&

Bell Laboratories

UNIX PROGRAMMER’S MANUAL

Seventh Edition, Volume 2A

January, 1979

VA-004(A)

UNIX™ TIME-SHARING SYSTEM:

UNIX PROGRAMMER’S MANUAL

Seventh Edition, Volume 2A4

January, 1979

Bell Telephone Laboratories, Incorporated
Murray Hill, New Jersey

VA-004(A)

Copyright 1979, Bell Telephone Laboratories, Incorporated.
Holders of a UNIX™M software license are permitted to copy this
document, or any portion of it, as necessary for licensed use of
the software, provided this copyright notice and statement of
permission are included.

CONTENTS

CHAPTER VOLUME
Index 2 A
1 Summary 2 A
2 The UNIX Time-Sharing System 2 A
3 UNIX for Beginners 2 A
4 Editor Tutorial 2 A
5 Advanced Editing 2 A
6 Shell Introduction 2 A
7 Learn 2 A
8 Typing Documents on the UNIX System 2 A
9 EQN 2 A
10 TBL 2 A
11 REFER 2 A
12 NROFF/TROFF Reference Manual 2 A
13 TROFF Tutorial 2 A
14 C Reference Manual 2 A
15 LINT 2 A
16 MAKE 2 A
17 UNIX Programming 2 A
18 ADB Tutorial 2 A
19 YACC 2 B
20 LEX 2 B
21 Rortran 77 2B
22 Ratfor 2B
23 M4 2 B

24 SED 2B

CHAPTER VOLUME

25 AWK 2 B
26 DC 2B
27 BC 2 B
28 Assembler 2 B
29 Setting Up UNIX 2B
30 Regenerating System Software 2 B
31 Implementation 2B
32 I/0 System 2 B
33 UNIX C Compiler 2 B
34 Portable C Compiler 2B
35 uuce 2B
36 UUCP Implementation 2 B
37 Security of UNIX 2B
38 Password Security 2B
39 Berkeley Virtual Vax/UNIX 2 C
40 C Shell Introduction 2 C
41 Display Editing with Vi 2 C
42 Edit: a Tutorial 2 C
43 Ex Reference Manual 2 C
44 Ex Supplement 2 C
45 Mail Reference Manual 2 C
46 Franz Lisp Manual 2 C
47 Berkeley Pascal 2 C
48 EFL 2 C
49 NROFF Using -me 2 C
50 -me Reference Manual 2 C

iv

CHAPTER

51
52
53

54

Berkeley Fonts

STYLE & DICTION Programs
SDB

Assembler

VOLUME

2 C
2 C
2 C

2 C

UNIX Programmer’s Manual
Volume 2 — Supplementary Documents

Seventh Edition
January 10, 1979

This volume contains documents which supplement the information contained in Volume
1 of The UNIXT Programmer’s Manual. The documents here are grouped roughly into the areas
of basics, editing, language tools, document preparation, and system maintenance. Further

general information may be found in the Bell System Technical Journal special issue on UNIX,
July-August, 1978.

Many of the documents cited within this volume as Bell Laboratories internal memoranda
or Computing Science Technical Reports (CSTR) are also contained here.

These documents contain occasional localisms, typically references to other operating sys-
tems like GCOS and IBM. In all cases, such references may be safely ignored by UNIX users.

General Works

1. 7th Edition UNIX — Summary.
A concise summary of the facilities available on UNIX.

2. The UNIX Time-Sharing System. D. M. Ritchie and K. Thompson.
The original UNIX paper, reprinted from CACM.

Getting Started

3. UNIX for Beginners — Second Edition. B. W. Kernighan.
An introduction to the most basic use of the system.
4 A Tutorial Introduction to the UNIX Text Editor. B. W. Kernighan.
An easy way to get started with the editor.
S. Advanced Editing on UNIX. B. W. Kernighan.
The next step.
6. An Introduction to the UNIX Shell. S. R. Bourne.
An introduction to the capabilities of the command interpreter, the shell.
7. Learn — Computer Aided Instruction on UNIX. M. E. Lesk and B. W. Kernighan.

Describes a computer-aided instruction program that walks new users through the
basics of files, the editor, and document preparation software.

Document Preparation

8 Typing Documents on the UNIX System. M. E. Lesk.
Describes the basic use of the formatting tools. Also describes ‘“—ms’’, a standard-
ized package of formatting requests that can be used to lay out most documents
(including those in this volume).

tUNIX is a Trademark of Bell Laboratories.

viii

9. A System for Typesetting Mathematics. B. W. Kernighan and L. L. Cherry.
Describes EQN. an easy-to-learn language for doing high-quality mathematical
typesetting,

10. TBL — A Program to Format Tables. M. E. Lesk.
A program to permit easy specification of tabular material for typesetting. Again,
easy to learn and use.

11. Some Applications of Inverted Indexes on the UNIX System. M. E. Lesk.
Describes, among other things, the program REFER which fills in bibliographic cita-
tions {rom a data base automatically.

12. NROFF/TROFF User’s Manual. J. F. Ossanna.
The basic formatting program.

13. A TROFF Tuiorial. B. W. Kernighan.
An introduction to TROFF for those who really want to know such things.

Programming

14, The C Programming Language — Reference Manual. D. M. Ritchie.
Official statement of the syntax and semantics of C. Should be supplemented by The
C Programming Language, B. W. Kernighan and D. M. Ritchie, Prentice-Hall, 1978,
which contains a tutorial introduction and many examples.

15. Lint, A C Program Checker. S. C. Johnson.
Checks C programs for syntax errors, type violations, portability problems, and a
variety of probable errors.

16. Make — A Program for Maintaining Computer Programs. S. [. Feldman.
Indispensable tool for making sure that large programs are properly compiled with
minimal effort.

17. UNIX Programming. B. W. Kernighan and D. M. Ritchie.
Describes the programming interface to the operating system and the standard I/O
library.

18. A Tutorial Introduction to ADB. J. F. Maranzano and S. R. Bourne.
How to use the ADB debugger.

Supporting Toels and Languages

19. YACC: Yet Another Compiler-Compiler. S. C. Johnson.
Converts a BNF specification of a language and semantic actions written in C into a
compiler for the language.

20. LEX — A Lexical Analyzer Generator. M. E. Lesk and E. Schmidt.
Creates a recognizer for a set of regular expressions; each regular expression can be
followed by arbitrary C code which will be executed when the regular expression is
found.

21. A Portable Fortran 77 Compiler. S. I. Feldman and P. J. Weinberger.
The first Fortran 77 compiler, and still one of the best.

22. Ratfor — A Preprocessor for a Rational Fortran. B. W. Kernighan.
Converts a Fortran with C-like control structures and cosmetics into real, ugly For-
tran.

23. The M4 Macro Processor. B. W. Kernighan and D. M. Ritchie.
M4 is a macro processor useful as a front end for C, Ratfor, Cobol, and in its own
right.

ix

24. SED — A Non-interactive Text Editor. L. E. McMahon.
A variant of the editor for processing large inputs.

25. AWK — A Pattern Scanning and Processing Language. A. V. Aho, B. W. Kernighan and
P. J. Weinberger.
Makes it easy to specify many data transformation and selection operations.

26. DC — An Interactive Desk Calculator. R. H. Morris and L. L. Cherry.
A super HP calculator, if you don’t need floating point.

27. BC — An Arbitrary Precision Desk-Calculator Language. L. L. Cherry and R. H. Morris.
A front end for DC that provides infix notation, control flow, and built-in functions.

28. UNIX Assembler Reference Manual. D. M. Ritchie.
The ultimate dead language.

Implementation, Maintenance, and Miscellaneous

29. Setting Up UNIX — Seventh Edition. C. B. Haley and D. M. Ritchie.
How to configure and get your system running.

30. Regenerating System Software. C. B. Haley and D. M. Ritchie.
What do do when you have to change things.

31. UNIX Implementation. K. Thompson.
How the system actually works inside.

32. The UNIX I/0 System. D. M. Ritchie.
How the 1/0 system really works.

33. A Tour Through the UNIX C Compiler. D. M. Ritchie.
How the PDP-11 compiler works inside.

34. A Tour Through the Portable C Compiler. S. C. Johnson.
How the portable C compiler works inside.
35. A Dial-Up Network of UNIX Systems. D. A. Nowitz and M. E. Lesk.
Describes UUCP, a program for communicating files between UNIX systems.
36. UUCP Implementation Description. D. A. Nowitz.
How UUCP works, and how to administer it.
37. On the Security of UNIX. D. M. Ritchie.
Hints on how to break UNIX, and how to avoid doing so.
38. Password Security: A Case History. R. H. Morris and K. Thompson.

How the bad guys used to be able to break the password algorithm, and why they
can’t now, at least not so easily.

7th Edition UNIX — Summary

September 6, 1978

Bell Laboratories
Murray Hill, New Jersey 07974

A. What’s new: highlights of the 7th edition UNIX{ System

Aimed at larger systems. Devices are addressable to 23! bytes, files to 230 bytes. 128K
memory (separate instruction and data space) is needed for some utilities.

Portability. Code of the operating system and most utilities has been extensively revised to
minimize its dependence on particular hardware.

Fortran 77. F77 compiler for the new standard language is compatible with C at the object

level. A Fortran structurer, STRUCT, converts old, ugly Fortran into RATFOR, a structured
dialect usable with F77.

Shell. Completely new SH program supports string variables, trap handling, structured pro-
gramming, user profiles, settable search path, multilevel file name generation, etc.

Document preparation. TROFF phototypesetter utility is standard. NROFF (for terminals) is
now highly compatible with TROFF. MS macro package provides canned commands for many
common formatting and layout situations. TBL provides an easy to learn language for prepar-
ing complicated tabular material. REFER fills in bibliographic citations from a data base.

UNIX-te-UNIX file copy. UUCP performs spooled file transfers between any two machines.

Data processing. SED stream editor does multiple editing functions in paralle! on a data
stream of indefinite length. AWK report generator does free-field pattern selection and arith-
metic operations.

Program development. MAKE controls re-creation of complicated software, arranging for
minimal recompilation.

Debugging. ADB does postmortem and breakpoint debugging, handles separate instruction and
data spaces, floating point, etc.

C language. The language now supports definable data types, generalized initialization, block
structure, long integers, unions, explicit type conversions. The LINT verifier does strong type
checking and detection of probable errors and portability problems even across separately com-
piled functions.

Lexical analyzer generator. LEX converts specification of regular expressions and semantic
actions into a recognizing subroutine. Analogous to YACC.

Graphics. Simple graph-drawing utility, graphic subroutines. and generalized plotting filters
adapted to various devices are now standard.

Standard input-output package. Highly efficient buffered stream 1/0 is integrated with format-
ted input and cutput.

Other. The operating system and utilities have been enhanced and freed of restrictions in
many other ways too numerous to relate.

+ UNIX is a Trademark of Bell Laboratories.

1-1

1-2

B. Hardware

The 7th edition UNIX operating system runs on a DEC PDP-11/45 or 11/70* with at least
the following equipment:

128K to 2M words of managed memory; parity not used.
disk: RP0O3, RP04, RP06, RKOS (more than 1 RK0S5) or equivalent.
console typewriter.
clock: KWI11-L or KWI11-P.
The following equipment is strongly recommended:
communications controller such as DL11 or DHI1L.
full duplex 96-character ASCII terminals.
O-track tape or extra disk for system backup.

The system is normally distributed on 9-track tape. The minimum memory and disk space
specified is enough to run and maintain UNIX. More will be needed to keep all source on line,
or to handle a large number of users, big data bases, diversified complements of devices, or
large programs. The resident code occupies 12-20K words depending on configuration; system
data occupies 10-28K words.

There is no commitment to provide 7th edition UNIX on PDP-11/34, 11/40 and 11/60
hardware.

C. Software

Most of the programs available as UNIX commands are listed. Source code and printed
manuals are distributed for all of the listed software except games. Almost all of the code is
written in C. Commands are self-contained and do not require extra setup information, unless
specifically noted as ‘“‘interactive.’” Interactive programs can be made 10 run from a prepared
script simply by redirecting input. Most programs intended for interactive use (e.g.. the editor)
allow for an escape to command level (the Shell). Most file processing commands can also go
from standard input to standard output (**filters™). The piping facility of the Shell may be used
1o connect such filters directly to the input or cutput of other programs.

1. Basic Software

This includes the time-sharing operating system with utilities, a machine language assem-
bler and a compiler for the programming language C—enough software to write and run new
applications and to maintain or modify UNIX itself.

1.1. Operating System

O UNIX The basic resident code on which everything eise depends. Supporis the system
calls, and maintains the file system. A general description of UNIX design phi-
losophy and system facilities appeared in the Communications of the ACM,
July, 1974. A more extensive survey is in the Beil System Technical Journal
for July-August 1978. Capabilities include:

O Reentrant code for user processes.

O Separate instruction and data spaces.

O “*Group’” access permissions for cooperative projects, with overlapping
memberships.

O Alarm-clock timeouts.

“PDP is a Trademark of Digital Equipment Corporation.

O DEVICES

0 BOOT
0 MKCONF

1-3

O Timer-interrupt sampling and interprocess monitoring for debugging and
measurement.

O Multiplexed 1/0 for machine-to-machine communication.

All 1/0 is logically synchronous. 1/0 devices are simply files in the file system.
Normally, invisible buffering makes all physical record structure and device
characteristics transparent and exploits the hardware’s ability to do overlapped
[/0. Unbuffered physical record 1/0 is available for unusual applications.
Drivers for these devices are available; others can be easily written:

O Asynchronous interfaces: DHI11, DL11. Support for most common ASCII
terminals.

O Synchronous interface: DP11.

O Automatic calling unit interface: DN11.

O Line printer: LP11.

O Magnetic tape: TU10 and TUI16.

O DECtape: TCI11.

O Fixed head disk: RS11, RS03 and RS04.

O Pack type disk: RP0O3, RP04, RP06; minimum-latency seek scheduling.
O Cartridge-type disk: RK0S, one or more physical devices per logical device.
O Null device.

O Physical memory of PDP-11, or mapped memory in resident system.
O Phototypesetter: Graphic Systems System/1 through DR11C.

Procedures to get UNIX started.

Tailor device-dependent system code to hardware configuration. As distributed,
UNIX can be brought up directly on any accéptable CPU with any acceptable
disk, any sufficient amount of core, and either clock. Other changes, such as
optimal assignment of directories to devices, inclusion of floating point simula-
tor, or installation of device names in file system, can then be made at leisure.

1.2. User Access Control

C LOGIN

O PASSWD

0O NEWGRP

Sign on as a new user.

O Verify password and establish user’s individual and group (project) identity.
O Adapt to characteristics of terminal.

O Establish working directory.

O Announce presence of mail (from MAIL).

O Publish message of the day.

O Execute user-specified profile.

O Start command interpreter or other initial program.

Change a password.
O User can change his own password.
O Passwords are kept encrypted for security.

Change working group (project). Protects against unauthorized changes to pro-
jects.

1.3. Terminal Handling

O TABS
O STTY

Set tab stops appropriately for specified terminal type.

Set up options for optimal control of a terminal. In so far as they are deducible
from the input, these options are set automatically by LOGIN.

1-4.

O Half vs. full duplex.

O Carriage rewurn+line feed vs. newline.

O Interpretation of tabs.

O Parity.

O Mapping of upper case to lower.

O Raw vs. edited input.

O Delays for tabs, newlines and carriage returns.

1.4. File Manipulation

= CAT

Ccp

i

= LPR
O CMP
C TAIL

a SPLIT

c DD

< SUM

Concatenate one or more files onto standard output. Particularly used for una-
dorned printing, for inserting data into a pipeline, and for buffering output that
comes in dribs and drabs. Works on any file regardless of contents.

Copy one file 1o another, or a set of files to a directory. Works on any file
regardless of contents.

Print files with title, date, and page number on every page.
O Multicolumn output.
O Parallel column merge of several files.

Off-line print. Spools arbitrary files to the line printer.
Compare two files and report .i different.

Print last » lines of input
QO May print last n characters, or from # lines or characters to end.

Split a large file into more manageable pieces. Occasionally necessary for edit-
ing (ED).

Physical file format translator. for exchanging data with foreign systems, espe-
cially IBM 370’s.

Sum the words of a file.

1.5. Manipulation of Directories and File Names

C RM

o LN
o MV
CHMOD
C CHOWN
= CHGRP
O MKDIR
RMDIR
C CD
FIND

1

1

]

Remove a file. Only the name goes away if any other names are linked to the
file.

O Step through a directory deleting files interactively.

O Delete entire directory hierarchies.

“Link"" another name (alias) to an existing file.

Move a file or files. Used for renaming files.

Change permissions on one or more files. Executable by files’ owner.
Change owner of one or more files.

Change group (project) to which a file belongs.

Make a new directory.

Remove a directory.

Change working directory.

Prowt! the directory hierarchy finding every file that meets specified criteria.

1-5

O Criteria include:

name matches a given palttern,

creation date in given range,

date of last use in given range.

given permissions,

given owner,

given special file characteristics,

boolean combinations of above.
O Any directory may be considered to be the root.
O Perform specified command on each file found.

1.6. Running of Programs

0O SH The Shell, or command language interpreter.
O Supply arguments to and run any executable program.
O Redirect standard input, standard output, and standard error files.
O Pipes: simultaneous execution with output of one process connected to the
input of another.
O Compose compound commands using:
if ... then ... else,
case switches,
while loops,
for loops over lists,
break, continue and exit,
parentheses for grouping.
O Initiate background processes.
O Perform Shell programs, i.e., command scripts with substitutable arguments.
O Construct argument lists from all file names satisfying specified patterns.
O Take special action on traps and interrupts.
O User-settable search path for finding commands.
O Executes user-settable profile upon login.
O Optionally announces presence of mail as it arrives.
O Provides variables and parameters with default setting.

O TEST Tests for use in Shell conditionals.
O String comparison.
O File nature and accessibility.
O Boolean combinations of the above.

0 EXPR String computations for calculating command arguments.
O Integer arithmetic
O Pattern matching

O WAIT Wait for termination of asynchronously running processes.

T READ Read a line from terminal, for interactive Shell procedure.

0O ECHO Print remainder of command line. Useful for diagnostics or prompts in Shell
programs, or for inserting data into a pipeline.

O SLEEP Suspend execution for a specified time.

0O NOHUP Run a command immune to hanging up the terminal.

O NICE Run a command in low (or high) priority.

T KILL
O CRON

a AT
G TEE

1-6

Terminate named processes.

Schedule regular actions at specified times.

C Actions are arbitrary programs.

OTimes are conjunctions of month. duy of month, day of week. hour and
minute. Ranges are specifiable for each.

Schedule a one-shot action for an arbitrary time.

Pass data between processes and divert a copy into one or more files.

1.7. Status Inquiries

o LS

FILE

{1

a DATE

DF
DU
QuUOT
WHO

0o 0o a0

i}

PS

O IOSTAT
oTTY
O PWD

List the names of one, several. or all files in one or more directories.

O Alphabetic or temporal sorting, up or down.

O Optional information: size, owner, group, date last modified, date last
accessed, permissions, i-node number.

Try to determine what kind of information is in a file by consulting the file sys-
temn index and by reading the file itself.

Print today’s date and time. Has considerable knowledge of calendric and horo-
logical peculiarities.
O May set UNIX's idea of date and time.

Report amount of free space on file system devices.
Print a summary of total space occupied by all files in a hierarchy.
Print summary of file space usage by user id.

Tell who's on the system.
O List of presently logged in users, ports and times on.
O Optional history of all logins and logouts.

Report on active processes.

O List your own or evervbody’'s processes.

O Tell what commands are being executed.

O Optional status information: state and scheduling info, priority, attached ter-
minal, what it's waiting for, size.

Print statistics about system I/0 activity.
Print name of your terminal.

Print name of your working directory.

1.8. Backup and Maintenance

O MOUNT

O UMOUNT

a MKFS
S MKNOD

Attach a device containing a file system to the tree of directories. Protects
against nonsense arrangements. .

Remove the file sysiem contained on a device from the tree of directories.
Protects against removing a busy device.

Make a new file system on a device.

Make an i-node (file system entry) for a special file. Special files are physical
devices, virtual devices, physical memory, gic.

oTP
O TAR

O DUMP

O RESTOR
O SuU

O DCHECK
O ICHECK
0O NCHECK

0O CLRI

O SYNC

1-7

Manage file archives on magnetic tape or DECtape. TAR is newer.
O Collect files into an archive.

O Update DECtape archive by date.

O Replace or delete DECtape files.

O Print table of contents.

O Retrieve from archive.

Dump the file system stored on a specified device, selectively by date, or
indiscriminately.

Restore a dumped file system, or selectively retrieve parts thereof.

Temporarily become the super user with all the rights and privileges thereof.
Requires a password.

Check consistency of file system.

O Print gross statistics: number of files, number of directories, number of spe-
cial files, space used, space free.

O Report duplicate use of space.

O Retrieve lost space.

O Report inaccessible files.

O Check consistency of directories.

O List names of all files.

Peremptorily expunge a file and its space from a file system. Used to repair
damaged file systems.

Force all outstanding 1/0 on the system to completion. Used to shut down
gracefully.

1.9. Accounting

The timing information on which the reports are based can be manually cleared or shut off

completely.
O AC

0 SA

Publish cumulative connect time report.
O Connect time by user or by day.
O For all users or for selected users.

Publish Shell accounting report. Gives usage information on each command
executed.

O Number of times used.

O Total system time, user time and elapsed time.
O Optional averages and percentages.

O Sorting on various fields.

1.10. Communication

O MAIL

Mail a message to one or more users. Also used to read and dispose of incom-
ing mail. The presence of mail is announced by LOGIN and optionally by SH.
O Each message can be disposed of individually.

O Messages can be saved in files or forwarded.

WRITE
WALL
MESG
CuU

o 0o o a

g uucCe

1-8

CALENDAR Automatic reminder service for events of today and tomorrow.

Establish direct terminal communication with another user.
Write to ali users.
Inhibit receipt of messages from WRITE and WALL.

Call up anocther time-sharing system.

O Transparent interface to remote machine.

O File transmission.

O Take remote input from local file or put remote output into local file.
O Remote system need not be UNIX.

UNIX to UNIX copy.
O Automatic queuing until line becomes available and remote machine is up.

O Copy between two remote machines.
O Differences, mail, etc., between two machines.

1.11. Basic Program Development Tools

Some of these utilities are used as integral parts of the higher level languages described in sec-

tion 2.
O AR

a AS

C Library

Maintain archives and libraries. Combines several files into one for housekeep-
ing efficiency.

O Create new archive.

O Update archive by date.

O Replace or delete files.

O Print table of contents.

D Retrieve from archive.

Assembler. Similar to PAL-11, but different in detail.
O Creates object program consisting of
code, possibly read-only,
initialized data or read-write code,
uninitialized data.
O Relocatable object code is directly executable without further transformation.
O Object code normally includes a symbol table.
O Muttiple source files.
O Local labels.
O Conditional assembly.
O **Conditional jump’’ instructions become branches or branches plus jumps
depending on distance.

The basic run-time library. These routines are used freely by all software.

C Buffered character-by-character [/0.

O Formatted input and output conversion (SCANF and PRINTF) for standard
input and output, files, in-memory conversion.

O Storage allocator.

O Time conversions.

O Number conversions.

O Password encryption.

Q Quicksort.

O Random number generator.

O Mathematical function library, including trigonometric. functions and
inverses, ex ‘onential, logarithm, square root, bessel functions.

0 ADB

0 0OD

alLD

O LORDER

o NM

a SIZE
O STRIP

O TIME
O PROF

O MAKE

1-9

Interactive debugger.
O Postmortem dumping.
O Examination of arbitrary files, with no limit on size.
O Interactive breakpoint debugging with the debugger as a separate process.
O Symbolic reference to local and global variables.
O Stack trace for C programs.
O Output formats:
1-, 2-, or 4-byte integers in octal, decimal, or hex
single and double floating point
character and string
disassembled machine instructions
O Patching.
O Searching for integer, character, or floating patterns.
O Handles separated instruction and data space.

Dump any file. Output options include any combination of octal or decimal by
words, octal by bytes, ASCII, opcodes, hexadecimal.
O Range of dumping is controllable.

Link edit. Combine relocatable object files. Insert required routines from
specified libraries.

O Resulting code may be sharable.
O Resulting code may have separate instruction and data spaces.

Places object file names in proper order for loading, so that files depending on
others come after them.

Print the namelist (symbol table) of an object program. Provides control over
the style and order of names that are printed.

Report the core requirements of one or more object files.

Remove the relocation and symbol table information from an object file to save
space.

Run a command and report timing information on it.

Construct a profile of time spent per routine from statistics gathered by time-
sampling the execution of a program. Uses floating point.
O Subroutine call frequency and average times for C programs.

Controls creation of large programs. Uses a control file specifying source file
dependencies to make new version; uses time last changed to deduce minimum
amount of work necessary.

O Knows about CC, YACC, LEX, etc.

1.12. UNIX Programmer’s Manual

O Manual

Machine-readable version of the UNIX Programmer’s Manual.

O System overview.

O All commands.

O All system calls.

O All subroutines in C and assembler libraries.

O All devices and other special files.

O Formats of file system and kinds of files known to system software.
O Boot and maintenance procedures.

O MAN

1-10

Print specified manual section on vour terminal.

1.13. Computer-Aided Instruction

0 LEARN

2. Languages

A program for interpreting CAI scripts, pids scripts for learning about UNIX by

using it.

QO Scripts for basic files ard commands, editor, advanced files and commands,
EQN, MS macros, C programming language.

2.1. The C Language

g ccC

O LINT

o CB

2.2. Fortran

a F77

O RATFOR

Compile and/or link edit programs in the C language. The UNIX operating sys-
tem, most of the subsystems and C itself are written in C. For a full descrip-
tion of C, read The C Programming Language, Brian W. Kernighan and Dennis
M. Ritchie, Prentice-Hall, 1978.

O General purpose language designed for structured programming.

O Data types include character, integer, float, double, pointers to all types,
functions returning above types, arrays of all types, structures and unions of
all types.

O Operations intended to give machine-independent control of full machine
facility, including to-memory operations and pointer arithmetic.

QO Macro preprocessor for parameterized code and inclusion of standard files.

O All procedures recursive, with parameters by value.

O Machine-independent pointer manipulation.

O Object code uses full addressing capability of the PDP-11.

O Runtime library gives access to all system facilities.

O Definable data types.

O Block structure

Verifier for C programs. Reports questionable or nonportable usage such as:
Mismatched data declarations and procedure interfaces.
Nonportable type conversions.
Unused variables, unreachable code, no-effect operations.
Mistyped pointers.
Obsolete syntax.
O Full cross-module checking of separately compiled programs.

A beautifier for C programs. Does proper indentation and placement of braces.

A full compiler for ANSI Standard Fortran 77.

O Compatible with C and supporting tools at object level.

O Optional source compatibility with Forwran 66.

O Free format source.

O Optional subscript-range checking, detection of uninitialized variabies.

O All widths of arithmetic: 2- and 4-byte integer; 4- and 8-byte real; 8- and 16-
byte complex.

Ratfor adds rational control structure a la C to Fortran.
O Compound statements.

0 STRUCT

1-11

O1If-else, do, for, while, repeat-until, break, next statements.
O Symbolic constants.

O File insertion.

O Free format source

O Translation of relationals like >, > =.

O Produces genuine Fortran to carry away.

O May be used with F77.

Converts ordinary ugly Fortran into structured Fortran (i.e., Ratfor), using
statement grouping, if-else, while, for, repeat-until.

2.3. Other Algorithmic Languages

O BAS

o DC

0 BC

An interactive interpreter, similar in style to BASIC. Interpret unnumbered
statements immediately, numbered statements upon ‘run’.
O Statements include:
comment,
dump,
for...next,
goto,
if...else. fi,
list,
print,
prompt,
return,
run,
save.
O All calculations double precision.
O Recursive function defining and calling.
O Builtin functions include log, exp, sin, cos, atn, int, sqr, abs, rnd.
O Escape to ED for complex program editing.

Interactive programmable desk calculator. Has named storage locations as well
as conventional stack for holding integers or programs.
O Unlimited precision decimal arithmetic.
O Appropriate treatment of decimal fractions.
O Arbitrary input and output radices, in particular binary, octal, decimal and
hexadecimal.
O Reverse Polish operators:
+ -/
remainder, power, square root,
load, store, duplicate, clear,
print, enter program text, execute.

A C-like interactive interface to the desk calculator DC.

O All the capabilities of DC with a high-level syntax.

O Arrays and recursive functions.

O Immediate evaluation of expressions and evaluation of functions upon call.
O Arbitrary precision elementary functions: exp, sin, cos, atan.

O Go-to-less programming.

2.4. Macroprocessing

1-12

0 M4 A general purpose macroprocessor.
O Stream-oriented, recognizes macros anywhere in text.
O Syntax fits with functional syntax of most higher-level languages.
O Can evaluate integer arithmetic expressions.

2.5. Compiler-compilers

T YACC An LR(l)-based compiler writing system. During execution of resulting
parsers, arbitrary C functions may be called to do code generation or semantic
actions.

O BNF syntax specifications.
O Precedence relations.
O Accepts formally ambiguous grammars with non-BNF resolution rules.

O LEX Generator of lexical analyzers. Arbitrary C functions may be called upon isola-
" tion of each lexical token.
O Full regular expression, plus left and right context dependence.
O Resulting lexical analysers interface cleanly with YACC parsers.

3. Text Processing
3.1. Document Preparation

C ED Interactive context editor. Random access to all lines of a file.

O Find lines by number or pattern. Patterns may include: specified characters,
don’t care characters, choices among characters, repetitions of these con-
structs, beginning of line, end of line.

O Add, delete, change, copy, move or join lines.

O Permute or split contents of a line.

O Replace one or all instances of a pattern within a line.

Q Combine or split files.

O Escape to Shell (command language) during editing.

O Do any of above operations on every pattern-selected line in a given range.

O Optional encryption for extra security.

O PTX Make a permuted (key word in context) index.
3 SPELL Look for spelling errors by comparing each word in & document against a word
list.

O 25,000-word list includes proper names.
O Handles common prefixes and suffixes.
O Collects words to help tailor local spelling lists.

O LOCK Search for words in dictionary that begin with specified prefix.
= TYPO Look for spelling errors by a statistical technique; not limited to English.
o CRYPT Encrypt and decrypt files for security.

3.2. Document Formatting

T ROFF A typesetting program for terminals. Easy for nontechnical people to learn, and
good for simple documents. Input consists of data lines intermixed with con-
trol lines, such as

.Sp 2 insert two lines of space
.ce center the next line
ROFF is deemed to be obsolete; it is intended only for casual use.

O Justification of either or both margins.

O Automatic hyphenation.

O Generalized running heads and feet, with even-odd page capability, number-
ing, etc.

O Definable macros for frequently used control sequences (no substitutable
arguments).

O All 4 margins and page size dynamically adjustable.

O Hanging indents and one-line indents.

O Absolute and relative parameter settings.

O Optional legal-style numbering of output lines.

O Multiple file capability.

O Not usable as a filter.

O TROFF

O NROFF Advanced typesetting. TROFF drives a Graphic Systems phototypesetter;
NROFF drives ascii terminals of all types. This summary was typeset using
TROFF. TROFF and NROFF style is similar to ROFF, but they are capable of
much more elaborate feats of formatting, when appropriately programmed.
TROFF and NROFF accept the same input language.

O All ROFF capabilities available or definable.

O Completely definable page format keyed to dynamically planted “‘interrupts’
at specified lines.

O Maintains several separately definable typesetting environments (e.g., one for
body text, one for footnotes, and one for unusually elaborate headings).

O Arbitrary number of output pools can be combined at will.

O Macros with substitutable arguments, and macros invocable in mid-line.

O Computation and printing of numerical quantities.

O Conditional execution of macros.

O Tabular layout facility.

O Positions expressible in inches, centimeters, ems, points, machine units or
arithmetic combinations thereof.

O Access to character-width computation for unusually difficult layout prob-
lems.

O Overstrikes, built-up brackets, horizontal and vertical line drawing.

O Dynamic relative or absolute positioning and size selection, globally or at the
character level.

O Can exploit the characteristics of the terminal being used, for approximating
special characters, reverse motions, proportional spacing, etc.

The Graphic Systems typesetter has a vocabulary of several 102-character fonts (4 simultane-
ously) in 15 sizes. TROFF provides terminal output for rough sampling of the product.

NROFF will produce multicolumn output on terminals capable of reverse line feed, or through
the postprocessor COL.

High programming skill is required to exploit the formatting capabilities of TROFF and
NROFF, although unskilled personnel can easily be trained to enter documents according to
canned formats such as those provided by MS, below. TROFF and EQN are essentially identi-
cal to NROFF and NEQN so it is usually possible to define interchangeable formats to produce
approximate proof copy on terminals before actual typesetting. The preprocessors MS, TBL,
and REFER are fully compatible with TROFF and NROFF.

O MS A standardized manuscript layout package for use with NROFF/TROFF. This
document was formatted with MS.

O EQN

O NEQN

o TBL

C REFER

o TC

O GREEK

O COL
O DEROFF
O CHECKEQ

1-14

O Page numbers and draft dates.

O Automatically numbered subheads.

O Footnotes.

O Single or doubie cclumn.

O Paragraphing, display and indentation.
O Numbered equations.

A mathematical typesetting preprocessor for TROFF. Translates easily readable
formulas, either in-line or displayed, into detailed typesetting instructions. For-
mulas are written in a style like this:

sigma sup 2 "="1 over N sum from i=1to N (x subi — x bar) sup 2

which produces:
3 I A -2
g- = NE(x,*x)

O Automatic calculation of size changes for subscripts, sub-subscripts, etc.

O Full vocabulary of Greek letters and special symbois, such as ‘gamma’,
‘GAMMA’, ‘integral’.

O Automatic calculation of large bracket sizes.

O Vertical ““piling’’ of formulae for matrices, conditional alternatives, etc.

O Integrals, sums, etc., with arbitrarily complex limits.

Q Diacriticals: dots, doubie dots, hats, bars, etc.

O Easily learned by nonprogrammers and mathematical typists.

A version of EQN for NROFF; accepts the same input language. Prepares for-
mulas for display on any terminal that NROFF knows about, for example,
those based on Diablo printing mechanism.

O Same facilities as EQN within graphical capability of terminal.

A preprocessor for NROFF/TROFF that translates simple descriptions of table

layouts and contents into detailed typesetting instructions.

O Computes column widths.

O Handles left- and right-justified columns, centered columns and decimal-point
alignment.

O Places column titles.

O Table entries can be text, which is adjusted to fit.

O Can box all or parts of table.

Fills in bibliographic citations in a document from a data base (not supplied).
O References may be printed in any style, as they occur or collected at the end.
O May be numbered sequentially, by name of author, etc.

Simulate Graphic Systems typesetter on Tektronix 4014 scope. Useful for
checking TROFF page layout before typesetting.

Fancy printing on Diablo-mechanism terminals like DASI-300 and DASI-450,
and on Tektronix 4014.

O Gives half-line forward and reverse motions.

O Approximates Greek letters and other special characters by overstriking.

Canonicalize files with reverse line feeds for one-pass printing.
Remove all TROFF commands from input.

Check document for possible errors in EQN usage.

1-15

4. Information Handling

O SORT

O TSORT
O UNIQ

O TR

O DIFF

o COMM

O JOIN
O GREP

0 LOOK
a wC
a SED

0O AWK

Sort or merge ASCII files line-by-line. No limit on input size.
O Sort up or down.

O Sort lexicographically or on numeric key.

O Muttiple keys located by delimiters or by character position.
O May sort upper case together with lower into dictionary order.
O Optionally suppress duplicate data.

Topological sort — converts a partial order into a total order.

Collapse successive duplicate lines in a file into one line.
O Publish lines that were originally unique, duplicated, or both.
O May give redundancy count for each line.

Do one-to-one character translation according to an arbitrary code.
O May coalesce selected repeated characters.
O May delete selected characters.

Report line changes, additions and deletions necessary to bring two files into
agreement.

O May produce an editor script to convert one file into another.

O A variant compares two new versions against one old one.

Identify common lines in two sorted files. Output in up to 3 columns shows
lines present in first file only, present in both, and/or present in second only.

Combine two files by joining records that have identical keys.

Print all lines in a file that satisfy a pattern as used in the editor ED.
O May print all lines that fail to match.

O May print count of hits.

O May print first hit in each file.

Binary search in sorted file for lines with specified prefix.
Count the lines, ‘‘words”’ (blank-separated strings) and characters in a file.

Stream-oriented version of ED. Can perform a sequence of editing operations
on each line of an input stream of unbounded length.

O Lines may be selected by address or range of addresses.

O Control flow and conditional testing.

O Multiple output streams.

O Multi-line capability.

Pattern scanning and processing language. Searches input for patterns, and per-

forms actions on each line of input that satisfies the pattern.

O Patterns include regular expressions, arithmetic and lexicographic conditions,
boolean combinations and ranges of these.

O Data treated as string or numeric as appropriate.

O Can break input into fields; fields are variables.

O Variables and arrays (with non-numeric subscripts).

O Full set of arithmetic operators and control flow.

O Muttiple output streams to files and pipes.

O Output can be formatted as desired.

O Multi-line capabilities.

1-16

5. Graphics

The programs in this section are predominantly intended for use with Tektronix 4014 storage
scopes.

O GRAPH Prepares a graph of a set of input numbers.
O Input scaled to fit standard plotting area.
O Abscissae may be supplied automatically.
O Graph may be labeled.
O Control over grid style, line style, graph orientation, etc.

O SPLINE Provides a smooth curve through a set of points intended for GRAPH.

Q PLOT A set of filters for printing graphs produced by GRAPH and other programs on
various terminals. Filters provided for 4014, DASI terminals, Versatec
printer/plotter. .

6. Novelties, Games, and Things That Didn’t Fit Anywhere Else

C BACKGAMMON
A player of modest accomplishment.

0 CHESS Plays good class D chess.

O CHECKERS Ditto, for checkers.

O BCD Converts ascii to card-image form.

O PPT Converts ascii to paper tape form.

O BJ A blackjack dealer.

0O CUBIC An accomplished player of 4x4x4 tic-tac-toe.
O MAZE Constructs random mazes for you to solve.
o MOO A fascinating number-guessing game.

0 CAL Print a calendar of specified month and year.

O BANNER Print output in huge letters.

O CHING The [Ching. Place your own interpretation on the output.

0 FORTUNE Presents a random fortune cookie on each invocation. Limited jar of cookies
included.

O UNITS Convert amounts between different scales of measurement. Knows hundreds

of units. For example, how many km/sec is a parsec/megayear’
o TTT A tic-tac-toe program that learns. It never makes the same mistake twice.

O ARITHMETIC
Speed and accuracy test for number facts.

0O FACTOR Factor large integers.

0 QUIZ Test your knowledge of Shakespeare, Presidents, capitals, etc.

0 WUMP Hunt the wumpus, thrilling search in a dangerous cave. '
O REVERSI A two person board game, isomorphic to Othello®.

O HANGMAN Word-guessing game. Uses the dictionary supplied with SPELL.

O FISH

1-17

Children’s card-guessing game.

The UNIX Time-Sharing System*

D. M. Rirchie and K. Thompson

ABSTRACT

UNIX?T is a general-purpose, multi-user, interactive operating system for
the larger Digital Equipment Corporation PDP-11 and the Interdaia 8/32 com-
puters. It offers a number of features seldom found even in larger operating
systems, including

i A hierarchical file system incorporating demountable volumes,
i Compatible file, device, and inter-process /0,

iii The ability to initiate asynchronous processes,

iv. System command language selectable on a per-user basis.

v Over 100 subsystems including a dozen languages,

vi High degree of portability.

This paper discusses the nature and implementation of the file system and of
the user command interface.

1. INTRODUCTION

There have been four versions of the UNIX time-sharing system. The earliest (circa
1969-70) ran on the Digital Equipment Corporation PDP-7 and -9 computers. The second ver-
sion ran on the unprotected PDP-11/20 computer. The third incorporated multiprogramming
and ran on the PDP-11/34, /40, /45, /60, and /70 computers; it is the one described in the pre-
viously published version of this paper, and is also the most widely used today. This paper
describes only the fourth, current system that runs on the PDP-11/70 and the Interdata 8/32
computers. In fact, the differences among the various systems is rather small; most of the revi-
sions made to the originally published version of this paper, aside from those concerned with
style, had to do with details of the implementation of the file system.

Since PDP-11 UNIX became operational in February, 1971, over 600 installations have been
put into service. Most of them are engaged in applications such as computer science education,
the preparation and formatting of documents and other textual material, the collection and pro-
cessing of trouble data from various switching machines within the Bell System, and recording
and checking telephone service orders. Our own installation is used mainly for research in
operating systems, languages, computer networks, and other topics in computer science, and
also for document preparation.

Perhaps the most important achievement of UNIX is to demonstrate that a powerful
operating system for interactive use need not be expensive either in equipment or in human
effort: it can run on hardware costing as little as $40,000, and less than two man-years were
spent on the main system software. We hope, however, that users find that the most important

* Copyright 1974, Association for Computing Machinery, Inc., reprinted by permission. This is a revised ver-
sion of an article that appeared in Communications of the acM, /7, No. 7 (July 1974), pp. 365-375. That arti-
cle was a revised version of a paper presented at the Fourth acM Symposium on Operating Systems Princi-
ples. 1BM Thomas J. Watson Research Center, Yorktown Heights, New York, October 15-17, 1973.

TUNIX is a Trademark of Bell Laboratories.

™D
i
-

2-2

characteristics of the system are its simplicity, elegance, and ease of use.
Besides the operating system proper, some major programs availabie under UNIX are

C compiler

Text editor based on QED!

Assembler, linking loader, symbolic debugger

Phototypesetting and equation setiing programs? >

Dozens of languages including Fortran 77, Basic, Snobol, APL, Algol 68, MS,
T™MG, Pascal

There is a host of maintenance, utility, recreation and novelty programs, all written locally.
The UNIX user community, which numbers in the thousands, has contributed many more pro-
grams and languages. It is worth noting that the system is totally self-supporting. All UNIX
software is maintained on the system; likewise. this paper and all other documents in this issue
were generated and formatted by the UNIX editor and text formatting programs.

II. HARDWARE AND SOFTWARE ENVIRONMENT

The poP-11/70 on which the Research UNIX system is instailed is a 16-bit word (8-bit
byte) comouter with 768K bytes of core memory; the system kernel occupies 90K bytes about
equally divided between code angd data tables. This system, however, includes a very large
number of device drivers and enjoys a generous allotment of space for I/O buffers and system
tables: a minimal system capable of running the software mentioned above can require as little
as 96K bytes of core altogether. There are even larger installations; see the description of the
PWB/UNIX systems,“'5 for example. There are also much smaller, though somewhat restricted,
versions of the system.®

Qur own PDP-11 has two 200-Mb moving-head disks for file sysiem storage and swapping.
There are 20 variable-speed communications interfaces attached to 300- and 1200-baud data
sets, and an additional 12 communication lines hard-wired to 9600-baud terminals and satellite
computers. There are also several 2400- and 4800-baud synchronous communication interfaces
used for machine-to-machine file transfer. Finally, there is a variety of misceilaneous devices
including nine-track magnetic tape, a line printer, a voice synthesizer, a phototypesetter, a digi-
tal switching network. and a chess machine.

The preponderance of UNIX software is written in the abovementioned C language.’ Early
versions of the operating sysiem were written in assembly language, but during the summer of
1973, it was rewritten in C. The size of the new system was about one-third greater than that
of the old. Since the new sysiem not only became much easier 1o undersiand and 1o modify
but also mncluded many {unctional improvements, including mulliprogramming and the ability
10 share reentrant code among several user programs, we consider this increase in size quite
acceptable.

III. THE FILE SYSTEM

The most important role of the system is to provide a file system. From the point of view
of the user, there are three kinds of files: ordinary disk files, directories, and special files.

3.1 Ordinary files

A file contains whatever information the user places on it, for example, symbolic or
binary (object) programs. No particular structuring is expected by the system. A file of text
consists simply of a string of characters, with lines demarcated by the newline character. Binary
programs are sequences of words as they will appear in core memory when the program starts
executing. A few user programs manipulate files with more siructure; for example, the assem-
bler generates, and the loader expects, an object flle in a particular format. However, the struc-
ture of files is controlled by the programs that use them, not by the system.

2-3

3.2 Directories

Directories provide the mapping between the names of files and the files themselves, and
thus induce a structure on the file system as a whole. Each user has a directory of his own
files; he may also create subdirectories to contain groups of files conveniently treated together.
A directory behaves exactly like an ordinary file except that it cannot be written on by
unprivileged programs, so that the system controls the contents of directories. However, any-
one with appropriate permission may read a directory just like any other file.

The system maintains several directories for its own use. One of these is the root direc-
tory. All files in the system can be found by tracing a path through a chain of directories until
the desired file is reached. The starting point for such searches is often the root. Other system
directories contain all the programs provided for general use; that is, all the commands. As will

be seen, however, it is by no means necessary that a program reside in one of these directories
for it to be executed.

Files are named by sequences of 14 or fewer characters. When the name of a file is
specified to the system, it may be in the form of a path name, which is a sequence of directory
names separated by slashes, ‘‘/”’, and ending in a file name. If the sequence begins with a
slash, the search begins in the root directory. The name /alpha/beta/gamma causes the sys-
tem to search the root for directory alpha, then to search alpha for beta, finally to find gamma
in beta. gamma may be an ordinary file, a directory, or a special file. As a limiting case, the
name “‘/”" refers to the root itself.

A path name not starting with ‘‘/”’ causes the system to begin the search in the user’s
current directory. Thus, the name alpha/beta specifies the file named beta in subdirectory
alpha of the current directory. The simplest kind of name, for example, alpha, refers to a file
that itself is found in the current directory. As another limiting case, the null file name refers
to the current directory.

The same non-directory file may appear in several directories under possibly different
names. This feature is called /inking, a directory entry for a file is sometimes called a link. The
UNIX system differs from other systems in which linking is permitted in that all links to a file
have equal status. That is, a file does not exist within a particular directory; the directory entry
for a file consists merely of its name and a pointer to the information actually describing the
file. Thus a file exists independently of any directory entry, although in practice a file is made
to disappear along with the last link to it.

Each directory always has at least two entries. The name ‘“.”’ in each directory refers to
the directory itself. Thus a program may read the current directory under the name ‘.
without knowing its complete path name. The :ame ‘“..”” by convention refers to the parent
of the directory in which it appears, that is, to the directory in which it was created.

The directory structure is constrained to have the form of a rooted tree. Except for the
special entries *“.” and ‘‘..”", each directory must appear as an entry in exactly one other
directory, which is its parent. The reason for this is to simplify the writing of programs that
visit subtrees of the directory structure, and more important, to avoid the separation of portions
of the hierarchy. If arbitrary links to directories were permitted, it would be quite difficult to
detect when the last connection from the root to a directory was severed.

3.3 Special files

Special files constitute the most unusual feature of the UNIX file system. Each supported
1/0 device is associated with at least one such file. Special files are read and written just like
ordinary disk files, but requests to read or write result in activation of the associated device.
An entry for each special file resides in directory /dev, although a link may be made to one of
these files just as it may to an ordinary file. Thus, for example, to write on a magnetic tape one
may write on the file /dev/mt. Special files exist for each communication line, each disk, each
tape drive, and for physical main memory. Of course, the active disks and the memory special
file are protected from indiscriminate access.

2-4

There is a threefold advantage in treating 1/0 devices this way: file and device [/O are as
similar as possible; file and device names have the same syntax and meaning, so that a program
expecting a file name as a parameter can be passed a device name; finally, special files are sub-
ject to the same protection mechanism as regular files.

3.4 Removable file systems

Although the root of the file system is always stored on the same device, it is not neces-
sary that the entire file system hierarchy reside on this device. There is a mount system
request with two arguments: the name of an existing ordinary file, and the name of a special file
whose associated storage volume (e.g., a disk pack) should have the structure of an indepen-
dent file system containing its own directory hierarchy. The effect of mount is to cause refer-
ences to the heretofore ordinary file to refer instead to the root directory of the file system on
the removable volume. In effect, mount replaces a leaf of the hierarchy tree (the ordinary file)
by a whole new subtree (the hierarchy stored on the removable volume). After the mount,
there is virtually no distinction between files on the removable volume and those in the per-
manent file system. In our installation, for example, the root directory resides on a small parti-
tion of one of our disk drives, while the other drive, which contains the user’s files, is mounted
by the system initialization sequence. A mountable file system is generated by writing on its
corresponding speciai file. A utility program is available to create an empty file system, or one
may simply copy an existing file system.

There is only one exception to the rule of identical treatment of files on different devices:
no link may exist between one file system hierarchy and another. This restriction is enforced
so as to avoid the elaborate bookkeeping that would otherwise be required to assure removal of
the links whenever the removable volume is dismounted.

3.5 Protection

Although the access conirol scheme is quite simple, it has some unusual features. Each
user of the system is assigned a unique user identification number. When a file is created, it is
marked with the user ID of its owner. Also given for new files is a set of ten protection bits.
Nine of these specify independently read, write, and execute permission for the owner of the
file, for other members of his group, and for all remaining users.

If the tenth bit is on, the system will temporarily change the user identification (hereafter,
user ID) of the current user to that of the creator of the file whenever the file is executed as a
program. This change in user ID is effective only during the execution of the program that calls
for it. The set-user-ID feature provides for privileged programs that may use files inaccessible
to other users. For example, a program may keep an accounting file that should neither be read
nor changed except by the program itself. If the set-user-ID bit is on for the program, it may
access the file although this access might be forbidden to other programs invoked by the given
program’s user. Since the actual user ID of the invoker of any program is always available, set-
user-iD programs may take any measures desired to satisfy themselves as to their invoker’s
credentials. This mechanism is used to allow users to execute the carefully written commands
that call privileged system entries. For example, there is a system entry invokable only by the
“‘super-user’’ (below) that creates an empty directorv. As indicated above, directories are
expected to have entries for **."" and *“..”". The command which creates a directory is owned
by the super-user and has the set-user-ID bit set. After it checks its invoker’s authorization to
create the specified directory, it creates it and makes the entries for *“." and “*.."".

Because anyone may set the set-user-ID bit on one of his own files, this mechanism is
generally available without administrative intervention. For example, this protection scheme
easily solves the MOO accounting problem posed by ‘‘Aleph-null.”®

The system recognizes one particular user ID (that of the ‘‘super-user’’) as exempt from
the usual constraints on file access; thus (for example), programs may be written to dump and
reload the file system without unwanted interference from the protection system.

o

2-5

3.6 1/0 calls

The system calls to do I/0 are designed to eliminate the differences between the varicus
devices and styles of access. There is no distinction between ‘‘random’’ and ‘‘sequential’ 1/0,
nor is any logical record size imposed by the system. The size of an ordinary file is determined

by the number of bytes written on it; no predetermination of the size of a file is necessary or
possible.

To illustrate the essentials of I/0, some of the basic calls are summarized below in an
anonymous language that will indicate the required parameters without getting into the underly-
ing complexities. Each call to the system may potentially result in an error return, which for
simplicity is not represented in the calling sequence.

To read or write a file assumed to exist already, it must be opened by the following call:
filep = open (name, flag)

where name indicates the name of the file. An arbitrary path name may be given. The flag

argument indicates whether the file is to be read, written, or ‘‘updated,’ that is, read and writ-
ten simultaneously.

The returned value filep is called a file descriptor. 1t is a small integer used to identify the
file in subsequent calls to read, write, or otherwise manipulate the file.

To create a new file or completely rewrite an old one, there is a create system call that
creates the given file if it does not exist, or truncates it to zero length if it does exist; create
also opens the new file for writing and, like open, returns a file descriptor.

The file system maintains no locks visible to the user, nor is there any restriction on the
number of users who may have a file open for reading or writing. Although it is possible for
the contents of a file to become scrambled when two users write on it simultaneously, in prac-
tice difficulties do not arise. We take the view that locks are neither necessary nor sufficient, in
our environment, to prevent interference between users of the same file. They are unnecessary
because we are not faced with large, single-file data bases maintained by independent processes.
They are insufficient because locks in the ordinary sense, whereby one user is prevented from
writing on a file that another user is reading, cannot prevent confusion when, for example, both
users are editing a file with an editor that makes a copy of the file being edited.

There are, however, sufficient internal interlocks to maintain the logical consistency of the
file system when two users engage simultaneously in activities such as writing on the same file,
creating files in the same directory, or deleting each other’s open files.

Except as indicated below, reading and writing are sequential. This means that if a partic-
ular byte in the file was the last byte written (or read), the next I/0 call implicitly refers to the
immediately following byte. For each open file there is a pointer, maintained inside the system,
that indicates the next byte to be read or written. If » bytes are read or written, the pointer
advances by n bytes.

Once a file is open, the following calls may be used:

n = read (filep, buffer, count)
n = write (filep, buffer, count)

Up to count bytes are transmitted between the file specified by filep and the byte array specified
by buffer. The returned value n is the number of bytes actually transmitted. In the write case,
n is the same as count except under exceptional conditions, such as 1/O errors or end of physi-
cal medium on special files; in a read, however, n may without error be less than count. If the
read pointer is so near the end of the file that reading count characters would cause reading
beyond the end, only sufficient bytes are transmitted to reach the end of the file; also,
typewriter-like terminals never return more than one line of input. When a read call returns
with n equal to zero, the end of the file has been reached. For disk files this occurs when the
read pointer becomes equal to the current size of the file. It is possible to generate an end-of-
file from a terminal by use of an escape sequence that depends on the device used.

2-6

Bytes written affect only those parts of a file implied by the position of the write pointer
and the count; no other part of the file is changed. If the last byte lies beyond the end of the
file, the file is made to grow as needed.

To do random (direct-access) 1/O it is only necessary to move the read or write pointer to
the appropriate location in the file.

location = Iseek (filep, offset, base)

The pointer associated with filep is moved to a position offset bytes from the beginning of the
file, from the current position of the pointer, or from the end of the file, depending on base.
offset may be negative. For some devices (e.g., paper tape and terminals) seek calls are
ignored. The actual offset from the beginning of the file (o which the pointer was moved is
returned in location.

There are several additional system entries having to do with [/O and with the file system
that will not be discussed. For example: close a file, get the status of a file, change the protec-
tion mode or the owner of a file, create a directory, make a link to an existing file, delete a file.

IV. IMPLEMENTATION OF THE FILE SYSTEM

As mentioned in Section 3.2 above, a directory entry contains only a name for the associ-
ated file and a pointer to the file itseif. This pointer is an integer called the i-number (for index
number) of the file. When the file is accessed, its i-number is used as an index into a system
table (the /-/ist) stored in a known part of the device on which the directory resides. The entry
found thereby (the file’s i-node) contains the description of the file:

i the user and group-ID of its owner

i its protection bits

1ii the physical disk or tape addresses for the file contents

v iis size

v time of creation, last use, and last modification

vi the number of links to the file, that is, the number of times it appears in a directory
vii a code indicating whether the file is a directory, an ordinary file, or a special file.

The purpose of an open or create system call is to turn the path name given by the user into an
i-number by searching the explicitly or implicitly named directories. Once a file is open, its
device, i-number, and read/write pointer are stored in a system table indexed by the file
descriptor returned by the open or create. Thus, during a subsequent call to read or write the
file, the descriptor may be easily related to the information necessary to access the file.

When a new file (s created, an i-node is allocated for it and 2 directory entry is made that
contains the name of the file and the i-node number. Making a link to an existing file involves
creating a directory entry with the new name, copying the i-number from the original file entry,
and incrementing the link-count field of the i-node. Removing (deleting) a file is done by
decrementing the link-count of the i-node specified by its directory entry and erasing the direc-
tory entry. If the link-count drops to 0, any disk blocks in the file are freed and the i-node is
de-allocated.

The space on all disks that contain a file system is divided into a number of 512-byte
blocks logically addressed from 0 up to a limit that depends on the device. There is space in
the i-node of each file for 13 device addresses. For nonspecial files, the first 10 device
addresses point at the first 10 blocks of the file. If the file is larger than 10 blocks, the 11 dev-
ice address points to an indirect block containing up to 128 addresses of additional blocks in the
file. Still larger files use the tweifth device address of the i-node to point to a double-indirect
block naming 128 indirect blocks, each pointing to 128 blocks of the file. If required, the thir-
teenth device address is a triple-indirect block. Thus files may conceptually grow to
[(10+128+128°+128%)-512] bytes. Once opened, bytes numbered below 5120 can be read
with a single disk access; bytes in the range 5120 to 70,656 require two accesses; bytes in the

2-7

range 70,656 to 8,459,264 require.three accesses; bytes from there to the largest file
(1,082,201,088) require four accesses. In practice, a device cache mechanism (see below)
proves effective in eliminating most of the indirect fetches.

The foregoing discussion applies to ordinary files. When an I/0 request is made to a file
whose i-node indicates that it is special, the last 12 device address words are immaterial, and
the first specifies an internal device name, which is interpreted as a pair of numbers represent-
ing, respectively, a device type and subdevice number. The device type indicates which system
routine will deal with I/0 on that device; the subdevice number selects, for example, a disk
drive attached to a particular controller or one of several similar terminal interfaces.

In this environment, the implementation of the mount system call (Section 3.4) is quite
straightforward. mount maintains a system table whose argument is the i-number and device
name of the ordinary file specified during the mount, and whose corresponding value is the
device name of the indicated special file. This table is searched for each i-number/device pair
that turns up while a path name is being scanned during an open or create; if a match is found,

the i-number is replaced by the i-number of the root directory and the device name is replaced
by the table value.

To the user, both reading and writing of files appear to be synchronous and unbuffered.
That is, immediately after return from a read call the data are available; conversely, after a
write the user’s workspace may be reused. In fact, the system maintains a rather complicated
buffering mechanism that reduces greatly the number of I/O operations required to access a
file. Suppose a write call is made specifying transmission of a single byte. The system will
search its buffers to see whether the affected disk block currently resides in main memory; if
not, it will be read in from the device. Then the affected byte is replaced in the buffer and an
entry is made in a list of blocks to be written. The return from the write call may then take
place, although the actual I/0 may not be completed until a later time. Conversely, if a single
byte is read, the system determines whether the secondary storage block in which the byte is
located is already in one of the system’s buffers; if so, the byte can be returned immediately. If
not, the block is read into a buffer and the byte picked out.

The system recognizes when a program has made accesses to sequential blocks of a file,
and asynchronously pre-reads the next block. This significantly reduces the running time of
most programs while adding little to system overhead.

A program that reads or writes files in units of 512 bytes has an advantage over a program
that reads or writes a single byte at a time, but the gain is not immense; it comes mainly from
the avoidance of system overhead. If a program is used rarely or does no great volume of 1/0,
it may quite reasonably read and write in units as small as it wishes.

The notion of the i-list is an unusual featur. of UNIX. In practice, this method of organiz-
ing the file system has proved quite reliable and easy to deal with. To the system itself, one of
its strengths is the fact that each file has a short, unambiguous name related in a simple way to
the protection, addressing, and other information needed to access the file. It also permits a
quite simple and rapid algorithm for checking the consistency of a file system, for example,
verification that the portions of each device containing useful information and those free to be
allocated are disjoint and together exhaust the space on the device. This algorithm is indepen-
dent of the directory hierarchy, because it need only scan the linearly organized i-list. At the
same time the notion of the i-list induces certain peculiarities not found in other file system
organizations. For example, there is the question of who is to be charged for the space a file
occupies, because all directory entries for a file have equal status. Charging the owner of a file
is unfair in general, for one user may create a file, another may link to it, and the first user may
delete the file. The first user is still the owner of the file, but it should be charged to the
second user. The simplest reasonably fair algorithm seems to be to spread the charges equally
among users who have links to a file. Many installations avoid the issue by not charging any
fees at all.

V. PROCESSES AND IMAGES

An image is a computer execution environment. [t includes a memory image, general
register values, status of open files, current directory and the like. An image is the current
state of a pseudo-computer.

A process is the execution of an image. While the processor is executing on behalf of a
process, the image must reside in main memory; during the execution of other processes it
remains in main memory unless the appearance of an active, higher-priority process forces it to
be swapped out to the disk.

The user-memory part of an image'is divided into three logical segments. The program
text segment begins at location 0 in the virtual address space. During execution, this segment
is write-protected and a single copy of it is shared among all processes executing the same pro-
gram. At the first hardware protection byte boundary above the program text segment in the
virtual address space begins a non-shared, writable data segment, the size of which may be
extended by a system call. Starting at the highest address in the virtual address space is a stack
segment, which automatically grows downward as the stack pointer fluctuates.

5.1 Processes

Except while the system is bootstrapping itself into operation. a new process can come
into existence only by use of the fork system call:

processid = fork ()

When fork is executed, the process splits into two independently executing processes. The two
processes have independent copies of the original memory image, and share all open files. The
new processes differ only in that one is considered the parent process: in the parent, the
returned processid actually identifies the child process and is never 0, while in the child, the
returned value is always 0.

Because the values returned by fork in the parent and child process are distinguishable,
each process may determine whether it is the parent or child.

5.2 Pipes

Processes may communicate with related processes using the same system read and write
calls that are used for file-system [/O. The call:

filep = pipe ()

returns a file descriptor filep and creates an inter-process channe! called a pipe. This channel,
like other open files, is passed from parent to child process in the image by the fork call. A
read using a pipe file descriptor waits until another process writes using the file descriptor for
the same pipe. At this point, data are passed between the images of the two processes. Neither
process need know that a pipe, rather than an ordinary file, is involved.

Although inter-process communication via pipes is a quite valuabie tool (see Section 6.2),
it is not a completely general mechanism, because the pipe must be set up by a common ances-
tor of the processes involved.

5.3 Execution of programs
Another major systemn primitive is invoked by

execute (file, arg,, arg,, ..., arg_)

which requests the system to read in and execute the program named by file, passing it string
arguments arg;, arg,, ..., arg,. All the code and data in the process invoking execute is
replaced from the file, but open files, current directory, and inter-process relationships are
unaltered. Only if the call fails, for example because file could not be found or because its
execute-permission bit was not set, does a return take place from the execute primitive; it

2-9

resembles a *‘jump’’ machine instruction rather than a subroutine call.

5.4 Process synchronization
Another process control system call:

processid = wait (status)

causes its caller to suspend execution until one of its children has completed execution. Then
wait returns the processid of the terminated process. An error return is taken if the calling
process has no descendants. Certain status from the child process is also available.

5.5 Termination
Lastly:

exit (status)

terminates a process, destroys its image, closes its open files, and generally obliterates it. The
parent is notified through the wait primitive, and status is made available to it. Processes may

also terminate as a result of various illegal actions or user-generated signals (Section VII
below).

VI. THE SHELL

For most users, communication with the system is carried on with the aid of a program
called the shell. The shell is a command-line interpreter: it reads lines typed by the user and
interprets them as requests to execute other programs. (The shell is described fully elsewhere,®
so this section will discuss only the theory of its operation.) In simplest form, a command line
consists of the command name followed by arguments to the command, all separated by spaces:

command arg,; arg, ... arg

The shell splits up the command name and the arguments into separate strings. Then a file
with name command is sought; command may be a path name including the ‘‘/’’ character to
specify any file in the system. If command is found, it is brought into memory and executed.
The arguments collected by the shell are accessible to the command. When the command is
finished, the shell resumes its own execution, and indicates its readiness to accept another com-
mand by typing a prompt character.

If file command cannot be found, the shell generally prefixes a string such as /bin/ to
command and attempts again to find the file. Directory /bin contains commands intended to

be generally used. (The sequence of directories to be searched may be changed by user
request.) :

6.1 Standard 1/0

The discussion of 1/0 in Section III above seems to imply that every file used by a pro-
gram must be opened or created by the program in order to get a file descriptor for the file.
Programs executed by the shell, however, start off with three open files with file descriptors 0,
1, and 2. As such a program begins execution, file 1 is open for writing, and is best understood
as the standard output file. Except under circumstances indicated below, this file is the user’s
terminal. Thus programs that wish to write informative information ordinarily use file descrip-
tor 1. Conversely, file 0 starts off open for reading, and programs that wish to read messages
typed by the user read this file.

The shell is able to change the standard assignments of these file descriptors from the
user’s terminal printer and keyboard. If one of the arguments to a command is prefixed by

“>"_ file descriptor 1 will, for the duration of the command, refer to the file named after the
“>" For example:

Is

ordinarily lists, on the typewriter, the names of the files in the current directory. The com-
mand:

Is >there

creates a file called there and places the listing there. Thus the argument > there means ‘‘place
output on there.”” On the other hand:

ed

[3
ordinarily enters the editor, which takes requests from the user via his keyboard. The com-
mand

ed <script

interprets script as a file of editor commands; thus <secript means ‘‘take input from script.”

Although the file name following ““<’ or '*>" appears toc be an argument to the com-
mand, in fact it is interpreted completely by the shell and is not passed to the command at all.
Thus no special coding to handle [/O redirection is needed within each command; the com-
mand need merely use the standard file descriptors 0 and | where appropriate.

File descriptor 2 is, like file 1, ordinarily associated with the terminal output stream.
When an output-diversion request with **>"" is specified, file 2 remains attached to the termi-
nal, so that commands may produce diagnostic messages that do not silently end up in the out-
put file.

6.2 Filters

An extension of the standard /O notion is used to direct output from one command to
the input of another. A sequence of commands separated by vertical bars causes the shell to
execute all the commands simulitaneously and to arrange that the standard output of each com-
mand be delivered to the standard input of the next command in the sequence. Thus in the
command line:

is|pr —2]opr

Is lists the names of the files in the current directory; its output is passed to pr, which paginates
its input with dated headings. (The argument ‘=2’ requests double-column output.) Likewise,
the output from pr is input to opr; this command spools its input onto a file for off-line print-
ing.

This procedure could have been carried out more clumsily by:

Is >templ
pr =2 <temp! >temp2
opr <temp2

followed by removal of the temporary files. In the absence of the ability to redirect output and
input, a still clumsier method would have been to require the ls command to accept user
requests (o paginate its output, to print in multi-column format, and to arrange that its output
be delivered off-line. Actually it would be surprising, and in fact unwise for efficiency reasons,
to expect authors of commands such as Is to provide such a wide variety of output options.

A program such as pr which copies its standard input to its standard output (with process-

ing) is called a filter. Some filters that we have found useful perform character transliteration,
selection of lines according to a pattern, sorting of the input, and encryption and decryption.

6.3 Command separators; multitasking

Another feature provided by the shell is relatively straightforward. Commands need not
be on different lines; instead they may be separated by semicolons:

Is; ed
will first list the contents of the current directory, then enter the editor.

A related feature is more interesting. If a command is followed by “‘&,”’ the shell will not
wait for the command to finish before prompting again; instead, it is ready immediately to
accept a new command. For example:

as source >output &

causes source to be assembled, with diagnostic output going to output; no matter how long the
assembly takes, the shell returns immediately. When the shell does not wait for the completion
of a command, the identification number of the process running that command is printed. This
identification may be used to wait for the completion of the command or to terminate it. The
“&”’ may be used several times in a line:

as source >output & Is >files &

does both the assembly and the listing in the background. In these examples, an output file

other than the terminal was provided; if this had not been done, the outputs of the various
commands would have been intermingled.

The shell also allows parentheses in the above operations. For example:
(date; Is) >x &

writes the current date and time followed by a list of the current directory onto the file x. The
shell also returns immediately for another request.

6.4 The shell as a2 command; command files

The shell is itself a command, and may be called recursively. Suppose file tryout contains
the lines:

as source
mv a.out testprog
testprog

The mv command causes the file a.out to be renamed testprog. a.out is the (binary) output of
the assembler, ready to be executed. Thus if the three lines above were typed on the keyboard,
source would be assembled, the resulting program renamed testprog, and testprog executed.
When the lines are in tryout, the command:

sh <tryout

would cause the shell sh to execute the commands sequentially.

The shell has further capabilities, including the ability to substitute parameters and to con-
struct argument lists from a specified subset of the file names in a directory. It also provides
general conditional and looping constructions.

6.5 Implementation of the shell

The outline of the operation of the shell can now be understood. Most of the time, the
shell is waiting for the user to type a command. When the newline character ending the line is
typed, the shell’s read call returns. The shell analyzes the command line, putting the argu-
ments in a form appropriate for execute. Then fork is called. The child process, whose code of
course is still that of the shell, attempts to perform an execute with the appropriate arguments.
If successful, this will bring in and start execution of the program whose name was given.
Meanwhile, the other process resulting from the ferle, which is the parent process, waits for the

2-12

child process to die. When this happens, the shell knows the command is finished, so it types
its prompt and reads the keyboard to obtain another command.

Given this framework, the implementation of background processes is trivial, whenever a
command line contains ‘‘&,’" the shell merely refrains from waiting for the process that it
created to execute the command.

Happily, all of this mechanism meshes very nicely with the notion of standard input and
output files. When a process is created by the fork primitive, it inherits not only the memory
image of its parent but also all the files currently open in its parent, including those with file
descriptors 0, 1, and 2. The shell, of course, uses these files 10 read command lines and to
write its prompts and diagnostics, and in the ordinary case its children—the command
programs—inherit them automatically. When an argument with *“<’’ or “*>"" is given, how-
ever, the offspring process, just before it performs execute, makes the standard [/O file descrip-
tor (0 or 1, respectively) refer to the named file. This is easy because, by agreement, the smal-
lest unused file descriptor is assigned when a new file is opened (or created); it is only neces-
sary to close file 0 (or 1) and open the named file. Because the process in which the command
program runs simply terminates when it is through, the association between a file specified after
“<’ or ““>"" and file descriptor 0 or | is ended automatically when the process dies. There-
fore the shell need not know the actual names of the files that are its own standard input and
output, because it need never reopen them.

Filters are straightforward extensions of standard 1/0 redirection with pipes used instead
of files.

In ordinary circumstances, the main loop of the shell never terminates. (The main loop
includes the branch of the return from fork belonging to the parent process; that is, the branch
that does a wait, then reads another command line.) The one thing that causes the shell to ter-
minate is discovering an end-of-file condition on its input file. Thus, when the shell is exe-
cuted as a command with a given input file, as in:

sh <comlfile

the commands in comfile will be executed until the end of comfile is reached: then the instance
of the shell invoked by sh will terminate. Because this shell process is the child of another
instance of the shell, the wait executed in the latter will return, and another command may
then be processed.

6.6 Initialization

The instances of the sheil to which users type commands are themselves children of
another process. The last step in the initialization of the system is the creation of a single pro-
cess and the invocation (via execute) of a program called init. The role of init is to create one
process for each terminal channel. The various subinstances of init open the appropriate termi-
nais for input and output on files 0, 1, and 2, waiting, if necessary, for carrier to be established
on dial-up lines. Then a message is typed out requesting that the user log in. When the user
types a name or other ideatification, the appropriate instance of init wakes up, receives the
log-in line, and reads a password file. If the user’s name is found, and if he is able to supply
the correct password, init changes to the user’s default current directory, sets the process’s user
ID to that of the person logging in, and performs an execute of the shell. At this point, the
shell is ready to receive commands and the logging-in protocol is complete.

Meanwhile, the mainstream path of init (the parent of all the subinstances of itself that
will later become shells) does a wait. If one of the child processes terminates, either because a
shell found an end of file or because a user typed an incorrect name or password, this path of
init simply recreates the defunct process, which in turn reopens the appropriate input and out-
put files and types another log-in message. Thus a user may log out simply by typing the end-
of-file sequence to the shell.

6.7 Other programs as shell

The shell as described above is designed to allow users full access to the facilities of the
system, because it will invoke the execution of any program with appropriate protection mode.

Sometimes, however, a different interface to the system is desirable, and this feature is easily
arranged for.

Recall that after a user has successfully logged in by supplying a name and password, init
ordinarily invokes the shell to interpret command lines. The user’s entry in the password file
may contain the name of a program to be invoked after log-in instead of the shell. This pro-
gram is free to interpret the user’s messages in any way it wishes.

For example, the password file entries for users of a secretarial editing system might
specify that the editor ed is to be used instead of the shell. Thus when users of the editing sys-
tem log in, they are inside the editor and can begin work immediately; also, they can be
prevented from invoking programs not intended for their use. In practice, it has proved desir-
able to allow a temporary escape from the editor to execute the formatting program and other
utilities.

Several of the games (e.g., chess, blackjack, 3D tic-tac-toe) available on the system illus-
trate a much more severely restricted environment. For each of these, an entry exists in the
password file specifying that the appropriate game-playing program is to be invoked instead of
the shell. People who log in as a player of one of these games find themselves limited to the

game and unable to investigate the (presumably more interesting) offerings of the UNIX system
as a whole.

VII. TRAPS

The PDP-11 hardware detects a number of program faults, such as references to non-
existent memory, unimplemented instructions, and odd addresses used where an even address
is required. Such faults cause the processor to trap to a system routine. Unless other arrange-
ments have been made, an illegal action causes the system to terminate the process and to write

its image on file core in the current directory. A debugger can be used to determine the state
of the program at the time of the fault.

Programs that are looping, that produce unwanted output, or about which the user has
second thoughts may be halted by the use of the interrupt signal, which is generated by typing
the ‘‘delete’” character. Unless special action has been taken, this signal simply causes the pro-
gram to cease execution without producing a core file. There is also a quit signal used to force
an image file to be produced. Thus programs that loop unexpectedly may be halted and the
remains inspected without prearrangement.

The hardware-generated faults and the interrupt and quit signals can, by request, be either
ignored or caught by a process. For example, the shell ignores quits to prevent a quit from log-
ging the user out. The editor catches interrupts and returns to its command level. This is use-
ful for stopping long printouts without losing work in progress (the editor manipulates a copy of
the file it is editing). In systems without floating-point hardware, unimplemented instructions
are caught and floating-point instructions are interpreted.

VIiI. PERSPECTIVE

Perhaps paradoxically, the success of the UNIX system is largely due to the fact that it was
not designed to meet any predefined objectives. The first version was written when one of us
(Thompson), dissatisfied with the available computer facilities, discovered a little-used PDP-7
and set out to create a more hospitable environment. This (essentially personal) effort was
sufficiently successful to gain the interest of the other author and several colleagues, and later
to justify the acquisition of the PDP-11/20, specifically to support a text editing and formatting
system. When in turn the 11/20 was outgrown, the system had proved useful enough to per-
suade management to invest in the PDP-11/45, and later in the PDP-11/70 and Interdata 8/32
machines, upon which it developed to its present form. Our goals throughout the effort, when

2-14

articulated at all, have always been to build a comfortable relationship with the machine and to
explore ideas und inventions in operating systems and other software. We have not been faced
with the need to satisfy someone else’s requirements, and for this freedom we are grateful.

Three considerations that influenced the design of UNIX are visible in retrospect.

First: because we are programmers, we naturally designed the system to make it easy to
write, test, and run programs. The most important expression of our desire for programming
convenience was that the system was arranged for interactive use, even though the original ver-
sion only supported one user. We believe that a properly designied interactive system is much
more productive and satisfying to use than a ‘‘batch’ system. Moreover, such a system is
rather easily adaptable to noninteractive use, while the converse is not true.

Second: there have always been fairly severe size constraints on the system and its
software. Given the partially antagonistic desires for reasonable efficiency and expressive
power, the size constraint has encouraged not only economy, but also a cerwain elegance of
design. This may be a thinly disguised version of the ‘‘salvation through suffering’’ philosophy,
but in our case it worked.

Third: nearly from the start, the sysiem was able to, and did, maintain itseif. This fact is
more important than it might seem. If designers of a system are forced to use that system,
they quickly become aware of its functional and superficial deficiencies and are strongly
motivated to correct them before it is too late. Because all source programs were always avail-
able and easily modified on-line, we were willing to revise and rewrite the system and its
software when new ideas were invented, discovered, or suggested by others.

The aspects of UNIX discussed in this paper exhibit clearly at least the first two of these
design considerations. The interface to the file system, for example, is extremely convenient
from a programming standpoint. The lowest possible interface level is designed to eliminate
distinctions between the various devices and files and between direct and sequential access. No
large ‘‘access method’’ routines are required (o insulate the programmer from the system calls;
in fact, all user programs either cail the system directly or use a small library program, less than
a page long, that buffers a number of characters and reads or writes them all at once.

Another important aspect of programming convenience is that there are no ‘‘control
blocks™™ with a complicated structure partially maintained by and depended on by the file system
or other system calls. Generally speaking, the contents of a program’s address space are the
property of the program, and we have tried to avoid placing restrictions on the data structures
within that address space.

Given the requirement that all programs should be usable with any file or device as input
or output, it is also desirable to push device-dependent considerations into the operating system
itself. The only alternatives seem to be (o load, with all programs, routines for dealing with
each device, which is expensive in space, or to depend on some means of dynamically linking
to the routine appropriate to each device when it is actually needed, which is expensive either
in overhead or in hardware.

Likewise, the process-control scheme and the command interface have proved both con-
venient and efficient. Because the shell operates as an ordinary, swappable user program, it
consumes no ‘‘wired-down’’ space in the system proper, and it may be made as powerful as
desired at little cost. In particular; given the framework in which the shell executes as a process
that spawns other processes to perform commands, the notions of [/O redirection, background
processes, command files, and user-selectable system interfaces all become essentially trivial to
implement.

Influences

The success of UNIX lies not so much in new inventions but rather in the full exploitation
of a carefully selected set of fertile ideas, and especially in showing that they can be keys to the
impiementation of a small yet powerful operating system.

2-15

The fork operation, essentially as we implemented it, was present in the GENIE time-
sharing system.!® On a number of points we were influenced by Multics, which suggested the
particular form of the I/0 system calls!! and both the name of the shell and its general func-
tions. The notion that the shell should create a process for each command was also suggested

to us by the early design of Multics, although in that system it was later dropped for efficiency
reasons. A similar scheme is used by TENEX.!2

IX. STATISTICS

The following numbers are presented to suggest the scale of the Research UNIX operation.
Those of our users not involved in document preparation tend to use the system for program
development, especially language work. There are few important ‘‘applications’’ programs.

Overall, we have today:

125 user population
33 maximum simultaneous users
1,630 directories
28,300 files

301,700 512-byte secondary storage blocks used

There is a ‘‘background’’ process that runs at the lowest possible priority; it is used to soak up
any idle CPU time. It has been used to produce a million-digit approximation to the constant e,
and other semi-infinite problems. Not counting this background work, we average daily:

13,500 commands
9.6 CPU hours
230 connect hours

62 different users
240 log-ins

X. ACKNOWLEDGMENTS

The contributors to UNIX are, in the traditional but here especially apposite phrase, too
numerous to mention. Certainly, collective salutes are due to our colleagues in the Computing
Science Research Center. R. H. Canaday contributed much to the basic design of the file sys-
tem. We are particularly appreciative of the inventiveness, thoughtful criticism, and constant
support of R. Morris, M. D. Mcllroy, and J. F. Ossanna.

References
1. L. P. Deutsch and B. W. Lampson, ‘‘An online editor,”” Comm. Assoc. Comp. Mach.
10(12) pp. 793-799, 803 (December 1967).

2. B. W. Kernighan and L. L. Cherry, ‘““‘A System for Typesetting Mathematics,”” Comm.
Assoc. Comp. Mach. 18 pp. 151-157 (March 1975).

3. B. W. Kernighan, M. E. Lesk, and J. F. Ossanna, ‘‘UNIX Time-Sharing System: Docu-
ment Preparation,” Bell Sys. Tech. J. 5§7(6) pp. 2115-2135 (1978).

4. T. A. Dolotta and J. R. Mashey, ‘‘An Introduction to the Programmer’s Workbench,”
Proc. 2nd Int. Conf. on Software Engineering, pp. 164-168 (October 13-15, 1976).

5. T. A. Dolotta, R. C. Haight, and J. R. Mashey, ‘“UNiX Time-Sharing System: The
Programmer’s Workbench,”” Bell Sys. Tech. J. 57(6) pp. 2177-2200 (1978).

10.

11

12.

2-16

H. Lycklama, ‘‘UNiX Time-Sharing System: UNIX on a Microprocessor,’” Belf Sys. Tech. J.
57(6) pp. 2087-2101 (1978).

B. W. Kernighan and D. M. Ritchie, The C Programmmg Language, Prentice-Hall, Engle-
wood Cliffs, New Jersey (1978).

Aleph-null, “‘Computer Recreations,”” Software Practice and Experience 1(2) pp. 201-204
(April-June 1971).

S. R. Bourne, “‘UNIX Time-Sharing System: The UNiX Shell,”” Bell Sys. Tech. J. 57(6) pp.
1971-1990 (1978).

L. P. Deutsch and B. W. Lampson, ‘‘SDS 930 time-sharing system preliminary reference
manual,” Doc. 30.10.10, Project GENIE, Univ. Cal. at Berkeley (April 1965).

R. J. Feiertag and E. I. Organick, ‘“The Multics input-output system,’” Proc. Third Sympo-
sium on Operating Systems Principles, pp. 35-41 (October 18-20, 1971).

D. G. Bobrow, J. D. Burchfiel, D. L. Murphy, and R. S. Tomlinson, ‘‘TENEX, a Paged

Time Sharing System for the PDP-10,” Comm. Assoc. Comp. Mach. 15(3) pp. 135-143
(March 1972).

UNIX For Beginners — Second Edition

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper is meant to help new users get started on the UNIXt operating

system. It includes:

® basics needed for day-to-day use of the system — typing commands, correct-
ing typing mistakes, logging in and out, mail, inter-terminal communication,
the file system, printing files, redirecting 1/0, pipes, and the shell.

® document preparation — a brief discussion of the major formatting programs
and macro packages, hints on preparing documents, and capsule descriptions
of some supporting software.

® UNIX programming — using the editor, programming the shell, program-
ming in C, other languages and tools.

® An annotated UNIX bibliography.

September 30, 1978

tUNIX is a Trademark of Bell Laboratories.

3-1

UNIX For Beginners — Second Edition

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

INTRODUCTION

From the user's point of view, the UNIX
operating system is easy to learn and use, and
presents few of the usual impediments o getting
the job done. It is hard, however, for the
beginner to know where to start, and how 0
make the best use of the facilities available. The
purpose of this introduction is to help new users
get used to the main ideas of the UNIX system
and start making effective use of it quickly.

You should have a couple of other docu-
ments with you for easy reference as you read
this one. The most important is The UNIX
Programmer's Manual, it's often easier 10 tell you
to read about something in the manual than to
repeat its contents here. The other useful docu-
ment is 4 Twuworial Inrroduction o the UNIX Text
Editor, which will tell you how to use the editor
to get text — programs, data, documents — into
the computer.

A word of warning: the UNIX system has
become quite popular, and there are several
major variants in widespread use. Of course
details also change with time. So although the
basic structure of UNIX and how (o use it is com-
mon to all versions, there will certainiy be a few
things which are different on your system from
what is described here. We have tried 10 minim-
ize the problem, but be aware of it. In cases of
doubt, this paper describes Version 7 UNIX.

This paper has five sections:

1. Getting Started: How to log in, how to type,
what to do about mistakes in typing, how to
log out. Some of this is dependent on which
system vou log into (phone numbers, for
example) and what terminal you use, so this
section must necessarily be supplemented by
local information.

[)

Day-to-day Use: Things vou need every day
to use the system effectively: generally use-
ful commands: the file sysiem.

3-2

3. Document Preparation: Preparing manu-
scripts is one of the most common uses for
UNIX systems. This section contains advice.
but not extensive instructions on any of the
formatting tools.

4. Writing Programs: UNIX is an excellent sys-
tem for developing programs. This section
talks about some of the tools, but again is
not a tutorial in any of the programming
languages provided by the system.

S. A UNIX Reading List. An annotated
bibliography of documents that new users
should be aware of.

1. GETTING STARTED

Logging In

You must have a UNIX login name, which
you can get from whoever administers your sys-
tem. You also need to know the phone number,
unless your system uses permanently connected
terminals. The UNIX system is capable of deal-
ing with a wide variety of terminals: Terminet
300's: Execuport. TI and similar portables; video
(CRT) terminals like the HP2640, etc.: high-
priced graphics terminals like the Tektronix
4014: plotting terminals like those from GSI and
DASI; and even the venerable Teletype in its
various forms. But note: UNIX is strongly
oriented towards devices with lower case. If your
terminal produces only upper case (e.g.. model
33 Teletype, some video and portable terminals).
life will be so difficult that you should look for
another terminal.

Be sure to set the switches appropriately on
your device. Switches that might need o be
adjusted include the speed, upper/lower case
mode. full duplex, even parity, and any others
that local wisdom advises. Establish a connec-
tion using whatever magic is needed for vour ter-
minal: this may involve dialing a telephone call
or merely flipping a switch. In either case, UNIX
should type “‘login:™" at vou. If it types garbage,
you may be at the wrong speed: check the
switches. If that fails, push the ‘‘break’™ or

3-3

“‘interrupt’ key a few times, slowly. If that fails
to produce a login message, consult a guru.

When you get a login: message, type your
login name in lower case. Follow it by a
RETURN; the system will not do anything until
you type a RETURN. If a password is required,
you will be asked for it, and (if possible) printing
will be turned off while you type it. Don’t forget
RETURN.

The culmination of your login efforts is a
‘“‘prompt character,”’ a single character that indi-
cates that the system is ready to accept com-
mands from you. The prompt character is usu-
ally a dollar sign $ or a percent sign %. (You
may also get a message of the day just before the
prompt character, or a‘notiﬁcation that you have
mail.)

Typing Commands
Once you’'ve seen the prompt character, you

can type commands, which are requests that the
system do something. Try typing

date

followed by RETURN. You should get back
something like

Mon Jan 16 14:17:10 EST 1978

Don’t forget the RETURN after the command, or
nothing will happen. If you think you’re being
ignored, type a RETURN; something should hap-
pen. RETURN won’t be mentioned again, but
don’t forget it — it has to be there at the end of
each line.

Another command you might try is who,
which tells you everyone who is currently logged
in:

who
gives something like

mb tty0l Jan 16 09:11
ski tty0S Jan 16 09:33
gam ttyll Jan 16 13:07

The time is when the user logged in; “‘ttyxx’ is
the system’s idea of what terminal the user is on.

If you make a mistake typing the command
name, and refer to a non-existent command, you
will be told. For example, if you type

whom
you will be told
whom: not found

Of course, if you inadvertently type the name of
some other command, it will run, with more or
less mysterious results.

Strange Terminal Behavior

Sometimes you can get intc a state where
your terminal acts strangely. For example, each
letter may be typed twice, or the RETURN may
not cause a line feed or a return to the left mar-
gin. You can often fix this by logging out and
logging back in. Or you can read the description
of the command stty in section [of the manual.
To get intelligent treatment of tab characters
{which are much used in UNIX) if your terminal
doesn’t have tabs, type the command

stty —tabs

and the system will convert each tab into the
right number of blanks for you. If your terminal
does have computer-settable tabs, the command
tabs will set the stops correctly for you.

Mistakes in Typing

If you make a typing mistake, and see it
before RETURN has been typed, there are two
ways to recover. The sharp-character # erases
the last character typed; in fact successive uses of
erase characters back 1o the beginning of the
line (but not beyond). So if you type badly, you
can correct as you go:

dd#atte# #e

is the same as date.

The at-sign @ erases all of the characters
typed so far on the current input line, so if the
line is irretrievably fouled up, type an @ and
start the line over.

What if you must enter a sharp or at-sign as
part of the text? If you precede either # or @
by a backslash \, it loses its erase meaning. So
to enter a sharp or at-sign in something, type \#
or \@. The system will always echo a newline at
you after your at-sign, even if preceded by a
backsiash. Don’t worry — the at-sign has been
recorded.

To erase a backslash, you have to type two
sharps or two at-signs, as in \##. The backslash
is used extensively in UNIX to indicate that the
following character is in some way special.

Read-ahead

UNIX has full read-ahead, which means that
you can type as fast as you want, whenever you
want, even when some command is typing at
you. If you type during output, your input char-
acters will appear intermixed with the output
characters, but they will be stored away and
interpreted in the correct order. So you can type
several commands one after another without
waiting for the first to finish or even begin.

Stopping a Program

You can stop most programs by typing the
character “‘DEL' (perhaps called ‘‘delete” or
“rubout’’ on your terminal). The ‘‘interrupt’ or
“‘break’” key found on most terminals can also
be used. In a few programs, like the text editor,
DEL stops whatever the program is doing but
leaves you in that program. Hanging up the
phone will stop most programs.

Logging Out

The easiest way to log out is (o hang up the
phone. You can also type

login

and let someone else use the terminal you were
on. [t is usually not sufficient just to turn off the
terminal. Most UNIX systems do not use a
time-out mechanism, so you'll be there forever
unless you hang up.

Mail

When you log in, you may sometimes get
the message

You have mail.

UNIX provides a postal system so you can com-
municate with other users of the system. To
read your mail, type the command

mail

Your mail will be printed, one message at a time,
most recent message first. After each message,
mail waits for you to say what to do with it. The
two basic responses are d, which deletes the mes-
sage, and RETURN, which does not (so it will
still be there the next time you read vour mail-
box). QOther responses are described in the
manual. (Earlier versions of mail do not process
one message at a time, but are otherwise simi-
lar.)

How do you send mail to someone else?
Suppose it is to go o “‘joe’" {(assuming ‘‘joe" is
someone’s login name). The easiest way is this:

mail joe

now ype in the text of the letter

on as many lines as you like ...

After the last line of the lener

wvpe the character “‘controi~d",

that is. hold down “‘conirol’”’ and wype
a lewer 'd”’.

And that's it. The ‘‘control-d’’ sequence, often
called “EOF"" for end-of-file, is used throughout
the systemn to mark the end of input from a ter-
minal, so you might as well get used to it.

For practice, send mail to yourself. (This
isn’t as strange as it might sound — mail Lo one-

3-4

seif is a handy reminder mechanism.)

There are other ways to send mail — you
can send a previously prepared letter, and you
can mail to a number of people all at once. For
more details see mail(l). (The notation mail(l)
means the command mail in section | of the
UNIX Programmer's Manual)

Writing to other users

At some point, out of the blue will come a
message like

Message from joe try07...

accompanied by a startling beep. It means that
Joe wants o talk to you, but unless you take
explicit action you won't be able to talk back. To
respond, type the command

write joe

This establishes a two-way communication path.
Now whatever Joe types on his terminal will
appear on yours and vice versa. The path is
slow, rather like talking to the moon. (If you are
in the middle of something, you have (o get to a
state where you can type a command. Normally,
whatever program you are running has to ter-
minate or be terminated. If you're editing, you
can escape temporarily from the editor — read
the editor tutorial.)

A protocol is needed to keep what you type
from getting garbled up with what Joe types.
Typically it’s like this:

Joe types write smith and waits.

Smith types write joe and waits.

Joe now types his message (as many lines

as he likes). When he’s ready for a reply,

he signals it by typing (o), which stands

for “‘over’.

Now Smith types a reply, also terminated

by (o).

This cycle repeats until someone gets

tired; he then signals his intent to quit

with {oe), for “*over and out’".

To terminate the conversation, each side
" must type a “‘control-d’’ character alone

on a line. (**Delete’” also works.) When

the other person types his ‘‘control-d’,

you will get the message EOF on your

terminal.

If vou write (o someone who isn't logged in,
or who doesa’t want to be disturbed, you'll be
told. If the target is logged in but doesn’t answer
after a decent interval, simply type ““control-d™".

¥

On-line Manual

The UNIX Programmer’s Manual is typically
kept on-line. If you get stuck on something, and
can’t find an expert to assist you, you can print
on your terminal some manual section that
might help. This is also useful for getting the
most up-to-date information on a command. To
print a manual section, type ‘‘man command-
name’’. Thus to read up on the who command,
type

man who
and, of course,
man man

tells all about the man command.

Computer Aided Instruction

Your UNIX system may have available a pro-
gram called learn, which provides computer
aided instruction on the file system and basic
commands, the editor, docum nt preparation,
and even C programming. Try typing the com-
mand

learn

If learn exists on your system, it will tell you
what to do from there.

II. DAY-TO-DAY USE

Creating Files — The Editor

If you have to type a paper or a letter or a
program, how do you get the information stored
in the machine? Most of these tasks are done
with the UNIX ‘“‘text editor” ed. Since ed is
thoroughly documented in ed(l1) and explained
in A Turorial Introduction to the UNIX Text Editor,
we won't spend any time here describing how to
use it. All we want it for right now is to make
some Sfiles. (A file is just a collection of informa-
tion stored in the machine, a simplistic but ade-
quate definition.)

To create a file called junk with some text in
it, do the following:

ed junk (invokes the text editor)
a {command to “‘ed”, to add text)
now ppe in

whatever text you want ...
(signals the end of adding text)

The ““.” that signals the end of adding text must
be at the beginning of a line by itself. Don’t for-
get it, for until it is typed, no other ed com-
mands will be recognized — everything you type
will be treated as text to be added.

At this point you can do various editing
operations on the text you typed in, such as

3-5

correcting spelling mistakes, rearranging para-
graphs and the like. Finally, you must write the
information you have typed into a file with the
editor command w:

w

ed will respond with the number of characters it
wrote into the file junk.

Until the w command, nothing is stored per-
manently, so if you hang up and go home the
information is lost.T But after w the information
is there permanently; you can re-access it any
time by typing

ed junk
Type a @ command to quit the editor. (If you try

to quit without writing, ed will print a ? to rem-
ind you. A second q gets you out regardless.)

Now create a second file called temp in the
same manner. You should now have two files,
junk and temp.

What files are out there?

The Is (for *‘list’’) command lists the names
(not contents) of any of the files that UNIX
knows about. If you type

Is
the response will be

junk
temp

which are indeed the two files just created. The
names are sorted into alphabetical order
automatically, but other variations are possible.
For example, the command

Is —t

causes the files to be listed in the order in which
they were last changed, most recent first. The
-] option gives a ‘‘long”’ listing:

Is =1

will produce something like

—rw—rw—rw~ 1 bwk 41 Jul22 2:56 junk
—rw—rw—rw— 1 bwk 78 Jul22 2:57 temp

The date and time are of the last change to the
file. The 41 and 78 are the number of characters
(which should agree with the numbers you got
from ed). bwk is the owner of the file, that is,
the person who created it. The —rw=—rw=rw=—
tells who has permission to read and write the
file, in this case everyone.

% This is not strictly true — if you hang up while editing,
the data you were working on is saved in a file called
ed.hap, which you can continue with at your next session.

Options can be combined: ls —1It gives the
same thing as Is =1, but sorted into time order.
You can also name the files you're interested in,
and ls will list the information about them only.
More details can be found in is(1).

The use of optional arguments that begin
with a minus sign, like =t and -1t is a2 com-
mon convention for UNIX programs. In general,
if a program accepts such optional arguments,
they precede any filename arguments. [t is also
vital that you separate the various arguments
with spaces: Is=1 is not the same as ls =1L

Printing Files

Now that you've got a file of text, how do
you print it so people can look at it? There are a
host of programs that do that, probably more
than are needed.

One simple thing is to use the editor, since
printing is often done just before making
changes anyway. You can say

ed junk
1,85p

ed will reply with the count of the characters in
junk and then print all the lines in the file.
After you learn how to use the editor, you can
be selective about the parts you print.

There are times when it’s not feasible to use
the editor for printing. For example, there is a
limit on how big a file ed can handle (several
thousand lines). Secondly, it will only print one
file at a time, and sometimes you want to print
several, one after another. So here are a couple
of alternatives.

First is cat, the simplest of all the printing
programs. cat simply prints on the terminal the
contents of all the files named in a list. Thus

cat junk
prints one file, and
cat junk temp

prints two. The files are simply concatenated
(hence the name ‘‘cat’’) onto the terminal.

pr produces formatted printouts of files. As
with cat, pr prints all the files named in a list.
The difference is that it produces headings with
date, lime, page number and file name at the top
of each page, and extra lines to skip over the
fold in the paper. Thus,

pr junk temp

will print junk neatly, then skip to the top of a
new page and print temp neatly.

pr can also produce multi-column output:

3-6

pr =3 junk

prints junk in 3-column format. You can use
any reasonable number in place of **3" and pr
will do its best. pr has other capabilities as well;

see pr{l).

It should be noted that pr is nosa formatting
program in the sense of shuffling lines around
and justifving margins. The true formatters are
nroff and troff, which we will get to in the sec-
tion on document preparation.

There are also programs that print files on a
high-speed printer. Look in your manual under
epr and lpr. Which o use depends on what
equipment is attached o vour machine.

Shuffling Files About

Now that you have some files in the file sys-
tem and some experience in printing them, you
can try bigger things. For example, vou can
move a file from one place (o another (which
amounts to giving it a new name), like this:

mv junk precious

This means that what used to be “'junk’ is now
“precious’”’. If you do an ls command now, vou

- will get

precious
temp

Beware that if vou move a file to another one
that already exists, the already existing contents
are lost forever.

If you want to make a copy of a file (that is,
to have two versions of something), you can use
the ¢p command:

cp precious templ
makes a duplicate copy of precious in templ.

Finally, when you get tired of creating and
moving files, there is a command to remove files
from the file sysiem, called rm.

rm temp templ

will remove both of the files named.

You will get a warning message if one of the
named files wasn’t there, but otherwise rm, like
most UNIX commands, does its work silently.
There is no prompting or chatier, and error mes-
sages are occasionally curt. This terseness is
sometimes disconcerting !0 newcomers, but
experienced users find it desirable.

What’s in 2 Filename

So far we have used filenimes without ever
saying what's a legal name, so it's time for a
couple of rules. First, filenimes are limited to
14 characters, which is enour,h to be descriptive.

Second, although you can use almost any charac-
ter in a filename, common sense says you should
stick to ones that are visible, and that you should
probably avoid characters that might be used
with other meanings. We have aiready seen, for
example, that in the ls command, ls —t means
to list in time order. So if you had a file whose
name was —t, you would have a tough time list-
ing it by name. Besides the minus sign, there
are other characters which have special meaning.
To avoid pitfalls, you would do well to use only
letters, numbers and the period until you're fam-
iliar with the situation.

On to some more positive suggestions. Sup-
pose you’re typing a large document like a book.
Logically this divides into many small pieces, like
chapters and perhaps sections. Physically it must
be divided too, for ed will not handle really big
files. Thus you should type the document as a
number of files. You might have a separate file
for each chapter, called

chapl
chap2
etc...

Or, if each chapter were broken into several files,
you might have

chapl.1l
chapl.2
chapl.3

chap2.1
chap2.2

You can now tell at a glance where a particular
file fits into the whole.

There are advantages to a systematic naming
convention which are not obvious to the novice
UNIX user. What if you wanted to print the
whole book? You could say

pr chapl.l chapl.2 chapl.3

......

but you would get tired pretty fast, and would
probably even make mistakes. Fortunately,
there is a shortcut. You can say

pr chap*

The * means ‘“‘anything at all,”” so this translates
into ‘“‘print all files whose names begin with
chap’’, listed in alphabetical order.

This shorthand notation is not a property of
the pr command, by the way. It is system-wide,
a service of the program that interprets com-
mands (the *‘shell,” sh(l)). Using that fact,
you can see how 1o list the names of the files in
the book:

3-7

Is chap*
produces

chapl.1
chapl.2
chapl.3

The * is not limited to the last position in a
filename — it can be anywhere and can occur
several times. Thus

rm *junk® *temp*

removes all files that contain junk or temp as
any part of their name. As a special case, * by
itself matches every filename, so

pr*

prints all your files (alphabetical order), and

rm *

removes all files. (You had better be very sure
that's what you wanted to say!)

The * is not the only pattern-matching
feature available. Suppose you want to print
only chapters 1 through 4 and 9. Then you can
say

pr chapl12349]*

The [...] means to match any of the characters
inside the brackets. A range of consecutive
letters or digits can be abbreviated, so you can
also do this with

pr chapll —49]*
Letters can also be used within brackets: [a—z]
matches any character in the range a through z.

The ? pattern matches any single character,
SO

Is ?

lists all files which have single-character names,
and

Is =1 chap?.1

lists information about the first file of each
chapter (chapl.l, chap2.1, etc.).

Of these niceties, * is certainly the most use-
ful, and you should get used to it. The others
are frills, but worth knowing.

If you should ever have to turn off the spe-
cial meaning of *, ?, etc., enclose the entire
argument in single quotes, as in

lS l?l

We'll see some more examples of this shortly.

3-8

What’s in & Filename, Continued

When you first made that file called junk,
how did the system know that there wasn't
another junk somewhere else, especially since
the person in the next office is also reading this
tutorial? The answer is that generally each user
has a private direcrory, which contains only the
files that belong to him. When you log in, you
are ‘‘in"’ your directory. Uniless you take special
action, when you create a new file, it is made in
the directory that you are currently in; this is
most often your own directory, and thus the file
is unrelated to any other file of the same name
that might exist in someone else’s directory.

The set of all files is organized into a (usu-
ally big) tree, with your files located several
branches into the tree. It is possible for you to
“‘walk’" around this tree, and to find any file in
the system, by starting at the root of the tree and
walking along the proper set of branches. Con-
versely, you can start where vou are and walk
toward the root.

Let’s try the latter first. The basic tools is
the command pwd (“‘print working directory’’),
which prints the name of the directory you are
currently in.

Although the details will vary according to
the system you are on, if you give the command
pwd, it will print something like

/usr/your-name

This says that you are currently in the directory
your-name, which is in turn in the directory
/usr, which is in turn in the root directory called
by convention just /. (Even if it's not called
/usr on your system, you will get something
analogous. Make the corresponding changes and
read on.)

If you now type
Is /usr/your-name

you should get exactly the same list of file names
as you get from a plain Is: with no arguments, Is
lists the contents of the current directory; given
the name of a directory, it lists the contents of
that directory.

Next, ry
Is /usr

This should print 2 long series of names, among
which is your own login name your-name. On
many systems, usr is a directory that contains
the directories of all the normal users of the sys-
tem, like you.

The next step is to try
Is /

You should get a response something like this
(although again the details may be different):

bin
dev
ete
lib
tmp
usr

This is a collection of the basic directories of files
that the system knows about, we are at the root
of the tree.

Now try
cat /usr/your-name/junk

(if jumnk is still around in your directory). The
name

/usr/your-name/junk

is called the pathname of the file that you nor-
malily think of as ‘‘junk’’. ‘“‘Pathname’’ has an
obvious meaning: it represents the full name of
the path you have to follow from the root
through the tree of directories to get to a particu-
lar file. It is a universal rule in the UNIX system
that anywhere you can use an ordinary filename,
you can use a pathname.

Here is a picture which may make this
clearer: -

(root)
/l\
/1A
// | \1
bin etc usr dev tmp
FIN N /\\ ANV
/1A
! |
adam eve mar
A A W
/A junk
junk temp

Notice that Mary’s junk is unrelated to Eve’s.

This isn't oo exciting if all the files of
interest are in your own directory, but if you
work with someone aise or on several projects
concurrently, it becomes handy indeed. For
example, your friends can print your book by
saying

pr /usr/your-name/chap®

Similacly, you can find out what files your neigh-
bor has by saying

Is /usr/neighbor-name
or make your own copy of one of his files by

cp /usr/your-neighbor/his-file yourfile

If your neighbor doesn’'t want you poking
around in his files, or vice versa, privacy can be

arranged. Each file and directory has read-write-
execute permissions for the owner, a group, and
everyone else, which can be set to control access.
See Is(1) and chmod(1l) for details. As a matter
of observed fact, most users most of the time
find openness of more benefit than privacy.

As a final experiment with pathnames, try

Is /bin /usr/bin

Do some of the names look familiar? When you
run a program, by typing its name after the
prompt character, the system simply looks for a
file of that name. It normally looks first in your
directory (where it typically doesn’t find it), then
in /bin and finally in /usr/bin. There is nothing
magic about commands like cat or ls, except that
they have been collected into a couple of places
to be easy to find and administer.

What if you work regularly with someone
else on common information in his directory?
You could just log in as your friend each time
you want to, but you can also say ‘I want to
work on his files instead of my own”. This is

done by changing the directory that you are
currently in:

¢d /usr/your-friend

(On some systems, cd is spelled chdir.) Now
when you use a filename in something like cat or
pr, it refers to the file in your friend’s directory.
Changing directories doesn’t affect any permis-
sions associated with a2 file — if you couldn’t
access a file from your own directory, changing
to another directory won’t alter that fact. Of
course, if you forget what directory you’re in,
type

pwd
to find out.

It is usually convenient {0 arrange your own
files so that all the files related to one thing are
in a directory separate from other projects. For
example, when you write your book, you might
want to keep all the text in a directory called
book. So make one with

mkdir book
then go to it with
cd book

then start typing chapters. The book is now

found in (presumably)
/usr/your-name/book
To remove the directory book, type

rm book/*®
rmdir book

3-9

The first command removes all files from the
directory; the second removes the empty direc-
tory.

You can go up one level in the tree of files
by saying

cd ..

w1

.." is the name of the parent of whatever direc-
tory you are currently in. For completeness, **.”
is an alternate name for the directory you are in.

Using Files instead of the Terminal

Most of the commands we have seen so far
produce output on the terminal, some, like the
editor, also take their input from the terminal. It
is universal in UNIX systems that the terminal
can be replaced by a file for either or both of
input and output. As one example,

Is

makes a list of files on your terminal. But if you
say

Is > filelist

a list of your files will be placed in the file filelist
(which will be created if it doesn’t already exist,
or overwritten if it does). The symbol > means
‘‘put the output on the following file, rather than
on the terminal.”” Nothing is produced on the
terminal. As another example, you could com-
bine several files into one by capturing the out-
put of cat in a file:

cat fl1 £2 f3 >temp

The symbol > > operates very much like >
does, except that it means ‘‘add to the end of.”
That is,

cat f1 f2 f3 > >temp

means to concatenate f1, f2 and 3 to the end of
whatever is already in temp, instead of overwrit-
ing the existing contents. As with >, if temp
doesn’t exist, it will be created for you.

In a similar way, the symbol < means to
take the input for a program from the following
file, instead of from the terminal. Thus, you
could make up a script of commonly used editing
commands and put them into a file called script.
Then you can run the script on a file by saying

ed file <script

As another example, you can use ed to prepare a
letter in file let, then send it to several people
with

mail adam eve mary joe <let

Pipes

One of the novel contributions of the UNIX
system is the idea of a pipe. A pipe is simply a
way to connect the output of one program to the
input of another program, so the two run as a
sequence of processes — a pipeline.

For example,
prigh

will print the files f, g, and h, beginning each on
a new page. Suppose you want them run
together instead. You could say

cat f g h >temp
pr <temp
rm temp

but this is more work than necessary. Clearly
what we want is to take the output of cat and
connect it to the input of pr. So let us use a
pipe: i

cat fg hipr

The vertical bar | means to take the output from
cat, which would normally have gone to the ter-
minai, and put it into pr to be neatly formatted.

There are many other examples of pipes.
For example,

Is|pr =3

prints a list of your files in three columns. The
program we counts the number of lines, words
and characters in its input, and as we saw earlier,
who prints a list of currently-logged on people,
one per line. Thus

who | we

tells how many people are logged on. And of

course
Is | we

counts your files.

Any program that reads from the terminal
can read from a pipe instead; any program that
writes on the terminal can drive a pipe. You can
have as many elements in a pipeline as you wish.

Many UNIX programs are written so that
they will take their input from one or more files
if file arguments are given; if no arguments are
given they will read from the terminal, and thus
can be used in pipelines. pr is one example:

pr =3abec

prints files a, b and ¢ in order in three columns.
But in

catabel|pr =3

pr prints the information coming down the pipe-
line, still in three columns.

The Shell

We have already mentioned once or twice
the mysterious ‘‘sheil,”” which is in fact sh{l).
The shell is the program that interprets what vou
type as commands and arguments. [t also looks
after translating *, etc., into lists of filenames,
and <, >, and § into changes of input and out-
put streams.

The sheil has other capabilitiess to. For
example, you can run iwe programs with one
command line by separating the commands with
a semicolon; the shell recognizes the semicolon
and breaks the line into two commands. Thus

date; who

does both commands before returning with a
prompt character.

You can also have more than one program
running simuftaneously if you wish. For exampie,
if you are doing something time-consuming, like
the editor script of an earlier section, and you
don’t want 0 wait around for the resuits before
starting something eise, you can say

ed file <script &

The ampersand at the end of a command line
says ‘‘start this command running, then take
further commands from the terminal immedi-
ately,”” that is, don't wait for it to complete.
Thus the script will begin. but you can do some-
thing eise at the same time. Of course, to keep
the output from interfering with what vou're
doing on the terminal, it would be better to say

ed file <script >script.out &
which saves the output lines in a file called
script.out.

When vou initiate a command with &, the
system replies with a number called the process
rdumber, which identifies the command in case
you later want to stop it. If you do, you can say

kill process-number

If you forget the process number, the command
ps will tell you about everything you have run-
ning. (If you are desperate, kill 0 will kill all
your processes.) And if you're curious about
other people, ps a wiil tell you about a/fl pro-
grams that are currently running.

You can say
{command-1; command-2; command-3) &

‘to start three commands in the background, or
you can start a background pipeline with

command-1 | command-2 &

Just as you can tell the editor or some simi-

- g
e

lar program to take its input from a file instead
of from the terminal, you can tell the shell to
read a file to get commands. (Why not? The
shell, after all, is just a program, albeit a clever
one.) For instance, suppose you want to set tabs
on your terminal, and find out the date and
who’s on the system every time you log in.
Then you can put the three necessary commands
(tabs, date, whe) into a file, let’s call it startup,
and then run it with

sh startup

This says to run the shell with the file startup as
input. The effect is as if you had typed the con-
tents of startup on the terminal.

If this is to be a regular thing, you can elim-
inate the need to type sh: simply type, once only,
the command

chmod +x startup
and thereafter you need only say
startup

to run the sequence of commands. The
chmod(1) command marks the file executable;
the shell recognizes this and runs it as a
sequence of commands.

If you want startup to run automatically
every time you log in, create a file in your login
directory called .profile, and place in it the line
startup. When the shell first gains control when
you log in, it looks for the .profile file and does
whatever commands it finds in it. We’ll get back
to the shell in the section on programming.

IiI. DOCUMENT PREPARATION

UNIX systems are used extensively for docu-
ment preparation. There are two major format-
ting programs, that is, programs that produce a
text with justified right margins, automatic page
numbering and titling, automatic hyphenation,
and the like. nroff is designed to produce output
on terminals and line-printers. troff (pro-
nounced ‘‘tee-roff”’) instead drives a photo-
typesetter, which produces very high quality out-
put on photographic paper. This paper was for-
matted with troff.

Formatting Packages

The basic idea of nroff and troff is that the
text to be formatted contains within it “‘format-
ting commands’’ that indicate in detail how the
formatied text is to look. For example, there
might be commands that specify how long lines
are, whether to use single or double spacing, and
what running titles to use on each page.

Because nroff and troff are relatively hard to
learn to use effectively, several ‘‘packages’ of
canned formatting requests are available tc let
you specify paragraphs, running titles, footnotes,
multi-column output, and so on, with little effort
and without having to learn nroff and troff.
These packages take a modest effort to learn, but
the rewards for using them are so great that it is
time well spent.

In this section, we will provide a hasty look
at the ‘“‘manuscript’” package known as =—ms.
Formatting requests typically consist of a period
and two upper-case letters, such as .TL, which is
used to introduce a title, or .PP to begin a new
paragraph.

A document is typed so it looks something
like this:

TL

title of document
AU

author name

.SH

section heading

PP

paragraph ...

PP

another paragraph ...
SH

another section heading
PP

etc.

The lines that begin with a period are the for-
matting requests. For example, .PP calls for
starting a new paragraph. The precise meaning
of .PP depends on what output device is being
used (typesetter or terminal, for instance), and
on what publication the document will appear in.
For example, —ms normally assumes that a
paragraph is preceded by a space (one line in
nroff, 2 line in troff), and the first word is
indented. These rules can be changed if you
like, but they are changed by changing the
interpretation of .PP, not by re-typing the docu-
ment.

To actually produce a document in standard
format using —ms, use the command

troff — ms files ...
for the typesetter, and
nroff —ms files ...

for a terminal. The —ms argument tells troff
and nroff to use the manuscript package of for-
matting requests.

There are several similar packages; check
with a local expert to determine which ones are
in common use on your machine.

Supporting Tools

In addition to the basic formatters, there is a
host of supporting programs that help with docu-
ment preparation. The list in the next few para-
graphs is far from complete, so browse through
the manual and check with people around you
for other possibilities.

eqn and negn et you integrate mathematics
into the text of a document, in an easy-to-learn
language that closely resembles the way you
would speak it aloud. For example, the egn
input

sum from i=0 to n x sub i "=" pi over 2

oroduces the output
L
ZXV R lr—.
Id) z

The program tbl provides an analogous ser-
vice for preparing tabular material; it does all the
computations necessary to align complicated
columns with elements of varying widths.

refer prepares bibliographic citations from a
data base, in whatever style is defined by the for-
matting package. It looks after all the details of
numbering references in sequence, filling in page
and volume numbers, getting the author’s initials
and the journal name right, and so on.

spell and typo detect possible spelling mis-
takes in a document. spell works by comparing
the words in vour document to a dictionary,
printing those that are not in the dictionary. It
knows enough about English spelling to detect
plurals and the like, so it does a very good job.
typo looks for words which are “‘unusual’, and
prints those. Spelling mistakes tend to be more
unusual, and thus show up early when the most
unusual words are printed first.

grep looks through a set of files for lines
that contain a particular text pattern (rather like
the editor’s context search does, but on a bunch
of files). For example,

grep 'ing$’ chap®

will find all lines that end with the letters ing in
the files chap® (It is almost always a good prac-
tice to put single quotes around the patiern
vou're searching for, in case it contains charac-
ters like * or $ that have a special meaning to the
shell.) grep is often useful for finding out in
which of a set of files the misspelled words
detected by spell are actually located.

diff prints a list of the differences between
two files. so you can compare (wo versions of
something automatically (which certainly beats
proofreading by hand).

3-12

we counts the words, lines and characters in
a set of files. tr translates characters into other
characters; for example it will convert upper o
lower case and vice versa. This translates upper
into lower:

tr A—7Z a—z <input >output

sort sorts files in a variety of ways; cref
makes cross-references; ptx makes a permuted
index (keyword-in-context listing). sed provides
many of the editing facilities of ed, but can apply
them to arbitrarily long inputs. awk provides the
ability to do both pattern matching and numeric
computations, and to conveniently process fields
within lines. These programs are for more
advanced users, and they are not limited to
document preparation. Put them on your list of
things to learn about.

Most of these programs are either indepen-
dently documented (like eqn and tbl)., or are
sufficiently simple that the description in the
UNIX Programmer’s Manual is adequate explana-
tion.

Hints for Preparing Decuments

Most documents go through several versions
(always more than you expecied) before they are
finally finished. Accordingly, you should do
whatever possible to make the job of changing
them easy.

First, when you do the purely mechanical
operations of typing, type so that subsequent
editing will be easy. Siart each senience on a
new line. Make lines short, and break lines at
natural places. such as after commas and semi-
colons, rather than randomly. Since most people
change documenis by rewriting phrases and
adding, deleting and rearranging sentences, these
precautions simplify any aditing you have to do
later.

Keep the individual files of a document
down (o modest size, perhaps ten to fifteen
thousand characters. Larger files edit more
slowly, and of course if you make a dumb mis-
take it's better to have clobbered a small file
than a big one. Split into files at natural boun-
daries in the document, for the same reasons
that you start each sentence on a new line.

The second aspect of making change easy is
to not commit yourself to formatting details (00
early. One of the advantages of formatting pack-
ages like —ms is that they permit you to delay
decisions 1o the last possibie moment. Indeed,
until a document is printed, it is not even
decided whether it will be typeset or put on a line
printer.

3-13

As a rule of thumb, for all but the most
trivial jobs, you should type a document in terms
of a set of requests like .PP, and then define
them appropriately, either by using one of the
canned packages (the better way) or by defining
your own nroff and treff commands. As long as
you have entered the text in some systematic
way, it can always be cleaned up and re-
formatted by a judicious combination of editing
commands and request definitions.

IV. PROGRAMMING

There will be no attempt made to teach any
of the programming languages available but a
few words of advice are in order. One of the
reasons why the UNIX system is a productive

. programming environment is that there is

already a rich set of tools available, and facilities
like pipes, 1/0 redirection, and the capabilities of
the shell often make it possible to do a job by
pasting together programs that already exist
instead of writing from scratch.

The Shell

The pipe mechanism lets you fabricate quite
complicated operations out of spare parts that
already exist. For example, the first draft of the
spell program was (roughly)

cat ... collect the files

itr put each word on a new line
Itr ... - delete punctuation, etc.

| sort into dictionary order

| uniq discard duplicates

|comm print words in text
but not in dictionary

More pieces have been added subsequently, but
this goes a long way for such a small effort.

The editor can be made to do things that
would normally require special programs on
other systems. For example, to list the first and
last lines of each of a set of files, such as a book,
you could laboriously type

ed
e chapi.l

But you can do the job much more easily. One
way is to type

is chap® > temp

to get the list of filenames into a file. Then edit
this file to make the necessary series of editing

commands (using the global commands of ed),
and write it into script. Now the command

ed <script

will produce the same output as the laborious
hand typing. Alternately (and more easily), you
can use the fact that the shell will perform loops,
repeating a set of commands over and over again
for a set of arguments:

for i in chap*
do

ed $i <script
done

This sets the shell variable i to each file name in
turn, then does the command. You can type this
command at the terminal, or put it in a file for
later execution.

Prognmmixig the Shell

An option often overlooked by newcomers is
that the shell is itself a programming language,
with variables, control flow (if-else, while, for,
case), subroutines, and interrupt handling. Since
there are many building-block programs, you can
sometimes avoid writing a new program merely
by piecing together some of the building blocks
with shell command files.

We will not go into any details here; exam-
ples and rules can be found in An Introduction w0
the UNIX Shell, by S. R. Bourne.

Programming in C

If you are undertaking anything substantial,
C is the only reasonable choice of programming
language: everything in the UNIX system is tuned
to it. The system itself is written in C, as are
most of the programs that run on it. It is also a
easy language to use once you get started. C is
introduced and fully described in The C Program-
ming Language by B. W. Kernighan and D. M.
Ritchie (Prentice-Hall, 1978). Several sections
of the manual describe the system interfaces,
that is, how you do I/O and similar functions.
Read UNIX Programming for more complicated
things.

Most input and output in C is best handled
with the standard 1/0 library, which provides a
set of 1/0 functions that exist in compatible
form on most machines that have C compilers.
In general, it's wisest to confine the system
interactions in a program to the facilities pro-
vided by this library.

C programs that don’t depend too much on
special features of UNIX (such as pipes) can be
moved to other computers that have C com-
pilers. The list of such machines grows daily; in
addition to the original PDP-11, it currently

includes at least Honeywell 6000, IBM 370,
Interdata 8/32, Data Generai Nova and Eclipse,
HP 2100, Harris /7, VAX 11/780, SEL 86, and
Zilog Z80. Calls to the standard 1/0 library will
work on all of these machines.

There are a number of supporting programs
that go with C. lint checks C programs for
potential portability problems, and detects errors
such as mismatched argument types and unini-
tialized variables.

For larger programs (anything whose source
is on more than one file) make allows you to
specify the dependencies among the source files
and the processing steps needed to make a new
version; it then checks the times that the pieces
were last changed and does the minimal amount
of recompiling to create a consistent updated ver-
sion.

The debugger adb is useful for digging
through the dead bodies of C programs, but is
rather hard to learn to use effectively. The most
effective debugging tool is still careful thought,
coupled with judiciously placed print statements.

The C compiler provides a limited instru-
mentation service, so you can find out where
programs spend their time and what parts are
worth optimizing. Compile the routines with the
=p option; after the test run, use prof to print
an execution profile. The command time will
give you the gross run-time statistics of a pro-
gram, but they are not super accurate or repro-
ducible.

Other Languages

If you have to use Fortran, there are two
possibilities. You might consider Ratfor, which
gives you the decent control structures and free-
form input that characterize C, yet lets you write
code that is still portable to other environments.
Bear in mind that UNIX Fortran tends to produce
large and relatively slow-running programs.
Furthermore, supporting software like adb, prof,
etc., are all virtually useiess with Fortran pro-
grams. There may.also be a Fortran 77 compiler
on your system. If so, this is a viable aiternative
to Ratfor, and has the non-trivial advantage that
it is compatible with C and related programs.
(The Ratfor processor and C tools can be used
with Fortran 77 too.)

If your application requires you to translate a
language into a set of actions or another
language, you are in effect building a compiler,
though probably a small one. In that case, you
should be using the yacc compiler-compiler,
which helps you develop a compiler quickly. The
lex lexical analyzer generater does the same job
for the simpler languages that can be expressed

as regular expressions. [t can be used by itself,
or as a front end to recognize inputs for a
yace-based program. Both yacc and lex require
some sophistication to use, but the initial effort
of learning them can be repaid many times over
in programs that are easy to change later on.

Most UNIX systems also make available
other languages, such as Algol 68, APL, Basic,
Lisp, Pascal, and Sncbol. Whether these are
useful depends largely on the local environment:
if someone cares about the language and has
worked on it, it may be in good shape. If not,
the odds are strong that it will be more trouble
than it's worth.

V. UNIX READING LIST

General:

K. L. Thompson and D. M. Ritchie, The UNIX
Programmer’s Manuai, Bell Laboratories, 1978.
Lists commands, system routines and interfaces,
file formats, and some of the maintenance pro-
cedures. You can't live without this, although
you will probably oniy need to read section 1.

Documents for Use with the UNIX Time-sharing
System. Volume 2 of the Programmer’s Manual.
This contains more extensive descriptions of
major commands, and tutorials and reference
manuals. All of the papers listed below are in it,
as are descriptions of most of the programs men-
tioned above.

D. M. Ritchie and X. L. Thompson, ‘“The UNIX
Time-sharing System,”” CACM, July 1974. An
overview of the system, for people interested in
operating systems. Worth reading by anyone
who programs. Contains a remarkable number
of one-sentence observations on how to do
things right.

The Beil System Technical Journal (BSTJ) Spe-
cial Issue on UNIX, July/August, 1978, contains
many papers describing recent developments.
and some retrospective material.

The 2nd International Conference on Software
Engineering (October, 1976) contains severai
papers describing the use of the Programmer’s
Workbench (PWB) version of UNIX.

Document Preparation:

B. W. Kernighan, ‘‘A Tutorial Introduction to
the UNIX Text Editor”” and ‘‘Advanced Editing
on UNIX,” Belil Laboratories, 1978. Beginners
need the introduction; the advanced material will
help you get the most out of the editor.

M. E. Lesk, “Typing Documents on UNIX,’" Bell
Laboratories, 1978. Describes the —ms macro
package, which isolates the novice from the
vagaries of nroff and troff, and takes care of

most formatting situations. If this specific pack-
age isn’t available on your system, something
similar probably is. The most likely alternative is
the PWB/UNIX macro package —mm; see your
local guru if you use PWB/UNIX.

B. W. Kernighan and L. L. Cherry, “A System
for Typesetting Mathematics,”” Bell Laboratories
Computing Science Tech. Rep. 17.

M. E. Lesk, “Tbl — A Program to Format
Tables,’” Bell Laboratories CSTR 49, 1976.

J. F. Ossanna, Jr., “NROFF/TROFF User’s
Manual,”” Bell Laboratories CSTR 54, 1976.
troff is the basic formatter used by —ms, eqn
and tbl. The reference manual is indispensable
if you are going to write or maintain these or
similar programs. But start with:

B. W. Kernighan, “A TROFF Tutorial,” Bell
Laboratories, 1976. An attempt to unravel the
intricacies of troff.

Programming:

B. W. Kernighan and D. M. Ritchie, The C Pro-
gramming Language, Prentice-Hall, 1978. Con-
tains a tutorial introduction, complete discussions
of all language features, and the reference
manual.

B. W. Kernighan and D. M. Ritchie, “UNIX Pro-
gramming,”” Bell Laboratories, 1978. Describes
how to interface with the system from C pro-
grams: I/0 calis, signals, processes.

S. R. Bourne, ‘“An Introduction to the UNIX
Shell,”” Bell Laboratories, 1978. An introduction
and reference manual for the Version 7 shell.
Mandatory reading if you intend to make
effective use of the programming power of this
shell.

S. C. Johnson, ‘““Yacc — Yet Another Compiler-
Compiler,”” Bell Laboratories CSTR 32, 1978.

M. E. Lesk, “Lex — A Lexical Analyzer Gen-
erator,”” Bell Laboratories CSTR 39, 1975.

S. C. Johnson, “‘Lint, a C Program Checker,”
Bell Laboratories CSTR 65, 1977.

S. I. Feldman, “MAKE — A Program for Main-
taining Computer Programs,’”” Bell Latoratories
CSTR 57, 1977.

J. F. Maranzano and S. R. Bourne, ‘“A Tutorial
Introduction to ADB,”” Bell Laboratories CSTR
62, 1977. An introduction to a powerful but
complex debugging tool.

S. I. Feldman and P. J. Weinberger, ‘‘A Portable

Fortran 77 Compiler,”” Bell Laboratories, 1978.
A full Fortran 77 for UNIX systems.

3-15

A Tutorial Introduction to the UNIX Text Editor

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Almost all text input on the UNIXt operating system is done with the text-
editor ed This memorandum is a tutorial guide to help beginners get started
with text editing.

Although it does not cover everything, it does discuss enough for most
users’ day-to-day needs. This includes printing, appending, changing, deleting,
moving and inserting entire lines of text; reading and writing files; context
searching and line addressing; the substitute command; the global commands;
and the use of special characters for advanced editing.

September 21, 1978

TUNIX is a Trademark of Bell Laboratories.

4-1

A Tutorial Introduction to the UNIX Text Editor

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

Intreduction

Ed is a “‘text editor’, that is, an interactive
program for creating and modifying “lext’,
using directions provided by a user at a terminal.
The text is often a document like this one, or a
program or perhaps data for a program.

This introduction is meant to simplify learn-
ing ed The recommended way o learn edis (0
read this document, simultaneously using ed 0
follow the examples, then (o read the description
in section | of the UNIX Programmer's Manual, all
the while experimenting with ed. (Solicitation of
advice from experienced users is also useful.)

Do the exercises! They cover material not

completely discussed in the actual text. An
appendix summarizes the commands.
Disclaimer

This is an introduction and a tutorial. For

this reason, no atiempt is made to cover more
than a part of the facilities that ed offers
(although this fraction inciudes the most useful
- and frequently used parts). When you have
mastered the Tutorial, try Advanced Editing on
UNIX. Also, there is not enough space (0 explain
basic UNIX procedures. We will assume that you
know how o log on to UNIX, and that you have
at least a vague understanding of what a file is.
For more on that, read UNIX for Beginners.

You must also know what character to type
as the end-of-line on your particular terminal.
This character is the RETURN key on most ter-
minals. Throughout, we will refer 10 this charac-
ter, whatever it is, as RETURN.

Getting Started

We'll assume that you have logged in (0 your
system and it has just printed the promp!t charac-
ter, usually either a § or a %. The easiest way (o

gei edis to type
ed (foliowed by a return)

You are now ready o go — edis waiting for you
to teil it what o do.

4-2

Creating Text — the Append command **a”

As your first problem, suppose you want to
create some text starting from scratch. Perhaps
you uire typing the very first draft of a paper;
clearty 1t will have to start somewhere, and
undergo modifications later. This section will
show how (0 get some (ext in, just Lo get started.
Later we'll talk about how 1o change it.

When edis first started, it is rather like work-
ing with a blank piece of paper — there is no
text or information present. This must be sup-
plied by the person using ed; it is usually done by
typing in the text, or by reading it into edfrom a
file. We will start by typing in some text, and
return shortly o how 1o read files.

First a bit of terminology. In ed jargon, the
text being worked on is said to be “‘kept in a
buffer.” Think of the buffer as a work space, if
you like, or simply as the information that you
are going o be editing. In effect the buffer is
like the piece of paper, on which we will write
things, then change some of them, and finally
file the whole thing away {or another day.

The user tells ed what 1o do to his lext by
typing instructions called ‘‘commands.”” Most
commands consist of a single letier, which must
be typed in lower case. Each command is typed
on a separate line. (Sometimes the command is.
preceded by information about what line or lines
of text are 10 be affecied — we will discuss these
shortly.) £d makes no response 0 most com-
mands — there is no prompting or iyping of
messages like “‘ready”. (This silence is preferred
by experienced users, but sometimes a hangup
for beginners.)

The first command is append. written as the
letter

a

all by itself. It means ‘“‘append (or add) text
lines to the buffer, as I tvpe them in.”” Append-
ing is rather like writing fresh material on a piece
of paper.

So to enter lines of text into the buffer, just
type an a followed by u RETURN, followed by

the lines of text you want, like this:

a

Now is the time

for all good men

to come to the aid of their party.

The only way to stop appending is to type a
line that contains only a period. The **.”" is used
to tell ed that you have finished appending.
(Even experienced users forget that terminating
. sometimes. If ed seems to be ignoring you,
type an extra line with just *“.”” on it. You may
then find you've added some garbage lines to
your text, which you’ll have to take out later.)

After the append command has been done,
the buffer will contain the three lines

Now is the time
for all good men
to come to the aid of their party.

The ““a” and **."" aren’t there, because they are
not text.

To add more text to what you already have,
just issue another a command, and continue typ-
ing.

Error Messages — “?”

If at any time you make an error in the com-
mands you type to ed, it will tell you by typing

5

This is about as cryptic as it can be, but with
practice, you can usually figure out how you
goofed.

Writing text out as a file — the Write command
AOW’!

It’s likely that you'll want to save your text

for later use. To write out the contents of the
buffer onto a file, use the write command

w

followed by the filename you want to write on.
This will copy the buffer’s contents onto the
specified file (destroying any previous informa-
tion on the file). To save the text on a file
named junk, for example, type

w junk
Leave a space between w and the file name. Ed

will respond by printing the number of characters
it wrote out. In this case, ed would respond with

68

(Remember that blanks and the return character
at the end of each line are included in the char-
acter count.) Writing a file just makes a copy of

4-3

the text the buffer’'s contents are not dis-
turbed, so you can go on adding lines to it. This
is an important point. Ed at all times works on a
copy of a file, not the file itself. No change in
the contents of a file takes place until you give a
w command. (Writing out the text onto a file
from time to time as it is being created is a good
idea, since if the system crashes or if you make
some horrible mistake, you will lose all the text
in the buffer but any text that was written onto a
file is relatively safe.)

Leaving ed — the Quit command ‘‘q”’

To terminate a session with ed, save the text
you're working on by writing it onto a file using
the w command, and then type the command

q

which stands for guir. The system will respond
with the prompt character ($ or %). At this
point your buffer vanishes, with all its text,
which is why you want to write it out before
quitting. 1

Exercise 1:
Enter edand create some text using

a
.o text L

Write it out using w. Then leave ed with the g
command, and print the file, to see that every-
thing worked. (To print a file, say

pr filename
or
cat filename

in response to the prompt character. Try both.)

Reading text from a file — the Edit command

68,09

€

A common way (0 get text into the buffer is
to read it from a file in the file system. This is
what you do to edit text that you saved with the
w command in a previous session. The edir com-
mand e fetches the entire contents of a file into
the buffer. So if you had saved the three lines
““Now is the time’", etc., with a w command in
an earlier session, the edcommand

e junk

would fetch the entire contents of the file junk
into the buffer, and respond

t Actually, ed will print ? if you try to quit without writ-
ing. At that point, write if you want; if not, another g
will get you out regardless.

68

which is the number of characters in junk. If
anything was already in the buffer, it is deleted first.

If you use the e command to read a file into
the buffer, then you need not use a file name
after a subsequent w command; ed remembers
the last file name used in an e command, and w
will write on this file. Thus a good way to
operaie is i

ed

e file

[editing session]
w

q

This way, you can simply say w from time to
time, and be secure in the knowiedge that if you
got the file name right at the beginning, you are
writing into the proper file each time.

You can find out at any time what file name
ed is remembering by typing the file command f.
In this example, if you typed

f
ed would reply

junk

Reading text from a fille — the Read command
t‘rlC

Sometimes you want to read a file into the
buffer without destroying anything that is aiready
there. This is done by the readcommand r. The
command

r junk

will read the file junk into the buffer; it adds it
to the end of whatever is aiready in the buffer.
So if you do a read after an edit:

¢ junk
r junk

the buffer will contain mwo copies of the text (six
lines).

Now is the time
for all good men
to come to the aid of their party.
Now is the time
for all good men
to come to the aid of their party.

Like the w and e commands, r prints the number
of characters read in, after the reading operaticn
is complete.

Generally speaking, r is much less used than

Exercise 2:

Experiment with the e command — try read-
ing and printing various files. You may get an
error ?name, where name is the name of a Ble:
this means that the file doesn’t exist, typiwally
because you spelled the file name wrong, or
perhaps that you are not allowed to read or write
it. Try alternately reading and appending to see
that they work similarly. Verify that

ed filename
is exactly equivalent to

ed
e filename

What does
f filename

do?

Printing the contents of the buffer — the Print
command ‘‘p"’

To print or list the contents of the buffer (or
parts of it) on the terminal, use the print com-
mand

p

The way this is done is as follows. Specify the
lines where you want printing to begin and where
you want it to end, separated by a comma, and
followed by the letter p. Thus to print.the first
two lines of the buffer, for example, (that is,
lines | through 2) say

1,2p (starting line=1, ending line=2 p)
Ed will respond with

Now is the time
for all good men

Suppose you want (o print afl the lines in the
buffer. You could use 1,3p as above if you knew
there were exactly 3 lines in the buffer. But in
general, you don’t know how many there are, so
what do you use for the ending line number? £d
provides a shorthand symbol for ‘‘line number
of last line in buffer’” — the doilar sign $. Use it
this way:

1,3p

This will print af/ the lines in the buffer (line | ‘o
last line.) If you want to stop the printing before

-1t is finished, push the DEL or Delete key; ed will

type
?
and wait for the next command.

To print the /asr line of the buffer, you could
use

S

$,%p
but ed lets you abbreviate this to
$p
You can print any single line by typing the line
number followed by a p. Thus
Ip
produces the response

Now is the time

which is the first line of the buffer.

In fact, ed lets you abbreviate even further:
you can print any single line by typing just the
line number — no need to type the letter p. So
if you say

$

ed will print the last line of the buffer.
You can also use $ in combinations like
$—-1,%p
which prints the last two lines of the buffer.

This helps when you want to see how far you got
in typing.

Exercise 3:

As before, create some text using the a com-
mand and experiment with the p command. You
will find, for example, that you can’t print line 0
or a line beyond the end of the buffer, and that
attemnpts to print a buffer in reverse order by say-
ing

3,1p

don’t work.

The current line — “‘Dot™ or *.”

Suppose your buffer still contains the six
lines as above, that you have just typed

1,3p
and ed has printed the three lines for you. Try
typing just

p (no line numbers)
This will print

to come to the aid of their party.
which is the third line of the buffer. In fact it is
the last {most recent) line that you have done
anything with. (You just printed it!) You can

repeat this p command without line numbers,
and it will continue to print line 3.

The reason is that ed maintains a record of
the last line that you did anything to (in this
case. line 3, which you just printed) so that it

4-5

can be used instead of an explicit line number.
This most recent line is referred to by the short-
hand symbol

(pronounced “‘dot’*).

Dot is a line number in the same way that § is; it
means exactly ‘‘the current line’”, or loosely,
‘‘the line you most recently did something to.”
You can use it in several ways — one possibility
is to say

L3

This will print all the lines from (including) the
current line to the end of the buffer. In our
example these are lines 3 through 6.

Some commands change the value of dot,
while others do not. The p command sets dot to
the number of the last line printed; the last com-
mand will set both . and $ to 6.

Dot is most useful when used in combina-
tions like this one:
L+1 (or equivalently, . +1p)

This means ‘‘print the next line" and is a handy
way 1o step slowly through a buffer.
also say

You can

~1 (or .—1p)

which means ‘‘print the line before the current
line.”” This enables you to go backwards if you
wish. Another useful one is something like

.~3,.—1p
which prints the previous three lines.

Don’t forget that all of these change the
value of dot. You can find out what dot is at any
time by typing

=
.

Edwill respond by printing the value of dot.

Let’'s summarize some things about the p
command and dot. Essentially p can be preceded
by 0, 1, or 2 line numbers. If there is no line
number given, it prints the “‘current line™, the
line that dot refers to. If there is one line
number given (with or without the letter pl, it
prints that line (and dot is set there):. and if
there are two line numbers, it prints all the lines
in that range f(and sets dot to the last line
printed.) If two line numbers are specified the
first can’t be bigger than the second (see Exer-
cise 2.)

Typing a single return will cause printing of
the next line — it's equivalent to .+1p. Try it.
Try typing a —; you will find that it’s equivalent
1o .—1p.

Deleting lines: the ‘‘d’* command

Suppose you want to get rid of the three
extra lines in the buffer. This is done by the
defere command

d

Except that d deletes lines instead of printing
them, its action is similar to that of p. The lines
to be deleted are specified for d exactly as they
are for p:

suarung line, ending line d
Thus the command
4.8d

deletes lines 4 through the end. There are now
three lines left, as you can check by using

1,%p

And notice that $ now is line 3! Dot is set to the
next line afier the last line deleted, unless the
last line deleted is the last line in the buffer. In
that case, dot is set to $.

E xercise 4:

Experiment with a, e, r, w, p and d until you
are sure that you know what they do, and until
you understand how dot, $§, and line numbers
are used.

If you are adventurous, t(ry using line
numbers with a, r and w as well. You will find
that a will append lines ajfter the line number that
you specify (rather than after dot); that r reads a
file in after the line number you specifly (not
necessarily at the end of the buffer); and that w
will write out exactly the lines you specify, not
necessarily the whole buffer. These variations
are sometimes handy. For insiance you can
insert a file at the beginning of a buffer by saying

Or filename
and you can enter lines at the beginning of the
buffer by saying

Oa
.text. . .

Notice that .w is very different from

.

w

Modifying text: the Substitute command **s”’

We are now ready lo try one of the most
important of all commands — the substitute
command

4-6

This is the command that is used to change indi-
vidual words or letters within a line or group of
lines. It is what you use, for example, for
correcting speiling mistakes and lyping errors.

Suppose that by a typing error, line | says
Now is th time

— the e has been left off the. You can use s to
fix this up as follows:

1s/th/the/

This says: ‘‘in line 1, substitute for the characters
th the characters the.”” To verify that it works (ed
will not print the result automaticaily) say

P
and get
Now is the time

which is what you wanted. Notice that dot must
have been set to the line where the substitution
took place, since the p command printed that
line. Dot is always set this way with the s com-
mand.

The generai way to use the substitute com-
mand is

swarting-line, ending-line s/ change this/ ro this/

Whatever string of characters is between the first
pair of slashes is replaced by whatever is between
the second pair, in a{ the lines between swrring-
line and ending-line. Only the first occurrence on
each line is changed, however. If you want to
change every occurrence, see Exercise 5. The
rules for line numbers are the same as those for
p. except that dot is set to the last line changed.
(But there is a trap for the unwary: if no substi-
tution took place, dot is no¢ changed. This
causes an error ? as a warning.)

Thus you can say
1,8s/speling/speiling/

and correct the first spelling mistake on each line
in the text. (This is useful for people who are
consistent misspellers!)

If no line numbers are given, the s command
assumes we mean “‘make the substitution on line
dot’’, so it changes things only on the current
line. This leads to the very common sequence

s/something/something else/p

which makes some correction on the current
line, and then prints it, to make sure it worked
out right. If it didn't, you can try again. (Notice
that there is a p on the same line as the s com-
mand. With few exceptions, p can foilow any
command; no other multi-command lines are
legal.)

e

4-7

It’s also legal tc say
s/ ...t/

which means ‘‘change the first string of charac-
ters 0 "‘nothing’’, ie., remove them. This is
useful for deleting extra words in a line or
removing extra letters from words. For instance,
if you had

Nowxx is the time
you can say

s/xx//p
to get

Now is the time

Notice that // (two adjacent slashes) means ‘‘no
characters’’, not a blank. There is a difference!
(See below for another meaning of //.)

Exercise §:

Experiment with the substitute command.
See what happens if you substitute for some
word on a line with several occurrences of that
word. For example, do this:

a
the other side of the coin

s/the/on the/p
You will get
on the other side of the coin

A substitute command changes only the first
occurrence of the first string. You can change all
occurrences by adding a g (for ‘‘global™) to the s
command, like this:

s/ .../ .../gp

Try other characters instead of slashes to delimit
the two sets of characters in the s command —
anything should work except blanks or tabs.

(If you get funny results using any of the
characters

.8 e\ &

read the section on ‘*Special Characters’’.)

Context searching — **/ ... /"

With the substitute command mastered, you
can move on to another highly important idea of
ed — context searching.

Suppose you have the original three line text
in the buffer:

MNow is the time
for all good men
to come to the aid of their party.

Suppose you want to find the line that contains
their so you can change it to the. Now with cnly
three lines in the buffer, it's pretty easy to keep
track of what line the word rtheir is on. But if the
buffer contained several hundred lines, and
you'd been making changes, deleting and rear-
ranging lines, and so on, you would no longer
really know what this line number would be.
Context searching is simply a method of specify-
ing the desired line, regardless of what its
number is, by specifying some context on it.

The way to say ‘‘search for a line that con-
tains this particular string of characters’ is to
type -

/ siring of characrers we want to find/
For example, the edcommand
/their/

is a context search which is sufficient to find the

desired line — it will locate the next occurrence

of the characters between slashes (‘‘their’’). It
also sets dot to that line and prints the line for
verification:

to come to the aid of their party.

1)

*‘Next occurrence’ means that ed starts looking
for the string at line .+1, searches to the end of
the buffer, then continues at line | and searches
to line dot. (That is, the search ‘‘wraps around”’
from $ to 1.) It scans all the lines in the buffer
until it either finds the desired line or gets back
to dot again. If the given string of characters
can’t be found in any line, ed types the error
message

?

Otherwise it prints the line it found.

You can do both the search for the desired
line and a substitution all at once, like this:

/their/s/their/the/p
which will yield
to come to the aid of the party.

There were three parts to that last command:
context search for the desired line, make the
substitution, print the line.

The expression /their/ is a context search
expression. In their simplest form, all context
search expressions are like this — a string of
characters surrounded by slashes. Context
searches are interchangeable with line numbers,
so they can be used by themselves to find and
print a desired line, or as line numbers for some
other command, like s. They were used both
ways in the examples above.

Suppose the buffer contains the three familiar
lines

Now is the time
for all good men
to come to the aid of their party.

Then the ed line numbers

/Now/+1
/good/
/party/ —1

are all context search e¢xpressions, and they all
refer 10 the same line (line 2). To make a
change in line 2, you could say

/Now/ +1s/good/bad/
or

/good/s/good/bad/
or

/party/ — 1s/good/bad/

The choice is dictated only by convenience. You
could print all three lines by, for instance

/Now/,/party/p
or
/Now/,/Now/+2p

or by any number of similar combinations. The
first one of these might be betier if you don't
know how many lines are involved. (Of course,
if there were only three lines in the buffer, you'd
use

1,8p
but not if there were several hundred.)

The basic rule is: a contexl search expression
is the same as a line number, so it can be used
wherever a line number is needed.

E xercise 6:

Experiment with context searching. Try a
body of text with several occurrences of the
same string of characters, and scan through it
using the same context search.

Try using context searches as line numbers
for the substitute, print and delete commands.
(They can also be used with r, w, and a.)

Try context searching using ?text? instead
of /text/. This scans lines in the buffer in
reverse order rather than normal. This is some-
times useful if you go too far while looking for
some string of characters — it’s an easy way (o
back up.

(If you get funny results with any of the
characters

4-8

8 s N &
read the section on “*Special- Characters™".)

Ed provides a shorthand for repeating a con-
lext search for the same string. For example,
the ed line number

/string/

will find the next occurrence of string. It often
happens that this is not the desired line, so the
search must be repeated. This can be done by
typing merely

//

This shorthand stands for ‘‘the most recently
used context search expression.’’ It can also be
used as the first string of the substitute com-

mand, as in
/stringl/s//string2/

which will find the next occurrence of stringl
and replace it by string2. This can save a lot of
typing. Similarly

77

means ‘‘scan backwards for the same expres-
sion.”

Change and Insert — **¢”" and ““i"”’
This section discusses the change command

c

which is used to change or repiace a group of
one or more lines, and the jnserr command

i
which is used for inserting a group of one or
more lines.

“Change”’, written as
c

is used to repiace a number of lines with
different lines, which are typed in at the wermi-
nal. For example, t0 change lines .41 through $
to something eise, type

.+1,%¢
... pe the lines of text you want here . . .

The lines you type between the ¢ command and
the . will take the place of the original lines
beiween start line and end line. This is most
useful in replacing a line or several lines which
Jave errors in them.

If only one line is specified in the ¢ com-
mand, then just that line is replaced. {(You can
type in as many replacement lines as you like.)
Notice the use of . (o end the input — this
works just like the . in the append command

and must appear by itself on a new line. If no
line number is given, line dot is replaced. The
value of dot is set to the last line you typed in.

“Insert’ is similar to append — for instance

/string/i
.. . lype the lines to be inserted here . . .

will insert the given text before the next line that
contains “‘string’’. The text between i and . is
inserted before the specified line. If no line
number is specified dot is used. Dot is set to the
last line inserted.

Exercise 7:

““‘Change’ is rather like a combination of
delete followed by insert. Experiment to verify
that

start, end d
i
.ext. ..

is almost the same as

start, end ¢
L. lext. ..

These are not precisely the same if line $ gets
deleted. Check this out. What is dot?

Experiment with a and i, to see that they are
similar, but not the same. .You will observe that

line-number a
. lext . ..

appends after the given line, while

line-number i
. lext. . .

inserts before it. Observe that if no line number
is given, i inserts before line dot, while a
appends after line dot.

Moving text around: the ““m’’ command

The move command m is used for cutting
and pasting — it lets you move a group of lines
from one place to another in the buffer. Sup-
pose you want to put the first three lines of the
buffer at the end instead. You could do it by
saving:

1,3w temp
$r temp
1,3d

(Do you see why?) but you can do it a lot easier
with the m command:

4-9

1,3m$
The general case is
start line, end line m after this line

Notice that there is a third line to be specified —
the place where the moved stuff gets put. Of
course the lines to be moved can be specified by
context searches; if you had

First paragraph

end of first paragraph.
Second paragraph

end of second paragraph.
you could reverse the two paragraphs like this:
/Second/,/end of second/m/First/ —1

Notice the —1: the moved text goes afier the line
mentioned. Dot gets set to the last line moved.

The global commands *‘g’’ and *v>
The global command g is used to execute one
or more ed commands on all those lines in the

buffer that match some specified string. For
example

g/peling/p

prints all lines that contain peling. More use-
fully,

g/peling/s//pelling/gp

makes the substitution everywhere on the line,
then prints each corrected line. Compare this to

1,8s/peling/ pelling/gp

which only prints the last line substituted.
Another subtle difference is that the g command
does not give a ? if peling is not found where
the s command will.

There may be several commands (including
a, ¢, i, r, w, but not g); in that case, every line
except the last must end with a backslash \:

g/xxx/.—1s/abc/def/B
.+2s/ghi/jkl/B
.=2,..p

makes changes in the lines before and after each
line that contains xxx, then prints all three lines.

The v command is the same as g, except that
the commands are executed on every line that
does notr match the string following v:

v/ /d

deletes every line that does not contain a blank.

Special Characters

You may have noticed that things just don’t
work right when you used some characters like .,
+, §, and others in context searches and the sub-
stitute command. The reason is rather complex,
aithough the cure is simple. Basically, ed treats
these characters as special, with special mean-
ings. For instance, in a context search or the first
sring of the substitute command onfy, . means
“‘any character,’”’ not a period, so

/x.y/

means ‘‘a line with an x, any characrer. and a y,”’
not just “*a line with an x, a period, and a y.”” A
complete list of the special characters that can
cause trouble is the following:

S S SR R

Warning: The backsiash character \ is special to
ed. For safety’s sake, avoid it where possible. If
you have to use one of the special characters in a
substitute command, you can turn off its magic
meaning temporarily by preceding it with the
backslash. Thus

3/\\\.*/backslash dot star/

will change \.* into ‘‘backslash dot star™.

Here is a hurried synopsis of the other special
characters. First, the circumflex ~ signifies the
beginning of a line. Thus

/“string/

finds string only if it is at the beginning of a
line: it will find

string
but not
the string...

The dollar-sign $ is just the opposite of the
circumflex: it means the end of a line:

/string$/

will only find an occurrence of string that is at
the end of some line. This implies, of course,
that

/"string$/

will find only a line that contains just string, and
/°.8/

finds a line containing exactly one character.

The character ., as we mentioned above,
matches anything;

16874

matches any of

4-10

x+y
Xy
Xy
X.y

This is useful in conjunction with =, which is a
repetition character: a= is a shorthand f{or “‘any
number of a's,” so .= matches any number of
anythings. This is used like this:

s/.o/stuff/
which changes an entire line, or
s/.s.//

which deietes all characters in the line up to and
including the last comma. (Since .« finds the
longest possible match, this goes up (o the last
comma.)

[

{ is used with | 10 form
forexample,

/101234567891/

characier classes';

matches any single digit — any one of the char-
acters inside the braces will cause a match. This
can be abbreviated to (0=91.

Finally, the & is another shorthand character
— it is used only on the right-hand part of a sub-
stitute command where it means “‘whatever was
maiched on the left-hand side’. It is used to
save typing. Suppose the current line con@ined

Now is the time

“and you wanted to put parentheses around it.

You could just retype the line, but this is tedi-
ous. Or you could say .

s/ /(/
s/$8/)/

using vour knowiedge of ~ and 8. But the easiest
way uses the &:

s/.o/(&)/

This says ‘‘maich the whole line, and replace it
by iself surrounded by parentheses.” The & can
be used several times in a line; consider using

s/.o/ &7 &!Y/
10 produce

Now is the time? Now is the time!!

You don’t have to match the whole line, of
course: if the buffer contains
the end of the world
you couid type
/world/s//& is at hand/

to produce

the end of the world is at hand

Observe this expression carefully, for it illus-
trates how to take advantage of ed to save typing.
The string /world/ found the desired line; the
shorthand // found the same word in the line;
and the & saves you from typing it again.

The & is a special character only within the
replacement text of a substitute command, and
has no special meaning elsewhere. You can turn
off the special meaning of & by preceding it with
a\:

s/ampersand/\&/

will convert the word ‘‘ampersand™ into the
literal symbol & in the current line.

Summary of Commands and Line Numbers

The general form of ed commands is the
command name, perhaps preceded by one or two
line numbers, and, in the case of e, r, and w,
followed by a file name. Only one command is
allowed per line, but a p command may follow
any other command (except fore, r, w and q).

a: Append, that is, add lines to the buffer (at line
dot, unless a different line is specified). Append-
ing continues until . is typed on a new line. Dot
is set to the last line appended.

¢: Change the specified lines to the new text
which follows. The new lines are terminated by
a ., as with a. If no lines are specified, replace
line dot. Dot is set to last line changed.

d: Delete the lines specified. If none are
specified, delete line dot. Dot is set to the first
undeleted line, unless $ is deleted, in which case
dot is set to §. '

e: Edit new file. Any previous contents of the
buffer are thrown away, so issue a w beforehand.

f: Print remembered filename. If a name follows
f the remembered name will be set to it.

g: The command
g/---/commands

will execute the commands on those lines that
contain ---, which can be any context search
expression.

i: Insert lines before specified line (or dot) until
a.is typed on a new line. Dot is set to last line
inserted.

m: Move lines specified to after the line named
after m. Dot is set to the last line moved.

p: Print specified lines. If none specified, print
line dot. A single line number is equivalent to
line-number p. A single return prints .+1, the

next line.

q: Quit ed Wipes out all text in buffer if you
give it twice in a row without first giving a w
command.

r: Read a file into buffer (at end unless specified
elsewhere.) Dot set to last line read.

s: The command
s/stringl/string2/

substitutes the characters stringl into string2 in
the specified lines. If no lines are specified,
make the substitution in line dot. Dot is set to
last line in which a substitution took place, which
means that if no substitution took place, dot is
not changed. s changes only the first occurrence
of stringl on a line; to change all of them, type
a g after the final slash.

v: The command
v/---/commands

executes commands on those lines that do nort
contain =--.

w: Write out buffer onto a file. Dot is not
changed.

.=: Print value of dot. (= by itself prints the
value of §.)

!: The line

lcommand-line

causes command-line to be executed as a UNIX
command.

[mnn- /. Context search. Search for next line
which contains this string of characters. Print it.
Dot is set to the line where string was found.
Search starts at .41, wraps around from $ to 1,
and continues to dot, if necessary.

2 2.

coees |

Context search in reverse direction.
Start search at .=1, scan to 1, wrap around to §.

Advanced Editing on UNIX

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper is meant to help secretaries, typists and programmers to make
effective use of the UNIXT facilities for preparing and editing text. [t provides
explanations and examples of

® special characters, line addressing and global commands in the editor ed;

® commands for ‘‘cut and paste’ operations on files and parts of files,
including the mv, cp, cat and rm commands, and the r, w, m and t com-
mands of the editor;

®

editing scripts and editor-based programs like grep and sed.

Although the treatment is aimed at non-programmers, new users with any
background should find helpful hints on how to get their jobs done more easily.

August 4, 1978

+UNIX is a Trademark of Bell Laboratories.

5-1

Advanced Editing on UNIX

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

1. INTRODUCTION

Although uNixt provides remarkably
effective tools for text editing, that by itself is no
guarantee that everyone will automatically make
the most effective use of them. In particular,
people who are not computer specialists — typ-
ists, secretaries, casual users — often use the
system less effectively than they might.

This document is intended as a sequel to 4
Tutorial [ntroduction to the UNIX Text Editor [1],
providing explanations and examples of how to
edit with less effort. (You should also be fami-
liar with the material in UNIY For Beginners [2].)
Further information on all commands discussed
here can be found in The UNIX Programmer'’s
Manuai {3].

Examples are based on observations of
users and the difficulties they encounter. Topics
covered include special characters in searches
and substitute commands, line addressing, the
global commands, and line moving and copying.
There are also brief discussions of effective use
of related tools, like those for file manipulation,
and those based on ed, like grep and sed.

A word of caution. There is only one way
to learn 1o use something, and that is to use it.
Reading a description is no substitute for trying
something. A paper like this gne should give
you ideas about what to try, but until you actu-
ally try something, you will not learn it.

3. SPECIAL CHARACTERS

The editor ed is the primary interface to
the system for many people, so it is worthwhile
to know how to get the most out of ed for the
least effort.

The next few sections will discuss
shortcuts and labor-saving devices. Not ail of
these will be instantly useful to any one person,
of course, but a few will be, and the others
should give you ideas to store away for future
use. And as always, until vou try these things,

$UNIX is a Trademark of Bell Laboratories.

5-2

they will remain theorstical knowiedge, not
something you have confidence in.

The List command ‘U’

ed provides two commands for printing the
contents of the lines you're editing. Most people
are familiar with p, in combinations like

1,8p
to print all the lines vou're editing, or
s/abc/def/p

to change ‘abc’ to ‘def” on the current line. Less
familiar is the /st command 1 (the letter /),
which gives slightly more information than p. In
particular, I makes visible characters that are
normally invisible, such as tabs and backspaces.
If you list a line that contains some of these, |
will print each tab as > and each backspace as
<. This makes it much easier to correct the sort
of typing mistake that inserts extra spaces adja-
cent to tabs, or inserts a backspace followed by a
space.

The | command also ‘folds’ long lines for
printing = any line that exceeds 72 characters is
printed on muiltiple lines; each printed line
except the last is terminated by a backslash \, so
you can tell it was foided. This is useful for
printing long lines on short terminals.

QOccasionally the 1 command will print in a
line a string of numbers preceded by a backslash,
such as \07 or \16. These combinations are used
to make visible characters that normally don’t
print, like form feed or vertical tab or bell. Each
such combination is a single character. When
you see such characters, be wary — they may
have surprising meanings when printed on some
terminals. Often their presence means that your
finger slipped while vou were typing; you almost
never want them.

The Substitute Command ‘s’

Most of the next few sections will be taken
up with a discussion of thz substitute command
s. Since this is the command for changing the

contents of individual lines, it probably has the
most complexity of any ed command, and the
most potential for effective use.

As the simplest place to begin, recall the
meaning of a trailing g after a substitute com-
mand. With

s/this/that/
and
s/this/that/g

the first one replaces the first ‘this’ on the line
with ‘that’. If there is more than one ‘this’ on
the line, the second form with the trailing ¢
changes all of them.

Either form of the s command can be fol-
lowed by p or 1 to ‘print’ or ‘list’ (as described in
the previous section) the contents of the line:

s/this/that/p
s/this/that/1
s/this/that/gp
s/this/that/gl

are all legal, and mean slightly different things.
Make sure you know what the differences are.

Of course, any s command can be pre-
ceded by one or two ‘line numbers’ to specify
that the substitution is to take place on a group
of lines. Thus

1,8s/mispell/ misspell/

changes the first occurrence of ‘mispell’ to
‘misspell’ on every line of the file. But

1,8s/mispell/misspell/g

changes every occurrence in every line (and this
is more likely to be what you wanted in this par-
ticular case).

You should also notice that if you add a p
or | to the end of any of these substitute com-
mands, only the last line that got changed will be
printed, not all the lines. We will talk later about
how to print all the lines that were modified.

The Undo Command ‘uw’

Qccasionally you will make a substitution
in a line, only to realize too late that it was a
ghastly mistake. The ‘undo’ command u lets
you ‘undo’ the last substitution: the last line that
was substituted can be restored to its previous
state by typing the command

u

5-3

The Metacharacter *.’

As you have undoubtedly noticed when
you use ed, certain characters have unexpected
meanings when they occur in the left side of a
substitute command, or in a search for a particu-
lar line. In the next several sections, we will talk
about these special characters, which are often
called ‘metacharacters’.

The first one is the period ‘.. On the left
side of a substitute command, or in a search with
‘/...I°, ‘" stands for any single character. Thus
the search

/x.y/

finds any line where ‘x’ and ‘y’ occur separated
by a single character, as in

x+y
Xy
Xay
Xy

and so on.. (We will use o to stand for a space
whenever we need to make it visible.)

Since ‘. matches a single character, that
gives you a way to deal with funny characters
printed by 1. Suppose you have a line that, when
printed with the 1 command, appears as

th\07is

and you want to get rid of the \07 (which
represents the bell character, by the way).

The most obvious solution is to try
s/\07//

but this will fail. (Try it.) The brute force solu-
tion, which most people would now take, is to
re-type the entire line. This is guaranteed, and is
actually quite a reasonable tactic if the line in
question isn’t too big, but for a very long line,
re-typing is a bore. This is where the metachar-
acter ‘.’ comes in handy. Since ‘\07" really
represents a single character, if we say

s/th.is/this/

the job is done. The °." matches the mysterious
character between the ‘h’ and the ‘i’, wharever it
is.

@
Bear in mind that since ‘.” matches any
single character, the command

s/../
converts the first character on a line into a *,’,
which very often is not what you intended.

As is true of many characters in ed, the *.’
has several meanings, depending on its context.
This line shows all three:

Sld

The first *." is a line number, the number of the
line we are editing, which is called ‘line dot’.
(We will discuss line dot more in Section 3.) The
second ‘. is a metacharacter that matches any
single character on that line. The third ‘.’ is the
only vne that really is an honest literal period.
On the righr side of a substitution, ‘.’ is not spe-
cial. If you apply this command to the line

Now is the time.
the result will be
.0W is the time.

which is probably not what you intended.

The Backslash *\’

Since a period means ‘any character’, the
question naturally arises of what to do when you
really want a period. For example, how do you
convert the line

Now is the time.
into
Now is the time?

The backsiash ‘\’ does the job. A backslash
turns off any special meaning that the next char-
acter might have; in particular, ‘\.’ converts the
‘.’ from a ‘match anything’ into a period, so you
can use it to replace the period in

Now is the time.
like this:
s/N./?/

The pair of characters ‘\.” is considered by ed to
be a single real period.

The backslash can also be used when
searching for lines that contain a special charac-
ter. Suppose you are looking for a line that con-
tains

.PP

The search
/ PP/

isn't adcqua!e,‘for it will find a line like
THE APPLICATION OF ...

because the ‘.’ matches the letter ‘A’. But if you
say

/\.PP/

you will find only lines that contain ‘.PP’.
The backslash can also be used to turn off

[

special meanings for characters other than °.".
For example, consider finding a line that con-

5-4

tains a backslash. The search
N/

won’t work, because the '\’ isn’t a literal *\’, but
instead means that the second ‘/° no longer
delimits the search. But by preceding a backslash
with another one, you can search for a literal
backslash. Thus

AN

does work. Similarly, vou can search for a for-
ward slash /7 with

N/

The backslash turns off the meaning of the
immediately following */° so that it doesn’t ter-
minate the /.../ construction prematurely.

As an exercise, before reading further,
find two substitute commands each of which will
convert the line

\x\\y

into the line
\x\y

Here are several soiutions; verify that each
works as advertised.

s/\A\\.//
s/x../x/
s/ .yly/

A couple of miscellaneous notes about
backslashes and special characters. First, you
can use any character to delimit the pieces of an
s command: there is nothing sacred about
slashes. (But you must use slashes for context
searching.) For instance, in 2 line that contains a
lot of slashes aiready, like

//exec //sys.fort.go // etc...

you could use a colon as the delimiter — to
delete all the slashes, type

s:i/g

Second, if # and @ are your character
erase and line kill characters, you have to type
\# and \@; this is true whether you're talking to
ed or any other program.

When you are adding text with aor ior ¢,

backslash is not speciai, and you should only put
in one backslash for each one you really want.

The Dellar Sign ‘S’

The next metacharacter, the ‘S, stands for
‘the end of the line’. As its most obvious use,
suppose you have the line

Now is the

and you wish to add the word ‘time’ to the end.
Use the § like this:

s/$/ atime/
to get
Now is the time

Notice that a space is needed before ‘time’ in the
substitute command, or you will get

Now is thetime
As another example, replace the second

comma in the following line with a period
without altering the first:

Now is the time, for all good men,
The command needed is
s/.8/.

The $ sign here provides context to make specific
which comma we mean. Without it, of course,
the s command would operate on the first
comma to produce

Now is the time. for all good men,

As another example, to convert

Now is the time.
into

Now is the time?
as we did earlier, we can use

s/ .3/

Like *.’, the °$’ has multiple meanings
depending on context. In the line

$s/8/8/

the first ‘S’ refers to the last line of the file, the
second refers to the end of that line, and the
third is a literal dollar sign, to be added to that
line.

The Circumflex **’

The circumflex (or hat or caret) stands
for the beginning of the line. For example, sup-
pose you are looking for a line that begins with
‘the’. If you simply say

/the/

ekl

you will in all likelihood find several lines that
contain ‘the’ in the middle before arriving at the
one you want. But with

/“the/

vou narrow the context, and thus arrive at the
desired one more easily.

5-5

The other use of ‘*" is of course to enable
you to insert something at the beginning of a
line:

s/ al

places a space at the beginning of the current
line.

Metacharacters can be combined. To
search for a line that contains only the characters

PP
you can use the command
/"\.PP%/

The Star ‘s’

Suppose you have a line that looks like
this:

rext x y text

where rext stands for lots of text, and there are
some indeterminate number of spaces between
the x and the y. Suppose the job is to replace all
the spaces between x and y by a single space.
The line is too long to retype, and there are too
many spaces to count. What now?

This is where the metacharacter ‘+’ comes
in handy. A character followed by a star stands
for as many consecutive occurrences of that
character as possible. To refer to all the spaces
at once, say

s/xa*y/xay/

The construction ‘o+’ means ‘as many spaces as
possible’. Thus ‘xo*y’ means ‘an x, as many
spaces as possible, then a y’.

The star can be used with any character,
not just space. If the original example was
instead

then all ‘=" signs can be replaced by a single
space with the command

s/x—=y/xoy/

Finally, suppose that the line was
18XI Xeoeossosscssssasesy [EXI

Can you see what trap lies in wait for the
unwary? If you blindly type

s/x.*y/xay/

what will happen? The answer, naturally, is that
it depends. If there are no other x’s or y’s on
the line, then everything works, but it’s blind
luck, not good management. Remember that *.’
matches any single character? Then *.»’ matches
as many single characters as possible, and unless

you're careful, it can eat up a lot more of the
line than you expected. If the line was, for
example, like this:

18XI X [8XI Xieseecsssosneaasy [8XI Y lEXI
then saying
s/X.ey/xcy/

will take everything from the first ‘x’ to the lasr
‘y’, which, in this example, is undoubtedly more
than you wanted.

The solution, of course, is to turn off the
special meaning of *.” with *\.":

s/x\.sy/xay/

Now everything works, for ‘\.»’ means ‘as many
periods as possible’.

& v

There are times when the pattern ‘.+ is
exactly what you want. For example, to change

Now is the time for all good men ...
into
Now is the time.
use ‘.=’ to eat up everything after the ‘for’:
s/ ofor.e/ ./

There are a couple of additional pitfalis
associated with ‘=" that you should be aware of.
Most notable is the fact that ‘as many as possi-
bile’ means zero or more. The fact that zero is a
legitimate possibility -is sometimes rather surpris-
ing. For example, if our line contained

rext Xy rext X y text

and we said
s/xce=y/xcy/

the first ‘xy’ matches this pattern, for it consists
of an ‘x’, zero spaces, and a ‘'y’. The resuit is
that the substitute acts on the first ‘xy’, and does
not touch the later one that actually contains
some intervening spaces.

The way around this, if it matters, is to
specify a pattern like

/X3 c'}’/
which says ‘an x, a space, then as many more

spaces as possible, then a y’, in other words, one
Or more spaces.

The other startling behavior of '+’ is again
related to the fact that zero is a legitimate
number of occurrences of something followed by
a star. The command

s/xs=/ylg

when applied to the line

5-6

abcdef
produces
yaybycydyeyfy

which is aimost certainly not what was intended.
The reason for this behavior is that zero is a
legal number of maiches, and there are no x's at
the beginning of the line (so that gets converted
into a ‘y’), nor between the ‘a’ and the ‘b’ (so
that gets converted inio a ‘y’), nor ... and so on.
Make sure you really want zero matches; if not,
in this case write

s/xxe/y/g

‘xx+*’ is one or more X’s.

The Brackets 'l |’

Suppose that you want to delete any
numbers that appear at the beginning of all lines
of a file. You might first think of trying a series
of commands like

1.Ss/71+//
1,8s/7°2+/7
1.8s/73+//

and so on, but this is clearly going to take for-
ever if the numbers are at all long. Unless you
want to repeat the commands over and over until
finally all numbers are gone, you must get all the
digits on one pass. This is the purpose of the
brackets { and |.

The construction
[0123456789]

matches any single digit — the whole thing is
called a ‘character class’. With a character class,
the job is easy. The pattern ‘{0123456789]s
matches zero or more digits (an entire number),
s0

1.85/7{0123456789]+//

deletes all digits from the beginning of all lines.

Any characters can appear within a charac-
ter class, and just to confuse the issue there are
essentially no special characters inside the brack-
ets; even the backslash doesn't have a special
meaning. To search for special characters, for
example, you can say

/NS 1/
Within [...]. the ‘[’ is not special. To get a ‘|’
into a character class, make it the first character.

It’s a nuisance to have to spell out the
digits, so you can abbreviate them as [0—9];
similarly, [a—z] stands for the lower case letters,
and [A ~Z] for upper case.

As a final frill on character classes, you can

specify a class that means ‘none of the following
characters’. This is done by beginning the class
with a ‘™"

["0-9]
stands for ‘any character excepr a digit’. Thus

you might find the first line that doesn’t begin
with a tab or space by a search like

/"["(space) (tab)}/
Within a character class, the circumflex has

a special meaning only if it occurs at the begin-
ning. Just to convince yourself, verify that

/"ty
finds a line that doesn’t begin with a circumflex.

The Ampersand ‘&’

The ampersand ‘&’ is used primarily to
save typing. Suppose you have the line

Now is the time
and you want to make it
Now is the best time
Of course you can always say
s/the/the best/

but it seems silly to have to repeat the ‘the’.
The ‘&’ is used to eliminate the repetition. On
the right side of a substitute, the ampersand
means ‘whatever was just matched’, so you can
say

s/the/ & best/

and the ‘&’ will stand for ‘the’. Of course this
isn’t much of a saving if the thing matched is
just ‘the’, but if it is something truly long or
awful, or if it is something like ‘.»’ which
matches a lot of text, you can save some tedious
typing. There is also much less chance of mak-
ing a typing error in the replacement text. For
example, to parenthesize a line, regardless of its
length,

s/ o/ (&)/

The ampersand can occur more than once
on the right side:

s/the/& best and & worst/
makes

Now is the best and the worst time
and

s/.+/ &7 &/

converts the original line into

5-7

Now is the time? Now is the time!!

To get a literal ampersand, naturally the
backslash is used to turn off the special meaning:

s/ampersand/\&/

converts the word into the symbol. Notice that
‘&’ is not special on the left side of a substitute,
only on the righr side.

Substituting Newlines

ed provides a facility for splitting a single
line into two or more shorter lines by ‘substitut-
ing in a newline’. As the simplest example, sup-
pose a line has gotten unmanageably long
because of editing (or merely because it was
unwisely typed). If it looks like

text Xy text .

you can break it between the ‘x’ and the ‘y’ like
this:

s/xy/x\
y/

This is actually a single command, although it is
typed on two lines. Bearing in mind that *\’
turns off special meanings, it seems relatively
intuitive that a ‘\"’ at the end of a line would
make the newline there no longer special.

You can in fact make a single line into
several lines with this same mechanism. As a
large example, consider underlining the word
‘very’ in a long line by splitting ‘very’ onto a
separate line, and preceding it by the roff or nroff
formatting command “.ul’.

text a very big rext
The command

s/averya/\
aly

very\
/

converts the line into four shorter lines, preced-
ing the word ‘very’ by the line ‘.ul’, and elim-
inating the spaces around the ‘very’, all at the
same time.

When a newline is substituted in, dot is
left pointing at the last line created.

Joining Lines

Lines may also be joined together, but this
is done with the j command instead of s. Given
the lines

Now is
athe time

and supposing that dot is set to the first of them,

then the command
J
joins them together. No blanks are added, which

is why we carefully showed a biank at the begin-
ning of the second line.

All by itself, a j command joins line dot to
line dot+1, but any contiguous set of lines can
be joined. Just specify the starting and ending
line numbers. For example,

13jp

joins all the lines into one big one and prints it.
(More on line numbers in Section 3.)

Rearranging a Line with \ (... \)

(This section should be skipped on first
reading.) Recall that ‘& is a shorthand that
stands for whatever was matched by the left side
of an s command. In much the same way vou
can capture separate pieces of what was matched;
the only difference is that you have to specify on
the left side just what pieces you're interested in.

Suppose, for instance, that vou have a file
of lines that consist of names in the form

Smith, A. B.
Jones, C.

and so on, and you want the initials to precede
the name, as in

A. B. Smith
C. Jones

It is possible to do this with a series of editing
commands. but it is tedious and error-prone. (It
is instructive to figure out how it is done,
though.)

The alternative is to ‘tag’ the pieces of the
pattern (in this case, the last name, and the ini-
tials), and then rearrange the pieces. On the left
side of a substitution, if part of the pattern is
enclosed between \{ and \), whatever matched
that part is remembered, and available for use on
the right side. On the right side, the symboi ‘\1’
refers to whatever matched the first \(...\) pair,
“\2’' to the second \(...\}), and so on.

The command
1,3s/°\ (",]*\) e\ (Ls\)/\26\ 1/

although hard to read, does the job. The first
\(...\) matches the last name, which is any string
up to the comma; this is referred to on the right
side with ‘\1’. The second \(...\) is whatever
follows the comma and any spaces, and is
referred to as '\2".

Of course, with any editing sequence this
complicated, it’s foolhardy to simply run it and

5-8

hope. The global commands g and v discussed
in section 4 provide a way for you to print
exactly those lines which were affected by the
substitute command, and thus verify that it did
what you wanted in all cases.

3. LINE ADDRESSING IN THE EDITOR

The next general area we will discuss is
that of line addressing in ed. that is, how you
specify what lines are 10 be affected by editing
commands. We have already used constructions
like

1,3s/x/y/

to specify a change on all lines. And most users
are long since familiar with using a single new-
line (or return) to print the next line, and with

/thing/

to find a line that contains ‘thing’.
surprisingly enough, is the use of

Less familiar,

2thing?

to scan backwards for the previous occurrence of
‘thing’. This is especially handy when you real-
ize that the thing vou want to operate on is back
up the page from where vou are currently edit-
ing.

The slash and question mark are the only
characters you can use to delimit a context
search, though you can use essentially any char-
acter in a substitute command.

Address Arithmetic

The next step is to combine the line
numbers like ‘., *%8", */.../" and “7...7" with ‘=’
and ‘—'. Thus

§—-1

is a command to print the next to last line of the
current file (that is, one line before line ‘%").
For example, to recall how far you got in a previ-
ous editing session,

§-5,%p

prints the last six lines. (Be sure you understand
why it’s six, not five.) If there aren’t six, of
course, you'll get an error message.

As another example.
.~3,.+3p

prints from three lines before where you are now
(at line dot) to three lines after, thus giving you
a bit of context. By the way, the ‘+’ can be
omitted:

.~3,.3p

is absolutely identical in meaning.

Another area in which you can save typing
effort in specifying lines is to use ‘=" and ‘+" as
line numbers by themselves,

by itself is a command to move back up one line
in the file. In fact, you can string several minus
signs together to move back up that many lines:

moves up three lines, as does ‘—3’. Thus

—-3,+3p
is also identical to the examples above.

Since ‘=" is shorter than ‘.—1’, construc-
tions like

—,.s/bad/good/

are useful. This changes ‘bad’ to ‘good’ on the
previous line and on the current line.

‘4’ and ‘=’ can be used in combination
with searches using ‘/.../° and ‘7.7, and with
‘$’. The search

/thing/ — —

finds the line containing ‘thing’, and positions
you two lines before it.

Repeated Searches
Suppose you ask for the search
/horrible thing/

and when the line is printed you discover that it
isn’t the horrible thing that you wanted, so it is
necessary to repeat the search again. You don’t
have to re-type the search, for the construction

/1

is a shorthand for ‘the previous thing that was
searched for’, whatever it was. This can be
repeated as many times as necessary. You can
also go backwards:

77
searches for the same thing, but in the reverse
direction.

Not only can you repeat the search, but
you can use ‘//° as the left side of a substitute
command, to mean ‘the most recent pattern’.

/horrible thing/
... ed prinis line with ‘horrible thing' ...
s//good/p

To go backwards and change a line, say
?7s//good/

Of course, you can still use the ‘&’ on the right
hand side of a substitute to stand for whatever

5-9

got matched:
//sl1&=&/p

finds the next occurrence of whatever you
searched for last, replaces it by two copies of

itself, then prints the line just to verify that it
worked.

Default Line Numbers and the Value of Dot

One of the most effective ways to speed up
your editing is always to know what lines will be
affected by a command if you don’t specify the
lines it is to act on, and on what line you will be
positioned (i.e., the value of dot) when a com-
mand finishes. If you can edit without specifying
unnecessary line numbers, you can save a lot of
typing.

As the most obvious example, if you issue
a search command like

/thing/

you are left pointing at the next line that con-
tains ‘thing’. Then no address is required with
commands like s to make a substitution on that
line, or p to print it, or | to list it, or d to delete
it, or a to append text after it, or ¢ to change it,
or i to insert text before it.

What happens if there was no ‘thing'?
Then you are left right where you were — dot is
unchanged. This is also true if you were sitting
on the only ‘thing’ when you issued the com-
mand. The same rules hold for searches that use
*2...7", the only difference is the direction in
which you search.

The delete command d leaves dot pointing
at the line that followed the last deleted line.
When line ‘S’ gets deleted, however, dot points
at the new line ‘$".

The line-changing commands a, ¢ and i by
default all affect the current line — if you give
no line number with them, a appends text after
the current line, ¢ changes the current line, and i
inserts text before the current line.

a, ¢, and i behave identically in one
respect — when you stop appending, changing or
inserting, dot points at the last line entered.
This is exactly what you want for typing and edit-
ing on the fly. For example, you can say

a

..o text L.

... botch ... (minor error)
s/botch/correct/ (fix botched line)
a

... more text ...

without specifying any line number for the sub-

stitute command or for
mand. Or you can say

the second append com-

a
L. Lext ...

... horrible botch ... (major error)

c (replace entire line)
... fixed up line ...

You should experiment to determine what
happens if you add no lines with a, cor i

The r command will read a file into the
text being edited, either at the end if you give no
address, or after the specified line if you do. In
either case, dot points at the last line read in.
Remember that you can even say 0Or to read a
file in at the beginning of the text. (You can
also say Oa or 1i to start adding text at the begin-
ning.)

The w command writes out the entire file.
If vou precede the command by one line
number, that line is written, while if you precede
it by two line numbers, that range of lines is
written. The w command does nor change dot:
the current line remains the same, regardless of
what lines are written. This is true even if you
say something like

/"\.AB/ /"\.AE/w abstract

which involves a context search.

Since the w command is so easy to use,
vou should save what you are editing regularly as
you go along just in case the system crashes, or
in case you do something foolish, like clobbering
what vou're editing.

The least intuitive behavior, in a sense, is
that of the s command. The rule is simple —
you are left sitting on the last line that got
changed. If there were no changes. then dot is
unchanged.

To illustrate, suppose that there are three
lines in the buffer, and you are sitting on the
middle one:

xl
x2
x3

Then the command
- +s/x/y/p

prints the third line, which is the
changed. But if the three lines had been

last one

x1
y2
y3

and the same command had been issued while

5-10

dot pointed at the second line, then the result
would be to change and print only the first line,
and that is where dot would be set..

Semicolon *;’

Searches with */.../" and ‘?7...7" start at the
current line and move forward or backward
respectively until they either find the pattern or
get back to the current line. Sometimes this is
not what is wanted. Suppose, for example, that
the buffer contains lines like this:

Starting at line 1, one would expect that the
command

/al./b/p

prints all the lines from the ‘ab’ to the ‘be’
inclusive. Actually this is not what happens.
Both searches (for '3’ and for 'B") start from the
same point, and thus they both find the line that
contains ‘ab’. The result is to print a single line.
Worse, if there had been a line with a ‘b in it
before the ‘ab’ line, then the print command
would be in error, since the second line number
would be less than the first, and it is illegal to try
to print lines in reverse order.

This is because the comma separator for
line numbers doesn’t set dot as each address is
processed; each search starts from the same
place. In ed, the semicolon ‘.’ can be used just
like comma, with the single difference that use
of a semicolon forces dot to be set at that point
as the line numbers are being evaluated. In
effect, the semicolon ‘moves’ dot. Thus in our

exampie above, the cormmand
/al./blp

prints the range of lines from ‘ab’ to ‘be’,
because after the ‘a’ is found, dot is set to that
line, and then b’ is searched for, starting beyond
that line.

This property is most often useful in a
very simple situation. Suppose you want to find
the second occurrence of ‘thing’. You could say

/thing/

/7.

but this prints the first occurrence as well as the

t-\...)

second, and is a nuisance when vou know very
well that it is only the second one you're
interested in. The soluticn is to say

/thing/.//
This says to find the first occurrence of ‘thing’,

set dot to that line, then find the second and
print only that.

Closely related is searching for the second
previous occurrence of something, as in

?something?;7?

Printing the third or fourth or ...
tion is left as an exercise.

in either direc-

Finally, bear in mind that if you want to
find the first occurrence of something in a file,
starting at an arbitrary place within the file, it is
not sufficient to say

1;/thing/

because this fails if ‘thing’ occurs on line 1. But
it is possible to say

0:/thing/

(one of the few places where 0 is a legal line
number), for this starts the search at line 1.

Interrupting the Editor

As a final note on what dot gets set to, you
should be aware that if you hit the interrupt or
delete or rubout or break key while ed is doing a
command, things are put back together again and
your state is restored as much as possible to what
it was before the command began. WNaturally,
some changes are irrevocable — if you are read-
ing or writing a file or making substitutions or
deleting lines, these will be stopped in some
clean but unpredictable state in the middle
(which is why it is not usually wise to stop
them). Dot may or may not be changed.

Printing is more clear cut. Dot is not
changed until the printing is done. Thus if you
print until you see an interesting line, then hit
delete, you are nof sitting on that line or even
near it. Dot is left where it was when the p com-
mand was started.

4. GLOBAL COMMANDS

The global commands g and v are used to
perform one or more editing commands on all
lines that either contain (g) or don’t contain (v)
a specified pattern.

As the simplest example, the command
g/UNIX/p

prints all lines that contain the word ‘UNIX’.
The pattern that goes between the slashes can be

anything that could be used in a line search or in
a substitute command; exactly the same rules
and limitations apply.

As another example, then,
g/"\./p

prints all the formatting commands in a file
(lines that begin with *.").

The v command is identical to g, except
that it operates on those line that do no/ contain
an occurrence of the pattern. (Don't look too

hard for mnemonic significance to the letter ‘v’.)
So

v/"\.Jp

prints all the lines that don’t begin with *." — the
actual text lines.

The command that follows g or v can be
anything:

g/\./d

deletes all lines that begin with *.", and
g/ 8/d

deletes all empty lines.

Probably the most useful command that
can follow a global is the substitute command,
for this can be used to make a change and print
each affected line for verification. For example,
we could change the word ‘Unix’ to ‘UNIX’
everywhere, and verify that it really worked, with

g/Unix/s//UNIX/gp

Notice that we used ‘//° in the substitute com-
mand to mean ‘the previous pattern’, in this
case, ‘Unix’. The p command is done on every
line that matches the pattern, not just those on
which a substitution took place.

The global command operates by making
two passes over the file. On the first pass, all
lines that match the pattern are marked. On the
second pass, each marked line in turn is exam-
ined, dot is set to that line, and the command
executed. This means that it is possible for the
command that follows a g or v to use addresses.
set dot, and so on, quite freely.

g/ "\.PP/ +

prints the line that follows each ‘.PP’ command
(the signal for a new paragraph in some format-
ting packages). Remember that '+’ means ‘one
line past dot’. And

g/topic/?2"\.SH?1

searches for each line that contains ‘topic’, scans
backwards until it finds a line that begins ‘.SH’
(a section heading) and prints the line that fol-
lows that, thus showing the section headings

under which ‘topic’ is mentioned. Finally,
g/ \.EQ/+,/\.EN/~p

prints all the lines that lie between lines begin-
ning with . EQ’ and “.EN’ formatting commands.

The g and v commands can also be pre-
ceded by line numbers, in which case the lines
searched are only those in the range specified.

Multi-line Global Commands

It is possible to do more than one com-
mand under the control of a global command,
although the syntax for expressing the operation
is not especially natural or pleasant. As an
example, suppose the task is to change ‘X’ to 'y’
and ‘a’ to ‘b’ on ail lines that contain ‘thing’.
Then

g/thing/s/x/y/\
s/a/b/

is sufficient. The ‘\’ signals the g command that
the set of commands continues on the next line;
it terminates on the first line that does not end
with *\". (As a minor blemish, you can’t use a
substitute command to insert a newline within a
g command.)

You should watch out for this problem:
the command

g/x/s/ly/\
s/a/b/

does not work as you expect. The remembered
pattern is the last pattern that was actually exe-
cuted, so sometimes it will be ‘x’ (as expected),
and sometimes it will be ‘a’ (not expected). You
must spell it out, like this:

g/ x/s/x/y/\
s/a/b/

It is also possibie to execute a, ¢ and i
commands under a global command; as with
other multi-line constructions, all that is needed
is to add a ‘\’ at the end of each line except the
last. Thus to add a ‘.nf” and ‘.sp’ command
before each ‘.EQ’ line, type

g/ "\ .EQ/i\
.af\
Sp

There is no need for a final line containing a *.’
to terminate the i command. unless there are
further commands being done under the global.
On the other hand,. it does no harm to put it in
either.

5. CUT AND PASTE WITH UNIX COM-
MANDS

One editing area in which non-
programmers seem not very confident is in what
might be called ‘cut and paste’ operations —
changing the name of a file, making a copy of a
file somewhere else, moving a few lines from
one place to another in a file, inserting one file in
the middle of another, splitting a file into pieces,
and splicing two or more files together.

Yet most of these operations are actually
quite easy, if you keep your wits about you and
go cautiously. The next several sections talk
about cut and paste. We will begin with the UNIX
commands for moving entire files around, then

discuss ed commands for operating on pieces of
files.

Changing the Name of a File

You have a file named ‘memo’ and you
want it to be called ‘paper’ instead. How is it
done?

The UNiX program that renames files is
called mv (for ‘move’); it ‘moves’ the file from
one name to another, like this:

mv memo paper

That’s all there is to it: mv from the old name to
the new name.

mv oidname newname

Warning: if there is aiready a file around with the
new name, its present contents will be siiently
clobbered by the information from the other file.
The one exception is that you can't move a file
to itself —

mv X X

is iilegal.

Vaking a Copy of a File

Sometimes what you want is a copy of a
file — an entirely fresh version. This might be
because vou want to work on a file, and yet save
a copy in case something gets fouled up, or just
because you're paranoid.

In any case, the way to do it is with the cp
command. (cp stands for ‘copy’; the system is
big on short command names, which are appreci-
ated by heavy users, but sometimes a strain for
novices.) Suppose vou have a file called ‘good’
and vou want to save a copy before you make
some dramatic editing changes. Choose a name
— ‘savegood’ might be acceptable — then type

cp good savegood

This copies ‘guoc” onto ‘savegood’, and you now

have two identical copies of the file ‘good’. (If
‘savegood’ previously contained something, it
gets overwritten.)

Now if you decide at some time that you
want to get back to the original state of ‘good’,
you can say

mv savegood good

(if you’re not interested in

more), or

‘savegood’ any

cp savegood good

if you still want to retain a safe copy.

In summary, mv just renames a file; cp
makes a duplicate copy. Both of them clobber
the ‘target’ file if it already exists, so you had
better be sure that’s what you want to do before
you do it.

Removing a File

If you decide you are really done with a
file forever, you can remove it with the rm com-
mand:

rm savegood

throws away
‘savegood’.

(irrevocably) the file called

Putting Two or More Files Together

The next step is the familiar one of collect-
ing two or more files into one big one. This will
be needed, for example, when the author of a
paper decides that several sections need to be
combined into one. There are several ways to do
it, of which the cleanest, once you get used to it,
is a program called cat. (Not a/l programs have
two-letter names.) cat is short for ‘concatenate’,
which is exactly what we want to do.

Suppose the job is to combine the files
‘filel” and ‘file2’ into a single file called ‘bigfile’.
If you say

cat file

the contents of ‘file’ will get printed on your ter-
minal. If yvou say

cat filel file2

the contents of ‘filel’ and then the contents of
‘file2” will both be printed on your terminal, in
that order. So cat combines the files, all right,
but it’s not much help to print them on the ter-
minal — we want them in ‘bigfile’.

Fortunately, there is a way. You can tell
the system that instead of printing on vour ter-
minal, you want the same information put in a
file. The way to do it is to add to the command
line the character > and the name of the file

where you want the output tc go. Then ycu can
say

cat filel file2 >bigfile

and the job is done. (As with ¢p and myv, you're
putting something into ‘bigfile’, and anything
that was already there is destroyed.) .

This ability to ‘capture’ the output of a
program is one of the most useful aspects of the
system. Fortunately it’s not limited to the cat
program — you can use it with any program that
prints on your terminal. We’ll see some more
uses for it in a moment.

Naturally, you can combine several files,
not just two:

cat filel file2 file3 ... >bigfile

collects a whole bunch.
Question: is there any difference between
cp good savegood

and
cat good >savegood

Answer: for most purposes, no. You might rea-
sonably ask why there are two programs in that
case, since cat is obviously all you need. The
answer is that cp will do some other things as
well, which you can investigate for yourseif by
reading the manual. For now we’ll stick to sim-
ple usages.

Adding Something to the End of a File

Sometimes you want to add one file to the
end of another. We have enough building blocks
now that you can do it; in fact before reading
further it would be valuable if vou figured out
how. To be specific, how would you use cp, mv
and/or cat to add the file ‘good!’ to the end of
the file "good’?

You could try

cat good goodl >temp
mv temp good

which is probably most direct.
understand why

You should also

cat good goodl >good

doesn’t work. (Don't

‘good’!)

practice with a good

The easy way is to use a variant of >,
called >>. In fact, > > is identical to > except
that instead of clobbering the old file, it simply

tacks stuff on at the end. Thus vou could say
cat goodl > >good

and ‘good!” is added to the end of ‘gond’. (And

if ‘good’ didn’t exist, this makes a copy of
‘goodl’ called ‘good’.)

6. CUT AND PASTE WITH THE EDITOR

Now we move on to manipulating pieces
of files — individual lines or groups of lines.
This is another area where new users seem
unsure of themselves.

Filenames

The first step is to ensure that you know
the ed commands for reading and writing files.
Of course you can’t go very far without knowing
r and w. Equally useful, but less well known, is
the ‘edit’ command e. Within ed, the command

e newfile

says ‘I want to edit a new file called newfile,
without leaving the editor.’ The e command dis-
cards whatever you’'re currently working on and
starts over on newfile. It’s exactly the same as if
you had quit with the g command, then re-
entered ed with a new file name, except that if
you have a pattern remembered, then a com-
mand like // will still work.

If you enter ed with the command
ed file

ed remembers the name of the file, and any sub-
sequent e, r or w commands that don’t contain a
filename will refer to this remembered file. Thus

ed filel

... (editing) ...

w (writes back in filel)

e file2 (edit new file, without leaving editor)
.. (editing on file2) ...

w (writes back on file2)

(and so on) does a series of edits on various files
without ever leaving ed and without typing the
name of any file more than once. (As an aside,
if you examine the sequence of commands here,
you cag ses why many UNIX systems use e as a
synonym for ed.)

You can find out the remembered file
name at any time with the f command; just type
f without a file name. You can aiso change the
name of the remembered file name with f; a use-
ful sequence is

ed precious
f junk
... {editing) ...
witich gets a copy of a precious file, then uses f

1o guarantee that a careless w command won't
clobber the original.

Inserting One File into Another

Suppose you have a file called ‘memo’,
and you want the file called ‘table’ to be inserted
just after the reference to Table 1. That is, in
‘memo’ somewhere is a line that says

Table 1 shows that ...

and the data contained in ‘table’ has to go there,
probably so it will be formatted properily by aroff
or treff. Now what?

This one is easy. Edit ‘memo’, find ‘Table
17, and add the file ‘table’ right there:

ed memo

/Table 1/

Table | shows thar ... [response from ed]
.r table

The critical line is the last one. As we said ear-
lier, the r command reads a file; here you asked
for it to be read in right after line dot. An ¢
command without any address adds lines at the
end, so it is the same as $r.

Writing out Part of a File

The other side of the coin is writing out
part of the document you’'re editing. For exam-
ple, maybe you want to split out into a separate
file that table from the previous example, so it
can be formatted and tested separately. Suppose
that in the file being edited we have

IS
...[lots of stuff]
..TE

which is the way a table is set up for the tbl pro-
gram. To isolate the table in a separate file
called ‘table’, first find the start of the table (the
*. TS’ line), then write out the interesting part:

IN\TS/
TS [ed prints the line it found]
«/"\.TE/w table

and the job is done. If you are confident, you
can do it all at once with

/™\.TS/:/"\.TE/w table

The point is that the w command can write
out a group of lines, instead of the whole file. In
fact, you can write out a single line if you like;
just give one line number instead of two. For
example, if you have just typed a horribly com-
plicated line and vou know that it (or something
like it) is going to be needed later, then save it
— don’t re-type it. In the editor, say

a

...lots of stuff...
...horrible line...
W temp

a

...more stuff...
.r temp

a

...more stuff...

This last example is worth studying, to be sure
you appreciate what’s going on.

Moving Lines Around

Suppose you want to move a paragraph
from its present position in a paper to the end.
How would you do it? As a concrete example,
suppose each paragraph in the paper begins with
the formatting command ‘. PP’. Think about it
and write down the details before reading on.

The brute force way (not necessarily bad)
is to write the paragraph onto a temporary file,
delete it from its current position, then read in
the temporary file at the end. Assuming that
you are sitting on the ‘PP’ command that begins
the paragraph, this is the sequence of commands:

/" \.PP/—w temp
o/ =d
$r temp

That is, from where you are now (‘.’) until one
line before the next ‘.PP’ (‘/"\.PP/=") write
onto ‘temp’. Then delete the same lines.
Finally, read ‘temp’ at the end.

As we said, that’s the brute force way.
The easier way (often) is to use the move com-
mand m that ed provides — it lets you do the
whole set of operations at one crack, without any
temporary file.

The m command is like many other ed
commands in that it takes up to two line
numbers in front that tell what lines are to be
affected. It is also followed by a line number that
tells where the lines are to go. Thus

linel, line2 m line3

says to move all the lines between ‘linel’ and
‘line2’ after ‘line3’. Naturally, any of ‘linel’
etc.. can be patterns between slashes, $ signs, or
other wavs to specify lines.

Suppose again that you're sitting at the
first line of the paragraph. Then you can say

o/ "\.PP/—m$
That’s all.

As another example cf a frequent opera-
tion, you can reverse the order of two adjacent
lines by moving the first one to after the second.
Suppose that you are positioned at the first.
Then

m+

does it. It says to move line dot to after one line
after line dot. If you are positioned on the
second line,

m——
does the interchange.

As you can see, the m command is more
succinct and direct than writing, deleting and re-
reading. When is brute force better anyway?
This is a matter of personal taste — do what you
have most confidence in. The main difficulty
with the m command is that if you use patterns
to specify both the lines you are moving and the
target, you have to take care that you specify
them properly, or you may well not move the
lines you thought you did. The result of a
botched m command can be a ghastly mess.
Doing the job a step at a time makes it easier for
you to verify at each step that you accomplished
what you wanted to. It’s also a good idea to
issue a w command before doing anything com-
plicated; then if you goof, it’s easy to back up to
where you were.

Marks

ed provides a facility for marking a line
with a particular name so you can later reference
it by name regardless of its actual line number.
This can be handy for moving lines, and for
keeping track of them as they move. The mark
command is k; the command

kx

marks the current line with the name ‘x’. If a
line number precedes the k, that line is marked.
(The mark name must be a single lower case
letter.) Now you can refer to the marked line
with the address

’

X

Marks are most useful for moving things
around. Find the first line of the block to be
moved, and mark it with 2. Then find the last
line and mark it with 5. Now position yourself
at the place where the stuff is to go and say

‘a,’bm.
Bear in mind that only one line can have a

particular mark name associated with it at any
given time.

5-16

Copying Lines

We mentioned earlier the idea of saving a
line that was hard to type or used often. so as to
cut down on typing time. Of course this could
be more than one line; then the saving is
presumably even greater.

ed provides another command, called t
(for ‘transfer’) for making a copy of a group of
one or more lines at any point. This is often
easier than writing and reading.

The t command is identical 10 the m com-
mand, except that instead of moving lines it sim-
ply duplicates them at the place you named.
Thus

1,5t$

duplicates the entire contents that. you are edit-
ing. A more common use for t is for creating a-
series of lines that differ only slightly. For
example, you can say

a

.......... X (long line)

t. (make a copy)

s/x/y/ (change it a bit)

t. (make third copy)

s/yl/z! (change it a bit)
and so on.

The Temporary Escape 'V’

Sometimes it is convenient to be able to
temporarily escape from the editor to do some
other UNIX command, perhaps one of the file
copy or move commands discussed in section 5,
without leaving the editor. The ‘sscape’ com-
mand ! provides a way to do this.

If you say
'any UNIX command

your current aditing state is suspended, and the
UNIX command you asked for is executed. When
the command finishes, ed will signal you by
printing another !, at that point you can resume
editing.

You can really do anv UNIX command.
including another ed. (This is quite common, in
fact.) In this case, you can even do another !

7. SUPPORTING TOOLS

There are several tools and techniques that
go along with the editor, all of which are rela-
tively easy once you know how ed works,
because they are all based on the editor. In this
section we will give some fairly cursory examples
of these tools. more to indicate their existence
than to provide z complete tutorial. More infor-

mation on each can be found in [3].

Grep

Sometimes vou want to find all
occurrences of some word or pattern in a set of
files, to edit them or perhaps just to verify their
presence or absence. It may be possible to edit
each file separately and look for the pattern of
interest, but if there are many files this can get
very tedious, and if the files are really big, it may
be impossible because of limits in ed.

The program grep was invented to get
around these limitations. The search patterns
that we have described in the paper are often
called ‘reguiar expressions’, and "grep’ stands for

g/re/p

That describes exactly what grep does — it prints
every line in a set of files that contains a particu-
lar pattern. Thus

grep ‘thing’ filel fle2 file3

finds ‘thing® wherever it occurs in any of the files
‘filel’, ‘file2’, etc. grep also indicates the file in
which the line was found, so vou can later edit it
if you like.

The pattern represented by ‘thing’ can be
any pattern you can use in the editor, since grep
and ed use exactly the same mechanism for pat-
tern searching. It is wisest always to enclose the
pattern in the single quotes '..." if it contains any
non-alphabetic characters. since many such char-
acters also mean something special to the UNIX
command interpreter (the ‘shell’). If vou don't
quote them, the command interpreter will try to
interpret them before grep gets a chance.

There is also a way to find lines that don'
contain a pattern:

grep —v ‘thing’ filel file2

finds all lines that don't contains ‘thing’. The
—v must occur in the position shown. Given
grep and grep —v, it is possible to do things like
selecting all lines that contain some combination
of patterns. For example, to get all lines that
contain ‘X’ but not ‘y":

grep x file... | grep —v y

(The notation | is a ‘pipe’, which causes the out-
put of the first command to be used as input to
the second command; see {2].)

Editing Scripis

If a fairly complicated set of editing opera-
tions is to be done on a whole set of files, the
easiest thing to do is to make up a ‘script’, ie., a
file that contains the operations you want to per-
form, then apply this script to each file in turn.

For example, suppose you want to change
every ‘Unix’ to ‘UNIX’ and every ‘Gceos’ to
‘GCOS’ in a large number of files. Then put
into the file ‘script’ the lines

g/Unix/s//UNIX/g
g/ Gceos/s//GCOS/g
w

q
Now you can say

ed filel <script
ed file2 <script

This causes ed to take its commands from the

prepared script. Notice that the whole job has to
be planned in advance.

And of course by using the UNIX command
interpreter, you can cycle through a set of files
automatically, with varying degrees of ease.

Sed

sed (‘stream editor’) is a version of the
editor with restricted capabilities but which is
capable of processing unlimited amounts of
input. Basically sed copies its input to its output,
applying one or more editing commands to each
line of input.

As an example, suppose that we want to
do the ‘Unix’ to ‘UNIX’ part of the example
given above, but without rewriting the files.
Then the command

sed 's/Unix/UNIX/g’ filel file2 ...

applies the command ‘s/Unix/UNIX/g’ to all
lines from ‘filel’, ‘file2’, etc., and copies all lines
to the output. The advantage of using sed in
such a case is that it can be used with input too
large for ed to handle. All the output can be col-
lected in one place, either in a file or perhaps
piped into another program.

If the editing transformation is so compli-
cated that more than one editing command is
needed, commands can be supplied from a file,
or on the command line, with a slightly more
complex syntax. To take commands from a file,
for example,

sed —f cmdfile input—files...

sed has further capabilities, including con-
ditional testing and branching, which we cannot
go into here.
Acknowledgement -

I am grateful to Ted Dolotta for his careful
reading and valuable suggestions.

References

(1]

(2]

(3]

Brian W. Kernighan, 4 Turorial Introduction
to the UNIX Text Ediror, Bell Laboratories
internal memorandum.

Brian W. Kernighan, UN/X For Beginners.
Bell Laboratories internal memorandum.

Ken L. Thompson and Dennis M. Ritchie,
The UNIX Programmer's Manual. Bell
Laboratories.

An Introduction to the UNIX Shell

S. R. Bourne

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

The shell is a command programming language that provides an interface to the
UNIXT operating system. Its features include control-flow primitives, parameter
passing, variables and string substitution. Constructs such as while, if then else,
case and for are available. Two-way communication is possible between the
shell and commands. String-valued parameters, typically file names or flags,
may be passed to a command. A return code is set by commands that may be
used to determine control-flow, and the standard output from a command may
be used as shell input.

The shell can modify the environment in which commands run. Input and out-
put can be redirected to files, and processes that communicate through ‘pipes’
can be invoked. Commands are found by searching directories in the file sys-
tem in a sequence that can be defined by the user. Commands can be read
either from the terminal or from a file, which allows command procedures to be
stored for later use.

November 12, 1978

+UNIX is a Trademark of Bell Laboratories.

6-1

An Introduction to the UNIX Shell

S. R. Bourne

Bell Laboratories
Murray Hill, New Jersey 07974

1.0 Introduction

The shell is both a command language and a programming language that provides an interface
to the UNIX operating system. This memorandum describes, with examples, the UNIX shell.
The first section covers most of the everyday requirements of terminal users. Some familiarity
with UNIX is an advantage when reading this section; see, for example, "UNIX for beginners”.!
Section 2 describes those features of the shell primarily intended for use within shell pro-
cedures. These include the control-flow primitives and string-valued variables provided by the
shell. A knowledge of a programming language would be a help when reading this section.
The last section describes the more advanced features of the shell. References of the form "see
pipe (2)" are to a section of the UNIX manual.?)

1.1 Simple commands

Simple commands consist of one or more words separated by blanks. The first word is the
name of the command to be executed; any remaining words are passed as arguments to the
command. For example,

who
is a command that prints the names of users logged in. The command
Is —I
prints a list of files in the current directory. The argument —/ tells /s to print status informa-

tion, size and the creation date for each file.

1.2 Background commands
To execute a command the shell normally creates a new process and waits for it to finish. A
command may be run without waiting for it to finish. For example,

ccpgm.c &

calls the C compiler to compile the file pgm.c. The trailing & is an operator that instructs the
shell not to wait for the command to finish. To help keep track of such a process the shell
reports its process number following its creation. A list of currently active processes may be
obtained using the ps command.

1.3 Input output redirection

Most commands produce output on the standard output that is initially connected to the termi-
nal. This output may be sent to a file by writing, for example,

Is =1 >file

The notation > file is interpreted by the shell and is not passed as an argument to /s. If file does
not exist then the shell creates it; otherwise the original contents of file are replaced with the
output from /s. Output may be appended to a file using the notation

6-2

6-3

Is =1 >>file

In this case file is also created if it does not already exist.

The standard input of a command may be taken from a file instead of the terminal by writing,
for example,

we <file

The command wc reads its standard input (in this case redirected from file) and prints the
number of characters, words and lines found. If only the number of lines is required then

we —| <file

could be used.

1.4 Pipelines and filters

The standard output of one command may be connected to the standard input of another by
writing the ‘pipe’ operator, indicated by |, as in,

Is =1 | wc

Two commands connected in this way constitute a pipeline and the overall effect is the same as
Is —1 >file; we <file

except that no file is used. Instead the two processes are connected by a pipe (see pipe (2)) and
are run in parallel. Pipes are unidirectional and synchronization is achieved by halting wc when
there is nothing to read and halting /s when the pipe is full.

A filter is a command that reads its standard input, transforms it in some way, and prints the

result as output. One such filter, grep, selects from its input those lines that contain some
specified string. For example,

Is | grep old

prints those lines, if any, of the output from /s that contain the string o/d. Another useful filter
is sort. For example,

who | sort

will print an alphabetically sorted list of logged in users.
A pipeline may consist of more than two commands, for example,

Is | grep old | wc —I

prints the number of file names in the current directory containing the string o/d.

1.5 File name generation

Many commands accept arguments which are file names. For example,
Is =1 main.c

prints information relating to the file main.c.

The shell provides a mechanism for generating a list of file names that match a pattern. For
example,

Is —l *.c

generates, as arguments to /s, all file names in the current directory that end in .c. The charac-

ter * is a pattern that will match any string including the null string. In general parrerns are
specified as follows.

6-4

* Matches any string of characters including the null string.
Matches any single character.

... Matches any one of the characters enclosed. A pair of characters separated by a
minus will match any character lexically between the pair.

For example,
a—z]*

matches all names in the current directory beginning with one of the letters a through :.
/usr/fred/test/?

matches all names in the directory /usr/fred/test that consist of a single character. If no file
name is found that matches the pattern then the pattern is passed, unchanged, as an argument.

This mechanism is useful both to save typing and to select names according to some pattern. It
may also be used to find files. For example,

echo /usr/fred/*/core

finds and prints the names of all core files in sub-directories of /usr/fred. (echo is a standard
UNIX command that prints its arguments, separated by blanks.) This last feature can be expen-
sive, requiring a scan of all sub-directories of /usr/fred.

There is one exception to the general rules given for patterns. The character ‘." at the start of a
file name must be explicitly matched.

echo *
will therefore echo all file names in the current directory not beginning with “.".
echo .*

will echo all those file names that begin with ‘.’. This avoids inadvertent matching of the

names ‘." and °.." which mean ‘the current directory’ and ‘the parent directory’ respectively.

(Notice that /s suppresses information for the files ¢.” and *..".)

1.6 Quoting

Characters that have a special meaning to the shell, such as < > » ? | &, are called metachar-
acters. A complete list of metacharacters is given in appendix B. Any character preceded by a
\ is quored and loses its special meaning, if any. The \ is elided so that

echo \?
will echo a single ?, and
echo \\

will echo a single \. To allow long strings to be continued over more than one line the
sequence \newline is ignored.

\ is convenient for quoting single characters. When more than one character needs quoting the
above mechanism is clumsy and error prone. A string of characters may be quoted by enclos-
ing the string between single quotes. For example,

echo xx ###**"xx
will echo
xx‘***xx

The quoted string may not contzin a single quote but may contain newlines, which are
preserved. This quoting mechanism is the most simple and is recommended for casual use.

TN

-~

6-5

A third quoting mechanism using double quotes is also available that prevents interpretation of
some but not all metacharacters. Discussion of the details is deferred to section 3.4.

1.7 Prompting

When the shell is used from a terminal it will issue a prompt before reading a command. By
default this prompt is ‘$’. It may be changed by saying, for example,

PS1=yesdear

that sets the prompt to be the string vesdear. If a newline is typed and further input is needed
then the shell will issue the prompt ‘> ’. Sometimes this can be caused by mistyping a quote
mark. [f it is unexpected then an interrupt (DEL) will return the shell to read another com-
mand. This prompt may be changed by saying, for example,

PS2=more

1.8 The shell and login

Following /login (1) the shell is called to read and execute commands typed at the terminal. If
the user’s login directory contains the file .profile then it is assumed to contain commands and
is read by the shell before reading any commands from the terminal.

1.9 Summary

® Is
Print the names of files in the current directory.
® Is > file

Put the output from /s into file.
® Is | we -1
Print the number of files in the current directory.
® Is | grep old
Print those file names containing the string old.
® Is | grep old | we —1
Print the number of files whose name contains the string o/d.

e cc pgm.c &
Run cc in the background.

6-6

2.0 Shell procedures
The shell may be used to read and execute commands contained in a file. For example,

sh file [args ...]

calls the shell to read commands from file. Such. a file is called a conunand procedure or shell
procedure. Arguments may be supplied with the call and are referred to in file using the posi-
tional parameters $1, $2, For example, if the file wg contains

who | grep $1
then
sh wg fred
is equivalent to
who | grep fred
UNIX files have three independent attributes, read, write and execure. The UNIX command
chmod (1) may be used to make a file executable. For example,
chmod +x wg
will ensure that the file wg has execute status. Following this, the command
wg fred
is equivalent to
sh wg fred

This allows shell procedures and programs to be used interchangeably. In either case a new
process is created to run the command.

As well as providing names for the positional parameters, the number of positional parameters
in the call is available as $# . The name of the file being executed is available as $0.

A special shell parameter $# is used to substitute for all positional parameters except $6. A
typical use of this is to provide some default arguments, as in,

nroff ~T450 —ms $*

which simply prepends some arguments to those already given.

2.1 Control flow - for

A frequent use of shell procedures is to loop through the arguments (31, $2, ...) executing
commands once for each argument. An example of such a procedure is re/ that searches the file
/usr/lib/telnos that contains lines of the form

fred mh0123
bert mh0789

LY

The text of rel is

fori
do grep S$i /usr/lib/telnos; done

The command
tel fred

prints those lines in /usr/lib/telnos that contain the string fred.

6-7

tel fred bert

prints those lines containing fred followed by those for bert.
The for loop notation is recognized by the shell and has the general form

for name in wil w2 ...
do command-list
done

A command-list is a sequence of one or more simple commands separated or terminated by a
newline or semicolon. Furthermore, reserved words like do and done are only recognized fol-
lowing a newline or semicolon. name is a shell variable that is set to the words w/ w2 ... in
turn each time the command-list following do is executed. If in w/ w2 ... is omitted then the
loop is executed once for each positional parameter; that is, in $*is assumed.

Another example of the use of the for loop is the creare command whose text is
for i do >3$i; done

The command
create alpha beta

ensures that two empty files alpha and bera exist and are empty. The notation > file may be

used on its own to create or clear the contents of a file. Notice also that a semicolon (or new-
line) is required before done.

2.2 Control flow - case
A multiple way branch is provided for by the case notation. For example,

case $# in

1) cat >>81 ;;

2) cat >>82 <81 :;

*) echo "usage: append [from] to” ;;
esac

is an append command. When called with one argument as
append file

$# is the string / and the standard input is copied onto the end of file using the car command.
append filel file2

appends the contents of file/ onto file2. If the number of arguments supplied to append is other

than 1 or 2 then a message is printed indicating proper usage.

The general form of the case command is

case word in
pattern) command-list };

esac

The shell attempts to match word with each parrern, in the order in which the patterns appear.
If a match is found the associated command-list is executed and execution of the case is com-
plete. Since * is the pattern that matches any string it can be used for the default case.

A word of caution: no check is made to ensure that only one pattern matches the case argu-
ment. The first match found defines the set of commands to be executed. In the example
below the commands following the second * will never be executed.

6-8

case $# in
*) oo
*) ..
esac

Another example of the use of the case construction is to distinguish between different forms
of an argument. The following example is a fragment of a cc command.

for i
do case $i in
—[ocs]) el
~*) echo ‘unknown flag $i" ;;
*c) /lib/cO $i ...
*) echo ‘unexpected argument $i" ;;
esac
done

To allow the same commands to be associated with more than one pattern the case command
provides for alternative patterns separated by a | . For example,

case $i in

—x | —y)
esac

is equivalent to

case $i in
~[xyD

esac

The usual quoting conventions apply so that
case Si in
\?)

will match the character ?.

2.3 Here documents

The shell procedure re/ in section 2.1 uses the file /usr/lib/telnos to supply the data for grep.
An alternative is to include this data within the shell procedure as a here document, as in,

for i
do grep $i <<!

fred mh0123
bert mh0789

l

done
In this example the shell takes the lines between <<!and ! as the standard input for grep.
The string ! is arbitrary, the document being terminated by a line that consists of the string fol-
lowing <<

Parameters are substituted in the document before it is made available to grep as illustrated oy
the following procedure called edg.

6-9

ed 83 <<%
g/81/s//82/¢
w

%

The call
edg stringl string?2 file
is then equivaient to the command

ed file <<%
g/stringl/s//string2/g
w

%

and changes all occurrences of stringl in file to string2. Substitution can be prevented using \ to
quote the special character $ as in .

ed 83 <<+
1\$s/81/%2/¢

w
-+

(This version of edg is equivalent to the first except that ed will print a ? if there are no
occurrences of the string $1.) Substitution within a here document may be prevented entirely
by quoting the terminating string, for example,

grep $i <<\#

#
The document is presented without modification to grep. If parameter substitution is not
required in a here document this latter form is more efficient.
2.4 Shell variables

The shell provides string-valued variables. Variable names begin with a letter and consist of
letters, digits and underscores. Variables may be given values by writing, for example,

user=fred box =m000 acct =mh0000

which assigns values to the variables user, box and acct. A variable may be set to the null
string by saying, for exampie,

null=
The value of a variable is substituted by preceding its name with $; for example,
echo Suser

will echo fred.

Variables may be used interactively to provide abbreviations for frequently used strings. For
example,

b=/usr/fred/bin
mv pgm $b

will move the file pgm from the current directory to the directory /usr/fred/bin. A more gen-
eral notation is available for parameter (or variable) substitution, as in,

echo ${user]

which is equivalent to

echo Suser

and is used when the parameter name is followed by a letter or digit. For example,

tmp=/tmp/ps
ps a >${tmpla

will direct the output of ps to the file /tmp/psa, whereas,

ps a >Stmpa

would cause the value of the variabie tmpa to be substituted.

Except for $? the following are set initially by the shell. $? is set after executing each com-

mand.
$?

$3

$!
$—

The exit status (return code) of the last command executed as a decimal string.
Most commands return a zero exit status if they complete successfully, othérwise
a non-zero exit status is returned. Testing the value of return codes is dealt with
later under if and while commands.

The number of positional parameters (in decimal). Used, for example, in the
append command to check the number of parameters.

The process number of this shell (in decimal). Since process numbers are
unique among all existing processes, this string is frequently used to generate
unique temporary file names. For example,

ps a >/tmp/ps$S
rm /tmp/psS$

The process number of the last process run in the background (in decimal).
The current shell flags, such as —x and —v.

Some variables have a special meaning to the shell and should be avoided for general use.

$MAIL

When used interactively the shell looks at the file specified by this variable
before it issues a prompt. [f the specified file has been modified since it was last
looked at the shell prints the message you have mail before prompting for the
next command. This variable is typically set in the file .profile, in the user’s
login directory. For example,

MAIL=/usr/mail/fred

$HOME The default argument for the ¢d command. The current directory is used to

SPATH

resolve file name references that do not begin with a /, and is changed using the
cd command. For example,

cd /usr/fred/bin
makes the current directory /usr/fred/bin.
cat wn

will print on the terminal the file wn in this directory. The command ¢« with no
argument is equivaient to

cd SHOME

This variable is also typically set in the the user’s login profile.

A list of directories that contain commands (the search path). Each time a com-
mand is executed by the shell a list of directories is searched for an executable

6-11

file. If $PATH is not set then the current directory, /bin, and /usr/bin are

searched by default. Otherwise $PATH consists of directery names separated by
:. For example,

PATH=:/usr/fred/bin:/bin:/usr/bin

specifies that the current directory (the null string before the first :),
/usr/fred/bin, /bin and /usr/bin are to be searched in that order. In this way
individual users can have their own ‘private’ commands that are accessible
independently of the current directory. If the command name contains a / then

this directory search is not used; a single attempt is made to execute the com-
mand.

$PS1 The primary shell prompt string, by default, ‘$°.
Sps2 The shell prompt when further input is needed, by default, ‘> .
$IFS The set of characters used by blank interpretation (see section 3.4).

2.5 The test command

The test command, although not part of the shell, is intended for use by shell programs. For
example,

test —f file

returns zero exit status if file exists and non-zero exit status otherwise. In general ress evaluates
a predicate and returns the result as its exit status. Some of the more frequently used test argu-
ments are given here, see res (1) for a complete specification.

test s true if the argument s is not the null string
test —f file true if file exists

test —r file true if file is readable

test —w file true if file is writable

test —d file true if file is a directory

2.6 Control flow - while

The actions of the for loop and the case branch are determined by data available to the shell.
A while or until loop and an if then else branch are also provided whose actions are deter-
mined by the exit status returned by commands. A while loop has the general form

while command-list,
do command-list,
done

The value tested by the while command is the exit status of the last simple command following
while. Each time round the loop command-list, is executed; if a zero exit status is returned
then command-list, is executed; otherwise, the loop terminates. For example,

while test $1
do ...

shift
done

is equivalent to

for i
do ...
done

shift is a shell command that renames the positional parameters $2, $3, ... as 81, $2. ... and
loses $1.

6-12

Another kind of use for the while/until loop is to wait until some external event occurs and
then run some commands. In an until loop the termination condition is reversed. For exam-
ple,

until test —f file
do sleep 300; done
commands

will loop until file exists. Each time round the loop it waits for 5 minutes before trying again.
(Presumably another process will eventually create the file.)

2.7 Control flow - if
Also available is a general conditional branch of the form,
if command-list

then command-list

else command-list
fi

that tests the value returned by the last simple command following if.
The if command may be used in conjunction with the resr command to test for the existence of
a file as in

if test —f file
then process file
else do something else

fi

An example of the use of if, case and for constructions is given in section 2.10.
A multiple test if command of the form

if ...
then
else if .
then
else if ...
fi
fi
fi
may be written using an extension of the if notation as,
if ...
then
elif
then
elif
fi

The following example is the rouch command which changes the ‘last modified’ time for a list
of files. The command may be used in conjunction with make (1) to force recompilation of a
list of files.

flag =
for i
do case $i in
—c) flag=N;;
*) if test —f $i
then In $i junk$$; rm junk3$$
elif test $flag
then echo file \'$i\" does not exist
else > $i
fi
esac
done

The —c flag is used in this command to force subsequent files to be created if they do not
already exist. Otherwise, if the file does not exist, an error message is printed. The shell vari-
able flag is set to some non-null string if the —c¢ argument is encountered. The commands

In....,rm ...

make a link to the file and then remove it thus causing the last modified date to be updated.
The sequence

if commandl

then command?
fi

may be written

command! && command?
Conversely,

command! || command?2

executes command?2 only if command/ fails. In each case the value returned is that of the last
simple command executed.

2.8 Command grouping
Commands may be grouped in two ways,

{ command-list ;)
and

(command-list)

In the first command-list is simply executed. The second form executes command-list as a
separate process. For example,

(cd x; rm junk)

executes ~m junk in the directory x without changing the current directory of the invoking shell.
The commands

cd x; rm junk

have the same effect but leave the invoking shell in the directory x.

2.9 Debugging shell procedures

The shell provides two tracing mechanisms to help when debugging shell procedures. The first
is invoked within the procedure as

set —v

(v for verbose) and causes lines of the procedure to be printed as they are read. It is useful to
help isolate syntax errors. It may be invoked without modifying the procedure by saying
sh —v proc ...

where proc is the name of the shell procedure. This flag may be used in conjunction with the
—n flag which prevents execution of subsequent commands. (Note that saying ser —n at a ter-
minal will render the terminal useless until an end-of-file is typed.)

The command
set —x

will produce an execution trace. Following parameter substitution each command is printed as
it is executed. (Try these at the terminal to see what effect they have.) Both flags may be
turned off by saying

set —

and the current setting of the shell flags is available as $§— .

2.10 The man command

The following is the man command which is used to print sections of the UNIX manual. It is
called, for example, as

man sh
man —t ed
man 2 fork

In the first the manual section for s# is printed. Since no section is specified, section 1 is used.

The second example will typeset (—t option) the manual section for ed. The last prints the fork

manual page from section 2.

—~

cd /usr/man

: “colon is the comment command’
: "default is nroff ($N), section 1 (8s)”
N=ns=]

for i
do case $i in

[1-9]%) s=8i;;

—t) N=t;;

—n) N=n,

—=*) echo unknown flag \'$i\" ;;

*) if test —f man$s/$i.8s
then ${N}roff man0/${N}aa man$s/8$i.$s
else : "look through all manual sections’
found=no
forjin123456789
do if test —f man$j/$i.3;
then man $j S$i
found=yes
fi
done
case $found in
no) echo '$i: manual page not found’
esac

esac
done

Figure 1. A version of the man command

3.0 Keyword parameters

Shell variables may be given values by assignment or when a shell procedure is invoked. An
argument to a shell procedure of the form name=vaiue that precedes the command name
causes value to be assigned to name before execution of the procedure begins. The value of
name in the invoking shell is not affected. For example,

user =fred command

will execute command with user set to fred The —k flag causes arguments of the form
name=value to be interpreted in this way anywhere in the argument list. Such names are some-
times called keyword parameters. It any arguments remain they are available as positional
parameters $1, $2,

The ser command may also be used to set positional parameters from within a procedure. For
example,

set — *

will set $1 to the first file name in the current directory, $2 to the next, and so on. Note that
the first argument, —, ensures correct treatment when the first file name begins with a —.

3.1 Parameter transmission

When a shell procedure is invoked both positional and keyword parameters may be supplied
with the call. Keyword parameters are also made available implicitly to a shell procedure by
specifying in advance that such parameters are to be exported. For example,

export user box

marks the variables user and box for export. When a shell procedure is invoked copies are
made of all exportable variables for use within the invoked procedure. Modification of such
variables within the procedure does not affect the values in the invoking shell. It is generally
true of a shell procedure that it may not modify the state of its caller without explicit request
on the part of the caller. (Shared file descriptors are an exception to this rule.)

Names whose value is intended to remain constant may be declared readonly. The form of this
command is the same as that of the exporr command,

readonly name ...

Subsequent attempts to set readonly variables are illegal.

3.2 Parameter substitution

If a shell parameter is not set then the null string is substituted for it. For example, if the vari-
able d is not set

echo $d

or
echo ${d]

will echo nothing. A default string may be given as in
echo ${d—.}

which will echo the value of the variable d if it is set and °.” otherwise. The default siring is
evaluated using the usual quoting conventions so that

echo ${d—"*}

will echo # if the variable d is not set. Similarly

echo ${d—$%1}

will echo the value of d if it is set and the value (if any) of $1 otherwise. A variable may be
assigned a default value using the notation

echo ${d=.}
which substitutes the same string as
echo ${d—.}

and if d were not previously set then it will be set to the string *.’. (The notation ${...=...} is
not available for positional parameters.)

If there is no sensible default then the notation
echo ${d?message]}

will echo the value of the variable d if it has one, otherwise message is printed by the shell and
execution of the shell procedure is abandoned. If message is absent then a standard message is
printed. A shell procedure that requires some parameters to be set might start as follows.

: ${user?} ${acct?} ${bin?}

Colon (:) is a command that is built in to the shell and does nothing once its arguments have
been evaluated. If any of the variables user, acct or bin are not set then the shell will abandon
execution of the procedure.

3.3 Command substitution

The standard output from a command can be substituted in a similar way to parameters. The
command pwd prints on its standard output the name of the current directory. For example, if
the current directory is /usr/fred/bin then the command

d="pwd’
is equivalent to

d=/usr/fred/bin

The entire string between grave accents (...") is taken as the command to be executed and is
replaced with the output from the command. The command is written using the usual quoting
conventions except that a =~ must be escaped using a \. For example,

Is ‘echo "$1"™
is equivalent to

Is 81

Command substitution occurs in all contexts where parameter substitution occurs (including
here documents) and the treatment of the resulting text is the same in both cases. This
mechanism allows string processing commands to be used within shell procedures. An example
of such a command is basename which removes a specified suffix from a string. For example,

basename main.c .c
will print the string main. Its use is illustrated by the following fragment from a cc command.

case SA in
*.c) B="basename $A .c’

€sac

6-18

that sets B to the part of $A with the suffix .c stripped.
Here are some composite examples.

foriin ls —t';do...
The variable i is set to the names of files in time order, most recent first.

set ‘date’; echo $6 $2 33, %4
will print, e.g., 1977 Nov I, 23:59:59

3.4 Evaluation and quoting

The shell is a macro processor that provides parameter substitution, command substitution and
file name generation for the arguments to commands. This section discusses the order in which
these evaluations occur and the effects of the various quoting mechanisms.

Commands are parsed initially according to the grammar given in appendix A. Before a com-
mand is executed the following substitutions occur.

parameter substitution, e.g. Suser
command substitution, e.g. ‘pwd’
Only one evaluation occurs so that if, for example, the value of the variable X is the
string 3y then
echo $X

will echo 8y.
blank interpretation

Following the above substitutions the resulting characters are broken into non-blank
words (blank interpretation). For this purpose ‘blanks’ are the characters of the
string $IFS. By default, this string consists of blank, tab and newline. The null
string is not regarded as a word unless it is quoted. For example,

I3

echo ’
will pass on the null string as the first argument to echo, whereas

echo Snull
will call echo with no arguments if the variable null is not set or set to the null
string.
file name generation

Each word is then scanned for the file pattern characters #, ? and ...} and an alpha-
betical list of file names is generated to replace the word. Fach such file name is a
separate argument.

The evaluations just described also occur in the list of words associated with a for loop. Only
substitution occurs in the word used for a case branch.

As well as the quoting mechanisms described earlier using \ and "..." a third quoting mechan-
ism is provided using double quotes. Within double quotes parameter and command substitu-
tion occurs but file name generation and the interpretation of blanks does not. The following
characters have a special meaning within double quotes and may be quoted using \ .

$ parameter substitution
' command substitution
ends the quoted string
\ quotes the special characters § * "\

"

For example,

echo "$x"

VN

6-19

will pass the value of the variable x as a single argument to echo. Similarly,
echo "$*"

will pass the positional parameters as a single argument and is equivalent to
echo "$1 $2..."

The notation $@ is the same as $* except when it is quoted.
echo "$@"

will pass the positional parameters, unevaluated, to echo and is equivalent to
echo "$1" "8$2" ...

The following table gives, for each quoting mechanism, the shell metacharacters that are
evaluated.

metacharacter

Vs
’ n n n n n t
' y n n t n n
! y y n y t n

t terminator

y interpreted

n not interpreted

Figure 2. Quoting mechanisms
In cases where more than one evaluation of a string is required the built-in command eval may
be used. For example, if the variable X has the value 8y, and if y has the value pgr then
eval echo $X
will echo the string pgr.

In general the eva/ command evaluates its arguments (as do all commands) and treats the result
as input to the shell. The input is read and the resulting command(s) executed. For example,

wg ="eval wholgrep’
$wg fred

is equivalent to
wholgrep fred

In this example, evalis required since there is no interpretation of metacharacters, such as |,
following substitution.

3.5 Error handling

The treatment of errors detected by the shell depends on the type of error and on whether the
shell is being used interactively. An interactive shell is one whose input and output are con-

nected to a terminal (as determined by gy (2)). A shell invoked with the —i flag is also
interactive. '

Execution of a command (see also 3.7) may fail for any of the following reasons.

@ Input output redirection may fail. For example, if a file does not exist or cannot be
created.

6-20

The command itself does not exist or cannot be executed.

The command terminates abnormally, for example, with a "bus error” or "memory fault".
See Figure 2 below for a complete list of UNIX signals.

L] The command terminates normally but returns a non-zero exit status.

In all of these cases the sheil will go on to execute the next command. Except for the last case
an error message will be printed by the shell. All remaining errors cause the shell to exit from
a command procedure. An interactive shell will return to read another command from the ter-
minal. Such errors include the following.

® Syntax errors. e.g., if ... then ... done

® A signal such as interrupt. The shell waits for the current command, if any, to finish exe-
cution and then either exits or returns to the terminal.

® Failure of any of the built-in commands such as cd.
The shell flag —e causes the shell to terminate if any error is detected.

i hangup

2 interrupt

3* quit

4* illegal instruction

5* trace trap

6* [OT instruction

7* EMT instruction

8" floating point exception

9 kill (cannot be caught or ignored)
10* bus error

- segmentation violation

12* bad argument to system call

13 write on a pipe with no one to read it
14 alarm clock

15 software termination (from ki/l (1))

Figure 3. UNIX signals

Those signals marked with an asterisk produce a core dump if not caught. However, the shell
itself ignores quit which is the only external signal that can cause a dump. The signals in this
list of potential interest to shell programs are 1, 2, 3, 14 and 15.

3.6 Fault handling

Shell procedures normally terminate when an interrupt is received from the terminal. The trap
command is used if some cleaning up is required, such as removing temporary files. For exam-
ple,

trap rm /tmp/ps3S; exit” 2
sets a trap for signal 2 (terminal interrupt), and if this signal is received will execute the com-
mands

rm /tmp/ps$S; exit

exit is another built-in command that terminates execution of a shell procedure. The exir is
required; otherwise, after the trap has been taken, the shell will resume executing the pro-
cedure at the place where it was interrupted.

UNIX signals can be handled in one of three ways. They can be ignored, in which case the sig-
nal is never sent to the process. They can be caught, in which case the process must decide
what action to take when the signal is received. Lastly, they can be left to cause termination of

6-21

the process without it having to take any further action. If a signal is being ignored on entry to

the shell procedure, for example, by invoking it in the background (see 3.7) then rap com-
mands (and the signal) are ignored.

The use of rrap is illustrated by this modified version of the touch command (Figure 4). The
cleanup action is to remove the file junk$$.

flag =
trap ‘rm —f junk$$; exit" 123 15
for i
do case $i in
—c) flag=N;;
*) if test —f $i
then In $ijunk$$; rm junk$$
elif test $flag
then echo file \'Si\" does not exist
else >3
fi
esac
done

Figure 4. The touch command

The trap command appears before the creation of the temporary file; otherwise it would be pos-
sible for the process to die without removing the file.

Since there is no signal 0 in UNIX it is used by the shell to indicate the commands to be exe-
cuted on exit from the shell procedure.

A procedure may, itself, elect to ignore signals by specifying the null string as the argument to
trap. The following fragment is taken from the nohup command.

trap " 12315

which causes hangup, interrupt, quit and kill to be ignored both by the procedure and by invoked
commands.

Traps may be reset by saying
trap 2 3

which resets the traps for signals 2 and 3 to their default values. A list of the current values of
traps may be obtained by writing

trap

The procedure scan (Figure 5) is an example of the use of trap where there is no exit in the
trap command. scan takes each directory in the current directory, prompts with its name, and
then executes commands typed at the terminal until an end of file or an interrupt is received.
Interrupts are ignored while executing the requested commands but cause termination when
scan is waiting for input.

6-22

d="pwd’
foriin *
do if test —d 3d/8i
then cd $d/3i
while echo "Si:"

trap exit 2
read x
do trap : 2; eval Sx; done
fi
done

Figure 5. The scan command

read x is a built-in command that reads one line from the standard input and places the result in
the variable x. It returns a non-zero exit status if either an end-of-file is read or an interrupt is
received. '

3.7 Command execution

To run a command (other than a built-in) the shell first creates a new process using the system
call fork. The execution environment for the command includes input, output and the states of
signals, and is established in the child process before the command is executed. The built-in
command exec is used in the rare cases when no fork is required and simply replaces the shell
with a new command. For example, a simple version of the nofiup command looks like

trap " 12315
exec S

The rrap turns off the signals specified so that they are ignored by subsequently created com-
mands and exec replaces the shell by the command specified.

Most forms of input output redirection have already been described. In the following word is
only subject to parameter and command substitution. No file name generation or blank
interpretation takes place so that, for example,

echo ... >*.¢
will write its output into a file whose name is %.c. Input output specifications are evaluated left
to right as they appear in the command.

> word The standard output (file descriptor 1) is sent to the file word which is created if it
does not already exist.

>> word The standard output is sent to file word. If the file exists then output is appended
(by seeking to the end); otherwise the file is created.

< word The standard input (file descriptor 0) is taken from the file word.

<< word The standard input is taken from the lines of shell input that follow up to but not
including a line consisting only of word If word is quoted then no interpretation
of the document occurs. If word is not quoted then parameter and command sub-
stitution occur and \ is used to quote the characters \ $ * and the first character of
word. In the latter case \newline is ignored (c.f. quoted strings).

>& digit The file descriptor digit is duplicated using the system call dup (2) and the result is
used as the standard output.

<& digit The standard input is duplicated from file descriptor digiv.

AT

VSN

6-23

<&— The standard input is closed.
>&— The standard output is closed.

Any of the above may be preceded by a digit in which case the file descriptor created is that
specified by the digit instead of the default 0 or 1. For example,

... 2>file

runs a command with message output (file descriptor 2) directed to file.
2> &1

runs a command with its standard output and message output merged. (Strictly speaking file
descriptor 2 is created by duplicating file descriptor 1 but the effect is usually to merge the two
streams.)
The environment for a command run in the background such as

list*.c | Ipr &

is modified in two ways. Firstly, the default standard input for such a command is the empty
file /dev/null. This prevents two processes (the shell and the command), which are running

in parallel, from trying to read the same input. Chaos would ensue if this were not the case.
For example,

ed file &

would allow both the editor and the shell to read from the same input at the same time.

The other modification to the environment of a background command is to turn off the QUIT
and INTERRUPT signals so that they are ignored by the command. This allows these signals
to be used at the terminal without causing background commands to terminate. For this reason
the UNIX convention for a signal is that if it is set to 1 (ignored) then it is never changed even
for a short time. Note that the shell command trap has no effect for an ignored signal.

3.8 Invoking the shell

The following flags are interpreted by the shell when it is invoked. If the first character of
argument zero is a minus, then commands are read from the file .profile.
—C Siring

If the —c¢ flag is present then commands are read from swring.

—s If the —s flag is present or if no arguments remain then commands are read from the
standard input. Shell output is written to file descriptor 2.

—i If the —i flag is present or if the shell input and output are attached to a terminal (as told
by guy) then this shell is interactive. In this case TERMINATE is ignored (so that kill 0
does not kill an interactive shell) and INTERRUPT is caught and ignored (so that wait is
interruptable). In all cases QUIT is ignored by the shell.

Acknowledgements

The design of the shell is based in part on the original UNIX shell3 and the PWB/UNIX shell,?
some features having been taken from both. Similarities also exist with the command inter-
preters of the Cambridge Multiple Access SystemS and of CTSS.®

1 would like to thank Dennis Ritchie and John Mashey for many discussions during the design
of the shell. 1 am also grateful to the members of the Computing Science Research Center and
to Joe Maranzano for their comments on drafts of this document.

6-24

References

B. W. Kernighan, UNIX for Beginners, Bell Laboratories internal memorandum (1978).

K. Thompson and D. M. Ritchie, UNix Programmer’s Manual, Bell Laboratories (1978).
Seventh Edition.

K. Thompson, “The UNix Command Language,” pp. 375-384 in Swuctured
Programming —Infotech State of the Art Report, Infotech International Ltd., Nicholson
House, Maidenhead, Berkshire, England (March 1975).

J. R. Mashey, PWB/UNIX Sheil Tutorial, Bell Laboratories internal memorandum (Sep-
tember 30, 1977).

D. F. Hartley (Ed.), The Cambridge Multiple Access System — Users Reference Manual,
University Mathematical Laboratory, Cambridge, England (1968).

P. A. Crisman (Ed.), The Compatible Time-Sharing System, M.L.'T. Press, Cambridge, Mass.
(1965).

6-25

Appendix A - Grammar

item: word
input-output
name = value

simple-command: item
simple-command item

command: simple-command
(command-list)
{ command-list }
for name do command-list done
for name in word ... do command-list done
while command-list do command-list done
until command-list do command-list done
case word in case-part ... esac
if command-list then command-list else-part fi

pipeline: command
pipeline | command

andor: pipeline
andor && pipeline
andor | | pipeline

command-list: andor
command-list ;
command-list &
command-list ; andor
command-list & andor

input-output: > file
< file
>> word
<< word

file: word
& digit
& —_
case-part: pattern) command-list };

pattern: word
pattern | word

else-part: elif command-list then command-list else-par
else command-list :
empry
empry.
word: a sequence of non-blank characters
name: a sequence of letters, digits or underscores starting with a letter

digit: 0123456789

6-26

Appendix B - Meta-characters and Reserved Words
a) syntactic

| pipe symbol

&& ‘andf’ symbol

I ‘orf” symbol

; command separator

3 case delimiter

& background commands

() command grouping

< input redirection

<< input from a here document
> output creation

>> output append

b) patterns
* match any character(s) including none
? match any single character
[...] match any of the enclosed characters

¢) substitution
${...] substitute shell variable

N .

substitute command output

d) quoting
\ quote the next character
".... quote the enclosed characters except for

..." quote the enclosed characters except for $ *\ "

e) reserved words

if then else elif fi
case in esac
for while until do done

{)

LEARN - Computer-Aided Instruction on UNIX
(Second Edition)

Brian W. Kernighan
Michael E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper describes the second version of the learn program for interpret-
ing CAI scripts on the UNIXT operating system, and a set of scripts that provide
a computerized introduction to the system.

Six current scripts cover basic commands and file handling, the editor,
additional file handling commands, the egn program for mathematical typing,
the ‘“—ms’’ package of formatting macros, and an introduction to the C pro-
gramming language. These scripts now include a total of about 530 lessons.

Many users from a wide variety of backgrounds have used learn to
acquire basic UNIX skills. Most usage involves the first two scripts, an introduc-
tion to files and commands, and the text editor.

The second version of learn is about four times faster than the previous
one in CPU utilization, and much faster in perceived time because of better
overlap of computing and printing. [t also requires less file space than the first
version. Many of the lessons have been revised; new material has been added
to reflect changes and enhancements in the UNIX system itself. Script-writing is
also easier because of revisions to the script language.

January 30, 1979

tUNIX is a Trademark of Bell Laboratories.

7-1

LEARN — Computer-Aided Instruction on UNIX
(Second Edition)

Brian W. Kernighan
Michael E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

1. Introduction.

Learn is a driver for CAI scripts. It is intended to permit the easy composition of lessons
and lesson fragments to teach people computer skills. Since it is teaching the same system on
which it is implemented, it makes direct use of UNIXT facilities to create a controlled UNIX
environment. The system includes two main parts: (1) a driver that interprets the lesson
scripts; and (2) the lesson scripts themselves. At present there are six scripts:

— basic file handling commands

— the UNIX text editor ed

— advanced file handling

— the eqn language for typing mathematics

— the “*—ms” macro package for document formatting

— the C programming language

The purported advantages of CAIl scripts for training in computer skills include the follow-
ing:

(a) students are forced to perform the exercises that ure in fact the basis of training in

any case;

(b) students receive immediate feedback and confirmation of progress;
(¢) students may progress at their own rate;

(d) no schedule requirements are imposed; students may study at any time convenient
for them;

{e) the lessons may be improved individually and the improvements are immediately
available to new users;

(f) since the student has access to a computer for the CAI script there is a place to do
exercises;

(g) the use of high technology will improve student motivation and the interest of their
management.

Opposed to this, of course, is the absence of anyone to whom the student may direct questions.
If CAI is used without a ‘‘counselor’ or other assistance, it should properly be compared to a
textbook, lecture series, or taped course, rather than to a seminar. CAI has been used for
many years in a variety of educational areas.!»2.3 The use of a computer to teach itself, how-
ever, offers unique advantages. The skills developed to get through the script are exactly those
needed to use the computer; there is no waste effort.

The scripts written so far are based on some familiar assumptions about education; these

tUNIX is a Trademark of Bell Laboratories.
742

7-3

assumptions are outlined in the next section. The remaining sections describe the operation of
the script driver and the particular scripts now available. The driver puts few restrictions on the
script writer, but the current scripts are of a rather rigid and stereotyped form in accordance
with the theory in the next section and practical limitations.

2. Educational Assumptions and Design.

First, the way to teach people how to do something is to have them do it. Scripts should
not contain long pieces of explanation; they should instead frequently ask the student to do
some task. So teaching is always by example: the typical script fragment shows a small example
of some technique and then asks the user to either repeat that example or produce a variation

on it. All ar2 intended to be easy enough that most students will get most questions right, rein-
forcing the desired behavior.

Most lessons fall into one of three types. The simplest presents a lesson and asks for a
yes or no answer to a question. The student is given a chance to experiment before replying.
The script checks for the correct reply. Problems of this form are sparingly used.

The second type asks for a word or number as an answer. For example a lesson on files
might say

How many files are there in the current directory? Type “answer N, where N is the number

of files.
The student is expected to respond (perhaps after experimenting) with
answer 17

or whatever. Surprisingly often, however, the idea of a substitutable argument (i.e., replacing
N by 17) is difficult for non-programmer students, so the first few such lessons need real care.

The third type of lesson is open-ended — a task is set for the student, appropriate parts of
the input or output are monitored, and the student types ready when the task is done. Figure 1
shows a sample dialog that illustrates the last of these, using two lessons about the car (con-
catenate, i.e., print) command taken from early in the script that teaches file handling. Most
learn lessons are of this form.

After each correct response the computer congratulates the student and indicates the les-
son number that has just been completed, permitting the student to restart the script after that
lesson. If the answer is wrong, the student is offered a chance to repeat the lesson. The
“speed’” rating of the student (explained in section 5) is given after the lesson number when
the lesson is completed successfully: it is printed only for the aid of script authors checking out
possible errors in the lessons.

It is assumed that there is no foolproof way to determine if the student truly “‘under-
stands’” what he or she is doing; accordingly, the current learn scripts only measure perfor-
mance, not comprehension. If the student can perform a given task, that is deemed to be
““learning.”’*

The main point of using the computer is that what the student does is checked for
correctness immediately. Unlike many CAl scripts, however, these scripts provide few facilities
for dealing with wrong answers. In practice, if most of the answers are not right the script is a
failure: the universal solution to student error is to provide a new, easier script. Anticipating
possible wrong answers is an endless job, and it is really easier as well as better to provide a
simpler script.

Along with this goes the assumption that anything can be taught to anybody if it can be
broken into sufficiently small pieces. Anything not absorbed in a single chunk is just subdi-
vided.

To avoid boring the faster students, however, an effort is made in the files and editor
scripts to provide three tracks of different difficulty. The fastest sequence of lessons is aimed at
roughly the bulk and speed of a typical tutorial manual and should be adequate for review and
for well-prepared students. The next track is intended for most users and is roughly twice as

7-4

Figure 1: Sample dialog from basic files script
(Student responses in italics; ‘$’ is the prompt)

A file can be printed on your terminal
by using the "cat” command. Just say
"cat file” where "file" is the file name.
For example, there is a file named
"food” in this directory. List it
by saying "cat food"; then type "ready".
$ cat food

this is the file

named food.

$ ready
Good. Lesson 3.3a (1)

Of course, you can print any file with "cat".
In particular, it is common to first use

"Is" to find the name of a file and then "cat”
to print it. Note the difference between

"Is", which tells you the name of the file,
and “cat", which tells you the contents.

One file in the current directory is named for
a President. Print the file, then type "ready”.
$ cat President

cat: can't open President

$ ready

Sorry, that’s not right. Do you want to try again? yes

Try the problem again.

8 s

.0copy

X1

rooseveit

$ cat roosevelt
this file is named roosevelt
and contains three lines of
text.

$ ready

Good. Lesson 3.3b (0)
The "cat" command can also print several files

at once. In fact, it is named "cat" as an abbreviation
for "concatenate”....

long. Typically, for example, the fast track might present an idea and ask for a variation on the
example shown; the normal track will first ask the student to repeat the example that was
shown before attempting a variation. The third and slowest track, which is often three or four
times the length of the fast track, is intended to be adequate for anyone. (The lessons of Fig-
ure | are from the third track.) The multiple tracks also mean that a student repeating a course
is unlikely to hit the same series of lessons; this makes it profitable for a shaky user to back up

7-5

and try again, and many students have done so.

The tracks are not completely distinct,~however. Depending on the number of correct
answers the student has given for the last few lessons, the program may switch tracks. The
driver is actually capable of following an arbitrary directed graph of lesson sequences, as dis-
cussed.in section 5. Some more structured arrangement, however, is used in all current scripts
to aid the script writer in organizing the material into lessons. It is sufficiently difficult to write
lessons that the three-track theory is not followed very closely except in the files and editor
scripts. Accordingly, in some cases, the fast track is produced merely by skipping lessons from
the slower track. In others, there is essentially only one track.

The m iin reason for using the learn program rather than simply writing the same material
as a workbo-k is not the selection of tracks, but actual hands-on experience. Learning by doing
is much more effective than pencil and paper exercises.

Learn also provides a mechanical check on performance. The first version in fact would
not let the student proceed unless it received correct answers to the questions it set and it
would not tell a student the right answer. This somewhat Draconian approach has been
moderated in version 2. Lessons are sometimes badly worded or even just plain wrong; in such
cases, the student has no recourse. But if a student is simply unable to complete one lesson,
that should not prevent access to the rest. Accordingly, the current version of learn allows the
student to skip a lesson that he cannot pass; a ‘‘no’’ answer to the ‘‘Do you want to try again?”’

question in Figure 1 will pass to the next lesson. It is still true that /earn will not tell the stu-
dent the right answer.

Of course, there are valid objections to the assumptions above. In particular, scme stu-
dents may object to not understanding what they are doing; and the procedure of smashing
everything into small pieces may provoke the retort ‘‘you can’t cross a ditch in two jumps.”
Since writing CAI scripts is considerably more tedious than ordinary manuals, however, it is
safe to assume that there will always be alternatives to the scripts as a way of learning. In fact,
for a reference manual of 3 or 4 pages it would not be surprising to have a tutorial manual of

20 pages and a (multi-track) script of 100 pages. Thus the reference manual will exist long
before the scripts.

3. Secripts.

As mentioned above, the present scripts try at most to follow a three-track theory. Thus
- little of the potential complexity of the possible directed graph is employed, since care must be
taken in lesson construction to see that every necessary fact is presented in every possible path

through the units. In addition, it is desirable that every unit have alternate successors to deal
with student errors.

In most existing courses, the first few lessons are devoted to checking prerequisites. For
example, before the student is allowed to proceed through the editor script the script verifies
that the student understands files and is able to type. It is felt that the sooner lack of student
preparation is detected, the easier it will be on the student. Anyone proceeding through the
scripts should be getting mostly correct answers, otherwise, the system will be unsatisfactory
both because the wrong habits are being learned and because the scripts make little effort to

deal with wrong answers. Unprepared students should not be encouraged to continue with
scripts.

There are some preliminary items which the student must know before any scripts can be
tried. In particular, the student must know how to connect to a UNIX system, set the terminal
properly, log in, and execute simple commands (e.g., learn itself). In addition, the character
erase and line kill conventions (# and @) should be known. It is hard to see how this much
could be taught by computer-aided instruction, since a student who does not know these basic
skills will not be able to run the learning program. A brief description on paper is provided
(see Appendix A), although assistance will be needed for the first few minutes. This assis-
tance, however, need not be highly skilled.

7-6

The first script in the current set deals with files. It assumes the basic knowledge above
and teaches the student about the /s, car, mv, rm, c¢p and diff commands. It also deals with
the abbreviation characters *, ?, and [] in file names. It does not cover pipes or /O redirec-
tion, nor does it present the many options on the /s command.

This script contains 31 lessons in the fast track; two are intended as prerequisite checks,
seven are review exercises. There are a total of 75 lessons in all three tracks, and the instruc-
tional passages typed at the student to begin each lesson total 4,476 words. The average lesson
thus begins with a 60-word message. In general, the fast track lessons have somewhat longer
introductions, and the slow tracks somewhat shorter ones. The longest message is 144 words
and the shortest {4,

The second script trains students in the use of the context editor ed, a sophisticated editor
using regular expressions for searching.5 All editor features except encryption, mark names and

.7 in addressing are covered. The fast track contains 2 prerequisite checks, 93 lessons, and 2
review lesson. It is supplemented by 146 additional lessons in other tracks.

A comparison of sizes may be of interest. The ed description in the reference manual is
2,572 words long. The ed tutorial® is 6,138 words long. The fast track through the ed script is
7,407 words of explanatory messages, and the total ed script, 242 lessons, has 15,615 words.
The average ed lesson is thus also about 60 words; the largest is 171 words and the smallest 10.
The original ed script represents about three man-weeks of effort. '

The advanced file handling script deals with /s options, 1/0 diversion, pipes, and support-
ing programs like pr, we, 1ail, spell and grep. (The basic file handling script is a prerequisite.)
[t is not as refined as the first two scripts; this is reflected at least partly in the fact that it pro-
vides much less of a full three-track sequence than they do. On the other hand, since it is per-
ceived as ‘‘advanced,’ it is hoped that the student will have somewhat more sophistication and
be better able to cope with it at a reasonably high level of performance.

A fourth script covers the egn language for typing mathematics. This script must be run
on a terminal capable of printing mathematics, for instance the DASI 300 and similar Diablo-
based terminals, or the nearly extinct Model 37 teletype. Again, this script is relatively short of
tracks: of 76 lessons, only 17 are in the second track and 2 in the third track. Most of these
provide additional practice for students who are having trouble in the first track.

The —ms script for formatting macros is a short one-track only script. The macro pack-
age it describes is no longer the standard, so this script will undoubtedly be superseded in the
future. Furthermore, the linear style of a single learn script is somewhat inappropriate for the
macros, since the macro package is composed of many independent features, and few users
need all of them. It would be better to have a selection of short lesson sequences dealing with
the features independently.

The script on C is in a state of transition. It was originally designed to follow a tutorial on
C, but that document has since become obsolete. The current script has been partially con-
verted to follow the order of presentation in The C Programming Language,” but this job is not
complete. The C script was never intended to teach C; rather it is supposed to be a series of
exercises for which the computer provides checking and (upon success) a suggested solution.

This combination of scripts covers much of the material which any user will need to know
to make effective use of the UNIX system. With enlargement of the advanced files course to
inciude more on the command interpreter, there will be a relatively complete introduction to
UNIX available via learn. Although we make no pretense that fearn will replace other instruc-
tional materials, it should provide a useful supplement to existing tutorials and reference manu-
als.

7-7

4. Experience with Students.

Learn has been installed on many different UNIX systems. Most of the usage is on the
first two scripts, so these are more thoroughly debugged and polished. As a (random) sample
of user experience, the learn program has been used at Bell Labs at Indian Hill for 10,500 les-
sons in a four month period. About 3600 of these are in the files script, 4100 in the editor, and
1400 in advanced files. The passing rate is about 80%, that is, about 4 lessons are passed for
every one failed. There have been 86 distinct users of the files script, and 58 of the editor. On
our system at Murray Hill, there have been nearly 4000 lessons over four weeks that include
Christmas and New Year. Users have ranged in age from six up.

It is diffcult to characterize typical sessions with the scripts; many instances exist of some-
one doing ore or two lessons and then logging out, as do instances of someone pausing in a
script for tsenty minutes or more. In the earlier version of /earn, the average session in the
files course took 32 minutes and covered 23 lessons. The distribution is quite broad and
skewed, however; the longest session was 130 minutes and there were five sessions shorter
than five minutes. The average lesson took about 80 seconds. These numbers are roughly typ-

ical for non-programmers; a UNIX expert can do the scripts at approximately 30 seconds per les-
son, most of which is the system printing.

At present working through a section of the middle of the files script took about 1.4
seconds of processor time per lesson, and a system expert typing quickly took 15 seconds of
real time per lesson. A novice would probably take at least a minute. Thus, as a rough approx-

imation, a UNIX system could support ten students working simultaneously with some spare
capacity.

5. The Script Interpreter.

The learn program itself merely interprets scripts. It provides facilities for the script writer
to capture student responses and their effects, and simplifies the job of passing control to and
recovering control from the student. This section describes the operation and usage of the
driver program, and indicates what is required to produce a new script. Readers only interested
in the existing scripts may skip this section.

The file structure used by /learn is shown in Figure 2. There is one parent directory
(named /ib) containing the script data. Within this directory are subdirectories, one for each
subject in which a course is available, one for logging (named /og), and one in which user sub-
directories are created (named play). The subject directory contains master copies of all les-
sons, plus any supporting material for that subject. In a given subdirectory, each lesson is a

single text file. Lessons are usually named systematically; the file that contains lesson n is
called Ln.

When Jearn is executed, it makes a private directory for the user to work in, within the
learn portion of the file system. A fresh copy of all the files used in each lesson (mostly data
for the student to operate upon) is made each time a student starts a lesson, so the script writer
may assume that everything is reinitialized each time a lesson is entered. The student directory
is deleted after each session; any permanent records must be kept elsewhere.

The script writer must provide certain basic items in each lesson:
(1) the text of the lesson;
(2) the set-up commands to be executed before the user gets control;
(3) the data, if any, which the user is supposed to edit, transform, or otherwise process;

(4) the evaluating commands to be executed after the user has finished the lesson, to decide
whether the answer is right; and
(5) a list of possible successor lessons.

Learn tries to minimize the work of bookkeeping and installation, so that most of the effort
involved in script production is in planning lessons, writing tutorial paragraphs, and coding tests
of student performance.

7-8

Figure 2: Directory structure for learn

lib
play
studentl
files for studentl...
student?2
files for student2...
files
LO.1a lessons for files course
LO.1b
editor

(other courses)

log

The basic sequence of events is as follows. First, learn creates the working directory.
Then, for each lesson, learn reads the script for the lesson and processes it a line at a time.
The lines in the script are: (1) commands to the script interpreter to print something, to create
a files, to test something, etc.; (2) text to be printed or put in a file; (3) other lines, which are
sent to the shell to be executed. One line in each lesson turns contro! over to the user; the
user can run any UNIX commands. The user mode terminates when the user types yes, no,
ready, or answer. At this point, the user’s work is tested; if the lesson is passed, a new lesson
is selected, and if not the old one is repeated.

Let us illustrate this with the script for the second lesson of Figure 1; this is shown in
Figure 3.

Lines which begin with # are commands to the /earn script interpreter. For example,
#print

causes printing of any text that follows, up to the next line that begins with a sharp.
#print file

prints the contents of file; it is the same as cat file but has less overhead. Both forms of #print
have the added property that if a lesson is failed, the #print will not be executed the second
time through; this avoids annoying the student by repeating the preamble to a lesson.

#create filename

creates a file of the specified name, and copies any subsequent text up to a # to the file. This
is used for creating and initializing working files and reference data for the lessons.

Huser
gives control to the student; each line he or she types is passed to the shell for execution. The
#user mode is terminated when the student types one of yes, no, ready or answer. At that
time, the driver resumes interpretation of the script.

#Hcopyin

#uncopyin
Anything the student types between these commands is copied onto a file called .copy. This lets
the script writer interrogate the student’s responses upon regaining control.

~
'
e}

Figure 3: Sample Lesson

#print
Of course, you can print any file with "cat".
In particular, it is common to first use
"Is" to find the name of a file and then "cat"
to print it. Note the difference between
"1s", which tells you the name of the files,
and "cat", which tells you the contents.
One file in the current directory is named for
a President. Print the file, then type "ready".
#create roosevelt

this file is named roosevelt

and contains three lines of

text.
#copyout
#user
#uncopyout
tail —3 .ocopy >X1
#cmp X1 roosevelt

#log
#next
3.2b 2
H#Hcopyout
#uncopyout

Between these commands, any material typed at the student by any program is copied to the file
.ocopy. This lets the script writer interrogate the effect of what the student typed, which true
believers in the performance theory of learning usually prefer to the student’s actual input.
#pipe
#Hunpipe

Normally the student input and the script commands are fed to the UNIX command interpreter
(the “‘shell’’) one line at a time. This won’t do if, for example, a sequence of editor commands
is provided, since the input to the editor must be handed to the editor, not to the shell.
Accordingly, the material between #pipe and #unpipe commands is fed continuously through a
pipe so that such sequences work. If copyour is also desired the copyour brackets must include

the pipe brackets.
There are several commands for setting status after the student has attempted the lesson.
#Hemp filel file2

is an in-line implementation of cmp, which compares two files for identity.
H#match stufff

The last line of the student’s input is compared to siuff, and the success or fail status is set
according to it. Extraneous things like the word answer are stripped before the comparison is
made. There may be several #maich lines; this provides a convenient mechanism for handling
multiple ‘‘right” answers. Any text up to a # on subsequent lines after a successful #march is
printed; this is illustrated in Figure 4, another sample lesson.

#bad stuff

This is similar to #maich. except that it corresponds to specific failure answers; this can be
used to produce hints for particular wrong answers that have been anticipated by the script

Figure 4. Another Sample Lesson

#print

What command will move the current line
to the end of the file? Type

"answer COMMAND", where COMMAND is the command.
#copyin

#user

#uncopyin

#match m$

#match .m$

"m$" is easier.

#log

#next

63.1d 10

writer.

#succeed

#rail
print a message upon success or failure (as determined by some previous mechanism).

When the student types one of the ‘‘commands’ yes, no, ready, or answer, the driver
terminates the #user command, and evaluation of the student’s work can begin. This can be
done either by the built-in commands above, such as #march and #cmp, or by status returned
by normal UNIX commands, typically grep and ftest. The last command should return status true
(0) if the task was done successfully and false (non-zero) otherwise; this status return telis the:
driver whether or not the student has successfully passed the lesson.

Performance can be logged:
#log file

writes the date, lesson, user name and speed rating, and a success/failure indication on file.
The command

#log

by itself writes the logging information in the logging directory within the /earn hierarchy, and
is the normal form.

#next

is followed by a few lines, each with a successor lesson name and an optional speed rating on it.
A typical set might read

25.1a 10
25.2a 5
25.3a 2

indicating that unit 25.1a is a suitable follow-on lesson for students with a speed rating of 10
units, 25.2a for student with speed near 5, and 25.3a for speed near 2. Speed ratings are main-
tained for each session with a student; the rating is increased by one each time the student gets
a lesson right and decreased by four each time the student gets a lesson wrong. Thus the driver
tries to maintain a level such that the users get 80% right answers. The maximum rating is lim-
ited to 10 and the minimum to 0. The initial rating is zero unless the student specifies a
different rating when starting a session.

If the student passes a lesson, a new lesson is selected and the process repeats. If the stu-
dent fails, a false status is returned and the program reverts to the previous lesson and tries

7-11

another alternative. If it can not find another alternative, it skips forward a lesson. The stu-

dent can terminate a session at any time by typing bye, which causes a graceful exit from /learn.
Hanging up is the usual novice’s way out.

The lessons may form an arbitrary directed graph, although the present program imposes
4 limitation on cycles in that it will not present a lesson twice in the same session. If the stu-
dent is unable to answer one of the exercises correctly, the driver searches for a previous lesson
with a set of alternatives as successors (following the #next line). From the previous lesson
with alternatives one route was taken earlier; the program simply tries a different one.

It is pe-fectly possible to write sophisticated scripts that evaluate the student’s speed of
response, or 'y to estimate the elegance of the answer, or provide detailed analysis of wrong

answers. Les >n writing is so tedious already, however, that most of these abilities are likely to
go unused.

The driver program depends heavily on features of the UNIX system that are not available
on many other operating systems. These include the ease of manipulating files and directories,
file redirection, the ability to use the command interpreter as just another program (even in a
pipeline), command status testing and branching, the ability to catch signals like interrupts, and
of course the pipeline mechanism itself. Although some parts of learn might be transferable to.
other systems, some generality will probably be lost.

A bit of history: The first version of fearn had fewer built-in commands in the driver pro-
gram, and made more use of the facilities of the UNIX system itself. For example, file com-
parison was done by creating a cmp process, rather than comparing the two files within learn.
Lessons were not stored as text files, but as archives. There was no concept of the in-line
document; even #print had to be followed by a file name. Thus the initialization for each les-

son was to extract the archive into the working directory (iypically 4-8 files), then #print the
lesson text.

The combination of such things made /learn rather slow and demanding of system
resources. The new version is about 4 or § times faster, because fewer files and processes are
created. Furthermore, it appears even faster to the user because in a typical lesson, the printing
of the message comes first, and file setup with #creare can be overlapped with printing, so that
when the program finishes printing, it is really ready for the user to type at it.

It is also a great advantage to the script maintainer that lessons are now just ordinary text
files, rather than archives. They can be edited without any difficulty, and UNIX text manipula-
tion tools can be applied to them. The result has been that there is much less resistance to
going in and fixing substandard lessons.

6. Conclusions

The following observations can be made about secretaries, typists, and other non-
programmers who have used learn:

(a) A novice must have assistance with the mechanics of communicating with the computer
to get through to the first lesson or two; once the first few lessons are passed people can
proceed on their own.

(b) The terminology used in the first few lessons is obscure to those inexperienced with com-
puters. It would help if there were a low level reference card for UNIX to supplement the
existing programmer oriented bulky manual and bulky reference card.

(¢) The concept of ‘‘substitutable argument’’ is hard to grasp, and requires heip.
(d) They enjoy the system for the most part. Motivation matters a great deal, however.

It takes an hour or two for a novice to get through the script on file handling. The total time
for a reasonably intelligent and motivated novice to proceed from ignorance to a reasonable
ability to create new files and manipulate old ones seems to be a few days, with perhaps half of
each day spent on the machine.

s

‘same room with someone
not brought to a halt by
‘th lower than that on a
‘proceed with instruction
xercise the scripts on the
- for their real work, and
Iso, both training and ini-
are are working reliably.
‘esult. For example, if it
o reschedule training for
. 1 nothing is happening, it
= p, a slow but functioning

fepend completely on the
- This is unfortunate, not
acy of the scripts, but
. should have manuals
>d to recommend suit-

From the student’s
1't be passed. Some-
the lesson itself — a
system facility that
=nt system. [t takes
ize that the fault is
ith the next lesson
sy to watch for les-

f} — it was often
5\ so far does not
' slow. egn, for
~k the student

by pushing
, slips. The
= students

;g files has
4robably shoug

5r we have benefity
¢J. L. Blue, S. I F
‘Conversations with E
.indebted to Don Jacko™

3r was broken when he had si
:oblems.

7-13

as a guinea pig for the second version, and to Tom Plum for his efforts to improve the C script.

References

1.

D. L. Bitzer and D. Skaperdas, “‘The Economics of a Large Scale Computer Based Educa-
tion System: Plato IV.,” pp. 17-29 in Computer Assisted Instruction, Testing and Guidance,
ed. Wayne Holtzman, Harper and Row, New York (1970).

D. C. Gray, J. P. Hulskamp, J. H. Kumm, S. Lichtenstein, and N. E. Nimmervoll,

“COALA - A Minicomputer CAIl System,” [EEE Trans. Education E-20(1), pp.73-77
(Feb. 1977).

P. Suppes, *‘On Using Computers to Individualize Instruction,” pp. 11-24 in The Com-

puter in American Education, ed. D. D. Bushnell and D. W. Allen, John Wiley, New York
(1967).

B. F. Skinner, “Why We Need Téaching Machines,”” Harv. Educ. Review 31, pp.377-398,

Reprinted in Educational Technology, ed. J. P. DeCecco, Holt, Rinehart & Winston (New
York, 1964). (1961).

K. Thompson and D. M. Ritchie, Uwnix Programmer’s Manual, Bell Laboratories (1978).
See section ed (1).

B. W. Kernighan, 4 rutorial introduction to the UNIX text editor, Bell Laboratories internal
memorandum (1974).

B: W: Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Engle-
wood Cliffs, New Jersey (1978).

APPENDIX A — Page given to new users -
How to Get Started

Absolutely basic information for using the UNIX system
Sfrom DASI, Terminet, or HP terminals

First time. BRING A FRIEND. Anyone who has used UNIX before, however briefly, will be of
enormous help for the first fifteen minutes to show you where all the switches are and supply
information missing from this page.

Terminais. Turn the power on. There are many kinds of terminals. Look at the telephone
used with the terminal to distinguish them. Terminals may have
— old style darasers (if the phone set is a small gray box with ‘“‘talk’’ and ‘‘data’ buttons
at the right above the handset)
~ new style datasets (if the phone set is a black six button phone with a red ‘‘data’’ button
on the left, sitting on a rectangular box with a glass front)
— acoustic couplers (if an ordinary telephone is used to call and the terminal has rubber
receptacles that the handset fits into) or
— modems (if the phone used for calling has a white button for the left button of the palr
of buttons the handset usually rests on).
— none of the above (in which case there is probably a switch somewhere that should be
flipped to signal the computer).

Calling in. For your local UNIX call
— If the terminal doesn’t use a phone, ignore this section, and proceed to Login..
— On terminals with datasets you must push the ‘‘talk’ button to get a dial tone.
— If the terminal has a separate coupler turn the coupler power on.
— If the line is busy UNIX is probably full.
- If there is no answer UNIX is broken.

Usually the phone rings only once; UNIX answers and whistles at you.

Connecting the terminal. Remember what kind of terminal you have. If it uses a
— dataset, push down the ‘‘data’ button, let it spring back up, and then hang up the
handset (IN THAT ORDER). — —
~ coupler, place the handset in the rubber receptacles. There will be an indication of
where the phone cord should be (it matters). You may get better results by placing the
handset in the receptacles as you dial.
~ modem, pull up the white button on the telephone and put the handset down some-
where (but don’t hang up the phone!).

Login. UNIX should type “‘login:”". If it does not:
— Your terminal may be in “‘local’” mode = check that the “‘local/line’’ switch is on
“line’”’. Also, Terminets may have their “‘interrupt’ light on — turn it off by pushing
‘‘ready.” '
— If the message is garbled, the speed is wrong. Somewhere on the terminal is a switch
labeled ‘‘rate” or ‘“‘baud’’ with positions of either “10,15,30”" or **110,150,300”". Set it to
30 or 300. Push the break or interrupt button slowly a few times. If ‘‘login:” doesn’t
appear, call for help.
— UNIX may be broken (call ext. .. to check on that).

Type your userid, foliowed by “‘return”. Your userid is :
— If each letter appears twice, fmd the switch labeled “full/half duplex’ and set it to
Cfull™.
— If the computer typed back your userid in upper case, find the “‘all caps’ switch or
“shift lock’” and turn it off. Then dial in again.

Normally UNIX says ‘‘Password:”’ and you should enter your password: printing will be turned

off while you do.
If you misspell it, UNIX will say “‘Login mwrrect login:”’ and you can then retype your
userid and password correctly.

UNIX will say *‘$”’. You have successfully logged in.

7-15

7-16

Commands. When UNIX has typed “‘$”’ you can type commands, one per line. For example,
you can type ‘‘date’’ to find out what day and time it is, or ‘““who” to find out who is logged on.
Every command must end with a “‘return’. After typing a command, wait for the next “$’’ to
see what happens. For example, your terminal paper might look like this (what the computer
typed is in italics):
login: myid
Password: <you can’t see it>
3 date
Thu Jan 15 10:58:21 EST 1979
3
There are a great many other commands you can type (see the guides below) and in particular
the learn command can help you learn some features of UNIX.
— If you make a mistake typing: the character # will erase the previous character, so that
typing
dax#te
is the same as typing
date
and the character @ will erase the entire line; typing
XXXXX@
date
is the same as typing ‘‘date’”. UNIX supplies the carriage return after the @.
— You must hit return if you expect the computer to notice what you typed; otherwise it
will wait patiently and silently for you to do so. When in doubt, type return and see what
happens.
— If you make a typing error and don’t correct it with # or @ before hitting return, the
computer will typically say
datr: not found
where ‘‘datr’’ is the erroneous input line.
— Other messages that may arise from mistyping include ‘“‘cannor execute’” or “No maich”
or just “?". The cure is almost always to retype the offending line correctly.

Terminology. Everything stored on the computer is saved in files. A file might contain, for
example, a memo or a chapter of a book or a letter. Every file has a name, which is used
whenever you want ta refer to it. Sample names might be ‘‘chap3™ or ““memo2’. The files
are grouped into directories; each directory contains the names of several files. All users have
directories containing their own files.

Logging out. Just hang up. On a terminal with a data set, push the ‘‘talk’ button. On other
terminals hang up the handset. Turn the terminal power off.

Guides. You should have copies of UNIX For Beginners and A Tutorial Introduction to the UNIX
Text Editor.

VAN

Typing Documents on the UNIX System:
Using the —ms Macros with Troff and Nroff

M. E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This document describes a set of easy-to-use macros for preparing docu-
ments on the UNIX system. Documents may be produced on either the photo-
typesetter or a on a computer terminal, without changing the input.

The macros provide facilities for paragraphs, sections (optionally with
automatic numbering), page titles, footnotes, equations, tables, two-column
format, and cover pages for papers.

This memo includes, as an appendix, the text of the ‘“‘Guide to Preparing
Documents with —ms”’ which contains additional examples of features of
—ms.

This manual is a revision of, and replaces, ‘“‘Typing Documents on
UNIX,”” dated November 22, 1974.

November 13, 1978

8-1

Typing Documents on the UNIX System:
Using the —ms Macros with Troff and Nroff

M. E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction. This memorandum describes a package of commands to produce papers
using the troff and nroff formatting programs on the UNIX system. As with other roff~derived
programs, text is prepared interspersed with formatting commands. However, this package,
which itself is written in troff commands, provides higher-level commands than those provided
with the basic troff program. The commands available in this package are listed in Appendix A.

Text. Type normally, except that instead of indenting for paragraphs, place a line reading
““.PP”’ before each paragraph. This will produce indenting and extra space.

Alternatively, the command .LP that was used here will produce a left-aligned (block) para-
graph. The paragraph spacing can be changed: see below under ‘‘Registers.”

Beginning. For a document with a paper-type cover sheet, the input should start as fol-
lows:

[optional overall format .RP — see below]

.TL

Title of document (one or more lines)

AU

Author(s) (may also be several lines)

Al

Author’s institution (s)

.AB

Abstract; to be placed on the cover sheet of a paper.
Line length is 5/6 of normal; use .1l here to change.
.AE (abstract end)

text ... (begins with .PP, which see)

To omit some of the standard headings (e.g. no abstract, or no author’s institution) just omit
the corresponding fields and command lines. The word ABSTRACT can be suppressed by writing
“.AB no” for ‘“.AB”’. Several interspersed .AU and .Al lines can be used for multiple authors.
The headings are not compulsory: beginning with a .PP command is perfectly OK and will just
start printing an ordinary paragraph. Warning: You can’t just begin a document with a line of
text. Some —ms command must precede any text input. When in doubt, use .LP to get
proper initialization, although any of the commands .PP, .LP, .TL, .SH, .NH is good enough.
Figure 1 shows the legal arrangement of commands at the start of a document.

Cover Sheets and First Pages. The first line of a document signals the general format of
the first page. In particular, if it is ".RP" a cover sheet with title and abstract is prepared. The
default format is useful for scanning drafts.

In general —ms is arranged so that only one form of a document need be stored, contain-
ing all information; the first command gives the format, and unnecessary items for that format
are ignored.

Warning: don’t put extraneous material between the . TL and .AE commands. Processing
of the titling items is special, and other data placed in them may not behave as you expect.
Don’t forget that some —ms command must precede any input text.

8-2

8-3

Page headings. The —ms macros, by default, will print a page heading containing a page
number (if greater than 1). A default page footer is provided only in nroff, where the date is
used. The user can make minor adjustments to the page headings/footings by redefining the
strings LH, CH, and RH which are the left, center and right portions of the page headings,
respectively; and the strings LF, CF, and RF, which are the left, center and right portions of
the page footer. For more complex formats, the user can redefine the macros PT and BT,
which are invoked respectively at the top and bottom of each page. The margins (taken from
registers HM and FM for the top and bottom margin respectively) are normally 1 inch; the page
header/footer are in the middle of that space. The user who redefines these macros should be

careful not to change parameters such as point size or font without resetting them to default
values.

Multi-column formats. 1f you place Care and Feeding of Directors
the command ‘“.2C"" in your document, the
document will be printed in double column
format beginning at that point. This feature
is not too useful in computer terminal out-
put, but is often desirable on the typesetter.
The command ‘“.1C” will go back to one-
column format and also skip to a new page.
The *.2C*" command is actually a special

Every section heading, of either type,
should be followed by a paragraph beginning
with .PP or .LP, indicating the end of the
heading. Headings may contain more than
one line of text.

The .NH command also supports more
complex numbering schemes. If a numeri-

case of the command ?‘fal arg’?ment is given, it is takenn to be a
level”” number and an appropriate sub-
.MC [column width [gutter width]] section number is generated. Larger level

numbers indicate deeper sub-sections, as in

which makes multiple columns with the .
this example:

specified column and gutter width; as many

columns as will fit across the page are used. .NH

Thus triple, quadruple, ... column pages can Erie-Lackawanna

be printed. Whenever the number of NH 2

columns is changed (except going from full Morris and Essex Division

width to some larger number of columns) a NH 3

new page is started. Gladstone Branch

Headings. To produce a special head- NH 3 '

ing, there are two commands. If you type I\Q(:{ntzclalr Branch
NH Boonton Line
type section heading here
may be several lines generates:

you will get automatically numbered section

2. Erie-Lackawanna
headings (1, 2, 3, ..), in boldface. For

example, 2.1. Morris and Essex Division
.NH
Care and Feeding of Department Heads 2.1.1. Gladstone Branch
produces 2.1.2. Montclair Branch
1. Care and Feeding of Department Heads 2.2. Boonton Line
Alternatively, An explicit **NH 0 will reset the
SH numbering of level 1 to one, as here:
Care and Feeding of Directors NH 0
will print the heading with no number Penn Central
added:

1. Penn Central

8-4

Indented paragraphs. (Paragraphs
with hanging numbers, e.g. references.) The
sequence

AP (1]

Text for first paragraph, typed
normally for as long as you would
like on as many lines as needed.
AP [2]

Text for second paragraph, ...

produces

{11 Text for first paragraph, typed nor-
mally for as long as you would like on
as many lines as needed.

[2] Text for second paragraph, ...

A series of indented paragraphs may be fol-
lowed by an ordinary paragraph beginning
with .PP or .LP, depending on whether you
wish indenting or not. The command .LP
was used here.

More sophisticated uses of .IP are also
possible. If the label is omitted, for exam-
ple, a plain block indent is produced.

P

This material will

just be turned into a

block indent suitable for quotations or

such matter.
.LP

will produce

This material will just be turned into a
block indent suitable for quotations or
such matter.

If a non-standard amount of indenting is
required, it may be specified after the label
(in character positions) and will remain in
effect until the next .PP or .LP. Thus, the
general form of the .IP command contains
two additional fields: the label and the
indenting length. For example,

P first: 9

Notice the longer label, requiring larger

indenting for these paragraphs.
.IP second:

And so forth.

.LP

produces this:

first: Notice the longer label, requiring
larger indenting for these para-
graphs.

second: And so forth.

[t is also possible to produce multiple nested
indents; the command .RS indicates that the
next .IP starts from the current indentation
level. Each .RE will eat up one level of
indenting so you should balance .RS and
.RE commands. The .RS command should
be thought of as ‘““‘move right”’ and the .RE
command as ‘‘move left”’. As an example

P 1.

Bell Laboratories
.RS

P 1.1
Murray Hill
AP 1.2
Holmdel
IP 1.3
Whippany
.RS

AP 1.3.1
Madison
.RE

AP 1.4
Chester
.RE

.LP

will result in
1. Bell Laboratories

1.1 Murray Hill

1.2 Holmdel

1.3 Whippany
1.3.1 Madison

1.4 Chester

All of these variations on .LP leave the right
margin untouched. Sometimes, for pur-
poses such as setting off a quotation, a para-
graph indented on both right and left is
required.

A single paragraph like this is
obtained by preceding it with
.QP. More complicated material
(several paragraphs) should be
bracketed with .QS and .QE.

Emphasis. To get italics (on the typesetter)
or underlining {(on the terminal) say

g
as much text as you want
can be typed here

.R
as was done for these three words. The .R
command restores the normal (usually

Roman) font. If only one word is to be ital-
icized, it may be just given on the line with
the .I command,

.I word

and in this case no .R is needed to restore
the previous font. Boldface can be pro-
duced by

.B
Text to be set in boldface

goes here
.R

and also will be underlined on the terminal
or line printer. As with .1, a single word can
be placed in boldface by placing it on the
same line as the .B command.

A few size changes can be specified
similarly with the commands .LG (make
larger), .SM (make smaller), and .NL
(return to normal size). The size change is
two points; the commands may be repeated
for increased efica (here one .NL canceled two
.SM commands).

If actual underlining as opposed to ital-
icizing is required on the typesetter, the
command

UL word

will underline a word. There is no way to
underline multiple words on the typesetter.

Footnotes. Material placed between
lines with the commands .FS (footnote) and
.FE (footnote end) will be collected,
remembered, and finally placed at the bot-
tom of the current page*. By default, foot-
notes are 11/12th the length of normal text,
but this can be changed using the FL regis-
ter (see below).

Displays and Tables. To prepare
displays of lines, such as tables, in which the
lines should not be re-arranged, enclose
them in the commands .DS and .DE

* Like this.

8-5

.DS

table lines, like the
examples here, are placed
between .DS and .DE
.DE

By default, lines between .DS and .DE are
indented and left-adjusted. You can also
center lines, or retain the left margin. Lines
bracketed by .DS C and .DE commands are
centered (and not re-arranged); lines brack-
eted by .DS L and .DE are left-adjusted, not
indented, and not re-arranged. A plain .DS
is equivalent to .DS I, which indents and
left-adjusts. Thus,

these lines were preceded
by .DS C and followed by
a .DE command;

whereas

these lines were preceded
by .DS L and followed by
a .DE command.

Note that .DS C centers each line; there is a
variant .DS B that makes the display into a
left-adjusted block of text, and then centers
that entire block. Normally a display is kept
together, on one page. If you wish to have
a long display which may be split across page
boundaries, use .CD, .LD, or .ID in place of
the commands .DS C, .DS L, or .DS I
respectively. An extra argument to the .DS
I or .DS command is taken as an amount to
indent. Note: it is tempting to assume that
.DS R will right adjust lines, but it doesn't
work.

Boxing words or lines. To draw rec-
tangular boxes around words the command
.BX word

will print as shown. The boxes will
not be neat on a terminal, and this should
not be used as a substitute for italics.

Longer pieces of text may be boxed by
enclosing them with .Bl and .B2:

.B1
text...
B2

as has been done here.

Keeping blocks together. 1f you wish
to keep a table or other block of lines
together on a page, there are ‘‘keep -

release’” commands. If a block of lines pre-
ceded by .KS and followed by .KE does not
fit on the remainder of the current page, it
will begin on a new page. Lines bracketed
by .DS and .DE commands are automatically
kept together this way. There is also a
“‘keep floating’’ command: if the block to be
kept together is preceded by .KF instead of
.KS and does not fit on the current page, it
will be moved down through the text until
the top of the next page. Thus, no large
blank space will be_introduced in the docu-
ment.

NroffiTroff commands. Among the
useful commands from the basic formatting
programs are the following. They all work
with both typesetier and computer terminal
output:

.bp - begin new page.

.br - “‘break’’, stop running text
from line to line.

.sp n - insert n blank lines.

.na - don’t adjust right margins.

Date. By default, documents produced
on computer terminals have the date at the
bottom of each page; documents produced
on the typesetter don’t. To force the date,
say ““.DA”. To force no date, say ““.ND”".
To lie about the date, say ‘““.DA July 4,
1776’ which puts the specified date at the
bottom of each page. The command

.ND May 8, 1945

in ".RP" format places the specified date on
the cover sheet and nowhere else. Place
this line before the title.

Signature line. You can obtain a sig-
nature line by placing the command .SG in
the document. The authors’ names will be
output in place of the .SG line. An argu-
ment to .SG is used as a typing identification
line, and placed after the signatures. The
.SG. command is ignored in released paper
format.

Registers. Certain of the registers
used by —ms can be altered to change
default settings. They should be changed
with .nr commands, as with

nr PS9

to make the default point size 9 point. If
the effect is needed immediately, the normal

troff command should be used in addition to
changing the number register.

Register Defines Takes Default
effect
PS point size next para. 10

next para. 12 pts
next para. 6"
next para. 6"
next para. 0.3 VS
next para. Sens

VS line spacing
LL line length
LT title length
PD para. spacing
PI para. indent

FL footnote length next FS 11712 LL
CW column width next 2C 7/15 LL
GW intercolumn gap, next 2C 1/1SLL

PO page offset
HM top margin
FM bottom margin

next page 26/27"
next page 1"
next page 1"

You may also alter the strings LH, CH, and
RH which are the left, center, and right
headings respectively; and similarly LF, CF,
and RF which are strings in the page footer.
The page number on ourput is taken from
register PN, to permit changing its output
style. For more complicated headers and
footers the macros PT and BT can be
redefined, as explained earlier.

Accents. To simplify typing certain
foreign words, strings representing common
accent marks are defined. They precede the
letter over which the mark is to appear.
Here are the strings:

Input Output Input Output
*'e e *"a a
*'e é *Ce e
*:u i *¢ c
\"‘e é

Use. After your document is prepared
and stored on a file, you can print it on a
terminal with the command*

nroff —ms file

and you can print it on the typesetier with
the command

troff —ms file

(many options are possible). In each case,
if your document is stored in several files,
just list all the filenames where we have
used ‘“file’”’. If equations or tables are used,
egn and/or bl must be invoked as prepro-
CESSOrs.

* If .2C was used, pipe the nroff output through
col; make the first line of the input ‘‘.pi
/usr/bin/col.”

References and further study. If you
have to do Greek or mathematics, see eqn
[1] for equation setting. To aid egn users,
—ms provides definitions of .EQ and .EN
which normally center the equation and set
it off slightly. An argument on .EQ is taken
to be an equation number and placed in the
right margin near the equation. In addition,

there are three special arguments to EQ: the:

letters C, I, and L indicate centered
(default), indented, and left adjusted equa-
tions, respectively. If there is both a format
argument and an equation number, give the
format argument first, as in

EQL (1.3a)

for a left-adjusted

(1.3a).

Similarly, the macros .TS and .TE are
defined to separate tables (see [2]) from text
with a little space. A very long table with a
heading may be broken across pages by
beginning it with ."TS H instead of .TS, and
placing the line .TH in the table data after
the heading. If the table has no heading
repeated from page to page, just use the
ordinary .TS and .TE macros.

equation numbered

To learn more about troff see [3] for a
general introduction, and [4] for the full
details (experts only). Information on
related UNIX commands is in [5]. For jobs
that do not seem well-adapted to —ms, con-
sider other macro packages. It is often far
easier to write a specific macro packages for
such tasks as imitating particular journals
than to try to adapt —ms.

Acknowledgmeni. Many thanks are
due to Brian Kernighan for his help in the
design and implementation of this package,
and for his assistance in preparing this
manual.

References

B. W. Kernighan and L. L. Cherry,
Typesetting Mathematics — Users Guide
(2nd edition), Bell Laboratories Com-
puting Science Report no. 17.

M. E. Lesk, Tbl — A Program to For-
‘mat Tables, Bell Laboratories Comput-
ing Science Report no. 45.

f1]

8-7

(3]
(4]

B. W. Kernighan, A Troff Tutorial, Bell
Laboratories, 1976. ‘

J. F. Ossanna, Nroff/Troff Reference
Manual, Bell Laboratories Computing
Science Report no. 51.

K. Thompson and D. M. Ritchie,
UNIX Programmer’s Manual, Bell
Laboratories, 1978.

8-8

Appendix A
List of Commands
1C Return to single column format. LG Increase type size.
2C Start double column format. LP Left aligned block paragraph.

AB Begin abstract.
AE End abstract.
Al Specify author’s institution.

AU Specify author. ND Change or cancel date.

B Begin boldface. NH Specify numbered heading.

DA Provide the date on each page. NL Return to normal type size.

DE End display. PP Begin paragraph.

DS Start display (also CD, LD, ID).

EN End equation. R Return to regular font (usually Roman).

EQ Begin equation. ~ RE End one level of relative indenting.

FE End footnote. RP Use released paper format.

FS Begin footnote. RS Relative indent increased one level.
SG Insert signature line.

I Begin italics. SH Specify section heading.
SM Change to smaller type size.

IP Begin indented paragraph. TL Specify title.

KE Release keep.

KF Begin floating keep. UL Underline one word.

KS Start keep.

Register Names

The following register names are used by —ms internally. Independent use of these
names in one’s own macros may produce incorrect output. Note that no lower case letters are
used in any —ms internal name.

Number registers used in —ms

: DW GW HM IQ LL NA 0J PO T. TV
#T EF H1 HT IR LT NC PD PQ TB \A
IT FL H3 IK KI MM NF PF PX TD YE
AV FM H4 IM L1 MN NS Pl RO TN YY
Cw FP HS IP LE MO Ol PN ST TQ ZN

String registers used in —ms

' AS CB DW EZ I KF MR R1 RT TL
) AB cC DY FA I1 KQ ND R2 SO ™
) AE CD El FE I2 KS NH R3 S1 TQ
- Al CF E2 FJ I3 LB NL R4 S2 TS
: AU CH E3 FK 14 LD NP RS SG TT
, B CM E4 FN IS LG oD RC SH UL
1C BG CS ES FO ID LP OK RE SM WB
2C BT CT EE FQ IE ME PP RF SN WH
Al C D EL FS IM MF PT RH SY WwT
A2 Cl DA EM FV IP MH PY RP TA XD
A3 C2 DE EN FY V4 MN QF RQ TE XF

A4 CA DS EQ HO KE MO R RS TH XK

’p
9 |

i
TL

™~
N4
AU
v
Al

8-9

NH, SH

/

PP, LP

text ...

Figure 1

A Guide to Preparing
Documents with —ms

M. E. Lesk

Bell Laboratories August 1978

This guide gives some simple examples of do-
cument preparation on Bell Labs computers,
emphasizing the use of the ——ms macro pack-
age. It enormously abbreviates information in
1. Typing Documents on UNIX and GCOS, by
M. E. Lesk;
2. Typesetting Mathematics — User’s Guide,
by B. W. Kernighan and L. L. Cherry; and
3. Tbi — A Program to Format Tables, by M.
E. Lesk. ,
These memos are all included in the UNIX
Programmer’s Manual, Volume 2. The new
user should also have 4 Tutorial Introduction to
the UNIX Text Editor, by B. W. Kernighan.

For more detailed information, read Addvanced
Editing on UNIX and A Troff Tutorial, by B. W.
Kernighan, and (for experts) Nroff/Troff Refer-
ence Manual! by J. F. Ossanna. Information on
related commands is found (for UNIX users) in
UNIX for Beginners by B. W. Kernighan and
the UNIX Programmer’s Manual by K. Thomp-
son and D. M. Ritchie.

Contents
ATM .. . 2
A released paper 3
An internal memo, and headings . . . 4
Lists, displays, and footnotes 5

Indents, keeps, and double column . 6
Equations and registers
Tables and usage

Throughout the examples, input is shown in
this Helvetica sans serif foni

while the resulting output is shown in
this Times Roman font,

UNIX Document no. 1111

8-11

Commands for a TM

TM 1878-5b3 99899 9999%8-11

ND April 1, 1976

TL

The Role of the Allen Wrench in Modern
Electronics

AU "MH 2G-111" 2345

J. Q. Pencilpusher

AU "MH 1K-222" 5432

X. Y. Hardwired

This abstract should be_short enough to
fit on a single page cover sheet.

It must atiract the reader into sending for
the complete memorandum.

AE

LC810212587

NH

Introduction.

PP

Now the first paragraph of actual text ...

Last line of text.

SG MH-1234-JQP/XYH-unix
NH

References ..

Commands not needed in a particular format are ig-
nored.

@ Beli Laboratories Cover Sheet for TM

(GEY 13.9-3)

This information is jor emplovees of Bell Laborartories.

Title-The Role of the Allen Wrench
in Modern Electronics

Date-April 1, 1976

T™M- 1978-5b3
Other Keywords- Tools
Design

Author
J. Q. Pencilpusher
X. Y. Hardwired

Location Ext. Charging Case- 99999
MH 2G-111 2345 Filing Case- 999998
MH 1K-222 5432

ABSTRACT

This abstract should be short enough to
fit on a single page cover sheet. It must
attract the reader into sending for the com-
plete memorandum.

Pages Text 16 Other 2 Total 12
No. Figures 5 No. Tables 6 No. Refs. 7
£-1932-U (6-73) SEE REVERSE SIDE FOR DISTRIBUTION LIST

A Released Paper with Mathematics

... (as for a TM)

LC810212567

NH

Introduction

PP

The solution to the torque handle equation

EQ (1)

sum fromQtoinfF (xsubi) =G (x)

.EN

is found with the transformation $ x = rho over
theta $ where $ rho = G prime (x) $ and S$theta$
is derived ...

An Internal Memorandum

M

.ND January 24, 1956

TL

The 1956 Consent Decree
AU ’
Able, Baker &

Charley, Attys.
PP

Plaintiff, United States of America, having filed
its complaint herein on January 14, 1949; the
defendants having appeared and filed their
answer to such complaint denying the
substantive allegations thereof; and the parties,

The Role of the Allen Wrench
in Modern Electronics

J. Q. Pencilpusher
X. Y. Hardwired

Beil Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This abstract should be short enough to fiton a
single page cover sheet. It must attract the
reader into sending for the complete memoran-
dum.

April 1, 1976

The Role of the Allen Wrench
in Modern Electronics

J. Q. Pencilpusher
X. Y. Hardwired

Bell Laboratories
Murray Hill, New Jersey 07974

1. Introduction
The solution to the torque handle equation

ZF(x,)-G(x) n
0

is found with the transformation .r--s- where p=G'(x) and
9 is derived from well-known principles.

8-12

by their attorneys, ...

Beil Laboratories
Subject: The 1956 Consent Decree date: January 24, 1956

from: Able, Baker &
Charley, Attys.

Plaintiff, United States of America, having filed its com-
plaint herein on January 14, 1949; the defendants having
appeared and filed their answer to such complaint denying
the substantive allegations thereof;, and the parties, by their
attorneys, having severally consenied 1o the entry of this
Final Judgment. without trial or adjudication of any issues
of fact or law herein and without this Final Judgment con-
stituting any evidence or admission by any party in respect
of any such issues;

Now, therefore before any testimony has been taken
herein, and without trial or adjudication of any issue of fact
or law herein, and upon the consent of all parties heréeto, it
is hereby

Ordered. adjudged and decreed as follows:

I. {Sherman Act]

This Court has jurisdiction of the subject maiter herein
and of all the parties hereto. The complaint states a claim
upon which relief may be granied against each of the
defendants under Sections 1, 2 and 3 of the Act of
Congress of July 2, 1890, enutled ‘“An act w0 protect trade
and commerce against unlawful restraints and monopo-
lies,”” commonly known as the Sherman Act, as amended.

[I. [Definitions]
For the purposes of this Final Judgment:

(a) ‘‘Western™ shall mean the defendant Wesiern Elec-
tric Company, Incorporated.

Other formats possible (specify before .TL) are: MR
(**memo for record™™). .MF (“*memo for file’"), .EG
(‘“engineer’s notes’’) and .TR (Computing Science
Tech. Report).

Headings
NH .SH
introduction. Appendix |
PP PP

lext text text text text text

Appendix [
lext ext text

1. Introduction
ext text text

A Simple List

AP 1.

J. Pencilpusher and X. Hardwired,
A

A New Kind of Set Screw,

R

Proc. |[EEE

B75

(1976), 23-255.

AP 2.

H. Nails and R. lrons,

A

Fasteners for Printed Circuit Boards,
R

Proc. ASME

B 23

(1974), 23-24,

.LP (terminates list)

-

1. J. Pencilpusher and X. Hardwired, 4 New Kind
of Set Screw, Proc. IEEE 75 (1976), 23-255.

2. H. Nails and R. Irons, Fasteners for Printed Cir-
cuit Boards, Proc. ASME 23 (1974), 23-24.

Displays
text text text text text text
.Ds
and now

for something

completely different

.DE

text text text text text text

hoboken harrison newark roseville avenue grove
sireet east orange brick church orange highland ave-
nue mountain station south orange maplewood
millburn short hills summit new providerice

and now
for something
completely different

murray hill berkeley heights gillette stirling milling-
ton lyons basking ridge bernardsville far hills
peapack gladstone

Options: .DS L: left-adjust; .DS C: line-by-line
center; .DS B: make block, then center.

Footnotes

Among the most important occupants

of the workbench are the long-nosed pliers.
Without these basic tools®

FS

* As first shown by Tiger & Leopard

(1975).

FE

few assemblies could be completed. They may
lack the popular appeal of the sledgehammer

Among the most important occupants of the work-
bench are the long-nosed pliers. Without these basic
tools® few assemblies could be completed. They
may lack the popular appeal of the sledgehammer

* As first shown by Tiger & Leopard (1975).

Multiple Indents

This is ordinary text to point out
the margins of the page.

AP 1.

First level item

.RS

P a)

Second level,

AP b))
Continued here with another second
level item, but somewhat longer.
.RE

AP 2.

Return to previous value of the
indenting at this point.

AP 3.

Another

line.

This is ordinary text to point out the margins of the
page.
1. First level item
a) Second level.
b) Continued here with another second level
item, but somewhat longer.
2. Return to previous value of the indenting at this
point.
3. Another line.

Keeps

Lines bracketed by the following commands are kept
together, and will appear entirely on one page:
KS not moved KF may float
KE through text KE in text

Double Column

TL

The Declaration of independence

.2C

PP

When in the course of human events, it becomes
necessary for one people tc dissolve the
political bonds which have connected them with
another, and to assume among the powers of the
earth the separate and equal station to which
the laws of Nature and of Nature’'s God entitle
them, a decent respect to the opinions of

The Declaration of Independence

When in the course of
human events, it be-
comes necessary for one
people to dissolve the
political bonds which
have connected them
with another, and to as-
sume among the powers
of the earth the separate
and equal station (o
which the laws of Nature
and of Nature’s God en-
title them, a decent
respect to the opinions

8-13 of mankind requires that

they should declare the
causes which impel them
to the separation.

We hold these truths
to be self-evident, that
all men are created
equal, that they are en-
dowed by their creator
with certain unalienable
rights, that among these
are life, liberty, and the
pursuit of happiness.
That to secure these
rights, governments are
instituted among men,

Equations

A displayed equation is marked

with an equation number at the right margin

by adding an argument to the EQ line:

EQ (1.3)

x sup 2 overasup 2 "="sqrt {pzsup 2 +qz+rl
.EN .

A displayed equation is marked with an equation
number at the right margin by adding an argument
to the EQ line:

2

X p T 4 (1.3)

a?

EQ 1 (2.2a)

bold V bar sub nu~="left [pile {a above b above
c) right] + left [matrix { col { A(11) above .
above . | col { . above . above .} col {. above .
above A(33) }} right] cdot left [pile { alpha
above beta above gamma |} right]

EN
_ al 14011 a
Vo=lal+| . lis (2.2a)
c CAGHE iy
EQ L
F hat (chi) “mark = ~|del V|sup 2
EN
EQ L
lineup =" {left ({partial V] over (partial x} right)

} sup 2 + [left ({partial V] over {partial y] right

) Ysup 2 " lambda -> inf
.EN
Fl) =|vV]?
2 2
- |8Y] |8V A—oo
dx oy

$ adot $, $ b dotdot$, $ xitilde times y vecs:
a, b, Exy.

See also the equations in the second table, panel 8.

(with delim $$ on, see panel 3).

Some Registers You Can Change

Line length Paragraph spacing
.nr LL 7i nr PD O
Title length Page offset
ar LT 76 .nr PO 0.5i
Point size Page heading
.arPS 9 .ds CH Appendix
. ; (ceater)
v -
ertical spacing ds RH 7-25-76
.ar VS 11)
) (right)
Column width .ds LH Private
.nr CW 3i (lef1)
Intercolumn spacing Page footer
nr GW 5i .ds CF Draft
Margins — head and foot dsLF . .
nr HM 750 ds RF Similar
-ar FM .75i Page numbers
Paragraph indent .nr % 3

.nr Pl 2n 8-14

Tables
TS (@ indicates a tab)
allbox; .
cCSsSs AT&T Common Stock
2 ﬁ 2 Year| Price | Dividend
AT&T Common Stock 1971 41“54 §2.60
Year ®Price © Dividend 2141-541 270
1971 ®41-54 ®%$2.60 3146-35 2.87
2@41-5402.70 4140-53 324
3046-55®2.87 3
4®40-5303.24 545:52 3.40
5©45-52©3.40 6151-59] 95

6®51-59©.95* * (first quarter only)
TE

* (first quarter only)

The meanings of the key-letters describing the align-
ment of each entry are:

c center n numerical
r right-adjust a subcolumn
| left-adjust S spanned

The global table options are center, expand, box,
doublebox, alibox, tab (x) and linesize {(n).

TS (with delim $3 on, see panel 3)
doublebox, center;
cc

(R
Name @ Definition

..Sp

Gamma @ $GAMMA (z) = int sub O sup inf \

t sup {z-1} e sup -t dt$
Sine®3%sin (x) = 1 over 2i { e sup ix - e sup -ix)$
Error @ % roman erf (z} = 2 over sqart pi \

int sub O sup z e sup {-t sup 2} dt$
Bessel®$ J sub 0 (z) = 1 over pi \

int sub O sup pi cos (z sin theta) d theta $
Zeta®$ zeta (s) =\

sum from k=1 to inf k sup -s " (Re’s > 1)$
TE

Name Definition

Gamma I‘(:)=f0 e dr

Sine Sin(x)=-1—'(€"\'_.€w)
2i

Error erf(:)=——2~ ~e“’zdi

N
Bessel J (*)=—]‘—f "cos(‘sin())dg
olz)=—}, cosi:

Zeta {s)=3 k= (Res>1)

A=1

Usage

Documents with just text
troff -ms files
With equations only:
eqn files | troff -ms
With tables only:
tbl files | troff -ms
With both tables and equations:
1bl filesjeqn]troff -ms

The above generates STARE output on GCOS: replace
—st with —ph for typesetier output.

VSN

Typesetting Mathematics — User’s Guide (Second Edition)

Brian W. Kernighan and Lorinda L. Cherry

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This is the user’s guide for a system for typesetting mathematics, using the photo-
typesetters on the UNIXT and GCOS operating systems.

Mathematical expressions are described in a language designed to be easy to use by people
who know neither mathematics nor typesetting. Enough of the language to set in-line expres-
sions like lim (tan x)*" 2* = 1 or display equations like

x=—m/2

k

-
4

- I—IeSkzk/k

G(z) = "G = exp

2

i1k Py
S#z2 S,z22 §3z*
=|14S 2+ + 1+ =
T 2 227
K, k k,
= ._“?1__ _S_zz__ Ce __f_"'__._ 2m
m30| kpky k20 1Mk 20

ky+2ky+ - - - +mk =m

can be learned in an hour or so.

The language interfaces directly with the phototypesetting language TROFF, so mathemati-
cal expressions can be embedded in the running text of a manuscript, and the entire document
produced in one process. This user’s guide is an example of its output. :

The same language may be used with the UNIX formatter NROFF to set mathematical
expressions on DASI and GSI terminals and Model 37 teletypes.

August 15, 1978

TUNIX is a Trademark of Bell Laboratories.

9-1

Typesetting Mathematics — User’s Guide

(Second Edition)

Brian W. Kernighan and Lorinda L. Cherry

Bell Laboratories
Murray Hill, New Jersey 07974

1. Introduction

EQN is a program for typesetting
mathematics on the Graphics Systems pho-
totypesetters on UNIX and GCOS. The EQN
language was designed to be easy to use by
people who know neither mathematics nor
typesetting. Thus EQN knows relatively little

about mathematics. In particular,
mathematical symbols like -+, -, x|
parentheses, and so on have no special

meanings. EQN is quite happy (o set garbage
(but it will look good).

EQN works as a preprocessor for the
typesetter formatter, TROFF(1], so the nor-
mal mode of operation is to prepare a docu-
ment with both mathematics and ordinary
text interspersed, and let EQN set the
mathematics while TROFF does the body of
the text.

On UNIX, EQN will also produce
mathematics on DASI and GSI terminals and
on Model 37 teletypes. The input is identi-
cal, but you have to use the programs NEQN
and NROFF instead of EQN and TROFF. Of
course, some things won't look as good
because terminals don’t provide the variety
of characters, sizes and fonts that a
typesetter does, but the output is usually
adequate for proofreading.

To use EQN on UNIX,
eqn files | troff

GCOS use is discussed in section 26.

2. Displayed Equations

To tell EQN where a mathematical
expression begins and ends, we mark it with
lines beginning .EQ and .EN. Thus if you
type the lines

9-2

EQ
x=y+z
.EN
your output will look like
x=y-+z
The EQ and EN are copied through

untouched; they are not otherwise processed
by EQN. This means that you have to take
care of things like centering, numbering,
and so on yourself. The most common way
is to use the TROFF and NROFF macro pack-
age package ‘—ms’ developed by M. E.
Lesk([3], which allows you to center, indent,
left-justify and number equations.

With the ‘“—ms’ package, equations are
centered by default. To left-justify an equa-
tion, use .EQ L instead of EQ. To indent it,
use .EQL Any of these can be followed by
an arbitrary ‘equation number’ which will be
placed at the right margin. For example,
the input

EQI (3.1a)
x = {(y/2) + y/2
.EN

produces the output

x=f(y/D+y/2 (3.1a)

There is also a shorthand notation so
in-line expressions like 72 can be entered
without .EQ and .EN. We will talk about it in

section 19.

3. Input spaces

Spaces and newlines within an expres-
sion are thrown away by EQN. (Normal text
is left absolutely alone.) Thus between .EQ
and .EN,

x=y+z

and
X=y+z
and
X =y
+z

and so on all produce the same output
x=y+z

You should use spaces and newlines freely
to make your input equations readable and
easy to edit. In particular, very long lines
are a bad idea, since they are often hard to
fix if you make a mistake.

4. QOutput spaces

To force extra spaces into the outpus,
use a tilde ‘7’ for each space you want:

="y +7z
gives
x=y+z

You can also use a circumflex ™, which
gives a space half the width of a tilde. It is
mainly useful for fine-tuning. Tabs may
also be used to position pieces of an expres-
sion, but the tab stops must be set by TROFF
commands.

5. Symbols, Special Names, Greek

EQN knows some mathematical sym-
bols, some mathematical names, and the
Greek alphabet. For example,

x=2 pi int sin (omega t)dt

produces
x=21rfsin (wt)dt

Here the spaces in the input are necessary
to tell EQN that ins, pi, sin and omega are
separate entities that should get special
treatment. The sin, digit 2, and parentheses
are set in roman type instead of italic; piand
omega are made Greek; and ins becomes the
integral sign.

When in doubt, leave spaces around
separate parts of the input. A very common
error is to type fIpi) without leaving spaces
on both sides of the pi. As a result, EQN
does not recognize pi as a special word, and
it appears as f (pi) instead of f(m).

9-3

A complete list of EQN names appears
in section 23. Knowledgeable users can also
use TROFF four-character names for any-
thing EQN doesn’t know about, like \ (bs for
the Bell System sign @.

6. Spaces, Again

The only way EQN can deduce that
some sequence of letters might be special is
if that sequence is separated from the letters
on either side of it. This can be done by
surrounding a special word by ordinary
spaces (or tabs or newlines), as we did in
the previous section.

You can also make special words stand
out by surrounding them with tildes or
circumflexes:

X~ ="2"pi"int"sin"(Comega™t™) "dt
is much the same as the last example,
except that the tildes not only separate the

magic words like sin, omega, and so on, but
also add extra spaces, one space per tilde:

x=2wfsin(wt)dt

Special words can also be separated by
braces { | and double quotes "...", which
have special meanings that we will see soon.

7. Subscripts and Superscripts

Subscripts and superscripts
obtained with the words sub and sup.

are

xsup 2 +yvsubk
gives
xHy,

EQN takes care of all the size change$ and
vertical motions needed to make the output
look right. The words sub and sup must be
surrounded by spaces; x sub2 will give you
xsub2 instead of x, Furthermore, don’t
forget to leave a space (or a tilde, etc.) to
mark the end of a subscript or superscript.
A common error is to say something like

y = (xsup 2)+1
which causes
y-(x23+l
instead of the intended

y=(xH+1

Subscripted subscripts and
scripted superscripts also work:

super-

X subisubl
is
X,

A subscript and superscript on the same
thing are printed one above the other if the
subscript comes first:

x subisup 2
is

x,<2

Other than this special case, sub and
sup group to the right, so xsupysub:z
means x’*, not x”,.

8. Braces for Grouping

Normally, the end of a subscript or
superscript is marked simply by a blank (or
tab or tilde, etc.) What if the subscript or
superscript is something that has to be typed
with blanks in it? In that case, you can use
the braces { and } to mark the beginning and
end of the subscript or superscript:

e sup {i omega t}
eiwl

Rule: Braces can always be used to force
EQN to treat something as a unit, or just to
make your intent perfectly clear. Thus:

x sub {i sub 1} sup 2
is
x2
with braces, but
X sub i sub 1 sup 2
is
o
which is rather different.

Braces can occur within braces if
necessary:

e sup (i pi sup {rho +1}}

9-4

el"p-ﬂ

The general rule is that anywhere you could
use some single thing like x, you can use an
arbitrarily complicated thing if you enclose it
in braces. EQN will look after all the details
of positioning it and making it the right size.

In all cases, make sure you have the
right number of braces. Leaving one out or
adding an extra will cause EQN to complain
bitterly.

Occasionally you will have to print
braces. To do this, enclose them in double
quotes, like "{". Quoting is discusséd in
more detail in section 14.

9. Fractions
To make a fraction, use the word over:

a+bover 2c =1
gives

a+b

2c =1

The line is made the right length and posi-
tioned automatically. Braces can be used to
make clear what goes over what:

{alpha + beta} over {sin (x)}
is
atpB
sin{x)
What happens when there is both an over
and a sup in the same expression? In such

an apparently ambiguous case, EQN does the
sup before the over, so

—~b sup 2 over pi

—p? L .
is —— instead of —»™ The rules which

T
decide which operation is done first in cases
like this are summarized in section 23.
When in doubt, however, use braces to
make clear what goes with what.

10. Square Roots
To draw a square root, use sgrt:

sqrt a+b + 1 over sqrt {ax sup 2 +bx+c}

is
1
Va+b +
Vax*+bx+c

7N

Warning — square roots of tall quantities
look lousy, because a root-sign big enough
to cover the quantity is too dark and heavy:

sqrt {a sup 2 over b sub 2}

a_
b7
Big square roots are generally better written
as something to the power :
(a 2/ bz) 4
which is

(a sup 2 /b sub 2) sup half

11. Summation, Integral, Etc.

Summations, integrals,
constructions are easy:

and similar

sum from i=0 to {i= inf} x sup i

produces

jm=oo

2. x'

=)
Notice that we used braces to indicate where
the upper part j=oc0 begins and ends. No
braces were necessary for the lower part
i=0, because it contained no blanks. The
braces will never hurt, and if the ffomand
parts contain any blanks, you must use
braces around them.

The from and o parts are both
optional, but if both are used, they have to
occur in that order.

Other useful characters can replace the
sum in our example:

int prod union inter

become, respectively,

S 1 U n

Since the thing before the from can be any-
thing, even something in braces, ffom-ro can
often be used in unexpected ways:

lim from {n —> inf} x subn =0
is

lim x,=0

n—ece

(®2]

12. Size and Font Changes

By default, equations are set in 10-
point type (the same size as this guide),
with standard mathematical conventions to
determine what characters are in roman and
what in italic. Although EQN makes a vali-
ant attempt to use esthetically pleasing sizes
and fonts, it is not perfect. To change sizes
and fonts, use size n and roman, italic, bold
and fat Like sub and sup, size and font
changes affect only the thing that follows
them, and revert to the normal situation at
the end of it. Thus

boid x y

Xy
and
size 14 boldx =y +
size 14 {alpha + beta)
gives

X=y+a+/3

As always, you can use braces if you want to
affect something more complicated than a
single letter. For example, you can change
the size of an entire equation by

size 12 { ... }

Legal sizes which may follow size are
6,7, 8,9, 10, 11, 12, 14, 16, 18, 20, 22, 24,
28, 36. You can also change the size by a
given amount; for example, you can say
size +2 to make the size two points bigger,
or size—J3 to make it three points smaller.
This has the advantage that vou don’t have
to know what the current size is.

If you are using fonts other than
roman, italic and bold, you can say fonr X
where X is a one character TROFF name or
number for the font. Since EQN is tuned for
roman, italic and bold, other fonts may not
give quite as good an appearance.

The far operation takes the current
font and widens it by overstriking: far grad is
¥V and far {x sub } is x;.

If an entire document is to be in a
non-standard size or font, it is a severe nui-
sance to have to write out a size and font
change for each equation. Accordingly, you
can set a ‘‘global’” size or font which

thereafter affects all equations. At the
beginning of any equation, you might say,
for instance,

.EQ

gsize 16

gfont R

.EN
to set the size to 16 and the font to roman
thereafter. In place of R, you can use any

of the TROFF font names. The size after
gsize can be a relative change with + or —.

Generally, gsize and gfonr will appear at
the beginning of a document but they can
also appear thoughout a document: the glo-
bal font and size can be changed as often as
needed. For example, in a footnotet you
will typically want the size of equations to
match the size of the footnote text, which is
two points smaller than the main text.
Don’t forget to reset the global size at the
end of the footnote.

13. Diacritical Marks

To get funny marks on top of letters,
there are several words:

x dot X
x dotdot X
X hat X
X tilde X
X vec x
x dyad X
X bar X
x under X

The diacritical mark is placed at the right
height. The bar and wunder are made the
right length for the entire construct, as in
XFy+z, other marks are centered.

14. Quoted Text

Any input entirely within quotes
(*...") is not subject to any of the font
changes and spacing adjustments normally
done by the equation setter. This provides a
way to do your own spacing and adjusting if
needed:

tLike this one, in which we have a few random
expressions like x, and w2 The sizes for these
were set by the command gsize — 2.

9-6

italic "sin(x)" + sin (x)

sin(x) +sin{(x)

Quotes are also used to get braces and
other EQN keywords printed:

"{ size alpha }"

is
{ size alpha)
and
roman "{ size alpha }"
is

{ size alpha }

"N

The construction "" is often used as a
place-holder when grammatically EQN needs
something, but you don’t actually want any-
thing in your output. For example, to make
He, you can’t just type sup 2 roman He
because a sup has to be a superscript on
something. Thus you must say

" sup 2 roman He

To get a literal quote use “‘\"’’. TROFF
characters like \(bs can appear unquoted,
but more complicated things like horizontal
and vertical motions with \# and \v should
always be quoted. (If you’ve never heard of
\hand \v, ignore this section.)

15. Lining Up Equations

Sometimes it’s necessary to line up a
series of equations at some horizontal posi-
tion, often at an equals sign. This is done
with two operations called mark and lineup.

The word mark may appear once at
any place in an equation. It remembers the
horizontal position where it appeared. Suc-
cessive equations can contain one
occurrence of the word lineup. The place
where /ineup appears is made to line up with
the place marked by the previous mark if at
all possible. Thus, for example, you can say

EQI

X+y mark = z
.EN

EQI

X lineup = 1
.EN

to produce

x+y=

18]

x=1

For reasons too complicated to talk about,
when you use EQN and ‘—ms’, use either
EQI or .EQL. mark and lireup don’t work
with centered equations. Also bear in mind
that mark doesn’t look ahead;

X mark =1

x+y lineup =z

isn’t going to work, because there isn’t
room for the x-+y part after the mark
remembers where the xis.

16. Big Brackets, Etc.

To get big brackets [1, braces {},
parentheses (), and bars || around things,
use the /left and right commands:

left { a over b + 1 right }
“="left (c over d right)
+ left [e right]

-

The resulting brackets are made big enough
to cover whatever they enclose. Other char-
acters can be used besides these, but the are
not likely to look very good. One exception
is the floor and ceiling characters:

is

left floor ¥ over y right floor
< = left ceiling a over b right ceiling

produces

<

X a
y b

Several warnings about brackets are in
order. First, braces are typically bigger than
brackets and parentheses, because they are
made up of three, five, seven, etc., pieces,
while brackets can be made up of two,

three, etc. Second, big left and right
parentheses often look poor, because the
character set is poorly designed.

The righr part may be omitted: a “‘left
something’’ need not have a corresponding
“‘right something’. If the right part is omit-
ted, put braces around the thing you want
the left bracket to encompass. Otherwise,
the resulting brackets may be too large.

If you want to omit the /eft part, things
are more complicated, because technically
you can’t have a righr without a correspond-
ing left. Instead you have to say

left ™ ...

for example. The /left "" means a ‘‘left noth-
ing”’. This satisfies the rules without hurt-
ing your output.

right)

17. Piles

There is a general facility for making
vertical piles of things; it comes in several
flavors. For example:

A =" left [
pile { a above b above ¢ }
=~ pile { x above y above z |

right]
a
by
¢z

The elements of the pile (there can be as
many as you want) are centered one above
another, at the right height for most pur-
poses. The keyword above is used to
separate the pieces; braces are used around
the entire list. The elements of a pile can
be as complicated as needed, even contain-
ing more piles.

will make

A =

Three other forms of pile exist: Ipile
makes a pile with the elements left-justified;
rpile makes a right-justified pile; and cpife
makes a centered pile, just like pife. The
vertical spacing between the pieces is some-
what larger for /-, r- and cpiles than it is for
ordinary piles.

roman sign (x)™="
left {
Ipile {1 above 0 above —1}
“ Ipile
{if x>0 above if"x=0 above if x <0}

makes
1 ifx>0
sign(x) =10 if x=0
-1 if x<0

Notice the left brace without a matching
right one.

18. Matrices

It is also possible to make matrices.
For example, to make a neat array like
x; x°
Yi }’2
you have to type

matrix {
ccol { x sub i above y sub i |
ccol { x sup 2 above y sup 2 }

This produces a matrix with two centered
columns. The elements of the columns are
then listed just as for a pile, each element
separated by the word above. You can also
use lcol or rcol to left or right adjust
columns. Each column can be separately
adjusted, and there can be as many columns
as you like.

The reason for using a matrix instead
of two adjacent piles, by the way, is that if
the elements of the piles don’t all have the
same height, they won’t line up properly. A
matrix forces them to line up, because it
looks at the entire structure before deciding
what spacing to use.

A word of warning about matrices —
each column must have the same number of
elements in it. The world will end if you get
this wrong.

19. Shorthand for In-line Equations

In a mathematical document, it is
necessary to follow mathematical conven-
tions not just in display equations, but also
in the body of the text, for example by mak-
ing variable names like x italic. Although
this could be done by surrounding the
appropriate parts with .EQ and .EN, the con-
tinual repetition of .EQ and .EN is a nuisance.
Furthermore, with ‘—ms’, .EQ and .EN imply
a dispiayed equation.

9-8

EQN provides a shorthand for short in-
line expressions. You can define two char-
acters to mark the left and right ends of an
in-line equation, and then type expressions
right in the middle of text lines. To set
both the left and right characters to dollar
signs, for example, add to the beginning of
your document the three lines

EQ
delim $3
.EN

Having done this, you can then say things
like

Let Salpha sub i$ be the primary
variable, and let $beta$ be zero.
Then we can show that $x sub 18 is
§>=08.

This works as you might expect — spaces,
newlines, and so on are significant in the
text, but not in the equation part itself.
Multiple equations can occur in a single
input line.

Enough room is left before and after a
line that contains in-line expressions that

n
something like Zx, does not interfere with
=]

the lines surrounding it.
To turn off the delimiters,

.EQ
delim off
.EN

Warning: don’t use braces, tildes,
circumflexes, or double quotes as delimiters
— chaos will result.

20. Definitions

EQN provides a facility so you can give
a frequently-used string of characters a
name, and thereafter just type the name
instead of the whole string. For example, if
the sequence

xsubisubl + ysubisubl

appears repeatedly throughout a paper, you
can save re-typing it each time by defining it
like this:

define xy 'x subisubl + ysubisubl’

This makes xy a shorthand for whatever
characters occur between the single quotes
in the definition. You can use any character

instead of quote to mark the ends of the
definition, so long as it doesn’t appear inside
the definition.

Now you can use xy like this:

EQ
f(x) = xy ...
.EN
and so on. Each occurrence of xy will

expand into what it was defined as. Be care-
ful to leave spaces or their equivalent
around the name when you actually use it,
s0 EQN will be able to identify it as special.

There are several things to watch out
for. First, although definitions can use pre-
vious definitions, as in

EQ

define xi "xsubi’
define xil "xisub 1’
EN

don't define something in terms of iself’ A
favorite error is to say

define X ' roman X'

This is a guaranteed disaster, since X is now
defined in terms of itself. If you say

define X '

however, the quotes protect the second X,
and everything works fine.

i

roman "X"

EQN keywords can be redefined. You
can make / mean over by saying

define / "over’
or redefine over as / with
define over '/’
If you need different things to print on
a terminal and on the typesetter, it is some-
times worth defining a symbol differently in
NEQN and EQN. This can be done with
ndefine and idefine. A definition made with
ndefine only takes effect if you are running
NEQN; if you use rdefine, the definition only
applies for EQN. Names defined with plain
define apply to both EQN and NEQN.

21. Local Motions

Although EQN tries to get most things
at the right place on the paper, it isn’t per-
fect, and occasionally you will need to tune
the output to make it just right. Small extra

9-9

horizontal spaces can be obtained with tilde
and circumflex. You can also say back nand
Swd n to move small amounts horizontally.
n is how far to move in 1/100’s of an em
{an em is about the width of the letter ‘m’.)
Thus back 50 moves back about half the
width of an m. Similarly you can move
things up or down with up nand down n. As
with sub or sup, the local motions affect the
next thing in the input, and this can be
something arbitrarily complicated if it is
enclosed in braces.

22, A Large Example

Here is the complete source for the
three display equations in the abstract of this
guide.

EQI

G(z)"mark =" esup{In~ G}

T="exp left (

sum from k> =1 {S sub k z sup k] over k right)

“=" prod from k> =1 e sup (S sub k z sup k 7k}

EN

EQI1

lineup = left (1 + Ssublz +
{Ssublsup2zsup2]over 2l + ... right)

feft (1+ {Ssub2zsup2])over2

+ {Ssub2sup2zsup4d)over{2sup2cdot2!}

+ ... right) ..

EN

EQI

lineup = sum from m> =0 left (

sum from

pile { ksub 1 ksub 2 ..., ksubm >=0

above

ksubl +2ksub2 + ... +mk subm =m}
{Ssublsuplksubl})over {lsupksublksubl!])~
{Ssub2sup