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Yacc: Yet Another Compiler-Compiler

Stephen C. Johnson

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Computer program input generally has some structure; in fact, every com-
puter program that does input.can be thought of as defining an ‘‘input
language’ which it accepts. An input language may be as complex as a pro-
gramming language, or as simple as a sequence of numbers. Unfortunately,
usual input facilities are limited, difficult to use, and often are lax about check-
ing their inputs for validity.

Yacc provides a general tool for describing the input to a computer pro-
gram. The Yacc user specifies the structures of his input, together with code to
be invoked as each such structure is recognized. Yacc turns such a specification
into a subroutine that handles the input process; frequently, it is convenient
and appropriate to have most of the flow of control in the user’s application
handled by this subroutine.

The input subroutine produced by Yacc calls a user-supplied routine to
return the next basic input item. Thus, the user can specify his input in terms
of individual input characters, or in terms of higher level constructs such as
names and numbers. The user-supplied routine may also handle idiomatic
features such as comment and continuation conventions, which typically defy
easy grammatical specification.

Yacc is written in portable C. The class of specifications accepted is a
very general one: LALR(1) grammars with disambiguating rules.

In addition to compilers for C, APL, Pascal, RATFOR, etc., Yacc has also
been used for less conventional languages, including a phototypesetter
language, several desk calculator languages, a document retrieval system, and a
Fortran debugging system.

July 31, 1978
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Yacc: Yet Another Compiler-Compiler

Stephen C. Johnson

Bell Laboratories
Murray Hill, New Jersey 07974

0: Introduction

Yacc provides a general tool for imposing structure on the input to a computer program.
The Yacc user prepares a specification of the input process; this includes rules describing the
input structure, code to be invoked when these rules are recognized, and a low-level routine to
do the basic input. Yacc then generates a function to control the input process. This function,
called a parser, calls the user-supplied low-level input routine (the lexical analyzer) to pick up
the basic items (called tokens) from the input stream. These tokens are organized according to
the input structure rules, called grammar rules; when one of these rules has been recognized,
then user code supplied for this rule, an acrion, is invoked; actions have the ability to return
values and make use of the values of other actions.

Yacc is written in a portable dialect of C! and the actions, and output subroutine, are in C
as well. Moreover, many of the syntactic conventions of Yacc follow C.

The heart of the input specification is a collection of grammar rules. Each rule describes
an allowable structure and gives it 2 name. For example, one grammar rule might be

date : month_name day ', year ;

Here, date, month_name, day, and year represent structures of interest in the input process;
presumably, month_name, day, and year are defined elsewhere. The comma ‘.’ is enclosed in
single quotes; this implies that the comma is to appear literally in the input. The colon and
semicolon merely serve as punctuation in the rule, and have no significance in controlling the

input. Thus, with proper definitions, the input
July 4, 1776

might be matched by the above rule.

An important part of the input process is carried out by the lexical analyzer. This user
routine reads the input stream, recognizing the lower level structures, and communicates these
tokens to the parser. For historical reasons, a structure recognized by the lexical analyzer is
called a rerminal symbol, while the structure recognized by the parser is called a nonterminal sym-
bol. To avoid confusion, terminal symbols will usually be referred to as tokens.

There is considerable leeway in deciding whether to recognize structures using the lexical
analyzer or grammar rules. For example, the rules

month_name : 'J 'a’ 'n’
month_name : 'F 'e" b’

9

v

month_name : ‘D" e" ¢’ ;

might be used in the above example. The lexical analyzer would only need to recognize indivi-
dual letters, and month_name would be a nonterminal symbol. Such low-level rules tend to
waste time and space, and may complicate the specification beyond Yacc’s ability to deal with it.
Usually, the lexical analyzer would recognize the month names, and return an indication that a

19-2
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month_name was seen; in this case, month_name would be a token.

Literal characters such as ‘‘,”” must also be passed through the lexical analyzer, and are
also considered tokens.

Specification files are very flexible. It is realively easy to add to the above example the
rule

date : month /" day '/’ year

allowing
7/471776

as a synonym for
July 4, 1776

In most cases, this new rule could be ‘‘slipped in’’ to a working system with minimal effort,
and little danger of disrupting existing input.

The input being read may not conform to the specifications. These input errors are
detected as early as is theoretically possible with a left-to-right scan; thus, not only is the
chance of reading and computing with bad input data substantially reduced, but the bad data
can usually be quickly found. Error handling, provided as part of the input specifications, per-

mits the reentry of bad data, or the continuation of the input process after skipping over the
bad data.

In some cases, Yacc fails to produce a parser when given a set of specifications. For
example, the specifications may be self contradictory, or they may require a more powerful
recognition mechanism than that available to Yacc. The former cases represent design errors;
the latter cases can often be corrected by making the lexical analyzer more powerful, or by
rewriting some of the grammar rules. While Yacc cannot handle all possible specifications, its
power compares favorably with similar systems; moreover, the constructions which are difficult
for Yacc to handle are also frequently difficult for human beings to handle. Some users have
reported that the discipline of formulating valid Yacc specifications for their input revealed
errors of conception or design early in the program development.

The theory underlying Yacc has been described elsewhere.2 3:4 Yacc has been extensively
used in numerous practical applications, including lint, the Portable C Compiler,® and a system
for typesetting mathematics.”

The next several sections describe the basic process of preparing a Yacc specification; Sec-
tion 1 describes the preparation of grammar rules, Section 2 the preparation of the user sup-
plied actions associated with these rules, and Section 3 the preparation of lexical analyzers. Sec-
tion 4 describes the operation of the parser. Section 5 discusses various reasons why Yacc may
be unable to produce a parser from a specification, and what to do about it. Section 6 describes
a simple mechanism for handling operator precedences in arithmetic expressions. Section 7
discusses error detection and recovery. Section 8 discusses the operating environment and spe-
cial features of the parsers Yacc produces. Section 9 gives some suggestions which should
improve the style and efficiency of the specifications. Section 10 discusses some advanced
topics, and Section 11 gives acknowledgements. Appendix A has a brief example, and Appen-
dix B gives a summary of the Yacc input syntax. Appendix C gives an example using some of
the more advanced features of Yacc, and, finally, Appendix D describes mechanisms and syntax
no longer actively supported, but provided for historical continuity with older versions of Yacc.

1: Basic Specifications

Names refer to either tokens or nonterminal symbols. Yacc requires token names to be
declared as such. In addition, for reasons discussed in Section 3, it is often desirable to include
the lexical analyzer as part of the specification file; it may be useful to include other programs
as well. Thus, every specification file consists of three sections: the declarations, (grammar)
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rules, and programs. The sections are separated by double percent ‘%%’ marks. (The percent
‘%’ is generally used in Yacc specifications as an escape character.)

In other words, a full specification file looks like
declarations
%%
rules

%%
programs

The declaration section may be empty. Moreover, if the programs section is omitted, the
second %% mark may be omitted also; thus, the smallest legal Yacc specification is
%%
rules

Blanks, tabs, and newlines are ignored except that they may not appear in names or
multi-character reserved symbols. Comments may appear wherever a name is legal; they are
enclosed in /+ . .. +/, as in C and PL/L

The rules section is made up of one or more grammar rules. A grammar rule has the
form:
A : BODY ;
A represents a nonterminal name, and BODY represents a sequence of zero or more names and
literals. The colon and the semicolon are Yacc punctuation.
(X302

Names may be of arbitrary length, and may be made up of letters, dot ‘‘.”’, underscore
¢ and non-initial digits. Upper and lower case letters are distinct. The names used in the
body of a grammar rule may represent tokens or nonterminal symbols.

A literal consists of a character enclosed in single quotes “*’. As in C, the backslash “\”’
is an escape character within literals, and all the C escapes are recognized. Thus

\n’ newline

\r’ return

\” single quote "’
A\ backslash ““\”*
A\t tab

\b’ backspace
\f form feed
\xxx” “xxx’’ in octal

For a number of technical reasons, the NUL character (\0" or 0) should never be used in gram-
mar rules.

If there are several grammar rules with the same left hand side, the vertical bar can
be used to avoid rewriting the left hand side. In addition, the semicolon at the end of a rule
can be dropped before a vertical bar. Thus the grammar rules

66]”

A : BCD ;
A : EF ;
A : G

can be given to Yacc as
A

CD
F

QOmw
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It is not necessary that all grammar rules with the same left side appear together in the gram-
mar rules section, although it makes the input much more readable, and easier to change.

If a nonterminal symbol matches the empty string, this can be indicated in the obvious
way:

empty @

Names representing tokens must be declared; this is most simply done by writing

%token namel name2 ...

in the declarations section. (See Sections 3 , 5, and 6 for much more discussion). Every name
not defined in the declarations section is assumed to represent a nonterminal symbol. Every
nonterminal symbol must appear on the left side of at least one rule.

Of all the nonterminal symbols, one, called the start symbol, has particular importance.
The parser is designed to recognize the start symbol; thus, this symbol represents the largest,
most general structure described by the grammar rules. By default, the start symbol is taken to
be the left hand side of the first grammar rule in the rules section. It is possible, and in fact

desirable, to declare the start symbol explicitly in the declarations section using the %start key-
word:

Y%start symbol

The end of the input to the parser is signaled by a special token, called the endmarker. If
the tokens up to, but not including, the endmarker form a structure which matches the start
symbol, the parser function returns to its caller after the endmarker is seen; it accepts the input.
If the endmarker is seen in any other context, it is an error.

It is the job of the user-supplied lexical analyzer to return the endmarker when appropri-
ate; see section 3, below. Usually the endmarker represents some reasonably obvious I/0
status, such as ‘‘end-of-file’’ or ‘‘end-of-record’’.

2: Actions

With each grammar rule, the user may associate actions to be performed each time the
rule is recognized in the input process. These actions may return values, and may obtain the
values returned by previous actions. Moreover, the lexical analyzer can return values for
tokens, if desired.

An action is an arbitrary C statement, and as such can do input and output, call subpro-
grams, and alter external vectors and variables. An action is specified by one or more state-
ments, enclosed in curly braces *‘{”’ and *‘}>’. For example,

A : B
{ hello( 1, "abc” ); )
and
XXX YYY Z7Z7Z
{ printf("a message\n");

flag = 25; |
are grammar rules with actions.

To facilitate easy communication between the actions and the parser, the action state-
ments are altered slightly. The symbol ‘‘dollar sign’ “‘$”” is used as a signal to Yacc in this
context.

To return a value, the action normally sets the pseudo-variable ‘$3’’ to some value. For
example, an action that does nothing but return the value 1 is
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{83 =1; }

To obtain the values returned by previous actions and the lexical analyzer, the action may
use the pseudo-variables $1, $2, . . ., which refer to the values returned by the components of
the right side of a rule, reading from left to right. Thus, if the rule is

A : BCD ;
for example, then $2 has the value returned by C, and $3 the value returned by D.
As a more concrete example, consider the rule
expr (¢ expr )
The value returned by this rule is usually the value of the expr in parentheses. This can be
indicated by
expr (" expr ) (88 =192, })

By default, the value of a rule is the value of the first element in it ($1). Thus, grammar
rules of the form

A : B
frequently need not have an explicit action.

In the examples above, all the actions came at the end of their rules. Sometimes, it is
desirable to get control before a rule is fully parsed. Yacc permits an action to be written in the
middle of a rule as well as at the end. This rule is assumed to return a value, accessible
through the usual mechanism by the actions to the right of it. In turn, it may access the values
returned by the symbols to its left. Thus, in the rule

A : B
{88 =1}
C
{ x =82, y=83 }
the effect is to set xto 1, and y to the value returned by C.

Actions that do not terminate a rule are actually handled by Yacc by manufacturing a new
nonterminal symbol name, and a new rule matching this name to the empty string. The inte-
rior action is the action triggered off by recognizing this added rule. Yacc actually treats the
above example as if it had been written:

SACT /* empty »/
{83 =1; }
A : B SACT C

{ x =82, y=283 )
In many applications, output is not done directly by the actions; rather, a data structure,
such as a parse tree, is constructed in memory, and transformations are applied to it before out-
put is generated. Parse trees are particularly easy to construct, given routines to build and

maintain the tree structure desired. For example, suppose there is a C function node, written
so that the call

node( L, nl, n2)

creates a node with label L, and descendants nl and n2, and returns the index of the newly
created node. Then parse tree can be built by supplying actions such as:
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expr expr “+° expr
{ $% = node( "+, $1, $3); }
in the specification.

The user may define other variables to be used by the actions. Declarations and
definitions can appear in the declarations section, enclosed in the marks “%{”’ and “‘%)}”.
These declarations and definitions have global scope, so they are known to the action state-
ments and the lexical analyzer. For example,

%{ int variable = 0; %]}

could be placed in the declarations section, making variable accessible to all of the actions. The
Yacc parser uses only names beginning in ‘‘yy’’; the user should avoid such names.

In these examples, all the values are integers: a discussion of values of other types will be

‘found in Section 10.

3: Lexical Analysis

The user must supply a lexical analyzer to read the input stream and communicate tokens
(with values, if desired) to the parser. The lexical analyzer is an integer-valued function called
yylex. The function returns an integer, the token number, representing the kind of token read.

If there is a value associated with that token, it should be assigned to the external variable yyl/-
val.

The parser and the lexical analyzer must agree on these token numbers in order for com-
munication between them to take place. The numbers may be chosen by Yacc, or chosen by
the user. In either case, the ‘‘# define’’ mechanism of C is used to allow the lexical analyzer
to return these numbers symbolically. For example, suppose that the token name DIGIT has
been defined in the declarations section of the Yacc specification file. The relevant portion of
the lexical analyzer might look like:

yylex O {
extern int yylval;
int c;

‘c'=.= getchar();
.sv.vi.tch( c){

case 0"
case '1":

case '9":
yylval = ¢—="0";
return( DIGIT );

3

The intent is to return a token number of DIGIT, and a value equal to the numerical
value of the digit. Provided that the lexical analyzer code is placed in the programs section of
the specification file, the identifier DIGIT will be defined as the token number associated with
the token DIGIT.

This mechanism leads to clear, easily modified lexical analyzers; the only pitfall is the
need to avoid using any token names in the grammar that are reserved or significant in C or the
parser; for example, the use of token names {f or while will almost certainly cause severe
difficulties when the lexical analyzer is compiled. The token name error is reserved for error
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handling, and should not be used naively (see Section 7).

As mentioned above, the token numbers may be chosen by Yacc or by the user. In the
‘default situation, the numbers are chosen by Yacc. The default token number for a literal char-
acter is the numerical value of the character in the local character set. Other names are
assigned token numbers starting at 257.

To assign a token number to a token (including literals), the first appearance of the token
name or literal in the declarations section can be immediately followed by a nonnegative integer.
This integer is taken to be the token number of the name or literal. Names and literals not
defined by this mechanism retain their default definition. It is important that all token numbers
be distinct.

For historical reasons, the endmarker must have token number 0 or negative. This token
number cannot be redefined by the user; thus, all lexical analyzers should be prepared to return
0 or negative as a token number upon reaching the end of their input.

A very useful tool for constructing lexical analyzers is the Lex program developed by
Mike Lesk.8 These lexical analyzers are designed to work in close harmony with Yacc parsers.
The specifications for these lexical analyzers use regular expressions instead of grammar rules.
Lex can be easily used to produce quite complicated lexical analyzers, but there remain some
languages (such as FORTRAN) which do not fit any theoretical framework, and whose lexical
analyzers must be crafted by hand.

4: How the Parser Works

Yacc turns the specification file into a C program, which parses the input according to the
specification given. The algorithm used to go from the specification to the parser is complex,
and will not be discussed here (see the references for more information). The parser itself,
however, is relatively simple, and understanding how it works, while not strictly necessary, will
nevertheless make treatment of error recovery and ambiguities much more comprehensible.

The parser produced by Yacc consists of a finite state machine with a stack. The parser is
also capable of reading and remembering the next input token (called the lookahead token).
The current state is always the one on the top of the stack. The states of the finite state
machine are given small integer labels; initially, the machine is in state 0, the stack contains
only state 0, and no lookahead token has been read.

The machine has only four actions available to it, called shift, reduce, accept, and error. A
move of the parser is done as follows:

1. Based on its current state, the parser decides whether it needs a lookahead token to decide
what action should be done; if it needs one, and does not have one, it calls yylex to obtain
the next token.

2. Using the current state, and the lookahead token if needed, the parser decides on its next
action, and carries it out. This may result in states being pushed onto the stack, or
popped off of the stack, and in the lookahead token being processed or left alone.

The shift action is the most common action the parser takes. Whenever a shift action is
taken, there is always a lookahead token. For example, in state 56 there may be an action:

IF shift 34

which says, in state 56, if the lookahead token is IF, the current state (56) is pushed down on
the stack, and state 34 becomes the current state (on the top of the stack). The lookahead
token is cleared.

The reduce action keeps the stack from growing without bounds. Reduce actions are
appropriate when the parser has seen the right hand side of a grammar rule, and is prepared to
announce that it has seen an instance of the rule, replacing the right hand side by the left hand
side. It may be necessary to consult the lookahead token to decide whether to reduce, but usu-
ally it is not; in fact, the default action (represented by a *‘.”’) is often a reduce action.
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Reduce actions are associated with individual grammar rules. Grammar rules are also
given small integer numbers, leading to some confusion. The action

reduce 18
refers to grammar rule 18, while the action
IF shift 34
refers to state 34.
Suppose the rule being reduced is

A : Xyz ;

The reduce action depends on the left hand symbol (A in this case), and the number of sym-
bols on the right hand side (three in this case). To reduce, first pop off the top three states
from the stack (In general, the number of states popped equals the number of symbols on the
right side of the rule). In effect, these states were the ones put on the stack while recognizing
x, ¥, and z and no longer serve any useful purpose. After popping these states, a state is
uncovered which was the state the parser was in before beginning to process the rule. Using
this uncovered state, and the symbol on the left side of the rule, perform what is in effect a
shift of A. A new state is obtained, pushed onto the stack, and parsing continues. There are
significant differences between the processing of the left hand symbol and an ordinary shift of a
token, however, so this action is called a goto action. In particular, the lookahead token is

cleared by a shift, and is not affected by a goto. In any case, the uncovered state contains an
entry such as:

A goto 20

causing state 20 to be pushed onto the stack, and become the current state.

In effect, the reduce action ‘‘turns back the clock’ in the parse, popping the states off the
stack to go back to the state where the right hand side of the rule was first seen. The parser
then behaves as if it had seen the left side at that time. If the right hand side of the rule is
empty, no states are popped off of the stack: the uncovered state is in fact the current state.

The reduce action is also important in the treatment of user-supplied actions and values.
When a rule is reduced, the code supplied with the rule is executed before the stack is adjusted.
In addition to the stack holding the states, another stack, running in parallel with it, holds the
values returned from the lexical analyzer and the actions. When a shift takes place, the exter-
nal variable yylval is copied onto the value stack. After the return from the user code, the
reduction is carried out. When the goto action is done, the external variable yyval is copled
onto the value stack. The pseudo-variables $1, $2, etc., refer to the value stack.

The other two parser actions are conceptually much simpler. The accept action indicates
that the entire input has been seen and that it matches the specification. This action appears
only when the lookahead token is the endmarker, and indicates that the parser has successfully
done its job. The error action, on the other hand, represents a place where the parser can no
longer continue parsing according to the specification. The input tokens it has seen, together
with the lookahead token, cannot be followed by anything that would result in a legal input.
The parser reports an error, and attempts to recover the situation and resume parsing: the error
recovery (as opposed to the detection of error) will be covered in Section 7.

It is time for an example! Consider the specification
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%token DING DONG DELL

%%

rhyme : sound place
sound - DING DONG
place - DELL

’

When Yacc is invoked with the —v option, a file called y.output is produced, with a
human-readable description of the parser. The y.outpur file corresponding to the above gram-
mar (with some statistics stripped off the end) is:
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state 0
$accept : _rhyme S$end

DING shift 3
. error

rhyme goto 1
sound goto 2

state 1
$accept : rhyme_S$end

$end accept
. error

state 2
rthyme : sound_place

DELL shift §
. error

place goto 4

state 3
sound : DING_DONG

DONG shift 6
. error

state 4
thyme : sound place_ (1)

reduce 1

state 5
place : DELL_ (3)

reduce 3

state 6
sound : DING DONG_ (2)

reduce 2

Notice that, in addition to the actions for each state, there is a description of the parsing rules
being processed in each state. The _ character is used to indicate what has been seen, and what
is yet to come, in each rule. Suppose the input is

DING DONG DELL

It is instructive to follow the steps of the parser while processing this input.

Initially, the current state is state 0. The parser needs to refer to the input in order to
decide between the actions available in state 0, so the first token, DING, is read, becoming the
lookahead token. The action in state 0 on DING is is ‘‘shift 3", so state 3 is pushed onto the
stack, and the lookahead token is cleared. State 3 becomes the current state. The next token,
DONG, is read, becoming the lookahead token. The action in state 3 on the token DONG is
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“‘shift 6°°, so state 6 is pushed onto the stack, and the lookahead is cleared. The stack now
contains 0, 3, and 6. In state 6, without even consulting the lookahead, the parser reduces by
rule 2.

sound : DING DONG

This rule has two symbols on the right hand side, so two states, 6 and 3, are popped off of the
stack, uncovering state 0. Consulting the description of state 0, looking for a goto on sound,

sound goto 2

is obtained; thus state 2 is pushed onto the stack, becoming the current state.

In state 2, the next token, DELL, must be read. The action is ‘‘shift 5°°, so state S is
pushed onto the stack, which now has 0, 2, and 5 on it, and the lookahead token is cleared. In
state 5, the only action is to reduce by rule 3. This has one symbol on the right hand side, so
one state, 5, is popped off, and state 2 is uncovered. The goto in state 2 on place, the left side
of rule 3, is state 4. Now, the stack contains 0, 2, and 4. In state 4, the only action is to
reduce by rule 1. There are two symbols on the right, so the top two states are popped off,
uncovering state 0 again. In state O, there is a goto on rhyme causing the parser to enter state
1. In state 1, the input is read; the endmarker is obtained, indicated by ‘‘$end”’ in the y.output
file. The action in state 1 when the endmarker is seen is to accept, successfully- ending the
parse.

The reader is urged to consider how the parser works when confronted with such incorrect
strings as DING DONG DONG, DING DONG, DING DONG DELL DELL, etc. A few minutes
spend with this and other simple examples will probably be repaid when problems arise in more
complicated contexts.

5: Ambiguity and Conflicts

A set of grammar rules is ambiguous if there is some input string that can be structured in
two or more different ways. For example, the grammar rule

expr . expr — " expr

is a natural way of expressing the fact that one way of forming an arithmetic expression is to
put two other expressions together with a minus sign between them. Unfortunately, this gram-
mar rule does not completely specify the way that all complex inputs should be structured. For
example, if the input is

expr — expr — expr
the rule allows this input to be structured as either
( expr — expr ) — expr
or as
expr — ( expr — expr )

(The first is called left association, the second right association).

Yacc detects such ambiguities when it is attempting to build the parser. It is instructive to
consider the problem that confronts the parser when it is given an input such as

expr — expr — expr
When the parser has read the second expr, the input that it has seen:
expr — expr

matches the right side of the grammar rule above. The parser could reduce the input by apply-
ing this rule; after applying the rule; the input is reduced to expr(the left side of the rule). The
parser would then read the final part of the input:
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— expr

and again reduce. The effect of this is to take the left associative interpretation.
Alternatively, when the parser has seen

expr — expr

it could defer the immediate application of the rule, and continue reading the input until it had
seen

expr — expr — expr
It could then apply the rule to the rightmost three symbols, reducing them to expr and leaving

expr — expr

Now the rule can be reduced once more; the effect is to take the right associative interpreta-
tion. Thus, having read

expr — expr

the parser can do two legal things, a shift or a reduction, and has no way of deciding between
them. This is called a shift / reduce conflict. It may also happen that the parser has a choice of

two legal reductions; this is called a reduce / reduce conflict. Note that there are never any
““Shift/shift”’ conflicts.

When there are shift/reduce or reduce/reduce conflicts, Yacc still produces a parser. It
does this by selecting one of the valid steps wherever it has a choice. A rule describing which
choice to make in a given situation is called a disambiguating rule.

Yacc invokes two disambiguating rules by default:
In a shift/reduce conflict, the default is to do the shift.

2. In a reduce/reduce conflict, the default is to reduce by the earlier grammar rule (in the
input sequence).

Rule 1 implies that reductions are deferred whenever there is a choice, in favor of shifts.
Rule 2 gives the user rather crude control over the behavior of the parser in this situation, but
reduce/reduce conflicts should be avoided whenever possible.

Conflicts may arise because of mistakes in input or logic, or because the grammar rules,
while consistent, require a more complex parser than Yacc can construct. The use of actions
within rules can also cause conflicts, if the action must be done before the parser can be sure
which rule is being recognized. In these cases, the application of disambiguating rules is inap-
propriate, and leads to an incorrect parser. For this reason, Yacc always reports the number of
shift/reduce and reduce/reduce conflicts resolved by Rule 1 and Rule 2.

In general, whenever it is possible to apply disambiguating rules to produce a correct
parser, it is also possible to rewrite the grammar rules so that the same inputs are read but
there are no conflicts. For this reason, most previous parser generators have considered
conflicts to be fatal errors. Our experience has suggested that this rewriting is somewhat unna-
tural, and produces slower parsers; thus, Yacc will produce parsers even in the presence of
conflicts.

As an example of the power of disambiguating rules, consider a fragment from a program-
ming language involving an “‘if-then-else’’ construction:

stat : IF "( cond ') stat
| IF (" cond °)" stat ELSE stat
In these rules, /F and ELSE are tokens, cond is a nonterminal symbol describing conditional

(logical) expressions, and stat is a nonterminal symbol describing statements. The first rule will
be called the simple-if rule, and the second the if-else rule.
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These two rules form an ambiguous construction, since input of the form
IF (Cl ) IF ( C2) S1 ELSE S2
can be structured according to these rules in two ways:

IF ( C1) {
IF ( C2 ) S1

)
ELSE S2

or

IF (C1) ¢
IF ( C2) Si
ELSE S2
}

The second interpretation is the one given in most programming languages having this con-
struct. Each ELSEis associated with the last preceding “‘un-ELSE'd’’ [F. In this example, con-
sider the situation where the parser has seen

IF (C1)IF (C2) S1
and is looking at the ELSE. It can immediately reduce by the simple-if rule to get
IF ( C1 ) stat
and then read the remaining input,
ELSE S2
and reduce
IF ( C1 ) stat ELSE S2

by the if-else rule. This leads to the first of the above groupings of the input.’
On the other hand, the ELSE may be shifted, S2 read, and then the right hand portion of
IF (Cl ) IF ( C2) S1 ELSE 82
can be reduced by the if-else rule to get
IF ( C1 ) stat
which can be reduced by the simple-if rule. This leads to the secand of the above groupings of
the input, which is usually desired.

Once again the parser can do two valid things — there is a shift/reduce conflict. The
application of disambiguating ruie 1 tells the parser to shift in this case, which leads to the
desired grouping.

This shift/reduce conflict arises only when there is a particular current input symbol,
ELSF, and particular inputs already seen, such as

IF (C1)IF (C2) SI

In general, there may be many conflicts, and each one will be associated with an input symbol
and a set of previously read inputs. The previously read inputs are characterized by the state of
the parser.

The conflict messages of Yacc are best understood by examining the verbose (=~v) option
output file. For example, the output corresponding to the above conflict state might be:
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23: shift/reduce conflict (shift 45, reduce 18) on ELSE

state 23

stat : IF ( cond ) stat_ (18)
stat : IF ( cond ) stat ELSE stat

ELSE  shift 45
reduce 18

The first line describes the conflict, giving the state and the input symbol. The ordinary state
description follows, giving the grammar rules active in the state, and the parser actions. Recall
that the underline marks the portion of the grammar rules which has been seen. Thus in the
example, in state 23 the parser has seen input corresponding to

IF ( cond ) stat

and the two grammar rules shown are active at this time. The parser can do two possible

things. If the input symbol is ELSE, it is possible to shift into state 45. State 45 will have, as
part of its description, the line

stat : IF ( cond ) stat ELSE stat

since the ELSE will have been shifted in this state. Back in state 23, the alternative action,
described by ‘“.”’, is to be done if the input symbol is not mentioned explicitly in the above

actions; thus, in this case, if the input symbol is not ELSE, the parser reduces by grammar rule
18:

stat : IF (" cond ")" stat

Once again, notice that the numbers following ‘‘shift”” commands refer to other states, while
the numbers following ‘‘reduce’ commands refer to grammar rule numbers. In the y.outpur
file, the rule numbers are printed after those rules which can be reduced. In most one states,
there will be at most reduce action possible in the state, and this will be the default command.
The user who encounters unexpected shift/reduce conflicts will probably want to look at the
verbose output to decide whether the default actions are appropriate. In really tough cases, the
user might need to know more about the behavior and construction of the parser than can be
covered here. In this case, one of the theoretical references? 3:4 might be consulted; the ser-
vices of a local guru might also be appropriate.

6: Precedence

There is one common situation where the rules given above for resolving conflicts are not
sufficient; this is in the parsing of arithmetic expressions. Most of the commonly used con-
structions for arithmetic expressions can be naturally described by the notion of precedence lev-
els for operators, together with information about left or right associativity. It turns out that
ambiguous grammars with appropriate disambiguating rules can be used to create parsers that
are faster and easier to write than parsers constructed from unambiguous grammars. The basic
notion is to write grammar rules of the form

expr : expr OP expr
and
expr : UNARY expr

for all binary and unary operators desired. This creates a very ambiguous grammar, with many
parsing conflicts. As disambiguating rules, the user specifies the precedence, or binding
strength, of all the operators, and the associativity of the binary operators. This information is
sufficient to allow Yacc to resolve the parsing conflicts in accordance with these rules, and
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construct a parser that realizes the desired precedences and associativities.

The precedences and associativities are attached to tokens in the declarations section.
This is done by a series of lines beginning with a Yacc keyword: %Ileft, %right, or %nonassoc,
followed by a list of tokens. All of the tokens on the same line are assumed to have the same
precedence level and associativity; the lines are listed in order of increasing precedence or bind-
ing strength. Thus,

Y%left "+ "—’
%left = /"

describes the precedence and associativity of the four arithmetic operators. Plus and minus are
left associative, and have lower precedence than star and slash, which are also left associative.
The keyword %right is used to describe right associative operators, and the keyword %nonassoc
is used to describe operators, like the operator .LT. in Fortran, that may not associate with
themselves; thus,

A LT. B LT. C

is illegal in Fortran, and such an operator would be described with the keyword %nonassoc in
Yacc. As an example of the behavior of these declarations, the description

%right "=’ ’
%left "+ "=’
%left = "/

%%

expr expr =" expr
| expr 4+ expr
| expr ‘—  expr
! expr '+ expr
] expr '/ expr
| NAME

b

might be used to structure the input
a = b = c«d — e — f*g
as follows:
a= (b= ((ced)—e) — (f+g) ))

When this mechanism is used, unary operators must, in general, be given a precedence. Some-
times a unary operator and a binary operator have the same symbolic representation, but
different precedences. An example is unary and binary "—";, unary minus may be given the
same strength as multiplication, or even higher, while binary minus has a lower strength than
multiplication. The keyword, %prec, changes the precedence level associated with a particular
grammar rule. %prec appears immediately after the body of the grammar rule, before the
action or closing semicolon, and is followed by a token name or literal. It causes the pre-
cedence of the grammar rule to become that of the following token name or literal. For exam-
ple, to make unary minus have the same precedence as multiplication the rules might resemble:
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%left "+ "'

%left " "/

%%

expr expr “+° expr

[ expr ‘—' expr

! expr '+ expr

I expr '/° expr

I "—" expr Y%prec '+
l NAME

9

A token declared by %left, %right, and %nonassoc need not be, but may be, declared by
%token as well.

The precedences and associativities are used by Yacc to resolve parsing conflicts; they give
rise to disambiguating rules. Formally, the rules work as follows:

1. The precedences and associativities are recorded for those tokens and literals that have
them.

2. A precedence and associativity is associated with each grammar rule; it is the precedence
and associativity of the last token or literal in the body of the rule. If the %prec construc-

tion is used, it overrides this default. Some grammar rules may have no precedence and
associativity associated with them.

3.  When there is a reduce/reduce conflict, or there is a shift/reduce conflict and either the
input symbol or the grammar rule has no precedence and associativity, then the two

disambiguating rules given at the beginning of the section are used, and the conflicts are
reported.

4.  If there is a shift/reduce conflict, and both the grammar rule and the input character have
precedence and associativity associated with them, then the conflict is resolved in favor of
the action (shift or reduce) associated with the higher precedence. If the precedences are
the same, then the associativity is used; left associative implies reduce, right associative
implies shift, and nonassociating implies error.

Conflicts resolved by precedence are not counted in the number of shift/reduce and
reduce/reduce conflicts reported by Yacc. This means that mistakes in the specification of pre-
cedences may disguise errors in the input grammar; it is a good idea to be sparing with pre-
cedences, and use them in an essentially ‘‘cookbook’’ fashion, until some experience has been
gained. The y.output file is very useful in deciding whether the parser is actually doing what was
intended.

7: Error Handling

Error handling is an extremely difficult area, and many of the problems are semantic ones.
When an error is found, for example, it may be necessary to reclaim parse tree storage, delete
or alter symbol table entries, and, typically, set switches to avoid generating any further output.

It is seldom acceptable to stop all processing when an error is found; it is more useful to
continue scanning the input to find further syntax errors. This leads to the problem of getting
the parser ‘‘restarted’’ after an error. A general class of algorithms to do this involves discard-
ing a number of tokens from the input string, and attempting to adjust the parser so that input
can continue.

To allow the user some control over this process, Yacc provides a simple, but reasonably
general, feature. The token name ‘“‘error’’ is reserved for error handling. This name can be
used in grammar rules; in effect, it suggests places where errors are expected, and recovery
might take place. The parser pops its stack until it enters a state where the token “‘error” is
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legal. It then behaves as if the token ‘‘error’” were the current lookahead token, and performs
the action encountered. The lookahead token is then reset to the token that caused the error.
If no special error rules have been specified, the processing halts when an error is detected.

In order to prevent a cascade of error messages, the parser, after detecting an error,
remains in error state until three tokens have been successfully read and shifted. If an error is
detected when the parser is already in error state, no message is given, and the input token is
quietly deleted.

As an example, a rule of the form
stat : error

would, in effect, mean that on a syntax error the parser would attempt to skip over the state-
ment in which the error was seen. More precisely, the parser will scan ahead, looking for three
tokens that might legally follow a statement, and start processing at the first of these; if the
beginnings of statements are not sufficiently distinctive, it may make a false start in the middle
of a statement, and end up reporting a second error where there is in fact no error.

Actions may be used with these special error rules. These actions might attempt to reini-
tialize tables, reclaim symbol table space, etc.

Error rules such as the above are very general, but difficult to control. Somewhat easier
are rules such as '

stat : error

Here, when there is an error, the parser attempts to skip over the statement, but will do so by
skipping to the next ;. All tokens after the error and before the next ;" cannot be shifted, and
are discarded. When the ;" is seen, this rule will be reduced, and any ‘‘cleanup’’ action associ-
ated with it performed.

Another form of error rule arises in interactive applications, where it may be desirable to
permit a line to be reentered after an error. A possible error rule might be

input error ‘\n" { printf( "Reenter last line: " ); } input
{ 88 = $4; |

There is one potential difficulty with this approach; the parser must correctly process three
input tokens before it admits that it has correctly resynchronized after the error. If the reen-
tered line contains an error in the first two tokens, the parser deletes the offending tokens, and
gives no message; this is clearly unacceptable. For this reason, there is a mechanism that can
be used to force the parser to believe that an error has been fully recovered from. The state-
ment

yyerrok ;
in an action resets the parser to its normal mode. The last example is better written
input error \n’
{ yyerrok;
printf( "Reenter last line: " ); }
input
{ 88 = $4; |

5
As mentioned above, the token seen immediately after the ‘‘error’’ symbol is the input
token at which the error was discovered. Sometimes, this is inappropriate; for example, an
error recovery action might take upon itself the job of finding the correct place to resume input.
In this case, the previous lookahead token must be cleared. The statement
yyclearin |

in an action will have this effect. For example, suppose the action after error were to call some
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sophisticated resynchronization routine, supplied by the user, that attempted to advance the
input to the beginning of the next valid statement. After this routine was called, the next
token returned by yylex would presumably be the first token in a legal statement; the old, ille-
gal token must be discarded, and the error state reset. This could be done by a rule like

stat : error
{ resynch();
yyerrok ;
yyclearin ; }

h

These mechanisms are admittedly crude, but do allow for a simple, fairly effective
recovery of the parser from many errors, moreover, the user can get control to deal with the
error actions required by other portions of the program.

8: The Yacc Environment

When the user inputs a specification to Yacc, the output is a file of C programs, called
y.tab.c on most systems (due to local file system conventions, the names may differ from instal-
lation to installation). The function produced by Yacc is called yyparse; it is an integer valued
function. When it is called, it in turn repeatedly calls yylex, the lexical analyzer supplied by the
user (see Section 3) to obtain input tokens. Eventually, either an error is detected, in which
case (if no error recovery is possible) yyparse returns the value 1, or the lexical analyzer returns
the endmarker token and the parser accepts. In this case, yyparse returns the value 0.

The user must provide a certain amount of environment for this parser in order to obtain
a working program. For example, as with every C program, a program called main must be
defined, that eventually calls yyparse. In addition, a routine called yyerror prints a message
when a syntax error is detected.

These two routines must be supplied in one form or another by the user. To ease the ini-
tial effort of using Yacc, a library has been provided with default versions of main and yyerror.
The name of this library is system dependent; on many systems the library is accessed by a —ly
argument to the loader. To show the triviality of these default programs, the source is given
below:

main(){
return( yyparse () );

and

# include <stdio.h>

yyerror(s) char =s; {
fprintf( stderr, "%s\n", s );

The argument to yyerror is a string containing an error message, usually the string ‘‘syntax
error”’. The average application will want to do better than this. Ordinarily, the program
should keep track of the input line number, and print it along with the message when a syntax
error is detected. The external integer variable yychar contains the lookahead token number at
the time the error was detected; this may be of some interest in giving better diagnostics. Since
the main program is probably supplied by the user (to read arguments, etc.) the Yacc library is
useful only in small projects, or in the earliest stages of larger ones.

The external integer variable yydebug is normally set to 0. If it is set to a nonzero value,
the parser will output a verbose description of its actions, including a discussion of which input
symbols have been read, and what the parser actions are. Depending on the operating environ-
ment, it may be possible to set this variable by using a debugging system.



19-20

9: Hints for Preparing Specifications

This section contains miscellaneous hints on preparing efficient, easy to change, and clear
specifications. The individual subsections are more or less independent.

Input Style

It is difficult to provide rules with substantial actions and still have a readable specification
file. The following style hints owe much to Brian Kernighan.

a. Use all capital letters for token names, all lower case letters for nonterminal names. This
rule comes under the heading of ‘‘knowing who to blame when things go wrong.”’

b.  Put grammar rules and actions on separate lines. This allows either to be changed without
an automatic need to change the other.

c. Put all rules with the same left hand side together. Put the left hand side in only once,
and let all following rules begin with a vertical bar.

d.  Put a semicolon only after the last rule with a given left hand side, and put the semicolon
on a separate line. This allows new rules to be easily added.

e. Indent rule bodies by two tab stops, and action bodies by three tab stops.

The example in Appendix A is written following this style, as are the examples in the text
of this paper (where space permits). The user must make up his own mind about these stylistic
questions; the central problem, however, is to make the rules visible through the morass of
action code.

Left Recursion
The algorithm used by the Yacc parser encourages so called ‘‘left recursive’ grammar
rules: rules of the form
name name rest of rule ;
These rules frequently arise when writing specifications of sequences and lists:

list : item
[ list °,” item

;and
seq : item
| seq item
In each of these cases, the first rule will be reduced for the first item only, and the second rule
will be reduced for the second and all succeeding items.
With right recursive rules, such as
seq : item
| item seq
the parser would be a bit bigger, and the items would be seen, and reduced, from right to left.

More seriously, an internal stack in the parser would be in danger of overflowing if a very long
sequence were read. Thus, the user should use left recursion wherever reasonable.

It is worth considering whether a sequence with zero elements has any meaning, and if so,
consider writing the sequence specification with an empty rule:
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seq : /* empty *+/
| seq item
Once again, the first rule would always be reduced exactly once, before the first item was read,
and then the second rule would be reduced once for each item read. Permitting empty

sequences often leads to increased generality. However, conflicts might arise if Yacc is asked to
decide which empty sequence it has seen, when it hasn’t seen enough to know!

Lexical Tie-ins

Some lexical decisions depend on context. For example, the lexical analyzer might want
to delete blanks normally, but not within quoted strings. Or names might be entered into a
symbol table in declarations, but not in expressions.

One way of handling this situation is to create a global flag that is examined by the lexical
analyzer, and set by actions. For example, suppose a program consists of 0 or more declara-
tions, followed by 0 or more statements. Consider:

%/{
int dflag;
%]
. other declarations ...
%%
prog decls stats
decls /+ empty */
{ dflag = 1; }
| decls declaration
stats /+ empty */

{ dflag = 0; }
| stats statement

. other rules ...

The flag dflag is now 0 when reading statements, and 1 when reading declarations, except for the
first token in the first statement. This token must be seen by the parser before it can tell that the
declaration section has ended and the statements have begun. In many cases, this single token
exception does not affect the lexical scan.

This kind of ‘‘backdoor’ approach can be elaborated to a noxious degree. Nevertheless,
it represents a way of doing some things that are difficult, if not impossible, to do otherwise.

Reserved Words

Some programming languages permit the user to use words like “‘if”’, which are normally
reserved, as label or variable names, provided that such use does not conflict with the legal use
of these names in the programming language. This is extremely hard to do in the framework
of Yacc; it is difficult to pass information to the lexical analyzer telling it ‘‘this instance of ‘if” is
a keyword, and that instance is a variable’’. The user can make a stab at it, using the mechan-
ism described in the last subsection, but it is difficult.

A number of ways of making this easier are under advisement. Until then, it is better
that the keywords be reserved; that is, be forbidden for use as variable names. There are
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powerful stylistic reasons for preferring this, anyway.

10: Advanced Topics
This section discusses a number of advanced features of Yacc.

Simulating Error and Accept in Actions

The parsing actions of error and accept can be simulated in an action by use of macros
YYACCEPT and YYERROR. YYACCEPT causes yyparse to return the value 0; YYERROR
causes the parser to behave as if the current input symbol had been a syntax error; yyerror is
called, and error recovery takes place. These mechanisms can be used to simulate parsers with
multiple endmarkers or context-sensitive syntax checking.

Accessing Values in Enclosing Rules.

An action may refer to values returned by actions to the left of the current rule. The
mechanism is simply the same as with ordinary actions, a dollar sign followed by a digit, but in
this case the digit may be 0 or negative. Consider

sent : adj noun verb adj noun
{ look at the sentence . .. }
adj : THE { $$ = THE; }
| YOUNG { $$ = YOUNG; }
noun DOG
{ $$ = DOG; }
| CRONE
{ if ($0 == YOUNG ){

printf( "what?\n" );
}

$$ = CRONE,

}

In the action following the word CRONE, a check is made that the preceding token shifted was
not YOUNG. Obviously, this is only possible when a great deal is known about what might
precede the symbol noun in the input. There is also a distinctly unstructured flavor about this.
Nevertheless, at times this mechanism will save a great deal of trouble, especially when a few
combinations are to be excluded from an otherwise regular structure.

Support for Arbitrary Value Types

By default, the values returned by actions and the lexical analyzer are integers. Yacc can
also support values of other types, including structures. In addition, Yacc keeps track of the
types, and inserts appropriate union member names so that the resuiting parser will be strictly
type checked. The Yacc value stack (see Section 4) is declared to be a union of the various
types of values desired. The user declares the union, and associates union member names to
each token and nonterminal symbol having a value. When the value is referenced through a 38
or $n construction, Yacc will automatically insert the appropriate union name, so that no
unwanted conversions will take place. In addition, type checking commands such as Lint5 will
be far more silent.
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There are three mechanisms used to provide for this typing. First, there is a way of
defining the union; this must be done by the user since other programs, notably the lexical
analyzer, must know about the union member names. Second, there is a way of associating a
union member name with tokens and nonterminals. Finally, there is a mechanism for describ-
ing the type of those few values where Yacc can not easily determine the type.

To declare the union, the user includes in the declaration section:

%union |
body of union ...

}

This declares the Yacc value stack, and the external variables yylval and yyval, to have type
equal to this union. If Yacc was invoked with the —d option, the union declaration is copied
onto the y.tzab.h file. Alternatively, the union may be declared in a header file, and a typedef

used to define the variable YYSTYPE to represent this union. Thus, the header file might also
have said:

typedef union {
body of union ...
} YYSTYPE;

The header file must be included in the declarations section, by use of %{ and %).

Once YYSTYPE is defined, the union member names must be associated with the various
terminal and nonterminal names. The construction

< name >

is used to indicate a union member name. If this follows one of the keywords %token, %left,

%right, and %nonassoc, the union member name is associated with the tokens listed. Thus,
saying

%left <optype> "+ =’

will cause any reference to values returned by these two tokens to be tagged with the union

member name optype. Another keyword, %type, is used similarly to associate union member
names with nonterminals. Thus, one might say

%type <nodetype> expr stat

There remain a couple of cases where these mechanisms are insufficient. If there is an
action within a rule, the value returned by this action has no a priori type. Similarly, reference
to left context values (such as $0 — see the previous subsection ) leaves Yacc with no easy way
of knowing the type. In this case, a type can be imposed on the reference by inserting a union
member name, between < and >, immediately after the first $. An example of this usage is

rule aaa | $<intval>$ = 3; } bbb
{ fun( $<intval>2, $<other>0); }
This syntax has little to recommend it, but the situation arises rarely.

A sample specification is given in Appendix C. The facilities in this subsection are not
triggered until they are used: in particular, the use of %type will turn on these mechanisms.
When they are used, there is a fairly strict level of checking. For example, use of 3n or 33 to
refer to something with no defined type is diagnosed. If these facilities are not triggered, the
Yacc value stack is used to hold int’s, as was true historically.
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Appendix A: A Simple Example

This example gives the complete Yacc specification for a small desk calculator; the desk
calculator has 26 registers, labeled ‘‘a’’ through ‘‘z’’, and accepts arithmetic expressions made
up of the operators +, —, *, /, % (mod operator), & (bitwise and), | (bitwise or), and assign-
ment. If an expression at the top level is an assignment, the value is not printed; otherwise it
is. As in C, an integer that begins with 0 (zero) is assumed to be octal; otherwise, it is
assumed to be decimal.

As an example of a Yacc specification, the desk calculator does a reasonable job of show-
ing how precedences and ambiguities are used, and demonstrating simple error recovery. The
major oversimplifications are that the lexical analysis phase is much simpler than for most appli-
cations, and the output is produced immediately, line by line. Note the way that decimal and
octal integers are read in by the grammar rules; This job is probably better done by the lexical
analyzer.

%
# include <stdio.h>
# include <ctype.h>

int regs(26],
int base;

%]}
%start list

%token DIGIT LETTER

%left "I’
Yleft ‘&
%left "+ "=’

%left "+ /T %’
%left UMINUS /= supplies precedence for unary minus */

%% /+ beginning of rules section =/

list : /+ empty =/

| list stat \n’

| list error "\n’
yyerrok; }

stat : €Xpr
‘ printf ( "%d\n", $1); }
| LETTER "=" expr

{ regs($1] = $3; |
expr ¢ expr ')
{ 88 = $2; }
| expr “+° expr
{ 83 = S1 + 83; |

I expr ‘—  expr
{ $$ = S1 — 83; }
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| expr '+ expr

{ $$ = $1 » $3; }
I expr ‘/° expr

{ $$ = 81/ 83; }

L b expr ‘%" expr
{ $$ = $1 % $3; )
| expr ‘& expr

{ $3 = $1 & $3; )
| expr ‘I” expr

{ 88 = $1 1 83; }
| "—" expr %prec UMINUS

{ $$ = — $2; )

S | LETTER
Y { $8 = regs($1]; }
| number
number: DIGIT
{ $$ = $1, base = ($1==0) ? 8 : 10; }
| number DIGIT
{ $3 = base>$1 + $2; }

%% /+ start of programs =*/

yylex O { /+ lexical analysis routine »/
/+ returns LETTER for a lower case letter, yylval = 0 through 25 +/
/» return DIGIT for a digit, yylval = 0 through 9 »/
/= all other characters are returned immediately +/

int c;
while( (c=getchar()) == "") {/» skip blanks */ }
/* ¢ is now nonblank */

if ( islower( ¢ ) ) {
-, yylval = ¢ — ‘a;
return ( LETTER );

}

if ( isdigit( ¢ ) ) {
yylval = ¢ — 0
return( DIGIT );
}

return( ¢ );

}
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Appendix B: Yacc Input Syntax

This Appendix has a description of the Yacc input syntax, as a Yacc specification. Con-
text dependencies, etc., are not considered. Ironically, the Yacc input specification language is
most naturally specified as an LR (2) grammar; the sticky part comes when an identifier is seen
in a rule, immediately following an action. If this identifier is followed by a colon, it is the start
of the next rule; otherwise it is a continuation of the current rule, which just happens to have
an action embedded in it. As implemented, the lexical analyzer looks ahead after seeing an
identifier, and decide whether the next token (skipping blanks, newlines, comments, etc.) is a
colon. If so, it returns the token C _IDENTIFIER. Otherwise, it returns IDENTIFIER.
Literals (quoted strings) are also returned as IDENTIFIERS, but never as part of
C_IDENTIFIERs.

/+ grammar for the input to Yacc #/
/+ basic entities =/
%token IDENTIFIER /+ includes identifiers and literals =/
%token C _IDENTIFIER /+ identifier (but not literal) followed by colon */
%token NUMBER /= [0-9]1+ #/ -
/+ reserved words: %type => TYPE, %left => LEFT, etc. »/
%token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION
%token MARK /= the %% mark */
%token LCURL /= the %{ mark =/
%token RCURL /+ the %} mark */

/+ ascii character literals stand for themselves #/

Y%start  spec
%%
spec : defs MARK rules tail
tail : MARK { In this action, eat up the rest of the file |}
| /+ empty: the second MARK is optional */
defs : /» empty */
defs def
def : START IDENTIFIER
I UNION { Copy union definition to output }
[ LCURL { Copy C code to output file } RCURL
| ndefs rword tag nlist
rword : TOKEN

I LEFT
I RIGHT
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I NONASSOC
! TYPE

tag : /* empty: union tag is optional */
‘<’ IDENTIFIER ">’

nlist : nmno
| nlist nmno
I nlist *,” nmno

nmno IDENTIFIER /+* NOTE: literal illegal with %type s/
l IDENTIFIER NUMBER  /+ NOTE: illegal with %type +/

/+ rules section */

rules : C_IDENTIFIER rbody prec
rules rule
rule : C_IDENTIFIER rbody prec

| ’I” rbody prec

rbody : /» empty */

| rbody IDENTIFIER

| rbody act
act : (" { Copy action, translate $3, etc. } °}
prec : /* empty */

| PREC IDENTIFIER
PREC IDENTIFIER act
o | prec

i



19-30

Appendix C: An Advanced Example

This Appendix gives an example of a grammar using some of the advanced features dis-
cussed in Section 10. The desk calculator example in Appendix A is modified to provide a desk
calculator that does floating point interval arithmetic. The calculator understands floating point
constants, the arithmetic operations <+, —, * /, unary —, and = (assignment), and has 26
floating point variables, ‘‘a’’ through “‘z’’. Moreover, it also understands intervals, written

(x,y)

where x is less than or equal to y. There are 26 interval valued variables ‘“A’’ through “Z”
that may also be used. The usage is similar to that in Appendix A; assignments return no
value, and print nothing, while expressions print the (floating or interval) value.

This example explores a number of interesting features of Yacc and C. Intervals are
represented by a structure, consisting of the left and right endpoint values, stored as double’s.
This structure is given a type name, INTERVAL, by using typedef The Yacc value stack can
also contain floating point scalars, and integers (used to index into the arrays holding the vari-
able values). Notice that this entire strategy depends strongly on being able to assign structures
and unions in C. In fact, many of the actions call functions that return structures as well.

It is also worth noting the use of YYERROR to handle error conditions: division by an
interval containing 0, and an interval presented in the wrong order. In effect, the error
recovery mechanism of Yacc is used to throw away the rest of the offending line.

In addition to the mixing of types on the value stack, this grammar also demonstrates an
interesting use of syntax to keep track of the type (e.g. scalar or interval) of intermediate
expressions. Note that a scalar can be automatically promoted to an interval if the context
demands an interval value. This causes a large number of conflicts when the grammar is run
through Yacc: 18 Shift/Reduce and 26 Reduce/Reduce. The problem can be seen by looking at
the two input lines:

254 (35 —-4.)
and
254+ (3.5,4.)

Notice that the 2.5 is to be used in an interval valued expression in the second example, but
this fact is not known until the ““.”’ is read; by this time, 2.5 is finished, and the parser cannot
go back and change its mind. More generally, it might be necessary to look ahead an arbitrary
number of tokens to decide whether to convert a scalar to an interval. This problem is evaded
by having two rules for each binary interval valued operator: one when the left operand is a
scalar, and one when the left operand is an interval. In the second case, the right operand must
be an interval, so the conversion will be applied automatically. Despite this evasion, there are
still many cases where the conversion may be applied or not, leading to the above conflicts.
They are resolved by listing the rules that yield scalars first in the specification file; in this way,
the conflicts will be resolved in the direction of keeping scalar valued expressions scalar valued
until they are forced to become intervals.

This way of handling multiple types is very instructive, but not very general. If there
were many kinds of expression types. instead of just two, the number of rules needed would
increase dramatically, and the conflicts even more dramatically. Thus, while this example is
instructive, it is better practice in a more normal programming language environment to keep
the type information as part of the value, and not as part of the grammar.

Finally, a word about the lexical analysis. The only unusual feature is the treatment of
floating point constants. The C library routine atof is used to do the actual conversion from a
character string to a double precision value. If the lexical analyzer detects an error, it responds
by returning a token that is illegal in the grammar, provoking a syntax error in the parser, and
thence error recovery.



%{

# include <stdio.h>
# include <ctype.h>

typedef struct interval {
double lo, hi;
} INTERVAL;
INTERVAL vmul_(), vdiv(;
double atof();

double dregl 26 1;
INTERVAL vregl 26 ];

%}
%start lines
%union |
int ival;
double dval;

INTERVAL wvval;
}
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%token <ival> DREG VREG /+ indices into dreg, vreg arrays */

%token <dval> CONST
Y%type <dval> dexp

Y%type <vval> vexp

/+ floating point constant »/

/* expression */

/* interval expression */

/+ precedence information about the operators =/

%left "+ =’
O%left "= /7

%left UMINUS /= precedence for unary minus */

%%
lines /» empty */
| lines line
line : dexp \n’
{
I vexp \n’

{

printf( "%15.80\n", $1 ); )

printf( "(%15.8f , %15.8f )\n", $l.lo, $1hi ); }

| DREG =" dexp \n’

{

dreg[$1] = 33; )

| VREG =" vexp \n’
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{ vreg($1] = §3; |}
| error \n’
{ yyerrok; }

dexp CONST
| DREG
{ $$ = dregl$1]; }
I dexp '+  dexp
$3 = $1 + $3; }
| dexp '—' dexp
{ $$ = $1 — 83; )
[ dexp '*° dexp
{ $8 = $1 = $3; }
! dexp '/° dexp
{ $$ = $1 / 83; )
| ‘=" dexp %prec UMINUS
{ $8 = — 82, }

| ¢ dexp )
{ $8 = $2; }
vexp dexp
{ $8.hi = $$lo = $1; }
I ¢ dexp{ ) dexp )’
$8.1o = $2;
$3$.hi = $4;

if( $%.do > $$.hi )|
printf( "interval out of order\n" );

}YYERROR;
J
| VREG ,
{ $$ = vreg($il; }
[ vexp '+  vexp
{ $8.hi = $1.hi + $3.hi;
$Slo = $llo + $3.lo; }
I dexp "+ vexp
{ $$.hi = $1 + $3.hi
$3lo = $1 + $3lo; |}
! vexp ‘— vexp
{ $$.hi = $1Lhi — $3.lo;
$8.Jo = S$llo — $3.hi; |
! dexp "—" vexp
{ $$.hi = $1 — $3.lo;

$8.lo = $1 — $3.hi; )
] vexp '+ vexp
{ $$ = vmul( $l.lo, $L.hi, $3 ); }
| dexp ‘¢ vexp
{ $$ = vmul( 81, $1, $3 ); }
! vexp '/° vexp
{ if( dcheck( $3 ) ) YYERROR;
$$ = vdiv( $l.lo, $lLhi, $3 ); }
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dexp /7 vexp
{ if ( dcheck( $3 ) ) YYERROR;
$$ = vdiv( $1, $1, $3 ); }
| "—" vexp %prec UMINUS
{ $8.hi = —$2lo; $Slo = —$2.hi; |

| C vexp )
$$ = 82, )

%%
# define BSZ 50 /*» buffer size for floating point numbers =/
/= lexical analysis */

yylexO{
register c;

while( (c=getchar()) == "" ){ /+» skip over blanks */ }

if ( isupper( ¢ ) ){
yylvaliival = ¢ — "A’;
§etum( VREG );

if ( islower( ¢ ) ){
yylvaliival = ¢ — "a’;
i'etum( DREG );

if ( isdigit( ¢ ) Il c=="" ){
/* gobble up digits, points, exponents */

char buf[BSZ+1], =cp = buf;
int dot = 0, exp = 0;

for( ; (cp—buf)<BSZ ; + +cp,c=getchar() ){

*cp = C;

if ( isdigit( ¢ ) ) continue;

if( ¢ == "7 ){
if( dot++ 1l exp ) return( "." ); /+ will cause syntax error =/
continue;

}

if( ¢ == "e )|
if( exp++ ) return( ‘e’ ); /= will cause syntax error */
continue;

)

/* end of number »/
break;
}
«p = \0;
if( (cp—buf) >= BSZ ) printf( "constant too long: truncated\n" );
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else ungetc( c, stdin ); /+ push back last char read =/
yylval.dval = atof( buf );

return( CONST );

}

return( ¢ );

}

INTERVAL hilo( a, b, ¢, d ) double a, b, ¢, d; {
/= returns the smallest interval containing a, b, ¢, and d »/

/+ used by =, / routines =/
INTERVAL v;

if( a>b ) { vhi = a; vilo = b; }
else { vhi = b; vlilo = a; )

if( c>d ) |
if( ¢>v.hi ) vihi = ¢
if( d<vlo ) vilo = d;

)

if( d>v.hi ) v.hi = d;
if( c<vlo ) vilo = ¢
}

return( v );

)

INTERVAL vmul( a, b, v ) double a, b; INTERVAL v; {
return( hilo( a*v.hi, a*v.lo, bev.hi, b*v.lo ) );

}

dcheck( v ) INTERVAL v; {
if( v.hi >= 0. && vilo <= 0. )
printf( "divisor interval contains 0\n" );
1}'etum( 1)

return( 0 );

)

INTERVAL vdiv( a, b, v ) double a, b; INTERVAL v; {
return( hilo( a/v.hi, a/v.lo, b/v.hi, b/vilo ) );
}

else |{
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Appendix D: Old Features Supported but not Encouraged

This Appendix mentions synonyms and features which are supported for historical con-

tinuity, but, for various reasons, are not encouraged.

1.
2.

Literals may be more than one character long. If all the characters are alphabetic,
numeric, or _, the type number of the literal is defined, just as if the literal did not have
the quotes around it. Otherwise, it is difficult to find the value for such literals.

The use of multi-character literals is likely to mislead those unfamiliar with Yacc, since it
suggests that Yacc is doing a job which must be actually done by the lexical analyzer.

Most places where % is legal, backslash ‘“\’> may be used. In particular, \\ is the same as
%%, \left the same as %left, etc.

There are a number of other synonyms:

Literals may also be delimited by double quotes ‘“"”’

%< is the same as %left

%> is the same as %right

%binary and %2 are the same as %nonassoc
%0 and %term are the same as %token

%= is the same as %prec

Actions may also have the form
={...}

and the curly braces can be dropped if the action is a single C statement.

C code between %{ and %} used to be permitted at the head of the rules section, as well
as in the declaration section.
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1 Introduction.

Lex is a program generator designed for lexical process-
ing of character input streams. It accepts a high-level,
problem oriented specification for character string match-
ing, and produces a program in a general purpose
language which recognizes regular expressions. The regu-
lar expressions are specified by the user in the source
specifications given to Lex. The Lex written code recog-
nizes these expressions in an input stream and partitions
the input stream into strings matching the expressions.
At the boundaries between strings program sections pro-
vided by the user are executed. The Lex source file asso-
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ciates the regular expressions and the program fragments.
As each expression appears in the input to the program
written by Lex, the corresponding fragment is executed.
The user supplies the additional code beyond expres-
sion matching needed to complete his tasks, possibly in-
cluding code written by other generators. The program
that recognizes the expressions is generated in the general
purpose programming language employed for the user’s
program fragments. Thus, a high level expression
language is provided to write the string expressions to be
matched while the user’s freedom to write actions is
unimpaired. This avoids forcing the user who wishes to
use a string manipulation language for input analysis to
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Figure 1

write processing programs in the same and often inap-
propriate string handling language.

Lex is not a complete language, but rather a generator
representing a new language feature which can be added
to different programming languages, called ‘‘host
languages.”” Just as general purpose languages can pro-
duce code to run on different computer hardware, Lex
can write code in different host languages. The host
language is used for the output code generated by Lex
and also for the program fragments added by the user.
Compatible run-time libraries for the different host
languages are also provided. This makes Lex adaptable to
different environments and different users. Each applica-
tion may be directed to the combination of hardware and
host language appropriate to the task, the user’s back-
ground, and the properties of local implementations. At
present there are only two host languages, C{1] and For-
tran (in the form of the Ratfor language(2]). Lex itself
exists on UNIX, GCOS, and 08/370; but the code gen-
erated by Lex may be taken anywhere the appropriate
compilers exist.

Lex turns the user’s expressions and actions (called
source in this memo) into the host general-purpose
language; the generated program is named yylex. The
yylex program will recognize expressions in a stream
(called input in this memo) and perform the specified ac-
tions for each expression as it is detected. See Figure 1.

For a trivial example, consider a program to delete
from the input all blanks or tabs at the ends of lines.

%%
[\d+$

is all that is required. The program contains a %% delim-
iter to mark the beginning of the rules, and one rule.

0-2

This rule contains a regular expression which matches
one or more instances of the characters blank or tab
(written \t for visibility, in accordance with the C
language convention) just prior to the end of a line. The
brackets indicate the character class made of blank and
tab; the + indicates ‘‘one or more ...""; and the $§ indi-
cates ‘‘end of line,”" as in QED. No action is specified, so
the program generated by Lex (yylex) will ignore these
characters. Everything else will be copied. To change any
remaining string of blanks or tabs to a single blank, add
another rule:

%%
(\+3%
A\t + printf (" ");

The finite automaton generated for this source will scan
for both rules at once, observing at the termination of the
string of blanks or tabs whether or not there is a2 newline
character, and executing the desired rule action. The first
rule matches all strings of blanks or tabs at the end of
lines, and the second rule all remaining strings of blanks
or tabs.

Lex can be used alone for simple transformations, or
for analysis and statistics gathering on a lexical level. Lex
can also be used with a parser generator to perform the
lexical analysis phase; it is particularly easy to interface
Lex and Yacc [3]. Lex programs recognize only regular
expressions; Yacc writes parsers that accept a large class

of context free grammars, but require a lower level

analyzer to recognize input tokens. Thus, a combination
of Lex and Yacc is often appropriate. When used as a
preprocessor for a later parser generator, Lex is used to
partition the input stream, and the parser generator as-
signs structure to the resuiting pieces. The flow of con-
trol in such a case (which might be the first half of a
compiler, for example) is shown in Figure 2. Additional
programs, written by other generators or by hand, can be
added easily to programs written by Lex. Yacc users will
realize that the name yylex is what Yacc expects its lexical
analyzer to be named, so that the use of this name by
Lex simplifies interfacing.

Lex generates a deterministic finite automaton from the
regular expressions in the source [4]. The automaton is
interpreted, rather than compiled, in order to save space.
The result is still a fast analyzer. In particular, the time

lexical grammar
rules rules
§ l
f Lex l f Yacc ] (
l

Input — [ yylex ] — l yyparse ] — Parsed input

Lex with Yacc

Figure 2
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taken by a Lex program to recognize and partition an in-
put stream is proportional to the length of the input. The
number of Lex rules or the complexity of the rules is not
important in determining speed, unless rules which in-
clude forward context require a significant amount of re-
scanning. What does increase with the number and com-
plexity of rules is the size of the finite automaton, and
therefore the size of the program generated by Lex.

In the program written by Lex, the user’s fragments
(representing the actions to be performed as each regular
expression is found) are gathered as cases of a switch (in
C) or branches of a computed GOTO (in Ratfor). The
automaton interpreter directs the control flow. Opportun-
ity is provided for the user to insert either declarations or
additional statements in the routine containing the ac-
tions, or to add subroutines outside this action routine.

Lex is not limited to source which can be interpreted
on the basis of one character lookahead. For example, if
there are two rules, one looking for ab and another for
abcdefg, and the input stream is abedefh, Lex will recog-
nize ab and leave the input pointer just before cd. . .
Such backup is more costly than the processing of simpler
languages.

2 Lex Source.
The general format of Lex source is:

{definitions}

%%

{rules}

%%

{user subroutines}

where the definitions and the user subroutines are often
omitted. The second %% is optional, but the first is re-
quired to mark the beginning of the rules. The absolute
minimum Lex program is thus

%%

(no definitions, no rules) which translates into a program
which copies the input to the output unchanged.

In the outline of Lex programs shown above, the rules
represent the user’s control decisions; they are a table, in
which the left column contains regular expressions (see
section 3) and the right column contains actions, program
fragments to be executed when the expressions are recog-
nized. Thus an individual rule might appear

integer  printf("found keyword INT");

to look for the string infeger in the input stream and print
the message ‘‘found keyword INT” whenever it appears.
In this example the host procedural language is C and the
C library function printfis used to print the string. The
end of the expression is indicated by the first blank or tab
character. If the action is merely a single C expression, it
can just be given on the right side of the line; if it is com-
pound, or takes more than a line, it should be enclosed in

braces. As a slightly more useful example, suppose it is
desired to change a number of words from British to
American spelling. Lex rules such as

colour printf("color");
mechanise  printf("mechanize");
petrol printf("gas");

would be a start. These rules are not quite enough, since
the word petroleum would become gaseunr, a way of deal-
ing with this will be described later.

3 Lex Regular Expressions.

The definitions of regular expressions are very similar
to those in QED [5]. A regular expression specifies a set
of strings to be matched. It contains text characters
(which match the corresponding characters in the strings
being compared) and operator characters (which specify
repetitions, choices, and other features). The letters of
the alphabet and the digits are always text characters; thus
the regular expression

integer

matches the string integer wherever it appears and the ex-
pression

aS7D

looks for the string a57D.
Operators. The operator characters are

N[22+ O3/ {1 % < >

and if they are to be used as text characters, an escape
should be used. The quotation mark operator (") indi-
cates that whatever is contained between a pair of quotes
is to be taken as text characters. Thus

xyz" + +"

matches the string xyz+ -+ when it appears. Note that a
part of a string may be quoted. It is harmless but un-
necessary to quote an ordinary text character; the expres-
sion

"xyz++"

is the same as the one above. Thus by quoting every
non-alphanumeric character being used as a text charac-
ter, the user can avoid remembering the list above of
current operator characters, and is safe should further ex-
tensions to Lex lengthen the list.

An operator character may also be turned into a text
character by preceding it with \ as in

xyz\ +\ +

which is another, less readable, equivalent of the above
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expressions. Another use of the quoting mechanism is to
get a blank into an expression; normally, as explained
above, blanks or tabs end a rule. Any blank character not
contained within [] (see below) must be quoted. Several
normal C escapes with \ are recognized: \n is newline, \t
is tab, and \b is backspace. To enter \ itself, use \\.
Since newline is illegal in an expression, \n must be used;
it 1s not required to escape tab and backspace. Every
character but blank, tab, newline and the list above is al-
ways a text character.

Character classes. Classes of characters can be
specified using the operator pair []. The construction
lab] matches a single character, which may be a, 8, or c
Within square brackets, most operator meanings are ig-
nored. Only three characters are special: these are \ —
and °. The — character indicates ranges. For example,

fa-z0-9<> ]

indicates the character class containing all the lower case
letters, the digits, the angle brackets, and underline.
Ranges may be given in either order. Using — between
any pair of characters which are not both upper case
letters, both lower case letters, or both digits is imple-
mentation dependent and will get a warning message.
{E.g., [0-z] in ASCII is many more characters than it is in
EBCDIC). If it is desired to include the character — in a
character class, it should be first or last; thus

[~ +0-9]

matches all the digits and the two signs.

In character classes, the "~ operator must appear as the
first character after the left bracket; it indicates that the
resulting string is to be complemented with respect to the
computer character set. Thus

{"abc]

maitches all characters except a, b, or ¢, including all spe-
cial or control characters; or

["a-zA-Z]

is any character which is not a letter. The \ character pro-
vides the usual escapes within character class brackets.

Arbitrary character. To match almost any character,
the operator character

is the class of all characters except newline. Escaping into
octal is possible although non-portable:

\40-\176]

matches all printable characters in the ASCII character
set, from octal 40 (blank) to octal 176 (tilde).

Opiional expressions. The operator 7 indicates an op-
tional element of an expression. Thus

ab7lc

matches either ac or abc.
Repeated expressions. Repetitions of classes are indicat-
ed by the operators » and <.

as (a.:
is any number of consecutive a characters, including zero;
while

a+
is one or more instances of a. For example,
fa-z] +
is all strings of lower case letiers. And
{A-Za—z}{A-Za—20-9]+

indicates all alphanumeric strings with a leading alphabetic
character. This is a typical expression for recognizing
identifiers in computer languages.

Alternation and Grouping. The operator | indicates
alternation:

(abled)

matches either ab or ¢d. Note that parentheses are used
for grouping, although they are not necessary on the out-
side level;

abled

would have sufficed. Parentheses can be used for more
complex expressions:

{abled+)7(ef)+

matches such strings as abefef, efefef, cdef, or cddd;, but
not abc, abed, or abedef.

Context sensitivity. Lex will recognize a small amount
of surrounding context. The two simplest operators for
this are " and § If the first character of an expression is
", the expression will only be matched at the beginning of
a line (after a newline character, or at the beginning of
the input stream). This can never conflict with the other
meaning of ~, complementation of character classes, since
that only applies within the {] operators. If the very last
character is §, the expression will only be matched at the
end of a line (when immediately followed by newline).
The latter operator is a special case of the /operator char-
acter, which indicates trailing context. The expression

ab/ed

matches the string ab, but only if followed by ed. Thus
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is the same as
ab/\n

Left context is handled in Lex by start conditions as ex-
plained in section 10. If a rule is only to be executed
when the Lex automaton interpreter is in start condition
x, the rule should be prefixed by

<X>

using the angle bracket operator characters. If we con-
sidered ‘‘being at the beginning of a line” to be start con-
dition ONE, then the ~ operator would be equivalent to

<ONE>

Start conditions are explained more fully later.

Repetitions and Definitions. The operators {} specify ei-
ther repetitions (if they enclose numbers) or definition
expansion (if they enclose a name). For example

{digit)

looks for a predefined string named digit and inserts it at
that point in the expression. The definitions are given in
the first part of the Lex input, before the rules. In con-
trast,

af{1,5)

looks for 1 to S occurrences of a.

Finally, initial % is special, being the separator for Lex
source segments.

4 Lex Actions.

When an expression written as above is matched, Lex
executes the corresponding action. This section describes
some features of Lex which aid in writing actions. Note
that there is a default action, which consists of copying
the input to the output. This is performed on all strings
not otherwise matched. Thus the Lex user who wishes to
absorb the entire input, without producing any output,
must provide rules to match everything. When Lex is be-
ing used with Yacc, this is the normal situation. One may
consider that actions are what is done instead of copying
the input to the output; thus, in general, a rule which
merely copies can be omitted. Also, a character combina-
tion which is omitted from the rules and which appears as
input is likely to be printed on the output, thus calling at-
tention to the gap in the rules.

One of the simplest things that can be done is to ignore
the input. Specifying a C null statement, ; as an action
causes this result. A frequent rule is

\t\n]
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which causes the three spacing characters (blank, tab, and
newline) to be ignored.

Another easy way to avoid writing actions is the action
character |, which indicates that the action for this rule is
the action for the next rule. The previous example could
also have been written

"o

n\ t"

n\nn

with the same result, although in different style. The
quotes around \n and \t are not required.

In more complex actions, the user will often want to
know the actual text that matched some expression like
fa—z]+. Lex leaves this text in an external character ar-

ray named yytext. Thus, to print the name found, a rule
like

fa-z]+  printf("%s", yytext);

will print the string in yyrext. The C function pringf ac-
cepts a format argument and data to be printed; in this
case, the format is “‘print string”” (% indicating data
conversion, and s indicating string type), and the data are
the characters in yptext. So this just places the matched
string on the output. This action is so common that it
may be written as ECHO:

[a-z]+ ECHO;

is the same as the above. Since the default action is just
to print the characters found, one might ask why give a
rule, like this one, which merely specifies the default ac-
tion? Such rules are often required to avoid matching
some other rule which is not desired. For example, if
there is a rule which matches read it will normally match
the instances of read contained in bread or readjust, to
avoid this, a rule of the form fe—z/+ is needed. This is
explained further below.

Sometimes it is more convenient to know the end of
what has been found; hence Lex also provides a count
yyleng of the number of characters matched. To count
both the number of words and the number of characters
in words in the input, the user might write

a-zA-Z]+  |words+ +; chars + = yyleng;}
which accumulates in chars the number of characters in
the words recognized. The last character in the string
matched can be accessed by

yytextlyyleng-1]
in Cor

yytext(yyleng)

in Ratfor.
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Occasionally, a Lex action may decide that a rule has
not recognized the correct span of characters. Two rou-
tines are provided to aid with this situation. First,
yymore() can be called to indicate that the next input ex-
pression recognized is to be tacked on to the end of this
input. Normally, the next input string would overwrite
the current entry in yytext. Second, yyless (n) may be
called to indicate that not all the characters matched by
the currently successful expression are wanted right now.
The argument n indicates the number of characters in
yytext to be retained. Further characters previously
matched are returned to the input. This provides the
same sort of lookahead offered by the / operator, but in a
different form.

Example: Consider a language which defines a string as
a set of characters between quotation (") marks, and pro-
vides that to include a " in a string it must be preceded by
a \. The regular expression which matches that is some-
what confusing, so that it might be preferable to write

"l |
if (yytextlyyleng-1] === A\")
yymore();
else
... normal user processing
}

which will, when faced with a string such as "abcd\"def™
first match the five characters "abd\; then the call to
yymore() will cause the next part of the string, "def, to be
tacked on the end. Note that the final quote terminating
the string should be picked up in the code labeled ‘‘nor-
mal processing’’.

The function yyless() might be used to reprocess text in
various circumstances. Consider the C problem of distin-
guishing the ambiguity of ‘“=-a’’. Suppose it is desired
to treat this as ‘““==— a’’ but print a message. A rule
might be

=—[a-zA-Z] |
printf ("Operator (==—) ambiguous\n");
yyless(yyleng-1);
... action for ==— .

J

which prints a message, returns the letter after the opera-
tor to the input stream, and treats the operator as *‘=-"".
Alternatively it might be desired to treat this as ‘= —a’".
To do this, just return the minus sign as well as the letter
to the input:

=—[a-zA-Z] |
printf ("Operator (=-) ambiguous\n");
yyless(yyleng-2);
... action for = ...

J

will perform the other interpretation. Note that the ex-
pressions for the two cases might more easily be written

=/ [A-Za-z]
in the first case and
=/-[A-Za-z]

in the second; no backup would be required in the rule
action. It is not necessary to recognize the whole
identifier to observe the ambiguity. The possibility of
“=-3" however, makes

=—/[" \t\n]

a still better rule.
In addition to these routines, Lex also permits access to
the /0 routines it uses. They are:

1) imput() which returns the next input character;

2)  output(c) which writes the character c on the out-

put; and

3)  unput(c) pushes the character ¢ back onto the in-

put stream to be read later by input().

By default these routines are provided as macro
definitions, but the user can override them and supply
private versions. There is another important routine in
Ratfor, named lexshf, which is described below under
““Character Set”’. These routines define the relationship
between external files and internal characters, and must
all be retained or modified consistently. They may be
redefined, to cause input or output to be transmitted to or
from strange places, including other programs or internal
memory; but the character set used must be consistent in
all routines; a vaiue of zero returned by input must mean
end of file; and the relationship between unput and input
must be retained or the Lex lookahead will not work.
Lex does not look ahead at all if it does not have to, but
every rule ending in + + ? or § or containing /implies
lookahead. Lookahead is also necessary to match an ex-
pression that is a prefix of another expression. See below
for a discussion of the character set used by Lex. The
standard Lex library imposes a 100 character limit on
backup.

Another Lex library routine that the user will some-
times want to redefine is yywrap() which is called when-
ever Lex reaches an end-of-file. If yywrap returns a 1,
Lex continues with the normal wrapup on end of input.
Sometimes, however, it is convenient to arrange for more
input to arrive from a new source. In this case, the user
should provide a yywrap which arranges for new input
and returns 0. This instructs Lex to continue processing.
The default yywrap always returns 1.

This routine is also a convenient place to print tables,
summaries, etc. at the end of a program. Note that it is
not possible to write a normal rule which recognizes end-
of-file; the only access to this condition is through
yywrap. In fact, unless a private version of input() is sup-
plied a file containing nulls cannot be handled, since a
value of 0 returned by input is taken to be end-of-file.

In Ratfor all of the standard 170 library routines, input,
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outpus, umput, yywrap, and lexshf, are defined as integer
functions. This requires imput and yywrap to be called
with arguments. One dummy argument is supplied and
ignored.

§ Ambiguous Source Rules.

Lex can handle ambiguous specifications. When more
than one expression can match the current input, Lex
chooses as follows:

1) The longest match is preferred.

2)  Among rules which matched the same number of
characters, the rule given first is preferred.
Thus, suppose the rules

integer  keyword action ...}
la-zl4  identifier action ...;

to be given in that order. If the input is infegers, it is tak-
en as an identifier, because [s-z/-+ matches 8§ characters
while integer matches only 7. If the input is integer, both
rules match 7 characters, and the keyword rule is selected
because it was given first. Anything shorter {e.g. int) will
not match the expression integer and so the identifier in-
terpretation is used.

The principle of preferring the longest match makes
rules containing expressions like .» dangerous. For exam-
. ple,

might seem a good way of recognizing a string in single
quotes. But it is an invitation for the program to read far
ahead, looking for a distant single quote. Presented with
the input

‘first’ quoted string here, 'second’ here
the above expression will match
"first’ quoted string here, 'second’

which is probably not what was wanted. A better rule is
of the form

Tl

which, on the above input, will stop after 'first" The
consequences of errors like this are mitigated by the fact
that the . operator will not match newline. Thus expres-
sions like .» stop on the current line. Don’t try to defeat
this with expressions like [\n/+ or squivalents; the Lex
generated program will try to read the entire input file,
causing internal buffer overflows.

Note that Lex is normally partitioning the input stream,
not searching for all possible matches of each expression.
This means that each character is accounted for once and
only once. For example, suppose it is desired to count
occurrences of both she and ke in an input text. Some

Lex rules to do this might be

she s+ +;
he h+<+;

\n |
where the last two rules ignore everything besides Ae and
she. Remember that . does not include newline. Since
she includes he, Lex will normally not recognize the in-
stances of he included in she, since once it has passed a
she those characters are gone.

Sometimes the user would like to override this choice.
The action REJECT means ‘‘go do the next alternative.”’
It causes whatever rule was second choice after the
current rule to be executed. The position of the input
pointer is adjusted accordingly. Suppose the user really
wants to count the included instances of he:

she {s++: REJECT;)
he  {h++; REJECT;)
\no |

these rules are one way of changing the previous example
to do just that. After counting each expression, it is re-
jected; whenever appropriate, the other expression will
then be counted. In this example, of course, the user
could note that she includes he but not vice versa, and
omit the REJECT action on he, in other cases, however,
it would not be possible a priori to tell which input char-
acters were in both classes.
Consider the two rules

albel+
aled] +

{..; REJECT;}
{..; REJECT;)

If the input is ab, only the first rule matches, and on ad
only the second matches. The input string accd matches
the first rule for four characters and then the second rule
for three characters. In contrast, the input accd 2grees
with the second rule for four characters and then the first
rule for three.

In general, REJECT is useful whenever the purpose of
Lex is not to partition the input stream but to detect all
examples of some items in the input, and the instances of
these items may overlap or include each other. Suppose a
digram table of the input is desired; normally the digrams
overlap, that is the word the is considered to contain both
th and he. Assuming a two-dimensional array named di-
gram (o be incremented, the appropriate source is

%%
fa-zlla-z]  (digramlyytext{0]][yytext[1]]+ +; REJECT:)
\n ;

where the REJECT is necessary to pick up a letter pair
beginning at every character, rather than at every other
character.



6 Lex Source Definitions.
Remember the format of the Lex source:

{definitions}
%%

{rules]

%%

{user routines}

So far only the rules have been described. The user
needs additional options, though, to define variables for
use in his program and for use by Lex. These can go ei-
ther in the definitions section or in the rules section.
Remember that Lex is turning the rules into a program.
Any source not intercepted by Lex is copied into the gen-
erated program. There are three classes of such things.

1)  Any line which is not part of a Lex rule or action
which begins with a blank or tab is copied into the
Lex generated program. Such source input prior
to the first %% delimiter will be external to any
function in the code; if it appears immediately
after the first %%, it appears in an appropriate
place for declarations in the function written by
Lex which contains the actions. This material
must look like program fragments, and should
precede the first Lex rule.

As a side effect of the above, lines which begin
with a blank or tab, and which contain a com-
ment, are passed through to the generated pro-
gram. This can be used to include comments in
either the Lex source or the generated code. The
comments should follow the host language con-
vention.

2} Anything included between lines containing only
%{ and %) is copied out as above. The delimiters
are discarded. This format permits entering text
like preprocessor statements that must begin in
column 1, or copying lines that do not look like
programs.

3)  Anything after the third %% delimiter, regardless
of formats, etc., is copied out after the Lex out-
put.

Definitions intended for Lex are given before the first
%% delimiter. Any line in this section not contained
between %{ and %}, and begining in column 1, is as-
sumed to define Lex substitution strings. The format of
such lines is

name translation

and it causes the string given as a translation to be associ-
ated with the name. The name and translation must be
separated by at least one blank or tab, and the name must
begin with a letter. The translation can then be cailed out
by the {name} syntax in a rule. Using {D} for the digits
and {E} for an exponent field, for example, might abbre-
viate rules to recognize numbers:
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D [0-9]

E (TEdel[-+1?{D} +
%%

(D} + printf ("integer");

(D} +"{D}=({ED? |
(D)= "{D}+({ED? |
(D} +{E}

Note the first two rules for real numbers; both require a
decimal point and contain an optional exponent field, but
the first requires at least one digit before the decimal
point and the second requires at least one digit after the
decimal point. To correctly handle the problem posed by
a Fortran expression such as 35.EQ.I, which does not
contain a real number, a context-sensitive rule such as

[0-9]14/""EQ prinif ("integer");

could be used in addition to the normal rule for integers.

The definitions section may also contain other com-
mands, including the selection of a host language, a char-
acter set table, a list of start conditions, or adjustments to
the default size of arrays within Lex itself for larger
source programs. These possibilities are discussed below
under ‘‘Summary of Source Format,”” section 12.

7 Usage.

There are two steps in compiling a Lex source program.
First, the Lex source must be turned into a generated
program in the host general purpose language. Then this
program must be compiled and loaded, usually with a li-
brary of Lex subroutines. The generated program is on a
file named lex.yy.c for a C host language source and
lex.yy.r for a Ratfor host environment. There are two
I/0 libraries, one for C defined in terms of the C stan-
dard library [6], and the other defined in terms of Ratfor.
To indicate that a Lex source file is intended to be used
with the Ratfor host language, make the first line of the
file %R.

The C programs generated by Lex are slightly different
on 0S§/370, because the OS compiler is less powerful than
the UNIX or GCOS compilers, and does less at compile
time. C programs generated on GCOS and UNIX are the
same. The C host language is default, but may be expli-
citly requested by making the first line of the source file
%C.

The Ratfor generated by Lex is the same on all sys-
tems, but can not be compiled directly on TSO. See
below for instructions. The Ratfor /0 library, however,
varies slightly because the different Fortrans disagree on
the method of indicating end-of-input and the name of
the library routine for logical AND. The Ratfor I/0 li-
brary, dependent on Fortran character 1/0, is quite slow.
In particular it reads all input lines as 80A1 format; this
will truncate any longer line, discarding your data, and
pads any shorter line with blanks. The library version of
input removes the padding (including any trailing blanks
from the original input) before processing. Each source



file using a Ratfor host should begin with the ‘%R’ com-
mand.

UNIX. The libraries are accessed by the loader flags
-llc for C and -lir for Ratfor; the C name may be abbrevi-
ated to -ll. So an appropriate set of commands is

C Host Ratfor Host

lex source
cc lex.yy.c -1l -1S

lex source
rc -2 lex.yy.r -lir

The resulting program is placed on the usual file a.out for
later execution. To use Lex with Yacc see below.
Although the default Lex 1/0 routines use the C standard
library, the Lex automata themselves do not do so; if
private versions of input, output and unput are given, the
library can be avoided. Note the ‘‘-2’’ option in the Rat-
for compile command; this requests the larger version of
the compiler, a useful precaution.

GCOS. The Lex commands on GCOS are stored in the
¢.” library. The appropriate command sequences are:

C Host Ratfor Host

/lex source
Jcc lex.yy.c ./lexclib h=

./lex source
Jrc a= lex.yy.r ./lexrlib h=

The resulting program is placed on the usual file .program
for later execution (as indicated by the ‘‘h="" option); it
may be copied to a permanent file if desired. Note the
”” option in the Ratfor compile command; this indi-
cates that the Fortran compiler is to run in ASCII mode.

TSO. Lex is just barely available on TSO. Restrictions
imposed by the compilers which must be used with its
output make it rather inconvenient. To use the C ver-
sion, type

ua:

exec 'dot.lex.clist(Iex)’ 'sourcename’
exec 'dot.lex.clist(cload)’ libraryname membername’

The first command analyzes the source file and writes a C
program on file lex.yy.text. The second command runs
this file through the C compiler and links it with the Lex
C library (stored on 'hr289.icl.load’) placing the object
program in your file libraryname.LOAD(membername) as
a completely linked load module. The compiling com-
mand uses a special version of the C compiler command
on TSO which provides an unusually large intermediate
assembler file to compensate for the unusual bulk of C-
compiled Lex programs on the OS system. Even so, al-
most any Lex source program is too big to compile, and
must be split.

The same Lex command will compile Ratfor Lex pro-
grams, leaving a file lex.yy.rat instead of lex.yy.text in
your directory. The Ratfor program must be edited, how-
ever, to compensate for peculiarities of IBM Ratfor. A
command sequence to do this, and then compile and
load, is available. The full commands are:

exec 'dot.lex.clist (lex)’ 'sourcename’
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exec 'dot.lex.clist(rload)’ libraryname membername’

with the same overall effect as the C language commands.
However, the Ratfor commands will run in a 150K byte
partition, while the C commands require 250K bytes to
operate.

The steps involved in processing the generated Ratfor
program are:

a.  Edit the Ratfor program.

1 Remove all tabs.

2. Change all lower case letters to upper case letters.

3. Convert the file to an 80-column card image file.

b Process the Ratfor through the Ratfor preproces-
sor to get Fortran code.

¢.  Compile the Fortran.

d. Load with the libraries ‘'hr289.lrl.load’ and

'sys1.fortlib’.
The final load module will only read input in 80-character
fixed length records. Warning: Work is in progress on
the IBM C compiler, and Lex and its availability on the
IBM 370 are subject to change without notice.

8 Lex and Yacc.

If you want to use Lex with Yacc, note that what Lex
writes is a program named yylex(), the name required by
Yacc for its analyzer. Normally, the default main pro-
gram on the Lex library calls this routine, but if Yacc is
loaded, and its main program is used, Yacc will call
yylex(). In this case each Lex rule should end with

return (token);

where the appropriate token value is returned. An easy
way to get access to Yacc’s names for tokens is to compile
the Lex output file as part of the Yacc output file by plac-
ing the line

# include "lex.yy.c"

in the last section of Yacc input. Supposing the grammar
to be named ‘‘good’’ and the lexical rules to be named
“‘better’” the UNIX command sequence can just be:

yacc good
lex better
cc y.tab.c -ly -l -1S

The Yacc library (-ly) should be loaded before the Lex li-
brary, to obtain a main program which invokes the Yacc
parser. The generations of Lex and Yacc programs can be
done in either order.

9 Examples.
As a trivial problem, consider copying an input file

while adding 3 to every positive number divisible by 7.
Here is a suitable Lex source program



%%
int k;
[0-91+ {
scanf (-1, yytext, "%d", &k);
if (k%7 == 0)
printf ("%d", k +3);
else
print{ ("%d" k);

to do just that. The rule [0-9]+ recognizes strings of di-
gits; scanf converts the digits to binary and stores the
result in k. The operator % (remainder) is used to check
whether k is divisible by 7; if it is, it is incremented by 3
as it is written out. It may be objected that this program
will alter such input items as 49.63 or X7. Furthermore,
it increments the absolute value of all negative numbers
divisible by 7. To avoid this, just add a few more rules
after the active one, as here:

%%
int k;

-2[0-9] + {
scanf(-1, yytext, "%d", &k);
printf ("%d", k%7 == 0 ? k+3
}

-27[0-9.14+ ECHO;

[A-Za-z][A-Za-20-9]+ ECHO;

(X302

Numerical strings containing a *‘.”’ or preceded by a letter
will be picked up by one of the last two rules, and not
changed. The if-else has been replaced by a C conditional
expression to save space; the form a?b:c means “if a
then belse ¢”.

For an example of statistics gathering, here is a pro-
gram which histograms the lengths of words, where a
word is defined as a string of letters.

int lengs{100];
%%
la-z]+  lengslyyleng] + +;
\n ;
%%
yywrap ()

int i;
printf ("Length No. words\n");
for(i=0; i<100; i+ +)
if (lengsli] > 0)
printf ("%5d%10d\n" i, lengs(i]);
return(1);

}

This program accumulates the histogram, while producing
no output. At the end of the input it prints the table.
The final statement return(1); indicates that Lex is to per-
form wrapup. If yywrap returns zero (false) it implies
that further input is available and the program is to con-
tinue reading and processing. To provide a yywrap that
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1 k);

never returns true causes an infinite loop.

As a larger example, here are some parts of a program
written by N. L. Schryer to convert double precision For-
tran to single precision Fortran. Because Fortran does
not distinguish upper and lower case letters, this routine
begins by defining a set of classes including both cases of

each letter: E:::

a [aAl
b [bB]
¢ [eCl
: Rz

An additional class recognizes white space:

W [\t]=
The first rule changes “‘double precision’ to ‘‘real’, or
“DOUBLE PRECISION" to “REAL”.

{dHoHu}{b}{1}{e} {W}{p}{rHe}{c}i}{s}i}{o}{n] {
g)rimf (yytext[0] =="d"? "real" : "REAL");

Care is taken throughout this program to preserve the
case (upper or lower) of the original program. The condi-
tional operator is used to select the proper form of the
keyword. The next rule copies continuation card indica-
tions to avoid confusing them with constants:
™ *["0] ECHO;

In the regular expression, the quotes surround the blanks.
It is interpreted as ‘‘beginning of line, then five blanks,
then anything but blank or zero.”” Note the two different
meanings of ~. There follow some rules to change double
precision constants to ordinary floating constants.

[0-9]+ {WHd} (W}[+-1?2{W}[0-9]+ |
[0-9] +{W} " {WHaH{W}[+-12{W][0-9]+ |
< MWHO-91 +{WHal (W +-17{W}i0-9]1+ ¢
/+ convert constants #/
for(p=yytext; *p !'= 0; p++)
{

if (tp == mm 'd"tp = = 'T)')
‘p_+ ’eI- ’dl;

ECHO;

}

After the floating point constant is recognized, it is
scanned by the for loop to find the letter d or D. The
program than adds ‘e-'d’, which converts it to the next
letter of the alphabet. The modified constant, now
single-precision, is written out again. There follow a
series of names which must be respelled to remove their
initial d. By using the array yytext the same action
suffices for all the names (only a sample of a rather long
list is given here).
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{d}{s}{i}{n} |
{d}{c}o}{s) ‘
{d}{sHa){r}{t} |
(d){al{t}la)(n) |
(O W o fallt)  printf(%s" yytext+1):

Another list of names must have initial d changed to ini-
tial a:

{d}{1}{o}{g} |

{d}{1H{o}{g}10 |

{d{mHi}{n}1 |

{d{m}{a}{x}1 {
yytext[0] =+ ‘a’ - 'd"
ECHO;
)

And one routine must have initial d changed to initial r.

{d}1{m}{a}{c}{h} {yytext[O] =+ "' -'d,

To avoid such names as dsinx being detected as instances
of dsin, some final rules pick up longer words as
identifiers and copy some surviving characters:

[A-Za-z][A-Za-20-9]+ |

[0-91+ |

\n |
ECHO;

Note that this program is not complete; it does not deal
with the spacing problems in Fortran or with the use of
keywords as identifiers.

10 Left Context Sensitivity.

Sometimes it is desirable to have several sets of lexical
rules to be applied at different times in the input. For ex-
ample, a compiler preprocessor might distinguish prepro-
cessor statements and analyze them differently from ordi-
nary statements. This requires sensitivity to prior con-
text, and there are several ways of handling such prob-
lems. The ~ operator, for example, is a prior context
operator, recognizing immediately preceding left context
just as § recognizes immediately following right context.
Adjacent left context could be extended, to produce a fa-
cility similar to that for adjacent right context, but it is
unlikely to be as useful, since often the relevant left con-
text appeared some time earlier, such as at the beginning
of a line.

This section describes three means of dealing with
different environments: a simple use of flags, when only a
few rules change from one environment to another, the
use of start conditions on rules, and the possibility of
making multiple lexical analyzers all run together. In
each case, there are rules which recognize the need to
change the environment in which the following input text

is analyzed, and set some parameter to reflect the change.
This may be a flag explicitly tested by the user’s action
code; such a flag is the simplest way of dealing with the
problem, since Lex is not involved at all. It may be more
convenient, however, to have Lex remember the flags as
initial conditions on the rules. Any rule may be associat-
ed with a start condition. It will only be recognized when
Lex is in that start condition. The current start condition
may be changed at any time. Finally, if the sets of rules
for the different environments are very dissimilar, clarity
may be best achieved by writing several distinct lexical
analyzers, and switching from one to another as desired.

Consider the following problem: copy the input to the
output, changing the word magic to first on every line
which began with the letter a, changing magic to second
on every line which began with the letter b, and changing
magic to third on every line which began with the letter c.
All other words and all other lines are left unchanged.

These rules are so simple that the easiest way to do this
job is with a flag:

int flag;
%%
“a {flag = "a”, ECHO:)
“b {flag = 'b", ECHO:)
“c {flag = 'c¢’; ECHO:)
\n {flag = 0 ECHO;)
magic  {

switch (flag)

case 'a’: printf("first"); break;
case 'b": printf("second"); break;
case ‘c”: printf("third"); break;
default: ECHO; break;

}

)

should be adequate.

To handle the same problem with start conditions, each
start condition must be introduced to Lex in the
definitions section with a line reading

%Start namel name?2 ...
where the conditions may be named in any order. The
word Start may be abbreviated to s or S. The conditions
may be referenced at the head of a rule with the <>
brackets:
<namel >expression
is a rule which is only recognized when Lex is in the start

condition namel. To enter a start condition, execute the
action statement

BEGIN namel;

which changes the start condition to namel. To resume
the normal state, '



BEGIN 0;

resets the initial condition of the Lex automaton inter-

preter. A rule may be active in several start conditions:
<namel,name2,name3>

is a legal prefix. Any rule not beginning with the <>

prefix operator is always active.

The same example as before can be written:

%START AA BB CC

%%

“a {ECHO; BEGIN AA;}
‘b {ECHO; BEGIN BB;}

¢ {ECHO; BEGIN CC;)
\n {ECHO; BEGIN 0;}

< AA>magic printf ("first");

< BB> magic printf ("second");

< CC>magic printf ("third");

where the logic is exactly the same as in the previous
method of handling the problem, but Lex does the work
rather than the user’s code.

11 Character Set.

The programs generated by Lex handle character I/0
only through the routines input, output, and unput. Thus
the character representation provided in these routines is
accepted by Lex and employed to return values in yytext.
For internal use a character is represented as a small in-
teger which, if the standard library is used, has a value
equal to the integer value of the bit pattern representing
the character on the host computer. In C, the I/O rou-
tines are assumed to deal directly in this representation.
In Ratfor, it is anticipated that many users will prefer
left-adjusted rather than right-adjusted characters; thus
the routine lexshf is called to change the representation
delivered by input into a right-adjusted integer. If the
user changes the I/0 library, the routine lexshf should
also be changed to a compatible version. The Ratfor li-
brary I/O system is arranged to represent the letter a as
in the Fortran value IHa while in C the letter a is
represented as the character constant ‘a’. If this interpre-
tation is changed, by providing I/0 routines which
translate the characters, Lex must be told about it, by giv-
ing a translation table. This table must be in the
definitions section, and must be bracketed by lines con-
taining only “%T". The table contains lines of the form

{integer] {character string}

which indicate the value associated with each character.
Thus the next example maps the lower and upper case
letters together into the integers 1 through 26, newline
into 27, + and - into 28 and 29, and the digits into 30
through 39. Note the escape for newline. If a table is
supplied, every character that is to appear either in the
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%T

1 Aa

2 Bb
26 2z
27 \n
28 +
29 -
30 0
31 1
39 9
%T

Sample character table.

rules or in any valid input must be included in the table.
No character may be assigned the number 0, and no char-
acter may be assigned a bigger number than the size of
the hardware character set.

It is not likely that C users will wish to use the charac-
ter table feature; but for Fortran portability it may be
essential.

Although the contents of the Lex Ratfor library rou-
tines for input and output run almost unmodified on
UNIX, GCOS, and 0S/370, they are not really machine
independent, and would not work with CDC or Bur

roughs Fortran compilers. The user is of course welcome

to replace input, output, unput and lexshf but to replace
them by completely portable Fortran routines is likely to
cause a substantial decrease in the speed of Lex Ratfor
programs. A simple way to produce portable routines
would be to leave input and output as routines that read
with 80A1 format, but replace lexshf by a table lookup
routine.

12 Summary of Source Format.
The general form of a Lex source file is:

{definitions}

%%

{rules}

%%

{user subroutines}

The definitions section contains a combination of
1)  Definitions, in the form ‘“‘name space transla-
tion™’,
2) Included code, in the form ‘‘space code’’.
3) Included code, in the form

%{
code
%}
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4)  Start conditions, given in the form
%S namel name?2 ...
5) Character set tables, in the form

%T
number space character-string

%T
6) A language specifier, which must also precede any

rules or included code, in the form “%C” for C
or “%R” for Ratfor.

7)  Changes to internal array sizes, in the form
%x nnn

where nnn is a decimal integer representing an ar-
ray size and x selects the parameter as follows:

Letter Parameter
p positions
n states
e tree nodes
a transitions
k packed character classes
o output array size

Lines in the rules section have the form ‘‘expression ac-
tion”’ where the action may be continued on succeeding
lines by using braces to delimit it.

Regular expressions in Lex use the following operators:

X the character "x"

"x" an "x", even if x is an operator.

\x an "x", even if X is an operator.

[xyl the character x or y.

(x-z] the characters x, y or z.

["x] any character but x.

. any character but newline.

"X an x at the beginning of a line.
<y>x an x when Lex is in start condition y.
x$ an x at the end of a line.

x? an optional x.

X* 0,1,2, ... instances of x.

X+ 1,2,3, ... instances of x.

xly an xoray.

(x) an Xx.

x/y an x but only if followed by y.

{xx} the translation of xx from the definitions section.
x{m,n}  mthrough n occurrences of x

13 Caveats and Bugs.

There are pathological expréssions which produce ex-
ponential growth of the tables when converted to deter-
ministic machines; fortunately, they are rare.

REJECT does not rescan the input; instead it
remembers the results of the previous scan. This means
that if a rule with trailing context is found, and REJECT
executed, the user must not have used unput to change
the characters forthcoming from the input stream. This is
the only restriction on the user’s ability to manipulate the
not-yet-processed input.

TSO Lex is an older version. Among the non-
supported features are REJECT, start conditions, or vari-
able length trailing context, And any significant Lex
source is too big for the IBM C compiler when translated.
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ABSTRACT

The Fortran language has just been revised. The new language, known as For-
tran 77, became an official American National Standard on April 3, 1978. We
report here on a compiler and run-time system for the new extended language.
This is believed to be the first complete Fortran 77 system to be implemented.
This compiler is designed to be portable, to be correct and complete, and to
generate code compatible with calling sequences produced by C compilers. In
particular, this Fortran is quite usable on UNIXT systems. In this paper, we
describe the language compiled, interfaces between procedures, and file formats
assumed by the 1/0 system. An appendix describes the Fortran 77 language.
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A Portable Fortran 77 Compiler

S. 1. Feldman
P. J. Weinberger

Bell Laboratories
Murray Hill, New Jersey 07974

1. INTRODUCTION

The Fortran language has just been revised. The new language, known as Fortran 77,
became an official American National Standard [1] on April 3, 1978. for the language, known
as Fortran 77, is about to be published. Fortran 77 supplants 1966 Standard Fortran [2]. We
report here on a compiler and run-time system for the new extended language. The compiler
and computation library were written by SIF, the I/0 system by PJW. We believe ours to be
the first complete Fortran 77 system to be implemented. This compiler is designed to be port-
able to a number of different machines, to be correct and complete, and to generate code com-
patible with calling sequences produced by compilers for the C language [3]. In particular, it is
in use on UNIXT systems. Two families of C compilers are in use at Bell Laboratories, those
based on D. M. Ritchie’s PDP-11 compiler{4] and those based on S. C. Johnson’s portable C
compiler [5]. This Fortran compiler can drive the second passes of either family. In this paper,
we describe the language compiled, interfaces between procedures, and file formats assumed by
the 170 system. We will describe implementation details in companion papers.

1.1. Usage

At present, versions of the compiler run on and compile for the PDP-11, the VAX-
11/780, and the Interdata 8/32 UNIX systems. The command to run the compiler is

77 Aags file. ..

£f77 is a general-purpose command for compiling and loading Fortran and Fortran-related files.
EFL [6] and Ratfor [7] source files will be preprocessed before being presented to the Fortran
compiler. C and assembler source files will be compiled by the appropriate programs. Object
files will be loaded. (The £77 and ce commands cause slightly different loading sequences to be
generated, since Fortran programs need a few extra libraries and a different startup routine than
do C programs.) The following file name suffixes are understood:

£ Fortran source file

.e EFL source file

T Ratfor source file

c C source file

.S Assembler source file

.0 Object file

The following flags are understood:
=S Generate assembler output for each source file, but do not assemble it. Assem-

tUNIX is a Trademark of Bell Laboratories.
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bler output for a source file x.f, x.e, x.r, or x.c is put on file x.s.

—C Compile but do not load. Output for x.f, x.e, X.r, X.c, or X.s is put on file x.o.

-m Apply the M4 macro preprocessor to each EFL or Ratfor source file before
using the appropriate compiler.

—f Apply the EFL or Ratfor processor to all relevant files, and leave the output
from x.e or x.r on x.f. Do not compile the resulting Fortran program.

-p Generate code to produce usage profiles.

-0 f Put executable module on file £ (Default is a.out).

—w Suppress all warning messages.

—w66 Suppress warnings about Fortran 66 features used.

-0 Invoke the C object code optimizer.

-C Compile code the checks that subscripts are within array bounds.

—onetrip Compile code that performs every do loop at least once. (see Section 2.10).

-U Do not convert upper case letters to lower case. The default is to convert For-
tran programs to lower case.

—u Make the default type of a variable undefined. (see Section 2.3).

-12 On machines which support short integers, make the default integer constants

and variables short. (—I4 is the standard value of this option). (see Section
2.14). All logical quantities will be short.

-E The remaining characters in the argument are used as an EFL flag argument.
-R The remaining characters in the argument are used as a Ratfor flag argument.
~F Ratfor and and EFL source programs are pre-processed into Fortran files, but

those files are not compiled or removed.

Other flags, all library names (arguments beginning —1), and any names not ending with one of
the understood suffixes are passed to the loader.

1.2. Documentation Conventions

In running text, we write Fortran keywords and other literal strings in boldface lower case.
Examples will be presented in lightface lower case. Names representing a class of values will be
printed in italics.

1.3. Implementation Strategy

The compiler and library are written entirely in C. The compiler generates C compiler
intermediate code. Since there are C compilers running on a variety of machines, relatively
small changes will make this Fortran compiler generate code for any of them. Furthermore,
this approach guarantees that the resulting programs are compatible with C usage. The runtime
computational library is complete. The mathematical functions are computed to at least 63 bit
precision. The runtime I/O library makes use of D. M. Ritchie’s Standard C 1/O package [8]
for transferring data. With the few exceptions described below, only documented calls are
used, so it should be relatively easy to modify to run on other operating systems.

2. LANGUAGE EXTENSIONS

Fortran 77 includes almost all of Fortran 66 as a subset. We describe the differences
briefly in the Appendix. The most important additions are a character string data type, file-
oriented input/output statements, and random access /0. Also, the language has been cleaned
up considerably. i

In addition to implementing the language specified in the new Standard, our compiler
implements a few extensions described in this section. Most are useful additions to the
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language. The remainder are extensions to make it easier to communicate with C procedures
or to permit compilation of old (1966 Standard) programs.

2.1.

2.2.

2.3.

2.4.

2.5.

2.6.

Double Complex Data Type

The new type double complex is defined. Each datum is represented by a pair of double
precision real variables. A double complex version of every complex built-in function is
provided. The specific function names begin with z instead of c.

Internal Files

The Fortran 77 standard introduces “‘internal files”” (memory arrays), but restricts their
use to formatted sequential [/O statements. Our /O system also permits internal files to
be used in direct and unformatted reads and writes.

Implicit Undefined statement

Fortran 66 has a fixed rule that the type of a variable that does not appear in a type state-
ment is integer if its first letter is i, j, k, I, m or n, and real otherwise. Fortran 77 has an
implicit statement for overriding this rule. As an aid to good programming practice, we
permif an additional type, undefined. The statement

implicit undefined(a-z)

turns off the automatic data typing mechanism, and the compiler will issue a diagnostic
for each variable that is used but does not appear in a type statement. Specifying the —u
compiler flag is equivalent to beginning each procedure with this staterent.

Recursion
Procedures may call themselves, directly or through a chain of other procedures.

Automatic Storage

Two new keywords are recognized, static and automatic. These keywords may appear as
‘“types’’ in type statements and in implicit statements. Local variables are static by
default; there is exactly one copy of the datum, and its value is retained between calls.
There is one copy of each variable declared automatic for each invocation of the pro-
cedure. Automatic variables may not appear in equivalence, data, or save statements.

Source Input Format

The Standard expects input to the compiler to be in 72 column format: except in com-
ment lines, the first five characters are the statement number, the next is the continuation
character, and the next sixty-six are the body of the line. (If there are fewer than
seventy-two characters on a line, the compiler pads it with blanks; characters after the
seventy-second are ignored).

In order to make it easier to type Fortran programs, our compiler also accepts input in
variable length lines. An ampersand (“‘&’) in the first position of a line indicates a con-
tinuation line; the remaining characters form the body of the line. A tab character in one
of the first six positions of a line signals the end of the statement number and continua-
tion part of the line; the remaining characters form the body of the line. A tab elsewhere
on the line is treated as another kind of blank by the compiler.

In the Standard, there are only 26 letters — Fortran is a one-case language. Consistent
with ordinary UNIX system usage, our compiler expects lower case input. By default, the
compiler converts all upper case characters to lower case except those inside character
constants. However, if the —U compiler flag is specified, upper case letters are not
transformed. In this mode, it is possible to specify external names with upper case letters
in them, and to have distinct variables differing only in case. Regardless of the setting of
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the flag, keywords will only be recognized in lower case.

Include Statement
The statement

include ‘stuff’

is replaced by the contents of the file stuff. includes may be nested to a reasonable
depth, currently ten.

Binary Initialization Constants

A logical, real, or integer variable may be initialized in a data statement by a binary con-
stant, denoted by a letter followed by a quoted string. If the letter is b, the string is
binary, and only zeroes and ones are permitted. If the letter is o, the string is octal, with

digits 0—7. If the letter is z or x, the string is hexadecimal, with digits 0—9, a—f. Thus,
the statements

integer a(3)
data a / b'1010', 0'12', z'a' /
initialize all three elements of a to ten.

Character Strings
For compatibility with C usage, the following backslash escapes are recognized:

\n newline
\t tab

\b backspace
\f form feed

\0 null

\' apostrophe (does not terminate a string)

\" quotation mark (does not terminate a string)
W\ \

\x x, where xis any other character

Fortran 77 only has one quoting character, the apostrophe. Our compiler and 1/0 system
recognize both the apostrophe (') and the double-quote (" ). If a string begins with one
variety of quote mark, the other may be embedded within it without using the repeated
quote or backslash escapes.

Every unequivalenced scalar local character variable and every character string constant is
aligned on an integer word boundary. Each character string constant appearing outside a
data statement is followed by a null character to ease communication with C routines.

Hollerith

Fortran 77 does not have the old Hollerith (nh) notation, though the new Standard
recommends implementing the old Hollerith feature in order to improve compatibility
with old programs. In our compiler, Hollerith data may be used in place of character
string constants, and may also be used to initialize non-character variables in data state-
ments.

Equivalence Statements

As a very special and peculiar case, Fortran 66 permits an element of a multiply-
dimensioned array to be represented by a singly-subscripted reference in equivalence
statements. Fortran 77 does not permit this usage, since subscript lower bounds may now
be different from 1. Our compiler permits single subscripts in equivalence statements,
under the interpretation that all missing subscripts are equal to 1. A warning message is
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printed for each such incomplete subscript.

One-Trip DO Loops

The Fortran 77 Standard requires that the range of a do loop not be performed if the ini-
tial value is already past the limit value, as in

do10i =2 1

The 1966 Standard stated that the effect of such a statement was undefined, but it was
common practice that the range of a de loop would be performed at least once. In order
to accommodate old programs, though they were in violation of the 1966 Standard, the
—onetrip compiler flag causes non-standard loops to be generated.

Commas in Formatted Input

The I/0 system attempts to be more lenient than the Standard when it seems worthwhile.
When doing a formatted read of non-character variables, commas may be used as value
separators in the input record, overriding the fieid lengths given in the format statement.
Thus, the format

(110, £20.10, i4)
will read the record
—345,.05e-3,12

correctly.

Short Integers

On machines that support halfword integers, the compiler accepts declarations of type
integer*2. (Ordinary integers follow the Fortran rules about occupying the same space as
a REAL variable; they are assumed to be of C type long int; halfword integers are of C
type short int.) An expression involving only objects of type integer+2 is of that type.
Generic functions return short or long integers depending on the actual types of their
arguments. If a procedure is compiled using the —I2 flag, all small integer constants will
be of type integer+2. If the precision of an integer-valued intrinsic function is not deter-
mined by the generic function rules, one will be chosen that returns the prevailing length
(integer=2 when the —I2 command flag is in effect). When the —I2 option is in effect, all
quantities of type logical will be short. Note that these short integer and logical quantities
do not obey the standard rules for storage association.

Additional Intrinsic Functions

This compiler supports all of the intrinsic functions specified in the Fortran 77 Standard.
In addition, there are functions for performing bitwise Boolean operations ( or, and, xor,
and net) and for accessing the UNIX command arguments ( getarg and iarge ).

3. VIOLATIONS OF THE STANDARD

3.1.

We know only thre ways in which our Fortran system violates the new standard:

Doubie Precision Alignment

The Fortran standards (both 1966 and 1977) permit common or equivalence statements to
force a double precision quantity onto an odd word boundary, as in the following example:

real a(4)
double precision b,c

equivalence (a(1),b), (a(4),c)

VY
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Some machines (e.g., Honeywell 6000, IBM 360) require that double precision quantities
be on double word boundaries; other machines (e.g., IBM 370), run inefficiently if this
alignment rule is not observed. It is possible to tell which equivalenced and common
variables suffer from a forced odd alignment, but every double precision argument would
have to be assumed on a bad boundary. To load such a quantity on some machines, it
would be necessary to use separate operations to move the upper and lower halves into
the halves of an aligned temporary, then to load that double precision temporary; the
reverse would be needed to store a result. We have chosen to require that all double pre-
cision real and complex quantities fall on even word boundaries on machines with
corresponding hardware requirements, and to issue a diagnostic if the source code
demands a violation of the rule.

Dummy Procedure Arguments

If any argument of a procedure is of type character, all dummy procedure arguments of
that procedure must be declared in an external statement. This requirement arises as a
subtle corollary of the way we represent character string arguments and of the one-pass
nature of the compiler. A warning is printed if a dummy procedure is not declared exter-
nal. Code is correct if there are no character arguments.

T and TL Formats

The implementation of the t (absolute tab) and tl (leftward tab) format codes is defective.
These codes allow rereading or rewriting part of the record which has already been pro-
cessed. (Section 6.3.2 in the Appendix.) The implementation uses seeks, so if the unit is
not one which allows seeks, such as a terminal, the program is in error. (People who can
make a case for using tl should let us know.) A benefit of the implementation chosen is
that there is no upper limit on the length of a record, nor is it necessary to predeclare any
record lengths except where specifically required by Fortran or the operating system.

4. INTER-PROCEDURE INTERFACE

To be able to write C procedures that call or are called by Fortran procedures, it is neces-

sary to know the conventions for procedure names, data representation, return values, and
argument lists that the compiled code obeys.

4.1.

Procedure Names
On UNIX systems, the name of a common block or a Fortran procedure has an underscore

appended to it by the compiler to distinguish it from a C procedure or external variable with the
same user-assigned name. Fortran library procedure names have embedded underscores to
avoid clashes with user-assigned subroutine names.

4.2. Data Representations

The following is a table of corresponding Fortran and C declarations:

Fortran C
integer*2 x short int x;
integer x long int x;
logical x long int Xx;
real x float x;
double precision x  double x;
complex x struct { float 1, iy } x;
double complex x  struct { double dr, di; } x;
character=6 x char x[6];

(By the rules of Fortran, integer, logical, and real data occupy the same amount of memory).



4.3. Return Values

A function of type integer, logical, real, or double precision declared as a C function that
returns the corresponding type. A complex or double complex function is equivalent to a C
routine with an additional initial argument that points to the place where the return value is to
be stored. Thus,

complex function f( . .. )
is equivalent to

f_(temp, ...)
struct { float r, i; } *temp;

A character-valued function is equivalent to a C routine with two extra initial arguments: a data
address and a length. Thus,

character=15 function g( . . .)
is equivalent to

g_(result, length, . . )
char result{ I;
long int length;

and could be invoked in C by
char chars[15];

g_.(chars, 15L, ... );

Subroutines are invoked as if they were integer-valued functions whose value specifies which
alternate return to use. Alternate return arguments (statement labels) are not passed to the
function, but are used to do an indexed branch in the calling procedure. (If the subroutine has
no entry points with alternate return arguments, the returned value is undefined.) The state-
ment

call nret(«1, «2, *3)
is treated exactly as if it were the computed goto

goto (1, 2, 3), nret()

4.4. Argument Lists

All Fortran arguments are passed by address. In addition, for every argument that is of
type character or that is a dummy procedure, an argument giving the length of the value is
passed. (The string lengths are long int quantities passed by value). The order of arguments is
then:

Extra arguments for complex and character functions
Address for each datum or function
A long int for each character or procedure argument

Thus, the call in



external f
character*7 s
integer b(3)

call sam(f, b(2), s)
is equivalent to that in

int f0;
char s[7];
long int b[3];

sam_(f, &bl1], s, OL, 7L):

Note that the first element of a C array always has subscript zero, but Fortran arrays begin at 1

by default. Fortran arrays are stored in column-major order, C arrays are stored in row-major
order.

5. FILE FORMATS

5.1. Structure of Fortran Files

Fortran requires four kinds of external files: sequential formatted and unformatted, and
direct formatted and unformatted. On UNIX systems, these are all implemented as ordinary files
which are assumed to have the proper internal structure.

Fortran 1/0 is based on ‘‘records’’. When a direct file is opened in a Fortran program,
the record length of the records must be given, and this is used by the Fortran I/0 system to
make the file look as if it is made up of records of the given length. In the special case that the
record length is given as 1, the files are not considered to be divided into records, but are
treated as byte-addressable byte strings; that is, as ordinary UNIX file system files. (A read or

write request on such a file keeps consuming bytes until satisfied, rather than being restricted to
a single record.)

The peculiar requirements on sequential unformatted files make it unlikely that they will
ever be read or written by any means except Fortran I/O statements. Each record is preceded
and followed by an integer containing the record’s length in bytes.

The Fortran 1/0 system breaks sequential formatted files into records while reading by
using each newline as a record separator. The result of reading off the end of a record is
undefined according to the Standard. The 1/0 system is permissive and treats the record as
being extended by blanks. On output, the I/O system will write a newline at the end of each
record. It is also possible for programs to write newlines for themselves. This is an error, but
the only effect will be that the single record the user thought he wrote will be treated as more
than one record when being read or backspaced over.

5.2. Portability Considerations

The Fortran 170 system uses only the facilities of the standard C I/O library, a widely
available and fairly portable package, with the following two nonstandard features: The 1/0 sys-
tem needs to know whether a file can be used for direct 1/0, and whether or not it is possible
to backspace. Both of these facilities are implemented using the fseek routine, so there is a
routine canseek which determines if fseek will have the desired effect. Also, the inquire state-
ment provides the user with the ability to find out if two files are the same, and to get the name
of an already opened file in a form which would enable the program to reopen it. (The UNIX
operating system implementation attempts to determine the full pathname.) Therefore there are
two routines which depend on facilities of the operating system to provide these two services.
In any case, the I/O system runs on the PDP-11, VAX-11/780, and Interdata 8/32 UNIX sys-
tems.
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5.3. Pre-Connected Files and File Positions

Units 5, 6, and 0 are preconnected when the program starts. Unit S is connected to the
standard input, unit 6 is connected to the standard output, and unit 0 is connected to the stan-
dard error unit. All are connected for sequential formatted 1/0.

All the other units are also preconnected when execution begins. Unit » is connected to
a file named fort.n. These files need not exist, nor will they be created unless their units are
used without first executing an open. The default connection is for sequential formatted 1/0.

The Standard does not specify where a file which has been explicitly opened for sequential
1/0 is initially positioned. In fact, the I/O system attempts to position the file at the end, so a
write will append to the file and a read will result in an end-of-file indication. To position a file
to its beginning, use a rewind statement. The preconnected units 0, 5, and 6 are positioned as
they come from the program’s parent process.
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APPENDIX. Differences Between Fortran 66 and Fortran 77

The following is a very brief description of the differences between the 1966 [2] and the
1977 [1] Standard languages. We assume that the reader is familiar with Fortran 66. We do
not pretend to be complete, precise, or unbiased, but plan to describe what we feel are the most
important aspects of the new language. At present the only current information on the 1977
Standard is in publications of the X3J3 Subcommittee of the American National Standards
Institute. The following information is from the ‘‘/92”’ document. This draft Standard is writ-

ten in English rather than a meta-language, but it is forbidding and legalistic. No tutorials or
textbooks are available yet.

1. Features Deleted from Fortran 66

1.1. Hollerith

All notions of ‘‘Hollerith”> (nh) as data have been officially removed, although our com-
piler, like almost all in the foreseeable future, will continue to support this archaism.

1.2. Extended Range

In Fortran 66, under a set of very restrictive and rarely-understood conditions, it is per-
missible to jump out of the range of a do loop, then jump back into it. Extended range
has been removed in the Fortran 77 language. The restrictions are so special, and the
implementation of extended range is so unreliable in many compilers, that this change
really counts as no loss.

2. Program Form

2.1. Blank Lines
Completely blank lines are now legal comment lines.

2.2. Program and Block Data Statements

A main program may now begin with a statement that gives that program an external
name:

program work
Block data procedures may also have names.
block data stuff

There is now a rule that only one unnamed block data procedure may appear in a pro-
gram. (This rule is not enforced by our system.) The Standard does not specify the effect
of the program and block data names, but they are clearly intended to aid conventional
loaders.

2.3. ENTRY Statement

Multiple entry points are now legal. Subroutine and function subprograms may have addi-
tional entry points, declared by an entry statement with an optional argument list.

entry extra(a, b, c)

Execution begins at the first statement following the entry line. All variable declarations
must precede all executable statements in the procedure. If the procedure begins with a
subroutine statement, all entry points are subroutine names. If it begins with a function
statement, each entry is a function entry point, with type determined by the type declared
for the entry name. If any entry is a character-valued function, then all entries must be.
In a function, an entry name of the same type as that where control entered must be
assigned a value. Arguments do not retain their values between calls. (The ancient trick
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of calling one entry point with a large number of arguments to cause the procedure to
“remember’’ the locations of those arguments, then invoking an entry with just a few
arguments for later calculation, is still illegal. Furthermore, the trick doesn’t work in our
implementation, since arguments are not kept in static storage.)

DO Loops

do variables and range parameters may now be of integer, real, or double precision types.
(The use of floating point de variables is very dangerous because of the possibility of
unexpected roundoff, and we strongly recommend against their use). The action of the
do statement is now defined for all values of the do parameters. The statement

do10i=1u,d

performs max(0, [(u—1)/d]) iterations. The do variable has a predictable value when
exiting a loop: the value at the time a goto or return terminates the loop; otherwise the
value that failed the limit test.

Alternate Returns

In a subroutine or subroutine entry statement, some of the arguments may be noted by
an asterisk, as in

subroutine s(a, *, b, *)

The meaning of the “‘alternate returns’’ is described in section 5.2 of the Appendix.

3. Declarations

3.1.

3.2.

CHARACTER Data Type

One of the biggest improvements to the language is the addition of a character-string data
type. Local and common character variables must have a length denoted by a constant
expression:

characters17 a, b(3,4)
character=(6+3) ¢

If the length is omitted entirely, it is assumed equal to 1. A character string argument
may have a constant length, or the length may be declared to be the same as that of the
corresponding actual argument at run time by a statement like

character*(*) a

(There is an intrinsic function len that returns the actual length of a character string).
Character arrays and common blocks containing character variables must be packed: in an
array of character variables, the first character of one element must follow the last charac-
ter of the preceding element, without holes.

IMPLICIT Statement

The traditional implied declaration rules still hold: a variable whose name begins with i, j,
k, I, m, or n is of type integer, other variables are of type real, unless otherwise declared.
This general rule may be overridden with an implicit statement:

implicit real(a-c,g), complex(w-z), character=(17) (s)

declares that variables whose pame begins with an a ,b, ¢, or g are real, those beginning
with w, X, v, or z are assumed complex, and so on. It is still poor practice to depend on
implicit typing, but this statement is an industry standard.
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3.3. PARAMETER Statement

It is now possible to give a constant a symbolic name, as in
parameter (x=17, y=x/3, pi=3.14159d0, s="hello’)

The type of each parameter name is governed by the same implicit and explicit rules as
for a variable. The right side of each equal sign must be a constant expression (an
expression made up of constants, operators, and already defined parameters).

3.4. Array Declarations

3.5.

3.6.

Arrays may now have as many as seven dimensions. (Only three were permitted in
1966). The lower bound of each dimension may be declared to be other than 1 by using a
colon. Furthermore, an adjustable array bound may be an integer expression involving
constants, arguments, and variables in common.

real a(—5:3, 7, m:n), b(n+1:2*n)

The upper bound on the last dimension of an array argument may be denoted by an aster-
isk to indicate that the upper bound is not specified:

integer a(5, *), b(+), c(0:1, —2:¥)

SAVE Statement

A poorly known rule of Fortran 66 is that local variables in a procedure do not necessarily
retain their values between invocations of that procedure. At any instant in the execution
of a program, if a common block is declared neither in the currently executing procedure
nor in any of the procedures in the chain of callers, all of the variables in that common
block also become undefined. (The only exceptions are variables that have been defined
in a data statement and never changed). These rules permit overlay and stack implemen-
tations for the affected variables. Fortran 77 permits one to specify that certain variables
and common blocks are to retain their values between invocations. The declaration

save a, /b/, ¢

leaves the values of the variables a and ¢ and all of the contents of common block b
unaffected by a return. The simple declaration

save

has this effect on all variables and common blocks in the procedure. A common block
must be saved in every procedure in which it is declared if the desired effect is to occur.

INTRINSIC Statement

All of the functions specified in the Standard are in a single category, ‘‘intrinsic func-
tions’’, rather than being divided into ‘‘intrinsic’” and ‘‘basic external’ functions. If an
intrinsic function is to be passed to another procedure, it must be declared intrinsic.
Declaring it external (as in Fortran 66) causes a function other than the built-in one to be
passed.

4. Expressions

4.1.

Character Constants

Character string constants are marked by strings surrounded by apostrophes. If an apos-
trophe is to be included in a constant, it is repeated:
Iach

"

'ain’'t
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There are no null (zero-length) character strings in Fortran 77. Our compiler has two
different quotation marks, *“ " and ““ " . (See Section 2.9 in the main text.)

Concatenation

One new operator has been added, character string concatenation, marked by a double
slash (“//**). The result of a concatenation is the string containing the characters of the
left operand followed by the characters of the right operand. The strings

‘ab’ // 'ed’

‘abed’
are equal. The strings being concatenated must be of constant length in all concatenations
that are not the right sides of assignments. (The only concatenation expressions in which

a character string declared adjustable with a “‘»(+)’’ modifier or a substring denotation
with nonconstant position values may appear are the right sides of assignments).

Character String Assignment

The left and right sides of a character assignment may not share storage. (The assumed
implementation of character assignment is to copy characters from the right to the left
side.) If the left side is longer than the right, it is padded with blanks. If the left side is
shorter than the right, trailing characters are discarded.

Substrings

It is possible to extract a substring of a character variable or character array element, using
the colon notation:

a(i,j) (m:n)

is the string of (n—m+1) characters beginning at the m'" character of the character array
element a,. Results are undefined unless m<n. Substrings may be used on the left
sides of assignments and as procedure actual arguments.

Exponentiation

It is now permissible to raise real quantities to complex powers, or complex quantities to
real or complex powers. (The principal part of the logarithm is used). Also, mulitiple
exponentiation is now defined:

aeehexc = 3 =& (b"‘C)

Relaxation of Restrictions

Mixed mode expressions are now permitted. (For instance, it is permissible to combine
integer and complex quantities in an expression.)

Constant expressions are permitted where a constant is allowed, except in data state-
ments. (A constant expression is made up of explicit constants and parameters and the
Fortran operators, except for exponentiation to a floating-point power). An adjustable
dimension may now be an integer expression involving constants, arguments, and vari-
ables in B common..

Subscripts may now be general integer expressions; the old c¢cv#+c¢’ rules have been

removed. do loop bounds may be general integer, real, or double precision expressions.
Computed goto expressions and [/0 unit numbers may be general integer expressions.
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5. Executable Statements

5.1. IF-THEN-ELSE

5.2.

At last, the if-then-else branching structure has been added to Fortran. It is called a
“Block If”’. A Block If begins with a statement of the form

if (...) then
and ends with an
end if

statement. Two other new statements may appear in a Block If. There may be several
else if(. . .) then
statements, followed by at most one

else

statement. If the logical expression in the Block If statement is true, the statements fol-
lowing it up to the next elseif, else, or endif are executed. Otherwise, the next elseif
statement in the group is executed. If none of the elseif conditions are true, control
passes to the statements following the else statement, if any. (The else must follow all
elseifs in a Block If. Of course, there may be Block Ifs embedded inside of other Block If
structures). A case construct may be rendered

if (s .eq. ‘ab’) then
else if (s .eq. ‘cd’) then
else
end if

Alternate Returns

Some of the arguments of a subroutine call may be statement labels preceded by an aster-
isk, as in

call joe(j, *10, m, *2)
A return statement may have an integer expression, such as

return kK

If the entry point has n alternate return (asterisk) arguments and if 1<k < n, the return
is followed by a branch to the corresponding statement label; otherwise the usual return to

~ the statement following the call is executed.

6. Input/Output

6.1.

Format Variables

A format may be the value of a character expression (constant or otherwise), or be stored
in a character array, as in

write (6, '(i5)") x
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6.2. END=, ERR=, and IOSTAT= Clauses
A read or write statement may contain end=, err=, and iostat= clauses, as in

write (6, 101, err=20, iostat=a(4))
read(5, 101, err=20, end =30, jostat=x)

Here 5 and 6 are the wnits on which the 1/0 is done, 101 is the statement number of the
associated format, 20 and 30 are statement numbers, and a and x are integers. If an error
occurs during [/0, control returns to the program at statement 20. If the end of the file is
reached, control returns to the program at statement 30. In any case, the variable

* referred to in the iostat= clause is given a value when the I/0 statement finishes. (Yes,
the value is assigned to the name on the right side of the equal sign.) This value is zero if
all went well, negative for end of file, and some positive value for errors.

6.3. Formatted 1/0

6.3.1. Character Constants

Character constants in formats are copied literally to the output. Character constants can-
not be read into.

write(6,'(i2,” isn""t ",i1)") 7, 4
produces
7 isn't 4
Here the format is the character constant
(i2," isn"t ',il)
and the character constant
isn't
is copied into the output.

6.3.2. Positionat Editing Codes

t, tl, tr, and x codes control where the next character is in the record. trnor nx specifies
that the next character is # to the right of the current position. tln specifies that the next
character is » to the left of the current position, allowing parts of the record to be recon-
sidered. tn says that the next character is to be character number n in the record. (See
section 3.4 in the main text.)

6.3.3. Colon

A colon in the format terminates the I/O operation if there are no more data items in the
1/0 list, otherwise it has no effect. In the fragment

x="'("hello", :, " there", i4)’
write (6, x) 12
write (6, x)

the first write statement prints hello there 12, while the second only prints helle.

6.3.4. Optional Plus Signs

According to the Standard, each implementation has the option of putting plus signs in
front of non-negative numeric output. The sp format code may be used to make the
optional plus signs actually appear for all subsequent items while the format is active. The
ss format code guarantees that the I/O system will not insert the optional plus signs, and
the s format code restores the default behavior of the I/0 system. (Since we never put
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out optional plus signs, ss and s codes have the same effect in our implementation.)

6.3.5. Blanks on Input

Blanks in numeric input fields, other than leading blanks will be ignored following a bn
code in a format statement, and will be treated as zeros following a bz code in a format

statement. The default for a unit may be changed by using the open statement. (Blanks
are ignored by default.)

6.3.6. Unrepresentable Values

The Standard requires that if a numeric item cannot be represented in the form required
by a format code, the output field must be filled with asterisks. (We think this should
have been an option.)

6.3.7. Iw.m

There is a new integer output code, iw.m. It is the same as iw, except that there will be at
least m digits in the output field, including, if necessary, leading zeros. The case iw.0 is
special, in that if the value being printed is 0, the output field is entirely blank. iw.l is
the same as iw.

6.3.8. Floating Point

On input, exponents may start with the letter E, D, e, or d. All have the same meaning.
On output we always use e. The e and d format codes also have identical meanings. A
leading zero before the decimal point in e output without a scale factor is optional with
the implementation. (We do not print it.) There is a gw.d format code which is the same
as ew.d and fw.d on input, but which chooses f or e formats for output depending. on the
size of the number and of d.

6.3.9. “A” Format Code

6.4.

6.5.

A codes are used for character values. aw use a field width of w, while a plain a uses the
length of the character item.

Standard Units
There are default formatted input and output units. The statement

read 10, a, b

reads from the standard unit using format statement 10. The default unit may be expli-
citly specified by an asterisk, as in

read(=, 10) a,b
Similarly, the standard output units is specified by a print statement or an asterisk unit:

print 10
write(*, 10)

List-Directed Formatting

List-directed 1/0 is a kind of free form input for sequential [/O. It is invoked by using an
asterisk as the format identifier, as in

read(6, *) a,b,c
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‘On input, values are separated by strings of blanks and possibly a comma. Values, except
for character strings, cannot contain blanks. End of record counts as a blank, except in

character strings, where it is ignored. Complex constants are given as two real constants
separated by a comma and enclosed in parentheses. A null input field, such as between
two consecutive commas, means the corresponding variable in the 170 list is not changed.
Values may be preceded by repetition counts, as in

4+(3.,2.)) 2=, 4+hello’
which stands for 4 complex constants, 2 null values, and 4 string constants.

For output, suitable formats are chosen for each item. The values of character strings are
printed; they are not enclosed in quotes, so they cannot be read back using list-directed
input.

Q?

Direct /0

A file connected for direct access consists of a set of equal-sized records each of which is
uniquely identified by a positive integer. The records may be written or read in any order,
using direct access I/O statements.

Direct access read and write statements have an extra argument, rec=, which gives the
record number to be read or written.

read(2, rec=13, err=20) (a(i), i=1, 203)

reads the thirteenth record into the array a.

The size of the records must be given by an open statement (see below). Direct access
files may be connected for either formatted or unformatted 1/0.

Internal Files

Internal files are character string objects, such as variables or substrings, or arrays of type
character. In the former cases there is only a single record in the file, in the latter case
each array element is a record. The Standard includes only sequential formatted 1/0 on
internal files. (I/O is not a very precise term to use here, but internal files are dealt with
using read and write). There is no list-directed I/O on internal files. Internal files are
used by giving the name of the character object in place of the unit number, as in

character*80 x
read(5,"(a)") x
read(x,"(i3,i4)") nl,n2

which reads a card image into x and then reads two integers from the front of it. A
sequential read or write always starts at the beginning of an internal file.

(We also support a compatible extension, direct I/O on internal files. This is like direct
1/0 on external files, except that the number of records in the file cannot be changed.)

OPEN, CLOSE, and INQUIRE Statements

These statements are used to connect and disconnect units and files, and to gather infor-
mation about units and files.

6.8.1. OPEN

The open statement is used to connect a file with a unit, or to alter some properties of the
connection. The following is a minimal example.

open(l, file="fort.junk’)

open takes a variety of arguments with meanings described below.



21-19

unit= a small non-negative integer which is the unit to which the file is to be connected.
We allow, at the time of this writing, O through 9. If this parameter is the first one
in the open statement, the unit= can be omitted.

iostat= is the same as in read or write.

err= is the same as in read or write.

file= a character expression, which when stripped of trailing blanks, is the name of the

file to be connected to the unit. The filename should not be given if the
status=scratch.

status= one of old, new, scratch, or unknown. If this parameter is not given, unknown
is assumed. If scratch is given, a temporary file will be created. Temporary files are
destroyed at the end of execution. If new is given, the file will be created if it
doesn’t exist, or truncated if it does. The meaning of unknown is processor depen-
dent; our system treats it as synonymous with old.

access= sequential or direct, depending on whether the file is to be opened for sequen-
tial or direct [/0.

form= formatted or unformatted.

recl= a positive integer specifying the record length of the direct access file being opened.
We measure all record lengths in bytes. On UNIX systems a record length of 1 has
the special meaning explained in section 5.1 of the text.

blank= null or zero. This parameter has meaning only for formatted 1/0. The default
value is null. zero means that blanks, other than leading blanks, in numeric input
fields are to be treated as zeros.

Opening a new file on a unit which is already connected has the effect of first closing the
old file.

6.8.2. CLOSE

close severs the connection between a unit and a file. The unit number must be given.
The optional parameters are iostat= and err= with their usual meanings, and status=
either keep or delete. Scratch files cannot be kept, otherwise keep is the default. delete
means the file will be removed. A simple example is

close(3, err=17)

6.8.3. INQUIRE

The inquire statement gives information about a unit (‘‘inquire by unit”) or a file
(‘“‘inquire by file’’). Simple examples are:

inquire (unit=3, namexx)
inquire (file="junk’, number=n, exist=1)

file= a character variable specifies the file the inquire is about. Trailing blanks in the file
name are ignored.

unit= an integer variable specifies the unit the inquire is about. Exactly one of file= or
unit= must be used.

iostat=, err= are as before.

exist= a logical variable. The logical variable is set to .true. if the file or unit exists and
is set to .false. otherwise.

opened= a logical variable. The logical variable is set to .true. if the file is connected to
a unit or if the unit is connected to a file, and it is set to .false. otherwise.
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number= an integer variable to which is assigned the number of the unit connected to
the file, if any.

named= a logical variable to which is assigned .true. if the file has a name, or .false.
otherwise.

name= a character variable to which is assigned the name of the file (inquire by file) or
the name of the file connected to the unit (inquire by unit). The name will be the
full name of the file.

access= a character variable to which will be assigned the value ‘sequential’ if the con-
nection is for sequential 1/0, 'direct’ if the connection is for direct I/O. The value
becomes undefined if there is no connection.

sequential= a character variable to which is assigned the value 'yes' if the file could be
connected for sequential I/0, ‘mo’ if the file could not be connected for sequential
170, and 'unknown' if we can’t tell.

direct= a character variable to which is assigned the value 'yes' if the file could be con-
nected for direct I/0, 'no’ if the file could not be connected for direct I/0, and ‘unk-
nown' if we can’t tell.

form= a character variable to which is assigned the value 'formatted’ if the file is con-
nected for formatted I/0, or 'unformatted’ if the file is connected for unformatted
I/0.

formatted= a character variable to which is assigned the value ‘yes' if the file could be
connected for formatted 1/0, 'no’ if the file could not be connected for formatted
1/0, and 'unknown’ if we can’t tell.

unformatted= a character variable to which is assigned the value 'yes’ if the file could be
connected for unformatted 1/0, 'no’ if the file could not be connected for unformat-
ted I/0, and ‘'unknown’ if we can’t tell. :

recl= an integer variable to which is assigned the record length of the records in the file
if the file is connected for direct access.

nextrec= an integer variable to which is assigned one more than the number of the the
last record read from a file connected for direct access.

blank= a character variable to which is assigned the value 'null’ if null blank control is in
effect for the file connected for formatted 1/0, ‘zero’ if blanks are being converted to
zeros and the file is connected for formatted I/0.

The gentle reader will remember that the people who wrote the standard probably weren’t
thinking of his needs. Here is an example. The declarations are omitted.

open(l, file="/dev/console")

On a UNIX system this statement opens the console for formatted sequential [/0. An inquire
statement for either unit 1 or file "/dev/console" would reveal that the file exists, is connected
to unit 1, has a name, namely "/dev/console", is opened for sequential /O, could be connected
for sequential 1/0, could not be connected for direct [/O (can’t seek), is connected for format-
ted /0, could be connected for formatted I/0, could not be connected for unformatted 1/0
(can’t seek), has neither a record length nor a next record number, and is ignoring blanks in
numeric fields.

In the UNIX system environment, the only way to discover what permissions you have for
a file is to open it and try to read and write it. The err= parameter will return system error
numbers. The inquire statement does not give a way of determining permissions.
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ABSTRACT

Although Fortran is not a pleasant language to use, it does have the advantages of universality and
(usually) relative efficiency. The Ratfor language attempts to conceal the main deficiencies of Fortran
while retaining its desirable qualities, by providing decent control flow statements:

@ stalement grouping

@ if-else and switch for decision-making

® while, for, do, and repeat-until for looping

@ break and next for controliing loop exits
and some ‘‘syntactic sugar’’:

® free form input (multiple statements/line, automatic continuation)
unobtrusive comment convention
translation of >, >=_ etc., into .GT., .GE., etc.

return{expression) statement for functions

define statement for symbolic parameters
® include statement for including source files
Ratfor is implemented as a preprocessor which translates this language into Fortran.

Once the control flow and cosmetic deficiencies of Fortran are hidden, the resulting language is
remarkably pleasant to use. Ratfor programs are markedly easier to write, and to read, and thus easier to
debug, maintain and modify than their Fortran equivalents.

It is readily possible to write Ratfor programs which are portable to other env ironments. Ratfor is
written in itself in this way, so it is also portable; versions of Ratfor are now running on at least two
dozen different types of computers at over five hundrzd locations.

This paper discusses design criteria for a Fortran preprocessor, the Ratfor language and its imple-
mentation, and user experience.
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1. INTRODUCTION

Most programmers will agree that Fortran
is an unpleasant language to program in, yet
there are many occasions when they are forced
to use it. For example, Fortran is often the only
language thoroughly supported on the local com-
puter. Indeed, it is the closest thing to a univer-
sal programming language currently available:
with care it is possible to write large, truly port-
able Fortran programs[l]. Finally, Fortran is
often the most ‘‘efficient’” language available,
particularly for programs requiring much compu-
tation.

But Fortran is unpleasant. Perhaps the
worst deficiency is in the control flow statements
— conditional branches and loops — which
express the logic of the program. The condi-
tional statements in Fortran are primitive. The
Arithmetic IF forces the user into at least two
statement numbers and two (implied) GOTO’s; it
leads to unintelligible code, and is eschewed by
good programmers. The Logical IF is better, in
that the test part can be stated clearly, but hope-
lessly restrictive because the statement that fol-
lows the IF can only be one Fortran statement
(with some further restrictions!). And of course
there can be no ELSE part to a Fortran IF: there is
no way to specify an alternative action if the IF is
not satisfied.

The Fortran DO restricts the user to going
forward in an arithmetic progression. It is fine
for *‘1 to N in steps of 1 (or 2 or ...)"", but there
is no direct way to go backwards, or even (in
ANSI Fortran{2]) to go from 1 to N—1. And of
course the DO is useless if one’s problem doesn’t
map into an arithmetic progression.

The result of these failings is that Fortran
programs must be written with numerous labels
and branches. The resulting code is particularly
difficult to read and understand, and thus hard to
debug and modify.

When one is faced with an unpleasant
language, a useful technique is to define a new
language that overcomes the deficiencies, and to
translate it into the unpleasant one with a
preprocessor. This is the approach taken with
Ratfor. (The preprocessor idea is of course not
new, and preprocessors for Fortran are especially
popular today. A recent listing [3] of preproces-
sors shows more than 50, of which at least half a
dozen are widely availabie.)

2. LANGUAGE DESCRIPTION

Design

Ratfor attempts to retain the merits of
Fortran (universality, portability, efficiency)
while hiding the worst Fortran inadequacies.
The language /s Fortran except for two aspects.
First, since control flow is central to any pro-
gram, regardless of the specific application, the
primary task of Ratfor is to conceal this part of
Fortran from the user, by providing decent con-
trol flow structures. These structures are
sufficient and comfortable for structured pro-
gramming in the narrow sense of programming
without GOTO's. Second, since the preprocessor
must examine an entire program to translate the
control structure, it is possible at the same time
to clean up many of the ‘‘cosmetic’ deficiencies
of Fortran, and thus provide a language which is
easier and more pleasant to read and write.

Beyond these two aspects — control flow
and cosmetics — Ratfor does nothing about the
host of other weaknesses of Fortran. Although
it would be straightforward to extend it to pro-
vide character strings, for example, they are not
needed by everyone, and of course the prepro-
cessor would be harder to implement.
Throughout, the design principle which has
determined what should be in Ratfor and what
should not has been Raifor doesn’t know anv For-
tran. Any language feature which would require

This paper is a revised and expanded version of oe published in Sofiware— Practice and Experience, October
1975. The Ratfor described here is the one in use on UNIX and GCos at Bell Laboratories, Murray Hill, N. J.




that Ratfor reaily understand Fortran has been
omitted. We will return to this point in the sec-
tion on implementation.

Even within the confines of control flow
and cosmetics, we have attempted to be selective
in what features to provide. The intent has been
to provide a small set of the most useful con-
structs, rather than to throw in everything that
has ever been thought useful by someone.

The rest of this section contains an infor-
mal description of the Ratfor language. The con-
trol flow aspects will be quite familiar to readers
used to languages like Algol, PL/I, Pascal, etc.,
and the cosmetic changes are equally straightfor-
ward. We shall concentrate on showing wnat the
language looks like.

Statement Grouping

Fortran provides no way to group state-
ments together, short of making them into a
subroutine. The standard construction *'if a con-
dition is true, do this group of things,”” for
example,

if (x > 100)
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{ call error("x>100"); err = 1; return )

cannot be written directly in Fortran. Instead a
programmer is forced to translate this relatively
clear thought into murky Fortran, by stating the
negative condition and branching around the
group of statements:

if (x .le. 100) goto 10
call error(5hx>100)
err = 1
return
10

When the program doesn’t work, or when it
must be modified, this must be transiated back
into a clearer form before one can be sure what
it does.

Ratfor eliminates this error-prone and
confusing back-and-forth translation; the first
form is the way the computation is written in
Ratfor. A group of statements can be treated as
a unit by enclosing them in the braces { and .
This is true throughout the language: wherever a
single Ratfor statement can be used, there can be
several enclosed in braces. (Braces seem clearer
and less obtrusive than begin and end or do and
end, and of course do and end already have For-
iran meanings.)

Cosmetics contribuie to the readability of
code, and thus to its understandability. The
character **>"" is clearer than “.GT.", so Ratfor
translates it appropriately, along with several
other similar shorthands. Although many For-
tran compilers permit character strings in quotes

(like "x>100"), quotes are not allowed in ANSI
Fortran, so Ratfor converts it into the right
number of H's: computers count better than
people do.

Ratfor is a free-form language: statements
may appear anywhere on a line, and several may
appear on one line if they are separated by semi-
colons. The example above could also be written
as

if (x > 100) {
call error("x>100")
err == 1
return

}

In this case, no semicolon is needed at the end
of each line because Ratfor assumes there is one
statement per line unless told otherwise.

Of course, if the statement that follows the
if is a single statement (Ratfor or otherwise), no
braces are needed:

if(ly <=00&z <= 0.0)
write(6, 20) vy, z

No continuation need be indicated because the
statement is cleariy not finished on the first line.
In general Ratfor continues lines when it seems
obvious that they are not yet done. (The con-
tinuation convention is discussed in detail later.)

Although a free-form language permits
wide latitude in formatting styles, it is wise to
pick one that is readable, then stick to it. In par-
ticular, proper indentation is vital, to make the
logical structure of the program obvious to the
reader.

The **else’” Clause

Ratfor provides an else statement to han-
die the construction *‘if a condition is true, do
this thing, otherwise do that thing.”

if {a <==1b)

{sw = 0; write(6, 1) a, b }
else

{sw = 1; write(6, 1) b, a }

This writes out the smaller of a and b, then the
larger, and sets sw appropriately.

The Fortran equivalent of this code is cir-
cuitous indeed:
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if (a .gt. b) goto 10
sw = (
write(6, 1) a, b
goto 20
10 sw o= |
write(6, 1) b, a
20

This is a mechanical translation; shorter forms
exist, as they do for many similar situations. But
all translations suffer from the same problem:
since they are translations, they are less clear and
understandable than code that is not a transla-
tion. To understand the Fortran version, one
must scan the entire program to make sure that
no other statement branches to statements 10 or
20 before one knows that indeed this is an if-
else construction. With the Ratfor version, there
is no question about how one gets to the parts of
the statement. The if-else is a single unit, which
can be read, understood, and ignored if not
relevant. The program says what it means.

As before, if the statement following an if
or an else is a single statement, no braces are
needed:

if (a <= b)
sw =
else
sw == |

The syntax of the if statement is

if (legal Fortran condition)
Ratfor statement
else
Ratfor starement

where the else part is optional. The legal Fortran
condition is anything that can legally go into a
Fortran Logical IF. Ratfor does not check this
clause, since it does not know enough Fortran to
know what is permitted. The Ratfor statement is
any Ratfor or Fortran statement, or any collec-
tion of them in braces.

Nested if's

Since the statement that follows an if or an
else can be any Ratfor statement, this leads
immediately to the possibility of another if or
else. As a useful example, consider this problem:
the variable f is to be set to —1 if x is less than
zero, to +1 if x is greater than 100, and to O
otherwise. Then in Ratfor, we write

if (x <0)

f= -1
else if (x > 100)

f=+1
else

f=20

Here the statement after the first else is another
if-else. Logically it is just a single statement,
although it is rather complicated.

This code says what it means. Any ver-
sion written in straight Fortran will necessarily be
indirect because Fortran does not let you say
what you mean. And as always, clever shortcuts
may turn out to be too clever to understand a
year from now.

Following an else with an if is one way to
write a multi-way branch in Ratfor. In general
the structure

if (.)

else if (...)

else if (...)

else

provides a way to specify the choice of exactly
one of several alternatives. (Ratfor also provides
a switch statement which does the same job in
certain special cases; in more general situations,
we have to make do with spare parts.) The tests
are laid out in sequence, and each one is fol-
lowed by the code associated with it. Read down
the list of decisions until one is found that is
satisfied. The code associated with this condition
is executed, and then the entire structure is
finished. The trailing else part handles the
““default’ case, where none of the other condi-
tions apply. If there is no default action, this
final else part is omitted:

if (x <0)
x =0
eise if (x > 100)
x = 100

if-else ambiguity

There is one thing to notice about compli-
cated structures involving nested if's and else’s.
Consider

'

.
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if (x > 0)
if (y >0)
write(6, 1) x, y
else

write(6, 2) y

There are two if's and only one else. Which if
does the else go with?

This is a genuine ambiguity in Ratfor, as it
is in many other programming languages. The
ambiguity is resolved in Ratfor (as elsewhere) by
saying that in such cases the else goes with the
closest previous un-else’ed if. Thus in this case,
R the else goes with the inner if, as we have indi-
' cated by the indentation.

It is a wise practice to resolve such cases
by explicit braces, just to make your intent clear.
In the case above, we would write

if (x >0) {
if (y > 0)
write(6, 1) x, y
else

write(6, 2) y
J

which does not change the meaning, but leaves
no doubt in the reader’s mind. If we want the
other association, we musr write

if (x>0 {
if (y >0)
write(6, 1) x, y
}
else
write(6, 2) v

The *‘switch’ Statement

The switch statement provides a clean way
to express multi-way branches which branch on
the value of some integer-valued expression.
The syntax is

: switch (expression) |

case exprl :
statements

case expr2, expr3 :
statements

default:
statements

}

Each case is followed by a list of comma-
separated integer expressions. The expression
inside switch is compared against the case
expressions exprl, expr2, and so on in turn until
one matches, at which time the statements fol-
lowing that case are executed. If no cases match
expression, and there is a default section, the

statements with it are done; if there is no
default, nothing is done. In all situations, as
soon as some block of statements is executed,
the entire switch is exited immediately.
(Readers familiar with C[4] should beware that
this behavior is not the same as the C switch.)

The ‘“‘do’’ Statement

The do statement in Ratfor is quite similar
to the DO statement in Fortran, except that it
uses no statement number. The statement
number, after all, serves only to mark the end of
the DO, and this can be done just as easily with
braces. Thus

doi=1,n|{
x(i) = 0.0
y(i) = 0.0
z(i) = 0.0
]

is the same as

dol0i=1,n
x(i) = 0.0
y(i) = 0.0
z() = 0.0
10 continue

The syntax is:

do legal-Fortran-DO-text
Ratfor statement

The part that follows the keyword do has to be
something that can legally go into a Fortran DO
statement. Thus if a local version of Fortran
allows DO limits 1o be expressions (which is not
currently permitted in ANSI Fortran), they can be
used in a Ratfor do.

The Ratfor siatement part will often be

enclosed in braces, but as with the if, a single

statement need not have braces around it. This
code sets an array (o zero:

doi=1,n
x(i) = 0.0
Slightlv more complicated,
doi=1,n
doj=1,n

m(,j) =0

sets the entire array m to zero, and
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doi=1n
doj=1,n

if i <j)
m(, j) = -1

else if (1 == j)
mi, j) =0

else
m(i, j) = +1

sets the upper triangle of m to —1, the diagonal
to zero, and the lower triangle to +1. (The
operator = = s ‘‘equals’’, that is, ‘““.EQ.”.) In
each case, the statement that follows the do is
logically a single statement, even though compli-
cated, and thus needs no braces.

“break’’ and ‘‘next’’

Ratfor provides a statement for leaving a
loop early, and one for beginning the next itera-
tion. break causes an immediate exit from the
do; in effect it is a branch to the statement afrer
the do. next is a branch to the bottom of the
loop, so it causes the next iteration to be done.
For example, this code skips over negative
values in an array:

doi=1,n{
if (x(i) < 0.0)
next
process positive element

}

break and next also work in the other Ratfor
looping constructions that we will talk about in
the next few sections.

break and next can be followed by an
integer to indicate breaking or iterating that level
of enclosing loop: thus

break 2

exits from two levels of enclosing loops, and
break 1 is equivalent to break. next 2 iterates
the second enclosing loop. (Realistically, multi-
level break’s and next’s are not likely to be
much used because they lead to code that is hard
to understand and somewhat risky to change.)

The “while’’ Statement

One of the problems with the Fortran DO
statement is that it generally insists upon being
done once, regardless of its limits. If a loop
begins

DOl =21

this will typically be done once with I set to 2,
even though common sense would suggest that
perhaps it shouldn't be. Of course a Ratfor do
can easily be preceded by a test

if G <= k)
doi=ij, k {

| _—

but this has to be a conscious act, and is often
overlooked by programmers.

A more serious problem with the DO state-
ment is that it encourages that a program be
written in terms of an arithmetic progression
with small positive steps, even though that may
not be the best way to write it. If code has to be
contorted to fit the requirements imposed by the
Fortran Do, it is that much harder to write and
understand.

To overcome these difficulties, Ratfor pro-
vides a while statement, which is simply a loop:
““while some condition is true, repeat this group
of statements’. It has no preconceptions about
why one is looping. For example, this routine to
compute sin{x) by the Maclaurin series combines
two termination criteria.

real function sin(x, e)
# returns sin(x) to accuracy e, by
# sin(x) = x — x*23/3! + x*=5/5! — ..~

sin = x
term = x

i=3
while (abs(term) >e & i<100) {
term = —term = x**2 / float(i=(i—1))
- sin = sin + term
i=1i+4+2

return
end

Notice that if the routine is entered with
term already smaller than e, the loop will be
done zero times, that is, no attempt will be made
to compute x=+*3 and thus a potential underflow
is avoided. Since the test is made at the top of a
while loop instead of the bottom, a special case
disappears — the code works at one of its boun-
daries. (The test i< 100 is the other boundary —
making sure the routine stops after some max-
imum number of iterations.)

As an aside, a sharp character “#" in a
line marks the beginning of a comment; the rest
of the line is comment. Comments and code can
co-exist on the same line — one can make mar-
ginal remarks, which is not possible with
Fortran’s *‘C in column 1’ convention. Blank
lines are also permitted anywhere (they are not
in Fortran): they should be used to emphasize
the natural divisions of a program.
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The syntax of the while statement is

while (legal Fortran condition)
Ratfor statement

As with the if, legal Fortran condition is some-
thing that can go into a Fortran Logical IF, and
Ratfor statement is a single statement, which may
be multiple statements in braces.

The while encourages a style of coding not
normally practiced by Fortran programmers. For
example, suppose nextch is a function which
returns the next input character both as a func-
tion value and in its argument. Then a loop to
find the first non-blank character is just

while (nextch(ich) == iblank)

A semicolon by itself is a null statement, which
is necessary here to mark the end of the while;
if it were not present, the while would control
the next statement. When the loop is broken,
ich contains the first non-blank. Of course the
same code can be written in Fortran as

100 if (nextch(ich) .eq. iblank) goto 100

but many Fortran programmers (and a few com-
pilers) believe this line is illegal. The language at
one's disposal strongly influences how one thinks
about a problem.

The ‘‘for’’ Statement

The for statement is another Ratfor loop,
which attempts to carry the separation of loop-
body from reason-for-looping a step further than
the while. A for statement allows explicit initiali-
zation and increment steps as part of the state-
ment. For example, a DO loop is just

fori=li<=ni=1i+1) ..
This is equivalent to
=1
while (i <= n) {
P=i+1
}

The initialization and increment of i have been
moved into the for statement, making it easier to
see at a glance what controls the loop.

The for and while versions have the
advantage that they will be done zero times if n
is less than 1; this is not true of the do.

The loop of the sine routine in the previ-
ous section can be re-written with a for as

for (i=3; abs(term) > e & i < 100; i=i+2) {
term = —term * x*»2 / float(i*(i—1))
sin = sin + term

The syntax of the for statement is

for ( init ; condition : increment )
Raifor statement

init is any single Fortran statement, which gets
done once before the loop begins. increment is
any single Fortran statement, which gets done at
the end of each pass through the loop, before
the test. condition is again anything that is legal
in a logical 1IF. Any of init, condition, and incre-
ment may be omitted, although the semicolons
must always be present. A non-existent condition
is treated as always true, so for(;;) is an
indefinite repeat. (But see the repeat-until in
the next section.)

The for statement is particularly useful for
backward loops, chaining along lists, loops that
might be done zero times, and similar things
which are hard to express with a DO statement,
and obscure to write out with IF's and GOTO's.
For example, here is a backwards DO loop to find
the last non-blank character on a card:

for i =280;i>0i=1i—-1)
if (card(i) '= blank)
break

(*'=""is the same as “.NE."). The code scans
the columns from 80 through to 1. If a non-
blank is found, the loop is immediately broken.
(break and next work in for's and while’s just as
in do’s). If i reaches zero, the card is all blank.

This code is rather nasty to write with a
regular Fortran DO, since the loop must go for-
ward, and we must explicitly set up proper condi-
tions when we fall out of the loop. (Forgetting
this is a common error.) Thus:

DO10J =1,80
[=81-1
IF (CARD(I) .NE. BLANK) GO TO 11
10 CONTINUE
I=0
11

The version that uses the for handles the termi-
nation condition properly for free; i is zero when
we fall out of the for loop.

The increment in a for need not be an
arithmetic progression; the following program
walks along a list (stored in an integer array ptr)
until a zero pointer is found, adding up elements
from a parallel array of values:
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sum = 0.0
for (i = first; i > 0,1 = pur(i))
sum = sum + value(i)

Notice that the code works correctly if the list is
emptly. Again, placing the test at the top of a
loop instead of the bottom eliminates a potential
boundary error.

The ‘‘repeat-until’’ statement

In spite of the dire warnings, there are
times when one really needs a loop that tests at
the bottom after one pass through. This service
is provided by the repeat-until:

repeat
Ratfor statement
until (legal Fortran condition)

The Ratfor statement part is done once, then the
condition is evaluated. If it is true, the loop is
exited; if it is false, another pass is made.

The until part is optional, so a bare repeat
is the cleanest way to specify an infinite ioop. Of
course such a loop must ultimately be broken by
some transfer of control such as stop, return, or
break. or an implicit stop such as running out of
input with a READ statement.

As a matter of observed fact(8], the
repeat-until statement is /much less used than the
other looping constructions; in particular, it is
typically outnumbered ten to one by for and
while. Be cautious about using it, for loops that
test only at the bottom often don’t handle null
cases well.

More on break and next

break exits immediately from do, while,
for, and repeat-until. next goes to the test part
of do, while and repeat-until, and to the incre-
ment step of a for.

‘“‘return’’ Statement

The standard Fortran mechanism for
returning a value from a function uses the name
of the function as a variable which can be
assigned to. the last value stored in it is the
function value upon return. For example, here
is a routine equal which returns 1 if two arrays
are identical, and zero if they differ. The array
ends are marked by the special value —1.

# equal _ compare strl to str2;

# return | if equal, 0 if not
integer function equal(strl, str2)
integer str1(100), str2(100)
integer i

for (i = 1;strl(i) == str2(i);i=1i+ 1)
if (stri(i) == ~1) {

equal = 1
return
)
equal = 0
return
end

In many languages (e.g., PL/I) one instead
says

return (expression)

to return a value from a function. Since this is
often clearer, Ratfor provides such a return
statement — in a function F, return{expression)
is equivalent to

{ F = expression; return }
For example, here is equal again:

# equal _ compare strl to str2;

#  return | if equal, 0 if not
integer function equal(strl, str2)
integer str1(100), str2(100)
integer i

for (i = 1;strl(i) == str2(i);i=1i+ 1)
if (strl(i) == =1)
return(l)
return(0)
end

If there is no parenthesized expression after
return, a normal RETURN is made. (Another
version of equal is presented shortly.)

Cosmetics

As we said above, the visual appearance of
a language has a substantial effect on how easy it
is to read and understand programs. Accord-
ingly, Ratfor provides a number of cosmetic
facilities which may be used to make programs
more readable.

Free-form Input

Statements can be placed anywhere on a
line; long statements are continued automati-
cally, as are long conditions in if, while, for, and
until. Blank lines are ignored. Multiple state-
ments may appear on one line, if they are
separated by semicolons. No semicolon is
needed at the end of a line, if Ratfor can make
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some reasonable guess about whether the state-
ment ends there. Lines ending with any of the
characters

= + - * » I & ( -

are assumed to be continued on the next line.
Underscores are discarded wherever they occur;
all others remain as part of the statement.

Any statement that begins with an all-
numeric field is assumed to be a Fortran label,
and placed in columns 1-5 upon output. Thus

write(6, 100); 100 format("hello”)
is converted into

write (6, 100)
100 format(5hhello)

Translation Services

Text enclosed in matching single or double
quotes is converted to nH... but is otherwise
unaltered (except for formatting — it may get
split across card boundaries during the reformat-
ting process). Within quoted strings, the
backslash ‘\’ serves as an escape character: the
next character is taken literally. This provides a
way to get quotes (and of course the backslash
itself) into quoted strings:

"W\

is a string containing a backslash and an apos-
trophe. (This is nor the standard convention of
doubled quotes, but it is easier to use and more
general.)

Any line that begins with the character ‘%’
is left absolutely unaltered except for stripping
off the ‘%’ and moving the line one position to
the left. This is useful for inserting control
cards, and other things that should not be
transmogrified (like an existing Fortran pro-
gram). Use ‘%’ only for ordinary statements,
not for the condition parts of if, while, etc., or
the output may come out in an unexpected place.

The following character translations are
made, except within single or double quotes or
on a line beginning with a *%".

- .eq. = .ne.
> .gt. > = .ge.
< At <= le.
& .and. | .or.
! .not. - .not.

In addition, the following translations are pro-
vided for input devices with restricted character
sets.

$( { $) )
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‘‘define’’ Statement

Any string of alphanumeric characters can
be defined as a name; thereafter, whenever that
name occurs in the input (delimited by non-
alphanumerics) it is replaced by the rest of the
definition line. (Comments and trailing white
spaces are stripped off). A defined name can be
arbitrarily long, and must begin with a letter.

define is typically used to create symbolic
parameters:

define ROWS 100
define COLS 50

dimension a(ROWS), b(ROWS, COLS)
if (i > ROWS | j > COLS) ...
Alternately, definitions may be written as
define(ROWS, 100)

In this case, the defining text is everything after
the comma up to the balancing right parenthesis;
this allows multi-line definitions.

It is generally a wise practice to use sym-
bolic parameters for most constants, to help
make clear the function of what would otherwise
be mysterious numbers. As an example, here is
the routine equal again, this time with symbolic
constants.

define YES 1
define NO 0
define EOS -1

define ARB 100

# equal _ compare strl to str2;

# return YES if equal, NO if not
integer function equal(strl, str2)
integer strl (ARB), str2(ARB)
integer i

for (i = I;strl(i) == str2(i);i=1i+1)
if (str1(i) == EOS)
return(YES)
return(NO)
end

““include’’ Statement

The statement
include file

inserts the file found on input stream file into the
Ratfor input in place of the include statement.
The standard usage is to place COMMON blocks
on a file, and include that file whenever a copy is
needed:
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subroutine x
include commonblocks

end
suroutine y
include commonblocks

end
This ensures that all copies of the COMMON
blocks are identical

Pitfalls, Botches, Blemishes and other Failings

Ratfor catches certain syntax errors, such
as missing braces, else clauses without an if, and
most errors involving missing parentheses in
statements. Beyond that, since Raifor knows no
Fortran, any errors you make will be reported by
the Fortran compiler, so you will from time to
time have to relate a Fortran diagnostic back to
the Ratfor source.

Keywords are reserved — using if, else,
etc., as variable names will typically wreak havoc.
Don’t leave spaces in keywords. Don’t use the
Arithmetic IF.

The Fortran nH convention is not recog-
nized anywhere by Ratfor; use quotes instead.

3. IMPLEMENTATION

Ratfor was originally written in C[4] on the
UNIX operating system[5]. The language is
specified by a context free grammar and the
compiler constructed using the YACC compiler-
compiler([6].

The Ratfor grammar is simple and straight-
forward, being essentially

prog : stat
| prog stat
stat  :if (...) stat
| if (...) stat else stat
| while (...) stat
| for (... ...; ..) stat
| de ... stat
| repeat stat
| repeat stat until (...)
| switch (...) { case ... prog ...
default: prog }
| return
| break
| next
| digits stat
| { prog }
| anything unrecognizable

The observation that Ratfor knows no Fortran
follows directly from the rule that says a state-
ment is “‘anything unrecognizable’. In fact most

of Fortran falls into this category, since any
statement that does not begin with one of the
keywords is by definition ‘‘unrecognizable.”

Code generation is also simple. If the first
thing on a source line is not a keyword (like if,
else, etc.) the entire statement is simply copied
to the output with appropriate character transla-
tion and formatting. (Leading digits are treated
as a label.) Keywords cause only slightly more
complicated actions. For example, when if is
recognized, two consecutive labels L and L+1
are generated and the value of L is stacked. The
condition is then isolated, and the code

if (.not. (condition)) goto L

is output. The staterment part of the if is then
translated. When the end of the statement is
encountered (which may be some distance away
and include nested if's, of course)}, the code

L continue

is generated, unless there is an else clause, in
which case the code is

goto L+1
L continue

In this latter case, the code
L+1 continue

is produced after the siaremen: part of the else.
Code generation for the various loops is equally
simple.

One might argue that more care should be
taken in code generation. For example, if there
is no trailing else,

if(i>0)x=a
should be left alone, not converted into

if (not. (i .gt. 0)) goto 100
X = a
100  continue

But what are optimizing compilers for, if not to
improve code? It is a rare program indeed where
this kind of ‘‘inefficiency” will make even a
measurable difference. In the few cases where it
is important, the offending lines can be protected
by ‘%"

The wuse of a compiler-compiler is
definitely the preferred method of software
development. The language is well-defined, with
few syntaclic irregularities. Implementation is
quite simple; the original construction took
under a week. The language is sufficiently sim-
ple, however, that an ad hoc recognizer can be
readily constructed to do the same job if no
compiler-compiler is available.




22-11

The C version of Ratfor is used on UNIX
and on the Honeywell Gcos systems. C com-
pilers are not as widely available as Fortran,
however, so there is also a Ratfor written in
itself and originally bootstrapped with the C ver-
sion. The Ratfor version was wriiten so as to
transiate into the portable subset of Fortran
described in [1], so it is portable, having been
run essentially without change on at least twelve
distinct machines. (The main restrictions of the
portable subset are: only one character per
machine word; subscripts in the form c*v=c;
avoiding expressions in places like DO loops; con-
sistency in subroutine argument usage, and in
COMMON declarations. Ratfor itself will not gra-
tuitously generate non-standard Fortran.)

The Ratfor version is about 1500 lines of
Ratfor (compared to about 1000 lines of C): this
compiles into 2500 lines of Fortran. This expan-
sion ratio is somewhat higher than average, since
the compiled code contains unnecessary
occurrences of COMMON declarations. The exe-
cution time of the Ratfor version is dominated
by two routines that read and write cards.
Clearly these routines could be replaced by
machine coded local versions; unless this is
done, the efficiency of other parts of the transla-
tion process is largely irrelevant.

4. EXPERIENCE

Good Things

“It’s so much better than Fortran’ is the
most common response of users when asked
how well Ratfor meets their needs. Although
cynics might consider this to be vacuous, it does
seem to be true that decent control flow and
cosmetics converts Fortran from a bad language
into quite a reasonable one, assuming that For-

tran data structures are adequate for the task at

hand.

Although there are no quantitative results,
users feel that coding in Ratfor is at least twice
as fast as in Fortran. More important, debugging
and subsequent revision are much faster than in
Fortran. Partly this i1s simply because the code
can be read. The looping statements which test
at the top instead of the bottom seem to elim-

inate or at least reduce the occurrence of a wide
class of boundary errors. And of course it is
easy to do structured programming in Ratfor;
this self-discipline also contributes markedly to
reliability.

One interesting and encouraging fact is
that programs written in Ratfor tend to be as
readable as programs written in more modern
languages like Pascal. Once one is freed from
the shackles of Fortran’s clerical detail and rigid
input format, it is easy to write code that is read-
able, even esthetically pleasing. For example,
here is a Ratfor implementation of the linear
table search discussed by Knuth [7]:

Alm+1) = x
fori=1 AW '=x;i=i+1)

if G >m) |
m = |
B(i) = |
}
else
B(i) = B(i) + 1|

A large corpus (5400 lines) of Ratfor, including
a subset of the Ratfor preprocessor itself, can be
found in [8].

Bad Things

The biggest single problem is that many
Fortran syntax errors are not detected by Ratfor
but by the local Fortran compiler. The compiler
then prints a message in terms of the generated
Fortran, and in a few cases this may be difficult
to relate back to the offending Ratfor line, espe-
cially if the implementation conceals the gen-
erated Fortran. This problem could be dealt with
by tagging each generated line with some indica-
tion of the source line that created it, but this is
inherently implementation-dependent, so no
action has yet been taken. Error message
interpretation is actually not so arduous as might
be thought. Since Ratfor generates no variables,
only a simple pattern of IF’s and GOTO’s, data-
related errors like missing DIMENSION statements
are easy to find in the Fortran. Furthermore,
there has been a steady improvement in Ratfor’s
ability to catch trivial syntactic errors like unbal-
anced parentheses and quotes.

There are a number of implementation
weaknesses that are a nuisance, especially to new
users. For example, keywords are reserved.
This rarely makes any difference, except for
those hardy souls who want to use an Arithmetic
IF. A few standard Fortran constructions are not
accepted by Ratfor, and this is perceived as a
problem by users with a large corpus of existing
Fortran programs. Protecting every line with a



22-12

‘%' is not really a complete solution, although it
serves as a stop-gap. The best long-term solu-
tion is provided by the program Struct [9], which
converts arbitrary Fortran programs into Ratfor.

Users who export programs often complain
that the generated Fortran is ‘‘unreadable”
because it is not tastefully formatted and con-
tains extraneous CONTINUE statements. To some
extent this can be ameliorated (Ratfor now has
an option to copy Ratfor comments into the gen-
erated Fortran), but it has always seemed that
effort is better spent on the input language than
on the output esthetics.

One final problem is partly attributable to
success - since Ratfor is relatively easy to
modify, there are now several dialects of Ratfor.
Fortunately, so far most of the differences are in
character set, or in invisible aspects like code
generation.

5. CONCLUSIONS

Ratfor demonstrates that with modest
effort it is possible to convert Fortran from a bad
language into quite a good one. A preprocessor
is clearly a useful way to extend or ameliorate
the facilities of a base language.

When designing a language, it is important
to concentrate on the essential requirement of
providing the user with the best language possi-
ble for a given effort. One must avoid throwing
in ‘‘features’” - things which the user may trivi-
ally construct within the existing framework.

One must also avoid getting sidetracked on
irrelevancies. For instance it seems pointless for
Ratfor to prepare a neatly formatted listing of
either its input or its output. The user is
presumably capable of the self-discipline required
to prepare neat input that reflects his thoughts.
It is much more important that the language pro-
vide free-form input so he can format it neatly.
No one should read the output anyway except in
the most dire circumstances.

Acknowledgements

C. A. R. Hoare once said that *‘One thing
[the language designer] should not do is to
include untried ideas of his own.” Ratfor follows
this precept very closely — everything in it has
been stolen from someone else. Most of the
control flow structures are taken directly from
the language C[4] developed by Dennis Ritchie;
the comment and continuation conventions are
adapted from Altran(10].

[ am grateful to Stuart Feldman, whose
patient simulation of an innocent user during the
early days of Ratfor led to several design
improvements and the eradication of bugs. He

also translated the C parse-tables and YACC
parser into Fortran for the first Ratfor version of
Ratfor.

References

(1] B. G. Ryder, “The PFORT Verifier,”
Software—Practice & Experience, October
1974.

(2] American National Standard Fortran.
American National Standards Institute,
New York, 1966.

[31  For-word: Fortran Development Newslerter,
August 19785,

[4] B. W. Kernighan and D. M. Ritchie, The C
Programming Language, Prentice-Hall, Inc.,
1978.

[S] D. M. Ritchie and K. L. Thompson, “The
UNIX Time-sharing System.” CACM, July
1974.

[61 S. C. Johnson, “YACC — Yet Another
Compiler-Compiler.”” Bell Laboratories

Computing Science Technical Report #32,
1978.

[7}  D. E. Knuth, “Structured Programming
with goto Statements.”” Computing Surveys,
December 1974.

(8] B. W. Kernighan and P. J. Plauger,
Software Tools, Addison-Wesley, 1976.
[9] B. S. Baker, *‘Struct — A Program which

Structures Fortran’’, Bell Laboratories
internal memorandum, December 1975.

(10] A. D. Hall, “The Altran System for
Rational Function Manipulation — A Sur-
vey.”” CACM, August 1971,



The M4 Macro Processor

Brian W. Kernighan
Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

M4 is a macro processor available on UNIXT and GCOS. Its primary use
has been as a front end for Ratfor for those cases where parameterless macros
are not adequately powerful. It has also been used for languages as disparate as
C and Cobol. M4 is particularly suited for functional languages like Fortran,
PL/I and C since macros are specified in a functional notation.

M4 provides features seldom found even in much larger macro proces-
sors, including

® arguments

condition testing

arithmetic capabilities

string and substring functions
file manipulation

This paper is a user’s manual for M4,
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The M4 Macro Processor

Brian W. Kernighan
Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction

A macro processor is a useful way to
enhance a programming language, to make
it more palatable or more readable, or to
tailor it to a particular application. The
#define statement in C and the analogous
define in Ratfor are examples of the basic
facility provided by any macro processor -
replacement of text by other text.

The M4 macro processor is an exten-
sion of a macro processor called M3 which
was written by D. M. Ritchie for the AP-3
minicomputer; M3 was in turn based on a
macro processor implemented for [1].
Readers unfamiliar with the basic ideas of
macro processing may wish to read some of
the discussion there.

M4 is a suitable front end for Ratfor
and C, and has also been used successfully
with Cobol. Besides the straightforward
replacement of one string of text by
another, it provides macros with arguments,
conditional macro expansion, arithmetic, file
manipulation, and some specialized string
processing functions.

The basic operation of M4 is to copy
its input to its output. As the input is read,
however, each alphanumeric ‘‘token’’ (that
is, string of letters and digits) is checked. If
it is the name of a macro, then the name of
the macro is replaced by its defining text,
and the resulting string is pushed back onto
the input to be rescanned. Macros may be
called with arguments, in which case the
arguments are collected and substituted into
the right places in the defining text before it
is rescanned.

M4 provides a collection of about
twenty built-in macros which perform vari-
ous useful operations; in addition, the user
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can define new macros. Built-ins and user-
defined macros work exactly the same way,
except that some of the built-in macros have
side effects on the state of the process.

Usage
On UNIX, use

m4 [files]

Each argument file is processed in order; if
there are no arguments, or if an argument is
‘=’ the standard input is read at that point.
The processed text is written on the stan-
dard output, which may be captured for sub-
sequent processing with

md [files] > outputfile

On GCOS, usage is identical, but the pro-
gram is called ./md.

Defining Macros

The primary built-in function of M4 is
define, which is used to define new macros.
The input

define(name, stuff)

causes the string name to be defined as
stuff. All subsequent occurrences of name
will be replaced by stuff. name must be
alphanumeric and must begin with a letter
(the underscore _ counts as a letter). stuff
is any text that contains balanced
parentheses; it may stretch over multiple
lines.

Thus, as a typical example,
define(N, 100)

if i > N)

defines N to be 100, and uses this “symbolic

™
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constant’’ in a later if statement.

The left parenthesis must immediately
follow the word define, to signal that define
has arguments. If a macro or built-in name
is not followed immediately by 'C, it is
assumed to have no arguments. This is the
situation for N above; it is actually a macro
with no arguments, and thus when it is used
there need be no (...) following it.

You should also notice that a macro
name is only recognized as such if it appears
surrounded by non-alphanumerics. For
example, in

define(N, 100)

if (NNN > 100)

the variable NNN is absolutely unrelated to
the defined macro N, even though it con-
tains a lot of N’s.

Things may be defined in terms of
other things. For example,

define(N, 100)
define(M, N)

defines both M and N to be 100.

What happens if N is redefined? Or,
to say it another way, is M defined as N or
as 100? In M4, the latter is true — M is
100, so even if N subsequently changes, M
does not.

This behavior arises because M4
expands macro names into their defining
text as soon as it possibly can. Here, that
means that when the string N is seen as the
arguments of define are being collected, it is
immediately replaced by 100; it’s just as if
you had said

define(M, 100)

in the first place.

If this isn’t what you really want, there
are two ways out of it. The first, which is
specific to this situation, is to interchange
the order of the definitions:

define(M, N)
define(N, 100)

Now M is defined to be the string N, so
when you ask for M later, you'll always get
the value of N at that time (because the M
will be replaced by N which will be replaced
by 100).

Quoting

The more general solution is to delay
the expansion of the arguments of define by
quoting them. Any text surrounded by the
single quotes ° and ° is not expanded
immediately, but has the quotes stripped off.
If you say

define(N, 100)
define(M, 'N")

the quotes around the N are stripped off as
the argument is being collected, but they
have served their purpose, and M is defined
as the string N, not 100. The general rule is
that M4 always strips off one level of single
quotes whenever it evaluates something.
This is true even outside of macros. If you
want the word define to appear in the out-
put, you have to quote it in the input, as in

‘define’ = 1;

As another instance of the same thing,
which is a bit more surprising, consider
redefining N:

define(N, 100)

define (N, 200)

Perhaps regrettably, the N in the second
definition is evaluated as soon as it’s seen;
that is, it is replaced by 100, so it’s as if you
had written

define (100, 200)

This statement is ignored by M4, since you
can only define things that look like names,
but it obviously doesn’t have the effect you
wanted. To really redefine N, you must
delay the evaluation by quoting:

define(N, 100)
define(CN’, 200)
In M4, it is often wise to quote the first

argument of a macro.

If * and ~ are not convenient for some
reason, the quote characters can be changed
with the built-in changequote:

changequote([, 1)

makes the new quote characters the left and
right brackets. You can restore the original
characters with just
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changequote

There are two additional built-ins
related to define. undefine removes the
definition of some macro or built-in:

undefineCN’)

removes the definition of N. (Why are the
quotes absolutely necessary?) Built-ins can
be removed with undefine, as in

undefine (define’)

but once you remove one, you can never
get it back.

The built-in ifdef provides a way to
determine if a macro is currently defined.
In particular, M4 has pre-defined the names
unix and gcos on the corresponding sys-
tems, so you can tell which one you’re
using:

ifdef Cunix’, ‘define(wordsize,16)" )
ifdefCgcos’, 'define(wordsize,36)" )

makes a definition appropriate for the partic-
ular. machine. Don’t forget the quotes!

ifdef actually permits three arguments;

if the name is undefined, the value of ifdef
is then the third argument, as in

ifdefCunix’, on UNIX, not on UNIX)

Arguments

So far we have discussed the simplest
form of macro processing — replacing one
string by another (fixed) string. User-
defined macros may also have arguments, so
different invocations can have different
results. Within the replacement text for a
macro (the second argument of its define)
any occurrence of $n will be replaced by the
nth argument when the macro is actually
used. Thus, the macro bump, defined as

define(bump, $1 =81 + 1)

generates code to increment its argument by
1

bump (x)

x=x+1

A macro can have as many arguments
as you want, but only the first nine are
accessible, through $1 to $9. (The macro

name itself is $0, although that is less com-
monly used.) Arguments that are not sup-
plied are replaced by null strings, so we can
define a macro cat which simply concaten-
ates its arguments, like this:

define(cat, $1$2$334$586$7$8%9)
Thus

cat(x, y, z)
is equivalent to

Xyz

$4 through $9 are null, since no correspond-
ing arguments were provided.

Leading unquoted blanks, tabs, or
newlines that occur during argument collec-
tion are discarded. All other white space is
retained. Thus

define(a, b ¢)

defines atobe b ¢

Arguments are separated by commas,
but parentheses are counted properly, so a
comma “protected’’ by parentheses does not
terminate an argument. That is, in

define(a, (b,c))

there are only two arguments; the second is
literally (b,c). And of course a bare comma
or parenthesis can be inserted by quoting it.

Arithmetic Built-ins

M4 provides two built-in functions for
doing arithmetic on integers (only). The
simplest is incr, which increments its
numeric argument by 1. Thus to handle the
common programming situation where you
want a variable to be defined as “one more
than N”°, write

define(N, 100)
define(N1, “incr(N)")

Then N1 is defined as one more than the
current value of N.

The more general mechanism for
arithmetic is a built-in called eval, which is
capable of arbitrary arithmetic on integers.
It provides the operators (in decreasing
order of precedence)




unary + and —

*s O " (exponentiation)
» / % (modulus)

+ —

== l= < <= > >=
! (not)

& or &&  (logical and)

lor Il (logical or)

Parentheses may be used to group opera-
tions where needed. All the operands of an
expression given to eval must ultimately be
numeric. The numeric value of a true rela-
tion (like 1>0) is 1, and false is 0. The
precision in eval is 32 bits on UNIX and 36
bits on GCOS.

As a simple example, suppose we want
Mto be 2++*N+1. Then

define(N, 3)
define(M, ‘eval (2+»N +1)")

As a matter of principle, it is advisable to
quote the defining text for a macro unless it
is very simple indeed (say just a number); it
usually gives the result you want, and is a
good habit to get into.

File Manipulation

You can include a new file in the input
at any time by the built-in function include:

include (filename)

inserts the contents of filename in place of
the include command. The contents of the
file is often a set of definitions. The value
of include (that is, its replacement text) is
the contents of the file; this can be captured
in definitions, etc.

It is a fatal error if the file named in
include cannot be accessed. To get some
control over this situation, the alternate
form sinclude can be used; sinclude (silent
include’’) says nothing and continues if it
can’t access the file.

It is also possible to divert the output
of M4 to temporary files during processing,
and output the collected material upon com-
mand. M4 maintains nine of these diver-
sions, numbered 1 through 9. If you say

divert(n)

all subsequent output is put onto the end of
a temporary file referred to as n. Diverting
to this file is stopped by another divert com-
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mand; in particular, divert or divert(0)
resumes the normal output process.

Diverted text is normally output all at
once at the end of processing, with the
diversions output in numeric order. It is
possible, however, to bring back diversions
at any time, that is, to append them to the
current diversion.

undivert

brings back all diversions in numeric order,
and undivert with arguments brings back
the selected diversions in the order given.
The act of undiverting discards the diverted
stuff, as does diverting into a diversion
whose number is not between 0 and 9
inclusive.

The value of undivert is nor the
diverted stuff. Furthermore, the diveried
material is not rescanned for macros.

The built-in  divhum returns the
number of the currently active diversion.
This is zero during normal processing.

System Command

You can run any program in the local
operating system with the sysemd built-in.
For example, ’

syscmd (date)

on UNIX runs the date command. Normally
sysemd would be used to create a file for a
subsequent include.

To facilitate making unique file names,
the built-in maketemp is provided, with
specifications identical to the system func-
tion mkremp: a string of XXXXX in the
argument is replaced by the process id of the
current process.

Conditionals

There is a built-in called ifelse which
enables you to perform arbitrary conditional
testing. In the simplest form,

ifelse(a, b, ¢, d)

compares the two strings a and b. If these
are identical, ifelse returns the string c; oth-
erwise it returns d. Thus we might define a
macro called compare which compares two
strings and returns “yes”’ or "no’’ if they
are the same or different.
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define(compare, 'ifelse($1, $2, yes, no)’)

Note the quotes, which prevent too-early
evaluation of ifelse.

If the fourth argument is missing, it is
treated as empty.

ifelse can actually have any number of
arguments, and thus provides a limited form
of multi-way decision capability. In the
input

ifelse(a, b, ¢, d, e, f, g)

if the string a matches the string b, the
result is ¢. Otherwise, if d is the same as e,
the result is f. Otherwise the result is g. If
the final argument is omitted, the result is
null, so

ifelse(a, b, ¢

is ¢ if a matches b, and null otherwise.

String Manipulation

The built-in len returns the length of
the string that makes up its argument. Thus

len (abedef)

is 6, and len((a,b)) is S.

The built-in substr can be used to pro-
duce substrings of strings. substr(s, i, n)
returns the substring of s that starts at the
ith position (origin zero), and is n charac-
ters long. If n is omitted, the rest of the
string is returned, so

substrCnow is the time’, 1)

ow is the time

If i or n are out of range, various sensible
things happen.

index(sl, s2) returns the index (posi-
tion) in s1 where the string s2 occurs, or
-1 if it doesn’t occur. As with substr, the
origin for strings is 0.

The built-in translit performs charac-
ter transliteration.

translit(s, f, t)

modifies s by replacing any character found
in f by the corresponding character of t.
That is,

translit (s, aeiou, 12345)

replaces the vowels by the corresponding
digits. If t is shorter than f, characters
which don’t have an entry in t are deleted;
as a limiting case, if t is not present at all,
characters from f are deleted from s. So

translit (s, aeiou)

deletes vowels from s.

There is also a built-in called dnl
which deletes all characters that follow it up
to and including the next newline; it is use-
ful mainly for throwing away empty lines
that otherwise tend to clutter up M4 output.
For example, if you say

define(N, 100)
define (M, 200)
define(L, 300)

the newline at the end of each line is not
part of the definition, so it is copied into the
output, where it may not be wanted. If you
add dnl to each of these lines, the newlines
will disappear.

Another way to achieve this, due to J.
E. Weythman, is

divert(—1)
define(...)

divert

Printing
The built-in errprint writes its argu-

ments out on the standard error file. Thus
you can say

errprint (‘fatal error’)

dumpdef is a debugging aid which
dumps the current definitions of defined
terms. If there are no arguments, you get
everything; otherwise you get the ones you
name as arguments. Don’t forget to quote
the names!

Summary of Built-ins

Each entry is preceded by the page
number where it is described.
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changequote(L, R)

define (name, replacement)
divert(number)

divnum

dnl

dumpdef('name’, ‘name’, ...)
errprint(s, s, ...)

eval (numeric expression)
ifdef('name’, this if true, this if false)
ifelse(a, b, c, d)

include (file)

incr (number)

index (sl1, s2)

len(string)
maketemp (... XXXXX...)
sinclude (file)

substr(string, position, number)
syscmd (s)

translit(str, from, to)
undefine (‘name”)

undivert (number,number,...)

PLWwUbbULUEBPUUNWEWUMWEAEWUBVUIVISE B —W

Acknowledgements

We are indebted to Rick Becker, John
Chambers, Doug Mcllroy, and especially
Jim Weythman, whose pioneering use of
M4 has led to several valuable improve-
ments. We are also deeply grateful to
Weythman for several substantial contribu-
tions to the code.

References

[11] B. W. Kernighan and P. J. Plauger,
Software Tools., Addison-Wesley, Inc.,
1976.






24. SED






SED — A Non-interactive Text Editor

Lee E. McMahon

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Sed is a non-interactive context editor that runs on the UNIXT operating
system. Sed is designed to be especially useful in three cases:

1) To edit files too large for comfortable interactive editing;

2) To edit any size file when the sequence of editing commands is too
complicated to be comfortably typed in interactive mode.

3) To perform multiple ‘global’ editing functions efficiently in one pass
through the input.

This memorandum constitutes a manual for users of sed.
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SED — A Non-interactive Text Editor

Lee E. McMahon

Bell Laboratories
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Introduction
Sed is a non-interactive context editor designed to be especially useful in three cases:

1) To edit files too large for comfortable interactive editing;

2) To edit any size file when the sequence of editing commands is too complicated to
be comfortably typed in interactive mode;

3) To perform multiple ‘global’ editing functions efficiently in one pass through the
input.

Since only a few lines of the input reside in core at one time, and no temporary files are used,
the effective size of file that can be edited is limited only by the requirement that the input and
output fit simultaneously into available secondary storage.

Complicated editing scripts can be created separately and given to sed as a command file. For
complex edits, this saves considerable typing, and its attendant errors. Sed running from a
command file is much more efficient than any interactive editor known to the author, even if
that editor can be driven by a pre-written script.

The principal loss of functions compared to an interactive editor are lack of relative addressing
(because of the line-at-a-time operation), and lack of immediate verification that a command
has done what was intended.

Sed is a lineal descendant of the UNIX editor, ed. Because of the differences between interac-

tive and non-interactive operation, considerable changes have been made between ed and sed;

even confirmed users of ed will frequently be surprised (and probably chagrined), if they rashly
use sed without reading Sections 2 and 3 of this document. The most striking family resem-
blance between the two editors is in the class of patterns (‘regular expressions’) they recognize;
the code for matching patterns is copied almost verbatim from the code for ed, and the descrip-
tion of regular expressions in Section 2 is copied almost verbatim from the UNIX
Programmer’s Manual[l]. (Both code and description were written by Dennis M. Ritchie.)

1. Overall Operation

Sed by default copies the standard input to the standard output, perhaps performing one or
more editing commands on each line before writing it to the output. This behavior may be
modified by flags on the command line; see Section 1.1 below.

The general format of an editing command is:
[addressl,address2] [function] [arguments]

One or both addresses may be omitted; the format of addresses is given in Section 2. Any
number of blanks or tabs may separate the addresses from the function. The function must be
present. the available commands are discussed in Section 3. The arguments may be required or

optional, according to which function is given; again, they are discussed in Section 3 under each
individual function.

Tab characters and spaces at the beginning of lines are ignored.
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1.1. Command-line Flags

Three flags are recognized on the command line:
-n: tells sed not to copy all lines, but only those specified by p functions or p flags after
s functions (see Section 3.3);
-e: tells sed to take the next argument as an editing command,

-f: tells sed to take the next argument as a file name; the file should contain editing
commands, one to a line.

1.2. Order of Application of Editing Commands

Before any editing is done (in fact, before any input file is even opened), all the editing com-
mands are compiled into a form which will be moderately efficient during the execution phase
(when the commands are actually applied to lines of the input file). The commands are com-
piled in the order in which they are encountered, this is generally the order in which they will
be attempted at execution time. The commands are applied one at a time; the input to each
command is the output of all preceding commands.

The default linear order of application of editing commands can be changed by the flow-of-
control commands, rand b (see Section 3). Even when the order of application is changed by

these commands, it is still true that the input line to any command is the output of any previ-
ously applied command.

1.3. Pattern-space

The range of pattern matches is called the pattern space. Ordinarily, the pattern space is one
line of the input text, but more than one line can be read into the pattern space by using the N
command (Section 3.6.).

1.4. Examples

Examples are scattered throughout the text. Except where otherwise noted, the examples all
assume the following input text:

In Xanadu did Kubla Khan

A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

(In no case is the output of the sed commands to be considered an improvement on Coleridge.)

Example:
The command
2q ,
will quit after copying the first two lines of the input. The output will be:

In Xanadu did Kubla Khan
A stately pleasure dome decree:

2. ADDRESSES: Selecting lines for editing

Lines in the input file(s) to which editing commands are to be applied can be selected by
addresses. Addresses may be either line numbers or context addresses.

The application of a group of commands can be controlled by one address (or address-pair) by
grouping the commands with curly braces (‘{ }’)(Sec. 3.6.).
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2.1. Line-number Addresses

A line number is a decimal integer. As each line is read from the input, a line-number counter
is incremented; a line-number address matches (selects) the input line which causes the inter-
nal counter to equal the address line-number. The counter runs cumulatively through multiple
input files; it is not reset when a new input file is opened.

As a special case, the character $ matches the last line of the last input file.

2.2. Context Addresses

A context address is a pattern (‘regular expression’) enclosed in slashes (*/’). The regular
expressions recognized by sed are constructed as follows:

1) An ordinary character (not one of those discussed below) is a regular expression,
and matches that character.

2) A circumflex ‘*" at the beginning of a regular expression matches the null character
at the beginning of a line.

3) A dollar-sign ‘S” at the end of a regular expression matches the null character at the
end of a line.

4) The characters ‘\n’ match an imbedded newline character, but not the newline at the
end of the pattern space. ’

5) A period ‘." matches any character except the terminal newline of the pattern space.

6) A regular expression followed by an asterisk **' matches any number (including 0)
of adjacent occurrences of the regular expression it follows.

7) A string of characters in square brackets ‘[ ' matches any character in the string,
and no others. If, however, the first character of the string is circumflex ‘™7,
the regular expression matches any character excepr the characters in the string
and the terminal newline of the pattern space.

8) A concatenation of regular expressions is a regular expression which matches the
concatenation of strings matched by the components of the regular expression.

9) A regular expression between the sequences ‘\(' and ‘\)’ is identical in effect to the
unadorned regular expression, but has side-effects which are described under
the s command below and specification 10) immediately below.

10) The expression “\d’ means the same string of characters matched by an expression
enclosed in V(" and ‘\)" earlier in the same pattern. Here dis a single digit; the
string specified is that beginning with the dth occurrence of ‘\(" counting from
the left. For example, the expression ‘"\(.*\)\1" matches a line beginning with
two repeated occurrences of the same string.

11) The null regular expression standing alone (e.g., ‘//") is equivalent to the last reg-
ular expression compiled.

To use one of the special characters (" $.* { ]\ /) as a literal (to match an occurrence of itself
in the input), precede the special character by a backslash ‘\'.

For a context address to ‘match’ the input requires that the whole pattern within the address
match some portion of the pattern space.

2.3. Number of Addresses

The commands in the next section can have 0, 1, or 2 addresses. Under each command the
maximum number of allowed addresses is given. For a command to have more addresses than
the maximum allowed is considered an error.

If a command has no addresses, it is applied to every iine in the input.
If a command has one address, it is applied to all lines which match that address.

If a command has two addresses, it is applied to the first line which matches the first address,
and to all subsequent lines until {(and including) the first subsequent line which matches the
second address. Then an attempt is made on subsequent lines to again match the first address,
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and the process is repeated.

Two addresses are separated by a comma.

Examples:
/an/ matches lines 1, 3, 4 in our sample text
/an.*an/ matches line 1
/"an/ matches no lines
/./ matches all lines
N./ matches line 5
/r*an/ matches lines 1,3, 4 (number = zero!)

A\(an\).*\1/  matches line 1

3. FUNCTIONS

All functions are named by a single character. In the following summary, the maximum
number of allowable addresses is given enclosed in parentheses, then the single character func-
tion name, possible arguments enclosed in angles (< >), an expanded English translation of
the single-character name, and finally a description of what each function does. The angles
around the arguments are nor part of the argument, and should not be typed in actual editing

commands.

3.1. Whole-line Oriented Functions
(2)d -- delete lines

The d function deletes from the file (does not write to the output) all those
lines matched by its address(es).

It also has the side effect that no further commands are attempted on the
corpse of a deleted line; as soon as the d function is executed, a new line is
read from the input, and the list of editing commands is re-started from the
beginning on the new line.

(2)n -- next line

(1)a\

The n function reads the next line from the input, replacing the current line.
The current line is written to the output if it should be. The list of editing
commands is continued following the n» command.

<text> -- append lines

(Di\

The a function causes the argument <text> to be written to the output after
the line matched by its address. The a command is inherently multi-line; a
must appear at the end of a line, and <text> may contain any number of
lines. To preserve the one-command-to-a-line fiction, the interior newlines
must be hidden by a backslash character (‘\’) immediately preceding the new-
line. The <text> argument is terminated by the first unhidden newline (the
first one not immediately preceded by backslash).

Once an a function is successfully executed, <text> will be written to the out-
put regardless of what later commands do to the line which triggered it. The
triggering line may be deleted entirely; <text> will still be written to the out-
put.

The <text> is not scanned for address matches, and no editing commands are
attempted on it. It does not cause any change in the line-number counter.

<text> -- insert lines
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The i function behaves identically to the a function, except that <text> is
written to the output before the matched line. All other comments about the a
function apply to the /function as well.

(2)c\

<text> -- change lines C:-“-

The ¢ function deletes the lines selected by its address(es), and replaces them
with the lines in <text>. Like a and i, ¢ must be followed by a newline hid-
den by a backslash; and interior new lines in <text> must be hidden by
backslashes.

The ¢ command may have two addresses, and therefore select a range of lines.

If it does, all the lines in the range are deleted, but only one copy of <text> is

written to the output, nor one copy per line deleted. As with a and /, <text>
is not scanned for address matches, and no editing commands are attempted on C
it. It does not change the line-number counter.

After a line has been deleted by a ¢ function, no further commands are
attempted on the corpse.

If text is appended after a line by a or r'functions. and the line is subsequently
changed, the text inserted by the ¢ function will be placed before the text of the
a or r functions. (The r function is described in Section 3.4.)

Note: Within the text put in the output by these fuhctions, leading blanks and tabs will disap-
pear, as always in sed commands. To get leading blanks and tabs into the output, precede the
first desired blank or tab by a backslash; the backslash will not appear in the output.

Example:
The list of editing commands:
n
a\
XXXX
d
applied to our standard input, produces:

In Xanadu did Kubhla Khan

XXXX

Where Alph, the sacred river, ran

XXXX )
Down to a sunless sea. C

In this particular case, the same effect would be produced by either of the two following com-
mand lists:

n n
i\ c\
XXXX XXXX
d
v 3.2. Substitute Function Q

One very important function changes parts of lines selected by a context search within the line.

(2)s< pattern> <replacement> <flags> -- substitute

The s function replaces parr of a line (selected by <pattern>) with <replace-
ment>. It can best be read:

Substitute for <pattern>, <replacement>
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The <pattern> argument contains a pattern, exactly like the patterns in
addresses (see 2.2 above). The only difference between <pattern> and a con-
text address is that the context address must be delimited by slash (‘/’) charac-
ters; <pattern> may be delimited by any character other than space or new-
line.

By default, only the first string matched by <pattern> is replaced, but see the
g flag below.

The <replacement> argument begins immediately after the second delimiting
character of <pattern>, and must be followed immediately by another instance
of the delimiting character. (Thus there are exactly three instances of the
delimiting character.)

The <replacement> is not a pattern, and the characters which are special in
patterns do not have special meaning in <replacement>. Instead, other char-
acters are special:

&  is replaced by the string matched by <pattern>

\d (where d is a single digit) is replaced by the a&h substring matched
by parts of <pattern> enclosed in ‘\(* and *\)’. If nested sub-
strings occur in <pattern>, the @&h is determined by counting
opening delimiters (‘\(*).

As in patterns, special characters may be made literal by
preceding them with backslash (‘\").

The <flags> argument may contain the following flags:

g -- substitute <replacement> for all (non-overlapping) instances of
<pattern> in the line. After a successful substitution, the
scan for the next instance of <pattern> begins just after the
end of the inserted characters; characters put into the line from
<replacement> are not rescanned.

p -- print the line if a successful replacement was done. The p flag
causes the line to be written to the output if and only if a sub-
stitution was actually made by the s function. Notice that if
several s functions, each followed by a p flag, successfully sub-
stitute in the same input line, multiple copies of the line will be
written to the output: one for each successful substitution.

w <filename> -- write the line to a file if a successful replacement was
done. The w flag causes lines which are actually substituted by
the s function to be written to a file named by <filename>. If
< filename> exists before sed is run, it is overwritten; if not, it
is created.

A single space must separate wand < filename>.

The possibilities of multiple, somewhat different copies of one
input line being written are the same as for p.

A maximum of 10 different file names may be mentioned after
w flags and w functions (see below), combined.
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Examples:

The following command, applied to our standard input,
s/to/by/w changes

produces, on the standard output:

In Xanadu did Kubhla Khan

A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless by man
Down by a sunless sea.

and, on the file ‘changes’:

Through caverns measureless by man
Down by a sunless sea. C

If the nocopy option is in effect, the command:
s/[..;2:1/*P&*/gp
produces:

A stately pleasure dome decree*P:*
Where Alph*P,* the sacred river*P,* ran ’ -
Down to a sunless sea*P.*

Finally, to illustrate the effect of the g flag, the command:
/X/s/an/AN/p
produces (assuming nocopy mode):
In XANadu did Kubhla Khan
and the command:
/X/s/an/AN/gp
produces:
In XANadu did Kubhla KhAN

3.3. Input-output Functions
(2)p -- print

The print function writes the addressed lines to the standard output file. They
are written at the time the p function is encountered, regardless of what
succeeding editing commands may do to the lines.

(2)w <filename> -- write on <filename> (

The write function writes the addressed lines to the file named by <filename>.
If the file previously existed, it is overwritten; if not, it is created. The lines
are written exactly as they exist when the write function is encountered for
each line, regardless of what subsequent editing commands may do to them.

Exactly one space must separate the wand <filename>.

A maximum of ten different files may be mentioned in write functions and w -
flags after s functions, combined. Q

(1)r <filename> -- read the contents of a file

The read function reads the contents of <filename>>, and appends them after
the line matched by the address. The file is read and appended regardless of
what subsequent editing commands do to the line which matched its address.
If r and a functions are executed on the same line, the text from the a
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functions and the r functions is written to the output in the order that the func-
tions are executed.

Exactly one space must separate the r and <filename>. If a file mentioned by

a r function cannot be opened, it is considered a null file, not an error, and no
diagnostic is given.

NOTE: Since there is a limit to the number of files that can be opened simultaneously, care
should be taken that no more than ten files be mentioned in w functions or flags; that number
is reduced by one if any r functions are present. (Only one read file is open at one time.)

Examples
Assume that the file ‘notel” has the following contents: .

Note: Kubla Khan (more properly Kublai Khan; 1216-1294) was the grandson
and most eminent successor of Genghiz (Chingiz) Khan, and founder of the
Mongol dynasty in China.
Then the following command:
/Kubla/r notel
produces:

In Xanadu did Kubla Khan

Note: Kubla Khan (more properly Kublai Khan; 1216-1294) was the grandson
and most eminent successor of Genghiz (Chingiz) Khan, and founder of the
Mongol dynasty in China.

A stately pleasure dome decree:

Where Alph, the sacred river, ran

Through caverns measureless to man

Down to a sunless sea.

3.4. Multiple Input-line Functions

Three functions, all spelled with capital letters, deal specially with pattern spaces containing
imbedded newlines; they are intended principally to provide pattern matches across lines in the
input.

(2)N -- Next line

The next input line is appended to the current line in the pattern space; the two
input lines are separated by an imbedded newline. Pattern matches may extend
across the imbedded newline(s).

(2)D -- Delete first part of the pattern space

Delete up to and including the first newline character in the current pattern
space. If the pattern space becomes empty (the only newline was the terminal
newline), read another line from the input. In any case, begin the list of edit-
ing commands again from its beginning.

(2)P -- Print first part of the pattern space
Print up to and including the first newline in the pattern space.

The P and D functions are equivalent to their lower-case counterparts if there are no imbedded
newlines in the pattern space.
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3.5. Hold and Get Functions
Four functions save and retrieve part of the input for possible later use.

(2)h -- hold pattern space

The A functions copies the contents of the pattern space into a hold area (des-
troying the previous contents of the hold area).

(2)H -- Hold pattern space

The H function appends the contents of the pattern space to the contents of the
hold area; the former and new contents are separated by a newline.

(2)g -- get contents of hold area

The g function copies the contents of the hold area into the pattern space (des-
troying the previous contents of the pattern space).

(2)G -- Get contents of hold area

The G function appends the contents of the hold area to the contents of the
pattern space; the former and new contents are separated by a newline.

(2)x -- exchange

The exchange command interchanges the contents of the pattern space and the
hold area.

Example
The commands

1h

Is/ did.*//
1x

G

s/\n/ :/

applied to our standard example, produce:

In Xanadu did Kubla Khan :In Xanadu

A stately pleasure dome decree: :In Xanadu
Where Alph, the sacred river, ran :In Xanadu
Through caverns measureless to man :In Xanadu
Down to a sunless sea. :In Xanadu

3.6. Flow-of-Control Functions
These functions do no editing on the input lines, but control the application of functions to the
lines selected by the address part.
(2)! -- Don't
The Don't command causes the next command (written on the same line), to
be applied to all and only those input lines not selected by the adress part.
~ (2){ -- Grouping

The grouping command *{* causes the next set of commands to be applied (or
not applied) as a block to the input lines selected by the addresses of the group-
ing command. The first of the commands under control of the grouping may
appear on the same line as the ‘{* or on the next line.
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The group of commands is terminated by a matching ‘)’ standing on a line by
itself.

Groups can be nested.

(0):<label> -- place a label

The label function marks a place in the list of editing commands which may be
referred to by b and rfunctions. The <label> may be any sequence of eight
or fewer characters; if two different colon functions have identical labels, a
compile time diagnostic will be generated, and no execution attempted.

(2)b<label> -- branch to label

The branch function causes the sequence of editing commands being applied to
the current input line to be restarted immediately after the place where a colon
function with the same <label> was encountered. If no colon function with
the same label can be found after all the editing commands have been com-
piled, a compile time diagnostic is produced, and no execution is attempted.

A b function with no <label> is taken to be a branch to the end of the list of
editing commands; whatever should be done with the current input line is
done, and another input line is read; the list of editing commands is restarted
from the beginning on the new line.

(2)t<label> -- test substitutions

The r function tests whether any successful substitutions have been made on
the current input line; if so, it branches to <label>; if not, it does nothing.
The flag which indicates that a successful substitution has been executed is
reset by:

1) reading a new input line, or
2) executing a tfunction.

3.7. Miscellaneous Functions

(1)= -- equals

The = function writes to the standard output the line number of the line
matched by its address.

(Dq -- quit

Reference

The ¢ function causes the current line to be written to the output (if it should
be), any appended or read text to be written, and execution to be terminated.

[11 Ken Thompson and Dennis M. Ritchie, The UNIX Programmer’s Manual. Bell Labora-
tories, 1978.
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ABSTRACT

Awk is a programming language whose basic operation is to search a set
of files for patterns, and to perform specified actions upon lines or fields of
lines which contain instances of those patterns. 4wk makes certain data selec-

tion and transformation operations easy to express; for example, the awk pro-
gram

length > 72
prints all input lines whose length exceeds 72 characters; the program
NF%2==0
prints all lines with an even number of fields; and the program
{ $1 = log($1); print }

replaces the first field of each line by its logarithm.

Awk patterns may include arbitrary boolean combinations of regular
expressions and of relational operators on strings, numbers, fields, variables,
and array elements. Actions may include the same pattern-matching construc-
tions as in patterns, as well as arithmetic and string expressions and assign-
ments, if-else, while, for statements, and multiple output streams.

This report contains a user’'s guide, a discussion of the design and imple-
mentation of awk, and some timing statistics.

September 1, 1978
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1. Introduction

Awk is a programming language designed
to make many common information retrieval and
text manipulation tasks easy to state and to per-
form.

The basic operation of awk is to scan a set
of input lines in order, searching for lines which
match any of a set of patterns which the user has
specified. For each pattern, an action can be
specified; this action will be performed on each
line that matches the pattern.

Readers familiar with the uNIXt program
grep! will recognize the approach, although in
awk the patterns may be more general than in
grep, and the actions allowed are more involved
than merely printing the matching line. For
example, the awk program

{print $3, $2}

prints the third and second columns of a table in
that order. The program

$2 — /AIBIC/

prints all input lines with an A, B, or C in the
second field. The program

$1 != prev { print; prev = $1 |

prints all lines in which the first field is different
from the previous first field.

1.1. Usage
The command

awk program [files]

executes the awk commands in the string pro-
gram on the set of named files, or on the stan-
dard input if there are no files. The statements
can also be placed in a file pfile, and executed by
the command

tUNIX is a Trademark of Bell Laboratories.
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awk —f pfile [files]

1.2. Program Structure

An awk program is a sequence of state-
ments of the form:

patiern { action )
pattern { action }

Each line of input is matched against each of the
patterns in turn. For each pattern that maiches,
the associated action is executed. When all the
patterns have been tested, the next line is
fetched and the matching starts over.

Either the pattern or the action may be left
out, but not both. If there is no action for a pat-
tern, the matching line is simply copied to the
output. (Thus a line which matches several pat-
terns can be printed several times.) If there is no
pattern for an action, then the action is per-
formed for every input line. A line which
matches no pattern is ignored.

Since patterns and actions are both
optional, actions must be enclosed in braces to
distinguish them from patterns.

1.3. Records and Fields

Awk input is divided into ‘“‘records’ ter-
minated by a record separator. The default
record separator is a newline, so by default awk
processes its input a line at a time. The number
of the current record is available in a variable
named NR.

Each input record is considered to be
divided into ‘‘fields.”” Fields are normally
separated by white space — blanks or tabs — but
the input field separator may be changed, as
described below. Fields are referred to as $f1,
$2, and so forth, where $1 is the first field, and
$0 is the whole input record itself. Fields may



be assigned to. The number of fields in the

current record is available in a variable named
NF.

The variables FS and RS refer to the input
field and record separators; they may be changed
at any time to any single character. The optional
command-line argument —Fc¢ may also be used
to set FS to the character c.

If the record separator is empty, an empty
input line is taken as the record separator, and
blanks, tabs and newlines are treated as field
separators.

The variable FILENAME contains
name of the current input file.

the

1.4. Printing

An action may have no pattern, in which
case the action is executed for all lines. The
simplest action is to print some or all of a record;
this is accomplished by the awk command print.
The awk program

{ print }

prints each record, thus copying the input to the
output intact. More useful is to print a field or
fields from each record. For instance,

print $2, $1

prints the first two fields in reverse order. liems
separated by a comma in the print statement will
be separated by the current output field separator
when output. Items not separated by commas
will be concatenated, so

print $1 $2

runs the first and second fields together.
The predefined variables NF and NR can
be used; for example
{ print NR, NF, 30 |

prints each record preceded by the

number and the number of fields.

record

Output may be diverted to multiple files;
the program

| print $1 >"foo1"; print $2 >"foc02" }

writes the first field, $1, on the file foo1, and
the second field on file foo2. The > > notation
can also be used:

print $1 > >"foo"

appends the output to the file foo. (In each
case, the output files are created if necessary.)
The file name can be a variable or a field as well
as a constant; for example,

print $1 >%$2
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uses the contents of field 2 as a file name.

Naturally there is a limit on the number of
output files; currently it is 10.

Similarly, output can be piped into another
process (on UNIX only): for instance,

print | "mail bwk"
mails the output to bwk.

The variables OFS and ORS may be used
to change the current output field separator and
output record separator. The output record
separator is appended to the output of the print
statement.

Awk also provides the printf statement for
output formatting:

printf format expr, expr, ..

formats the expressions in the list according to
the specification in format and prints them. For
example,

printf "%8.2f %10id\n", $1, $2

prints $1 as a floating point number 8 digits
wide, with two after the decimal point, and $2 as
a 10-digit long decimal number, followed by a
newline. No output separators are produced
automatically; you must add them yourself, as in
this example. The version of printf is identical
to that used with C.2

2. Patterns

A pattern in front of an action acts as a
selector that determines whether the action is to
be executed. A variety of expressions may be
used as patterns: regular expressions, arithmetic
relational expressions, string-valued expressions,
and arbitrary boolean combinations of these.

2.1. BEGIN and END

The special pattern BEGIN matches the
beginning of the input, before the first record is
read. The pattern END matches the end of the
input, after the last record has been processed.
BEGIN and END thus provide a way to gain con-
trol before and afier processing, for initialization
and wrapup.

As an example, the field separator can be
set to a colon by

BEGIN [FS = ""}
. rest of program ...

Or the input lines may be counted by
END { print NR }

If BEGIN is present, it must be the first pattern;
END must be the last if used.
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2.2. Regular Expressions

The simplest regular expression is a literal
string of characters enclosed in slashes, like

/smith/

This is actually a complete awk program which
will print all lines which contain any occurrence
of the name *‘smith’. If a line contains ‘‘smith”
as part of a larger word, it will also be printed, as
in

blacksmithing

Awk regular expressions include the regu-
lar expression forms found in the UNIX text edi-
tor ed! and grep (without back-referencing). In
addition, awk allows parentheses for grouping, |
for alternatives, + for ‘‘one or more’’, and ? for
‘‘zero or one’’, all as in lex. Character classes
may be abbreviated: [a—zA—20—9] is the set
of all letters and digits. As an example, the awk
program

/[Aalho|[Ww]einberger |[Kklernighan/

_will print all lines which contain any of the
names ‘‘Aho,” ‘‘Weinberger’ or ‘‘Kernighan,”
whether capitalized or not.

Regular expressions (with the extensions
listed above) must be enclosed in slashes, just as
in ed and sed. Within a regular expression,
blanks and the regular expression metacharacters
are significant. To turn of the magic meaning of
one of the regular expression characters, precede
it with a backslash. An example is the pattern

AVRAVY)

which matches any string of characters enclosed
in slashes.

One can also specify that any field or vari-
able matches a regular expression (or does not
match it) with the operators ~ and !~. The
program

$1 ~ /[jJlohn/

prints all lines where the first field matches
“‘john’" or ‘‘John.” Notice that this will also
match *‘Johnson’’, **St. Johnsbury™’, and so on.
To restrict it to exactly [jJlohn, use

81 ~ /7[jJlohnS/

The caret ~ refers to the beginning of a line cr
field; the dollar sign $ refers to the end.

2.3. Relational Expressions

An awk pattern can be a relational expres-
sion involving the usual relational operators <,
<= == l= >= and >. An example is

$2 > &1 + 100

which selects lines where the second field is at
least 100 greater than the first field. Similarly,

NF % 2 == 0
prints lines with an even number of fields.

In relational tests, if neither operand is
numeric, & string comparison is made; otherwise
it is numeric. Thus,

$1 >="s"
selects lines that begin with an s, t, u, etc. In

the absence of any other information, fields are
treated as strings, so the program

$1 > $2

will perform a string comparison.

2.4. Combinations of Patterns

A pattern can be any boolean combination
of patterns, using the operators |l (or), &&
(and), and ! (not). For example,

$1 >= "s" && $1 < "t" && $1 != "smith"

selects lines where the first field begins with *'s”’,
but is not ‘‘smith’”. && and || guarantee that
their operands will be evaluated from left to
right; evaluation stops as soon as the truth or
falsehood is determined.

2.5. Pattern Ranges

The ‘‘pattern’” that selects an action may
also consist of two patterns separated by a
comma, as in

pat1, pat2 (o]

In this case, the action is performed for each line
between an occurrence of pati and the next
occurrence of pat2 (inclusive). For example,

/start/, /stop/
prints all lines between start and stop, while
NR == 100, NR == 200 { .. |

does the action for lines 100 through 200 of the
input.

3. Actions

An awk action is a sequence of action
statements terminated by newlines or semi-
colons. These action statements can be used to
do a variety of bookkeeping and string manipu-
lating tasks.
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3.1. Built-in Functions

Awk provides a ‘“‘length” function to com-
pute the length of a string of characters. This
program prints each record, preceded by its
length:

{print length, $0}

length by itself is a ‘‘pseudo-variable” which
yields the length of the current record;
length(argument) is a function which yields the
length of its argument, as in the equivalent

{print length($0), $0)

The argument may be any expression.

Awk also provides the arithmetic functions
sqgrt, log, exp, and int, for square root, base e
logarithm, exponential, and integer part of their
respective arguments.

The name of one of these built-in func-
tions, without argument or parentheses, stands
for the value of the function on the whole
record. The program

length < 10 Il length > 20

prints lines whose length is less than 10 or
greater than 20.

The function substr(s, m, n) produces the
substring of s that begins at position m (origin
1) and is at most n characters long. 1f n is omit-
ted, the substring goes to the end of s. The
function index(s1, s2) returns the position
where the string s2 occurs in s1, or zero if it
does not.

The function sprintf(f, e1, e2, ..) produces
the value of the expressions e1, e2, etc., in the
printf format specified by f. Thus, for example,

x = sprintf("%8.2f %10id", $1, $2)
sets x to the string produced by formatting the
values of $1 and $2.
3.2. Variables, Expressions, and Assign-
ments

Awk variables take on numeric (floating
point) or string values according to context. For
example, in

x =1
X is clearly a number, while in
x = "smith"

it is clearly a string. Strings are converted to
numbers and vice versa whenever context
demands it. For instance,

X = "3" 4+ "4"

assigns 7 to Xx. Strings which cannot be inter-

preted as numbers in a numerical context will
generally have numeric value zero, but it is
unwise to count on this behavior.

By default, variables (other than built-ins)
are initialized to the null string, which has
numerical value zero; this eliminates the need
for most BEGIN sections. For example, the
sums of the first two fields can be computed by

{81 += 81, 52 += $2 |
END{ print s1, s2 }

Arithmetic is done internally in floating
point. The arithmetic operators are +, —, », /,
and % (mod). The C increment + + and decre-
ment — — operators are also available, and so
are the assignment operators +=, —= ==
/=, and %=. These operators may all be used
in expressions.

3.3. Field Variables

Fields in awk share essentially all of the
properties of variables — they may be used in
arithmetic or string operations, and may be
assigned to. Thus one can replace the first field
with a sequence number like this:

{ 81 = NR; print |}

or accumulate two fields into a third, like this:
{ 1 = $2 + $3; print $0 |

or assign a string to a field:

{ if (38 > 1000)
$3 = "too big"
print
}

which replapes the third field by ‘‘too big’’ when
it is, and in any case prints the record.

Field references may be numerical expres-
sions, as in
{ print $i, $(i+1), $i+n) )

Whether a field is deemed numeric or string
depends on context; in ambiguous cases like

if (31 == 8$2) ..

fields are treated as strings.

Each input line is split into fields automati-
cally as necessary. It is also possible to split any
variable or string into fields:

n = split(s, array, sep)

splits the the string s into array[1], ..., array[n].
The number of elements found is returned. If
the sep argument is provided, it is used as the
field separator; otherwise FS is used as the
separator.
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3.4. String Concatenation

Strings may bé concatenated. For example
length($1 $2 $3)

returns the length of the first three fields. Or in
a print statement,

print $1 " is " $2

L]

prints the two fields separated by ‘‘ is Vari-
ables and numeric expressions may also appear
in concatenations.

3.5. Arrays

Array elements are not declared; they
spring into existence by being mentioned. Sub-
scripts may have any non-null value, including
non-numeric strings. As an example of a con-
ventional numeric subscript, the statement

x[NR] = $0

assigns the current input record to the NR-th ele-
ment of the array x. In fact, it is possible in
principle (though perhaps slow) to process the
entire input in a random order with the awk pro-
gram

{ x[NR] = $0 |
END{ ... program ... }

The first action merely records each input line in
the array x. :

Array elements may be named by non-
numeric values, which gives awk a capability
rather like the associative memory of Snobol
tables. Suppose the input contains fields with
values like apple, orange, etc. Then the pro-
gram

/apple/ { x["apple"]+ + |
/orange/ { x['orange'l+ + |
END { print x["apple"], x["orange"] |

increments counts for the named array elements,
and prints them at the end of the input.

3.6. Flow-of-Control Statements

Awk provides the basic flow-of-control
statements if-else, while, for, and statement
grouping with braces, as in C. We showed the if
statement in section 3.3 without describing it.
The condition in parentheses is evaluated: if it is
true, the statement following the if is done. The
else part is optional.

The while statement is exactly like that of
C. For example, to print all input fields one per
line,

i =1

while (i <= NF) {
print $i
+ +i

The for statement is also exactly that of C:

for (i = 1;i <= NF; i++)
print $i

does the same job as the while statement above.

There is an alternate form of the for state-
ment which is suited for accessing the elements
of an associative array:

for (i in array)
statement

does statement with i set in turn to each element
of array. The elements are accessed in an
apparently random order. Chaos will ensue if i is
altered, or if any new elements are accessed dur-
ing the loop.

The expression in the condition part of an
if, while or for can include relational operators
like <, <=, >, >=, == (“is equal t10""), and
1= (‘‘not equal 10""); regular expression matches
with the match operators ~ and !~; the logical
operators (!, &&, and !; and of course
parentheses for grouping.

The break statement causes an immediate
exit from an enclosing while or for, the con-
tinue statement causes the next iteration to
begin.

The statement next causes awk to skip
immediately to the next record and begin scan-
ning the patterns from the top. The statement
exit causes the program to behave as if the end
of the input had occurred.

Comments may be placed in awk pro-
grams: they begin with the character # and end
with the end of the line, as in

print x, y # this is a comment

4. Design

The UNIX system already provides several
programs that operate by passing input through a
selection mechanism. Grep, the first and sim-
plest, merely prints all lines which match a single
specified pattern. £grep provides more general
patterns, i.e., regular expressions in full general-
ity, fgrep searches for a set of keywords with a
particularly fast algorithm. Sed! provides most
of the editing facilities of the editor ed, applied
to a stream of input. None of these programs
provides numeric capabilities, logical relations, or
variables.
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Lex3 provides general regular expression
recognition capabilities, and, by serving as a C
program generator, is essentially open-ended in
its capabilities. The use of /lex, however,
requires a knowledge of C programming, and a
lex program must be compiled and loaded before
use, which discourages its use for one-shot appli-
cations.

Awk is an attempt to fill in another part of
the matrix of possibilities. It provides general
regular expression capabilities and an implicit
input/output loop. But it also provides con-
venient numeric processing, variables, more gen-
eral selection, and control flow in the actions. It
does not require compilation or a knowledge of
C. Finally, awk provides a convenient way to
access fields within lines; it is unique in this
respect.

Awk also tries to integrate strings and
numbers completely, by treating all quantities as
both string and numeric, deciding which
representation is appropriate as late as possible.
In most cases the user can simply ignore the
differences.

Most of the effort in developing awk went
into deciding what awk should or should not do
(for instance, it doesn’t do string substitution)
and what the syntax should be (no explicit
operator for concatenation) rather than on writ-
ing or debugging the code. We have tried to
make the syntax powerful but easy to use and
well adapted to scanning files. For example, the
absence of declarations and implicit initializa-
tions, while probably a bad idea for a general-
purpose programming language, is desirable in a
language that is meant to be used for tiny pro-
grams that may even be composed on the com-
mand line.

In practice, awk usage seems 1o fall into
two broad categories. One is what might be
called ‘‘report generation’™ — processing an input
to extract counts, sums, sub-totals, etc. This
also includes the writing of trivial data validation
programs, such as verifying that a field contains
only numeric information or that certain delim-
iters are properly balanced. The combination of
textual and numeric processing is invaluable
here.

A second area of use is as a data
transformer, converting data from the form pro-
duced by one program into that expected by
another. The simplest examples merely select
fields, perhaps with rearrangements.

S. Implementation

The actual implementation of awk uses the
language development tools available on the
UNIX operating system. The grammar is
specified with yacc:* the lexical analysis is done
by lex; the regular expression recognizers are
deterministic finite automata constructed directly
from the expressions. An awk program is
translated into a parse tree which is then directly
executed by a simple interpreter.

Awk was designed for ease of use rather
than processing speed; the delayed evaluation of
variable types and the necessity to break input
into fields makes high speed difficult to achieve
in any case. Nonetheless, the program has not
proven to be unworkably slow.

Table 1 below shows the execution (user
+ system) time on a PDP-11/70 of the UNIX

programs wc, grep, egrep, fgrep, sed, lex, and
awk on the following simple tasks:

1. count the number of lines.
2. print all lines containing ‘‘doug’".

3. print all lines containing ‘‘doug’’, ‘‘ken”
or “‘dmr”.

4. print the third field of each line.

print the third and second fields of each
line, in that order.

6. append all lines containing ‘‘doug”,
“*ken’’, and ‘‘dmr” to files ‘‘jdoug’’,
“jken”’, and ‘‘jdmr”’, respectively.

7. print each line prefixed by ‘line-
number : 7’

8. sum the fourth column of a table.

The program wc merely counts words, lines and
characters in its input, we have already men-
tioned the others. In all cases the input was a
file containing 10,000 lines as created by the
command /s —/; each line has the form

—rw—rw—rw— 1 ava 123 Oct 15 17:05

The total length of this input is 452,960 charac-
ters. Times for /lex do not include compile or
load.

As might be expected, awk is not as fast
as the specialized tools wc, sed, or the programs
in the grep family, but is faster than the more
general tool /lex. In all cases, the tasks were
aboul as easy to express as awk programs as pro-
grams in these other languages; tasks involving
fields were considerably easier to express as awk
programs. Some of the test programs are shown
in awk, sed and lex.

XXX



25-8

References

1.

K. Thompson and D. M. Ritchie, Unix
Programmer's Manual, Bell Laboratories
(May 1975). Sixth Edition

B. W. Kernighan and D. M. Ritchie, The C
Programming  Language, Prentice-Hall,
Englewood Cliffs, New Jersey (1978).

M. E. Lesk, ‘‘Lex — A Lexical Analyzer
Generator,”” Comp. Sci. Tech. Rep. No.
39, Bell Laboratories, Murray Hill, New
Jersey (October 1975).

S. C. Johnson, **Yacc — Yet Another
Compiler-Compiler,”” Comp. Sci. Tech.
Rep. No. 32, Bell Laboratories, Murray
Hill, New Jersey (July 1975).



25-9

Task

Program 1 2 3 4 S 6 7 8
we 8.6 }

grep 11.7 13.1
egrep 6.2 11.5 11.6
Jerep 7.7 13.8 16.1
sed 10.2 11.6 158 | 29.0 | 305 16.1
lex 65.1 | 150.1 | 1442 | 67.7 | 70.3 | 104.0 | 81.7 | 92.8
awk 15.0 25.6 299 | 333 | 389 46.4 | 714 | 31.1

Table 1. Execution Times of Programs. (Times are in sec.)

The programs for some of these jobs are LEX:
shown below. The /ex programs are generally
too long to show. 1. %l|
int i;
AWK: o)
0/ 0
1. END {print NR} %%
P l \n i+ +;
2. /doug/ . ;
%%
3. /kenldougldmr/ yywrap() {
¢ printf("%d\n", i),
4. [|print $3} |
5. lprint $3, $2} 2. %%

"+doug.*$ printf("%s\n", yytext);
6. /ken/ {print >"jken"} :
/doug/  |print >"jdoug"} \no
/dmr/ {print >"jdmr"}

7. |print NR ": " $0)

8. {sum = sum + $4)
END [print sum)|

SED:

1. $=

2. /doug/p

3. /doug/p
/doug/d
/ken/p
/ken/d
/dmr/p
/dmr/d

4 /01 D10 1 DI 18\) =/s/\1/p
5. /0 1+ D1\ 1) U1\ 1=\) »/s/A2 \1/p
6. /ken/w jken

/doug/w jdoug
/dmr/w jdmr
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ABSTRACT

DC is an interactive desk calculator program implemented on the UNIXT
time-sharing system to do arbitrary-precision integer arithmetic. It has provi-
sion for manipulating scaled fixed-point numbers and for input and output in
bases other than decimal.

The size of numbers that can be manipulated is limited only by available
core storage. On typical implementations of UNIX, the size of numbers that can
be handled varies from several hundred digits on the smallest systems to
several thousand on the largest.

November 15, 1978

YUNIX is a Trademark of Bell Laboratories.

26-1



DC — An Interactive Desk Calculator
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Lorinda Cherry

Bell Laboratories
Murray Hill, New Jersey 07974

DC is an arbitrary precision arithmetic package implemented on the UNIXt time-sharing
system in the form of an interactive desk calculator. It works like a stacking caiculator using
reverse Polish notation. Ordinarily DC operates on decimal integers, but one may specify an
input base, output base, and a number of fractional digits to be maintained.

A language called BC [1] has been developed which accepts programs written in the fami-
liar style of higher-level programming languages and compiles output which is interpreted by
DC. Some of the commands described below were designed for the compiler interface and are
not easy for a human user to manipulate.

Numbers that are typed into DC are put on a push-down stack. DC commands work by
taking the top number or two off the stack, performing the desired operation, and pushing the
result on the stack. If an argument is given, input is taken from that file until its end, then
from the standard input.

SYNOPTIC DESCRIPTION

Here we describe the DC commands that are intended for use by people. The additional
commands that are intended to be invoked by compiled output are described in the detailed
description.

Any number of commands are permitted on a line. Blanks and new-line characters are
ignored except within numbers and in places where a register name is expected.

The following constructions are recognized:

number

The value of the number is pushed onto the main stack. A number is an unbroken string
of the digits 0-9 and the capital letters A—F which are treated as digits with values 10—15
respectively. The number may be preceded by an underscore to input a negative
number. Numbers may contain decimal points.

4+ - * 0 "

The top two values on the stack are added (+), subtracted (=), multiplied (*), divided
(/), remaindered (%), or exponentiated (*). The two entries are popped off the stack; the
result is pushed on the stack in their place. The result of a division is an integer trun-
cated toward zero. See the detailed description below for the treatment of numbers with
decimal points. An exponent must not have any digits after the decimal point.

tUNIX is a Trademark of Bell Laboratories.
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The top of the main stack is popped and stored into a register named x, where x may be
any character. If the s is capitalized, x is treated as a stack and the value is pushed onto
it. Any character, even blank or new-line, is a valid register name.

The value in register x is pushed onto the stack. The register x is not altered. If the 1 is
capitalized, register x is treated as a stack and its top value is popped onto the main stack.

All registers start with empty value which is treated as a zero by the command | and is treated
as an error by the command L.

The top value on the stack is duplicated.

The top value on the stack is printed. The top value remains unchanged.

All values on the stack and in registers are printed.

treats the top element of the stack as a character string, removes it from the stack, and
executes it as a string of DC commands.

puts the bracketed character string onto the top of the stack.

exits the program. If executing a string, the recursion level is popped by two. If q is capi-
talized, the top value on the stack is popped and the string execution level is popped by

that value.
>x =x !<x I>x !'=x

The top two elements of the stack are popped and compared. Register x is executed if
they obey the stated relation. Exclamation point is negation.

replaces the top element on the stack by its square root. The square root of an integer is

truncated to an integer. For the treatment of numbers with decimal points, see the
detailed description below.

interprets the rest of the line as a UNIX command. Control returns to DC when the UNIX
command terminates.

All values on the stack are popped; the stack becomes empty.
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i -
The top value on the stack is popped and used as the number radix for further input. If i

is capitalized, the value of the input base is pushed onto the stack. No mechanism has
been provided for the input of arbitrary numbers in bases less than 1 or greater than 16.

The top value on the stack is popped and used as the number radix for further output. If
o is capitalized, the value of the output base is pushed onto the stack.

The top of the stack is popped, and that value is used as a scale factor that influences the
number of decimal places that are maintained during multiplication, division, and
exponentiation. The scale factor must be greater than or equal to zero and less than 100.
If k is capitalized, the value of the scale factor is pushed onto the stack.

The value of the stack level is pushed onto the stack.

A line of input is taken from the input source (usually the console) and executed.
DETAILED DESCRIPTION

Internal Representation of Numbers

Numbers are stored internally using a dynamic storage allocator. Numbers are kept in the
form of a string of digits to the base 100 stored one digit per byte (centennial digits). The
string is stored with the low-order digit at the beginning of the string. For example, the
representation of 157 is 57,1. After any arithmetic operation on a number, care is taken that all
digits are in the range 0—99 and that the number has no leading zeros. The number zero is
represented by the empty string.

Negative numbers are represented in the 100°s complement notation, which is analogous
to two’s complement notation for binary numbers. The high order digit of a negative number
is always — 1 and all other digits are in the range 0—99. The digit preceding the high order —1
digit is never a 99. The representation of —157 is 43,98, —1. We shall call this the canonical
form of a number. The advantage of this kind of representation of negative numbers is ease of
addition. When addition is performed digit by digit, the result is formally correct. The result
need only be modified, if necessary, to put it into canonical form.

Because the largest valid digit is 99 and the byte can hold numbers twice that large, addi-
tion can be carried out and the handling of carries done later when that is convenient, as it
sometimes is.

An additional byte is stored with each number beyond the high order digit to indicate the
number of assumed decimal digits after the decimal point. The representation of .001 is 1,23
where the scale has been italicized to emphasize the fact that it is not the high order digit. The
value of this extra byte is called the scale factor of the number.

The Allocator

DC uses a dynamic string storage allocator for all of its internal storage. All reading and
writing of numbers internally is done through the allocator. Associated with each string in the
allocator is a four-word header containing pointers to the beginning of the string, the end of the
string, the next place to write, and the next place to read. Communication between the alloca-
tor and DC is done via pointers to these headers.

I
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The allocator initially has one large string on a list of free strings. All headers except the
one pointing to this string are on a list of free headers. Requests for strings are made by size.
The size of the string actually supplied is the next higher power of 2. When a request for a
string is made, the allocator first checks the free list to see if there is a string of the desired
size. If none is found, the allocator finds the next larger free string and splits it repeatedly until
it has a string of the right size. Left-over strings are put on the free list. If there are no larger
strings, the allocator tries to coalesce smaller free strings into larger ones. Since all strings are
the result of splitting large strings, each string has a neighbor that is next to it in core and, if
free, can be combined with it to make a string twice as long. This is an implementation of the
‘buddy system’ of allocation described in [2].

Failing to find a string of the proper length after coalescing, the allocator asks the system
for more space. The amount of space on the system is the only limitation on the size and
number of strings in DC. If at any time in the process of trying to allocate a string, the alloca-
tor runs out of headers, it also asks the system for more space.

There are routines in the allocator for reading, writing, copying, rewinding, forward-
spacing, and backspacing strings. All string manipulation is done using these routines.

The reading and writing routines increment the read pointer or write pointer so that the
characters of a string are read or written in succession by a series of read or write calls. The
write pointer is interpreted as the end of the information-containing portion of a string and a
call to read beyond that point returns an end-of-string indication. An attempt to write beyond
the end of a string causes the allocator to allocate a larger space and then copy the old string
into the larger block.

Internal Arithmetic

All arithmetic operations are done on integers. The operands (or operand) needed for the
operation are popped from the main stack and their scale factors stripped off. Zeros are added
or digits removed as necessary to get a properly scaled result from the internal arithmetic rou-
tine. For example, if the scale of the operands is different and decimal alignment is required,
as it is for addition, zeros are appended to the operand with the smaller scale. After performing
the required arithmetic operation, the proper scale factor is appended to the end of the number
before it is pushed on the stack.

A register called scale plays a part in the results of most arithmetic operations. scale is
the bound on the number of decimal places retained in arithmetic computations. scale may be
set to the number on the top of the stack truncated to an integer with the k command. K may
be used to push the value of scale on the stack. scale must be greater than or equal to 0 and
less than 100. The descriptions of the individual arithmetic operations will include the exact
effect of scale on the computations.

Addition and Subtraction

The scales of the two numbers are compared and trailing zeros are supplied to the number
with the lower scale to give both numbers the same scale. The number with the smaller scale is
multiplied by 10 if the difference of the scales is odd. The scale of the result is then set to the
larger of the scales of the two operands.

Subtraction is performed by negating the number to be subtracted and proceeding as in
addition.

Finally, the addition is performed digit by digit from the low order end of the number.
The carries are propagated in the usual way. The resulting number is brought into canonical
form, which may require stripping of leading zeros, or for negative numbers replacing the
high-order configuration 99,—1 by the digit —1. In any case, digits which are not in the range
0—99 must be brought into that range, propagating any carries or borrows that result.
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Multiplication

The scales are removed from the two operands and saved. The operands are both made
positive. Then muitiplication is performed in a digit by digit manner that exactly mimics the
hand method of multiplying. The first number is multiplied by each digit of the second
number, beginning with its low order digit. The intermediate products are accumulated into a
partial sum which becomes the final product. The product is put into the canonical form and its
sign is computed from the signs of the original operands.

The scale of the result is set equal to the sum of the scales of the two operands. If that
scale is larger than the internal register scale and also larger than both of the scales of the two
operands, then the scale of the result is set equal to the largest of these three last quantities.

Division
The scales are removed from the two operands. Zeros are appended or digits removed

from the dividend to make the scale of the result of the integer division equal to the internal
quantity scale. The signs are removed and saved.

Division is performed much as it would be done by hand. The difference of the lengths
of the two numbers is computed. If the divisor is longer than the dividend, zero is returned.
Otherwise the top digit of the divisor is divided into the top two digits of the dividend. The
result is used as the first (high-order) digit of the quotient. It may turn out be one unit too
low, but if it is, the next trial quotient will be larger than 99 and this will be adjusted at the end
of the process. The trial digit is multiplied by the divisor and the result subtracted from the
dividend and the process is repeated to get additional quotient digits until the remaining divi-
dend is smaller than the divisor. At the end, the digits of the quotient are put into the canoni-
cal form, with propagation of carry as needed. The sign is set from the sign of the operands.

Remainder

The division routine is called and division is performed exactly as described. The quantity
returned is the remains of the dividend at the end of the divide process. Since division trun-
cates toward zero, remainders have the same sign as the dividend. The scale of the remainder
is set to the maximum of the scale of the dividend and the scale of the quotient plus the scale
of the divisor.

Square Root

The scale is stripped from the operand. Zeros are added if necessary to make the integer
result have a scale that is the larger of the internal quantity scale and the scale of the operand.

The method used to compute saqrt(y) is Newton’s method with successive approximations
by the rule

X,y = Valx,+-2)

on

The initial guess is found by taking the integer square root of the top two digits.

Exponentiation

Only exponents with zero scale factor are handled. If the exponent is zero, then the
result is 1. If the exponent is negative, then it is made positive and the base is divided into
one. The scale of the base is removed.

The integer exponent is viewed as a binary number. The base is repeatedly squared and
the result is obtained as a product of those powers of the base that correspond to the positions
of the one-bits in the binary representation of the exponent. Enough digits of the result are
removed to make the scale of the result the same as if the indicated multiplication had been
performed.
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Input Conversion and Base

Numbers are converted to the internal representation as they are read in. The scale
stored with a number is simply the number of fractional digits input. Negative numbers are
indicated by preceding the number with a _. The hexadecimal digits A—F correspond to the
numbers 10— 15 regardless of input base. The i command can be used to change the base of
the input numbers. This command pops the stack, truncates the resulting number to an
integer, and uses it as the input base for all further input. The input base is initialized to 10
but may, for example be changed to 8 or 16 to do octal or hexadecimal to decimal conversions.
The command I will push the value of the input base on the stack.

Output Commands

The command p causes the top of the stack to be printed. It does not remove the top of
the stack. All of the stack and internal registers can be output by typing the command f. The o
command can be used to change the output base. This command uses the top of the stack,
truncated to an integer as the base for all further output. The output base in initialized to 10.

It will work correctly for any base. The command O pushes the value of the output base on the
stack.

Output Format and Base

The input and output bases only affect the interpretation of numbers on input and output;
they have no effect on arithmetic computations. Large numbers are output with 70 characters
per line; a \ indicates a continued line. All choices of input and output bases work correctly,
although not all are useful. A particularly useful output base is 100000, which has the effect of

grouping digits in fives. Bases of 8 and 16 can be used for decimal-octal or decimal-
hexadecimal conversions.

Internal Registers

Numbers or strings may be stored in internal registers or loaded on the stack from regis-
ters with the commands s and 1. The command sx pops the top of the stack and stores the
result in register x. x can be any character. lx puts the contents of register x on the top of the

stack. The 1 command has no effect on the contents of register x. The s command, however,
is destructive.

Stack Commands

The command ¢ clears the stack. The command d pushes a duplicate of the number on
the top of the stack on the stack. The command z pushes the stack size on the stack. The
command X replaces the number on the top of the stack with its scale factor. The command Z
replaces the top of the stack with its length.

Subroutine Definitions and Calls

Enclosing a string in |l pushes the ascii string on the stack. The q command quits or in
executing a string, pops the recursion levels by two.

Internal Registers — Programming DC

The load and store commands together with [l to store strings, x to execute and the test-
ing commands ‘<, ‘>, ‘=", ‘1<’ ‘!>’ ‘=" can be used to program DC. The x command
assumes the top of the stack is an string of DC commands and executes it. The testing com-
mands compare the top two elements on the stack and if the relation holds, execute the register
that follows the relation. For example, to print the numbers 0-9,

llipl + si lil0>alsa
Osi lax
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Push-Down Registers and Arrays

These commands were designed for used by a compiler, not by people. They involve
push-down registers and arrays. In addition to the stack that commands work on, DC can be
thought of as having individual stacks for each register. These registers are operated on by the
commands S and L. Sx pushes the top value of the main stack onto the stack for the register
x. Lx pops the stack for register x and puts the result on the main stack. The commands s and
I also work on registers but not as push-down stacks. 1 doesn’t effect the top of the register
stack, and s destroys what was there before.

The commands to work on arrays are : and ;. :x pops the stack and uses this value as an
index into the array x. The next element on the stack is stored at this index in x. An index
must be greater than or equal to 0 and less than 2048. ;x is the command to load the main
stack from the array x. The value on the top of the stack is the index into the array x of the
value to be loaded.

Miscellaneous Commands

The command ! interprets the rest of the line as a UNIX
command and passes it to UNIX to execute. One other compiler command is Q. This com-
mand uses the top of the stack as the number of levels of recursion to skip.

DESIGN CHOICES

The real reason for the use of a dynamic storage allocator was that a general purpose pro-
gram could be (and in fact has been) used for a variety of other tasks. The allocator has some
value for input and for compiling (i.e. the bracket [...] commands) where it cannot be known
in advance how long a string will be. The result was that at a modest cost in execution time, all
considerations of string allocation and sizes of strings were removed from the remainder of the
program and debugging was made easier. The allocation method used wastes approximately
25% of available space.

The choice of 100 as a base for internal arithmetic seemingly has no compelling advan-
tage. Yet the base cannot exceed 127 because of hardware limitations and at the cost of 5% in
space, debugging was made a-great deal easier and decimal output was made much faster.

The reason for a stack-type arithmetic design was to permit all DC commands from addi-
tion to subroutine execution to be implemented in essentially the same way. The result was a
considerable degree of logical separation of the final program into modules with very little com-
munication between modules.

The rationale for the lack of interaction between the scale and the bases was to provide an
understandable means of proceeding after a change of base or scale when numbers had already
been entered. An earlier implementation which had global notions of scale and base did not
work out well. If the value of scale were to be interpreted in the current input or output base,
then a change of base or scale in the midst of a computation would cause great confusion in the
interpretation of the results. The current scheme has the advantage that the value of the input
and output bases are only used for input and output, respectively, and they are ignored in all
other operations. The value of scale is not used for any essential purpose by any part of the
program and it is used only to prevent the number of decimal places resulting from the arith-
metic operations from growing beyond all bounds.

The design rationale for the choices for the scales of the results of arithmetic were that in
no case should any significant digits be thrown away if, on appearances, the user actually
wanted them. Thus, if the user wants to add the numbers 1.5 and 3.517, it seemed reasonable
to give him the result 5.017 without requiring him to unnecessarily specify his rather obvious
requirements for precision.

On the other hand, multiplication and exponentiation produce results with many more
digits than their operands and it seemed reasonable to give as a minimum the number of
decimal places in the operands but not to give more than that number of digits unless the user
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asked for them by specifying a value for scale. Square root can be handled in just the same
way as multiplication. The operation of division gives arbitrarily many decimal places and there

is simply no way to guess how many places the user wants. In this case only, the user must
specify a scale to get any decimal places at all.

The scale of remainder was chosen to make it possible to recreate the dividend from the
quotient and remainder. This is easy to implement; no digits are thrown away.
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(11 L. L. Cherry, R. Morris, BC — An Arbitrary Precision Desk-Calculator Language.
[2] K. C. Knowlton, 4 Fast Storage Allocator, Comm. ACM 8, pp. 623-625 (Oct. 1965).






BC — An Arbitrary Precision Desk-Calculator Language

Lorinda Cherry
Robert Morris

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

BC is a language and a compiler for doing arbitrary precision arithmetic on
the PDP-11 under the UNIXT time-sharing system. The output of the compiler
is interpreted and executed by a collection of routines which can input, output,

and do arithmetic on indefinitely large integers and on scaled fixed-point
numbers.

These routines are themselves based on a dynamic storage allocator.
Overflow does not occur until all available core storage is exhausted.

The language has a complete control structure as well as immediate-mode
operation. Functions can be defined and saved for later execution.

Two five hundred-digit numbers can be multiplied to give a thousand digil
result in about ten seconds.

A small collection of library functions is also available, including sin, cos,
arctan, log, exponential, and Bessel functions of integer order.

= Some of the uses of this compiler are
— to do computation with large integers,
—  to do computation accurate to many decimal places,
—  conversion of numbers from one base to another base.

November 12, 1978

tUNIX is a Trademark ol Bell Laboratories.

27-1



BC — An Arbitrary Precision Desk-Calculator Language

Lorinda Cherry
Robert Morris

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction

BC is a language and a compiler for doing arbitrary precision arithmetic on the UNIXT
time-sharing system [1]. The compiler was written to make convenientiy available a collection
of routines (called DC [5]) which are capable of doing arithmetic on integers of arbitrary size.
The compiler is by no means intended to provide a compleie programming language. It is a
minimal language facility.

There is a scaling provision that permits the use of decimal point notation. Provision is-
made for input and output in bases other than decimal. Numbers can be converted from
decimal to octal by simply setting the output base to equal 8.

The actual limit on the number of digits that can be handled depends on the amount of
storage available on the machine. Manipulation of numbers with many hundreds of digits is
possible even on the smallest versions of UNIX.

The syntax of BC has been deliberately selected to agree substantially with the C language
[2]. Those who are familiar with C will find few surprises in this language.

Simple Computations with Integers
The simplest kind of statement is an arithmetic expression on a line by itself. For
instanee, if you type in the line:
142857 + 285714
the program responds immediately with the line
428571

The operators —, *, /, %, and ~ can also be used: they indicate subtraction, multiplication, divi-
sion, remaindering, and exponentiation, respectively. Division of integers produces an integer
result truncated toward zero. Division by zero produces an error comment.

Any term in an expression may be prefixed by a minus sign to indicate that it is to be
negated (the ‘unary’ minus sign). The expression

T4+ =3
is interpreted to mean that —3 is to be added to 7.

More complex expressions with several operators and with parentheses are interpreted just
as in Fortran, with ~ having the greatest binding power, then * and % and /, and finally + and
—. Contents of parentheses are evaluated before material outside the parentheses. Exponen-
tiations are performed from right to left and the other operators from left to right. The two
expressions

TUNIX is a Trademark of Bell Laboratories.
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a’b’c and a"(b’c)
are equivalent, as are the two expressions
a*b*c and (a*b)*c
BC shares with Fortran and C the undesirable convention that

a/b*c is equivalent to (a/b)*c

Internal storage registers to hold numbers have single lower-case letter names. The value
of an expression can be assigned to a register in the usual way. The statement

X =x +3
has the effect of increasing by three the value of the contents of the register named x. When,

as in this case, the outermost operator is an =, the assignment is performed but the result is
not printed. Only 26 of these named storage registers are available.

There is a built-in square root function whose result is truncated to an integer (but see
scaling below). The lines

x = sqrt{191)

X

produce the printed result
13

Bases

There are special internal quantities, called ‘ibase’ and ‘obase’. The contents of ‘ibase’,

initially set to 10, determines the base used for interpreting numbers read in. For example, the
lines

: ibase = 8
11

will produce the output line

9

and you are all set up to do octal to decimal conversions. Beware, however of trying to change
the input base back to decimal by typing

ibase = 10

Because the number 10 is interpreted as octal, this statement will have no effect. For those
who deal in hexadecimal notation, the characters A—F are permitted in numbers (no matter
what base is in effect) and are interpreted as digits having values 10—15 respectively. The
statement

ibase = A

will change you back to decimal input base no matter what the current input base is. Negative
and large positive input bases are permitted but useless. No mechanism has been provided for
the input of arbitrary numbers in bases less than 1 and greater than 16.

The contents ol *obase’, initially set to 10, are used as the base for output numbers. The
lines

obase = 16
1000

will produce the output line
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3E8

which is to be interpreted as a 3-digit hexadecimal number. Very large output bases are permit-
ted, and they are sometimes useful. For example, large numbers can be output in groups of
five digits by setting ‘obase’ to 100000. Strange (i.e. 1, 0, or negative) output bases are han-
dled appropriately.

Very large numbers are split across lines with 70 characters per line. Lines which are con-
tinued end with \. Decimal output conversion is practically instantaneous, but output of very
large numbers (i.e., more than 100 digits) with other bases is rather slow. Non-decimal output
conversion of a one hundred digit number takes about three seconds.

It is best to remember that ‘ibase’ and ‘obase’ have no effect whatever on the course of
internal computation or on the evaluation of expressions, but only affect input and output
conversion, respectively.

Scaling

A third special internal quantity called ‘scale’ is used to determine the scale of calculated
quantities. Numbers may have up to 99 decimal digits after the decimal point. This fractional
part is retained in further computations. We refer to the number of digits after the decimal
point of a number as its scale.

When two scaled numbers are combined by means of one of the arithmetic operations,
the result has a scale determined by the following rules. For addition and subtraction, the scale
of the result is the larger of the scales of the two operands. In this case, there is never any
truncation of the resuit. For multiplications, the scale of the result is never less than the max-
imum of the two scales of the operands, never more than the sum of the scales of the operands
and, subject to those two restrictions, the scale of the result is set equal to the contents of the
internal quantity ‘scale’. The scale of a quotient is the contents of the internal quantity ‘scale’.
The scale of a remainder is the sum of the scales of the quotient and the divisor. The result of
an exponentiation is scaled as if the implied multiplications were performed. An exponent
must e an integer. The scale of a square root is set to the maximum of the scale of the argu-
ment and the contents of ‘scale’.

All of the internal operations are actually carried out in terms of integers, with digits
being discarded when necessary. In every case where digits are discarded, truncation and not
rounding is performed.

The contents of ‘scale” must be no greater than 99 and no less than 0. [t is initially set to
0. In case you need more than 99 fraction digits, you may arrange your own scaling.

The internal quantities ‘scale’, ‘ibase’, and ‘obase’ can be used in expressions just like
other variables. The line

scale = scale + 1
increases the value of ‘scale’ by one, and the line
scale

causes the current value of ‘scale’ to be printed.

The value of ‘scale’ retains its meaning as a number of decimal digits to be retained in
internal computation even when ‘ibase’ or ‘obase’ are not equal to 10. The internal computa-
tions (which are still conducted in decimal, regardless of the bases) are performed to the
specified number of decimal digits, never hexadecimal or octal or any other kind of digits.

Functions

The name of a function is a single lower-case letter. Function names are permitted to col-
lide with simple variable names. Twenty-six different defined functions are permitted in addi-
tion to the twenty-six variable names. The line
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define a(x)!

begins the definition of a function with one argument. This line must be followed by one or
more statements, which make up the body of the function, ending with a right brace }. Return
of control from a function occurs when a return statement is executed or when the end of the
function is reached. The return statement can take either of the two forms

return
return(x)

In the first case, the value of the function is 0, and in the second, the value of the expression
in parentheses.

Variables used in the function can be declared as automatic by a statement of the form

auto x,y,z

There can be only one ‘auto’ statement in a function and it must be the first statement in the
definition. These automatic variables are allocated space and initialized to zero on entry to the
function and thrown away on return. The values of any variables with the same names outside
the function are not disturbed. Functions may be called recursively and the automatic variables
at each level of call are protected. The parameters named in a function definition are treated in
the same way as the automatic variables of that function with the single exception that they are
given a value on entry to the function. An example of a function definition is

define a(x.y)!
auto z
z = X"y
return(z)

}

The value of this function, when called, will be the product of its two arguments.

A function is called by the appearance of its name followed by a string of arguments
encloset* in parentheses and separated by commas. The result is unpredictable if the wrong
number of arguments is used.

Functions with no arguments are defined and called using parentheses with nothing
between them: b().

If the function a above has been defined, then the line
a(7,3.14)
would cause the result 21.98 to be printed and the line
x = a(a(3,4),5)

would cause the value of x to become 60.

Subscripted Variables

A single lower-case letter variable name followed by an expression in brackets is called @
subscripted variable (an array element). The variable name is called the array name and the
expression in brackets is called the subscript. Only one-dimensional arrays are permitted. The
names of arrays are permitted to collide with the names of simple variables and function names.
Any fractional part of a subscript is discarded before use. Subscripts must be greater than or
equal to zero and less than or equal to 2047.

Subscripted variables may be freely used in expressions, in function calls, and in return
statements.

An array name may be used as an argument to a function, or may be declared as
automatic in a function definition by the use of empty brackets:
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f(al])
define f(a[])
auto all

When an array name is so used, the whole contents of the array are copied for the use of the
function, and thrown away on exit from the function. Array names which refer to whole arrays
cannot be used in any other contexts.

Control Statements

The ‘if’, the ‘while’, and the ‘for’ statements may be used to alter the flow within pro-
grams or to cause iteration. The range of each of them is a statement or a compound statement
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