
VA-004(B)

@
Bell Laboratories

lJNIX PROGRAMMER'S MANUAL

Seventh Edition, Volume 28

January, 1979

UNIX™ TIME-SHARING SYSTEM:

UNIX PROGRAMMER'S MANUAL

Seventh Edition, Volume 2B

January, 1979

Bell Telephone Laboratories, Incorporated
Murray Hill, New Jersey

VA-004(8)

Copyright 1979, Bell Telephone Laboratories, Incorporated.
Holders of a UNIX TM software license are permitted to copy this
ckx;t,1tnent, or ciny portion of it, as necessary for licensed use of
the software, provided this copyright notice and statement of
~rmission are included.

. ---- '

CONTENTS

CHAPTER VOLUME

Index 2 A

l Summary 2 A

2 The UNIX Time-Sharing System 2 A

3 UNIX for Beginners 2 A

4 Editor Tutorial 2 A

5 Advanced Editing 2 A

6 Shel 1 Introduction 2 A

7 Learn 2 A

8 Typing Documents on the UNIX System 2 A

9 EQN 2 A

10 TBL 2 A

11 REFER 2 A

12 NROFF/TROFF Reference Manual 2 A

13 TROFF Tutorial 2 A

14 C Reference Manual 2 A

15 LINT 2 A

16 MAKE 2 A

17 UNIX Programming 2 A

18 ADB Tutorial 2 A

19 YACC 2 B

20 LEX 2 B

21 'f\ortflan 77 2 B

22 Ratfor 2 B

23 M4 2 B

24 SEO 2 B

iii

..

CHAPTER

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

AWK

DC

BC

Assembler

Setting Up UNIX

Regenerating System Software

Implementation

I/O System

UNIX C Compiler

Portable C Compiler

UUCP

UUCP Im pl ementa tion

Security of UNIX

Password Security

Berkeley Virtuai Vax/UNIX

C Shell Introduction

Display Editing with Vi

Edit: a Tutoria 1

Ex Reference Manual

Ex Supplement

Mail Reference Manual

Franz lisp Manual

Berkeley Pa sea 1

EFL

NROFF Using -me

-me Reference Manual

iv

VOLUME

2 B

2 B

2 B

2 B

2 B

2 B

2 B

2 B

2 B

2 B

2 B

2 B

2 B

2 B

2 c

2 c

2 c

2 c

2 c

2 c

2 c

2 c

2 c

2 c

2 c

2 c

CHAPTER

51

52

53

54

Berke1ey Fonts

STYLE & DICTION Programs

SOB

Assembler

v

VOLUME

2 c

2 c

2 c

2 c

Yacc: Yet Another Compiler-Compiler

Stephen C. Johnson

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Computer program input generally has some structure; in fact, every com·
puter program that does input -Can be thought of as defining an "input
language" which it accepts. An input language may be as complex as a pro·
gramming language, or as simple as a sequence of numbers. Unfortunately,
usual input facilities are limited, difficult to use, and often are lax about check·
ing their inputs for validity.

Yacc provides a general tool for describing the input to a computer pro·
gram. The Yacc user specifies the structures of his input, together with code to
be invoked as each such structure is recognized. Yacc turns such a specification
into a subroutine that handles the input process; frequently, it is convenient
and appropriate to have most of the flow of control in the user's application
handled by this subroutine.

The input subroutine produced by Y ace calls a user-supplied routine to
return the next basic input item. Thus, the user can specify his input in terms
of individual input characters, or in terms of higher level constructs such as
names and numbers. The user·supplied routine may also handle idiomatic
features such as comment and continuation conventions, which typically defy
easy grammatical specification.

Yacc is written in portable C. The class of specifications accepted is a
very general one: LALR(l) grammars with disambiguating rules.

In addition to compilers for C, APL, Pascal, RATFOR, etc., Yacc has also
been used for less conventional languages, including a phototypesetter
language, several desk calculator languages, a document retrieval system, and a
Fortran debugging system.

July 31, 1978

l 9- l

Yacc: Yet Another Compiler-Compiler

Stephen C. Johnson

Bell Laboratories
Murray Hill, New Jersey 0797~

0: Introduction

Yacc provides a general tool for imposing structure on the input to a computer program.
The Yacc user prepares a specification of the input process; this includes rules describing the
input strycture, code to be invoked when these rules are recognized, and a low-level routine to
do the basic input. Yacc then generates a function to control the input process. This function,
called a parser, calls the user-supplied low-level input routine (the lexical analyzer) to pick up
the basic items (called tokens) from the input stream. These tokens ar.e organized according to
tile input structure rules, called grammar rules; when one of these rules has been recognized,
tttc;n user code supplied for this rule, an action, is invoked; actions have the ability to return
values and make use of the values of other actions.

Yacc is written in a portable dialect of Cl and the actions, and output subroutine, are in C
as well. Moreover, many of the syntactic conventions of Yacc follow C.

The heart of the input specification is a collection of grammar rules. Each rule describes
an allowable structure and gives it a name. For example, one grammar rule might be

date : month_name day ·; year ;

Here, date, month_ name, day, and year represent structures of interest in the input process;
presumably, month_ name, day, and year are defined elsewhere. The comma "," is enclosed in
single quotes; this implies that the comma is to appear literally in the input. The colon and
semicolon merely serve as punctuation in the rule, and have no significance in controlling the
inp~L Thus, with proper definitions, the input

July 4, 1776

mifbt be matched by the above rule.

An important part of the input process is carried out by the lexical analyzer. This user
routine reads the input stream, rec<>iJlizing the lower level structures, and communicates these
t-0,kens to the parser. For historical reasons, a structure recogniz~d by the lexical analyzer is
called a terminal symbol, while the structure recognized by the parser is called a nonterminal sym
bol. To avoid confusion, terminal symbols will usually be referred to as tokens.

There is considerable leeway in deciding whether to recognize structures using the lexical
~alyzer or gra,mmar rules. For example, the rules

month_name T ·a· 'n'
month_name : 'F · e' 'b' ;

~ntb _ _,tlame : 'D' ·e· 'c' ;

might be used in the above example. The lexical analyzer would only need to recognize indivi
d1o1ial ,Jetters, and month_ name would be a nonterminal symbol. Such low-level rules tend to
waste tiale and space, and may complicate the specification beyond Yacc's ability to deal with it.
~, .tile lexical arntlyzer would recQgnize the month names, and return an indication that a

19-2

19-3

month_ name was seen; in this case, month_ name would be a token.

Literal characters such as "," must also be passed through the lexical analyzer, and are
also considered tokens.

Specification files are very flexible. It is realively easy to add to the above example the
rule

date month · /' day · /' year

allowing

7 I 41 1776

as a synonym for

July 4, 1776

In most cases, this new rule could be "slipped in" to a working system with minimal effort,
and little danger of disrupting existing input.

The input being read may not conform to the specifications. These input errors are
detected as early as is theoretically possible with a left-to-right scan; thus, not only is the
chance of reading and computing with bad input data substantially reduced, but the bad data
can usually be quickly found. Error handling, provided as part of the input specifications, per
mits the reentry of bad data, or the continuation of the input process after skipping over the
bad data.

In some cases, Yacc fails to produce a parser when given a set of specifications. For
example, the specifications may be self contradictory, or they may require a more powerful
recognition mechanism than that available to Yacc. The former cases represent design errors;
the latter cases can often be corrected by making the lexical analyzer more powerful, or by
rewriting some of the grammar rules. While Yacc cannot handle all possible specifications, its
power compares favorably with similar systems; moreover, the constructions which are difficult
for Yacc to handle are also frequently difficult for human beings to handle. Some users have
reported that the discipline of formulating valid Yacc specifications for their input revealed
errors of conception or design early in the program development.

The theory underlying Yacc has been described elsewhere. 2, 3, 4 Yacc has been extensively
used in numerous practical applications, including lint, 5 the Portable C Compiler, 6 and a system
for typesetting mathematics. 7

The next several sections describe the basic process of preparing a Yacc specification; Sec
tion 1 describes the preparation of grammar rules, Section 2 the preparation of the user sup
plied actions associated with these rules, and Section 3 the preparation of lexical analyzers. Sec
tion 4 describes the operation of the parser. Section 5 discusses various reasons why Yacc may
be unable to produce a parser from a specification, and what to do about it. Section 6 describes
a simple mechanism for handling operator precedences in arithmetic expressions. Section 7
discusses error detection and recovery. Section 8 discusses the operating environment and spe
cial features of the parsers Yacc produces. Section 9 gives some suggestions which should
improve the style and efficiency of the specifications. Section 10 discusses some advanced
topics, and Section 11 gives acknowledgements. Appendix A has a brief example, and Appen
dix B gives a summary of the Yacc input syntax. Appendix C gives an example using some of
the more advanced features of Yacc, and, finally, App1endix D describes mechanisms and syntax
no longer actively supported, but provided for historical continuity with older versions of Yacc.

1 : Basic Specifications

Names refer to either tokens or nonterminal symbols. Yacc requires token names to be
declared as such. In addition, for reasons discussed in Section 3, it is often desirable to include
the lexical analyzer as part of the specification file; it may be useful to include other programs
as well. Thus, every specification file consists of three sections: the declarations, (grammar)

4

rules, and programs. The sections are separated by double percent "%%" marks. (The percent
"%" is generally used in Yacc as an escape character.}

In other words, a full specification like

declarations
%%
rules
%%
programs

The declaration section may be empty. Moreover, if the programs section is omitted, the
second%% mark may be omitted also; smallest legal specification is

rules

Blanks, tabs, and are ignored that they may not appear in names or
multi-character reserved symbols. Comments may appear wherever a name is legal; they are
enclosed in /• ... •I, as in C and

The rules section is made up
form:

one or more grammar rul.es. A grammar rule has the

A : BODY ;

A represents a nonterminal name, and BODY a sequence of zero or more names and
The colon and the semicolon are

Names may be of and may be up letters, dot ".", underscore
"_", and non-initial digits. case letters are distinct. The names used in the

a grammar rule may tokens or nonterminal symbols.

A literal consists of a en dosed single quotes '"". As C, the backslash "\"
is an escape character literals, and the C escapes are recognized. Thus

'\r'
'\"
\\'
'\t'
'\b'
'\f'
'\xxx'

newline
return
single quote
backslash'
tab
backspace
form feed

in

For a number of technical reasons, the NUL character ('\O' or 0) should never
mar rules.

used in gram-

If are same hand the vertical bar "I" can
used to avoid addition, the semicolon at the end of a rule

can be dropped before a vertical bar. Thus the grammar rules

A
A
A

can be given to

A

BCD
E F

BCD
E F
G

:!
.. ~

··:.;''

•
'·.;~_.:..>"

- .~-

19-5

It is not necessary that all grammar rules with the same left side appear together in the gram
mar rules section, although it makes the input much more readable, and easier to change.

If a nonterminal symbol matches the empty string, this can be indicated in the obvious
way:

empty: ;

Names representing tokens must be declared; this is most simply done by writing

%token name 1 name2 ...

in the declarations section. (See Sections 3 , 5, and 6 for much more discussion). Every name
not defined in the declarations section is assumed to represent a nonterminal symbol. Every
nonterminal symbol must appear on the left side of at least one rule.

Of all the nonterminal symbols, one, called the start symbol, has particular importance .
The parser is designed to recognize the start symbol; thus, this symbol represents the largest,
most general structure described by the grammar rules. By default, the start symbol is taken to
be the left hand side of the first grammar rule in the rules section. It is possible, and in fact
desirable, to declare the start symbol explicitly in the declarations section using the %start key
word:

%start symbol

The end of the input to the parser is signaled by a special token, called the endmarker. If
the tokens up to, but not including, the endmarker form a structure which matches the start
symbol, the parser function returns to its caller after the endmarker is seen; it accepts the input.
If the endmarker is seen in any other context, it is an error.

It is the job of the user-supplied lexical analyzer to return the endmarker when appropri
ate; see section 3, below. Usually the endmarker represents some reasonably obvious I/O
status, such as "end-of-file" or "end-of-record".

2: Actions
With each grammar rule, the user may associate actions to be performed each time the

rule is recognized in the input process. These actions may return values, and may obtain the
values returned by previous actions. Moreover, the lexical analyzer can return values for
tokens, if desired.

An action is an arbitrary C statement, and as such can do input and output, call subpro
grams, and alter external vectors and variables. An action is specified by one or more state
ments, enclosed in curly braces"{" and"}". For example,

A

and

xxx

'(' B ')'
{

yyy zzz
{

are grammar rules with actions.

hello(1, "abc"); }

printf("a message\n");
flag - 25; }

To facilitate easy communication between the actions and the parser, the action state
ments are altered slightly. The symbol "dollar sign" "$" is used as a signal to Yacc in this
context.

To return a value, the action normally sets the pseudo-variable "$$" to some value. For
example, an action that does nothing but return the value 1 is

19-6

{ SS - 1; }

To obtain the values returned by previous actions and the lexical analyzer, the action may
use the pstudo-variables Sl, S2, .. ., which refer to the values returned by tho components of
the right side of a rule, reading from left to right. Thus, if the rule is

A BCD ;

fm example, then $2 has the value returned by C, and S3 the value returned by D.
As a more concrete example, consider the rule

expr • (' expr T ;
The value returned by this rule is usually the value of the expr in parentheses. This can be
in<ti<:ated by ·

ex pr '(' expr T (SS - S2; }

By default, the value of a rule is the value of the first element in it (Sl). Thus, grammar
ruleit of the form

A B

frequently need not have an explicit action.

In the examples above, all the actions came at the end of their rules. Sometimes, it is
desirable to get control before a rule is fully parsed. Yacc permits an action to be written in the
middle of a rule as well as at the end. This rule is assumed to return a value, a<:cessible
through the usual mechanism by the a<:tions to the right of it. In tum, it may a<:eesS the values
returned by the symbols to its left. Th~s, in the rule

A B
{ SS - 1;)

c
{ x - S2; t - $3;

the effect is to set x to 1, and y to the value returned by C.

Actions that do not terminate a rule are actually handled by Yacc by manufacturing a new
nonterminal symbol name, and a new rule matching this name to the empty string. The inte
rior action is the action triggered off by recognizing this added ruJe. Yacc actually treats the
above example as if it had been written:

SACT I• empty •/
($$ - I;)

A B SACT C
{ x - $2; y - $3;)

In many applications, output is not done directly by the actions; rather, a data structure,
such as a par5e tree, is constructed in memory, and transformations are applied to it before out
put is generated. Parse trees are particularly easy to construct, given routines to build and
maintain the tree structure desired. For example, suppose there is a C function node, written
so that the caU

node(L, nl, n2)

creates a node with label L, and descendants n l and n2, and returns the index of the newly
created node. Then pquse tree can be built by supplying actions such as:

/ ·--.\
\.
'· _..;,;,·

·.'~·\

.J

.;

19-7

ex pr expr · + · expr
{ SS - node(·+·, $1, $3);

in the specification.

The user may define other variables to be used by the actions. Declarations and
definitions can appear in the declarations section, enclosed in the marks "%1" and "%}".
These declarations and definitions have global scope, so they are known to the action state
ments and the lexical analyzer. For example,

%1 int variable - O; %}

could be placed in the declarations section, making variable accessible to all of the actions. The
Yacc parser uses only names beginning in "yy"; the user should avoid such names.

In these examples, all the values are integers: a discussion of values of other types will be
·round in Section 10.

3: Lexical Analysis

The user must supply a lexical analyzer to read the input stream and communicate tokens
(with values, if desired) to the parser. The lexical analyzer is an integer-valued function called
yy/ex. The function returns an integer, the token number, representing the kind of token read.
If there is a value associated with that token, it should be assigned to the external variable yyl
vaL

The parser and the lexical analyzer must agree on these token numbers in order for com
munication between them to take place. The numbers may be chosen by Yacc, or chosen by
the user. In either case, the "# define" mechanism of C is used to allow the lexical analyzer
to return these numbers symbolically. For example, suppose that the token name DIGIT has
been defined in the declarations section of the Yacc specification file. The relevant portion of
the lexical analyzer might look like:

yylexO{
extern int yylval;
int c;

c - getchar 0;

switch(c) {

case 'O':
case T:

case '9':
yylval - c-'O';
return(DIGIT);

The intent is to return a token number of DIGIT, and a value equal to the numerical
value of the digit. Provided that the lexical analyzer code is placed in the programs section of
the specification file, the identifier DIGIT will be defined as the token number associated with
the token DIGIT.

This mechanism leads to clear, easily modified lexical analyzers; the only pitfall is the
need to avoid using any token names in the grammar that are reserved or significant in .C or the
parser; for example, the use of token names if or while will almost certainly cause severe
difficulties when the lexical analyzer is compiled. The token name error is reserved for error

19-8

handling, and should not be used naively (see Section 7).

As mentioned above, the token numbers may be chosen by Yacc or by the user. In the
default situation, the numbers are chosen by Yacc. The default token number for a literal char
acter is the numerical value of the character in the local character set. Other names are
assigned token numbers starting at

To assign a token number to a token (including literals), the first appearance of the token
name or literal in the declarations section can be immediately followed a nonnegative integer.
This integer is taken to be the token number of the name or literal. Names and literals not
defined by this mechanism retain their default definition. It is important that aH token numbers
be distinct

For historical reasons, the must have token number 0 or negative. This token
number cannot be redefined by the user; thus, lexical anaiyzers be prepared to return
0 or negative as a token number upon reaching the of their input.

A very useful tool for constructing lexical analyzers is the Lex program developed by
Mike Lesk. 8 These lexical analyzers are designed to work in close harmony with Yacc parsers.
The specifications for these lexical analyzers use regular expressions instead of grammar rules.
Lex can be easily used to produce quite complicated lexical analyzers, but there remain some
languages (such as FORTRAN) which do not fit any theoretical framework, and whose lexical
analyzers must be crafted by hand.

4: How the Parser Works

Yacc turns the specification file into a C program, which parses the input according to the
specification given. The algorithm used to go from the specification to the parser is complex,
and will not be discussed here (see the references for more information). The parser itself,
however, is relatively simple, and understanding how it works, while not strictly necessary, wiU
nevertheless make treatment of error recovery and ambiguities much more comprehensible.

The parser produced by Yacc consists of a finite state machine with a stack. The parser is
also capable of reading and remembering the next input token (called the lookahead token).
The current state is always the one on the top of the stack. The states of the finite state
machine are given small integer labels; initially, the machine is in state 0, the stack contains
oniy state 0, and no lookahead token has been read.

The machine has only four actions available to it, called shift, reduce, accept, and error. A
move of the parser is done as follows:

1. Based on its current state, the parser decides whether it needs a lookahead token to decide
what action should be done; if it needs one, and does not have one, it calls yylex to obtain
the flext token.

2. Using the current state, and the lookahead token if the parser decides on its next
action, and carries it out. This may result in states being pushed onto stack, or
popped off of the stack, and in the lookahead token being processed or left alone.

The shift action is the most common action the parser takes. Whenever a shift action is
taken, there is always a lookahead token. For .example, in state 56 there may be an action:

IF shift 34

which says, in state 56, if the lookahead token is the current state (56) is pushed down on
the stack, and state 34 becomes the current state (on the top of the stack). The lookahead
t-Oken rs cleared.

The reduce action keeps the stack from growing without bounds. Reduce actions are
appropriate when the parser has seen the right hand side of a grammar rule, and is prepared to
announce that it has seen an instance of the rule, replacing the right hand side by the left hand
side. It may be necessary to consult the lookahead token to decide whether to reduce, but usu
ally it is not; in fact, the default action (represented by a ". ") is often a reduce action.

19-9

Reduce actions are associated with individual grammar rules. Grammar rules are also
given small integer numbers, leading to some confusion. The action

reduce 18

refers to grammar rule 18, while the action

IF shift 34

refers to state 34.

Suppose the rule being reduced is

A x y z

The reduce actioa depends on the left hand symbol (A in this case), and the number of sym
bols on the right hand side (three in this case). To reduce, first pop off the top three states
from the stack (In general, the number of states popped equals the number of symbols on the
right side of the rule). In effect, these states were the ones put on the stack while recognizing
x, y, and z, and no longer serve any useful purpose. After popping these states, a state is
uncovered which was the state the parser was in before beginning to process the rule. Using
this uncovered state, and the symbol on the left side of the rule, perform what is in effect a
shift of A. A new state is obtained, pushed onto the stack, and parsing continues. There are
significant differences between the processing of the left hand symbol and an ordinary shift of a
token, however, so this action is called a goto action. In particular, the lookahead token is
cleared by a shift, and is not affected by a goto. In any case, the uncovered state contains an
entry such as:

A goto 20

causing state 20 to be pushed onto the stack, and become the current state.

In effect, the reduce action "turns back the clock" in the parse, popping the states off the
stack to go back to the state where the right hand side of the rule was first seen. The parser
then behaves as if it had seen the left side at that time. If the right hand side of the rule is
empty, no states are popped off of the stack: the uncovered state is in fact the current state.

The reduce action is also important in the treatment of user-supplied actions and values.
When a rule is reduced, the code supplied with the rule is executed before the stack is adjusted.
In addition to the stack holding the states, another stack, running in parallel with it, holds the
values returned from the lexical analyzer and the actions. When a shift takes place, the exter
nal variable yylva/ is copied onto the value stack. After the return from the user code, the
reduction is carried out. When the goto action is done, the external variable yyval is copied
onto the value stack. The pseudo-variables $1, $2, etc., refer to the value stack.

The other two parser actions are conceptually much simpler. The accept action indicates
that the entire input has been seen and that it matches the specification. This action appears
only when the lookahead token is the endmarker, and indicates that the parser has successfully
done its job. The error action, on the other hand, represents a place where the parser can no
longer continue parsing according to the specification. The input tokens it has seen, together
with the lookahead token, cannot be followed by anything that would result in a legal input.
The parser reports an error, and attempts to recover the situation and resume parsing: the error
recovery (as opposed to the detection of error) will be covered in Section 7.

It is time for an example! Consider the specification

%token DING DONG DELL
%0/o
rhyme

sound

place

sound place

DING DONG

DELL

19-10

When Yacc is invoked with the -v option, a file called y.output is produced, with a
human-readable description of the parser. The y.output file corresponding to the above gram
mar (with some statistics stripped off the end) is:

... ,

/ ·--

19-11

state 0
$accept : _rhyme Send

DING shift 3
. error

rhyme goto 1
sound goto 2

state 1
$accept : rhyme_Send

Send accept
. error

state 2
rhyme sound _place

DELL shift 5
. error

place goto 4

state 3
sound DING_DONG

DONG shift 6
. error

state 4
rhyme : sound place_ (1)

reduce 1

state 5
place : DELL - (3)

reduce 3

state 6
sound DING DONG (2) -

reduce 2

Notice that, in addition to the actions for each state, there is a description of the parsing rules
being processed in each state. The_ character is used to indicate what has been seen, and what
is yet to come, in each rule. Suppose the input is

DING DONG DELL

It is instructive to follow the steps of the parser while processing this input.
Initially, the current state is state 0. The parser needs to ref er to the input in order to

decide between the actions available in state 0, so the first token, DING, is read, becoming the
lookahead token. The action in state 0 on DING is is "shift 3", so state 3 is pushed onto the
stack, and the lookahead token is cleared. State 3 becomes the current state. The next token,
DONG, is read, becoming the lookahead token. The action in state 3 on the token DONG is

19-12

"shift 6", so state 6 is pushed onto the stack, and the lookahead is cleared. The stack now
coqtains 0, 3, and 6. In state 6, with.out even consulting the lookahead, the parser reduces by
rule 2.

sound : DING DONG

This rule has two symbols on the right hand side, so two states, 6 and 3, are popped off of the
st4,ek, uncovering state 0. Consulting the description of state 0, looking for a goto on sound,

sound goto 2

is obtained; thus state 2 is pushed onto the stack, becoming the current state.

In state 2, the next token, DELL, must be read. The action is "shift 5", so state 5 is
pushed onto the stack, which now hllS 0, 2, and 5 on it, and the lookahead token is cleared. In
state 5, the only action is to reduce by rule 3. This has one symbol on the right hand side, so
one state, 5, is popped off, and state 2 is uncovered. The goto in state 2 on place, the left side
of rule 3, is state 4. Now, the stack contains 0, 2, and 4. In state 4, the only action is to
reduce by rule 1. There are two symbols on the right, so the top two states are popped off,
uncovering state 0 again. In state 0, there is a goto on rhyme causing the parser to enter state
1. In state 1, the input is read; the eadmarker is obtained, indicated by "Send" in they.output
file. The action in state 1 when the endmarlcer is seen is to accept, successfully· ending the
parse.

The reader is urged to consider how the parser works when confronted with such incorrect
strings as DING DONG DONG, DING DONG, DING DONG DELL DELL, etc. A few minutes
spend witlt this and other simple examples will probably be repaid when problems arise in more
complicated contexts.

S: Ambig.,.ity and Conflicts

A set of grammar rules is ambiguous if there is some input string that can be structured in
two or more different ways. For example, the grammar rule

expr expr ' - ' expr

is a natural way of expressing the fact that one way of forming an arithmetic expression is to
put two other expressions together with a minus sign between them. Unfortunately, this gram
mar rule does not completely specify the way that all complex inputs should be structured. For
ex.ample, if the input is

expr - expr - expr

t~e rule allows this inpµt to be structured as either

(expr - expr) - expr

or as

expr - (expr - expr)

(The first is called left association, the secon<:J right association).

Yac.c c;tetects such ambiguities when it is attempting to build the parser. It is instructive to
consider the problem that confronts the parser when it is given an input such as

expr - expr - expr

When the parser has read the second expr, the input that it has seen:

e~pr - expr

matches the right side of the grammar rule above. The parser could reduce the input by apply
ing this rule; after applying the rule~ the input is reduced to expr(the left side of the rule). The
parser would then read the final part of the input:

.. ./

19-13

- expr

and again reduce. The effect of this is to take the left associative interpretation.
Alternatively, when the parser has seen

expr - expr

it could defer the immediate application of the rule, and continue reading the input until it had
seen

expr - expr - expr

It could then apply the rule to the rightmost three symbols, reducing them to expr and leaving

expr - expr

Now the rule can be reduced once more; the effect is to take the right associative interpreta
tion. Thus, having read

expr - expr

the parser can do two legal things, a shift or a reduction, and has no way of deciding between
them. This is called a shift I reduce conflict. It may also happen that the parser has a choice of
two legal reductions; this is called a reduce I reduce conflict. Note that there are never any
"Shift/ shift" conflicts.

When there are shift/reduce or reduce/reduce conflicts, Yacc still produces a parser. It
does this by selecting one of the valid steps wherever it has a choice. A rule describing which
choice to make in a given situation is called a disambiguating rule.

Yacc invokes two disambiguating rules by default:

1. In a shift/reduce conflict, the default is to do the shift.

2. In a reduce/reduce conflict, the default is to reduce by the earlier grammar rule (in the
input sequence).

Rule 1 implies that reductions are deferred whenever there is a choice, in favor of shifts.
Rule 2 gives the user rather crude control over the behavior of the parser in this situation, but
reduce/reduce conflicts should be avoided whenever possible.

Conflicts may arise because of mistakes in input or logic, or because the grammar rules,
while consistent, require a more complex parser than Yacc can construct. The use of actions
within rules can also cause conflicts, if the action must be done before the parser can be sure
which rule is being recognized. In these cases, the application of disambiguating rules is inap
propriate, and leads to an incorrect parser. For this reason, Yacc always reports the number of
shift/reduce and reduce/reduce conflicts resolved by Rule 1 and Rule 2 .

In general, whenever it is possible to apply disambiguating rules to produce a correct
parser, it is also possible to rewrite the grammar rules so that the same inputs are read but
there are no conflicts. For this reason, most previous parser generators have considered
conflicts to be fatal errors. Our experience has suggested that this rewriting is somewhat unna
tural, and produces slower parsers; thus, Yacc will produce parsers even in the presence of
conflicts.

As an example of the power of disambiguating rules, consider a fragment from a program
ming language involving an "if-then-else" construction:

stat IF · (' cond T stat
IF '(' cond ')' stat ELSE stat

In these rules, IF and ELSE are tokens, cond is a nonterminal symbol describing conditional
(logical) expressions, and stat is a nonterminal symbol describing statements. The first rule will
be called the simple-if rule, and the second the if-else rule.

19-14

These two rules form an ambiguous construction, since input of the form

IF (Cl) IF (

can be structured according to

IF (CI) {

or

IF (C2) S1
}

ELSE S2

IF (Cl) !
IF { C2) Sl

S2

Sl ELSE S2

rules in two ways:

The second imerpretation is the one given in most programming languages having this con
struct. Each ELSEis associated with the last preceding "un-ELSE'd" IF. ln this example, con
sider the situation where the parser has seen

IF () IF (C2) S 1

and is looking at the to get

IF { Cl) stat

and then read the remaining input,

ELSE S2

and reduce

IF (Cl) stat ELSE S2

by the if -else rule. This leads to the first the above groupings of the input.·

On the other hand, the ELSE may be shifted, S2 read, and then the right hand portion of

IF (Cl) IF (C2)

can be reduced by the if -else rule to

IF (Cl) stat

ELSE

which can be reduced by the simple-if rule. This leads to the secQnd of the above groupings of
the input, which is usually desired.

Once again the parser can do two valid things - there is a shift/reduce conflict. The
application of disambiguating rule 1 tells the parser to shift in this case, which leads to the
desired grouping.

This shift/reduce conflict arises only when there is a particular current input symbol,
ELSE, and particular inputs already seen, such as

IF (Cl) IF (C2) Sl

In general, there may be many conflicts, and each one will be associated with an input symbol
and a set of previously read inputs. The previously read are characterized by the state of
the parser.

The conflict messages of Yacc are best understood by examining the verbose (- v) option
output file. For example, the output corresponding to the above conflict state might be:

19-15

23: shift/reduce conflict (shift 45, reduce 18) on ELSE

state 23

stat IF (cond) stat_ (18)
stat IF (cond) stat_ELSE stat

ELSE shift 45
reduce 18

The first line describes the conflict, giving the state and the input symbol. The ordinary state
description follows, giving the grammar rules active in the state, and the parser actions. Recall
that the underline marks the portion of the grammar rules which has been seen. Thus in the
example, in state 23 the parser has seen input corresponding to

IF (cond) stat

and the two grammar rules shown are active at this time. The parser can do two possible
things. If the input symbol is ELSE, it is possible to shift into state 45. State 45 will have, as
part of its description, the line

stat : IF (cond) stat ELSE_stat

since the ELSE will have been shifted in this state. Back in state 23, the alternative action,
described by ".", is to be done if the input symbol is not mentioned explicitly in the above
actions; thus, in this case, if the input symbol is not ELSE, the parser reduces by grammar rule
18:

stat : IF '(' cond ')' stat

Once again, notice that the numbers following "shift" commands refer to other states, while
the numbers following "reduce" commands refer to grammar rule numbers. In the y.output
file, the rule numbers are printed after those rules which can be reduced. In most one states,
there will be at most reduce action possible in the state, and this will be the default command.
The user who encounters unexpected shift/reduce conflicts will probably want to look at the
verbose output to decide whether the default actions are appropriate. In really tough cases, the
user might need to know more about the behavior and construction of the parser than can be
covered here. In this case, one of the theoretical ref erences2, 3, 4 might be consulted; the ser
vices of a local guru might also be appropriate.

6: Precedence

There is one common situation where the rules given above for resolving conflicts are not
sufficient; this is in the parsing of arithmetic expressions. Most of the commonly used con
structions for arithmetic expressions can be naturally described by the notion of precedence lev
els for operators, together with information about left or right associativity. It turns out that
ambiguous grammars with appropriate disambiguating rules can be used to create parsers that
are faster and easier to write than parsers constructed from unambiguous grammars. The basic
notion is to write grammar rules of the form

expr : expr OP expr

and

expr : UNARY expr

for all binary and unary operators desired. This creates a very ambiguous grammar, with many
parsing conflicts. As disambiguating rules, the user specifies the precedence, or binding
strength, of all the operators, and the associativity of the binary operators. This information is
sufficient to allow Yacc to resolve the parsing conflicts in accordance with these rules, and

construct a parser that realizes

The precedences
This is done by a series of
followed by a list of tokens.
precedence level and associativity~
ing strength. Thus,

%left ·
%left .• : . r

·1 9- 16

precedences and associativities.

to tokens in declarations section.
%ieft, %right, or %nonassoc,

same line are assumed to have the same
precedence or bind-

the four arithmetic operators. and minus are describes the precedence and
left associative, and have lower "'"'"'"°"'"·"'"'" than star and are also left associative.
The keyword 0/oright is to
is: used to describe
themselves; thus,

A B .LT. C

is illegal in Fortran, and such an
Yacc. As an example of the behavior

%right '.,,,,:
%left '
%left ',,' ·r

%%

. ' ex pr ex pr - ex pr
ex pr ex pr
ex pr ex pr
ex pr " ex pr
ex pr ·r ex pr
NAME

might be used to structure the

as follows:

and the %nonassoc
may not associate with

would be described with the keyword o/ononassoc in
these the description

a - (b""' (((c$d)-e) - (f«g)))

When this mechanism is Somee
representation,

may given the
minus a strength

associated with a particular
of the grammar rule, before the

by a token name or literal. It causes the pre-
of the following token name or For exam·

_,.,1;,.,.i;;;,u""'° as multiplication the rules might resemble:

%left · +· · -·
%left · •· • /'

%%

ex pr expr ' +' expr
expr ' - ' expr
expr '•' expr
expr '/' expr

19-17

' - ' expr %prec ' .. ·
NAME

A token declared by %left, %right, and %nonassoc need not be, but may be, declared by
%token as well.

The precedences and associativities are used by Yacc to resolve parsing conflicts; they give
rise to disambiguating rules. Formally, the rules work as follows:

1. The precedences and associativities are recorded for those tokens and literals that have
them.

2. A precedence and associativity is associated with each grammar rule; it is the precedence
and associativity of the last token or literal in the body of the rule. If the %prec construc
tion is used, it overrides this default. Some grammar rules may have no precedence and
associativity associated with them.

3. When there is a reduce/reduce conflict, or there is a shift/reduce conflict and either the
input symbol or the grammar rule has no precedence and associativity, then the two
disambiguating rules given at the beginning of the section are used, and the conflicts are
reported.

4. If there is a shift/reduce conflict, and both the grammar rule and the input character have
precedence and associativity associated with them, then the conflict is resolved in favor of
the action (shift or reduce) associated with the higher precedence. If the precedences are
the same, then the associativity is used; left associative implies reduce, right associative
implies shift, and nonassociating implies error.

Conflicts resolved by precedence are not counted in the number of shift/reduce and
reduce/reduce conflicts reported by Yacc. This means that mistakes in the specification of pre
cedences may disguise errors in the input grammar; it is a good idea to be sparing with pre
cedences, and use them in an essentially "cookbook" fashion, until some experience has been
gained. The y.output file is very useful in deciding whether the parser is actually doing what was
intended.

7: Error Handling

Error handling is an extremely difficult area, and many of the problems are semantic ones.
When an error is found, for example, it may be necessary to reclaim parse tree storage, delete
or alter symbol table entries, and, typically, set switches to avoid generating any further output.

It is seldom acceptable to stop all processing when an error is found; it is more useful to
continue scanning the input to find further syntax errors. This leads to the problem of getting
the parser "restarted" after an error. A general class of algorithms to do this involves discard
ing a number of tokens from the input string, and attempting to adjust the parser so that input
can continue.

To allow the user some control over this process, Yacc provides a simple, but reasonably
general, feature. The token name "error" is reserved for error handling. This name can be
used in grammar rules; in effect, it suggests places where errors are expected, and recovery
might take place. The parser pops its stack until it enters a state where the token "error" is

19-18

legal. It then behaves as if the token "error" were the current lookahead token, and performs
tne action encountered. The lookahead token is then reset to the token that caused the error.
If no special error rules have been specified, the processing halts when an error is detected.

In order to prevent a cascade of error messages, the parser, after detecting an error,
remains in error state until three tokens have been successfully read and shifted. If an error is
<ietected when the parser is already in error state, no message is given, and the input token is
.neuy deleted.

As an example, a rule of the f onn

stat error

wouid, in effect, mean that on a syntax error the parser would attempt to skip over the state
ment in which the error was seen. More precisely, the parser will scan ahead, looking for three
tokens that might legally follow a statement, and start processing at the first of these; if the
beginnings of statements are not sufficiently distinctive, it may make a false start in the middle
of a statement, and end up reporting a second error where there is in fact no error.

Actions may be used with these special error rules. These actions might attempt to reini
tialize tables, reclaim symbol table space, etc.

Error rules such as the above are very general, but difficult to control. Somewhat easier
are rules such as '

stat error ';'

Here, when there is an error, the parser attempts to skip over the statement, but will do so by
skipping to the next · ;'. All tokens after the error and before the next ';' cannot be shifted, and
are discarded. When the ';' is seen, this rule will be reduced, and any "cleanup" action associ
ated with it performed.

Another form of error rule arises in interactive applications, where it may be desirable to
permit a line to be reentered after an error. A possible error rule might be

input error '\n' I printf("Reenter last line: "); } input
I SS - S4; }

There is one potential difficulty with this approach; the parser must correctly process three
i~t tokens before it admits that it has correctly resynchronized after the error. If the reen
tered line contains an error in the first two tokens, the parser deletes the off ending tokens, and
gives no message; this is clearly unacceptable. For this reason, there is a mechanism that can
be used to force the parser to believe that an error has been fully recovered from~ The state
ment

yyerrok;

in an action resets the parser to its normal mode. The last example is better written

input error '\n'
{ yyerrok;

printf("Reenter last line: ");
input

$$ - $4; }

As mentioned. above, the token seea immediately after the "error" symbol is the input
token at which the error was discovered. Sometimes, this is inappropriate; for example, an
error recovery action might take upon itself the job of finding the correct place to resume input.
In this case, the previous lookahead token must be cleared. The statement

yydearin;

in an action wi11 have this effect. For example, suppose the action after error were to call some

19-19

sophisticated resynchronization routine, supplied by the user, that attempted to advance the
input to the beginning of the next valid statement. After this routine was called, the next
token returned by yylex would presumably be the first token in a legal statement; the old, ille
gal token must be discarded, and the error state reset. This could be done by a rule like

stat error
resynchO;
yyerrok;
yyclearin ;

These mechanisms are admittedly crude, but do allow for a simple, fairly effective
recovery of the parser from many errors; moreover, the user can get control to deal with the
error actions required by other portions of the program.

8: The Yacc Environment

When the user inputs a specification to Yacc, the output is a file of C programs, called
y.tab.c on most systems (due to local file system conventions, the names may differ from instal
lation to installation). The function produced by Yacc is called yyparse~ it is an integer valued
function. When it is called, it in turn repeatedly calls yylex, the lexical analyzer supplied by the
user (see Section 3) to obtain input tokens. Eventually, either an error is detected, in which
case (if no error recovery is possible) yyparse returns the value 1, or the lexical analyzer returns
the endmarker token and the parser accepts. In this case, yyparse returns the value 0.

The user must provide a certain amount of environment for this parser in order to obtain
a working program. For example, as with every C program, a program called main must be
defined, that eventually calls yyparse. In addition, a routine called yyerror prints a message
when a syntax error is detected.

These two routines must be supplied in one form or another by the user. To ease the ini
tial effort of using Yacc, a library has been provided with default versions of main and yyerror.
The name of this library is system dependent; on many systems the library is accessed by a -ly
argument to the loader. To show the triviality of these default programs, the source is given
below:

and

main(){
return (yyparse 0) ;
}

#include <stdio.h>

yyerror(s) char *S; {

f printf(std err, "%s\n", s) ;
}

The argument to yyerror is a string containing an error message, usually the string "syntax
error". The average application will want to do better than this. Ordinarily, the program
should keep track of the input line number, and print it along with the message when a syntax
error is detected. The external integer variable yychar contains the lookahead token number at
the time the error was detected; this may be of some interest in giving better diagnostics. Since
the main program is probably supplied by the user (to read arguments, etc.) the Yacc library is
useful only in small projects, or in the earliest stages of larger ones.

The external integer variable yydebug is normally set to 0. If it is set to a nonzero value,
the parser will output a verbose description of its actions, including a discussion of which input
symbols have been read, and what the parser actions are. Depending on the operating environ
ment, it may be possible to set this variable by using a debugging system.

19-20

9: Hints for Preparing Specifications

This section contains miscellaneous hints on preparing efficient, easy to change, and clear
specifications. The individual subsections are more or less independent.

Input Style

It is difficult to provide rules with substantial actions and still have a readable specification
file. The following style hints owe much to Brian Kernighan.

a. Use all capital letters for token names, all lower case letters for nonterminal names. This
rule comes under the heading of "knowing who to blame when things go wrong."

b. Put grammar rules and actions on separate lines. This allows either to be changed without
an automatic need to change the other.

c. Put all rules with the same left hand side together. Put the left hand side in only once,
and let all following rules begin with a vertical bar.

d. Put a semicolon only after the last rule with a given left hand side, and put the semicolon
on a separate line. This allows new rules to be easily added.

e. Indent rule bodies by two tab stops, and action bodies by three tab stops.
The example in Appendix A is written following this style, as are the examples in the text

of this paper (where space permits). The user must make up his own mind about these stylistic
questions; the central problem, however, is to make the rules visible through the morass of
action code.

Left Recursion
The algorithm used by the Yacc parser encourages so called "left recursive" grammar

rules: rules of the form

name name rest_of_rule ;

These rules frequently arise when writing specifications of sequences and lists:

list item
list .. item

'

.and

seq item
seq item

In each of these cases, the first rule wiH be reduced for the first item only, and the second rule
will be reduced for the second and all succeeding items.

With right recursive rules, such as

seq item
item seq

the parser would be a bit bigger, and the items would be seen, and reduced, from right to left.
More seriously, an internal stack in the parser would be in danger of overflowing if a very long
sequence were read. Thus, the user should use left recursion wherever reasonable.

It is worth considering whether a sequence with zero elements has any meaning, and if so,
consider writing the sequence specification with an empty rule:

·-. _ __...·

seq I• empty•/
seq item

19-21

\ Once again, the first rule would always be reduced exactly once, before the first item was read,
and then the second rule would be reduced once for each item read. Permitting empty
sequences often leads to increased generality. However, conflicts might arise if Yacc is asked to
decide which empty sequence it has seen, when it hasn't seen enough to know!

Lexical Tie-ins

Some lexical decisions depend on context. For example, the lexical analyzer might want
to delete blanks normally, but not within quoted strings. Or names might be entered into a

:·; symbol table in declarations, but not in expressions.

/

One way of handling this situation is to create a global flag that is examined by the lexical
analyzer, and set by actions. For example, suppose a program consists of 0 or more declara
tions, followed by 0 or more statements. Consider:

%{
int dflag;

%}
other declarations ...

%%

prog decls stats

de els I• empty•/
{ dflag - 1;

decls declaration

stats I• empty•/
{ dflag - O;

stats statement

other rules ...

The flag dflag is now 0 when reading statements, and 1 when reading declarations, except for the
first token in the first statement. This token must be seen by the parser before it can tell that the
declaration section has ended and the statements have begun. In many cases, this single token
exception does not affect the lexical scan.

This kind of "backdoor" approach can be elaborated to a noxious degree. Nevertheless,
it represents a way of doing some things that are difficult, if not impossible, to do otherwise.

Reserved Words
Some programming languages permit the user to use words like "ir', which are normally

reserved, as label or variable names, provided that such use does not conflict with the legal use
of these names in the programming language. This is extremely hard to do in the framework
of Yacc; it is difficult to pass information to the lexical analyzer telling it "this instance of 'ir is
a keyword, and that instance is a variable". The user cim make a stab at it, using the mechan
ism described in the last subsection, but it is difficult.

A number of ways of making this easier are under advisement. Until then, it is better
that the keywords be resel'\led; that is, be forbidden for use as variable names. There are

22

powerful stylistic reasons for preferring this, anyway.

10: Advanced Topics

This section discusses a number advanced features of Yacc.

Simulating Error and Accept in Actions

The parsing actions of error and accept can be simulated in an action by use of macros
YYACCEPT and YYERROR. YYACCEPT causes yyparse to return the value O; YYERROR
causes the parser to behave as if current input symbol had been a syntax error; yyerror is
called, and error recovery takes place. T'nese mechanisms can be used to simulate parsers with
multiple endmarkers or context-sensitive syntax checking.

Accessing V::dues in Enclosing Rules.

An action may refer to values returned by actions to the left of the current rule. The
mechanism is simply the same as with ordinary actions, a dollar sign followed by a digit, but in
this case the digit may be 0 or negative. Consider

sent

adj

noun

noun verb adj noun
I look at the sentence . . .

THE
YOUNG

DOG
{

CRONE

$$""'THE; }
$$=YOUNG;

$$=DOG: }

if($0 -=YOUNG){
printf("what?\n");
l

$$=CRONE;
}

In the action following the word CRONE, a check is made that the preceding token shifted was
not YOUNG. Obviously, this is only possible when a great deal is k.'1own about what might
precede the symbol noun in the input. There is also a distinctly unstructmed flavor about this.
Nevertheless, at times this mechanism will save a great deal of trouble, especially when a few
combinations are to be exduded from an otherwise regular structure.

Support for Arbitrary Value Types

By default, the values returned by actions and the lexical analyzer are integers. Yacc can
also support values of other types, including structures. addition, Yacc keeps track of the
types, and inserts appropriate union member names so that the resulting parser wm be strictly
type ch.ecked. The Yacc value stack (see Section 4) is declared to be a union of the various
types of values desired. The user declares the union, and associates union member names to
each token and nonterminal symbol having a value. When the value is referenced through a $S
or $n construction, Yacc wm automatically insert the appropriate union name, so that no
unwanted conversions will take place. In addition, type checking commands such as Lints will
be far more silent.

)

19-23

There are three mechanisms used to provide for this typing. First, there is a way of
defining the union~ this must be done by the user since other programs, notably the lexical
analyzer, must know about the union member names. Second, there is a way of associating a
union member name with tokens and nonterminals. Finally, there is a mechanism for describ
ing the type of those few values where Yacc can not easily determine the type.

To declare the union, the user includes in the declaration section:

%union (
body of union ...
l

This declares the Yacc value stack, and the external variables yylval and yyval, to have type
equal to this union. If Yacc was invoked with the -d option, the union declaration is copied
onto the y.tab.h file. Alternatively, the union may be declared in a header file, and a typedef
used to define the variable YYSTYPE to represent this union. Thus, the header file might also
have said:

typedef union {
body of union ...
} YYSTYPE;

The header file must be included in the declarations section, by use of%{ and%).

Once YYSTYPE is defined, the union member names must be associated with the various
terminal and nonterminal names. The construction

<name>

is used to indicate a union member name. If this follows one of the keywords %token, %left,
%right, and %nonassoc, the union member name is associated with the tokens listed. Thus,
saying

%left <optype> · +· · -·
wiU cause any reference to values returned by these two tokens to be tagged with the union
member name optype. Another keyword, %type, is used similarly to associate union member
names with nonterminals. Thus, one might say

%type < nodetype > ex pr stat

There remain a couple of cases where these mechanisms are insufficient. If there is an
action within a rule, the value returned by this action has no a priori type. Similarly, reference
to left context values (such as $0 - see the previous subsection) leaves Yacc with no easy way
of knowing the type. In this case, a type can be imposed on the reference by inserting a union
member name, between < and >, immediately after the first $. An example of this usage is

rule aaa { $<int val> S ""' 3~ } bbb
{ fun(S<intval>2, S<other>O);

This syntax has little to recommend it, but the situation arises rarely.

A sample specification is given in Appendix C. The facilities in this subsection are not
triggered until they are used: in particular, the use of %type will tum on these mechanisms.
When they are used, there is a fairly strict level of checking. For example, use of $n or $$ to
refer to something with no defined type is diagnosed. If these facilities are not triggered, the
Yacc value stack is used to hold int's, as was true historically.

19-24

U: Acknowledgements

Yacc owes much to a most stimulating collection of users, who have goaded me beyond
my inclination, and frequently beyond my ability, in their endless search for "one more
feature". Their irritating 1..mwi!llngness to learn how to do things my way has usually led to my
doing things their way~ most of the time, they have been right. B. W. Kernighan, P. J. Plauger,
S. I. Feldman, C. Imagna, M. E. Lesk, and A. Snyder will recognize some of their ideas in the
current version of Yacc. C. B. Haley contributed to the error recovery algorithm. D. M.
Ritchie, B. W. Kernighan, and M. 0. Harris helped translate this document into English. Al
Aho also deserves special credit for bringing the mountain to Mohammed, and other favors.

19-25

References

1. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Engle
wood Cliffs, New Jersey (1978).

2. A. V. Aho and S. C. Johnson, "LR Parsing," Comp. Surveys 6(2) pp. 99-124 (June 1974).

3. A. V. Aho, S. C. Johnson, and J. D. Ullman, "Deterministic Parsing of Ambiguous
Grammars," Comm. Assoc. Comp. Mach. 18(8) pp. 441-452 (August 1975).

4. A. V. Aho and J. D. Ullman, Principles of Compiler Design, Addison-Wesley, Reading,
Mass. (1977).

5. S. C. Johnson, "Lint, a C Program Checker," Comp. Sci. Tech. Rep. No. 65 (December
1977).

6. S. C. Johnson, "A Portable Compiler: Theory and Practice," Proc. 5th ACM Symp. on
Principles of Programming Languages, (January 1978).

7. B. W. Kernighan and L. L. Cherry, "A System for Typesetting Mathematics," Comm.
Assoc. Comp. Mach. 18 pp. 151-157 (March 1975).

8. M. E. Lesk, "Lex - A Lexical Analyzer Generator," Comp. Sci. Tech. Rep. No. 39,
Bell Laboratories, Murray Hill, New Jersey (October 1975).

19-26

Appendl~ A: A Simple Example

This example gives the complete Yacc specification for a small desk calculator; the desk
calculator has 26 registers, labeled "•" through "z", and accepts arithmetic expressions made
up of the operators +, -, •, /, % (mod operator), & (bitwise and), I {bitwise or), and assign
~nt. If an expression at the top level is an assignment, the value is not printed~ otherwise it
is. As in C, an integer that begins with 0 (zero) is assumed to be octal; otherwise, it is
assumed to be decimal.

As an example of a Yacc specification, the desk calculator does a reasonable job of show
ing how precedences and ambiguities are used, and demonstrating simple error recovery. The
major oversimplifications are that the lexical analysis phase is much simpler than for most appli
cations, and the output is produced immediately, line by line. Note the way that decimal and
octal integers are read in by the grammar rules; This job is probably better done by the lexical
analyzer.

%{
include <stdio.h>
include < ctype.h >

int regs [26);
int base;

%}

%start list

%token DIGIT LETTER

%left 'I'
%left '&'
%left '+'
%left '* '/' '%'
%left UMINUS / • supplies precedence for unary minus •/

%% I• beginning of rules section •/

list

stat

ex pr

I• empty •/
list stat '\n'
list error '\n'

{ yyerrok; }

ex pr
{

LETTER
{

' , -
'(' expr '}'

I
ex pr '+' ex pr

{
ex pr ex pr

printf("o/od\n", $1);
eipr
regs(Sll - $3; }

SS - $2; }

SS - $1 + $3;

SS - SI $3;


~~~ 
,··.~;,.'.# 

.... ,." ,, 
_:·:~.:i·" 

":· ""\ 
!. ·:· I 

.:.;_;.) 

19-27 

ex pr ... ex pr 
{ $$ - $1 • $3; 

expr ·r ex pr 
( $$ - $1 I $3; 

expr '%' ex pr 
{ SS - $1 % $3; 

ex pr '&' ex pr 
{ SS - SI & $3; 

expr 'I' ex pr 
{ $$ - $1 I $3; . - . ex pr %prec UMIN US 
{ $$ - - $2; ) 

LEITER 
{ $$ - regs[Sl]; ) 

number 

number: DIGIT 
{ SS - Sl; base - (Sl- -o> ? 8 10; l 

number DIGIT 
{ SS - base • $1 + $2; l 

%% /• start of programs •/ 

yylexO ( /• lexical analysis routine •/ 
I• returns LEITER for a lower case letter, yylval - 0 through 25 •I 
I• return DIGIT for a digit, yylval - 0 through 9 •/ 
I• all other characters are returned immediately •/ 

int c; 

while( (c-getchar0) - - • • ) {/• skip blanks •/ } 

/• c is now nonblank •/ 

if( islower( c ) ) { 
yylval - c - 'a'; 
return ( LEITER ); 
} 

if( isdigit( c ) ) { 
yylval - c - 'O'; 
return( DIGIT ); 
} 

return( c ); 
) 



"19-28 

Appendix B: Yacc Input Syntax 

This Appendix a of the Yacc input syntax, as a specification. Con-
text dependencies, etc., are not the input specification language is 
most naturally specified as an LR ) grnmmar; the sticky part comes when an identifier is seen 
in a rule, immediately following an action. If this is by a it is the start 
of the next rule; otherwise it is a continuation of the current rule, which happens to have 
an action embedded in it. As the lexical analyzer ahead after seeing an 
identifier, decide whether the next token (skipping blanks, newlines, comments, etc.) is a 
colon. If so, it returns token it returns IDENTIFIER. 
Literals (quoted strings) are as IDENTIFIERS, but never as part .of 
C_IDENTIFIERs. 

l• grammar for the to 

I• basic entities ... ; 
%token IDENTIFIER / .. includes 
%token C __ IDENTIFIER /• colon 
%token NUMBER 

I• reserved words: etc. 

0/otoken LEFr RIGHT NONASSOC START UNION 

%token MARK , .. the 0w'l'o mark "! 
%token LCURL I• %{ mark 
%token RCURL ; .. the l.l/o) mark 

I• asdi character literals themselves 

%start spec 

0/0% 

spec 

taH 

defs 

def 

rword 

defs MARK 

MARK ( ln this eat up rest the file 
empty: second MARK is optional *I 

ST ART IDENTIFIER 
UNION { Copy union definition 
LCURL { Copy C code to 

rword 

TOKEN 
LEFT 
RIGHT 

to output l 
J RCURL 



tag 

nlist 

nmno 

rules 

rule 

rbody 

act 

prec 

J 

NON ASSOC 
TYPE 

19-29 

I• empty: union tag is optional •/ 
, <' IDENTIFIER '>' 

nmno 
nlist nmno 
nlist · ,' nmno 

IDENTIFIER /• NOTE: literal illegal with %type •/ 
IDENTIFIER NUMBER /• NOTE: illegal with %type •/ 

I• rules section •/ 

C_IDENTIFIER rbody prec 
rules rule 

C_IDENTIFIER rbody prec 
'I' rbody prec 

I• empty •/ 
rbody IDENTIFIER 
rbody act 

'{' { Copy action, translate $$, etc. } T 

I• empty •/ 
PREC IDENTIFIER 
PREC IDENTIFIER act 
prec ';' 



'19-30 

Appendix C: An Advanced Example 

This Appendix gives an of a grammar using some of the advanced features dis-
cussed in Section 10. The desk cakulator in A is modified to provide a desk 
calculator that does floating interval arithmetic. calculator understands 11oating point 
constants, the arithmetic operations +, - , "'• I, unary and = (assignment), and has 26 
noating point variables, "a" through it also written 

(x,y) 

where x is less than or equal to y. There are interval valued variables "A" through "Z" 
that may also be used. The usage is similar to that in Appendix A~ assignments return no 
value, and print nothing, while print the (floating or interval) value. 

This of Yacc and C. Intervals are 
represented by a structure, endpoint values, stored as double's. 
This structure is given a typedef The Yacc value stack can 
also contain floating point and into the arrays holding the varie 
able values). Notice that this entire on being able to assign structures 
and unions in C. In many the actions return structures as well. 

It is also worth noting use to handle error conditions: division by an 
interval containing 0, and an interval presented in wrong In effect, the error 
recovery mechanism Yacc is used to throw away the rest the offending line. 

In addition to the this grammar also demonstrates an 
interesting use of syntax to or interval) of intermediate 
expressions. Note that a scalar can be promoted to an interval if the context 
demands an interval value. causes a number conflicts when the grammar is run 
through Yacc: 18 Shift/Reduce and Reduce/Reduce. problem can be seen by looking at 
the two input lines: 

2.5 + ( - 4. ) 

2.5 + ( 3.5 ' 4. ) 

Notice that the is to be in the second example, but 
this fact is not known until the "," is 2.5 is and the parser cannot 
go back and change its mind. , it be necessary to look an arbitrary 
number of tokens to decide whether to convert a to an interval. This problem is evaded 
by having two rules for each interval valued one the operand is a 
scalar, and one when the left In the second case, must 
be an interval, so the conversion will be applied automatically. Despite there are 
still many cases where the may leading to the above conflicts. 
They are resolved by listing the rules that in the in this way, 
the conflicts will be resolved in the valued expressions scalar valued 
until they are forced to become intervals. 

This way of handling multiple types is instructive, but not very general. If there 
were many kinds two, the number rules needed would 
increase dramatically, and the conflicts even more dramatically. Thus, this example is 
instructive, it is better practice in a more programming language environment to keep 
the type information as part the value, and not as part of the grammar. 

Finally, -a word about the lexical analysis. The only unusual feature is treatment of 
floating point constants. The C library routine arof is used to do the actual conversion from a 
character string to a double value. If the lexical analyzer detects an error, it responds 
by returning a token that is the ,grarnmar, provoking a syntax error in the parser, and 
thence error recovery. 



.<':"'°? ... \ 
i 

·<,./ 

-''··.\ 

%{ 

# include <stdio.h> 
# include <ctype.h> 

typedef struct interval 
double lo, hi; 
} INTERVAL; 

INTERVAL vmul(), vdivO; 

double atofO; 

double dreg[ 26 ]; 
INTERVAL vreg[ 26 ]; 

O/o} 

O/ostart lines 

%union 
int ival; 
double dval; 
INTERVAL vval; 
} 

O/otoken <ival> DREG VREG 

%token < dval > CONST 

19-31 

I• indices into dreg, vreg arrays •/ 

I• floating point constant •/ 

O/otype < dval > dexp I• expression •/ 

%type < vval > vexp I• interval expression •/ 

I• precedence information about the operators •/ 

%left ·+· ·-· 
O/oleft ·.- · /' 
%left UMINUS I• precedence for unary .minus •/ 

%0/o 

lines /• empty •/ 
lines line 

line dexp '\n' 
( printf( "%15.81\n", $1 ); } 

vexp \n' 
{ printf( "(%15.8f , %15.Sf )\n", · $1.lo, $1.hi ); } 

DREG ·-· dexp '\n' 
{ dreg(Sl] - $3; 

VREG · - · vexp '\n' 



dexp 

vexp 

19-32 

vreg [$1] ""' $3; } 
error '\n' 

I yyerrok; 

CONST 
DREG 

{ $$ "" dreg[$1}; } 
dexp ·+· dexp 

{ $$ - $1 + $3; 
dexp ' - . dexp 

{ $$ - $1 - $3; 
dexp ·.- dexp 

[ $$ - $1 '!' $3; 
dexp '/' dexp 

I SS - Sl I $3; 
' - ' dexp %prec UMINUS 

{ $$ - - $2; } 
'(' dexp ')' 

{ $$ - $2; } 

dexp 
{ $$.hi ~ $$Jo 0 ' $1; J 

'(' dexp ·; dexp ')' 
{ 
$$.lo ""' $2; 
$$.hi .... $4; 
if( SS.lo > $$.hi ){ 

printf ( "interval out of order\n" )~ 
YYERROR; 
} 

VREG 
$$ ""' vregf$1]; 

vexp ·+· vexp 
{ $$.hi - $1.hi + $3.hi; 

$$.lo - $Uo + $3.lo; 
d~xp ·+· vexp 

{ $$.hi - $1 + $3.hi; 
$$.lo - $1 + $3.lo; , ' vexp - vexp 
$$.hi - $1.hi - $3.lo; 
$$Jo - $1.lo - $3.hi; 

dexp 
, - ' vexp 

{ $$.hi .... $1 - $3.io; 
$$.lo - $1 - $3.hi; 

vexp • ,,; vexp 
{ $$ - vmu.I ( $1.lo, $1.hi, $3 ); 

dexp • •' vexp 
{ $$ '"" vmul( $1, $1, $3 ); } 

vexp '/' vexp 
{ if( de,:heck( $3 ) ) YYERROR; 

$$ - vdi:v( $1.lo, $1.hi, $3 ); l 



....... 
\ 
; 

........ 

... ___ .,,. ... 

_) 

%% 

19-33 

dexp · /' vexp 
( if ( dcheck ( $3 ) ) YYERROR; 

vexp 
{ 

'(' vexp ')' 
{ 

$$ - vdiv( $1, $1, $3 ); } 
%prec UMINUS 
SS.hi - - $2.lo; SS.lo - -$2.hi; 

$$ - $2; } 

# define BSZ 50 I• buffer size for floating point numbers •/ 

yylexO{ 

I• lexical analysis •/ 

register c; 

while( (c-getchar()) - - · · ){ /• skip over blanks •/ } 

if( isupper( c ) ){ 
yylval.ival - c - 'A'; 
return( VREG ); 
} 

if ( islower( c ) ){ 
yylval.ival - c - 'a'; 
return( DREG ); 
} 

if( isdigit( c ) II c--·: ){ 
I• gobble up digits, points, exponents •/ 

char buf[BSZ+ 1], •cp - buf; 
int dot - 0, exp - O; 

for( ; (cp-buf)<BSZ ++cp,c-getcharO ){ 

•cp - c; 
if ( isdigit ( c ) ) continue; 
if( c - - ·: ){ 

if( dot++ II exp ) return ( 
continue; 
} 

if( c -- 'e' ){ 

); /• will cause syntax error •/ 

if( exp++ ) return( 'e' ); /• will cause syntax error •/ 
continue; 
l 

I• end of number •/ 
break; 
J 

•cp - '\O'; 
if( (cp-buf) > - BSZ ) printf( "constant too long: truncated\n" ); 



19-34 

else ungetc( c, stdin ); /'• push back last char read •/ 
yy!val.dval - atof( buf ); 
return( CONST )~ 

l 
return( c ); 
} 

INTERVAL hilo( a, b, c, d ) double a, b, c, d; { 
I• returns the smallest interval containing a, b, c, and d •/ 
I• used by •, I routines •/ 
INTERVAL v; 

if( a>b ) I v.hi 
else { v.hi - b~ 

- a; v.lo .... b; ) 
vJo - a; 

if( c>d ) { 

else 

if( c>v.hi ) v.hi - c; 
if( d<vJo ) v.lo - d; 
} 

if( d>v.hi ) v.hi • d; 
if( c<vJo ) v.lo - c; 
} 

return( v )~ 
} 

INTERVAL vmul( a, b, v ) double a, b; INTERVAL v; { 
return( hilo( a•v.hi, a•v.lo, b•v.hi, b•v.lo ) ); 
l 

dcheck ( v ) INTERVAL v; { 
if( v.hi > - 0. && vJo < - 0. ){ 

printf( "divisor interval contains O.\n" ); 
retum( 1 ); 
l 

return( 0 ); 
} 

INTERVAL vdiv( a, b, v ) double a, b; INTERVAL v~ f 
return( hilo( a/v.hi, a/v.lo, b/v.hi, b/vJo ) ); 
} 



. -.-.--.~, 

. :).I 

·:-·· ... , 
. "\ 

;' 

J 
·._../ 

19-35 

Appendix D: Old Features Supported but not Encouraged 

This Appendix mentions synonyms and features which are supported for historical con
tinuity, but, for various reasons, are not encouraged . 

1. Literals may also be delimited by double quotes """ . 

2. Literals may be more than one character long. If all the characters are alphabetic, 
numeric, or _, the type number of the literal is defined, just as if the literal did not have 
the quotes around it. Otherwise, it is difficult to find the value for such literals. 

The use of multi-character literals is likely to mislead those unfamiliar with Yacc, since it 
suggests that Yacc is doing a job which must be actually done by the lexical analyzer. 

3. Most places where % is legal, backslash "\" may be used. In particular, \ \ is the same as 
%%, \left the same as %left, etc. 

4. There are a number of other synonyms: 

% < is the same as %left 
%> is the same as %right 
%binary and %2 are the same as o/ononassoc 
%0 and %term are the same as %token 
% - is the same as O/oprec 

5. Actions may also have the form 

-{ ... ) 
and the curly braces can be dropped if the action is a single C statement. 

6. C code between %{ and %} used to be permitted at the head of the rules section, as well 
as in the declaration section. 





,,····-, \ . 
.. 

Lex - A Lexical Analyzer Generator 

M. E. Lesk and E. Schmidt 
Bell laboratories 

Murray Hill, New Jersey 07974 

Lex helps write programs whose control flow is directed by instances of regular expressions in the in
put stream. It is well suited for editor-script type transformations and for segmenting input in prepara
tion for a parsing routine. 

Lex source is a table of regular expressions and corresponding program fragments. The table is 
translated to a program which reads an input stream, copying it to an output stream and partitioning the 
input into strings which match the given expressions. As each such string is recognized the correspond
ing program fragment is executed. The recognition of the expressions is performed by a deterministic 
finite automaton generated by Lex. The program fragments written by the user are executed in the ord
er in which the correspondin& regular expressions occur in the input stream. 

The lexical analysis programs written with Lex accept ambiguous specifications and choose the longest 
match possible at each input point. If necessary, substantial lookahead is performed on the input, but 
the input stream will be backed up to the end of the current partition, so that the user has general free
dom to manipulate it. 

Lex can be used to generate analyzers in either C or Ratfor, a language which can be translated au
tomatically to portable Fortran. It is available on the PDP-11 UNIX, Honeywell GCOS, and IBM OS 
systems. Lex is designed to simplify interfacing with Yacc, for those with access to this compiler
compiler system. 

Table of Contents 

l. Introduction. 1 
2. Lex Source. 3 
3. Lex Regular Expressions. 3 
4. Lex Actions. 5 
5. Ambiguous Source Rules. 7 
6. Lex Source Definitions. 8 
7. Usage. 8 
8. Lex and Yacc. 9 
9. Examples. 10 

10. Left Context Sensitivity. 11 
11. Character Set. 12 
12. Summary of Source Format. 12 
13. Caveats and Bugs. 13 
14. Acknowledgments. 13 
15. References. 13 

1 Introduction. 

Lex is a program generator designed for lexical process· 
ing of character input streams. It accepts a high-level, 
problem oriented specification for character string match
ing, and produces a program in a general purpose 
language which recognizes regular expressions. The regu
lar expressions are specified by the user in the source 
specifications given to Lex. The Lex written code recog· 
nizes these expressions in an input stream and partitions 
the input stream into strings matching the expressions. 
At the boundaries between strings program sections pro
vided by the user are executed. The Lex source file asso-

ciates the regular expressions and the program fragments. 
As each expression appears in the input to the program 
written by Lex, the corresponding fragment is executed. 

The user supplies the additional code beyond expres
sion matching needed to complete his tasks, possibly in· 
eluding code written by other generators. The program 
that recognizes the expressions is generated in the general 
purpose programming language employed for the user's 
program fragments. Thus, a high level expression 
language is provided to write the string expressions to be 
matched while the user's freedom to write actions is 
unimpaired. This avoids forcing the user who wishes to 
use a string manipulation language for input analysis to 

20-1 



20-2 

Source - Lex - yy!ex 

Input - I yylex - Output 

An overview of Lex 

Figure I 

write processing programs in the same and often inap
propriate string handling language. 

Lex is not a complete language, but rather a generator 
representing a new language feature which can be added 
to different programming languages, called "host 
languages." Just as general purpose languages can pro
duce code to run on different computer hardware, Lex 
can write code in different host languages. The host 
1anguaae is used for the output code generated by Lex 
and also for the program fragments added by the user. 
Compatible run-time libraries for the different host 
languages are also provided. This makes Lex adaptable to 
different environments and different users. Each applica
tion may be directed to the combination of hardware and 
host language appropriate to the task, the user's back
ground, and the properties of local implementations. At 
present there are only two host languages, C[l] and For
tran (in the form of the Ratfor language(2]). Lex itself 
exists on UNIX, GCOS, and OS/370; but the code gen
erated by Lex may be taken anywhere the appropriate 
compilers exist. 

Lex turns the user's expressions and actions (called 
source in this memo) into the host general-purpose 
languaae; the generated program is named yylu. The 
yylex proaram will recognize expressions in a stream 
(called input in this memo) and perform the specified ac
tiORs for each expression as it is detected. See Figure l. 

For a trivial example, consider a program to delete 
from the input all blanks or tabs at the ends of lines. 

%% 
( \t] + s 

is all that is required. The program contains a %% delim
iter to mark the beginning of the rules, and one rule. 

lexical 
rules 

1 
Lex 

This rule contains a regular expression which matches 
one or more instances of the characters blank or tab 
(written \t for visibility, in accordance with the (. 
language convention) just prior to the end of a line. The 
brackets indicate the character class made of blank and 
tab; the + indicates "one or more ... "; and the S indi
cates "end of line," as in QED. No action is specified, so 
the program generated by Lex (yylex) will ignore these 
characters. Everything else will be copied. To change any 
remaining string of blanks or tabs to a single blank, add 
another rule: 

%% 
( \t}+$ 
{ \t) + printf(" "); 

The finite automaton generated for this source will scan 
for both rules at once, observing at the termination of the 
string of blanks or tabs whether or not there is a newline 
character, and executing the desired rule action. The first 
rule matches all strings of blanks or tabs at the end of 
lines, and the second rule all remaining strings of blanks 
or tabs. 

Lex can be used alone for simple transformations, or 
for analysis and statistics gathering on a lexical level. Lex 
can also be used with a parser generator to perform the 
lexical analysis phase; it is particularly easy to interface 
Lex and Yacc [3]. Lex programs recognize only regular 
expressions; Yacc writes parsers that accept a large class 
of context free grammars, but require a lower level 
analyzer to recognize input tokens. Thus, a combination 
of Lex and Y ace is often appropriate. When used as a 
preprocessor for a later parser generator, Lex is used to 
partition the input stream, and the parser generator as
signs structure to the resulting pieces. The flow of con
trol in such a case (which might be the first half .of a 
compiler, for example) is shown in Figure 2. Additional 
programs, written by other generators or by hand, can be 
added easily to programs written by Lex. Yacc users will 
realize that the name yylex is what Yacc expects its lexical 
analyzer to be named, so that the use of this name by 
Lex simplifies interfacing. 

Lex generates a deterministic finite automaton from the 
regular expressions in the source [4]. The automaton is 
interpreted, rather than compiled, in order to save space. 
The result is still a fast analyzer. In particular, the time 

grammar 
rules 

1 
Yacc 

Input - yylex I - I yyparse - Parsed input 

Lex with Yacc 

Fijure 2 

· .. ___,,,· 

c 

( 



·• i, 

20-3 

taken by a Lex program to recognize and partition an in
?Ut stream is proportional to the length of the input. The 
number of Lex rules or the complexity of the rules is not 
important in determining speed, unless rules which in
clude forward context require a significant amount of re
scanning. What does increase with the number and com
plexity of rules is the size of the finite automaton, and 
therefore the size of the program generated by Lex. 

In the program written by Lex, the user's fragments 
(representing the actions to be performed as each regular 
expression is found) are gathered as cases of a switch (in 
C) or branches of a computed GOTO (in Ratfor). The 
automaton interpreter directs the control flow. Opportun
ity is provided for the user to insert either declarations or 
additional statements in the routine containing the ac
tions, or to add subroutines outside this action routine. 

Lex is not limited to source which can be interpreted 
on the basis of one character lookahead. For example, if 
there are two rules, one looking for ab and another for 
abcdefg, and the input stream is abcdefh, Lex will recog
nize ab and leave the input pointer just before ed. . . 
Such backup is more costly than the processing of simpler 
languages. 

2 Lex Source. 

The general format of Lex source is: 

{definitions} 
%% 
{rules} 
%% 
{user subroutines} 

where the definitions and the user subroutines are often 
omitted. The second %% is optional, but the first is re
quired to mark the beginning of the rules. The absolute 
minimum Lex program is thus 

%% 

(no definitions, no rules) which translates into a program 
which copies the input to the output unchanged. 

In the outline of Lex programs shown above, the rules 
represent the user's control decisions; they are a table, in 
which the left column contains regular expressions (see 
section 3) and the right column contains actions, program 
fragments to be executed when the expressions are recog
nized. Thus an individual rule might appear 

integer printf("found keyword INT"); 

to look for the string integer in the input stream and print 
the message "found keyword INT" whenever it appears. 
In this example the host procedural language is C and the 
C library function print/ is used to print the string. The 
end of the expression is indicated by the first blank or tab 
character. If the action is merely a single C expression, it 
can just be given on the right side of the line; if it is com
pound, or takes more than a line, it should be enclosed in 

braces. As a slightly more useful example, suppose it is 
desired to change a number of words from British to 
American spelling. Lex rules such as 

colour 
mechanise 
petrol 

printf ("color"); 
printf("mechanize"); 
printf("gas"); 

would be a start. These rules are not quite enough, since 
the word petroleum would become gaseunr, a way of deal
ing with this will be described later. 

3 Lex Regular Expressions. 

The definitions of regular expressions are very similar , 
to those in QED [5]. A regular expression specifies a set 
of strings to be matched. It contains text characters 
(which match the corresponding characters in the strings 
being compared) and operator characters (which specify 
repetitions, choices, and other features). The letters of 
the alphabet and the digits are always text characters; thus 
the regular expression 

integer 

matches the string integer wherever it appears and the ex
pression 

a57D 

looks for the string a57D. 
Operators. The operator characters are 

"\[]"-'?.•+!()$/(}%< > 

and if they are to be used as text characters, an escape 
should be used. The quotation mark operator (") indi
cates that whatever is contained between a pair of quotes 
is to be taken as text characters. Thus 

xyz"++" 

matches the string XJ1Z+ + when it appears. Note that a 
part of a string may be quoted. It is harmless but un
necessary to quote an ordinary text character; the expres
sion 

"xyz+ +" 

is the same as the one above. Thus by quoting every 
non-alphanumeric character being used as a text charac
ter, the user can avoid remembering the list above of 
current operator characters, and is safe should further ex
tensions to Lex lengthen the list. 

An operator character may also be turned into a text 
character by preceding it with \ as in 

xyz\ +\ + 

which is another, less readable, equivalent of the above 



expressions. Another use of the quoting mechanism is to 
get a blank into an expression; normally, as explained 
above, blanks or tabs end a rule. Any blank character not 
contained within [ l (see below) must be quoted. Several 
normal C escapes with \ are recognized: \n is newline, \t 
is tab, and \b is backspace. To enter \ itself, use \ \. 
Since newline is illegal in an expression, \n must be used; 
it is not required to escape tab and backspace. Every 
character but blank, tab, newline and the list above is al
ways a text character. 

Character classes. Classes of characters can be 
specified using the operator pair [ J. The construction 
[ob/ matches a single character, which may be a, b, or c. 
Within square brackets, most operator meanings are ig
nored. Only three characters are special: these are \ -
and -. The - character indicates ranges. For example, 

[a-z0-9<> _] 

indicates the character class containing all the lower case 
letters, the digits, the angle brackets, and underline. 
Ranges may be given in either order. Using - between 
any pair of characters which are not both upper case 
letters, both lower case letters, or both digits is imple
mentation dependent and will get a warning message. 
(E.g., [0-z] in ASCII is many more characters than it is in 
EBCDIC). If it is desired to include the character - in a 
character class, it should be first or last; thus 

[-+0-9) 

ma~hes all the digits and the two signs. 
In character classes, the • operator must appear as the 

ftrst character after the left bracket; it indicates that the 
resltlting string is to be complemented with respect to the 
computer character set. Thus 

rabc] 

matches all characters except a, b, or c, including all spe
cial or <:ol'ltrol chara<:ters; or 

ra-zA-Z] 

is any character which is not a letter. The\ <:haracter pro
vides the usual escapes within character class brackets. 

ATbifHJry character. To match almost any character, 
the operator character 

is the class of all characters except newline. Escaping into 
octal is possible although non-portable: 

l\40-\ 176] 

matches all printable characters in the ASCII character 
set, from octal 40 (blank) to octal 176 (tilde). 

Optional expnssions. The operator ? indicldes an op
tional etemeat of an expression. Thus 

20 .. 4 

ab?c 

matches either ac or abc. 
Repeated expressions. Repetitions of classes are indicat

ed by the operators •and +. 

is any number of consecutive a characters, including zero; 
while 

a+ 

is one or more instances of a. For example, 

[a-z] + 

is all strings of lower case letters. And 

[A-Za-z] [A-Za-z0-9)• 

indicates all alphanumeric strings with a leading alphabetic 
character. This is a typical expression for recognizing 
identifiers in computer languages. 

Alternation and Grouping. The operator I indicates 
alternation: 

(ablcd) 

matches either ab or ed. Note that parentheses are used 
for grouping, although they are not necessary on the out
side level; 

ab led 

would have sufficed. Parentheses can be used for more 
complex expressions: 

(ablcd +)? (ef)• 

matches such strings as abefef, efefef. cde/, or cddd; but 
not abc, abed, or abcdef 

Context sensitivity. Lex will recognize a small amGun t 
of surrounding context. The two simplest operat-0rs for 
this are A and $. If the first character of an expression is 
A, the expJession will only be matched at the beginning of 
a line (after a newline character, or at the beginning of 
the input stream). This can never conflict with the other 
meaning of A, complementation of character classes, since 
that only applies within the [] o,erators. H the very last 
character is $, the expression will only be matched at the 
end of a line (when immediately followed by newline). 
The latter operator is a special case of the I operator char
acter, which indicates trailing context. The expression 

ab/cd 

matches the string ab, but only if followed by ed. Thus 

-E;_ 

( 

c 



20-5 

ab$ 

is the same as 

ab/\n 
"'• 1 

-' Left context is handled in Lex by start conditions as ex-
plained in section 10. If a rule is only to be executed 
when the Lex automaton interpreter is in start condition 
x, the rule should be prefixed by 

<x> 

using the angle bracket operator characters. If we con
.\ sidered "being at the beginning of a line" to be start con
/ dition ONE, then the '"' operator would be equivalent to 

}. 

<ONE> 

Start conditions are explained more fully later. 
Repetitions and Definitions. The operators ti specify ei

ther repetitions (if they enclose numbers) or definition 
expansion (if they enclose a name). For example 

(digit} 

looks for a predefined string named digit and inserts it at 
that point in the expression. The definitions are given in 
the first part of the Lex input, before the rules. In con
trast, 

a{l,SJ 

looks for 1 to 5 occurrences of a. 
Finally, initial % is special, being the separator for Lex 

source segments. 

4 Lex Actions. 

When an expression written as above is matched, Lex 
executes the corresponding action. This section describes 
some features of Lex which aid in writing actions. Note 
that there is a default action, which consists of copying 
the input to the output. This is performed on all strings 
not otherwise matched. Thus the Lex user who wishes to 
absorb the entire input, without producing any output, 
must provide rules to match everything. When Lex is be
ing used with Yacc, this is the normal situation. One may 
consider that actions are what is done instead of copying 
the input to the output; thus, in general, a rule which 
merely copies can be omitted. Also, a character combina
tion which is omitted from the rules and which appears as 
input is likely to be printed on the output. Urns calling at
tention to the gap in the rules. 

One of the simplest things that can be done is to ignore 
the input. Specifying a C null statement, ; as an action 
causes this result. A frequent rule is 

[ \t\n] 

which causes the three spacing characters (blank, tab, and 
newline) to be ignored. 

Another easy way to avoid writing actions is the action 
character L which indicates that the action for this rule is 
the action for the next rule. The previous example could 
also have been written 

"\t" 
"\n" 

with the same result, although in different style. The 
quotes around \n and \tare not required. 

In more complex actions, the user will often want to 
know the actual text that matched some expression like 
{a-z}+. Lex leaves this text in an external character ar
ray named yyte.xt. Thus, to print the name found, a rule 
like 

!a-zl + printf("%s", yytext); 

will print the string in yytext. The C function print/ ac
cepts a format argument and data to be printed; in this 
case, the format is "print string" (% indicating data 
conversion, and s indicating string type), and the data are 
the characters in yytext. So this just places the matched 
string on the output. This action is so common that it 
may be written as ECHO: 

[a-z] + ECHO; 

is the same as the above. Since the default action is just 
to print the characters found, one might ask why give a 
rule, like this one, which merely specifies the default ac
tion'? Such rules are often required to avoid matching 
some other rule which is not desired. For example, if 
there is a rule which matches read it will normally match 
the instances of read contained in bread or rea4Just.. to 
avoid this, a rule of the form [a-z]+ is needed. This is 
explained further below. 

Sometimes it is more convenient to know the end of 
what has been found; hence Lex also provides a count 
yyleng of the number of characters matched. To count 
both the number of words and the number of characters 
in words in the input, the user might write 

{a-zA-Zl+ {words++; chars + - yyleng;} 

which accumulates in chars the number of characters in 
the words recognized. The last character in the string 
matched can be accessed by 

yytext [yyleng-1) 

in C or 

yytext (yyleng) 

in Ratfor. 



20-6 

Occasionally, a Lex action may decide that a rule has 
not recognized the correct span of characters. Two rou
tines are provided to aid with this situation. First, 
yymoreO can be called to indicate that the next input ex
pression recognized is to be tacked on to the end of this 
input. Normally, the next input string would overwrite 
the current entry in yytext. Second, yyless (n) may be 
called to indicate that not all the characters matched by 
the successful expression are wanted now. 
The argument n indicates the number of characters in 
yytext to be retained. Further characters previously 
matched are returned to the input. This the 
same sort of lookahead offered by the I operator, but in a 
different form. 

Example: Consider a language which defines a as 
a set of characters between quotation 
vides that to include a " in a string it must be ""''''""''1,..1 
a \. The regular expression which matches that is some-
what confusing, so that it be preferable to write 

\"r"l 0 { 

if (yytext [yyleng- ll - ,... '\ \ ') 
yymoreO; 

else 
... normal user processing 

which will, when faced with a such as •ab(\• def' 
first match the five characters "ab(\ ; then the call to 

will cause the next part of the string, to be 
tacked on the end. Note that the final quote 
the string should be picked up in the code labeled "nor
mal processing". 

The function might be used to reprocess text in 
various circumstances. Consider the C problem of distin
guishing the ambiguity of "--a". Suppose it is desired 
to treat this as " -- a" but a message. A rule 

be 

--{a-zA-Zi 

yyless (yyleng., 
... action for -- ... 
I 

which prints a message, returns the letter after the opera
tor to the input stream, and treats the operator as "=-· ". 
Alternatively it might be desired to treat this as """' -a". 
To do this, just return the minus sign as well as the letter 
to the input: 

--fa-zA-Z] { 
printf("Operator ( 
yyless(yyleng-2); 
... action for = ... 
j 

ambiguous\n"); 

will perform the other interpretation. Note that the ex
pressions for the two cases might more easily be writte11 

in the first case and 

in the no would be required in the rule 
action. It is not necessary to recognize the whole 
identifier to observe the The possibility of 
"=-3", however, makes 

~-/[~ 

a still better rule. 
In addition to these 

the 1/0 routines it uses. 
Lex also permits access to 

are: 

1) input() which returns the next input character; 

2) which writes the character c on the out-
put; and 

3) pushes the character c back onto the in-
put stream to be read later by input(). 

By default these routines are provided as macro 
but the user can override them and supply 

versions. There is another important routine in 
Ratfor, named which is described below under 
"Character Set". These routines define the relationship 
between external files and internal characters, and must 
all be retained or modified consistently. They may be 
redefined, to cause or output to be transmitted to or 
from strange places, other programs or internal 
memory; but the character set used must be consistent in 
all routines; a value of zero returned by input must mean 
end of file; and the between unput and input 
must be retained or the Lex lookahead will not work. 
Lex does not look ahead at all if it does not have to, but 
every rule in + ® ? or $ or I 
lookahead. Lookahead is also necessary to match an ex-

that is a of another See below 
for a discussion of the character set used Lex. The 
standard Lex a 100 character limit on 

Another Lex routine that the user will some-
times want to redefine is which is called when
ever Lex reaches an end-of-file. ff yywrap returns a 1, 
Lex ccmtinues with the normal wrapup on end of input. 
:iom<:mnes, however, it is convenient to arrange for more 

to arrive from a new source. In this case, the user 
should provide a yywrap which arranges for new input 
and returns 0. This instructs Lex to cominue processing. 
The default yywrap always returns !. 

This routine is also a convenient place to tables, 
summaries, etc. at the end of a program. Note that it is 
not possible to write a normal rule which recognizes end
of-file; the only access to this condition is through 
yywrap. In fact, unless a private version of input{) is sup
plied a file containing nulls cannot be handled, since a 
value of 0 returned input is taken to be end-of-file. 

In Ratfor all of the standard l/O routines, input, 

·. __ _ 

c~· 

( 



20-7 

output, unput, yywrap, and le:alif, are defined as integer 
functions. This requires input and yywrap to be called 
with arguments. One dummy argument is supplied and 
ignored. 

5 Ambiauous Source Rules. 

Lex can handle ambiguous specifications. When more 
than one expression can match the current input, Lex 
chooses as follows: 

1) The longest match is preferred. 

2) Among rules which matched the same number of 
characters, the rule given first is preferred. 

Thus, suppose the rules 

integer 
[a-z] + 

keyword action ... ; 
identifier action ... ; 

to be given in that order. If the input is Integers, it is tak· 
en as an identifier, because {a-z) + matches 8 characters 
while Integer matches only 7. If the input is integer, both 
rules match 7 characters, and the keyword rule is selected 
because it was given first. Anything shorter (e.g. int) will 
not match the expression integer and so the identifier in· 
terpretation is used. 

The principle of preferring the longest match makes 
rules containing expressions like .• dangerous. For exam· 
pie, 

'.•' 

might seem a good way of recognizing a string in single 
quotes. But it is an invitation for the program to read far 
ahead, looking for a distant single quote. Presented with 
the input 

'first' quoted string here, 'second' here 

the above expression will match 

'first' quoted string here, 'second' 

which is probably not what was wanted. A better rule is 
of the form 

T\nl•' 

which, on the above input, will stop after 'first~ The 
consequences of errors like this are mitigated by the fact 
that the . operator will not match newline. Tnus expres· 
sions like .• stop on the current line. Don't try to defeat 
this with expressions like f.\n}+ or equivalents; the Lex 
generated program will try to read the entire input file, 
causing internal buff er overflows. 

Note that Lex is normally partitioning the input stream, 
not searching for all possible matches of each expression. 
This means that each character is accounted for once and 
only once. For example, suppose it is desired to count 
occurrences of both she and he in an input text. Some 

Lex rules to do this might be 

she s+ +; 
he h+ +; 
\n I 

where the last two rules ignore everything besides he and 
she. Remember that . does not include newline. Since 
she includes he, Lex will normally not recognize the in· 
stances of he included in she, since once it has passed a 
she those characters are gone. 

Sometimes the user would like to override this choice. 
The action REJECT means "go do the next alternative." 
It causes whatever rule was second choice after the 
current rule to be executed. The position of the input 
pointer is adjusted accordingly. Suppose the user really 
wants to count the included instances of he: 

she Is++; REJECT;} 
he {h++; REJECT;} 
\n I 

these rules are one way of changing the previous example 
to do just that. After counting each expression, it is re
jected; whenever appropriate, the other expression will 
then be counted. In this example, of course, the user 
could note that she includes he but not vice versa, and 
omit the REJECT action on he, in other cases, however, 
it would not be possible a priori to tell which input char
acters were in both classes. 

Consider the two rules 

a[bc] + 
a(cd] + 

I ... ; REJECT;) 
{ ... ; REJECT;) 

If the input is ab, only the first rule matches, and on ad 
only the second matches. The input string accb matches 
the first rule for four characters and then the second rule 
for three characters. In contrast, the input aced ~gre1>,s 
with the second rule for four characters and then the first 
rule for three. 

In general, REJECT is useful whenever the purpose of 
Lex is not to partition the input stream but to detect all 
examples of some items in the input, and the instances of 
these items may overlap or include each other. Suppose a 
digram table of the input is desired; normally the digrams 
overlap, that is the word the is considered to contain both 
th and he. Assuming a two-dimensional array named di
gram to be incremented, the appropriate source is 

%% 
[a-z][a-zl (digram (yytext [O]) (yytext [1)] + +; REJECT;} 
\n 

where the REJECT is necessary to pick up a letter pair 
beginning at every character, rather than at every other 
character. 



6 Lex Source Definitions. 

Remember the format of the Lex source: 

{deft.'litionsl 
%% 
I rules) 
%% 
!user routines} 

So far only the rules have been described. The user 
needs additional options, though, to define variables for 
use in his program and for use by Lex. These can go ei
ther in the definitions section or in the rules section. 

Remember that Lex is the rules into a program. 
Any source not intercepted by Lex is copied into the gen
erated program. There are three classes of such 

l) Any line which is not part of a Lex rule or action 
which begins with a blank or tab is into the 
Lex generated program. Such source input prior 
to the first %% delimiter will be external to any 
function in the if it appears immediately 
after the first %%, it appears in an 
place for declarations in the function written 
Lex which contains the actions. This material 
must look like program fragments, and should 
precede the first Lex rule. 

As a side effect of the above, lines which 
with a blank or tab, and which contain a com
ment, are passed through to the generated pro
gram. This can be used to include comments in 
either the Lex source or the generated code. The 
comments should follow the host con
vention. 

2) Anything included between tines containing only 
%( and %) is copied out as above. The delimiters 
are discarded. This format entering text 
like preprocessor statements that must in 
column 1, or copying lines that do not iook like 
programs. 

3) Anything after the third %% 
of formats, etc., is copied out after the Lex out
put. 

Definitions intended for Lex are given before the first 
%% delimiter. Any line in this section not contained 
between %{ and %) , and begining in column 1, is as
sumed to define Lex substitution strings. The format of 
such lines is 

name translation 

and it causes the string given as a translation to be associ
ated with the name. The name and translation must be 
separated by at least one Mank or tab, and the name must 
begin with a leHer. The translation can then be called out 
by the {name} syntax in a rule. Using {Dl for the digits 
and !El for an exponent field, for example, might abbre· 
viate rules to recognize numbers: 

20-8 

D 
E 
%% 

+ 
{DI +"."(DJ• ? 
{D}*"."{DJ +(iE))? 
{D}+{E} 

[-+l?{Dl+ 

printf("integer" ); 
I 

Note the first two mies for real both require a 
decimal and contain an exponent field, but 
the first at least one digit before the decimal 

and the second requires at least one digit after the 
decimal To correctly handle the problem posed by 
a Fortran expression such as 35.EQ.l, which does not 
contain a real number, a context-sensitive rule such as 

[0-9] + /" ."EQ printf("integer"); 

could be used in addition to the normal rule for integers. 

The definitions section may also contain other com
the selection of a host language, a char

acter set table, a list of start or adjustments to 
the default size of arrays within Lex itself for larger 
source programs. These possibilities are discussed below 
under of Source " section 12. 

i Usage. 

There are two steps in a Lex source program. 
First, the Lex source must be turned into a generated 
program in the host purpose language. Then this 
program must be and loaded, usually with a li-
brary of Lex subroutines. 111e program is on a 
file named iex.yy.c for a C host language source and 

for a Ratfor host environmen.t. There are two 
UO libraries, one for C defined in terms of the C stan
dard [61, and the other defined in terms of Ratfor. 
To indicate that a Lex. source file is intended to be used 
with the Ratfor host 
file %R. 

time. C programs 

make the first line of the 

Lex are slightly different 
is less powerful than 

and does less at compile 
on GCOS and UNIX are the 

same. The C host rnnl!,u<ai;t: but may be 
citly by the fi.rst line of the source file 
%C. 

Tiv~ Ratfor Lex is the same 011 ail sys-
tems, but can not be directly on TSO. See 
below for instructions. ·n1e Ratfor I/O library, however, 
varies slightly because the different Fortrans disagree on 
the method of indicating end-of-input and the name of 
the library routine for logical AND. The Ratfor l/O li
brary, dependent on Fortran character is quite slow. 
In particular it reads al! lines as 80A 1 this 
will truncate any longer line, discarding your data, and 
pads any shorter line with blanks. The library version of 
input removes the padding (including any trailing blanks 
from the original before processing. Each source 



) 

file using a Ratfor host should begin with the "%R" com
mand. 

UNIX. The libraries are accessed by the loader flags 
-lie for C and -/Ir for Ratfor; the C name may be abbrevi
ated to -II. So an appropriate set of commands is 

C Host Ratfor Host 

lex source lex source 
cc lex.yy.c -11 -IS re -2 lex.yy.r -llr 

The resulting program is placed on the usual file a. out for 
later execution. To use Lex with Yacc see below. 
Although the default Lex 1/0 routines use the C standard 
library, the Lex automata themselves do not do so; if 
private versions of input, output and unput are given, the 
library can be avoided. Note the "-2" option in the Rat
for compile command; this requests the larger version of 
the compiler, a useful precaution. 

GCOS. The Lex commands on GCOS are stored in the 
"."library. The appropriate command sequences are: 

C Host Ratfor Host 

./lex source ./lex source 
J cc lex.yy .c ./lexclib h - ./re a- lex.yy.r ./lexrlib h-

The resulting program is placed on the usual file .program 
for later execution (as indicated by the "h - " option); it 
may be copied to a permanent file if desired. Note the 
"a - " option in the Ratfor compile command; this indi
cates that the Fortran compiler is to run in ASCII mode. 

TSO. Lex is just barely available on TSO. Restrictions 
imposed by the compilers which must be used with its 
output make it rather inconvenient. To use the C ver
sion, type 

exec 'dot.lex.clist(lex)' 'sourcename' 
exec 'dot.lex.clist(cload)' 1ibraryname membemame' 

20-9 

The first command analyzes the source file and writes a C 
program on file lex.yy.te.xt. The second command runs 
this file through the C compiler and links it with the Lex 
C library (stored on 'hr289.lcl.load') placing the object 
program in your file libraryname.LOAD(membername) as 
a completely linked load module. The compiling com
mand uses a special version of the C compiler command 
on TSO which provides an unusually large intermediate 
assembler file to compensate for the unusual bulk of C
compiled Lex programs on the OS system. Even so, al
most any Lex source program is too big to compile, and 
must be split. 

The same Lex command will compile Ratfor Lex pro
grams, leaving a file /ex.yy.rat instead of lex.yy.te.xt in 
your directory. The Ratfor program must be edited, how
ever, to compensate for peculiarities of IBM Ratfor. A 
command sequence to do this, and then compile and 
load, is available. The full commands are: 

exec 'dot.lex.dist (lex)' 'sourcename' 

exec 'dot.lex.clist(rload)' 1ibraryname membemame' 

with the same overall et'fect as the C language commands. 
However, the Ratfor commands will run in a I SOK byte 
partition, while the C commands require 250K bytes to 
operate. 

The steps involved in processing the generated Ratfor 
program are: 

a. Edit the Ratfor program. 

1. Remove all tabs. 

2. Change all lower case letters to upper case letters. 

3. Convert the file to an SO-column card image file. 

b. Process the Ratfor through the Ratfor preproces
sor to get Fortran code. 

c. Compile the Fortran. 

d. Load with the libraries 'hr289.lrl.load' and 
'sysl.fortlib'. 

The final load module will only read input in SO-character 
fixed length records. Warning: Work is in progress on 
the IBM C compiler, and Lex and its availability on the 
IBM 370 are subject to change without notice. 

8 Lex and Yacc . 

If you want to use Lex with Yacc, note that what Lex 
writes is a program named yylex(), the name required by 
Yacc for its analyzer. Normally, the default main pro
gram on the Lex library calls this routine, but if Yacc is 
loaded, and its main program is used, Yacc will call 
yylex(). In this case each Lex rule should end with 

return (token); 

where the appropriate token value is returned. An easy 
way to get access to Yacc's names for tokens is to compile 
the Lex output file as part of the Yacc output file by plac
ing the line 

# include "lex.yy.c" 

in the last section of Yacc input. Supposing the grammar 
to be named "good" and the lexical rules to be named 
"better" the UNIX command sequence can ju~t be: 

yacc good 
lex better 
cc y.tab.c -ly -11 -IS 

The Yacc library (-ly) should be loaded before the Lex li
brary, to obtain a main program which invokes the Yacc 
parser. The generations of Lex and Yacc programs can be 
done in either order. 

9 Examples. 

As a trivial problem, consider copying an input file 
while adding 3 to every positive number divisible by 7. 
Here is a suitable Lex source program 



20-10 

%% 
int k; 

[0-9) + { 
scanf(-1, yytext, "%d", &k); 
if (k%7 -- 0) 

printf("%d", k + 3); 
else 

printf("%d" ,k); 

to do just thllt. The rule (0-9) + recognizes strings of di· 
gits; scan/ converts the digits to binary and stores the 
result in k. The operator % (remainder) is used to check 
whether k is divisible by 7; if it is, it is incremented by 3 
as it is written out. It may be objected that this program 
will alter such input items as 49. 63 or X7. Furthermore, 
it increments the absolute value of all negative numbers 
divisible by 7. To avoid this, just add a few more rules 
after the active one, as here: 

-?(0-9)+ 

·?f0-9.1+ 

int k; 
{ 
scanf(·l, yytext, "%d", elk); 
printf("%d". k%7 - - 0 ? k+3 : k); 
l 
ECHO; 

[A-Za-z] [A·Za-z0-91 + ECHO; 

Numerical strings containing a "." or preceded by a letter 
will be picked up by one of the last two rules, and not 
changtd. The if-else has been replaced by a C conditional 
expression to save space; the form a ?b:c means "if a 
thetl b else c". 

Fdr an elample of statistics gathering, here is a pro
gram Which histograms the lengths of words, where a 
word is defined as a String of letters. 

%% 
Ia-zl+ 

\n 
%% 
yywrap() 
{ 
inti; 

int lengs[lOO); 

len'gS (yyleng] + +; 
I 

primf("Length No. wordS\n"); 
for(i•O; i<lOO; i++) 

if (tengsfil > 0) 
printf("%5d% lOd\n" ,i,lengs {i]); 

retum(l); 
l 

This program accumulates the histogram, white producin1 
no output. At the end of the input it prints the table. 
The finat statement retur11(1); indicates that Lex is to per
form wtapuc11. If yyWl'ttp returns zero (false) it implies 
that furtl'ler input is available and ttte program is to eott· 
tinue reading and processing. To provide a jyWrop tl\at 

never returns true causes an infinite loop. 
As a larger example, here are some parts of a program 

written by N. L. Schryer to convert double precision For
tran to single precision Fortran. Because Fortran does 
not distinguish upper and lower case letters, this routine 
begins by defining a set of classes including both cases of 
each letter: 

a [aA) 
b [bB] 
c [cC] 

z (zZ) 

An additional class recognizes white space: 

w [ \t}• 

The first rule changes "double precision" to "real", oi 
"DOUBLE PRECISION" to "REAL". 

{d)(o) {u) {b) {l){e} {W} {p) {r){e}{c}{i}{s) {i) {o){n} { 
printf(yytext [OJ - - 'd''? "real" : "REAL"); 
} 

Care is taken throughout this program to preserve the 
case (upper or lower) of the original program. The condi· 
tional operator is used to select the proper form of the 
keyword. The next rule copies continuation card indica· 
tions to avoid confusing them with constants: 

"[" O] ECHO; 

In the regular expression, the quotes surround the blanks. 
It is interp'reted as "beginning of line, then five blanks, 
then anything but blank or iero." Note the two different 
meanings of ~. There follow some rules to change double 
precision constants to ordinary floating constants. 

[0-9) + {Wl{d){W)[ +-}? IW)(0-9) + I 
[0-9) +{W}"."{W){dl(W}[ +-)'?{W}[0-9] + I 
"."{W}[O-~ +{WJ(d}{WH +-1nwHo-~1 + { 

/•convert constants •/ 
for(p-yytext; •p !- O; p++) 

{ 
if ( •p - - 'd' I •p - - 'D') 

•p- + 'e'· 'd'; 
ECHO; 
l 

After the floating point constant is recognized, it is 
scanned by the for loop to find tile lette'r d ot D. The 
program than adds 'e'- 'd', which converts it to the next 
letter of the alphabet. The rhodifred eot'lstant, now 
single-precision, is written out again. There follow a 
series of names which must be respelled to remove their 
initial d. By using the array yytat the same action 
suffices for all the names (only a sarh'ple of a rather long 
list is given here). 

( 

(_ 



{d}{s){il!nl 
(dl{c){ol{sl 
(dl{s)lqj{rl{t} 
{d)la}{t){al{n} 

(d}{f){ll{o}{a){t} printf("%s" ,yytext + l ); 

20-11 

Another list of names must have initial d changed to ini
tial a: 

{d){l}!o}{g} 
(d}{!l{oJ{g} 10 
{d} {m} Ii) {n} 1 
{d}{m]{al{x) 1 

I 
I 
I 
{ 
yytext [0] = + 'a' - 'd'; 
ECHO; 
) 

And one routine must have initial d changed to initial r. 

{d}l {m){allcllhl {yytext[O] - + 'r' - 'd'; 

To avoid such names as dsinx being detected as instances 
of dsin, some final rules pick up longer words as 
identifiers and copy some surviving characters: 

{A-Za-z] [A-Za-z0-9]• 
f0-9! + 
\n 

I 
I 
I 
ECHO; 

Note that this program is not complete; it does not deal 
with the spacing problems in Fortran or with the use of 
keywords as identifiers. 

10 Left Context Sensitivity. 

Sometimes it is desirable to have several sets of lexical 
rules to be applied at different times in the input. For ex
ample, a compiler preprocessor might distinguish prepro
cessor statements and analyze them differently from ordi
nary statements. This requires sensitivity to prior con
text, and there are several ways of handling such prob
lems. The A operator, for example, is a prior context 
operator, recognizing immediately preceding left context 
just as $ recognizes immediately following right context. 
Adjacent left context could be extended, to produce a fa
cility similar to that for adjacent right context, but it is 
unlikely to be as useful, since often the relevant left con
text appeared some time earlier, such as at the beginning 
of a line. 

This section describes three means of dealing with 
different environments: a simple use of flags, when only a 
few rules change from one environment to another, the 
use of start conditions on rules, and the possibility of 
making multiple lexical analyzers all run together. In 
each case, there are rules which recognize the need to 
change the environment in which the following input text 

is analyzed, and set some parameter to reflect the change. 
This may be a flag explicitly tested by the user's action 
code; such a flag is the simplest way of dealing with the 
problem, since Lex is not involved at all. It may be more 
convenient, however, to have Lex remember the flags as 
initial conditions on the rules. Any rule may be associat
ed with a start condition. It will only be recognized when 
Lex is in that start condition. The current start condition 
may be changed at any time. Finally, if the sets of rules 
for the different environments are very dissimilar, clarity 
may be best achieved by writing several distinct lexical 
analyzers, and switching from one to another as desired. 

Consider the following problem: copy the input to the 
output, changing the word magic to first on every line 
which began with the letter a, changing magic to second 
on every line which began with the letter h, and changing 
magic to third on every line which began with the letter c. 
All other words and all other lines are left unchanged. 

These rules are so simple that the easiest way to do this 
job is with a flag: 

int flag; 
%% 
'a lflag = 'a'; ECHO;) 
"b !flag ... b'; ECHO;) 
·c \flag """ 'c'; ECHO;] 
\n (flag = 0 ; ECHO;) 
magic ( 

switch (flag) 
( 
case 'a': printf("first"); break; 
case b': printf("second"); break; 
case 'c': printf("third"); break; 
default: ECHO; break; 
l 
) 

should be adequate. 
To handle the same problem with start conditions, each 

start condition must be introduced to Lex in the 
definitions section with a line reading 

%Start namel name2 ... 

where the conditions may be named in any order. The 
word Start may be abbreviated to s or S. The conditions 
may be referenced at the head of a rule with the < > 
brackets: 

<name 1 >expression 

is a rule which is only recognized when Lex is in the start 
condition namel. To enter a start condition, execute the 
action statement 

BEGIN namel; 

which changes the start condition to namel. To resume 
the normal state, 



BEGIN O; 

resets the initial wndition of the Lex automaton inter
preter. A rule may be active in several start conditions: 

<name l ,name2,name3 > 

i:s a legal prefix. Any rule not beginning with the < > 
prefix operator is always active. 

The same example as before can be written: 

%START AA BB CC 
%% 
a 

-b 
·c 
\n 
<AA> magic 
<BB> magic 
<CC>magic 

{ECHO; BEGIN AA;l 
!ECHO; BEGIN BB;) 
(ECHO; BEGIN CC;} 
!ECHO; BEGIN O;l 
printf("first"); 
pr in tf(" second"); 
printf ("third"); 

where the logic is exactly the same as ir, the previous 
method of handling the problem, but Lex does the work 
rather than the user's code. 

11 Character Set. 

The programs generated by Lex handle character I/O 
only through the routines input, output, and i.mput. Thus 
the character representation provided in these routines is 
accepted by Lex and employed to return values in yytext. 
For internal use a character is represented as a small in .. 
teger which, if the standard library is used, has a value 
equal to the integer value of the bit pattern representing 
the character on the host computer. In C, the I/O rou
tines are assumed to deal directly in this representation. 
In Ratfor, it is anticipated that many users will prefer 
left-adjusted rather than right-adjusted characters; thus 
the routine !exshf is called to change the representation 
delivered by input into a rig.ht-adjusted integer. If the 
Uc!:i~r changes th:e I/O library, the routine lex.sh/ should 
aliro be changed to a compatible version. The Ratfor li
brary I/O system is arranged to represent the letter a as 
in the Fortran value lHa while in C the letter a is 
represented as the character constant 'a'. If this interpre
tation is changed, by providing I/O routines which 
translate the characters, Lex must be told about it, by giv
ing a translation table. This table must be in the 
definitions section, and must be bracketed by lines con
taining only ''%T". The table contains lines of the form 

{integer! {character string) 

which indicate the value associated with each chara{;ter. 
Thus the next example maps the lower and upper case 
letters together into the integers l through 26, newline 
into 27, + and - into 28 and 29, and the digits into 30 
through .39. Note the escape for newline. If a table is 
supplied, every character that is to appear either in the 

20-12 

%T 
l Aa 
2 Bb 

26 Zz 
27 \n 
28 + 
29 
30 0 
31 l 

39 9 
%T 

Sample character table. 

rules or in any valid input must be included in the table. 
No character may be assigned the number 0, and no char
acter may be assigned a bigger number than the size of 
the hardware character set. 

It is not likely that C users will wish to use the charac
ter I.able feature; but for Fortran portability it may be 
essential. 

Although the contents of the Lex Ratfor library rou
tines for input and output run almost unmodified on 
UNIX, GCOS, and OS/370, they are not really machinl!' 
independent, and would not work with CDC or Bur 
roughs Fortran compilers. The user is of course welcome 
to replace input, output, unput and lexslif but to replace 
them by completely portable Fortran routines is likely to 
cause a substantial decrease in the speed of Lex Ratfor 
programs. A simple way to produce portable routines 
would be to leave input and O'utput as routines that read 
with 80Al format, but replace lexslif by a tabie lookup 
routine. 

12 Summary of Scnu"Ce Format. 

The general fo.rm of a Lex source file is: 

!definitions} 
%% 
{rules} 
%% 
!user subroutines) 

The definitions section contains a combination of 

l) Definitions, in the form "name spare tnmsla
tion ". 

2) Included code, in the form "space code". 

3) Included code, in the form 

%{ 
code 
%} 

c 



! 
I 

·--, 
\ 
.i 

__ .... ' 

20-13 

4) Start conditions, given in the form 

%S namel name2 ... 

5) Character set tables, in the form 

6) 

7) 

%T 
number space character-string 

%T 

A language specifier, which must also precede any 
rules or included code, in the form "%C" for C 
or "%R" for Ratfor. 

Changes to internal array sizes, in the form 

%x nnn 

where nnn is a decimal integer representing an ar
ray size and x selects the parameter as follows: 

Letter 
p 
n 
e 
a 
k 

Parameter 
positions 
states 
tree nodes 
transitions 
packed character classes 

o output array size 

Lines in the rules section have the form "expression ac
tion" where the action may be continued on succeeding 
lines by using braces to delimit it. 

Regular expressions in Lex use the following operators: 

x 
"x" 
\x 
[xy] 
[x-z] 
rxJ 

·x 
<y>x 
xS 
x'? 
x• 
x+ 
xlY 
(x) 
x/y 
(xx} 
x(m,nl 

the character "x" 
an "x", even if xis an operator. 
an "x", even if x is an operator. 
the character x or y. 
the characters x, y or z. 
any character but x. 
any character but newline. 
an x at the beginning of a line. 
an x when Lex is in start condition y. 
an x at the end of a line. 
an optional x. 
0, 1,2, ... instances of x. 
1,2,3, ... instances of x. 
an x or a y. 
an x. 
an x but only if followed by y. 
the translation of xx from the definitions section. 
m through n occurrences of x 

13 Caveats and Bugs. 

There are pathological expressions which produce ex
ponential growth of the tables when converted to deter
ministic machines; fortunately, they are rare. 

REJECT does not rescan the input; instead it 
remembers the results of the previous scan. This means 
that if a rule with trailing context is found, and REJECT 
executed, the user must not have used unput to change 
the characters forthcoming from the input stream. This is 
the only restriction on the user's ability to manipulate the 
not-yet-processed input. 

TSO Lex is an older version. Among the non
supported features are REJECT, start conditions, or vari
able length trailing context, And any significant Lex 
source is too big for the IBM C compiler when translated. 

14 Acknowledgments. 

As should be obvious from the above, the outside of 
Lex is patterned on Yacc and the inside on Abo's string 
matching routines. Therefore, both S. C. Johnson and A. 
V. Aho are really originators of much of Lex, as well as 
debuggers of it. Many thanks are due to both. 

The code of the current version of Lex was designed, 
written, and debugged by Eric Schmidt. 

15 References. 

I. B. W. Kernighan and D. M. Ritchie, The C Pro
gramming Language, Prentice-Hall, N. J. (1978). 

2. B. W. Kernighan, Ratfor: A Preprocessor for a 
Rational Fortran, Software - Practice and Experi
ence, S, pp. 395-496 (1975). 

3. S. C. Johnson, Yacc: Yet Another Compiler Com
piler, Computing Science Technical Report No. 
32, 1975, Bell Laboratories, Murray Hill, NJ 
07974. 

4. A. V. Aho and M. J. Corasick, Efficient :itring 
Matching: An Aid to Bibliographic Search, Comm. 
ACM 18, 333-340 (1975). 

5. 8. W. Kernighan, D. M. Ritchie and K. L. 
Thompson, QED Text Editor, Computing Science 
Technical Report No. 5, 1972, Bell Laboratories, 
Murray Hill, NJ 07974. 

6. D. M. Ritchie, private communication. See also 
M. E. Lesk, The Portable C Library, Computing 
Science Technical Report No. 31, Bell Labora
tories, Murray Hill, NJ 07974. 





A Portable Fortran 77 Compiler 

S. I. Feldman 

P. J. Weinberger 

Bell Laboratories 
Murray Hill, New Jersey 07974 

ABSTRACT 

The Fortran language has just been revised. The new language, known as For
tran 77, became an official American National Standard on April 3, 1978. We 
report here on a compiler and run-time system for the new extended language. 
This is believed to be the first complete Fortran 77 system to be implemented. 
This compiler is designed to be portable, to be correct and complete, and to 
generate code compatible with calling sequences produced by C compilers. In 
particular, this Fortran is quite usable on UNIXt systems. In this paper, we 
describe the language compiled, interfaces between procedures, and file formats 
assumed by the 1/0 system. An appendix describes the Fortran 77 language. 

1 August 1978 

tUNIX is a Trademark of Bell Laboratories. 

21-1 



A Fortran Con1piler 

S. I. 

J. 

Murray Hill, New Jersey 

1. INTRODUCTION 

The Fortran revised. new known as Fortran 77, 
became an official [ l] on April , 1 the language, known 
as Fortran 77, is about to be 1 Fortran [21. We 
report here on a and run··time system for the new extended language. The compiler 
and computation library were written SIF, the I/O system by PJW. believe ours to be 
the first complete Fortran 77 system to be implemented. is designed to be port-
able to a number of different to be correct and and to generate code com-
patible with calling sequences for the C [3L In particular, it is 
in use on llNIXt Two are in use at Laboratories, those 
based on D. M. Ritchie's 11 and those based on S. C. Johnson's portable C 
compiler [5]. In this paper, 
we describe the language between and file formats assumed by 
the 1/0 system. We will describe details in companion papers. 

1.1. Usage 

At present, versions 
11 /780, and the Interdata 

the run on and compile for the PDP-11, the VAX-
UNIX systems. The command to run compiler is 

f77 is a general-purpose command for 
EFL [6] and Ratfor source will be before 
compiler. C and assembler source will be compiled by the 
files will be loaded. (The f77 and cc commands cause 

and Fortran-related files. 
presented to the Fortran 

..,..,,.,.,,...,...,,t,,. programs. Object 

generated, since Fortran programs need a extra libraries and a different 
sequences to be 

routine than 
oo C programs.) The name are understood: 

.f Fortran source file 

.e EFL source 

.r Ratfor source file 

.c C source file 

.s Assembler source file 

.o Object file 

The following flags are understood: 

-S Generate assembler 

tlJNIX is a Trademark of Bell La!mratories. 

each source file, 

-2 

do not assemble it Assem-

( 

( 



-f 

-p 

-of 
-w 

-u 

-E 
-R 

Other all 
the understood 

on x.s. 
or x.s is on 

any names not 

source 

the 
program. 

with one of 



21-4 

language. The remainder are extensions to make it easier to communicate with C procedures 
or to permit compilation of old (1966 Standard) programs. 

2.1. Double Complex Data Type 

The new type double complex is defined. Each datum is represented by a pair of double 
precision real variables. A double complex version of every complex built-in function is 
provided. The specific function names begin with z instead of c. 

2.2. Internal Files 

The Fortran 77 standard introduces "internal files" (memory arrays), but restricts their 
use to formatted sequential 1/0 statements. Our 1/0 system also permits internal files to 
be used in direct and unformatted reads and writes. 

2.3. Implicit Undefined statement 

Fortran 66 has a fixed rule that the type of a variable that does not appear in a type state
ment is integer if its first letter is i, j, k, l, m or n, and real otherwise. Fortran 77 has an 
implicit statement for overriding this rule. As an aid to good programming practice, we 
permiC an additional type, undefined. The statement 

implicit undefined(a-z) 

turns off the automatic data typing mechanism, and the compiler will issue a diagnostic 
for each variable that is used but does not appear in a type statement. Specifying the -u 
compiler flag is equivalent to beginning each procedure with this statement. 

2.4. Recursion 

Procedures may call themselves, directly or through a chain of other procedures. 

2.5. Automatic Storage 

Two new keywords are recognized, static and automatic. These keywords may appear as 
"types" in type statements and in implicit statements. Local variables are static by 
default; there is exactly one copy of the datum, and its value is retained between calls. 
There is one copy of each variable declared automatic for each invocation of the pro
cedure. Automatic variables may not appear in equivalence, data, or save statements. 

2.6. Source Input Format 

The Standard expects input to the compiler to be in 72 column format: except ih com
ment lines, the first five characters are the statement number, the next is the continuation 
character, and the next sixty-six are the body of the line. (If there are fewer than 
seventy-two characters on a line, the compiler pads it with blanks; characters after the 
seventy-second are ignored). 

In order to make it easier to type Fortran programs, our compiler also accepts input in 
variable length lines. An ampersand ("&") in the first position of a line indicates a con
tinuation line; the remaining characters form the body of the line. A tab character in one 
of the first six positions of a line signals the end of the statement number and continua
tion part of the line; the remaining characters form the body of the line. A tab elsewhere 
oo the nne is treated as another kind of blank by the compiler. 

In the Standard, there are only 26 letters - Fortran is a one-case language. Consistent 
with ordinary UNIX system usage, our compiler expects lower case input. By default, the 
compiler converts all upper case characters to lower case except those inside character 
constants. However, if the -U compiler flag is specified, upper case letters are not 
transformed. In this mode, it is possible to specify external names with upper case letters 
in them, and to have distinct variables differing only in case. Regardless of the setting of 

·. _____ , 

c 

( 

·------



'\. 
I 

__ / 

the be 

2. 7. Include 

statement 

the contents 
ten. 

the may be nested to a reasonable 

2.8. Binary 

A variable may be initialized in a data statement by a binary con-

2.9. 

2.10. 

2.11. 

stant, denoted a a quoted If the letter is b, the string is 
binary, and only zeroes and ones are 
digits 0-7, If the letter is z or 

If the letter is o, the string is octal, with 
with digits 0-9, a-f. Thus, 

the statements 

data a I b'lO O', 2', I 

initialize all three elements a to ten. 

with C usage, the backslash escapes are recognized: 

newline 
\t tab 

\f 
\0 null 
\' 
\" 
\\ \ 
\x x, where x is any other character 

local character variable and every character string constant is 
character constant outside a 

a null character to ease communication with C routines. 

old though the new Standard 
in order to compatibility 

programs. data may be used in place of character 
and may also be used to initialize non-character variables in data state-

men ts. 

As a very an element of a multiply-
a reference in equivalence 

this usage, since subscript lower bounds may now 
in equivalence statements. 

to 1 _ A warning message is 



21-6 

printed for each such incomplete subscript. 

2.12. One 00Trip DO Loops 

The Fortran 77 Standard requires that the range of a do loop not be performed if the ini
tial value is already past the limit value, as in 

do JO i - 2, l 

The 1966 Standard stated that the effect of such a statement was undefined, but it was 
common practice that the range of a do loop would be performed at !east once. In order 
to accommodate old programs, though they were in violation of the 1966 Standard, the 
-onetrip compiler flag causes non-standard loops to be generated. 

2.13. Commas in Formatted Input 

The I/O system attempts to be more than the Standard when it seems worthwhile. 
When doing a formatted read non-character commas may be used as value 
separators in the input record, overriding the lengths given in the format statement. 
Thus, the format 

(ilO, f20.10, i4) 

will read the record 

-345,.05e-3, 12 

correctly. 

2.14. Short Integers 

On machines that support halfword the compiier accepts declarations of type 
integer•2. (Ordinary integers follow the Fortran rules about occupying the same space as 
a REAL variable; they are assumed to be of C type lcmg int; halfword integers are C 
type short intJ An expression involving only objects of type integer*2 is of that type. 
Generic functions return short or integers depending on the actual types of their 
arguments. If a procedure is compiled using the -12 flag, all small integer constants will 
be. of type integer•2. If the precision of an integer-valued intrinsic function is not deter
mined by the generic function rules, one will be chosen that returns the prevailing length 
Onteger•2 when the -12 command is in effect). When the ·-!2 option is in effect, all 
quantities of type logical will be short. Note that these short integer and logical quantities 
do not obey the standard rules for association. 

2.15. Additional Intrinsic Functions 

This compiler supports all of the specified in 77 Standard. 
In addition, there are functions performing bitwise Boolean operations ( or, and, xor. 
and not) and for accessing the UNIX command arguments ( getarg and ). 

3. VIOLATIONS OF THE STANDARD 

We know only th.re ways in which our Fortran system violates the new standard: 

3.1. Double Precision Alignment 

The Fornan standards (both l 966 and 1977) permit common or equivalence statements to 
force a double precision quantity onto an odd word boundary, as in the following example: 

real a(4) 
double precision b,c 

equivalence (a(l),b), (a(4),c) 

c 

( 

( 



<~ 
: . " '., 

.. 7 
.... ~ 

.- .. , 
"'• ) 
·/ 

I 
· .•. / 

21-7 

Some machines (e.g., Honeywell 6000, IBM 360) require that double precision quantities 
be on double word boundaries; other machines (e.g., IBM 370), run inefficiently if this 
alignment rule is not observed. It is possible to tell which equivalenced and common 
variables suffer from a forced odd alignment, but every double precision argument would 
have to be assumed on a bad boundary. To load such a quantity on some machines, it 
would be necessary to use separate operations to move the upper and lower halves into 
the halves of an aligned temporary, then to load that double precision temporary; the 
reverse would be needed to store a result. We have chosen to require that all double pre
cision real and complex quantities fall on even word boundaries on machines with 
corresponding hardware requirements, and to issue a diagnostic if the source code 
demands a violation of the rule. 

3.2. Dummy Procedure Arguments 

If any argument of a procedure is of type character, all dummy procedure arguments of 
that procedure must be declared in an external statement. This requirement arises as a 
subtle corollary of the way we represent character string arguments and of the one-pass 
nature of the compiler. A warning is printed if a dummy procedure is not declared exter
nal. Code is correct if there are no character arguments. 

3.3. T and TL Formats 

The implementation of the t (absolute tab) and ti (leftward tab) format codes is defective. 
These codes allow rereading or rewriting part of the record which has already been pro
cessed. (Section 6.3.2 in the Appendix.) The implementation uses seeks, so if the unit is 
not one which allows seeks, such as a terminal, the program is in error. (People who can 
make a case for using ti should let us know.) A benefit of the implementation chosen is 
that there is no upper limit on the length of a record, nor is it necessary to predeclare any 
record lengths except where specifically required by Fortran or the operating system. 

4. INTER-PROCEDURE INTERFACE 

To be able to write C procedures that call or are called by Fortran procedures, it is neces
sary to know the conventions for procedure names, data representation, return values, and 
argument lists that the compiled code obeys. 

4.1. Procedure Names 

On UNIX systems, the name of a common block or a Fortran procedure has an underscore 
appended to it by the compiler to distinguish it from a C procedure or external variable with the 
same user-assigned name. Fortran library procedure names have embedded underscores to 
avoid clashes with user-assigned subroutine names. 

4.2. Data Representations 

The following is a table of corresponding Fortran and C declarations: 

Fortran 

integer•2 x 
integer x 
logical x 
real x 
double precision x 
complex x 
double complex x 
character•6 x 

short int x; 
long int x; 
long int x; 
float x; 
double x; 

c 

struct ( float r, i; ) x; 
struct { double dr, di; l x; 
char x[6]; 

(By the rules of Fortran, integer, logical, and real data occupy the same amount of memory). 



21-8 

4.3. Return Values 

A function of type integer, 101ical, real, or double precision declared as a C function that 
returns the corresponding type. A complex or double complex function is equivalent to a C 
routine with an additional initial argument that points to the place where the return value is to 
be stored. Thus, 

complex function f( ... ) 

is equivalent to 

f (temp, .. .) 
struct ( float r, i; I •temp; 

A character-valued function is equivalent to a C routine with two extra initial arguments: a data 
address and a length. Thus, 

character• 15 function g ( ... ) 

is equivalent to 

g_ (result, length, ... ) 
char result[ ]; 
long int length; 

and could be invoked in C by 

char chars[lS]; 

g_ (chars, l SL, ... ) ; 

Subroutines are invoked as if they were integer-valued functions whose value specifies which 
alternate return to use. Alternate return arguments (statement labels) are not passed to the 
function, but are used to do an indexed branch in the calling procedure. (If the subroutine has 
no entry points with alternate return arguments, the returned value is undefined.) The state
ment 

call nret(•l, •2, •3) 

is treated exactly as if it were the computed ;oto 

goto (1, 2, 3), nret() 

4.4. Argument Lists 

All Fortran arguments are passed by address. In addition, for every argument that is of 
type character or that is a dummy procedure, an argument giving the length of the value is 
passed (The string lengths are long int quantities passed by value). The order of arguments is 
then: 

Extra arguments for complex and character functions 
Address for each datum or function 
A long int for each character or procedure argument 

Thus, the caH in 

---· 

( 

( 



external f 
character•7 s 
integer b(3) 

call samff, b(2), s) 

is equivalent to that in 

int fO; 
char s[7]; 
long int b[3]; 

sam_(f, &bUl, s, OL, 7L); 

21-9 

Note that the first element of a C array always has subscript zero, but Fortran arrays begin at l 
by default. Fortran arrays are stored in column-major order, C arrays are stored in row-major 
order. 

5. FILE FORMATS 

5.1. Structure of Fortran Files 

Fortran requires four kinds of external files: sequential formatted and unformatted, and 
direct formatted and unformatted. On UNIX systems, these are all implemented as ordinary files 
which are assumed to have the proper internal structure. 

Fortran I/O is based on "records". When a direct file is opened in a Fortran program, 
the record length of the records must be given, and this is used by the Fortran I/O system to 
make the file look as if it is made up of records of the given length. In the special case that the 
record length is given as 1, the files are not considered to be divided into records, but are 
treated as byte-addressable byte strings; that is, as ordinary UNIX file system files. (A read or 
write request. on such a file keeps consuming bytes until satisfied, rather than being restricted to 
a single record.) 

The peculiar requirements on sequential unformatted files make it unlikely that they will 
ever be read or written by any means except Fortran I/O statements. Each record is preceded 
and followed by an integer containing the record's length in bytes. 

The Fortran I/O system breaks sequential formatted files into records while reading by 
using each newline as a record separator. The result of reading off the end of a record is 
undefined according to the Standard. The I/O system is permissive and treats the record as 
being extended by blanks. On output, the I/O system will write a newline at the end of each 
record. It is also possible for programs to write newiines for themselves. This is an error, but 
the only effect will be that the single record the user thought he wrote will be treated as more 
than one record when being read or backspaced over. 

5.2. Portability Considerations 

The Fortran l/O system uses only the facilities of the standard C l/O library, a widely 
available and fairly portable package, with the following two nonstandard features: The l/O sys
tem needs to know whether a file can be used for direct 1/0, and whether or not it is possible 
to backspace. Both of these facilities are implemented using the fseek routine, so there is a 
routine canseek which determines if fseek will have the desired effect. Also, the inquire state
ment provides the user with the ability to find out if two files are the same, and to get the name 
of an already opened file in a form which would enable the program to reopen it. (The UNIX 

operating system implementation attempts to determine the full pathname.) Therefore there are 
two routines which depend on facilities of the operating system to provide these two services. 
In any case, the I/O system runs on the PDP-11, V AX-111780, and Interdata 8/32 UNIX sys
tems. 



21-10 

5.3. Pre-Connected Files and File Positions 

Units 5, 6, and 0 are preconnected when the program starts. Unit 5 is connected to the 
standard input, unit 6 is connected to the standard output, unit 0 is connected to the stan-
dard error unit. Ali are connected for sequential formatted 

All the other units are also prec:onnected when execution begins. Unit n is connected to 
a file named fort. n. These files need not exist, nor will they be created unless their units are 
used without first executing an open. The default connection is for sequential formatted I/0. 

The Standard does not specify where a file which has been explicitly opened for sequential 
l/O is initially positioned. In fact, the I/O system attempts to position the file at the end, so a 
write will append to the file and a read will result in an end-of-file indication. To position a file 
to its beginning, use a rewind statement. The preconnected units 0, 5, and 6 are positioned as 
they come from the program's parent process. 

REFERENCES 

1. Sigplan Notices 11, No.3 0976), as amended in X3J3 internal documents through 
"/90.l". 

2. USA Standard TRAN, USAS X3. 9-1966, New United States of America Stan~ 
dards Institute, March 7, 1966. Clarified in Comm. A CM 12, 289 (1969) and Comm. 
ACM14, 628 (1971). 

3. B. W. Kernighan and D. M. 
Prentice-min (1978). 

The C Programming Language, Englewood Cliffs: 

4. 

5. 
D. M. Ritchie, private communication. 

S. C. Johnson, "A Portable Compiler: Theory and Practice", 
Principles of Programming Languages Oanuary 1978). 

5th ACM Symp. on 

6. S. I. Feldman, "An Informal Description EFL", internal memorandum. 

7. B. W. Kernighan, "RATFOR - A Preprocessor a Rationai Fortran", Bell Laboratories 
Computing Science Technical Report #55, (January 1977). 

8. D. M. Ritchie, private communication. 

( 



21 -11 

APPENDIX. Differences Between Fortran 66 and Fortran 77 

The following is a very brief description of the differences between the 1966 [21 and the 
1977 [1] Standard languages. We assume that the reader is familiar with Fortran 66. We do 
not pretend to be complete, precise, or unbiased, but plan to describe what we feel are the most 
important aspects of the new language. At present the only current information on the 1977 
Standard is in publications of the X3J3 Subcommittee of the American National Standards 
Institute. The following information is from the "192" document. This draft Standard is writ
ten in English rather than a meta-language, but it is forbidding and legalistic. No tutorials or 
textbooks are available yet. 

1. Features Deleted from Fortran 66 

1.1. Hollerith 

All notions of "Hollerith1' (nb) as data have been officially removed, although our com
piler, like almost all in the foreseeable future, will continue to support this archaism. 

1.2. Extended Range 

In Fortran 66, under a set of very restrictive and rarely-understood conditions, it is per
missible to jump out of the range of a do loop, then jump back into it. Extended range 
has been removed in the Fortran 77 language. The restrictions are so special, and the 
implementation of extended range is so unreliable in many compilers, that this change 
really counts as no loss. 

2. Program Form 

2.1. Blank Lines 

Completely blank lines are now legal comment lines. 

2.2. Program and Block Data Statements 

A main program may now begin with a statement that gives that program an external 
name: 

program work 

Block data procedures may also have names. 

block data stuff 

There is now a rule that only one unnamed block data procedure may appear in a pro
gram. (This rule is not enforced by our system.) The Standard does not specify the effect 
of the program and block data names, but they are clearly intended to aid conventional 
loaders. 

2.3. ENTRY Statement 

Multiple entry points are now legal. Subroutine and function subprograms may have addi
tional entry points, declared by an entry statement with an optional argument list. 

entry extra(a, b, c) 

Execution begins at the first statement following the entry line. All variable declarations 
must precede all executable statements in the procedure. If the procedure begins with a 
subroutine statement, an entry points are subroutine names. If it begins with a function 
statement, each entry is a function entry point, with type determined by the type declared 
for the entry name. If any entry is a character-valued function, then all entries must be. 
In a function, an entry name of the same type as that where control entered must be 
assigned a value. Arguments do not retain their values between calls. (The ancient trick 



21-12 

of calling one entry point with a large number of arguments to cause the procedure to 
"remember" the locations those arguments, then invoking an entry with just a few 
arguments for later calculation, is stiil illegal. Furthermore, the trick doesn't work in our 
implementation, since are not kept in static storage.) 

2.4. DO Loops 

do variables and range parameters may now be of integer, real, or double precision types. 
(The use of floating do variables is very dangerous because of the possibility of 
unexpected roundoff, and we recommend their use). The action of the 
do statement is now defined for all values of the do parameters. The statement 

do 10 i = I, u, d 

performs max(O, l ( u- D iterations. do variable has a predictable value when 
exiting a loop: the value at the time a goto or return terminates the loop; otherwise the 
value that failed the test 

2.5. Alternate Returns 

In a subroutine or subroutine entry statement, some of the arguments may be noted by 
an asterisk, as in 

subroutine s(a, "', b, .. ) 

The meaning of the "alternate returns" is described in section 5.2 of the Appendix. 

3. Declarations 

3.1. CHARACTER Data 

One of the improvements to the is the addition a character~string data 
type. Local and common character variables must have a length denoted by a constant 
expression: 

character•l7 a, b(3,4) 
character•(6 + c 

If the length is omitted it is assumed to 1. A character string argument 
may have a constant. length, or the length may be declared to be the same as that of the 
corresponding actual argument at mn time by a statement like 

character* C•) a 

(There is an intrinsic functkin !Em that returns the actual length a character string). 
Character arrays and common blocks containing character variables must be packed: in an 
array of character variables, the first character of one element must follow the last charac
ter of the preceding element, without holes. 

3.2. IMPLICIT Statement 

The traditional implied declaration mies still hold: a variable whose name begins with i, j, 
k. I, m, or n is of type integer, other variables are of type real. unless otherwise declared. 
This general rule may be overridden with an implicit statement: 

implicit real fa-c,g), complex ( w-z), character• ( 17) 

declares that variables whose name begins with an a ,b, c, or g are real, those beginning 
with w, x. y, or z are assumed complex. and so on. It is still poor practice to depend on 
implicit typing, but this statement is an industry standard. 

E -

c 

( 



. . ,..., 

21-13 

3.3. PARAMETER Statement 

It is now possible to give a constant a SYtllbolic name, as in 

parameter (x-17, y-x/3, pi-3.14159d0, s-'hello') 

The type of each parameter name is governed by the same implicit and explicit rules as 
for a variable. The right side of each equal sign must be a constant expression (an 
expression made up of constants, operators, and already defined parameters). 

3.4. Array Declarations 

Arrays may now have as many as seven dimensions. (Only three were permitted in 
1966). The lower bound of each dimension may be declared to be other than 1 by using a 
colon. Furthermore, an adjustable array bound may be an integer expression involving 
constants, arguments, and variables in common. 

real a(-5:3, 7, m:n), b(n+l:2•n) 

The upper bound on the last dimension of an array argument may be denoted by an aster
isk to indicate that the upper bound is not specified: 

integer a(S, •), b(•), c(O:l, -2:•) 

3.5. SA VE Statement 

A poorly known rule of Fortran 66 is that local variables in a procedure do not necessarily 
retain their values between invocations of that procedure. At any instant in the execution 
of a program, if a common block is declared neither in the currently executing procedure 
nor in any of the procedures in the chain of callers, all of the variables in that common 
block also become undefined. (The only exceptions are variables that have been defined 
in a data statement and never changed). These rules permit overlay and stack implemen
tations for the affected variables. Fortran 77 permits one to specify that certain variables 
and common blocks are to retain their values between invocations. The declaration 

save a, /b/, c 

leaves the values of the variables a and c and all of the contents of common block b 
unaffected by a return. The simple declaration 

save 

has this effect on all variables and common blocks in the procedure. A common block 
must be saved in every procedure in which it is declared if the desired effect is to occur . 

3.6. INTRINSIC Statement 

All of the functions specified in the Standard are in a single category, "intrinsic func
tions", rather than being divided into "intrinsic" and "basic external" functions. If an 
intrinsic function is to be passed to another procedure, it must be declared intrinsic. 
Declaring it external (as in Fortran 66) causes a function other than the built-in one to be 
passed. 

4. Expressions 

4.1. Character Constants 
Character string constants are marked by strings surrounded by apostrophes. If an apos
trophe is to be included in a constant, it is repeated: 

'a be' 
'ain"t' 



21-14 

There are no null (zero-length) character strings in Fortran 77. Our compiler has two 
different quotation marks, " ' '" and" " ". (See Section 2.9 in the main text.> 

4.2. Concatenation 

One new operator has been added, character string concatenation, marked by a double 
slash (" //"). The result of a concatenation is the string containing the characters of the 
left operand followed by the characters of the right operand. The strings 

'ab' II 'cd' 
'abed' 

are equal. The strings being concatenated must be of constant length in all concatenations 
that are not the right sides of assignments. (The only concatenation expressions in which 
a character string declared adjustable with a "• ( •)" modifier or a substring denotation 
with nonconstant position values may appear are the right sides of assignments). 

4.J.. Character String Assignment 

The left and right sides of a character assignment may not share storage. (The assumed 
implementation of character assignment is· to copy characters from the right to the left 
side.) If the left side is longer than the right, it is padded with blanks. If the left side is 
shorter than the right, trailing characters are discarded. 

4.4. Substrings 

It is possible to extract a substring of a character variable or character array element, using 
the colon notation: 

a(i,j) (m:n) 

is the string of ( n- m+ 1) characters beginning at the m rh character of the character array 
element au. Results are undefined unless m~ n. Substrings may be used on the left 
sides of assignments and as procedure actual arguments. 

4.5. Exponentiation 

It is now permissible to raise real quantities to complex powers, or complex quantities to 
real or complex powers. (The principal part of the logarithm is used). Also, multiple 
exponentiation is now defined: 

a .. b•-c - a •• (b .. c) 

4.6. Relaxation of Itestrktions 
Mixed mode expressions are now permitted. (For instance, it is permissible to combine 
integer and complex quantities in an expression.> 

Constant expressions are permitted where a constant is allowed, except in data state
ments. (A constant expression is made up of explicit constants and parameters and the 
Fortran operators, except for exponentiation to a floating-point power). An adjustable 
dimension may now be an integer expression involving constants, arguments, and vari
ables in 13 common .. 

Subscripts may now be general integer expressions; the old cv ± c' rules have been 
rC111R0\led cl& loop oounds may be general integer, real, or double pcecision expressions. 
Computed pto expressions and 110 unit numbers may be general integer expressions. 

C·. -· . 

( 

( 



\ 

21-1 5 

S. Executable Statements 

5.1. IF-THEN-ELSE 

At last, the if-then-else branching structure has been added to Fortran. It is called a 
"Block Ir'. A Block If begins with a statement of the form 

if ( ... ) then 

and ends with an 

end if 

statement. Two other new statements may appear in a Block If. There may be several 

else if(. . .) then 

statements, followed by at most one 

else 

statement. If the logical expression in the Block If statement is true, the statements fol· 
lowing it up to the next elseif, else, or endlf are executed. Otherwise, the next eiseif 
statement in the group is executed. If none of the elseif conditions are true, control 
passes to the statements following the else statement, if any. (The else must follow all 
elseifs in a Block If. Of course, there may be Block Ifs embedded inside of other Block If 
structures). A case construct may be rendered 

if (s .eq. 'ab') then 

else if (s .eq. 'cd') then 

else 

end if 

5.2. Alternate Returns 

Some of the arguments of a subroutine call may be statement labels preceded by an aster
isk, as in 

can joe(j, •10, m, .. 2) 

A return statement may have an integer expression, such as 

return k 

If the entry point has n alternate return (asterisk) arguments and if 1 ~ k ~ n, the return 
is followed by a branch to the corresponding statement label; otherwise the usual return to 
the statement following the call is executed. 

6. Input/Output 

6.1. Format Variables 

A format may be the value of a character expression (constant or otherwise), or be stored 
in a character array, as in 

write(6, '(i5)') x 



21-16 

6.2. END==, ERR=, and IOSTAT= Clauses 

A read or write statement may contain end=, err=, and iostat== clauses, as in 

write(6, 101, err-20, iostat-a(4)) 
rc:u.H5, !01, err- er11J-30, io~tat-id 

Here 5 and 6 are the units on which the 110 is done, 101 is the statement number of the 
associated format, 20 and 30 are statement numbers, and 11 and x are integers. If an error 
occurs during I/O, control returns to the program at statement 20. If the end of the file is 
reached, control returns to the program at statement 30. In any case, the variable 

· referred to in the iostat== clause is given a value when the I/O statement finishes. (Yes, 
the value is assigned to the name on the right side of the equal sign.) This value is zero if 
all went wen, negative for end of file, and some positive value for errors. 

6.3. Formatted I/O 

6.3.1. Character Constants 

Character constants in formats are copied literally to the output. Character constants can
not be read into. 

write(6,'G2," isn'"'t ",il)') 7, 4 

produces 

7 isn't 4 

Here the format is the character constant 

(i2,' isn"t ',i 1) 

and the character constant 

isn't 

is copied into the output 

6.3.2. Positional Editing Codes 
t, H, tr, and x codes control where the next character is in the record tr nor me specifies 
that the next character is n to the right of the current position. tln specifies that the next 
character is n to the left of the current position, allowing parts of the record to be recon
sidered. tn says that the next character is to be character number n in the record. (See 
section 3.4 in the main 

6.3.3. Colon 

A colon in the format terminates the I/O operation if there are no more data items in the 
I/O list, otherwise it has no effect. In the fragment 

x-'("hello", :, "there", i4)' 
write(6, x) 12 
write(6, x) 

the first write statement prims hello there 12, while the second only prints hello. 

6.3.4. Optional Plus Signs 
According to the Standard, each implementation has the option of putting plus signs in 
front of non-negative· numeric output. The sp format code may be used to make the 
optional plus signs actually appear for all subsequent items while the format is active. The 
ss format code guarantees that the I/O system will not insert the optional plus signs, and 
the s format code restores the default behavior of the 110 system. (Since we never put 

( 

( 



:·" 

i 
./ 

21-17 

out optional plus signs, ss and s codes have the same effect in our implementation.) 

6.3.5. Blanks on Input 

Blanks in numeric input fields, other than leading blanks will be ignored following a bn 
code in a format statement, and will be treated as zeros following a bz code in a format 
statement. The default for a unit may be changed by using the open statement. (Blanks 
are ignored by default.) 

6.3.6. Unrepresentable Values 

The Standard requires that if a numeric item cannot be represented in the form required 
by a format code, the output field must be filled with asterisks. (We think this should 
have been an option.) 

6.3.7. lw.m 

There is a new integer output code, iw.m. It is the same as iw, except that there will be at 
least m digits in the output field, including, if necessary, leading zeros. The case i w. 0 is 
special, in that if the value being printed is 0, the output field is entirely blank. iw.1 is 
the same as i w. 

6.3.8. Floating Point 

On input, exponents may start with the letter E, D, e, or d. All have the same meaning. 
On output we always use e. The e and d format codes also have identical meanings. A 
leading zero before the decimal point in e output without a scale factor is optional with 
the implementation. (We do not print it.) There is a gw.d format code which is the same 
as ew.d and fw.d on input, but which chooses for e formats for output depending. on the 
size of the number and of d. 

6.3.9. "A" Format Code 
A codes are used for character values. aw use a field width of w, while a plain a uses the 
length of the character item. 

6.4. Standard Units 
There are default formatted input and output units. The statement 

read 10, a, b 

reads from the standard unit using format statement 10. The default unit may be expli
citly specified by an asterisk, as in 

read(•, 10) a,b 

Similarly, the standard output units is specified by a print statement or an asterisk unit: 

print 10 
write(•, 10) 

6.5. List-Directed Formatting 
List-directed 1/0 is a kind of free form input for sequential 1/0. It is invoked by using an 
asterisk as the format identifier, as in 

read(6, •) a,b,c 



21-18 

On input, values are separated by strings of blanks and possibly a comma. Values, except 
for character strings, cannot ~ntain blanks. End of record counts as a blank, except in 
!=haracter strings, where it is ignored. Complex constants are given as two real cons~nt6 
separated by a comma and enciosed in parentheses. A null input field, such as between 
two consecutive commas, means the corresponding variable in the 1/0 list is not changed. 
Values may be preceded by repetition counts, as in 

4•(3.,2.) 2•, ~·'hello' 

which stands for 4 complex constants, 2 null values, and 4 string constants. 

For output, suitable formats are chosen for each item. The values of character strings are 
printed~ they are not enclosed in quotes, so they cannot be read back using list-directed 
input. 

' 
~.6. Dir~ct 1/0 

A file connected for direct access consists of a set of equal-sized records each of which is 
uniquely identified by a positive integer. The records may be written or read in any order, 
using direct access 1/0 statements. 

Direct access read and write statements have an extra argument, rec=, wbi~h gives the 
record number to be read or written. 

read(2, rec== 13, err==20) (a(i), i•d, 203) 

reads the thirteenth re::ord into the array a. 
The size of the records must be given by an open statement (see below). Direct access 
files may be connected for either formatted or unformatted I/0. 

6. 7. Internal Files 

Internal files are character string objects, such as variables or substrings, or arrays of type 
character. In the former cases there is only a single record in the file, in the latter case 
each array element is a record. The Standard includes only sequential formatted I/O on 
internal files. (l/O is not a very precise term to use here, but internal files are dealt with 
using re~ and write}. There is no list-directed 1/0 on internal files. Internal files are 
used by giving the name of the character object in place of the unit number, as in 

character•80 x 
read(S,"(a)") x 
qiap(x,"(i3,i4)") nl,n2 

whi!=h reads a card i~ iato x and then reads two integers from the front of it. A 
sequential read or wrUe always starts at the beginning of an internal file. 

(We also support a compatible extension, direct l/O on internal files. This is like direct 
1/0 on external files, except that the number of records in the file cannot be changed.) 

6.8. OPEN, CLOSE, and INQUIRE Statements 

These statements are used to connect and disconnect units and files, and to gather infor-
1T1;1tia,n about units and files. 

6.B.1, tlrt;~ 

The •'"8 stacem.em is used to connect a file with a unit, or to alter some properties of the 
c9"necti91i. The following is a minimal example. 

o,penO, file• 'fort.junk') 

open takes a variety of arguments with meanings described below. 

c· 

( 

( 



) 

21-1 9 

unit= a small non-negative integer which is the unit to which the file is to be connected. 
We allow, at the time of this writing, 0 through 9. If this parameter is the first one 
in the open statement, the unit= can be omitted. 

iostat== is the same as in read or write. 

err= is the same as in read or write. 

file= a character expression, which when stripped of trailing blanks, is the name of the 
file to be connected to the unit. The filename should not be given if the 
status= scratch. 

status= one of old, new, scratch, or unknown. If this parameter is not given, unknown 
is assumed. If scratch is given, a temporary file win be created. Temporary files are 
destroyed at the end of execution. If new is given, the file wm be created if it 
doesn't exist, or truncated if it does. The meaning of unknown is processor depen
dent; our system treats it as synonymous with old. 

access= sequential or direct, depending on whether the file is to be opened for sequen
tial or direct I/O. 

form== formatted or unformatted. 

red= a positive integer specifying the record length of the direct access file being opened. 
We measure all record lengths in bytes. On UNIX systems a record length of l has 
the special meaning explained in section 5.1 of the text. 

blank= nun or zero. This parameter has meaning only for formatted I/O. The default 
value is null. zero means that blanks, other than leading blanks, in numeric input 
fields are to be treated as z.eros. 

Opening a new file on a unit which is already connected has the effect of first closing the 
old file. 

6.8.2. CLOSE 

close severs the connection between a unit and a file. The unit number must be given. 
The optional parameters are fostat= and err= with their usual meanings, and status= 
either keep or delete. Scratch files cannot be kept, otherwise keep is the default. delete 
means the file will be removed. A simple example is 

close(3, err= 17) 

6.8.3. INQUIRE 

statement about a unit ("inquire by unit") or a file 
("inquire by file"). Simple examples are: 

inquire(unit == 3, namexx) 
inquire(file='junk', number=n, exist""'O 

file= a character variable specifies the file the inquire is about. Trailing blanks in the file 
name are ignored. 

unit= an integer variable specifies the unit the inquire is about Exactly one of file= or 
unit= must be used. 

iostat=, err= are as before. 

exist= a logical variable. The logical variable is set to . true. if the file or unit exists and 
is set to .false. otherwise. 

opened= a logical variable. The logical variable is set to . true. if the file is connected to 
a unit or if the unit is connected to a file, and it is set to .false. otherwise. 



21-20 

number= an integer variable to which is assigned the number of the unit connected to 
the file, if any. 

named= a logical variable to which is assigned .true. if the file has a name, or .false. 
otherwise. ' 

name= a character variable to which is assigned the name of the file (inquire by file) or 
the name of the file connected to the unit (inquire by unit). The name will be the 
full name of the file. 

access= a character variable to which will be assigned the value 'sequential' if the con
nection is for sequential I/O, 'direct' if the connection is for direct I/O. The value 
becomes undefined if there is no connection. 

sequential= a character variable to which is assigned the value 'yes' if the file could be 
connected for sequential I/O, 'no' if the file could not be connected for sequential 
I/O, and 'unknown' if we can't tell. 

direct= a character variable to which is assigned the value 'yes' if the file could be con
nected for direct I/O, 'no' if the file could not be connected for direct I/O, and 'unk
nown' if we can't tell. 

form= a character variable to which is assigned the value 'formatted' if the file is con
nected for formatted I/O, or 'unformatted' if the file is connected for unformatted 
I/O. 

formatted= a character variable to which is assigned the value 'yes' if the file could be 
connected for formatted I/O, 'no' if the file could not be connected for formatted 
l/O, and 'unknown' if we can't tell. 

unformatted= a character variable to which is assigned the value 'yes' if the file could be 
connected for unformatted I/O, 'no' if the file could not be connected for unformat
ted I/O, and 'unknown' if we can't tell. 

reel= an integer variable to which is assigned the record length of the records in the file 
if the file is connected for direct access. 

nextrec= an integer variable to which is assigned one more than the number of the the 
last record read from a file connected for direct access. 

blank= a character variable to which is assigned the value 'null' if null blank control is in 
effect for the file connected for formatted I/O, 'zero' if blanks are being converted to 
zeros and the file is connected for formatted I/O. 

The gentle reader will remember that the people who wrote the standard probably weren't 
thinking of his needs. Here is an example. The declarations are omitted. 

openO, file-"/dev/console") 

On a UNIX system this statement opens the console for formatted sequential I/0. An inquire 
statement for either unit 1 or file "/dev/console" would reveal that the file exists, is connected 
t-0 unit 1, has a name, namely ''/dev/console", is opened for sequential I/O, could be connected 
for sequential I/O, could not be connected for direct I/O (can't seek), is connected for format
ted 1/0, could be connected for formatteci I/O, could not be connected for unformatted I/O 
(can't s~ek), has neither a record length nor a next record number, and is ignoring bianks in 
numeric fields. 

In the UNIX system environment, the only way to discover what permissions you have for 
a file is to open it and try to read and write it. The err= parameter will return system error 
numbers. The inquire statement does not give a way of determining permissions. 

(:. 

(_ 

,. 

l_ 



.- ...... 
RATFOR - A Preprocessor for a Rational Fortran 

Brian W. Kernighan 

Bell Laboratories 
Murray Hill, New Jersey 07974 

ABSTRACT 

Although Fortran is not a pleasant language to use, it does have the advantages of universality and 
(usually) relative efficiency. The Ratfor language attempts to conceal the main deficiencies of Fortran 
while retaining its desirable qualities, by providing decent control flow statements: 

• statement grouping 

• if-else and switch for decision-making 

• while, for, do, and repeat-until for looping 

• break and next for controlling loop exits 

and some "syntactic sugar": 

• free form input (multiple statements/line, automatic continuation) 

• unobtrusive comment convention 

• translation of >, > =, etc., into .GT., .GE., etc. 

• return(expression) statement for functions 

• define statement for symbolic parameters 

• include statement for including source files 

Ratfor is implemented as a preprocessor which translates this language into Fortran. 

Once the control flow and cosmetic deficiencies of Fortran are hidden. the resulting language is 
remarkably pleasant to use. Ratfor programs are markedly easier to write, and to read, and thus easier to 
debug, maintain and modify than their Fortran equivalents. 

It is readily possible to write Ratfor programs which are portable to other env ironments. Ratfor is 
written in itself in this way, so it is also portable: versions of Ratfor are now running on at least two 
dozen different types of computers at over five hundred locations. 

This paper discusses design criteria for a Fortran preprocessor, the Ratfor language and its imple
mentation, and user experience. 

22-1 



RATFOR -- Preprocessor a Rational Fortran 

Brian W. Kernighan 

Murray 

1. INTRODUCTION 

Most programmers will agree that Fortran 
is an unpleasant to program in, yet 
there are many occasions when they are forced 
to use it For example, Fortran is often the 
language thoroughly supported on the local com
puter. Indeed. it is the closest to a univer
sal programming language currently available: 
with care ii is possible to write large, truly port
able Fortran programs[!!. Finally, Fonran is 
often !.he most "efficient" language available, 
particularly for programs requiring much compu
tation. 

But. Fortran is unpleasant. the 
worst deficiency is in the control flow statements 
- conditional branches and loops -- which 
express the logic of the program. The condi· 
tional statements in Fortran are primitive. The 
Arithmetic IF forces the user into at least two 
statement numbers and two GOTO's; it 
leads to unintelligible code, and is eschewed 
good programmers. The Logical IF is better, in 
that the test part can be stated clearly, but hope
lessly restrictive because the statement that fol
lows the lF can only be one Fortran statement 
(with some further restrictions!). And of course 
there can be no ELSE part to a Fortran IF: there is 
no way to specify an ai!ernative action if the ff is 
Ml satisfied. 

The Fortran oo restricts the user to 
forward in an arithmetic progression. It is fine 
for"! to N in steps of l for 2 or .. .)'', but there 
is no direct way to go backwards, or even 
ANSI Fortran[2J) to go from l to N-1. And of 
course the DO is useless if one's problem doesn't 
map into an arithmetic progression. 

The result of these failings is that Fortran 
programs must be wrinen with numerous labels 
and branches. The resulting code is particularly 
difficult to read and understand, and thus hard to 

debug and modify. 

When one is faced with an unpleasant 
language, a useful is to define a new 

preprocessor. This is the approach taken with 
Ratfor. (The preprocessor idea is of course not 
new, and preprocessors for Fortran are especially 
popular A recem [3l of preproces-
sors shows more tha.n of which at least half a 
dozen are widely available.) 

2. LANGUAGE DESCRIPTION 

Design 

Ratfor attempts to retain the merits of 
Fortran (universa!Hy, efficiency) 
while hiding the worst Fortran inadequacies. 
The is Fortran excep! for two aspects. 
First, since control flow is central to any pro
gram, regardless of the specific application, the 
primary task of Ratfor is to conceal this part of 
Fonran from the user, by providing decent con
trol 11ow structures. These structures are 
sufficient and comfortable for structured pro
gramming in the narrow sense of programming 
without GOTO's. Second, since the preprocessor 
must examine an entire: program to translate the 
control structure, it is at the same time 
to dean up many of the "cosmetic" deficiencies 
of Fortran. and thus a language which is 
easier and more pleasant to read and write. 

rhese two aspects - contro! flow 
and cosmetics - Ratfor does nothing about the 
hosi of other weaknesses of Foman. Although 
it wouid be 10 extend it to pro
vide character strings, for example, they are not 
needed everyone. and of course the prepro-
cessor would be harder to implement 
Throughout, the principle which has 
determined what should be in Ratfor and what 
should not has been daesn 't know any For
rran. Any language feature which would require 

Thi~ paper is a revised and .expanded version of oe pub!ished in Sofiware-Pracr1ce and Experience. October 
197 __ The Ra1for described nere 1s the one in use on UNIX and Gcos at Bell Laboratories, Murray Hill, N. J. 

22-2 

( 



that Ratfor unders1and Fortran 
omined. We will rewm to ihis point in the sec
tion on 

Even the confirl.es of 
and cosrnetics~ we have at.tempted to 
in what features to The intent has been 
to a small set of the con-
structs, rather than to 
has ever been 

The rest 
ma! 
trol How 
used to 

men ts 

dition 
example, 

looks like. 

if (x > 100) 
{ can error("x > 

cannot be written 

into murky Fortran~ 

group of statements: 

(x Je. 100) goto 

When the 
n-~ust be 

it does. 

and less obtrusive 
em.I, and of course 
mrn 

c:osrnetics 
code~ and thus 
character H > ~, 
trans!ates it 

tran 

call errnr(5hx > 
err ~= 1 

that 

an infor-

around the 

in 

or and 
have For-

-3 

quotes are not allowed in ANS! 

so Ratfor converts it into the 
number of H's: computers cm.mt better than 
people do. 

Ratfor a free-form statements 
may appear anywhere on a line, and several may 
appear if they are separated by semi-
colons. The above could also be wriHen 
as 

if 
cal! error("x > l 00") 

return 

case, semicolon is needed at !he end 
each line because Ratfor assumes there is one 

statement per line unless told otherwise. 

statement that follows the 
or otherwise), no 

0.0 & z <""' 0.0) 
20) y' l 

No continuation need be indicated because the 
statement is not finished on the first line. 

continues lines when it seems 
are not yet done. (The con

is discussed in detail later.) 

permits 
wide latilude wise to 

one that is readable, then stick to it In par
ticular, proper indentation is vitai, to make the 

structure the program obvious to the 
reader. 

Ratfor an else statement to han
is true, do 

isw O: l) a, b l 
else 

(sw ) b, a 

then the 

~fhe Fortran of this code is cir-

cuiwus 



10 

20 

if (a .gt. b) goto I 0 

SW - I 

SW - 0 
write(6, I) a, b 
goto 20 

write{6, I) b, a 

22-4 

This is a mechanical translation; shorter forms 
exist, as they do for many similar situations. But 
all 1ranslations suffer from the same problem: 
since they are translations, they are less clear and 
understandable than code that is not a transla
tion. To understand the Fortran version, one 
must scan the entire program to make sure that 
no other Statement branches to statements I 0 or 
20 before one knows that indeed this is an if
else construction. With the Ratfor version, there 
is no question about how one gets to tire parts of 
the statement. The if-else is a single uftlit, which 
can be read, tmderstood, and ignorld if not 
relevant. The program says wl'lat it means. 

As before, if the statement following an if 
or an else is a single statement, no braces are 
needed: 

if (a <- b) 

SW - 0 
else 

SW - 1 

The syntax of the if statement is 

if (legal Fortran condition! 
Ratfor statement 

else 
Ra(/or statement 

wfiere the else part is optional. The legal Fortran 
condition is atlything that can legaUy go into a 
Fortran Logical IF. Ratfor does not check this 
clause, since it does not know enough Fortran to 
know what is permitted. The R.tttf(Jr statemem is 
any Ratfor or Fortran statement, or any collec
tion of tf'iem in braces. 

Nested if's 

Since the statement that follows an if or an 
else can be any Ratfor statement, this leads 
immediately to the possibility of another if or 
else. As a useful example, consider this problem: 
the variable r is to be set to ...,... , if x is less than 
zero. to +I if t is greater than 100, and to 0 
otherwise. Then in Ratfor. we write 

if (x < 0) 

f - -1 
else if (x > 100) 

f ... +l 
else 

f .. 0 

Here the statement after the first else is another 
if-else. Logically it is just a single statement, 
although it is rather complicated. 

This code says what it means. Any ver
sion written in straight Fortran wiH necessarily be 
indirect because Fortran dbes not let you say 
what you mean. And as always, clever shortcuts 
may turn out to be too clever to understand a 
year from now. 

Following an else with an if is one way to 
write a multi-way branch in Ratfor. In generat 
the structure 

if(...) 

else if ( ... ) 

else if (. .. ) 

else 

provides a way to specify the choice of exactly 
one of several alternatives. (Ratfor also provides 
a switch statement which does the same job in 
certain special cases; in more general situations, 
we have to make do with spare parts.) The tests 
are. laid out in sequence, and each one is fol
lowed by the code associated with it. Read down 
the list of decisions until one is found that is 
satisfied. The code associated with this condition 
is executed. and then the entire structure is 
finished. The trailing else part handles the 
"default" case, where none of the other condi
tions apply. If there is no default action, this 
final else part is omitted: 

if (x < 0) 
x-0 

else if (x > 100) 
x - 100 

if-else ambiguity 

There is one thing to notice about compii
cated structures involving nested irs and else's. 
Consider 

····-' 

c 

· .. .....,......... ... 

( 



if (x > 0) 
if (y > 0) 

write(6, l) x, y 

else 
write(6, 2) y 

There are two ifs and only one else. Which if 
does the else go with? 

This is a genuine ambiguity in Ratfor, as it 
is in many other programming languages. The 
ambiguity is resolved in Ratfor (as elsewhere) by 
saying that in such cases the else goes with the 
closest previous un-else'ed if. Thus in this case, 
the else goes with the inner if, as we have indi
cated by the indentation. 

It is a wise practice to resolve such cases 
by explicit braces, just to make your intent clear. 
In the case above, we would write 

if (x > 0) { 
if (y > 0) 

write(6, l) x, y 
else 

write(6, 2) y 

which does not change the meaning, but leaves 
no doubt in the reader's mind. If we want the 
other association, we musr write 

if (x > 0) { 
if (y > 0) 

write(6, 1) x, y 

else 
write(6, 2) y 

The "switch" Statement 

The switch statement provides a dean way 
to express multi-way branches which branch on 
the value of some integer-vaiued expression. 
The syntax is 

switch (expression ) \ 

case exprl : 
s1a1emen1s 

case expr 2, exprJ : 
s1a1eme111s 

default: 

Each case is followed by a list of cornrna
separa!ed integer expressions. The expresswn 
inside switch is compared against the case 
expressions exprl, expr2. and so on in turn until 
one matches, at which time the statements fol
lowing that case are executed. If no cases match 
expression, and there is a defaull section, the 

5 

statements with ii are done; if there is no 
default, nothing is done. In all situations, as 
soon as some block of statements is executed, 
the entire switch is exited immediately. 
(Readers familiar with C[4J should beware that 
this behavior is not the same as the C switch.) 

The "do" Statement 

The do statement in Ratfor is quite similar 
to the DO statement in Fortran, except that it 
uses no statement number. The statement 
number, after all, serves only to mark the end of 
the DO, and this can be done just as easily with 
braces. Thus 

do i = I, n ( 
x(i) 0.0 
y(i) = 0.0 
z(i) = 0.0 

is the same as 

10 

do 10 i = l, n 
x(i) "" 0.0 
y(i) = 0.0 
z(i) = 0.0 

continue 

The syntax is: 

do h?Ral-forrran-DO-rext 
Ro.rtor sratemenr 

The part that follows the keyword do has to be 
something that can legally go into a Fortran DO 

statement. Thus if a local version of Fortran 
allows DO limits 10 be expressions (which is not 
currently permitted in ANSl Fortran), they can be 
used in a Ratfor do. 

The Ratfor s1a1emen1 part will often be 
oenclosed in braces, but as with the if, a single 
statement need not have braces around it. This 
code sets an array to zero: 

do i = l, n 
x(i) ""~ 0.0 

S!igh!!y more complicated, 

do i = l, n 
do j = l, n 

m(i,j) = 0 

sets the entire array m to zero, and 



do i - l, n 
do j ""' 1, n 

if (i < j) 
m(i, j) ""' -1 

else if (i ""'= j) 
mO, j) = O 

else 
m(i,j)-+l 

22-6 

sets the upper triangle of m to - I, the diagonal 
to zero, and the lower triangle to + l. (The 
operator ... "" is "equals", that is, " ".) ln 
each case, the statement that follows the do is 
logically a single statement, even though compli
cated, and thus needs no braces. 

"break" and "next" 

Ratfor provides a statement for a 
loop early, and one for beginning the next itera
tion. break causes an immediate exit from the 
do; in effect it is a branch to the statement after 
the do. next is a branch to the bottom of the 
loop, so it causes the next iteration to be done. 
For example, this code skips over negative 
values in an array: 

do i ... l, n ( 
if (x(i) < 0.0) 

next 
process positive eleme!ll 

break and next also· work in the other Ratfor 
looping constructions that we wili talk about in 
the next few sections. 

break and next can be followed by an 
integer to indicate breaking or iterating that level 
of enclosing loop; thus 

break 2 

exits from two levels of enclosing loops, and 
br.eak l is equivalent to break. next 2 iterates 
the second enclosing loop. (Realistically, multi
level break's and nexfs are not likely to be 
much used because they lead to code that is hard 
to understand and somewhat risky to change.) 

The "while" Statement 

One of the problems with the Fortran DO 

statement is that it generally insists upon being 
done once, regardless of its limits. If a loop 
begins 

DO l,,. 2. l 

this will typically be done once with I set to 2, 
even though common sense would suggest that 
perhaps it shouldn't be. Of course a Ratfor do 
can easily be preceded by a test 

if (j < ... k) 

do i ""j, k 

but this has to be a conscious act, and is often 
overlooked programmers. 

A more serious problem with the DO state
ment is that it encourages that a program be 
written in terms of an arithmetic progression 
with small positive steps, even though that may 
not be the best way to write it. If code has to be 
contorted to fit the requirements imposed by the 
Fortran DO, it is that much harder to writ.e and 
understand. 

To overcome these difficulties, Ratfor pro
vides a while statement, which is simply a loop: 
"while some condition is true, repeat this group 
of statements". It has no preconceptions about 
why one is looping. For this routine to 
compute by the Maclaurin series combines 
two termination criteria. 

real function sin(x, e) 
#returns sin(x) to accuracy e, by 
# sin(x) - x - xu3/3! + x .. 5/5! - ... · 

sin ... x 
term= x 

i = 3 
while (abs(term) >e & i< 100) 

term - -term • x.$*2 I float(i•(i-1)) 
sin = sin + term 
i=i+2 

return 
end 

Notice that if the routine is entered with 
term a!ready smaller than e, the loop will be 
done ::ero times, that is, no attempt will be made 
to compute xuJ and thus a potential underflow 
is avoided. Since the test is made at the top of a 
while instead of the bottom, a special case 
disappears - the code works at one of its boun
daries. (The <est i< 100 is the other boundary -
making sure the routine stops after some max
imum number of iterations.) 

As an aside, a sharp character "#" in a 
line marks the beginning of a comment; the rest 
of the line is comment. Comments and code can 
co-exist on the same line - one can make mar
ginal remarks, which is not possible with 
Foman's "C in column l" convention. Blank 
lines are also permitted anywhere (!hey are not 
in Fortran); they should be used to emphasize 
the natural divisions of a program. 

( 

( 



-, ·, 

/ 

The syntax of the while statement is 

while (legal Fortran condition) 
Ra(/or statement 

22-7 

As with the if, legal Fortran condition is some
thing that can go into a Fortran Logical IF, and 
Rat/'or statement is a single statement, which may 
be multiple statements in braces. 

The while encourages a style of coding not 
normally practiced by Fortran programmers. For 
example, suppose nextch is a function which 
returns the next input character both as a func
tion value and in its argument. Then a loop to 
find the first non-blank character is just 

while (nextch(ich) = == iblank) 

A semicolon by itself is a null statement, which 
is necessary here to mark the end of the while; 
if it were not present, the while would control 
the next statement. When the loop is broken, 
ich contains the first non-blank. Of course the 
same code can be written in Fortran as 

100 if (nextch(ich) .eq. iblank) goto 100 

but many Fortran programmers (and a few com
pilers) believe this line is illegal. The language at 
one's disposal strongly influences how one thinks 
about a problem. 

The "for" Statement 

The for statement is another Ratfor loop, 
which attempts to carry the separation of loop
body from reason-for-looping a step further than 
the while. A for statement allows explicit initiali
zation and increment steps as part of the state
ment. For example, a DO loop is just 

for ( i = 1; i < = n; i = i + 1) ... 

This is equivalent to 

i = 1 
while (i < = n) 

i=i+ 

The initialization and increment of i have been 
moved into the for statement, making it easier to 
see at a glance what controls the loop. 

The for and while versions have the 
advantage that they will be done zero times if n 
is less than I; this is not true of the do. 

The loop of the sine routine in the previ
ous section can be re-written with a for as 

for (i=3; abs(term) > e & i < 100; i-i+2) 
term - -term• xu2 I float(i•(i-1)) 
sin .. sin + term 

The syntax of the for statement is 

for ( init ; condition ; increment ) 
Ra1/'or statement 

init is any single Fortran statement, which gets 
done once before the loop begins. increment is 
any single Fortran statement, which gets done at 
the end of each pass through the loop, before 
the test. condition is again anything that is legal 
in a logical IF. Any of init. condition. and incre
ment may be omitted, although the semicolons 
must always be present. A non-existent condition 
is treated as always true, so for(;;) is an 
indefinite repeat. (But see the repeat-until in 
the next section.) 

The for statement is particularly useful for 
backward loops, chaining along lists, loops that 
might be done zero times, and similar things 
which are hard to express with a DO statement, 
and obscure to write out with IF's and GOTO's. 
For example, here is a backwards DO loop to find 
the last non-blank character on a card: 

for (i ... 80; i > O; i - i - 1) 
if (card(i) !- blank) 

break 

("!-" is the same as ".NE."). The code scans 
the columns from 80 through to l. If a non
blank is found. the loop is immediately broken. 
(break and next work in for's and while's just as 
in do's). If i reaches zero, the card is all blank. 

This code is rather nasty to write with a 
regular Fortran DO. since the loop must go for
ward, and we must explicitly set up proper condi· 
tions when we fall out of the loop. (Forgetting 
this is a common error.) Thus: 

DO 10 J - l, 80 
I =- 81 - J 
IF (CARD(I) .NE. BLANK) GO TO 11 

10 CONTINUE 
1-0 

11 

The version that uses the for handles the termi
nation condition properly for free; i is zero when 
we fall out of the for loop. 

The increment in a for need not be an 
arithmetic progression; the following program 
walks along a list (stored in an integer array ptrl 
until a zero pointer is found, adding up elements 
from a parallel array of values: 



22-8 

sum - 0.0 
for (i • first; i > 0; i - ptr(i)) 

sum - sum + value(i) 

Noti-ce that the code works correctly if the list is 
empty. Again, placing the test at the top of a 
loop instead of the bottom eliminates a potential 
boundary error. 

The "repeat-until" statement 

In spite of the dire warnings, there are 
times when one really needs a loop that tests at 
the bottom after one pass through. This service 
is provided by the repeat-until: 

repeat 
Ra(for srarement 

until (le!(a/ Fortran condirion) 

The Ra(for statement part is done once, then the 
condition is evaluated. If it is true, the loop is 
exited; if it is false, another pass is made. 

The until part is optional, so a bare repeat 
is the cleanest way to specify an infinite loop. Of 
course such a loop must ultimately be broken by 
some transfer of control such as stop, return, or 
break. or an implicit stop such as running out of 
input with a READ statement. 

As a matter of observed factf81. the 
repeat-until statement is much less used than the 
other looping constructions; in particular, it is 
typically outnumbered ten to one by for and 
while. Be cautious about using it, for loops that 
test only at the bottom often don't handle null 
cases well. 

More on break and next 

break exits immediately from do, while, 
for. and tepeat-until. next goes to the test part 
of do, while and repeat-ufttil, and to the incre
ment step of a for. 

"return" Statement 

The standard Fortran mechanism for 
returning a value from a function uses the name 
of the function as a variable which can be 
assigned to; the last value stored in it is the 
function value upon return. For example, here 
is a routine equal which returns I if two arrays 
are identical, and zero if they dilfer. The array 
ends are marked by the special value - I. 

# equal _ compare str I to str2; 
# return I if equal, 0 if not 

says 

integer function equal(strl, str2) 
integer strl 000), str2000) 
integer i 

for (i ... I; strl(i) -- str2(i); i - i + l) 
if (strl (i) =- - -1) { 

equal - 0 
return 
end 

equal - 1 
return 

In many languages (e.g., PL/I) one instead 

return (expression) 

to return a value from a function. Since this is 
often clearer, Ratfor provides such a return 
statement - in a function F, return(expression) 
is equivalent to 

I F - expression; return I 
For example, here is equal again: 

# equal _compare strl to str2; 
# return l if equal, 0 if not 

integer function equal(strl, str2) 
integer strl (100), str2 (I 00) 
integer i 

for (i - I; strl(i) -- str2(i); i - i +I) 
if (strl (i) =- - -1) 

return(O) 
end 

return(!) 

If there is no parenthesized e>epression after 
return, a normal RETURN is made. (Another 
version of equal is presented shortly.) 

Cosmetics 

As we said above, the visual appearance of 
a language has a substaniial elfect on how easy it 
is to read and understand pr<>grams. Accord
ingly, Ratfor provides a number of cosmetic 
facilities which may be used to make programs 
more readable. 

Free-form Input 

Statements can be placed anywhere on a 
line; long statements are continued automati
cally, as are long conc!itions in if, while, for, and 
until. Blank tines are ignored. Multiple state
ments may appear on one line, if they are 
separated by semicolons. No semicolon is 
needed at the end of a line, if Ratfor can make 

£ 
\; 

( 

· .... --' 

( 

( 



\ 

) 

some reasonable guess about whether the state
ment ends there. Lines ending with any of the 
characters 

+ & 

are assumed to be continued on the next line. 
Underscores are discarded wherever they occur; 
all others remain as part of the statement. 

Any statement that begins with an all
numeric field is assumed to be a Fortran label, 
and placed in columns 1-5 upon output. Thus 

write(6, 100); 100 format("hello") 

is converted into 

write (6, l 00) 
100 format(5hhello) 

Translation Services 

Text enclosed in matching single or double 
quotes is converted to nH ... but is otherwise 
unaltered (except for formatting - it may get 
split across card boundaries during the reformat
ting process}. Within quoted strings, the 
backslash '\' serves as an escape character: the 
next character is taken literally. This provides a 
way to get quotes (and of course the backslash 
itself) into quoted strings: 

"\ \ \'" 
is a string contammg a backslash and an apos
trophe. (This is not the standard convention of 
doubled quotes, but it is easier to use and more 
general.) 

22-9 

Any line that begins with the character'%' 
is left absolutely unaltered except for stripping 
off the '%' and moving the line one position to 
the left. This is useful for inserting control 
cards, and other things that should not be 
transmogrified (like an existing Fortran pro
gram). Use '%' only for ordinary statements, 
no! for the condition parts of if, while, etc., or 
the output may come out in an unexpected place. 

The following character translations are 
made, except within single or double quotes or 
on a line beginning with a'%'. 

. eq. 

> . gt. 
< .IL 
& .and. 

. not. 

!-
>-
<== 

.ne . 

.ge . 

.le. 

.or. 

.not. 

In addition, the following translaiions are pro
vided for input devices with restricted character 
sets. 

! 
$( 

J 
$) 

"define" Statement 

Any string of alphanumeric characters can 
be defined as a name; thereafter, whenever that 
name occurs in the input (delimited by non
alphanumerics) it is replaced by the rest of the 
definition line. (Comments and trailing white 
spaces are stripped off). A defined name can be 
arbitrarily long, and must begin with a letter. 

define is typically used to create symbolic 
parameters: 

define ROWS 100 
define COLS 50 

dimension a(ROWS), b(ROWS, COLS) 

if (i > ROWS I j > COLS) ... 

Alternately, definitions may be written as 

define(ROWS, 100) 

In this case, the defining text is everything after 
the comma up to the balancing right parenthesis; 
this allows multi-line definitions. 

It is generally a wise practice to use sym
bolic parameters for most constants, to help 
make clear the function of what would otherwise 
be mysterious numbers. As an example, here is 
the routine equal again, this time with symbolic 
constants. 

define 
define 
define 
define 

YES 
NO 
EOS 
ARB 

l 
0 
-l 
100 

# equal _ compare strl to str2: 
# return YES if equal. NO if not 

integer function equal(strl, str2) 
integer strl (ARB), str2(ARB) 
integer i 

for (i = l; strl(i) - ""'str2(i): i = i + ·l) 
if (strl (i) ,.. = EOS) 

return (YES) 
return(NO) 
end 

"include" Statement 

The statement 

include file 

inserts the file found on input stream file into the 
Ratfor input in place of the include statement . 
The standard usage is to place COMMON blocks 
on a file, and include that file whenever a copy is 
needed: 



22-10 

subroutine x 
include commonblocks 

end 

surou1ine y 
include commonblocks 

end 

This ensures that all copies of the COMMON 

blocks are identical 

Pitfalls, Botches, Blemishes and other Failings 

Ratfor catches certain syntax errors, such 
as missing braces, else clauses without an if, and 
most errors involving missing parentheses in 
statemems. Beyond that, since Ratfor knows no 
Fortran, any errors you make win be reported 
the Fortran compiler, so you will from time to 
time have to relate a Fortran diagnostic back to 
!he Ratfor source. 

Keywords are reserved ~ If, else, 
etc., as variable names will typically wreak havoc. 
Don't leave spaces in keywords. Don't use t.he 
Arithmetic IF. 

The Fortran n.H convention is no! recog
nized anywhere by Ratfor; use quotes instead. 

3. IMPLEMENTATION 

Ratfor was originally written in C[4J on !he 
UNIX operating system[5l. The language is 
specified by a context free grammar and the 
compiler constructed the YACC compiier
compiled6l. 

The Ratfor grammar is simple and straight
forward, being essentially 

prog : stat 
i prog stat 

stat : if (...) stat 
I if(...) stat else stai 
I while (...) stat 
I for C..: ... ; .. J stat 
I do ... stat 
I repeat slat 
I repe:H stat until(._.) 
I switch (...) I case ... : prog ... 

default prog l 
! return 
I break 
I next 
I digits stat 
I ! prog l 
I any.thing unrecognizable 

The observaJion that Ratfor knows no Fortran 
foltows directly from the rule that sa.ys a state
mt:nt is. "anything unrecognizable". In fact most 

of Fortran falls into this category, since any 
statement that does not begin with one of the 
keywords is by definition "unrecognizable." 

Code generation is also simple. If the first 
thing on a source line is not a keyword (like if, 
else, the entire statement is simply copied 
to the output wilh appropriate character transla
tion and formatting. (leading are treated 
as a labeU Keywords cause only slightly more 
complicated actions. For example, when if is 
recognized, two consecutive labels L and L+ l 
are generated and the value of L is stacked. The 
condition is then isolated, and the code 

if (.not. (condition)) goto L 

is output. The statement part of the if is then 
translated. When the end of the statement is 
encountered (which may be some distance away 
and include nested ifs, of course). the code 

L continue 

is generated, unless there is an else clause, in 
which case the code is 

goto L+ l 
L continue 

In this latter case, the code 

L+ l continue 

is produced after the siatemem part of the else. 
Code generation for the various loops is equally 
simple. 

One might argue that more care should be 
taken in code generation. For example, if there 
is no trailing else, 

if (i > 0) x - a 

should be left alone, not converted into 

if (.not. (i .g!. 0)) goto 100 
x,.. a 

100 continue 

But what are optimizing compilers for, if not to 
improve code? It is a rare program indeed where 
this kind of "inefficiency" wii! make even a 
measurable difference. In the few cases where it 
is important the offending lines can be protected 
by '%'. 

The use of a compiler-compiler is 
definitely the preferred method of software 
development. The language is well-defined, with 
few syntactic irregularities. Implementation is 
quite simple; the original construction took 
under a week. The language is sufficiently sim
ple, however, that an ad hoc recognizer can be 
readily constructed to do the same job if no 
compiler-compiler is available. 

r::_ ... 
\: .. 

c 

c 

( 



.......... ~. 

22-11 

The C version of Ratfor is used on UNIX 
and on the Honeywell acos systems. C com
pilers are not as widely available as Fortran. 
however, so there is also a Ratfor written in 
itself and originally bootstrapped with the C ver
sion. The Ratfor version was wricten so as to 
translate into the portable subset of Fortran 
described in (l]. so it is portable, having been 
run essentially without change on at least twelve 
distinct machines. (The main restrictions of the 
portable subset are: only one character per 
machine word; subscripts in the form c•v±c; 
avoiding expressions in places like oo loops; con
sistency in subroutine argument usage, and in 
COMMON declarations. Ratfor itself will not gra
tuitously generate non-standard Fortran.) 

The Ratfor version is about 1500 lines of 
Ratfor (compared to about 1000 lines of C); this 
compiles into 2500 lines of Fortran. This expan
sion ratio is somewhat higher than average, since 
the compiled code contains unnecessary 
occurrences of COMMON declarations. The exe
cution time of the Ratfor version is dominated 
by two routines that read and write cards. 
Clearly these routines could be replaced by 
machine coded local versions; unless this is 
done, the efficiency of other parts of the transla
tion process is largely irrelevant. 

4. EXPERIENCE 

Good Things 

"It's so much better than Fortran" is the 
most common response of users when asked 
how well Ratfor meets their needs. Although 
cynics might consider this to be vacuous. it does 
seem to be true that decent control flow and 
cosmetics converts Fortran from a bad language 
into quite a reasonable one. assuming that For
tran data structures are adequate for the task at 
hand. 

Although there are no quantitative results. 
users feel that coding in Ratfor is at least twice 
as fast as in Fortran. More important, debugging 
and subsequent revision are much faster than in 
Fortran. Partly this is simply because the code 
can be read. The looping statements which test 
at the top instead of the bottom seem to elim-

inate or at least reduce the occurrence of a wide 
class of boundary errors. And of course it is 
easy to do structured programming in Ratfor; 
this self-discipline also contributes markedly to 
reliability. 

One interesting and encouraging fact is 
that programs written in Ratfor tend to be as 
readable as programs written in more modern 
languages like Pascal. Once one is freed from 
the shackles of Fortran's clerical detail and rigid 
input format, it is easy to write code that is read
able, even esthetically pleasing. For example. 
here is a Ratfor implementation of the linear 
table search discussed by Knuth [7): 

A(m+l) - x 
for (i - I; A(i) !- x; i - i + I) 

if (i > m) { 

m - i 
8(i) - I 

else 
B(i) - 8(i) + I 

A large corpus (5400 lines) of Ratfor, including 
a subset of the Ratfor preprocessor itself, can be 
found in [8]. 

Bad Things 

The biggest single problem is that many 
Fortran syntax errors are not detected by Ratfor 
but by the local Fortran compiler. The compiler 
then prints a message in terms of the generated 
Fortran. and in a few cases this may be difficult 
to relate back to the offending Ratfor line, espe
cially if the implementation conceals the gen
erated Fortran. This problem could be dealt with 
by tagging each generated line with some indica
tion of the source line that created it, but this is 
inherently implementation-dependent. so no 
action has yet been taken. Error message 
interpretation is actually not so arduous as might 
be thought. Since Ratfor generates no variables, 
only a simple pattern of IF's and GOTO's, data
related errors like missing DIMENSION statements 
are easy to find in the Fortran. Furthermore, 
there has been a steady improvement in Ratfor's 
ability to catch trivial syntactic errors like unbal
anced parentheses and quotes. 

There are a number of implementation 
weaknesses that are a nuisance, especially to new 
users. For example, keywords are reserved. 
This rarely makes any difference, except for 
those hardy souls who want to use an Arithmetic 
IF. A few standard Fortran constructions are not 
accepted by Ratfor. and this is perceived as a 
problem by users with a large corpus of existing 
Fortran programs. Protecting every line with a 



22-12 

'%' is not really a complete solution, although it 
serves as a stop-gap. The best long-term solu
tion is provided by the program Struct [9), which 
converts arbitrary Fortran programs into Ratfor. 

Users who export programs often complain 
that the generated Fortran is "unreadable" 
because it is not tastefully formatted and con
tains extraneous CONTINUE statements. To some 
extent this can be ameliorated (Ratfor now has 
an option to copy Ratfor comments into the gen
erated Fortran), but it has always seemed that 
etfort is better spent on the input language than 
on the output esthetics. 

One final problem is pardy attributable to 
success - since Ratfor is relatively easy to 
modify, there are now several dialects of Ratfor. 
Fortunately. so far most of the differences are in 
"''haracter set. or in invisible aspects like code 
generation. 

5. CONCLUSIONS 

Ratfor demonstrates that with modest 
effort it is possible to convert Fortran from a bad 
language into quite a good one. A preprocessor 
is clearly a useful way to extend or ameliorate 
the facilities of a base language. 

When designing a language, it is important 
to concentrate on the essential requirement of 
providing the user with the best language possi
ble for a given effort. One must avoid throwing 
in "features" - things which the user may trivi
ally construct within the existing framework. 

One must also avoid getting sidetracked on 
irrelevancies. For instance it seems pointless for 
Ratfor to prepare a neatly formatted listing of 
either its input or itS output. The user is 
presumably capable of the self-discipline required 
to prepare neat input that retle<:ts his thoughts. 
k is much more important that the languqe pro
vide free-form input so he can format it ,neatly. 
No Ofte should read the output anyway exoept in 
the most dire circumstances. 

Ack.nowledpments 

C. A. R. Hoare once said that "One thing 
[the language designed should not do is to 
include untried ideas of his own." Ratfor follows 
this precept very closely - everything in it has 
been stolen from someone else. Most of the 
contrei ftew scnactures are taken directly from 
the language .C(4i developed by Dennis Ritchie: 
the comment and continuation conventions are 
a~d from Altran(lO]. 

f am srateful to Stuart Feldman, whose 
patient simulation of an innoooM user during the 
eerlf days Qf Ratfor led to several desi1n 
imPf!tWetneRts and the eradicatioo of bu:p. He 

also translated the C parse-tables and YACC 

parser into Fortran for the first Ratfor version of 
Ratfor. 

References 

[lJ B. G. Ryder, "The PFORT Verifier," 
Software-Practice & Experience. October 
1974. 

(2} American National Standard Fortran. 
American National Standards Institute, 
New York, 1966. 

(3) For-word: Fortran Development Newsletter. 
August 1975. 

[4) B. W. Kernighan and D. M. Ritchie, The C 
Programming Language. Prentice-Hall, Inc., 
1978. 

[SJ D. M. Ritchie and K. L. Thompson, ••The 
UNIX Time-sharing Syscem." CACM, July 
1974. 

[6) S. C. Johnson, "YACC - Yet Another 
Compiler-Compiler." Bell Laboratories 
Computing Science Technical Report #32, 
1978. 

[7} D. E. Knuth. "Structured Programming 
with goto Siatements." Computing Surveys, 
December 1974. 

[8) B. W. Kernighan and P. J. Plau1er, 
Software Tools. Addison-Wesley, 1976. 

[9) B. S. Baker, "Struct - A Pr<>1ram which 
Structures Fortran". Bell Laboratories 
internal memorandum, December 1975. 

(10) A. D. Hall, "The Altran System for 
Rational Function Manipulation - A Sur· 
vey." CACM, August 1971. 



. -~'I> 

\ 

The M4 Macro Processor 

Brian W. Kernighan 

Dennis M. Ritchie 

Bell Laboratories 
Murray Hill, New Jersey 07974 

ABSTRACT 

M4 is a macro processor available on UNlXt and GCOS. Its primary use 
has been as a front end for Ratfor for those cases where parameterless macros 
are not adequately powerful. It has also been used for languages as disparate as 
C and Cobol. M4 is particularly suited for functional languages like Fortran; 
PL/I and C since macros are specified in a functional notation. 

M4 provides features seldom found even in much larger macro proces-
sors, including 

• arguments 

• condition testing 

• arithmetic capabilities 

• string and substring functions 

• file manipulation 

This paper is a user's manual for M4. 

July 1, 1977 

tUNIX is a Trademark of Bell Laboratories. 

23-1 



The M4 Macro Processor 

Brian W. Kernighan 

Dennis M. Ritchie 

Bell Laboratories 
Murray Hill, New Jersey 07974 

Introduction 

A macro processor is a useful way to 
enhance a programming language, to make 
it more palatable or more readable, or to 
tailor it to a particular application. The 
#define statement in C and the analogous 
define in Ratfor are examples of the basic 
facility provided by any macro processor -
replacement of text by other text. 

The M4 macro processor is an exten
sion of a macro processor called M3 which 
was written by D. M. Ritchie for the AP-3 
minicomputer; M3 was in tum based on a 
macro processor implemented for [1]. 
Readers unfamiliar with the basic ideas of 
macro processing may wish to read some of 
the discussion there. 

M4 is a suitable front end for Ratfor 
and C, and has also been used successfully 
with Cobol. Besides the straightforward 
replacement of one strit\8 of text by 
another, it provides macros wit:h arguments, 
,eonditional macro exl!)ansioo, arithm~tic, file 
manipulation, and some specialized string 
pracessin,g functions. 

The basic operation of M4 is to copy 
its input to its output. As the input is read, 
however, each alphanumeric "token" (that 
is, string of letters and digits) is checked. If 
it is the name of a macro, then the name of 
the macro is repla.1:ed by its defining text, 
and the resulting string is pushed back onto 
the input to be rescaaned. Macros may be 
called with arguments, in which case the 
argu~.ts are collected and substituted into 
the right places in the defining text before it 
is rescanned. · 

M4 provides a collection of about 
twenty built-in macros which perform vari
ous useful operations; in addition, the user 

23-2 

can define new macros. Built-ins and user
defined macros work exactly the same way, 
except that some of the built-in macros have 
side effects on the state of the process. 

Usage 

On UNIX, use 

m4 (filesl 

Each argument file is processed in order~ if 
there are no arguments, or if an argument is 
· - ', the standard input is read at that point. 
The processed text is written on the stan
dard output, which may be captured for sub
sequent processing with 

m4 (files I > outputfile 

On GCOS, usage is identical, but the pro
gram is called ./m4. 

Defining Macros 
The primary built-in function of M4 is 

define, which is used to define new macros. 
The input 

define.<nante, stuff) 

causes the string naiue to be defined as 
stuff. All subsequent occurrences of ume 
will be replaced by stuff. name must be 
alphanumeric and must begin with a letter 
(the underscore _ counts as a letter). stuff 
is any text that contains balanced 
parentheses; it may stretch over multiple 
lines. 

Thus, as a typical example, 

deftne(N, 100) 

if (i > N) 

defines N to be 100, and uses this ''symbolic 

( 

·-.. __..,-

( 

( 
\. 



23-3 

constant" in a later if statement. 

The left parenthesis must immediately 
follow the word define, to signal that define 
has arguments. If a macro or built-in name 
is not followed immediately by '(', it is 
assumed to have no arguments. This is the 
situation for N above; it is actually a macro 
with no arguments, and thus when it is used 
there need be no (...) following it. 

You should also notice that a macro 
name is only recognized as such if it appears 
surrounded by non-alphanumerics. For 
example, in 

define (N, 100) 

if (NNN > 100) 

the variable NNN is absolutely unrelated to 
the defined macro N, even though it con
tains a lot of N's. 

Things may be defined in terms of 
other things. For example, 

define(N, 100) 
define(M, N) 

defines both M and N to be 100. 

What happens if N is redefined? Or, 
to say it another way, is M defined as N or 
as 100? In M4, the latter is true - M is 
100, so even if N subsequently changes, M 
does not. 

This behavior arises because M4 
expands macro names into their defining 
text as soon as it possibly can. Here, that 
means that when the string N is seen as the 
arguments of define are being collected, it is 
immediately replaced by 100; it's just as if 
you had said 

define(M, 100) 

in the first place. 

If this isn't what you really want, there 
are two ways out of it. The first, which is 
specific to this situation, is to interchange 
the order of the definitions: 

deftne(M, N) 
define (N, 100) 

Now M is defined to be the string N, so 
when you ask for M later, you'll always get 
the value of N at that time (because the M 
will be replaced by N which will be replaced 
by 100). 

Quoting 

The more general solution is to delay 
the expansion of the arguments of define by 
quoting them. Any text surrounded by the 
single quotes ' and · is not expanded 
immediately, but has the quotes stripped off. 
If you say 

define(N, 100) 
define(M, 'N') 

the quotes around the N are stripped off as 
the argument is being collected, but they 
have served their purpose, and M is defined 
as the string N, not l 00. The general rule is 
that M4 always strips off one level of single 
quotes whenever it evaluates something. 
This is true even outside of macros. If you 
want the word define to appear in the out
put, you have to quote it in the input, as in 

'define· = 1; 

As another instance of the same thing, 
which is a bit more surprising, consider 
redefining N: 

define{N, 100) 

define (N, 200) 

Perhaps regrettably, the N in the second 
definition is evaluated as soon as it's seen; 
that is, it is replaced by 100, so it's as if you 
had written 

define(lOO, 200) 

This statement is ignored by M4, since you 
can only define things that look like names, 
but it obviously doesn't have the effect you 
wanted. To really redefine N, you must 
delay the evaluation by quoting: 

deftne(N, 100) 

definefN', 200) 

In M4, it is often wise to quote the first 
argument of a macro. 

If ' and ' are not convenient for some 
reason, the quote characters can be changed 
with the built-in changequote: 

durngequote(i, D 

makes the new quote characters the left and 
right brackets. You can restore the original 
characters with just 



23-4 

changequote 

There are two additional built-ins 
related to define. undefine removes the 
definition of some macro or built-in: 

undefinefN') 

removes the definition of N. (Why are the 
quotes absolutely necessary?) Built-ins can 
be removed with undefine, as in 

undefine ('define') 

but once you remove one, you can never 
get it back. 

The built-in ifdef provides a way to 
determine if a macro is currently defined. 
In particular, M4 has pre-defined the names 
unix and gcos on the corresponding sys
tems, so you can tell which one you're 
using: 

ifdefCunix', 'define(wordsize,16)' } 
ifdeff gcos'. 'define ( wordsize,36)' ) 

makes a definition appropriate for the partic
ular machine. Don't forget the quotes! 

if def actually permits three arguments;· 
if the name is undefined, the value ifdef 
is then the third argument, as in 

ifdeff unix', on UNIX, not on UNIX) 

Arguments 

So far we have discussed the simplest 
form of macro processing - replacing one 
string by another (fixed) string. User
defined macros may also have arguments, so 
different invocations can have different 
results. Within the replacement text for a 
macro (the second argument of its deftne) 
any occurrence of Sn will be replaced by the 
nth argument when the macro is actually 
used. Thus, the macro bump, defined as 

define(bump, $1 ""' Sl + 1) 

generates code to increment its argument by 
l: 

bumphJ 

is 

A macro can have as many arguments 
as you want, but only the first nine are 
accessible, through $1 to $9. (The macro 

name itself is $0, although that is less com
monly used.) Arguments that are not sup
plied are replaced by null strings, so we can 
define a macro cat which simply concaten~ 
ates its arguments, like this: 

define(cat, $1$2$3$4$5$6$7$8$9) 

Thus 

cat(x, y, z) 

is equivalent to 

xyz 

$4 through $9 are null, since no correspond
ing arguments were provided. 

Leading unquoted blanks, tabs, or 
newlines that occur during argument collec
tion are discarded. All other white space is 
retained. Thus 

define<a, b c) 

defines a to be b c. 

Arguments are separated by commas, 
but parentheses are counted properly, so a 
comma "protected" by parentheses does not 
terminate an argument. That is, in 

define (a, (b,c)) 

there are only two arguments; the second is 
literally (b,c), And of course a bare comma 
or parenthesis can be inserted by quoting it. 

Arithmetic BuHt~ins 

M4 provides two built-in functions for 
doing arithmetic on integers (only). The 
simplest is incr, which increments its 
numeric argument 1. Thus to handle the 
common programming situation where you 
want a variable to be defined as "one more 
than N", write 

define(N, HIO) 
define(Nt. 'im::r(N)') 

Then Nl is defined as one more than the 
current value of N. 

The more general mechanism for 
arithmetic is a built-in called ev:d, which is 
capable of arbitrary arithmetic on integers. 
It provides the operators (in decreasing 
order of precedence) 

·'· ( .,,.. 

-C. 

( 



unary+ and -
,.,.. or (exponentiation) 
• I % (modulus) 
+ -
....... !== < <= > >-

(not) 
& or && (logical and} 
I or II (logical or) 

Parentheses may be used to group opera
tions where needed. All the operands of an 
expression given to eval must ultimately be 
numeric. The numeric value of a true rela
tion (like 1 > 0) is 1, and false is 0. The 
precision in eval is 32 bits on UNIX and 36 
bits on GCOS. 

As a simple example, suppose we want 
M to be 2uN + 1. Then 

define(N, 3) 
define(M, 'evaH2u N + 1)') 

23-5 

As a matter of principle, it is advisable to 
quote the defining text for a macro unless it 
is very simple indeed (say just a number); it 
usually gives the result you want, and is a 
good habit to get into. 

File Manipulation 

You can include a new in the input 
at any time by the built-in function tndude: 

in dude (filename) 

inserts the contents of filename in place of 
the indude command. The contents of the 
file is often a set of definitions. The value 
of include (that is, its replacement text) is 
the contents of the file; this can be captured 
in definitions, etc. 

It is a fatal error if the file named in 
include cannot be accessed. To get some 
control over this situation, the alternate 
form sinclude can be used; sinclude ("silent 
include") says nothing and continues if it 
can't access the file. 

It is also possible to divert the output 
of M4 to temporary files during processing, 
and output the collected material upon com· 
mand. M4 maintains nine of these diver· 
sions, numbered 1 through 9. If you say 

divert(n) 

all subsequent output is put onto the end of 
a temporary file referred to as n. Diverting 
to this file is stopped by another divert com-

mand; in particular, divert or divert(O) 
resumes the normal output process. 

Diverted text is normally output all at 
once at the end of processing, with the 
diversions output in numeric order. It is 
possible, however, to bring back diversions 
at any time, that is, to append them to the 
current diversion. 

undivert 

brings back all diversions in numeric order, 
and undivert with arguments brings back 
the selected diversions in the order given. 
The act of undiverting discards the diverted 
stuff, as does diverting into a diversion 
whose number is not between 0 and 9 
inclusive. 

The value of undivert is not the 
diverted stuff. Furthermore, the diverted 
material is not rescanned for macros. 

The built-in divnum returns the 
number of the currently active diversion. 
This is zero during normal processing. 

System Command 

You can run any program in the local 
operating system with the syscmd built-in. 
For example, 

syscmd (date) 

on UNIX runs the date command. Normally 
syscmd would be used to create a file for a 
subsequent include. 

To facilitate making unique file names, 
the built-in maketemp is provided, with 
specifications identical to the system f unc
tion rnktemp: a string of XXXXX in the 
argument is replaced by the process id of the 
current process. 

Conditionals 

There is a built-in called ifelse which 
enables you to perform arbitrary conditional 
testing. In the simplest form, 

lfelse(a. b, c, d) 

compares the two strings a and b. If these 
are identical, ifelse returns the string c:. oth
erwise it returns d. Thus we might define a 
macro called compare which compares two 
strings and returns "yes" or "no" if they 
are the same or different. 



23-6 

deftne(compue, 'ifelse(S!, $2, yes. non 

Note the quotes, which prevent too-early 
evaluation of ifelse. 

If the fourth argument is missing, it is 
treated as empty. 

ifelse can actually have any number of 
arguments, and thus provides a limited form 
of multi-way decision capability. In the 
input 

ifelse<a, b, c. d, e. f, g) 

if the string a matches the string b, the 
result is c. Otherwise, if d is the same as e, 
the result is f. Otherwise the result is g. If 
the final argument is omitted, the result is 
null, so 

ifelse<a. b, c) 

is c if a matches b, and null otherwise. 

String Manipulation 

The built-in len returns the length 
the string that makes up its argument. Thus 

len (abcdef) 

is 6, and len ( (a,b)) is 5. 

The built-in substr can be used to pro~ 
duce substrings of strings. substr<s, i, n) 
returns the substring of s that starts at the 
ith position (origin zero), and is n charac
ters long. If n is omitted, the rest of the 
string is returned, so 

substrf now is the time'. U 

ts 

ow is the time 

If i or n are out of range, various sensible 
·things happen. 

index (sl, s2) returns the index (posi
tion) in st where the string s2 occurs, or 
-1 if it doesn't occur. As with substr, the 
or~in for strings is 0. 

The built-in tnmslit performs charac
ter transliteration. 

lransiit(s, f, t) 

modifies s by replacing any character found 
in f by the corresponding character of t. 
That is, 

tninslit(s. aeiou, 12345) 

replaces the vowels by the corresponding 
digits. If t is shorter than f, characters 
which have an entry in t are deleted~ 
as a limiting case, if t is not present at all, 
characters from fare deleted from s. So 

transHt(s, aeiou) 

deletes vowels from s. 

There is also a built-in called dni 
which deletes all characters that follow it up 
to and including the next newline; it is use
ful mainly throwing away empty lines 
that otherwise tend to clutter up M4 output. 
For example, if you say 

define(N, 100) 
define(M, 200) 
define(L, 300) 

the newline at the end of each line is not 
part of the definition, so it is copied into the 
output, where it may not be wanted. If you 
add dnl to each of these lines, the newlines 
will disappear. 

Another way to achieve this, due to J. 
E. Weythman, is 

divert(-1) 
define(. .. ) 

divert 

Printing; 

The built-in errprint writes its argu
ments out on the standard error file. Thus 
you can say 

errprintCfatal error') 

dumpdef is a debugging aid which 
dumps the current definitions of defined 
terms. If are no arguments, you get 
everything; otherwise you get the ones you 
name as arguments. Don't forget to quote 
the names! 

Summary of BuHt~ins 

Each entry is preceded by the page 
number where it is described. 

E: .. 
' 

" 

c 

( 



3 changequote (L, R) 
1 define(name, replacement) 
4 divert (number) 
4 divnum 
5 dnl 
5 dumpdef Cname', 'name', ... ) 
5 errprint (s, s, ... ) 
4 eval (numeric expression) 

23-7 

3 if def ('name', this if true, this if false) 
5 ifelse(a, b, c, d) 
4 include (file) 
3 incr(number) 
5 index (s 1, s2) 
5 !en (string) 
4 maketemp(. .. XXXXX ... ) 
4 sinclude (file) 
5 substr(string, position, number) 
4 syscmd(s) 
5 translit(str, from, to) 
3 undefine ('name') 
4 undivert(number,number, ... ) 

Acknowledgements 

We are indebted to Rick Becker, John 
Chambers, Doug Mcilroy, and especially 
Jim Weythman, whose pioneering use of 
M4 has led to several valuable improve
ments. We are also deeply grateful to 
Weythman for several substantial contribu
tions to the code. 

References 

[1] B. W. Kernighan and P. J. Plauger, 
Sqffware Tools. Addison-Wesley, Inc., 
1976. 









.! 

SED - A Non-interactive Text Editor 

Lee E. McMahon 

Bell Laboratories 
Murray Hill, New Jersey 07974 

ABSTRACT 

Sed is a non-interactive context editor that runs on the UNtxt operating 
system. Sed is designed to be especially useful in three cases: 

1) To edit files too large for comfortable interactive editing~ 
2) To edit any size file when the sequence of editing commands is too 

complicated to be comfortably typed in interactive mode. 
3) To perform multiple 'global' editing functions efficiently in one pass 

through the input. 

This memorandum constitutes a manual for users of sed. 

August 15, 1978 

tUNIX is a Trademark of Bell Laboratories . 

24-1 



SED - A Non-interactive Text Editor 

Lee £. McMahon 

Laboratories 
Murray New Jersey 07974 

Introduction 

Sed is a non-interactive context editor designed to be especially useful in three cases: 

l) To edit files too large for comfortable interactive editing; 
2) To edit any size when the sequence editing commands is too complicated to 

be comfortably in imeractive mode; 
3) To perform multiple 'global' editing functions efficiently in one pass through the 

input. 

Since only a few lines the input reside in core at one time, and no temporary files are used, 
the effective size of file that can be edited is limited only by the requirement that the input and 
output fit simultaneously into available secondary storage. 

Complicated editing scripts can be created separately and given to sed as a command file. For 
complex edits, this saves considerable and its attendant errors. Sed running from a 
command file is much more efficient than any interactive editor known to the author, even if 
thal editor can be driven by a script 

The principal loss of functions to an interactive editor are lack of relative addressing 
(because of the line-at-a-time , and lack of immediate verification that a command 
has done what was intended, 

Sed is a lineal descendant the UNIX editor, ed. Because of the differences between interac
tive and non-interactive opera!ion, considerable changes have been made between ed and sed; 
even confirmed users of ed will be surprised fond probably chagrined), if they rashly 
use sed without reading Sections 2 and 3 of this document. The most family resem
blance between the two editors is in the class of patterns ('regular expressions') they recognize; 
the code for matching patterns is almost verbatim from the code for ed, and the descrip-
tion of regular expressions in 2 is almost verbatim from the UNIX 
Programmer's Manuallll. (Both code and description were written by M. Ritchie.) 

1. Overall Operation 

Sed by default copies the standard input to the standard output, perhaps performing one or 
more editing commands on each line before writing it to the output This behavior may be 
modified by flags on the command line; see Section l, l below. 

The general format of an editing command is: 

faddress l ,address2] [function] [arguments! 

One or both addresses may be omitted; the format of addresses is given in Section 2. Any 
number of blanks or tabs may separate the addresses from the function. The function must be 
present: the available commands are discussed in Section 3. The arguments may be required or 
optional, according to which function is given: again, they are discussed in Section 3 under each 
individual function. 

Tab characters and spaces at ihe beginning of lines are ignored. 

2 

c-

(_ 



24-3 

1.1. Command-line Flags 

Three flags are recognized on the command line: 
-n: tells sed not to copy all lines, but only those specified by p functions or p flags after 

s functions (see Section 3.3); 
-e: tells sed to take the next argument as an editing command; 
-f: tells sed to take the next argument as a file name; the file should contain editing 

commands, one to a line. 

1.2. Order of Application of Editing Commands 

Before any editing is done (in fact, before any input file is even opened), all the editing com
mands are compiled into a form which will be moderately efficient during the execution phase 
(when the commands are actually applied to lines of the input file). The commands are com
piled in the order in which they are encountered; this is generally the order in which they will 
be attempted at execution time. The commands are applied one at a time; the input to each 
command is the output of all preceding commands. 

The default linear order of application of editing commands can be changed by the flow-of
control commands, t and b (see Section 3). Even when the order of application is changed by 
these commands, it is still true that the input line 10 any command is the output of any previ
ously applied command. 

1.3. Pattern-space 

The range of pattern matches is called the pattern space. Ordinarily, the pattern space is one 
line of the input text, but more than one line can be read into the pattern space by using the N 
command (Section 3.6.). 

1.4. Examples 

Examples are scattered throughout the text. Except where otherwise noted, the examples all 
assume the following input text: 

In Xanadu did Kubla Khan 
A stately pleasure dome decree: 
Where Alph, the sacred river, ran 
Through caverns measureless to man 
Down to a sunless sea. 

(In no case is the output of the sed commands to be considered an improvement on Coleridge.) 

Example: 

The command 

2q 

will quit after copying the first two lines of the input. The output will be: 

In Xanadu did Kubla Khan 
A stately pleasure dome decree: 

2. ADDRESSES: Selecting lines for editing 

Lines in the input file(s) to which editing commands are to be applied can be selected by 
addresses. Addresses may be either line numbers or context addresses. 

The application of a group of commands can be controlled by one address (or address-pair) by 
grouping the commands with curly braces ('I }')(Sec. 3.6J. 



24-4 

2.t. Line-number Addresses 

A line number is a decimal integer. As ea<:h line is read from the input, a line-number counter 
is incremented; a line-number address matches (selects) the input line which causes the inter
nal counter to equal the address line-number. The counter runs cumulatively through multiple 
input files; it is not reset when a new input file is opened. 

As a special case, the character S mat<:hes the last line of the last input file. 

2.2. Context Addresses 

A context address is a pattern ('regular expression') enclosed in slashes ('/'). The regular 
expressions recognized by sed are constructed as follows: 

l) An ordinary character (not one of those discussed below) is a regular expression, 
and matches that character. 

2) A circumflex 'A' at the beginning of a regular expression matches the null character 
at the beginning of a line. 

3) A dollar-sign '$' at the end of a regular expression matches the null character at the 
end of a line. 

4) The characters '\n' match an imbedded newline character, but not the newline at the 
end of the pattern space. 

5) A period '.' matches any character except the terminal newline of the pattern space. 
6) A regular expression followed by an asterisk '*' matches any number (including 0) 

of adjacent occurrences of the regular expression it follows. 
7) A string of characters in square brackets ' [ ]' matches any character in the string, 

and no others. If, however, the first character of the string is circumflex 'A', 
the regular expression matches any character except the characters in the string 
and the terminal newline of the pattern space. 

8) A concatenation of regular expressions is a regular expression which matches the 
concatenation of strings matched by the components of the regular expression. 

9) A regular expression between the sequences '\ (' and '\)' is identical in effect to the 
unadorned regular expression, but has side-effects which are described under 
the s command below and specification 10) immediately below. 

10) The expression '\d' means the same string of characters matched by an expression 
enclosed in '\ (' and '\)' earlier in the same pattern. Here dis a single digit~ the 
string specified is that beginning with the dth occurrence of '\ (' counting from 
the left. For example, the expression '"\(.*\)\l' matches a line beginning with 
two repeated occurrences of the same string. 

11) The null regular expression standing alone (e.g., 'I/') is equivalent to the last reg-
ular expression compiled. 

To use one of the special characters C $ . * [ 1 \ /) as a literal (to match an occurrence of itself 
in the input), precede the special character by a backslash '\'. 

For a context address to 'match' the input requires that the whole pattern within the address 
match some portion of the pattern space. 

1..3. Number of Addresses 

The commands in the next section can have 0, 1, or 2 addresses. Under each command the 
maximum number of allowed addresses is given. For a command to have more addr<;:sses than 
the ma~imum allowed is considered an error. 

If a command has no addresses, it is applied to every line in the input. 

If a command has one address, it is applied to all lines which match that address. 

If a command has two addresses, it is applied to the first line which matches the first address, 
and to all subsequent lines until (and including) the first subsequent line which matches the 
second address. Then an attempt is made on subsequent lines to again match the first address, 

( 

( 



24-5 

and the process is repeated. 

Two addresses are separated by a comma. 

Examples: 

/an/ 
/an.-an/ 
ran/ 
I.I 
1\.1 

matches lines 1, 3, 4 in our sample text 
matches line 1 
matches no lines 
matches all lines 
matches line 5 

/r*an/ 
/\(an\).*\11 

matches lines 1,3, 4 (number == zero!) 
matches line 1 

3. FUNCTIONS 

All functions are named by a single character. In the following summary, the maximum 
number of allowable addresses is given enclosed in parentheses, then the single character func
tion name, possible arguments enclosed in angles ( < > ), an expanded English translation of 
the single-character name, and finally a description of what each function does. The angles 
around the arguments are not part of the argument, and should not be typed in actual editing 
commands. 

3.1. Whole-line Oriented Functions 
(2)d -- delete lines 

The d function deletes from the file (does not write to the output) all those 
lines matched by its address(es). 

It also has the side effect that no further commands are attempted on the 
corpse of a deleted line; as soon as the d function is executed, a new line is 
read from the input, and the list of editing commands is re-started from the 
beginning on the new line. 

(2) n -- next line 

(l)a\ 

The n function reads the next line from the input, replacing the current line. 
The current line is written to the output if it should be. The list of editing 
commands is continued following the n command. 

<text> -- append lines 

(l)i\ 

The a function causes the argument <text> to be written to the output after 
the line matched by its address. The a command is inherently multi-line; a 
must appear at the end of a line, and <text> may contain any number of 
lines. To preserve the one-command-to-a-line fiction, the interior newlines 
must be hidden by a backslash character ('\ ') immediately preceding the new
line. The <text> argument is terminated by the first unhidden newline (the 
first one not immediately preceded by backslash). 

Once an a function is successfully executed, <text> will be written to the out
put regardless of what later commands do to the line which triggered it. The 
triggering line may be deleted entirely; <text> will still be written to the out
put. 

The <text> is not scanned for address matches, and no editing commands are 
attempted on it. It does not cause any change in the line-number counter. 

<text> -- insert lines 



(2)c\ 

24-6 

The i function behaves identically to the a function, except that <text> is 
written to the output before the matched line. All other comments about the a 
function apply to the i function as well. 

<text> -- change lines 

The c function deletes the lines selected by its address (es}, and replaces them 
with the lines in <text>. Like a and i, c must be followed by a newline hid
den by a backslash; and interior new lines in <text> must be hidden by 
backslashes. 

The c command may have two addresses, and therefore select a range of lines. 
If it does, all the lines in the range are deleted, but only one copy of <text> is 
written to the output, not one copy per line deleted. As with a and i, <text> 
is not scanned for address matches, and no editing commands are attempted on 
it. It does not change the line-number counter. 

After a line has been deleted by a c function, no further commands are 
attempted on the corpse. 

If text is appended after a line by a or r functions, and the line is subsequently 
changed, the text inserted by the c function will be placed before the text of the 
a or r functions. (The r function is described in Section 3.4.) 

Note: Within the text put in the output by these functions, leading blanks and tabs will disap
pear, as always in sed commands. To get leading blanks and tabs into the output, precede the 
first desired blank or tab by a backslash; the backslash will not appear in the output. 

Example: 

The list of editing commands: 

n 
a\ 
xx xx 
d 

applied to our standard input, produces: 

In Xanadu did Kubhla Khan 
xxxx 
Where Alph, the sacred river, ran 
xx xx 
Down to a sunless sea. 

In this particular case, the same effect would be produced by either of the two following com· 
mand lists: 

n 
i\ 
xx xx 
d 

n 
c\ 
xx xx 

3.2. Substitute Function 
One very important function changes parts of lines selected by a context search within the line. 

(2)s<pattern> <replacement> <flags> ··substitute 

The s function replaces pan of a line (selected by <pattern>) with <replace
ment>. It can best be read: 

Substitute for <pattern>, <replacement> 

c·-

c 

c 



24-7 

The <pattern> argument contains a pattern, exactly like the patterns in 
addresses (see 2.2 above). The only difference between <pattern> and a con
text address is that the context address must be delimited by slash ('/') charac
ters; <pattern> may be delimited by any character other than space or new
line. 

By default, only the first string matched by <pattern> is replaced, but see the 
g flag below. 

The <replacement> argument begins immediately after the second delimiting 
character of <pattern>, and must be. followed immediately by another instance 
of the delimiting character. (Thus there are exactly three instances of the 
delimiting character.) 

The <replacement> is not a pattern, and the characters which are special in 
patterns do not have special meaning in <replacement>. Instead, other char
acters are special: 

& is replaced by the string matched by <pattern> 

\d (where dis a single digit) is replaced by the ath substring matched 
by parts of <pattern> enclosed in '\ (' and '\) '. If nested sub
strings occur in <pattern>, the ath is determined by counting 
opening delimiters ('\ ('). 

As in patterns, special characters may be made literal by 
preceding them with backslash ('\'). 

The <flags> argument may contain the following flags: 

g -- substitute <replacement> for all (non-overlapping) instances of 
<pattern> in the line. After a successful substitution, the 
scan for the next instance of <pattern> begins just after the 
end of the inserted characters~ characters put into the line from 
<replacement> are not rescanned. 

p -- print the line if a successful replacement was done. The p flag 
causes the line to be written to the output if and only if a sub
stitution was actually made by the s function. Notice that if 
several s functions, each followed by a p flag, successfully sub
stitute in the same input line, multiple copies of the line will be 
written to the output: one for each successful substitution. 

w <filename> -- write the line to a file if a successful replacement was 
done. The w flag causes lines which are actually substituted by 
the s function to be written to a file named by <filename>. If 
< ftlename> exists before :sed is ruhj it is over'Written; if not, it 
is created. 

A single space must separate wand <filename>. 

The poS$ibilities of multiple. somewhat different copies of one 
inp\lt tine being written are the same as for /J. 

A maximum of 10 different file names may be mentioned after 
w flags and w functions (see below), combined. 



24-8 

Examples: 

The following command, applied to our standard input, 

s/to/by /w changes 

produces, on the standard output: 

In Xanadu did Kubhla Khan 
A stately pleasure dome decre.e: 
Where Alph, the sacred river, ran 
Through caverns measureless by man 
Down by a sunless sea. 

and, on the file 'changes': 

Through caverns measureless by man 
Down by a sunless sea. 

If the nocopy option is in effect, the command: 

s/L,; ?:l/"'P&"' /gp 

produces: 

A stately pleasure dome decree"'P:* 
Where Alph*P, * the sacred river'"P,'" ran 
Down to a sunless sea'"P.'" 

Finally, to illustrate the effect of the g flag, the command: 

/Xis/an/ AN/p 

produces (assuming nocopy mode): 

In XANadu did Kubhla Khan 

and the command: 

/Xis/an/ AN/gp 

produces: 

In XANadu did Kubhla KhAN 

3.3. I nput·output Functions 

(2)p -- print 

The print function writes the addressed lines to the standard output file. They 
are written al the time the p function is encountered, regardless of what 
succeeding editing commands may do to the lines. 

(2)w <filename> -·write on <filename> 

The write function writes the addressed lines to the fiie named by <filename>. 
If the file previously existed, it is overwritten; if not, it is created. The lines 
are wrinen exactly as they exist when the write function is encountered for 
each line, regardless of what subsequent editing commands may do to them. 

Exactly one space must separate the wand <filename>. 

A maximum of ten different files may be mentioned in write functions and w 
flags after s functions, combined. 

(I) r <filename> -- read the contents of a file 

The read function reads the contents of <filename>, and appends them after 
the line matched by the address. The file is read and append.ed regardless of 
what subsequent editing commands do to the line which matched its address. 
If r and a functions are executed on the same line, the text from the a 

c 

( 



. ··~ ... 

24-9 

functions and the r functions is written to the output in the order that the func
tions are executed. 

Exactly one space must separate the rand <filename>. If a file mentioned by 
a r function cannot be opened, it is considered a null file, not an error, and no 
diagnostic is given. 

NOTE: Since there is a limit to the number of files that can be opened simultaneously, care 
should be taken that no more than ten files be mentioned in w functions or flags; that number 
is reduced by one if any r functions are present. (Only one read file is open at one time.) 

Examples 

Assume that the file 'notel' has the following contents: . 

Note: Kubla Khan (more properly Kublai Khan; 1216-1294) was the grandson 
and most eminent successor of Genghiz (Chingiz) Khan, and founder of the 
Mongol dynasty in China. 

Then the following command: 

/Kubla/r notel 

produces: 

In Xanadu did Kubla Khan 
Note: Kubla Khan (more properly Kublai Khan; 1216-1294) was the grandson 
and most eminent successor of Genghiz (Chingiz) Khan, and founder of the 
Mongol dynasty in China. 

A stately pleasure dome decree: 
Where Alph, the sacred river, ran 
Through caverns measureless to man 
Down to a sunless sea. 

3.4. Multiple Input-line Functions 

Three functions, all spelled with capital letters, deal specially with pattern spaces containing 
imbedded newlines; they are intended principally to provide pattern matches across lines in the 
input. 

(2)N -- Next line 

The next input line is appended to the current line in the pattern space; the two 
input lines are separated by an imbedded newline. Pattern matches may extend 
across the imbedded newline (s). 

(2) D -- Delete first part of the pattern space 

Delete up to and including the first newline character in the current pattern 
space. If the pattern space becomes empty (the only newline was the terminal 
newline), read another line from the input. In any case, begin the list of edit
ing commands again from its beginning. 

(2)P -- Print first part of the pattern space 

Print up to and including the first newline in the pattern space. 

The P and D functions are equivalent to their lower-case counterparts if there are no imbedded 
newlines in the pattern space. 



24-10 

3.S. Hold and Get Functions 

Four functions save and retrieve part of the input for possible later use. 

(2) h -- hold pattern space 

The h functions copies Lhe contents of the pattern space into a hold area (des
troying the previous contents of the hold area). 

(2) H -- Hold pattern space 

The H function appends the contents of the pattern space to the contents of the 
hold area: the former and new contents are separated by a newline. 

(2)g -- get contents of hold area 

The g function copies the contents of the hold area into the pattern space (des
troying the previous contents of the pattern space). 

(2)G -- Get contents of hold area 

The G function appends the contents of the hold area to the contents of the 
pattern space~ the former and new contents are separated by a newline. 

(2)x -- exchange 

The exchange command interchanges the contents of the pattern space and the 
hold area. 

Example 

The commands 

lh 
ls/ did.*// 
lx 
G 
s/\n/ :/ 

applied to our standard example, produce: 

In Xanadu did Kubla Khan :In Xanadu 
A stately pleasure dome decree: :In Xanadu 
Where Alph, the sacred river, ran :In Xanadu 
Through caverns measureless to man :In Xanadu 
Down to a sunless sea. :In Xanadu 

3.6. Flow-of-Control Functions 
These functions do no editing on the input lines, but control the application of functions to the 
lines selected by the address part. 

(2)! -- Don't 

The Don't command causes the next command (written on the same line), to 
be applied to all and only those inpu[ lines not selected by the adress part. 

(2) { -- Grouping 

The grouping command '{' causes the next set of commands to be applied for 
not applied) as a block to the input lines selected by the addresses of the group
ing command. The first of the commands under control of the grouping may 
appear on the same line as the'(' or on the next line. 

( 

( 

, 

' 



... ~· .... 

24-11 

The group of commands is terminated by a matching '}' standing on a line by 
itself. 

Groups can be nested. 

(O):<label> -- place a label 

The label function marks a place in the list of editing commands which may be 
ref erred to by b and t functions. The <label> may be any sequence of eight 
or fewer characters; if two different colon functions have identical labels, a 
compile time diagnostic will be generated, and no execution attempted. 

(2) b <label> -- branch to label 

The branch function causes the sequence of editing commands being applied to 
the current input line to be restarted immediately after the place where a colon 
function with the same <label> was encountered. If no colon function with 
the same label can be found after all the editing commands have been com
piled, a compile time diagnostic is produced, and no execution is attempted. 

A b function with no <label> is taken to be a branch to the end of the list of 
editing commands; whatever should be done with the current input line is 
done, and another input line is read; the list of editing commands is restarted 
from the beginning on the new line. 

(2)t <label> -- test substitutions 

The t function tests whether any successful substitutions have been made on 
the current input line; if so, it branches to <label>; if not, it does nothing. 
The flag which indicates that a successful substitution has been executed is 
reset by: 

1) reading a new input line, or 
2) executing a t function. 

3. 7. Miscellaneous Functions 

(1) = -- equals 

The = function writes to the standard output the line number of the line 
matched by its address. 

(l)q -- quit 

Reference 

The q function causes the current line to be written to the output (if it should 
be), any appended or read text to be written, and execution to be terminated. 

[1] Ken Thompson and Dennis M. Ritchie, The UNIX Programmer's Manual. Bell Labora
tories, 1978. 





Awk - A Pattern Scanning and Processing Language 
(Second Edition) 

Alfred V. Aho 

Brian W. Kernighan 

Peter J. Weinberger 

Bell Laboratories 
Murray Hill, New Jersey 07974 

ABSTRACT 

Awk is a programming language whose basic operation is lo search a set 
of files for patterns, and to perform specified actions upon lines or fields of 
lines which contain instances of those patterns. Awk makes certain data selec
tion and transformation operations easy to express; for example, the awk pro
gram 

length > 72 

prints all input lines whose length exceeds 72 characters; the program 

NF% 2 ..... 0 

prints all lines with an even number of fields; and the program 

{ $1 =- log($1 ); print I 

replaces the first field of each line by its logarithm. 

Awk patterns may include arbitrary boolean combinations of regular 
expressions and of relational operators on strings, numbers, fields, variables, 
and array elements. Actions may include the same pattern-matching construc
tions as in patterns, as well as arithmetic and string expressions and assign
ments, if-else, while, for statements, and multiple output streams. 

This report contains a user's guide, a discussion of the design and imple
mentation of awk, and some iiming statistics. 

September l, 1978 

25-1 



Awk - A Pattern Scanning and Proce sing Language 
(Second Edition) 

Alfred V. Aho 

Brian W. Kernighan 

Peter J. Weinberger 

Bell Laboratories 
Murray Hill, New Jersey 07974 

1. Introduction 
Awk is a programming language designed 

to make many common information retrieval and 
text manipulation tasks easy to state and to per
form. 

The basic operation of awk is to scan a set 
of input lines in order, searching for lines which 
match any of a set of patterns which the user has 
specified. For each pattern, an action can be 
specified; this action will be performed on each 
line that matches the pattern. 

Readers familiar with the UNtxt program 
grep I will recognize the approach, although in 
awk the patterns may be more general than in 
grep, and the actions allowed are more involved 
than merely printing the matching line. For 
example. the awk program 

(print $3, $21 

prints the thitd and second columns of a table in 
that order. The program 

$2 - /AIBIC/ 

prints all input lines with an A, B, or C in the 
second field. The program 

$1 !- prev ( print; prev - $1 I 
prints all lines in which the first field is different 
from the previous first field. 

1 .1. Usage 

The command 

awk E>rograrft [files} 

executes the awk commands in the string pro
gram on the set of named files, or on the stan
dard input if there are no files. The statements 
can also be placed in a file pfiht, and executed by 
the command 

tUNIX is a Trademark of Bell Labora1ories. 

25-2 

awk - f pfile [files] 

1.2. Program Structure 

An awk program is a sequence of state· 
ments of the form: 

pattern 
pattern 

action 
action 

Each line of input is matched against each of the 
patterns in turn. For each pattern that matches, 
the associated action is executed. When all the 
patterns have been tested, the next line is 
fetched and the matching starts over. 

Either the pattern or the action may be left 
out, but not both. If there is no action for a pat· 
tern. the matching line is simply copied to the 
output. (Thus a line which matches several pat· 
terns can be printed several times.) If there is no 
pattern for an action. then the action is per
formed for every input line. A line which 
matches no pattern is ignored. 

Since patterns and actions are both 
optional. actions must be enclosed in braces to 
distinguish them from patterns. 

1.3. Records and Fields 

Awk input is divided into "records" ter· 
minated by a record separator. The default 
record separator is a newline, so by default awl< 
processes its input a line at a time. The number 
of the current record is available in a variable 
named NR. 

Each input record is considered to be 
divided into "fields." Fields are normally 
separated by white space -· blanks or tabs - but 
the input field separator may be changed, as 
described below. Fields are referred to as $1, 
$2, and so forth, where $1 is the first field, and 
$0 is the whole input record itself. Fields may 

----------

( 

c 



be assigned to. The number of fields in the 
current record is available in a variable named 
NF. 

The variables FS and RS refer to the input 
field and record separators; they may be changed 
at any time to any single character. The optional 
command-line argument - Fe may also be used 
to set FS to the character c. 

25-3 

If the record separator is empty, an empty 
input line is taken as the record separator, and 
blanks, tabs and newlines are treated as field 
separators. 

The variable FILENAME contains the 
name of the current input file. 

1.4. Printing 

An action may have no pattern, in which 
case the action is executed for al! lines. The 
simplest action is to print some or all of a record; 
this is accomplished by the awk command print. 
The awk program 

( print l 

prints each record, thus copying 1he input to the 
output intact. More useful is to print a field or 
fields from each record. For instance, 

print $2, $1 

prints the first two fields in reverse order. ltems 
separated by a comma in the print statement will 
be separated by the current output field separator 
when output Items not separated by commas 
will be concatenated, so 

print $1 $2 

runs the first and second fields together. 

The predefined variables NF and NA can 
be used; for example 

I print NR, NF, $0 ] 

prints each record preceded by the record 
number and the number of fields. 

Output may be diverted to multiple files; 
the program 

I print $ i >"loo 1 "; print $2 > "foo2" l 
writes the first field, $1, on the file foo1, and 
the second field on file foo2. The > > notation 
can also be used: 

print $1 > > "foo" 

appends the output to the file loo. On each 
case, the output files are created if necessary.) 
The file name can be a variable or a field as well 
as a constant; for example, 

print $1 > $2 

uses the contents of field 2 as a file name. 

Naturally there is a limit on the number of 
output files; currently it is 10. 

Similarly, output can be piped into another 
process (on UNIX only); for instance, 

print I "mail bwk" 

mails the output to bwk. 

The variables OFS and ORS may be used 
to change the current output field separator and 
output record separator. The output record 
separator is appended to the output of the print 
statement. 

Awk also provides the printf statement for 
output formatting: 

printf format expr, expr, ... 

formats the expressions in the list according to 
the specification in format and prints them. For 
example, 

printf "%8.2f % 1 Old\n", $1, $2 

prints $1 as a floating point number 8 digits 
wide, with two after the decimal point, and $2 as 
a IO-digit long decimal number, followed by a 
newline. No output separators are produced 
automatically; you must add them yourself, as in 
this example. The version of printf is identical 
to that used with C.2 

2. Patterns 

A pattern in front of an action acts as a 
selector that determines whether the action is to 
be executed. A variety of expressions may be 
used as patterns: regular expressions, arithmetic 
relational expressions, string-valued expressions, 
and arbitrary boolean combinations of these. 

2.1. BEGIN and END 

The special pattern BEGIN matches the 
beginning of the input, before the first record is 
read. The pattern END matches the end of the 
input, after the last record has been processed. 
BEGIN and END thus provide a way to gain con
trol before and after processing, for initialization 
and wrapup. 

As an example, the field separator can be 
set to a colon by 

BEGIN IFS = ":" l 
. . . rest of program ... 

Or the input lines may be counted by 

END I print NR l 
If BEGIN is present, ii must be the first pattern; 
END must be the last if used. 



25-4 

2.2. Regular Expressions 

The simplest regular expression is a literal 
string of characters enclosed in slashes. like 

/smith/ 

This is actually a complete awk program which 
will print all lines which contain any occurrence 
of the name "smiih". If a line contains "smith" 
as pan of a larger word, it will also be primed, as 
in 

blacksmithing 

Awk regular expressions include the regu
lar expression forms found in the UNIX text edi
tor edl and grep (without back-referencing). In 
addition, awk allows parentheses for grouping, I 
for alternatives, + for "one or more", and ? for 
"zero or one", all as in lex. Character classes 
may be abbreviated: [a-z:A-Z0-9] is the set 
of al! letters and digits. As an example, the awk 
program 

/[Aalho I [Wwleinberger I [Kklernighan/ 

, will print all tines which contain any of the 
names "Aho," "Weinberger" or "Kernighan," 
whether capitalized or not. 

Regular expressions (with the extensions 
listed above) must be enclosed in slashes, just as 
in ed and sed. Within a regular expression, 
blanks and the regular expression metacharacters 
are significant. To tum of the magic meaning of 
one of the regular expression characters, precede 
it with a backslash. An example is the pattern 

!\/..\II 

which matches any string of characters enclosed 
in slashes. 

One can also specify that any field or vari
able matches a regular expression (or does not 
ma1ch it) with the operators - and !-. The 
program 

$1 - /[jJJohn/ 

prints all lines where the first field matches 
"john" or "John." Notice that this will also 
match "Johnson", "St. Johnsbury", and so on. 
To restrict it to exactly UJlohn, use 

$1 - FUJJohn$/ 

The caret - refers to the beginning of a line er 
field; the dollar sign $ refers to the end. 

2.3. Relational Expressions 

An av.:k pattern can be a relational expres
sion involving the usual relational operators <, 
<-, """", !-, >-,and>. An example is 

$2 > $1 + 100 

which selects lines where the second field is at 
least !00 greater than the first field. Similarly, 

NF % 2 """"" 0 

prints lines with an even number of fields. 

l n relational tests, if neither operand is 
numeric, a siring comparison is made; otherwise 
it is numeric. Thus, 

$1 >= "s" 

selects lines that begin with an s, t, u, etc. In 
the absence of any other information, fields are 
treated as strings, so the program 

$1 > $2 

will perform a string comparison. 

2.4. Combinations of Patterns 

A pattern can be any boolean combination 
of panerns, using the operators 11 for), && 
fond), and l (not). for example, 

$1 > - "s" && $1 < "t" && $1 !- "smith" 

selects lines where the first field begins with "s", 
but is not "smith". && and 11 guarantee that 
their operands 1.viil be evaluated from left to 
right; evaluation slops as soon as the truth or 
falsehood is determined. 

2.5. Pattern Ranges 

The "pattern" that selects an action may 
also consist of two pa!lerns separated by a 
comma, as in 

pat1, pat2 

In this case, the action is for each line 
between an occurrence of pat1 and the next 
occurrence of pat2 (inclusive). For example, 

/star!/, /stop/ 

prims all lines between start and stop, while 

NR = = 100, NR =""' 200 I ... l 
does !he action for lines I 00 through 200 of the 
input. 

3. Actions 

An awk action is a sequence of action 
statements terminated by ne•Nlines or semi
colons. These action statemen!s can be used !o 
do a variety of bookkeeping ant! string manipu
lating tasks. 

r 
\.... 

( 

( 



25-5 

3.1. Built-in Functions 

Awk provides a "length" function to com
pute the length of a string of characters. This 
program prints each record, preceded by its 
length: 

!print length, $0l 

length by itself is a "pseudo-variable" which 
yields the length of the current record; 
length(argument) is a function which yields the 
length of its argument, as in the equivalent 

(print length($0), $0) 

The argument may be any expression. 

A wk also provides the arithmetic functions 
sqrt, log, exp, and int, for square root, base e 
logarithm, exponential, and integer part of their 
respective arguments. 

The name of one of these built-in func
tions, without argument or parentheses, stands 
for the value of the function on the whole 
record. The program 

length < 1 0 II length > 20 

prints lines whose length is less than lO or 
greater than 20. 

The function substr(s, m, n) produces the 
substring of s that begins at position m (origin 
l) and is at most n characters long. lf n is omit
ted, the substring goes to the end of s. The 
function index(s1, s2) returns the pos1t1on 
where the string s2 occurs in s 1, or zero if it 
does not. 

The function sprintf(f, e 1, e2, ... ) produces 
the value of the expressions e1, e2, etc., in the 
printf format specified by f. Thus, for example, 

x = sprintf("%8.2f %101d", $1, $2) 

sets x to the string produced by formatting the 
values of $1 and $2. 

3.2. Variables, Expressions, and Assign
ments 

A wk variables take on numeric (floating 
point) or string values according to context. For 
example, in 

)( = 1 

xis clearly a number, while in 

x = "smith" 

it is clearly a string. Strings are converted 10 

numbers and vice versa whenever context 
demands it. For instance, 

x ""' "3" + "4" 

assigns 7 to x. Strings which cannot be inter-

preted as numbers in a numerical context will 
generally have numeric value zero, but it is 
unwise to count on this behavior. 

By default, variables (other than built-ins) 
are initialized to the null string, which has 
numerical value zero; this eliminates the need 
for most BEGIN sections. For example, the 
sums of the first two fields can be computed by 

I s 1 + = s 1; s2 + = s2 l 
END { print s 1, s2 l 

Arithmetic is done internally in floating 
point. The arithmetic operators are +, - , •, I, 
and % (mod). The C increment + + and decre
ment - - operators are also available, and so 
are the assignment operators + =, - ==, • ==, 
I=, and % =. These operators may all be used 
in expressions. 

3.3. Field Variables 

Fields in a wk share essentially all of the 
properties of variables - they may be used in 
arithmetic or string operations, and may be 
assigned to. Thus one can replace the first field 
with a sequence number like this: 

( $1 = NR; print ] 

or accumulate two fields into a third, like this: 

( $1 = $2 + $3; print $0 ) 

or assign a string to a field: 

if ($3 > 1 000) 
$3 "too big" 

print 

which replaces the third field by "too big" when 
it is, and in any case prints the record. 

Field references may be numerical expres
sions, as in 

I print $i, $(i + 1 ), $(i + n) l 
Whether a field is deemed numeric or string 
depends on context; in ambiguous cases like 

if ($1 == $2) ... 

fields are treated as strings. 

Each input line is split into fields automati
cally as necessary. lt is also possible to split any 
variable or string into fields: 

n = split(s, array, sep) 

splits the the string s into array[1 L .. ., array[n]. 
The number of elements found is returned. lf 
the sep argument is provided, it is used as the 
field separator; otherwise FS is used as the 
separator. 



25-6 

3.4. String Concatenation 

Strings may be concatenated. For example 

length ($1 $2 $3) 

returns the length of the first three fields. Or in 
a print statement, 

print $1 " is " $2 

prints the two fields separated by " is ". Vari
ables and numeric expressions may also appear 
in concatenations. 

3.5. Arrays 

Array elements are not declared; they 
spring into existence by being mentioned. Sub· 
scripts may have any non-null value, including 
non-numeric strings. As an example of a con
ventional numeric subscript, the statement 

x[NR] = $0 

assigns the current input record to the NR-th e!e· 
ment of the array x. In fact, ii is possible in 
principle (though perhaps slow.) to process the 
entire input in a random order with !he awk pro
gram 

( x[NRJ = $0 l 
END I ... program ... l 

The first action merely records each input line in 
the array x. 

Array elements may be named by non
numeric va!ues, which gives awk a capability 
rather like the associative memory of Snobo! 
tables. Suppose the input contains fields wnn 
values like apple, orange, etc. Then the pro· 
gram 

/apple/ 
/orange/ 
END 

xl"'apple"J + + I 
x["orange"'l + + l 
print x["apple"l. x!"orange"J 

increments counts for the named array elements, 
and prints them at the end of the input. 

3.6. Flow-of-Control Statements 

Awk provides the basic flow-of-control 
statements if-else, while, for, and statement 
grouping with braces, as in C. We showed the if 
statement in section 3.3 without describing it 
The condition in parentheses is evaluated: if it is 
true, the statement following the if is done. The 
else part is optional. 

The whHe statement is exactly like that of 
C. For example, to print all input fields one per 
line. 

i = 1 
while (i < = NF) { 

p;int $i 
++i 

The for statemem is also exactly that of C: 

for (i = 1; i <=NF; i++} 
print $i 

does the same job as the while statement above. 

There is an alternate form of the for state· 
ment which is suited for accessing the elements 
of an associative array: 

for (i in array) 
statement 

does sta1emen1 with i set in 1urn to each element 
of array. The elements are accessed in an 
apparently random order. Chaos will ensue if i is 
altered, or if any new elements are accessed dur-

the loop. 

The expression in the condition part of an 
if, while or lor can include relational operators 
like<,<=,>,>=,-= ("is equal to"), and 
! = {"not equal to"); regular expression matches 
with the ma1ch operators - and !-; the logical 
operators 11, &&, and !; and of course 
parentheses for grouping. 

The break statement causes an immediate 
exit from an enclosing while or for; the con
tinue statement causes the next iteration to 
begin. 

The statement next causes awk to skip 
immediately to the next iecord and begin scan
ning the patterns from the top. The statement 
exit causes the progrnm to behave as if the end 
of the inpui had occurred. 

Comments may be placed in awk pro
grams: they begin with the character # and end 
with the end of the line, as in 

print x, y # this is a comment 

4. 

The UNIX system already provides several 
programs that operate by passing input through a 
selection mechanism. Grep, the first and sim·· 
plest, merely prints all lines which match a single 
specitied panern. Egrep provides more general 
patterns, i.e., regular expressions in full general· 
ity; fgrep searches for a set of keywords with a 
panicuiarly fast algorithm. Sedl provides most 
of the editing facilities of !he editor ed, applied 
to a stream of input. None of these programs 
provides numeric capabilities, logical relations, or 
variables. 

( 



25-7 

Lex3 provides general regular expression 
recognition capabilities. and, by serving as a C 
program generator, is essentially open-ended in 
its capabilities. The use of lex, however, 
requires a knowledge of C programming, and a 
lex program must be compiled and loaded before 
use, which discourages its use for one-shot appli
cations. 

Awk is an attempt to fill in another part of 
the matrix of possibilities. It provides general 
regular expression capabilities and an implicit 
input/output loop. But it also provides con
venient numeric processing, variables, more gen
eral selection, and control flow in the actions. It 
does not require compilation or a knowledge of 
C. Finally, awk provides a convenient way to 
access fields within lines; it is unique in this 
respect. 

Awk also tries to integrate strings and 
numbers completely, by treating all quantities as 
both string and numeric, deciding which 
representation is appropriate as late as possible. 
In most cases the user can simply ignore the 
differences. 

Most of the effort in developing awk went 
into deciding what awk should or should not do 
(for instance, it doesn't do string substitution) 
and what the syntax should be (no explicit 
operator for concatenation) rather than on writ
ing or debugging the code. We have tried to 
make the syntax powerful but easy to use and 
well adapted to scanning files. For example, the 
absence of declarations and implicit initializa
tions, while probably a bad idea for a general
purpose programming language, is desirable in a 
language that is meant to be used for tiny pro
grams that may even be composed on the com
mand line. 

In practice, awk usage seems to fall into 
two broad categories. One is what might be 
called "report generation" - processing an input 
to extract counts, sums, sub-totals. etc. This 
also includes the writing of trivial data validation 
programs, such as verifying that a field contains 
only numeric information or that certain delim
iters are properly balanced. The combination of 
textual and numeric processing is invaluable 
here. 

A second area of use is as a data 
transformer, converting data from the form pro
duced by one program into that expected by 
another. The simplest examples merely select 
fields. perhaps with rearrangements. 

5. Implementation 

The actual implementation of awk uses the 
language development tools available on the 
UNIX operating system. The grammar is 
specified with yacc;4 the lexical analysis is done 
by lex; the regular expression recognizers are 
deterministic finite automata constructed directly 
from the expressions. An awk program is 
translated into a parse tree which is then directly 
executed by a simple interpreter. 

Awk was designed for ease of use rather 
than processing speed; the delayed evaluation of 
variable types and the necessity to break input 
into fields makes high speed difficult to achieve 
in any case. Nonetheless, the program has not 
proven to be unworkably slow. 

Table I below shows the execution (user 
+ system) time on a PDP· I I /70 of the UNIX 
programs we, grep, egrep, fgrep, sed, lex, and 
awk on the following simple tasks: 

l. count the number of lines. 

2. print all lines containing "doug''. 

3. print all lines containing ''doug", "ken" 
or "dmr". 

4. print the third field of each line. 

5. print the third and second fields of each 
line, in that order. 

6. append all lines contammg "doug". 
"ken", and "dmr" to files "jdoug", 
"jken", and "jdmr", respectively. 

7. print each line prefixed by "line
number:" 

8. sum the fourth column of a table. 

The program we merely counts words, lines and 
characters in its input; we have already men· 
tioned the others. In all cases the input was a 
file containing 10,000 lines as created by the 
command Is -I; each line has the form 

-rw-rw-rw- 1 ava 123 Oct 15 17:05 xxx 

The total length of this input is 452,960 charac· 
ters. Times for lex do not include compile or 
load. 

As might be expected, awk is not as fast 
as the specialized tools we. sed. or the programs 
in the grep family. but is faster than the more 
general tool lex. In all cases, the tasks were 
about as easy to express as awk programs as pro· 
grams in these other languages; tasks involving 
fields were considerably easier to express as awk 
programs. Some of the test programs are shown 
in awk. sed and lex. 



References 

l. K. Thompson and 0. M. Ritchie, UNIX 

Programmer's Manual. Bell Labora1ories 
(May 197S). Sixlh Edition 

25-8 

2. 8. W. Kernighan and D. M. Ritchie, The C 
Programming Language, Prentice-Hall, 
Englewood Cliffs, New Jersey (1978). 

3. M. E. Lesk, "Lex - A Lexical Analyzer 
Generalor." Comp. Sci. Tech. Rep. No. 
39, Bell laboratories, Murray Hill. New 
Jersey (October 197S). 

4. S. C. Johnson, "Yacc - Yet Another 
Compiler-Compiler," Comp. Sci. Tech. 
Rep. No. 32. Bell labora1ories, Murray 
Hill, New Jersey (July 1975). 

I 

( 

·( 

( 



' 
j 

Program 2 
WC 8.6 

grep 11.7 13. l 
egrep 6.2 l l.5 
fgrep 7.7 13.8 

sed 10.2 11.6 
lex 65.l 150.I 

awk 15.0 25.6 

3 

11.6 
16.l 
15.8 

144.2 
29.9 

25-9 

Task 
4 

29.0 
67.7 
33.3 

5 

30.5 
70.3 
38.9 

6 7 8 

16.1 
104.0 81.7 92.8 
46.4 71.4 31.l 

Table I. Execution Times of Programs. <Times are in sec.) 

The programs for some of these jobs are 
shown below. The lex programs are generally 
too long to show. 

AWK: 

1. END !print NRJ 

2. /doug/ 

3. /kenldougldmr/ 

4. (print $3l 

5. :print $3, $2l 

6. /ken/ !print >"jken"l 
/doug/ (print >"jdoug"l 
/dmr/ (print >"jdmr"l 

7. !print NR ": " $0) 

8. (sum - sum 
END (print suml 

SED: 

1. $-

2. /doug/p 

3. /doug/p 
/doug/d 
/ken/p 
/ken/d 
/dmr/p 
/dmr/d 

+ $4) 

4. /(" ]• [ ].[" ]• [ ].\([" ].\) .•Isl/\ 1 /p 

5. 1r ]• [ J.\ <r ]•\) ( J•\ ([" J.\) .•Isl 1\2 \ 1 /p 

6. /ken/w jken 
/doug/w jdoug 
/dmr/w jdmr 

LEX: 

1. %! 
int i; 
%l 
%% 
\n i++; 

%% 
yywrap() I 

printf("%d\n", i); 

2. %% 
·.·doug.•$ 

\n 

printf("%s\n'', yytext); 





DC - An Interactive Desk Calculator 

Robert Morris 

Lorinda Cherry 

Bell Laboratories 
Murray Hill, New Jersey 07974 

ABSTRACT 

DC is an interactive desk calculator program implemented on the UNIXt 
time-sharing system to do arbitrary-precision integer arithmetic. It has provi
sion for manipulating scaled fixed-point numbers and for input and output in 
bases other than decimal. 

The size of numbers that can be manipulated is limited only by available 
core storage. On typical implementations of UNIX, the size of numbers that can 
be handled varies from several hundred digits on the smallest systems to 
several thousand on the largest. 

November 15, 1978 

tUNIX is a Trademark of Bell Laboratories. 

26-1 



DC - I 

DC is an arithmetic on the UNixt time-sharing 
system in the form of an interactive desk calculator. It works like a calculator using 
reverse Polish notation. DC operates on decimal integers, but one may specify an 
input base, output and a number of fractional to be maintained. 

A language called BC [1] has been which accepts programs written in the fami-
liar style of higher-level and which is by 
DC. Some of the commands described below were interface and are 
not easy for a human user to 

Numbers that are typed 
taking the top number or two 
result on the stack. If an 
from the standard 

SYNOPTIC ,_)IL,,, __ ,.,_,.:._ 

commands work by 
and pushing the 

until its end, then 

Here we describe the DC commands that are intended for use The additional 
commands that are intended to be invoked 
description. 

Any number commands are 
ignored except within numbers and in 

The following constructions are 

number 

output are described in the detailed 

and new-line characters are 
name is 

The value of the number is onto the main stack. A number is an unbroken string 
the digits 0-9 and the letters A-F which are treated as with values 10-15 

respectively. The number may be an underscore to a negative 
number. Numbers may contain decimal 

+ - $ % A 

The top two values on the stack are added ( - ) , (*), divided 
(/), remaindered , or two entries are popped the stack; the 
result is pushed on the stack in their result of a division is an integer trun-
cated toward zero. See the detailed below for the treatment numbers with 
decimal points. An exponent must not have any after the point 

tUNiX is a Trademark of Be!! Laboratories. 

26-2 



- .. / 

sx 

Ix 

26-3 

The top of the main stack is popped and stored into a register named x, where x may be 
any character. If the s is capitalized, x is treated as a stack and the value is pushed onto 
it. Any character, even blank or new-line, is a valid register name. 

The value in register x is pushed onto the stack. The register x is not altered. If the I is 
capitalized, register xis treated as a stack and its top value is popped onto the main stack. 

All registers start with empty value which is treated as a zero by the command I and is treated 
as an error by the command L. 

d 

p 

r 

x 

I ... J 

q 

The top value on the stack is duplicated. 

The top value on the stack is printed. The top value remains unchanged. 

All values on the stack and in registers are printed. 

treats the top element of the stack as a character string, removes it from the stack, and 
executes it as a string of DC commands. 

puts the bracketed character string onto the top of the stack. 

exits the program. If executing a string, the recursion level is popped by two. If q is capi
talized, the top value on the stack is popped and the string execution level is popped by 
that value. 

<x >x =x !<x !>x !=x 

v 

c 

The top two elements of the stack are popped and compared. Register x is executed if 
they obey the stated relation. Exclamation point is negation. 

replaces the top element on the stack by its square root. The square root of an integer is 
truncated to an integer. For the treatment of numbers with decimal points, see the 
detailed description below. 

interprets the rest of the line as a UNIX command. Control returns to DC when the UNIX 

command terminates. 

All values on the stack are popped; the stack becomes empty. 



4 

The top value on the stack is nr11~""'"' and used as the number radix If i 
is capitalized, the value of the onto the stack. 
been provided for the input numbers in bases less l or 

0 

The top value on the stack is popped and used as the number radix for further output If 
o is capitalized, the value of the base is onto the stack. 

k 

The top of the stack is popped, and that value i:s used as a scale 
number of decimal that are maintained division, and 
exponentiation. scale than or zero and iess than 1 
If k is capitalized, the value onto the stack. 

l 

The value of the stack level is pushed onto the stack. 

? 

A line of input is taken frorn the source the and executed. 

DETAILED DESCRIPTION 

Internal Representation of Numbers 

Numbers are stored internally a in the 
form of a string of to the base 100 stored one per digits). The 
string is stored with the low-order digit at the of the the 
representation is 57, l. any arithmetic operation on a number, care is taken that all. 
digits are in the ·ange 0-99 and that the number has no leading zeros. number zero is 
represented by the empty string. 

Negative numbers are in the lOO's 
to two's complement notation 
is always -1 and all other are in the range 0-99. 

l"UP•1f'r'l!~nr notation, which is GHo~.IU1".U 

of a negative number 
the high order -1 

digit is never a 99. The representation of --157 is 43 . -- L We shall call this the canonical 
form of a number. The advantage of this kind of numbers is ease of 
addition. When addition i.s digit, the result is correct. result 
need only be modified, if necessary, to put it into canonical 

Because the largest valid digit is 99 and the byte can hold numbers twice that addi·· 
tion can be carried out and the handling carries done later when that is convenient, as it 
sometimes is. 

An additional byte is stored with each number beyond the high order to indicate the 
number of assumed decimai digits after the decimal The of .001 is 1,3 
where the scale has been italicized to emphasize the fact that it is not the high order digit. The 
value of this extra byte is called the scale factor of the number. 

The Allocator 

DC uses a dynamic string storage allocator for all of its internal storage. All reading and 
writing of numbers internally is done through the allocator. Associated with each string in the 
allocator is a four-word header containing pointers to the beginning of the string, the end of the 
string, the next place to write, and the next place to read. Communication between the alloca
tor and DC is done via pointers to these headers. 

c,-.. ~--



26-5 

The allocator initially has one large string on a list of free strings. Ali headers except the 
one pointing to this string are on a list of free headers. Requests for strings are made by size. 
The size of the string actually supplied is the next higher power of 2. When a request for a 
string is made, the allocator first checks the free list to see if there is a string of the desired 
size. If none is found, the allocator finds the next larger free string and splits it repeatedly until 
it has a string of the right size. Left-over strings are put on the free list. If there are no larger 
strings, the allocator tries to coalesce smaller free strings into larger ones. Since all strings are 
the result of splitting large strings, each string has a neighbor that is next to it in core and, if 
free, can be combined with it to make a string twice as long. This is an implementation of the 
'buddy system' of allocation described in [2]. 

Failing to find a string of the proper length after coalescing, the allocator asks the system 
for more space. The amount of space on the system is the only limitation on the size and 
number of strings in DC. If at any time in the process of trying to allocate a string, the alloca
tor runs out of headers, it also asks the system for more space. 

There are routines in the allocator for reading, writing, copying, rewinding, forward
spacing, and backspacing strings. Ail string manipulation is done using these routines. 

The reading and writing routines increment the read pointer or write pointer so that the 
characters of a string are read or written in succession by a series of read or write calls. The 
write pointer is interpreted as the end of the information-containing portion of a string and a 
call to read beyond that point returns an end-of-string indication. An attempt to write beyond 
the end of a string causes the allocator to allocate a larger space and then copy the old string 
into the larger block. 

Internal Arithmetic 

All arithmetic operations are done on integers. The operands (or operand) needed for the 
operation are popped from the main stack and their scale factors stripped off. Zeros are added 
or digits removed as necessary to get a properly scaled result from the internal arithmetic rou
tine. For example, if the scale of the operands is different and decimal alignment is required, 
as it is for addition, zeros are appended to the operand with the smaller scale. After performing 
the required arithmetic operation, the proper scale factor is appended to the end of the number 
before it is pushed on the stack. 

A register called scale plays a part in the results of most arithmetic operations. scale is 
the bound on the number of decimal places retained in arithmetic computations. scale may be 
set to the number on the top of the stack truncated to an integer with the k command. K may 
be used to push the value of scale on the stack. scale must be greater than or equal to 0 and 
less than 100. The descriptions of the individual arithmetic operations will include the exact 
effect of scale on the computations. 

Addition and Subtraction 

The scales of the two numbers are compared and trailing zeros are supplied to the number 
with the lower scale to give both numbers the same scale. The number with the smaller scale is 
multiplied by 10 if the difference of the scales is odd. The scale of the result is then set to the 
larger of the scales of the two operands. 

Subtraction is performed by negating the number to be subtracted and proceeding as in 
addition. 

Finally, the addition is performed digit by digit from the low order end of the number. 
The carries are propagated in the usual way. The resulting number is brought into canonical 
form, which may require stripping of leading zeros, or for negative numbers replacing the 
high-order configuration 99, -1 by the digit -1. In any case, digits which are not in the range 
0-99 must be brought into that range, propagating any carries or borrows that result. 



26-6 

Multiplication 

The scales are removed from the two operands and saved. The operands are both made 
positive. Then multiplication is performed in a digit by digit manner that exactly mimics the 
hand method of multiplying. The first number is multiplied by each digit of the second 
number, beginning with its low order digit. The intermediate products are accumulated into a 
partial sum which becomes the final product. The product is put into the canonical form and its 
sign is computed from the signs of the original operands. 

The scale of the result is set equal to the sum of the scales of the two operands. If that 
scale is larger than the internal register scale and also larger than both of the scales of the two 
operands, then the scale of the result is set equal to the largest of these three last quantities. 

Division 

The scales are removed from the two operands. Zeros are appended or digits removed 
from the dividend to make the scale of the result of the integer division equal to the internal 
quantity scale. The signs are removed and saved. 

Division is performed much as it would be done by hand. The difference of !he lengths 
of the two numbers is computed. If the divisor is longer than the dividend, zero is returned. 
Otherwise the top digit of the divisor is divided into the top two digits of the dividend. The 
result is used as the first (high-order) digit of the quotient. It may turn out be one unit too 
low, but if it is, the next trial quotient will be larger than 99 and this will be adjusted at the end 
of the process. The trial digit is multiplied by the divisor and the result subtracted from the 
dividend and the process is repeated to get additional quotient digits until the remaining divi
dend is smaller than the divisor. At the end, the digits of the quotient are put into the canoni
cal form, with propagation of carry as needed. The sign is set from the sign of the operands. 

Remainder 

The division routine is called and division is performed exactly as described. The quantity 
returned is the remains of the dividend at the end of the divide process. Since division trun
cates toward zero, remainders have the same sign as the dividend. The scale of the remainder 
is set to the maximum of the scale of the dividend and the scale of the quotient plus the scale 
of the divisor. 

Square Root 

The scale is stripped from the operand. Zeros are added if necessary to make the integer 
result have a scale that is the larger of the internal quantity scale and the scale of the operand. 

The method used to compute sqrt(y) is Newton's method with successive approximations 
by the rule 

The initial guess is found by taking the integer square root of the top two digits. 

Exponentiation 

Only exponents with zero scale factor are handled. If the exponent is zero, then the 
result is I. If the exponent is negative, then it is made positive and the base is divided into 
one. The scale of the base is removed. 

The integer exponent is viewed as a binary number. The base is repeatedly squared and 
the result is obtained as a product of those powers of the base that correspond to the positions 
of the one-bits in the binary representation of the exponent. Enough digits of the result are 
removed to make the scale of the result the same as if the indicated multiplication had been 
performed. 

c .• 

c 

( 

( 



26-7 

Input Conversion and Base 

Numbers are converted to the internal representation as they are read in. The scale 
stored with a number is simply the number of fractional digits input. Negative numbers are 
indicated by preceding the number with a _. The hexadecimal digits A - F correspond to the 
numbers 10-15 regardless of input base. The l command can be used to change the base of 
the input numbers. This command pops the stack. truncates the resulting number to an 
integer. and uses it as the input base for all further input. The input base is initialized to 10 
but may, for example be changed to 8 or 16 to do octal· or hexadecimal to decimal conversions. 
The command I will push the value of the input base on the stack. 

Output Commands 

The command p causes the top of the stack to be printed. It does not remove the top of 
the stack. All of the stack and internal registers can be output by typing the command f. Theo 
command can be used to change the output base. This command uses the top of the stack. 
truncated to an integer as the base for all further output. The output base in initialized to 10. 
It will work correctly for any base. The command 0 pushes the value of the output base on the 
stack. 

Output Format and Base 

The input and output bases only affect the interpretation of numbers on input and output; 
they have no effect on arithmetic computations. Large numbers are output with 70 characters 
per line; a \ indicates a continued line. All choices of input and output bases work correctly. 
although not all are useful. A particularly useful output base is 100000, which has the effect of 
grouping digits in fives. Bases of 8 and 16 can be used for decimal-octal or decimal
hexadecimal conversions. 

Internal Registers 

Numbers or strings may be stored in internal registers or loaded on the stack from regis
ters with the commands s and I. The command sx pops the top of the stack and stores the 
result in register x. x can be any character. Ix puts the contents of register x on the top of the 
stack. The I command has no effect on the contents of register x. The s command. however, 
is destructive. 

Stack Commands 

The command c clears the stack. The command d pushes a duplicate of the number on 
the top of the stack on the stack. The command z pushes the stack size on the stack. The 
command X replaces the number on the top of the stack with its scale factor. The command Z 

) replaces the top of the stack with its length. 

Subroutine Definitions and Calls 

Enclosing a string in II pushes the ascii string on the stack. The q command quits or in 
executing a string. pops the recursion levels by two. 

Internal Registers - Programming DC 

The load and store commands together with II to store strings. x to execute and the test
ing commands • < '. '> ', ' - '. '! < '. '! > '. '! .. • can be used to program DC. The x command 
assumes the top of the stack is an string of DC commands and executes it. The testing com
mands compare the top two elements on the stack and if the relation holds. execute the register 
that follows the relation. For example. to print the numbers 0-9. 

[!ipl + si tilO>a]sa 
Osi lax 



26-8 

Push-Down Registers and Arrays 

These commands were designed for used by a compiler, not by people. They involve 
push-down registers and arrays. In addition lo the stack that commands work on, DC can be 
thought of as having individual stacks for each register. These registers are operated on by the 
commands S and L. Sx pushes the top value of the main stack onto the stack for the register 
x. Lx pops the stack for register x and puts the result on the main stack. The commands s and 
I also work on registers but not as push-down stacks. I doesn't effect the top of the register 
stack, and s destroys what was there before. 

The commands to work on arrays are : and ;. :x pops the stack and uses this value as an 
index into the array x. The next element on the stack is stored at this index in x. An index 
must be greater than or equal to 0 and less than 2048. ;x is the command to load the main 
stack from the array x. The value on the top of the stack is the index into the array x of the 
value to be loaded. 

Miscellaneous Commands 

The command ! interprets the rest of the line as a UNIX 

command and passes it to UNIX to execute. One other compiler command is Q. This com
mand uses the top of the stack as the number of levels of recursion to skip. 

DESIGN CHOICES 

The real reason for the use of a dynamic storage allocator was that a general purpose pro
gram could be (and in fact has been) used for a variety of other tasks. The allocator has some 
value for input and for compiling (i.e. the bracket Ll commands) where it cannot be known 
in advance how long a string will be. The result was that at a modest cost in execution time, all 
considerations of string allocation and sizes of strings were removed from the remainder of the 
program and debugging was made easier. The allocation method used wastes approximately 
25% of available space. 

The choice of 100 as a base for internal arithmetic seemingly has no compelling advan
tage. Yet the base cannot exceed 127 because of hardware limitations and at the cost o[ 5% in 
space, debugging was made a great deal easier and decimal output was made much faster. 

The reason for a stack-type arithmetic design was· to permit all DC commands from addi
tion to subroutine execution to be implemented in essentially the same way. The result was a 
considerable degree of logical separation of the final program into modules with very little com
munication between modules. 

The rationale for the lack of interaction between the scale and the bases was to provide an 
understandable means of proceeding after a change of base or scale when numbers had already 
been entered. An earlier implementation which had global notions of scale and base did not 
work out well. If the value of scale were to be interpreted in the current input or output base, 
then a change of base or scale in the midst of a computation would cause great confusion in the 
interpretation of the results. The current scheme has the advantage that the value of the input 
and output bases are only used for input and output, respectively, and they are ignored in all 
other operations. The value of scale is not used for any essential purpose by any part of the 
program and it is used only to prevent the number of decimal places resulting from the arith
metic operations from growing beyond all bounds. 

The design rationale for the choices for the scales of the results of arithmetic were that in 
no case should any significant digits be thrown away if, on appearances, the user actually 
wanted them. Thus, if the user wants to add the numbers 1.5 and 3.517, it seemed reasonable 
to give him the result 5.017 without requiring him to unnecessarily specify his rather obvious 
requirements for precision. 

On the other hand, multiplication and exponentiation produce results with many more 
digits than their operands and it seemed reasonable to give as a minimum the number of 
decimal places in the operands but not to give more than that number of digits unless the user 

(_ 



26-9 

asked for them by specifying a value for scale. Square root can be handled in just the same 
way as multiplication. The operation of division gives arbitrarily many decimal places and there 
is simply no way to guess how many places the user wants. In this case only, the user must 
specify a scale to get any decimal places at all. 

The scale of remainder was chosen to make it possible to recreate the dividend from the 
quotient and remainder. This is easy to implement; no digits are thrown away. · 

References 

[ll L. L. Cherry, R. Morris, BC - An Arbitrary Precision Desk-Calculator Language. 

[2] K. C. Knowlton, A Fast Storage Allocator, Comm. ACM 8, pp. 623-625 (Oct. 1965). 





BC - An Arbitrary Precision Desk-Calculator Language 

Lorinda Cherry 

Robert Morris 

Bell Laboratories 
Murray Hill, New Jersey 07974 

ABSTRACT 

BC is a language and a compiler for doing arbitrary precision arithmetic on 
the PDP-11 under the UNlXt time-sharing system. The output of the compiler 
is interpreted and executed by a collection of routines which can input, output, 
and do arithmetic on indefinitely large integers and on scaled fixed-point 
numbers. 

These routines are themselves based on a dynamic storage allocator. 
Overflow does not occur until all available core storage is exhausted. 

The language has a complete control structure as well as immediate-mode 
operation. Functions can be defined and saved for later execution. 

Two five hundred-digit numbers can be multiplied to give a thousand digit 
result in about ten seconds. 

A small collection of library functions is also available, including sin, cos, 
arctan, log, exponential, and Bessel functions of integer order. 

• Some of the uses of this compiler are 

to do computation with large integers, 

to do computation accurate to many decimal places, 

conversion of numbers from one base to another base. 

November 12, 1978 

tUN!X is a Trademark of Bell Laboratories. 

27-1 



BC - An Arbitrary 

Robert ll1orris 

Beil 
New Jersey 07974 

Introduction 

BC is a language and a compiler for on the UN!Xt 
time-sharing system [l J. The was written to make 
of routines DC ) which are capable of doing arithmetic on 
The compiler is by no means intended to a complete programming 
minimal language facility. 

There is a scaling provision that permits the use of decimal notation. Provision is -
made for input and output in bases other than decimai. Numbers can be converted from 
decimal to octai by simply setting the output base to 8. 

The actual limit on the number of that can be handled depends on the amount 
storage available on the machine. of numbers with many hundreds digits is 
possible even on the smallest versions of UNIX. 

The syntax of BC has been deliberately selected to agree with the C language 
[21. Those who are familiar with C will few in this 

Simple Computations with Integers 

The simplest kind of statement is an arithmetic expression on a line by itself. For 
instan~e, if you type in the tine: 

142857 + 285714 

the program responds immediately with the line 

428571 

The operators - , *, I, %. and · can also be used: multipiication, divi-
sion, remaindering, and exponentiation, vely. integers an integer 
result truncated toward zero. Di vision by zero produces an error comment. 

Any term in an expression may be a minus to indicate that it is to be 
negated (the 'unary' minus sign). The 

7+-3 

is interpreted to mean that -3 is to be added to 7. 

More complex expressions with several operators and with are just 
as in Fortran, with ' having the greatest power, then "' and % and /, and finaliy + and 
- . Contents of parentheses are evaluated before material outside the parentheses. Exponen
tiations are performed from right to left and the other operntors from left to right. The two 
expressions 

7 CNIX is a Trademark of Bell LaboralOnes. 

27-2 



are equivalent, as are the two expressions 

a*b*c and (a*b)*c 

27-3 

BC shares with Fortran and C the undesirable convention that 

a/b*c is equivalent to (a/b)*c 

Internal storage registers to hold numbers have single lower-case letter names. The value 
of an expression can be assigned to a register in the usual way. The statement 

x = x + 3 

has the effect of increasing by three the value of the contents of the register named x. When, 
as in this case, the outermost operator is an =, the assignment is performed but the result is 
not printed. Only 26 of these named storage registers are available. 

There is a built-in square root function whose result is truncated to an integer (but see 
scaling below). The lines 

x = sqrt0 91) 
x 

produce the printed result 

13 

Bases 

There are special internal quantities, called 'ibase' and 'obase'. The contents of 'ibase', 
initially set to 10, determines the base used for interpreting numbers read in. For example, the 
lines 

ibase = 8 
11 

will produce the output line 

9 

and you are all set up to do octal to decimal conversions. Beware, however of trying to change 
the input base back to decimal by typing 

ibase = 10 

Because the number 10 is interpreted as octal, this statement will have no effect. For those 
who deal in hexadecimal notation, the characters A- F are permitted in numbers (no matter 
what base is in effect) and are interpreted as digits having values 10-15 respectively. The 
statement 

ibase = A 

will change you back to decimal input base no matter what the current input base is. Negative 
and large positive input bases are permitted but useless. No mechanism has been provided for 
the input of arbitrary numbers in bases less than 1 and greater than 16. 

lines 
The contents of 'ubase', initially set to 10, are used as the base for output numbers. The 

obase = 16 
1000 

will produce the output line 



27-4 

3E8 

which is to be interpreted as a 3-digit hexadecimal number. Very large output bases are permit
ted, and they are sometimes useful. For example, large numbers can be output in groups of 
five digits by setting 'obase' to 100000. Strange (i.e. 1, 0, or negative) output bases :ire han
dled appropriately. 

Very large numbers are split across lines with 70 characters per line. Lines which are con
tinued end with \. Decimal output conversion is practically instantaneous, but output of very 
large numbers (i.e., more than 100 digits) with other bases is rather slow. Non-decimal output 
conversion of a one hundred digit number takes about three seconds. 

It is best to remember that 'ibase' and 'abase' have no effect whatever on the course of 
internal computation or on the evaluation of expressions, but only affect input and output 
conversion, respectively. 

Scaling 

A third special internal quantity called 'scale' is used to determine the scale of calculated 
quantities. Numbers may have up to 99 decimal digits after the decimal point. This fractional 
part is retained in further computations. We refer to the number of digits after t_he decimal 
point of a number as its scale. 

When two scaled numbers are combined by means of one of the arithmetic operations, 
the result has a scale determined by the following rules. For addition and subtraction, the scale 
of the result is the larger of the scales of the two operands. In this case, there is never any 
truncation of the result. For multiplications. the scale of the result is never less than the max
imum of the two scales of the operands, never more than the sum of the scales of the operands 
and, subject to those two restrictions, the scale of the result is set equal to the contents of the 
internal quantity 'scale'. The scale of a quotient is the contents of the internal quantity 'scale'. 
The scale of a remainder is the sum of the scales of the quotient and the divisor. The result of 
an exponentiation is scaled as if the implied multiplications were performed. An exponent 
must ~ije an integer. The scale of a square root is set to the maximum of the scale of the argu
ment and the contents of 'scale'. 

All of the internal operations are actually carried out in terms of integers, with digits 
being discarded when necessary. In every case where digits are discardt:J, truncation and not 
rounding is performed. 

The contents of 'scale' must be no greater than 99 and no less than 0. It is initially set to 
0. In case you need more than 99 fraction digits, you may arrange your own scaling. 

The internal quantities 'scale'. 'ibase', and 'obase' can be used in expressions just like 
other variables. The line 

scale = scale + l 

increases the value of 'scale' by one, and the line 

scale 

causes the current value of 'scale' to be printed. 

The value of 'scale' retains its meaning as a number of decimal digits to be retained in 
internal computation even when 'ibase' or 'obase · are not equal to l 0. The internal computa
tions (which are still conducted in decimal, regardless of the bases) are performed to the 
specified number of decimal digits, never hexadecimal or octal or any other kind of digits. 

Functions 

The name of a function is a single lower-case letter. Function names are permitted to col
lide with simple variable names. Twenty-six different defined functions are permitted in addi
tion to the twenty-six variable names. The line 

r::,-

(•• 
'-

( 

( 



27-5 

define a(x)j 

begins the definition of a function with one argument. This line must be followed by one or 
more statements, which make up the body of the function, ending with a right brace ) . Return 
of control from a function occurs when a return statement is executed or when the end of the 
function is reached. The return statement can take either of the two forms 

return 
return (x) 

In the first case, the value of the function is 0, and in the second, the value of the expression 
in parentheses. 

Variables used in the function can be declared as automatic by a statement of the form 

auto x,y,z 

There can be only one 'auto' statement in a function and it must be the first statement in the 
definition. These automatic variables are allocated space and initialized to zero on entry to the 
function and thrown away on return. The values of any variables with the same names outside 
the function are not disturbed. Functions may be called recursively and the automatic variables 
at each level of call are protected. The parameters named in a function definition are treated in 
the same way as the automatic variables of that function with the single exception that they are 
given a value on entry to the function. An example of a function definition is 

define a(x,y)( 
auto z 
z = x*y 
return (z) 

The value of this function, when called, will be the product of its two arguments. 

A function is called by the appearance of its name followed by a string of arguments 
enclosetl" in parentheses and separated by commas. The result is unpredictable if the wrong 
number of arguments is used. 

Functions with no arguments are defined and called using parentheses with nothing 
between them: bO. 

If the function a above has been defined, then the line 

a(7,3.14) 

would cause the result 21.98 to be printed and the line 

x = a(a(3,4),5) 

would cause the value of x to become 60. 

Subscripted Variables 

A single lower-case letter variable name followed by an expression in brackets is called ~\ 
subscripted variable (an array element). The variable name is called the array name and the 
expression in brackets is called the subscript. Only one-dimensional arrays are permitted. The 
names of arrays are permitted to collide with the names of simple variables and function name:;. 
Any fractional part of a subscript is discarded before use. Subscripts must be greater than or 
equal to zero and less than or equal to 204 7. 

Subscripted variables may be freely used in expressions, in function calls, and in return 
statements. 

An array name may be used as an argument to a function, or may be declared as 
automatic in a function definition by the use of empty brackets: 



f(a[J) 
define f(a[]) 
auto a[] 

-6 

When an array name is so used, the whole contents 
function, and thrown away on exit function. 
cannot be used in any other contexts. 

Control Statements 

array are copied the use of 
names refer to whole arrays 

The 'if', the 'while', and the 'for' statements may be used to alter the flow pm· 
grams or to cause iteration. The range each of them is a statement or a compound statemem 
consisting of a collection of statements enclosed in braces. are written in the following 
way 

or 

if (relation) statement 
while (relation) statement 
for (expression l; relation; expression2) statement 

if(relation) (statementsl 
while (relation) (statements) 
for (expression 1; relation; expression2) [statements l 

A relation in one of the control statements is an 

x>y 

of the form 

where two expressions are related by one of the six relational operators <, >, < """, > =, 
= =, or !=. The relation = = stands for 'equal to' and != stands equal . The 
meaning of the remaining relational operators is clear. 

BEW ARE of using = instead of = = in a relational. Unfortunately, both of them are 
legal, -so you will not get a message, but = really will not ·do a comparison. 

The 'if' statement causes execution of its range if and 
control passes to the next statement in sequence. 

if the relation is true. Then 

The 'whiie' statement causes execution of its range repeatedly as as the relation is 
true. The relation is tested before each execution of its range and if the relation is con· 
trol passes to the next statement beyond the range the while. 

The 'for' statement begins by executing 'expressionl ', Then the relation is tested and, if 
true, the statements in the range of the 'for' are executed. Then is executed. 
The relation is tested, and so on. The typical use of the 
tion, as in the statement 

for(i=l; i<=lO; i=i+l) i 

which will print the integers from 1 to l 0. Here are some examples of the use of the control 
statements. 

define f (n) ( 
auto i, x 
x=l 
for(i=l; i< =n; i=i+O x=x*i 
retum(x) 
l 

The line 

f(a) 



27-7 

will print a factorial if a is a positive integer. Here is the definition of a function which will 
compute values of the binomial coefficient (m and n are assumed to be positive integers). 

define b(n, m) ( 
auto x, j 
x=l 
forG=l;j<=m;j=j+l) x=x*(n-j+l)/j 
retum(x) 

l 
The following function computes values of the exponential function by summing the appropri
ate series without regard for possible truncation errors: 

scale = 20 
define e (x )\ 

auto a, b, c, d, n 
a = 1 
b=l 
c = l 
d = 0 
n = 1 
whi!e(l = = 1)\ 

Some Details 

a = a*x 
b = b*n 
c = c + a/b 
n=n+l 
if(c= =d) retum(c) 
d=c 

There are some language features that every user should know about even if he will not 
use them. 

Normally statements are typed one to a line. It is also permissible to type several state
ments on a line separated by semicolons. 

If an assignment statement is parenthesized, it then has a value and it can be used any
where that an expression can. For example, the line 

(x =y + 17) 

not only makes the indicated assignment, but also prints the resulting value. 

Here is an example of a use of the value of an assignment statement even when it is not 
parenthesized. 

x=ali=i+l] 

causes a value to be assigned to x and also increments i before it is used as a subscript. 

The following constructs work in BC in exactly the same manner as they do in the C 
language. Consult the appendix or the C manuals [2} for their exact workings. 



27-8 

x=y=z is the same as x=(y=z) 
x =+ y x = x+y 
x ==- y x = x-y 
x =* y x = x*y 
x =/ y x = x/y 
x =% y x = x%y . 

x = x"y x = y 
x++ (x=x + 1)-1 
x-- (x=x-1) + 1 
++x x = x+l 
--x x - x-1 

Even if you don't intend to use the constructs. if you type one inadvertently. something correct 
but unexpected may happen. 

WARNING! In some of these constructions, spaces are significant. There is a real 
difference between x = -y and x = -y. The first replaces x by x -y and the second by -y. 

Three Important Things 

I. To exit a BC program, type 'quit'. 

2. There is a comment convention identical to that of C and of PL/I. Comments begin 
with '/*'and end with'*/'. 

3. There is a library of math functions which may be obtained by typing at command level 

be -I 

This command will load a set of library functions which, at the time of writing, consists of sine 
(named 's'), cosine ('c'), arctangent ('a'), natural logarithm ('l'), exponential ('e') and Bessel 
functions of integer order ('j(n,x)'). Doubtless more functions will be added in time. The 
library sets the scale to 20. You can reset it to something else if you like. The design of these 
mathematical library routines is discussed elsewhere [3]. 

If you type 

be file ... 

BC will read and execute the named file or files before accepting commands from the keyboard. 
In this way, you may load your favorite programs and function definitions. 

Acknowledgement 

The compiler is written in YACC [4]; its original version was written by S. C. Johnson. 

References 

[l] K. Thompson and D. M. Ritchie, UNIX Programmer's Manual. Bell Laboratories, 1978. 

[2) B. W. Kernighan and D. M. Ritchie. The C Programming language. Prentice-Hall, 1978. 

[3] R. Morris, A library of Reference Standard Mathematical Subro11Ti11es. Bell Laboratories 
internal memorandum. 1975. 

[4] S. C. Johnson, YACC - Yet Another Compiler-Compiler. Bell Laboratories Computing Sci
ence Technical Report #32, 1978. 

[5] R. Morris and L. L. Cherry, DC - An Jmeracrii•e Desk Calcitlaror. 

( 

( 

( 



27-9 

Appendix 

1. Notation 

In the following pages syntactic categories are in italics; literals are in bold; material in 
·· , ··· brackets [] is optional. 

·., 

2. Tokens 

Tokens consist of keywords, identifiers, constants, operators, and separators. Token 
separators may be blanks, tabs or comments. Newline characters or semicolons separate state
ments. 

2.1. Comments 

Comments are introduced by the characters /* and terminated by •I. 

2.2. Identifiers 

There are three kinds of identifiers - ordinary identifiers, array identifiers and function 
identifiers. All three types consist of single lower-case letters. Array identifiers are followed by 
square brackets, possibly enclosing an expression describing a subscript. Arrays are singly 
dimensioned and may contain up to 2048 elements. Indexing begins at zero so an array may be 
indexed from 0 to 2047. Subscripts are truncated to integers. Function identifiers are followed 
by parentheses, possibly enclosing arguments. The three types of identifiers do not conflict; a 
program can have a variable named x, an array named x and a function named x, all of which 
are separate and distinct. 

2.3. Keywords 

The following are reserved keywords: 
ibase if 

-obase 
scale 
sqrt 
length 
while 
for 

2.4. Constants 

break 
define 
auto 
return 
quit 

Constants consist of arbitrarily long numbers with an optional decimal point. The hexade
cimal digits A-Fare also recognized as digits with values 10-15. respectively. 

3. Expressions 

The value of an expression is printed unless the main operator is an assignment. Pre
cedence is the same as the order of presentation here, with highest appearing first. Left or right 
associativity, where applicable, is discussed with each operator. 



27-10 

3.1. Primitive expressions 

3.1.1. Named expressions 

Named expressions are places where values are stored. Simply stared, named expressions 
are legal on the left side of an assignment. The value of a named expression is the value stored 
in the place named. 

3.1.1.1. ident(fiers 

Simple identifiers are named expressions. They have an initial value of zero. 

3.1.1.2. array-name I expression I 
Array elements are named expressions. They have an initial value of zero. 

3.1.1.3. scale, ibase and obase 

The internal registers scale, ibase and obase are all named expressions. scale is the 
number of digits after the decimal point to be retained in arithmetic operations. scale has an 
initial value of zero. ibase and obase are the input and output number radix respectively. Both 
ibase and obase have initial values of 10. 

3.1.2. Function calls 

3.1.2.1. function-name ([expression [,expression . .. 1 1) 
A function call consists of a function name followed by parentheses containing a comma

separated list of expressions. which are the function arguments. A whole array passed as an 
argument is specified by the array name followed by empty square brackets. All function argu
ments are passed by value. As a result, changes made to the formal parameters have no effect 
on the actual arguments. If the function terminates by executing a return statement, the value 
of the function is the value of the expression in the parentheses of the return statement or is 
zero if no expression is provided or if there is no return statement. 

3.l.2.2. sqrt (expression) 

The result is the square root of the expression. The result is truncated in the least 
significant decimal place. The scale of the result is the scale of the expression or the value of 
scale, whichever is larger. 

3.1.2.3. length (expression ) 

The result is the total number of significant decimal digits in the expression. The scale of 
the result is zero. 

3.1.2.4. scale (expression) 

The result is the scale of the expression. The scale of the result is zero. 

3.1.3. Constants 

Constants are primitive expressions. 

3.1.4. Parentheses 

An expression surrounded by parentheses is a primitive expression. The parentheses are 
used to alter the normal precedence. 

( 

( 

( 



27-11 

3.2. Unary operators 

The unary operators bind right to left. 

.,,"'\ 3.2.1. - expression 
·•I 
,, The result is the negative of the expression. 

3.2.2. ++named-expression 

The named expression is incremented by one. The result is the value of the named 
expression after incrementing. 

3.2.3. - - named-expression 

The named expression is decremented by one. The result is the value of the named 
expression after decrementing. 

3.2.4. named-expression + + 
The named expression is incremented by one. The result is the value of the named 

expression before incrementing. 

3.2.5. named-expression - -

The named expression is decremented by one. The result is the value of the named 
expression before decrementing. 

3.3. Exponentiation operator 

The exponentiation operator binds right to left. 

3.3.1. expression • expression 

The result is the first expression raised to the power of the second expression. The 
second expression must be an integer. If a is the scale of the left expression and b is the abso
lute value of the right expression, then the scale of the result is: 

min ( axb, max (scale, a)) 

3.4. Multiplicative operators 

The operators •, I, % bind left to right. 

3.4.1. expression * expression 

The result is the product of the two expressions. If a and b are the scales of the two 
expressions, then the scale of the result is: 

min (a +b, max (scale, a, b)) 

3.4.2. expression I expression 

The result is the quotient of the two expressions. The scale of the result is the value of 
scale. 

3.4.3. expression % expression 

The % operator produces the remainder of the division of the two expressions. More pre
cisely, a%b is a-a/b*b. 

The scale of the result is the sum of the scale of the divisor and the value of scale 



27-12 

3.5. Additive operators 

The additive operators bind left to right. 

3.5.1. expression + expression 

The result is the sum of the two expressions. The scale of the result is the maximun of 
the scales of the expressions. 

3.5.2. expression - expression 

The result is the difference of the two expressions. The scale of the result is the max
imum of the scales of the expressions. 

3.6. assignment operators 

The assignment operators bind right to left. 

3.6.1. named-expression = expression 

This expression results in assigning the value of the expression on the right to the named 
expression on the left. 

3.6.2. named-expression = + expression 

3.6.3. named-expression = - expression 

3.6.4. named-expression ="' expression 

3.6.5. named-expression =I expression 

3.6.6. named-expression = % expression 

3.6. 7: named-expression = · expression 

The result of the above expressions is equivalent to "named expression == named expres
sion OP expression", where OP is the operator after the = sign. 

4. Relations 

Unlike all other operators, the relational operators are only valid as the object of an if, 
while, or inside a for statement. 

4.1. expression < expression 

4.2. expression > expression 

4.3. expression < = expression 

4.4. expression > = expression 

4.5. expression = = expression 

4.6. expression ! = expression 

( 

( 



27-13 

5. Storage classes 

There are only two storage classes in BC, global and automatic (local). Only identifiers 
that are to be local to a function need be declared with the auto command. The arguments to a 
function are local to the function. All other identifiers are assumed to be global and available 
to all functions. All identifiers, global and local, have initial values of zero. Identifiers declared 
as auto are allocated on entry to the function and released on returning from the function. 
They therefore do not retain values between function calls. auto arrays are specified by the 
array name followed by empty square brackets. 

Automatic variables in BC do not work in exactly the same way as in either C or PL/I. 
On entry to a function, the old values of the names that appear as parameters and as automatic 
variables are pushed onto a stack. Until return is made from the function, reference to these 
names refers only to the new values. 

6. Statements 

Statements must be separated by semicolon or newline. Except where altered by control 
statements, execution is sequential. 

6.1. Expression statements 

When a statement is an expression, unless the main operator is an assignment, the value 
of the expression is printed, followed by a newline character. 

6.2. Compound statements 
Statements may be grouped together and used when one statement is expected by sur

rounding them with { }. 

6.3. Quoted string statements 

"any string" 

This statement prints the string inside the quotes. 

6.4. If statements 

if (relation ) statement 

The substatement is executed if the relation is true. 

6.5. While statements 

while (relation ) statement 

The statement is executed while the relation is true. The test occurs before each execu
tion of the statement. 

6.6. For statements 

for (expression; relation; expression) statement 

The for statement is the same as 
.first-expression 
while (relation ) [ 

statement 
last-expression 

All three expressions must be present. 



6. 7. Break statements 

break 

27-14 

break causes termination of a for or while statement. 

6.8. Auto statements 

auto identifier [ ,identifier] 

The auto statement causes the values of the identifiers to be pushed down. The 
identifiers can be ordinary identifiers or array identifiers. Array identifiers are specified by fol
lowing the array name by empty square brackets. The auto statement must be the first state
ment in a function definition. 

6.9. Define statements 

define ([parameter [ , parameter . .. ] ] ) { 
srarements l 
The define statement defines a function. The parameters may be ordinary identifiers or 

array names. Array names must be followed by empty square brackets. 

6.10. Return statements 

return 

r~turn (expression ) 

The return statement causes termination of a function, popping of its auto variables, and 
specifies the result of the function. The first form is equivalent to return (0). The result of the 
function is the result of the expression in parentheses. 

6.11. Quit 

The quit statement stops execution of a BC program and returns control to UNIX when it 
is first encountered. Because it is not treated as an executable statement, it cannot be used in a 
function definition or in an if, for, or while statement. 

( 

( 

( 



0. Introduction 

UNIXt Assembler Reference Manual 

Dennis M. ·Ritchie 

Bell Laboratories 
Murray Hill, New Jersey 07974 

This document describes the usage and input syntax of the UNIX PDP-11 assembler as. 
The details of the PDP-11 are not described. 

The input syntax of the UNIX assembler is generally similar to that of the DEC assembler 
PAL·llR, although its internal workings and output format are unrelated. It may be useful to 
read the publication DEC-11-ASDB-D, which describes PAL-1 lR, although naturally one must use 
care in assuming that its rules apply to as. 

As is a rather ordinary assembler without macro capabilities. It produces an output file 
that contains relocation information and a complete symbol table~ thus the output is acceptable 
to the UNIX link-editor Id, which may be used to combine the outputs of several assembler runs 
and to obtain object programs from libraries. The output format has been designed so that if a 
program contains no unresolved references to external symbols, it is executable without further 
processing. 

1. Usage 

as is used as follows: 

as [ - u 1 [ - o 0111pw 1.file 1 ... 

If the optional " - u" argument is given, all undefined symbols in the current assembly will be 
made undefined-external. See the .globl directive below. 

The other arguments name files which are concatenated and assembled. Thus programs 
may be written in several pieces and assembled together. 

The output of the assembler is by default placed on the file a.out in the current directory; 
the " - o" flag causes the output to be placed on the named file. If there were no unresolved 
external references, and no errors detected, the output file is marked executable; otherwise, if 
it is produced at all, it is made non-executable. 

2. Lexical conventions 
Assembler tokens include identifiers (alternatively, "symbols" or "names"), temporary 

symbols, constants, and operators. 

2.1 Identifiers 
An identifier consists of a sequence of alphanumeric characters (including period " . ", 

underscore " ", and tilde ... ,, as alphanumeric) of which the first may not be numeric. Only 
the first eight-characters are significant. When a name begins with a tilde, the tilde is discarded 
and that occurrence of the identifier generates a unique entry in the symbol table which can 
match no other occurrence of the identifier. This feature is used by the C compiler to place 

t UNIX is a Trademark of Bell Laboratories. 

28-1 



28-2 

names of local variables in the output symbol table without having to worry about making them 
unique. 

2.2 Temporary symbols 

A temporary symbol consists of a digit followed by "f" or "b". Temporary symbols are 
discussed fully in §5.1. 

2.3 Constants 

An octal constant consists of a sequence of digits; "8" and "9" are taken to have octal 
value I 0 and 11. The constant is truncated to 16 bits and interpreted in two's complement 
notation. 

A decimal constant consists of a sequence of digits terminated by a decimal point ".". 
The magnitude of the constant should be representable in 15 bits; i.e., be less than 32,768. 

A single-character constant consists of a single quote "'" followed by an ASCII character 
not a new-line. Certain dual-character escape sequences are acceptable in place of the ASCII 

character to represent new-line and other non-graphics (see StrinK statements, §5.5). The 
constant's value has the code for the given character in the least significant byte of the word 
and is null-padded on the left. · 

A double-character constant consists of a double quote """ followed by a pair of ASCII 

characters not including new-line. Certain dual-character escape sequences are acceptable in 
place of either of the ASCII characters to represent new-line and other non-graphics (see String 
statements. §5.5). The constant's value has the code for the first given character in the least 
significant byte and that for the second character in the most significant byte. 

2.4 Operators 

There are several single- and double-character operators; see §6. 

2.5 Blanks 

Blank and tab characters may be interspersed freely between tokens, but may not be used 
within tokens (except character constants). A blank or tab is required to separate adjacent 
identifiers or constants not otherwise separated. 

2.6 Comments 

The character "I"' introduces a comment, which extends through the end of the line on 
which it appears. Comments are ignored by the assembler. 

3. Segments 

Assembled code and data fall into three segments: the text segment, the data segment, 
and the bss segment. The text segment is the one in which the assembler begins, and it is the 
one into which instructions are typically placed. The UNIX system will, if desired, enforce the 
purity of the text segment of programs by trapping write operations into it. Object programs 
produced by the assembler must be processed by the link-editor Id (using its "-n" flag) if the 
text segment is to be write-protected. A single copy of the text segment is shared among all 
processes executing such a program. 

The data segment is available for placing data or instructions which will be modified dur
ing execution. Anything which may go in the text segment may be put into the data segment. 
In programs with write-protected, sharable text segments, data segment contains the initialized 
but variable parts of a program. If the text segment is not pure, the data segment begins 
immediately after the text segment; if the text segment is pure, the data segment begins at the 
lowest 8K byte boundary after the text segment. 

The bss segment may not contain any explicitly initialized code or data. The length of the 

/':: \.:: 

c 

( 

( 



28-3 

bss segment (like that of text or data) is determined by the high-water mark of the location 
counter within it. The bss segment is actually an extension of the data segment and begins 
immediately after it. At the start of execution of a program, the bss segment is set to 0. Typi
cally the bss segment is set up by statements exemplified by 

lab:. = .+ 10 

The advantage in using the bss segment for storage that starts off empty is that the initialization 
information need not be stored in the output file. See also Location counter and Assignmem 
statements below. 

4. The location counter 

One special symbol, " . ", is the location counter. Its value at any time is the offset 
within the appropriate segment of the start of the statement in which it appears. The location 
counter may be assigned to, with the restriction that the current segment may not change; 
furthermore, the value of " . " may not decrease. If the effect of the assignment is to increase 
the value of " . ", the required number of null bytes are generated (but see Segments above). 

5. Statements 

A source program is composed of a sequence of statements. Statements are separated 
either by new-lines or by semicolons. There are five kinds of statements: null statements, 
expression statements, assignment statements, string statements, and keyword statements. 

Any kind of statement may be preceded by one or more labels. 

5.1 Labels 

There are two kinds of label: name labels and numeric labels. A name label consists of a 
name followed by a colon C:). The effect of a name label is to assign the current value and 
type of the location counter " . " to the name. An error is indicated in pass l if the name is 
already defined; an error is indicated in pass 2 if the " . " value assigned changes the definition 
of the label. 

A numeric label consists of a digit 0 to 9 followed by a colon ( : ) . Such a label serves to 
define temporary symbols of the form "nb" and "nf", where n is the digit of the label. As in 
the case of name labels, a numeric label assigns the current value and type of " . '' to the tem
porary symbol. However, several numeric labels with the same digit may be used within the 
same assembly. References of the form "n f" refer to the first numeric label "11 :" forward 
from the reference; "n b" symbols refer to the first "n :" label backward from the reference. 
This sort of temporary label was introduced by Knuth [The Arr o( Compwer Programming, Vol!: 
Fundamenraf Algorithms]. Such labels tend to conserve both the symbol table space of the 
assembler and the inventive powers of the programmer. 

5.2 Null statements 

A null statement is an empty statement (which may, however, have labels). A null state
ment is ignored by the assembler. Common examples of null statements are empty lines or 
lines containing only a label. 

5.3 Expression statements 

An expression statement consists of an arithmetic expression not beginning with a key
word. The assembler computes its (16-bit) value and places it in the output stream, together 
with the appropriate relocation bits. 



5.4 Assir.:nment statements 

An assignment statement consists of an identifier, an 
The value and type of the expression are to the 
type or value be the same in pass 2 JS in 
assignment. 

Any external attribute of the is lost across an 

sign ( = ) , and an expression. 
It is not required that the 

any symbol 

it 
is not possible to declare a global symbol 
symbol to be offset from a non-locally 

to and that it is to define a 

As mentioned, it is permissible to assign to the counter " . ,., _ It is how-
ever, that the type of the expression assigned be the same type as " . ", and it is forbidden 
to decrease the value of.,.". In the most common assignmem to"." has the form 
". =. + n" for some number 11: this has the n null 

5.5 String statements 

A string statement generates a sequence of bytes ASCH characters. A string 
statement consists of a lef! string quote "<" followed by a sequence ASC!l characters not 
including followed by a right string quote "> ". Any of the ASCH characters may be 
replaced by a two-character escape sequence to represent certain characters, as fol
lows: 

NL 
SP 

\t HT 

\e EOT 

NUL 

\r CR 

ACK (006) 
PFX 
\ 

\> > 

The last two are included so that the escape character and the right quote may be 
represented. The same escape sequences may also be used within and double-character 
constants (see §2.3 above). 

5.6 Keyword statements 

Keyword statements are the most common type, since most machine 
tions are of this sort. A keyword statement with one the many predefined keywords 
of the assembler; the syntax the remainder on the keyword. All the are 
listed below with the syntax they require. 

6. Expressions 

An expression is a sequence 
identifiers, constants, 

AH operators in expressions are 
on the left, a 0 of absolute type is assumed. 
precision. All operators have equal nn:ceoe1nce 
right except for the effect of brackets. 

a value. Its are 
expression has a type. 

nature; if an is 
complement and 16 

are strictly left to 



28-5 

6.1 Expression operators 

The operators are: 

(blank) when there is no operand between operands, the effect is exactly the same as if a '' +" 
had appeared. 

+ addition 

\/ 
8 

I 
\> 
\< 
% 

subtraction 

multiplication 

division (note that plain "I " starts a comment) 

bitwise and 

bitwise or 

logical right shift 

logical left shift 

modulo 

a! b is a or ( not b); i.e., the or of the first operand and the one's complement of the 
second; most common use is as a unary. 

result has the value of first operand and the type of the second; most often used to 
define new machine instructions with syntax identical to existing instructions. 

Expressions may be grouped by use of square brackets " [] ". (Round parentheses are 
reserved for address modes.) 

6.2 Types 

The assembler deals with a number of types of expressions. Most types are attached to 
keywords and used to select the routine which treats that keyword. The types likely to be met 
explicitly are: 

undefined 
Upon first encounter, each symbol is undefined. It may become undefined if it is 
assigned an undefined expression. It is an error to attempt to assemble an undefined 
expression in pass 2; in pass 1, it is not (except that certain keywords require operands 
which are not undefined). 

undefined external 
A symbol which is declared .globl but not defined in the current assembly is an 
undefined external. If such a symbol is declared, the link editor Id must be used to 
load the assembler's output with another routine that defines the undefined reference. 

absolute An absolute symbol is defined ultimately from a constant. Its value is unaffected by 
any possible future applications of the link-editor to the output file. 

text The value of a text symbol is measured with respect to the beginning of the text seg
ment of the program. If the assembler output is link-edited, its text symbols may 
change in value since the program need not be the first in the link editor's output. 
Most text symbols are defined by appearing as labels. At the start of an assembly, the 
value of " . " is text 0. 

data The value of a data symbol is measured with respect to the origin of the data segment 
of a program. Like text symbols, the value of a data symbol may change during a sub
sequent link-editor run since previously loaded programs may have data segments. 
After the first .data statement, the value of " . " is data 0. 

bss The value of a bss symbol is measured from the beginning of the bss segment of a 
program. Like text and data symbols, the value of a bss symbol may change during a 
subsequent link-editor run, since previously loaded programs may have bss segments. 
After the first .bss statement, the value of " • " is bss 0. 



28-6 

external absolute, text, data, or bss 

register 

symbols declared .globl but defined within an assembly as absolute, text, data, or bss 
symbols may be used exactly as if they were not declared .globl; however, their value 
and type are available to the link editor so that the program may be loaded with others 
that reference these symbols. 

The symbols 

rO ... r5 
rro ... rrs 
sp 
pc 

are predefined as register symbols. Either they or symbols defined from them must be 
used to ref er to the six general-purpose, six floating-point, and the 2 special-purpose 
machine registers. The behavior of the floating register names is identical to that of 
the corresponding general register names; the former are provided as a mnemonic aid. 

other types 
Each keyword known to the assembler has a type which is used to select. the routine 
which processes the associated keyword statement. The behavior of such symbols 
when not used as keywords is the same as if they were absolute. 

6.3 Type propagation in expressions 

When operands are combined by expression operators, the result has a type which 
depends on the types of the operands and on the operator. The rules involved are complex to 
state but were intended to be sensible and predictable. For purposes of expression evaluation 
the important types are 

undefined 
absolute 
text 
data 
bss 
undefined external 
other 

The combination rules are then: If one of the operands is undefined, the result is undefined. If 
both operands are absolute, the result is absolute. If an absolute is combined with one of the 
"other types" mentioned above, or with a register expression, the result has the register or 
other type. As a consequence, one can refer to r3 as "r0+3". If two operands of "other 
type" are combined, the result has the numerically larger type An "other type" combined with 
an explicitly discussed type other than absolute acts like an absolute. 

Further rules applying to particular operators are: 

+ If one operand is text-, data·, or bss-segment relocatable, or is an undefined external, the 
result has the postulated type and the other operand must be absolute. 

If the first operand is a relocatable text-, data-, or bss-segment symbol, the second 
operand may be absolute (in which case the result has the type of the first operand); or 
the second operand may have the same type as the first (in which case the result is abso
lute). If the first operand is external undefined, the second must be absolute. All other 
combinations are illegal. 

This operator follows no other rule than that the result has the value of the first operand 
and the type of the second. 

c 

( 

( 



) 

28-7 

others 
It is illegal to apply these operators to any but absolute symbols. 

7. Pseudo-operations 

The keywords listed below introduce statements that generate data in unusual forms or 
influence the later operations of the assembler. The metanotation 

I stuff ] ... 

means that 0 or more instances of the given stuff may appear. Also, boldface tokens are 
literals, italic words are substitutable. 

7 .1 .byte expression [ , expression ] 

The expressions in the comma-separated list are truncated to 8 bits and assembled in suc
cessive bytes. The expressions must be absolute. This statement and the string statement 
above are the only ones that assemble data one byte at at time. 

7.2 .even 

If the location counter " . " is odd, it is advanced by one so the next statement wili be 
assembled at a word boundary. 

7 .3 .if expression 

The expression must be absolute and defined in pass l. If its value is nonzero, the .if is 
ignored; if zero, the statements between the .if and the matching .endif (below) are ignored . 
. if may be nested. The effect of .if cannot extend beyond the end of the input file in which it 
appears. {The statements are not totally ignored, in the following sense: .ifs and .endifs are 
scanned for, and moreover all names are entered in the symbol table. Thus names occurring 
only inside an .if will show up as undefined if the symbol table is listed.) 

7.4 .endif 

This statement marks the end of a conditionally-assembled section of code. See .if above. 

7 .5 .glob I name [ , narne ] ... 

This statement makes the names external. If they are otherwise defined (by assignment or 
appearance as a label) they act within the assembly exactly as if the .globl statement were not 
given; however, the link editor Id may be used to combine this routine with other routines that 
ref er these symbols. 

Conversely, if the given symbols are not defined within the current assembly, the link 
editor can combine the output of this assembly with that of others which define the symbols. 
As discussed in §1, it is possible to force the assembler to make all otherwise undefined sym
bols external. 

7 .6 .text 

7.7 .data 

7.8 .bss 

These three pseudo-operations cause the assembler to begin assembling into the text, 
data, or bss segment respectively. Assembly starts in the text segment. It is forbidden to 
assemble any code or data into the bss segment, but symbols may be defined and " . " moved 
about by assignment. 



28-8 

7.9 .comm name , expression 

Provided the name is not defined elsewhere, this statement is equivalent to 

.glob! name 
name = expression name 

That is, the type of name is "undefined external", and its value is expression. In fact the name 
behaves in the current assembly just like an undefined external. However, the link-editor Id 
has been special-cased so that all external symbols which are not otherwise defined, and which 
have a non-zero value, are defined to lie in the bss segment, and enough space is left after the 
symbol to hold expression bytes. All symbols which become defined in this way are located 
before all the explicitly defined bss-segment locations. 

8. Machine instructions 

Because of the rather complicated instruction and addressing structure of the PDP· 11, the 
syntax of machine instruction statements is varied. Although the following sections give the 
syntax in detail, the machine handbooks should be consulted on the semantics. 

8.1 Sources and Destinations 

The syntax of general source and destination addresses is the same. Each must have one 
of the following forms, where reg is a register symbol, and expr is any sort of expression: 

syntax words mode 
reg 0 OO+reg 
(reg) + 0 20+reg 
- (reg) 0 40+reg 
expr (reg) 1 60+reg 
(reg) 0 IO+reg 
*reg 0 IO+reg 
*(reg) + 0 30+reg 
* - (reg) 0 SO+reg 
* (reg) 1 70+reg 
* expr (reg) 1 70+reg 
ex pr 1 67 
$expr 1 27 
*expr 1 77 
* $expr 1 37 

The words column gives the number of address words generated; the mode column gives the 
octal address-mode number. The syntax of the address forms is identical to that in DEC assem
blers, except that "*" has been substituted for "@" and "$" for "#"; the UNIX typing con
ventions make"@" and"#" rather inconvenient. 

Notice that mode "*reg" is identical to "(reg)"; that "*(reg)" generates an index word 
(namely, 0); and that addresses consisting of an unadorned expression are assembled as pc
relative references independent of the type of the expression. To force a non-relative refer
ence, the form "*$expr" can be used, but notice that further indirection is impossible. 

8.3 Simple machine instructions 

The following instructions are defined as absolute symbols: 

(~ 

( 

( 



; 

·" 

28-9 

ck 
ch 
clz 
cln 
sec 
sev 
sez 
sen 

They therefore require no special syntax. The PDP-11 hardware allows more than one of the 
"clear" class, or alternatively more than one of the "set" class to be or-ed together; this may 
be expressed as follows: 

clc I clv 

8.4 Branch 

The following instructions take an expression as operand. The expression must lie in the 
same segment as the reference, cannot be undefined-external, and its value cannot differ from 
the current location of " . " by more than 254 bytes: 

br blos 
bne bvc 
beq bvs 
bge bhis 
bh bee ( = bee) 
bgt bee 
hie bfo 
bpi bes 
bmi bes ( =- bes) 
bhi 

bes ("branch on error set") and bee ("branch on error clear") are intended to test the error bit 
returned by system calls (which is the c-bit). 

8.5 Extended branch instructions 

The following symbols are followed by an expression representing an address in the same 
segment as " . ". If the target address is close enough, a branch-type instruction is generated; if 
the address is too far away, a jmp will be used. 

jbr jlos 
jne jvc 
jeq jvs 
jge jhis 
jlt jec 
jgt jcc 
jle jlo 
jpl jcs 
jmi jes 
jhi 

jbr turns into a plain jmp if its target is too remote; the others (whose names are contructed by 
replacing the "b" in the branch instruction's name by "j") turn into the converse branch over 
a jmp to the target address. 



28-10 

8.6 Single operand instructions 

The following symbols are names of single-operand machine instructions. The form of 
address expected is discussed in §8. I above. 

dr sbcb 
clrb ror 
com rorb 
comb rol 
inc rol~ 
incb asr 
dee asrb 
decb asl 
neg as lb 
negb jmp 
adc swab 
adcb tst 
sbc tstb 

8. 7 Double operand instructions 

The following instructions take a general source and destination (§8.1), separated by a 
comma, as operands. 

mov 
movb 
cmp 
cmpb 
bit 
bitb 
bic 
bicb 
bis 
bisb 
add 
sub 

8.8 Miscellaneous instructions 

The following instructions have more specialized syntax. Here reg is a register name, src 
and dst a general source or destination (§8.1), and expr is an expression: 

jsr reg,dsr 

rts reg 
sys ex pr 

ash src. reg (or, als) 
ashc src. reg (or, alsc) 
mul src. reg (or, mpy) 
div src. reg (or, dvd) 
xor reg. dst 

sxt dst 
mark ex pr 

sob reg. expr 

sys is another name for the trap instruction. It is used to code system calls. Its operand is 
required to be expressible in 6 bits. The expression in mark must be expressible in six bits, 
and the expression in sob must be in the same segment as " . ", must not be external
undefined, must be less than " . ", and must be within 510 bytes of " . ". 

(.~ ·., 
,,. 

c 

( 



28-11 

8. 9 Floating-point unit instructions 

The following floating-point operations are defined, with syntax as indicated: 

dee 
setf 
setd 
seti 
set I 
clrf /dsr 
negf /dst 
ab sf /dsr 
tstf fsrc 
movf fsrc.freg ( = ldf) 
movf freg,fdst ( = stf) 
movif src,freg ( = ldcif) 
movfi freg, dst ( = stcfi) 
movof fsrc, ji'eg ( = ldcdf) 
movfo freg,fdsr (= stcfd) 
movie src,freg ( = ldexp) 
movei frefi, dst ( = stexp) 
addf fsrc,ji-eg 
subf fsrc,fre:;; 
mulf f~rc,ji-eg 

divf fsrc,freg 
cm pf fsrc,freg 
modf fsrc,freg 
ldfps src 
st fps dsr 
st st dst 

fsrc, fdst, and freg mean floating-point source, destination, and register respectively. Their syn
tax is identical to that for their non-floating counterparts, but note that only floating registers 
0-3 can be a freg. 

The names of several of the operations have been changed to bring out an analogy with 
certain fixed-point instructions. The only strange case is movf, which turns into either stf or 
ldf depending respectively on whether its first operand is or is not a register. Warning: ldf sets 
the floating condition codes, stf does not. 

9. Other symbols 

9.1 .. 

The symbol " .. " is the reloca11011 coun1er. Just before each assembled word is placed in 
the output stream, the current value of this symbol is added to the word if the word refers to a 
text, data or bss segment location. If the output word is a pc-reiative address word that refers 
to an absolute location, the value of" .. " is subtracted. 

Thus the value of " .. " can be taken to mean the starting memory location of the pro
gram. The initial value of " .. " is 0. 

The value of " .. " may be changed by assignment. Such a course of action is sometimes 
necessary, but the consequences should be carefully thought out. It is particularly ticklish to 
change " .. " midway in an assembly or to do so in a program which will be treated by the 
loader, which has its own notions of " .. ". 



28-12 

9.2 System calls 

System call names are not predefined. They may be found in the file /usrlinclude/sys.s 

10. Diagnostics 

When an input file cannot be read, its name followed by a question mark is typed and 
assembly ceases. When syntactic or semantic errors occur, a single-character diagnostic is typed 
out together with the line number and the file name in which it occurred. Errors in pass I 
cause cancellation of pass 2. The possible errors are: 

parentheses error 
parentheses error 

> string not terminated properly .. indirection ( *) used illegally 
illegal assignment to " . 

,, 

A error in address 
B branch address is odd or too remote 
E error in expression 
F error in local ("f" or "b ") type symbol 
G garbage (unknown) character 
I end of file inside an .if 
M multiply defined symbol as label 
0 word quantity assembled at odd address 
p phase error- " . " different in pass 1 and 2 
R relocation error 
u undefined symbol 
x syntax error 

0·.· 

('-

(_ 

l 



Setting Up Unix - Seventh Edition 

Charles B. Haley 
Dennis M. Ritchie 

Bell Laboratories 
Murray Hill, New Jersey 07974 

The distribution tape can be used only on a DEC PDPl 1/45 or PDPl 1/70 with RP03, 
RP04, RP05, RP06 disks and with a TUIO, TU16, or TEl6 tape drive. It consists of some prel
iminary bootstrapping programs followed by two file system images: if needed, after the initial 
construction of the file systems individual files can be extracted. (See restor( l)) 

If you are set up to do it, it might be a good idea immediately to make a copy of the tape 
to guard against disaster. The tape is 9-track 800 BPI and contains some 512-byte records fol
lowed by many l 0240-byte records. There are interspersed tape marks. 

The system as distributed contains binary images of the system and all the user level pro
grams, along with source and manual sections for them-about 2100 files altogether. The 
binary images, along with other things needed to flesh out the file system enough so UNIX will 
run, are to be put on one fiie system called the 'root file system'. The file system size required 
is about 5000 blocks. The file second system has all of the source and documentation. Alto
gether it amounts to more than 18,000 512-byte blocks. 

Making a Disk From Tape 

Perform the following bootstrap procedure to obtain a disk with a root file system on it. 

l. Mount the magtape on drive 0 at load point. 

2. Mount a formatted disk pack on drive 0. 

3. Key in and execute at 100000 

TUlO 
012700 
172526 
010040 
012740 
060003 
000777 

TU16/TE16 
Use the DEC ROM or other 
means to load block I 
(i.e. second block) at 800 BPI 
into location 0 and transfer 
to 0. 

The tape should move and the CPU loop. (The TUlO code is not the DEC bulk ROM for 
tape; it reads block 0, not block 1.) 

4. If you used the above TU lO code, halt and restart the CPU at 0, otherwise continue to 
the next step. 

5. The console should type 

Boot 

Copy the mag tape to disk by the following procedure. The machine's printouts are shown 
in italic. explanatory comments are within ( ) . Terminate each line you type by carriage 
return or line-feed. There are two classes of tape drives: the name 'tm' is used for the 
TUJO, and 'ht' is used for the TUlo or TEl6. There are also two classes of disks: 'rp' is 

2 'J- l 



for the RP03, and 'hp' is used 

If you should make a mistake while 
typed up to beginnir.g the 
consoles cannot lower case 

program 

file system size: 
file system: rp(0,0) 
isize - XX 
min - XX 

a while) 
exit called 
.Boor 

(use 

This step makes an empty system. 

29-2 

the 

'#' erases the last character 
' erases the entire line typed. Some 

16) 

6. The next thing to do is to restore the data omo the new system. To do this you 
respond to the ':' in the last step with 

You now have a UNIX root 

Booting UNIX 

You probably have the left over from the last step 
!he boot process 3) 

:rp(0,0) 
:rp(0,0) 
:hp(0,0) 
:hp(0,0} 

The machine should type the 

mem - xxx 
# 

Then use one of the 

l 6) 

mem message gives the memory available to user programs in bytes. 

if not, repeat 

UNIX is now and the 'UNIX applies; references below 
the form X mean the subsection named X in Y of the manual. '#' is 

from the and indicates you are the super-user. The user name of the super-user 
is 'root' if you should find yourself in multi··user mode and need to log in; the password is also 
'root'. 

To simplify your 
above piain 'unix.' For 
tape: 

mv umx 

later, rename the version of the system as specified 
use mv (1) as follows if you have an RP04/5/6 and a TU16 



/ 

29-3 

In the future, when you reboot, you can type just 

hp(O,O)unix 

to the ':' prompt. (Choose appropriately among 'hp', 'rp', 'ht', 'tm' according to your 
configuration). 

You now need to make some special file entries in the dev directory. These specify what 
sort of disk you are running on, what sort of tape drive you have, and where the file systems 
are. For simplicity, this recipe creates fixed device names. These names will be used below, 
and some of them are built into various programs, so they are most convenient. However, the 
names do not always represent the actual major and minor device in the manner suggested in 
section 4 of the Programmer's Manual. For example, 'rp3' will be used for the name of the file 
system on which the user file system is put. even though it might be on an RP06 and is not 
logical device 3. Also, this sequence will put the user file system on the same disk drive as the 
root, which is not the best place if you have more than one drive. Thus the prescription below 
should be taken only as one example of where to put things. See also the section on 'Disk lay
out' below. 

In any event. change to the dev directory (cd(l)) and, if you like. examine and perhaps 
change the makefile there (make ( l)). 

cd /dev 
cat makefile 

Then, use one of 

make rp03 
make rp04 
make rp05 
make rp06 

depending on which disk you have. Then, use one of 

make tm 
make ht 

depending on which tape you have. The file 'rpO' refers to the root file system; 'swap' to the 
swap-space file system; 'rp3' to the user file system. The devices 'rrpO' and 'rrp3' are the 'raw' 
versions of the disks. Also, 'mtO' is tape drive 0, at 800 BPI; 'rmtO' is the raw tape, on which 
large records can be read and written; 'nrmtO' is raw tape with the quirk that it does not rewind 
on close, which is a subterfuge that permits multifile tapes to be handled. 

The next thing to do is to extract the rest of the data from the tape. Comments are 
enclosed in ( ) ; don't type these. The number in the first command is the size of the file sys
tem; it differs between RP03, RP04/5, and RP06. 

/etc/mkfs /dev/rp3 74000 (153406 if on RP04/5, 322278 on RP06) 
(The above command takes about 2-3 minutes on an RP03) 
dd if-/dev/nrmtO of=/dev/null bs=20b files==6 (skip 6 files on the tape) 
restor rf /dev/rmtO /dev/rp3 (restore the file system) 
(Reply with a 'return' (CR) to the 'Last chance' message) 
(The restor takes about 20-30 minutes) 

All of the data on the tape has been extracted. 

You may at this point mount the source file system (mount(})). To do this type the fol
lowing: 

/etc/mount /dev/rp3 /usr 

The source and manual pages are now available in subdirectories of /usr. 



29-4 

The above mount command is only needed if you intend to play around with source on a 
single user system. which you are going to do next. The file system is mounted automatically 
when multi-user mode is entered, by a command in the file /etc/re. (See 'Disk Layout' below). 

Before anything further is done the bootstrap block on the disk (block 0) should be filled 
in. This is done using the command 

dd if-/usr/mdec/rpuboot of-/dev/rpO count- I 

if you have the RP03, or 

dd if-/usr/mdec/hpuboot of-=/dev/rpO count- I 

if you have an RP04/5/6. Now the DEC disk bootstraps are usable. See Boot Procedures(8) 
for further information. 

Before UNIX is turned up completely, a few configuration dependent dercises must be 
performed. Al this point, it would be wise to read all of the manuals (especially 'Regenerating 
System Software') and to augment this reading with hand to hand combat. 

Reconfiguration 

The UNIX system running is configured to run with the given disk and tape, _a console, 
and no other device. This is certainly not the correct configuration. You will have to correct 
the configuration table to reflect the true state of your machine. 

It is wise at this point to know how to recompile the system. Print (cat(l)) the file 
/usr/sys/conf/makefile. This file is input to the program 'make(!)' which if invoked with 
'make all' will recompile all of the system source and install it in the correct libraries. 

The program mkconf( l) prepares files that describe a given configuration (See 
mkconf(l)). In the /usr/sys/conf directory, the four files x;conf were input to mkconf to pro
duce the four versions of the system X}Unix. Pick the appropriate one, and edit it to add lines 
describing your own configuration. (Remember the console typewriter is automatically 
included; don't count it in the kl specification.) Then run mkconf; it will generate the files 1.s 
(trap vectors) c.c (configuration table). and mchO.s. Take a careful look at l.s to make sure that 
all the devices that you have are assembled in the correct interrupt vectors. If your 
configuration is non-standard, you will have to modify l.s to fit your configuration. 

There are certain magic numbers and configuration parameters imbedded in various dev
ice drivers that you may want to change. The device addresses of each device are defined in 
each driver. In case you have any non-standard device addresses, just change the address and 
recompile. (The device drivers are in the directory /usr/sys/dev.) 

The DCl 1 driver is set to run 4 lines. This can be changed in dc.c. 

The DHl 1 driver is set to handle 3 DHI l's with a full complement of 48 lines. If you 
have less, or more, you may want to edit dh.c. 

The DNl 1 driver will handle 4 DN's. Edit dn.c. 

The DUI l driver can only handle a single DU. This cannot be easily changed. 

The KL/DL driver is set up to run a single DLl 1-A. -B, or -C (the console) and no 
Dll 1-E's. To change this, edit kl.c to have NKLl 1 reflect the total number of Dll I-ABC's 
and NOLI 1 to reflect the number of DLI I-E's. So far as the driver is concerned, the 
difference between the devices is their address. 

All of the disk and tape drivers (rf.c, rk.c. rp.c, tm.c, tc.c, hp.c, ht.c) are set up to run 8 
drives and should not need to be changed. The big disk drivers (rp.c and hp.c) have partition 
tables in them which you may want to experiment with. 

After all the corrections have been made, use 'make(!)' to recompile the system (or 
recompile individually if you wish: use the makefile as a guide). If you compiled individually, 
say 'make unix' in the directory /usr/sys/conf. The final object file (unix) should be moved to 
the root, and then booted to try it out. It is best to name it /nunix so as not to destroy the 

( 



29-5 

working system until you're sure it does work. See Boot Procedures(8) for a discussion of 
booting. Note: before taking the system down, always (! !) perform a sync( 1) to force delayed 
output to the disk. 

Special Files 

Next you must put in special files for the new devices in the directory /dev using 
mknodO). Print the configuration file c.c created above. This is the major device switch of 
each device class (block and character). There is one line for each device configured in your 
system and a null line for place holding for those devices not configured. The essential block 
special files were installed above; for any new devices, the major device number is selected by 
counting the line number (from zero) of the device's entry in the block configuration table. 
Thus the first entry in the table bdevsw would be major device zero. This number is also 
printed in the table along the right margin. 

The minor device is the drive number, unit number or partition as described under each 
device in section 4 of the manual. For tapes where the unit is dial selectable, a special file may 
be made for each possible selection. You can also add entries for other disk drives. 

In reality, device names are arbitrary. It is usually convenient to have a system for deriv
ing names, but it doesn't have to be the one presented above. 

Some further notes on minor device numbers. The hp driver uses the 0100 bit of the 
minor device number to indicate whether or not to interleave a file system across more than 
one physical device. See hp( 4) for more detail. The tm and ht drivers use the 0200 bit to indi
cate whether or not to rewind the tape when it is closed. The 0100 bit indicates the density of 
the tape on TU16 drives. By convention, tape special files with the 0200 bit on have an 'n' 
prepended to their name, as in /dev/nmtO or /dev/nrmtl. Again. see tm(4) or ht(4). 

The naming of character devices is similar to block devices. Here the names are even 
more arbitrary except that devices meant to be used for teletype access should (to avoid confu
sion, no other reason) be named /dev/ttyX, where X is some string <as in '00' or 'library'). 
The files console, mem, kmem, and null are already correctly configured. 

The disk and magtape drivers provide a 'raw' interface to the device which provides direct 
transmission between the user's core and the device and allows reading or writing large records. 
The raw device counts as a character device, and should have the name of the corresponding 
standard block special file with 'r' prepended. (The 'n' for no rewind tapes violates this rule.) 
Thus the raw magtape files would be called /dev/rmtX. These special files should be made. 

When all the special files have been created, care should be taken to change the access 
modes (ch mod 0)) on these files to appropriate values (probably 600 or 644). 

Floating Point 

UNIX only supports (and really expects to have) the FPl 1-B/C floating point unit. For 
machines without this hardware, there is a user subroutine available that will catch illegal 
instruction traps and interpret floating point operations. (See fptrap(3).) To install this subrou-
tine in library, change to /usr/src/libfpsim and execute the shell files 

compali 
mklib 

The system as delivered does not have this code included in any command, although the 
operating system adapts automatically to the presence or absence of the FPl 1. 

Nex!, a floating-point version of the C compiler in /usr/src/cmd/c should be compiled 
using the commands: 



cd 
make fcl 
mv fcl ilib/fcl 

This allows programs with 
programs use the ' -- r to cc\ l). 
loaded with the program and that the 

Time Conversion 

2 r 
0 

constants to be 
ensures ihat the 

version of 'cc' is used. 

If your 
/usrisys/h/param.h to 

is not in the time zone, you must edit ( l ) 
reflect your local manifest should be 

to the time between local time and GMT in minutes. For , this is 
for PST it would be 
time to shift to Daylight 
(or other algorithms in 1 
needed changes are done, 
general when a 
it happens, the 
changed it 

You may 
name of your 
has 
compall}) 
(such as 

Disk 

If there are to be more file 
create any new system and put its in the 
(YOU look at anyway tO See what has been nrc'""'"'" 

when it is 1 it causes the 
in and 

to be reset. When the 

use 
and 

(As a 
As 

was 

1)). 

There are two considerations in the arrangement 011 your 
secon-disks: the most is sure space what is 

darily, throughput should be maximized. space is a critical pararneter. 
tributed has 8778 or 2000 ( blocks swap space. This 
enough so running out swap space never occurs. may want to these if local 
dom 

The system as distributed has all of the them should be moved 
to /usr/bin, leaving only the ones dcheck, cc, 

and 
one 
Many common system programs the 

files in the so the is stored shouid be made large 
enough to accommodate most marks. lf you leave the root file system as distributed 
(except as discussed there should be no All the programs that create in 

but most are not immune to events like up upon, 
should be examined every so 

space is certain to occur now and 
controlling this are occasional use du ( l), l), 
of the day, and personal letters. 

The efficiency with which 
configuration of 
try to split user 
three controllers. 

deleted. 

the 
is to 



· .... :.· 

29-7 

Once you have decided how to make best use of your hardware. the question is how to 
initialize it. If you have the equipment, the best way to move a file system is to dump it 
(dump(l)) to mag tape, use mkf s(l) to create the new file system, and restore (restor(l)) the 
tape. If for some reason you don't want to use magtape, dump accepts an argument telling 
where to put the dump; you might use another disk. Sometimes a file system has to be 
increased in logical size without copying. The super-block of the device has a word giving the 
highest address which can be allocated. For relatively small increases, this word can be patched 
using the debugger (adb( 1)) and the free list reconstructed using icheck( 1). The size should 
not be increased very greatly by this technique, however, since although the allocatable space 
will increase the maximum number of files will not (that is, the i-list size can't be changed). 
Read and understand the description given in file system(5) before playing around in this way. 
You may want to see section rp(4) for some suggestions on how to lay out the information on 
RP disks. 

If you have to merge a file system into another, existing one, the best bet is to use tar( 1). 
If you must shrink a file system, the best bet is to dump the original and restor it onto the new 
filesystem. However, this might not work if the i-list on the smaller filesystem is smaller than 
the maximum allocated inode on the larger. If this is the case, reconstruct the filesystem from 
scratch on another filesystem (perhaps using tar(l)) and then dump it. If you are playing with 
the root file system and only have one drive the procedure is more complicated. What you do is 
the following: 

1. GET A SECOND PACK!!!! 

2. Dump the current root filesystem (or the reconstructed one) using dump(l). 

3. Bring the system down and mount the new pack. 

4. Retrieve the WECo distribution tape and perform steps 1 through 5 at the beginning of 
this document, substituting the desired file system size instead of 5000 when asked for 
'file system size'. 

5. Perform step 6 above up to the point where the 'tape' question is asked. At this point 
mount the tape you made just a few minutes ago. Continue with step 6 above substituting 
a 0 (zero) for the 5. 

New Users 

Install new users by editing the password file /etc/passwd (passwd(5)). This procedure 
should be done once multi-user mode is entered (see init(8)). You'll have to make a current 
directory for each new user and change its owner to the newly installed name. Login as each 
user to make sure the password file is correctly edited. For example: 

ed /etc/passwd 
Sa 
joe:: 10: 1 ::/usr/joe: 

w 
q 
mkdir /usr/joe 
chown joe /usr/joe 
login joe 
Is -la 
login root 

This will make a new login entry for joe, who should be encouraged to use passwd(l) to give 
himself a password. His default current directory is /usr/joe which has been created. The 
delivered password file has the user bin in it to be used as a prototype. 



29-8 

Multiple Users 

If UNIX is to support simultaneous access from more than just the console terminal, the 
file /etc/ttys (nys(5)) has to be edited. To add a new terminal be sure: the device is configured 
and the special file exists, then set the first character of the appropriate line of /etc/ttys to l (or 
add a new line}. Note that init.c will have to be recompiled if there are to more than l 00 
terminals. Also note thal if the special file is inaccessible when init tries to create a process for 
it, the system will thrash trying and retrying to open it 

File System Health 

Periodically (say every day or so) and always after a crash, you should check all the file 
systems for consistency (icheck, de heck (1)). h is quite important to execute sync (8) before 
rebooting or taking the machine down. This is done automatically every 30 seconds by the 
update program (8) when a multiple-user system is running, but you should do it anyway to 
make sure. 

Dumping of the file system should be done regularly, since once the system is going it is 
very easy to become complacent. Complete and incremental dumps are easily done with 
dump(l). Dumping of files by name is best done by tarO) but the number of files is some
what limited. Finally if there are enough drives entire disks can be copied using cp(l), or 
preferably with dd( l) using the raw special files and an appropriate block size. 

Converting Sixth Edition Filesystems 

The best way to convert file systems from 6th edition (V6) to 7th edition (V7) format is 
to use tar(!). However, a special version of tar must be prepared to run on V6. The following 
steps will do this: 

1. change directories to /usr/src/cmd/tar 

2, At the shell prompt respond 

make v6tar 

This will leave an executable binary named 'v6tar'. 

3. Mount a scratch tape, 

4. Use tp( l) to put 'v6tar' on the scratch tape. 

5. Bring down V7 and bring up V6. 

6. Use tp (on V6) to read in 'v6tar'. Put it in /bin or /usr/bin (or perhaps some other pre
f erred location). 

7. Use v6tar to make tapes of all that you wish to convert. You may want to read the 
manual section on tar( l) to see whether you want to use blocking or not Try to avoid 
using full pathnames when making the tapes. This will simplify moving the hierarchy to 
some other place on V7 if desired. For example 

chdir /usr/ken 
v6tar c . 

is preferable to 

v6!ar c /usr/ken 

8. After all of the desired tapes are made, bring down V6 and reboot V7. Use tar( 1) to read 
in the tapes just made. 



29-9 

Odds and Ends 

The programs dump, icheck, quot, dcheck, ncheck, and df (source in /usr/source/cmd) 
should be changed to reflect your default mounted file system devices. Print the first few lines 
of these programs and the changes will be obvious. Tar should be changed to reflect your 
desired default tape drive. 

Good Luck 

Charles B. Haley 
Dennis M. Ritchie 





Introduction 

REGENERATING SYSTEM SOFTWARE 

Charles B. Haley 

Dennis. M. Ritchie 
Bell Laboratories 

Murray Hill, New Jersey 07974 

This document discusses how to assemble or compile various parts of the UNIXt system 
software. This may be necessary because a command or library is accidentally deleted or other
wise destroyed; also, it may be desirable to install a modified version of some command or 
library routine. A few commands depend to some degree on the current configuration of the 
system; thus in any new system modifications to some commands are advisable. Most of the 
likely modifications relate to the standard disk devices contained in the system. For example, 
the df(l) ('disk free') command has built into it the names of the standardly present disk 
storage drives (e.g. '/dev/rfO', '/dev/rpO'). Df(l) takes an argument to indicate which disk to 
examine, but it is convenient if its default argument is adjusted to reflect the ordinarily present 
devices. The companion document 'Setting up UNIX' discusses which commands are likely to 
require changes. 

Where Commands and Subroutines Live 

The source files for commands and subroutines reside in several subdirectories of the 
directory /usr/src. These subdirectories, and a general description of their contents, are 

cmd Source files for commands. 

libc/stdio Source files making up the 'standard i/o package'. 

libc/sys 

libc/gen 

libc/crt 

libc/csu 

games 

libF77 

libl77 

libdbm 

libfpsim 

libm 

Source files for the C system call interfaces. 

Source files for most of the remaining routines described in section 3 of the 
manual. 

Source files making up the C runtime support package. as in cali save-return and 
long arithmetic. 

Source for the C startup routines. 

Source for (some of) the games. No great care has been taken to try to make it 
obvious how to compile these; treat it as a game. 

Source for the Fortran 77 runtime library, exclusive of IO. 

Source for the Fortran 77 IO runtime routines. 

Source for the 'data-base manager' package dbm (3). 

Source for the floating-point simulator routine. 

Source for the mathematical library. 

tUNIX is a Trademark of Bell Laboratories. 

30-1 



2 

libplot Source plotting routines. 

Commands 

The regeneration of most commands is straightforward. The will contain 
either a source the command or a containing the set of files that make up 
the command. If it is a single file the command 

cd I usr I src/ crnd 
cmake crud name 

suffices. (Cmd_name is the name of the command you are playing with.) The result of the 
cmake command will be an executable version. If you type 

cmake -cp cmd_name 

the result will be copied to /bin (or perhaps /etc or other places if 

If the source files are in a subdirectory there will be a 'makefile' make (1)) to control 
the regeneration. After changing to the proper directory 1)) you type one of the following: 

make all The program is compiled and loaded; the executable is left in the current direc
tory. 

make cp The program is compiled and and the executable is installed. Everything 
is cleaned up afterwards; for example .o are deleted. 

make cmp The program is compiled and loaded, and the executable is compared against the 
one in 

Some of the makefiles have other options. Print (cat(l)) the ones you are interested in to 
find out. 

The Assembler 

The assembler consists of two executable files: /bin/as and /lib/as2. The first is the 0-th 
pass: it reads the source program, converts it to an intermediate form in a temporary file 
'/tmp/:.i.tmO?', and estimates the final locations of symbols. It also makes two or three other 
temporary files which contain the ordinary symbol table, a table of temporary symbols Uike 1 :) 
and possibly an overflow intermediate file. The program /lib/as2 acts as an ordinary multiple 
pass assembler with taken from the files produced by /bin/as. 

The source files for /bin/as are named '/usr/src/cmd/as/asl ?.s' (there are 9 of them); 
/lib/as2 is produced from the source files '/usr/src/cmd/as/as2?.s'; likewise are 9 in 
number. Considerable care should be exercised in replacing either component the assem
bler. Remember that if the assembler is the only recourse is to replace it from some 
backup storage; a broken assembler cannot assemble itself. 

The C Compiler 

The C compiler consists of seven routines: '/bin/cc', which calls the phases of the com
piler proper, the compiler control line expander '/lib/cpp', the assembler ('as'), and the loader 
('Id'). The phases of the C compiler are , which is the first phase of the compiler; 
'/lib/cl', which is the second phase of the compiler; and '/!ib/c2', which is the optional third 
phase optimizer. The loss the C compiler is as serious as that of the assembler. 

The source for /bin/cc resides in '/usr/src/cmd/cc.c'. Its loss alone for that of c2) is not 
fatal. If needed, prog.c can be compiled 

( 

( 



/lib/cpp prog.c >ternpO 
/!ib/cO ternpO tempi ternp2 
/lib/ cl temp l temp2 temp3 
as - temp3 
Id - n /lib/crtO.o a.out -le 

30-3 

The source for the compiler proper is in the directory /usr/src/cmd/c. The first phase 
(/lib/cO) is generated from the files cOO.c, ... , c05.c, which must be compiled by the C com
piler. There is also cO. h, a header file included by the C programs of the first phase. To make a 
new /lib/cO use 

make cO 

Before installing the new cO, it is prudent to save the old one someplace. 

The second phase of C (/lib/cl) is generated from the source files clO.c, ... , c13.c, the 
include-file cl .h, and a set of object-code tables combined into table.a. To generate a new 
second phase use 

make cl 

it is likewise prudent to save cl before installing a new version. In fact in general it is wise to 
save the object files for the C compiler so that if disaster strikes C can be reconstituted without 
a working version of the compiler. 

In a similar manner, the third phase of the C compiler (/lib/c2) is made up from the files 
c20.c and c21.c together with c2.h. Its loss is not critical since it is completely optional. 

The set of tables mentioned above is generated from the file table.s. This '.s' file is not in 
fact assembler source; it must be converted by use of the cvopt program, whose source and 
object are located in the C directory. Normally this is taken care of by make (l). You might 
want to look at the makefile to see what it does. 

UNIX 

The source and object programs for UNIX are kept in four subdirectories of lusr/sys. In 
the subdirectory h there are several files ending in '.h'; these are header files which are picked 
up (via '#include ... ') as required by each system module. The subdirectory dev consists 
mostly of the device drivers together with a few other things. The subdirectory zys is the rest 
of the system. There are files of the form LIBx in the directories sys and dev. These are 
archives (arO)) which contain the object versions of the routines in the directory. 

Subdirectory conj contains the files which control device configuration of the system. l.s 
specifies the contents of the interrupt vectors; c.c contains the tables which relate device 
numbers to handler routines. A third file, mch.s, contains all the machine-language code in the 
system. A fourth file, mchO.s, is generated by mkconf(l) and contains flags indicating what 
sort of tape drive is available for taking crash dumps. 

There are two ways to recreate the system. Use 

cd /usr/sys/conf 
make unix 

if the libraries /usr/sys/dev/LIB2 and /usr/sys/sys/LIBl, and also c.o and l.o, are correct. Use 

cd /usr/sys/conf 
make all 

to recompile everything and recreate the libraries from scratch. This is needed, for example, 
when a header included in several source files is changed. See 'Setting Up UNIX' for other 
information about configuration and such. 



When the make is done, the new system is present in the current directory as 
should be tested before destroying the running '/unix', this is best done 
something like 

mv /unix /ounix 
mv unix /unix 

If the new system doesn't work, you ..:an still boot 
you have satisfied yourself that the new system 

and come up ). W~hen 

To install a new device driver, compile it and put it into 
into the library is to use the command 

best way to pm it 

ar uv UB2 x.o 

where x is the romine you just compiled. the device drivers distributed with the system 
are already in the ) 

Next, the device's interrupt vector must be entered in !.s. is already done 
by the routine mkconf(l), but if the device is esoteric or nonstandard you will have to massage 
l.s hand. This involves placing a to a callout routine and the priority level 
in the vector. Use some other device (like the that the entries in 
Ls must be in order as the assembler 
wards. The assembler aiso does not 
the reason for the '. = ZER 0 + l 00' 

an absolute number to '. ', which is 
If a constant smaller than 16 is added to 

the priority level, this number will be available as the 
This stratagem is used when several similar devices share the same 
dll l 

If you have to massage l.s, be sure to add the code to 

routine. 
in 

routine. Again use the console as a The apparent strangeness of this code is due to run-
ning the kernel in separate l&D space. call routine saves as 
a C-style call on the actua.1 the 
tine returns, call restores the and performs an rti instruction. As an 
external names in C programs have an underscore ('_') to them. 

The second step which must be to add a device unknown to is to add 
it to the configuration table /usr/sys/conf/c.c. This fiie contains two 
type devices, and one for character-type devices. Block devices include 
mag.tape. AU other devices are character devices. A line in each of these 
information the system needs to know about the device the ordinal 

the table implies its major device number, at 0. 

and 

There are four subentries per line in the block device which give its open routine, 
close routine, strategy routine, and device table. open and close routines may be nonex-
istent, in which case the name ' is this routine returns. strategy rou-
tine is ca!!ed to do any I/O. and the device table contains status information 

For character devices, each line in the table read, and 
write, and one which sets and returns device-specific status and gtty 
on typewriters). If there is no open or close rou 'nulidev' may if there is no 
read, write, or status routine, 'nodev' may be given. Nodev sets an error flag and returns. 

The final step which must be taken to install a device is to make a file it This 
is done by mknod (1), to which you must the device class (block or character), 
device number line in the configuration and minor device number (which is 
made available to the driver at appropriate 

The documents 'Setting up Unix' and 'The Unix IO system' may aid in comprehending 
these steps. 

( 



30-5 

The Library Ube.a 

The library /lib/libc.a is where most of the subroutines described in sections 2 and 3 of 
the manual are kept. This library can be remade using the following commands: 

cd /usr/src/libc 
sh compall 
sh mklib 
mv Jibe.a /lib/!ibc.a 

If single routines need to be recompiled and replaced, use 

cc -c -0 x.c 
ar vr /lib/libc.a x.o 
rm x.o 

The above can also be used to put new items into the library. See ar(l), lorderO), and 
tsort (1). 

The routines in /usr/src/cmd/libc/csu (C start up) are not in libc.a. These are separately 
assembled and put into /lib. The commands to do this are 

cd /usr/src/libc/csu 
as - x.s 
mv a.out /lib/x 

where x is the routine you want. 

Other Libraries 

Likewise, the directories containing the source for the other libraries have files compall 
(that recompiles everything) and mk!ib (that recreates the library). 

System Tuning 

There are several tunable parameters in the system. These set the size of various tables 
and limits. They are found in the file /usr/sys/h/param.h as manifests ('#define's). Their 
values are rather generous in the system as distributed. Our typical maximum number of users 
is about 20, but there are many daemon processes. 

When any parameter is changed, it is prudent to recompile the entire system, as discussed 
above. A brief discussion of each follows: 

NBUF This sets the size of the disk buff er cache. Each buffer is 512 bytes. This number 
should be around 25 plus NMOUNT, or as big as can be if the above number of 
buffers cause the system to not fit in memory. 

NFILE This sets the maximum number of open files. An entry is made in this table every 
time a file is 'opened' (see open(2), creat(2)). Processes share these table entries 
across forks (fork (2)). This number should be about the same size as NINO DE 
below. Ot can be a bit smaller.) 

NMOUNT This indicates the maximum number of mounted file systems. Make it big enough 
that you don't run out at inconvenient times. 

MAXMEM This sets an administrative limit on the amount of memory a process may have. 
It is set automatically if the amount of physical memory is small, and thus should 
not. need to be changed. 

MAXUPRC This sets the maximum number of processes that any one user can be running at 
any one time. This should be set just large enough that people can get work done 
but not so large that a user can hog all the processes available (usually by 
accidentD. 



NPROC 

NINO DE 

SSIZE 

SIN CR 

NOF1LE 

CANBSIZ 

3 6 

This sets the maximum 
demand pattern of the 

processes that can be active. lt depends on the 
user; we seem to need about 8 times the number of 

terminals. 

This sets the size of the inode table. There is one entry in the inode table 
every open device, current sticky text segment, open file, and 
mounted device. that if two users have a open there is still one 
entry in the inode table. A reasonable rule thumb the size this table is 

NPROC + NMOUNT + (number 

The initial size of a process stack. This may be made if commonly run 
processes have data areas on the stack. 

The of the stack increment. 

This sets the maximum number of 
plenty. 

that any one process can have open. 20 is 

This is the size of the canonicaiization It is in this buffer that 
erase and kiil processing is done. is the maximum size an input type-
writer iine. 256 is 

CMAPSIZ The number that memory can be broken into. should be big 
enough that it never runs out is twice the number of 
processes, but this is a vast overestimate in 

SMAPSIZ Same as CMAPSIZ (swap) memory. 

NCALL This is the size of the callout table. are entered in this table when some 

NTEXT 

sort of internal system must be as in carriage return delays termi-
nals. The number must be big enough to handle all such requests. 

The maximum number of 
be big enough so as to not run out 
of thumb is about 

(number of terminals) + 

pure programs. should 
space under heavy load. A reasonable rule 

sticky programs) 

NCUST The number of dist segments. A dist segment is 6 characters. NCUST should be 
big enough so that the list doesn't become exhausted when the machine is busy. 
The characters that have arrived from a terminal and are waiting to be given to a 
process iive here. Thus space should be left so that every terminal can 
have at least one average line 30 or 40 

TIMEZONE The number of minutes westward from Greenwich. 'Setting Up UNIX'. 

DSTFLAG See 'Setting Up UNIX' section on time conversion. 

MSGBLJFS The maximum number characters system error messages saved. This is used 
as a circular buff er. 

NCARGS The maximum number characters in an exec(2) arglist. This number controls 
how many arguments can be passed into a process. 5120 is infinite. 

HZ Set to the frequency of the system clock , 50 for a 50 Hz. 

c~--



31-3 

2.1. Process creation and program execution 

Processes are created by the system primitive fork. The newly created process (child) is a 
copy of the original process (parent). There is no detectable sharing of primary memory 
between the two processes. (Of course, if the parent process was executing from a read-only 
text segment, the child will share the text segment.) Copies of all writable data segments are 
made for the child process. Files that were open before the fork are truly shared after the fork. 
The processes are informed as to their part in the relationship to allow them to select their own 
(usually non-identical) destiny. The parent may wait for the termination of any of its children. 

A process may exec a file. This consists of exchanging the current text and data segments 
of the process for new text and data segments specified in the file. The old segments are lost. 
Doing an exec does not change processes; the process that did the exec persists, but after the 
exec ii is executing a different program. Files that were open before the exec remain open after 
the exec. 

If a program, say the first pass of a compiler, wishes to overlay itself with another pro
gram, say the second pass, then it simply execs the second program. This is analogous to a 
"goto." If a program wishes to regain control after execing a second program, it should fork a 
child process, have the child exec the second program, and have the parent wait for the child. 
This is analogous to a "call." Breaking up the call into a binding followed by a transfer is simi
lar to the subroutine linkage in SL-5.1 

2.2. Swapping 

The major data associated with a process (the user data segment, the system data seg
ment, and the text segment) are swapped to and from secondary memory, as needed. The user 
data segment and the system data segment are kept in contiguous primary memory to reduce 
swapping latency. (When low-latency devices, such as bubbles, CCDs, or scatter/gather 
devices, are used, this decision will have to be reconsidered.) Allocation of both primary and 
secondary memory is performed by the same simple first-fit algorithm. When a process grows, 
a new piece of primary memory is allocated. The contents of the old memory is copied to the 
new memory. The old memory is freed and the tables are updated. If there is not enough pri
mary memory, secondary memory is allocated instead. The process is swapped out omo the 
secondary memory, ready to be swapped in with its new size. 

One separate process in the kernel, the swapping process, simply swaps the other 
processes in and out of primary memory. It examines the process table looking for a process 
that is swapped out and is ready to run. It allocates primary memory for that process and reads 
its segments into primary memory, where that process competes for the central processor with 
other loaded processes. If no primary memory is available, the swapping process makes 
memory available by examining the process table for processes that can be swapped out. It 
selects a process to swap out, writes it to secondary memory, frees the primary memory, and 
then goes back to look for a process to swap in. 

Thus there are two specific algorithms to the swapping process. Which of the possibly 
many processes that are swapped out is to be swapped in? This is decided by secondary storage 
residence time. The one with the longest time out is swapped in first. There is a slight penalty 
for larger processes. Which of the possibly many processes that are loaded is to be swapped 
out? Processes that are waiting for slow events (i.e., not currently running or waiting for disk 
1/0) are picked first, by age in primary memory, again with size penalties. The other processes 
are examined by the same age algorithm, but are not taken out unless they are at least of some 
age. This adds hysteresis to the swapping and prevents total thrashing. 

These swapping algorithms are the most suspect in the system. With limited primary 
memory, these algorithms cause total swapping. This is not bad in itself, because the swapping 
does not impact the execution of the resident processes. However, if the swapping device must 
also be used for file storage, the swapping traffic severely impacts the file system traffic. It is 
exactly these small systems that tend to double usage of limited disk resources. 



2.3. Synchronization and scheduling 

synchronization is 
by arbitrary integers. 

31-4 

events. 
events are chosen to be addresses 

associated with events. For a process that is any its children to 
will wait for an event that is own process table When a pro-

cess terminates, it signals the event "'"'"'"'"'<'"' parent' s process table Signaling an 
event on which no process is has no 
many processes are waiting will wake all of them up. 
P and V synchronization operations, 2 in that no memory is 
need be no allocation of events m their use. 

On the negative because there is no rnerr1ory associated with events, no notion of 
"how can be via the event mechanism.. processes that want 
memory might wait on an event associated with any amount 
memory becomes availabie, the event would be processes would 
then wake up to over the new memory. process is the only pro'" 
cess that waits for primary memory to become available.) 

If an event occurs between the time a process decides to wait that event and the time 
that process enters the wait state, then the process will wait on an event that has hap-

(and may never happen race condition because there is no memory 
associated with the event to that the event has occurred; the action of an event is 
to a set processes from wait state to nm state. This is relieved by the 

that process switching can occur m the kernel calls to the event-wait 
the event in another process, then there is no problem. 

then must taken. 
synchronization races pose to multiple-processor 

i;: . 3 conugurat1ons. 

The event-wait in the kernel is iike a co-routine At any one 
the processes has called evem-wait. process is the one executing. 

process When it calls event-wait, a process whose event has been is seiected and 
returns from its call to event-wait. 

Which of the rnnab!e processes is to run next? Associated with each process is a 
of a system process is the code the wait on an event. 

to the response that one would on such an event events have 
tele.rype events are and events are very !ow. 

""'"''"''""' in system process 
are lower than the system 
based on the recent ratio the amount of time to reai consumed by 

the process. A process that has used a lot of compute time in the last real-time unit is 
a low user priority. Because processes are compute to 

time, interactive response is without any 

low-priority process. 
character. If a process uses its priority to 
same time, if a tow-priority process is 

3. SYSTEM 

The I/O system is broken into two 
the character I/O system. 
"unstructured I/O," 

process with thus 
is updated 
scheduled 

a run-

systems: the system and 
have been "structured I/O" and 

has some 



31-5 

I/O" is a complete misnomer. 

Devices are characterized by a major device a minor device number, and a class 
(block or character). For each class, there is an array of entry points into the device drivers. 
The major device number is used to index the array when calling the code for a particular 
device driver. The minor device number is passed to the device driver as an argument. The 
minor number has no significance other than that attributed to it by the driver. Usually, the 
driver uses the minor number to access one several identical physical devices. 

The use of the array of entry points (configuration table) as the only connection between 
the system code and the device drivers is very important. Early versions of the system had a 
much less formal connection with the drivers, so that it was extremely hard to handcraft 
differently configured systems. Now it is to create new device drivers in an average of 
a few hours. The configuration table in most cases is created automatically by a program that 
reads the system's parts list. 

3.1. Block I/O system 

The model block 1/0 device consists addressed, secondary memory blocks of 
512 bytes each. The blocks are uniformly addressed 0, 1, ... up to the size of the device. The 
block device driver has the job of emulating this model on a physical device. 

The block I/O devices are accessed of buffering software. The system 
maintains a list of buffers (typically between and each assigned a device name and a 
device address. This buff er pool constitutes a data cache for the block devices. On a read 
request, the cache is searched for the desired block. If the block is found, the data are made 
available to the requester without any If the block is not in the cache, the least 
recently used block in the cache is the correct device driver is called to fill up the 
renamed buffer, and then the data are made available. Write requests are handled in an analo
gous manner. The correct buffer is and reiabeled if necessary. The write is performed 
simply by marking the buffer as "dirty.'' The I/O is then deferred until the buffer is 
renamed. 

The benefits in reduction of physical 1/0 this scheme are substantial, especially consid-
ering the file system implementation. some drawbacks. The asynchronous 
nature of the algorithm makes error and meaningf u! user error handling almost 
impossible. The cavalier approach to 110 error in the UNIX system is partly due to the 
asynchronous nature of the block I/O system. second problem is in the delayed writes. If 
the system stops unexpectedly, it is almost certain that there is a lot of logically complete, but 
physically incomplete, l/O in the buffers. is a system primitive to flush all outstanding 
l/O activity from the buffers. Periodic use helps, but does not solve, the prob-
lem. Finally, the associativity in the alter the physical I/O sequence from that of 
the logical 1/0 sequence. This means that there are times when data structures on disk are 
inconsistent, even though the software is I/O in the correct order. On non
random devices, notably magnetic tape, the inversions of writes can be disastrous. The prob-
lem with magnetic tapes is "cured" by allowing one outstanding write request per drive. 

3.2. Character I/O system 
The character I/O system consists of all devices that do not fall into the block I/O model. 

This includes the "classical" character devices such as communications lines, paper tape, and 
line printers. It also includes magnetic tape and disks when they are not used in a stereotyped 
way, for example, 80-byte physical records and track-at-a-time disk copies. In short, 
the character I/O interface means ' than block." I/O requests from the user 
are sent to the device driver essentially Lmal!enc;d. The implementation of these requests is, of 
course, up to the device driver. There are and conventions to help the implementa
tion of certain types of device drivers. 



31-6 

3.2.1. Disk drivers 

Disk drivers are implemented with a queue of transaction records. Each record holds a 
read/write flag, a primary memory address, a secondary memory address, and a transfer byte 
count. Swapping is accomplished such a record to the swapping device driver. The 
block I/O interface is implemented by passing such records with requests to fill and empty sys
tem buffers. The character I/O interface to the disk drivers create a transaction record that 
points directly into the user area. mmine that creates this record also insures that the user 
is not swapped during this I/O transaction. Thus by implementing the general disk driver, it is 
possible to use the disk as a block device, a character device, and a swap device. The only 
really disk-specific code in normai disk drivers is the pre-sort of transactions to minimize 
latency for a particular device, and the actual issuing of the I/O request. 

3.2.2. Character lists 

Real character-oriented devices may using the common code to handle 
character lists. A character list is a queue characters. routine puts a character on a 
queue. Another gets a character from a queue. It is also possible to ask how many characters 
are currently on a queue. Storage for ail queues in the system comes from a single common 
pool. Putting a character on a queue will allocate space from the common pool and link the 
character onto the data structure the queue. a character from a queue returns 
the corresponding space to the pool. 

A typical character-output device tape punch, for example) is implemented by 
passing characters from the user onto a character queue until some maximum number of char-
acters is on the queue. The to start as soon as there is anything on the queue 
and, once started, it is sustained hardware completion interrupts. Each time there is a com-
pletion interrupt, the driver gets the next character the queue and sends it to the 
hardware. The number of characters on the queue is and, as count falls through 
some intermediate level, an event queue is signaled. The process that is passing 
characters from the user to the queue can be waiting on the event, and refill queue to its 
maximum when the event occurs. 

A typical character device (for a paper tape is handled in a very 
similar manneL 

Another class character devices is the terminals. A terminal is by three 
character queues. are two input queues and and an output queue. Char-
acters going to the output of a 1.ermina! are handled by common code exactly as described 
above. The main difference is that there is also code to interpret the output stream as ASCH 
characters and to perform some translations, e.g., escapes for terminals. Another 
common aspect of terminals is code to insert real-time after certain control characters. 

Input on terminals is a little Characters are collected from the terminal and 
placed on a raw input queue. Some device-dependent code conversion and escape interpreta
tion is handled here. When a line is complete in the raw queue, an event is signaled. The code 
catching this signal then copies a line from the raw queue to a canonical queue the 
character erase and iine kill editing. User read requests on terminals can be directed at either 
the raw or canonicai queues. 

3.2.3. Other character devices 

Finally, there are devices that no general category. These devices are set up as charac-
ter I/O drivers. An example is a driver that reads and writes unmapped primary memory as an 
I/O device. Some devices are too fast to be treated a character at time, but do not fit the disk 
I/O mold. Examples are fast communications lines and fast line primers. These devices either 
have their own buffers or "borrow" block I/O buffers for a while and then give them back. 

( 

( 



'• 
:i 

31-7 

4. THE FILE SYSTEM 

In the UNIX system, a file is a (one-dimensional) array of bytes. No other structure of 
files is implied by the system. Files are attached anywhere (and possibly multiply) onto a 
hierarchy of directories. Directories are simply files that users cannot write. For a further dis
cussion of the external view of files and directories, see Ref. 4. 

The UNIX file system is a disk data structure accessed completely through the block 1/0 
system. As stated before, the canonical view of a "disk" is a randomly addressable array of 
512-byte blocks. A file system breaks the disk into four self-identifying regions. The first 
block (address 0) is unused by the file system. It is left aside for booting procedures. The 
second block (address 1) contains the so-called "super-block." This block, among other things, 
contains the size of the disk and the boundaries of the other regions. Next comes the i-list, a 
list of file definitions. Each file definition is a 64-byte structure, called an i-node. The offset of 
a particular i-node within the i-list is called its i-number. The combination of device name 
(major and minor numbers) and i-number serves to uniquely name a particular file. After the 
i-list, and to the end of the disk, come free storage blocks that are available for the contents of 
files. 

The free space on a disk is maintained by a linked list of available disk blocks. Every 
block in this chain contains a disk address of the next block in the chain. The remaining space 
contains the address of up to 50 disk blocks that are also free. Thus with one I/O operation, 
the system obtains 50 free blocks and a pointer where to find more. The disk allocation algo
rithms are very straightforward. Since all allocation is in fixed-size blocks and there is strict 
accounting of space, there is no need to compact or garbage collect. However, as disk space 
becomes dispersed, latency gradually increases. Some installations choose to occasionally com
pact disk space to reduce latency. 

An i-node contains 13 disk addresses. The first 10 of these addresses point directly at the 
first 10 blocks of a file. If a file is larger than 10 blocks (5,120 bytes), then the eleventh 
address points at a block that contains the addresses of the next 128 blocks of the file. If the 
file is still larger than this (70,656 bytes), then the twelfth block points at up to 128 blocks, 
each pointing to 128 blocks of the file. Files yet larger (8,459,264 bytes) use the thirteenth 
address for a "triple indirect" address. The algorithm ends here with the maximum file size of 
1,082,201,087 bytes. 

A logical directory hierarchy is added to this flat physical structure simply by adding a new 
type of file, the directory. A directory is accessed exactly as an ordinary file. It contains 16-
byte entries consisting of a 14-byte name and an i-number. The root of the hierarchy is at a 
known i-number (viz., 2). The file system structure allows an arbitrary, directed graph of direc
tories with regular files linked in at arbitrary places in this graph. In fact, very early UNIX sys
tems used such a structure. Administration of such a structure became so chaotic that later sys
tems were restricted to a directory tree. Even now, with regular files linked multiply into arbi
trary places in the tree, accounting for space has become a problem. It may become necessary 
to restrict the entire structure to a tree, and allow a new form of linking that is subservient to 
the tree structure. 

The file system allows easy creation, easy removal, easy random accessing, and very easy 
space allocation. With most physical addresses confined to a small contiguous section of disk, it 
is also easy to dump, restore, and check the consistency of the file system. Large files suffer 
from indirect addressing, but the cache prevents most of the implied physical 1/0 without 
adding much execution. The space overhead properties of this scheme are quite good. For 
example, on one particular file system, there are 25,000 files containing 130M bytes of data-file 
content. The overhead (i-node, indirect blocks, and last block breakage) is about 1 l.5M bytes. 
The directory structure to support these files has about l, 500 directories containing 0.6M bytes 
of directory content and about 0.5M bytes of overhead in accessing the directories. Added up 
any way, this comes out to less than a 10 percent overhead for actual stored data. Most sys
tems have this much overhead in padded trailing blanks alone. 



31 

4.1. File system implementation 

Because the i-node defines a file, the implementation the file system centers around 
access to the i-node. The system maintains a table of all active i-nodes. As a new file is 
accessed, the system locates the i-node, allocates an i-node table entry, and reads 
the i-node into primary memory. As in the buffer the table entry is considered !o be the 
current version of tile i-node. to the i-node are made to the table entry. When 
the last access to the i-node goes away, the table entry is copied back to the secondary store i
list and the table entry is 

All I/O operations on files are carried out with the aid of corresponding i-node table 
entry. The accessing of a file is a implementation of the algorithms mentioned 
previously. The user is not aware of i-nodes and i-numbers. References to the fiie system are 
made in terms of path names of directory tree. Converting a path name into an i-node 
table entry is also straightforward. at some known root or the current 
directory of some process), the next component of the path name is searched by reading the 
directory. This gives an i-number and an implied device (that of the directory). Thus the next 
i-node table entry can be accessed. If that was the last component the name, then this 
i-node is the result. If not, this i-node is the directory needed to look up the next component 
of the path name, and the algorithm is repeated. 

The user process accesses the 
these are open, create, read, write, 
in Fig. 2. 

system with certain primitives. The most common of 
and dose. data structures maintained are shown 

l 
~SWAPPED j PER/USER 

l 

l RESiOENT 
{PER/SYSTEM 

J 

l 
\ SECONDARY 
. STORAGE 

( PER/ 

I 
FILE SYSTEM 

J 
Fig. File system data structure. 

In the system data segment associated with a user, there is room some fosuaily between 10 
and 50) open files. This open file table consists of pointers that can be used to access 
corresponding i-node table entries. Associated with each of these open files is a current I/O 
pointer. This is a byte offset of the next read/write operation 011 the fi!e. The system treats 
each read/write request as random with an seek to the pointer. The user usually 
thinks of the file as sequential with the I/O pointer automatically the number of bytes 
that have been read/written from the file. The user may, of course, perform random I/O by 
setting the UO pointer before reads/writes. 

With file sharing, it is necessary to allow related processes to share a common I/O pointer 

( 



31-9 

and yet have separate I/O pointers for independent processes that access the same file. With 
these two conditions, the 1/0 pointer cannot reside in the i-node table nor can it reside in the 
list of open files for the process. A new table (the open file table) was invented for the sole 
purpose of holding the 1/0 pointer. Processes that share the same open file (the result of 
forks) share a common open file table entry. A separate open of the same file will only share 
the i-node table entry, but will have distinct open file table entries. 

The main file system primitives are implemented as follows. open converts a file system 
path name into an i-node table entry.· A pointer to the i-node table entry is placed in a newly 
created open file table entry. A pointer to the file table entry is placed in the system data seg
ment for the process. create first creates a new i-node entry, writes the i-number into a direc
tory, and then builds the same structure as for an open. read and write just access the i-node 
entry as described above. seek simply manipulates the 1/0 pointer. No physical seeking is 
done. close just frees the structures built by open and create. Reference counts are kept on 
the open file table entries and the i-node table entries to free these structures after the last 
reference goes away. unlink simply decrements the count of the number of directories point
ing at the given i-node. When the last reference to an i-node table entry goes a"'.ay, if the i
node has no directories pointing to it, then the file is removed and the i-node is freed. This 
delayed removal of files prevents problems arising from removing active files. A file may be 
removed while still open. The resulting unnamed file vanishes when the file is closed. This is 
a method of obtaining temporary files. 

There is a type of unnamed FIFO file called a pipe. Implementation of pipes consists of 
implied seeks before each read or write in order to implement first-in-first-out. There are also 
checks and synchronization to prevent the writer from grossly outproducing the reader and to 
prevent the reader from overtaking the writer. 

4.2. Mounted file systems 

The file system of a UNIX system starts with some designated block device formatted as 
described above to contain a hierarchy. The root of this structure is the root of the UNIX file 
system. A second formatted block device may be mounted at 'any leaf of the current hierarchy. 
This logically extends the current hierarchy. The implementation of mounting is trivial. A 
mount table is maintained containing pairs of designated leaf i-nodes and block devices. When 
converting a path name into an i-node, a check is made to see if the new i-node is a designated 
leaf. If it is, the i-node of the root of the block device replaces it. 

Allocation of space for a file is taken from the free pool on the device on which the file 
lives. Thus a file system consisting of many mounted devices does not have a common pool of 
free secondary storage space. This separation of space on different devices is necessary to allow 
easy unmounting of a device. 

4.3. Other system functions 

There are some other things that the system does for the user-a little accounting, a little 
tracing/debugging, and a little access protection. Most of these things are not very well 
developed because our use of the system in computing science research does not need them. 
There are some features that are missed in some applications, for example, better inter-process 
communication. 

The UNIX kernel is an 1/0 multiplexer more than a complete operating system. This is as 
it should be. Because of this outlook, many features are found in most other operating systems 
that are missing from the UNIX kernel. For example, the UNIX kernel does not support file 
access methods, file disposition, file formats, file maximum size, spooling, command language, 
logical records, physical records, assignment of logical file names, logical file names., more than 
one character set. an operator's console, an operator, log-in, or log-out. Many of these things 
are symptoms rather than features. Many of these things are implemented in user software 
using the kernel as a tool. A good example of this is the command language. 5 Each user may 
have his own command language. Maintenance of such code is as easy as maintaining user 



31-10 

code. The idea of implementing "system" code with general user primitives comes directly 
from MULTICS. 6 

References 

1. R. E. Griswold and D. R. Hanson, "An Overview of SL5," SIGPLAN Notices 12(4) pp. 
40-50 (April 1977). 

2. E. W. Dijkstra, "Cooperating Sequential Processes," pp. 43-112 in Programming 
languages, ed. F. Genuys,Academic Press, New York 0968). 

3. J. A. Hawley and W. B. Meyer, "MUNIX, A Multiprocessing Version of UNIX," M.S. 
Thesis, Naval Postgraduate School, Monterey, Cal. (1975). 

4. D. M. Ritchie and K. Thompson, ''The UNIX Time-Sharing System," Bell Sys. Tech. J. (· 
57(6) pp. 1905-1929 (1978). 

5. S. R. Bourne, "UNIX Time-Sharing System: The UNIX Shell," Bell Sys. Tech. J. 57 (6) pp. 
1971-1990 (1978). 

6. E. I. Organick, The MULTICS System, M.l.T. Press, Cambridge, Mass. (1972). 

( 

( 



. '\ 
i 

The UNIX 1/0 System 

Dennis M. Ritchie 

Bell Laboratories 
Murray Hill, New Jersey 07974 

This paper gives an overview of the workings of the UNIXt 1/0 system. It was written 
with an eye toward providing guidance to writers of device driver routines, and is oriented more 
toward describing the environment and nature of device drivers than the implementation of 
that part of the file system which deals with ordinary files. 

It is assumed that the reader has a good knowledge of the overall structure of the file sys
tem as discussed in the paper .. The UNIX Time-sharing System." A more detailed discussion 
appears in "UNIX Implementation;" the current document restates parts of that one, but is 
still more detailed. It is most useful in conjunction with a copy of the system code, since it is 
basically an exegesis of that code. 

Device Classes 

There are two classes of device: block and character. The block interface is suitable for 
devices like disks, tapes, and DECtape which work, or can work, with addressible 512-byte 
blocks. Ordinary magnetic tape just barely fits in this category, since by use of forward and 
backward spacing any block can be read, even though blocks can be written only at the end of 
the tape. Block devices can at least potentially contain a mounted file system. The interface to 
block devices is very highly structured; the drivers for these devices share a great many rou
tines as well as a pool of buffers. 

Character-type devices have a much more straightforward interface, although more work 
must be done by the driver itself. 

Devices of both types are named by a major and a minor device number. These numbers 
are generally stored as an integer with the minor device number in the low-order 8 bits and the 
major device number in the next-higher 8 bits; macros major and minor are available to access 
these numbers. The major device number selects which driver will deal with the device; the 
minor device number is not used by the rest of the system but is passed to the driver at 
appropriate times. Typically the minor number selects a subdevice attached to a given con
troller, or one of several similar hardware interfaces. 

The major device numbers for block and character devices are used as indices in separate 
tables; they both start at 0 and therefore overlap. 

Overview of 1/0 
The purpose of the open and creat system calls is to set up entries in three separate system 

tables. The first of these is the u ofile table, which is stored in the system's per-process data 
area u. This table is indexed by the file descriptor returned by the open or creat, and is accessed 
during a read, write, or other operation on the open file. An entry contains only a pointer to the 
corresponding entry of the file table, which is a per-system data base. There is one entry in the 
file table for each instance of open or creat. This table is per-system because the same instance 
of an open file must be shared among the several processes which can result from forks after 

tUNIX is a Trademark of Bell Laboratories. 

32-1 



the is opened. A file table 
reading or writing or is a and a count 

have terminated or dosed the 
offset which is used to indicate 

Finally, there is a pointer to the 
file's i-node. 

indicate whether the file was open for 
is used to when all processes the 

is also a 32-bit 
the next read or write will take place. 

in the inode which contains a copy 

Certain open can be " fiies, and several other apply to 
such channels. In such a case, instead an there is a to an associated 
channel table. Multipiex channels will not be discussed here. 

An entry in the file table to an instance of open or creat: if the same 
file is opened several it will have several in this table. However, there is at most 
one entry in the inode table may enter the inode table not only 
because it is open, but also because it is the current some process or because it is a 

a 

An entry in the inode table i-node as stored on 
the disk; the modified and accessed tirnes are not and the entry is by a 

when it may be 
the several 

word containing about the count used to determine 
allowed to disappear, and the device and i-n umber whence the 
block numbers that give the 
compressed format used on the disk to 

During the processing of an open or crear call for a calls the 
device's open routine to allow for any a turning on 
the data-terminal-ready lead a modem, the dose routine is called oniy when 
the last process closes a that is, when the i-node table entry is deallocated. Thus it is 
not feasible for a device to maintain, or on, a count its 
possible to implement an exclusive-use device which cannot be 
dosed. 

When a read or write takes 
set up the variables u. u _base, u. 
address of the I/O target. area, the 
file. If the file ref erred to is a 

it is responsible for 
appropriately as discussed be!ow. 
block number in the If the 
mapped (possibly 
need not be mapped. 
resulting physical block 
device. 

Character Device Drivers 

The cdevsw table specifies the 
ice provides five routines: open, 
system call). Any these may 
open on non-exdusi ve devices that 
it should be considered an error, 
the cdevsw structure also 

The open routine is called each 
argument. The second argument. is a 
upon. 

time the file is 
which is non-zero 

The close routine is called 
very last process in which the 

when the 

to maintain its own count its users. 

table en try are used to 
contain the (user) 

btock number must be 
a special file 

any event, the 
to read or write 

with the full device number as 
if the device is to be written 

for the last time, that is when the 
for the driver 

the second is a 



32-3 

flag which is non-zero if the file was open for writing in the process which performs the final 
close. 

When wnte is called, it is supplied the device as argument. The per-user variable 
u.u_count has been set to the number of characters indicated by the user; for character devices, 
this number may be 0 initially. u.u_base is the address supplied by the user from which to start 
taking characters. The system may call the routine internally, so the flag u.u_segflg is supplied 
that indicates, if on. that u. u _base refers to the system address space instead of the user's. 

The wme routine should copy up to 11. u_ count characters from the user's buff er to the 
device, decrementing u.u_coum for each character passed. For most drivers, which work one 
character at a time, the routine cpass( ) is used to pick up characters from the user's buff er. 
Successive calls on it return the characters to be written until u. u_ count goes to 0 or an error 
occurs, when it returns -1. Cpass takes care of interrogating u.u_segflg and updating u.u_count. 

Write routines which want to transfer a probably large number of characters into an inter
nal buff er may also use the routine iomove(buJfer, offset, count, ffag) which is faster when many 
characters must be moved. lomove transfers up to count characters into the buffer starting offset 
bytes from the start of the buffer; flag should be B_ WRJTE (which is 0) in the write case. Cau
tion: the caller is responsible for making sure the count is not too large and is non-zero. As an 
efficiency note, 1omove is much slower if any of bt{f]er+qffser, count or u.u_base is odd. 

The device's read routine is called under conditions similar to wrire, except that u.u_count 
is guaranteed to be non-zero. To return characters to the user, the routine passc(c) is available; 
it takes care of housekeeping like cpass and returns -1 as the last character specified by 
u.u_count is returned to the user; before that time, 0 is returned. /omove is also usable as with 
wme; the flag should be B_READ but the same cautions apply. 

The "special-functions" routine is invoked by the stry and guy system calls as follows: (*p) 
(dev, v) where pis a pointer to the device's routine, Jev is the device number, and vis a vector. 
In the gr~v case, the device is supposed to place up to 3 words of status information into the 
vector; this will be returned to the caller. In the slfy case, vis 0; the device should take up to 3 
words of control information from the array u.u_arg[0 ... 21. 

Finally, each device should have appropriate interrupt-time routines. ¥/hen an interrupt 
occurs, it is turned into a C-compatible call on the devices's interrupt routine. The interrupt
catching mechanism makes the low-order four bits of the "new PS" word in the trap vector for 
the interrupt available to the interrupt handler. This is conventionally used by drivers which 
deal with multiple similar devices to encode the minor device number. After the interrupt has 
been processed, a return from the interrupt handler will return from the interrupt itself. 

A number of subroutines are available which are useful to character device drivers. Most 
of these handlers, for example, need a place to buffer characters in the internal interface 
between their "top half" (read/write) and "bottom half" (interrupt) routines. For relatively 
low data-rate devices, the best mechanism is the character queue maintained by the routines 
getc and putc. A queue header has the structure 

struct l 
int 
char 
chai 

l queue; 

c_cc; I* character count*/ 
*c_cf; /*first character*/ 
"c cl; I* last character *I 

A character is placed on the end of a queue by putdc, &queue) where c is the character and 
queue is the queue header. The routine returns -1 if there is no space to put the character, 0 
otherwise. The first character on the queue may be retrieved by gerc(&queue) which returns 
either the (non-negative) character or -1 if the queue is empty. 

Notice that the space for characters in queues is shared among all devices in the system 
and in the standard svstem there are only some 600 character slots available. Thus device 
handlers, especially wr.ite routines, must take care to avoid gobbling up excessive numbers of 



3 

characters. 

available to device han.diers is the sleep-wakeup mechanism. The 
call causes the process other processes to run) until the 
event occurs; the process is and cal! will return when 

is no process with higher prwmy. 

The call wakeup(evem) that the event has 
on the event to be awakened. 

sleeper and the waker-up. 
driver, which guarantees that events are 

causes processes 
upon by the 

of some data area used by the 

Processes on an event should not assume that the event has really 
should check that the conditions which caused them to no 

can range 0 to , a a less-favored 
situation. A distinction is made bet ween processes sleeping at less than the 

parameter former cannot be interrupted 
although it is that it :nay be om. it is a bad idea to sleep 

with priority less than PZERO on an event which never occur. On the other hand, calls 
to sleep with larger may never return if the process is terminated some signal in 
meantime. Incidentally, it is a gross error to call in a routine called at interrupt time, 
since the process which is running is almost not the process which should go to sleep. 

none the variables in the user area "u." should be touched, let alone changed, by 
an interrupt routine. 

If a device driver wishes to wait for some evem 
to a wakeup, (for 
interrupt), the call sleep( &lboli. 
awakened once every 4 seconds 

The routines ), 

which does not cause an 
lbo!t is an external cell whose address is 

the dock interrupt routine. 

), ) are available to set the processor priority level 
from the device. 

If a device needs to know about real-time then will be 
This routine arranges that after infervai sixtieths of a will be called with 

arg as argument, in the style are to provide real-
time function characters like new-line and tab in output, and to ter-
minate an attempt to read the 201 if there is no response within a fied 
number of seconds. Notice that the number of sixtieths of a second is limited to 
it must appear to be and that a bounded number timeouts can be on at 
once. Also, the is called at so it should conform to the 

of 

Biock-devke Interface 

Handling of block devices is mediated a collection of routines that manage a set 
the of blocks of darn on the various devices. most important 

purpose of these routines is to assure that several processes that access the same block of the 
same device in multiprogrammed fashion maintain a consistent view the data in tbe block. 
A secondary but still important purpose is to increase the efficiency of the system by keeping 
in-core copies of blocks that are accessed The main data base this 
mechanism is the table buf Each header contains a pair pointers (b~forw, 
b _back) which maintain a list the associated with a particular block 

and a of (avjiJrw. av_back) which maintain a doubly-linked list 
of blocks which are ' " that to be reallocated for another transaction. 
that have 110 in progress or are busy for other purposes do not appear in this list. The buffer 
header also contains the device and block number to which the buffer and a to 
the actual storage associated with the is a word count which is the of the 
number words to be to or from the bu 



32-5 

residual word count used to communicate information from an I/O routine to its caller. 
Finally, there is a flag word with bits indicating the status of the buff er. These flags will be dis
cussed below. 

Seven routines constitute the most important part of the interface with the rest of the sys
tem. Given a device and block number, both bread and getblk return a pointer to a buffer 
header for the block; the difference is that bread is guaranteed to return a buffer actually con
taining the current data for the block, while getblk returns a buff er which contains the data in 
the block only if it is already in core (whether it is or not is indicated by the B DONE bit; see 
below). In either case the buffer, and the corresponding device block, is made ::busy," so that 
other processes referring to it are obliged to wait until it becomes free. Gerblk is used, for 
example, when a block is about to be totally rewritten, so that its previous contents are not use
ful; still, no other process can be allowed to ref er to the block until the new data is placed into 
it. 

The breada routine is used to implement read-ahead. it is logically similar to bread, but 
takes as an additional argument the number of a block (on the same device) to be read asyn
chronously after the specifically requested block is available. 

Given a pointer to a buff er, the brelse routine makes the buffer again available to other 
processes. It is called, for example, after data has been extracted following a bread. There are 
three subtly-different write routines, all of which take a buff er pointer as argument, and all of 
which logically release the buffer for use by others and place it on the free list. Bwrite puts the 
buffer on the appropriate device queue, waits for the write to be done, and sets the user's error 
flag if required. Bawrite places the buffer on the device's queue, but does not wait for comple
tion, so that errors cannot be reflected directly to the user. Bdwrite does not start any I/O 
operation at all, but merely marks the buffer so that if it happens to be grabbed from the free 
list to contain data from some other block, the data in it will first be written out. 

Bwrite is used when one wants to be sure that I/O takes place correctly, and that errors are 
reflected to the proper user; it is used, for example, when updating i-nodes. Ba write is useful 
when more overlap is desired (because no wait is required for I/O to finish) but when it is rea
sonably certain that the write is really required. Bdwrite is used when there is doubt that the 
write is needed at the moment. For example, bdwrite is called when the last byte of a write sys
tem call falls short of the end of a block, on the assumption that another write will be given 
soon which will re-use the same block. On the other hand, as the end of a block is passed, 
bawrite is called, since probably the block will not be accessed again soon and one might as well 
start the writing process as soon as possible. 

In any event, notice that the routines getblk and bread dedicate the given block exclusively 
to the use of the caller, and make others wait, while one of brelse, bwrite, bawrite, or bdwrite 
must eventually be called to free the block for use by others. 

As mentioned, each buff er header contains a flag word which indicates the status of the 
buffer. Since they provide one important channel for information between the drivers and the 
block I/O system, it is important to understand these flags. The following names are manifest 
constants which select the associated flag bits . 

. B READ This bit is set when the buffer is handed to the device strategy routine (see below) 
to indicate a read operation. The symbol B_WRITE is defined as 0 and does not 
define a flag; it is provided as a mnemonic convenience to callers of routines like 
swap which have a separate argument which indicates read or write. 

B DONE This bit is set to 0 when a block is handed to the the device strategy routine and is 
turned on when the operation completes, whether normally as the result of an error. 
It is also used as part of the return argument of getblk to indicate if l that the 
returned buff er actually contains the data in the requested block. 



32-6 

B_ERROR This bit may be set to 1 when B_DONE is set to indicate that an l/O or other error 
occurred. If it is set the b_error byte of the buffer header may contain an error code 
if it is non-zero. If b_error is 0 the nature of the error is not specified. Actually no 
driver at present sets b_error; the latter is provided for a future improvement 
whereby a more detailed error-reporting scheme may be implemented. 

B BUSY This bit indicates that the buffer header is not on the free list, i.e. is dedicated to 
someone's exclusive use. The buffer still remains attached to the list of blocks asso
ciated with its device, however. When getblk (or bread. which calls it) searches the 
buffer list for a given device and finds the requested block with this bit on, it sleeps 
until the bit clears. 

B PHYS This bit is set for raw 1/0 transactions that need to allocate the Unibus map on an 
11170. 

B MAP This bit is set on buffers that have the Unibus map allocated, so that the iodone rou
tine knows to deallocate the map. 

B_ WANTEDThis flag is used in conjunction with the B_BUSY bit. Before sleeping as described 
just above, getblk sets this flag. Conversely, when the block is freed and the busy bit 
goes down (in brelse) a wakeup is given for the block header whenever B _WANTED 
is on. This strategem avoids the overhead of having to call wakeup every time a 
buffer is freed on the chance that someone might want it. 

B_AGE This bit may be set on buffers just before releasing them; if it is on, the buffer is 
placed at the head of the free list, rather than at the tail. It is a performance heuris
tic used when the caller judges that the same block will not soon be used again. 

B ASYNC This bit is set by bawrite to indicate to the appropriate device driver that the buffer 
- should be released when the write has been finished, usually at interrupt time. The 

difference between bwrire and bawrite is that the former starts 1/0, waits until it is 
done, and frees the buffer. The latter merely sets this bit and starts 1/0. The bit 
indicates that relse should be called for the buff er on completion. 

B DELWRIThis bit is set by bdwrite before releasing the buffer. When gerblk, while searching 
- for a free block, discovers the bit is 1 in a buffer it would otherwise grab, it causes 

the block to be written out before reusing it. 

Black Device Drivers 

The bdevsw table contains the names of the interface routines and that of a table for each 
block device. 

Just as for character devices, block device drivers may supply an open and a close routine 
called respectively on each open and on the final close of the device. Instead of separate read 
and write routines, each block device driver has a strategy routine which is called with a pointer 
to a buffer header as argument. As discussed. the buffer header contains a read/write flag, the 
core address, the block number, a (negative) word count, and the major and minor device 
number. The role of the strategy routine is to carry out the operation as requested by the 
information in the buffer header. When the transaction is complete the B_DONE (and possibly 
the B ERROR) bits should be set. Then if the B ASYNC bit is set, brelse should be called; 
other;ise, ·wakeup. In cases where the device is capable, under error-free operation, of 
transferring fewer words than requested, the device's word-count register should be placed in 
the residual count slot of the buffer header; otherwise, the residual count should be set to 0. 
This particular mechanism is really for the benefit of the magtape driver; when reading this 
device records shorter than requested are quite normal, and the user should be told the actual 
length of the record. 

Although the most usual argument to the strategy routines is a genuine buffer header 
allocated as discussed above, all that is actually required is that the argument be a pointer to a 
place containing the appropriate information. For example the swap routine, which manages 
movement of core images to and from the swapping device, uses the strategy routine for this 

( -· .. -.. 

c·· 

c 



32-7 

device. Care has to be taken that no extraneous bits get turned on in the flag word. 

The device's table specified by bdevsw has a byte to contain an active flag and an error 
count, a pair of links which constitute the head of the chain of buffers for the device (bJorw, 
b_back). and a first and last pointer for a device queue. Of these things, all are used solely by 
the device driver itself except for the buffer-chain pointers. Typically the flag encodes the state 
of the device, and is used at a minimum to indicate that the device is currently engaged in 
transferring information and no new command should be issued. The error count is useful for 
counting retries when errors occur. The device queue is used to remember stacked requests; in 
the simplest case it may be maintained as a first-in first-out list. Since buffers which have been 
handed over to the strategy routines are never on the list of free buffers, the pointers in the 
buffer which maintain the free list fov_Jorw, av_back) are also used to contain the pointers 
which maintain the device queues. 

A couple of routines are provided which are useful to block device drivers. iodone(bp) 
arranges that the buff er to which bp points be released or awakened, as appropriate, when the 
strategy module has finished with the buff er, either normally or after an error. On the latter 
case the B_ERROR bit has presumably been set.) 

The routine geterrodbp) can be used to examine the error bit in a buffer header and 
arrange that any error indication found therein is reflected to the user. It may be called only in 
the non-interrupt part of a driver when 1/0 has completed (B_DON£ has been set). 

Raw Block-device 1/0 

A scheme has been set up whereby block device drivers may provide the ability to 
transfer information directly between the user's core image and the device without the use of 
buffers and in blocks as large as the caller requests. The method involves setting up a 
character-type special file corresponding to the raw device and providing read and write routines 
which set up what is usually a private, non-shared buffer header with the appropriate informa
tion and call the device's strategy routine. If desired, separate open and close routines may be 
provided but this is usually unnecessary. A special-function routine might come in handy, 
especially for magtape. 

A great deal of work has to be done tc generate the "appropriate information" to put in 
the argument buff er for the strategy module; the worst part is to map relocated user addresses 
to physical addresses. Most of this work is done by physio(strar. bp, dev, rw) whose arguments 
are the name of the strategy routine strat, the buffer pointer bp, the device number dev, and a 
read-write flag rw whose value is either B_READ or B_ WRITE. Physio makes sure that the 
user's base address and count are even (because most devices work in words) and that the core 
area affected is contiguous in physical space; it delays until the buffer is not busy, and makes it 
busy while the operation is in progress; and it sets up user error return information. 





A Tour through the UNIXt C Compiler 

The Intermediate Language 

D. M. Ritchie 

Bell Laboratories 
Murray Hill, New Jersey 07974 

Communication between the two phases of the compiler proper is carried out by means of 
a pair of intermediate files. These files are treated as having identical structure, although the 
second file contains only the code generated for strings. It is convenient to write strings out 
separately to reduce the need for multiple location counters in a later assembly phase. 

The intermediate language is not machine-independent; its structure in a number of ways 
reflects the fact that C was originally a one-pass compiler chopped in two to reduce the max
imum memory requirement. In fact, only the latest version of the compiler has a complete 
intermediate language at all. Until recently, the first phase of the compiler generated assembly 
code for those constructions it could deal with, and passed expression parse trees, in absolute 
binary form, to the second phase for code generation. Now, at least, all inter-phase informa
tion is passed in a describable form, and there are no absolute pointers involved, so the cou
pling between the phases is not so strong. 

The areas in which the machine (and system) dependencies are most noticeable are 

1. Storage allocation for automatic variables and arguments has already been performed, and 
nodes for such variables refer to them by offset from a display pointer. Type conversion 
(for example, from integer to pointer) has already occurred using the assumption of byte 
addressing and 2-byte words. 

2. Data representations suitable to the PDP-11 are assumed; in particular, floating point con
stants are passed as four words in the machine representation. 

As it happens, each intermediate file is represented as a sequence of binary numbers 
without any explicit demarcations. It consists of a sequence of conceptual lines, each headed by 
an operator, and possibly containing various operands. The operators are small numbers; to 

assist in recognizing failure in synchronization, the high-order byte of each operator word is 
always the octal number 376. Operands are either 16-bit binary numbers or strings of charac
ters representing names. Each name is terminated by a null character. There is no alignment 
requirement for numerical operands and so there is no padding after a name string. 

The binary representation was chosen to avoid the necessity of converting to and from 
character form and to minimize the size of the files. It would be very easy to make each 
operator-operand 'line' in the file be a genuine, printable line, with the numbers in octal or 
decimal; this in fact was the representation originally used. 

The operators fa!l naturally into two classes: those which represent part of an expression, 
and all others. Expressions are transmitted in a reverse-Polish notation; as they are being read, 
a tree is built which is isomorphic to the tree constructed in the first phase. Expressions are 
passed as a whole, with no non-expression operators intervening. The reader maintains a stack; 
each leaf of the expression tree (name, constant) is pushed on the stack; each unary operator 
replaces the top of the stack by a node whose operand is the old top-of-stack; each binary 

tUNlX is a Trademark of Bell Laboratories. 

33-1 



33-2 

operator replaces the top pair on the stack with a single entry. When the expression is com
plete there is exactly one item on the stack. Following each expression is a special operator 
which passes the unique previous expression to the 'optimizer' described below and then to the 
code generator. 

Here is the list of operators not themselves part of expressions. 

EOF 

marks the end of an input file. 

BOAT A flag data ... 

specifies a sequence of bytes to be assembled as static data. It is followed by pairs of 
words; the first member of the pair is non-zero to indicate that the data continue; a zero 
flag is not followed by data and terminates the operator. The data bytes occupy the low
order part of a word. 

WDA TA flag data ... 

specifies a sequence of words to be assembled as static data; it is identical to the BDATA 
operator except that entire words, not just bytes, are passed. 

PROG 

means that subsequent information is to be compiled as program text. 

DATA 

means that subsequent information is to be compiled as static data. 

BSS 

means that subsequent information is to be compiled as unitialized static data. 

SYMDEF name 

means that the symbol name is an external name defined in the current program. It is 
produced for each external data or function definition. 

CSP ACE name si:e 

indicates that the name refers to a data area whose size is the specified number of bytes. 
It is produced for external data definitions without explicit initialization. 

SSPACE si:e 

indicates that si:e bytes should be set aside for data storage. It is used to pad out short 
initializations of external data and to reserve space for static (internal) data. It will be 
preceded by an appropriate label. 

EVEN 

is produced after each external data definition whose size is not an integral number of 
words. It is not produced after strings except when they initialize a character array. 

NLABEL name 

is produced just before a BOAT A or WDATA initializing external data, and serves as a 
label for the data. 



33-3 

RLABEL name 

is produced just before each function definition, and labels its entry point. 

SN AME name number 

is produced at the start of each function for each static variable or label declared therein. 
Subsequent uses of the variable will be in terms of the given number. The code genera
tor uses this only to produce a debugging symbol table. 

ANAME name number 

Likewise, each automatic variable's name and stack offset is specified by this operator. 
Arguments count as automatics. 

RN AME name number 

Each register variable is similarly named, with its register number. 

SAVE number 

produces a register-save sequence at the start of each function, just after its label (RLA· 
BEL). 

SETREG number 

is used to indicate the number of registers used for register variables. It actually gives the 
register number of the lowest free register; it is redundant because the RNAME operators 
could be counted instead. 

PRO FIL 

is produced before the save sequence for functions when the profile option is turned on. 
It produces code to count the number of times the function is called. 

SWIT de.flab line label value ... 

is produced for switches. When control flows into it, the value being switched on is in the 
register forced by RFORCE (below). The switch statement occurred on the indicated line 
of the source, and the label number of the default location is deflab. Then the operator is 
followed by a sequence of label-number and value pairs; the list is terminated by a 0 label. 

LABEL number 

generates an internal label. It is referred to elsewhere using the given number. 

BRANCH number 

indicates an unconditional transfer to the internal label number given. 

RETRN 
produces the return sequence for a function. It occurs only once, at the end of each func
tion. 

EXPR line 

causes the expression just preceding to be compiled. The argument is the line number in 
the source where the expression occurred. 



33-4 

NAME class type name 

NAME class type number 

indicates a name in an first form is used when the name is 
external; the second when the name is automatic, static, or a Then the number 
indicates the stack offset, the label or the number as appropriate. 
and is described 

type value 

transmits an integer constant. 
sions. 

FCON type 

constant as 

SFCON type value 

and the next two operators occur as part of expres-

words in PDP~ll notation. 

transmits a fioating-point constant whose 
word in PDP-11 notation. 

is its high-order 

NULL 

indicates a null cail in an call is a binary operator 
whose second ""'"""'''"'rl 

CBRANCH label cond 

produces a conditionai branch. It is an and will be by an 
EXPR. The branch to the label number takes if the expression's truth value is the 
same as that of cond. if cond = 1 and the expression evaluates to the branch 
is taken. 

type 

which is a right-associative 
tion arguments; prefix and 

as a CON; 
'a? (b:c) '; and a sequence of 
case pointer comparison is 

unary@operntor type 

operator; the type 
ones are: COMMA, 

designed to righMo-left evaluation func-
+ + and - - , whose second is the increment 

and COLON, to express the conditional expression as 
between pointers, in 

unsigned). 

There are also numerous unary These include , FTOI, FTOL, LTOF, 
ITOL, L TOI which convert among floating, and integer; JUMP which branches 
indirectly through a label INIT, which compiles !.he value of a constant 
expression used as an RFORCE, which is used before a return sequence or a 
switch to place a value in an agreed-upon register. 

Expression Optimization 

EJch expression tree, as it is read in, is subjected to a fairiy comprehensive analysis. This 
is performed by the optim routine and a number of subroutines; the major things done are 

( 

( 



33-5 

1. Modifications and simplifications of the tree so its value may be computed more efficiently 
and conveniently by the code generator. 

2. Marking each interior node with an estimate of the number of registers required to evalu
ate it. This register count is needed to guide the code generation algorithm. 

One thing that is definitely not done is discovery or exploitation of common subexpres
sions, nor is this done anywhere in the compiler. 

The basic organization is simple: a depth-first scan of the tree. Optim does nothing for 
leaf nodes (except for automatics; see below), and calls unoptim to handle unary operators. For 
binary operators, it calls itself to process the operands, then treats each operator separately. 
One important case is commutative and associative operators, which are handled by acommute. 

Here is a brief catalog of the transformations carried out by by optim itself. It is not 
intended to be complete. Some of the transformations are machine-dependent, although they 
may well be useful on machines other than the PDP-11. 

1. As indicated in the discussion of unoptim below, the optimizer can create a node type 
corresponding to the location addressed by a register plus a constant offset. Since this is 
precisely the implementation of automatic variables and arguments, where the register is 
fixed by convention, such variables are changed to the new form to simplify later process
ing. 

2. Associative and commutative operators are processed by the special routine acommute. 

3. After processing by acommute, the bitwise & operator is turned into a new andn operator; 
'a & b' becomes 'a andn ~b'. This is done because the PDP-11 provides no and operator, 
but only andn. A similar transformation takes place for ' -& '. 

4. Relationals are turned around so the more complicated expression is on the left. (So that 
'2 > f(x)' becomes 'f(x) < 2'). This improves code generation since the algorithm 
prefers to have the right operand require fewer registers than the left. 

5. An expression minus a constant is turned into the expression plus the negative constant, 
and the acommute routine is called to take advantage of the properties of addition. 

6. Operators with constant operands are evaluated. 

7. Right shifts (unless by 1) are turned into left shifts with a negated right operand, since 
the PDP-11 lacks a general right-shift operator. 

8. A number of special cases are simplified, such as division pr multiplication by 1, and 
shifts by 0. 

The unoptim routine performs the same sort of processing for unary operators. 

1. '*&x' and '&*x' are simplified to 'x'. 

2. If r is a register and c is a constant or the address of a static or external variable, the 
expressions '* (r+c)' and '*r' are turned into a special kind of name node which expresses 
the name itself and the offset. This simplifies subsequent processing because such con
structions can appear as the the address of a PDP-11 instruction. 

3. When the unary '&' operator is applied to a name node of the special kind just discussed, 
it is reworked to make the addition explicit again; this is done because the PDP-11 has no 
'load address' instruction. 

4. Constructions like '*r+ +' and •• - -r' where r is a register are discovered and marked as 
being implementable using the PDP-11 auto-increment and -decrement modes. 

5. If '!' is applied to a relational, the '!' is discarded and the sense of the relational is 
reversed. 

6. Special cases involving reflexive use of negation and complementation are discovered. 



7. 

ters 
'a+ 
sorted 
rithm works best when 
is than the 
than the address 

-6 

to constants are evaluated. 

makes it easy to all the cons tan ts 
stant and address 

A 

commutative discovers clus
for 

is considered simpler 
to a variable. This 

the sum a con
such nodes there is space for an 

l and addition of 0. 

D!Sfrib is based on the fact 

This transformation is with code 
of multi~ the user, bu~ it 

arrays. 
result of the 

acommwe reconstructs a tree the list which result. 

prepare. 

in which the 
ter in which the value 
value 

is ihe basic one 
code which the vafoe 

Cctab is 
value of the 

'a- =b' in the context 'if (a"'"""' 

The table is used when the value 
when it is an actual argument. 1-:.·or 

to load a into a which is then 
which does the 

c' will appear in a 

make 
because there is a deal of machine
any event such tables are to 

to a tree 
a 

returns the number of the regis~ 

but instead the 
for 

or i) of 

on the 
' it is a bad idea 

instruction 

not its 
value. Thus 

of the tables are rather and handle 
cases. If one these tables does not contain an entry 
sion tree, rcexpr uses the value of the 

up; need be done when the table 
when the table called was and a mov 
when the was 



33-7 

The rcexpr routine itself picks off some special cases, then calls cexpr to do the real work. 
Cexpr tries to find an entry applicable to the given tree in the given table, and returns -1 if no 
such entry is found, letting rcexpr try again with a different table. A successful match yields a 
string containing both literal characters which are written out and pseudo-operations, or macros, 
which are expanded. Before studying the contents of these strings we will consider how table 
entries are matched against trees. 

Recall that most non-leaf nodes in an expression tree contain the name of the operator, 
the type of the value represented, and pointers to the subtrees (operands). They also contain 
an estimate of the number of registers required to evaluate the expression, placed there by the 
expression-optimizer routines. The register counts are used to guide the code generation pro
cess, which is based on the Sethi-Ullman algorithm. 

The main code generation tables consist of entries each containing an operator number 
and a pointer to a subtable for the corresponding operator. A subtable consists of a sequence of 
entries, each with a key describing certain properties of the operands of the operator involved; 
associated with the key is a code string. Once the subtable corresponding to the operator is 
found, the subtable is searched linearly until a key is found such that the properties demanded 
by the key are compatible with the operands of the tree node. A successful match returns the 
code string; an unsuccessful search, either for the operator in the main table or a compatble key 
in the subtable, returns a failure indication. 

The tables are all contained in a file which must be processed to obtain an assembly 
language program. Thus they are written in a special-purpose language. To provided 
definiteness to the following discussion, here is an example of a subtable entry. 

%n,aw 
F 
add A2,R 

The '%' indicates the key; the information following (up to a blank line) specifies the code 
string. Very briefly, this entry is in the subtable for '+' of regtab; the key specifies that the left 
operand is any integer, character, or pointer expression, and the right operand is any word 
quantity which is directly addressib!e (e.g. a variable or constant). The code string calls for the 
generation of the code to compile the left (first) operand into the current register ('F') and 
then to produce an 'add' instruction which adds the second operand (' A2') to the register 
('R'). All of the notation will be explained below. 

Only three features of the operands are used in deciding whether a match has occurred. 
They are: 

1. Is the type of the operand compatible with that demanded? 

2. Is the 'degree of difficulty' (in a sense described below) compatible? 

3. The table may demand that the operand have a '*' (indirection operator) as its highest 
operator. 

As suggested above, the key for a subtable entry is indicated by a '%,' and a comma
separated pair of specifications for the operands. (The second specification is ignored for unary 
operators). A specification indicates a type requirement by including one of the following 
letters. If no type letter is present, any integer, character, or pointer operand will satisfy the 
requirement (not float, double, or long). 

b A byte (character) operand is required. 

w A word (integer or pointer) operand is required. 

f A float or double operand is required. 

d A double operand is required. 



33-8 

A long (32-bit integer) operand is required. 

Before discussing the 'degree of difficulty' specification, the algorithm has to be explained 
more completely. Rcexpr (and cexpr) are called with a register number in which to place their 
result. Registers 0, 1, ... are used during evaluation of expressions; the maximum register 
which can be used in this way depends on the number of register variables, but in any event 
only registers 0 through 4 are available since r5 is used as a stack frame header and r6 (sp) and 
r7 (pc) have special hardware properties. The code generation routines assume that when 
called with register n as argument, they may use n + 1. ... (up to the first register variable) as 
temporaries. Consider the expression 'X + Y', where both X and Y are expressions. As a first 
approximation, there are three ways of compiling code to put this expression in register n. 

1. If Y is an addressible cell, (recursively) put X into register n and add Y to it. 

2. If Y is an expression that can be calculated in k registers, where k smaller than the 
number of registers available, compile X into register n, Y into register n + /, and add 
register n + 1 to n. 

3. Otherwise, compile Y into register n. save the result in a temporary (actually, on the 
stack) compile X into register n, then add in the temporary. 

The distinction between cases 2 and 3 therefore depends on whether the right operand can 
be compiled in fewer than k registers, where k is the number of free registers left after registers 
0 through n are taken: 0 through n - I are presumed to contain already computed temporary 
results; n will, in case 2, contain the value of the left operand while the right is being evaluated. 

These considerations should make clear the specification codes for the degree of difficulty, 
bearing in mind that a number of special cases are also present: 

z is satisfied when the operand is zero, so that special code can be produced for expressions 
like 'x = o·. 
is satisfied when the operand is the constant 1, to optimize cases like left and right shift 
by 1, which can be done efficiently on the PDP-11. 

c is satisfied when the operand is a positive (16-bit) constant; this takes care of some special 
cases in long arithmetic. 

a is satisfied when the operand is addressible; this occurs not only for variables and con· 
stants, but also for some more complicated constructions, such as indirection through a 
simple variable, ""p + +' where p is a register variable (because of the PDP-11 's auto· 
increment address mode), and '*(p+c)' where p is a register and c is a constant. Pre
cisely, the requirement is that the operand refers to a cell whose address can be written as 
a source or destination of a PDP-11 instruction. 

e is satisfied by an operan'1 whose value can be generated in a register using no more than k 
registers, where k is the number of regi.sters left (not counting the current register). The 
'e' stands for 'easy.' 

n is satisfied by any operand. The 'n' stands for 'anything.' 

These degrees of difficulty are considered to lie in a linear ordering and any operand 
which satisfies an earlier-mentioned requirement will satisfy a later one. Since the subtables are 
searched linearly, if a '1' specification is included, almost certainly a 'z' must be written first to 
prevent expressions containing the constant 0 to be compiled as if the 0 were 1. 

Finally, a key specification may contain a '*' which requires the operand to have an 
indirection as its leading operator. Examples below should clarify the utility of this 
specification. 

Now let us consider the contents of the code string associated with each subtable entry. 
Conventionally, lower-case letters in this string represent literal information which is copied 
directly to the output. Upper-case letters generally introduce specific macro-operations, some 
of which may be followed by modifying information. The code strings in the tables are written 
with tabs and new-lines used freely to suggest instructions which will be generated; the table-

( 



. \ 

33-9 

compiling program compresses tabs (using the 0200 bit of the next character) and throws away 
some of the new-lines. For example the macro 'F' is ordinarily written on a line by itself; but 
since its expansion will end with a new-line, the new-line after 'F' itself is dispensable. This is 
all to reduce the size of the stored tables . 

The first set of macro-operations is concerned with compiling subtrees. Recall that this is 
done by the cexpr routine. In the following discussion the 'current register' is generally the 
argument register to cexpr; that is, the place where the result is desired. The 'next register' is 
numbered one higher than the current register. (This explanation isn't fully true because of 
complications, described below, involving operations which require even-odd register pairs.) 

F causes a recursive call to the rcexpr routine to compile code which places the value of the 
first (left) operand of the operator in the current register. 

Fl generates code which places the value of the first operand in the next register. It is 
incorrectly used if there might be no next register; that is, if the degree of difficulty of the 
first operand is not 'easy;' if not, another register might not be available. 

FS generates code which pushes the value of the first operand on the stack, by calling rcexpr 
specifying sptab as the table. 

Analogously, 

S, S 1, SScompile the second (right) operand into the current register, the next register, or onto 
the stack. 

To deal with registers, there are 

R which expands into the name of the current register. 

Rl which expands into the name of the next register. 

R + which expands into the the name of the current register plus 1. It was suggested above 
that this is the same as the next register, except for complications; here is one of them. 
Long integer variables have 32 bits and require 2 registers; in such cases the next register 
is the current register plus 2. The code would like to talk about both halves of the long 
quantity, so R refers to the register with the high-order part and R + to the low-order 
part. 

R- This is another complication, involving division and mod. These operations involve a pair 
of registers of which the odd-numbered contains the left operand. Cexpr arranges that the 
current register is odd; the R- notation allows the code to refer to the next lower, even
numbered register. 

To refer to addressible quantities, there are the notations: 

A 1 causes generation of the address specified by the first operand. For this to be legal, the 
operand must be addressible; its key must contain an 'a' or a more restrictive 
specification. 

A2 correspondingly generates the address of the second operand providing it has one. 

We now have enough mechanism to show a complete, if suboptimal, table for the + 
operator on word or byte operands. 



33-10 

%n,z. 
F 

%n,l 
F 
inc R 

%n,aw 
F 
add A2,R 

%n,e 
F 
Sl 
add Rl,R 

O/on,n 
SS 
F 
add (sp) +,R 

The first two sequences handle some special cases. Actually it turns out that handling a right 
operand of 0 is unnecessary since the expression-optimizer throws ou~ adds of 0. Adding 1 by 
using the 'increment' instruction is done next, and then the case where the right operand is 
addressible. It must be a word quantity, since the PDP-11 lacks an 'add byte' instruction. 
Finally the cases where the right operand either can, or cannot, be done in the available regis
ters are treated. 

The next macro-instructions are conveniently introduced by noticing that the above table 
is suitable for subtraction as well as addition, since no use is made of the commutativity of 
addition. All that is needed is substitution of 'sub' for 'add' and 'dee' for 'inc.' Considerable 
saving of space is achieved by factoring out several similar operations. 

is replaced by a string from another table indexed by the operator in the node being 
expanded. This secondary table actually contains two strings per operator. 

I' is replaced by the second string in the side table entry for the current operator. 

Thus, given that the entries for '+' and ' - ' in the side table (which is called instab) are 
'add' and 'inc,' 'sub' and 'dee' respectively, the middle of of the above addition table can be 
written 

%n,1 
F 
I' R 

%n,aw 
F 
I A2,R 

and it will be suitable for subtraction, and several other operators, as well. 

Next, there is the question of character and floating-point operations. 

Bl generates the letter 'b' if the first operand is a character, T if it is float or double, and 
nothing otherwise. It is used in a context like 'movBl' which generates a 'mov', 'movb', 
or 'movr instruction according to the type of the operand. 

( 



33-11 

B2 is just like Bl but applies to the second operand. 

BE generates 'b' if either operand is a character and null otherwise. 

BF generates 'f' if the type of the operator node itself is float or double, otherwise null. 

For example, there is an entry in e.fftab for the '=' operator 

%a,aw 
%ab,a 

IBE A2,Al 

Note first that two key specifications can be applied to the same code string. Next, observe that 
when a word is assigned to a byte or to a word, or a word is assigned to a byte, a single instruc
tion, a mov or movb as appropriate, does the job. However, when a byte is assigned to a word, 
it must pass through a register to implement the sign-extension rules: 

%a,n 
s 
IBl R,Al 

Next, there is the question of handling indirection properly. Consider the expression 'X 
+ "Y', where X and Y are expressions, Assuming that Y is more complicated than just a vari
able, but on the other hand qualifies as 'easy' in the context, the expression would be compiled 
by placing the value of X in a register, that of •y in the next register, and adding the registers. 
It is easy to see that a better job can be done by compiling X, then Y (into the next register), 
and producing the instruction symbolized by 'add (R 1), R '. This scheme avoids generating the 
instruction 'mov (R 1) ,R 1' required actually to place the value of "Y in a register. A related 
situation occurs with the expression 'X + "'(p + 6) ', which exemplifies a construction frequent 
in structure and array references. The addition table shown above would produce 

[put X in register R] 
mov p,Rl 
add $6,Rl 
mov (Rl),Rl 
add Rl,R 

when the best code is 

[put X in R] 
mov p,Rl 
add 6(Rl),R 

As we said above, a key specification for a code table entry may require an operand to have an 
indirection as its highest operator. To make use of the requirement, the following macros are 
provided. 

F"' the first operand must have the form *X. If in particular it has the form * (Y + c), for 
some constant c. then code is produced which places the value of Y in the current regis
ter. Otherwise, code is produced which loads X into the current register. 

Fl* resembles F* except that the next register is loaded. 

S"' resembles F* except that the second operand is loaded. 

S 1"' resembles S* except that the next register is loaded. 

FS* The first operand must have the form "'X'. Push the value of X on the stack. 

SS"' resembles FS" except that it applies to the second operand. 

To capture the constant that may have been skipped over in the above macros, there are 



-12 

#I The first operand must have the form •x; if in particular it has the form • (Y + c) for ca 
cons11m!, !.hen the constant is written out, otherwise a null string. 

is the same as # i except that !he second operand is used. 

Now we can addition above. Just before the '%n,e' entry, put 

F 
s l $ 

add (R 0 

and just '%11 ,n' put 

%n 
SS" 
F 
add +,R 

macros there is no place to use the constant as an index word, so that 
case doesn't occur. 

constan! mentioned above can actually be more general than a number. Any quantity 
acceptable to the assembler as an expression will do, in particular the address of a static cell, 

with a numeric If xis an external character array, the expression 'x(i+5} ... O' 
will generate the code 

mov 
drb x+5 

via the table the '=' of ef/iab) 

,z 
F 
I'Bl #1 

Some machine place restrictions on the registers used. The divide instruction, used 
to im the divide and mod operations, requires the dividend to be placed in the odd 
member of an even-odd other peculiarities of multiplication make it simplest to put the 

in an odd--rrnmbered register. There is no theory which optimally accounts for this 
handles it checking for a multiply, divide, or mod operation; in 

these cases, its number is incremented by one or two so that it is odd, and if 
the was divide or mod, so that it is a member of a free even-odd pair. The routine 
which determines the number required estimates, conservatively, that at least two 

a rnu!tipiication and three for the other peculiar operators. After the 
the where the result actually ended up is returned. (Divide and 

except for the iocation of the result). 

are the ones which cause results to end up in unexpected places, and 
The simplest way of handling the problem is 

the where the caller expected it, but this will produce 
unnecessary moves in many simple cases~ 'a == b*c' would generate 

mov 
mul c,rl 
mov rl,rO 
mov 

The next thought is used the passed-back information as to where the result landed to change 
the notion of the current regis!er. While compiling the '==' operation above, which comes 
from a table entry like 



33-13 

O/oa,e 
s 
mov R,Al 

it is sufficient to redefine the meaning of 'R' after processing the 'S' which does the multiply. 
This technique is in fact used; the tables are written in such a way that correct code is pro
duced. The trouble is that the technique cannot be used in general, because it invalidates the 
count of the number of registers required for an expression. Consider just 'a*b + X' where X 
is some expression. The algorithm assumes that the value of a*b, once computed, requires just 
one register. If there are three registers available, and X requires two registers to compute, 
then this expression will match a key specifying 'O/on,e'. If a*b is computed and left in register 
1, then there are, contrary to expectations, no longer two registers available to compute X, but 
only one, and bad code will be produced. To guard against this possibility, cexpr checks the 
result returned by recursive calls which implement F, S and their relatives. If the result is not 
in the expected register, then the number of registers required by the other operand is checked; 
if it can be done using those registers which remain even after making unavailable the 
unexpectedly-occupied register, then the notions of the 'next register' and possibly the 'current 
register' are redefined. Otherwise a register-copy instruction is produced. A register-copy is 
also always produced when the current operator is one of those which have odd-even require
ments. 

Finally, there are a few loose-end macro operations and facts about the tables. The opera-
tors: 

V is used for long operations. It is written with an address like a machine instruction; it 
expands into 'adc' (add carry) if the operation is an additive operator, 'sbc' (subtract 
carry) if the operation is a subtractive operator, and disappears, along with the rest of the 
line, otherwise. Its purpose is to allow common treatment of logical operations, which 
have no carries, and additive and subtractive operations, which generate carries. 

T generates a 'tst' instruction if the first operand of the tree does not set the condition codes 
correctly. It is used with divide and mod operations, which require a sign-extended 32-bit 
operand. The code table for the operations contains an 'sxt' (sign-extend) instruction to 
generate the high-order part of the dividend. 

H is analogous to the 'F' and 'S' macros, except that it calls for the generation of code for 
the current tree (not one of its operands) using regtab. It is used in cctab for all the 
operators which. when executed normally, set the condition codes properly according to 
the result. It prevents a 'tst' instruction from being generated for constructions like 'if 
(a+b) .. .'since after calculation of the value of 'a+b' a conditional branch can be written 
immediately. 

All of the discussion above is in terms of operators with operands. Leaves of the expres
sion tree (variables and constants), however, are peculiar in that they have no operands. In 
order to regularize the matching process, cexpr examines its operand to determine if it is a leaf; 
if so, it creates a special 'load' operator whose operand is the leaf, and substitutes it for the 
argument tree; this allows the table entry for the created operator to use the 'Al' notation to 
load the leaf into a register. 

Purely to save space in the tables, pieces of subtables can be labelled and referred to later. 
It turns out, for example, that rather large portions of the the e/Jtab table for the '==' and '== +' 
operators are identical. Thus '==' has an entry 

%[move3:] 
%a.aw 
O/oab,a 

IBE A2,Al 

while part of the ' .... +' table is 



33-14 

O/oaw,aw 
% rmoveJ) 

Labels are written as '% ( ... : )'. before the key specifications: references are written with '% [ 
... l' after the key. Peculiarities in the implementation make it necessary that labels appear 
before references to them. 

The example illustrates the utility of allowing separate keys to point to the same code 
string. The assignment code works properly if either the right .operand is a word, or the left 
operand is a byte; but since there is no 'add byte' instruction the addition code has to be res· 
tricted to word operands. 

Dela)'ing and reordering 

Intertwined with the code generation routines are two other, interrelated processes. The 
first, implemented by a routine called delay. is based on the observation that naive code genera
tion for the expression 'a - b + +' would produce 

mov b,rO 
inc b 
mov rO,a 

The point is that the table for postfix + + has to preserve the value of b before incrementing 
it; the general way to do this is to preserve its value in a register. A cleverer scheme would 
generate 

mov b,a 
inc b 

Delay is called for each expression input to rcexpr, and it searches for postfix + + and - -
operators. If one is found applied to a variable, the tree is patched to bypass the operator and 
compiled as it stands; then the increment or decrement itself is done. The effect is as if 'a -
b; b+ +' had been written. In this example, of course, the user himself could have done the 
same job, but more complicated examples are easily constructed, for example 'switch (x + +) '. 
An essential restriction is that the condition codes not be required. It would be incorrect to 
compile 'if (a++) .. .' as 

tst a 
inc a 
beq 

because the 'inc' destroys the required setting of the condition codes. 

Reordering is a similar sort of optimization. Many cases which it detects are useful 
mainly with register variables. If r is a register variable, the expression 'r "'" x + y' is best com
piled as 

mov x,r 
add y,r 

but the codes tables would produce 

mov x.rO 
add y,rO 
mov rO,r 

which is in fact preferred if r is not a register. (If r is not a register, the two sequences are the 
same size, but the second is slightly faster.) The scheme is to compile the expression as if it 
had been written 'r == x~ r == + y'. The reorder routine is called with a pointer to each tree that 
rcexpr is about to compile; if it has the right characteristics, the 'r = x' tree is constructed and 
passed recursively to rcexpr: then the original tree is modifi.ed to read 'r == + y' and the calling 
instance of rcexpr compiles that instead. Of course the whole business is itself recursive so that 



33-15 

more extended forms of the same phenomenon are handled, like 'r = x + y I z'. 

Care does have to be taken to avoid 'optimizing' an expression like 'r = x + r' into 'r -
x; r = + r'. It is required that the right operand of the expression on the right of the '==' be a 
', distinct from the register variable. 

The second case that reorder handles is expressions of the form 'r == X' used as a subex-
pression. Again, the code out of the tables for 'x = r == y' would be 

mov y,rO 
mov rO,r 
mov rO,x 

whereas if r were a register it would be better to produce 

mov y,r 
mov r,x 

When reorder discovers that a register variable is being assigned to in a subexpression, it calls 
rcexpr recursively to compile the subexpression, then fiddles the tree passed to it so that the 
register variable itself appears as the operand instead of the whole subexpression. Here care 
has to be taken to avoid an infinite regress, with rcexpr and reorder calling each other forever to 
handle assignments to registers. 

A third set of cases treated by reorder comes up when any name, not necessarily a regis
ter, occurs as a left operand of an assignment operator other than '=' or as an operand of 
prefix '+ +' or ' - - '. Unless condition-code tests are involved, when a subexpression like '(a 
= + b)' is seen, the assignment is performed and the argument tree modified so that a is its 
operand; effectively 'x + (y = + z)' is compiled as 'y === + z; x + y'. Similarly, prefix incre
ment and decrement are pulled out and performed first, then the remainder of the expression. 

Throughout code generation, the expression optimizer is called whenever delay or reorder 
change the expression tree. This allows some special cases to be found that otherwise would 
not be seen. 





introduction 

A Tour Through the Portable C Compiler 

S. C. Johnson 

Bell Laboratories 
Murray Hill, New Jersey 07974 

A C compiler has been implemented that has proved to be quite portable, serving as the 
basis for C compilers on roughly a dozen machines, including the Honeywell 6000, IBM 370, 
and Interdata 8/32. The compiler is highly compatible with the C language standard. I 

Among the goals of this compiler are portability, high reliability, and the use of state-of
the-art techniques and tools wherever practical. Although the efficiency of the compiling pro
cess is not a primary goal, the compiler is efficient enough, and produces good enough code, to 
serve as a production compiler. 

The language implemented is highly compatible with the current PDP-11 version of C. 
Moreover, roughly 75% of the compiler, including nearly all the syntactic and semantic rou
tines, is machine independent. The compiler also serves as the major portion of the program 
lint, described elsewhere. 2 

A number of earlier attempts to make portable compilers are worth noting. While on 
CO-OP assignment to Bell Labs in 1973, Alan Snyder wrote a portable C compiler which was 
the basis of his Master's Thesis at M.I.T.3 This compiler was very slow and complicated, and 
contained a number of rather serious implementation difficulties; nevertheless, a number of 
Snyder's ideas appear in this work. 

Most earlier portable compilers, including Snyder's, have proceeded by defining an inter
mediate language, perhaps based on three-address code or code for a stack machine, and writing 
a machine independent program to translate from the source code to this intermediate code. 
The intermediate code is then read by a second pass, and interpreted or compiled. This 
approach is elegant, and has a number of advantages, especially if the target machine is far 
removed from the host. It suffers from some disadvantages as well. Some constructions, like 
initialization and subroutine prologs, are difficult or expensive to express in a machine indepen
dent way that still allows them to be easily adapted to the target assemblers. Most of these 
approaches require a symbol table to be constructed in the second (machine dependent) pass, 
and/or require powerful target assemblers. Also, many conversion operators may be generated 
that have no effect on a given machine, but may be needed on others (for example, pointer to 
pointer conversions usually do nothing in C, but must be generated because there are some 
machines where they are significant). 

For these reasons, the first pass of the portable compiler is not entirely machine indepen
dent. It contains some machine dependent features, such as initialization, subroutine prolog 
and epilog, certain storage allocation functions, code for the switch statement, and code to 
throw out unneeded conversion operators. 

As a crude measure of the degree of portability actually achieved, the Interdata 8/32 C 
compiler has roughly 600 machine dependent lines of source out of 4600 in Pass 1, and 1000 
out of 3400 in Pass 2. In total, 1600 out of 8000, or 20%, of the total source is machine depen
dent (12% in Pass 1, 30% in Pass 2). These percentages can be expected to rise slightly as the 
compiler is tuned. The percentage of machine-dependent code for the IBM is 22%, for the 
Honeywell 25%. If the assembler format and structure were the same for all these machines, 

34-1 



-2 

for a machine with a reason-

The intent is 

structure, the paper describes 
the two passes. Some the· 

dist;ussed here. 

that is read as the standard 

is discussed 
the 

C source code 

text 
standard output, the desired assembler 

write error messages on the standard 
demands on the I/O support, in the 

accident rnore 
so that both passes operate 

the overhead and writ-
in this mode. It also occu· 

structured as two passes, even when loaded as one, 

the second pass passes these lines to through 

successive lines 
line contains the node 

( 

( 



; 
.. / 

34-3 

number, there is no need to mark the end of the tree. 

There are only two other line types in the intermediate file. Lines beginning with a left 
square bracket (' [') represent the beginning of blocks (delimited by { ... } in the C source); 
lines beginning with right square brackets (']') represent the end of blocks. The remainder of 
these lines tell how much stack space, and how many register variables, are currently in use. 

Thus, the second pass reads the intermediate files, copies the ')' lines, makes note of the 
information in the '[' and ']' lines, and devotes most of its effort to the '.' lines and their asso
ciated expression trees, turning them turns into assembly code to evaluate the expressions. 

In the one pass version of the compiler, the expression trees that are built by the first pass 
have been declared to have room for the second pass information as well. Instead of writing 
the trees onto an intermediate file, each tree is transformed in place into an acceptable form for 
the code generator. The code generator then writes the result of compiling this tree onto the 
standard output. Instead of'[' and ']' lines in the intermediate file, the information is passed 
directly to the second pass routines. Assembly code produced by the first pass is simply written 
out, without the need for ')' at the head of each line. 

The Source Files 

The compiler source consists of 22 source files. Two files, manifest and macdefs, are 
header files included with all other files. Manifest has declarations for the node numbers, types, 
storage classes, and other global data definitions. Macdefs has machine-dependent definitions, 
such as the size and alignment of the various data representations. Two machine independent 
header files, m/ilel and m/ilel, contain the data structure and manifest definitions for the first 
and second passes, respectively. In the second pass, a machine dependent header file, 
mac2defs, contains declarations of register names, etc. 

There is a file, common, containing (machine independent) routines used in both passes. 
These include routines for allocating and freeing trees, walking over trees, printing debugging 
information, and printing error messages. There are two dummy files, comml.c and comm2.c, 
that simply include common within the scope of the appropriate passl or pass2 header files. 
When the compiler is loaded as a single pass, common only needs to be included once: comm2.c 
is not needed. 

Entire sections of this document are devoted to the detailed structure of the passes. For 
the moment, we just give a brief description of the files. The first pass is obtained by compiling 
and loading scan.c, cgram.c, xdefs.c, pftn.c, trees.c, optim.c, loca/.c, code.(", and comml.c. Scan.c is 
the lexical analyzer, which is used by cgram.c, the result of applying Yoe~ to the input grammar 
cgram.y. Xdefs.c is a short file of external definitions. Pftn.c maintains the symbol table, and 
does initialization. Trees.c builds the expression trees, and computes the node types. Optim.c 
does some machine independent optimizations on the expression trees. Comml.c includes com
mon, that contains service routines common to the two passes of the compiler. All the above 
files are machine independent. The files /ocal.c and code.c contain machine dependent code for 
generating subroutine prologs, switch code, and the like. 

The second pass is produced by compiling and loading reader.c, a/lo.c, march.c, comml.c, 
order.c, /ocal.c, and table.c. Reader.c reads the intermediate file, and controls the major logic of 
the code generation. Allo.c keeps track of busy and free registers. Match.c controls the match
ing of code templates to subtrees of the expression tree to be compiled. Comm2.c includes the 
file common, as in the first pass. The above files are machine independent. Order.c controls the 
machine dependent details of the code generation strategy. Loca/2.c has many small machine 
dependent routines, and tables of opcodes, register types, etc. Table.c has the code template 
tables, which are also clearly machine dependent. 



and 

it is known whether it is a 
the time the parse tree is cori

so that MINUS and 

ro 

an 
node 

as 

in C consists of a basic 

called 

it is 
returning, and CJrray 
two-bit thus 

in case, 
returns true if / is 

ENUNSIGN(t) returns 

r.e set w 
the next allocation. 

/ 

l 
' 

( 
\, 

{ 

\ 



.,: 

_,,/ 

34-5 

Nodes representing binary operators contain fields, left and right, that contain pointers to 
the left and right descendants. Unary operator nodes have the left field, and a value field called 
rva!. Leaf nodes, with no descendants, have two value fields: /val and rval 

At appropriate times, the function tcheckO can be called, to check that there are no busy 
nodes remaining. This is used as a compiler consistency check. The function tcopy(p) takes a 
pointer p that points to an expression tree, and returns a pointer to a disjoint copy of the tree. 
The function walkf(p,f) performs a postorder walk of the tree pointed to by p, and applies the 
function f to each node. The function fwalk<p,f,d) does a preorder walk of the tree pointed to 
by p. At each node, it calls a function J; passing to it the node pointer, a value passed down 
from its ancestor, and two pointers to values to be passed down to the left and right descen
dants (if any). The value dis the value passed down to the root. Fwa/k is used for a number 
of tree labeling and debugging activities. 

The other major data structure, the symbol table, exists only in pass one, and will be dis
cussed later. 

Pass One 

first pass does lexical analysis, parsing, symbol table maintenance, tree building, 
optimization, and a number of machine dependent things. This pass is largely machine 
independent, and the machine independent sections can be pretty successfully ignored. Thus, 
they will be only sketched here. 

Lexical Analysis 

The lexical analyzer is a conceptually simple routine that reads the input and returns the 
tokens of the C language as it encounters them: names, constants, operators, and keywords. 
The conceptual simplicity of this job is confounded a bit by several other simple jobs that 
unfortunately must go on simultaneously. These include 

• Keeping track of the current filename and line number, and occasionally setting this infor
mation as the result of preprocessor control lines. 

e Skipping comments. 

• Properly dealing with octal, decimal, hex, floating point, and character constants, as well 
as character strings. 

To achieve speed, the program maintains several tables that are indexed into by character 
value, to tell the lexical analyzer what to do next. To achieve portability, these tables must be 
initialized each time the compiler is run, in order that the table entries reflect the local charac
ter set values. 

Parsing 

As mentioned above, the parser is generated by Yacc from the grammar on file cgram.y. 
The grammar is relatively readable, but contains some unusual f ea tu res that are worth com
ment. 

Perhaps the strangest feature of the grammar is the treatment of declarations. The prob
lem is to keep track of the basic type and the storage class while interpreting the various stars, 
brackets, and parentheses that may surround a given name. The entire declaration mechanism 
must be recursive, since declarations may appear within declarations of structures and unions, 
or even within a sizeof construction inside a dimension in another declaration! 

There are some difficulties in using a bottom-up parser, such as produced by Yacc, to han
dle constructions where a lot of left context information must be kept around. The problem is 
that the original PDP-11 compiler is top-down in implementation, and some of the semantics of 
C reflect this. In a top-down parser, the input rules are restricted somewhat, but one can natur
ally associate temporary storage with a rule at a very early stage in the recognition of that rule. 
In a bottom-up parser, there is more freedom in the specification of rules, but it is more 



difficult to know what rule is 
by cgra m. c makes 
the treatment 
is that it is necessary to 
stack, in order to be able to store and 
where the 

6 

In the case a declaration is care· 
fully kept immediately declaration the 

. In this way, when it is time name, the name and the 
can be quickly mechanism of Yacc 
The result is not pretty, but it works. storage class information 
is kept in an external variable, and stacked if necessary. the gr:immar could be consid-

cleaned up actions within rules and 
to return actions. 

track the current location to be branched to when a break 
or continue statement is 

This use of external stacks dates 
structures. Some, or most, of this use 
grammar to use the mechanisms now 

the time when Yacc did not 

the processing of structure, and enum 
ment processing, when 
in this case, use external swrage seems essential. 

case values and labels 
and popping values on the external stack described above. 

Storage Classes 

in the parser. 
and 

C has a finite, but number of classes available. the com-
piler decisions was to process the storage dass information in the pass; by the 
second pass, this must have been dealt with. This means that all the 
storage allocation must take pass, so that to automatics and parame-
ters can be turned into references from certain 
machine Much of this on 
the storage class. 

The classes include EXTERN 
(for external for 

UFORTRAN and The storage 
classes REG I STER 
structure, union, and enumeration 

is 

and 
and 

are rwo special storage 
the case where no 

class has been an entry is made in table the true storage class is 
in the symbol table made discovered. Similarly, PARAM is used for the 

before the declaration of is 

The most in the process comes 
stor:.ige class is kept for each width bit bit bit has 
This enables the size to be recovered the storage class, 

( 
' 



.-.. 

... ~ 

./ 

34-7 

Symbol Table Maintenance. 

The symbol table routines do far more than simply ehter names into the symbol table; 
considerable semantic processing and checking is done as well. For example, if a new declara
tion comes in, it must be checked lo see if there is a previous declaration of the same symbol. 
If there is. there are many cases. The declarations may agree and be compatible (for example, 
an extern declaration can appear twice) in which case the new declaration is ignored. The new 
declaration may add information (such as an explicit array dimension) to an already present 
declaration. The new declaration may be different, but still correct (for example, an extern 
declaration of something may be entered. and then later the definition may be seen). The new 
declaration may be incompatible, but appear in an inner block; in this case, the old declaration 
is carefully hidden away, and the new one comes into force until the block is left. Finally, the 
declarations may be incompatible, and an error message must be produced. 

A number of other factorli make for additional complexity. The type declared by the user 
is not always the type entered into the symbol table (for example, if an formal parameter to a 
function is declared to be an array. C requires that this be changed into a pointer before entry 
in the symbol table). Moreover, there are various kinds of illegal types that may be declared 
which are difficult to check for syntactically (for example, a function returning an array). 
Finally, there is a strange feature in C that requires structure tag names and member names for 
structures and unions to be taken from a different logical symbol table than ordinary identifiers. 
Keeping track of which kind of name is involved is a bit of struggle (consider typedef names 
used within structure declarations, for example). 

The symbol table handling routines have been rewritten a number of times to extend 
features, im('rove performance, and fix bugs. They address the above problems with reasonable 
effectiveness but a singular lack of grace. 

When a name is read in the input, it is hashed, and the routine lookup is called, together 
with a flag which tells which symbol table should be searched (actually, both symbol tables are 
stored in one, and a flag is used to distinguish individual entries). If the name is found, lookup 
returns the index to the entry found; otherwise, it makes a new entry, marks it UNDEF 
(undefined), and returns the index of the new entry. This index is stored in the rva/ field of a 
NAME node. 

When a declaration is being parsed, this NAME node is made part of a tree with UNARY 
MUL nodes for each*, LB nodes for each array descriptor (the right descendant has the dimen
sion), and UNARY CALL nodes for each function descriptor. This tree is passed to the rou
tine tymerge, along with the attribute type of the whole declaration; this routine collapses the 
tree to a single node, by calling tyreduce, and then modifies the type to ret1ect the overall type 
of the declaration. 

Dimension and size information is stored in a table called dimtab. To properly describe a 
type in C, one needs not just the type information but also size information (for structures and 
enums) and dimension information (for arrays). Sizes and off sets are dealt with in the com
piler by giving the associated indices into dimtab. Tymerge and tyreduce call dstash to put the 
discovered dimensions away into the dimtab array. Tymerge returns a pointer to a single node 
that contains the symbol table index in its rval field, and the size and dimension indices in fields 
csiz and cdim, respectively. This information is properly considered part of the type in the first 
pass, and is carried around at all times. 

To enter an element into the symbol table, the routine de.lid is called; it is handed a 
storage class, and a pointer to the node produced by tymerge. De.lid calls ./ixrype, which adjusts 
and checks the given type depending on the storage class. and converts null types appropriately. 
It then calls fixc/ass. which does a similar job for the storage class; it is here, for example, that 
register declarations are either allowed or changed to auto. 

The new declaration is now compared against an older one. if present, and several pages 
of validity checks performed. If the definitions are compatible, with possibly some added infor
mation, the processing is straightforward. If the definitions differ, the block levels of the 



current and the old declaration are 
external variable; the oid declaration 
external declarations, l is arguments to 
tion. If the current block 
current block level is 
the old symbol table entry 
skip over hidden entries. 
defined in that block are 

The current block level 
table. 

and 2 and above are 
an error 

table is 
the old entries are 

an 
0 is for 
a func
If the 

This nice structure is not fol!ow the block structure 
rules fone can do a into a 
blocks also clear out to the outermost scope. 
table after block exit is more subtle than 

For new· 
symbol table. it contains the stack 
for register the bit into the 
label number for static variables and labels. 
dclstruct for structures and unions. 

in inner 

in the 

is set 

The symbol table entry itself thus contains the name~ type word~ size and dimension 
off set and declaration block level. It also has a of what 

symbol table the name is and whether the entry is or hides anot.her. a field 
the line number of the last use, or the of the name. is used mainly for 

diagnostics, but is to lint as well. 

cases, there is more than the above amount of 
use is true with structures; 
declarations must have access to a the members 
dimtab. Because a structure can be mentioned 
sary to have another level 
dimtab are used to hold the 
members. contains the 
a -1. 

two words 
the structure, and the index 

table indices the structure 

into trees. As the parser recog-
bui!dtree which is an 

descendants. Buifdtree examines the left and 

the new node is consistent 
semantic complexity 

makes a strong to 
is done both for lint purposes, and to 

prevent such to the code 

The heart accessed 
the types of the .!eft and rather smaller set 
accesses a table encoded in a 
types causes an action w be returned. The 
actions, which may be carried out buildrree. component actions may include checking 
the left side to ensure that it is an ivalue be stored a type conversion to the 
left or right operand, setting the the left or right 
calling various routines to balance the and 
ordinary conversion arrays and 
OTHER, which causes some 

( 

( 

( 



/ 

-- ~ 

34-9 

unique to a particular operator. Examples of this are structure and union reference (actually 
handled by the routine stre./J, the building of NAME, ICON, STRING and FCON (floating 
point constant) nodes, unary • and &, structure assignment, and calls. In the case of unary • 
and &, buildtree will cancel a • applied to a tree, the top node of which is &, and conversely. 

Another special operation is PUN: this causes the compiler to check for type mismatches, 
such as intermixing pointers and integers. 

The treatment of conversion operators is still a rather strange area of the compiler (and of 
C!). The recent introduction of type casts has only confounded this situation. Most of the 
conversion operators are generated by calls to rymatch and ptmatch, both of which are given a 
tree, and asked to make the operands agree in type. Ptmatch treats the case where one of the 
operands is a pointer: t:i'match treats all other cases. Where .these routines have decided on the 
proper type for an operand, they call mak.ery, which is handed a tree, and a type word, dimen
sion offset, and size offset. If necessary, it inserts a conversion operation to make the types 
correct. Conversion operations are never inserted on the left side of assignment operators, 
however. There are two conversion operators used: PCONV, if the conversion is to a non-basic 
type (usually a pointed, and SCONV, if the conversion is to a basic type (scalar). 

To allow for maximum flexibility, every node produced by buildtree is given to a machine 
dependent routine, clocal, immediately after it is produced. This is to allow more or less 
immediate rewriting of those nodes which must be adapted for the local machine. The conver
sion operations are given to clocal as well: on most machines, many of these conversions do 
nothing, and should be thrown away (being careful to retain the type). If this operation is done 
too early, however, later calls to bui/dtree may get confused about correct type of the subtrees: 
thus clocal is given the conversion ops only after the entire tree is built. This topic will be dealt 
with in more detail later. 

Initialization 

Initialization is one of the messier areas in the portable compiler. The only consolation is 
that most of the mess takes place in the machine independent part, where it is may be safely 
ignored by the implementor of the compiler for a particular machine. · 

The basic problem is that the semantics of initialization really calls for a co-routine struc
ture; one collection of programs reading constants from the input stream, while another, 
independent set of programs places these constants into the appropriate spots in memory. The 
dramatic differences in the local assemblers also come to the fore here. The parsing problems 
are dealt with by keeping a rather extensive stack containing the current state of the initializa
tion; the assembler problems are dealt with by having a fair number of machine dependent rou
tines. 

The stack contains the symbol table number, type, dimension index, and size index for 
the current identifier being initialized. Another entry has the offset, in bits, of the beginning of 
the current identifier. Another entry keeps track of how many elements have been seen, if the 
current identifier is an array. Still another entry keeps track of the current member of a struc
ture being initialized. Finally, there is an entry containing flags which keep track of the current 
state of the initialization process (e.g., tell if a ) has been seen for the current identifier.) 

When an initialization begins, the routine beginit is called; it handles the alignment restric
tions, if any, and calls instk to create the stack entry. This is done by first making an entry on 
the top of the stack for the item being initialized. If the top entry is an array, another entry is 
made on the stack for the first element. If the top entry is a structure, another entry is made 
on the stack for the first member of the structure. This continues until the top element of the 
stack is a scalar. lnstk then returns, and the parser begins collecting initializers. 

When a constant is obtained, the routine doinit is called; it examines the stack, and does 
whatever is necessary to assign the current constant to the scalar on the top of the stack. gots
cal is then called, which rearranges the stack so that the next scalar to be initialized gets placed 
on top of the stack. This process continues until the end of the initializers; endinit cleans up. If 



a ( or l is 
respectively. 

in the 

calls the machine routine 
assembler to set aside space if need be so 
bit offset 

returns thi~ token 
which sets up the 
contents of the 

-10 

it is or irbrace, 

int in 
and it is up 

size. 

at the head a character 
with the con.tents. The parser calls getstr, 

and ca!!s LY:str to read and process 

If the initialize a character array, lxstr 
character rea(L ff the is used to initialize a character 

lxstr calls a machine 
to this is then 

away each character. 

end of the is treated as if it were read 

also to avoid the subroutine return sequence if the subroutine cannot 
the last statem.enL 

left descendant is the and the 
the internal label number to be branched to, For 

is gone to if the is 

statement is 
whether there is a 

duplicate entries 
with this array labels and values in 
be tested is already in the 

ti on 
not 

whose 

label 

(-
..... 

( 

( 

( 



.. --......... 
' ..... 

;-J 

,, 
' j ._ ..... 

34-11 

Optim is called after an expression tree is built, but before the code generator is called. 
The essential part of its job is to call clocal on the conversion operators. On most machines, 
the treatment of & is also essential: by this time in the processing, the only node which is a 
legal descendant of & is NAME. (Possible descendants of• have been eliminated by buildtree.J 
The address of a static name is, almost by definition, a constant, and can be represented by an 
ICON node on most machines (provided that the loader has enough power). Unfortunately, 
this is not universally true: on some machine, such as the IBM 370. the issue of addressability 
rears its ugly head; thus, before turning a NAME node into an ICON node, the machine depen
dent function andable is called. 

The optimization attempts of optim are currently quite limited. It is primarily concerned 
with improving the behavior of the compiler with operations one of whose arguments is a con
stant. In the simplest case, the constant is placed on the right if the operation is commutative . 
The compiler also makes a limited search for expressions such as 

fx+aJ+b 

where a and bare constants, and attempts to combine a and bat compile time. A number of 
special cases are also examined: additions of 0 and multiplications by I are removed. although 
the correct processing of these cases to get the type of the resulting tree correct is decidedly 
nontrivial. In some cases, the addition or multiplication must be replaced by a conversion op to 
keep the typesfrom becoming fouled up. Finally, in cases where a relational operation is being 
done, and one operand is a constant, the operands are permuted, and the operator altered, if 
necessary, to put the constant on the right. Finally, multiplications by a power of 2 are changed 
to shifts. 

There are dozens of similar optimizations that can be, and should be, done. It seems 
likely that this routine will be expanded in the relatively near future. 

Machine Dependent Stuff 

A number of the first pass machine dependent routines have been discussed above. In 
general, the routines are short, and easy to adapt from machine to machine. The two excep
tions to this general rule are clocal and the function prolog and epilog generation routines, 
q/Code and e.fcode. 

C!ocal has the job of rewriting, if appropriate and desirable, the nodes constructed by 
bui/dtree. There are two major areas where this is important: NAME nodes and conversion 
operations. In the case of NAME nodes, clocal must rewrite the NAME node to reflect the 
actual physical location of the name in the machine. In effect, the NAME node must be exam
ined, the symbol table entry found (through the rva/ field of the node), and, based on the 
storage class of the node, the tree must be rewritten. Automatic variables and parameters are 
typically rewritten by treating the reference to the variable as a structure reference, off the 
register which holds the stack or argument pointer; the strefroutine is set up to be called in this 
way, and to build the appropriate tree. In the most general case, the tree consists of a unary • 
node, whose descendant is a + node, with the stack or argument register as left operand, and a 
constant offset as right operand. ·Jn the case of LABEL and internal static nodes, the rval field 
is rewritten to be the negative of the internal label number: a negative rva/ field is taken to be 
an internal label number. Finally, a name of class REGISTER must be converted into a REG 
node, and the rva/ field replaced by the register number. In fact, this part of the clocal routine 
is nearly machine independent; only for machines with addressability problems (IBM 370 
again!) does it have to be noticeably different, 

The conversion operator treatment is rather tricky. It is necessary to handle the applica
tion of conversion operators to constants in cloca/, in order that all constant expressions can 
have their values known at compile time. In extreme cases, this may mean that some simula
tion of the arithmetic of the target machine might have to be done in a cross-compiler. In the 
most common case, conversions from pointer to pointer do nothing. For some machines, how
ever, conversion from byte pointer to short or long pointer might require a shift or rotate 



-12 

operation, which would have to 

The extension of the portable 
on its type wouid be 

to machines where the size of a 
but has not yet been done. 

depends 

other machine issue involves the subroutine prolog and epilog gen· 
era:ion. The hard pan here is the stack and sequence; this design 
issue is discussed elsewhere.5 routine b/i:ode is called with the number arguments the 
function is ned and array the table indices of the declared 
parameters. Bfcodc must generate the code establish the new stack 
address and previous stack value on the and save whatever 
used for varmbles. The stack size and the number of variables is not known 
when bkode is calied, so these numbers must be to by assembler constants, which are 

ned when they are known ( in the second pass, after all variables, automat-
ics, and temporaries have been . The final job is to those parameters which may have 
been declared the with the value passed on 
the stack. of remains the same, but the 
contems of the in it will from machine to machine. is rather simpler, 
having just to generate the default return at the end a may be nontrivial 
the case of a function a structure or however. 

to discuss structures and 
good a place as any, now supports structure 
structures as argurnents to and the receiving of structures back 
was added rather late to C, and thus to compiier. 
than the older , most of the burden of 
on the machine 

There are both and 
lured around the idea t it 

unions, but this is as 
and the passing 

functions, This 
it fits in less well 

work is placed 

This notion causes a bit of trouble on some , m.achines with 3-address opcodes), 
but matches many machines quite well. Unfortu , this notion breaks down with struc-
tures. The closest that one can come w the addresses of the structures in 
The actual code sequences used w move struc!Ures vary frnrn the trivial te move) 
to the horrible (a function call), and ;;re very machine nL 

The practical m is more 
this function has to have some 
has difficulty popping its stack 
fails to be reentrant. 

nful. When a function re ng ~! 

to pur. the structure vulue. If it 
the value in a static temporary, the romine 

this is for the caller to 

but means thal the 
declared the function type, even if the v2iue is never used. On some 

machines, such as the Interdata. 8/32, the return value the argument 
(which on the is p;.lfl stack caller takes care of 
room if the returned value is tha·n the arguments. This also assumes that the c:Jiler know 
and declares the function 

The PDP· l l and the VAX have stack hardware which is used in function calls ;md 
returns; this rnakes it very inconvenient to use either the above mechanisms. In these 
machines, a static area ·within the cailed al!oca and return value is 
copied into it on return; the function returns the address of that This is si to 
implement. but is non-reentr0nt. the function can now be called as a subroutine 
without being properly without the disaster which would otherwise ensue. No matter 
what choice is the convention is that the function actually returns !he address of the 
return structure value. 

In expression. trees, he compiier takes a bit for granted 2bout structures. 
It assumes that functions returning structures :ictually return a nter to the sirucwre, und it 



. ~ 

34-13 

assumes that a reference to a structure is actually a reference to its address. The structure 
assignment operator is rebuilt so that the left operand is the structure being assigned to, but the 
right operand is the address of the structure being assigned; this makes it easier to deal with 

and similar constructions. 

There are four special tree nodes associated with these operations: ST ASG (structure 
assignment), ST ARG (structure argument to a function call), and STCALL and UNARY 
STCALL (calls of a function with nonzero and zero arguments, respectively). These four 
nodes are unique in that the size and alignment information, which can be determined by the 
type for all other objects in C, must be known to carry out these operations; special fields are 
set aside in these nodes to contain this information, and special intermediate code is used to 
transmit this information . 

First Pass Summary 

There are may other is~ues which have been ignored here, partly to justify the title 
"tour", and partially because they have seemed to cause little trouble. There are some debug
ging flags which may be turned on, by giving the compiler's first pass the argument 

-X [flags] 

Some of the more interesting flags are -Xd for the defining and freeing of symbols, -Xi for 
initialization comments, and -Xb for various comments about the building of trees. In many 
cases, repeating the flag more than once gives more information; thus, - Xddd gives more 
information than -Xd. In the two pass version of the compiler, the flags should not be set 
when the output is sent to the second pass, since the debugging output and the intermediate 
code both go onto the standard output. 

We turn now to consideration of the second pass. 

Pass Two 

Code generation is far less well understood than parsing or lexical analysis, and for this 
reason the second pass is far harder to discuss in a file by file manner. A great deal of the 
difficulty is in understanding the issues and the strategies employed to meet them. Any particu
lar function is likely to be reasonably straightforward. 

Thus, this part of the paper will concentrate a good deal on the broader aspects of strategy 
in the code generator, and will not get too intimate with the details. 

Overview. 

It is difficult to organize a code generator to be flexible enough to generate code for a 
large number of machines, and still be efficient for any one of them. Flexibility is also impor
tant when it comes time to tune the code generator to improve the output code quality. On the 
other hand, too much flexibility Gan lead to semantically incorrect code, and potentially a com
binatorial explosion in the number of cases to be considered in the compiler. 

One goal of the code generator is to have a high degree of correctness. It is very desirable 
to have the compiler detect its own inability to generate correct code, rather than to produce 
incorrect code. This goal is achieved by having a simple model of the job to be done (e.g., an 
expression tree) and a simple model of the machine state (e.g., which registers are free). The 
act of generating an instruction performs a transformation on the tree and the machine state; 
hopefully, the tree eventually· gets reduced to a single node. If each of these 
instruction/transformation pairs is correct, and if the machine state model really represents the 
actual machine, and if the transformations reduce the input tree to the desired single node, 
then the output code will be correct. 



34-14 

For most real machines. there is no definitive theory of code generation that encompasses 
all the C operators. Thus the selection of which instruction/transformations to generate, and in 
what order, will have a heuristic tlavor. If, for some expression tree, no transformation applies, 
or, more seriously, if the heuristics select a sequence of instruction/transformations that do not 
in fact reduce the tree. the compiler will report its inability to generate code, and abort. 

A major pan of the code generator is concerned with the model and the transformations, 
- most of this is machine independent, or depends only on simple tables. The flexibility 
comes from the heuristics that guide the transformations of the trees, the selection of subgoals, 
and the ordering of the computation. 

The Machine Model 

The machine is assumed to have a number of registers, of at most two different types: A 
and B. Within each register class, there may be scratch (temporary) registers and dedicated 
registers (e.g., register variables, the stack pointer, etc.). Requests to allocate and free registers 
involve only the temporary registers. 

Each of the registers in the machine is given a name and a number in the macldefs file; 
the numbers are used as indices into various tables that describe the registers, so they should 
be kept small. One such table is the rsratus table on file loca/J.c. This table is index~d by regis
ter number, and contains expressions made up from manifest constants describing the register 
types: SA REG for dedicated AREG 's, SAREGISTAREG for scratch AREGS's, and SBREG 
and SBREGISTBREG similarly for BREG's. There are macros that access this information: 
isbrc•J.drJ returns true if register number r is a BREG, and istregfr) returns true if register 
number r is a temporary A.REG or BREG. Another table, rnames, contains the register names~ 
this is used when putting out assembler code and diagnostics. 

The usage of registers is kept track of by an array called busy. Busyfr) is the number of 
uses of register r in the current tree being processed. The allocation and freeing of registers 
will be discussed later as part of the code generation algorithm. 

General Organization 

As mentioned above, the second pass reads lines from the intermediate file, copying 
through to the output unchanged any lines that begin with a')', and making note of the infor· 
mation about stack usage and register allocation contained on lines beginning with ')' and '['. 
The expression trees, whose beginning is indicated by a line beginning with '. ', are read and 
rebuilt into trees. If the compiler is loaded as one pass, the expression trees are immediately 
available to the code generator. 

The actual code generation is done by a hierarchy of routines. The routine delay is first 
given the tree; it attempts to delay some postfix + + and - - computations that might reason
ably be done after the smoke clears. It also attempts to handle comma (,) operators by com
puting the left side expression first, and then rewriting the tree to eliminate the operator. Delay 
calls codgen to control the actual code generation process. Codgen takes as arguments a pointer 
to the expression tree, and a second argument that, for socio-historical reasons, is called a 
cookie. The cookie describes a set of goals that would be acceptable for the code generation: 
these are assigned to individual bits, so they may be logically or'ed together to form a large 
number of possible goals. Among the possible goals are FOREFF (compute for side effects 
only; don't worry about the value), INTEMP (compute and store value into a temporary loca
tion in memory), INAREG (compute into an A register), INTAREG (compute into a scratch 
A register), INBREG and INTBREG similarly, FORCC (compute for condition codes), and 
FORARG (compute it as a function argument; e.g., stack it if appropriate). 

Codgen first canonicalizes the tree by calling canon. This routine looks for certain 
transformations that might now be applicable to the tree. One, which is very common and very 
powerful, is to fold together an indirection operator (UNARY MUL) and a register (REG)~ in 
most machines, this combination is addressable directly, and so is similar to a NAME in its 

··-

( 



34-15 

behavior. The UNARY MUL and REG are folded together to make another node type called 
OREG. In fact, in many machines it is possible to directiy address not just the cell pointed to 
by a register, but also cells differing by a constant offset from the cell pointed to by the register. 
Canon also looks for such cases, calling the machine dependent routine notoff to decide if the 
offset is acceptable (for example, in the IBM 370 the offset must be between 0 and 4095 bytes). 
Another optimization is to replace bit field operations by shifts and masks if the operation 
involves extracting the field. Finally, a machine dependent routine, sucomp, is called that com
putes the Sethi-Ullman numbers for the tree (see below). 

After the tree is canonicalized, codgen calls the routine store whose job is to select a sub
tree of the tree to be computed and (usually) stored before beginning the computation of the 
full tree. Store must return a tree that can be computed without need for any temporary storage 
locations. In effect, the only store operations generated while processing the subtree must be as 
a response to explicit assignment operators in the tree. This division of the job marks one of 
the more significant, and successful, departures from most other compilers. lt means that the 
code generator can operate under the assumption that there are enough registers to do its job, 
without worrying about temporary storage. If a store into a temporary appears in the output, it 
is always as a direct result of logic in the store routine; this makes debugging easier. 

One consequence of this organization is that code is not generated by a treewalk. There 
are theoretical results that support this decision.7 It may be desirable to compute several sub
trees and store them before tackling the whole tree; if a subtree is to be stored, this is known 
before the code generation for the subtree is begun, and the subtree is computed when all 
scratch registers are available. 

The store routine decides what subtrees, if any, should be stored by making use of 
numbers, called Sethi-Ullman numbers, that give, for each subtree of an expression tree, the 
minimum number of scratch registers required to compile the subtree, without any stores into 
temporaries. 8 These numbers are computed by the machine-dependent routine sucomp, called 
by canon. The basic notion is that, knowing the Sethi-Ullman numbers for the descendants of a 
node, and knowing the operator of the node and some information about the machine, the 
Sethi-Ullman number of the node itself can be computed. If the Sethi-Ullman number for a 
tree exceeds the number of scratch registers available, some subtree must be stored. U nfor
tunately, the theory behind the Sethi-Ullman numbers applies only to uselessly simple 
machines and operators. For the rich set of C operators, and for machines with asymmetric 
registers, register pairs, different kinds of registers, and exceptional forms of addressing, the 
theory cannot be applied directly. The basic idea of estimation is a good one, however, and 
well worth applying; the application, especially when the compiler comes to be tuned for high 
code quality, goes beyond the park of theory into the swamp of heuristics. This topic will be 
taken up again later, when more of the compiler structure has been described. 

After examining the Sethi-Ullman numbers, store selects a subtree, if any, to be stored, 
and returns the subtree and the associated cookie in the external variables stotree and stocook. 
If a subtree has been selected, or if the whole tree is ready to be processed, the routine order is 
called, with a tree and cookie. Order generates code for trees that do not require temporary 
locations. Order may make recursive calls on itself, and, in some cases, on codgerr, for exam
ple, when processing the operators &&, II, and comma (' ,'), that have a left to right evaluation, 
it is incorrect for store examine the right operand for subtrees to be stored. In these cases, 
order will call codgen recursively when it is permissible to work on the right operand. A similar 
issue arises with the ? : operator. 

The order routine works by matching the current tree with a set of code templates. If a 
template is discovered that will match the current tree and cookie, the associated assembly 
language statement or statements are generated. The tree is then rewritten, as specified by the 
template, to represent the effect of the output instruction (s). If no template match is found, 
first an attempt is made to find a match with a different cookie; for example, in order to com
pute an expression with cookie INTEMP (store into a temporary storage location), it is usually 
necessary to compute the expression into a scratch register first. If all attempts to match the 



34-16 

tree fail. the heuristic part of the algorithm becomes dominant. Control is typically given to 
one of a number of machine-dependent routines that may in turn recursively call order to 
achieve a subgoal of the computation (for example, one of the arguments may be computed 
into a temporary register). After this subgoal has been achieved, the process begins again with 
the modified tree. If the machine-dependent heuristics are unable to reduce the tree further, a 
number of default rewriting rules may be considered appropriate. For example, if the left 
operand of a + is a scratch register, the + can be replaced by a + = operator; the tree may 
then match a template. 

To close this introduction, we will discuss the steps in compiling code for the expression 

a+- b 

where a and bare static variables. 

To begin with, the whole expression tree is examined with cookie FOREFF, and no match 
is found. Search with other cookies is equally fruitless, so an attempt at rewriting is made. 
Suppose we are dealing with the lnterdata 8/32 for the moment. It is recognized that the left 
hand and right hand sides of the + =- operator are addressable, and in particular the left hand 
side has no side effects, so it is permissible to rewrite this as 

a=a+b 

and this is done. No match is found on this tree either, so a machine dependent rewrite is 
done; it is recognized that the left hand side of the assignment is addressable, but the right 
hand side is not in a register, so order is called recursively, being asked to put the right hand 
side of the assignment into a register. This invocation of order searches the tree for a match, 
and fails. The machine dependent rule for + notices that the right hand operand is address
able; it decides to put the left operand into a scratch register. Another recursive call to order is 
made. with the tree consisting solely of the leaf a, and the cookie asking that the value be 
placed into a scratch register. This now matches a template, and a load instruction is emitted. 
The node consisting of a is rewritten in place to represent the register into which a is loaded, 
and this third call to order returns. The second call to order now finds that it has the tree 

reg+ b 

to consider. Once again, there is no match, but the default rewriting rule rewrites the + as a 
+ - operator, since the left operand is a scratch register. When this is done, there is a match: 
in fact, 

reg+- b 

simply describes the effect of the add instruction on a typical machine. After the add is emit
ted, the tree is rewritten to consist merely of the register node, since the result of the add is 
now in the register. This agrees with the cookie passed to the second invocation of order, so 
this invocation terminates, returning to the first level. The original tree has now become 

a =- reg 

which matches a template for the store instruction. The store is output, and the tree rewritten 
to become just a single register node. At this point, since the top level call to order was 
interested only in side effects, the call to order returns, and the code generation is completed~ 
we have generated a load, add, and store, as might have been expected. 

The effect of machine architecture on this is considerable. For example, on the 
Honeywell 6000, the machine dependent heuristics recognize that there is an "add to storage" 
instruction, so the strategy is quite different; b is loaded in to a register, and then an add to 
storage instruction generated to add this register in to a. The transformations, involving as 
they do the semantics of C, are largely machine independent. The decisions as to when to use 
them, however, are almost totally machine dependent. 

Having given a broad outline of the code generation process, we shall next consider the 

( 



·-·~ .. 

.. 
. \ 

34-17 

heart of it: the templates. This leads naturally into discussions of template matching and regis
ter allocation, and finally a discussion of the machine dependent interfaces and strategies. 

The Templates 

The templates describe the effect of the target machine instructions on the model of com
putation around which the compiler is organized. In effect, each template has five logical sec
tions, and represents an assertion of the form: 

If we have a subtree of a given shape (l), and we have a goal (cookie) or goals to achieve 
(2), and we have sufficient free resources (3), then we may emit an instruction or 
instructions (4), and rewrite the subtree in a particular manner (5), and the rewritten tree 
will achieve the desired goals. 

These five sections will be discussed in more detail later. First, we give an example of a 
template: 

ASG PLUS, INAREG, 
SAREG, 
SN AME, 

TINT, 
TINT, 
0, 
" 

RLEFT, 
add AL,AR\n", 

The top line specifies the operator ( + -) and the cookie (compute the value of the subtree into 
an AREG). The second and third lines specify the left and right descendants, respectively, of 
the + =- operator. The left descendant must be a REG node, representing an A register, and 
have integer type, while the right side must be a NAME node, and also have integer type. The 
fourth line contains the resource requirements (no scratch registers or temporaries needed), 
and the rewriting rule (replace the subtree by the left descendant). Finally, the quoted string 
on the last line represents the output to the assembler: lower case letters, tabs, spaces, etc. are 
copied verbatim. to the output; upper case letters trigger various macro-like expansions. Thus, 
AL would expand into the Address form of the Left operand - presumably the register 
number. Similarly, AR would expand into the name of the right operand. The add instruction 
of the last section might well be emitted by this template. 

In principle, it would be possible to make separate templates for all legal combinations of 
operators, cookies, types, and shapes. In practice, the number of combinations is very large. 
Thus, a considerable amount of mechanism is present to permit a large number of subtrees to 
be matched by a single template. Most of the shape and type specifiers are individual bits, and 
can be logically or'ed together. There are a number of special descriptors for matching classes 
of operators. The cookies can also be combined. As an example of the kind of template that 
really arises in practice, the actual template for the Interdata 8/32 that subsumes the above 
example is: 

ASG OPSIMP, INAREGIFORCC, 
SAREG, TINTITUNSIGNEDITPOINT. 
SAREGIS_NAMEISOREGISCON, TINTITUNSIGNEDITPOINT, 

0, RLEFTIRESCC, 
" 01 AL,AR\n", 

Here, OPSIMP represents the operators +, - , I, &, and ~. The 01 macro in the output string 
expands into the appropriate Integer Opcode for the operator. The left and right sides can be 
integers, unsigned, or pointer types. The right side can be, in addition to a name, a register, a 
memory location whose address is given by a register and displacement (OREG), or a constant. 
Finally, these instructions set the condition codes, and so can be used in condition contexts: the 
cookie and rewriting rules reflect this. 



34-18 

The Template Matching Algorithm. 

The heart of the second pass is the template matching algorithm, in the routine match 
.Watch is called with a tree and a cookie; it attempts to match the given tree against some tem
plate that will transform it according to one of the goals given in the cookie. If a match is suc
cessful, the transformation is :.ipplied; expand is called to generate the assembly code, and then 
reclaim rewrites the tree, and reclaims the resources, such as registers, that might have become 
free as a result of the generated code. 

This part of the compiler is among the most time critical. There is a spectrum of imple
mentation techniques available for doing this matching. The most naive algorithm simply looks 
at the templates one by one. This can be considerably improved upon by restricting the search 
for an acceptable template. It would be possible to do better than this if the templates were 
given to a separate program that ate them and generated a template matching subroutine. This 
would make maintenance of the compiler much more complicated, however, so this has not 
been done. 

The matching algorithm is actually carried out by restricting the range in the table that 
must be searched for each opcode. This introduces a number of co~mplications, however, and 
needs a bit of sympathetic help by the person constructing the compiler in order to obtain best 
results. The exact tuning of this algorithm continues; it is best to consult the code and com
ments in match for the latest version. 

In order to match a template to a tree, it is necessary to match not only the cookie and 
the op of the root, but also the types and shapes of the left and right descendants (if any) of 
the tree. A convention is established here that is carried out throughout the second pass of the 
compiler. If a node represents a unary operator, the single descendant is always the "left" des
cendant. If a node represents a unary operator or a leaf node (no descendants) the "right" 
descendant is taken by convention to be the node itself. This enables templates to easily match 
leaves and conversion operators, for example, without any additional mechanism in the match
ing program. 

The type matching is straightforward; i_t is possible to specify any combination of basic 
types, general pointers, and pointers to one or more of the basic types. The shape matching is 
somewhat more complicated, but still pretty simple. Templates have a collection of possible 
operand shapes on which the opcode might match. In the simplest case, an add operation 
might be able to add to either a register variable or a scratch register, and might be able (with 
appropriate help from the assembler) to add an integer constant (ICON), a static memory cell 
(NAME), or a stack location (OREG). 

It is usually attractive to specify a number of such shapes, and distinguish between them 
when the assembler output is produced. It is possible to describe the union of many elemen
tary shapes such as ICON, NA~1E, OREG, AREG or BREG (both scratch and register forms), 
etc. To handle at least the simple forms of indirection, one can also match some more compli
cated forms of trees; ST ARNM and STAR REG can match more complicated trees headed by 
an indirection operator, and SFLD can match certain trees headed by a FLD operator: these 
patterns call machine dependent routines that match the patterns of interest on a given 
machine. The shape SW ADD may be used to recognize NAME or OREG nodes that lie on 
word boundaries: this may be of some importance on word-addressed machines. Finally, 
there are some special shapes: these may not be used in conjunction with the other shapes, but 
may be defined and extended in machine dependent ways. The special shapes SZERO, SONE, 
and SMONE are predefined and match constants 0, I, and - I, respectively; others are easy to 
add and match by using the machine dependent routine special 

When a template has been found that matches the root of the tree, the cookie, and the 
shapes and types of the descendants, there is still one bar to a total match: the template may 
call for some resources (for example, a scratch register). The routine aflo is called, and it 
attempts to allocate the resources. If it cannot, the match fails; no resources are allocated. If 
successful, the allocated resources are given numbers I, 2, etc. for later reference when the 

( 

( 

( 

( 



34-19 

assembly code is generated. The routines expand and reclaim are then called. The march rou
tine then returns a special value, MOONE. If no match was found, the value MNOPE is 
returned; this is a signal to the caller to try more cookie values, or attempt a rewriting rule. 
Match is also used to select rewriting rules, although the way of doing this is pretty straightfor
ward. A special cookie, FORREW, is used to ask march to search for a rewriting rule. The 
rewriting rules are keyed to various opcodes; most are carried out in order. Since the question 
of when to rewrite is one of the key issues in code generation, it will be taken up again later. 

Register Allocation. 

The register allocation routines, and the allocation strategy, play a central role in the 
correctness of the code generation algorithm. If there are bugs in the Sethi-Ullman computa
tion that cause the number of needed registers to be underestimated, the compiler may run out 
of scratch registers; it is essential that the allocator keep track of those registers that are free 
and busy, in order to detect such conditions. 

Allocation of registers takes place as the result of a template match; the routine allo is 
called with a word describing the number of A registers, B registers, and temporary locations 
needed. The allocation of temporary locations on the stack is relatively straightforward, and 
will not be further covered; the bookkeeping is a bit tricky, but conceptually trivial, and 
requests for temporary space on the stack will never fail. 

Register allocation is less straightforward. The two major complications are pairing and 
sharing. In many machines, some operations (such as multiplication and division), and/or 
some types (such as longs or double precision) require even/odd pairs of registers. Operations 
of the first type are exceptionally difficult to deal with in the compiler; in fact, their theoretical 
properties are rather bad as well. 9 The second issue is dealt with rather more successfully; a 
machine dependent function called szty(r) is called that returns 1 or 2, depending on the 
number of A registers required to hold an object of type r. If szty returns 2, an even/odd pair 
of A registers is allocated for each request. 

The other issue, sharing, is more subtle, but important for good code quality. When 
registers are allocated, it is possible to reuse registers that hold address information, and use 
them to contain the values computed or accessed. For example, on the IBM 360, if register 2 
has a pointer to an integer in it, we may load the integer into register 2 itself by saying: 

L 2,0(2) 

If register 2 had a byte pointer, however, the sequence for loading a character involves clearing 
the target register first, and then inserting the desired character: 

SR 
IC 

3,3 
3,0(2) 

In the first case, if register 3 were used as the target, it would lead to a larger number of regis
ters used for the expression than were required; the compiler would generate inefficient code. 
On the other hand, if register 2 were used as the target in the second case, the code would sim
ply be wrong. In the first case, register 2 can be shared while in the second, it cannot. 

In the specification of the register needs in the templates, it is possible to indicate whether 
required scratch registers may be shared with possible registers on the left or the right of the 
input tree. In order that a register be shared, it must be scratch, and it must be used only 
once, on the appropriate side of the tree being compiled. 

The a/lo routine thus has a bit more to do than meets the eye; it calls freereg to obtain a 
free register for each A and B register request. Freereg makes multiple calls on the routine 
usable to dec.ide if a given register can be used to satisfy a given need. Usable calls shareit if the 
register is busy, but might be shared. Finally, share it calls ushare to decide if the desired regis
ter is actually in the appropriate subtree, and can be shared. 

Just to add additional complexity, on some machines (such as the IBM 370) it is possible 



34-20 

to have "double indexing" forms of addressing; these are represented by OREGS's with the 
base and index registers encoded into the register field. While the register allocation and deal
location per se is not made more difficult by this phenomenon, the code itself is somewhat more 
complex. 

Having allocated the registers and expanded the assembly language, it is time to reclaim 
the resources; the routine reclaim does this. Many operations produce more than one result. 
For example, many arithmetic operations may produce a value in a register, and also set the 
condition codes. Assignment operations may leave results both in a register and in memory. 
Rec/01111 is passed three parameters; the tree and cookie that were matched, and the rewriting 
field of the template. The rewriting field allows the specification of possible results; the tree is 
rewritten to reflect the results of the operation. If the tree was computed for side effects only 
(FQREFF), the tree is freed, and all resources in it reclaimed. If the tree was computed for 
condition codes, the resources are also freed, and the tree replaced by a special node type, 
FORCC. Otherwise, the value may be found in the left argument of the root, the right argu
ment of the root, or one of the temporary resources allocated. In these cases, first the 
resources of the tree, and the newly allocated resources, are freed; then the resources needed 
by the result are made busy again. The final result must always match the shape of the input 
cookie; otherwise, the compiler error "cannot reclaim" is generated. There are some machine 
dependent ways of preferring results in registers or memory when there are multiple results 
matching multiple goals in the cookie. 

The Machine Dependent Interface 

The files order.c, loca/2.c, and table.c, as well as the header file mac2defs. represent the 
machine dependent portion of the second pass. The machine dependent portion can be roughly 
divided into two: the easy portion and the hard portion. The easy portion tells the compiler the 
names of the registers, and arranges that the compiler generate the proper assembler formats, 
opcode names, location counters, etc. The hard portion involves the Sethi-Ullman computa
tion, the rewriting rules, and, to some extent, the templates. It is hard because there are no 
real algorithms that apply; most of this portion is based on heuristics. This section discusses 
the easy portion; the next several sections will discuss the hard portion. 

If the compiler is adapted from a compiler for a machine of similar architecture, the easy 
part is indeed easy. In mac2defs.. the register numbers are defined, as well as various parame
ters for the stack frame, and various macros that describe the machine architecture. If double 
indexing is to be permitted, for example, the symbol R2REGS is defined. Also, a number of 
macros that are involved in function call processing, especially for unusual function call 
mechanisms, are defined here. 

In /oca/2.c, a large number of simple functions are defined. These do things such as write 
out opcodes, register names, and address forms for the assembler. Part of the function call 
code is defined here; that is nontrivial to design, but typically rather straightforward to imple
ment. Among the easy routines in order.care routines for generating a created label, defining a 
label, and generating the arguments of a function call. 

These routines tend to have a local effect, and depend on a fairly straightforward way on 
the target assembler and the design decisions already made about the compiler. Thus they will 
not be further treated here. 

The Rewriting Rules 

When a tree fails to match any template, it becomes a candidate for rewriting. Before the 
tree is rewritten, the machine dependent routine nextcook is called with the tree and the cookie: 
it suggests another cookie that might be a better candidate for the matching of the tree. If all 
else fails, the templates are searched with the cookie FORREW, to look for a rewriting rule. 
The rewriting rules are of two kinds: for most of the common operators, there are machine 
dependent rewriting rules that may be applied: these are handled by machine dependent func
tions that are called and given the tree to be computed. These routines may recursively call 

( 

( 

( 

( 



34-21 

order or codgen to cause certain subgoals to be achieved; if they actually call for some alteration 
of the tree, they return l, and the code generation algorithm recanonicalizes and tries again. If 
these routines choose not to deal with the tree, the default rewriting rules are applied. 

The assignment ops, when rewritten, call the routine setasg. This is assumed to rewrite 
the tree at least to the point where there are no side effects in the left hand side. If there is 
still no template match, a default rewriting is done that causes an expression such as 

a+-b 

to be rewritten as 

a=a+b 

This is a useful default for certain mixtures of strange types (for example, when a is a bit field 
and ban character) that otherwise might need separate table entries. 

Simple assignment, structure assignment, and all forms of calls are handled completely by 
the machine dependent routines. For historical reasons, the routines generating the calls return 
1 on failure, 0 on success, unlike the other routines. 

The machine dependent routine setbin handles binary operators; it too must do most of 
the job. In particular, when it returns 0, it must do so with the left hand side in a temporary 
register. The default rewriting rule in this case is to convert the binary operator into the associ
ated assignment operator; since the left hand side is assumed to be a temporary register, this 
preserves the semantics and often allows a considerable saving in the template table. 

The increment and decrement operators may be dealt with with the machine dependent 
routine seti11cr. If this routine chooses not to deal with the tree, the rewriting rule replaces 

x ++ 

by 

((x+=J)-1) 

which preserves the semantics. Once again, this is not too attractive for the most common 
cases, but can generate close to optimal code when the type of x is unusual. 

Finally, the indirection (UNARY MUL) operator is also handled in a special way. The 
machine dependent routine offstar is extremely important for the efficient generation of code. 
Offstar is called with a tree that is the direct descendant of a UNARY MUL node; its job is to 
transform this tree so that the combination of UNARY MUL with the transformed tree 
becomes addressable. On most machines, offstar can simply compute the tree into an A or B 
register, depending on the architecture, and then canon will make the resulting tree into an 
OREG. On many machines, offstar can profitably choose to do less work than computing its 
entire argument into a register. For example, if the target machine supports OREGS with a 
constant offset from a register, and offstar is called with a tree of the form 

expr + const 

where const is a constant, then o.lfstar need only compute expr into the appropriate form of 
register. On machines that support double indexing, offstar may have even more choice as to 
how to proceed. The proper tuning of o.lfstar, which is not typically too difficult, should be one 
of the first tries at optimization attempted by the compiler writer. 

The Sethi-Ullman Computation 

The heart of the heuristics is the computation of the Sethi-Ullman numbers. This compu
tation is closely linked with the rewriting rules and the templates. As mentioned before, the 
Sethi-Ullman numbers are expected to estimate the number of scratch registers needed to com
pute the subtrees without using any stores. However, the original theory does not apply to real 
machines. For one thing, the theory assumes that all registers are interchangeable. Real 
machines have general purpose, floating point, and index registers, register pairs, etc. The 



34-22 

theory also does not account for side effects; this rules out various forms of pathology that arise 
from assignment and assignment ops. Condition codes are also undreamed of. Finally, the 
influence of types. conversions, and the various addressability restrictions and extensions of 
real m;.H.:hincs are also ignored. 

Nevertheless, for a "useless" theory, the basic insight of Sethi and Ullman is amazingly 
useful in a real compiler. The notion that one should attempt to estimate the resource needs of 
trees before starting the code generation provides a natural means of splitting the code genera
tion problem, and provides a bit of redundancy and self checking in the compiler. Moreover, if 
writing the Sethi-Ullman routines is hard. describing, writing, and debugging the alternative 
(routines that attempt to free up registers by stores into temporaries "on the fly") is even 
worse. Nevertheless, it should be clearly understood that these routines exist in a realm where 
there is no "right" way to write them; it is an art, the realm of heuristics, and, consequently, a 
major source of bugs in the compiler. Often, the early, crude versions of these routines give 
little trouble; only after the compiler is actually working and the code quality is being improved 
do serious problem have to be faced. Having a simple, regular machine architecture is worth 
quite a lot at this time. 

The major problems arise from asymmetries in the registers: register pairs, having 
different kinds of registers, and the related problem of needing more than one register (fre
quently a pair) to store certain data types (such as longs or doubles). There appears to be no 
general way of treating this problem; solutions have to be fudged for each inachine where the 
problem arises. On the Honeywell 66, for example, there are only two general purpose regis
ters. so a need for a pair is the same as the need for two registers. On the IBM 370, the regis
ter pair (0, I) is used to do multiplications and divisions; registers 0 and I are not generally con
sidered part of the scratch registers, and so do not require allocation explicitly. On the Inter
data 8/32, after much consideration, the decision was made not to try to deal with the register 
pair issue; operations such as multiplication and division that required pairs were simply 
assumed to take all of the scratch registers. Several weeks of effort had failed to produce an 
algorithm that seemed to have much chance of running successfully without inordinate debug
ging effort. The difficulty of this issue should not be minimized; it represents one of the main 
intellectual efforts in porting the compiler. Nevertheless, this problem has been fudged with a 
degree of success on nearly a dozen machines, so the compiler writer should not abandon hope. 

The Sethi-Ullman computations interact with the rest of the compiler in a number of 
rather subtle ways. As already discussed, the store routine uses the Sethi-Ullman numbers to 
decide which subtrees are too difficult to compute in registers, and must be stored. There are 
also subtle interactions between the rewriting routines and the Sethi-Ullman numbers. Suppose 
we have a tree such as 

A-8 

where A and B are expressions; suppose further that B takes two registers. and A one. It is 
possible to compute the full expression in two registers by first computing B, and then, using 
the scratch register used by B, but not containing the answer, compute A. The subtraction can 
then be done, computing the expression. (Note that this assumes a number of things, not the 
least of which are register-to-register subtraction operators and symmetric registers.) If the 
machine dependent routine se1bi11, however, is not prepared to recognize this case and compute 
the more difficult side of the expression first, the Sethi-Ullman number must be set to three. 
Thus, the Sethi-Ullman number for a 1ree should represent the code that 1he machine depen
dent routines are actually willing to generate. 

The interaction can go the othi;!r way. If we take an expression such as 

'*(p+i) 

where f1 is a pointer and i an integer, this can probably be done in one register on most 
machines. Thus, its Sethi-Ullman number would probably be set to one. If double indexing is 
possible in the machine, a possible way of computing the expression is to load both f1 and i into 

( 

( 

( 

( 



34-23 

registers, and then use double indexing. This would use two scratch registers; in such a case, it 
is possible that the scratch registers might be unobtainable, or might make some other part of 
the computation run out of registers. The usual solution is to cause offstar to ignore opportuni
ties for double indexing that would tie up more scratch registers than the Sethi-Ullman number 
had reserved. 

In summary, the Sethi-Ullman computation represents much of the craftsmanship and 
artistry in any application of the portable compiler. It is also a frequent source of bugs. Algo
rithms are available that will produce nearly optimal code for specialized machines, but unfor
tunately most existing machines are far removed from these ideals. The best way of proceeding 
in practice is to start with a compiler for a similar machine to the target, and proceed very care
fully. 

Register Allocation 

After the Sethi-Ullman numbers are computed, order calls a routine, rallo, that does regis
ter allocation, if appropriate. This routine does relatively little, in general; this is especially true 
if the target machine is fairly regular. There are a few cases where it is assumed that the result 
of a computation takes place in a particular register; switch and function return are the two 
major places. The expression tree has a field, rail, that may be filled with a register number: 
this is taken to be a preferred register, and the first temporary register allocated by a template 
match will be this preferred one, if it is free. If not, no particular action is taken: this is just a 
heuristic. If no register preference is present, the field contains NOPREF. In some cases, the 
result must be placed in a given register, no matter what. The register number is placed in roll, 
and the mask MUSTDO is logically or'ed in with it. In this case, if the subtree is requested in 
a register, and comes back in a register other than the demanded one, it is moved by calling the 
routine rmove. If the target register for this move is busy, it is a compiler error. 

Note that this mechanism is the only one that will ever cause a register-to-register move 
between scratch registers (unless such a move is buried in the depths of some template). This 
simplifies debugging, In some cases, there is a rather strange interaction between the register 
allocation and the Sethi-Ullman number; if there is an operator or situation requiring a particu
lar register, the allocator and the Sethi-Ullman computation must conspire to ensure that the 
target register is not being used by some intermediate result of some far-removed computation. 
This is most easily done by making the special operation take all of the free registers, prevent
ing any other parti<Jlly-computed results from cluttering up the works. 

Compiler Bugs 

The portable compiler has an excellent record of generating correct code. The require
ment for reasonable cooperation between the register allocation, Sethi-Ullman computation, 
rewriting rules, and templates builds quite a bit of redundancy into the compiling process. The 

_ effect of this is that in a surprisingly short time, the compiler will start generating correct code 
for those programs that it can compile. The hard part of the job then becomes finding and 
eliminating those situations where the compiler refuses to compile a program because it knows 
it cannot do it right. For example, a template may simply be missing; this may either give a 
compiler error of the form "no match for op ... " , or cause the compiler to go into an infinite 
loop applying various rewriting rules. The compiler has a variable, 11rernr, that is set to 0 at the 
beginning of an expressions, and incremented at key spots in the compilation process: if this 
parameter gets too large, the compiler decides that it is in <J loop, and aborts. Loops are also 
characteristic of botches in the machine-dependent rewriting rules. Bad Sethi-Ullman computa
tions usually cause the scratch registers to run out: this often means that the Sethi-Ullman 
number was underestim<Jted, so store did not store something it should have: altern<Jtively, it 
can mean that the rewriting rules were not smart enough to find the sequence that sucomp 
assumed would be used. 

The best Jpproach when a compiler error is detected involves several stages. First try to 
get a small example program that steps on the bug. Second, turn on various debugging flags in 



34-24 

the code generator, and follow the tree through the process of being matched and rewritten. 
Some flags of interest are -e, which prints the expression tree, -r, which gives information 
about the allocation of registers, - a, which gives information about the performance of ral/o, 
and -o, which gives information about the behavior of order. This technique shoukl allow 
most bugs to be found relatively quickly. 

Unfortunately, finding the bug is usually not enough; it must also be fixed! The difficulty 
arises because a fix to the particular bug of interest tends to break other code that already 
works. Regression tests, tests that compare the performance of a new compiler against the per· 
formance of an older one, are very valuable in preventing major catastrophes. 

Summary and Conclusion 

The portable compiler has been a useful tool for providing C capability on a large number 
of diverse machines, and for testing a number of theoretical constructs in a practical setting. It 
has many blemishes, both in style and functionality. It has been applied to many more 
machines than first anticipated, of a much wider range than originally dreamed of. Its use has 
also spread much faster than expected, leaving parts of the compiler still somewhat raw in 
shape. 

On the theoretical side, there is some hope that the skeleton of the sucomp routine could 
be generated for many machines directly from the templates; this would give a considerable 
boost to the portability and correctness of the compiler, but might affect tunability and code 
quality. There is also room for more optimization, both within optim and in the form of a port· 
able "peephole" optimizer. 

On the practical, development side, the compiler could probably be sped up and made 
smaller without doing too much violence to its basic structure. Parts of the compiler deserve to 
be rewritten: the initialization code, register allocation, and parser are prime candidates. It 
might be that doing some or all of the parsing with a recursive descent parser might save 
enough space and time to be worthwhile; it would certainly ease the problem of moving the 
compiler to an environment where Yacc is not already present. 

Finally, I would like to thank the many people who have sympathetically, and even 
enthusiastically, helped me grapple with what has been a frustrating program to write, test. and 
install. D. M. Ritchie and E. N. Pinson provided needed early encouragement and philosophi· 
cal guidance; M. E. Lesk, R. Muha. T. G. Peterson, G. Riddle, L. Rosier, R. W. Mitze, B. R. 
Rowland, S. I. Feldman, and T. B. London have all contributed ideas, gripes, and all, at one 
time or another, climbed "into the pits" with me to help debug. Without their help this effort 
would have not been possible; with it, it was often kind of fun. 

( 

( 



34-25 

References 

1. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Engle
wood Cliffs, New Jersey (1978). 

2. S. C. Johnson, "Lint, a C Program Checker," Comp. Sci. Tech. Rep. No. 65 ( 1978). 

3. A. Snyder, A Portable Compiler for the Language C, Master's Thesis, M.I.T., Cambridge, 
Mass. (1974). 

4. S. C. Johnson, "A Portable Compiler: Theory and Practice," Proc. 5th ACM Symp. on 
Principles of Programming Languages, pp. 97-104 Oanuary 1978). 

5. M. E. Lesk, S. C. Johnson, and D. M. Ritchie, The C Language Calling Sequence, Bell 
Laboratories internal memorandum ( 1977). 

6. S. C. Johnson, "Yacc - Yet Another Compiler-Compiler," Comp. Sci. Tech. Rep. No. 
32, Bell Laboratories, Murray Hill, New Jersey (July 1975). 

7. A. V. Aho and S. C. Johnson, "Optimal Code Generation for Expression Trees," J. 
Assoc. Comp. Mach. 23(3) pp. 488-501 (1975). Also in Proc. ACM Symp. on Theory of 
Computing, pp. 207-217, 1975. 

8. R. Sethi and J. D. Ullman, "The Generation of Optimal Code for Arithmetic Expres
sions," J. Assoc. Comp. Mach. 17(4) pp. 715-728 (October 1970). Reprinted as pp. 229-
247 in Compiler Techniques, ed. B. W. Pollack, Auerbach, Princeton NJ (1972). 

9. A. V. Aho, S. C. Johnson, and J. D. Ullman, "Code Generation for Machines with Mul
tiregister Operations," Proc. 4th ACM Symp. on Principles of Programming Languages, pp. 
21-28 (January 1977). 





A Dial-Up Network of UNIXrM Systems 

D. A. Nowitz 

M. E. lesk 

Bell Laboratories 
Murray Hill, New Jersey 07974 

ABSTRACT 

A network of over eighty UNIXt computer systems has been established 
using the telephone system as its primary communication medium. The net
work was designed to meet the growing demands for software distribution and 
exchange. Some <.1dvantages of our design are: 

The startup cost is low. A system needs only a dial-up port, but systems 
with automatic calling units have much more flexibility. 

No operating system changes are required to install or use the system. 

The communication is basically over dial-up lines, however, hardwired 
communication lines can be used to increase speed. 

The command for sending/receiving files is simple to use. 

Keywords: networks, communications, software distribution, software 
maintenance 

August 18, 1978 

tU'.'JIX is a Trademark nf Rell lJboralories. 

35-1 



l. Purpose 

A Dial-Up Network of UNIXrn Systems 

D. A. Nowirz 

M. E Lesk 

Bell Laboratories 
Murray Hili, New Jersey 07974 

The widespread use of the UNlX't system! within Bell Laboratories has produced problems 
of software distribution and maintenance. A convemiona! mechanism was set up to distribute 
the operating system and associated programs from a central site to the various users. However 
this mechanism alone does not meet all software distribution needs. Remote sites generate 
much software and must transmit it to other sites. Some UNIX systems are themselves central 
sites for redistribution of a particular specialized utility, such as the Switching Control Center 
System. Other sites have particular, often long-distance needs for software exchange; switching 
research, for example, is carried on in New Jersey, Illinois, Ohio, and Colorado. In addition, 
general purpose utility programs are written at all UNIX system sites. The UNIX system is 
modified and enhanced by many people in many places and it would be very constricting to 
deliver new software in a one~way stream without any alternative for the user sites to respond 
with changes of their own. 

Straightforward software distribution is only part of the problem. A large project may 
exceed the ty of a sing!e computer and several machines may be used by the one group of 
people. It then becomes necessary for them to pass messages, data and other information back 
an forth between computers. 

Several groups with similar problems, both inside and outside 
constructed networks built of hardwired connections only. 2, 3 Our however, uses both 
dial-up and hardwired connections so that service can be provided to as many sites as possible. 

2. Design Goals 

Although some of our machines are connected directly, others can only communicate 
over low-speed dial-up lines. Since the dial-up lines are often unavailable and transfers may 
take considerable time, we spool ail work and transmit in the background. We also had to 
adapt to a community of systems which are independently operated and resistant to suggestions 
that they should ail buy particu!Jr hardware or install particular operating system modifications. 
Therefore, we make minimal demands on the local sites in the network. Our implementation 
requires no operating system changes~ in fact, the transfer programs look like any other user 
entering the system through the normal dial-up login pons, and obeying all local protection 
rules. 

We distinguish "active" and ''passive" systems on the network. Active systems have an 
automatic calling unit or a hardwired line to another system, and can initiate a connection. Pas
sive systems do not have the hardw:.ire to initiate a connection. However, an active system can 
be assigned the job of calling passive systems and executing work found there; this makes a 
passive system the functional equivaient of an active system, except for an additionai delay 
while it waits to be polled. Also, people frequently log into active systems and request copying 
from one passive system to another. This requires two telephone calls, but even so, it is faster 

tLJNIX is a Trauem:m.: of Bell LJboratorie5. 

35-2 

( 

( 



35-3 Nowitz 

than maiiing tapes. 

Where convenient, we use hardwired communication lines. These permit much faster 
transmission and multiplexing of the communications link. Dial-up connections are made at 
either 300 or 1200 baud; hardwired connections are asynchronous up to 9600 baud and might 
run even faster on special-purpose communications hardware. 4, 5 Thus, systems typically join 
our network first as passive systems and when they find the service more important, they 
acquire automatic calling units and become active systems; eventually, they may install high
speed links to particular machines with which they handle a great deal of traffic. At no point, 
however, must users change their programs or procedures. 

The basic operation of the network is very simple. Each participating system has a spool 
directory, in which work to be done (files to be moved, or commands to be executed remotely) 
is stored. A standard program, uucico, performs all transfers. This program starts by identify
ing a particular communication channel to a remote system with which it will hold a conversa
tion. Uucico then selects a device and establishes the connection. logs onto the remote machine 
and starts the uucico program on the remote machine. Once two of these programs are con
nected, they first :.igree on a line protocol, and then start exchanging work. Each program in 
turn, beginning with the calling (active system) program, transmits everything it needs. and 
then asks the other what it wants done. Eventually neither has any more work, and both exit. 

In this way, all services am available from all sites; passive sites, however, must wait until 
called. A variety of protocols may be used; this conforms to the real, non-standard world. As 
long as the caller and called programs have a protocol in common, they can communicate. 
Furthermore, each caller knows the hours when each destination system should be called. If a 
destination is unavailable, the data intended for it remain in the spool directory until the desti
nation machine can be reached. 

The implementation of this Bell Laboratories network between independent sites, all of 
which store proprietary programs and data, illustratives the pervasive need for security and 
administrative controls over file access. Each site, in configuring its programs and system files, 
limits and monitors transmission. In order to access a file a user needs access permission for 
the machine that contains the file and access permission for the file itself. This is achieved by 
first requiring the user to use his password to log into his local machine and then his locai 
machine logs into the remote machine whose files are to be accessed. In addition, records are 
kept identifying all flies that are moved into and out of the local system, and how the requestor 
of such accesses identified himself. Some sites may arrange to permit users only to call up and 
request work to be done~ the calling users are then called back before the work is actually done. 
It is then possible to verify that the request is legitimate from the standpoint of the target sys
tem, as well as the originating system. Furthermore, because of the call-back, no site can 
masquerade as another even if it knows all the necessary passwords. 

Each machine can optionally maintain a sequence count for conversations with other 
machines and require a verification of the count at the start of each conversation. Thus, even 
if cal! back is not in use, a successful masquerade requires the calling party to present the 
correct sequence number. A would-be impersonator must not just steal the correct phone 
number, user name, and password. but also the sequence count, and must call in sufficiently 
promptly to precede the next legitimate request from either side. Even a successful 
masquerade will be detected on the next correct conversation. 

3. Processing 
The user has two commands which set up communications, uucp to set up file copying, 

and uux to set up command execution where some of the required resources (system and/or 
files) are not on the local machine. Each of these commands will put work and data files into 
the spool directory for execution by uucp daemons. Figure 1 shows the major blocks of the file 
transfer process. 



35-4 Nowitz 

File Copy 

The uucico program is used to perform all communications between the two systems. It 
performs the following functions: 

Scan the spool directory for work. 

Place a call to a remote system. 

Negotiate a line protocol to be used. 

Start program uucico on the remote system. 

Execute all requests from both systems. 

Log work requests and work completions. 

Uucico may be started in several ways; 

a) by a system daemon, 

b) by one of the uucp or mix programs, 

c) by a remote system. 

Scan For Work 

The file names in the spool directory are constructed to allow the daemon programs 
(uucico, uuxqt) to determine the files they should look at, the remote machines they should call 
and the order in which the files for a Particular remote machine should be processed. 

Call Remote System 

The call is made using information from several files which reside in the uucp program 
directory. At the start of the call process, a lock is set on the system being called so that 
another call will not be attempted at the same time. 

The system name is found in a "systems" file. The information contained for each sys
tem is: 

[l] system name, 

[2] times to call the system (days-of-week and times-of-day), 

[3] device or device type to be used for call, 

[4] line speed, 

[5] phone number, 

[6] login information (multiple fields). 

The time field is checked against the present time to see if the call should be made. The 
phone number may contain abbreviations (e.g. "nyc", "boston") which get translated into dial 
sequences using a "dial-codes" file. This permits the same "phone number" to be stored at 
every site, despite local variations in telephone services and dialing conventions. 

A "devices" file is scanned using fields [3] and [4] from the "systems" file to find an 
available device for the connection. The program will try all devices which satisfy [3} and [4] 
until a connection is made, or no more devices can be tried. lf a non-multiplexable device is 
successfully opened. a lock file is created so that another copy of uucico will not try to use it. If 
the connection is complete, the login in.formation is used to log into the remote system. Then a 
command is sent to the remote system to start the uucico program. The conversation between 
the two uucico programs begins with a handshake started by the called, SLA VE, system. The 
SLAVE sends a message to let the MASTER know it is ready to receive the system 
identification and conversation sequence number. The response from the MASTER is verified 
by the SLAVE and if acceptable, protocol selection begins. 

( 

( 

( 



35-5 Nowitz 

Line Protocol Selection 

The remote system sends a message 

P proto-lisr 

where proto-!ist is a string of characters, each representing a line protocol. The calling program 
checks the proto-list for a letter corresponding to an available line protocol and returns a use
protocol message. The use-protocol message is 

Ucode 

where code is either a one character protocol letter or a N which means there is no common 
protocol. 

Greg Chesson designed and implemented the standard line protocol used by the uucp 
transmission program. Other protocols may be added by individual installations. 

\\Tork Processing 

During processing, one program is the MASTER and the other is SLAVE. Initially, the 
calling program is the MASTER. These roles may switch one or more times during the conver
sation. 

There are four messages used during the work processing, each specified by the first char
acter of the message. They are 

S send a file, 
R receive a file, 
C copy complete, 
H hangup. 

The MASTER will send R or S messages until all work from the spool directory is complete, at 
which point an H message will be sent. The SLAVE will reply with SY, SN, RY, RN, HY, HN, 
corresponding to yes or no for each request. 

The send and receive replies are based on permission to access the requested 
file/directory. After each file is copied into the spool directory of the receiving system, a copy
complete message is sent by the receiver of the file. The message CY will be sent if the UNIX 
cp command, used to copy from the spool directory, is successful. Otherwise, a CN message is 
sent. The requests and results are logged on both systems, and, if requested, mail is sent to the 
user reporting completion (or the user can request status information from the log program at 
any time). 

The hangup response is determined by the SLAVE program by a work scan of the spool 
directory. If work for the remote system exists in the SLA VE's spool directory, a HN message 
is sent and the programs switch roles. If no work exists, an HY response is sent. 

A sample conversation is shown in Figure 2. 

Conversation Termination 

When a HY message is received by the MASTER it is echoed back to the SLAVE and the 
protocols are turned off. Each program sends a final "00" message to the other. 

4. Present Uses 

One application of this software is remote mail. Normally, a UNIX system user writes 
"mail dan" to send mail to user "dan". By writing "mail usg!dan" the mail is sent to user 
"dan" on system "usg". 

The primary uses of our network to date have been in software maintenance. Relatively 
few of the bytes passed between systems are intended for people to read. Instead, new pro
grams (or new versions of programs) are sent to users, and potential bugs are returned to 
authors. Aaron Cohen has implemented a "stockroom" which allows remote users to call in 



35-6 
Nowitz 

and request software. He keeps a "stock list" of available programs, and new bug fixes and 
utilities are added regularly. In this way, users can always obtain the latest version of anything 
without bothering the authors of the programs. Although the stock list is maintained on a par
ticular system, the items in the stockroom may be warehoused in many places; typically each 
program is distributed from the home site its author. Where necessary, uucp does remote
to-remote copies. 

We also routinely retrieve test cases from other systems to determine whether errors on 
remote systems are caused by local misconfigurations or old versions of software, or whether 
they are bugs that must be fixed at the home site. This helps identify errors rapidly. For one 
set of test programs maintained by us, over 70% of the bugs reported from remote sites were 
due to old software, and were fixed merely by distributing the current version. 

Another application of the network for software maintenance is to compare files on two 
different machines. A very useful utility on one machine has been Doug Mdlroy's "diff" pro
gram which compares two text files and indicates the differences, line by line, between them.6 
Only lines which are not identical are printed. Similarly, the program "uudiff" compares files 
(or directories) on two machines. One of these directories may be on a passive system. The 
"uudiff' program is set up to work similarly to the inter-system mail, but it is slightly more 
complicated. 

To avoid moving large numbers of usually identical files, uudi;r computes file checksums 
on each side, and only moves files that are different for detailed comparison. For large files, 
this process can be iterated; checksums can be computed for each line, and only those lines that 
are different actually moved. 

The "uux" command has been useful for providing remote output. There are some 
machines which do not have hard-copy devices, but which are connected over 9600 baud com
munication lines to machines with printers. uux command allows the formatting of the 
printout on the local machine and printing on the remote machine using standard UNIX com
mand programs. 

5. Performance 

Throughput, of course, is primarily dependent on transmission speed. The table below 
shows the real throughput of characters on communication links of different speeds. These 
numbers represent actual data transferred; they do not include bytes used by the line protocol 
for data validation such as checksums and messages. At the higher speeds, contention for the 
processors on both ends prevents the network from driving the line fu!l speed. The range of 
speeds represents the difference between light and heavy loads on the two systems. If desired, 
operating system modifications can be installed that permit full use of even very fast links. 

Nominal speed 
300 baud 

1200 baud 
9600 baud 

Characters/ sec. 
27 

100-110 
200-850 

In addition to the transfer time, there is some overhead for making the connection and logging 
in ranging from 15 seconds to l minute. Even at 300 baud, however, a typical 5,000 byte 
source program can be transferred in four minutes instead of the 2 days that might be required 
to mail a tape. 

Traffic between systems is variable. Between two closely related systems, we observed 20 
files moved and 5 remote commands executed in a typical day. A more normal traffic out of a 
single system would be around a dozen files per day. 

The total number of sites at present in the main network is 82, which includes most of 
the Bell Laboratories full-size machines which run the UNIX operating system. Geographically, 
the machines range from Andover, Massachusetts to Denver, Colorado. 

l:: v 

( 



35-7 
Nowitz 

Uucp has also been used to set up another network which connects a group of systems in 
operational sites with the home site. The two networks touch at one Bell Labs computer. 

6. Further Goals 

Eventually, we would like to develop a full system of remote software maintenance. Con
ventional maintenance (a support group which mails tapes) has many well-known disadvan
tages. 7 There are distribution errors and delays, resulting in old software running at remote 
sites and old bugs continually reappearing. These difficulties are aggravated when there are 100 
different small systems, instead of a few large ones. 

The availability of file transfer on a network of compatible operating systems makes it 
possible just to send programs directly to the end user who wants them. This avoids the 
bottleneck of negotiation and packaging in the central support group. The "stockroom" serves 
this function for new utilities and fixes to old utilities. However, it is still likely that distribu
tions will not be sent and installed as often as needed. Users are justifiably suspicious of the 
"latest version" that has just arrived; all too often it features the "latest bug." What is needed 
is to address both problems simultaneously: 

l. Send distributions whenever programs change. 

2. Have sufficient quality control so that users will install them. 

To do this, we recommend systematic regression testing both on the distributing and receiving 
systems. Acceptance testing on the receiving systems can be automated and permits the local 
system to ensure that its essential work can continue despite the constant installation of changes 
sent from elsewhere. The work of writing the test sequences should be recovered in lower 
counseling and distribution costs. 

Some slow-speed network services are also being implemented. We now have inter
system "mail" and "diff," plus the many implied commands represented by "uux." However, 
we still need inter-system "write" (real-time inter-user communication) and "who" (list of 
people logged in on different systems). A slow-speed network of this sort may be very useful 
for speeding up counseling and education, even if not fast enough for the distributed data base 
applications that attract many users to networks. Effective use of remote execution over slow
speed lines, however, must await the general installation of multip!exable channels so that long 
file transfers do not lock out short inquiries. 

7. Lessons 

The following is a summary of the lessons we learned in building these programs. 

1. By starting your network in a way that requires no hardware or major operating system 
changes, you can get going quickly. 

2. Support will follow use. Since the network existed and was being used, system main
tainers were easily persuaded to help keep it operating, including purchasing additional 
hardware to speed traffic. 

3. Make the network commands look like local commands. Our users have a resistance to 
learning anything new: all the inter-system commands look very similar to standard UNIX 

system commands so that little training cost is involved. 

4. An initial error was not coordinating enough with existing communications projects: thus, 
the first version of this network was restricted to dial-up, since it did not support the vari
ous hardware links between systems. This has been fixed in the current system. 

Acknowledgements 

We thank G. L. Chesson for his design and implementation of the packet driver and pro
tocol, and A. S. Cohen, J. Lions, and P. F. Long for their suggestions and assistance. 



35-8 Nowitz 

References 

l. D. M. Ritchie and K. Thompson, "The UNIX Time-Sharing System," Bell Sys. Tech. J. 
57(6) pp. 1905-1929 0978). 

2. T. A. Do!otta, R. C. Haight, and J. R. Mashey, "UNIX Time-Sharing System: The 
Programmer's Workbench," Bel! Sys. Tech. J. 57(6) pp. 2177-2200 0978). 

3. G. L. Chesson, "The Network UNIX System," Operating Systems Review 9(5) pp. 60-66 
( 1975). Also in Proc. 5th Sy mp. on Operating Systems Principles. 

4. A. G. Fraser, "Spider - An Experimental Data Communications System," Proc. IEEE 
Corif. on Communications., p. 21F Oune 1974). IEEE Cat No. 74CH0859-9-CSCB. 

5. A.G. Fraser, "A Virtual Channel Network," Datamation, pp. 51-56 (February 1975). 

6. J. W. Hunt and M. D. Mdlroy, "An Algorithm for Differential File Comparison," Comp. 
Sci. Tech. Rep. No. 41, Bell laboratories, Murray Hill, New Jersey Oune 1976). 

7. F. P. Brooks, Jr., The Mythical Man-Month. Addison-Wesley, Reading, Mass. (1975). 

( 

( 



Uucp Implementation Description 

D. A. Nowirz 

ABSTRACT 

Uucp is a series of programs designed to permit communication between 
UNIX systems using 1;:ither dial~up or hardwired communication lines. This 
document gives a detailed implementation description of the current (second) 
implementation of uucp. 

This document is for use by an administrator/installer of the system. It is 
not meant as a user's guide. 

October 31, 1978 

36-1 



Uucp Implementation Description 

D. A. Nowitz 

Introduction 

Uucp is a series of programs designed to permit communication between UNIXt systems using 
either dial-up or hardwired communication lines. It is used for file transfers and remote com
mand execution. The first version of the system was designed and implemented by M. E. 
Lesk. 1 This paper describes the current (second) implementation of the system. 

Uucp is a batch type operation. Files are created in a spool directory for processing by the uucp 
demons. There are three types of files used for the execution of work. Data Jiles contain data 
for transfer to remote systems. Work Jiles contain directions for file transfers between systems. 
Execution.files are directions for UNIX command executions which involve the resources of one 
or more systems. 

The uucp system consists of four primary and two secondary programs. The primary programs 
are: 

uucp 

uux 

uucico 

uuxqt 

This program creates work and gathers data files in the spool directory 'for the 
transmission of files. 

This program creates work files, execute files and gathers data files for the 
remote execution of UNIX commands. 

This program executes the work files for data transmission. 

This program executes the execution files for UNIX command execution. 

The secondary programs are: 

uulog This ;Jrogram updates the log file with new entries and reports on the status of 
uucp requests. 

uuclean This program removes old files from the spool directory. 

The remainder of this paper will describe the operation of each program, the installation of the 
system, the security aspects of the system, the files required for execution, and the administra
tion of the system. 

1. Uucp - UNIX to UNIX File Copy 

The uucp command is the user's primary interface with the system. The uucp command was 
designed to look like cp to the user. The syntax is 

uucp I option I . .. source . .. destination 

where the source and destination may contain the prefix system-name! which indicates the sys
tem on which the file or files reside or where they will be copied. 

The options interpreted by uucp are: 

-d Make directories when necessary for copying the file. 

tUNIX is a Trademark of Bell Laboratories. 
I M. E. Lesk and A. S. Cohen, UNIX Software Distribution by Communication Link, private communication. 

36-2 

( 

( 



36-3 

-c Don't copy source files to the spool directory, but use the specified source 
when the actual transfer takes place. 

- g lefter Put letter in as the grade in the name of the work file. (This can be used to 
change the order of work for a particular machine.) 

- m Send mail on completion of the work. 

The following options are used primarily for debugging: 

- r Queue the job but do not start uucico program. 

-sdir Use directory dir for the spool directory. 

- x.num Num is the level of debugging output desired. 

The destination may be a directory name, in which case the file name is taken from the last part 
of the source's name. The source name may contain special shell characters such as "?"'[!'. If 
a source argument has a 5ystem-name! prefix for a remote system, the file name expansion will 
be done on the remote system. 

The command 

uucp *.c usg!/usr/dan 

will set up the transfer of all files whose names end with ''.c" to the "/usr/dan" directory on 
the"usg" machine. 

The source and/or destination names may also contain a -user prefix. This translates to the 
login directory on the specified system. For names with partial path-names, the current direc
tory is prepended to the file name. File names with .. /are not permitted. 

The command 

uucp usg!-dan/*.h -dan 

will set up the transfer of files whose names end with ".h" in dan's login directory on system 
"usg" to dan's local login directory. 

For each source file, the program will check the source and destination file-names and the 
system-part of each to classify the work into one of five types: 

[l] Copy source to destination on local system. 

[2] Receive files from other systems. 

[3J Send files to a remote systems. 

[4] Send files from remote systems to another remote system. 

[5] Receive files from remote systems when the source contains special shell characters 
as mentioned above. 

After the work has been set up in the spool directory, the uucico program is started to try to 
contact the other machine to execute the work (unless the - r option was specified). 

Type l 

A cp command is used to do the work. The -d and the - m options are not honored in this 
case. 

Type 2 

A one line work .file is created for each file requested and put in the spool directory with the fol
lowing fields, each separated by a blank. (All work Jiles and execute Jiles use a blank as the field 
separator.) 

[l] R 



36-4 

[2) The full path-name of the source or a -user/path-name. The -user part will be 
expanded on the remote system. 

[3] The full path-name of the destination file. If the -user notation is used, it will be 
immediately expanded to be the login directory for the user. 

[4] The user's login name. 

[5] A " - " followed by an option list. (Only the - m and -d options will appear in 
this list.) 

Type 3 

For each source file, a work file is created and the source file is copied into a data file in the 
spool directory. (A "-c" option on the uucp command will prevent the data file from being 
made.) In this case, the file will be transmitted from the indicated source.) The fields of each 
entry are given below. 

[I} s 
[2] The full-path name of the source file. 

[3] The full-path name of the destination or -user/file-name. 

[4] The user's login name. 

[5] A " - " followed by an option list. 

[6] The name of the data file in the spool directory. 

[7] The file mode bits of the source file in octal print format (e.g. 0666). 

Type 4 and Type 5 

Uucp generates a uucp command and sends it to the remote machine; the remote uucico exe
cutes the uucp command. 

2. Uux - UNIX To UNIX Execution 

The uux command is used to set up the execution of a UNIX command where the execution 
machine and/or some of the files are remote. The syntax of the uux command is 

mix I - I I option I .. . command-string 

where the command-string is made up of one or more arguments. All special shell characters 
such as "< >t" must be quoted either by quoting the entire command-string or quoting the 
character as a separate argument. Within the command-string, the command and file names 
may contain a system-name! prefix. All arguments which do not contain a "!" will not be 
treated as files. <They will not be copied to the execution machine.) The ·• - " is used to indi
cate that the standard input for command-string should be inherited from the standard input of 
the uux command. The options, essentially for debugging, are: 

- r Don't start uucico or uuxqr after queuing the job; 

-xnum Num is the level of debugging output desired. 

The command 

pr abc I uux - usg!lpr 

will set up the output of "pr abc" as standard input to an !pr command to be executed on sys
tem "usg". 

Uux generates an execute .file which contains the names of the files required for execution 
(including standard input), the user's login name, the destination of the standard output, and 
the command to be executed. This file is either put in the spool directory for local execution or 
sent to the remote system using a generated send command (type 3 above). 

For required files which are not on the execution machine, 1111x will generate receive command 
files (type 2 above). These command-files will be put on the execution machine and executed 

( 

( 

( 



36-5 

by the uucico program. (This will work only if the local system has permission to put files in 
the remote spool directory as controlled by the remote USERFILE. ) 

The execute file will be processed by the uuxqt program on the execution machine. It is made 
up of several lines, each of which contains an identification character and one or more argu-

'"' ments. The order of the lines in the file is not relevant and some of the lines may not be 
present. Each line is described below. 

User Line 

U user system 

where the user and system are the requester's login name and system. , 

Required File Line 

F file-name real-name 

where the .file-name is the generated name of a file for the execute machine and real-name 
is the last part of the actual file name (contains no path information). Zero or more of 
these lines may be present in the execute file. The uuxqr program will check for the 
existence of all required files before the command is executed. 

Standard Input Line 

I file-name 

The standard input is either specified by a "<" in the command-string or inherited from 
the standard input of the uux command if the " - " option is used. If a standard input is 
not specified, "/dev/null" is used. 

Standard Output Line 

0 file-name system-name 

The standard output is specified by a ">" within the command-string. If a standard out
put is not specified, "/dev/null" is used. (Note - the use of "> >" is not imple
mented.) 

Command Line 

C command I arguments I ... 
The arguments are those specified in the command-string. The standard input and stan
dard output will not appear on this line. All required files will be moved to the execution 
directory (a subdirectory of the spool directory) and the UNIX command is executed using 
the Shell specified in the uucp. h header file. In addition, a shell "PA TH" statement is 
prepended to the command line as specified in the uuxqt program. 

After execution, the standard output is copied or set up to be sent to the proper place. 

3. Uucico - Copy In, Copy Out 

The uucico program will perform the following major functions: 

Scan the spool directory for work. 

Place a call to a remote system. 

Negotiate a line protocol to be used. 

Execute all requests from both systems. 

Log work requests and work completions. 

Uucico may be started in several ways; 



36-6 

a) by a system daemon, 

b) by one of the uucp, w1x, uuxqt or uucico programs, 

c) directly by the user (this is usually for testing), 

d) by a remote system. (The uucico program should be specified as the "shell" field in 
the "/etc/passwd" file for the "uucp" logins.> 

When started by method a, b or c, the program is considered to be in MASTER mode. In this 
mode, a connection will be made to a remote system. If started by a remote system (method 
d), the program is considered to be in SLAVE mode. 

The ,\-!ASTER mode will operate in one of two ways. If no system name is specified (-s 
option not specified) the program will scan the spool directory for systems to call. If a system 
name is specified, that system will be called, and work will only be done for that system. 

The uucico program is generally started by another program. There are several options used for 
execution: 

-rl 

-ssys 

Start the program in MASTER mode. This is used when uucico is started by a 
program or "cron" shell. 

Do work only for system ~vs. If -s is specified, a call to the specified system 
will be made even if there is no work for system sys in the spool directory. 
This is useful for polling systems which do not have the hardware to initiate a 
connection. 

The following options are used primarily for debugging: 

-ddir Use directory dir for the spool directory. 

-xnum Num is the level of debugging output desired. 

The next part of this section will describe the major steps within the uucico program. 

Scan For Work 

The names of the work related files in the spool directory have format 

type . system-name grade number 

where: 

Type is an upper case letter, ( C - copy command file, D - data file, X - execute file); 

System-name is the remote system; 

Grade is a character; 

Number is a four digit, padded sequence number. 

The file 

C.res45n003 l 

would be a work file for a fik: transfer between the local machine and the "res45'' machine. 

The scan for work is done by looking through the spool directory for work .files (files with prefix 
"C. "). A list is made of all systems to be called. Uucico will then call each system and process 
all work Jiles. 

Call Remote System 

The call is made using information from several files which reside in the uucp program direc
tory. At the start of the call process. a lock is set to forbid multiple conversations between the 
same two systems. 

The system name is found in the l.sys file. The information contained for each system is; 

( 

( 



36-7 

[l] system name, 

[2] times to call the system (days-of-week and times-of-day), 

[3] device or device type to be used for call, 

[4] line speed, 

[5] phone number if field [3} is ACU or the device name (same as field [3]) if not ACU, 

[6] login information (multiple fields), 

The time field is checked against the present time to see if the call should be made. 

The phone number may contain abbreviations (e.g. mh, py, boston) which get translated into 
dial sequences using the L-dialcodes file. 

The L-devices file is scanned using fields [3] and [4] from the L.sys file to find an available dev
ice for the call. The program will try all devices which satisfy [3] and [4] until the call is made, 
or no more devices can be tried. If a device is successfully opened, a lock file is created so that 
another copy of uucico will not try to use it. If the call is complete, the login information (field 
[6J of L.sys) is used to login. 

The conversation between the two uucico programs begins with a handshake started by the 
called, SLAVE, system. The SLAVE sends a message to let the MASTER know it is ready to 
receive the system identification and conversation sequence number. The response from the 
MASTER is verified by the SLAVE and if acceptable, protocol selection begins. The SLAVE 
can also reply with a "call-back required" message in which case, the current conversation is 
terminated. 

Line Protocol Selection 

The remote system sends a message 

P pro to-list 

where proto-list is a string of characters, each representing a line protocol. 

The calling program checks the proto-list for a letter corresponding to an available line protocol 
and returns a use-protocol message. The use-protocol message is 

Ucode 

where code is either a one character protocol letter or N which means there is no common pro
tocol. 

Work Processing 

The initial roles ( MASTER or SLAVE ) for the work processing are the mode in which each 
program starts. (The MASTER has been specified by the "-rl" uucico option.) The MASTER 
program does a work search similar to the one used in the "Scan For Work" section. 

There are five messages used during the work processing, each specified by the first character of 
the message. They are~ 

S send a file, 

R receive a file, 

C copy complete, 

X execute a uucp command, 

H hangup. 

The MASTER will send R, Sor X messages until all work from the spool directory is complete, 
at which point an H message will be sent. The SLAVE will reply with SY, SN, RY, RN, HY, 
HN, XY, XN, corresponding to yes or no for each request. 



36-8 

send and receive replies are based on penmsswn to access the requested file/directory 
using the and read/write permissions of the file/directory. After each file is copied 
into the spool directory the receiving system, a copy-complete message is sent by the 
receiver of the The message CY will be sent if the file been moved from 
the temporary spool file to the actual destination. message is sent On the 
case of CN, the transferred will be in the a name beginning with 
"TM'.) The requests and results are logged on both systems. 

The hangup response is determined the Sl.A VE program by a work scan of the spool direc
tory. If work for the remote system exists in the SLA VE's directory, an HN message is 
sent and the programs switch roles. If no work exists, an HY response is sent 

Conversation 

a HY message is received the ;'v/ASTER it is echoed back to the SLAVE and the proto-
cols are turned program sends a "00" message to the other. The original 
SLAVE program will clean up and terminate. MASTER will proceed to cali other systems 
and process work as long as possible or terminate if a - s option was specified. 

4. Uuxqt ~ Uucp Execution 

The uuxqt program is used to execute execute 1111x. The 1111xqt program may be 
started by either the uucico or w1x programs. The program scans the spool directory for execute 

(prefix "X."). hone is checked to see if all the are available and if so, 
the command line or send line is executed. 

The e.'(i.?Cllte/ile is described in the "'Uux'' section above. 

execution is a sh ··--c of the command line after appropriate 
standoxd input and standard output have been If a standard output is specified, the 
program will create a send command or copy the output file as appropriate. 

5. Uulog • Uucp Log I 

The uucp programs create individual 
may be executed to prepend these 

for each program invocation. Periodically, uu!og 
to the system logfiie. method of logging was 

chosen to minimize file of the during program execution. 

1111/og program m.::rges the individual lo;:; entries. The output 
request is the use of the 

-ssys 

- uuser 

entries where sys is the remote system name; 

entries for user user. 

The intersection of lines satisfying the two options is output. A null 5ys or user means a!I sys
tem names or users respectively. 

6. Uudean - 'Lucp S Directory 

This program is typically started by the once a day. Its function is to remove files 
from the spool directory which are more than 3 days old. These are files for work 
which can not be completed. 

The options available are: 

-ddir 

--m 

The direcwry to be scanned is dir. 

Send mail to the owner of each file being removed. th;it most files put 
into the spool directory will be owned by the owner of the uucp programs since 
the setuid bit will be set on these programs. The mail will therefore most 
often go to the owner of the uucp programs.) 

( 

( 



36-9 

- nhours Change the aging time from 72 hours to hours hours. 

-ppre Examine files with prefix pre for deletion. (Up to I 0 file prefixes may be 
specified.) 

-xnum This is the level of debugging output desired. 

7. Security 

The uucp system, left unrestricted, will let any outside user execute any com
mands and copy in/out any file which is readable/writable by the uucp login 
user. It is up to the individual sites to be aware of this and apply the protec
tions that they feel are necessary. 

There are several security features available aside from the normal file mode protections. 
These must be set up by the installer of the uucp system. 

The login for uucp does not get a standard shell. Instead, the uucico program is started. 
Therefore, the only work that can be done is through uucico. 

A path check is done on file names that are to be sent or received. The USER FILE supplies 
the information for these checks. The USERFILE can also be set up to require call-back for 
certain login-ids. (See the "Files required for execution" section for the file description.) 

A conversation sequence count can be set up so that the called system can be more 
confident that the caller is who he says he is. 

- The uuxqt program comes with a list of commands that it will execute. A "PATH" shell 
statement is prepended to the command line as specifed in the uuxqt program. The installer 
may modify the list or remove the restrictions as desired. 

The l.sys file should be owned by uucp and have mode 0400 to protect the phone numbers 
and login information for remote sites. (Programs uucp, uucico, uux, uuxqt should be also 
owned by uucp and have the setuid bit set.) 

8. Uucp Installation 
There are several source modifications that may be required before the system programs are 
compiled. These relate to the directories used during compilation, the directories used during 
execution, and the local uucp system-name. 

The four directories are: 

lib (/usr/src/cmd/uucp) This directory contains the source files for generating 
the uucp system. 

program (/usr/lib/uucp) This is the directory used for the executable system pro
grams and the system files. 

spool (/usr/spool/uucp) This is the spool directory used during uucp execution. 

xqtdir Uusr/spool/uucp/.XQTDIR) This directory is used during execution of exe-
cute .files. 

The names given in parentheses above are the default values for the directories. The italicized 
named lib, program, xqrdir, and spool will be used in the following text to represent the appropri
ate directory names. 

There are two files which may require modification, the makefile file and the uucp.h file. The 
following paragraphs describe the modifications. The modes of spool and xqtdir should be made 
"0777". 



36-10 

Uucp.h modification 

Change the program and the spool names from the default values to the directory names to be 
used on the local system using global edit commands. 

Change the de.fine value for AlYNAME to be the local uucp system-name. 

makefile modification 

There are several make variable definitions which may need modification. 

INSDIR This is the program directory (e.g. INSDIR=/usr/lib/uucp). This parameter is 
used if "make cp" is used after the programs are compiled. 

IOCTL 

PKON 

This is required to be set if an appropriate ioctl interface subroutine does not 
exist in the standard "C" library; the statement "IOCTL =-ioctl.o" is required 
in this case. 

The statement "PKON = pkon.o" is required if the packet driver is not in the 
kernel. 

Compile the system The command 

make 

will compile the entire system. The command 

make cp 

will copy the commands to the to the appropriate directories. 

The programs uucp, 1111x, and uu/og should be put in "/usr/bin". The programs uuxqt, uucico, 

and uuclean should be put in the program directory. 

Files required for execution 

There are four files which are required for execution, all of which should reside in the program 
directory. The field separator for all files is a space unless otherwise specified. 

L-devices 

This file contains entries for the call-unit devices and hardwired connections which are to be 
used by uucp. The special device files are assumed to be in the /dev dire'ctory. The format for 
each entry is 

line call-unit speed 

where: 

line 

call-unit 

speed 

The line 

is the device for the line (e.g. culO), 

is the automatic call unit associated with line (e.g. cuaO), (Hardwired lines 
have a number "O'' in this field.), 

is the line speed. 

culO cuaO 300 

would be set up for a system which had device culO wired to a call-unit cuaO for use at 300 
baud. 

L-dialcodes 

This file contains entries with location abbreviations used in the l.sys file (e.g. PY, mh, boston). 
The entry format is 

( 

( 

( 

( 



36-11 

abb dial-seq 

where; 

abb 

dial-seq 

The line 

is the abbreviation, 

is the dial sequence to call that location. 

PY 165-

would be set up so that entry py7777 would send 165 - 7777 to the dial-unit. 

LOGIN/SYSTEM NAMES 

It is assumed that the login name used by a remote computer to call into a local computer is not 
the same as the login name of a normal user of that local machine. However, several remote 
computers may employ the same login name. 

Each computer is given a unique system name which is transmitted at the start of each call. 
This name identifies the calling machine to the called machine. 

USERFILE 

This file contains user accessibility information. It specifies four types of constraint; 

[l] which files can be accessed by a normal user of the local machine, 

[2} which files can be accessed from a remote computer, 

[3] which login name is used by a particular remote computer, 

[4] whether a remote computer should be called back in order to confirm its identity. 

Each line in the file has the following format 

login.sys ! c l path-name I path-name l 
where: 

login is the login name for a user or the remote computer, 

sys is the system name for a remote computer, 

c is the optional call-back required !lag, 

path-name is a path-name prefix that is acceptable for user. 

The constraints are implemented as follows. 

[l] When the program is obeying a command stored on the local machine, MASTER 
mode, the path-names allowed are those given for the first line in the USERFILE 
that has a login name that matches the login name of the user who entered the com
mand. If no such line is found, the first line with a 11111! login name is used. 

[2] When the program is responding to a command from a remote machine, SLAVE 
mode, the path-names allowed are those given for the first line in the file that has 
the system name that matches the system name of the remote machine. If no such 
line is found, the first one with a null system name is used. 

[3] When a remote computer logs in, the login name that it uses must appear in the 
USERFILE. There may be several iines with the same login name but one of them 
must either have the name of the remote system or must contain a null system 
name. 

{4l If the line matched in ([3J) contains a "c", the remote machine is called back 
before any transactions take place. 

The line 



36-12 

u,m /usr/wz 

allows machine m to login with name 11 and request the transfer of files whose names start with 
"/usr/xyz". 

The line 

dan, I usr I dan 

allows the ordinary user da11 to issue commands 

The lines 

files whose name starts with "/usr/dan". 

u,m /usr/xyz /usr/spoo! 
u, /usr/spool 

allows any remote machine to login with name 11, but if its system name is not m, it can only 
ask to transfer files whose names start with "/usr/spool". 

The lines 

root, I 
/usr 

allows any user to transfer files beginning with "/usr'' but the user with login root can transfer 
any file. 

Lsys 

Each entry in this file represents one system which can be called 
The fields are described below. 

the local uucp programs. 

system name 

The name the remote system. 

time 

This is a string which indicates the days-of-week and times-of-day when the system should 
be called (e.g. MoTuThOS00-1730). 

The day portion may be ;:i list containing some of 

Su Mo Tu We Th Fr Sa 

or it may be Wk for any week-day or Any for any day. 

The time should be a rJnge of times (e.g. 0800-1230). If no time portion is specified, 
any time of day is assumed to be ok for the call. 

device 

This is either ACU or the hardwired device to be used for the call. For the hardwired 
case, the last part of the special file name is used (e.g. ttyO). 

speed 
This is the line speed for the call <e:g. 300). 

phone 

The phone number is made up of an optional alphabetic abbreviation and a numeric part. 
The abbreviation is one which appears in the L-d1alcodes file (e.g. mh5900, bos
ton995-9980). 

For the hardwired devices, this fidd contains the same string as used for the device field. 

( 

( 

( 



36-13 

login 

The login information is given as a series of fields and subfields in the format 

expect send I expect send I ... 
where; expect is the string expected to be read and send is the string to be sent when the 
expect string is received. 

The expect field may be made up of subfields of the form 

expect!- send-expectJ ... 

where the send is sent if the prior expect is not successfully read and the expect following 
the send is the next expected string. 

There are two special names available to be sent during the login sequence. The string 
EOT will send an EOT character and the string BREAK will try to send a BREAK charac
ter. (The BREAK character is simulated using line speed changes and null characters and 
may not work on all devices and/or systems.) 

A typical entry in the L.sys file would be 

sys Any ACU 300 mh7654 login uucp ssword: word 

The expect algorithm looks at the last part of the string as illustrated in the password field. 

9. Administration 

This section indicates some events and files which must be administered for the uucp system. 
Some administration can be accomplished by shell.files which can be initiated by crontab entries. 
Others will require manual intervention. Some sample shell files are given toward the end of 
this section. 

SQFILE - sequence check file 

This file is set up in the program directory and contains an entry for each remote system with 
which you agree to perform conversation sequence checks. The initial entry is just the system 
name of the remote system. The first conversation will add two items to the line, the conversa
tion count, and the date/time of the most resent conversation. These items will be updated 
with each conversation. If a sequence check fails, the entry will have to be adjusted. 

TM - temporary data files 

These files are created in the spool directory while files are being copied from a remote 
machine. Their names have the form 

TM.pid.ddd 

where pid is a process-id and ddd is a sequential three digit number starting at zero for each 
invocation of uucico and incremented for each file received. 

After the entire remote file is received, the TM file is moved/copied to the requested destina
tion. If processing is abnormally terminated or the move/copy fails, the file will remain in the 
spool directory. 

The leftover files should be periodically removed~ the uuclean program is useful in this regard. 
The command 

uuclean - pTM 

will remove all TM files older than three days. 



36-14 

LOG - log entry files 

During execution of programs, individual LOG files are created in the spool directory with infor
mation about queued requests, calls to remote systems, execution of uux commands and file 
copy results. These files should be combined into the LOGFILE by using the 111ilaK program. 
This program will put the new LUG hies at the beginning of the existing LOGFILE. The com
mand 

uulog 

will accomplish the merge. Options are available to print some or al! the log entries after the 
files are merged. The LOGFILE should be removed periodically since it is copied each time 
new LOG entries are put into the file. 

The LOG files are created initially with mode 0222. If the program which creates the file ter
minates normally, ii changes the mode to 0666. Aborted runs may leave the files with mode 
0222 and the 1111/og progrJm will not read or remove them. To remove them, either use rm, 
1111clean, or change the mode to 0666 and let 1111/og merge them with the LOGFILE. 

STST - system status files 

These files are created in the spool direc10ry by the 1111cico program. They contain information 
of failures such as login, dialup or sequence check and will contain a TALKING status when to 
machines are conversing. The form of the file name is 

STST.sys 

where .sys is the remote system name. 

For ordinary failures (dialup, login), the file will prevent repeated tries for about one hour. For 
sequence check failures. the file must be removed before any future attempts to converse with 
that remote system. 

If the file is left due to an aborted run. it may contain a TALKING status. In this case, the file 
must be removed before a conversation is attempted. 

LCK - lock files 

Lock files are created for each device in use (e.g. automatic calling unit) and each system 
conversing. This prevents duplicate conversations and multiple attempts to use the same dev
ices. The form of the !ock fiie name is 

LCK .. str 

where str is either a device or system name. The files may be left in the spool directory if runs 
abort. They wili be ignored (reused) after a time of about 24 hours. When runs abort and calls 
are desired before the time limit, the lock files should be removed. 

Shell Files 

The uucp program wili spoo! work and attempt to start the uucico program. but the starting of 
1111c1co will sometimes fail. (No devices available, login failures etc.). Therefore, the uucico 
program should be periodically started. The command to start 1wcico can be put in a "shell" 
file with a command to merge LOG files and star-ted by a crontab entry on an hourly basis. The 
file could contain the commands 

proxra ml u u log 
programluucico - rl 

Note that the "-·rl" option is required to start the 11uc1co program in .\JASTER mode. 

Another shell Ale may be set up on a daily basis to remove TM, STand LCK files and C or D. 
files for work which can not be accomplished for reasons like bad phone number, login changes 
etc. A shell file containing commands like 

( 

( 

( 



36-15 

program/uuclean -pTM -pC. -pD. 
program/uuclean -pST -pLCK -nl2 

can be used. Note the "-nl2" option causes the ST and LCK files older than 12 hours to be 
deleted. The absence of the " - n" option will use a three day time limit. 

A daily or weekly shell should also be created to remove or save old LOGF!lEs. A shell like 

cp spooULOGFILE spoo//o.LOGFILE 
rm spool/LOGFILE 

can be used. 

Login Entry 

One or more logins should be set up for uucp. Each of the "/etc/passwd" entries should have 
the "program/uucico" as the shell to be executed. The login directory is not used, but if the 
system has a special directory for use by the users for sending or receiving file, it should as the 
login entry. The various logins are used in conjunction with the USERFILE to restrict file 
access. Specifying the shell argument limits the login to the use of uucp ( 11ucico) only. 

File Modes 

It is suggested that the owner and file modes of various programs and files be set as follows. 

The programs uucp, uux, uucico and uuxqt should be owned by the uucp login with the "setuid" 
bit set and only execute permissions (e.g. mode 04111). This will prevent outsiders from 
modifying the programs to get at a standard shell for the uucp logins. 

The L.sys, SQFILE and the USER FILE which are put in the program directory should be owned 
by the uucp login and set with mode 0400. 





On the Security of UNIX 

Dennis M. Ritchie 

Bell Laboratories 
Murray Hill, New Jersey 07974 

Recently there has been much interest in the security aspects of operating systems and 
software. At issue is the ability to prevent undesired disclosure of information, destruction of 
information, and harm to the functioning of the system. This paper discusses the degree of 
security which can be provided under the UNIXt system and offers a number of hints on how to 
improve security. 

The first fact to face is that UNIX was not developed with security. in any realistic sense, in 
mind; this fact alone guarantees a vast number of holes. (Actually the same statement can be 
made with to most systems.) The area of security in which UNIX is theoretically weakest 
is in protecting against crashing or at least crippling the operation of the system. The problem 
here is not mainly in uncritical acceptance of bad parameters to system calls- there may be 
bugs in this area, but none are known- but rather in lack of checks for excessive consumption 
of resources. Most notably, there is no limit on the amount of disk storage used, either in total 
space allocated or in the number of files or directories. Here is a particularly ghastly shell 
sequence guaranteed to stop the system: 

while : : do 
mkdir x 
cd x 

done 

Either a panic will occur because all the i-nodes on the device are used up, or all the disk 
blocks be consumed, thus preventing anyone from writing files on the device. 

In this version of the system, users are prevented from creating more than a set number 
of processes simultaneously, so unless users are in collusion it is unlikely that any one can stop 
the system altogether. However, creation of 20 or so CPU or disk-bound jobs leaves few 
resources available for others. Also, if many large jobs are run simultaneously, swap space may 
n.m out, causing a panic. 

It should be evident that excessive consumption of disk space, files, swap space, and 
processes can easily occur accidentally in malfunctioning programs as well as at command level. 
In fact UNIX is essentially defenseless against this kind of abuse, nor is there any easy fix. The 
best that can be said is that it is generally fairly easy to detect what has happened when disaster 

to identify the user responsible, and take appropriate action. In practice, we have found 
that difficulties in this area are rather rare, but we have not been faced with malicious users, 
and enjoy a fairly generous supply of resources which have served to cushion us against 
accidental overconsumption. 

The picture is considerably brighter in the area of protection of information from unau
thorized perusal and destruction. Here !he degree of security seems (almost) adequate theoret
ically, and the problems lie more in the necessity for care in the actual use of the system. 

Each UNIX file has associated with it eleven bits of protection information together with a 
user identification number and a user-group identification number (UID and GID). Nine of 

'!'UNIX is a Trademark of Bell Laboratories. 

37-1 



37-2 

the protection bits are used to specify independently perm1ss1on to read, to write, and to exe
cute the file to the user himself, to members of the user's group, and to ail other users. Each 
process generated by or for a user has associated with it an effective lJID and a real UID, and 
an effective and real GID. When an attempt is made to access the file for reading, writing, or 
execution, the user process's effective UID is compared against the file's UID~ if a match is 
obtained, access is granted provided the read, write, or execute bit respectively for the user 
himself is present. If the UID for the file and for the process fail to match, but the GID's do 
match, the group ·bits are used; if the GID's do not match, the bits for other users are tested. 
The last two bits of each file's protection information, called the set-UID and set·GID bits, are 
used only when the file is executed as a program. If, in this case, the set-UID bit is on for the 
file, the effective UID for the process is changed to the UID associated with the file; the change 
persists until the process terminates or until the UID changed again by another execution of a 
set-UID file. Similarly the effective group ID of a process is changed to the GID associated 
with a file when that file is executed and has the set~GID bit set. The real UID and GID of a 
process do not change when any file is executed, but only as the result of a privileged system 
caU. 

The basic notion of the set@UID and set~GID bits is that one may write a program which 
is executable by others and which maintains fiies accessible to others only by that program. 
The classical example is the game-playing program which maintains records of the scores of its 
players. The program itself has to read and write the score fiie, but no one but the game's 
sponsor can be allowed unrestricted access to the file lest they manipulate the game to their 
own advantage. The solution is to turn on the set-UID bit of the game program. When. and 
only when, it is invoked by players of the game, it may update the score file but ordinary pro
grams executed by others cannot access the score. 

There are a number of special cases involved in determining access permissions. Since 
executing a directory as a program is a meaningless operation. the execute-permission bit, for 
directories, is taken instead to mean permission to search the directory for a given file during 
the scanning of a path name~ thus if a directory has execute permission but no read permission 
for a given user, he may access files with known names in the directory, but may not read (list) 
the entire contents of the directory. Write permission on a directory is interpreted to mean that 
che user may create and delete files in that directory~ it is impossible for any user to write 
directly into any directory. 

Another. and from the point of view of security, much more serious special case is that 
there is a "super user" who is able to read any fil.e and write any non~directory. The super
user is also able to change the protection mode and the owner UID and G ID of any fiie and to 
invoke privileged system calls. It must be recognized that the mere notion of a super·user is a 
theoretical, and usually practical. blemish on any protection scheme. 

The first necessity for a secure system is of course arranging that aB files and directories 
have the proper protection modes. Traditionally, UNIX software has been exceedingly permis~ 
sive in this regard; essentially all commands create files readable and writable by everyone. in 
the current version, this policy may be easily adjusted to suit the needs of the installation or the 
individual user. Associated with each process and its descendants is a mask, which is in effect 
and 0 ed with the mode of every file and directory created by that process. In this way, users 
can arrange that, by default, all their files are no more accessible than they wish. The standard 
mask, set by login, allows all permissions to the user himself and to his group, but disallows 
writing by others. 

To maintain both data privacy and data integricy, it is necessary, and largely sufficient, to 

make one's files inaccessible to others. The lack of sufficiency could follow from the existence 
of set-UID programs created by the user and the possibility of total breach of system security in 
one of the ways discussed below (or one of the ways not discussed be!ow). For greater protec· 
tion, an encryption scheme is avaiiabie. Since .the editor is able to create encrypted documents, 
and the crypt command can be used to pipe such documents into the other text-processing pro
grams, the length of time during which de:.mext versions need be available is strictly limited. 



37-3 

The encryption scheme used is not one of the strongest known, but it is judged adequate, in 
the sense that cryptanalysis is likely to require considerably more effort than more direct 
methods of reading the encrypted files. For example; a user who stores data that he regards as 
truly secret should be aware that he is implicitly trusting the system administrator not to install 
a version of the crypt command that stores every typed password in a file. 

Needless to say, the system administrators must be at least as careful as their most 
demanding user to place ihe correct protection mode on the files under their control. In partic· 
ular, it is necessary that special files be protected from writing, and probably reading, by ordi
nary users when they store sensitive files belonging to other users. It is easy to write programs 
that examine and change files by accessing the device on which the files live. 

On the issue of password security, UNIX is probably better than most systems. Passwords 
are stored in an encrypted form which, in the absence of serious attention from specialists in 
the field, appears reasonably secure, provided its limitations are understood. In the current ver
sion, it is based on a slightly defective version of the Federal DES; it is purposely defective so 
that easily-available hardware is useless for attempts at exhaustive key-search. Since both the 
encryption algorithm and the encrypted passwords are available, exhaustive enumeration of 
potential passwords is still feasible up 1.0 a point. We have observed that users choose pass
words that are easy to guess: they are short, or from a limited alphabet, or in a dictionary. 
Passwords should be at least six characters long and randomly chosen from an alphabet which 
includes digits and special characters. 

Of course there also exist feasible non-cryptanalytic ways of finding out passwords. For 
example: write a program which types out "login:" on the typewriter and copies whatever is 
typed to a file of your own. Then invoke the command and go away until the victim arrives. 

The set-UID {set-GlD) notion must be used carefully if any security is to be maintained. 
thing to keep in mind is that a writable set-UID file can have another program copied 

onto it For example, if the super-user (su) command is writable, anyone can copy the shell 
onto it and get a password-free version of su. A more subtle problem can come from set-UID 
programs which are not sufficiently careful of what is fed into them. To take an obsolete exam
ple, the previous version of the mail command was set-UID and owned by the super-user. 
This version sent mail to the recipient's own directory. The notion was that one should be able 
to send mail to anyone even if they want to protect their directories from writing. The trouble 
was that mail was rather dumb: anyone could mail someone else's private file to himself. Much 
more serious is the following scenario: make a file with a line like one in the password file 
which allows one to log in as the super-user. Then make a link named ".mail" to the password 
file in some writable directory on the same device as the password file (say /tmp). Finally mail 
the bogus login line to /tmp/.mail; You can then login as the super-user, clean up the incrim
inating evidence, and have your will. 

The fact that users can mount their own disks and t pes as file systems can be another 
way of gaining super-user status. Once a disk pack is mounted, the system believes what is on 
it. Thus one can take a blank disk pack, put on it anything desired, and mount it. There are 
obvious and unfonunate consequences. For example: a mounted disk with garbage on it will 
crash the system; one of the files on the mounted disk can easily be a password-free version of 
su; other files can be unprotected entries for. special files. The only easy fix for this problem is 
to forbid the use of mount to unprivileged users. A partial solution, not so restrictive, would 
be to have the mount command examine the special file for bad data, set-UID programs owned 

others, and accessible special files, and balk at unprivileged invokers. 





) 

Password Security: A Case History 

Robert Morris 

Ken Thompson 

Bell Laboratories 
Murray Hill, New Jersey 07974 

ABSTRACT 

This paper describes the history of the design of the password security 
scheme on a remotely accessed time-sharing system. The present design was 
the result of countering observed attempts to penetrate the system. The result 
is a compromise between extreme security and ease of use. 

April 3, 1978 

38-1 



INTRODUCTION 

Password Security: A Case History 

Robert Morris 

Ken Thompson 

Bell Laboratories 
Murray Hill, New Jersey 07974 

Pass~ord security on the UNIXt time-sharing system [ 1] is provided by a collection of pro
grams whose elaborate and strange design is the outgrowth of many years of experience with 
earlier versions. To help develop a secure system, we have had a continuing competition to 
devise new ways to attack the security of the system (the bad guy) and, at the same time, to 
devise new techniques to resist the new attacks (the good guy). This competition has been in 
the same vein as the competition of long standing between manufacturers of armor plate and 
those of armor-piercing shells. For this reason, the description that follows will trace the his
tory of the password system rather than simply presenting the program in its current state. In 
this way, the reasons for the design will be made clearer, as the design cannot be understood 
without also understanding the potential attacks. 

An underlying goal has been to provide password security at minimal inconvenience to 
the users of the system. For example, those who want to run a completely open system 
without passwords, or to have passwords only at the option of the individual users, are able to 
do so, while those who require all of their users to have passwords gain a high degree of secu
rity against penetration of the system by unauthorized users. 

The password system must be able not only to prevent any access to the system by unau
thorized users (i.e. prevent them from logging in at all), but it must also prevent users who are 
already logged in from doing things that they are not authorized to do. The so called "super
user" password, for example, is especially critical because the super-user has all sorts of per
missions and has essentially unlimited access to all system resources. 

Password security is of course only one component of overall system security, but it is an 
essential component. Experience has shown that attempts to penetrate remote-access systems 
have been astonishingly sophisticated. 

Remote-access systems are peculiarly vulnerable to penetration by outsiders as there are 
threats at the remote terminal, along the communications link, as well as at the computer itself. 
Although the security of a password encryption algorithm is an interesting intellectual and 
mathematical problem, it is only one tiny facet of a very large problem. In practice, physical 
security of the computer, communications security of the communications link, and physical 
control of the computer itself loom as far more important issues. Perhaps most important of all 
is control over the actions of ex-employees, since they are not under any direct control and 
they may have intimate knowledge about the system, its resources, and methods of access. 
Good system security involves realistic evaluation of the risks nor only of deliberate attacks but 
also of casual unauthorized access and accidental disclosure. 

tUNIX is a Trademark of Bell Laboratories. 

38-2 

( 

( 



, .. ,~ 

·-·; 
..... y· 

., 
) 

:.; 

38-3 

PROLOGUE 

The UNIX system was first implemented with a password file that contained the actual 
passwords of all the users, and for that reason the password file had to be heavily protected 
against being either read or written. Although historically, this had been the technique used for 
remote-access systems, it was completely unsatisfactory for several reasons. 

The technique is excessively vulnerable to lapses in security. Temporary loss of protec
tion can occur when the password file is being edited or otherwise modified. There is no way to 
prevent the making of copies by privileged users. Experience with several earlier remote-access 
systems showed that such lapses occur with frightening frequency. Perhaps the most memor
able such occasion occurred in the early 60's when a system administrator on the CTSS system 
at MIT was editing the password file and another system administrator was editing the daily 
message that is printed on everyone's terminal on login. Due to a software design error, the 
temporary editor files of the two users were interchanged and thus, for a time, the password file 
was printed on every terminal when it was logged in. 

Once such a lapse in security has been discovered, everyone's' password must be changed, 
usually simultaneously. at a considerable administrative cost. This is not a great matter. but far 
more serious is the high probability of such lapses going unnoticed by the system administra
tors. 

Security against unauthorized disclosure of the passwords was, in the last analysis, impos
sible with this system because, for example, if the contents of the file system are put on to 
magnetic tape for backup, as they must be, then anyone who has physical access to the tape can 
read anything on it with no restriction. 

Many programs must get information of various kinds about the users of the system. and 
these programs in general should have no special permission to read the password file. The 
information which should have been in the password file actually was distributed (or replicated) 
into a number of files, all of which had to be updated whenever a user was added to or dropped 
from the system. 

THE FIRST SCHEME 
The obvious solution is to arrange that the passwords not appear in the system at all, and 

it is not difficult to decide that this can be done by encrypting each user's password, putting 
only the encrypted form in the password file, and throwing away his original password (the one 
that he typed in). When the user later tries to log in to the system, the password that he types 
is encrypted and compared with the encrypted version in the password file. If the two match. 
his login attempt is accepted. Such a scheme was first described in [3, p.91ff.1. It also seemed 
advisable to devise a system in which neither the password file nor the password program itself 
needed to be protected against being read by anyone . 

All that was needed to implement these ideas was to find a means or encryption that was 
very difficult to invert, even when the encryption program is available. Most of the standard 
encryption methods used (in the past) for encryption of messages are rather easy to invert. A 
convenient and rather good encryption program happened to exist on the system at the time: it 
simulated the M-209 cipher machine [4] used by the U.S. Army during World War 11. It 
turned out that the M-209 program was usable, but with a given key. the ciphers produced by 
this program are trivial to invert. It is a much more difficult matter to find out the key given 
the cleartext input and the enciphered output of the program. Therefore, the password was 
used not as the text to be encrypted but as the key. and a constant was encrypted using this 
key. The encrypted result was entered into the password file. 



38-4 

ATTACKS ON THE FIRST APPROACH 
Suppose that the bad guy has available the text of the password encryption program and 

the complete password file. Suppose also that he has substantial computing capacity at his 
disposal. 

One obvious approach to penetrating the password mechanism is to attempt to find a gen
eral method of inverting the encryption algorithm. Very possibly this can be done, but few suc
cessful results have come to light, despite substantial efforts extending over a period of more 
than five years. The results have not proved to be very useful in penetrating systems. 

Another approach to penetration is simply to keep trying potential passwords until one 
succeeds~ this is a general cryptanalytic approach called key search. Human beings being what 
they are, there is a strong tendency for people to choose relatively short and simple passwords 
that they can remember. Given free choice, most people will choose their passwords from a 
restricted character set (e.g. all lower-case letters), and will often choose words or names. This 
human habit makes the key s~arch job a great deal easier. 

The critical factor involved in key search is the amount of time needed to encrypt a 
potential password and to check the result against an entry in the password file. The running 
time to encrypt one trial password and check the result turned out to be approximately 1.25 
milliseconds on a POP-11170 when the encryption algorithm was recoded for maximum speed. 
It is takes essentially no more time to test the encrypted trial password against all the passwords 
in an entire password file, or for that matter, against any collection of encrypted passwords, 
perhaps collected from many installations. 

If we want to check all passwords of length n that consist entirely of lower-case letters, the 
number of such passwords is 26". If we suppose that the password consists of printable charac
ters only, then the number of possible passwords is somewhat less than 95". (The standard 
system "character erase" and "line kill" characters are, for example, not prime candidates.) 
We can immediately estimate the running time of a program that will test every password of a 
given length with all of its characters chosen from some set of characters. The following table 
gives estimates of the running time required on a PDP-11170 to test all possible character 
strings of length n chosen from various sets of characters: namely, all lower-case letters, all 
lower-case letters plus digits, all alphanumeric characters, all 95 printable ASCII characters, and 
finally all 128 ASCII characters. 

26 lower-case 36 lower-case letters 62 alphanumeric 95 printable all 128 ASCII 
n letters and digits characters characters characters 

1 30 msec. 40 msec. 80 msec. 120 msec. 160 msec. 
2 800 msec. 2 sec. 5 sec. 11 sec. 20 sec. 
3 22 sec. 58 sec. 5 min. 17 min. 43 min. 
4 10 min. 35 min. 5 hrs. 28 hrs. 93 hrs. 
5 4 hrs. 21 hrs. 318 hrs. 
6 107 hrs. 

One has to conclude that it is no great matter for someone with access to a PDP-11 to test all 
lower-case alphabetic strings up to length five and, given access to the machine for, say, several 
weekends, to test all such strings up to six characters in length. By using such a program 
against a collection of actual encrypted passwords, a substantial fraction of all the passwords will 
be found. 

Another profitable approach for the bad guy is to use the word list from a dictionary or to 
use a list of names. For example, a large commercial dictionary contains typicallly about 
250,000 words; these words can be checked in about five minutes. Again, a noticeable fraction 
of any collection of passwords will be found. Improvements and extensions will be (and have 
been) found by a determined bad guy. Some "good" things to try are: 

( 

( 

( 



38-5 

The dictionary with the words spelled backwards. 

A list of first names (best obtained from some mailing list). Last names, street names, 
and city names also work well. 

The above with initial upper-case letters. 

All valid license plate numbers in your state. (This takes about five hours in New Jer
sey.) 

Room numbers, social security numbers, telephone numbers, and the like. 

The authors have conducted experiments to try to determine typical users' habits in the 
choice of passwords when no constraint is put on their choice. The results were disappointing, 
except to the bad guy. In a collection of 3,289 passwords gathered from many users over a 
long period of time: 

15 were a single ASCH character; 

72 were strings of two ASCII characters: 

464 were strings of three ASCll characters; 

477 were string of four a!phamerics; 

706 were five letters, all upper-case or all lower-case: 

605 were six letters, all lower-case. 

An additional 492 passwords appeared in various available dic1ionaries, name lists, and the like. 
A total of 2,831, or 86%1 of this sample of passwords fell into one of these classes. 

There was, of course, considerable overlap between the dictionary results and the charac
ter string searches. The dictionary search alone, which required only five minutes to run, pro
duced about one third of the passwords. 

Users could be urged (or forced) to use either longer passwords or passwords chosen from 
a larger character set, or the system could itself choose passwords for the users. 

AN ANECDOTE 

An entertaining and instructive example is the attempt made at one installation to force 
users to use less prediciable passwords. The users did not choose their own passwords; the sys
tem supplied them. The supplied passwords were eight characters long and were taken from 
the character set consisting of lower-case letters and digits. They were generated by a pseudo
random number generator with only 215 starting values. The time required to search (again on 
a PDP-1 l /70) through all character strings of length 8 from a 36-character alphabet is l l 2 
years. 

Unfortunately, only 215 of them need be looked at, because that is the number of possible 
outputs of the random number generator. The bad guy did, in fact, generate and test each of 
these strings and found every one of the system-generated passwords using a total of only about 
one minute of machine time. 

IMPROVEMENTS TO THE FIRST APPROACH 

1. Slower Encryption 

Obviously, the first algorithm used was far too fast. The announcement of the DES 
encryption algorithm {2] by the National Bureau of Standards was timely and fortunate. The 
DES is, by design, hard to invert, but equally valuable is the fact that it is extremely slow when 
implemented in software. The DES was implemented and used in the following way: The first 
eight characters of the user's password are used as a key for the DES; then the algorithm is 
used to encrypt a constJnt. Although this constant is zero at the moment, it is easily accessible 
and can be made installation-dependent. Then the DES algorithm is iterated 25 times and the 
resulting 64 bits are repacked lo become a string of 11 printable characters. 



38-6 

2. Less Predictable Passwords 

The password entry program was modified so as to urge the user to use more obscure 
passwords. If the user enters an alphabetic password (all upper-case or all lower-case) shorter 
than six characters, or a password from a larger character set shorter than five characters, then 
the program asks him to enter a longer password. This further reduces the efficacy of key 
search. 

These improvements make it exceedingly difficult to find any individual password. The 
user is warned of the risks and if he cooperates, he is very safe indeed. On the other hand, he 
is not prevented from using his spouse's name if he wants to. 

3. Salted Passwords 

The key search technique is still likely to turn up a few passwords when it is used on a 
large collectipn of passwords, and it seemed wise to make this task as difficult as possible. To 
this end, when a password is first entered, the password program obtains a 12-bit random 
number (by reading the real-time clock) and appends this to the password typed in by the user. 
The concatenated string is encrypted and both the 12-bit random quantity (called the salt) and 
the 64-bit result of the encryption are entered into the password file. 

When the user later logs in to the system, the 12-bit quantity is extracted from the pass
word file and appended to the typed password. The encrypted result is required, as before, to 
be the same as the remaining 64 bits in the password file. This modification does not increase 
the task of finding any individual password, starting from scratch, but now the work of testing a 
given character string against a large collection of encrypted passwords has been mulliplied by 
4096 (2 12). The reason for this is that there are 4096 encrypted versions of each password and 
one of them has been picked more or less at random by the system. 

With this modification, it is likely that the bad guy can spend days of computer time try
ing to find a password on a system with hundreds of passwords, and find none at all. More 
important is the fact that it becomes impractical to prepare an encrypted dictionary in advance. 
Such an encrypted dictionary could be used to crack new passwords in milliseconds when they 
appear. 

There is a (not inadvertent) side effect of this modification. It becomes nearly impossible 
to find out whether a person with passwords on two or more systems has used the same pass
word on all of them, unless you already know that. 

4. The Threat of the DES Chip 

Chips to perform the DES encryption are already commercially available and they are very 
fast. The use of such a chip speeds up the process of password hunting by three orders of mag
nitude. To avert this possibility, one of the internal tables of the DES algorithm (in particular, 
the so-called E-table) is changed in a way that depends on the 12-bit random number. The E
table is inseparably wired into the DES chip, so that the commercial chip cannot be used. 
Obviously, the bad guy could have his own chip designed and built, but the cost would be 
unthinkable. 

5. A Subtle Point 

To login successfully on the UNIX system, it is necessary after dialing in to type a valid 
user name, and then the correct password for that user name. It is poor design to write the 
login command in such a way that it tells an interloper when he has typed in a invalid user 
name. The response to an invalid name should be identical to that for a valid name. 

When the slow encryption algorithm was first implemented, the encryption was done only 
if the user name was valid, because otherwise there was no encrypted password to compare with 
the supplied password. The result was that the response was delayed by about one-half second 
if the name was valid, but was immediate if invalid. The bad guy could find out whether a par
ticular user name was valid. The routine was modified to do the encryption in either case. 

( 

( 



38-7 

CONCLUSIONS 

On the issue of password security, UNIX is probably better than most systems. The use 
of encrypted passwords appears reasonably secure in the absence of serious attention of experts 
in the field. 

It is also worth some effort to conceal even the encrypted passwords. Some UNIX sys
tems have instituted what is called an "external security code" that must be typed when dialing 
into the system, but before logging in. If this code is changed periodically. then someone with 
an old password will likely be prevented from using it. 

Whenever any security procedure is instituted that attempts to deny access to unauthor
ized persons, it is wise to keep a record of both successful and unsuccessful attempts to get at 
the secured resource. Just as an out-of-hours visitor to a computer center normally must not 
only identify himself, but a record is usually also kept of his entry. Just so, it is a wise precau
tion to make and keep a record of all attempts to log into a remote-access system, 
and certainly all unsuccessful attempts. 

guys fall on a spectrum whose one end is someone with ordinary access to a system 
and whose is to out a particular password (usually that of the super-user) at the 
other end, someone who wishes to collect as much password information as possible from as 
many systems as possible. Most of the work here serves to frustrate the latter type; 
our experience that the former type of bad guy never was very 

We recognize that a time-sharing system must operate in a hostile environment We did 
not attempt to hide the security aspects of the operating system, thereby playing the customary 
make-believe game in which weaknesses of the system are not discussed no matter how 
apparent Rather we advertised the password algorithm and attack in the that this 
approach would minimize future trouble. The approach has been successful. 

References 

!11 Ritchie, D.M. and Thompson, K. The UNIX Time-Sharing System. Comm. ACM 17 
(July 1974), pp. 365-375. 

[2] Proposed Federal Information Processing Data Encryption Standard. Federal Register 
(40FR12134), March 17, 1975 

[3J Wilkes, M. V. Time-Sharing Computer Systems. American Elsevier, New York, (1968). 

U.S. Number 2,089,603. 






