unix. In this way
programs can obtain system addresses that are up to date.

SEF. ALSO
a.out(V)

DIAGNOSTICS
All type entries are set to -1 if the file cannot be found or if it is not a valid namelist.

- 1 •

_.:..----·~__,,..-.... :..::_ ------ - ,..;: _____ ,__ - ---- ------·~-- .--- -

)

PERROR (III) PWB/UNIX Edition 1.0

NAM•:
pcrror, sys_errlist, sys_nerr, errno - system messages

SYNOPSIS
perror(s)
char •s;

int sys nerr;
char •sys errlistll;

int errno;

m:scR I PTJON

PERROR (III)

/'error produces a short error message describing the last error encountered during a call lo the
system from a C program. First the argument string s is printed, then a colon, then the message
and a new-line. Most usefully, the argument string is the name of the program which incurred
the error. The error number is taken from the external variable errno, which is set when errors
occur but not cleared when non-erroneous calls are made.

To simplify variant formatting of messages, the vector of message strings sys_errlisr is provided;
errno can be used as an index in this table to get the message string without the newline. Sys_nerr
is the largest message number provided for in the table; it should be checked because new error
codes may be added to the system before they are added to the table.

SEE ALSO
intro(II)

- 1 -

PEXE<' (Ill l PWB/UNIX Edition 1.0 PEXEC(IU)

NAME
pex.ec - path search and execute a file

SYNOPSIS
char pathstrll281;
char shellnaml161;
pexec(name, argv)
char *name, •ara•ll;
pexinit()

Dt:s<.:R I PTION
Pexec provides an interface to the execv function that duplicates the shell's actions in searching for
an executable file in a list of directories, as specified in the user's '.path' file.

Pexinil investigates the external arrays pathstr and shellnam. If either array is non-null, it leaves
that array alone. If pathstr is null, it attempts to open the user's •.path' file and place the first line
found there into pathsrr. to be used later as a list of directories to be searched. If •.path' cannot
be opened, it uses:

/bin:/ etc:/ for super-user
:/bin:/usrlbin for anyone else

If a second line is found in the '.path' file, it is taken as the name of the shell to be executed to
interpret a shell procedure. If none is found, •/bin/sh' is used. Pexinit returns 0 to show success­
f ut completion, guaranteeing both arrays filled, and -1 otherwise.

-
Pexec first calls pexinit, then searches for the named file and executes it. The existence of two
functions permits pexmit to be called once. followed by many forklpexec pairs.

This function is kept in the -IPW library.

SU: ALSO
sh(I), ex.ec(Il), fork(ID

DIAGNOSTICS

BUGS

Items in parentheses refer to error names in intro(II) .
.. cannot read .path"
".path too long" (more than 128+16 - 144 bytes long)
"No shell!" (real trouble, cannot execute shell)
"too large" (ENOMEM)
"arg list too long" {E2BIG)
.. file not executable" (EACCES, no x bits set in file mode)
.. not found" (name could not be found at all)
.. text busy" (ETXTBSY, should be very rare)

A pathname generated by the search mechanism may not exceed 47 characters in length.

- 1 -

~...;.:2!..'f..r,~ .. -._- ~'--·~ • -.. ~_:;.:~: .. ,...,.......,_ .:.-_ __ , ___ :.::: •• -.c;,;;_ ------ _-.:: __ -~ __ ..-!! --··--... ~ -----~-...:...:...~::. --- .. .£:...~----- ----

-

-

-

-

.-

)

PLOT(III) PWB/UNIX Edition 1.0 PLOT(III)

SAME
plot: openpl et al. - graphics interface

SYNOPSIS
openpl()

erase()

label(s)
char sl);

line(xl, yt, x2, y2)

circle(x, y, r)

arc(x, y, xO, yO, xl, yl)

dot (x, y, dx, n, pattern)
int patteml);

move(x:, y)

cont(x, y)

point(x, y)

linemod(s)
char sl);

space(xO, yO, xl, yl)

closepl()

DESCRIPTION

FILES

These subroutines generate graphic output in a relatively device-independent manner. See plot(VJ
for a description of their effect. Openpl must be used before any of the others to open the device
for writing. Closepl flushes the output.

String arguments to label and linemod are null-terminated, and do not contain newlines.

There are five libraries containing these routines, one that produces general graphics commands
on the standard output, and one each for the vtO storage scope, the GSI 300 terminal, the GSI
3005 terminal, the DASI 450 terminal and the Tektronix 4014 terminal.

I sys/ source/ plot directory containing the libraries above

SEE ALSO
graph (I), plot (I) , plot (V)

- 1 -

POW (Ill)

NAME
pow - floating exponentiation

SYNOPSIS
movf x,frO
movf y,frl
jsr pe,pow

double pow(x,y)
double x, y;

DESCRimON

PWB/UNIX Edition 1.0 POW(lll)

Pow returns the value of :I (in f rO). Pow(O. 0, y) is 0 for any y. Pow(-x. y) returns a result only
if y is an integer.

SEE ALSO
exp(III), log(Ill).

DIAGNOSTICS
The carry bit is set on return in case of overflow, pow(O.O, 0.0), or pow(-x, y) for non-integral y.
From C there is no diagnostic.

- 1 -

-

)

P RINTF (Ill) PWB/UNIX Edition 1.0 P RINTF (III)

NAME
printf - formatted print

SYNOPSIS

printf (format~ arg1, •••);

char *format;

DESCRJPTJON

Print/ converts, formats, and prints its arguments after the first under control of the first argu­
ment. The first argument is a character string which contains two types of objects: plain charac­
ters, which are simply copied to the output stream, and conversion specifications, each of which
causes conversion and printing of the next successive argument to print/.

Each conversion specification is introduced by the character %. Following the %, there may be

- an optional minus sign .. _.,which specifies le.Ii acijustment of the converted argument in the
indicated field;

- an optional digit string specifying a .field width; if the converted argument has fewer charac­
ters than the field width it will be blank-padded on the left (or right, if the left-adjustment
indicator has been given) to make up the field width~

- an optional period "." which serves to separate the field width from the next digit string;

- an optional digit string (precision) which specifies the number of digits to appear after the.
decimal point, for e- and f-conversion, or the maximum number of characters to be printed
from a string;

- a character which indicates the type of conversion to be applied.

The conversion characters and their meanings are

d
0
x The integer argument is converted to decimal, octal, or hexadecimal notation respectively.

u The argument is taken to be an unsigned integer which is converted to decimal and printed
(the result will be in the range 0 to 65535).

D
0
X The long integer argument is converted to decimal, octal, or hexadecimal notation respec­

tively.

U The argument is taken to be an unsigned long integer which is converted to decimal and
printed (the result will be in the range 0 to 4294967295).

f The argument is converted to decimal notation in the style " [-]ddd.ddd" where the
number of d's after the decimal point is equal to the precision specification for the argu­
ment. If the precision is missing, 6 digits are given; if the precision is explicitly 0, no digits
and no decimal point are printed. The argument should be ff oat or double.

e The argument is converted in the style "[-Jd.ddde±dd" where there is one digit before
the decimal point and the number after is equal to the precision specification for the argu­
ment~ when the precision is missing, 6 digits are produced. The argument should be a .float
or double quantity.

- l -

PRINTF (UI) PWB/UNIX Edition 1.0 PRINTF(Ill)

c The argument character is printed.

s The argument is taken to be a string (character pointer) and characters from the string are
printed until a null character or until the number of characters indicated by the precision
specification is reached~ however if the precision is 0 or missing all characters up to a null
are printed.

r The argument is taken to be the address of a print/ argument list (i.e., a vector of prill(/'
arguments). The c~rrent argument fist is discarded, and the new list is used.

The "r" format can be used in the following situation:
"error()" is a subroutine which takes printfarguments (e.g., error("can't open %s", file);).
The source code for error() is:

·error(arglist)
I

printf ("%r", &arglist);
exit(l);

If no recognizable character appears after the %, that character is printed; thus % may be printed
by use of the string o/oo/o. In no case does a non-existent or small field width cause truncation of a
field; padding takes place only if the specified field width exceeds the actual width. Characters
generated by print/are printed by calling putchar.

SEE ALSO
putchar (III)

BUGS
·Very wide fields (> 128 characters) fail.

- 2 -

-

-
-

--

-

-

PUTC (III) PWB/UNIX Edition 1.0 PUTC (Ill)

NAME
putc, putw, fcreat, mush - buffered output

SYNOPSIS
mov Sftlename,rO
jsr r5,fcreat; iobuf

f creat (file, iobuf)
char *file;
struct buf •iobuf;

(get byte in rO)
jsr r5,putc; iobuf

putc(c, iobuO
int c;
struct buf •iobuf;

(get word in rO)
jsr r5,putw; iobuf

putw (w, iobuO;
int w;
struct buf •fobuf;

jsr r5,ftush; iobuf

fftush (iobuO
struct buf *iobuf;

DESCRIPTION
Fcreat creates the given file (mode 666) and sets up the buff er iobuf (size 518 bytes); putc and
putw write a byte or word respectively onto the file; flush forces the contents of the buffer to be
written, but does not close the file. The structure of the buffer is:
struct buf {

l;

int tildes; /* File descriptor•/
int nunused; /* Remaining slots • /
char •xfree; /* Ptr to next free slot • /
char buffl5121; /•The buffer*/

Before terminating, a program should call flush to force out the last of the output (fff.ush from C).

The user must supply iobuf. which should begin on a word boundary.

To write a new file using the same buffer, it suffices to call {JJflush, close the file, and call /i:rear
again.

Use the new "Standard I/O" instead.

SEE ALSO
creat(II), write(ll), getc(III)
A New Input-Output Package by D. M. Ritchie.

DIAGNOSTICS
F<:reat sets the error bit (c-bit) if the file creation failed (from C, returns -!). Pwc and pww
return their character (word) argument. In all calls errno is set appropriately to 0 or to a system

• 1 -

. '
PUTC (III) PWB/UNJX Edition 1.0 PUTC(Ill)

error number. See intro(II). -

-

-

-

-
- 2 -

PUTCHAR (III) PWB/UNIX Edition 1.0 PUTCHAR (III }

NAME
putchar, flush - write character

SYNOPSIS
putchar(ch)

ftush(}

DESCRIPTION
Putchar writes out its argument and returns it unchanged. Only the low-order byte is written, and
only if it is non-null. Unless other arrangements have been made, putchar writes in unbuffered
fashion on the standard output file.

Associated with this routine is an external variable /out which has the structure of a buff er dis­
cussed under putc(III). If the file descriptor part of this structure (first word} is greater than 2,
output via putchar is buffered. To achieve buffered output one may say, for example,

fout • dup(l)~ or
fout - creat(. ..)~

In such a case flush must be called before the program terminates in order to flush out the
buffered output. Flush may be called at any time.

Use the new "Standard I/O" instead.

SEE ALSO
putc(lll)
A New Input-Output Package by D. M. Ritchie.

BUGS
The /out notion is kludgy.

QSORT (III)

NAME
qsort - quicker sort

SYNOPSIS
qsort(base, nel, width, compar)
char •base;
int (*compar)() ;

DESCRIPTION

PWBIUNIX Edition 1.0 QSORT(III)

Qsort is an implementation of the quicker-sort algorithm. The first argument is a pointer to the
base of the data; the second is the number of elements; the third is the width of an element in
bytes; the last is the name of the comparison routine. It is called with two arguments which are
pointers to the elements being compared. The routine must return an integer less than, equal to,
or greater than 0 according as the first argument is to be considered less than, equal to, or greater
than the second.

SEE ALSO
sort(I)

- 1 -

,'-.:_._

RAND (III} PWB/UNIX Edition 1.0 RAND (III)

~AME

rand, srand - random number generator

SYNOPSIS
(seed in rO}
jsr pc.srand /to initialize

jsr pc,rand /to get a random number

srand (seed)
int seed;

rand()

DESCRJPTION

BUGS

Rand uses a multiplicative congruential random number generator lo return successive pseudo­
random numbers (in rO) in the range from 0 to 215-1.

The generator is reinitialized by calling srand with 1 as argument (in rO). It can be set to a ran­
dom starting point by calling srand with whatever you like as argument, for example the low-order
word of the time.

The low-order bits are not very random.

- 1 -

REGEX (III) PWBIUNIX Edition 1.0 REGEX (III)

NAM•:
rcgcmp, rcgex - compile and execute regular expressions

SYNOPSIS ·
char *rqcmp(stringl l,string2, ••• J,O);
char *string!, *string2, .•• ;

char •regex(re,subjectf,retO, ••• J);
char *re, *subject, *retO, .•. ;

DESCRIPTION
Regcmp compiles a regular expression and returns a pointer to the compiled form. The regular
expression is the concatenation of string], string2, etc. Alloc(J/IJ is used to create space for the
vector. It is the user's responsibility to free unneeded space so allocated. A zero return from
regcmp indicates an incorrect argument. Regcmp(/) has been written to generally preclude the
need for this routine at execution time.

Regex executes a compiled pattern (re) against the subject string. Additional arguments are passed
to receive values back. Regex returns zero on failure or a pointer to the next unmatched character
on success. A global character pointer _loci points to where the match began. Regcmp and regex
were mostly borrowed from the editor, ed(I); however, the syntax and semantics have been
changed slightly.

symbols

[p.-

$

+

{m)
{m,}
{m,u)

(...)$n

(...)

meaning

These symbols retain their current meaning.

Matches the end of the string; '\n' matches the newline.

Within brackets the minus means through. For example, [a-z} is equivalent to
[abed •.. xyz]. The·-· can appear as itself only if used as the last or first charac­
ter. For example, the character class expression [] -] matches the characters
']'and'-'.

A regular expression followed by •+• means one or more times. For example,
(0-9]+ is equivalent to [0-9] [0-9)*

Integer values enclosed in I} indicate the number of times the preceeding regular
expression is to be applied. mis the minimum number and u is a number, less
than 256, which is the maximum. If only m is present,e.g. {m}. m indicates the
exact number of times the regular expression is to be applied. {m,} is analogous
to {m,infinity}. The plus('+') and star('*") operations are equivalent to {I,} and
{O,} respectively.

The value of the enclosed regular expression is to be returned. The matched
string will be copied into the area pointed to by the rern argument (see the exam­
ples below). At present, at most ten enclosed regular expressions are allowed.
Regex makes its assignments unconditionally.

Parentheses are used for grouping. An operator, e.g. *,+,{ }, can work on a sin­
gle character or a regular expression enclosed in parenthesis. For example,
(a•(cb+)*)$0.

- I .

REGEX (III) PWB/UNIX Edition 1.0 REGEX(llI)

Of necessity, all the above defined symbols are special. They must, therefore, be escaped to be
used as themselves.

Example 1:
char •cursor, •newcursor, •ptr,

newcursor - regex((ptr-regcmp("-\n" ,O)) ,cursor):
free(ptr);

This example will match a leading newline in the subject string pointed at by cursor.

Example 2:
char ret0[9]:
char •newcursor, •name:

Example 3:

name - regcmp("([A-Za-z][A-za-z0-9_1(0,7))$0",0):
newcursor - regex(name,"123Testing321",ret0);

This example will match through the string "Testing3" and will return the address of
the character after the last matched character (i.e., newcursor will point to the substring
"21 "). The string "TestingJ" will be copied to the character array retO.

#include "file.i"
char •string, •newcursor:

newcursor - regex(name,string);

This example applies a precompiled regular expression in file.i against string (see
regcmp(I)).

Regcmp and regex are kept in the -IPW library. ·

SEE ALSO .

BUGS

regcmp(I), ed(I), alloc(Ill)

The user program may run out of memory if regcmp() is called iteratively without freeing the
vectors no longer required. The following user-supplied replacement for alloc(/JJ) re-uses the
same vector saving time and space.

/* user's program*/

alloc(n) {
static int rebuf[256];

return &rebuf;
}
free(ptr)
char *ptr:
II

- 2 -

·-

RESET (III) PWB/UNIX Edition 1.0

NAME
reset, setexit - execute non·local goto

SYNOPSIS
setexit()

reset()

DESCRIPTION

RESET (III)

These routines are useful for dealing with errors and interrupts encountered in a low-level subrou­
tine of a program.

Setexit saves its stack environment in a static place for later use by reset.

Reset restores the environment saved by the last call of setexit. It then returns in such a way that
execution continues as if the call of setexit had just returned. All accessible data have values as of
the time reset was called.

The routine that called setexit must still be active when reset is called.

SEE ALSO
signal(II), setjmp(lII)

- 1 •

\.

- --· -----·-·--- - ·- -- --·----··---~-· -------·----------~------...... ------ .. _,...,_._._.._. __ _ --J ... ,:.t

RESET(lll) PWB/UNIX Edition 1.0

NAME
reset. setexit - execute non-local goto

SYNOPSIS
setexit()

reset()

DESCRIPTION

RESET Oii)

These routines are useful for dealing with errors and interrupts encountered in a low-level subrou­
tine of a program.

Setexit saves its stack environment in a static place for later use by reset.

Reset restores the environment saved by the last call of setexit. It then returns in such a way that
execution continues as if the call of setexit had just returned. AU accessible data have values as of
the time reset was called.

The routine that called setexit must still be active when reset is called.

SEE ALSO
signal (II). setjmp(III)

-·-· ~-·------------ --------- ·----_.,....__ ____ """"-' ___,._..,., .. ~.=-.-.--.....,.___..se ... on-·--·-y ~""""'*h_. m=--._....,,,., ,__....,.,;.y ... 'hy---...;· --· ~

-
.-

-

-

-
-

SETFIL (III) PWB/UNIX Edition 1.0 SETFIL (III)

NAME
setfil - specify Fortran file name

SYNOPSIS
call setfil (unit, hollerith-string)

DESCRIPTION
Set.Iii provides a primitive way to associate an integer I/O unit number with a file named by the
hollerith-string. The end of the file name is indicated by a blank. Subsequent I/O on this unit
number will refer to the file whose name is specified by the string.

Seffil should be called only before any I/O has been done on the unit, or just after doing a rewind
or endftle. It is ineffective for unit numbers 5 and 6.

SEE ALSO
fc(I)

BUGS

The exclusion of units 5 and 6 is unwarranted.

- 1 •

·-

SETJMP (III) PWB/UNIX Edition 1.0

NAME
setjmp, longjmp - execute non·locaJ goto

SYNOPSIS
int savef31;

setjmp(save)

longjmp(save)

DESCRIPTION

SETJMP(Ill)

These routines are useful for dealing with errors and interrupts encountered in a low-level subrou·
tine of a program.

Setjmp saves its stack environment in save for later use by longjmp. It returns 0 on the initial call.

Longjmp restores the environment saved in save by setjmp. It then returns in such a way that exe·
cution continues as if the call of setjmp had just returned (with a nonzero value). All accessible
automatic and register data have values as of the time setjmp was called.

The routine that called setjmp must still be active when longjmp is called.

Although these functions are similar in purpose to setexit and reset, they permit several setjmp catls
to be made, each with a different save. Longjmp may then return to any of them by selecting the
appropriate one.

SEE ALSO
signal (II) , reset (III)

. l .

-

-

SIN (III)

NAME
sin, cos - trigonometric functions

SYNOPSIS
jsr pc,sin (cos)

double sin (x)
double x;

double cos(x)'.
double x;

DESCRIPTION

PWB/UNIX Edition 1.0

The sine (cosine) of frO (resp. x), measured in radians, is returned (in f rO).

SIN (III)

The magnitude of the argument should be checked by the caller to make sure the result is mean­
ingful.

- l -

SLEEP (III) PWB/UNIX Edition 1.0

NAME
sleep - suspend execution for interval

SYNOPSIS
sleep(seconds)

DESCRimON

SLEEP(III)

The current proces5 .js suspended from execution for the number of seconds specified by the argu­
ment. The routine is implemented by setting an alarm clock signal and pausing until it occurs.
Thus any other use of this signal may be counterproductive.

SEE ALSO
alarm (II), pause(II)

• 1 •

-

-

-

-

-

SQRT (Ill)

NAME
sqrt - square root function

SYNOPSIS
jsr pc,sqrt

double sqrt (x)
double x;

DESCRIPI'lON

PWB/UNIX Edition 1.0

The square root of f rO (resp. x) is returned (in f rO}.

DIAGNOSTICS

SQRT (III)

The c-bit is set on negative arguments and 0 is returned. There is no error return for C programs.

BUGS
. No error return from C.

- 1 •

STR.ING(ID) PWB/UNIX Edition 1.0

NAME
strcpy, strcat, strcmp, strien - operations on ASCII strings

SYNOPSIS
strcpy(sl, s.2)
char •st, *s2;

strc:at(sl, sl)
char *st, *sl;

strcmp(st, sl)
char *st, *sl;

strlen(s)
char *s;

DESCil.PTION
strcpy

STRING(ID)

The null-terminated. character suing s2 is copied. to the location pointed. to by sl. The space
pointed. to by sl must be large enough.

strcat
The end {null byte) of sl is found and s2 is copied to sl starting there. The space pointed to by
sl must be large enough.

stTCmp
The character strings sl and s2 are compared. The result is positive, zero, or negative. dependin1
on whether sl is greater than, equal to, or less than s2 (according to the ASCII coUalins
sequence), respectively.

strlen
The number of bytes in s up to but not including a null byte is returned..

• 1 •

-
-

-

-

-

TIYN (Ill) PWB/UNIX Edition 1.0 TIYN(llI)

NAME
ttyn - return name of current terminal

SYNOPSIS
jsr pc,ttyn

ttyn(file)

DESCRIPTION

Tryn hunts up the last character of the name of the terminal which is the standard input (from as)
or is specified by the argument file descriptor (from C). If n is returned, the terminal name is
then .. /dev/ttyn".

xis returned if the indicated file does not correspond to a terminal.

- 1 -

CAT(IV) PWB/UNlX Edition 1.0 CAT{IV)

NAME
cat - phototypesetter interface

l>fo:S('R I PTH>N
Cat provides the interface to a Graphic Systems Cl AIT phototypesetter. Bytes written on the file
specify font, size, and other control information as well as the characters to be flashed. The cod­
ing will not be described here.

Only one process may have this file open at a time. It is write-only.

FILES
/dev/cat.

SEE ALSO
troff(I)

• 1 •

DH(IV) PWB/UNIX Edition 1.0 DH (IV)

NAME
dh - DH-11 communications multiplexer

DESCRIPTION
Each line attached to the DH-11 communications multiplexer behaves as described in rry(/V).
Input and output for each line may independently be set to run at any of 16 speeds; see stry(lf)
for the encoding.

FILES
/dev/tty?

SEE ALSO
tty(IV), stty{II)

- 1 -

-

·-

DN(IV) PWB/UNIX Edition 1.0 DN(IV

NAME
dn - DN-11 ACU interface

ln:Sl'RIPTION
The dn? files are write-only. The permissible codes are:

0-9 dial, 0-9
dial !II

dial#
- 3 second delay for second dial tone
- end-of-number

The entire telephone number must be presented in a single write system call.

It is recommended that an end-of-number code be given even though not all ACU's actuall}
require it.

FILES
/dev/dn?

SEE ALSO
dp(IV)

- 1 -

-

-

DP (IV) PWB/UNIX Edition 1.0 DP(IV)

NAME
dp - DP·ll, DU·ll synchronous line interface

DESCRIPTION
The dpO file is a data·set interface. Read and write calls to dpO are unlimited. buL th1 nrlui 1>1:st
when.restricted to less than 512 bytes. Each write call is sent as a single record. s v 1..11ts from
each byte are written along with an eighth odd parity bit. The sync characters must be user sup·
plied. Each -read call returns characters received from a single record. Seven bits are returned
unaltered~ the eighth bit is set if the byte was not received in odd parity. A 10 second time out is
set and a zero-byte record is returned if nothing is recei\'ed in that time. An error i;; returned if
data·set ready is not present.

FILES
/dev/dpO

SEE Al..SO
dn(JV)

• 1 •

HP (IV> PWB/UNIX Edition 1.0 HPftv')

NAME
hp - RP04/RP05/RP06 moving-head disk

lU:SCRIPTtoN

FILES

The files rpO ... rp7 refer to sections of the RP04/RP05/RP06 disk- drive 0. The files rp/O •• ; rpf7
refer to drive 1, etc. This is done since the size of of a full pack is over 100,000 blocks and intel"'
nally the system is c;>nly capable of addressing 65536 blocks. Also since the disk is so large, this
allows it to be broken up into more manageable pieces.

The origin and size of the sections on each drive are as follows:

section start length
0 0 11286
1 27 53504
2 155 53504
3 283 53504
4 27 65535
5 184 65535
6 341 29260
7 unassigned

The start address is a cylinder address, with each cylinder containing 418 blocks. For the RP06
drives, this table in the system must be changed to allow full addressing. It is unwise for all of
these files to be present in one installation, since there is overlap in addresses and protection
becomes a sticky matter.

The rp fil~ access the disk via the system's normal buffering mechanism and may be read and
written without regard to physical disk records. There is also a "raw" interface which provides
for direct transmission between the disk and the user's read or write buffer. A single read or
write call results in exactly one VO operation and therefore raw 1/0 is considerably more efficient
when many words are transmitted. The names of the raw RP files begin with rrp and end with a
number which selects the same disk section as the corresponding rp file.

In raw 110 the buffer must begin on a word boundary, and counts should be a multiple of 512
bytes (a disk block). Likewise seek calls should specify a multiple of 512 bytes.

/dev/rp*, /dev/rrp*

- 1 -

.-

-

-

-
·-

HS~ IV) PWB/UNIX Edition 1.0 HS (IV)

NAME
hs - RS03/RS04 fixed-head disk

DESCRIPTION

FILES

The files rsO ... rs7 refer to RS03 disk drives 0 through 7. The files rslO ... r ... j · reter
disk drives 0 through 7. The RS03 drives are each 1024 blocks long and the RS04 dri1· ·
blocks long.

The rs files access the disk via the system's normal buffering mechanism and may be read and
written without regard to physical disk records. There is also a "raw" interface which provides
for direct transmission between the disk and the user's read or write buffer. A single read or
write call results in exactly one I/O operation and therefore raw I/O is considerably more efficient
when many words are transmitted. The names of the raw HS files begin with rrs. The same
minor device considerations hold for the raw interface as for the normal interface.

In raw 1/0 the buffer must begin on a word boundary, and counts should be a multiple of 512
bytes (a disk block). Likewise seek calls should specify a multiple of 512 bytes.

/dev/rs*, /dev/rrs*

- 1 -

HT(IV) PWB/UNIX Edition.1.0 HT,(.IY.). - . '

NAME
ht - TU16 magtape interface.

Dt:S<.'RIPTION

Fl LES

The files mtO. ...• mt 15 ref er. to- the Digital Equipment Corporation. TU 16 magnetic tape control,
and transports. The files. mtO, ... , m17 are 800bpi, and the files. mt8 • ...• mt/ 5 are. 1600bpi.. ThC­
files mrO, ... , mtl, mr.8 • mtl I are designated normal-rewind on close, and t!'le files mt4, .. :. md;
mt J 2, mt 15 are no-rewind on close. When opened for reading, or writing, the tape. is assum¢
to be positioned as. desired. When a file is closed, a double.end-of-file (double tape mark) is. writ ..
ten if the file was opened for writing. If the file was normal-rewind, the tape is.rewound. If it iS.
no-rewind and the file was open for writing, the tape is positioned before the second EOF just.
written. If the file was no-rewind. and opeQed read-only, the tape is positioned after the EOF. fol·
lowing. the data just read. Once opened, reading is restricted, to between the position. when opened
and the next EOF or the last write. The EOF is returned as a zero-length read. By judiciously
choosing mt files, it is possible to read and write multi-file tapes. ·

A standard tape consists of several 5.12 byte. records terminated by an EOF. To the extent possi­
ble. the system makes it possible, if inefficient, to. treat the tape like any other file. Seeks have
their usual meaning and it is possible to read or write a. byte at a time (although very inadvisable] . .'

The mr files discussed above are useful when it is desired to access the. tape in a way compatiblE;
with ordinary files. When foreign. tapes are to be dealt with, and especially when long. records are.
to be read or written, the "raw" interface is appropriate. The associated files are named rmtO, :'. ••
rmt J 5. Each read or write call reads or writes the next record. on the tape. In the. write. Ca$e. the.
record has the same length as the buffer given. During a read, the r~cord size. is, passed hack~.
the number of bytes read, up. to the. buffer size specified~ In ra:w tape 1/0, the bufi;er must Qeⅈi,:
on a word boundacy and the count must be even. Seeks are ignored. An EOF. is returned. as_. a
zero-length read, with the tape positioned. after the EOF, so that the next read will return the next
record. . · · ,. - · ·

/dev/mt*, /dev/rmt*

SEE ALSO
tp(l).

BUGS
If any non-data error is encountered, it refuses to do anything more until closed. The driver is
limited to four transports.

. I .

-

-

-

- -- ----------_________ ..,. _____ _

KL (IV) PWB/UNIX Edition 1.0 KL(IV)

NAME
kl - KL-11 or DL-11 asynchronous interface

DESCRIPTION
The discussion of terminal VO given in tty(/V) applies to these devices.

Since they run at a constant speed, attempts to <:hange the speed via stty(ll) are ignored.

The on-line cQnsole terminal is interfaced using a KL-11 or DL-11. By appropriate switch settings
during a reboot, UNIX will come up as a single-user system with VO on the console terminal.

FILES
/dev/tty8

SEE ALSO

console

tty(IV), init(VIII)

BUGS
Full modem control for the DL-llE is not implemented.

• 1 •

LP(IV) PWB/UNIX Edition· 1.0 LP·(IV)

NAME
Ip - line printer

DESCRIPTION
Lp provides the interface to any of the standard Digital Equipment Corporation line printers:
When it is opened or closed, a suitable number of page- ejects is generated. Bytes written are
printed.

An internal parameter within the driver determines whether or not the device is treated as having
a 96- or 64-character set. In half-ASCII mode, lower case letters are turned into upper case and
certain characters are escaped according to the following table:

{
I .
I +

The driver correctly interprets carriage returns, backspaces, tabs, and form feeds. A sequence of
newlines which extends over the end of a page is turned into a form feed. All lines are indented
8 characters. Lines longer than 80 characters are truncated. These numbers are parameters in the
driver; another parameter allows indenting all output if it is unpleasantly near the left margin.

FILES
/dev/lp

BUGS
In half-ASCII mode, the indent and the maximum line length should be settable by a call analo­
gous to·stty(/[).

. I .

-

-
-

···--------

MEM(IV) PWB/UNIX Edition 1.0 MEM (IV)

NAME
mem, kmem, null - core memory

DESCRIPTION

FILES

Mem is a special file that is an image of the core memory of the computer. It may be used, for
example, to examine, and even to patch the system using the debugger.

A memory aqdress is a 22-bit quantity used to set up memory management to address the full
memory space. References to non-existent locations cause errors to be returned.

Examining and patching device registers is likely to lead to unexpected results when read-only or
write-only bits are present. Especially since reads and writes are a byte at a time.

The file kmem is the same as mem except that the kernel virtual data address space rather than
physical memory is accessed. In particular, the 1/0 area of kmem is located beginning at 160000
(octal) rather than at 760000. The lK region beginning at 140000 (octal) is the system's data for
the current process.

The file null returns end-of-file on read and ignores wrtte.

/dev/mem, /dev/kmem, /dev/null

- l -

RJE (IV) PWB/UNIX Edition 1.0 ltJJH IV)

NAME
rje - DQS-llB interface for remote job entry

DESCRIPTION
The rje interface defines a special file that looks like a concatenation of ~inary Synchronous Com~
munication (BSC) text blocks. This file may be both written to and read from, but not simultane-
ously. Data transfer with the two-point BSC discipline is strictly half-duplex. ·

The device can be opened by only one process at a time. It is expected that a process that suc­
cessfully opens the DQS will spawn separate subprocesses to handle reading and writing. How­
ever, no distinction is made among the several processes that may have the DQS open. FoF
example, reads within a message, even from a single block, may be executed by several processes
in sequence. The overriding constraint is that a complete message must be read from or written
to the DQS before any transfer of data in the opposite direction can begin. A process that tries to
write while the DQS is reading, or vice versa, will be put to sleep until the transfer of the
currently active message has been completed.

A complete message consists of one or more text blocks. A message being written to the DQS is
terminated by a write of zero bytes, which causes an EOT to be transmitted. A message being
read from the DQS is terminated by the reception of an EOT (which is not passed on to the
reader, but is registered as a read of zero bytes). By convention, an EOT follows each block
which ends in an ETX. ·

The length of a text block cannot exceed 512 bytes, including the line prefix and appendix. These
two sequences, which must be present in blocks being written and will be passed on in bl~ks
read, are constructed from the control bytes SOH, STX, ETB, ETX, OLE. The DQS itself will
supply leading SYN bytes and trailing block check and pad bytes. The interface examines only ~he
last byte of each text block received and so is unaware of the presence of headings or transparent
text. The selection and interpretation of these features is the user's responsibility. ·

Line control functions, such as the alternating affirmative responses (ACKO and ACKl), are
automatically interspersed with text blocks as required by the line discipline. The interface han~
dies the initial line bid and the EOT reset at the end of a transmission. A 3·second time-out· is
also respected. The interface will send TID's and respond WACK's if its buffers are not serviced
fast enough. When receiving, expiration of the time-out will cause the interface to abort the
active message by sending EOT. When transmitting. the failure ta send a block successfully aft~r
seven tries will cause the interface to terminate the active message prematurely. Such aborts can~
not be appealed.

Reads on the DQS will return bytes from a single text block. If one read does not exhaust a text
block, successive reads will return additional bytes from the same block. A returned count of
zero indicates the end of a message. Until the remote station bids for the line, all reads will
return zero bytes. The error bit will never be set by the interface itself. The DQS must be read
to the end of a message before it will accept writes.

Writes to the DQS must consist of a single, entire text block. A write that specifies a count of
zero bytes defines the end of a message. The count returned by a write call must be checked. A
count of zero for the first write of a new message indicates that it was not possible to ac.quire the
line. Otherwise, the DQS should return exactly the count specified in the write call. However,
the error bit is set when a line error requires that the message be aborted. Notification of the
error is not punctual, because data blocks are buffered for transmission. A write of zero bytes
must be issued, or an error must occur, before the DQS will accept reads .

. l .

RJE (IV) PWB/UNIX Edition 1.0 RJE (IV)

An open returns with the error bit set if the DQS is already open or not ready. The DQS should
be opened in mode 2 to allow both reading and writing.

The DQS interface steals a number of buffers from UNIX (currently two) for the duration of <!arn
message. This number is specified at system generation time and may be tuned to int1' ..;:e
overall system throughput.

FILES
/dev/rjei OQSl 1-B communicating with IBM 370

SEE ALSO .
General /'!formation-Binary Synchronous Communication, IBM Systems Reference Library
#GA27-3004.
DQS/ 1-AIB PDP-11 Communications Controller Option Description, Digital Equipment Corporation.

\
I

- 2 -

RP(IV) PWB/UNIX Edition 1.0 RP-(fV)

NAME
rp - RP· 1 l/RP03 moving-head disk

Dlo:S('RIPTION

FILES

The files rpO ... rp7 refer to sections of the RP03 disk drive 0. The files rpJO ..• rpf 7 refer to drive
I, etc. This is done since the size of a full pack is 81200 blocks and internally the system is only
capable of addresstng 65536 blocks. Also since the disk is so large, this allows it to be broken up
into more manageable pieces.

The origin and size of the sections on each drive are as follows:

section start length
0 0 7600
1 38 36200
2 219 36200
3 40 65535
4 22 36200
5 203 40600
6-7 unassigned

The start address is a cylinder address, with each cylinder containing 200 blocks. It is unwise for
all of these files to be present in one installation, since there is overlap in addresses and protection
becomes a sticky matter.

The rp files access the disk via the system's normal buffering mechanism and may be read and
written without regard to physical disk records. There is also a .. raw" interface which provides
for direct transmission between the disk and the user's read or write buffer. A single read or
write call results in exactly one I/O operation and therefore raw I/O is considerably more efficient
when many words are transmitted. The names of the raw RP files begin with rrp and end with a
number which selects the same disk section as the corresponding rp file.

In raw I/O the buffer must begin on a word boundary, and counts should be a multiple of 512
bytes (a disk block). Likewise seek calls should specify a multi pie of 512 bytes.

/dev/rp•, /dev/rrp•

- 1 -

TM{IV) PWB/UNIX Edition 1.0 TM (IV)

NAME
tm - TMll/TUlO magtape interface

DESCRIPTION

FILES

The files mtO, ... , mt7 refer to the Digital Equipment Corporation TMl 1/TUlO magnetic lJpe ,_.)n­

trol and transports at 800bpi. The files mtO, ... , mtJ are designated normal-rewind on ..::lo:.~ ~d
the files mt4, ...• mt7 are no-rewind on close. When opened for reading or writing, the tape is
assumed to be positioned as desired. When a file is closed, a double end-of-file (double tape
mark) is written if the file was opened for writing. If the file was normal-rewind, the tape is
rewound. If it is no-rewind and the file was open for writing, the tape is positioned before the
second EOF just written. If the file was no-rewind and opened read-only, the tape is positioned
after the EOF following the data just read. Once opened, reading is restricted to between the
po~ition when opened and the next EOF or the last write. The EOF is returned as a zero-length
read. By judiciously choosing mt files, it is possible to read and write multi-file tapes.

A standard tape censists of several 512 byte records terminated by an EOF. To the extent p0'isi­
ble, the system makes it possible, if inefficient, to treat the tape like any other file. Sei-.:ks have
their usual meaning and it is possible to read or write a byte at a time (although very inadvisable)_

The mt files discussed above are useful when it is desired to access the tape in a way compatible
with ordinary files. When foreign tapes are to be dealt with. and especially when long records are
to be read or written, the "raw" interface is appropriate. The associated files are named rmrO•
rmtl. Each -read or write call reads or writes the next record on the tape. In the write case the
record has the same length as the buff er given. During a read, the record size is passed back as
the number of bytes read, up to the buffer size specified. In raw tape 110, the buffer must begin
on a word boundary and the count must be even. Seeks are ignored. An EOF is returned as a
zero-length read, with the tape positioned after the EOF, so that the next read will return the next
record.

/dev/mt?, /dev/rmt?

SU: ALSO
tp(l)

BUGS

If any non-data error is encountered, it refuses to do anything more until closed. The driver is
limited to four transports.

• 1 .

TIY(IV) PWBIUNIX Edition 1.0 TIY(IV'.

NAM•:
tty - general terminal interface

DESCRIPTION
This section describes both a particular special file, and the general nature of the terminal inter.­
face.

The file /devlity is, in each process, a synonym for the control terminal associated with that pro­
cess. It is useful for programs or Shell sequences which wish to be sure of writing mesAApc on
the terminal no matter how output has been redirected. It can also be used for programs which
demand a file name for output, when typed output is desired and it is tiresome to find out which
terminal is currently in use.

As for terminals in general: all of the low·speed asynchronous communications ports use the same
general interface, no matter what hardware is invol-ved. The remainder of this section discusses
the common features of the interface: k/(/V) and dh(/V) describe peculiarities of the individual
devices ..

When a terminal file is opened, it causes the process to wait until a connection is established. Jn
practice user's programs seldom open these files: they are opened by init(V/llJ and become a
user's input and output file. The very first terminal file open in a process becomes the comrol ter­
minal for that process. The control terminal plays a special role in handling quit or interrupt sij­
nals. as discussed below. The control terminal is inherited by a child process during a fork.

A terminal associated with one of these files ordinarily operates in full-duplex mode. Characters
may be typed at any time, even while output is occurring, and are only lost when the system's
character input buffers become completely choked, which is rare, or when the user has accumu­
lated the maximum allowed number of input characters which have not yet been read by some
program. Currently this limit is 256 characters. When the input limit is reached all the saved
characters are thrown away without notice.

These special files have a number of modes which can be changed by use of the s11y(/f). When
first opened, the interface mode is 300 baud; either parity accepted; 10 bits/character (one stop
bit); and newline action character. Modes that can be changed by stty include the interface speed
(if the hardware permits); acceptance of even parity, odd parity, or both: a raw mode in which all
characters may be read one at a time, and all 8-bits are sent on output; a carriage return (CJU
mode in which CR is mapped into newline on input and either CR or line feed (Lf) cause echo·
ing of the sequence LF-CR: mapping of upper case letters into lower case; suppression of echoin~
a variety of delays after function characters; and the printing of tabs as spaces. See gerry(VIII) for
the way that terminal speed and type are detected.

Normally. terminal input is processed in units of lines. This means that a program attempting lO
read will be suspended until an entire line has been typed. Also, no matter how many charactea
are requested in the read call, at most one line will be returned. It is not however necessary to
read a whole line at once; any number of characters may be requested in a read, even one,
without losing information.

During input, erase and kill processing is normally done. By default, the character '#' erases the
last character typed, except that it will not erase beyond the beginning of a line or an EOT. B.y
default, the character '@' kills the entire line up to the point where it was typed, but not beyond
an EOT. Both these characters operate on a keystroke basis independently of any backspacing or
tabbing that may have been done. Either '@' or '#' may be entered literally by preceding it by
'\ '; the erase or kill character remains, but the '\' disappears. These two characters may be \
changed to others.

·---~-1.----......-.&,...-~-----s------·-~' - - .· -., ~--~-- -...:... ------- ---------~-·---~~---.:. - . ___ ..;__,_ -- - ~--~ - --

TIY(IV) PWB/UNIX Edition LO TTY(IV)

When desired, all upper-case letters are mapped into the corresponding lower-case letter. The
upper-case letter may be generated by preceding it by '\'. In addition, the following escape
sequences are generated on output and accepted on input:

for use
\'

I \!
,~

\(
\)

In raw mode, the program reading is awakened on each character. No erase or kill processing is
done~ and the EOT, quit and interrupt characters are not treated specially. The input parity bit is
passed back to the reader. On output, all 8-bits are sent.

The ASCII EOT (control-0) character may be used to generate an end of file from a terminal.
When an EOT is received, all the characters waiting to be read are immediately passed to the pro­
gram, without waiting for a new-line, and the EOT is discarded. Thus if there are no characters
waiting, which is to say the EOT occurred at the beginning of a line, zero characters will be passed
back, and this is the standard end-of-file indication. The EOT is passed back unchanged in raw
mode.

When the carrier signal from the data-set drops (usually because the user has hung up his termi­
nal) a hangup signal is sent to all processes with the terminal as control terminal. Unless other
arrangements have been made, this signal causes the processes to terminate. If the hangup signal
is ignored, any read returns with an end-of-file indication. Thus programs which read a terminal
and test for end-of-file on their input can terminate appropriately when hung up on.

Two characters have a special meaning when typed. The ASCII DEL character (sometimes called
'rubout') is not passed to a program but generates an interrupt signal which is sent to all processes
associated with the control terminal. Normally each such process is forced to terminate, but
arrangements may be made either to ignore the signal or to receive a trap to an agreed-upon loca­
tion. See signa/(11).

The ASCII FS character generates the quit signal. Its treatment is identical to the interrupt signal
elCcept that unless a receiving process has made other arrangements it will not only be terminated
but a core image file will be generated.

When one or more characters are written, they are actually transmitted to the terminal as soon as
previously-written characters have finished typing. Input characters are echoed by putting them in
the output queue as they arrive. When a process produces characters more rapidly than they can
be typed, it will be suspended when its output queue elCceeds some limit. When the queue has
drained down to some threshold the program is resumed. The EOT character is not transmitted
(except in raw mode) to prevent terminals which respond to it from hanging up.

FILES
/dev/tty

SEE ALSO
kHIV), dh(IV}, getty(VIII), stty(I), stty(II), gtty(II), signal(II)

HU<;s
Half-duplex terminals are not supported.

- 2 -

A.OUT(V) PWB/UNIX Edition 1.0 A.OUT{V)

NAME
a.out - assembler and link editor output

DESCRIPTION
A.out is the output file of the assembler as and the link editor.Id. Both programs make a.out exe­
cutable if there we~e no errors and no unresolved external references.

This file has four se'ctions: a header, the program and data text, a symbol table, and relocation bits
(in that order). The last two may be empty if the program was loaded with the .. -s" option of Id
or if the symbols and relocation have been removed by strip.

The header always contains 8 words:

1 A magic number (407, 410, or 411(8))
2 The size of the program text segment
3 The size of the initialized portion of the data segment
4 The size of the uninitialized (bss) portion of the data segment
5 The size of the symbol table
6 The entry location (always 0 at present)
7 Unused
8 A flag indicating relocation bits have been suppressed

The sizes of each segment are in bytes but are even. The size of the header is not included in
any of the other sizes.

When a file produced by the assembler or loader is loaded into core for execution, three logical
segments are set up: the text segment, the data segment (with uninitialized data, which starts off
as aJI 0, following initialized), and a stack. The text segment begins at 0 in the core image; the
header is not loaded. If the magic number (word 0) is 407, it indicates that the text segment is
not to be write-protected and shared, so the data segment is immediately contiguous with the text
segment. If the magic number is 410, the data segment begins at the first 0 mod 8K byte boun­
dary following the text segment, and the text segment is not writable by the program~ if other
processes are executing the same file, they will share the text segment. If the magic number is
41 l, the text segment is again pure, write-protected, and shared, and moreover instruction and
data space are separated; the text and data segment both begin at location 0. See the 11I45 hand­
book for restrictions which apply to this situation.

The stack will occupy the highest possible locations in the core image: from 177776(8) and grow­
ing downwards. The stack is automatically extended as required. The data segment is only
extended as requested by the break system call.

The start of the text segment in the file is 20(8); the start of the data segment is 20+S1 (the size
of the text) the start of the relocation information is 20+S1 +Sd; the start of the symbol table is
20+2(S1+S) if the relocation information is present, 20+S1+Sd if not.

The symbol table consists of 6-word entries. The first four words contain the ASCII name of the
symbol, null-padded. The next word is a flag indicating the type of symbol. The following values
are possible:

00 undefined symbql
01 absolute symbol
02 text segment symbol
03 data segment symbol
37 file name symbol (produced by Id)
04 bss segment symbol
40 undefined external (.globl) symbol

A.OUT (V) PWB/UNIX Edition 1.0

41 absolute external symbol
42 text segment external symbol
43 data segment external symbol
44 bss segment external symbol

A.OUT (V)

Values other than those given above may occur if the user has defined some of his own instruc­
tions.

The last word of a symbol table entry contains the value of the symbol.

If the symbol's type is undefined external, and the value field is non-zero, the symbol is inter­
preted by the loader Id as the name of a common region whose size is indicated by the value of
the symbol. ·

The value of a word in the text or data portions which is not a reference to an undefined external
symbol is exactly that value which will appear in core when the file is executed. If a word in the
text or data portion involves a reference to an undefined external symbol, as indicated by the relo­
cation bits for that word, then the value of the word as stored in the file is an offset from the
associated external symbol. When the file is processed by the link editor and the external symbol
becomes defined, the value of the symbol will be added into the. word in the file.

'If relocation information is present, it amounts to one word per word of program text or initial­
ized data. There is no relocation information if the "suppress relocation" flag in the header is on.

Bits 3-1 of a relocation word indicate the segment referred to by the text or data word associated
with the relocation word:

00 indicates the reference is absolute
02 indicates the reference is to the text segment
04 indicates the reference is to initialized data
06 indicates the reference is to bss (uninitialized data)
10 indicates the reference is to an undefined external symbol.

Bit 0 of the relocation word indicates if on that the reference is relative to the pc (e.g. "cir x"); if
off, that the reference is to the actual symbol (e.g., "cir •sx").

The remainder of the relocation word (bits 15-4) contains a symbol number in the case of exter­
nal references, and is unused otherwise. The first symbol is numbered 0, the second 1, etc.

SEE ALSO
as(I), ld(I), strip(I), nm(I)

. 2 .

ARCHIVE(V) PWB/UNIX Edition 1.0 ARCHJVE(V)

NAME
ar - archive (library) file format

DESCRIPTION

FILES

The archive command ar is used to combine several files into one. Archives are used mainly ~
libraries to be searched by the link-editor Id.

A file produced by ar has a magic number at the start, followed by the constituent files, each pre­
ceded by a file header. The magic number is 177545(8} (it was chosen to be unlikely to occur
anywhere else). The header of each file is 26 bytes long:

struct archive {
char a_name{14); /*file name, null padded on right •1
long a_date; /* modification time of file•/
char a_uid; /* user ID of file owner•/
char a_gid; /• group ID of file owner•/
int a_mode; /* file mode • /
long a_size; /* file size•/

1~

Each file begins on a word boundary~ a null byte is inserted between files if necessary. Neverthe­
less the size given reflects the actual size of the file exclusive of padding.

Notice there is no provision for empty areas in an archive file.

/usr/inciude/ archive.h

SEE ALSO
ar(I), ld(I)

- 1 -

' '.

-·

-

-

ASCII (V) PWB/UNIX Edition 1.0

NAME
ascii - map of ASCII character set

SYNOPSIS
cat /usr/pub/ascii

DESCRIPTION
Ascii is a map .of the ASCII character set, to be printed as needed. It contains:

IOOO nuIIOOl sohl002 stxl003 etxj004 eotl005 enql006 ackl007 bell
1010 bs !Oll ht 1012 nl 1013 vt 1014 np 1015 er 1016 so 1017 si I
1020 dlel021 dcll022 dc2I023 dc3I024 dc4j025 nakJ026 synl027 etbl
j030 canl031 an 1032 subJ033 escJ034 fs 1035 gs J036 rs 1037 us I
1040 sp 1041 ! 1042 • 1043 # 1044 s 1045 % 1046 & Jo47 · I
1050 (1051) 1052 • 1053 + IOS4 , JOSS - 1056 . 1057 I I
1060 0 1061 I 1062 2 1063 3 1064 4 1065 5 1066 6 1067 7 I
1010 s 1011 9 .1012 : 1013 ; 1014 < 1015 = 1016 > 1011 ? I
1100 @ 1101 A 1102 B I 103 c j 104 D I 105 E I 106 F I 107 G I
1110 H 1111 I 1112 J 1113 K 1114 L 1115 M 1116 N 1117 O I
1120 p 1121 Q 1122 R I 123 s I 124 T I 125 u I 126 v I 127 w I
1130 x 1131 y 1132 z 1133 [1134 \ 1135] 1136 A 1137 - I
l 140 ' I 141 a I 142 b I 143 c I 144 d I 14S e I 146 f I 147 g I
1150 h 1151 1152 j 1153 k 1154 I 1155 m 1156 n 1157 o I
1160 P 1161 q 1162 r lt63 s 1164 t 1165 u 1166 v 1167 w I
1110 x 1111 y 1112 z 1113 ! 1114 I 1115 l 1116 - 1111 ctell

FILES
found in /usr/pub

- I -

ASCII (V)

CHECKLIST (V) PWB/UNIX Edition· 1.0 CHECKLIST (V}

NAME
checklist - list of file systems processed by check

DES<:RIPTtON
Checklist resides in directory /etc and contains a list of at most 15 special file names. Each special
file name is contained on a separate line and corresponds to a file system. Each file system will
then be automatically processed by the check(VlllJ command.

SEE ALSO
check(VIII)

. l -

-

-

-

-
\
/

CORE(V) PWB/UNIX Edition 1.0 CORE(V)

NAME
core - format of core image file

DESCRIPTION
UNIX writes out a core image of a terminated process when any of various errors occur. See
signal(//) for the list of reasons; the most common are memory violations, illegal instructions, bus
errors, and user-generated quit signals. The core image is called .. core" and is written in the
process's working directory (provided it can be; normal access controls apply).

The first section of the core image is a copy of the system's per-user data for the process, includ­
ing the registers as they were at the time of the fault. The size of this section depends on the
parameter usize. Currently for PWB/UNIX systems it is 768 bytes. The remainder represents the
actual contents of the user's core area when the core image was written. If the text segment i
read-only and shared, or separated from data space, it is not dumped.

The format of the information in the first section is described by the user structure of Lhe system.
The important stuff not detailed therein is the locations of the registers. Here are their offsets.
The parenthesized numbers for the floating registers are used if the floating-point hardware is in
single precision mode, as indicated in the status re8ister.

fpsr 0004
f rO 0006 (0006)
frl 0036 (0022)
fr2 0046 (0026)
fr3 0056 (0032)
fr4 0016 (0012)
frS 0026 (0016)

The following registers are located relative to end of the first section.

rO -6
r1 -12
r2 -30
r3 -26
r4 -24
rS -22
sp -14
pc -4
ps -2

In general the debuggers db(/) and cdb(/) are sufficient to deal with core images.

SEE ALSO
adb(l), cdb(l), db(I), signal (II)

- l .

CPIO(V) PWB/UNIX Edition 1.0

NAME
cpio - format of cpio archive

SYNOPSIS

struct {
int

long·
int
long.
char
char

] archive;

DESCRIPTION

h_magic,.
h_dev,
h_ino,
h_mode~
h:_uid,
h_gid·,
h_nlink,
l:t_majmin;
h_mtime;
h _ namesize;
h ftlesize;
h - namefh namesize rounded to wordl;
ditalh_tilesize rounded to- wordl;

CPlO(.V)

The contents of each tile is recorded in an element of the array of varying length structures,
archive. together with other items describing the tile. Every instance of h_magic contains the con~
stant 070707. The items h_dev through h_mtime have meanings explained in stat(II>. The lengtn
of the null·terminated pathname h_name, including the null byte, is given by h_namesize.

The last record of the archive always contains the name 'TRAILER!!!'. Special: files., directories •.
and the trailer are recorded with h_filesize - 0.

SEE ALSO
cpio(I), stat(ll}

BUGS
This format should be reconciled with archive(V).

_____ , ---- -
-----·--- -·- ____ _, .. ____ ___ ---·---------· -~~- -;...;o.,~_ ... __ 't-.c-~-----"""·~---~-~~-- --·- -- _ -· - -- - __ ..., _________ -.._;i.,..__,__ .. _~

-

-

-

-

/

DIRECTORY (V) PWB/UNIX Edition 1.0 DIRECTORY (V)

NAME
directory - format of directories

DESCRIPTION
A directory behaves exactly like an ordinary file, save that no user may write into a directory.
The fact that a file is a directory is indicated by a bit in the flag word of its i-node entry. Direc­
tory entries are 16 bytes long. The first word is the i-number of the file represented by the entry,
if non-zero; if zero, the entry is empty.

Bytes 2-15 represent the (14-character) file name, null padded on the right. These bytes are not
cleared for empty slots. The structure is:

struct dir {
int d ino; /* i-number •I
char (name[l4]; /*file name */

J;
By convention, the first two entries in each directory are for "." and " .. ". The fir.st is an entry
for the directory itself. The second is for the parent directory. The meaning of " .. " is modified
for the root directory of"the master file system and for the root directories of removable file sys­
tems. In the first case, there is no parent, and in the second, the system does not permit otf­
device references. Therefore in both cases " .. " has the same meaning as ". ".

FILES
/usr/include/dir.h

SEE ALSO
fs(V)

- 1 -

DUMP CV) PWB/UNl·X Edition 1.0 DUMP CV)

NAME
dump - incremental dump tape format

DESCRIPTION
The dump(VIII) and restor(Vlll) commands are used to write and read incremental dump mag­
netic tapeS.

The dump tape consists of blocks of 512-bytes each. The first block has the following structure.

struct {

};

int
int
int
int
int

isize;
fsize;
date[2J;
ddate[2];
tsize;

/size and fsize are the corresponding values from the super block of the dumped file system (see
.f.HV)). Date is the date of the dump. Ddate is the incremental dump date. The incremental
dump contains all files modified between ddate and date. Tsize is the number of blocks per reel.
This block checksums to the octal value 031415.

Next there are enough whole tape blocks to contain one word per file of the dumped file system.
This is isize divided by 16 rounded to the next higher integer. The first word corresponds to i­
node 1. the second to i-node 2. and so forth. If a word is zero. then the corresponding file exists,
but was not dumped. (Was not modified after ddate.) If the word is -1. the file does not exist.
Other values for the word indicate that the file was dumped and the value is one more than the
number of blocks it contains.

The rest of the tape contains for each dumped file a header block and the data blocks from the
file. The header contains an exact copy of the i-node (see ft(V)) and also checksums to 031415.
The next-to-last word of the block contains the tape block number, to aid in (unimplemented)
recovery after tape errors. The number of data blocks per file is directly specified by the control
word for the file and indirectly specified by the size in the i-node. If these numbers differ, the file
was dumped with a 'phase error'.

SI>: .. : Al.SO
dump(VIII), restor(VIJI), fs(V)

- l -

\ ..

EBCDIC (V) PWB/UNIX Edition 1.0 EBCDIC (\ l

:'-OAME
ebcdic - file format

DESCRIPTION
The ebcdic format is a convenient representation for files consisting of card images in an ar."tra1y
code. Files created by the send(l) command, to be entered into rje xmit" queues, are ::1 tt .r­
mat. So are files of punch output from HASP.

An ebcdic file is a simple concatenation of card records. A card record consists of a single control
byte followed by a' variable number of data bytes. The control byte specifies the number /which
must lie in the range 0-80) of data bytes that follow. The data bytes are 8-bit codes that .;0,"·ti­
cute the card image. If there are fewer than 80 data bytes, it is understood that the rem::1m1..:: ,,,
the card image consists of trailing blanks.

SI::!:: ALSO
send(l), hasp(VIII)

- 1 -

FILE SYSTEM (V) PWB/UNIX Edition 1.0 FILE SYSTEM ('

NAME
fs- format of file system volume

DESCRIPTION
Every file system storage volume (e.g. RF disk, RK disk, RP disk, DECtape reel) has a commo
format for ~rtain vital information. Every such volume is divided into a certain number of 25
word (512 byte) blocks. Block 0 is unused and is available to contain a bootstrap program, pac
label, or other information.

Block 1 is the super block. Starting from its first word, the format of a super-block is

struct (
unsigned int isize;
unsigned int fsize;

int nfree;
unsigned int free[lOO];

int ninode;
unsigned int inode[lOOl;

char flock;
char ilock;
char fmod;
char ronly;

long int time;
int pad[40};

unsigned int tfree;
unsigned int ti node;

char fname[6];
char fpack[6];

l:
/size is the number of blocks devoted to the i-list, which starts just after the super-block, in block
2. Fsize is the first block not potentially available for allocation to ·a file. These numbers are used
by the system to check for bad block numbers; if an "impossible" block number is allocated from
the free list or is freed, a diagnostic is written on the on-line console. Moreover, the free array is
cleared, so as to prevent further allocation from a presumably corrupted free list.

The free list for each volume is maintained as follows. The .free array contains, in ji-ee/ I/
.1;ee[nfree-I], up to 99 numbers of free blocks. Free[O} is the block number of the head of a
chain of blocks constituting the free list. The first word in each free-chain block is the number
(up to 100) of free-block numbers listed in the next 100 words of this chain member. The first of
these 100 blocks is the link to the next member of the chain. To allocate a block: decrement
njree, and the new block is free[njree]. lf the new block number is 0, there are no blocks left, so
give an error. If n.free became 0, read in the block named by the new block number, replace nfree
by its first word, and copy the block numbers in the next 100 words into the free array. To free a
block, check if njree is l 00; if so, copy njree and the free array into it, write it out, and set njree to
0. In any event set free[nfreel to the freed block's number and increment njree.

Tfree is the total free blocks available in the file system.

Ninode is the number of free i-numbers in the inode array. To allocate an i-node: if ninode is
greater than 0, decrement it and return inode[ninode}. If it was 0, read the i-list and place the
numbers of all free inodes (up to 100) into the inode array, then try again. To free an i-node,
provided nrnode is less than 100, place its number into inode[ninode} and increment nmode. If
ninode is already 100, don't bother to enter the freed i-node into any table. This list of i-nodes is

- I

~·~·- -·-~- ------- ------·-·--- ---··~-"'----'--'""-"-• -·~·---------· --------~~&...-.--~:u..-.=·-· --~---........_

·-..
,.

FILE SYSTEM (V) PWB/UNIX Edition 1.0 FILE SYSTEM (V)

only to speed up the allocation process;. the information as to whether the inode is really free or
not is maintained in the inode itself.

Tmode is the total free inodes available in the file system.

Flock and ilock are flags maintained in the core copy of the file system while it is mounted and
their values on disk are immaterial. The value of /mod on disk is likewise immaterial; it is used as
a flag to indicate that the super-block has changed and should be copied to the disk during th·:
next periodic update of file system information.

Ro11lv is a read-only flag i9 indicate write-protection.

Time is the last time the super-block of the file system was changed, and is a double-precision
representation of the number of seconds that have elapsed since 0000 Jan. I. 1970 (GMT). Dur­
ing a reboot, the time of the super-block for the root file system is used to set the system's idea of
the time.

Fname is the name of the file system and fpack is the name of the pack.

I-numbers begin at 1, and the storage for i-nodes begins in block 2. Also, i-nodes are 32 bytes
long, so 16 of them fit into a block. Therefore, i-node i is locat~d in block (i + 31) I 16, a1
begins 32"((1 + 31) (mod 16)) bytes from its start. I-node 1 is reserved for the root directory of
the file system, but no other i-number has a built-in meaning. Each i-node represents one file.
The format of an i-node is as follows.

struct {
int flags;
char nlinks;
char ui¢
char gid;
char sizeO;
int sizel;
int addr[SI;
int actime[2);
int modtime[2];

};

The flags are as follows:

100000 i-node is allocated
060000 2-bit file type:

000000 plain file
040000 directory

/* +o: see below *I
/* +2: number of links to file*/
/* +3: user ID of owner*/
/* +4: group ID of owner •I
/* +5: high byte of 24-bit size •t
/* +6: low word of 24-bit size *I
/* +8: block numbers or device number *I
/* +24: time of last access*/
/* +28: time of last modification "/

020000 character-type special file
060000 block-type special file.

010000 large file
004000 set user-ID on execution
002000 set group-ID on execution
000400 read (owner)
000200 write (owner)
000100 execute (owner)
000070 read, write, execute (group)
000007 read, write, execute (others)

Special files are recognized by their flags and not by i-number. A block-type special file is basi­
cally one which can potentially be mounted as a file system~ a character-type special file cannot,
though it is not necessarily character-oriented. For special files the high byte of the first address

FILE s· iM (V) PWB/UNIX Edition 1.0 FILE SYSTEM (V)

Fil.ES

Jrd specifies the type of device; the low byte specifies one of several devices of that type. The
.evice type numbers of block and character special files overlap.

The address words of ordinary files and directories contain the numbers of the blocks in the file
(if it is small) or the numbers of indirect blocks (if the file is large). Byte number n of a file is
accessed as follows. N is divided by 512 to find its logical block number (say b) in the file. If the
file is small (flag. 010000 is 0), then b must be less than 8, and the physical block number is
addr{b].

If the file is large, b is divided by 256 to yield i. If i is less than 8, then addr{;J is the physical
block number of the indirect block. The remainder from the division yields the word in the
indirect block which contains the number of the block. for the sought-for byte.

For block b in a file to exist, it is not necessary that all blocks less than b exist. A zero block
number either in the address words of the i-node or in an indirect block indicates that the
corresponding block has never been allocated. Such a missing block reads as if it contained all
zero words.

I usr/include/filsys.h
/usr/include/stat.h

SEE ALSO
icheck (VIII), dcheck(VIII)

- 1 -

--------~------·-------..:......--- -------·--- ~------------ ~--------·-----~-_.._--~.-......-~----

-

-

J

FSPEC (V) PWB/UNIX Edition 1.0 FSPEC (V)

NAME
fspec - format specification in text files

DESCRIPTION
It is sometimes convenient to maintain text files on UNIX with non-standard tabs, i.e .. tabs which
are not set at the simple interval of eight columns. Such files must generally be converted to a
standard format, frequently by replacing all tabs with the appropriate number of spaces, before
they can be processed by UNIX commands. A format specification occurring in the first line of a
text file specifi~ how tabs are to be expanded in the remainder of the file.

A format specification consists of a sequence of parameters separated by blanks and surrounded
by the brackets•<:' and':>'. Each parameter consists of a keyletter. possibly followed immedi­
ately by a value. The following parameters are recognized:

trabs The t parameter specifies the tab settings for the file. The value of tabs must be one
of the f 611owing:

1. a list of column numbers separated by commas, indicating tabs set at the
specified columns~

2. a '-' followed immediately by an integer n, indicating tabs at intervals of /1

columns~
3. a'-' followed by the name of a •canned' tab specification.

Standard tabs are specified by 't-8' or, equivalently, 'tl,9,17,25,etc'. The canned
tabs which are recognized are defined by the rabs(l) command - a,a2,c,c2,c3,f,p,s,u.

ssize The s parameter specifies a maximum line size. The value of size must be an integer.
Size checking is performed after tabs have been expanded, but before the margin is
prepended.

mmargin The m parameter specifies a number of spaces to be prepended to each line. The
value of margin must be an integer.

d The d parameter takes no value. lts presence indicates that the line containing the
format specification is to be deleted from the converted file.

e The e parameter takes no value. Its presence indicates that the current format is to
prevail only until another format specification is encountered in the file.

Default values, which are assumed for parameters not supplied, are 't-8' and ·mo·. If the s
parameter is not specified, no size checking is performed.

If the first line of a file does not contain a format specification, the above defaults are assumed for
the entire file.

The following is an example of a line containing a format specification:

/* <:tS,10,15 s72:> */

If a format specification can be disguised as a comment, it is not necessary to code the d parame­
ter.

Several Programmer's Workbench commands correctly interpret the format specification for a file.
Among them is gath which may be used to convert files to a standard format acceptable to other
UNIX commands.

SEE ALSO
ed (I), gath (l), reform (l), send (I), tabs (I)

- I -

GREEK (V) PWB/UNI X Edition 1.0 GREEK(V)

NAME
greek - graphics for extended TIY -37 type-box

SYNOPSIS
cat /usr/pub/greek

DESCRIPTION

Greek gives the mapping from ascii to the "shift out" graphics in effect between SO and SI on a
Model 37 TELETYPE') with a 128-character type-box. It contains:

alpha a A beta /3 B gamma i' \
GAMMA r G delta 3 D DELTA ~ w
epsilon E s zeta ' Q eta Tl N
THETA 9 T theta 9 0 lambda A. L
LAMBDA A E mu µ. M nu 'II @

xi f x pi 11' J PI n p
rho p K sigma <T y SIGMA I R
tau 1" I phi

"'
u PHI <I> F

psi I/I v PSI 'I' H omega w c
OMEGA n z nabla \I [not ~

partial 0 l integral J
SEE ALSO

ascii(V)

- l -

' '

-

-

-

-

GROUP(V) PWB/UNIX Edition 1.0 GROUP(V)

NAME
group - group file

DESCRIPTION
Group contains for each group the following information:

group name
encrypted password
numerical group ID
a comma separated list of all users allowed in the group

This is an ASCII file. The fields are separated by colons; each group is separated from the next by
a new-line. If the password field is null, no password is demanded.

This file resides in directory /etc. Because of the encrypted passwords, it can and does have gen­
eral read permission and can be used, for example, to map numerical group lD's to names.

FILES
/etc/group

SEE ALSO
newgrp(I), login (I), crypt (Ill), passwd (I)

. l -

MASTER(V) PWB/UNIX Edition 1.0 MASTER(V)

NAME
master - master device information table

DESCRIPTION
This file is used by the config(VIII) program to obtain device configuration information that
enables it to generate the low.sand con}:c files.

The file consists of two parts, separated by a line with a dollar sign ($) in column 1. Part one
contains device information, while part two contains names of devices that have aliases. Any line
with an asterisk (*) in column 1 is treated as a comment.

Part one contains lines consisting of at least 10 fields a~d at most 13 fields, with the fields delim­
ited by tabs and/or bfanks, as follows:

Field 1: device name (8 characters maximum).

Field 2:

Field 3:

Field 4:

interrupt vector size (decimal, in bytes).

device mask - each "on" bit indicates that the handler exists, as follows:

000020 open handler
000010 close handler
000004 read handler
000002 write handler
000001 sgtty handler.

device type indicator, as follows:

000020
000010
000004
000002
000001

immediate allocation
block device
character device
floating vector
fixed vector.

Field 5: handler prefix (4 characters maximum).

Field 6: device address size (decimal).

Field 7: major device number for block-type device.

Field 8: major device number for character-type device.

Field 9: maximum number of devices per controller (decimal).

Field 10: maximum bus request level (4 through 7).

Fields 11-13: optional configuration table structure declarations (8 characters maximum).

Part two contains lines with two fields each, as follows:

Field 1:

Field 2:

SEE ALSO
config(VIII)

alias of device (8 characters maximum).

reference name of device (8 characters maximum, must have occurred in
part one).

- 1 -

-

-

-

-

MNTIAB(V) PWB/UNIX Edition 1.0 MNTTAB(V)

NAME
mnttab - mounted file system table

DESCRIPTION
Mnttab resides in directory /etc and contains a table of devices mounted by the mounr(VIII) com­
mand.

Each entry is 26 bytes in length; the first 10 bytes are the null-padded name of the place where
the special ftle is mounted; the next 10 bytes represent the null-padded root name of the mounted
special file; tile remaining 6 bytes contain the mounted spec1alf1le 's read/write permissions and the
date which it was mounted.

The maximum number of entries in mnttab is based on the system parametef, NMOUNT, locate•'
in /sys/sys/cf/conf.c which defines the number of allowable mounted special files.

SEE Al.SO
mount(VIU), umount(VIII)

. l .

PASSWO(V) PWB/UNIX Edition 1.0 PASSWD (V)

NAME
passwd - password file

DF..S<.:RIPTION

FILES

Passwd contains for each user the following information:

name (login name, contains no upper case)
encrypted pa$sword
numerical user ID
comment
initial working directory
program to use as Shell

This is an ASCII file. Each field within each user's entry is separated from the next by a colon.
The comment field should identify the user, e.g., <dept # > name (account #l. Each user is
separated from the next by a new-line. If the password field is null, no password is demanded~ if
the Shell field is null, the Shell itself is used.

This file resides in directory /etc. Because of the encrypted passwords, it can and does have gen­
eral read permission and can be used, for example, to map numerical user ID's to names.

I etc/ passwd

SEE ALSO
login (I), crypt (III), passwd (I), group(V)

- 1 -

-

-

-

PLOT(V) PWB/UNIX Edition 1.0 PLOT(V)

NAME
plot - graphics interface

DESCRIPTION
Files of this format are produced by routines described in p/ot(Ill). and are interpreted for various
devices by commands described in p/01(1). A graphics file is a stream of plotting instructions.
Each instruction consists of an ASCII letter usually followed by bytes of binary information. The
instructions are executed in order. A point is designated by four bytes representing the x and y
values; each value is a signed integer. The last designated point in an I, m. n, or p instruction
becomes the 'current point' for the next instruction.

Each of the following descriptions begins with the name of the corresponding routine in plor(lll).

m move: The next four bytes give a new current point.

n cont: Draw a line from the current point to the point given by the next four bytes. Not
effective in vtO. See plot(I).

p point Plot the point given by the next four bytes.

I line: Draw a line from the point given by the next four bytes to the point given by the follow­
ing four bytes.

label: Place the following ASCII string so that its first character falls on the current point. The
string is terminated by a newline.

a arc: The first four bytes give the center, the next four give the starting point, and the last four
give the end point of a circular arc. The least significant coordinate of the end point is used
only to determine the quadrant. The arc is drawn counter-clockwise. Effective only in vrO.

c circle: The first four bytes give the center of the circle, the next two the radius. Effective only
in vtO.

e erase: Start another frame of output.

f linemod: Take the following string, up to a newline, as the style for drawing further lines. The
styles are 'dotted,' 'solid,' 'longdashed,' 'shortdashed,' and 'dotdashed.' Effective only in rek.

d dot Begin a horizontal dotted line at the point given by the next four bytes. The following
two bytes are a signed x-increment, and the two after are a word count. The indicated number
of words follow. A point is plotted for each 1-bit in the list, and skipped for each 0-bit. Each
point is offset rightward by the x-increment. Effective only in vrO.

s space: The next four bytes give the lower left corner of the plotting area; the following four
give the upper right corner. The plot will be magnified or reduced to fit the device as closely
as possible.

Space settings that exactly fill the plotting area with unity scaling appear below for devices sup­
ported by the filters of plor(I). The upper limit is just outside the plotting area. In every case
the plotting area is taken to be square; points outside may be displayable on devices whose
face isn't square.

tek space{O, 3120, 0, 3120);
t300 space(O, 4096, 0, 4096);
t300s space(O, 4096, 0, 4096);
t450 ·space(O, 4096, 0,4096)
vtO space(O, 2048, 0, 2048);

- l -

PLOT(V) PWB/UNIX Edition 1.0 PLOT(V)

s•:•: Al.SO
plot(I), plot(lll), graph(I)

-
.:
\

- 2 -

--

-

.-

-

-

i

SCCSFILE (V) PWB/UNIX Edition 1.0 SCCSFILE (V)

NAME
sccsfile - format of secs file

DESCRIPTION
An SCCS file is an ASCH file. It consists of six logical parts: the checksum, the delta table (con­
tains information about each delta), user names (contains login names of users who may add del­
tas), flags (contains definitions of internal keywords), comments (contains arbitrary descriptive
information about the file), and the body (contains the actual text lines intermixed with control
lines). ,

Throughout an SCCS file there are lines which begin with the ASCII SOH (start of heading) char­
acter (octal 001). This character is hereafter referred to as "the control character" and will be
represented graphically as ''@". Any line described below which is not depicted as beginninb
with the control character is prevented from beginning with the control character.

Entries of the form "DDDDD" represent a five digit string (a number between 00000 and
99999).

Each logical part of an SCCS file is described in detail below.

Checksum. The checksum is the first line of an SCCS file. The form of the line is:
@hDDDDD

The value of the checksum is the sum of all characters, except those of the first line. The "@h"
provides a "magic number" of (octal) 064001.

Delta table. The delta table consists of a variable number of entries of the form:
@s DDDDDIDDDDDIDDDDD
@d <type> <SCCS ID> yr/mo/da hr:mi:se <pgmr> DODOO DODOO
@i DODOO .. .
@x DODOO .. .
@g DODOO .. .
@m <MR number>

@c <comments> ...

@e

The first line (@s) contains the number of lines inserted/deleted/unchanged respectively. The
second line (@d) contains the type of the delta (currently, normal: 'D', and removed: 'R'), the
SCCS ID of the delta, the date and time of creation of the delta, the login name corresponding to
the real user ID at the time the delta was created, and the serial numbers of the delta and its
predecessor, respectively.

The @i, @x, and @g lines contain the serial numbers of deltas included, excluded, and ignored,
respectively. These lines are optional.

- 1 -

SCCSFILE (V) PWB/UNIX Edition 1.0 SCCSFILE (V}

The @m lines (optional) each contain one MR number associated with the delta; the @c lines
(optional) contain comments associated with the delta.

The @e line ends the delta table entry.

u~r 11amf's. The login names of users who may add deltas to the file, separated by newlines. The
lines containing these login names are surrounded by the bracketing lines .. @u" and .. @U". An
empty list of user names' ~lows anyone to make a delta.

Flags. Keywords used internally. Each flag line takes the form:-
@f <flag> <optional text>

There are, at present, only eight flags defined:
@f t <type of program>
@f v <program name>
@fi
@fb
@f m <module name>
@ff <floor>
@f c <ceiling>
@f d <default-sid>

The "t .. flag defines the replacement for the %Y% identification keyword. The "v" flag controls
prompting for MR numbers in addition to comments; if the optional text is present it defines an
MR number validity checking program. The "i" flag controls the warning/error as~ of the
"No id keywords" message. When the "i" flag is not present, this message- is only a warning;
when the "i" flag is present, this message will cause a ••fatal" error {the file will not be gotten, or
the delta will not be made). When the "b" flag is present the -b keyletter may be used on the
get command to cause a branch in the delta tree. The "m" flag defines the first choice for the
replacement text of the %M% identification keyword. The "r' flag defines the ••floor" release;
the release below which no deltas may be added. The .. c" flag defines the "ceiling" release~ the
release above which no deltas may be added. The "d" flag defines the default SID to be used
when none is specified on a get command.

Comments. Arbitrary text surrounded by the bracketing lines "@t" and "@T". The comments
section typically will contain a description of the file's purpose.

Body. The body consists of text lines and control lines. Text lines don't begin with the control
character, control lines do. There are three kinds of control lines: insert, delete, and end,
represented by:

@IDDDDD
@D DODOO
@E DODOO

respectively. The digit string is the serial number corresponding to the delta for the control line.

SEE ALSO
get(I), delta(I), admin(I), prt(l)
SCCSIPWB User's Manual by L. E. Bonanni and A. L. Glasser.

-' -

.
\

' '

SHA (V) PWB/UNIX Edition 1.0 SHA(V)

:"iAME
sha - Shell accounting file

DESCRIPTION

The file /etclsha is used by each Shell to record command execution data. This information is nor
used for charging, but is helpful for system tuning, command design, and monitoring of user
activity. For each command executed, the Shell writes a 32-byte record of the following form:

struct I
char
char
char
char
long
long
long
long

} sh _record;

command name[8];
login name[6];
tty _letter~
user_id;
date;
real_time;
cpu_time;
system_time;

The command_name gives the last (or only) component of a pathname. When an
asynchronously-executed command terminates, the Shell can obtain times, but not the actual
command name. In this case, '**gok' is used. The name '()' indicates the completion of a
parenthesized subshell.

The type (and therefore volume) of data recorded in /etclsha can be controlled by setting file per­
mission bits appropriately. If it cannot be opened for writing, no data is recorded. Otherwise, the
Shell tests the 3 bits of the group permission field to determine the kinds of recording to be done.
If a Shell is reading from a TTY, it tests the high-order bit (04). If it is 0, the Shell records only
external commands, i.e., those not built into the Shell. If the bit is I, internal commands (such
as chdir, -. etc.) are also recorded. A Shell that is not reading from a TTY uses the two low­
order bits. If bit 02 is on, external commands are recorded. Setting bit 0 I on adds internal wm­
mands. Adm should own letclsha, and the group owner should be one not used elsewhere, such as
0. No data is ever recorded for the super-user. Sample file modes and their effects are:

606 Record external commands issued at TTY. This is the pref erred mode.

666 Record everything but procedure-level internal commands, which can account for 30% of all
command executions.

676 Record everything. This mode is probably of interest only to those who maintain the Shell.

SEE ALSO

Be warned that this mode may cause /etclsha to grow by 1000 blocks per day in an active sys­
tem.

sh (I), lastcom (VIII), sa (VIII)

- 1 •

TP(V) PWB/UNIX Edition 1.0 TP(V)

NAME
tp - mag tape format

DESCRIPTION
The command tp dumps files to and extracts files from magtape.

Block zero contains a copy of a"stand-alone bootstrap program. See tapeboot(V/11).

Blocks 1 through 62 contain a directory of the tape. There are 496 entries in the directory; 8
entries per block; 64 bytes per entry. Each entry has the following format:

path name
mode
uid
gid
unused
size
time modified
tape address
unused
check sum

32 bytes
2 bytes
I byte
1 byte
I byte
3 bytes
4 bytes
2 bytes
16 bytes
2 bytes

The path name entry is the path name of the file when put on the tape. If the pathname starts
with a zero word, the entry is empty. It is at most 32 bytes long and ends in a null byte. Mode,
uid, gid, size and time modified are the same as described under i-nodes (fs(V)). The tape
address is the tape block number of the start of the contents of the file. Every file starts on a
block boundary. The file occupies (size+Sl 1)/512 blocks of continuous tape. The checksum
entry has a value such that the sum of the 32 words of the directory entry is zero.

Blocks 63 on are availabf e for file storage.

A fake entry has a size of zero. See tp{I).

SEE ALSO
fs(V), tapeboot(VIII), tp(I)

• 1 •

-

-

-

-

-
-

/

ITYS(V) PWB/UNIX Edition 1.0 ITYS<V>

NAME
ttys - terminal initialization data

DESCRIPTION
The ttys file is read by the init program and specifies which terminal special files are to have a pro­
cess created for them which will allow people to log in. It consists of lines of 3 characters each.

The first character is either •o• or 'l '; lhe former causes the line to be ignored, the latter causes it
to be effective. The second character is the last character in the name of a terminal; e.g. x refers
to the file '/dev/ttyx'. The third character is used as an argument to the getry program. which per­
forms such tasks as baud-rate recognition, reading the login name. and calling logm. For normal
lines, the character is 'O'; other characters can be used, for example, with hard-wired terminals
where speed recognition is unnecessary or which have special characteristics. (Getty will have t

be fixed in such cases.)

...... :s
/etc/ttys

SEE Al.SO
init(VIII), getty(Vlll), login(I)

- 1 -

UTMP(V) PWB/UNIX Edition 1.0 UTMP(V)

NMU'.
utm11 - user information

l>t'.S<.'RIPTION

This file allows one to discover information about who is currently using UNIX. The file is
binary; each entry is 16(10) bytes long. The first eight bytes contain a user's login name or are
null if the table slot is unused. The low order byte of the next word contains the last character of
a terminal name. The next two words contain the user's login time. The last word is unused.

FILES
/etc/utmp

SEE ALSO
init(VIII) and login(I), which maintain the file; who(I), which interprets it.

• 1 •

______ ...,._.......,.......,::....- ~-_..__., ... ,..,_......,~,.,...,.Wlll.._ __ ..., •. ~;r·'""·.,.am'""-•-'"'".,.' ..,..__...._._, • .,..--· -·-.......~•· c hdte ...,.,n * e '1 tN ·-c

-
-

-

-

I

WTMP(V) PWB/UNIX Edition 1.0 WTMP(V)

NAME
wtmp - user login history

-DESCRIPTION

This file records all logins and logouts. Its format is exactly like utmp(V) except tha· 1 nu!. c:Ser
name indicates a logout on the associated terminal. Furthermore, the terminal name 111Jicates
that the system- was rebooted at the indicated time~ the adjacent pair of entries with terminal
names 1' and •}' indicate the system-maintained time just before and just after a date command
has changed. the system's idea of the time.

Wtmp is maintained by login(/) and i11it(V!JI). Neither of ihese programs creates the lile, so if it i...,
removed record-keeping is turned off. (tis summarized by adV!!!J.

FILES
/usr/adm/wtmp

St:fo: Al.SO
utmp(V), login(I), init(VIIJ), ac(Vlll), who(I)

- I -

-

-

-

-

/

.,~be r

AZEL (VI) PWB/UNIX Edition 1.0 AZEL (VI)

'°'A'.\tE
azel - satellite predictions

SY'.'iOPSIS
/usr/games/azel [-d] [-1 J satellite! [-d] [-I J satellite2 ...

DESCRIPTION

FILES

Azel predicts, in convenient form, the apparent trajectories of Earth satellites whose orbital ele­
ments are given in the argument files. If a given satellite name cannot be read, an attempt is
made to find it in a directory of satellites maintained by the program's author. The -d option
causes azel to ask for a date and read line 1 data (see below) from the standard input. The -I
option causes azel to ask for the observer's latitude, west-longitude, and height above sea level.

For each satellite given the program types its full name, the date, and a sequence of lines each
containing a time, an azimuth, an elevation, a distance, and a visual magnitude. Each such line
indicates that: at the indicated time, the satellite may be seen from Murray Hill (or provided loca­
tion) at the indicated azimuth and elevation, and that its distance and apparent magnitude are as
given. Predictions are printed only when the sky is dark (sun more than 5 degrees below the hor­
izon) and when the satellite is not eclipsed by the earth's shadow. Satellites which have not been
seen and verified will not have had their visual magnitude level set correctly. All times input and
output by azel are GMT (Universal Time). The satellites for which elements are maintained are:

sla,b,e,f,k Skylab A through Skylab K. Skylab A is the laboratory; B was the rocket but it has
crashed. A and probably K have been verified.

cop Copernicus I. Never verified.

oao Orbiting Astronomical Observatory. Seen and verified.

pag Pageos I. Seen and verified; fairly dim (typically 2nd-3rd magnitude), but elements
are extremely accurate.

exp 19 Explorer 19; seen and verified, but quite dim (4th-5th magnitude) and fast-moving.

cl03b, cl56b, cl84b, c206b, c220b, c46lb, c500b
Various of the USSR Cosmos series; none seen.

7276a Unnamed (satellite# 72-76A); not seen.

The element files used by azel contain 5 lines. The first line gives a year, month, day, hour, and
minute at which the program begins its consideration of the satellite, followed by a number of
minutes and an interval in minutes. If the year, month, and day are 0, they are taken to be the
current date (taken to change at 6 A.M. local time). The output report starts at the indicated
epoch and prints the position of the satellite for the indicated number of minutes at times
separated by the indicated interval. This line is ended by 2 numbers that specify options to the
program governing the completeness of the report; they are ordinarily both 'l '; the first
suppresses output when the sky is not dark; the second suppresses output when the satellite is
eclipsed by the earth's shadow. The next line of an element file is the full name of the satellite.
The next 3 are the elements themselves (including certain derivatives of the elements).

/usr/jfo/"' - orbital element files

SEE ALSO
sky(Vl)

- I -

BIO(Vl) PWB/UNIX Edition 1.0 BIO (VI)

NAME
bio - biorhythm analysis

SYNOPSIS
/usr/games/bio birth-date start-date [number-of-days]

DESCRIPTION
Bio produces a graph of a person's biorhythm functions. The date arguments are given in the
form mm/dd/yy. The number-of-days argument is the number of days for which the graph is
printed. The default is JO days. The three biorhythm curves are plotted: physical (p), emotional
(e), and intellectual (i).

To get a neatly formatted graph quickly use:
bio birth-date start-date A reform A pr A gsi

. l -

BJ (VI) PWB/UNIX Edition 1.0 BJ (VI)

.'"AME
bj - the game of black jack

SYNOPSIS
/usr/games/bj

DESCRIPTION
Bj is a serious attempt at simulating the dealer in the game of black jack (or twenty-one) as might
be found in Reno. The following rules apply:

The bet is $2 every hand.

A player 'natural' (black jack) pays $3. A dealer natural loses $2. Both dealer and player
naturals is a 'push' (no money exchange)_.

If the dealer has an ace up, the player is allowed to make an 'insurance' bet against the
chance of a dealer natural. If this bet is not taken, play resumes as normal. If the bet is
taken, it is a ·side bet where the player wins $2 if the dealer has a natural and loses $1 if the
dealer does not.

If the player is dealt two cards of the same value, he is allowed to 'double'. He is allowed to
play two hands, each with one of these cards. (The bet is doubled also; $2 on each hand.)

If a dealt hand has a total of ten or eleven, the player may 'double down'. He may double
the bet ($2 to $4) and receive exactly one more card on that hand.

Under normal play, the player may 'hit' (draw a card) as long as his total is not over
twenty-one. If the player 'busts' (goes over twenty-one), the dealer wins the bet.

When the player 'stands' (decides not to hit), the dealer hits until he attains a total of
seventeen or more. If the dealer busts, the player wins the bet.

If both player and dealer stand, the one with the largest total wins. A tie is a push.

The machine deals and keeps score. The following questions will be asked at appropriate times.
Each question is answered by y followed by a new line for 'yes', or just new line for 'no'.
.,
Insurance?
Double down?

(means, "do you want a hit?")

Every time the deck is shuffled, the dealer so states and the 'action' (total bet) and 'standing'
(total won or lost) is printed. To exit, hit the interrupt key (DEL) and the action and standing
will be printed.

- 1 -

CHESS (VI)

NAME
chess - the game of chess

SYNOPSIS

/usr/gasnes/chess

DESCRIPTION

PWB/UNIX Edition 1.0 CHESS (VI)

Chess is a computer program that plays class D chess. Moves may be given either in standard
(descriptive) notation or in algebraic notation. The symbol '+' is used to specify check; 'o-o' and
'o-o-o' specify castling. To play black, type 'first'~ to print the board, type an empty line.

Each move is echoed in the appropriate notation followed by the program's reply.

FILES
/usr/lib/book

DIAGNOSTICS

opening •book'

The most cryptic diagnostic is 'eh?' which means that the input was syntactically incorrect.

WARNING
Over-use of this program will cause it to go away.

BUGS
Pawns may be promoted only to queens.

- 1 -

'
'

.-

-

CUBIC (VI) PWB/UNIX Edition 1.0

NAME
cubic - three dimensional tic-tac-toe

SYNOPSIS
/usr/ganies/cubic

DESCRIPTION

-- - ------------ d- •• - ' • - - -- - - ..

CUBIC (VI)

Cubic plays the game of three dimensional 4x4x4 tic-tac-toe. Moves are given by the three digits
(each 1-4) specifying the coordinate of the square to be played.

WARNING
Too much playing of the game will cause it to disappear.

- l -

FACTOR (VI) PWB/UNIX Edition 1.0

NAME
factor - discover prime factors of a number

SYNOPSIS
/usr/garnes/factor

DESCRIPTION

FACTOR (VI)

When factor is invoked, it prompts for a number to be typed in. If you type in a positive number
less than 256 (about 7.2x 1016) it will factor the number and print its prime factors: each one is
printed the proper number of times. Then it waits for another number. It exits if it encounters a
zero or any non-numeric character.

Maximum time to factor is proportional to Jn and occurs when n is prime or the square of a
prime. It takes 1 minute to factor a prime near 1013.

DIAGNOSTICS
'"Ouch." for input out of range or for garbage input.

- 1 -

\
;

. ---- ---- --:-""--·-·---.. ·---· ·~----- - -----·--·

MOO (VI)

NAME
moo - guessing game

SYNOPSIS
/usr/gllJJles/rnoo

DESCRIPTION

:- •
PWB/UNIX Edition 1.0 MOO (VI)

Jfoo is a guessing game imported from England: The computer picks a number consisting of four
distinct decimal digits. The player guesses four distinct digits being scored on each guess. A
'cow' is a correct digit i.n an incorrect position. A 'bull' is a correct digit in a correct position.
The game continues until the player guesses the number (a score of four bulls).

- 1 -

OTlll;.1.1 0 I VI) PWB/lJNIX Edition 1.0 OTHELLO (VI)

NAME
othello - a game of dramatic reversals

SYNOPSIS

/usr/games/othello [[-r] .file)

DESCRIPTION
Othello (a.k.a reversi) is played on an 8 by 8 board using two-sided tokens. Each playe:- takes his
turn by placing a token with his side up in an empty square. During the first four turns, players
may only place tokens in the four central squares of the board. Subsequently, with each turn, a
player mus1 capture one or more of his opponents tokens. He does this by placing one of his
tokens such that he outflanks one or more of his opponents', horizontally, vertically or diagonaily.
Captured tokens are flipped over and thus can be re-captured. If a player cannot outflank his
opponent he must forfeit his turn. The play continues until the board is filled or until no more
outflanking is possible.

In this game, your tokens are asterisks and the machine's are at-signs. You move by typing in the
row and column at which you want to place your token as two digits (1-8), optionally separated by
blanks or tabs. You can also type in

c to continue the game after hitting break (this is only necessary if you interrupt the
machine while it is deliberating),

g /1 to start othello playing against itself for the next /1 moves (or until the break key is hit),
n to stop printing the board after each move,
o to start it up again,
p to print the board regardless,
q to quit (without dishonor),
s to print the score, and, as always,

to escape to the shell. Control-D gets you back.

Othello also recognizes several commands which are valid only at the start of the game, before any
moves have been made. They are

f to let the machine go first.
h 11 to ask for a handicap of from one to four corner squares. If you're really good, you

can give the machine a handicap by typing a negative number.
I /1 to set the amount of lookahead used by the machine in searching for moves. Zero

means none at all. Four is the default. Greater than six means you may fail asleep
waiting for the machine to move.

t /1 to tell othello that you will only need n seconds to consider each move. lf you fail to
respond in the allotted time, you forfeit your turn.

If othc•llo is given a file name as an argument, it will checkpoint the game, move by move, by
dumping the board onto life. The -r flag will cause othetlo to restart the game from file and con­
tinue logging.

DIAGNOSTICS
Illegal! and Huh?

- 1

\
. .;

SKY(VI)' PWB/UNIX Edition 1.0 SKY{VI)

NAME
sky - obtain ephemerides

SYNOPSIS
/usr/games/sky [-I]

DESCRIPTION

FILES

Sky predicts the apparent locations of the Sun, the Moon, the planets out to Saturn, stars of mag­
nitude at least 2.5, and certain other celestial objects. Sky reads the standard input to obtain a
GMT time typed on one line with blanks separating year, month number, day, hour, and minute;
if the year is missing the current year is used. If a blank line is typed the current time is used.
The program prints the azimuth, elevation, and magnitude of objects which are above the horizon
at the ephemeris location of Murray Hill at the indicated time. The -I flag causes it to ask for
another location.

Placing a '"l" input after the minute entry causes the program to print out the Greenwich Sidereal
Time at che indicated moment and to print for each body its topographic right ascension and decli­
nation as well as its azimuth and elevation. Also, instead of the magnitude, the semidiameter of
the body, in seconds of arc, is reported.

A "2" after the minute entry makes the coordinate system geocentric.

The effects of atmospheric extinction on magnitudes are not included; the brightest magnitudes of
variable stars are marked with ''*".

For aH bodies, the program takes into account precession and nutation of" the equinox, annual
(but not diurnal) aberration, diurnal parallax, and the proper motion of stars. In no case is refrac­
tion induded.

The program takes into account perturbations of the Earth due to the Moon, Venus, Mars, and
Jupiter. The expected accuracies are: for the Sun and other stellar bodies a few tenths of seconds
of arc; for the Moon (on which particular care is lavished) likewise a few tenths of seconds. For
the Sun, Moon and stars the accuracy is sufficient to predict the circumstances of eclipses and
occultations to within a few seconds of time. The planets may be off by several minutes of arc.

There are lots of special options not described here, which do things like substituting named star
catalogs, smoothing nutation and aberration to aid generation of mean places of stars, and making
conventional adjustments to the Moon to improve eclipse predictions.

For the most accurate use of the program it is necessary to know that it actually runs in Ephem­
eris time.

/usr/lib/startab, /usr/lib/moontab

SEE ALSO
azel (VJ)
American Ephemeris and Nauocal Almanac. for the appropriate years; also, the Explanarory Supple­
ment to the American Ephemeris and Nau11cal Almanac.

• 1 -

-

TIT(VI)

NAME
ttt - the game of tic-tac-toe

SYNOPSIS
/usr/games/ttt

DESCRIPTION

PWB/UNlX Edition 1.0 ITT(Vi}

Ttt is the X and 0 game popular in the first grade. This is a learning program that never makes
the same mistake twice.

Although it learns, it learns slowly. It must lose nearly 80 games to completely know the game.

FILES
/usr/games/ttt.k learning file

- l -

\

'

WUMP(VI) PWB/UNIX Edition 1.0 WUMP (VI)

NAME
wump - the game of hunMhe-wumpus

SY'."IOPSIS
/usr/games/wump

DES<.: Rf PTION

BlJGS

Wump plays the game of "Hunt the Wumpus." A Wumpus is a creature that lives in a cave with
several rooms connected by tunnels. You wander among the rooms. trying to shoot the Wumpus
with an arrow, meanwhile avoiding being eaten by the Wumpus and falling into Bottomless Pits.
There are also Super Bats which are likely to pick you up and drop you in some random room.

The program asks various questions which you answer one per line; it will give a more detailed
description if you want.

This program is based on one described in People's Compwer Company, 2, 2 (November 1973>.

It will never replace Spm;c War.

- I -

terminals (VII) PWB/UNIX Edition 1.0 terminals (VII)

NAME
terminals - descriptions of commonly-used terminals

DESCRIPTION -
This page serves as an introduction and index to the pages in Section VII that describe some of
the terminals in common use. These pages should help solve those problems that may occur dur­
ing the actual use of the terminals. Note that no conclusions regarding terminal selection should
be drawn from the presence or absence of specific terminals in these pages. Headings on these
pages include: ·

COMMANDS TO ISSUE AFTER LOGIN - this section gives the commands necessary co prop­
erly initialize the state of the terminal. The commands usually include tabs{/) to set hardware tab
stops, and srry(/) to set appropriate carriage return and line feed delays.

NORMAL SWITCH SETTINGS - this section notes the required settings for the various switches
and toggles of the terminal. It is especially important to be aware of these when using a terminal
in a public terminal room, as switches may be left in an unexpected setting, leading to odd results.

SPECIAL CHARACTERS AND STATES - characters having atypical effects are noted here,
along with escape sequences that may be needed to generate useful actions.

COMMON PROBLEMS - this section lists problems commonly found when using the terminal
and indicates possible remedies for them.

IDIOSYNCRASIES - notes unusual properties of the terminal.

Although almost any full-duplex ASCII terminal can be used with PWB/UNIX, some are much
more suitable than others. Because the whole terminal situation changes rapidly, no recommen­
dations are given here regarding choice of terminals.

SEt: Al.SO
stty(!), tabs(I)
DASl450(VII), GSl300(Vll), HP2640(VW, TERMINET(Vll), Tl700(Vll)

- l .

-----·- - ·--~------·- -·-- ______________ _.._._ _ _.... _____ , ____ "---.......,,. ... ~-...... ~ '··-~

-
DASl450 (VII) PWB/UNIX Edition 1.0 DASl450 (VII)

NAME
DASl450 - DASI450, DIABLO 1620, XEROX 1700 terminals

DESCRIPTION
The DASl450 is a useful general-purpose terminal, often used in document production. The pri­
mary advantages of this terminal include its wide variety of features, availability of many type
fonts, high print quality, and ease of changing the print element and ribbon.

The terminal normally produces output 10 or 12 characters to the inch horizontally, allowing total
line widths of 132 and 158 characters, respectively. Horizontal spacing is normally controlled by
the SPACING switch (see below), but the setting of that switch can be dynamically overridden by
appropriate control sequences, either from the keyboard or remotely. Vertical spacing is normally
6 lines per inch, and is independent of the horizontal spacing. Vertical spacing can be changed
dynamically to 8 lines per inch and back to 6 by (different) control sequences. Using graphics
mode, the print mechanism may be spaced in horizontal increments of 1160 inch, and vertical
increments of 1/48 inch. Combined with forward and reverse motions, graphics mode can be used
to produce subscripts, superscripts, reverse line motion, Greek letters, and graphs. Output filters
may be necessary for some of these functions: see 450(1) and graph(/). Graphics mode in entered
or left by control sequences that can be generated dynamically, from the terminal or remotely (see
COMMON PROBLEMS below).

COMMANDS TO ISSUE AFTER LOGIN

tabs +t4SO; stty nlO cr2

This makes sure that tab stops are set. It also sets terminal delays appropriate for most output,
especially that containing many contiguous blank lines. At this setting, it takes about 49 seconds
per page of C program, and 84 seconds per page of nroff(!) output (UNIX manual page). A few
rare types of output may not print properly at this setting. Usable settings and their approximate
relative time ratios are as fo!Jows:

nlO cr2
nlO crl
nlO cr3
nl2 cr2
nl2 cr3

1.00
1.03
1.08
1.10
1.17

For output with many blank lines, the cr2 and crJ settings seem to work best.

NORMAL SWITCH SETI'INGS
Switches are inside the terminal cover, just above the keyboard. From left to right, they should
be set as follows:

FORM LENGTH - 11
SPEED - 30
SPACING - 10 (or 12: see below; see also DESCRIPTION above.)
AUTO LF-OFF
PARITY - EVEN
DUPLEX - FULL

- 1 •

D AS1450 (VII) PWB/UNIX Edition 1.0

Switches at the lower left side of the keyboard should be set as shown:

LOCAL - not depressed
UC ONLY - normally not depressed

The switches at the upper right side of the keyboard should be set:

ERROR RESET - push this when red light at left goes on
FORM FEED - push to jump to top of form, as set by next button
SET TOF - at start of session, align paper to perforation, then push
SCROLL - normally OFF, although you may want to experiment with ON
POWER-ON

DASl450 (VII)

In 10-pitch mode, output is printed 10 characters/inch horizontally, 6 lines/inch vertically, so that
a character is 6 plot increments wide, and 8 (vertical) plot increments high. This mode permits
about 65 characters per line, 66 lines/page on normal 8 1/2" by 11" paper. This output size is
compatible with many other terminals, and is expected as a default by many UNIX commands,
such as nrq/f(IJ and pd!). For normal output, the following are appropriate:

nroff -h -T450 .file .•. or nroff -h .life ... I 450

In 12-pitch mode, output is printed 12 characters/inch, 6 lines/inch, so that a character is 5 incre­
ments wide and 8 high. This mode allows about 80 characters/line. The 12-pitch, 6 lines/inch
combination is considered by many to be the most attractive output format. Use:
nroff -h -T 450 -12 files... or nroff -h files... I 450

SPECIAL CHARACTERS AND STATES
The interrupt signal can be generated by hitting either the DEL or BREAK key~ the former is
usually more convenient. At any point in time, a terminal is either in graphics mode or character
mode. and the interpretations of some characters differ according to mode. In graphics mode, it is
possible to space a singie increment in each direction.

COMMON PROBLEMS
OUTPUT GENERATED IN ONE POSITION, OVERPRINTING - you may accidentally have
gotten into 1?raph1cs mode. Type ESC followed by '4' to leave that mode.

GARBAGE OUTPUT, WITH WILD SKIPPING - a DASI may go berserk when faced with many
very long lines, long sequences of nonblank, nonidentical characters requiring extreme print
wheel motion, or heavy amounts of tabbing. Remove some tab characters or increase terminal
delays via stty.

PRINT HEAD ZOOMS TO RIGHT SIDE OF CARRIAGE - tab stops are not set. Set them with
the tabs command.

POOR REGISTRATION AFTER REVERSE PLATEN MOTION - this is most likely to occur
when using a forms tractor to perform reverse line feeds or half-line motions. Some (but not all)
forms tractors have just enough slack in their mechanism that it is difficult to return exactly to the
position you want. For best appearance of such text, or of Greek letters, take the forms tractor
off, and use the friction feed instead. This problem is very dependent on the individual terminal.

NO LINE FEED OCCURS WHEN RETURN HIT; NO SYSTEM RESPONSE TO RETURN -
you are in a mode where there is no conversion of RETURN to CR-LF echoed to your terminal.

- ") -

DASl450 (VII) PWB/UNIX Edition 1.0 DASI450 (VII)

There are two situations. First, either the terminal or coupler switch may be set to HALF­
DUPLEX, and you may have asked to suppress echoing because you were getting double charac­
ters. Change- the switches to FULL-DUPLEX, and issue a stty echo command. The second case
is that a stty nl command has been done, or some equivalent action, such as using LINE FEED
rather than RETURN during your login sequence. Issue the command stty -nl, but terminate it
with a LINE FEED, not a RETURN. This will restore the terminal to the normal state, allowing
convenient use of RETURN again.

ERROR LIGHT ON, OTHER PECULIAR BEHAVIOR - push the RESET button found at the..
upper right side of the keyboard. If this does not help, take the cover off and push the CLEAR
button at the extreme right. This resets the microprocessor, leaves graphics mode, clears all tabs,
and returns the carriage. Then issue tabs command to reset the tabs. The error light also turns
on if either you or the computer attempt to print while the front cover is off.

IDIOSYNCRASIES
A DASI can perform a high-speed skip when it receives a series of LF characters without other
characters intermixed. Unfortunately, a newline is normally a CR-LF pair, and the terminal does
not know that it is at the left margin, so that it does sequences of these pairs about 3 times slower
than it needs to. As a result, the only way to assure high-speed skipping is to write code to con­
vert a sequence of newlines into a single CR, followed by a sequence of LF's. PWB/UNIX does
this under stry modes nlO cr2 and nlO cr3.

SEE ALSO
450(1), graph(I), stty(I), tabs(!), terminais(VII)

- 3 -

---· ··- ~---- ----. ·- ~-~~-·-·· -···,,..../':#.-----··-"'--·· ~;'-'-.1._.,. n;,;,_· -· - ... -.... ~;,_'-.... ·--,..,,._ -,, ______,:·~-__;__-· ·-· ...:..,__.__~~~· --------:~·~·h.~--··

051300 (VII) PWB/UNIX Edition 1.0 OSI300 (VII)

NAME
051300 - 051300 (DTC300 or DASl300) hard-copy terminals

DESCRIPTION
The OSl300 is a useful general-purpose terminal, often used in document production, although it
is being supplanted by the newer DASI450 (DIABLO 1620 or XEROX 1700). The advantages of
this terminal include its wide variety of features, availability of many type fonts, high print qual­
ity, and ease of changing the print element and ribbon.

The terminal can produce output at 10 or 12 characters to the inch horizontally, allowing total line
widths of 132 and 158 characters, respectively. Vertical spacing can be set to 6 or 8 lines per inch.
Both of these settings are under the exclusive control of the PITCH switch (see below). Using
plot mode, the print mechanism may be spaced in horizontal increments of 1160 inch. and vertical
increments of 1148 inch. Combined with forward and reverse motions, plot mode can be used to
produce subscripts, superscripts, reverse line motion, Greek letters, and graphs. Output fillers
may be necessary for these functions: see gsi(/) and graph(/). To use the plot mode, the PLOT
switch must be ON (see below); once that switch is on, plot mode in entered or left by control
sequences that can be generated dynamically, from the terminal or remotely (see COMMON
PROBLEMS below).

COMMANDS TO ISSUE AFTER LOGIN

tabs; stty nlO crl

This makes sure that tab stops are set. It also sets terminal delays appropriate for most output,
especially that containing many contiguous blank lines. At this setting, it takes about 49 seconds
per page of C program, and 84 seconds per page of nroff(!) output (UNIX manual page). Some
types of output may not print properly at this setting. Usable settings and their approximate rela­
tive time ratios are as follows:

n!O cr2
nlO crl
nlO cr3
nl2 cr2
nl2 cr3

1.00
1.03
1.08
1.10
1.17

For output with many blank lines, the crl and cr3 settings seem to work best~ nl2 cr3 is the safest
choice for printing many consecutive lines of blankless text.

NORMAL SWITCH SETIINGS
Switches are inside the terminal cover, just above the keyboard. From left to right, they should
be set as follows:

PARITY - EVEN
CODE - ASCII (if switch can be moved; it is a dummy on many terminals)
PLOT - ON (if present: some older terminals don't have one)
DUPLEX - FULL (if acoustic coupler is used, it should also be set to FULL)
BAUD - 300 (i.e., 30 characters per second)
PITCH - 10 (or 12: see below)
AUTO L.F. - OFF

. l -

GSl300 (VII) PWB/UNIX Edition 1.0 GSl300 (vu).

At the lower left side of the keyboard, the LINE half of the LINE/LOCAL switch must be lit.

The PITCH switch controls both vertical and horizontal spacing in a coupled fashion. In IO-pitch
mode. output is printed 10 characters/inch horizontally, 6 lines/inch vertically, so that a character
is 6 plot increments wide, and 8 (vertical) plot increments high. This mode permits about 65
characters per line, 66 lines/page on normal 8 1/2" by 11" paper. This output size is compatible
with many other terminals, and is expected as a default by many UNIX commands, such as
nrq/f(J) and pr(/). For normal output, the following are appropriate:

nroff -h -T300 file ... or nroff -h files ... I gsi

In 12-pitch mode, output is printed 12 characters/inch, 8 lines/inch, so that a character is S incre­
ments wide and only 6 high. This mode allows about 80 characters/line, 88 lines/page on the
same size paper. Text printed 8 lines/inch appears almost unreadable, but this mode is a useful
paper-saver for dumping files for reference. For example, use:

pr -188 file .•.

to produce condensed listings.

The 12-pitch, 6 lines/inch combination is considered by many to be the most attractive output
format. It is obtained by setting the PITCH switch to 12, the PLOT switch ON, and using:

nroff-h -T300-12ji/e ... or nrotf-hfi/e ... I gsi +12

SPECIAL CHARACTERS AND STATES
The interrupt signal can be generated by hitting either the DEL or BREAK key; the latter is usu~
ally more convenient, being independent of the SHIFT key. At any point in time. a terminal is
either.in plot mode or character mode, and the interpretation of some characters differs according to
mode. If the PLOT switch is ON, the BEL character (octal 006, CONTROL "g" on terminal)
changes the mode to character mode, and the ACK character (octal 007, CONTROL ·r· on termi­
nal) changes the mode from the current mode to the other one. If the PLOT switch is OFF, the
terminal is always in character mode. In plot mode, it is possible to space a single increment in
each direction. Useful motion characters include the following:

SP (space, octal 040) - 1/60" right
BS (backspace, octal 010) - 1/60" left
LF Oine feed, octal 012) - 1/48" forward
VT (reverse line feed for this terminal, octal 013) - 1/48" backwards

COMMON PROBLEMS
OUTPUT GENERA TED IN ONE POSITION, OVERPRINTING - you may accidentally have
gotten into plot mode. Hold CONTROL down while hitting "g", producing a BEL character to
leave that mode.

GARBAGE OUTPUT, WITH WILD SKIPPING - a GSI may go berserk when faced with many
very long lines, long sequences of non-blank, non-identical characters requiring extreme print
wheel motion, or heavy amounts of tabbing. The GSI's microprocessor exceeds its 128-character
buffer and becomes very confused. Remove some tab characters, use the gsi command's delay
option, or increase terminal delays via say.

·--:::....0 ·------- _______ ¥ __ _, ·- ·-- -· -----~--~-- ···-·-·-···-~------ ·---~

GSI300 < VU) PWB/UNIX Edition 1.0 GSl300 (VII >

PRINT HEAD ZOOMS TO RIGHT SIDE OF CARRIAGE - tab stops are not sec. Ser them with
the rabs command.

POOR REGISTRATION AFTER REVERSE PLATEN MOTION - this is most likely to occur
when using a forms tractor to perform reverse line feeds or half-line motions. Some (but not all)
forms tractors have just enough slack in their mechanism that it is difficult to return exactly to rhe
position you want. For best appearance of such text, or of Greek letters, take the forms tractor
off. and use the friction feed instead. This problem is very dependent on the individual terminal.

NO LINE FEED OCCURS WHEN RETURN HIT; NO SYSTEM RESPONSE TO RETURN -
you are in a mode where there is no conversion of RETURN to CR-LF echoed to your terminal.
There are two situations. First, either the terminal or coupler switch may be set to HALF­
DUPLEX, and you may have asked to suppress echoing because you were getting double charac­
ters. Change the switches to FULL-DUPLEX, and issue a stty echo command. The -;econd case
is that a stty nl command has been done, or some equivalent action, such as using Ll:--iE FEED
rather than RETURN during your login sequence. Issue the command stty -nl, but terminate it
with a LINE FEED, not a RETURN. This will restore the terminal to the normal ~late, allowing
convenient use of RETURN again.

FAULT LIGHT ON, OTHER PECULIAR BEHAVIOR - push the RESET button found under
the right side of the cover. This resets the microprocessor, gets out of plot mode, clears d!I tabs,
and returns the carriage. Then issue tabs command to reset the tabs.

IDIOS Y '.\CRASIES
A GSI can perform a high-speed skip when it receives a series of LF characters without other
characters intermixed. Unfortunately, a newline is normally a CR-LF pair, and the terminal does
not know that it is at the left margin, so that it does sequences of these pairs about 3 times slower
than it needs to. As a result, the only way to assure high-speed skipping is to write code to wn­
vert a sequence of newlines into a single CR, followed by a sequence of LF's. PWB/UNIX docs
this under s11y modes nlO cr2 and nlO cr3.

SEE ALSO
gsi ([), graph (I), stty(I), tabs(I), termina!s(VII)

- 3 -

......__ __ ···------...:.-:a. ' ._- "'
-----1--~

HP2640 (VII} PWB/UNIX Edition 1.0 HP2640 (VII)

NAME
HP2640 - Hewlett-Packard 2640 CRT terminal family

DESCRIPTION
This family contains a large and growing number of models that appear to be similar, but have
slight variations in keyboard layout and major variations in options and peripheral devices. The
HP2640B appears to be the most popular model at the current time. It is suitable for both pro­
gramming and qocumentation work. Positive features of the terminal include hardware tab stops,
large local memory (up to 8K bytes) with convenient scanning, ability to lock several lines on the
display, display enhancements which permit readable display of most nroff(!) output, and display­
able graphics for control characters.

Quick perusal of nroff output can be obtained using the hp(!) filter:

nroff -b options.files ... I hp

COMMANDS TO ISSUE AFTER LOGIN

tabs +thp; stty nlO crO

This sequence sets UNIX standard tab stops (every 8 columns), then turns off (unnecessary) line
feed and carriage return delays.

NORMAL SWITCH SETl'JNGS
The ON/OFF switch is at the left rear of the terminal. The following switches are at the upper
left of the keyboard:

DUPLEX - FULL
PARITY - EVEN
BAUD RATE - 300 (1200 could be used with proper modem)
BLOCK MODE - not depressed
REMOTE - depressed
CAPS LOCK - not depressed (for most uses)
MEMORY LOCK - not depressed unless lines are to be locked on screen
AUTO LF - not depressed

None of the other latching keys should be depressed.

SPECIAL CHARACTERS AND STATES
An interrupt can be generated by DEL or BREAK. The location of the BREAK key varies among
models.

COMMON PROBLEMS
NO LINE FEED OCCURS WHEN RETURN HIT; NO SYSTEM RESPONSE TO RETURN -
you are in a mode where there is no conversion of RETURN to CR-LF echoed to your terminal.
There are two situations. First, either the terminal or coupler switch may be set to HALF­
DUPLEX, and you may have asked to suppress echoing because you were getting double charac­
ters. Change the switches to FULL-DUPLEX, and issue a stty echo command. The second case
is that a stty nl command has been done, or some equivalent action, such as using UNE FEED
rather than RETURN during your login sequence. Issue the command stty -nl, but terminate it
with a LINE FEED, not a RETURN. This will restore the terminal to the normal state, allowing

- I -

HP2640 (VII) PWB/UNIX Edition 1.0 HP2640 (VII)

convenient use of RETURN again.

If thft terminal does not seem to work, try the RESET, button. Note that this action clears tab
stops.

IDIOSYNCRASIES
When the terminal receives a Horizontal Tab character that occurs beyond the last tab stop {if
any), the effect is that of a newline. Thus, tabs(/) may cause, rapid scrolling while clearing tabs.

SEE ALSO
hp(I), stty(I), tabs(I), terminals(VII)

- 2 -

TERMINET (VII) PWB/UNIX Edition 1.0 TERMINET (Vll)

NAME

TermiNet - GE TermiNet 300 (and 1200) terminals

DESCRIPTION

The TermiNet 300 is a reasonable terminal for general-purpose use. Because it does provide
hardware tab stops, it is useful for both programming and documentation. It prints up to 118
characters (IO-pitch). utilizing a continuously-moving band of print elements. The terminal is
reasonably compact. A useful feature is the fact that the first tab stop set on the terminal
becomes the left margin. Some users pref er this terminal's column position lights and lack of
large moving print element. Visibility of current typed line is adequate.

The TermiNet 1200 is a 1200-baud version of the 300.

COMMANDS TO ISSUE AFTER LOGIN

tabs or tabs +ttn

This assures setting of UNIX standard tab stops. By default, you also have delays set as by stty
nlO crl, which should generally work, but may fail for some types of output. On a TermiNec 300
at this setting, it takes about 49 seconds per page of C program, and 84 seconds per page of nrq/l
output (UNIX manual page), the latter figure assuming output is tabbed. Usable settings and
their relative time ratios are as follows:

nlO cr2
nlO crl
nlO cr3
nl2 cr2
nl2 cr3

1.00
l.03
l.08
1.10
1.17

•

The TermiNet 1200 is about 2.5 times faster than the 300 at corresponding settings, but may not
be able to print properly at the fastest settings.

NORMAL SWITCH SETTINGS
Several switches are on back of the terminal:

(Back left) - NORM (not CAPS ONLY)
(Back left, on some models) - FULL DUPLEX
(Back right) - power ON

Light switches on front left:

ON LINE - push so that it becomes lit
INTERRUPT - if lit, push it so it goes out

Switches on right front:

TRANSPARENCY - OFF
INHIBIT - NORM
RATE - 30
LINE FEED - I
AUTO L.F. - OFF

- I -

TF.l~MINFI' I VII> PWH/UNIX Fdilion 1.0 TERMlNET (Vll)

COMMON PROBLEMS
NO LINE FEED OCCURS WHEN RETURN HIT; NO SYSTEM RESPONSE TO RETURN -
you are in a mode where there is no conversion of RETURN to CR-LF echoed to your terminal.
There are two situations. First, either the terminal or coupler switch may be set to HALF­
DUPLEX, and you may have asked to suppress echoing because you were getting double charac­
ters. Change the switches to FULL-DUPLEX, and issue a stty echo command. The second case
is that a stty nl command has been done, or some equivalent action, such as using LINE FEED
rather than RETURN during your login sequence. Issue the command stty -nl, but terminate it
with a LINE FEED, not a RETURN. This will restore the terminal to the normal state, allowing
convenient use of RETURN again.

SEE ALSO
stty(I). tabs(l), terminals(VII)

- 2 -

~ - - . - . ~;.. ·. .

TI700 (VII) PWB/UNIX Edition 1.0 TI700 (VII)

NAME
Tl700 - TI 745, 735, and 725 terminals

DESCRIPTION
The TI745 (and to a lesser extent, the TI735) are lighter and smaller than the older TI725, and
their keyboards are more suitable- for general-purpose UNIX usage. In particular, the DEL key
and backslash are favorably placed, and they provide an underscore in place of the 725's back­
arrow. NrQf/(l) output is thus more readable on the 745 and 735. Output is printed on thermal
paper, with a carriage width of 80 characters. The TI745 accepts a smaller roll of paper than the
others, but is much more portable. ·

COMMANDS TO ISSUE AFTER LOGIN

stty -tabs nlO cr2

This requests UNIX to simulate standard UNIX tab stops (every 8 columns). It also lessens car­
riage return and line feed delays to the minimum acceptable to the terminal. If the terminal can­
not print something at this setting~ various other settings may be tried. At the nlO cr2 setting, it
takes about 65 seconds per page of C program, and 93 seconds per page of nroff output (UNIX
Manual page). Usable settings and their relative time ratios are as follows:

nlO cr2
nlO crl
nlO cr3
nl2 cr2
nl2 cr3

1.00
1.03
1.06
1.08
1.14

The lack of hardware tabs causes these terminals to require about 15-20% more time than 300-
baud terminals providing tabs.

NORMAL SWITCH SETIINGS (745)

Most switches are right-left toggles in front of the keyboard.

UPPER CASE (left front) - right side depressed
HALF OUP (right front) - right side depressed
LOW SPEED (right front) - right side depressed
ON LINE (right front) - left side depressed
MARK-EVEN-ODD (right rear) - EVEN
ON-OFF (right rear) - toggle back

NORMAL SWITCH SETTINGS (735. 725)
Most of the switches are on the upper left side of the terminal:

LINE FEED - SINGLE
SPEED - 30
DUPLEX - FULL
PARITY - EVEN
INTERFACE - INT

- l ~

Tl700(VII l PWB/UNIX Edilion t .O Tl700 (VII)

In addition, the PWR switch must of course be turned on, and the ON LINE switch depressed.
You will be in local mode otherwise, and get no response whatsoever.

SPECIAL CHARACTERS
To generate a Horizontal Tab character from the keyboard, hold CTRL down and hit "i".

You can interrupt an exei::uting program with either the DEL or BREAK keys.

COMMON PROBLEMS
NO LINE FEED OCCURS WHEN RETURN HIT; NO SYSTEM RESPONSE TO RETURN -·
you are in a mode where there is no conversion of RETURN to CR-LF echoed to your terminal.
There are two situations. First, either the terminal or coupler switch may be set to HALF­
DUPLEX, and you may have asked to suppress echoing because you were getting double charac­
ters. Change the switches to FULL-DUPLEX, and issue a stty echo command. The second case
is that a stty nl command has been done, or some equivalent action, such as using LINE FEED
rather than RETURN during your login sequence. Issue the command stty -nl, but terminate it
with a LINE FEED, not a RETURN. This will restore the terminal to the normal state, allowing
convenient use of RETURN again.

SEF. Al.SO
stty(I), terminaJs(VII)

- ' -

TMAC.NAME (VII) PWB/UNIX Edition 1.0 TMAC.NAME (VII)

NAME
tmac.name - standard nroff and troff macro packages

DESCRIPTION
A number of standard macro packages have been written for use with the UNIX text formatters,
nroff(/) and troff([). When u5ing &ither of these commands, an argument of the form -mname
requests inclusion of the file named /usr/lib/tmac.name.

The foUQwing macro packages are supported by PWB/UNIX. All but the last can be used with
either nroff or troff, The last one works with troff only.

Name Description/Documentation

a Same as /usr/man/manO/caa. See PWB/UNIX Manual Page Macros by E. M. Piskorik.

m PWB/MM; a unified, general-purpose set of macros for memormda, manuals, letters, etc.
See PWB/MM - Programmer's Workbench Memorandum Macros by 0. W. Smith and
J. R. Mashey.

org BTL organization chart macros.

uom UNIX Operations Manual macros; uses -mm.

v View graph and slide macros. See PWB/UN/X View Graph and Slide .'vfacros by
T. A. Oolotta and 0. W. Smith.

SEE ALSO
nrotf{I), troff (I)

