PWB/UNIX
User’s Manual

Edition 1.0

T. A. Dolotta
R. C. Haight
E. M. Piskorik

Editors

May 1977

The enclosed pwB/WNiX documentation is supplied
in accordance with the Software Agreement you
have with the Western Electric Company.

Bell Telephon¢ Laboratories, Incorporated

UNIX is a Trade/Service Mark of the Bell System.

Thuis manual was set on a Graphic Systems, Inc.
photorypesetter driven by the TROFF formatting program
operanng under the PWBILNIX system. The text of tne
manual was prepared using the ED text editor.

s e i3+ w16

ACKNOWLEDGEMENTS

The form and organization of this manual, as well as a major fraction of its contents, have been
copied from the Unix Programmer’s Manual—Sixth Ediuon, by K. Thompson and D. M. Ritchie
(Bell Telephone Laboratories, May 1975). The number of our colleagues who have contributed
to UNIX and PWB/UNIX software and documentation is, by now, too large to list here, bul the use-
fulness and acceptance of UNIX and of PWB/UNIX is a true measure of their collective success.

Piscataway, New Jersey) T.A.D.
May 1977 . R.C.H.
. EM.P.

- i -

© AT g L e o e e e e aw e e ©

1 e i e

INTRODUCTION

This manual describes the features of PWB/UNIX. It provides neither a general overview of UNIX
(for that, see ““The UNix Time-Sharing System,” Comm. acm 17(7):365-75, July 1974, by
D. M. Ritchie and K. Thompson), nor details of the impiementation of the system.

This manual is divided into eight sections:

L. Commands and Application Programs
I1. System Calls

III. Subroutines

IV. Special Files

V. File Formats and Conventions

\%8 Games

VIIL. Miscellaneous

VIIl. System Maintenance

Section 1 (Commands and Application Programs) describes programs intended to be invoked
directly by the user or by command language procedures, in contradistinction to subroutines,
which are intended to be called by the user’'s programs. Commands generally reside in the
directory /bin (for binary programs). Some programs also reside in /usr/bin, to save space in /bin.
These directories are searched automatically by the command interpreter called the Shell.

Section 11 (System Calls) describes the entries into the UNIX supervisor, including the assembler
and the C language interfaces. In the assembler, these system calls are invoked by the sys
operation code, which is a synonym for the rrap instruction.

Section III (Subroutines) describes the available subroutines. Their binary versions reside in
various system libraries in directory //ib. The subroutines available for C and for Fortran are
also included there; they reside in /lib/libc.a and /libllibf.a, respectively.

Section 1V (Special Files) discusses the characteristics of each system “‘file’” that actually refers
to an input/output device. The names in that section refer to the Digital Equipment
Corporation’s device names for the hardware, instead of the names of the special files them-
seives.

Section V (File Formais and Conventions) documents the structure of particular kinds of files;
for example, the form of the output of the assembler and the loader is given. Excluded are
files used by only one command, for example, the assembler’s intermediate files.

Section VI (System Mainienance) discusses commands that are not intended for use by the
ordinary uscr, in some cases because they disclose information in which he or she is presum-
ably not interested, and in others because they perform privileged functions.

Each section consists of a number of independent entries of a page or so each. The name of
the entry is in the upper corners of its pages. Entries within each section are alphabetized. The
page numbers of each entry start at [.

All entries are based on a common format, not all of whose parts always appear:
The NAME part repeats the name of the entry and states (very briefly) its purpose.

The SYNOPSIS part summarizes the use of the program being described. A few conven-
tions are used, particularly in Section 1 (Commands):

Boldface strings are considered literals, and are to be typed just as they appear
(they are usually underlined in the typed version of the manual entries wnless
they are juxtaposed with an walic string).

ltalic strings usually represent substitutable arguments (they are underlined in
the typed version of the manual entries).

Square brackets ‘‘[]" around an argument indicate that the argument is
optional. When an argument is given as ‘‘name”’ or ‘‘file”", it always refers to a
Jfile name.

Ellipses ‘““..." are used to show that the previous argument-prototype may be
repeated.

A final convention is used by the commands themselves. An argument begin-
ning with a minus sign ‘=" or a plus sign “‘+’’ is often taken to be some sort
of flag argument even if it appears in a position where a file name could appear.
Therefore, it is unwise to have files whose names begin with ‘="
or “‘+”,

The DESCRIPTION part discusses in detail the subject at hand.

The FILLS part gives the file names that are built into the program.

The SEE ALSO part gives pointers to related information.

The DIAGNOSTICS part discusses the diagnostic indications that may be produced. Mes-
sages that are intended to be self-explanatory are not listed.

The BUGS part gives known bugs and sometimes deficiencies. Occasionally, the sug-
gested fix is also described. ‘

A table of contents (organized by section and alphabetized within each section) and a permuted
index derived from that table precede Section 1. Within each index entry, the title of the
manual eatry to which it refers is followed by the appropriate section number in parentheses.
This fact is important because there is considerable name duplication among the sections, aris-
ing principally from commands that exist only to exercise a particular system call.

All manual entries are available on-line via the man(I) command (q.v.).

-vi-

HOW TO GET STARTED

This section provides the basic information you need to get started on UNix (we will use
“‘UNIX"" in this section to mean both ““UNIX’’ and ‘‘PWB/UNIX"’, unless the distinction matters):
how to log in and log out, how to communicate through your terminal, and how to run a pro-
gram. See UNix for Beginners by B. W. Kernighan for a more complete introduction to the sys-
tem.

Logging in. You must call UNIX from an appropriate terminal. UNIX supports full-duplex ascli
terminals. You must also have a valid user name, which may be obtained, together with the
telephone number, from the system administrator. The same telephone number serves termi-
nals operating at speeds of 110, 150, and 300 baud. After a data connection is established, the
log in procedure depends on the kind of terminal you are using.

300-baud terminals: These terminals generally have a speed switch that should be set to
“300”" (or *30"", for 30 characters per second) and a half-/full-duplex switch that
should be set to full-duplex. When a connection is established, the system types
‘‘{ogin:’"; you type your user name, followed by the “‘return’ key. If you have a pass-
word (and you should!), the system asks for it, but does not print (‘‘echo’’) it on the
terminal. After you have logged in, the ‘“‘return”, ‘‘new-line’’, and “‘line-feed”” keys
will give exactly the same result.

Mode! 37 TELETYPE®: When you have established a data connection, the system types
out a few garbage characters (the ‘‘login:”’ message at the wrong speed). Depress the
**break’ (or ‘“‘interrupt’) key: this is a speed-independent signal to UNIX that a 150-
baud terminal is in use. The system then will type ‘‘login:”’, this time at 150 baud
(another ‘‘break’’ at this point will get you down to 110 baud); you respond with your
user name. From the Model 37 TELETYPE, and any other terminal that has the “‘new-
line” function (combined ‘‘carriage-return’’ and ‘‘line-feed’’ pair), terminate each line
you type with the ‘‘new-line’’ key (not the “‘return’” key).

It is important that you type your name in lower case if possible; if you type upper-case letters,
UNIX will assume that your terminal cannot generate lower-case letters and will translate all sub-
sequent upper-case input to lower case. When you have logged in successfully, the Shell pro-
gram will type a “%"”’ to you. (The Shell is described below under How 1o run a program.)

For more information, consult fogin(l) and geuy(VI), which discuss the login sequence in
more detail, and /v(1V), which discusses terminal input/output. See rermunals(VID for infor-
mation about various terminals.

Logging out. There are three ways to log out:
You can simply hang up the phone.

You can log out by typing an end-of-file indication (ASCll EOT character, usually typed
as ‘‘control d') to the Shell. The Shell will terminate and the *‘login:” message will
appear again.

You can also log in directly as another user by giving a /ogin command.

How 1o commumnicate through your ternunal. When you type to UNIX, a gnome deep in the sys-
tem is gathering your characters and saving them. These characters will not be given to a pro-
gram until you type a ‘‘return” (or ‘‘new-line"’"), as described above in Logging in.

UNiX terminal input/output is full-duplex. It has full read-ahead, which means that you can
type at any time, even while a program is typing at you. Of course, if you type during output,
the output will have the input characters interspersed. However, whatever you type will be
saved and interpreted in correct sequence. There is a limit to the amount of read-ahead, but it

- vii -

is generous and not likely to be exceeded unless the system is in trouble. When the read-ahead
limit is exceeded, the system throws away a/l the saved characters.

On a terminal input line, the character ‘@’ kills all the characters typed before it, so typing
mistakes can be repaired on a single line. The character ““#" erases the last character typed.
Successive uses of *‘#’’ erase characters back to, but not beyond, the beginning of the line.
“@” and **#’" can be transmitted to a program by preceding them with **\"*. (Thus, to erase
“\"", you need two “#’s).

The ascn “‘delete’ (a.k.a. “‘rubout’) character is not passed to programs but instead generates
an snterrupt signal, just like the ‘‘break’, “‘interrupt’, or ‘‘attention’’ signal. This signal gen-
erally causes whatever program you are running to terminate. It is typically used to stop a long
printout that you don’t want. However, programs can arrange either to ignore this signal alto-
gether, or to be notified when it happens (instead of being terminated). The editor ed(l), for
example, catches interrupts and stops what it is doing, instead of terminating, so that an inter-
rupt can be used to halt an editor printout without losing the file being edited.

The quir signal is generated by typing the ASCll FS character. It not only causes a running pro-
gram o terminate but also generates a file with the core image of the terminated process. Quu
is useful for debugging.

Besides adapting to the speed of the terminal, UNIX tries to be intelligent about whether you
have a terminal with the ‘‘new-line’ function, or whether it must be simulated with a
“‘carriage-return’’ and ‘‘line-feed’’ pair. In the latter case, all inpur ‘‘carriage-return’’ characters
are changed to “‘line-feed’’ characters (the standard line delimiter), and a “‘carriage-return’” and
‘“‘line-feed”” pair is echoed to the terminal. If you get into the wrong mode, the sry(l) com-
mand will rescue you.

Tab characters are used freely in UNIX source programs. If your terminal does not have the tab
function, you can arrange to have tab characters changed into spaces during output, and echoed
as spaces during input. Again, the suy(I) command will set or reset this mode. The system
assumes that tabs are set every eight columns. The abs(1) command will set tab stops on your
terminal, if that is possible.

-How 1o run a program; the Shell. When you have successfully logged into UNIX, a program
called the Shell is listening to your terminal. The Shell reads typed-in lines, splits them up into
a command name and arguments, and executes the command. A command is simply an exe-
cutable program. Normally, the Shell looks first in your current directory (see The current direc-
tory below) for a program with the given name, and if none is there, then in system directories.
There is nothing special about system-provided commands except that they are kept in direc-
tories where the Shell can find them. The command name is always the first word on an input
line to the Shell; it and its arguments are separated from one another by space or tab characters.

When a program terminates, the Shell will ordinarily regain control and type a “%"" at you to
indicate that it is ready for another command. The Shell has many other capabilities, which are
described in detail in sh(I).

The current directory. UNIX has a file system arranged in a hierarchy of directories. When the
system administrator gave you a user name, he or she also created a directory for you (ordi-
narily with the same name as your user name). When you log in, any file name you type is by
default assumed to be in this directory. Since you are the owner of this directory, you have full
permissions to read, write, alter, or destroy its contents. Permissions to have your will with
other directories and files will have been granted or denied to you by their respective owncrs.
As a matter of observed fact, many UNIX users do not protect their files from destruction, let
alone perusal, by other users.

To change the current directory (but not the set of permissions you were endowed with at
login) use chdir(1).

- viii -

Path names. To refer to files not in the current directory, you must use a path name. Full path
names begin with **/**, which is the name of the root directory of the whole file system. After
the slash comes the name of each directory containing the next sub-directory (followed by a
/), until finally the file name is reached. E.g.: /usr/lem/filex refers to the file filex in the direc-
tory lem; lem is itself a subdirectory of usr; usr springs directly from the root directory.

If your current directory has subdirectories, the path names of files therein begin with the name
of the corresponding subdirectory (without a prefixed /™).

Without important exception, a path name may be used anywhere a file name is required.

Important commands that modify the contents of files are cp(I), mv(I), and rm(I), which
respectively copy, move (i.e., rename), and remove files. To find out the status of files or
directories, use I/s(I). See mkdir(1) for making directories and rmdir(I) for destroying them.

For a fuller discussion of the file system, see ‘“The UNix Time-Sharing System™ (Comm. aCM
17(7):365-75, July 1974) by D. M. Ritchie and K. Thompson. It may also be useful to glance
through Section Il of this manual, which discusses system calls, even if you don’t irtend to deal
with the system at that level.

Wrinng a program. To enter the text of a source program into a UNIX file, use ed(I). The three
principal languages available under UNix are C (see cc(I)), Fortran (see f(I)), and assembly
language (see as(l)). After the program text has been entered through the editor and written
in a file (whose name has the appropriate suffix), you can give the name of that file to the
appropriate language processor as an argument. Normally, the output of the language processor
will be left in a file in the current directory named “‘a.out”. (If the output is precious, use
mv(l) to move it t0 a less exposed name soon.) If you wrote in assembly language, you will
probably need to load the program with library subroutines; see /d(I). The other two language
processors call the loader automatically.

When you have finally gone through this entire process without provoking any diagnostics, the
resulting program can be run by giving its name to the Shell in response to the ““%’" prompt.

Next, you will need cdb(I) or db(l) to examine the remains of your program. The former is
useful for C programs, the latter for assembly-language. No debugger is much help for Fortran.

Your programs can receive arguments from the command line just as system programs do. See
exec(1I).

Text processing. Almost all text is entered through the editor ed(I). The commands most often
used to write text on a terminal are: car(I), pr(I), and nroff{1). The cat(I) command simply
dumps ASClHi text on the terminal, with no processing at all. The pr(I) command paginates the
text, supplies headings, and has a facility for multi-column output. Nroff(1) is an elaborate text
formatting program, and requires careful forethought in entering both the text and the format-
ting commands into the input file; it produces output on a typewriter-like terminal. Roff(I) is a
less elaborate text formatting program, and requires somewhat less forethought; it is obsoles-
cent. Troff{l) is similar to nroff(l), but drives a Graphic Systems, Inc. phototypesetter. It was
used to typeset this manuai. ‘

Surprises. Certain commands provide mrer-user communication. Even if you do not pian to use
them, it would be well to learn something about them, because someone eise may aim them at
you. To communicate with another user currently logged in, write(1) is used; mai/(1) will leave
a message whose presence will be announced to another user when he or she next logs in. The
corresponding entries in this manual also suggest how to respond to these two commands if you
are their target.

When you log in, a message-of-the-day may greet you before the first ““%’".

-iX -

TABLE OF CONTENTS

I. COMMANDS AND APPLICATION PROGRAMS

450+ ¢4 e e handle special functions of DASI450 terminal
T | . e debugger
admin et s e e s e et e e e e e .. administer SCCS files
ar ot e e e e et e e e e e e e e R archive and library maintainer
as e e e e et e . assembier
banner b e e e e e e e s e e e e e e e e e print in block letters
o e e e e e e e e e e e e basic
be C e e e e e e et e e et e e e arbnrary precision interactive language
3 ¥ o big diff
BfS & . i i i i i e e e e e e e et e e et e e e ... Dbigfile scanner
o= print calendar
CBL v v v e e e e e e e e e e e e e e e e e e e concatenate and print
- S e e e e e e e e C beautifier
cc e e e e e e e e e et e e e e e e e e e e e . . C compiler
cd change working directory
7 | . C debugger
chdir . . ¢ ¢ ¢ v v v v i e e e e e e change working directory
chghist ¢ v ¢ ¢ ¢ v e v o oo changethehxstoryentryofanSCCSdelta

Chgrp . . ¢ v ¢ v v 4 e 4 et e 4 e e e e s s s s e« s s« .. change group
chmod e e e e e e e e e e echangemode

o+ o1 + change owner
cmp s 6 e o s e o s s e e e e s e e e e e e e e e . comparetwo files
T filter reverse line feeds
COMB & & « v ¢ ¢ v o o o e s o o s e s s o s o e+ +o o combineSCCS deltas
comm pnnt!macommontotwoﬁlcs
e copy
cpio G e v e e 4 s e s e s s e e e e e e e copyfilearchivesin and out
CDX 4 o o o o s o o o s o 6 o o o o o ot e b 4 e e e e copy a file exactly
cref 6t o e 4 s s e e e e e e e s e s e s e .. make cross reference listing
CTYPL o v 6 o e v o o o o o o o o o o« o o o o s s o o .+« ... encode/decode
SSPlit . . s e context split
date ¢ e e s s e o s s e s 4 s e e e s s e e s e+ . printandsetthe date
db T « 1, 14
dc e et e e et e e e e e e e e s e e e e e e e . desk calculator
T convert and copy a file
delta . . . s e e e e e e e e e e e e e e e e e e e make an SCCS delta
deroff e e e e e e e e e e e e e . removenroﬁ'troﬁ'andeqnconstmcts
df . . i i ittt e e e 4 e e e e e e e e .. . reportdisk free space
e 1 - differential file comparator
diff3 .. e e e e e e e e e e e e e e 3-way differential file comparison
diffmark &t « s 4 s e v e e s s« markchanges between versions of a file
dsw delete interactively
< summarize disk usage
- T echo arguments
L e e e e e . . text editor
BEIED ¢ ¢ v e e et e e e e e e e searchaﬁleforlmescontmmngapauem
eqn e e e e e e e e e e e e typeset mathematics
(equals) shell assignment command
exit e e e e e e e e e e e e e « «+ « s+« .+ . terminate command file

i
help
hp

b’u . A4 L] L -

Id
lex
In
login .
lognamelogdnrlogtty

.
Is e e e s .

m4........,

m - . L 2 . L . . L]

mesg
MY & e v oo o s o
1T+ | L
NEWEIP « « o« o + &
next
nice
nohup
aroff, trof
onintr

pr e o o ¢ o s o o o
mf e e o s o o s o
pn e o o o & s s o 9
pS e & o o o o+ o e o
pm o e & o & s e s @

pump
reform
regemp
13-4 41 - S

e e o s e o
e s e e .
* o e . .
e o s o « o

. o & o .
. s o e .
« o 0 * s o

. ¢« o o

¢ s o . 3
o o .
oooooo .
e o o & e e o
e ¢ o 2 e & o
LI) . .
. o o 0 .

s o . .
¢ e o e o o
. e s s e
¢ o o

evaluate arguments as an algebraic expression

6+ v « e« s s o s s e e« . Fortran compiler

redirect file descriptor 2 (diagnostic output)
. search a file for lines containing keywords
e ¢ e e e e e e determine file type

Ta e e e e 6 2 o 8 ® & s e s e s ﬁndﬁles

gather real and virtual files
« + « .+ . getgeneration from SCCS file
command transfer
t ¢ s 4o s s e s s s e e+ o drawagraph
. . search a file for a pattern
handle specxal functions of GSI300 terminal
.. ask for help
handle special functions of HP 2640 terminal
« « s+ e e« .« conditional command

&t o e s o e e s o . + terminate a process

® & & ¢ e s & e e = ¢« o e e linkeditor

. . generate programs for simple lexical tasks

make a link
sign onto UNIX
information from login
e ¢ s s o« o . list contents of directory
.. MAcro processor
e e e e e send mail to designated users
make a program
« + « « « « . print on-line documentation

permit or deny messages

make a directory
. e run off document with PWB/MM
e o s e s s s s . « moveorrename a file

« + « « « « typeset mathematics on terminal

e s+ e s e e+ s logintoanew group
. new standard input for shell procedure
« + « « « « runacommand at low priority
&t 4+ e e s e e s s e o« o print name list

e run a command immune to hangups

e« e e s e o s e e s s« . textformatters
e e e e e e e e e e « .+ + octal dump
e e e e handle interrupts in sheil files
&« ¢+ s+ 4 s e+ o+« . change login password
G« s s e s e s e+ e« graphics filters
e e e s e e e e e e e e printfile
4 s e s e s+ display profile data
e e s e s e e e s ... printSCCS file
© 6 s e 8 e e s e e e process status
. permuted index
e e e e e Shell data transfer command

« « s e e ¢« . .. working directory name

C e e et e e e e test your knowledge
Ratfor compiler
s s e 4 s s e s« . reformattext file
¢ « + s« « .« . regular expression compile
search a file for a pattern

rjestat

mdel
mdir

tof

rsh

sed
send
sh
size
sleep
(Y + [« J
sort
speil
spline
split
strip
SUY v v e e
L3
sum
switch

SYC .+ v v e e o

um

mil « 8 " e s s 0+
ot
teeltltoouo

time
tp ® @ & * e 2 s

tr e & & % e & e o
trof

234 R A

uname
uniq

what
whatspew
who

write
yacc

II. SYSTEM CALLS

intro
access

DY .
. . . .
. . “« o
. o .

. ¢« o o
. ¢« e

¢ o e . .
......
« o o o .
o . . .

¢« o e e .

e e s s+ e o

e o s o s .

. construc

¢« o e

* e .

e RJE status and enquiries
.« ... remove (unlink) files
remove a deita from an SCCS file
.« « .+ ... remove directory
format text

restricted shell (command interpreter)
compare two versions of an SCCS file

o o

.
o o
o o
e
o 0
* o
. e
« .
« o
o o
o 0
LI
.

s s
. o

e « « e « « .« o« . stream editor
e e v e+ .. submitRJEjob
. . shell (command interpreter)
e e e adjust Shell arguments
e e e e size of an object file

suspend execution for an interval
e e e e Snobol interpreter
e e e e sort or merge files
e e e e find spelling errors
e . interpolate smooth curve
e e e split a file into pieces
remove symbols and refocation bits
e« « « « o o Setterminal options
e e become privileged user
« + . . print checksum of a file

shell multi-way branch command
« « « . update the super block

e « o + « « . Settabs on terminal

. . deliver the last part of a file
format tables for nroff or troff

6« « <+« e+ e« . pipe fitting
e e e e e time a command
manipulate DECtape and magtape
transliterate
e e e e e e text formatter
get terminal name
e e e e find possibie typos
. . print name of current UNIX
. . report repeated lines in a file
« + « « . . conversion program
Versatec print
.. await completion of process
word count
e e e v e o e o« identify files
compare file modification dates

« « « . shell iteration command
« « «.» . whois on the system
e e write to another user

t argument list(s) and execute command

© « « « s « s+ . yetanother compiler-compiler

s » o e e o & e

s e s e+ e & e s a

* e e o & & & o

- Xiii -

. . introduction to system calls
. determine accessibility of file
schedule signal after specified time

break, brk, sbrk . .

chdir .
chmod

chown

close .
creat .
cswW ..
dup .

e e o s o

¢ o o o o o

exec, execl, execv .

exit .
fork. . .
fstat .
getgid

getpid

getuid

gty .
indir .
kit . .
link .

logname, logdir, logtty,

mknod

mount

nice .
open .
pause .
pipe .
profil .
ptrace

read .
seek .
setgid .
setpgrp

setuid

signal .
stat . .
stime .
stty . .
sync .
tell . .
time .
times .
udata .
umount
uname

unlink

ustat .
utime .
wait .
write .

s e e o o s

e o ¢ e o .

- Xiv

. « « « change core allocation
.. change working directory
« « « « . change mode of file
change owner and group of a file
e e v e e s o+ closeafile
e e e e create a new file
. . . . read console switches
duplicate an open file descriptor
e e « s s s« . execute a file
« « « « « « terminate process
e « « « . Spawn new process
« « « . getstatus of open file
« « « et group identifications
.. get process identification
.0 get user identifications
N get terminal status
« « .+« « . indirect system call
e send signal to a process
G« e e e e e linktoafile

« « + + .+ login information
mnkeadxrectoryoraspecxalﬁle
e e mount file system
« « « + . Set program priority
. open for reading or writing
indefinite wait

create an interprocess channel
« « . . execution time profile
&« « + + s+ « . process trace
read from file
. « « move read/write pointer
e e set process group [D
. . Set process group number
« « « . setprocess user [D
« « « . catch or ignore signals
e o« s o s+ o getfile status
c s s e e s e s . . Settime
e set mode of terminal
e e e update super-block
e e e o oo . getfile offset
« + + « « . getdate and time
« + « « » . getprocess times
e « « » « « getper-user data
e e dismount file system
get name of current PWB/UNIX
e remove directory entry
« « « get file system statistics
« « » « « Uupdate times in file
. wait for process to terminate
write on a file

(t

III. SUBROUTINES

abort 00 e e e e
abs,fabs
alloc, free
atan, atan2
atof
atoi
cgetpid
ctime, localtime, gmtime . . .
descend
ecvt,fevt0 000 e
end, etext,edata
BXP « ¢ ¢ o s b s e e e e e
floor,ceil
fmod
fptrap

getarg, iargc
getc, getw, fopen
getchar
BEIDW & v ¢ v v a a e e e e
IBITOr & v v ¢« v v v v v e e
Idiv,irem
locy
MOMIOr . « « « « o « « o o+ &
nlist
perror, sys_errlist, sys_nerr, errno
PEXEC &+ v v 4t 4 e s e e e s
plot: openpl et al. e e e e
pow
printf e e e e
putc, putw, fcreat, fllush . . .
putchar, flush
rand, srand 0. .
regCMP, IBBEX .« « « o o o 4 .
reset, setexit
seymp, longmp
sleep 0000 e
sqrt
strepy, strcat, stremp, strlen . .

.
¢ o
* .
o o

. e
. o
* e
«

P
« .
. .
o .

- Xv

L

. « . generate an IOT fault
e e e e absolute value
« « « « « « o coreallocator
. e arc tangent function
. convert ASCII to floating

. convert ASCII to integer
e return character form of process ID

password encoding

convert date and time to ASCII

C e search UNIX file system directories

s e 8 o+ e o

s o e & e o

e & s o e

e & s s e o

e & s e o 0

e o o o o o

.

e e output conversion
. . last locations in program
- exponential function
. floor and ceiling functions
. floating modulo function
. floating point interpreter

« 4 e e e s s e+« loggamma function
.. get command arguments from Fortran
buffered input

e e« e+« . getname from UID
match a string with a pattern (like glob(VTII))

e e e o s

* e o & e o @

e e high-order product
. « . . catch Fortran errors
e « « v+ longdivision
. long output conversion
« « « .+« natural logarithm
. prepare execution profile
e e e argument count
.. get entries from name list
« « « . . System messages
path search and execute a file
.+ .. . graphics interface

R floating exponentiation

.

« « +« .+« .. formatted print
e e e buffered output
e « « « « . write character
e e e e e quicker sort

e e e e e e random number generator
. compile and execute regular expressions
Ve e e e e e e execute non-local goto

.

. specify Fortran file name
. execute non-local goto
. . trigonometric functions
suspend execution for interval
. . square root function

operations on ASCII strings

return name of current terminal

- IV. SPECIAL FILES

| e e e phototypesetter interface
< 1« DHoll communications multiplexer .
dm ... e e e e e e et e e e e e e DN-11 ACU interface
| S e e e h e e e e DP-11, DU-11 synchronous line interface
hp et e e e e e e e e e e RP04/RP05/RP06 moving-head disk
hs .. 0000 e e e e e e e e e e e RS03/RS04 fixed-head disk
ht e e e e e e e e e e e e e e s e s e e e e TU16 magtape interface
< e e e e KL-11 or DL-11 asynchronous interface
- 2 . e e e e e e e e e e e s « « « « line printer
mem, kmem, nuil s e s e s s e s s e s s e e s s e e s s e . core memory
(- P e e e e DQS-llB interface for remote job entry
5+ S e e e e e s RP-11/RP03 moving-head disk
15+« L TM11/TU10 magtape interface
Y ot e v b e s e e e e e e e e e e e e e e general terminal interface

QOUL . v v v v o b e s e s e s e e e e e e s assembiler and link editor output
Y e e e e e e e+« « . archive (library) file format
ascii et e e e et e e e s e e e e .. map of ASCII character set
checklist . . . ¢ ¢ ¢ v ¢ v 0 e ¢ v 0 v hst of file systems promsed by check
core e e et e e et e e e e e e e e e e format of core image file
cpio e e e e e e e s e e e e e e e « « « « . format of cpio archive
QIrECIOTY &« o ¢ ot vt e e s e e e e e e e e e e e e format of directories
UMD & ¢ ¢ f h e e e e e e e e« « » « s+ e+« incremental dump tape format
ebedic e s e e e s e e e e e st e e e e e e file format
fs format of file system volume
fspee 0. e e e e e e e format specification in text files
gZreek . . . e e e e e graphmforexzendedTELETYPEModeH?typebox
BIOUD ¢ & ¢ o ¢ ¢ s o v o s s s 0 0 e . . group file
master masterdevncemformanontable
mattab 6t e s e s e e e e e e e e« mounted file system table
passwd e et e e e e e s e« e s o s s o s+« password file
pot e et et e e e e e e e e e e . graphics interface
scesfile . . L L L e e e e e e e e e e e e e e e e e e format of SCCS file
- Shell accounting file
4 mag tape format
3 terminal initialization data
utmp . . e e e . e et e e e e e e « « s e s s« o userinformation
WHOP « « o ¢ o o ¢ o e o o s s o o o o o s e s o o s s o+« userlogin history
V1. GAMES

.7 satellite predictions
- biorhythm analysis
B e e e e e e e e e e e e e e e e e the game of black jack
chess e e e e e e e e e et e e e . the game of chess
cubic 0. . .. C h e e b e e e e e e three dimensional tic-tac-toe
factor e e e e e e e e discover pnme factors of a number
moo e e e e et e e e e e . . . guessing game
othello¢0..... v e agame of dramatic reversals
sky ... 00 oo .. N obtain ephemerides

ttt e o e o e 4 & e s s &6 2 s s
Wump ® o & s e » e s e e s o

VIL. MISCELLANEOUS
terminals

DASI450

GSI300

ncheck
patchup . . v ¢ ¢« v o ¢ s o o
regen ® & & & & & o & 2 o s

fﬁtOf e & ¢ & 2 e s & s s 0 o o

romboot
sa e e e e e e e e
setmnt
setud
shutdown
tapeboot
umount o0 . e e e .

unixboot

the game of tic-tac-toe
e e e e e e the game of hunt-the-wumpus

« . .. descriptions of commonly-used terminals
DASI450, DIABLO 1620, XEROX 1700 terminals
GSI300 (DTC300 or DASI300) hard-copy terminals

HP2640 v v v v v v v .. Hewlett-Packard 2640 CRT terminal family
TermiNet GE TermiNet 300 (and 1200) terminals
T1700 e e e e e e e e e e e e e e e e e e TI 745, 735, and 725 terminals
IMAC.HAME - & « & o o ¢ « « o o o o o o » standard nroff and troff macro packages
VIII. SYSTEM MAINTENANCE

70boot e e e e e e e e e e e e .. 11/70 bootstrap procedures
ac e login accounting
beopy e e e e e e e e e e e e e e e e disk block copy
check . . v . e e e e e e e e e e e e e e e file system consistency check
o1 clear i-node
cirm e e e e e e e e e e e e e e e e e clear mode of i-node
config e e e e e e e e e e e e e e e e e . configure a system
Lo v 1 + .. what to do when the system crashes
cron ot e e e e s e e e e e e e e e e e e e e clock daemon
dcat e e e e e e e e e e e e e e e read/wntesynchronouslme
deheck & . v o i e e e e e e e e e e s file system directory consistency check
deVnIM . & & . v 4 et s 4 s e s e e s e e e e e e e e s s device name
diskboot e e e e st e e e e e e e e e e e disk bootstrap programs
AUIMP & ¢ v vt ot e e e et e e e e e e e e e incremental file system dump
fsdb e e e e e e e e e e et e e e e e e e e e e file system debugger
BeLtY . . v e set terminal mode
glob e e e e e e e e e et e e e e e e e e . generate command arguments
13- - - S PWB/UNIX IBM Remote Job Entry
icheck e e e e e b e e e e e e e e e file system storage consistency check
B+ process control initialization
LT oo o « L search shell accounting records
37 '« £ construct a file system
mknod e et e e e e e e e e build special file
mount e e e e e e e e e e e e e e e e e e mount file system

e e e e e generate names from i-numbers

e e e e e patch up a damaged file system
e e e e e e e regenerate system directories
s e s ¢« s« . incremental file system restore

« s ¢« + .+ . remove all
e b e e e e e specxal ROM bootstrap loaders
....... e e e e e e Shell accounting
............. establish mnttab table
............ set user id of command
..... e+ « s+ « « . terminate all processing
e e e e e magnetic tape bootstrap programs
........ . dismount file system
e e e e e UNIXstanup and boot procedures

- Xvii -

voicopy, labelit e e e e e copy filesystems with label checking
wall e e e e et e e e e e e e e e e e « s e e+« o s . write to all users

- Xviii -

PERMUTED INDEX

70boot (VIII):

TermiNet(VII): GE TermiNet 300 (and
DASI450(VID): DASI450, DIABLO
DASI450, DIABLO 1620, XEROX
fd2(I): redirect file descriptor
HP2640(VTII): Hewlett-Packard

hp(1): handle special functions of HP
TermiNet(VII): GE TermiNet

graphics for extended TELETYPE Model
diff3(D:

TI700(VID): TI 745, 735, and
TI700(VID): T1 745,
TI700(VID): TI

abs, fabs(II):
access(I): determine

sha(V): Sheil
lastcom(VIII): search shell
ac(VIID): login

sa(VIID): Shell

dn(IV): DN-11

shift(I):

admin(1):
alarm(1I): schedule signal

expr(I): evaluate arguments as an
piot: openpi et

break, brk, sbrk(II): change core
alloc, free(III): core

rmall (VIII): remove

bio(VI): biorhythm
TermiNet(VI): GE TermiNet 300
: yacc(]): yet

write(I): write to

be(D):

atan, atan2(11):

ar():

ar(V):

cpio(V): format of cpio
cpio(I): copy file
nargs(III):

= (equals) (I): shell assignment command
11/70 bootstrap procedures
1200) terminals

1620, XEROX 1700 terminals
1700 terminals...DASI450(VIID):
2 (diagnostic output)

2640 CRT terminal family

2640 terminal -

300 (and 1200) terminals

37 type-box...greek(V):

3-way differential file comparison

450(I): handle special functions of DASI450 terminal

70boot(VIII): 11/70 bootstrap procedures
725 terminals

735, and 725 terminals

745, 735, and 725 terminals

abort(III): generate an 10T fauit

abs, fabs(IIl): absolute value

absolute value

accessibility of file

access(II): determine accessibility of file
accounting file

accounting records

accounting

accounting

ACU interface

ac(VIID): login accounting

adb(I): debugger

adjust Shell arguments

admin(I): administer SCCS files
administer SCCS files

after specified time

alarm(II): schedule signal after specified time
algebraic expression

al. (III): graphics interface

alloc, free(III): core allocator

allocation

allocator

ail

analysis

(and 1200) terminals .

another compiler-compiler

another user

a.out(V): assembler and link editor output
arbitrary precision interactive language
arc tangent function

archive and library maintainer

archive (library) file format

archive

archives in and out

argument count

- Xix -

xargs(I): construct

expr(I): evaluate

getarg, iargc(IID): get command
echo(I): echo

glob(VIII): generate command
shift(I): adjust Shell

ascii(V): map of

strcat, stremp, strien(III): operations on
atof (II1): convert

, atoi(III): convert
gmtime(III): convert date and time to

heip(D):

a.out(V):

as(D):

= (equals) (I): sheil
ki(IV): KL-11 or DL-11

atan,

wait(I):

bas(D):

cb(D): C
su(D):
diffmark(I): mark changes

bdiff(I):
bfs(I):
bio(VI):

strip(I): remove symbols and relocation

bj(VI): the game of

beopy(VII): disk

banner(I): print in

sync(I): update the super
unixboot (VIII): UNIX startup and
romboot(VIII): special ROM
70boot (VIII): 11/70

diskboot (VIID): disk
tapeboot(VIII): magnetic tape
switch(I): shell multi-way

argument list(s) and execute command
arguments as an algebraic expression
arguments from Fortran

arguments

arguments

arguments

ar(I): archive and library maintainer
ar(V): archive (library) file format
ASCII character set

ASCII strings...strepy,

ASCII to floating

ASCII to integer

ASCIL...ctime, localtime,

ascii(V): map of ASCII character set
as(I): assembier

ask for help

assembler and link editor output
assembier

assignment command

asynchronous interface

atan, atan2(III): arc tangent fuaction
atan2(III): arc tangent function

atof (I11): convert ASCII to floating
atoi (III): convert ASCII to integer
await completion of process
azel(V1): satellite predictions
banner(I): print in block letters
bas(I): basic

basic

be(I): arbitrary precision interactive language
beopy(VIID): disk block copy

bdiff (I): big diff

beautifier

become privileged user

between versions of a file

bfs(I): big file scanner

big diff

big file scanner

biorhythm analysis

bio(V1]): biorhythm analysis

bits)

bj(V1): the game of black jack

black jack

block copy

block letters <

biock

boot procedures

bootstrap loaders

bootstrap procedures

bootstrap programs

bootstrap programs

branch command

break, brk, sbrk(II): change core allocation

-break,

getc, getw, fopen(II):

putc, putw, fcreat, fflush(II):
mknod(VI):

list of file systems processed
cb(D):

cc(D:

cdb():

dc(I): desk

cal(I): print

, cu(VI):

indir(II): indirect system
intro(II): introduction to system
ierror(IIT):

signal (IT):

floor,
floor, ceil(III): floor and

break, brk, sbrk(I):
chgrp(1):

passwd(I):

chmod(II):

chmod(I):

chown(II):

chown(l):

chghist(I):

cd(D:

chdir(I):

chdir(ID):

diffmark(I): mark
pipe(Il): create an interprocess
cgetpid (III): return
ascii(V): map of ASCII
getchar(III): read
putchar, flush(IIl): write

list of file systems processed by
check(VIID): file system consistency

file system directory consistency

file system storage consistency

labelit (VIID): copy filesystems with label

sum(I): print

chess(V1): the game of

brk, sbrk(II): change core allocation
buffered input

buffered output

build special file

by check...checklist(V):

C beautifier

C compiler

C debugger

calculator

calendar

cal(I): print calendar

call UNIX

call

calls

catch Fortran errors

catch or ignore signais

cat(l): concatenate and print
cat(IV): phototypesetter interface
cb(I): C beautifier

ce(]): C compiler

cdb(]): C debugger

cd(I): change working directory
ceil(II1): floor and ceiling functions
ceiling functions

cgetpid(III): return character form of process ID
change core allocation.

change group

change login password

change mode of file

change mode

change owner and group of a file
change owner

change the history entry of an SCCS deita
change working directory

change working directory

change working directory

changes between versions of a file
channel

character form of process [D
character set

character

character

chdir(I): change working directory
chdir(II): change working directory
check...checklist(V):

check

check...dcheck (VIID):
check...icheck (VIID):
checking...volcopy,

checklist(V): list of file systems processed by check
checksum of a file

check(VTII): file system consistency check
chess

- XXi -

clri(VIID):
cirm(VIID:
cron(VIID):
close(II):

comb(I):

getarg, iargc(IID): get

glob(VIII): generate

nice(): run a

= (equals) (I): shell assignment
exit(I): terminate

nohup(I): run a

rsh(I): restricted shell

sh(I): shell

. goto(D):

if (I): conditional

pump(I): Shell data transfer
setuid (VIII): set user id of
switch(I): shell multi-way branch
time(D): time a

while(I): shell iteration

construct argument list(s) and execute

comm(I): print lines
terminals(VTI): descriptions of
dh(IV): DH-11

diff(I): differential file
whatsnew(I):

cmp(D):

scesdiff (1):

diff3(I): 3-way differential file
regemp, regex(III):

ce(D): C

yace(I): yet another
regemp(I): regular expression
fe(I): Fortran

re(D): Ratfor

wait(I): await

cat():

if (I):

config(VIID):

chess(V1): the game of chess

chghist(I): change the history entry of an SCCS deita

chgrp(D): change group
chmod(]): change mode
chmod(Il): change mode of file
chown(I): change owner

chown(II): change owner and group of a flle

clear i-node

clear mode of i-node

clock daemon

close a file

close(ID): close a file

clri(VII): clear i-node
cirm(VIID): clear mode of i-node
cmp(I): compare two files

col(I): filter reverse line feeds
comb(I): combine SCCS deltas
combine SCCS deltas

command arguments from Fortran
command arguments

command at low priority
command

command file

command immune to hangups
(command interpreter)
(command interpreter)
command transfer

command

command

command

command

command

command

command...xargs(I):

comm(]): print lines common to two files
common to two files
commoniy-used terminals
communications multiplexer
comparator

compare file modification dates
compare two files

compare two versions of an SCCS file
comparison)
compile and execute regular expressions
compiler

compiler-compiler

compile

compiler

compiler

completion of process
concatenate and print
conditional command

configure a system

- XXii -

check(VTID): file system
dcheck(VTII): file system directory
icheck(VTID): file system storage
¢sw(Il): read

mkfs(VII):

- xargs(D):
deroff(1): remove nroff, troff, and eqn
egrep(]): search a file for lines
fgrep(I): search a file for lines
Is(I): list

esplit(D):

init(VIII): process

units(I):

ecvt, fevt(III): output

locv(III): long output

dd(D):
atof (ITI):
atoi(III):

ctime, localtime, gmtime(II):
cpx(D):

dd(I): convert and

cpio(D):

volcopy, labelit(VIID):
beopy(VIII): disk block

cp(D):

break, brk, sbrk(II): change
alloc, free(ID):

core(V): format of
mem, kmem, null(IV):

sin,
nargs(III): argument
we(l): word

cpio(V): format of

crash(VTIII): what to do when the system

creat(Il):
pipe(II):

cref(I): make
HP2640(VII): Hewlett-Packard 2640

config (VIII): configure a system
consistency check

consistency check

consistency check

console switches

construct a file system

construct argument list(s) and execute command
constructs

containing a pattern

containing keywords

contents of directory

context split

control initialization

conversion program

conversion

conversion

convert and copy a file

convert ASCII to floating

convert ASCII to integer

convert date and time to ASCII
copy a file exactly

copy a file

copy file archives in and out

copy filesystems with label checking
copy

copy

core allocation

core allocator

core image file

core memory

core(V): format of core image file
cos(III): trigonometric functions
count

count

cp(D: copy

cpio archive

cpio(]): copy file archives in and out
cpio(V): format of cpio archive
cpx(1): copy a file exactly

crashes

crash(VIII): what to do when the system crashes
create a new file

create an interprocess channel
creat(Il): create a new file

cref(I): make cross reference listing
cron(VIII): clock daemon

cross reference listing

CRT terminal family

crypt(I): encode/decode

crypt(IIl): password encoding
csplit(I): context split

csw(Il): read console switches
ctime, localtime, gmtime(IIl): convert date and time to

- xxiii -

uname(II): get name of
ttyn(III): return name of
uname(]): print name of
spline(]): interpolate smooth

cron(VTII): clock

patchup(VIII): patch up a
GSI300(VII): GSI300 (DTC300 or
DASI450(V1I):

450(]): handle special functions of
’ terminals...

prof (I): display profile

ttys(V): terminal initialization
udata(Il): get per-user

ctime, localtime, gmtime(III): convert
time(II): get

date(I): print and set the

whatsnew([): compare file modification

db(D):

adb(D):

cdb(l): C

fsdb(VIII): file system

to(D): manipulate

dsw(l):

" tail(D):

rmdel(I): remove a

change the history entry of an SCCS
deita(I): make an SCCS

comb(I): combine SCCS
mesg(I): permit or

terminals(VTII):

fd2(I): redirect file

dup(ID): duplicate an open file
mail(I): send mail to

de(D:

access(Il):

file(D):

master(V): master
devnm(VIID):

dh(IV):

cubic(VI): three dimensional tic-tac-toe
current PWB/UNIX

current terminal

current UNIX

curve

cu(VIID): call UNIX

daemon

damaged file system

DASI300) hard-copy terminals

DASI450, DIABLO 1620, XEROX 1700 terminals
DASI450 terminal

DASI450(VII): DASI450, DIABLO 1620, XEROX 1760
data

data

data

date and time to ASCII

date and time

date

date(I): print and set the date

dates

db(l): debug

dcat(VIII): read/write synchronous line
dcheck(VIII): file system directory consistency check
dc(1): desk calculator

dd(I): convert and copy a file

debug

debugger

debugger

debugger

DECtape and magtape

delete interactively

deliver the last part of a file

deita from an SCCS file

delta...chghist(I):

deita

delta(I): make an SCCS delta

deitas

deny messages s

deroff (I): remove aroff, troff, and eqn constructs
descend(III): search UNIX file system directories
descriptions of commonly-used terminals
descriptor 2 (diagnostic output)

descriptor

designated users

desk calculator

determine accessibility of file

determine file type

device information table

device name

devnm(VTII): device name

df(I): report disk free space

DH-11 communications multiplexer
dh(IV): DH-11 communications multiplexer

- XXiv -

O

DASI450(VII): DASI450,
fd2(I): redirect file descriptor 2

bdiff (I): big
diff(I):
diff3(I): 3-way

cubic(VI): three

descend(III): search UNIX file system
directory(V): format of
regen(VIII): regenerate system
dcheck(VIID): file system
unlink (11): remove

pwd({): working

mknod(II): make a

cd(]): change working
chdir(I): change working
chdir(II): change working
Is(I): list contents of

mkdir(I): make a

rmdir(I): remove

factor(V1):
beopy(VII):
diskboot(VTII):
df(I): report
du(l): summarize

hp(IV): RP04/RPOS/RP06 moving-head
hs(IV): RS03/RS04 fixed-head

rp(IV): RP-11/RP03 moving-head
umount(II):

umount(VII):

prof(D):

Idiv, lrem(IID): long

ki(IV): KL-11 or

dn(IV):

mm(I): run off
man(I): print on-line

dp(IV):

rje(IV):
otheilo(V1): a game of
graph(I):

GSI300(VTII): GSI300
dp(IV): DP-11,

dump(V): incremental
dump(VTID): incremental file system
od(I): octal

DIABLO 1620, XEROX 1700 terminals
(diagnostic output)

diff3(I): 3-way differential file comparison
diff

differential file comparator

differential file comparison

diff (I): differential file comparator
diffmark(I): mark changes between versions of a file
dimensional tic-tac-toe

directories

directories

directories

directory consistency check

directory entry

directory name

directory or a special file

directory

directory

directory

directory

directory

directory

directory(V): format of directories
discover prime factors of a number
disk biock copy

disk bootstrap programs

disk free space

disk usage

diskboot (VIII): disk bootstrap programs
disk

disk

disk

dismount file system

dismount file system

display profile data

division

DL-11 asynchronous interface

DN-11 ACU interface

dn(IV): DN-11 ACU interface
document with PWB/MM
documentation

DP-11, DU-11 synchronous line interface
dp(IV): DP-11, DU-11 synchronous line interface
DQS-11B interface for remote job entry
dramatic reversals

draw a graph

dsw(]): delete interactively

(DTC300 or DASI300) hard-copy terminals
DU-11 synchronous line interface
du(l): summarize disk usage

dump tape format

dump

dump

-« XXV -

dup(ID:
echo(I):

end, etext,

a.out(V): assembler and link
ed(I): text

1d(I): link

sed(I): stream

crypt(D):
crypt(IIl): password

rjestat(I): RJE status and

nlist(ITI): get

chghist(I): change the history

hasp(VIII): PWB/UNIX IBM Remote Job
rje(IV): DQS-11B interface for remote job
unlink(II): remove directory

sky(V1): obtain

deroff(I): remove aroff, troff, and

perror, sys_errlist, sys_nerr,
ierror(IT1): catch Fortran
spell(I): find spelling
setmnt (VIID):

plot: openpl

end,

expr(I):

cpx(I): copy a file

exec,

exec, exec!, execv(Il):
pexec(III): path search and
xargs(l): construct argument list(s) and
reset, setexit(II):

setjmp, longjimp(III):

regemp, regex(II1): compile and
sleep(I): suspend

sleep(II1): suspend
monitor(III): prepare

profil(II):

exec, execl,

exp(IlD):

dump(V): incremental dump tape format
dump(VIII): incremental file system dump
dup(I): duplicate an open file descriptor
duplicate an open file descriptor

ebedic(V): file format

echo arguments

echo(I): echo arguments

ecvt, fevt(III): output conversion

edata(III): last locations in program

ed(I): text editor

editor output

editor

editor

editor

egrep(I): search a file for lines containing a pattemn
encode/decode
encoding
end, etext, edata(IIl): last locations in program
enquiries

entries from name list

entry of an SCCS delta

Entry

entry

entry

ephemerides

eqn constructs

eqn(I): typeset mathematics

(equals) (I): shell assignment command
errno(IIl): system messages

errors

errors

establish mnttab table

et al.(III): graphics interface

etext, edata(III): last locations in program
evaluate arguments as an algebraic expression
exactly

exec, execl, execv(Il): execute a file
execl, execv(Il): execute a file

execute a file

execute a file

execute command

execute non-local goto

execute non-local goto

execute regular expressions

execution for an interval

execution for interval

execution profile

execution time profile

execv(II): execute a file

exit(I): terminate command file

exit(II): terminate process

exp(III): exponential function
exponential function

pow(III): floating

regcmp(I): regular

expr(I): evaluate arguments as an algebraic
regex(III): compile and execute regular

greek(V): graphics for
abs,
factor(V1): discover prime

Hewlett-Packard 2640 CRT terminal
abort(III): generate an IOT

putc, putw,
ecve,

col(]): filter reverse line
putc, putw, fcreat,

cpio(I): copy

diff(I): differential
diff3(I): 3-way differential
: fd2(I): redirect
dup(Il): duplicate an open
cpx(I): copy a

grep(D): search a

rgrep(l): search a
egrep(I): search a
fgrep(I): search a

ar(V): archive (library)
ebedic(V):

split(I): split a
whatsnew(I): compare
setfil(II1): specify Fortran
tell(ID): get

bfs(I): big

stat(1I): get

check(VIID):

fsdb(VTII):

descend(III): search UNIX
: dcheck(VIID):
dump(VTII): incremental
restor(VIII): incremental
ustat(II): get

icheck (VIID):

mnttab(V): mounted
fs(V): format of
mkfs(VIII): construct a
mount(II): mount
mount(VIII): mount
patchup(VTII): patch up a damaged
checklist(V): list of
umount(II): dismount
umount(VIII): dismount

exponentiation
expression compile
expression
expressions...regcmp,

expr(]): evaluate arguments as an algebraic expression

extended TELETYPE Model 37 type-box
fabs(III): absolute value

factors of a number

factor(V1): discover prime factors of a number
family...HP2640(VII):

fault

fe(I): Fortran compiler

fereat, Aush(III): buffered output
fevt(III): output conversion

fd2(1): redirect file descriptor 2 (diagnostic output)
feeds

fllush(III): buffered output

fgrep(I): search a file for lines containing keywords
file archives in and out

file comparator

file comparison

file descriptor 2 (diagnostic output)
file descriptor

file exactly

file for a pattern

file for a pattern

file for lines containing a pattern

file for lines containing keywords

file format

file format

file into pieces

file modification dates

file name

file offset

file scanner

file status

file system consistency check

file system debugger

file system directories

file system directory consistency check
file system dump

file system restore

file system statistics

file system storage consistency check
file system table ‘

file system volume

file system

file system

file system

file system

file systems processed by check

file system

file system

- XXvii -

file(I): determine

access(II): determine accessibility of
chmod(II): change mode of
chown(II): change owner and group of a
close(I): close a

core(V): format of core image
creat(Il): create a new

dd(I): convert and copy a

mark changes between versions of a
exec, execl, execv(II): execute a
exit(I): terminate command
fstat(II): get status of open

get(I): get generation from SCCS
group(V): group

link(II): link to a

mknod(II): make a directory or a special
mknod(VTII): build special

mv(l): move or rename a
passwd(V): password

 pexec(IIl): path search and execute a
pr(I): print

prt(I): print SCCS

read(II): read from

reform(I): reformat text

rmdei(I): remove a deita from an SCCS
admin(I): administer SCCS

compare two versions of an SCCS
sccsfile(V): format of SCCS

cmp(I): compare two

comm(]): print lines common to two
find(I): find

fspec(V): format specification in text
gath(I): gather real and virtual
sha(V): Shell accounting

size(I): size of an object

onintr(I): handle interrupts in sheil
rm(I): remove (unlink)

sort(I): sort or merge

sum(I): print checksum of a
what(I): identify

volcopy, labelit(VIII): copy

tail(I): deliver the last part of a
uniq(I): report repeated lines in a
utime(II): update times in

write(II): write on a

col():

plot: t300, t300s, t450(I): graphics
find(D):

typo(I):

spell(I):

tee(I): pipe

file type

file

file

file

file

file

file

file
file...diffmark(I):
file

file

file

file

file

file(I): determine file type
file

file

file

file

file

file

file

file

file

file

file

files

file...scesdiff (I):
file -

files

files

files

files

files

file

file

files

files

files

file

files

filesystems with label checking
file)
file

file

file

filter reverse line feeds
filters

find files

find possible typos
find spelling errors
find(I): find files
fitting

- Xxviii -

FLany

hs(IV): RS03/RS04
pow(III):

fmod (II1):

fptrap(III):

atof (ITI): convert ASCII to
floor, ceil (TI):

putchar,
getc, getw,

cgetpid (ITI): return character
core(V):

cpio(V):

directory(V):

fs(V):

scesfile(V):

fspec(V):

tbi(D):

roff (I):

ar(V): archive (library) file
dump(V): incremental dump tape
ebedic(V): file

printf (I11):

aroff, troff (I): text

troff (I): text

tp(V): mag tape

fe(D):

ierror(IIl): catch

setfil(II1): specify

iargc(IT1): get command arguments from

df(I): report disk

alloc,

rmdel(I): remove a deita

read(Il): read

getarg, iargc(IT]): get command arguments
ncheck (VIII): generate names

logname, logdir, logtty(I): information
nlist(II1): get entries

get(D): get generation

getpw(II): get name

atan, atan2(IIl): arc tangent
exp(I11): exponential
fmod(III): floating modulo
gamma(Ill): log gamma
450(1): handle special
gsi(I): handle special

hp(I): handle special

fixed-head disk

floating exponentiation

floating modulo function
floating point interpreter
floating

floor and ceiling functions

floor, ceil(I1I): floor and ceiling functions
flush(III): write character
fmod(IIl): floating modulo function
fopen(III): buffered input
fork(II): spawn new process
form of process ID

format of core image file

format of cpio archive

format of directories

format of file system volume
format of SCCS file

format specification in text files
format tables for nroff or troff
format text

format

format

format

formatted print

formatters

formatter

format

Fortran compiler

Fortran errors

Fortran file name
Fortran...getarg,

fptrap(111): floating point interpreter
free space

free(III): core allocator

from an SCCS file

from file

from Fortran

from i-numbers

from login

from name list

from SCCS file

from UID

fsdb(VII): file system debugger
fspec(V): format specification in text files
fstat(II): get status of open file
fs(V): format of file system volume
function

function

function

function

functions of DASI450 terminal
functions of GSI300 terminal
functions of HP 2640 terminal

- xxix -

floor, ceil(III): floor and ceiling
sqrt(III): square root

sin, cos(III): trigonometric
bj(VI): the

chess(VI): the

othello(VI): a

wump(VI): the

ttt(VI): the

moo(VI): guessing
gamma(IIl): log

gath(D):

TermiNet(VID):
tty(IV):
abort(III):
glob(VIID):
ncheck (VIID):
lex(I):

get(D): get

rand, srand(III): random number
getarg, iargc(II):
- time(II):
nlist(I1D):

tell(I1):

stat(II):
ustat(IT):

get(D):

getgid(IT):
getpw(IID):
uname(II):
udata(Il):
getpid(1D):
times(I):
fstat(ID):

tty(D):

gtty(ID):
getuid(I):

getc,

match a string with a pattern (like
glob(VII))...
ctime, localtime,

functions

function

functions

game of black jack

game of chess

game of dramatic reversais

game of hunt-the-wumpus

game of tic-tac-toe

game

gamma function

gamma(IIl): log gamma function

gather real and virtual files

gath(I): gather real and virtual files

GE TermiNet 300 (and 1200) terminals
general terminal interface

generate an IOT fault

generate command arguments

generate names from i-numbers

generate programs for simple iexical tasks
generation from SCCS file

generator

get command arguments from Fortran
get date and time

get entries from name list

get file offset

get file status

get file system statistics : .
get generation from SCCS file

get group identifications

get name from UID

get name of current PWB/UNIX

get per-user data

get process identification

get process times

get status of open file

get terminal name

get terminal status

get user identifications

getarg, iargc(IID): get command arguments from Fortran
getc, getw, fopen(IIl): buffered input
getchar(III): read character

getgid(1I): get group identifications
get(D): get generation from SCCS file
getpid(IT): get process identification
getpw(IID): get name from UID
getty(VIII): set terminal mode

getuid(TI): get user identifications

getw, fopen(IIl): buffered input
glob(VIII): generate command arguments
glob(VIID))...gmatch(II):

gmatch(III): match a string with a pattern (like
gmtime(III): convert date and time to ASCII
goto(I): command transfer

- XXX -

reset, setexit(III): execute non-local
setjmp, longimp(III): execute non-local
. graph(I): draw a

plot: 300, t300s, t450(1):
greek(V):

plot: openpi et al.(T0I):
plot(V):

type-box...

group(V):

, getgid(II): get
setgid(II): set process
setpgrp(II): set process
chown(Il): change owner and
cherp(D): change

newgrp(I): log in to a new

GSI300(VID):
~ gsi(I): handle special functions of
terminals...

moo(V]):

onintr(I):

450(D):

gsi(D):

hp(D:

nohup(I): run a command immune to
GSI300(VID: GSI300 (DTC300 or DASI300)

help(I): ask for

HP2640(V1I):
hmul(I1D):

chghist(I): change the
wtmp(V): user login

hp(I): handle special functions of

wump(VI): the game of
getarg,
hasp(VTII): PWB/UNIX

setuid(VIII): set user

return character form of process
getpid(I1): get process
getgid(I): get group

getuid(II): get user

goto
goto

graph -

graph(I): draw a graph

graphics filters

graphics for extended TELETYPE Model 37 type-box
graphics interface

graphics interface

greek(V): graphics for extended TELETYPE Model 37
grep(I): search a file for a pattern

group file

group identifications

group ID

group number

group of a file

group

group

group(V): group file

GSI300 (DTC300 or DASI300) hard-copy terminals
GSI300 terminal

GSI300(VID): GSI300 (DTC300 or DASI300) hard-copy
gsi(I): handle special functions of GSI300 terminal
gtty(II): get terminal status

guessing game

handle interrupts in shell files

handle special functions of DASI450 terminal
handle special functions of GSI300 terminal

handle special functions of HP 2640 terminal
hangups

hard-copy terminals

hasp(V1II): PWB/UNIX IBM Remote Job Entry
help

help(I): ask for heip

Hewiett-Packard 2640 CRT terminal family
high-order product

history entry of an SCCS deita

history

hmul(III): high-order product

HP 2640 terminal

HP2640(VII): Hewlett-Packard 2640 CRT terminal family
hp(I): handle special functions of HP 2640 terminal
hp(IV): RP04/RP0S/RP06 moving-head disk
hs(IV): RS03/RS04 fixed-head disk

ht(IV): TU16 magtape interface

hunt-the-wumpus '

iargc(II1): get command arguments from Fortran
IBM Remote Job Entry

icheck(VIII): file system storage consistency check
id of command

ID...cgetpid(1II):

identification

identifications

identifications

- XXXi -

what(I):
setgid (IT): set process group
setuid(II): set process user

signal(II): catch or
core(V): format of core
nohup(l): run a command
dump(V):

dump(VIID:

restor(VIID):

pause(ID):

ptx(I): permuted
indir(II):

logname, logdir, logtty(I):

master(V): master device

logname, logdir, logt:y, logpost(II): login
utmp(V): user

ttys(V): terminal

init(VIID): process control

ciri(VIID): ciear

cirm(VIID): clear mode of

next(I): new standard

getc, getw, fopen(IIl): buffered
atoi(III): convert ASCII to

be(I): arbitrary precision

dsw(l): delete

rje(IV): DQS-11B

cat(IV): phototypesetter

da(TV): DN-11 ACU

dp(IV): DP-11, DU-11 synchronous line
ht(IV): TU16 magtape

kI(IV): KL-11 or DL-11 asynchronous
plot: openpi et al. (III): graphics
plot(V): graphics

tm(IV): TM11/TU10 magtape
tty(IV): general terminal
spline(1):

fptrap(IIl): floating point

rsh(I): restricted shell (command
sh(): shell (command

sno(I): Snobol

pipe(II): create an

onintr(I): handle

sleep(I): suspend execution for an
sleep(III): suspend execution for
intro(ID):

ncheck(VIII): generate names from
abort(II): generate an
while(I): shell

identify files

ID

ID

ierror(IIl): catch Fortran errors
if (1): conditional command
ignore signais

image file

immune to ha:agups
incremental dump tape format
incremental file system dump
incremental file system restore
indefinite wait

index

indirect system call

indir(1I): indirect system call
information from login
information table

information

information

initialization data
initialization

init(VIII): process control initialization
i-node

i-node

input for shell procedure
input

integer

interactive language
interactively

interface for remote job eatry
interface

interface

interface

interface

interface

interface

interface

interface

interface

interpolate smooth curve
interpreter

interpreter)

interpreter)

interpreter

interprocess channel
interrupts in shell files
interval

interval

introduction to system calls
intro(II): introduction to system calls
i-numbers

IOT fault

iteration command

- XXXii -

bj(VI): the game of black

hasp(VII): PWB/UNIX IBM Remote
ge(IV): DQS-11B interface for remote
send(I): submit RJE

search a file for lines containing

kl(IV):

mem,

quiz(I): test your

labelit(VIII): copy filesystems with
. volcopy,

be(1): arbitrary precision interactive
end, etext, edata(II):

tail(I): deliver the

banner(I): print in block

lex(1): generate programs for simple
ar(V): archive

ar(I): archive and

gmatch(I11): match a string with a pattern
col(]): filter reverse

dp(IV): DP-11, DU-11 synchronous
Ip(IV):

dcat(VIID): read/write synchronous
comm(]): print

egrep(D): search a file for

fgrep(I): search a file for

uniq(I): report repeated

a.out(V): assembler and

ld(D:

link(ID):

in(I): make a

) 1s(D):

checklist(V):

cref(I): make cross reference
nlist(II1): get entries from name
nm(I): print name

xargs(I): construct argument

romboot(VIII): special ROM bootstrap
ctime,
end, etext, edata(III): last

gamma(IIl):
newgrp(I):
log(II): natural
logname,

jack

Job Entry

job entry

job

keywords...fgrep(I):

kill(I): terminate a process

kill(II): send signal to a process

KL-11 or DL-11 asynchronous interface
ki(IV): KL-11 or DL-11 asynchronous interface
kmem, null(TV): core memory

knowledge

label checking...volcopy,

labelit(VIII): copy filesystems with label checking
language

last locations in program

last part of a file

lastcom (V1II): search shell accounting records
Id(I): link editor

Idiv, lrem(III): long division

letters

lex(I): generate programs for simple lexical tasks
lexical tasks

(library) file format

library maintainer

(like glob(VIID))

line feeds

line interface

line printer

line

lines common to two files

lines containing a pattern

lines containing keywords

lines in a file

link editor output

link editor

link to a file

link(II): link to a file

link

list contents of directory

list of file systems processed by check
listing

list

list .

list(s) and execute command

In(I): make a link

loaders

localtime, gmtime(III): convert date and time to ASCII
locations in program

locv(III): long output conversion

log gamma function

log in to a new group

logarithm

logdir, logtty, logpost(I): login information

- xxxiii -

logname,

ac(VII):

wtmp(V): user

logname, logdir, logtty, logpost(ID):
passwd(I): change

logdir, logtty(1): information from

logname, logdir, logtty,
‘logname, logdir,
logname, logdir,

Idiv, lrem(1II):

locv({IID):

setjmp,

nice(I): run a command at

Idiv,

- tmac.name{(VT]): standard nroff and troff

md(I):

tp(V):

tapeboot (VIID):

ht(IV): TU16

tm(IV): TM11/TU10

tp(I): manipulate DECtape and
mail(I): send

ar(I): archive and library
mknod(II):

mkdir():

In(D:

make([):

deita(D):

cref(D):

tp(D):
ascii(V):
diffmark(I):
master(V):

gmatch(III):
negn(I): typeset
eqn(l): typeset

mem, kmem, null(IV): core
sort(I): sort or

- mesg(I): permit or deny
sys_errlist, sys_nerr, errno(IIl): system

logdir, logtty(I): information from login
log(III): natural logarithm

login accounting

login history

login information

login password

login(I): sign onto UNIX
login...logname,

logname, logdir, logtty, logpost(II): login information
logname, logdir, logtty(I): information from login
logpost(II): login information

logtty, logpost(II): login information
logtty(I): information from login

long division

long output conversion

longimp(III): execute non-local goto
low priority .

1p(IV): line printer

Irem(III): long division

Is(I): list contents of directory

m4(I): macro processor

macro packages

MAacro processor

mag tape format

magnetic tape bootstrap programs
magtape interface

magtape interface

magtape

mail to designated users

mail(I): send mail to designated users
maintainer

make a directory or a special file

make a directory

make a link

make a program

make an SCCS delta

make cross reference listing

make(I): make a program

man(I): print on-line documentation
manipulate DECtape and magtape

map of ASCII character set

mark changes between versions of a file
master device information table
master(V): master device information table
match a string with a pattern (like glob(VIII))
mathematics on terminal

mathematics

mem, kmem, null(IV): core memory
memory

merge files

mesg(I): permit or deny messages
messages

messages...perror,

- XXXiV -

setmnt(VIII): establish

chmod(II): change

cirm(VIID): clear

stty(II): set

chmod(I): change

getty(VIII): set terminal

greek(V): graphics for extended TELETYPE
whatsnew(]): compare file

fmod(I1I): floating

mount(II):
mount(VIID):
mnttab(V):

mv(I):

seek(ID):

hp(IV): RP04/RPOS/RP06

~ rp(IV): RP-11/RP03

dh(IV): DH-11 communications
switch(I): shell

getpw(IIT): get

nlist(IT1): get entries from
am(I): print

uname(ID): get

ttyn(III): return
uname(I): print
devam(VTII): device
pwd(I): working directory
ncheck(VTII): generate
setfil (III): specify Fortran file
tty(I): get terminal

log(ID):

creat(I): create a
newgrp(I): log in to a
fork(II): spawn
next(l):

mkdir(I): make a directory

mkfs(VIII): construct a file system
mknod(II): make a directory or a special file
mknod(VIII): buiid special file

mm(I): run off document with PWB/MM
mnttab table

mnttab(V): mounted file system table
mode of file

mode of i-node

mode of terminal

mode

mode ?
Model 37 type-box

modification dates

modulo function

monitor(IIl): prepare execution profile
moo(V1): guessing game

mount file system

mount file system

mounted file system table

mount(II): mount file system
mount(VTII): mount file system

move or rename a file

move read/write pointer

moving-head disk

moving-head disk

multiplexer

multi-way branch command

mv(I): move or rename a file

name from UID

name list

name list

name of current PWB/UNIX

name of current terminal

name of current UNIX

name

name

names from i-numbers

name

name

nargs(II): argument count

natural logarithm

ncheck(VII): generate names from i-numbers
neqn(]): typeset mathematics on terminal
new file

new group

new process

new standard input for shell procedure
newgrp(I): log in to a new group

next(I): new standard input for shell procedure

nice(I): run a command at low priority
nice(II): set program priority
alist(IIT): get entries from name list

- XXXV -

reset, setexit(III): execute
setjmp, longimp(III): execute
tmac.name(VII): standard
tbl(I): format tables for
deroff(I): remove

mem, kmem,

rand, srand(III): random

factor(V1): discover prime factors of a
setpgrp(I1): set process group

size(I): size of an

sky(VI):

od(D:

mm(I): run
tell(II): get file

man(]): print
login(I): sign
dup(Il): duplicate an
fstat(II): get status of
opea(ID):

plot:
strepy, streat, stremp, strien(I1D):
stty(I): set terminal

cpio(I): copy file archives in and

ecvt, fevt(ITD):

locv(IID): long

a.out(V): assembler and link editor
redirect file descriptor 2 (diagnostic
putc, putw, fcreat, fllush(I1I): buffered
chown(Il): change

chown(I): change

standard aroff and troff macro

tail(I): deliver the last

crypt(IlD):

passwd(V):

passwd(I): change login
patchup(VIII):

pexec(II):

gmatch(III): match a string with a
search a file for lines containing a
grep(1): search a file for a
rgrep(]): search a file for a

mesg(l):

-

am(I): print name list

nohup(I): run a command immune to hangups
non-local goto

non-local goto

nroff and troff macro packages

aroff or troff

nroff, troff, and eqn constructs
nroff, troff(I): text formatters
null(IV): core memory

number generator

number

number

object file

obtain ephemerides

octal dump

od(D: octal dump

off document with PWB/MM

offset

onintr(I): handle interrupts in shell files
on-line documentation

onto UNIX

open file descriptor

open file

open for reading or writing

open(ID): open for reading or writing
openpl et al.(III): graphics interface
operations on ASCII strings

options

othello(V1): a game of dramatic reversals
out

output conversion

output conversion

output

output)...fd2(D):

output

owner and group of a file
owner
packages...tmac.name(VII):
part of a file

passwd(I): change login password
passwd(V): password file
password encoding

password file

password

patch up a damaged file system
patchup(VIII): patch up a damaged file system
path search and execute a file
pattern (like glob(VTII))
pattern...egrep(I):

pattern

pattern

pause(II): indefinite wait

permit or deny messages

< XXXVi -

ptx(D):

messages...
udata(Il): get

cat(IV):
split(I): split a file into
tee(D):

fptrap(III): floating
seek(I1): move read/write
typo(D): find

be(I): arbitrary
azel(V]): satellite
monitor(TII):

factor(V1): discover
date(I):

cal(D):

sum(]):

pr(D):

banner(I):
comm(I):

nm(I):

uname(I):

man(D):

prt(D):

cat(I): concatenate and

Ip(IV): line

printf ([1I): formatted

vp(I): Versatec

nice(I): run a command at low
nice(II): set program

su(l): become

next(I): new standard input for sheil
70boot(VTII): 11/70 bootstrap
unixboot(VIII): UNIX startup and boot
init(VIID:

setgid(II): set

setpgrp(II): set

cgetpid(I1): return character form of
getpid(ID): get

ps(D):

times(II): get

wait(II): wait for

ptrace(ID):

setuid(I): set

checklist(V): list of file systems
exit(II): terminate

permuted index

perror, sys_errlist, sys_nerr, errno(III): system

per-user data

pexec(III): path search and execute a file
phototypesetter interface
pieces

pipe fitting

pipe(Il): create an interprocess channel
plot: openpl et al.(III): graphics interface
plot: t300, t300s, t450(I): graphics fiiters
plot(V): graphics interface
point interpreter

pointer

possible typos

pow(IID): floating exponentiation
precision interactive language
predictions

prepare execution profile

pr(I): print file

prime factors of a number
print and set the date

print calendar

print checksum of a file

print file -

print in block letters

print lines common to two files
print name list

print name of current UNIX -
print on-line documentation
print SCCS file

print

printer

printf(III): formatted print
print

print

priority

priority

privileged user

procedure

procedures

procedures

process control initialization
process group [D

process group number

process ID

process identification

process status

process times

process to terminate

process trace

process user ID

processed by check

process

- XXXVii -

fork(II): spawn new
shutdown(VIII): terminate all
kill(I): terminate a

kill(TI): send signal to a
m4(I): macro

wait(I): await completion of
hmul(IIl): high-order

prof(I): display
monitor(IIf): prepare execution
profil(II): execution time

i nice(ID): set

end, etext, edata(IIl): last locations in

) make(I): make a
lex(I): generate

diskboot (VIII): disk bootstrap
tapeboot(VIII): magnetic tape bootstrap
units(I): conversion

putc,

mm(I): run off document with
hasp(VTID):

uname(Il): get name of current

gsort(IID):

rand, srand(III):
re():

getchar(IID):
esw(Il):
read(ID):

open(II): open for

seek(II): move

deat(VIID):

gath(I): gather

lastcom(VTII): search shell accounting
fd2(I):

cref(I): make cross

reform(]):

expressions...

process
processing

process

process

processor

process

product

prof(I): display profile data

profile data

profile

profile .

profil(II): execution time profile
program priority

program

program

programs for simple lexical tasks
programs

programs

program

prt(I): print SCCS file

ps(I): process status

ptrace(II): process trace

ptx(I): permuted index

pump(I): Shell data transfer command
putc, putw, fcreat, fllush(IID): buffered output
putchar, flush(III): write character
putw, fcreat, fllush(III): buffered output
PWB/MM

PWB/UNIX IBM Remote Job Entry
PWB/UNIX

pwd(I): working directory name
gsort(III): quicker sort

quicker sort

quiz(]): test your knowiedge

rand, srand(III): random number generator
random number generator

Ratfor compiler

re(I): Ratfor compiler

read character

read console switches

read from file

read(II): read from file

reading or writing

read/write pointer

read/write synchronous line

real and virtual files

records '

redirect file descriptor 2 (diagnostic output)
reference listing

reformat text file

reform(1): reformat text file

regcmp, regex(II): compile and execute regular
regemp(l): regular expression compile

- XXXViii -

regen(VII):

regemp,

regemp(I):

regemp, regex(II): compile and execute
strip(I): remove symbols and
hasp(VIII): PWB/UNIX IBM
rje(IV): DQS-11B interface for
rmdel(D):

rmall(VIID):

unlink(II):

rmdir(I):

deroff (I):

strip(I):

rm(D:

mv(I): move or

uniq(I): report

df(D):

uniq(D):

restor(VII): incremental file system

rsh(D):

cgetpid (II):

ttyn(IID):

othello(VI): a game of dramatic
col(I): fiiter

send(I): submit
rjestat(D):

romboot(VIII): special

sqrt(II): square
hp(IV):
rp(IV):

hs(IV):

nice(I):
nohup(D):
mm(I):
azel(VI):

break, brk,
bfs(I): big file
chghist(I): change the history entry of an

regenerate system directories

regen(VIII): regenerate system directories
regex(II1): compile and execute regular expressions
regular expression compile

regujar expressions

relocation bits

Remote Job Entry

remote job entry

remove a delta from an SCCS file

remove all

remove directory entry

remove directory .
remove nroff, troff, and eqn constructs
remove symbols and relocation bits

remove (unlink) files

rename a file

repeated lines in a file

report disk free space

report repeated lines in a file

reset, setexit(III): execute non-local goto
restore

restor(VIII): incremental file system restore
restricted shell (command interpreter)
return character form of process [D

return name of current terminal

reversals

reverse line feeds

rgrep(I): search a file for a pattern

RJE job

RJE status and enquiries

je(IV): DQS-11B interface for remote job entry
jestat(I): RJE status and enquiries

rmall (VIII): remove all

rmdeli(I): remove a deita from an SCCS file
rmdir(I): remove directory

rm(I): remove (unlink) files

roff (I): format text

ROM bootstrap loaders

romboot(VIII): special ROM bootstrap loaders
root function

RP04/RP05/RP06 moving-head disk
RP-11/RP03 moving-head disk

rp(IV): RP-11/RP03 moving-head disk
RS03/RS04 fixed-head disk

rsh(]): restricted shell (command interpreter)
run a command at low priority

run a command immune to hangups

run off document with PWB/MM

satellite predictions

sa(VTII): Shell accounting

sbrk(II): change core allocation

scanner

SCCS delta

- XXXiX -

delta(I): make an

comb(I): combine

get(I): get generation from

prt(D): print

rmdel(I): remove a deita from an
admin(I): administer

scesdiff (I): compare two versions of an
scestile(V): format of

alarm(ID):
grep(D):
rgrep(D):
egrep(D):
fgrep(D):
pexec(IIl): path
lastcom (VIID):
descend(II):

mail(I):
kill(Il):

stty(1):

setgid (11):
setpgrp(Il):
setuid(1I):
nice(II):

tabs(I):

getty (VIID:
stty(I):

date(I): print and
stime(II):

setuid (VIII):
ascii(V): map of ASCII character
reset,

sha(V):

lastcom (VTII): search
sa(VIID):

shift(I): adjust

= (equals) (]):

rsh(]): restricted

sh(D):

pump(D):

onintr(I): handle interrupts in

SCCS delta

SCCS deltas

SCCS file

SCCS file

SCCS file

SCCS files

SCCS file

SCCS file

scesdiff(I): compare two versions of an SCCS file
sccsfile(V): format of SCCS file
schedule signal after specified time
search a file for a pattern

search a file for a pattern

search a file for lines containing a pattern
search a file for lines containing keywords
search and execute a file

search shell accounting records
search UNIX file system directories
sed(I): stream editor

seek(II): move read/write pointer
send mail to designated users

send signal to a process

send(I): submit RJE job

set mode of terminal

set process group ID

set process group number

set process user [D

set program priority

set tabs on terminal

set terminal mode

set terminal options

set the date

set time

set user id of command

set

setexit(ITI): execute non-local goto
setfil (IIT): specify Fortran file name
setgid(II): set process group ID
setjimp, longimp(III): execute non-local goto
setmnt(VIII): establish mnrtab table
setpgrp(II): set process group number
setuid(I): set process user [D

setuid (VIII): set user id of command
sha(V): Shell accounting file

Shell accounting file

shell accounting records

Shell accounting

Shell arguments

shell assignment command

shell (command interpreter)

shell (command interpreter)

Shell data transfer command

shell files

PR,

while(I):
switch(I):
next(I): new standard input for

login(I):
alarm(II): schedule
kill(II): send

signai (II): catch or ignore
lex(I): generate programs for

size(I):

spline(]): interpolate
sno():

sort(I):

gsort(II): quicker

df(I): report disk free

fork(II):

mknod(II): make a directory or a
mknod(VII): build

450(D): handle

gsi(D): handle

hp(D): handle

romboot (VIII):

fspec(V): format

alarm(1II): schedule signal after
setfil(ITD):

speil(I): find

split(I):
csplit(I): context

sqrt(1D):

rand,

next(I): new
tmac.name(VII):
unixboot (VIII): UNIX

ustat(Il): get file system
rjestat(I): RJE

fstat(II): get

gty (I): get terminal
ps(I): process

shell iteration command

shell muiti-way branch command
shell procedure

sh(I): shell (command interpreter)
shift(I): adjust Shell arguments
shutdown(VIII): terminate all processing
sign onto UNIX

signal after specified time

signal to a process

signal (II): catch or ignore signals
signals

simple lexical tasks

sin, cos(III): trigonometric functions
size of an object file

size(I): size of an object file

sky(VI): obtain ephemerides
sleep(I): suspend execution for an interval
sleep(III): suspend execution for interval
smooth curve

Snobol interpreter

sno(I): Snobol interpreter

sort or merge files

sort(I): sort or merge files

sort

space

Spawn new process

special file

special file

special functions of DASI450 terminal
special functions of GSI300 terminal
special functions of HP 2640 terminal
special ROM bootstrap loaders
specification in text files

specified time

specify Fortran file name

spell(]): find spelling errors

spelling errors

spline(I): interpolate smooth curve
split a file into pieces

split

split(I): split a file into pieces
sqrt(III): square root function

square root function

srand(III): random number generator
standard input for shell procedure
standard nroff and troff macro packages
startup and boot procedures

stat(II): get file status

statistics

status and enquiries

status of open file

status

status

-xli -

stat(IT): get file

icheck (VIID): file system

strepy,

strepy, streat,

ASCII strings...

sed(D):

gmatch(III): match a

stremp, strien(III): operations on ASCII

strcpy, streat, stremp,

send():

du(D):

sync(I): update the
sync(II): update
sleep(D):

sleep(ITD):

csw(Il): read console

strip(I): remove
dp(IV): DP-11, DU-11
deat(VIID): read/write

perror,

perror, sys_errlist,

indir(II): indirect

intro(TI): introduction to
check(VIII): file

crash(VIID): what to do when the
fsdb(VTII): file

descend(TII): search UNIX file
regen(VIII): regenerate
dcheck(VIID): file

dump(VII): incremental file
perror, sys_errlist, sys_nerr, errno(1ID):
restor(VIII): incremental file
ustat(I): get file

icheck (VIIN): file

mattab(V): mounted file

fs(V): format of file
config(VIII): configure a
mkfs(VII): construct a file
mount(I): mount file
mount(VIII): mount file
patchup(VIII): patch up a damaged file
checklist(V): list of file
umount(II): dismount file
umount(VIII): dismount file

status
stime(ID): set time :)
storage consistency check =
strcat, stremp, strien(11I): operations on ASCII strings
stremp, strien(I1I): operations on ASCII strings
strcpy, streat, stremp, strien(I11): operations on
stream editor

string with a pattern (like glob(VTID))

strings...strcpy, streat,

strip(I): remove symbols and relocation bits
strien(III): operations on ASCII strings

stty(I): set terminal options

stty(I): set mode of terminal

submit RJE job

su(I): become privileged user

sum(I): print checksum of a file

summarize disk usage

super block

super-block

suspend execution for an interval

suspend execution for interval

switches

switch(I): shell muiti-way branch command

symbols and relocation bits

synchronous line interface

synchronous line -

sync(I): update the super block

sync(Il): update super-block -
sys_errlist, sys_nerr, errno(IIl): system messages

sys_nerr, errno(III): system messages

system call

system calls

system consistency check

system crashes

system debugger

system directories

system directories

system directory consistency check

system dump

system messages -
system restore

system statistics

system storage consistency check

system table

system volume

system

system

system

system

system

systems processed by check -
system .
system

o

- xlii -

who(I): who is on the

plot:

plot: t300,

plot: t300, t300s,

master{V): master device information
mnttab(V): mounted file system
tbi(I): format

setmnt(VIII): establish mnttab
tabs(I): set

atan, atan2(IID): arc
tapeboot (VIII): magnetic
dump(V): incremental dump
tp(V): mag

generate programs for simple lexical

greek(V): graphics for extended

HP2640(V1I): Hewlett-Packard 2640 CRT
ttys(V):

tty(IV): general

getty (VIII): set

tty(): get

stty(I): set

gty (ID: get

450(1): handle special functions of DASI450
gsi(I): handle special functions of GSI300
hp(I): handle special functions of HP 2640
negn(I): typeset mathematics on

DASI450, DIABLO 1620, XEROX 1700
GSI300 (DTC300 or DASI300) hard-copy
descriptions of commoniy-used
TermiNet(VID): GE TermiNet 300 (and 1200)
TI700(VII): TI 745, 735, and 725

stty(II): set mode of

tabs(I): set tabs on

ttyn(III): return name of current
kill(I):

shutdown(VIID):

exit(D):

exit(Il):

wait(Il): wait for process to
TermiNet(VID): GE

quiz(I):

ed(D):

reform(I): reformat

fspec(V): format specification in
nroff, troff(I):

system
t300, t300s, t450(1): graphics filters
t300s, t450(1): graphics filters
t450(I): graphics filters

table

table

tables for nroff or troff

table

tabs on terminal

tabs(I): set tabs on terminal

tail(I): deliver the last part of a file
tangent function

tape bootstrap programs

tape format

tape format

tapeboot(V1II): magnetic tape bootstrap programs
tasks...lex(I): .

tbi(I): format tables for nroff or troff
tee(I): pipe fitting

TELETYPE Model 37 type-box
tell(II): get file offset

terminal family

terminal initialization data

terminal interface

terminal mode

terminal name

terminal options

terminal status

terminal

terminal

terminal

terminal

terminais...DASI450(VII):
terminals...GSI300(VII):
terminals...terminals(VII):
terminals

terminals

terminal

terminais(VTI): descriptions of commonly-used terminals
terminal

terminal

terminate a process

terminate all processing

terminate command file

terminate process

terminate

TermiNet 300 (and 1200) terminals
TermiNet(VII): GE TermiNet 300 (and 1200) terminals
test your knowledge

text editor

text file

text files

text formatters

-« xliii -

NI SO S

troff(I):
roff(I): format
cubic(VI):
TI700(VII):

cubic(VI): three dimensional

ttt(VI): the game of

time():

profil(I): execution

locaitime, gmtime(III): convert date and
alarm(1I): schedule signal after specified

utime(Il): update

stime(II): set
times(II): get process
time(II): get date and
tm(IV):

ptrace(II): process
pump(D): Shell data
goto(I): command
tr(D):

sin, cos(III):
deroff(I): remove nroff,
tmac.name(VII): standard aroff and

aroff,
tbi(I): format tables for nroff or

ht(IV):

cmp(I): compare

comm(]): print lines common to

scesdiff (I): compare

graphics for extended TELETYPE Model 37
file(I): determine file

neqn(l):

eqn(I):

typo(I): find possible

getpw(III): get name from

text formatter

text

three dimensional tic-tac-toe

TI 745, 735, and 725 terminais
TI700(VID): TI 745, 735, and 725 terminals
tic-tac-toe

tic-tac-toe

time a command

time profile

time to ASCIL...ctime,

time

time(I): time a command

time(II): get date and time

times in file

times(II): get process times

time

times

time

TM11/TU10 magtape interface
tmac.name(VII): standard nroff and troff macro packages
tm(IV): TM11/TU10 magtape interface
tp(I): manipulate DECtape and magtape
tp(V): mag tape format

trace

transfer command

transfer

transliterate |,

tr(I): transliterate

trigonometric functions

troff, and eqn constructs

troff macro packages

troff (I): text formatter

troff (I): text formatters

troff

ttt(VI): the game of tic-tac-toe
tty(I): get terminal name

tty(IV): general terminal interface
ttyn(III): return name of current terminal
ttys(V): terminal initialization data
TU16 magtape interface

two files

two files

two versions of an SCCS file
type-box...greek(V): ‘

type

typeset mathematics on terminal
typeset mathematics

typo(I): find possible typos

typos

udata(Il): get per-user data

UID

umount(II): dismount file system
umount(VIII): dismount file system

- xliv -

descend(III): search
unixboot(VII):

cu(VIID): call

login(I): sign onto

uname(I): print name of current
rm(D): remove

sync(Il):

sync(D):

utime(II):

du(I): summarize disk
setuid (VIII): set
getuid(II): get
setuid(II): set process
utmp(V):

wtmp(V):

mail(I): send mail to designated
su(l): become privileged
wall (VIII): write to all
write(I): write to another

abs, fabs(IIl): absolute

vp(D):

diffmark(I): mark changes between
scesdiff (I): compare two

gath(I): gather real and

checking...

fs(V): format of file system

wait(I):

pause(Il): indefinite

crash(VII):

who(I):

gmatch(III): match a string

volcopy, labelit(VIID): copy filesystems
mm(]): run off document

we(D):

pwd(I):

uname(I): print name of current UNIX
uname(II): get name of current PWB/UNIX
uniq(I): report repeated lines in a file
units(I): conversion program

UNIX file system directories

UNIX startup and boot procedures
unixboot(VIII): UNIX startup and boot procedures
UNIX

UNIX

UNIX

(unlink) files

unlink(II): remove directory entry
update super-block

update the super block

update times in file

usage

user id of command

user identifications

user ID

user information

user login history

users

user

users

user

ustat(II): get file system statistics
utime(II): update times in file
utmp(V): user information

value

Versatec print

versions of a file

versions of an SCCS file

virtual files

voicopy, labelit(VIII): copy filesystems with label
volume

vp(I): Versatec print

wait for process to terminate

wait(I): await completion of process
wait(II): wait for process to terminate
wait

wall(VII): write to all users

we(l): word count

what to do when the system crashes
what(]): identify files .
whatsnew([): compare file modification dates
while(I): shell iteration command
who is on the system

who(I): who is on the system

with a pattern (like glob(VIII))

with label checking

with PWB/MM

word count

working directory name

- Xlv -

cd(I): change
chdir(I): change
chdir(II): change
putchar, flush(IID:
write(II):

wall (VIID):
write(]):

open(Il): open for reading or

DASI450(VID: DASI4S0, DIABLO 1620,

yace(D):
quiz(l): test

working directory

working directory

working directory

write character

write on a file

write to all users

write to another user

write(I): write to another user

write(II): write on a file

writing

wtmp(V): user login history

wump(VI): the game of hunt-the-wumpus
xargs(I): construct argument list(s) and execute command
XEROX 1700 terminals

yace(I): yet another compiler-compiler

yet another compiler-compiler

your knowiedge

- xlvi -

450 (1) PWB/UNIX Edition 1.0 450 (1)

NAME
450 — handle special functions of DASI450 terminal

SYNOPSIS
450

DESCRIPTION
450 supports special functions of, and optimizes the use of the DASI450 terminal, or any terminal
that is functionally identical, such as the DIABLO 1620 or XEROX 1700. It converts half-line
forward, half-line reverse, and full-line reverse motions to the correct vertical motions. It also
attempts to draw Greek letters and other special symbols in the same manner as gsi(/). 430 can
be used to print equations neatly, in the sequence:

neqn file ... | nroff | 450

NOTE: 450 can be used with the nroff —s flag or .rd requests when it is necessary to insert paper
manually or change fonts in the middle of a document. Instead of hitting the RETURN key in
these cases, you must use the LINE FEED key to get any response.

However, in most cases, 450 can be eliminated in favor of the fo!ldwing'
nroff —T450 files... or nroff —T450—12 files...
In a few cases, the additional movement optimization of 450 may produce better-aligned output.

The SPACING switch may be in either 10-pitch or 12-pitch position (but that setting can be over-
ridden dynamically). In either case, vertical spacing is 6 lines/inch, uniess dynamically changed to
8 lines per inch by an appropriate escape sequence.

SEE ALSO
graph(1), gsi(I), mesg(I), neqn(l), stty(I), tabs(I), greek(V), DASI450(VII), terminais(VI])

BUGS
Some Greek characters can’t be correctly printed in column 1 because the print head cannot be
moved to the left from there. If your output contains much Greek and/or reverse line feeds, use
friction feed instead of a forms tractor. Although good enough for drafts, the latter has a ten-
dency to slip when reversing direction, distorting Greek characters, and misaligning the first line
after a long set of reverse line feeds.

ADB (1) PWB/UNIX Edition 1.0 ADB(1)

NAME -
adb — debugger

SYNOPSIS
adb [—w] [objfil [corfil]]

DESCRIPTION)
Adb is a general-purpose debugging program. It may be used to examine files and to provide a con-
trolled environment for the execution of UNIX programs.

Objfil is normally an executable program file, preferably cdmaining a symbol table; if not then the sym-
bolic features of adb cannot be used aithough the file can still be examined. The default for objfil is
a.out. Corfil is assumed to be a core image file produced after executing objfil; the default for corfil is
core.

Requests to adb are read from the standard input and responses are to the standard output. If the —w
flag is present then both objfil and corfil are created if necessary and opened for reading and writing so
that files can be modified using adb. Adb ignores QUIT signals; INTERRUPT causes return to the next
adb command. ‘

In general, requests to adb are of the form
[address] [, count] [command] ;]

If address is present then dot is set to address. Initially dor is set to 0. For most commands, count
specifies how many times the command will be executed. The default count is 1, 4ddress and count are
expressions.

The interpretation of an address depends on the context it is used in. If a sub-process is being
debugged then addresses are interpreted in the usual way in the address space of the sub-process. For
further details of address mapping see ADDRESSES.

EXPRESSIONS
The value of dor.
+ The value of dor incremented by the current increment.

The value of dor decremented by the current increment.

”

The last address typed.

integer An octal number if integer begins with a 0; a hexadecimal number if preceded by ‘#’; oth-
erwise a decimal number.

integer. fraction
A 32-bit floating point number.

o

‘ccecc” The ASCII value of up to 4 characters. ‘\’ may be used to escape ‘.

< name The value of name, which is either a variable name or a register name. A4db maintains a
number of variables (q.v.) that are referred to by the letters a to z or the digits 0 to 9 (see
VARIABLES below). If name is a register name, then the value of the register is obtained
from the system header in corfil. The register names are r0 ... r5 sp pc ps.

symbo(A symbol is a sequence of upper or lower case letters, underscores or digits, not starting
with a digit. “\’ may be used to escape other characters. The value of the symbol is taken
from the symbol table in 04jfil An initial ‘_’ or ‘=’ will be prepended to symbol if needed.

ADB(1) PWB/UNIX Edition 1.0 ADB (1)

routine . nume
The address of the variable name in the specified C routine. Both rounne and name are
symbols. 1f name is omitied, the value is the address of the most recently activated C stack
frame corresponding to routine.

(exp) The value of exp.
Monadic operators
= exp The contents of the location addressed by exp in corfil.
@exp The contents of the location addressed by exp in objfil.
— exp Integer negation.
~ exp Bitwise complement.
Dyadic operators are left associative and are less binding than monadic operators.
el +e2 Integer addition.
el —e2 Integer subtraction.
el = e2 Integer multiplication.
el %e2 Integer division.
el & e2 Bitwise conjunction.
el | e2 Bitwise disjunction.
el #e2 el rounded up to the next multiple of e2.
COMMANDS

Most commands consist of a verb followed by a modifier or list of modifiers. The following verbs are
available. (The commands ‘?” and ‘/° may be followed by ‘*’; see ADDRESSES for further details.)

2 f Locations starting at address in objfil are printed according to the format £ Dot is incremented
by the sum of the increments for each format letter (q.v.).

!/ f Locations starting at address in corfil are printed according to the format fand dor is incre-
mented as for ‘7.

= The value of address itself is printed in the styles indicated by the format /£ (For i format ‘7" is
printed for the parts of the instruction that reference subsequent words.)

Formats

A format consists of one or more characters that specify a style of printing. Each format character may
be preceded by a decimal integer that is a repeat count for the format character. While stepping
through a format, dor is incremented by the amount given for each format letter. If no format is given

then the last format is used. The format letters available are as follows.
0 Print 2 bytes in octal. All octal numbers output by adb are preceded by 0.

Print 4 bytes in octal.

[1S TN SN

Print in signed octal.
Print long signed octal.
Print in decimal.

Print long decimal.

® O e 0 e 0O
NGRS

Print 2 bytes in hexadecimal.

ADB(])
X 4
u 2
U 4
f 4
F 38
b 1
¢ 1

l
s n
S n
Y 4
i n
a 0
p

0
r O
n O
n..." 0
+

PWB/UNIX Edition 1.0 ADB (1)

Print 4 bytes in hexadecimal.

Print as an unsigned decimal number.

Print long unsigned decimal.

Print the 32-bit value as a floating point number.
Print double floating point.

Print the addressed byte in octal.

Print the addressed character.

Print the addressed character using the followihg escape convention. Character values 000
to 040 are printed as @ followed by the corresponding character in the range 0100 to 0140.
The character @ is printed as @@.

Print the addressed characters until a zero character is reached.

Print a string using the @ escape convention; » is the length of the string including its
zero terminator.

Print 4 bytes in date format (see rime(1l)).

Print as PDP-11 instructions; n is the number of bytes occupied by the instruction. This
style of printing causes variables 1 and 2 to be set to the offset parts of the source and des-
tination respectively.

Print the value of dor in symbolic form. Symbols are checked to ensure that they have an
appropriate type as indicated below.

/ local or global data symbol
? local or global text symbol
= |ocal or global absolute symbol

Print the addressed value in symbolic form using the same rules for symbol lookup as a.

When preceded by an integer, tabs to the next appropriate tab stop. For example, 8t
moves to the next 8 space tab stop.

Print a space.

Print a newline.

Print the enclosed string. .

dot is decremented by the current increment. Nothing is printed.
dot is incremented by 1. Nothing is printed.

dot is decremented by 1. Nothing is printed.

MORE COMMANDS
Here are a few more commands; ‘{?/]° means the command can start with either ‘?°, for addresses in
objfil, or */°, for addresses in corfil.

[2/1 1 vaiue mask .
Words starting at dor are masked with mask and compared with. value until a match is found. If
L is used, then the match is for 4 bytes at a time instead of 2. If no match is found, then dor is
unchanged; otherwise dor is set to the matched location. If mask is omitted, then —1 is used.

ADB (1) PWB/UNIX Edition 1.0 ADB (1)

(?/) w value ...
value is written into the addressed location. If W is used then 4 bytes are written, otherwise 2
bytes are written. Odd addresses are not allowed when writing to the sub-process address space.

[?/1 m b1 el f1(?/]
New values for (b/,el,f]) are recorded. If less than three expressions are given then the
remaining map parameters are left unchanged. If the ‘?° or ‘/° is followed by '+’ then the
second segment (b2, e2,f2) of the mapping is changed. If the list is terminated by ‘2" or */°
then the file (objfil or corfil respectively) is used for subsequent requests. (So that, for exam-
ple, ‘/m?" will cause ‘/° to refer to objfil.)

> name dot is assigned to the variable or register named.
! A shell is called to read the rest of the line following *!’.
$ modifier
< f Read commands from the file fand return.
> f Send output to the file fwhich is created if it does not exist.
r Print the general registers and the instruction addressed by pc; dor is set to pc.

f Print the floating registers in single or double length. If the floating point status of ps is set to
double (0200 bit) then doubie length is used anyway.

b Print all breakpoints and their associated counts and commands.

a ALGOL 68 stack backtrace. If address is given then it is taken to be the address of the current
frame (instead of rd4). If count is given then only the first count frames are printed.

¢ C stack backtrace. If address is given then it is taken as the address of the current frame
(instead of r5). If C is used then the names and (16-bit) values of all automatic and static vari-
ables are printed for each active function. If count is given then only the first count frames are
printed.

e The names and values of external variables are printed.

w Set the page width for output to address (default 80).

w

Set the limit for symbol matches to address (default 255).
o All integers input are regarded as octal.
d Reset integerinput as described in EXPRESSIONS.
q Exit from adb.
v Print all non-zero variables in octal.
m The values used for mapping addresses into file addresses are printed.
. modifier ‘

b ¢ Set breakpoint at address. The breakpoint is executed ¢—/ times before causing a stop. Each
time the breakpoint is encountered, the command c¢ is executed. If this command sets dor to
zero then the breakpoint causes a stop.

d Delete breakpoint at address.

r ¢ Run objfil as a sub-process. [f address is given explicitly, then the program is entered at this
point; otherwise, the program is entered at its standard entry point; ¢ specifies how many breuk-
points are to be ignored before stopping. Arguments to the sub-process may be suppiied on the
same line as the command. An argument starting with < or > causes the standard input or

ADB (1) PWB/UNIX Edition 1.0 ADB (1)

output to be established for the command. All signals are turned on on entry to the sub-
process.

¢ s The sub-process is continued with signal s. If address is given then the sub-process is continued
at this address. If no signal is specified then the signal that caused the sub-process to stop is
sent. Breakpoint skipping is the same as for r.

s 5 As for ¢ except that the sub-process is single stepped counr times. If there is no current sub-
process then objfil is run as a sub-process as for r. In this case no signal can be sent; the
remainder of the line is treated as arguments to the sub-process.

k The current sub-process, if any, is terminated.

VARIABLES
Adb provides a number of variables. Named variables are set initially by adb but are not used subse-
quently. Numbered variables are reserved for communication as follows.

0 The last value printed.
1 The last offset part of an instruction source.
2 The previous value of variable 1.

On entry the following are set from the system header in the corfil. If corfil does not appear to be a
core file then these values are set from objfil.

b The base address of the data segment.

d The data segment size.

e The entry point.

m The ‘magic’ number (0405, 0407, 0410 or 0411).
s The stack segment size.

t The text segment size.

ADDRESSES

The address in a file associated with a written address is determined by a mapping associated with that
file. Each mapping is represented by two triples (b1,el, /1) and (b62,e2,/2) and the file address
corresponding to a written address is caiculated as follows.

bl< address<el => file address=address+fI—bl, otherwise,
b2< address<e2 => file address=address+f2—b2,

otherwise, the requested address is not legal. In some cases (e.g. for programs with separated [and D
space) the two segments for a file may overlap If a ‘?” or */’ is followed by an ‘+’ then only the second
triple is used.

The initial setting of both mappings is suitable for normal a.out and core files. If either file is not of
the kind expected then, for that file, b/ is set to 0, e/ is set to the maximum file size and /7 is set to 0;
in this way the whole file can be examined with no address translation.

So that adb may be used on large files all appropriate values are kept as signed 32-bit integers.

EXIT STATUS
If the last command was successful then the exit status is zero; otherwise it is non-zero.

FILES
/dev/mem
/dev/swap

.~

ADB(I) PWB/UNIX Edition 1.0 ADB (1)

SEE ALSO
cdb(I), db(1), ptrace(Il), a.out(V), core(V)
BUGS
a) A breakpoint set at the entry point is not effective on initial entry to the program.

b) When single stepping, system calls do not count as an executed instruction.

ADMIN (1) PWB/UNIX Edition 1.0 ADMIN(D)

NAME
admin — administer SCCS files

SYNOPSIS
admin [—n] [~i[name] [—rrel]] [—~t{name]] [—fadd-flag(flag-vai]] ... [—ddelete-flag] ...
(—aadd-login] ... [—eerase-login] ... [=h] [—z] name ...

DESCRIPTION ’
Admin is used to create new SCCS files and change parameters of existing ones. Arguments to
admin, which may appear in any order, consist of keyletter arguments, which begin with *‘—’", and
named files. If a named file doesn’t exist, it is created, and its parameters are initialized according
to the specified keyletter arguments. Parameters not initialized by a keyletter argument are
assigned a default value. If a named file does exist, parameters corresponding to specified
keyletter arguments are changed, and other parameters are left as is.

If a directory is named, admin behaves as though each file in the directory were specified as a
named file, except that non-SCCS files (last component of the pathname does not begin with
**s.””), and unreadable files, are silently ignored. If a name of *‘—"’ is given, the standard input is
read: each line of the standard input is taken to be the name of an SCCS file to be processed.
Again, non-SCCS files and unreadable files are silently ignored.

The keyletter arguments are as follows. Each is explained as though only one named file is to be
processed, but the effects of any keyletter argument other than i and r apply independently to
each named file.

—n This argument indicates that new files are to be created. This argument must be
specified when creating new SCCS files. The i argument implies an n argument.

—i The name of a file from which the text of an initial delta is to be taken. If this argu-
ment is supplied, but the file name is omitted, the text is obtained by reading the stan-
dard input until an end-of-file is encountered. If this argument is omitted, and the
admin command creates one or more SCCS files, then their initial deltas must be
inserted in the normal manner, using ger and defta(I). Only one SCCS file may be
created by an adnrun command on which the i argument is supplied.

—r The release into which the initial delta will be inserted. This argument may only be
supplied if the i argument is also supplied. If this argument is omitted, the initial deita
will be inserted into release 1. The level of the initial delta will always be 1.

—t The name of a file from which descriptive text for the SCCS file is to be taken. If this
argument is supplied and adimun is creating a new SCCS file, the descriptive-text file-
name must also be supplied. In the case of existing SCCS files, if this argument is
supplied but the file name is omitted, the descriptive text (if any) currently in the
SCCS file will be removed. If the file name is supplied, the text in the file named will
replace the descriptive text (if any) currently in the SCCS file.

—f This argument specifies a flag, and, possibly, a value for the flag, to be added to the
SCCS file. Several f arguments may be supplied on a single admin command. The
allowable flags and their values are as follows:

EILLN

ADMIN (1)

—-d

—h

PWB/UNIX Edition 1.0 ADMIN (1)

b The presence of this flag indicates that the use of the b argument on a ger
command will cause a branch to be taken in the delta tree..

cceil The *‘ceiling:” the highest release (less than or equal to 9999) which may
be specified by the r argument on a ger with an e argument. If this flag is
not specified, the ceiling is 9999.

dSID The default SID to be used on a ger when the r argument is not supplied.

ffloor The “‘floor:™ the lowest release (greater than 0) which may be specified by
the r argument on a ger with an e argument. If this flag is not specified. the
floor is 1.

i The presence of this flag causes the "No id keywords (ge6)" message issued
by ger or delta to be treated as a fatal error. In the absence of this flag, the
message is only a warning.

mmod This flag specifies the module name of the SCCS file. Its value will be used
by ger as the replacement for the %M% keyword.

ttype This flag specifies the type of the module. Its value will be used by ger as a
replacement for the % Y% keyword. ’

v[pgm] The presence of this flag indicates that deira is to prompt for MR numbers
in addition to comments. If the optional value of this flag is present, it
specifies the name of an MR number validity checking program.

This argument specifies a flag to be completely removed from an SCCS file. This argu-
ment may only be specified when processing existing SCCS files. Several d arguments
may be supplied on a single admin command. See the f argument for the allowable
flags.

A login name to be added to the list of logins which may add deltas. Several a argu-
ments may be supplied on a single admin command. As many logins as desired may be
on the list simultaneously. If the list of logins is empty, then anyone may add deltas.

A login name to be erased from the list of logins. Several e arguments may be sup-
plied on a single admin command.

This argument provides a convenient mechanism for checking for corrupted files.
With this argument, admin will check that the sum of all the characters in the SCCS
file (the check-sum) agrees with the sum which is stored in the first line of the file. If
the sums are not in agreement a "corrupted file" message will be produced. This argu-
ment inhibits writing on the file, so that it will nullify the effect of any other argu-
ments supplied, and is, therefore, only meaningful when processing existing files.

This argument will cause admin o ignore any discrepancy in the check-sum ol the
SCCS file (see h argument), and to replace it with the new one. (The same clfect may
be had by first editing the SCCS file with ed(l) in order to replace the five-character
check-sum in the first line of the file with five zeroes. A subsegquent invocation of an
SCCS command which modifies the file (e.g., admumn, delta), will cause check-sum vali-
dation to be by-passed, and a new check-sum to be computed.) The purpose of this is

ADMIN (1) PWB/UNIX Edition 1.0 ADMIN (1)

to correct the check-sum in those files which may have been edited by the user. Note
that use of this argument on a truly corrupted file will prevent futurc detection of the
corruption. '

FILES

The last component of all SCCS file names must be of the form ‘‘s.modulename’’. New SCCS
files are given mode 444. Write permission in the pertinent directory is, of course, required to
create a file. All writing done by admin is to a temporary x-file (see ger(I)), created with mode
444 if the admin command is creating a new SCCS file, or with the same mode as the SCCS file if
it exists. After successful execution of admin, the SCCS file will be deleted, if it exists, and the
x-file will be renamed with the name of the SCCS file. This ensures that changes will be made to
the SCCS file only if no errors occurred.

It is recommended that directories containing SCCS files be mode 755 and that SCCS files them-
selves be mode 444. The mode of the directories will allow only the owner to modify SCCS files
contained in the directories. The mode of the SCCS files will prevent any modification at ail
except by SCCS commands. '

If it should be necessary to patch an SCCS file for any reason, the mode may be changed to 644
by the owner, and then the owner may edit the file at will with ed(I).

Admin also makes use of the zfile, which is used to prevent simultaneous updates to the SCCS
file by different users. See ger(l) for further information.

SEE ALSO
get(l), deita(l), prt(1), what(1), help(l), ed(l), sccsfile(V)
SCCS/PWB User’s Manual by L. E. Bonanni and A. L. Glasser.

DIAGNOSTICS
Use help(l) for explanations.

7™

AR (

1) PWB/UNIX Edition 1.0 AR (D)

NAME

SYNO

ar — archive and library maintainer

PSIS
ar key [posname] afile name ...

DESCRIPTION

FILES

Ar maintains groups of files combined into a single archive file. Its main use is to create and
update library files as used by the /d(I). It can be used, though, for any similar purpose.

Key is one character from the set drtpmx, optionally concatenated with vuabin. Afile is the
archive file. The names are constituent files in the archive file. The meanings of the key charac-
ters are:

d means delete the named files from the archive file.

r means replace the named files in the archive file. If the optional character u is used with r, then
only those files with modified dates fater than the archive files are replaced. If the optional posi-
tioning character a (also i or b) is used, then the posname argument must be present and specifies
a file in the archive after (before for i and b) which new files are placed. Without a, i, or b, new
files are placed at the end.

t prints a table of contents of the archive file. If no names are given, all files in the archive are
tabled. If names are given, only those files are tabled.

p prints the named files in the archive.

m moves the named files to the end of the archive. If the options a, i, or b are used, then the
posname argument must be present and, as in r, specifies where the files are to be moved.

x extracts the named files. If no names are given, all files in the archive are extracted. In neither
case does x alter the archive file.

v means verbose. Under the verbose option, ar gives a file-by-file description of the making of a
new archive file from the old archive and the constituent files. When used with t, it gives a long
listing of all information about the files.

n is accepted with no effect whatsoever.

In all cases, the archive file is created mode 644.

DIAGNOSTICS

Most diagnostics are self-explanatory. The message "no space in .o means that the file system
xcx does not have enough space to contain the temporary files or the new archive file.

SEE ALSO

BUGS

1d(1), archive(V)

If the same file is mentioned twice in an argument list, it may be put in the archive twice.

AS (1) PWB/UNIX Edition 1.0 AS (D)

NAME
as — assembler

SYNOPSIS
as [=] [—o objfil] name...

DESCRIPTION
As assembles the concatenation of the named files. If the optional first argument — is used, all
undefined symbols in the assembly are treated as global.

The output of the assembly is left on the file objfil; if that is omitted, a.out is used. It is execut-
able if no errors occurred during the assembly, and if there were no unresolved external refer-

ences.
FILES
/lib/as2 pass 2 of the assembler
/tmp/atm(1-3]? temporary
a.out object
SEE ALSO

1d(I), nm(I), db(D), a.out(V), UNIX Assembler Reference Manual by D. M. Ritchie.

DIAGNOSTICS
When an input file cannot be read, its name followed by a question mark is typed and assembly
ceases. When syntactic or semantic errors occur, a single-character diagnostic is typed out
together with the line number and the file name in which it occurred. Errors in pass 1 cause can-
cellation of pass 2. The possible errors are:

Parentheses error

Parentheses error

String not terminated properly
Indirection used illegaily -

Illegal assignment to *.’

Error in address

Branch instruction is odd or too remote
Error in expression

Error in local (‘f" or ‘b’) type symbol
Garbage (unknown) character

End of file inside an if

Multiply defined symbol as label

Word quantity assembled at odd address
. different in pass 1 and 2

Relocation error

Undefined symbol

Syntax error

* [y
A

KOO UWOZTTQATMmw -

BUGS
Symbol table overflow is not checked. x errors can cause incorrect line numbers in following
diagnostics.

ELAN

BANNER (1) PWB/UNIX Edition 1.0 BANNER (1)

NAME
banner — print in block letters

SYNOPSIS
banner arg ...

DESCRIPTION
Banner writes characters as large block letters, 7 characters by 7 characters, on the standard output

file. Each argument may be up to ten characters, and is printed on a separate row.

BAS (1) PWB/UNIX Edition 1.0 : BAS (1)

NAME
bas — basic

SYNOPSIS
bas [file]

DESCRIPTION
Bas is a dialect of Basic. If a file argument is provided, the file is used for input before the con-
sole is read. Bas accepts lines of the form:

statement
integer statement

_Integer numbered statements (known as internal statements) are stored for later execution. They
are stored in sorted ascending order. Non-numbered statements are immediately executed. The
result of an immediate expression statement (that does not have ‘=" as its highest operator) is
printed.

Statements have the following syntax:

expression
The expression is executed for its side effects (assignment or function call) or for printing as
described above.

comment ...
This statement is ignored. It is used to interject commentary in a program.

done
Return to system level.

draw expression expression expression
A line is drawn on the Tektronix 61! display ‘/dev/vt0’ from the current display position to
the XY co-ordinates specified by the first two expressions. The scale is zero to one in both
X and Y directions. If the third expression is zero, the line is invisible. The current display
position is set to the end point.

display list
The list of expressions and strings is concatenated and displayed (i.e. printed) on the 611
starting at the current display position. The current display position is not changed.

dump
The name and current value of every variable is printed.

edit
The UNIX editor, ed, is invoked with the file argument. After the editor exits, this file is
recompiled. ’

erase
The 611 screen is erased.

for name = expression expression statement
for name = expression expression

next
The for statement repetitively executes a statement (first form) or a group of statements
(second form) under control of a named variable. The variable takes on the value of the
first expression, then is incremented by one on each loop, not to exceed the value of the

RN

BAS (1) PWB/UNIX Edition 1.0 BAS (1)

second expression.

goto expression
The expression is evaluated, truncated to an integer and execution goes to the corresponding
integer numbered statment. If executed from immediate mode, the internal statements are
compiled first.

if expression statement
if expression

[else
.

fi
The statement (first form) or group of statements (second form) is executed if the expres-
sion evaluates to non-zero. In the second form, an optional else allows for a group of state-
ments to be executed when the first group is not.

list [expression [expression]]
is used Lo print out the stored internal stalements. If no arguments are given, all internal
statements are printed. [f one argument is given, only that internal statement is listed. If
two arguments are given, all internal statements inclusively between the arguments are
printed.

print list '
The list of expressions and strings are concatenated and printed. (A string is delimited by "
characters.)

prompt list
Prompr is the same as print except that no newline character is printed.

return [expression]
The expression is evaluated and the result is passed back as the value of a function call. If
no expression is given, zero is returned.

run
The internal statements are compiled. The symbol table is re-initialized. The random
number generator is reset. Control is passed to the lowest numbered internal statement.

save [expression [expression]]
Save is like /list except that the output is written on the file argument. If no argument is
given on the command, b.out is used.

Expressions have the following syntax:

name
A name is used to specify a variable. Names are composed of a letter followed by letters
and digits. The first four characters of a name are significant.

number
A number is used to represent a constant value. A number is written in Fortran style, and
contains digits, an optional decimal point, and possibly a scale factor consisting of an e fol-
lowed by a possibly signed exponent.

(expression)
Parentheses are used to alter normal order of evaluation.

_ expression
The result is the negation of the expression.

BAS (1) PWB/UNIX Edition 1.0 BAS (1)

expression operator expression
Common functions of two arguments are abbreviated by the two arguments separated by an
operator denoting the function. A complete list of operators is given below.

expression ([expression [, expression] ...])
Functions of an arbitrary number of arguments can be called by an expression followed by
the arguments in parentheses separated by commas. The expression evaluates to the line
number of the entry of the function in the internally stored statements. This causes the
internal statements to be compiled. If the expression evaluates negative, a builtin function
is called. The list of builtin functions appears below.

name [expression [, expression] ... |
Each expression is truncated to an integer and used as a specifier for the name. The resuit
is syntactically identical to a name. all1,2] is the same as al1}{2]. The truncated expressions
are restricted to values between 0 and 32767.

The following is the list of operators:

= is the assignment operator. The left operand must be a name or an array element. The
result is the right operand. Assignment binds right to left, all other operators bind left to
right.

& |

& (logical and) has result zero if either of its arguments are zero. It has result one if both
its arguments are non-zero. | (logical or) has result zero if both of its arguments are zero. It
has result one if either of its arguments are non-zero.

< <= > >= == <>
The relational operators (< less than, <= less than or equal, > greater than, >= greater
than or equal, == equal to, <> not equal to) return one if their arguments are in the
specified relation. They return zero otherwise. Relational operators at the same level
extend as follows: a>b>c¢ is the same as a>b&b>c.

+ -
Add and subtract.

*/
Multiply and divide.

Exponentiation.
The following is a list of builtin functions:

arg(i)
is the value of the i -th actual parameter on the current level of function call.

exp(x)
is the exponential function of x.

log(x)
is the natural logarithm of x.

sqr(x)
is the square root of x.

sin(x)
is the sine of x (radians).

JAS (1) PWB/UNIX Edition 1.0 BAS (1)

cos(x)
is the cosine of x (radians).

atn(x)
is the arctangent of x. Its value is between —#/2 and m/2.

rnd()
is a uniformly distributed random number between zero and one.

expr()
is the only form of program input. A line is read from the input and evaluated as an expres-
sion. The resultant value is returned.

abs(x)
is the absolute value of x.

int(x)
returns x truncated (towards 0) to an integer.

“HLES
/tmp/btm? temporary
b.out save file

DIAGNOSTICS
Syntax errors cause the incorrect line to be typed with an underscore where the parse failed. All
other diagnostics are self explanatory.

BUGS
Has been known to give core images.

BC(I) PWB/UNIX Edition 1.0 BC(I)

NAME
bc — arbitrary precision interactive language

SYNOPSIS
be [—1] [file..]

DESCRIPTION
Bc is an interactive processor for a language which resembles C but provides unlimited precision
arithmetic. It takes input from any files given, then reads the standard input. The ‘—!’ argument
stands for the name of a library of mathematical subroutines which contains sine (named ‘s’),
cosine (‘c’), arctangent (‘a’), natural logarithm (‘I’), and exponential (‘e’). The syntax for b¢
programs is as follows; E means expression, S means statement.

Comments
are enclosed in /* and */.

Names
letters a—z
array elements: letter(E]
The words ‘ibase’, ‘obase’, and ‘scale’

Other operands
arbitrarily long numbers with optional sign and decimal point.

(E)
sart (E)
<letter> (E, ... ,E)
Operators
+ —-*/ %"
=+ — (prefix and postfix; apply to names)

= = e = =/ = ="

Statements
E
{S;...;S}
if(E)S
while (E) S
for (E;E;E)S
null statement
break
quit

Function definitions are exemplified by
define <letter> (<letter> ..., <letter>) {
auto <letter>, ..., <letter>
S....S
return (E)

)
All function arguments are passed by value.

The value of a statement that is an expression is printed unless the main operator is an assign-
ment. Either semicolons or newlines may separate statements. Assignment to scale influences
the number of digits to be retained on arithmetic operations. Assignments to ibase or obase set

LN

BC (1) PWB/UNIX Edition 1.0 BC(D)

the input and output number radix respectively.

The same letter may be used as an array name, a function name, and a simple variable simultane-
ously. ‘Auto’ variables are saved and restored during function calls. All other variables are global
to the program. When using arrays as function arguments or defining them as automatic variables
empty square brackets must follow the array name.

For example

scale = 20
define e(x){ ,
autoa, b, ¢, i, s

a=1]

b=1

s=1

for(i=1; l==1; i++){
a=a'x
b = b*i
c=a/b
if(c == 0) return(s)
s = s+c

}

defines a function to compute an approximate value of the exponential function and
for(i=1; i<=10; i++) e(i)

prints approximate values of the exponential function of the first ten integers.

FILES
/usr/lib/lib.b mathematical library

SEE ALSO
de(D
C Reference Manual by D. M. Ritchie.
BC — An Arbitrary Precision Desk Calculator Language by L. L. Cherry and R. Morris.

BUGS
No &&, || yet.
for statement must have all three E’s
quir is interpreted when read, not when executed.

BDIFF (1) PWB/UNIX Edition 1.0 : BDIFF (1)

NAME
bdiff — big diff

SYNOPSIS
bdiff namel name?2

DESCRIPTION
Bdiff is used in a.manner analogous to diff{]) to find which lines must be changed in two files to
bring them into agreement. Its purpose is to allow processing of files which are too large for
daiff(1). Bdiff splits the files into 4000-line segments, and invokes djff{I) on corresponding seg-
ments (4000-lines is a reasonable upper limit for difft7)). If namel (name2) is *“="", the standard
input is read. The output of bdiff is exactly that of dif{I), with line numbers adjusted to account
for the segmenting (that is, to make it look as if the files had been processed whole) .

Note that unlike dif(1), bdiff supports no optional keyletter arguments. In addition, because of the
segmenting of the files, bdjff does not necessarily find a smallest sufficient set of file differences.

FILES

SEE ALSO
diff(l)

DIAGNOSTICS
Use help(l) for explanations.

L &N

BFS (1) PWB/UNIX Edition 1.0 BFS (1)

PO LY T Terer \gvioerey
~ il

NAME
bfs — big file scanner

SYNOPSIS
bfs [—] name

DESCRIPTION
Bfs is (almost) like ed(I) except that it is read-only and processes much bigger files. Files can be
up 1024K bytes (the maximum possible size) and 32K lines, with up to 255 characters per line.
Bfs is usually more efficient than ed for scanning a file, since the file is not copied to a buffer.

Normally, the size of the file being scanned is printed, as is the size of any file written with the w
command. The optional — suppresses printing of sizes. Input is prompted with “*’ if ‘P’ and a
carriage return is typed as in ed. Prompting can be turned off again by inputting another ‘P’ and
carriage return. Note that messages are given in response to errors if prompting is turned on.

All address expressions described under ed are supported. In addition, regular expressions may be
surrounded with two symbols besides ‘/° and ‘?’: ‘>’ indicates downward search without wrap-
around, and ‘<’ indicates upward search without wrap-around. Since /s uses a different regular
expression-matching routine from ed, the regular expressions accepted are slightly wider in scope
(see regex(Il)). There is a slight difference in mark names: only the letters ‘a’ through ‘z’ may
be used, and all 26 marks are remembered.

The e, g v, K, n, p. g w, =, ! and null commands operate as described under ed Commands
such as ‘——=', ‘44+—’, ‘+4+=" ‘=12’ and ‘+4p’ are accepted. Note that ‘1,10p’ and ‘1,10°
will both print the first ten lines. The fcommand only prints the name of the file being scanned;
there is no remembered file name. The w command is independent of output diversion, truncation
or crunching (see the xo, xt and xc commands, below). The following additional commands are
available:

xf file
Further commands are taken from the named file. When an end-of-file is reached, an
interrupt signal is received or an error occurs, reading resumes with the file containing
the x/ Xfcommands may be nested to a depth of 10.

xo [file]
Further output from the p and null commands is diverted to the named file, which, if
necessary, is created mode 666. Plain ‘xo’ diverts output back to the standard output.
Note that each diversion causes truncation or creation of the file.

: label
This positions a label in a command file. The label is terminated by newline, and
blanks between the ‘.’ and the start of the label are ignored. This command may also
be used to insert comments into a command file, since labels need not be referenced.

(., .)xb/regular expression/label ‘
A jump (either upward or downward) is made to the named label if the command
succeeds. It fails under any of the following conditions:

1. Either address is not between | and $.

2. The second address is less than the first.

3. The regular expression doesn’t match at least one line in the specified range,
including the first and last lines.

BFS (1)

PWB/UNIX Edition 1.0 BFS (1)

On success, .’ is set to the line matched and a jump is made to the label. This com-
mand is the only one that doesn’t issue an error message on bad addresses, so it may
be used to test whether addresses are bad before other commands are executed. Note
that the command

xb/“/ label
is an unconditional jump.

The xb command is allowed only if it is read from someplace other than a terminal. If
it is read from a pipe only a downward jump is possible. .

Xt number

Output from the p and null commands is truncated to at most number characters. The
initial number is 255.

xv{digit: 0—9][optional spaces][value]

The variable name is the specified digit following the ‘xv’. ‘xv5100’ or ‘xvS 100’ both
assign the value ‘100’ to the variable *5°. ‘xv61,100p’ assigns the value ‘1,100p° to vari-
able ‘6. To reference the variable put a ‘%’ in front of the variable name. For exam-
ple, using the above assignments for the variables ‘S’ and‘6’:

1,%5p
1,%5
%6

will all print the first 100 lines.

g/%5/p
would globally search for the characters ‘100’ an& print each line containiﬁg a maich.
To escape the special meaning of ‘%’, a ‘\’ must precede it.

g/" *\%[cds]/p
co:tﬁd be used to match and list lines containing printf of characters,decimal integers, or
strings.

Another feature of the xv command is that the first line of output from a UNIX com-
mand can be stored into a variabie. The only requirement is that the first character of
value be an *!*. For example:

.w junk .
xvSicat junk

'rm junk

lecho "%3S"
xvélexpr %6 + 1

would put the current line into variable ‘5, print it, and increment the variable ‘6’ by
one. To escape the special meaning of ‘! as the first character of vaiue, precede it with
a‘\".

xv7\!date

stores the value ‘!date’ into variable ‘7’.

xbz label
xbn label

These two commands will test the last saved rerurn code from the execution of a unix
command (!UNIX command) and branch on a zero or nonzero value, respectively, to
the specified label. The two examples below both search for the next five lines

N

BFS (1) PWB/UNIX Edition 1.0 BFS (1)

containing the string ‘size’.
XvS5
o

/size/

xvSlexpr %5 - 1
!if 0%S5 != 0 exit 2
xbn |

xv4$
o1

/size/

xvé4lexpr %4 - 1
lif 0%4 = 0 exit 2
xbz |

xc [switch]
If switch is 1, output from the p and null commands is crunched; it swirch is 0 it isn’t.
Plain ‘xc’ reverses the switch. Initially the switch is set for no crunching. Crunched
output has strings of tabs and blanks reduced to one blank and blank lines suppressed.

SEE ALSO
ed(l), regex(II)

DIAGNOSTICS
? for errors in commands, if prompting is turned off. Self-explanatory error messages when

prompting is on.

CAL(D) PWB/UNIX Edition 1.0 CAL(D)

NAME
cal — print calendar

SYNOPSIS
cal [month] year

DESCRIPTION
Cal prints a calendar for the specified year. If a month is also specified, a calendar just for that
month is printed. Year can be between 1 and 9999. The month is a number between 1 and 12.
The calendar produced is that for England and her colonies.

Try September 1752.

BUGS
The year is always considered to start in January even though this is historically naive.

LN

CAT (D PWB/UNIX Edition 1.0 CAT (D)

NAME
cat — concatenate and print

SYNOPSIS
cat [=s] [—u] file ...

DESCRIPTION
Cat reads each file in sequence and writes it on the standard output. Thus
cat file
prints the file, and
cat filel file2 >file3
concatenates the first two files and places the result on the third.

If no input file is given, or if the argument ‘=’ is encountered, car reads from the standard input
file.

The —s flag suppresses the error messages that car would otherwise give for non-existent (or
unreadable) files. The —u flag causes car to work in an unbuffered fashion (read one character,
then write that character).

SEE ALSO
pr(D), cp()

DIAGNOSTICS
file not found

BUGS
cat x y >x and cat x y >y cause strange results (because of sa(I)).

CB(D) PWB/UNIX Edition 1.0 CB(D)

NAME
¢cb — C beautifier

SYNOPSIS
cb

DESCRIPTION
cb reads a C program from the standard input, adds the proper indentation, and writes it on the
standard output.

PRLLN

cC(D

NAME
cc — C compiler

SYNO

PSIS

PWB/UNIX Edition 1.0 CcCc(n

ce [=c} [=p] [=f] [=Dn=v] [~Idir] [=O] [=S] [=P] [=Un] files ...

DESCRIPTION
Ccis the UNIX C compiler. It accepts three types of arguments:

FILES

Arguments whose names end with ‘.c’ are taken to be C source programs; they are compiled, and
each object program is left on the file whose name is that of the source with ‘.0’ substituted for
*.c’. The ‘.0’ file is normally deleted, however, if a singie C program is compiled and loaded all at
one go.

The following flags are interpreted by cc. See /d(1) for load-time flags.

-C

=P

Suppress the loading phase of the compilation, and force an object file to be produced even
if only one program is compiled.

Arrange for the compiler to produce code which counts the number of times each routine
is called; also, if loading takes place, replace the standard startup routine by one which
automatically calls the monitor(III) subroutine at the start and arranges to write out a
mon.out file at normal termination of execution of the object program. An execution
profile can then be generated by use of prof{(l).

In systems without hardware floating-point, use a version of the C compiler which handles
floating-point constants and loads the object program with the floating-point interpreter.
Do not use if the hardware is present.

The name n is defined, and is given the value v, if specified.
Invoke an object-code optimizer.

Compile the named C programs, and leave the assembler-language output on corresponding
files suffixed ‘.s’.

Run only the macro preprocessor on the named C programs, and leave the output on
corresponding files suffixed *.i".

The name n is undefined.

The include preprocessor statement looks in directory dir if it can’t find the specified file in
the local directory or in /usr/include.

Other arguments are taken to be either loader flag arguments, or C-compatible object programs,
typically produced by an earlier cc run, or perhaps libraries of C-compatible routines. These pro-
grams, together with the results of any compilations specified, are loaded (in the order given) to
produce an executable program with name a.out. If desired, a different name can be used; see
the =—o option of /().

<

file.c input file

file.o object file

a.out loaded output
/tmp/ctm? temporary

/ib/c{01] compiler

/lib/fc[01] floating-point compiler

cc(n PWB/UNIX Edition 1.0 cc(n

/1ib/¢c2 optional optimizer

/lib/cpp pre-processor

/lib/crt0.0 runtime startoff

/lib/mert0.0 runtime startoff of profiling

/tib/fcrt0.0 runtime startoff for floating-point interpretation

/lib/libc.a C library; see section III.

/lib/liba.a Assembiler library used by some routines in libc.a
SEE ALSO g

C Reference Manual by D. M. Ritchie.
Programming in C — A Tutorial by B. W. Kernighan.
adb(l), cdb(I), Id(I), prof(I), monitor(III)

DIAGNOSTICS
The diagnostics produced by C itself are intended to be self-explanatory. Occasional messages
may be produced by the assembier or loader (see as(I) and /d(I)). Of these, the most mystifying
are from the assembler, in particular ‘“‘m,”’ which means a multiply-defined external symbol
(function or data).

-

sF

14

CD(D) PWB/UNIX Edition 1.0 CD(D)

NAME
cd — change working directory

SYNOPSIS
cd directory

DESCRIPTION
Cd is an alias for chdir(l).

SEE ALSO
chdir(I), sh(I), pwd(D)

CbB(1) PWB/UNIX Edition 1.0 CDB (1)

NAME
cdb — C debugger

SYNOPSIS
cdb [a.out [core]]

DESCRIPTION
Cdb is a debugger for use with C programs. It is useful for both post-mortem and interactive
debugging. An important feature of ¢db is that even in the interactive case no advance planning is
necessary to use it; in particular it is not necessary to compile or load the program in any special
way nor to include any special routines in the object file.

The first argument to c¢db is an object program, preferably containing a symbol table; if not given
“a.out’ is used. The second argument is the name of a core-image file; if it is not given, *‘core”
is used. The core file need not be present.

Commands to cdb consist of an address, followed by a single command character, possibly fol-
lowed by a command modifier. Usually if no address is given the last-printed address is used. An
address may be followed by a comma and a number, in which case the command applies to the
appropriate number of successive addresses.

Addresses are expressions composed of names, decimal numbers, and octal numbers (which begin
with **0""), separated by **+°” and **="". Evaluation proceeds left-to-right.

Names of external variables are written just as they are in C. For various reasons the external
names generated by C all begin with an underscore, which is automatically tacked on by cdb.
Currently it is not possible to suppress this feature, so symbols (defined in assembly-language pro-
grams) which do not begin with underscore are inaccessible.

Variables local to a function (automatic, static, and arguments) are accessible by writing the name
of the function, a colon ", and the name of the local variable (e.g. ‘‘main:argc™). There is no
notion of the *‘current’ function; its name must always be written explicitly.

A number which begins with ‘0"’ is taken to be octal; otherwise numbers are decimal, just as in
C. There is no provision for input of floating numbers.

The construction ‘‘namelexpression]” assumes that name is a pointer to an integer and is
equivalent to the contents of the named cell plus twice the expression. Notice that name has to
be a genuine pointer and that arrays are not accessibie in this way. This is a consequence of the
fact that types of variables are not currently saved in the symbol table.

The command characters are:

/m print the addressed words. sm indicates the mode of printout; specifying a mode sets the
mode until it is explicitly changed again: .
o octal (default)
i decimal
f single-precision floating-point
d double-precision floating-point

\ Print the specified bytes in octal.
= print the value of the addressed expression in octal.

print the addressed bytes as characters. Control and non-ASCII characters are escaped in
octal.

AN

CDB(I) PWB/UNIX Edition 1.0 CDB (1)

take the contents of the address as a pointer to a sequence of characters, and print the charac-
ters up to a null byte. Control and non-ASCII characters are escaped as octal.

& Try to interpret the contents of the address as a pointer, and print symbolically where the
pointer points. The printout contains the name of an external symbol and, if required. the
smallest possible positive offset. Only external symbols are considered.

? Interpret the addressed location as a PDP-11 instruction.

$m If no mis given, print a stack trace of the terminated or stopped program. The last call made
is listed first; the actual arguments to each routine are given in octal. (If this is inappropriate,
the arguments may be examined by name in the desired format using “*/**.) If mis “r’’, the
contents of the PDP-11 general registers are listed. If mis ‘‘f”’, the contents of the floating-
point registers are listed. In all cases, the reason why the program stopped or terminated is
indicated.

%m According to m, set or delete a breakpoint, or run or continue the program:

b An address within the program must be given; a breakpoint is set there. Ordinarily,
breakpoints will be set on the entry points of functions, but any location is possible as
long as it is the first word of an instruction. (Labels don’t appear in the symbol table
yet.) Stopping at the actual first instruction of a function is undesirable because to make
symbolic printouts work, the function’s save sequence has to be completed; therefore cdb
automatically moves breakpoints at the start of functions down to the first real code.

It is impossible to set breakpoints on pure-procedure programs (—n flag on cc or /d (1))
because the program text is write-protected.

d An address must be given; the breakpoint at that address is removed.

r Run the program being debugged. Following the ‘‘%r’’, arguments may be given; they
cannot specify 1/0 redirection (‘‘>, ‘<) or filters. No address is permissible, and
the program is restarted from scratch, not continued. Breakpoints should have been set
if any were desired. The program will stop if any signal is generated, such as illegal
instruction (including simulated floating point), bus error, or interrupt (see signa/(11)); it
will also stop when a breakpoint occurs and in any case announce the reason. Then a
stack trace can be printed, named locations examined, etc.

¢ Continue after a breakpoint. It is possible but probably useless to continue after an error
since there is no way to repair the cause of the error.

SEE ALSO
cc(D), db(I), C Reference Manual by D. M. Ritchie.

BUGS
Use caution in believing values of register variables at the lowest levels of the call stack; the value
of a register is found by looking at the place where it was supposed to have been saved by the
callee. .

Some things are still needed to make cdb uniformly better than db: non-C symbols, patching files,
patching core images of programs being run. It would be desirable to have the types of vuriables
around to makc the correct style printout more automatic. Structure members should be avail-
able.

Naturally, there are all sorts of neat features not handled, like conditional breakpoints, optional
stopping on certain signals (like illegal instructions, to allow breakpointing of simulated floating-
point programs).

CHDIR (1) PWB/UNIX Edition 1.0 CHDIR (1)

NAME
chdir — change working directory

SYNOPSIS
chdir directory
cd directory

DESCRIPTION
Directory becomes the new working directory. The process must have execute (search) permission

in directory.

Because a new process is created to execute each command, cAadir would be ineffective if it were
written as a normal command. It is therefore recognized and executed by the Shell.

Cd is a synonym for chdir and acts identically.

SEE ALSO
sh(D), pwd(D

CHGHIST (1) . PWB/UNIX Edition 1.0 CHGHIST (1)

NAME
chghist — change the history entry of an SCCS delta

SYNOPSIS
chghist —rSID name ...

DESCRIPTION
Chghist changes the history information, for the delta specified by the SID, of each named SCCS
file.

If a directory is named, chghist behaves as though each file in the directory were specified as a
named file, except that non-SCCS files (last component of the pathname does not begin with
**s.””), and unreadable files, are silently ignored. If a name of **—"" is given, the standard input is
read; each line of the standard input is taken to be the name of an SCCS file to be processed.
Again, non-SCCS files, and unreadable files, are silently ignored.

The exact permissions necessary to change the history entry of a delta are documented in the
SCCS/IPWB User’'s Manual. Simply stated, they are either (1) if you made a delta, you can change
its history entry; or (2) if you own the file and directory you can change a history entry.

The new history is read from the standard input. If the standard input is a terminal (as deter-
mined by a successful gry(Il) call), the program will prompt (on the standard output) with
“MRs? 7, if the file has a v flag (see admin(I)), and with ‘‘comments? *’. If the standard input is
not a terminal, no prompt(s) is (are) printed. A newline preceded by a ““\" is read as a blank,
and may be used to make the entering of the history more convenient. The first newline not pre-
ceded by a *‘\”’ terminates the response for the corresponding prompt.

When the history entry of a delta table record (see prr(I)) is changed, ali old MR entries (if any)
are converted to comments, and both these and the original comments are preceded by a com-
ment line that indicates who made the change and when it was made. The new information is
entered preceding the old. No other changes are made to the delta table entry.

FILES
x-file (see deita(l))
z-file (see delta(1))

SEE ALSO
admin(I), get(I), delta(l), prt(I), help(I), sccsfile(V)
SCCS/PWB User’s Manual by L. E. Bonanni and A. L. Glasser.

DIAGNOSTICS
Use help(1) for explanations.

CHGRP (1) PWB/UNIX Edition 1.0 CHGRP (D)

NAME
chgrp — change group

SYNOPSIS
chgrp group file ...

DESCRIPTION
The group-ID of the files is changed to group. The group may be either a decimal GID or a group
name found in the group-ID file. ‘

SEE ALSO
chown(l), group(V)

FILES.
/etc/group

2N

CHMOD () PWB/UNIX Edition 1.0 CHMOD (1)

NAME
chmod — change mode

SYNOPSIS
chmod octal file ...

DESCRIPTION .
The octal mode replaces the mode of each of the files. The mode is constructed from the OR of
the following modes:

4000 set user ID on execution

2000 set group ID on execution’

1000 sticky bit for shared, pure-procedure programs (see beiow)
0400 read by owner

0200 write by owner

0100 execute (search in directory) by owner

0070 read, write, execute (search) by group

0007 read, write, execute (search) by others

Only the owner of a file (or the super-user) may change its mode.

If an executable file is set up for sharing (‘““=n’of /d(I)), then mode 1000 prevents the system
from abandoning the swap-space image of the program-text portion of the file when its last user
terminates. Thus when the next user of the file executes it, the text need not be read from the
file system but can simply be swapped in, saving time. Ability to set this bit is restricted to the
super-user since swap space is consumed by the images; it is only worth while for heavily used
commands. ’

SEE ALSO
Is{I), chmod(1D)

CHOWN (1) PWB/UNIX Edition 1.0 CHOWN (1)

NAME
chown — change owner

SYNOPSIS
chown owner file ...

DESCRIPTION
The user-ID of the files is changed to owner. The owner may be either a decimal UID or a login
name found in the password file.

FILES
/etc/ passwd

SEE ALSO
chgrp(1), passwd(V)

PEACS

CMP(1) PWB/UNIX Edition 1.0 CMP (D)

NAME
cmp — compare two files

SYNOPSIS
cmp [=1] [—s] filel file2

DESCRIPTION
The two files are compared. (If file! is =, the standard input is used.) Under default options,
cmp makes no comment if the files are the same; if they differ, it announces the byte and line
number at which the difference occurred. If one file is an initial subsequence of the other, that
fact is noted. Moreover, return code O is yielded for identical files, 1 for diiferent files, and 2 for
an inaccessible or missing argument.

Options: .
—1Print the byte number (decimal) and the differing bytes (octal) for each difference.
—sPrint nothing for differing files: return codes only.

SEE ALSO
diff(l), comm(l)

CoL (1) PWB/UNIX Edition 1.0 COL (D)

NAME
col — filter reverse line feeds

SYNOPSIS
col

DESCRIPTION
Col reads the standard input and writes the standard output. It performs the line overlays implied
by reverse line feeds (Aascl code ESC-7). Col is particularly useful for filtering multicolumn out-
put made with the ‘.rt’ command of nroff. :

SEE ALSO
nroff(I)

BUGS
Can’t back up more than 102 lines.

The input file must not have ASCII tab characters; co/ does not handle them properly (see
reform(I)).

COMB (1) PWB/UNIX Edition 1.0 COMB (D)

NAME
comb — combine SCCS deltas

SYNOPSIS
comb [—o] [—s] [—psid] [~clist] name ...

DESCRIPTION

Comb generates a shell procedure (see sh(I)) which, when run, will reconstruct the given SCCS
files. The reconstructed files will, hopefully, be smaller than the original files. The arguments
may be specified in any order, but all keyletter arguments apply to all named SCCS files. If a
directory is named, comb behaves as though each file in the directory were specified as a named
file, except that non-SCCS files (last component of the pathname does not begin with **s.””), and
unreadable files are silently ignored. If a name of ‘=" is given, the standard input is read; each
line of the standard input is taken to be the name of an SCCS file to be processed. Again, non-
SCCS files, and unreadable files are silently ignored.

The generated shell procedure is written on the standard output.

The keyletter arguments are as follows. Each is explained as though only one named file is to be
processed, but the effects of any keyletter argument apply independently to each named file.

—p The SCCS identification string (SID) of the oldest delta to be preserved. All older del-
tas are discarded in the reconstructed file.

—c A list (see get(I) for the syntax of a list) of deltas to be preserved. All other deltas are
discarded.

—0 This argument causes the reconstructed file to be accessed at the release of the delta to
be created for each ‘‘get —e’” generated. Without this argument, the reconstructed file
is accessed at the most recent ancestor for each ‘‘get —e’’ generated. Use of the o
keyletter may decrease the size of the reconstructed SCCS file. It may also alter the
shape of the delta tree of the original file.

—s This argument causes comd to generate a shell procedure which, when run, will pro-
duce a report giving, for each file, the file name, size after combining, original size,
and pecentage change computed by:

100 * (original — combined) / original
(Sizes are in blocks.) We recommend that before any SCCS files are actually combined
one should use this option to determine exactly how much space is saved by the com-
bining process.

If no keyletter arguments are specified, comb will preserve only leaf deltas and the minimal
number of ancestors needed to preserve the tree.

FILES
s.COMB The name of the reconstructed SCCS file.

comb????? Temporary.

SEE ALSO
get(l), delta(I), admin(I), prt(I), help(D), scesfile(V), SCCS/PWB User’s Manual by L. E. Bonanni
and A. L. Glasser.

COMB (1) PWB/UNIX Edition 1.0 COMB (1)

DIAGNOSTICS
Use heip(l) for explanations.

BUGS
Comb may rearrange the shape of the tree of deltas. It may not save any space; in fact, it is possi-
ble for the reconstructed file to actually be larger than the original.

COMM (1) PWB/UNIX Edition 1.0 COMM (1)

NAME
comm — print lines common to two files

SYNOPSIS
comm [— {123]] filel file2

DESCRIPTION
Comm reads file! and file2, which should be sorted in the same order, and produces a three

column output: lines only in file/; lines only in file2; and lines in both files. The filename "=’
means the standard input.

Flags 1, 2, or 3 suppress printing of the corresponding column. Thus comm —12 prints only the
lines common to the two files; comm —23 prints only lines in the first file but not in the second:
comm —123 is a no-op.

SEE ALSO
cmp(l), diff (D), uniq(l)

CpP(D) PWB/UNIX Edition 1.0 CP (1)

NAME
¢p — copy

SYNOPSIS
cp filel file2

DESCRIPTION
The first file is copied onto the second. The mode and owner of the target file are preserved if it
already existed; the mode of the source file is used otherwise.

If file2 is a directory, then the target file is a file in that directory with the file-name of filel.
It is forbidden to copy a file onto itself.

SEE ALSO
cpx (D), In(D), cat(), pr(D), mv(l)

s

CPIO (1) PWB/UNIX Edition 1.0 CPIO(D)

NAME
cpio — copy file archives in and out

SYNOPSIS
cpio —olv]
cpio —ildrtuv] [pattern]
cpio —pldlruv] [pattern] directory
DESCRIPTION
Cpio —o (copy out) reads the standard input for a list of pathnames and copies those files onto

the standard output together with pathname and status information.

Cpmio — (copy in) extracts from the standard input, which is the product of a previous “cprio —o0"",
files whose names are selected by a patiern given in the name-generating syntax of si(l). The pui-

nwxn

tern meta-characters *?°, **’, *[...]’ will match */* characters. The pattern argument defaults to "™".

Cpio —p (pass) copies out and in in a single operation. Destination pathnames are interpreted
relative to the named directory.

The options are:
- d Directories are to be created as needed.
r Interactively rename files. If the user types a null line, the file is skipped.
t Print a table of contents of the input. No files are created.

u Copy unconditionally (normally, an older file will not replace a newer file with the same
name).

v Verbose: causes a list of file names to be printed. When used with the t option, the 4
table of contents looks like an *‘Is —=I'" (see /s(I)).

1 Whenever possible, link files rather than copying them. Usable only with the —p
option.
m Retain previous file modified time (only for the super-user).

The first example below copies the contents of a directory into an archive; the second duplicates a
directory hierarchy:

Is | cpio —o0 >/dev/mt0

chdir olddir
find . —print | cpio —pdl newdir

SEE ALSO
ar(I), cpio(V)

BUGS .
Path names are restricted to 128 characters.
If there are too many unique linked files, the program runs out of memory to keep track of them
and subsequent linking information is lost.

CPX (1) PWB/UNIX Edition 1.0 CPX (D)

NAME
cpx — copy a file exactly

SYNOPSIS
cpx — [filel | =] [file2| =]

DESCRIPTION
Cpx copies file] onto file 2. The mode, owner and time of last modification of the source file are

preserved.

Either filel or file2 may be represented as a “‘~'’, which uses the standard UNIX input/output
pipe mechanism, instead of the corresponding file. A file read from a pipe or written to a pipe
will be preceded with a header, containing the mode, owner, time of last modification, number of
characters, and a summed total of the characters in the file. The case where a pipe is read and a
file is written, both the number of characters and the summed total are compared to similar values
after the copy. If there are no differences between the comparisons, the message ‘‘ok’’ is printed.

Cpx prohibits copying a file onto itself.

Cpx does not allow file! to be a directory. If file2 is a directory, then the target file is a file in that
directory with the file name of filel.

Examples to copy a file to the current directory:

cpx ../filel —|cpx — .
cpx ../filel .
cpx ../filel file2

SEE ALSO
cp(D

CREF (1) PWB/UNIX Edition 1.0 CREF (1)

NAME

SYNO

cref — make cross reference listing

PSIS
cref [—acilnostux123] name ...

DESCRIPTION

FILES

Cref makes a cross reference listing of program files.in assembler or C format. The files named as
arguments in the command line are searched for symbols in the appropriate syntax.

The output report is in four columns:

(1) (2) (3) 4)
symbol file see text as it appears in file
below

Cref uses either an ignore file or an only file. If the —i option is given, the next argument is taken
to be an sgnore file; if the =—o option is given, the next argument is taken to be an onfy file. lgnore
and only files are lists ol symbols separated by new lines. All symbols in an sgnore file are ignored
in columns (1) and (3) of the output. If an only file is given, only symbols in that file appear in
column (1). At most one of —i and —o may be used. The default setting is —i. Assembler
predefined symbols or C keywords are ignored.

The —s option causes current symbols to be put in column 3. In the assembier. the current sym-
bol is the most recent name symbol; in C, the current function name. The —I option causes the
line number within the file to be put in column 3.

The —t option causes the next available argument to be used as the name of the intermediate
temporary file (instead of /tmp/crt??). The file is created and is not removed at the end of the
process.

Options:

assembler format (default)

C format input

use wnore file (sce above)

put linec number in col. 3 (instead of current symbol)
omit column 4 (**no context™")

use only file (see above)

current symbol in col. 3 (default)

user supplied temporary file

print only symbols that occur exactly once
print only C external symbols

sort output on column 1 (default)

sort output on column 2

sort output on column 3

»

WK =™ O ™ =Nn

/tmp/crt?? lemporaries

/usr/lib/aign default assembler sgnore file
/usr/lib/atab grammar table for assembler files
/usr/lib/cign default C ignore file
/usr/bin/crpost post processor

/usr/lib/ctab grammar table for C files

CREF (D) PWB/UNIX Edition 1.0

/usr/bin/upost post processor for —u option

/bin/sort used to sort temporaries

SEE ALSO
asfl), ce(l)

CREF (1)

t¢

CRYPT (D) PWB/UNIX Edition 1.0 CRYPT (1)

NAME
crypt — encode/decode

SYNOPSIS
crypt [password |

DESCRIPTION
crypt simulates a cryptographic machine.

crypt reads from the standard input file and writes on the standard output. It is thus suitable for
use as a filter. For a given password, the encryption process is idempotent; that is,

crypt znorkle <clear >cypher
crypt znorkie <cypher

will print the clear.

CSPLIT () PWB/UNIX Edition 1.0 CSPLIT (1)

NAME
csplit — context split

SYNOPSIS
csplit [—s] [—f prefix] file [REO1 REO2 ... REn]

DESCRIPTION
Csplit reads file and separates it into n+1 sections, defined by the regular expressions REOI, ... ,
REn, where n is less than 100. If the —f option is used, the sections are placed in prefix00 ...
prefixn. The default is xx00 ... xxn. These sections get the following pieces of file:

00: from the start of the fite up to (but not including) the first line matched by REO1
01: from the line matched by REO1 up to the first line that is matched by RE02

n+1: line matched by REn to the end of the file

Enclose by double quotes (") all RE’s that contain blanks or other characters meaningful to the
Shell.

Csphi tells the size of the original file, as well as of each *‘split’ file as it creates it. It also prints
any appropriate diagnostics. If the —s option is present, csplir suppresses the printing of all char-
acter counts.
EXAMPLE:

csplit —f zz file "procedure division" par5. parlé.
After editing the “‘split™ files, they can be recombined as follows:

cat zz0[0-3] >file
It should be noted that csplir does not affect in any way the original file. The responsibility for
removing it is the user's.

SEE ALSO
ed(D, sh(D

DATE (D) PWB/UNIX Edition 1.0 DATE (1)

NAME
date — print and set the date

SYNOPSIS
date [mmddhhmml(yy]] [+format]

DESCRIPTION
If no argument is given, or if the argument begins with ‘‘+", the current date and time are
printed. Otherwise, the current date is set. The first mm is the month number; dd is the day
number in the month; Ak is the hour number (24 hour system); the second mm is the minute
number; yy is the last 2 digits of the year number and is optional. For example:

date 10080045

sets the date to Oct 8, 12:45 AM. The current vear is the default if no year is mentioned. The
system operates in GMT. Datre takes care of the conversion to and from local standard and day-
light time.

If the argument begins with ‘‘+,”’ the output of date is under the control of the user. The format
for the output is similar to that of the first argument to printfUI1). All output fields are of fixed
size (zero padded if necessary). Each field descriptor is preceded by “%’’ and will be replaced in
the output by its corresponding value. A single “%’’ is encoded by “%%’’. All other characters
are copied to the output without change. The string is always terminated with a newline character.

Field Descriptors:

insert a newline character

insert a tab character

month of year — 01 to 12

day of month — 01 to 31

last 2 digits of year — 00 to 99
hour — 00 to 23

minute — 00 to 59

second — 00 to 59

julian date — 001 to 366

day of week — Sunday = 0
abbreviated weekday — Sun to Sat
abbreviated month — Jan to Dec
time in AM / PM notation

B~) i‘-"mzm% &g~ s

For example:
date "+DATE: %m/%d/%y%nTIME: %H:%M:%S"
would generate as output:

DATE: 08/01/76
TIME: 14:45:05

DIAGNOSTICS
*‘No permission”” if you aren’t the super-user and you try to change the date:; “*bad conversion™ if
the date set is syntactically incorrect; “‘invalid option’ if the fieid descriptor is not recognizable.

FILES
/dev/kmem

DB(1) PWB/UNIX Edition 1.0 DB (1)

NAME
db — dcbug

SYNOPSIS
db [core [namelist]] [=]

DESCRIPTION

Unlike many debugging packages (including the Digital Equipment Corporation’s ODT, on which
db is loosely based), db is not loaded as part of the core image which it is used to examine;
instead it examines files. Typically, the file will be either a core image produced after a fault or
the binary output of the assembler. Core is the file being debugged; if omitted core is assumed.
Namelist is a file containing a symbol table. If it is omitted, the symbol table is obtained from the
file being debugged, or if not there from a.out. If no appropriate name list file can be found, db
can still be used but some of its symbolic facilities become unavailable.

For the meaning of the optional third argument, see the last paragraph below.

The format for most db requests is an address followed by a one character command. Addresses
are expressions buiit up as follows:

1. A name has the value assigned to it when the input file was assembled. It may be relocatable
or not depending on the use of the name during the assembly.

2. An octal number is an absolute quantity with the appropriate value.

3. A decimal number immediately followed by ‘.’ is an absolute quantity with the appropriate
value.

4. An octal number immediately followed by r is a relocatable quantity with the appropriate
value.

5. The symbol . indicates the current pointer of db. The current pointer is set by many db
requests.

6. A * betore an expression forms an expression whose value is the number in the word
addressed by the first expression. A * alone is equivalent to “*.”.

7. Expressions separated by 4 or blank are expressions with value equal to the sum of the com-
ponents. Al most one of the compenents may be relocatable.

8. Expressions separated by — form an expression with value equal to the difference to the
components, It the right component is relocatable, the left component must be rclocatabie.

9. Expressions are evaluated left to right.
Names for registers are built in:
h..r5 sp pe fro.. frS

These may be examined. Their values are deduced from the contents of the stack in a core image file.
They are meaningless in a file that is not a core image.

TSR 1)

If no address is given for a command, the current address (also specified by **.”") is assumed. In gen-
eral, **."" points to the last word or byte printed by db.

There are ¢b commands for examining locations interpreted as numbers, machine instructions, ASCI!
characters. and addresses. For numbers and characters, either bytes or words may be examined. The
following commands are used to examine the specified file.

DB(I) PWB/UNIX Edition 1.0 DB (1)

/ The addressed word is printed in octal.

\ The addressed byte is printed in octal.

" The addressed word is printed as two ASCII characters.
The addressed byte is printed as an ASCII character.
The addressed word is printed in decimal.

? The addressed word is interpreted as a machine instruction and a symbolic form of the
instruction, including symbolic addresses, is printed. Often, the result will appear exactly as it
was writien in the source program.

& The addressed word is interpreted as a symbolic address and is printed as the name of the
symbol whose value is closest to the addressed word, possibly followed by a signed offset.

<nl>(i. e., the character ‘‘new line’’) This command advances the current location counter
*.”" and prints the resuliting location in the mode last specified by one of the above requests.

This character decrements **.”” and prints the resuiting location in the mode last selected one
of the above requests. It is a converse to <ni>.
% Exit.

Odd addresses to word-oriented commands are rounded down. The incrementing and decrementing of
**.”" done by the <nl> and " requests is by one or two depending on whether the last command was
word or byte oriented.

The address portion of any of the above commands may be followed by a comma and then by an
expression. In this case that number of sequential words or bytes specified by the expression is printed.

[YSRL)

."" is advanced so that it points at the last thing printed.
There are two commands to interpret the value of expressions.

= When preceded by an expression, the value of the expression is typed in octal. When not
preceded by an expression, the value of **.” is indicated. This command does not change the

o Y

value of **."”".

An attempt is made to print the given expression as a symbolic address. If the expression is
relocatable, that symbol is found whose value is nearest that of the expression, and the sym-
bol is typed, followed by a sign and the appropriate offset. If the value of the expression is
absolute, a symbol with exactly the indicated value is sought and printed if found; if no
matching symbol is discovered, the octal value of the expression is given.

The following command may be used to paich the file being debugged.

! This command must be preceded by an expression. The value of the expression is stored at
the location addressed by the current value of **.”". The opcodes do not appear in the symbol
table, so the user must assemble them by hand.

The following command is used after a fault has caused a core image file to be produced.

S causes the fault type and the contents of the general registers and several other registers to be
printed both in octal and symbolic format. The values are as they were at the time of the
fault.

For some purposes, it is important to know how addresses typed by the user correspond with locations
in the file being debugged. The mapping algorithm employed by db is non-trivial for two reasons: First,
in an a.out file, there is a 20(8) byte header which will not appear when the file is loaded into core for
execution. Therefore, apparent location 0 should correspond with actual file offset 20. Second,
addresses in core images do not correspond with the addresses used by the program because in a core

DB(1) PWB/UNIX Edition 1.0 DB(I)

image there is a header containing the system’s per-process data for the dumped process, and also
because the stack is stored contiguously with the text and data part of the core image rather than at the
highest possible locations. Db obeys the following rules:

I exactly onc argument is given, and if it appears o be an a.out filc, the 20-byte header is skipped dur-
ing addressing, i.e., 20 is added to all addresses typed. As a consequence, the header can be examined
beginning at location —20.)

If exactly one argument is given and if thg ﬁ}g: does not appear to be an a.out ﬁle, no mapping is done.

If zero or two arguments are given, the mapping appropriate to a core image file is employed. This
means that locations above the program break and below the stack effectively do not exist (and are not,
in fact, recorded in the core file). Locations above the user’s stack pointer are mapped, in looking at
the core file, to the place where they are really stored. The per-process data kept by the system, which
is stored in the first part of the core file, cannot currently be examined (except by $).

If one wants to examine a file which has an associated name list, but is not a core image file, the last
argument ‘=" can be used (actually the only purpose of the last argument is to make the number of
arguments not equal to two). This feature is used most frequently in examining the memory file
/dev/mem. '

SEE ALSO
as(D), core(V), a.out(V), od(l)

DIAGNOSTICS
**File not found™ if the first argument cannot be read; otherwise *“?”".

BUGS .

There should be some way to examine the registers and other per-process data in a core image; also
there should be some way of specifying_ double-precision addresses. It does not know yet about shared
text segments. ' ' '

DC(1) PWB/UNIX Edition 1.0 . DC(D

NAME
dc — desk calculator

SYNOPSIS
de [file]

DESCRIPTION
Dc is an arbitrary precision arithmetic package. Ordinarily it operates on decimal integers, but one
may specify an input base, output base, and a number of fractional digits to be maintained. The
overall structure of dc is a stacking (reverse Polish) calculator. If an argument is given, input is
taken from that file until its end, then from the standard input. The following constructions are
recognized:

number
The value of the number is pushed on the stack. A number is an unbroken string ol the
digits 0-9. It may be preceded by an underscore _ to inpul a negalive number. Numbers
may contain decimal points.

+ = * %
The 1op two values on the stack are added (+), subtracted (—), muitiplied (*), divided (/),
remaindered (%), or exponentiated (7). The two entries are popped off the stack; the
result is pushed on the stack in their place. Any fractional part of an exponent is ignored.

CAY The top of the stack is popped and stored into a register named x, where x may be any
character. If the s is capitalized, x is treated as a stack and the value is pushed on it.

Ix The value in register x is pushed on the stack. The register v is not altered. All registers
start with zero value. If the | is capitalized, register x is treated as a stack and its top value
is popped onto the main stack.

d The top value on the stack is duplicated.

p The top value on the stack is printed. The top value remains unchanged.

f All values on the stack and in registers are printed.

q exits the program. If executing a string, the recursion level is popped by two. Il q is cupi-
talized, the top value on the stack is popped and the string execution level is popped by
that value.

X treats the top elemem of the stack as a character string and executes it as a string ol dc
commands. .

[... 1 puts the bracketed ascii string onto the top of the stack.

<x >x =Xx
The top two elements of the stack are popped and compared Register x is executed if they
obey the stated relation.

(

v replaces the top element on the stack by its square root. Any existing fractional part of the
argument is taken into account, but otherwise the scale factor is ignored.

! interprets the rest of the line as a UNIX command.

c All values on the stack are popped.

i The top value on the stack is popped and used as the number radix for further input.

DC(D) PWB/UNIX Edition 1.0 DC(D)

The top value on the stack is popped and used as the number radix for further.output.

k the top of the stack is popped, and that value is used as a non-negative scale factor: the
appropriate number of places are printed on output, and maintained during multiplication,
division, and exponentiation. The interaction of scale factor, input base, and output base
will be reasonable if all are changed together.

z The stack level is pushed onto the stack.
? A line of input is taken from the input source (usually the console) and executed.
An example which prints the first ten values of n! is:

[lal+dsa*plal0>y]sy
Osal
lyx

SEE ALSO
be(D), which is a preprocessor for dc providing infix notation and a C-like syntax which impie-
ments functions and reasonable control structures for programs.

DIAGNOSTICS
(x) ? for unrecognized character x.
(x) ? for not enough elements on the stack to do what was asked by command x.
‘Out of space’ when the free list is exhausted (too many digits).
*Out of headers’ for too many numbers being kept around.
*Out of pushdown’ for too many items on the stack.
*Nesting Depth’ for too many levels of nested execution.

A

DD (1) PWB/UNIX Edition 1.0 DD (1)

NAME
dd — convert and copy a file

SYNOPSIS
dd [option=value] ...

DESCRIPTION
Dd copies the specified input file to the specified output with possible conversions. The standard
input and output are used by default. The input and output block size may be specified to take
advantage of raw physical 1/0.

oplion values

if= input file name; standard input is default

of= output file name; standard output is default

ibs= input block size (default 512)

obs= output block size (default 512)

bs= set both input and output block size, superseding ibs and obs; also, if no conver-
sion is specified, it is particularly efficient since no copy need be done

cbs=n conversion buffer size

skip=n skip n input records before starting copy

count=n copy only n input records

conv=ascii convert EBCDIC to ASCII
ebcdic convert ASCII to EBCDIC

lcase map alphabetics to lower case
ucase map alphabetics to upper case
swab swap every pair of bytes

noerror do not stop processing on an error
sync pad every input record to ibs

.., .. Several conversions separated by commas

Where sizes are specified, a number of bytes is expected. A number may end with k, b or w to
specify multiplication by 1024, 512, or 2 respectively; a pair of numbers may be separated by x to
indicate a product.

Cbs is used only if ascii or ebcdic conversion is specified. In the former case cbs characters are
placed into the conversion buffer, converted to ASCII, and trailing blanks trimmed and new-line
added before sending the line to the output. In the latter case ASCII characters are read into the
conversion buffer, converted to EBCDIC, and blanks added to make up an output record of size
cbs.

After completion, dd reports the number of whole and partial input and output blocks.

For example, to read an EBCDIC tape blocked ten 80-byte EBCDIC card images per record into
the ASCII file x:

dd if=/dev/rmt0 of=x ibs=800 cbs=80 conv=ascii,lcase
Note the use of raw magtape. Dd is especially suited to I/O on the raw physical devices because it
allows reading and writing in arbitrary record sizes.

SEE ALSO
cp(l)

DD (D) PWB/UNIX Edition 1.0 DD (I)

BUGS
The ASCII/EBCDIC conversion tables are taken from the 256 character standard in the CACM
Nov, 1968. It is not clear how this relates to real life.

Newlines are inscrtcd only on conversion to ASCll, padding is done only on conversion to
EBCDIC. These should be separate options.

DELTA (1) PWB/UNIX Edition 1.0 DELTA (1)

NAME
delta — make an SCCS delta

SYNOPSIS
delta [—s] [=n] [—rsid] [=glist] [—=yhistory] [—=mmrs] [—p] name ...

DESCRIPTION
Deiia adds a delta to each named SCCS file. If a directory is named, delta behaves as though each
file in the directory were specified as a named file, except that non-SCCS files (last component of
the pathname does not begin with **s.””), and unreadable files are silently ignored. If a name of
**="" is given, the standard input is read; each line of the standard input is taken to be the name
of an SCCS file to be processed. Again, non-SCCS files, and unreadabile files are silently ignored.
(If a name of **="" is given the y keyletter must be present; see bclow.)

A ger ol many SCCS files, lollowed by a delia of those files should be avoided when the ger gen-
crates a large amount ol data. Instead, multiple ger—dela scquences should be used.

Comments about the purpose of the delta(s) are supplied (once, and only once) either from the
standard input, or by using the y argument. If one supplies the comments through the standard
input, and the standard input is a terminal (as determined by a successful grrv(II) call), the pro-
gram will prompt (on the standard output) with “‘comments? *’. Otherwise, no prompt is printed.
A newline preceded by a ‘*\"" may be used to make the entering of the comments more con-
venient. The first newline not preceded by a **\"’ terminates the comments response. The y
argument is used to supply comments on the command line; if it is given the “‘comments?’’ ques-
tion is not printed, and the standard input is not read.

" If there is a v flag in the file (see adnmun(l)) the prompting is somewhat different. As the com-
ments are solicited only once, if the first file processed has a v flag then all files processed must
have a v flag (any files that don’t will cause a diagnostic message and won't be processed: process-
ing will continue with the next file). The inverse is also true.

When a file has a v flag, before prompting for ‘‘comments? ™' defta will prompt for **MRs?
(again, the prompt is only printed if the standard input is a terminal). MR numbers are read from
the standard input separated by blanks and/or tabs. The same continuation rules apply as above.
When an unadorned newline is read, delta will prompt for ‘‘comments? ' as described above. If
the v flag has a value, it is taken to be the name of a program (or shell procedure) which will vali-
date the correctness of the MR numbers. This program is executed with the first argument hav-
ing the value of the %M% identification keyword, a second argument of the value of the %Y%
identification keyword, and third and subsequent arguments being the MR numbers. If a non-
zero exit status is returned from this program defra will terminate (it is assumed that the MR
numbers were not all valid). The m argument is used to supply MR numbers on the command
line; if it is given the ‘*“MRs? ™ question is not printed, and the standard input is not read.

The following description is written as though only one SCCS file were named; the process of
making a delta is equivalent for each file. (Note that the effects of any keyletter arguments apply
independently to each SCCS file, and that the same comments are used for all files.)

The g argument specifies a list (see ger(1) for the definition of <list>) of deltas which are to be
marked wnored when the file is accessed at the change level created by this delta. (See the
description of the /-file format in ger(1)). A delta should only be ignored when the problem that
caused the creation of the delta being ignored is no longer a problem at the change level created

DELTA (1) PWB/UNIX Edition 1.0 DELTA (1)

by this delta.

The p argument causes defra to print the differences that constitute the delta on the standard out-
put.

Delta makes a delta by ‘‘getting”’ the named file (see ger(1)) at the SID specified by the r keyletter
(this SID must be listed in the p-file), or at the same SID that was used when the ger command
was executed with the e argument by the user executing defta (if the user executing delra is listed
more than once in the. p-file, the r argument must be supplied). The ‘‘gotten” file is then com-
pared with the g-file, the differences between the two files constitute the delta.

When the comparison is finished, delta prints the SID of the new delta, followed by the number
of lines inserted, deleted, and unchanged. The s argument suppresses this printing. Normally,
the g-file is removed after the delta is made. The n argument suppresses the removal.

Deha will ignore hangups if it is already ignoring interrupts.

FILES ‘
g-file See get for an explanation of the g-file.
p-file Information from get.
x-file Replacement for the SCCS file. The naming convention is the same as that for
the p-file (see ger).
z-file Lockout file; see ger(l).
d-file “‘Gotten" file; temporary. The naming convention is the same as that for the p-

file (see ger).
/usr/bin/bdiff Program to compute differences between the ‘‘gotten’’ file and the g-file.

SEE ALSO
get(I), admin(D), prt(l), help(D), sccsfile(V), bdiff(I)
SCCS/PWB User’s Manual by L. E. Bonagni and A. L. Glasser.

DIAGNOSTICS
Use help(l). for explanations.

DEROFF (1) PWB/UNIX Edition 1.0 ‘ DEROFF (1)

NAME
deroff — remove nroff, troff, and eqn constructs

SYNOPSIS
deroff [—w] file ...

DESCRIPTION
Deroff reads each file in sequence and removes all nroff and troff command lines, backslash con-
structions, macro definitions, and equations (between ‘‘.EQ’’ and ‘.EN”’ lines or between delim-
iters) and writes the remainder on the standard output. Deroff follows chains of included files
(**.s0™ and ‘‘.nx”’ commands); if a file has already been included, a ‘‘.so0" is ignored and a *‘.nx"’
terminates execution. If no input file is given, deroff reads from the standard input file.

If the —w flag is given, the output is a word list, one “‘word’’ (string of letters, digits, and apos-
trophes, beginning with a letter; apostrophes are removed) per line, and all other characters
ignored. Otherwise, the output follows the original, with the deletions mentioned above.

SEE ALSO
nroff (), troff(1), eqn(l)

DIAGNOSTICS
Complains if a file cannot be opened.

BUGS
Does not handle recursive backslash constructions like \h"\w’c””.

DF (D) PWB/UNIX Edition 1.0 DF (D)

NAME
df — report disk free space

SYNOPSIS
df [~uqs] [—tnumber] [arg ...}

DESCRIPTION)
Df prints the number of free blocks on a file system. If no args are specified, the free counts of
all the mounted file systems are printed.

The —u flag prints the total block size, number of blocks allocated for system information,
number of free blocks, number of blocks used and the number of free inodes.

The —q flag determines and prints the number of free blocks on a file system by extracting the
free count directly from the file system’s superblock.

The —s flag is a silent option which prohibits printing of any results. Error messages and exit
status are not effected.

The —t flag followed by a decimal number (5 digit maximum) is compared with the number of
free blocks. The result of the comparison returns the file system’s major and minor device
numbers and a single character either Y or N, to indicate if the number of free blocks is greater
or less than the requested number, respectively (e.g., df —t 1000 /u8 returns "0 12 Y"). An exit
status of 0 is returned for Y and 1 for N.

The arg can be specified as either the root name of the mounted file system, e.g., "/u8" or the
name of the special file corresponding to the particular device (must refer to a disk), e.g.,
"/dev/rpl4”.

FILES
/dev/rf?, /dev/rk?, /dev/rp?, /etc/mnttab

SEE ALSO
icheck(VIII)

P N

DIFF (1) PWB/UNIX Edition 1.0) DIFF (1)

NAME

SYNO

diff — differential file comparator

PSIS
diff [—efb] namel name2

DESCRIPTION

FILES

SEE A

Diff tells what lines must be changed in two files to bring them into agreement. If name! (name2)
is ‘=", the standard input is used. If namel (name2) is a directory, then a file in that directory
whose file-name is the same as the file-name of name2 (name!) is used. The normal output con-
tains lines of these forms:

nl a n3,n4
nl,n2d n3
nl,n2 ¢ n3,né

These lines resemble ed commands to convert file namel into file name2. The numbers after the
letters pertain to file name2. In fact, by exchanging ‘a’ for ‘d’ and reading backward one may
ascertain equally how to convert file name2 into namel. As in ed, identical pairs where n/ = n2 or
n3 = n4 are abbreviated as a single number.

Following each of these lines come all the lines that are affected in the first file flagged by ‘<’,
then all the lines that are affected in the second file flagged by ‘>". ‘

The —b option causes trailing blanks (spaces and tabs) to be ignored and other strings of blanks
to compare equal. The —e option produces a script of a, ¢ and 4 commands for the editor ed,
which will recreate file name2 from file namel. The —f option produces a similar script, not use-
ful with ed, in the opposite order. In connection with —e, the following shell program may help
maintain multiple versions of a file. Only an ancestral file (31) and a chain of version-to-version
ed scripts (32,$3,...) made by diff need be on hand. A ‘latest version’ appears on the standard
output.

(cat $2 ... 89; echo '1,8p") | ed — 81
Except for occasional ‘jackpots’, diff finds a smallest sufficient set of file differences.

LSO
cmp(I), comm(I), ed(I), uniq(l)

DIAGNOSTICS

BUGS

‘jackpot” — To speed things up, the program uses hashing. You have stumbled on a case where
there is a chance that this has resulted in a difference being called where none actually existed.
Sometimes reversing the order of files will make a jackpot go away.

Editing scripts produced under the —e or —f options are naive about creating lines consisting of a
single *.”.

DIFF3 (1) PWB/UNIX Edition 1.0 DIFF3 (1)

NAME

diff3 — 3-way differential file comparison

SYNOPSIS

diff3 [—ex3 | filel file2 file3

DESCRIPTION

Difi3 compares three versions of a file, and publishes disagreeing ranges of text flagged with these
codes:

e i all three files differ
s | filel is different
=m—m=m=) file2 is different
a3 file3 is different

The type of change suffered in converting a given range of a given file to some other is indicated
in one of these ways:

finla Text is to be appended after line number n/ in file £ where f= 1, 2, or 3.

f:nl,n2c Textis to be changed in the range line n/ to line n2. If nl = n2, the range may
be abbreviated to n/.

The original contents of the range follows immediately after a ¢ indication. When the contents of
two files are identical, the contents of the lower-numbered file is suppressed.

Under the —e option, diff3 publishes a script for the editor ed that will incorporate into file/ all
changes between file2 and file3, i.e. the changes that normally would be flagged ==== and
====3 Option —x (—3) produces a script to incorporate only changes flagged ====
(s====3). The following command will apply the resulting script to ‘filel’.

(cat script; echo "I,$p") | ed — fitel

SEE ALSO

BUGS

diff(E):

Text lines that consist of a single ‘.” will defeat —e.

FILES

il o

DIFFMARK (1) PWB/UNIX Editioﬁ 1.0 DIFFMARK (1)

NAME
diffmark — mark changes between versions of a file

SYNOPSIS
diffmark [code"siring"] ... [namel

DESCRIPTION
Diffmark is a filter used to modify the editor command version of diff{l) output so that it can be
used to mark the changes between successive versions of a file. Its most common use is to
automatically insert change mark commands into a file of text for nroff(l) or troff{1). The follow-
ing is a typical command sequence:

diff —e oldfile newfile | diffmark markedfile | ed — oldfile

The generated file markedfile is the same as newfile, except that it has the needed change mark
requests inserted. The user would normally print markedfile. and later remove it and oldfile when
no longer needed.

Diffmark adds extra lines to the output of 4jf. It inserts one line at both the beginning and end of
each sequence of appended or changed lines, and appends two lines following each deletion. The
default values of these lines are chosen to make use of the ‘‘margin character’” request of the
formatters. The user may override any such value by supplying an option string, which is con-
catenated with a newline to make up the line. Any null option string causes its corresponding line
to be omitted completely. The option codes and their defaults-are as follows:

—ab".mc |" — “‘append’’ beginning — insert at beginning of an addition

—~ae".mc" — ‘‘append’’ end — insert at end of an addition

—cb".mc |" — ‘‘change™ beginning — insert at beginning of a change

—ce".mc" — ““change’’ end — insert at end of a change’

—db".mc *" — “‘delete’’ Ist line — insert as first line of deletion

—de".mc" — “‘delete’” 2nd line — insert as 2nd line of deletion

Although not a necessity, the following option is convenient:

name causes djffmark to append "w name" to the end of its output. For safety’s sake, this name
should not be the same as that of the file being edited.

Here is an example. Suppose you run the following sequence of commands:

diff —e oldfile newfile >diff1

diffmark diff3 —cb".mc +" <diff]1 >diff2
ed — oldfile <diff2

nroff diff3 >diff4

Of course, the only reason for doing this rather than using pipelines is to see what all the files
look like:

DIFFMARK (1) PWB/UNIX Edition 1.0

oldfile:
.nf

cce
eee
24234
hhh
722

newfile:
.nf

aaa

gee

ftf

444
22z

diff1 (output from diff):
5d
Ja
fft
2c
aaa

diff2 (output from diffmark):
Sc
.mc*
.mc
3a
.mc |
fif
.m¢
2¢
.mc¢ +
aaa
.mc

w diff3

diff3 (edited version of oldfile):
.nf

.mc +

aaa

.mc

eee

.mc |

fif

©.mc

gg8

DIFFMARK (1)

DIFFMARK (1) PWB/UNIX Edition 1.0 DIFFMARK (1)

.mc*
.mc
222

diff4 (formatted output, with line length set to 10):

aaa +
eee

fif |
::4:4

zzz *

If you are so ihclined you can use diffmark to produce listings of C (or other) programs with

) changes marked. A typical shell procedure is:

cdiffmk: shell proc to show C program differences
called: cdiffmk old new
dlﬂ‘-c $1 32| (diffmark.echo "1,$p") | ed — $1| nroff macs — | pr —h §2

The file macs looks like this:
.pil

77

.nf

.0

.nc

The 11 request might specify a different line length, depending on the nature of the program being
printed. The eo and nc requests are probably needed only for C programs.

DIAGNOSTICS

EXIT CODES

"input not from diff"
"line too long" (>512 characters)
Up to 72 characters of the offending line are printed immediately following the diagnostic.

i

0 — normal completion
1 — input did not appear to be from diff, or other error

SEE ALSO

BUGS

diff (1), nroff(I), troff(I)

Esthetic considerations may dictate manual adjustment of some output. File differences involving
only formatting requests may produce undesirable output. l.e., replacing ".sp" by ".sp2" will pro-
duce a change mark on the preceding or following line of output.

For those who use diffmark to produce UNIX Manual pages, extra handling may be needed to get
vertical bars to appear. This results from the choice of the bar as the character translated to a
nonadjustable blank for use with tabs. When you use diffmark, override the default choice of "|"
by "!" instead, causing the latter to appear in your final output. If you prefer the vertical bar, you
can get it on the final output by adding the following to the beginning of your file:

ifn !

ifn.dsv!
which may be mysterious, but works.

DSW (1) PWB/UNIX Edition 1.0 DSW. (1)

-
P "N\

NAME
dsw — delete interactively

SYNOPSIS
dsw [directory]

DESCRIPTION
For each file in the given directory (‘.” if not specified) dsw types its name. If y is typed, the file
is deleted; if x, dsw exits; if new-line, the file is not deleted; if anything else, dsw asks again.

SEE ALSO
rm(D)

BUGS .
The name dsw is a carryover from the ancient past. Its etymology is amusing.

Du(1) PWB/UNIX Edition 1.0 DU (D)

NAME
du — summarize disk usage

SYNOPSIS
' du{=s][=—a]{name...]

DESCRIPTION
Du gives the number of blocks contained in all files and (recursively) directories within each
specified directory or file name. If name is missing, ‘.’ is used.

The optional argument —s causes only the grand total to be given. The optional argument —a
causes an entry to be generated for each file. Absence of either causes an entry to be generated
for each directory only.

A file which has two links to it is only counted once.
BUGS
Non-directories given as arguments (not under —a option) are not listed.

Removable file systems do not work correctly since i-numbers may be repeated while the
corresponding files are distinct. Du should maintain an i-number list per root directory encoun-
tered.

ECHO (1) PWB/UNIX Edition 1.0 ECHO(I)

NAME
echo — echo arguments

SYNOPSIS
echo [arg ...]

DESCRIPTION
Echo writes its arguments in order as a line on the standard output file. It is mainly useful for
producing diagnostics in command files.
Certain escape sequences are recognized:
*An’’ causes the newline character to be written.
‘\c¢’’ terminates echo without a newline.

*“\ON’ causes the octal number N to be written.

SEE ALSO
pump()

ED (1) PWB/UNIX Edition 1.0 ED (D)

NAME
ed — text editor

SYNOPSIS
ed{ —][+][name]

DESCRIPTION
Ed is the standard text editor.

If the name argument is given, ed simulates an e command (see below) on the named file; that is
to say, the file is read into ed’s buffer so that it can be edited. The optional ‘—' suppresses the
printing of character counts by e, r. and w (or -) commands.

Ed operates on a copy of the file it is editing; changes made in the copy have no effect on the file
until a wor z (write) command is given. The copy of the text being edited resides in a temporary
file called the buffer. There is only one buffer.

If changes have been made in the buffer since the last w or - command, ed warns the user if an
attempt is made to destroy ed's buffer via the g or ¢ commands. Ed prints °q?’ or ‘e”’, respec-
tively, and allows one to continue editing. A second g or ¢ command at this point will take effect.
This warning feature may be inhibited by specifying the *+’ option (e.g., ed + file). The =’
option also inhibits this feature.

Commands to ed have a simple and regular structure: zero, one, or two addresses followed by u
single character comumand, possibly followed by parameters to that command. These addresses
specify one or more lines in the buffer. Every command that requires addresses has default
addresses, so that the addresses can often be omitted.

In general, only one command may appear on a line. Certain commands allow the input of text.
This text is placed in the appropriate place in the buffer. While ed is accepting text, it is said to be
in input mode. In this mode, no commands are recognized; all input is merely collected. Input
mode is left by typing a period '.’ alone at the beginning of a line.

Ed supports a limited form of regular expression notation; regular expressions are used in addresses
to specify lines and in some commands (e.g., s) to specify portions of a line that are to be
replaced. A regular expression specifies a set of strings of characters. A member of this set of
strings is said to be maiched by the regular expression. The regular expressions allowed by ¢d are
constructed as follows:

The following one-character regular expressions match a single character:

1.1 An ordinary character (not one of those discussed in 1.2 below) is a one-character regular
expression that matches itself.

1.2 A backslash ‘\’ followed by any special character is a one-character regular expression that
matches the special character itseif. The special characters are:

a. ", 47 [, and *\” (period, asterisk, plus sign, left square bracket, and backslash,
respectively), which are always special, except when they appear within square brackets
‘[1" (see 1.4 below).

b. *"* (caret or circumflex), which is special at the beginning of an enure regular expression
(see 3.1 and 3.2 below), or when it immediately follows the left of a pair of square
brackets ‘[]” (see 1.4 below).

c. ‘S’ (currency symbol), which special at the end of an entire regular expression (see 3.2
below).

ED (D)

1.3

14

PWB/UNIX Edition 1.0 ED (D)

d. The character used to bound (i.e., delimit) an entire regular expression, which is spe-
cial for that regular expression (for example, see how */° is used in the g command,
below.)

A period *. is a one-character regular expression that matches any character except the
new-line character.

A non-empty string of characters enclosed in square brackets ‘[]’ is a one-character regu-
lar expression that matches any one character in that string. If, however, the first- charac-
ter of the string is.a circumflex ‘”, the one-character regular expression matches any char-
acter except new-line and the remaining characters in the string. The ‘™’ has this special
meaning only if it occurs first in the string. The minus ‘=’ may be used to indicate a
range of consecutive ASCII characters; for example, [0—9] is equivalent to [0123456789].
The ‘-’ loses this special meaning if it occurs first (after an initial **’, if any) or last in the
string. The ‘]” does not terminate such a string when it occurs first (after an initial **’, if
any), in it, e.g., ‘[]al’ matches either a right square bracket ‘]’ or the letter ‘a’. The five
characters listed in 1.2.a above stand for themselves within such a string of characters.

The following rules may be used 1o construct regular expressions from one-character regular expres-

RUIIAN

2.1

2.2

2.3

24

25

2.6

A one-character regular expression is a regular expression that matches whatever the one-
character regular expression matches.

A one-character regular expression followed by an asterisk ‘*’ is a regular expression that
matches zero or more occurrences of the one-character regular expression. If there is any
choice, this regular expression matches as many occurrences as possibie.

A one-character regular expression followed by a plus ‘+’ is a regular expression that
matches one or more occurrences of the one-character regular expression. If there is any
choice, this regular expression matches as many occurrences as possible.

A one-character regular expression followed by ‘\{ m\}’, \{ m,\}", or ‘\{ m,n\}’ is a reguiar
expression that matches a range of occurrences of the one-character regular expression.
The values of m and n must be non-negative integers less than 256; ‘\{m\}’ matches
exactly m occurrences; ‘\{ m,\}’ matches at least m occurrences; ‘\{ mn\}’ matches any
number of occurrences between m and »n inclusive. Whenever a choice exists, the regular
expression matches as many occurrences as possible.

The concatenation of regular expressions is a regular expression that matches the concate-
nation of the strings matched by each component of the regular expression.

A regular expression enclosed between the character sequences ‘\(* and ‘\)’ is a regular
expression that matches whatever the unadorned regular expression matches; this con-
struction has side effects discussed under the s command, below.

Finally, an entire regular expression may be constrained to match only an-initial segment or final
segment of a line (or both):

3.1

3.2

(el

A circumflex at the beginning of an entire regular expression constrains that regular
expression to match an /nitial segment of a line.

A currency symbol ‘S’ at the end of an entire regular expression constrains that regular
expression to match a final segment of a line. The construction “entire regular expression$
constrains the entire regular expression to match the entire line.

The null regular expression standing alone (e.g., ‘//’) is equivalent to the last regular expression
encountered.

LW

ED (1) : PWB/UNIX Edition 1.0 ED(I)

To understand addressing in ed it is necessary to know that at any time there is a currenr line.
Generally speaking, the current line is the last line affected by a command; the exact effect on the
current line is discussed under the description of the command. Addresses are constructed as fol-
lows:

1. The character ‘.’ addresses the current line.

2. The character ‘S’ addresses the last line of the buffer.

3. A decimal number » addresses the n-th line of the buffer.
4

X addrgsses the line marked with the mark name character x, which must be a lower-case
letter. Lines are marked with the k command described below.

A regular expression enclosed by slashes ‘/° addresses the first line found by searching for-
ward from the line following the current line toward the end of the buffer and stopping at
the first line containing a string matching the regular expression. If necessary, the search
wraps around to the beginning of the buffer and continues through the current line, so that
the entire buffer is searched.

w

6. A regular expression enclosed in queries ‘?° addresses the first line found by searching
backward from the line preceding the current line toward the beginning of the buffer and
stopping at the first line containing a string matching the regular expression. If necessary
the search wraps around to the end of the buffer and continues through the current line.

7. An address followed by a plus sign ‘+’ or a minus sign ‘—’ followed by a decimal number
specifies that address plus (respectively minus) the indicated number of lines. The plus
sign may be omitted.

8. If an address begins with ‘+’ or ‘=", the addition or subtraction is taken with respect to the
current line; e.g. ‘=5’ is understood to mean *.—5".

9. If an address ends with ‘+’ or ‘~’, then | is added or subtracted, respectively. As a conse-
quence of this rule and of rule 8, the address ‘=’ refers to the line preceding the current
line. Moreover, trailing ‘+’ and ‘=’ characters have a cumulative effect, so ‘—=" refers to
the current line less 2.

[k}

10. To maintain compatibility with earlier versions of the editor, the character ‘™’ in addresses

is entirely equivalent to ‘—’.

Commands may require zero, one, or two addresses. Commands that require no addresses regard
the presence of an address as an error. Commands that accept one or two addresses assume
default addresses when an insufficient number of addresses is given; if more addresses are given
than such a command requires, the last one(s) are used.

Typically, addresses are separated from each other by a comma *,”. They may also be separated by
a semicolon *;". In the latter case, the current line *.” is set to the first address before the second
address is interpreted. This feature can be used to determine the starting line for forward and
backward searches (see items 5. and 6. in the list above). The second address of any two-address
sequence must correspond to a line that follows, in the buffer, the line corresponding to the first
address.

In the following list of ed commands, the default addresses are shown in parentheses. The
parentheses are nor part of the address, but are used to show that the given addresses arc the
default.

It is generally illegal for more than one command to appear on a line. However, any command
may be suffixed by ‘p’ or by ‘I', in which case the current line is either printed or listed, respec-
tively, as discussed below under the p and / commands.

ED (1) PWB/UNIX Edition 1.0 ED (1)

(.)a
<text>

The append command reads the given text and appends it after the addressed line. ‘.’ is left
at the last inserted line; or, if there were none, at the addressed line. Address ‘0’ is legal for
this command: text is placed at the beginning of the buffer.

(..,.)c
<text>

The change command deletes the addressed lines, then accepts input text which replaces
these lines. ‘.’ is left at the last line input; if there were none, it is left at the first line not
deleted.

(.,.)d
The delete command deietes the addressed lines from the buffer. The line after the last line
deleted becomes the current line; if the lines deleted were originally at the end of the buffer,
the new last line becomes the current line.

e name
The edit command causes the entire contents of the buffer to be deleted, and then the
named file to be read in: ‘.’ is set to the last line of the buffer. If no file name is given. the
remembered file name, if any, is used (see the fcommand). The number of characters read
is typed. name is remembered for possible use as a default file name in subsequent ¢ or r or
w Or - commands.

f name
If name is given, the filename command changes the currently remembered file name to
name:; otherwise, it prints the currently remembered file name.

(1.8) g/regular expression/command list

In the global command, the first step is to mark every line that matches the given regular
expression. Then, for every such line, the given command list is executed with .” initially set
to that linc. A single command or the first of a list of commands appears on the sume line
as the global command. All lines of a multi-line list except the last linc must be ended with
a *\", a. 1, and ¢ commands and associated input are permitted; the ‘.’ terminating input
mode may be omitted if it would be the last line of the command list. The (global) com-
mands (g, v. G, and V') are not¢ permitted in the command list.

(.)h ’ ’
The date as returned by dare(l) is appended after the addressed line.

()i

<text>
The /msert command inserts the given text before the addressed line. ‘." is left at the last
inserted line: or, if there were none, at the addressed line. This command differs from the a
command only in the placement of the input text.

(... +1)]
The join command joins contiguous lines by removing the appropriate new-line characters.

(.)kx
The mark command marks the addressed line with name x, which must be a lower-case
letter. The address form ‘"x' then addresses this line.

ED(I) PWB/UNIX Edition 1.0 ED (1)

(.,.)1
The /ist command prints the addressed lines in an unambiguous way: a few non-printing
characters (e.g., tab, backspace) are represented by (hopefully) mnemonic overstrikes, all
other non-printing characters are printed in octal, and long lines are folded. An / commuand
may also be appended to any other command.

(.,.)ma
The move command repositions the addressed line(s) after the line addressed by «. Address
‘0’ is legal for @ and causes the addressed line(s) to be moved to the beginning of the file; it
is an error if address a falls within the range of moved lines. The last line so moved
becomes the current line.

(...)p
The print command prints the addressed lines; *.” is left at the last line printed. The p com-
mand may be appended to any other command (e.g., ‘dp’ deletes the current line and prints
the new current line).

The guit command causes ed to exit. No automatic write of a file is donc.

($) r name
The read command reads in the given file after the addressed line. If no file name is given,
the remembered file name, if any, is used (see ¢ and fcommands). The remembered file
name is not changed unless name is the very first file name mentioned since ed was invoked.
Address ‘0’ is legal for r and causes the file to be read at the beginning of the buffer. If the
read is successful, the number of characters read is typed; ‘.’ is set to the last line read in.

(...)s/regular expression/replacement/ or,

(...)s/regular expression/replacement/g
The substitute command searches each addressed line for an occurrence of the specified reg-
ular expression. On each line in which a match is found, all (non-overiapped) matched
strings are replaced by the replacement if the global replacement indicator ‘g’ appears after
the command. If the global indicator does not appear, only the first occurrence of the
matched string is replaced. It is an error for the substitution to fail on all addressed lines.
Any character other than space or new-line may be used instead of ‘/° to delimit the reguiar
expression and the replacement; ©.’ is left at the last line on which a substitution occurred.

An ampersand ‘&’ appearing in the replacement is replaced by the string matching the regular
expression on the current line. The special meaning of “&’ in this context may be
suppressed by preceding it by ‘\’. As a more general feature, the characters *\n’, where nis
a digit, are replaced by the text matched by the n-th regular subexpression of the specified
regular expression enclosed between ‘\(’ and *\)’. When nested parenthesized subexpres-
sions are present, n is determined by counting occurrences of ‘\(’ starting from the left.

A line may be split by substituting a new-line character into it. The new-line in the replace-
ment must be escaped by preceding it by *\'. Such substitution cannot be done as part of a g
or v command list. ‘

(.,.)ta
This command acts just like the m command, except that a copy of the addressed lines is
placed after address a {which may be ‘0°); °.” is left at the last line of the copy.

This command reverses the effect of the last s command. The v command affects only the
last line changed by the most recent' s command.

ED (D) PWB/UNIX Edition 1.0 ED(D)

(1,8) v/regular expression/command list
This command is the same as the global command g except that the command list is executed
with *.” initially set to every line that does nor match the regular expression.

(1.$) w name

(1,8) z name
The write command writes the addressed lines onto the named file. If the file does not
exist, it is created with mode 644 (readable by everyone, writable by you). The remem-
bered file name is nor changed unless name is the very first file name mentioned since ed was
invoked. If no file-name is given, the remembered file name, if any, is used (see ¢ and f
commands); *.” is unchanged. If the command is successful, the number of characters writ-
ten is typed. The z command is identical to w but, on most keyboards, the ‘z’ key is farther
from the ‘q” key than is the ‘w’ key.

(1,8) G/regular expression/
In the interactive Global command, the first step is to mark every line that matches the
given regular expression. Then, for every such line, that line is printed, ‘." is changed to that
line, and any one command, other than a global command (g, v, G, and ¥), must be input.
After the execution of that command, the next marked line is printed, and so on. A new-

line acts as a null command; an ‘&’ causes the re-execution of the most recent command '

executed within this invocation of G. Note that the commands input after the G command
prints each marked line may address and affect any lines in the buffer. The G command can
be terminated by an interrupt signal (ASCIlI DEL or BREAK).

The editor will prompt with a **’ for all subsequent commands. This command alternately
turns the mode on and off;, it is initially off.

The editor exits without checking if changes have been made in the buffer since the last w
or z command.

(1,8) V/regular expression/
This command is the same as the interactive global command G except that the lines that
are marked during the first step are those that do not match the regular expression.

%)=
The line number of the addressed line is typed; ." is unchanged by this command.

' UNIX command
The remainder of the line after the *!” is sent to the UNIX shell (s#(1)) to be interpreted as a
command; *." is unchanged.

(.+1) <new-line>
An address alone on a line causes the addressed line to be printed. A blank line alone is
equivalent to “.+1p’; it is useful for stepping through text.

If an interrupt signal (ASCHl DEL or BREAK) is sent, ed prints a ‘?’ and returns to its command
level.

Some size limitations: 512 characters per line, 256 characters per global command list, 64 charac-
ters per file name, and 128K characters in the buffer. The limit on the number of lines depends
on the amount of user memory: each line takes 1 word.

Ed allows the user to include, in the first line of each text file, a specification to control the line
length and the tab-to-space conversion. For example, <:t5,10,15s72:> sets tabs at columns §,
10, and 15; it will also truncate the printing of all lines to a length of 72 characters and warn when
a truncation has occurred. For the specification to take effect, the user’s terminal must be in echo

PN

of

ED(I) PWB/UNIX Edition 1.0 ED (I)

and —rabs modes (see siy(I)). Only the ‘i’ and ‘s’ parameters may be used as described in
Sspec(V). If the ‘s’ parameter is used, all referenced lines are checked for maximum length on
file read and write operations and on line print operations. Appropriate diagnostics are generated.
Truncation occurs only on printing.

If the user attempts a w or zcommand and the destination file system does not have enough space
available, a diagnostic is printed with an error number (i.e. ‘“NO SPACE: el’”). Ed will not per-
form the write. The UnIX command ‘‘help el’* (see help(I)) prints out a full description of what
to do. Help should be executed before leaving the editor (e.g., ‘*'help el1™").

FILES :
/imp/e#, temporary; ‘#’ is the process number (in octal).

DIAGNOSTICS
*2” for errors in commands; ‘TMP?’ for temporary file (buffer) overflow; help(l) error numbers in
all other cases. Commands in error should be re-entered properly. On temporary file overflow,
the buffer should be written to a file and then an e command executed on that file. This will re-
initialize the buffer; note that if the buffer overflows during the execution of a command that, in
the absence of the TMP? diagnostic, would have done several changes, only some of the changes
may have been done. Help error messages are seif-explanatory.

SEE ALSO
A Tutoral Introduction 10 the UNix Text Editor by B. W. Kernighan.
Advanced Editing on UNix by B. W. Kernighan.

BUGS
If the s command succeeds on (i.e., modifies) a line that was marked by a g, v, G, or ¥ command,
then that mark is effectively removed. The editor deletes all AsCil null characters whenever it
reads text into the buffer.

EGREP (1) PWB/UNIX Edition 1.0 EGREP (1)

NAME

egrep — search a file for lines containing a pattern

SYNOPSIS

egrep{ =b] [=c][=f][=n][=v]pattern [file] ...

DESCRIPTION

egrep searches the input files (standard input default) for all lines containing an instance of the
regular expression pattern. Normally, each line matched is copied to the standard output. The
patrtern matches a line whenever the line contains a substring denoted by the partern.

The flags modify the normal behavior as follows:

—b causes each printed line to be preceded by the block number on which it was found
-¢ causes only a count of matching lines to be printed

-f causes the regular expression to come from a file named patrern

—n causes each printed line to be preceded by its relative line number in the file

—v causes all lines but those matching the pattern to be printed

In all cases the file name is shown if there is more than one input file.
A pattern is one of the following:

1. an ordinary character (denoting itself)

. acircumflex ‘> (denoting the beginning of a line)

2

3. adollar sign ‘$’ (denoting the end of a line)

4. a period ‘. (denoting any character but a newline)
S

‘[’ followed by a string of characters followed by ‘]’ (denoting any character in the string; if

the first character in this string is

, the pattern denotes any character except newline and the
characters in the string) :
6. ‘(followed by a pattern followed by ‘)’ (denoting the enclosed pattern)

7. a pattern followed by ‘*’, or by ‘+’, or by ‘?’ (denoting zero or more, one or more, or zero or
one instances, respectively, of the preceding pattern)

8. a pattern followed by a pattern (denoting concatenation of the two patterns)

9. a pattern followed by | followed by another pattern (denoting the alternation of the two pat-
terns); a newline may be used in place of .

In parsing a pattern, the rules are applied in the order given.

A pattern metacharacter can be used as an ordinary character by preceding it by ‘\'. The meta-
Characters are: (T3] ‘59 ‘ ? ‘[” s]’ T3] ‘+$ u)& c(’ ‘)5 6\

Care should be taken when using the characters $ * [“| () and \ in the regular expression as they
are also meaningful to the Shell. When pariern is a regular expression other than a simple string,
it is generally necessary to enclose the entire parfern argument in quotes.

SEE ALSO

BUGS

grep(D), fgrep(), lex(D), rgrep(D), sed(1), ed(I), sh(l)

Lines longer than 512 characters are not printed completely.

EQN(D) PWB/UNIX Edition 1.0 EQN (1)

NAME
eqn — typeset mathematics

SYNOPSIS
eqn [file] ...

DESCRIPTION
Eqgn is a 1roff{l) preprocessor for typesetting mathematics on the Graphics Systems, Inc. photo-
typesetter. Usage is almost always

eqn file ... | troff

If no files are specified, egn reads from the standard input. A line beginning with *“.EQ’’ marks
the start of an equation; the end of an equation is marked by a line beginning with "*.EN’". Nei-
ther of these lines is altered or defined by egn, so you can define them yourself in roff(l) to get
centering, numbering, etc. All other lines are treated as comments, and passed through
untouched.

Spaces, tabs, new-lines, braces, double quotes, tilde, and circumflex are the only delimiters.
Braces ‘*{}"’ are used for grouping. Use tildes *“™" to get extra spaces in an equation.

Subscripts and superscripts are produced with the keywords sub and sup. Thus x sub 1 makes x,, ¢
sub 1 sup 2 produces a2, and e sup {x sup 2 + y sup 2} gives e*****. Fractions are made with over.

. a . 1
a over bis — and / over sqrt {ax sup 2 +bx+c} is —======; sqrt makes square roots.
b Vax+bx+c

N
The keywords from and to introduce lower and upper limits on arbitrary things: lim Zx, is made

=00 0
with fim from {n-> inf sum from 0 1o n x sub i. Left and right brackets, braces, etc., of the right
height are made with left and right: left [x sup 2 + y sup 2 over alpha <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>