
VA-004(A)

Bell laboratories

UNIX PROGRAMMER'S MANUAL

Seventh Edition, Volume 2A

January, 1979

UNIX™ TIME-SHARING SYSTEM:

UNIX PROGRAMMER'S MANUAL

Seventh Edition, Volume 2A

January, 1979

Bell T ciephone Laboratories, Incorporated
Murray Hill, New Jersey

VA-004(A)

Copyright 1979, Bell Telephone Laboratories, Incorporated.
Holders of a UNIX™ software license are permitted to copy this
document, or any portion of it, as necessary for licensed use
the software, provided this copyright notice and statement
permission are included.

CHAPTER

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Index

Summary

CONTENTS

The UNIX Time-Sharing System

UNIX for Beginners

Editor Tutorial

Advanced Editing

Shell Introduction

Learn

Typing Documents on the UNIX System

EQN

TBL

REFER

NROFF/TROFF Reference Manual

TROFF Tutoria 1

C Reference Manual

LINT

MAKE

UNIX Programming

ADB Tutori a 1

YACC

LEX

f:;:ortl'lan 77

Ra tfor

M4

SED

iii

VOLUME

2 A

2 A

2 A

2 A

2 A

2 A

2 A

2 A

2 A

2 A

2 A

2 A

2 A

2 A

2 A

2 A

2 A

2 A

2 A

2 B

2 B

2 B

2 13

2 B

2 B

CHAPTER

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

AWK

DC

BC

Assembler

Setting Up UNIX

Regenerating System Software

Imp 1 ementa ti on

I/O System

UNIX C Compiler

Portable C Compiler

UUCP

UUCP Implementation

Security of UNI X

Password Security

Berkeley Virtual Vax/UNIX

C Shell Introduction

Display Editing with Vi

Edit: a Tutorial

Ex Reference Manual

Ex Supplement

Mail Reference Manual

Franz Lisp Manual

Berkeley Pascal

EFL

NROFF Using -me

-me Reference Manual

iv

VOLUME

2 B

2 B

2 B

2 B

2 B

2 B

2 B

2 B

2 B

2 B

2 B

2 B

2 B

2 B

2 C

2 C

2 C

2 C

2 C

2 C

2 C

2 C

2 C

2 C

2 C

2 C

CHAPTER

51

52

53

54

Berkel ey Fonts

STYLE & DICTION Programs

SOB

Assembl er

v

VOLUME

2 C

2 C

2 C

2 C

. '-.',

UNIX Programmer's Manual

Volume 2 - Supplementary Documents

Seventh Edition

January 10, 1979

This volume contains documents which supplement the information contained in Volume
1 of The UN/xt Programmer's Manual. The documents here are grouped roughly into the areas
of basics, editing, language tools, document preparation, and system maintenance. Further
general information may be found in the Bell System Technical 10urnal special issue on UNIX,
1 uly-August, 1978.

Many of the documents cited within this volume as Bell Laboratories internal memoranda
or Computing Science Technical Reports (CSTR) are also contained here.

These documents contain occasional localisms, typically references to other operating sys­
tems like GCOS and IBM. In all cases, such references may be safely ignored by UNIX users.

General Works

1. 7th Edition UNIX - Summary.
A concise summary of the facilities available on UNIX.

2. The UNIX Time-Sharing System. D. M. Ritchie and K. Thompson.
The original UNIX paper, reprinted from CACM.

Getting Started

3. UNIX for Beginners - Second Edition. B. W. Kernighan.
An introduction to the most basic use of the system.

4. A Tutorial Introduction to the UNIX Text Editor. B. W. Kernighan.
An easy way to get started with the editor.

5. Advanced Editing on UNIX. B. W. Kernighan.
The next step.

6. An Introduction to the UNIX Shell. S. R. Bourne.
An introduction to the capabilities of the command interpreter, the shell.

7. Learn - Computer Aided Instruction on UNIX. M. E. Lesk and B. W. Kernighan.
Describes a computer-aided instruction program that walks new users through the
basics of files, the editor, and document preparation software.

Document Preparation

8. Typing Documents on the UNIX System. M. E. Lesk.
Describes the basic use of the formatting tools. Also describes" - ms", a standard"
ized package of formatting requests that can be used to layout most documents
(including those in this volume).

tliNIX is a TrademMk of Bell Laboratories.

vii

viii

9. A System for Typesetting Mathematics. B. W. Kernighan and L. L. Cherry.
Describes EQN. an easY-lo-learn language for doing high-quality mathematical
typesetting,

10. TBL - A Program to Format Tables. M. E. Lesk.
A program to permit easy specification of tabular material for typesetting. Again,
easy to learn and use.

11. Some Applications of Inverted Indexes on the UNIX System. M. E. Lesk.
Describes, among other things, the program REFER which fills in bibliographic cita­
tions from a data base automatically.

12. NROFF/TROFF User's Manual. J. F. Ossanna.
The basic formatting program.

13. A TROFF Tutorial. B. W. Kernighan.
An introduction to TROFF for those who really want to know such things.

Programming

14. The C Programming Language - Reference Manual. D. M. Ritchie.
Official statement of the syntax and semantics of C. Should be supplemented by The
C Programming Language, B. W. Kernighan and D. M. Ritchie, Prentice-Hall, 1978,
which contains a tutorial introduction and many examples.

15. Lint, A C Program Checker. S. C. Johnson.
Checks C programs for syntax errors, type violations, portability problems, and a
variety of probable errors.

16. Make - A Program for Maintaining Computer Programs. S. I. Feldman.
Indispensable tool for making sure that large programs are properly compiled with
minimal effort.

17. UNIX Programming. B. W. Kernighan and D. M. Ritchie.
Describes the programming interface to the operating system and the standard I/O
library.

18. A Tutorial Introduction to ADB. 1. F. Maranzano and S. R. Bourne.
How to use the ADB debugger.

Supporting Tools and Languages

19. Y ACC: Yet Another Compiler-Compiler. S. C. Johnson.
Converts a BNF specification of a language and semantic actions written in C into a
compiler for the language.

20. LEX - A Lexical Analyzer Generator. M. E. Lesk and E. Schmidt.
Creates a recognizer for a set of regular expressions; each regular expression can be
followed by arbitrary C code which will be executed when the regular expression is
found.

21. A Portable Fortran 77 Compiler. S. I. Feldman and P. 1. Weinberger.
The first Fortran 77 compiler, and still one of the best.

22. Ratfor - A Preprocessor for a Rational Fortran. B. W. Kernighan.
Converts a Fortran with C-like control structures and cosmetics into real, ugly For­
tran.

23. The M4 Macro Processor. B. W. Kernighan and D. M. Ritchie.
M4 is a macro processor useful as a front end for C, Ratfor, Cobol, and in its own
right.

ix

24. SED - A Non-interactive Text Editor. L. E. McMahon.
A variant of the editor for processing large inputs.

25. A WK - A Pattern Scanning and Processing Language. A. V. Aho, B. W. Kernighan and
P. 1. Weinberger.
Makes it easy to specify many data transformation and selection operations.

26. DC - An Interactive Desk Calculator. R. H. Morris and L. L. Cherry.
A super HP calculator, if you don't need floating point.

27. BC - An Arbitrary Precision Desk-Calculator Language. L. L. Cherry and R. H. Morris.
A front end for DC that provides infix notation, control flow, and built-in functions.

28. UNIX Assembler Reference ManuaL D. M. Ritchie.
The ultimate dead language.

Implementation, Maintenance, and Miscellaneous

29. Setting Up UNIX - Seventh Edition. C. B. Haley and D. M. Ritchie.
How to configure and get your system funning.

30. Regenerating System Software. C. B. Haley and D. M. Ritchie.
What do do when you have to change things.

31. UNIX Implementation. K. Thompson.
How the system actually works inside.

32. The UNIX I/O System. D. M. Ritchie.
How the I/O system really works.

33. A Tour Through the UNIX C Compiler. D. M. Ri.tchie.
How the PDP-II compiler works inside.

34. A Tour Through the Portable C Compiler. S. C. Johnson.
How the portable C compiler works inside.

35. A Dial-Up Network of UNIX Systems. D. A. Nowitz and M. E. Lesk.
Describes UUCP, a program for communicating files between UNIX systems.

36. UUCP Implementation Description. D. A. Nowitz.
How UUCP works, and how to administer it.

37. On the Security of UNIX. D. M. Ritchie.
Hints on how to break UNIX, and how to avoid doing so.

38. Password Security: A Case History. R. Morris and K. Thompson.
How the bad guys used to be able to break the password algorithm, and why they

t now, at least not so easily.

Edition UNIX - Summary

September 6, /9 78

Bell Laboratories
Murray Hill, New Jersey 07974

A. What's new: of the 7th edition UNIXt System

Aimed at larger systems. Devices are addressabie to 231 bytes, files to 230 bytes. 128K
memory instruction and data space) is needed for some utilities.

Portability. CoJe of the operating system and most utilities has been extensively revised to
minimize its dependence on particular hardware.

Fortran 77. F77 for the
level. A Fortran
dialect usable with

, converts
language is compatible with C at the object

ugly Fortran into RATFOR. a structured

Shell. Completely new program supports string variables. trap handling, structured pro-
gramming, user profiles, settable search path, multilevel name generation, etc.

Document TROFF phototypesetter is standard. NROFF (for terminals) is
now highly compatible with TROFF. MS macro package provides canned commands for many
common formatting and layout situations. TBL provides an easy to learn language for pre par-

complicated tabuiar material. REFER fills in bibliographic citations from a data base.

X copy, UUCP spooled file transfers between any two machines.

Data processing. SED stream editor does multiple eC:iting functions in paralle! on a data
stream of indefinite length. A WK report generator does free-field pattern selection and arith-
merle operations.

Program development. MAKE controls re-creation of complicated software, arranging for
minimal recompiiation.

Debugging. ADB does postmortem and breakpoint debugging, handles separate instruction and
data spaces, floating point., etc.

C language. The now supports definable data types, generalized initialization, block
structure, long type conversions. The LINT verifier does strong type
checking and detection of probable errors and portability problems even across separately com-

LEX converts specification of regular expressions and semantic
actions into a recognizing subroutine. Analogous to Y ACe.

Simple graph-drawing utility, graphic subroutines, and generalized plotting filters
to various devices are now standard.

Standard package. H efficient buffered stream I/O is integrated with format-
ted and cu tpu t.

Other. ng system and utilities have been enhanced and freed of restrictions in
many other ways too numerous to reiate.

UNIX is a Trademark of Bel! Laboratories.

1 '1 -,

the

or

data

1-2

system runs on a D p

memory:

(more

ty not used.

console

clock: KWII-L or KWll··P.

is rE;~commended:

communications controller such as DL I

ASCII terminals.

9-lrack tape or f;xtrn disk system

distributed on
and maintain

resident code

DHII

commitrnent to 7th edition

) or

hardware.

the programs available as U
the except games.

1 1 th least

L

space

11 and 11

manuals are
written in C

noted
rained and do not extra setup

commands can also go
C· 'n may be used

to the or outpm of other programs.

assern'"
bier and a

CJ

system the
A more extensive survey is in

I include:

o Alarm-clock timeouts.

"PDP is a Trademark of Corporalio!""

1-3

o Timer-interrupt and interprocess monitoring for debugging and
measurement.

o Multiplexed for machine-to-machine communication.

o DEVICES All 110 is logically synchronous. I/O devices are simply files in the !lIe system.
Normally, invisible buffering makes all physical record structure and device
characteristics transparent and exploits the hardware's ability to do overlapped
I/O. U physical record I/O is available for unusual applications.
Drivers for these devices are available; others can be easily written:
o Asynchronous interfaces: DH 11, 11. Support for most common ASCII

terminals.
o Synchronous OPll.
o Automatic calling unit interface: ON 1 i.
o Line printer: LPll.
o Magnetic tape: 10 and TU16.
o DECtape: TCII.
o head disk: RS 11, RS03 and RS04.
o type disk: , RP04, RP06; minimum-latency seek scheduling.
o disk: RK05, one or more physical devices per logical device.

memory of PDp· I I , or mapped memory in resident system.
o Phototypesetter: G Sys!em/l through DR! IC

o BOOT 10 get UNIX started.

o MKCONF Tailor device-dependent system code to hardware configuration. As distributed,
UNIX can be brought up directly on any acct!ptable CPU with any acceptable
disk, any sufficient amount of core, and either clock. Other changes, such as
optimal assignment of directories to inclusion of floating point simula-
tor, or installation device names in file system, can then be made at leisure.

1.2. User Access Control

o LOGIN

o

Sign on as a new user.
o Verify password and establish user's individual and group (project) identity.
o Adapt to characteristics of terminal.
o
o Announce presence of mail (from MAIL).
o Publish message of the day.
o Execute user-specified profile.
o Start command or other initial program.

his own password.
encrypted for securilY.

D NEWGRP Change working group
jects.

. Protects against unauthorized changes to pro·

1.3. Terminal H

[J wb terminal type.

o control a terminal. In so far as are deducible
these options are set automatically by LOGIN.

1-4·

o Half vs. full duplex.
o Carriage return + line feed vs. newline.
o Interpretation of tabs.
o Parity.
o Mapping of upper case to lower.
o Raw vs. edited input.
o Delays for tabs, new lines and carriage returns.

1.4. File \1anipulation

c:::: CAT

[j CP

o PR

C LPR

o CMP

C! TAIL

o SPLIT

ODD

CSUM

Concatenate one or more files onto standard output. Particularly used for una­
dorned printing, for inserting data into a pipeline, and for buffering output that
comes in dribs and drabs. Works on any file regardless of contents.

Copy one file to another. or a set of files to a directory. Works on any file
regardless of contents.

Print files with title. date, and page number on every page.
o Multicolumn output.
o Parallel column merge of several files.

Off-line print. Spools arbitrary files to the line printer.

Compare two files and repon Ii :jifferent.

Print last" lines of input
o May print last n characters, or from II lines or characters to end.

Split a large file into more manageable pieces. Occasionally necessary for edit­
ing (ED),

Physical file format translator. (or exchanging data with foreign systems, espe­
cially IBM 3iO's.

Sum the words of a file.

1.5. Manipulation of Directories and File Names

o RM

o LN

C MV

C CHMOD

C CHOWN

:: CHGRP

o MKDIR

C RMDIR

c CD

C FIND

Remove a file. Only the name goes away if any other names are linked to the
file.
o Step through a directory deleting files interactively.
o Delete entire directory hierarchies.

"Link" another name (alias) to an existing file.

Move a file or files. Used for renaming files.

Change permissions on one or more files. Executable by files' owner.

Change owner of one or more files.

Change group (project) to which a file belongs.

Make a new directory.

Remove a directory.

Change working directory.

Prowl the directory hierarchy finding every file that meets specified criteria.

o incitJde:
narne matches a given pattern,

date in given range.
last use in given range,

owner,
given special file characteristics,
boolean combinations of above.

o Any may be considered to be the root.
o Perform specified command on each found.

1.6. Running of

o SH

i.J TEST

o EXPR

o WAiT

o
o

o
o

o

D

Shell, or command language interpreter.
o Supply arguments to and run any executable program.
o Redirect standard standard output, and standard error files.
o simultaneous execution with output of one process connected to the

of another.
o compound commands using:

if ... then ...

over lists,
continue and exit,

parentheses for grouping.
o Initiate background processes.
o Shell programs, i.e., command scripts with substitutable arguments.
o argument lists from all file names satisfying specified patterns.
o special action on traps and interrupts.
o search path for finding commands.
o user-settable profile upon login.
o announces presence of mail as it. arrives.
o variables and parameters with default setting.

Tests for use in Shell conditionals.
o String comparison.
o nature and accessibility.
o Boolean combinations of the above.

for caiculating command arguments.
o Integer arithmetic
o
Wait for termination of asynchronously running processes.

Read a line from terminaL for interactive Shell procedure.

remainder
programs, or for data into a pipeline.

execution for a specified time.

Run a command immune to hanging up the terminal.

Run a command in low (or priori ty.

prompts in Shell

o

u AT

o
c:

CJ

[J

o NT

o LJMO

OM

o .Actions
OTimes

rrunu

named processes.

-6

ti meso

of mon

a one-5hot trar;; me.

processeS :.!nQ divert a copy! one or

{line. Has considerable

your terminal.

of

fi systerrt to the tree of
nonsense arrangemen

device.

lv1ake new file system on device.

a 1'1

rnernory ~ etc.

o r

~es.

o TP

o TAR

o DUMP

o RESTOR

o SU

o DCHECK

o ICHECK

Manage file
o
Oll
o
o
o

1-7

TAR is newer.

Dump the file system stored on a specified device, selectively· by date, or

Restore a system, or selectively retrieve parts thereof.

become the super user with all the rights and privileges thereof.
Requires a

o NCHECK Check of system.

o CLRI

o SYNC

The timing
completely.

o AC

o SA

number of fiies, number of directories, number of spe­
space

use of space.
lost space.

o Report inaccessible files.
o of directories.
o

and space from a file system. Used to repair

on the system to completion. Used to shut down

on which the reports are based can be manually cleared or shut off

cumulative connect time report.
time user or

all users or for selected users.

report. Gives usage information on each command
executed.
o Number times used.
o Total system user time and time.
o aVerages and percentages.
o

l.HL Communication

o Mail a message to one or more users. Also used to read and dispose of incom-
maiL presencemaii is announced by LOGIN and optionally by St-!.

o Each message can be of individually.
o can be saved in nies or

CJ

CJ

o
OM

[J

L1L

[]

o

D Automatic

these

service events of and

terminal cornrnunication

parts the

several

[] ADB

[] OD

[] LD

[] LORDER

o NM

o SIZE

o STRIP

[] TIME

o PROF

[] MAKE

1-9

debugger.
o Postmortem dumping.
o Examination of arbitrary files, with no limit on size.
o Interactive breakpoint debugging with lhe debugger as a separate process.
o Symbolic to local and global variables.
o Stack trace for C programs.
o Output formats:

I·, 2~, or 4·byte integers in octal, decimaL or hex
single and double point
character and

machine instructions
o Patching.
o Searching for integer, character, or floating patterns.
o Handles separated instruction and data space.

Dump any file. Output options include any combination of octal or decimal by
words, octal bytes, ASCn, opcodes, hexadecimal.
o Range dumping is controllable.

edit. Combine relocatable object files. Insert required routines from
specified libraries.
o Resulting code may be sharable.
o Resulting code may have separate instruction and data spaces.

Places object names in proper order for loading, so lhat files depending on
others come after them.

Print the name list (symbol table) of an object program. Provides control over
the style and order of names that are printed.

Report the core one or more object fi les.

Remove the relocation and symbol table information from an object file to save
space.

Run a command and report timing information on it.

Construct a profile of time spent per routine from statistics gathered by time-
the of a program. Uses floating point.

o Subroutine call frequency and average times for C programs.

creation of programs. Uses a control file specifying source file
to make new version; uses time last changed to deduce minimum

amount of work necessary.
o Knows about Y ACe, LEX, etc.

1.12. UNIX Programmer's

o Manual Machine-readable version of the UNIX Manual.
o overview.
o All commands.
o All system calls.
o All subroutines in C and assembler libraries.
o All devices and other special files.
o Formats of system and kinds of files known to system software.
o Boot and maintenance

o

[J

z.

c

Dec

o

[J

o

o

I

A program

A

o
o
o

manual on your terminal.

UNIX

C programs.

statements.

o STRUCT

1-11

o If-else, do, for, while, repeat-until, break, next statements.
o Symbolic constants.
o File insertion.
o Free format source
o Translation of relationals like >, > -.
o Produces genuine Fortran to carry away.
o May be used with F77.

Converts ordinary ugly Fortran into structured Fortran (j.e., Ratf or), using
statement grouping, if-else, while, for, repeat-until.

2.3. Other Algorithmic Languages

o BAS

DOC

o BC

An interactive interpreter, similar in style to BASIC. Interpret unnumbered
statements immediately, numbered statements upon 'run'.
o Statements include:

comment,
dump,
for. .. next,
goto,
if.. .else ... fi,
list,
print,
prompt,
return,
run,
save.

o All calculations double precision.
o Recursive function defining and calling.
o Builtin functions include log, exp, sin, cos, atn, int, sqr, abs, rnd.
o Escape to ED for complex program editing.

Interactive programmable desk calculator. Has named storage locations as well
as conventional stack for holding integers or programs.
o Unlimited precision decimal arithmetic.
o Appropriate treatment of decimal fractions.
o Arbitrary input and output radices, in particular binary, octal, decimal and

hexadecimal.
o Reverse Polish operators:

+ - • /
remainder, power, square root,
load, store, duplicate, clear,
print, enter program text, execute.

A C-like interactive interface to the desk calculator DC.
o All the capabilities of DC with a high-level syntax.
o Arrays and recursive functions.
o Immediate evaluation of expressions and evaluation of functions upon call.
o Arbitrary precision elementary functions: exp, sin, cos, atan.
o Go-to-Iess programming.

2.4. Macroprocessing

1 -1 2

C! M4 A general purpose macroprocessor.
o Stream-oriented. recognizes macros anywhere in text.
o Syntax fits with functional syntax of most higher-level languages.
o Can evaluate integer arithmetic expres<;ions.

2.5. Compiler-compilers

o YACC

o LEX

An LR (I) -based compiler wntmg system. During execution of resulting
parsers, arbitrary C functions may be called to do code generation or semantic
actions.
o BNF syntax specifications.
o Precedence relations.
o Accepts formally ambiguous grammars with non-BNF resolution rules.

Generator of lexical analyzers. Arbitrary C functions may be called upon isola-
- tion of each lexical token.
o Full regular expression, plus left and right context dependence.
o Resulting lexical analysers interface cleanly with YACC parsers.

3. Text Processing

3.1. Document Preparation

OED

o PTX

o SPELL

o LOOK

CJ TYPO

CJ CRYPT

Interactive context editor. Random access to all lines of a file.
o Find lines by number or pattern. Patterns may include: specified characters,

don't care characters, choices among characters, repetitions of these con­
structs, beginning of line, end of line.

o Add. delete, change. copy, move or join lines.
o Permute or split contents of a line.
o Replace one or all instances of a pattern within a line.
o Combine or split files.
o Escape to Shell (command language) during editing.
o Do any of above operations on every pattern-selected line in a given range.
o Optional encryption for extra security.

Make a permuted (key word in context) index.

Look for spelling errors by comparing each word in a document against a word
list.
o 25,OOO-word list includes proper names.
o Handles common prefixes and suffixes.
o Collects words to help tailor local spelling lists.

Search for words in dictionary that begin with specified prefix.

Look for spelling errors by a statistical technique; not limited to English.

Encrypt and decrypt files for security.

3.2. Document Formatting

CROFF A typesetting program for terminals. Easy for nontechnical people to learn, and
good for simple documents. Input consists of data lines intermixed with con­
trol lines, such as

.sp 2 insert two lines of space

.ce center the next line
ROFF is deemed to be obsolete; it is intended only for casual use.

1-13

o Justification of either or both margins.
o Automatic hyphenation.
o Generalized running heads and feet, with even-odd page capability, number­

ing, etc.
o Definable macros for frequently used control sequences (no substitutable

arguments) .
o All 4 margins and page size dynamically adjustable.
o Hanging indents and one-line indents.
o Absolute and relative parameter settings.
o Optional legal-style numbering of output lines.
o Multiple file capability.
o Not usable as a filter.

--, 0 TROFF
", o NROFF Advanced typesetting. TROFF drives a Graphic Systems phototypesetter;

NROFF drives ascii terminals of all types. This summary was typeset using
TROFF. TROFF and NROFF style is similar to ROFF, but they are capable of
much more elaborate feats of formatting, when appropriately programmed.
TROFF and NROFF accept the same input language.
o All ROFF capabilities available or definable.
o Completely definable page format keyed to dynamieally planted "interrupts"

at specified lines.
o Maintains several separately definable typesetting environments (e.g., one for

body text, one for footnotes, aM one for unusually elaborate headings).
o Arbitrary number of output pools can be combined at will.
o Macros with substitutable arguments, and macros invocable in mid-line.
o Computation and printing of numerical quantities.
o Conditional execution of macros.
o Tabular layout facility.
o Positions expressible in inches, centimeters, ems, points, machine units or

arithmetic combinations thereof.
o Access to character-width computation for unusually difficult layout prob­

lems.
o Overstrikes, built-up brackets, horizontal and vertical line drawing.
o Dynamic relative or absolute positioning and size selection, globally or at the

character level.
o Can exploit the characteristics of the terminal being used, for approximating

special characters, reverse motions, proportional spacing, etc.

The Graphic Systems typesetter has a vocabulary of several l02-character fonts (4 simultane­
ously) in 15 sizes. TROFF provides terminal output for rough sampling of the product.

NROFF will produce multicolumn output on terminals capable of reverse line feed, or through
the postprocessor COL.

High programming skill is required to exploit the formatting capabilities of TROFF and
NROFF, although unskilled personnel can easily be trained to enter documents according to
canned formats such as those provided by MS, below. TROFF and EQN are essentially identi­
cal to NROFF and NEQN so it is usually possible to define interchangeable formats to produce
approximate proof copy on terminals before actual typesetting. The preprocessors MS, TBL,
and REFER are fully compatible with TROFF and NROFF.

oMS A standardized manuscript layout package for use with NROFF/TROFF. This
document was formatted with MS.

o

o NEQN

o

o

o TC

o

o COL

o DEROFF

o CHECKEQ

o
o
o
o
o

o
o

o

o
o
o

cr

-14

over N sum

'v

N

A preprocessor
and contents

with reverse line

all TROFF commands

document errors in

i-I to N x sub i ~-) sup 2

terminaL

table

centered columns

to

like D

one-pass

4. Information

o SORT

o TSORT

o UNIQ

o TR

o DIFF

OCOMM

o JOIN

o

o LOOK

oWC

o SED

o AWK

1 .. 1 5

Sort or merge ASCn files No limit on input size.
o Sort up or down.
o Sort lexicographically or on
o Multiple by delimiters or by character position.
o May sort upper case with lower into dictionary order.
o Optionally suppress data.

Topological sort .- converts a order into a total order.

successive duplicate lines in a file into one line.
lines that were originally duplicated, or both.

o May give redundancy count for each line.

Do one·to~one character translation according to an arbitrary code.
o May coalesce repeated
o May delete selected

changes, additions and deletions necessary to bring two files into

produce an editor script to convert one file into another.
o A variant compares two new versions one old one.

Identify common lines in two sorted files. Output in up to 3 columns shows
in in andlor present in second only.

two files by joining records that have identical keys.

a pattern as used in the editor ED.
to match.

Binary

Count the

lines with specified prefix.

(blank-separated strings) and characters in a file.

ED. perform a sequence of editing operations
on each line of an input stream of unbounded length.
o may be address or range of addresses.
o and
o
o

Searches input for patterns, and per-
"rt.n.·'" on each input that satisfies the pattern.

regular expressions, arithmetic and lexicographic conditions,
booiean combinations and ranges these.

o treated as as appropriate.
o are variables.
o

o
o
o

programs in this section are
scopes.

o

II

o

6. Novelties.

C]

o
o
o

o

o

a smooth curve

intended for use

o of 4x4x4

o MAZE

o
o
o
o
o

o UNITS

random mazes

letters.

game.

month year.

on the

on each invocatiort

is a

[J TIT A tic-mc-toe program that learns. It never makes

o ARITHMETIC

o

o
o WUMP

and accuracy test for "'""'u'-''''.

Factor

Test your of

Hunt the wumpus,

Presidents,

cave.

o REVERS I A two person board game, isomorphic to OtheHoQll.

o HANGMAN game.

4014

and other programs on

hundreds

1-17

o FISH Children's card-guessing game.

1.

UNIX Time-Sharing System'"

D. M. Ritchie and K. Thompson

ABSTRACT

is a general-purpose, multi-user, interactive operating system for
the larger Digital Equipment Corporation PDP-II and the Interdara 8i3 2 com­

It offers a number of features seldom found even in larger operating
systems, induding

A file system incorporating demountable volumes,

ii Compatible file, and inter-process

iii

iv

v

ability to initiate

System command

Over 100

vi High

processes,

selectable on a per-liser basis,

a dozen languages,

This of the file system and of

been the UNIX time-sharing system. The earliest (circa
1969-70) ran on the Digital Corporation PDP-7 and -9 computers. The second ver-
sion ran on the unprotected PDP-11120 computer. third incorporated multiprogramming
and ran on the PDP-I 1134, 145, and 170 computers; it is the one described in the pre-
viously version of this paper, and is also the most widely used today. This paper
describes the current system that runs on the PDP·lInO and the Interdata 8/32

In the differences among the various systems is rather small; most of the revi-
made to the paper, aside from those concerned with

style, had to do with of the file system.

PDp· II UNIX became have been
science education,

the collection and pro­
System, and recording

is used mainly research in
topics in computer science, and

the most achievement of UNIX is to demonstrate that a powerful
system interactive use need not be expensive either in equipment or in human

it can run on hardware little as $40,000, and less than two man-years were
on the main system however, that users find that the most important

• COPYflgh! Associalion for Computing Machinery, Inc., reprinted by permission. This is ii revised ver­
sion of an llrticle that appeared in Communications of the ACM, 17, No.7 (Ju!y 1974), pp. 365·375. That ani­
ei,! revised verSion of a paper presented a! lhe Fourth AeM Symposium on Operating Princ!­
pIes. HlM Thomas J. Watson Research Center, Yorktown Heights, New York, October 15-17, 1973.

is a Trademark of Bel! LaooralOries.

') ,
1..-1

2-2

characteristi,s of tho system jJf8 its simplicity, etegan.ce, and ease of use.

Bejidas lhe operllirll system prop.er, some major programs available under UNIX are

C cGmpiler
Text editor based on QEDl
Assembler, lin~in& IQader, symbolic aebugger
Phototypesetting .,.ad .~qualion ~Hin. pf(),cams2, 3
Dozens .of langu~sinc'lI4jni FortTa.a 77, Basic. Snobol, APL, Algol 68, M6,

TMG, Pascal .

There is a host .of maintenan<::e, uLiIjLY, recreation and novelty pragrams, all written locally.
The UNIK user cammunity, whfeh numbers ia the thausands, has contributed many more pro­
crams aftd langua,es. It i6 WQfth Mtiftg th.a.l the system is totally self-supparting. AU UNIX
software is maintained on the system; likewise. this Piper and aU other documents in this issue
were generateQ and formatted by (~UNlX ecj.itoc and text formatting programs.

U. HARDWARE AND SOFTWARE ENVII.ONMENT

The PDP.lll70 on which tile ,Research UNIX system is installed is a 16-bit ward (8-bit
byte) cam9uter with 168K bytes Qf ~re memory; the system kernel occupies 90K bytes about
equally divided between cocie an~ 4ala taOJes. This system, however, includes a very large
number of <ievice drivers and enjQy~ a generous allotment of space far I/O buffers and system
labies; a minimal system capa~ of running the software mentioned above can require as little
as96K bytes .of core altoget~r. There ar.eeyen larger installations; see the descriptian .of the
PWB/UNIX systems. 4, 5 for example. There are also much smaller, though somewhat restricted,
versions .of lhe system. 6

OUf own PDP-il has two 200-Mb moving-head disks far file system storage and swapping.
There are 20 variable-speed comm&lniC3tions interfaces attached to 300- and 1200-baud data
setS, and an additional 12 communication lines hard-wired to 9600-baud terminals and satellite
computers. There are also several 24(}()- and 4800-baud synchronous communication interfaces
u~d for machine-to~machine file transfer. FinaHy, there is a variety of miscellanea us devices
including nine-lrack magnetic tape, a line prinw, a voice synthesizer, a phototypesetter, a digi­
tal switching network. and a che;S5 ~chine.

The preJ)Onderance of ~tx$Oftware 4swfitten in the abovementioned C language. 7 Early
v~.oas of the aperatin,a $vstem ~re wrilten in assembly language. but during the summer of
197,3, it was r~wrilten in C. The size o{t.ne fleW system was about .one-third greater than that
9f the old. Sin« the ~ jyss.em @t oo4y beQme much easier to understand and to modify
tN.tt ~ jlK'~ marty f~tion.al Hnpro"ement.s, including multiprogramming and the ability
10 ;snare r~ifMt c* ·~severaJ ~r jH'QSrarns. we consider this increase in size quite
·aee~'e.

III-THE FlLJ SYSTEM
The J'QO$t ifQpqrtallt f91~ of to.esystem is to provide a file system. Fram the point of view

of Jfle JJ$er, lberear;f ~~ kin«is pf ti1~s: ordinary disk files, dir.ectaries, and special files.

3.1 . 0nIUw'Y lles
A file ~1ajns wd;)atever jnfor~ti9n ~be user places on it. for example, symbolic or

binary ~1) "'~atn$. No parti.cl,l~r Sln,lctlJring is expected by the system. A file of text
ronii$ts limMY ff a SU",i.q of charac~rs, wHh lines demarcated by the newline character. Binary
pr()gr,ams are !l.eQ:l,len~s (iff words ~ they will appear in core memory when the program starts
ex~"u~. A few user pr08rams manipulaLe files with more structure; for example, the assem­
bler ~raLes. * the ,~",r 4-¥peets,an object file in a particular format. However, the strl,lC­

(Ufe ,ti' * 45 oeti}(fa.led by W i'fotrams that .YSe them, not by the system.

2-3

Directories provide the between the names files and the themselves, and
thus induce a structure on the file system as a whole. Each user has a directory of his own
files; he may also create subdirectories to contain groups of files conveniently treated together.
A behaves exactly like an ordinary file except that it cannot be written on by

programs, so that the system controls the contents of directories. any-
one with appropriate permission may read a directory just like any other file.

The system maintains several directories for its own usc. One of these is the root direc­
tory. All files in the system can be found by tracing a through a chain of until
the desired fiie is reached. The point for such searches is often the root. Other system
directories contain ail the programs provided general use; that is, all the commands. As will
be seen, however, it is by no means necessary that a program reside in one of these directories
for it to be executed.

Files are named sequences of 14 or fewer characters. When the name of a file is
to the it may be in the of a path name, which is a sequence

names separated by slashes, "I", and ending in a file name. If the sequence with a
the search in the root directory. The name lalphl1/bets/gamma causes the sys-

tem to search the root for directory then to search alpha for beta, finally to find gamma
in beta. gamma may be an ordinary file, a directory, or a special file. a case, the
name "/" refers to the root

narne not starting with "/" causes the system to the search in the user's
the name specifies the beta in subdirectory

The simplest kind name, alpha, refers to a file
that As another limiting case, the null name refers
to the current

file may appear in several directories under different
names. is called linking, a for a is sometimes called a The

from other systems in which linking is in that all links to a file
have equal status. is, a file does not exist a particular directory; the directory entry
for a consists its name and a pointer to the information actually describing the
file. exists independently any entry, although in a is made
to with the last link to it.

always has at least two entries. name " . " in each directory refers to
a program may read the current directory the name "."

_:arre " , . " by to the parent
in which it was created.

structure is constrained to have the for the
special entries " ." and " .. ", each must appear as an one other

which is its parent. reason this is to the programs that
visit subtrees of the structure, and more important, to avoid the separation of ponions
of the If links to directories were permitted, it would be quite difficult to

when the last connection the root to a dir~ctory was severed.

the UNiX file system.
file. Special files are read

read or write result activation of device.
Idey, although a link may be made to one of
for to write on a one

files communication each disk, each
memory. Of course, the active disks and the memory special

2-4

There is a threefold advantale in treating 110 devices this way: file and device 110 are as
similar as possible; file and device names have the same syntax and meaning, so that a program
expecting a file name as a parameter can be passed a device name; finally, special files are sub- "-../
ject to the same protection mechanism as regular files.

3.4 Removable file systems

Although the root of the file system is always stored on the same device, it is nor neces­
sary that the entire file system hierarchy reside on this device. There is a mount system
request with two arguments: the name of an existing ordinary file, and the name of a special file
whose associated storage volume (e.g., a disk pack) should have the structure of an indepen­
dent file system containing its own directory hierarchy. The effect of mount is to cause refer­
ences to the heretofore ordinary file to refer instead to the rool directory of the file system on
the removable volume. In effect, mount replaces a leaf of the hierarchy tree ((he ordinary file)
by a whole new subtree (the hierarchy stored on the removable volume). After the mount,
there is virtually no distinction between files on the removable volume and those in the per­
manent file system. In our installation, for example, the root directory resides on a small parti­
tion of one of our disk drives, while the other drive, which contains the user's files, is mounted
by the system initialization sequence. A mountable file system is generated by writing on its
corresponding special file. A utility program is available to create an empty file system, or one
may simply copy an existing file system.

There is only one exception to (fie rule of identical treatment of files on different devices:
no link may exist between one file system hierarchy and another. This restriction is enforced
so as to avoid the elaborate bookkeeping, that would otherwise be required to assure removal of
the links whenever the removable volume is dismounted.

3.5 Protection

Although the access con:rol scheme is quite simple, it has some unusual features. Each
user of the system is assigned a unique user identification number. When a file is created, it is
marked with the user ro of its owner. Also given for new files is a set of ten protection bits.
Nine of these specify independently read, write, and execute permission for the owner of the
file, for other members of his group, and for all remaining users.

If the tenth bit is on~ the system will temporarily change the user identification (hereafter,
user 10) of the current user to that of the creator of the file whenever the file is executed as a
program. This change in user 10 is effective only during the execution of the program that. calls
for it. The set-user-IO feature provides for privileged programs that may use files inaccessible
to other users. For example, a program may keep an accounting file that should neither be read
nor changed except by the program itself. If the set-user-ID bit is on for the program, it may
access the file although thiS access might be forbidden to other programs invoked by the given
program's user. Since the actual user ID of the invoker of any program is always available, set­
user-IO programs may take any measures desired to satisfy themselves as to their invoker's
credentials. This mechanism is used to allow users to execute the carefully written commands
that call privileJed system entries. For example, there is a system entry invokable only by the
"super-user" (below) that creates an empty directory. As indicated above, directories are
expected to have entries for " . " and" .. ". The command which creates a directory is owned
by the super-user and has the set-user-IO bit set. After it checks its invoker's authorization to
deate the specified directory, it creates it and makes the entries for " . " and " .• ",

Because anyone may set the set-user-ID bit on one of his own files, this mechanism is
generally available without administrative intervention. For example, this protec!ion scheme
easily solves the MOO accounting problem posed by "Aleph-null."8

The system recognizes one particular user 10 (that of the "super-user") as exempt from
the usual constraints on file access; thus (for example), programs may be written to dump and
rt'load the file system without unwanted interference from [he protection system.

2-5

3.6 I/O calls

The system calls to do 1/0 are designed to eliminate the differences between the various
devices and styles of access. There is no distinction between "random" and "sequential" 110,
nor is any logical record size imposed by the system. The size of an ordinary file is determined
by the number of bytes written on it; no predetermination of the size of a file is necessary or
possible.

To illustrate the essentials of 110, some of the basic calls are summarized below in an
anonymous language that will indicate the required parameters without getting into the underly­
ing complexities. Each call to the system may potentially result in an error return, which for
simplicity is not represented in the calling sequence.

To read or write a file assumed to exist already, it must be opened by the following call:

filep = open (name, flag)

where name indicates the name of the file. An arbitrary path name may be given. The flag
argument indicates whether the file is to be read, written, or "updated," that is, read and writ­
ten simultaneously.

The returned value filep is called a file descriptor. It is a small integer used to identify the
file in subsequent calls to read, write, or otherwise manipulate the file.

To create a new file or completely rewrite an old one, there is a create system call that
creates the given file if it does not exist, or truncates it to zero length if it does exist; create
also opens the new file for writing and, like open, returns a file descriptor.

The file system maintains no locks visible to the user, nor is there any restriction on the
number of users who may have a file open for reading or writing. Although it is possible for
the contents of a file to become scrambled when two users write on it simultaneously, in prac­
tice difficulties do not arise. We take the view that locks are neither necessary nor sufficient, in
our environment, to prevent interference between users of the same file. They are unnecessary
because we are not faced with large, single-file data bases maintained by independent processes.
They are insufficient because locks in the ordinary sense, whereby one user is prevented from
writing on a file that another user is reading, cannot prevent confusion when, for example, both
users are editing a file with an editor that makes a copy of the file being edited.

There are, however, sufficient internal interlocks to maintain the logical consistency of the
file system when two users engage simultaneously in activities such as writing on the same file,
creating files in the same directory, or deleting each other's open files.

Except as indicated below, reading and writing are sequential. This means that if a partic­
ular byte in the file was the last byte written (or read), the next 1/0 call implicitly refers to the
immediately following byte. For each open file there is a pointer, maintained inside the system,
that indicates the next byte to be read or written. If n bytes are read or written, the pointer
advances by n bytes.

Once a file is open, the following calls may be used:

n == read (filep, buffer, count)
n .. write (filep, buffer, count)

Up to count bytes are transmitted between the file specified by fUep and the byte array specified
by buffer. The returned value n is the number of bytes actually transmitted. In the write case,
n is the same as count except under exceptional conditions, such as 1/0 errors or end of physi­
cal medium on special files; in a read, however, n may without error be less than count. If the
read pointer is so near the end of the file that reading count characters would cause reading
beyond the end, only sufficient bytes are transmitted to reach the end of the file; also,
typewriter-like terminals never return more than one line of input. When a read call returns
with n equal to zero, the end of the file has been reached. For disk files this occurs when the
read pointer becomes equal to the current size of the file. It is possible to generate an end-of­
file from a terminal by use of an escape sequence that depends on the device used.

2-6

Bytes written affect only those parts of a file implied by the position of the write pointer
and the count; no other part of the file is changed. If the last byte lies beyond the end of the
file, the file is made to grow as needed.

To do random (direct-access) 110 it is only necessary to move the read or write pointer to
the appropriate location in the file.

location - lseek (filep, offset, base)

The pointer associated with fiJep is moved to a position offset bytes from the beginning of the
file, from the current position of the pointer, or from the end of the file, depending on base.
offset may be negative. For some devices (e.g., paper tape and terminals) seek calls are
ignored. The actual offset from the beginning of the file to which the pointer was moved is
returned in location.

There are several additional system entries having to do with I/O and with the file system
that will not be discussed. For example: close a file, get the status of a file, change the protec­
tion mode or the owner of a file, create a directory, make a link to an existing file, delete a file.

IV. IMPLEMENTATION OF THE FILE SYSTEM

As mentioned in Section 3.2 above, a directory entry contains only a name for the associ­
ated file and a pointer to the file itself. This pointer is an integer caUed the i-number (for index
number) of the file. When the file is accessed, its i-number is used as an index into a system
table (the i-list) stored in a known part of the device on which the directory resides. The entry
found thereby (the file's i-node) contains the description of the file:

the user and group-ID of its owner

ii its protection bits

iii the physical disk or tape addresses for the file contents

iv its size

v time of creation, last use, and last modification

vi the number of links to the file, that is, the number of times it appears in a directory

vii a code indicating whether the file is a directory, an ordinary file, or a special file.

The purpose of an open or ereate system call is to tum the path name given by the user into an
i-number by searching the explicitly or implicitly named directories. Once a file is open, its
device, i-number, and read/write pointer are stored in a system table indexed by the file
descriptor returned by the ~peft or create. Thus, during a subsequent call to read or write the
file, the descriptor may be easily related to the information necessary to access the file.

When a new file is created, an i-node is allocated for it and a directory entry is made that
contains the name of the file and the i-node number. Making a link to an existing file involves
creating a directory entry with the new name, copying the i-number from the original file entry,
and incrementing the link-count field of the i-node. Removing (deleting) a file is done by
decrementinc the link-count of the i-node specifietl by its directory entry and erasing the direc­
tory entry. If the link-count drops to 0, any disk blocks in the file are freed and the i-node is
de -allocated.

The space on aU disks that contain a file system is divided into a number of 512-byte
blocks logically addressed from 0 up to a limit that depends on the device. There is space in
the i-node 0(each file for 13 device addresses. For nonspeciai files, the first 10 device
addresses point at the first 10 blocks of the file. If the file is larger than 10 blocks, the 11 dev­
ice address points to an indirect block containing up to 128 addresses of additional blocks in the
file. StilJ larger files use the twelfth device address of the i-node to point to a double-indirect
bk>ck naming 128 indirect blocks, each pointing to 128 blocks of the file. If required, the thir­
teenth devi~e address is a triple-indirect block. Thus files may conceptually grow to
{nO+128+1282+1283)'512 J bytes. Once opened, bytes numbered below 5120 can be read
with a single disk access; bytes in the range 5120 to 70,656 require two accesses; bytes in the

7

range 70,656 to
0,082,201,088)

three accesses; bytes from there to the largest file
device cache mechanism (see below)

proves

files. When an I/O request is made to a file
that it is the last 12 device address words are immaterial, and

"V'.,~",,,,,, an internal device name, which is interpreted as a pair of numbers represent-
a device and subdevice number. device type indicates which system

routine will deal with I/O on that device; the subdevice number selects, for example, a disk
drive attached to a controller or one of several terminal interfaces.

In this the of the mount system call (Section 3.4) is quite
straightforward. mount maintains a system table whose argument is the i-number and device
name the ordinary specified during the mount, and whose corresponding value is the
device name the indicated special This table is searched for each i-number/device pair
that turns up while a path name is being scanned during an open or create; if a match is found,
the i-number is by the root directory and the device name is replaced

. by the table value.

both reading and writing of files appear to be synchronous and unbuffered.
That return a read call the data are available; conversely, after a

may be reused. In the system maintains a rather complicated
mechanism that reduces greatly the number of UO operations required to access a

a wrHe call is made transmission of a single byte. system will
to see whether the disk block currentiy resides in main memory; if

not, it will be read in the is replaced in the buffer and an
entry is made in a list of blocks to written. return from the write call may then take

may not be completed until a later time. Conversely, if a single
whether the secondary storage block in which the byte is

if so, the can be returned immediately. If
picked out.

system recognizes when a program has made accesses to sequential blocks of a file,
and asynchronously the next block. This significantly reduces the running time of
most programs while adding little to system overhead.

A program that reads or writes in units of 512 bytes has an advantage over a program
that reads or writes a byte at a but the gain is not immense; it comes mainly from
the avoidance of system overhead. If a program is used rarely or does no volume of I/O,
it may read and write in units as small as it wishes.

£unong
at alL

UNIX. practice, this of organiz-
reliable and easy to deal with. the system itself, one of

name related in a simple way to
to access the It also permits a

of a file system, for example,
of each device containing useful information and those free to be

exhaust the space on the device. This aigorithm is indepen-
because it need only scan the organized i-list. At the

the i-list induces certain not found in other file system
there is the who is to be charged for the space a file

the owner of a file
one user may create a another may link to and the first user may

user is still the owner of the but it should be charged to the
seems to be to spread the charges equally

installations avoid the issue not charging any

v,

-8

main
:1ppearance

a process can come

processes

the
each process may

a

()

()

returned by fork the parent
whether i is the parent or child.

with ,elated processes the
call:

the same pipe. At this

process in the
process wri res

between the images
process

Another

execute (arg!.

is involved.

is

)

which requests the system to read in and execme the program named
arguments the code and data. in the process
replaced and
unaltered. because me could

bit was not set, does a return

are

read and write

IS

its
it

2 9

resembles a , machine instruction rather than a subroutine calL

5.4
process control system call:

= wait (status)

causes its caller to execution until one of its children has completed execution. Then
wait returns the terminated process. An error return is taken if the calling
process has no descendants. Cenain status from the child process is also available.

5,5

Lastly:

exit (status)

terminates a process, destroys its image, closes its open files, and generally obliterates it. The
is notified the and status is made available to it. Processes may

also terminate as a result of various illegal actions or user-generated signals (Section VII

VI. THE

most users, communication with the system is carried on with the aid of a program
called the shell is a command-line interpreter: it reads lines typed by the user and

them as to execute other programs. (The shell is described fully elsewhere,9
the theory of its operation,) simplest form, a command line

the command name followed to the command, all separated by spaces:

command

The shell up command name and the arguments into separate strings. Then a file
with name comm~md is command may be a path name including the "/" character to
specify any in the If command is found, it is brought into memory and executed.

collected by the shell are accessible to the command. When the command is
resumes its own execution, and indicates its readiness to accept another cam­

n,.",,,..,.,,,,, character.

'"".", ".'" cannot be found, the shell generally prefixes a string such as I bin I to
to the / bin contains commands intended to

to be may be changed by user

above seems to that every file used by a pro-
the program in order to a file descriptor for the file.

with three open files with file descriptors 0,
1 is open for writing, and is best understood

under circumstances indicated below, this file is the user's
informative information ordinarily use file descrip­

and programs that wish to read messages

of these file descriptors from the
the arguments to a command is prefixed by

command, refer to after the

Is

OR

Is > there

creates a

ed

enters the

ed

An extension the
the

Line:

Is I pr ! apr

10

com~

there, the argumJ:nt > there "

[he user via his com-

thus < means "take

com-

associated with the terminal output srream.

used direct

arrange that [he
the next command

out more

the out~

one cornmand to

.;01'

. .. ~ ,

2-11

6.3 Command separators; multitasking

Another feature provided by the shell is relatively straightforward. Commands need not
be on different Iines~ instead they may be separated by semicolons:

Is~ ed

will first list the contents of the current directory, then enter the editor.

A related feature is more interesting. If a command is followed by "A," the shell will not
wait for the command to finish before prompting again; instead, it is ready immediately to
accept a new command. For example:

as source > output &

causes source to be assembled, with diagnostic output going to output; no matter how long the
assembly takes, the shell returns immediately. When the shell does not wait for the completion
of a command, the identification number of the process running that command is printed. This
identification may be used to wait for the completion of the command or to terminate it. The
"&" may be used several times in a line:

as source >output & Is > files &

does both the assembly and the listing in the background. In these examples, an output file
other than the terminal was provided; if this had not been done, the outputs of the various
commands would have been intermingled.

The shell also allows parentheses in the above operations. For example:

(date~ Is) >x &

writes the current date and time followed by a list of the current directory onto the file x. The
shell also returns immediately for another request.

6.4 The shell as a command; command files

The shell is itself a command, and may be called recursively. Suppose file tryout contains
the lines:

as source
mv a.out testprog
testprog

The mv command causes the file a.out to be renamed testprog. a.out is the (binary) output of
the assembler, ready to be executed. Thus if the t.hree lines above were typed on the keyboard,
source would be assembled, the resulting program renamed testprog, and testprog executed.
When the lines are in tryout, the command:

sh <tryout

would cause the shell sh to execute the commands sequentially.

The shell has further capabilities, including the ability to substitute parameters and to con­
struct argument lists from a specified subset of the file names in a directory. It also provides
general conditional and looping constructions .

6.S Implementation of the shell

The outline of the operation of the shell can now be understood. Most of the time, the
shell is waiting for the user to type a command. When the newline character ending the line is
typed, the shell's read call returns. The shell analyzes the command line, putting the argu­
ments in a form appropriate for execute. Then fork is called. The child process, whose code of
course is still that of the shell, attempts to perform an execute with the appropriate arguments.
If successful, this will bring in and start execution of the program whose name was given.
Meanwhile, the other process resulting fwm the fork, which is the parent process, waits for the

child process to
and

" < or" >" and 0

the command

the shell need not knoVi the actual names
it need never reopen them.

files.

<

then be

6.6 I

lolt simply recreates the
put fiies and

sequence to the

extensions

wiH terminate~

'!'I'aU executed in

or because a user
process,
rnessage.

standard

turn reoPens
a user rnay

it types

instead

2-13

programs as shell

shell as described above is designed to allow users access to the facilities of the
system, it will invoke the execution of any program with appropriate protection mode.
Sometimes, however, a to the system is and this feature is easily

that a user logged in by supplying a name and password, init
ordinarily invokes the sheil to interpret command lines. The user's entry in the password file
may contain the name of a program to be invoked log-in instead of the shell. This pro-
gram is to interpret the messages in any way it

For the entries for users of a secretarial system might
specify that the editor ed is to be used instead the shell. when users of the sys-
tem they are the editor and can work immediately; also, they can be
prevented invoking programs not intended for their use. In practice, it has proved desir-
able to allow a temporary escape the editor to execute the formatting program and other
utilities.

the games (e.g., blackjack, 3D tic-tac-toe) available on the system ilhlS-
trate a much more restricted For each of these, an entry exists in the
password file that the appropriate program is to be invoked instead of
the shelL People who log in as a player of one of these games find themselves limited to the
game and unable to investigate the more offerings of the UNIX system
as a whole.

VII.
The POP-II hardware detects a number of program such as references to 11011-

and odd addresses used where an even address
is cause the processor to trap to a system routine. Unless other arrange-
ments have been an action causes the system to terminate the process and to write
its on file core in the current directory. A debugger can be used to determine the state
of the program at the time of the fault.

that are that produce unwanted output, or about which the user has
second thoughts may be halted by the use of the interrupt signal, which is generated by typing

action has been taken, this signal simply causes the pro­
without producing a core file. There is also a quit signal used to force

an Thus programs that loop may be halted and the

to present

is use~

unimplemented instructions

is largely due to the fact that it was
version was written when one of us

discovered a little-used PDP- 7

later in
when

2-14

articulated at all, have always been to build a comfortable relationship with the machine and to
explore ideas .. nd inventions in operating systems and other software. We have not been faced
with the need to satisfy someone else's requirements, and for this freedom we are grateful.

Three considerations that influenced the design of UNIX are visible in retrospect.

First: because we are programmers, we naturally designed the system to make it easy to
write, test, and run programs. The most important expression of our desire for programming
convenience was that the system was arranged for interactive use, even though the original ver­
sion only supported one user. We believe that a properly designed interactive system is much
more productive and satisfying to use than a "batch" system. Moreover, such a system is
rather easily adaptable to noninteractive use, while the converse is not true.

Second: there have always been fairly severe size constraints on the system and its
software. Given the partially antagonistic desires for reasonable effiCiency and expressive
power, the size constraint has encouraged not only economy, but also a certain elegance of
design. This may be a thinly disguised version of the "salvation through suffering" philosophy,
but in our case it worked.

Third: nearly from the start, the system was able to, and did, maintain itself. This fact is
more important than it might seem. If designers of a system are forced to use that system,
they quickly become aware of its functional and superficial deficiencies and are strongly
motivated to correct them before it is too late. Because all source programs were always avail­
able and easily modified on-line, we were willing to revise and rewrite the system and its
software when new ideas were invented, discovered, or suggested by others.

The aspects of UNIX discussed in this paper exhibit clearly at least the first two of these
design considerations. The interface to the file system, for example, is extremely convenient
from a programming standpoint. The lowest possible interface level is designed to eliminate
distinctions between the various devices and files and between direct and sequential access. No
large "access method" routines are required to insulate the programmer from the system calls~
in fact. all user programs either call the system directly or use a small library program, less than
a page long, that buffers a number of characters and reads or writes them all at once.

AnOther important aspect of programminl convenience is that there are no "control
blocks" with a complicated structure partiaUy maintained by and depended on by the file system
or other system calls. Generally speK4ng. the contents of a program's address space are the
property of the program, and we have tried to avoid placing restrictions on the data structures
within that address space.

Given the requirement that all programs should be usable with any file or device as input
or ootput, it is also desirable to pl4Sn device-dependent considerations into the operating system
itself. The only alternatives seem QO be to load, with aU programs, routines for dealing with
each device, which is eKpensive in space, or to de~nd on some means of dynamically linking
to the routine appropriate to each device when it is actually needed, which is expensive either
in overhead or in hardware.

Likewise, the process-control scheme and the command interface have proved both con­
venient and efficient. iecause the shell operates as an ordinary, swappable user program, it
consu'mes no "wired-Ck:lwn" space in the system proper, and it may be made as powerful as
desh'ed at little cost. In particular f given the framework in which the sheH executes as a process
that spawns mner processes to perform commands, the notions of I/O redirection, background
processes, ~ommanGi files, and u:ser·selectable system interfaces all become essentially trivial to
implement.

Jnftue:m:es

The sua:ess of UNIX lies not so much in new inventions but rather in the full exploitation
of a carefully selected set of fertile iQe1liS, and especially in showing that they can be keys to the
il1'qJiememation of a small yet powerful opet"atilll system.

2-15

The fork operation, essentially as we implemented it, was present in the GENIE time­
sharing system. lO On a number of points we were influenced by Multics, which suggested the
particular form of the I/O system calls ll and both the name of the shell and its general func­
tions. The notion that the shell should create a process for each command was also suggested
to us by the early design of Multics, although in that system it was later dropped for efficiency
reasons. A similar scheme is used by TENEX.12

IX. 5T A TI5TICS

The following numbers are presented to suggest the scale of the Research UNIX operation.
Those of our users not involved in document preparation tend to use the system for program
development, especially language work. There are few important "applications" programs.

Overall, we have today:

125
33

1,630
28,300

301,700

user population
maximum simultaneous users
directories
files
512·byte secondary storage blocks used

There is a "background" process that runs at the lowest possible priority; it is used to soak up
any idle CPU time. It has been used to produce a million-digit approximation to the constant e,
and other semi-infinite problems. Not counting this background work, we average daily:

X. ACKNOWLEDGMENTS

13,500
9.6
230
62

240

commands
CPU hours
connect hours
different users
log-ins

The contributors to UNIX are, in the traditional but here especially apposite phrase, too
numerous to mention. Certainly, collective salutes are due to our colleagues in the Computing
Science Research Center. R. H. Canaday contributed much to the basic design of the file sys­
tem. We are particularly appreciative of the inventiveness, thoughtful criticism, and constant
support of R. Morris, M. D. McIlroy, and J. F. Ossanna.

References

1. L. P. Deutsch and B. W. Lampson, "An online editor," Comm. Assoc. Compo Mach.
10(12) pp. 793-799, 803 (December 1967).

2. B. W. Kernighan and L. L. Cherry, "A System for Typesetting Mathematics," Comm.
Assoc. Compo Mach. 18 pp. 151-157 (March 1975).

3. B. W. Kernighan, M. E. Lesk, and J. F. Ossanna, "UNIX Time·Sharing System: Docu­
ment Preparation," Bell Sys. Tech. J. 57(6) PP. 2115-2135 (1978).

4. A. Dolotta and 1. R. Mashey, "An Introduction to the Programmer's Workbench,"
Proc. 2nd/nt. Corif. on So!tware Engineering, pp. 164·168 (October 13·15,1976).

5. T. A Doiotta, R. C. Haight, and 1. R. Mashey, "UNIX Time-Sharing System: The
Programmer's Workbench," BellSys. Tech. J. 57(6) pp. 2177-2200 (978).

2-16

6. H. I,.ycklama, "UNIX Time-S"fP"i~g System: UNIX on a Microprocessor," Bell Sys. Tech. i.
51(6} pp. 2Q87-21QI (19"18).

7. B. W. KernighaQ a"d O. M. ll.itehie, The C Proframm;", Language. Prentice-Hall, Engle­
wood CUffs, New Jersey (1913).

8. Aleph-null, "Computer iecrelJtioQs," Sa/tware Practice and Experience 1(2) pp. 201-204
(April-1 une 1971).

9. S. R. Bourne, "UNIX Time-Sl'utrillg System: The UND(Shell," Bell Sys. Tech. i, 57(6) pp.
1971-1990 (978).

10. L. P. Deutsch and B. W. Lampson, "5DS 930 time-sharing system preliminary reference
manual," Doc. 30.10.10, Project GENIE, Univ. Cal. at Berkeley (April 1965).

11. R. 1. F,iertag and E. 1. Qrsanick, "Th, Multics input-output system," Proc. Third Sympo­
sium OR Operating SY$tems frint:iples, pp. 35-41 (October 18-20, 1971).

12. D. G. Bobrow, 1. O. Burc Iltie I , D. L. Murphy, and R. S. Tomlinson, "TEN EX, a Paged
Time Sharing System far the PDP-10,1? Comm. Assoc. Compo l\1ach. 15(3) pp. 135-143
(March 1972).

..--0-

UNIX For Beginners - Second Edition

Brian W. Kernighan

Bel! Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper is meant to help new users get started on the UNIXt operating
system. It includes:

• basics needed for day-to-day use of the system - typing commands, correct­
ing typing mistakes, logging in and out, mail, inter-terminal communication,
the file system, printing files, redirecting I/O, pipes, and the shell.

~ document preparation - a brief discussion of the major formatting programs
and macro packages, hints on preparing documents, and capsule descriptions
of some supporting software .

• UNIX - using the editor, programming the shell, program-
ming in C, other languages and tools.

f!l An annotated UNiX bibliography.

September 1978

tUNIX is a Trademark of Bell Laboratories.

3-1

UNIX For Beginners - Second Edition

Brian W. Kernighan

Bell Laboratories
Murray Hill, New lersey 07974

INTRODUCTION

From the user's point of view, the UNIX
operating system is easy to learn and use, and
presents few of the usual impediments to getting
the job done. It is hard, however, for the
beginner to know where to start. and how to
make the best use of the facilities available. The
purpose of this introduction is to help new users
get used to the main ideas of the UNIX system
and start making effective use of it quickly.

You should have a couple of other docu­
ments with you for easy reference as you read
this one. The most important is The UNIX

PrOKrommers J10flllal; it's often easier to tell you
to read about something in the manual than to
repeat its contents here. The other useful docu­
ment is A Turorial Introduction (0 (he UNIX Tex(
Editor. which will tell you how to use the editOr
to get text - programs. data, documents - into
the computer.

A word of warning: the UNIX system has
become quite popular. and there are several
major variants in widespread use. Of course
details also change with time. So although the
basic structure of UNIX and how to use it is com­
mon to all versions. there will certainly be a few
things which are different on your system from
whal is described here. We have tried to minim­
ize the problem. but be aware of it. In cases of
doubt. this paper describes Version 7 UNIX.

This paper has five sections:

I. Getting Started: How to 108 in, how to type,
what to do about mistakes in typing, how to
log out. Some of this is dependent on which
system you log into (phone numbers, for
example) and what terminal you use. so this
section must necessarily be supplemented by
local information.

2. Day-to.day U~e: Things you need every day
to use the system effectively: generally use­
ful ~ommands; the file system.

3-2

3. Document Preparation: Preparing manu­
scripts is one of the most common uses for
UNIX systems. This section contains advice,
but not extensive instructions on any of the
formatting tools.

4. Writing Programs: UNIX is an excellent sys­
tem for developing programs. This section
talks about some of the tools. but again is
not a tutorial in any of the programming
languages provided by the system.

5. A UNIX Reading List An annotated
bibliography of documents that new users
should be aware of.

L GETTING STARTED

Logging In

You must have a UNIX login name. which
you can get from whoever administers your sys­
tem. You also need to know the phone number.
unless your system uses permanently connected
terminals. The UNIX system is capable of deal­
ing with a wide variety of terminals: Terminet
300'5: Execuporl. TI and similar portables: video
(CRT) terminals like the HP2640, etc.: high­
priced graphics terminals like the Tektronix
4014; plolting terminals like those from GSI and
DASI: and even the venerable Teletype in its
various forms. But note: UNIX is strongly
oriented towards devices with lower (ow. If your
terminal produces only upper case (e.g.. model
33 Teletype. some video and portable terminals),
life will be so difficult that you should look for
another terminal.

Be sure to set the switches appropriately on
your device. Switches that might need to be
adjusted include the speed, upper/lower case
mode. full duplex. even parity, and any others
that local wisdom advises. Establish a connec­
tion using whatever magic is needed for your ter­
minal: this may involve dialing a telephone call
or merely flipping a switch. In either case, UNIX
should type "'ogin:" at you. If it types garbage,
you may be at the wrong speed: check the
switches. If that fails, push the "break" or

3-3

If that fails
to produce a message, consult a guru.

When you get a message, type your
login name in lower case. Follow it by a
RETURN; the system will not do until
you type a RETURN. If a is
you will be asked for it, and (if possible) printing
will be turned off while you type it. Don't forget
RETURN.

The culmination of your login is a
"prompt " a character that indi-
cates that the system is to accept com-
mands from you. The prompt character is usu­
ally a dollar $ or a percent sign %. (Y Oll

may also get a message of the day just before the
prompt or a that you have

Ii

Commllnds

Once seen the prompt you
can type commands, which are requests that the
system do Try

date

foHowed by RETlJRN. You should get back
like

Mon Jan 16 14:17:10 EST 1978

the RETURN after the command, or
If you think you're being

pen.
don't
each line.

should
won't be mentioned again, but

it - it has to be there at the end of

Another command you
which tells you everyone who is
in:

.lan 16
Jan 16
J:iull6

09:11
09:33
13:07

The time is when the user "ttyxx" is
the idea of what terminal the user is on.

If you make rnistake the command
name, and refer to a non-existent you
will be told. For if you type

you will be told

whom: not found

Of course, if you type the name of
other command, it will run, with more or

less mysterious results.

:-.n·,uu~" Terminal Behavior

Sometimes you am get into a state where
your terminal acts strangely. For example, each
letter may be twice, or the RETURN may
flot cause a line feed or a return to the left mar-

You can often fix this out and
logging back in. Or you can read the description
of the command sUy in section I of the manual.
To get treatment of lab characters

are much used in if your terminal
doesn't have type the command

sUy -tabs

and the sySlem will convert each tab into the
right number of blanks for you. If your terminal
does have the command

Mlstmkes in Typhlli!

If you make a and see it
before RETURN has been
ways 10 recover. The
the last character in fact successive uses of
erase characters hack to the of the
line not So if you type badly, you
can correct as you go:

is the same as date.

The @ erases all of the characters
so far on the current input Hne, so if the

line is fouled up, type an @ and
start the line over.

What if you must enter a sharp or at-sign as
parI of the text? If you precede either :# or @

a backslash \, it loses its erase meaning. So
to enter a or type \#
or The system will echo a newline at
you after your even if preceded by a
bllckslash. Don't worry - the has been
recorded,

you have to type two
as in The backslash

in UNIX to indicate that the
following character is in some way

Relld-ahead

UNIX has full which means that
you can type as fast as you want, whenever you
want, even when some command is
you. If you type output, your
acters will appear intermixed with the output
characters, but wi!! be stored away and

in the correct order. So you can type
several commands one after another without

for the first to finish or even

StoppiDI a PrOlJ'am

You can stop most pro&!,ams by typing the
character "DEL" (perhaps called "delete" or
"rubout" on your terminal>. The "interrupt" or
"break" key found on most terminals can also
be used. In a few programs, like the text editor,
DEL stops whatever the program is doing but
leaves you in that program. Hanginl up the
phone will stop most programs.

Loaina Out

The easiest way to log out is to hang up the
phone. You can also type

10lin

and let someone else use the terminal you were
on. It is usually not sufficient just to turn off the
terminal. Most UNIX systems do not use a
time-out mechanism, so you'll be there forever
unless you hang up.

Mail
When you log in, you may sometimes get

the message

You have mail.

UNIX provides a postal system so you can com­
municate with other users of the system. To
read your mail, type the command

mail

Your mail will be printed, one message at a time,
most recent message first. After each message,
mail waits for you to say what to do with it. The
t'Wo basic responses are d, which deletes the mes­
sage, and RETURN, which does not (so it will
still be there the next time you read your mail­
box). Other responses are described in the
manuai. (Earlier versions of mail do not process
one message at a time, but are otherwise simi­
lar.)

How do you send mail to someone else?
Suppose it is to go to "joe" (assuminl "joe" is
someone's login name). The easiest way is this:

mail jee
now tYpe in the fLYt of the letter
on as many liflf!s as you like ...
Aft#r the last line of the le~r
tYpe the character "colttTOi-d",
that is. hold down "control" and tYpe
a letter "d".

And that's it. The "control-d" sequence, often
caUed "EOF" for end-of-file, is used throughout
the system to mark the end of input from a ter­
minal, so you might u well get used to it.

For practice, send mail to yourself. (This
isn't as strange as it might sound - mail to one·

3-4

self is a handy reminder mechanism.)

There are other ways to send mail you
can send a previously prepared letter, and you
can mail to a number of people all at once. For
more details see maiHl). (The notation mail(1)
means the command mail in section 1 of the
UNIX Programmer's ManuaL>

Writinc to other users

At some point, out of the blue will come a
message like

Message from joe tty07 ...

accompanied by a startling beep. It means that
Joe wants to talk to you, but unless y.ou take
explicit action you won't be able to talk back. To
respond, type the command

write joe

This establishes a two-way communication path.
Now whatever Joe types on his terminal will
appear on yours and vice versa. The path is
slow, rather like talking to the moon. (If you are
in the middle of something, you have to get to a
state where you can type a command. Normally,
whatever program you are running has to ter·
minate or be terminated. If you're editing, you
can escape temporarily from the editor - read
the editor tutoriaL)

A protocol is needed to keep what you type
from getting garbled up with what Joe types.
Typically it's like this:

Joe types write smith and waits.
Smith types write joe and waits.
Joe now types his message (as many lines
as he likes). When he's ready for a reply,
he signals it by typing (0), which stands
for "over".
Now Smith types a reply, also terminated
by (&/.
This cycle repealS until someone gets
tired~ he then signals his intent to quit
with (00), for "over and out".
To terminate the conversation. each side
must type a "control-d" character alone
on a line. ("Delete" also works.) When
the other person types his "control-d",
you will get the message EOF on your
terminal.

If you write to someone who isn't logged in,
or who doesn't want to be disturbed, you'll be
told. If the target is logged in but doesn't answer
after a decent interval. simply type ··control-d".

.. ,~
I

On-line Manual

The UNIX Programmer's Manual is typically
kept on-line. If you get stuck on something, and
can't find an expert to assist you, you can print
on your terminal some manual section that
might help. This is also useful for getting the
most up-to-date information on a command. To
print a manual section, type "man command­
name". Thus to read up on the who command,
type

man who

and, of course,

man man

tells all about the man command.

Computer Aided Instruction

Your UNIX system may have available a pro­
gram called learn, which provides computer
aided instruction on the file system and basic
commands, the editor, docum nt preparation,
and even C programming. Try typing the com­
mand

learn

If learn exists on your system, it will tell you
what to do from there.

II. DAY-TO-DAY USE

Creating Files - The Editor

If you have to type a paper or a letter or a
program, how do you get the information stored
in the machine? Most of these tasks are done
with the UNIX "text editor" ed. Since ed is
thoroughly documented in edO) and explained
in A Tutorial Introduction to the UNIX Text Editor.
we won't spend any time here describing how to
use it. All we want it for right now is to make
some files. (A file is just a collection of informa­
tion stored in the machine, a simplistic but ade­
quate definition.)

To create a file called junk with some text in
it, do the following:

3-5

ed Junk
a

(invokes the text editor)
(command to "ed", to add text)

now type in
whatever (ext you want ...

(signals the end of adding text)

The "." that signals the end of adding text must
be at the beginning of a line by itself. Don't for­
get it, for until it is typed, no other ed com­
mands will be recognized - everything you type
will be treated as text to be added.

At this point you can do various editing
operations on the text you typed in, such as

correcting spelling mistakes, rearranging para­
graphs and the like. Finally, you must write the
information you have typed into a file with the
editor command w:

ed will respond with the number of characters it
wrote into the file junk.

Until the w command, nothing is stored per­
manently, so if you hang up and go home the
information is lost. t But after w the information
is there permanently; you can re-access it any
time by typing

ed junk

Type a q command to quit the editor. (If you try
to quit without writing, ed will print a ? to rem­
ind you. A second q gets you out regardless.)

Now create a second file called temp in the
same manner. You should now have two fites,
junk and temp.

What files are out there?

The Is (for "list") command lists the names
(not contents) of any of the files that UNIX
knows about. If you type

Is

the response will be

junk
temp

which are indeed the two files just created. The
names are sorted into alphabetical order
automatically, but other variations are possible.
For example, the command

Is -t

causes the files to be listed in the order in which
they were last changed, most recent first. The
-I option gives a "long" listing:

Is -I

will produce something like

-rw-rw-rw- 1 bwk 41 JulU 2:56 Junk
-rw-rw-rw- 1 bwk 78 JulU 1:57 temp

The date and time are of the last change to the
file. The 41 and 78 are the number of characters
(which should agree with the numbers you got
from ed). bwk is the owner of the file, that is,
the person who created it. The -rw-rw-rw­
tells who has permission to read and write the
file, in this case everyone.

, This is not strictly true - if you hang up while editing.
the data you were working on is saved in a file called
ed.hap. which you can continue with at your next session.

Options can be combined: Is -It gives the
same thing as Is -I, but sorted into time order.
You can also name the files you're interested in,
and Is will list the information about them only.
More details can be found in 15(1).

The use of optional arguments that begin
with a minus sign, like - t and -It. is a com­
mon convention for UNIX programs. In general.
if a program accepts such optional arguments.
they precede any filename arguments. It is also
vital that you separate the various arguments
with spaces: 15-1 is not the same as Is -I.

Printinc Files

Now that you've got a file of text, how do
you print it so people can look at it? There are a
host of programs that do that, probably more
than are needed.

One simple thing is to use the editor, since
printing is often done just before making
changes anyway. You can say

ed junk
I,Sp

ed will reply with the count of the characters in
junk and then print all the lines in the file.
After you learn how to use the editor, you can
be selective about the parts you print.

There are times when it's not feasible to use
the editor for printing. For example. there is a
limit on how big a file ed can handle (several
thousand lines). Secondly. it will only print one
file at a time. and sometimes you want to print
several. one after another. So here are a couple
of alternatives.

First is cst, the simplest of all the printing
programs. cat simply prints on the terminal ,the
contents of all the files named in a list. Thus

cat junk

prints one file. and

cat junk temp

prints two. The tiles are simply concatenated
(helKe the name "cat") onto the terminal.

pr produces formatted printouts of ~les. .As
with cat. pr prints all the tiles named In a list
The di1fereIKe is that it produces headings with
date, time, page number and file name at the top
of each page, and extra lines to skip over the
fold in the paper. Thus.

pr JUBk temp

will print junk neatly, then skip to the top of a
new paae and print temp neatly.

PI can also produce multi-column output:

3-6

pr -3 junk

prints junk in 3-column format You can use
any reasonable number in place of "3" and pr
will do its best. pr has other capabilities as well;
see prO).

It should be noted that pr is not a formatting
program in the sense of shuffling lines around
and justifying margins. The true formatters are
nroff and tfort. which we will get to in the sec­
tion on document preparation.

There are also programs that print files on a
high-speed printer. Look in your manual under
opr and Ipr. Which to use depends on what
equipment is attached to your machine.

Shuffling Files About

Now that you have some files in the file sys­
tem and some experience in printing them, you
can try bigger things. For example. you can
move a file from one place to another (which
amounts to giving it a new name), like this:

mv junk precious

This means that what used to be "junk" is now
"precious". If you do an Is command now, you
will get

precious
temp

Beware that if you move a file to another one
that already exists. the already existing contents
are lost forever.

If you want to make a copy of a file (that is,
to have two versions of something). you can use
the cp command:

cp precious tempI

makes a duplicate copy of precious in tempi.

Finally. when you get tired of creating and
moving files, there is a command to remove files
from the file system. called rm.

rm temp tempI

will remove both of the files named.

You will get a warning message if one of the
named files wasn' t there. but otherwise rm. like
most UNIX commands, does its work silently.
There is no prompting or chatter. 3nd error mes­
sages are occasionally curt. This terseness is
sometimes disconcerting to newcomers. but
experienced users find it desirable.

What's in a Filename

So far we have used filenlmes without ever
saying what's a legal name. so it's time for a
couple of rules. First, filem:mes are limited to
14 characters, which is enouf,h to be descriptive.

.",
,)

j

Second, although you can use almost any charac­
ter in a filename. common sense says you should
stick to ones that are visible. and that you should
probably avoid characters that might be used
with other meanings. We have already seen, for
example, that in the Is command. Is - t means
to list in time order, So if you had a file whose
name was -t, you would have a tough time list­
ing it by name. Besides the minus sign, there
are other characters which have special meaning.
To avoid pitfalls, you would do well to use only
letters, numbers and the period until you're fam­
iliar with the situation.

On to some more positive suggestions. Sup­
pose you're typing a large document like a book.
Logically this divides into many small pieces, like
chapters and perhaps sections. Physically it must
be divided too, for ed will not handle really big
files. Thus you should type the document as a
number of files. You might have a separate file
for each chapter, called

chap1
chap2
etc ...

Or, if each chapter were broken into several files,
you might have

chap1.1
chapl.2
chap).3

chap2.1
chap2.2

You can now tell at a glance where a particular
file fits into the whole.

There are advantages to a systematic naming
convention which are not obvious to the novice
UNIX user. What if you wanted to print the
whole book? You could say

pr chap1.1 chap1.2 chap1.3

but you would get tired pretty fast, and would
probably even make mistakes. Fortunately,
there is a shortcut. You can say

pr chap·

The * means "anything at all." so this translates
into "print all files whose names begin with
chap", listed in alphabetical order.

This shorthand notation is not a property of
the pr command, by the way. It is system-wide.
a service of the program that interprets com­
mands (the "shell," shO». Using that fact,
you can see how to list the names of the files in
the book:

3-7

Is chap·

produces

chapl.1
chap1.2
chap1.3

The • is not limited to the last position in a
filename - it can' be anywhere and can occur
several times. Thus

rm ·junk· ·temp·

removes all files that contain Junk or temp as
any part of their name. As a special case, * by
itself matches every filename, so

pr •

prints all your files (alphabetical order), and

rm •

removes all files. (You had better be very sure
that's what you wanted to say!)

The • is not the only pattern-matching
feature available. Suppose you want to print
only chapters 1 through 4 and 9. Then you can
say

pr chapl12349!·

The t .. 1 means to match any of the characters
inside the brackets. A range of consecutive
letters or digits can be abbreviated, so you can
also do this with

pr chapl1-49)·

Letters can also be used within brackets: la-zi
matches any character in the range a through z.

The ? pattern matches any single character.
so

Is ?

lists all files which have single-character names.
and

Is -I chap?1

lists information about the first file of each
chapter (chap1.l, chap2.1. etd.

Of these niceties. • is certainly the most use­
ful. and you should get used to it. The others
are frills, but worth knowing.

If you should ever have to turn off the spe­
cial meaning of *. ? etc.. enclose the entire
argument in single quotes. as in

I '-" s .

We'lI see some more examples of this shortly.

how did the
another
the In

are "in n your
actIon, when you cre,ate a n~w
the that you are currently
most often your own and thus the !lie
is unrelated. to \lOY other file of th~ sam~ 11,ntlG

thal

The set of aU is
tree, with your

branches into the tree, It is for to

"walk" around ,his tree, and to anY il1

the system, by at the root of the tree and
the proper set brant:hes, Con-

walk
toward the root.

the command
which the name of

the detai.ls wiil vary to
if you the command

like

This says that you are
your-name, which is in turn

by convention just
I'!lSI: on your system, you will Iter

Make the
read

If you now type

15

and.

you should get the same list of file names
as you get from a Is: with no arguments, !s
!isIS the COI1'(er::ts of the C,lrrent direcrory;
the name of a it lists the COfl!el;1!S of

that

try

Is lUST

ThiS should a
whith is your own

series of names, among
name YOllt~i111me, On

many systems, uso' is a that contains
the directories of all the normal users of the sys"
tem, like you,

The next step is to try

name

bin
die v
I:tc

lib
tmp
USI'

is calied the

Here is a
clearer:

Notice

This 15n'
mterest are in

\

work wi.h someone
it

Is

directories of
about; ;,;;re are "H (he root

The

may make this

J:: ' ,-ve s,

the of
but if you

indeed. For
your book by

your

or make your own copy

cp

If your
around in his

doesn't want you
vice Vers,;!, can be

,
i

arranged. Each file and directory has read-write­
execute permissions for the owner, a group, and
everyone else, which can be set to control access.
See IsO) and ehmocHO for details. As a matter
of observed fact, most users most of the time
find openness of more benefit than privacy.

As a final experiment with pathnames, try

Is Ibin lusr/bin

Do some of the names look familiar? When you
run a program, by typing its name after the
prompt character, the system simply looks for a
file of that name. It normally looks first in your
directory (where it typically doesn't find it), then
in Ibin and finally in lusr/bin. There is nothing
magic about commands like cat or Is, except that
they have been collected into a couple of places
to be easy to find and administer.

What if you work regularly with someone
else on common information in his directory?
You could just log in as your friend each time
you want to, but you can also say "I want to
work on his files instead of my own". This is
done by changing the directory that you are
currently in:

cd lusr/your-friend

<On some systems, cd is spelled ehdir.) Now
when you use a filename in something like cat or
pr, it refers to the file in your friend's directory.
Changing directories doesn't affect any permis­
sions associated with a file - if you couldn't
access a file from your own directory, changing
to another directory won't alter that fact. Of
course, if you forget what directory you're in,
type

pwd

to find out.

It is usually convenient to arrange your own
files so that all the files related to one thing are
in a directory separate. from other projects. For
example, when you write your book, you might
want to keep all the text in a directory called
book. So make one with

mkdir book

then go to it with

cd book

3-9

then start typing chapters. The book is now
found in (presumably)

lusr/your-name/book

To remove the directory book, type

rm book/·
rmdir book

The first command removes all files from the
directory; the second removes the empty direc­
tory.

You can go up one level in the tree of files
by saying

cd ..

" .. " is the name of the parent of whatever direc­
tory you are currently in. For completeness, "."
is an alternate name for the directory you are in.

Using Files instead of the Terminal

Most of the commands we have seen so far
produce output on the terminal; some, like the
editor, also take their input from the terminal. It
is universal in UNIX systems that the terminal
can be replaced by a file for either or both of
input and output. As one example,

Is

makes a list of files on your terminal. But if you
say

Is > filelist

a list of your files will be placed in the file filelist
(which will be created if it doesn't already exist,
or overwritten if it does). The symbol> means
"put the output on the following file, rather than
on the terminal." Nothing is produced on the
terminal. As another example, you could com­
bine several files into one by capturing the out­
put of cat in a file:

cat fl n f3 >temp

The symbol > > operates very much like >
does, except that it means "add to the end of."
That is,

cat fl n f3 > >temp

means to concatenate fl, nand f3 to the end of
whatever is already in temp, instead of overwrit­
ing the existing contents. As with >. if temp
doesn't exist, it will be created for you.

In a similar way, the symbol < means to
take the input for a program from the following
file. instead of from the terminal. Thus, you
could make up a script of commonly used editing
commands and put them into a file called script.
Then you can run the script on a file by saying

ed file < script

As another example, you can use ed to prepare a
letter in file let, then send it to several people
with

mail adam eve mary joe < let

wi!! the
a new page. you want

each on
them. nm

instead. You could say

c~t f gil >temp
pr <temp
nu temp

but this is more work than necessary.
what we want is to take the outPlH cat and
connect it to the of pro So let IlS use a

The vertical bar I means to take the output from
cat, which would have gone to the

and put it into pr to be formatted.

Therle are many other of

Is lin ~v3

a list of your
program we counts the
and characters if! its
who a list of
one per line. Thus

who I w~
teils how many
ct'turse

Is lwc
counts your

in three columns. The
number lines, words

and as we saw
-,y,.,"',. on

Of!. And of

program th~t reads from the terminal
can read from a any program that
writes on the terminal can drive a You can
have liS many etements in i

UNIX programs are written so that
will ta'ke their from one or more

if file are given; if no a.rguments are
will re1£d from the and thus

can be used in

pr-Jllbc

1lI.. band c in order in three columns.,
But in

cat I! be! PI' - 3

the information "n''''''''1<7 down ,he
still in three columns.

3-10

and breaks the

does
prom.}'H character.

The

Thus the

the

If you
,!)S will tell you

your
other

You can

too. For
'Nuh one

.semicolon
Thus

with a

the comrnand
you have fU!1-

kin all
curious about

pm-

&:

start three commands in the or
you can start a with

commlHld-l I cUllun .. nd~2

lust as you can the editor some simi-

\
j . /

;'

lar program to take its input from a file instead
of from the terminal, you can tell the shell to
read a file to get commands. (Why not? The
shell, after all, is just a program, albeit a clever
one.) For instance, suppose you want to set tabs
on your terminal, and find out the date and
who's on the system every time you log in.
Then you can put the three necessary commands
(tabs, date, Who) into a file, let's call it startup,
and then run it with

sh startup

This says to run the shell with the file startup as
input. The effect is as if you had typed the con­
tents of startup on the terminal.

If this is to be a regular thing, you can elim­
inate the need to type sh: simply type, once only,
the command

chmod + x startup

and thereafter you need only say

3-11

startup

to run the sequence of commands. The
chmod(l) command marks the file executable;
the shell recognizes this and runs it as a
sequence of commands.

If you want startup to run automatically
every time you log in, create a file in your login
directory called . profile, and place in it the line
startup. When the shell first gains control when
you log in, it looks for the .profile file and does
whatever commands it finds in it. We'll get back
to the shell in the section on programming.

III. DOCUMENT PREPARATION

UNIX systems are used extensively for docu­
ment preparation. There are two major format­
ting programs, that is, programs that produce a
text with justified right margins, automatic page
numbering and titling, automatic hyphenation,
and the like. nroff is designed to produce output
on terminals and line-printers. troff (pro­
nounced "tee-roff") instead drives a photo­
typesetter, which produces very high quality out­
put on photographic paper. This paper was for­
matted with troff.

Formatting Packages

The basic idea of nroff and troff is that the
text to be formatted contains within it "format­
ting commands" that indicate in detail how the
formatted text is to look. For example, there
might be commands that specify how long lines
are, whether to use single or double spacing, and
what running titles to use on each page.

Because nroff and troff are relatively hard to
learn to use effectivelY, several "packages" of
canned formatting requests are available to let
you specify paragraphs, running titles, footnotes,
multi-column output, and so on, with little effort
and without having to learn nroff and troff .
These packages take a modest effort to learn, but
the rewards for using them are so great that it is
time well spent.

In this section, we will provide a hasty look
at the "manuscript" package known as -ms.
Formatting requests typically consist of a period
and two upper-case letters, such as • TL, which is
used to introduce a title, or .PP to begin a new
paragraph.

A document is typed so it looks something
like this:

.TL
title of document
.AU
author name
.SH
section headilll
.PP
paragraph ...
.PP
another paragraph •.•
.SH
another section headilll
.PP
etc.

The lines that begin with a period are the for­
matting requests. For example, .PP calls for
starting a new paragraph. The precise meaning
of .PP depends on what output device is being
used (typesetter or terminal, for instance), and
on what publication the document will appear in.
For example, -ms normally assumes that a
paragraph is preceded by a space (one line in
nroff, 1/2 line in troff), and the first word is
indented. These rules can be changed if you
like, but they are changed by changing the
interpretation of .PP. not by re-typing the docu­
ment.

To actually produce a document in standard
format using -ms, use the command

troff - ms files .•.

for the typesetter, and

nroff - ms files ...

for a terminal. The -ms argument tells troff
and nroff to use the manuscript package of for­
matting requests.

There are several similar packages; check
with a local expert to determine which ones are
in common use on your machine.

Supportinc Tools
In ad4ition to the basic fOFmatters, there is a

host of supporting programs that help with docu­
ment prepl1ration. The list in the next rew para­
graphs is far from complete, so browse through
the manual and check with people around you
for other possibilities.

eqn and neqn let you integrat~ mathematics
into the text of a document, in an easy-to-learn
language that closely resembles the way you
~ould speak it aloud. For example, the eqn
mput

SUQl froIQ i"O to n x sub i··· pi over Z

produces the output

" LX, -.!!:..
,-0 2

The program tbl provides an analogous ser­
vice for preparing tabular material~ it Qoes all the
computations necessary to align complicated
columns with elements of varying widths.

3-12

refer prepares bibliographic citations from a
data base, in whatever style is defined by the for­
matting package. It looks after all the details of
numbering references in sequence, filling in page
and volume Rumbers, getting the author's initials
and the joyrnal name righ t, and so on ..

spell and typo detect possible spelling mis­
likes in a document. spell works by comparing
the words in your document to a dictionary,
printing those that are not in the dictionary. It
knows enough about English spelling to detect
pll.lrais and the like, so it does a very good job.
t}'po looks for words which are "unllsual", and
prints those. Spelling mistakes tend to be more
unusual, and thus show up early when the most
unusual words are printed first.

grep tooks through l set of file's for lines
thlt contain a particular text pattern (rather tike
the editor's context search does, but on a bunch
of files). For example,

crep I had' el);a,·

will find all lines that end with the letters hag in
tht files chap·. (I t is almost always a good prac­
tice to put sinate quotes around the pattern
you're sO!1rching for, in case it contains charac­
ters like • or S lhat have a special meaning to the
shell.) II., is often usefl,ll for finding out in
which of a Sft of files the misspelled words
detected by spell are actually located.

dill prints a list of the differences between
two files. so YOI,I can compare two versions of
somethi", a'H9fflatiqllly (which certainly beats
JK4)Ofreadiq by hand).

we counts lhe words, lines and characters in
a set of files. tr translates characters into other
characters; for example it will convert upper to
lower case and vice versa. This translates upper
into lower:

tr A-Z a-z <input >output

SQrt sorts files in a variety of ways; cref
makes cross-references: ptx makes a permuted
index (keyword-in-context listing). sed provides
many of the editing facilities of ed, but can apply
them to arbitrarily long inputs. awk provides the
ability to do both pattern matching and numeric
computations, and to conveniently process fields
within lines. These programs are for more
advanced users, and they are not limited to
document preparation. Put them on your list of
things to learn about.

Most of these programs are either indepen­
dently documented (like eqn and tbn, or are
sufficiently simple that the description in the
UNIX Programmer's j\tfanual is adequate explana­
tion.

Hints for Preparing Documents

Most documents go through several versions
(always more than you expected) before they are
finally finished. Accordingly, you should do
whatever possible to make the job of changing
them easy.

First, when you do the purely mechanical
operations of typing, type so that subsequent
editing will be easy. Start each sentence on a
new line. Make lines short, and break lines at
natural places. such as after commas and semi­
coions, rather than randomly. Since most people
change documents by rewriting phrases and
adding, deleting and rearranging sentences, these
precautions simplify any editing you have to do
later.

Keep the individual files of a document
down to modest size, perhaps ten to fifteen
thousand characters. Larger files edit more
slowly, and of course if you make a dumb mis­
take it's better to have clobbered a small file
than a big one. Split into files at natural boun­
daries in the document, for the same reasons
that you start each sentence on a new line.

The second aspect of making change easy is
to not commit yourself to formatting details too
early. One of the advantages of formatting paclc­
ages like - ms is that they permit you to delay
decisions to the last possible moment. Indeed.
until a document is printed, it is not even
decided whether it will be typeset or put on a line
printer.

3-13

As a fule of thumb, for all but the most
trivial jobs, you should type a document in terms
of a set of requests like .PP, and then define
them appropriately, either by using one of the
canned (the better way) or by defining
your own ruoff and troff commands. As long as
you have entered the text in some systematic
way, it can always be cleaned up and re­
formatted by a judicious combination of editing
commands and request definitions.

IV. PROGRAMMING

There will be no attempt made to teach any
of the programming languages available but a
few words of advice are in order. One of the
reasons why the UNIX system is a productive
programming environment is that there is
already a rich set of tools available, and facilities
like I/O and the capabilities of
the shell often make it to do a job by

together programs that already exist
instead of writing from scratch.

The Sheil

mechanism lets yOil fabricate quite
out of spare parts that

exist. For the draft of the
program was (roughly)

cat .••
j tr ",
j tr ...
j sort

I
Icomm

collect the Jiles
put each word on a flew line
delete punctuation, etc.
imo dictionary order
discard duplicate,$
prim words in text

but not in dictionary

More have been added subsequently, but
this goes a long way for such a small effort.

The editor can be made to do things that
would require special programs on
other systems. For to list the first and
last lines of each of a set of such as a book,
you could

Bul you can do the
way is to type

type

much more easily. One

to get the list of filenames into a file. Then edit
this file make the necessary series of editing

commands (using the global commands of ed),
and write it into script. Now the command

ed <script

will produce the same output as the laborious
hand typing. Alternately (and more easily), you
can use the fact that the shell will perform loops,
repeating a set of commands over and over again
for a set of arguments:

for i in chap'"
do

eli $i < script
done

This sets the shell variable i to each file name in
turn, then does the command. You can type this
command at the terminal, or put it in a file for
later execution.

Programming the Shell

An option often overlooked by newcomers is
that the shell is itself a programming language,
with variables, control flow (if-else, while, for,
case), subroutines, and interrupt handling. Since
there are many building-block programs, you can
sometimes avoid writing a new program merely
by piecing together some of the building blocks
with shell command files.

We will not go into any details here; exam­
ples and rules can be found in An Introduction 10

the UNIX She!~ by S. R. Bourne.

Programming in C

If you are undertaking anything substantial,
C is the only reasonable choice of programming
language: everything in the UNIX system is tuned
to it The system itself is written in C, as are
most of the programs that run on it. It is also a
easy language to use once you get started. C is
introduced and fully described in The C Program­
ming Larl/?uage by B. W. Kernighan and D. M.
Ritchie (Prentice-Hall, 1978). Several sections
of the manual describe the system interfaces,
that is, how you do I/O and similar functions.
Read UNIX Programming for more complicated
things.

Most input and output in C is best handled
with the standard 110 library, which provides a
set of 1/0 functions that exist in compatible
form on most machines that have C compilers.
In general, it's wisest to confine the system
interactions in a program 10 the facilities pro­
vided by this library.

C programs that don't depend too much on
special features of UNIX (such as pipes) can be
moved to other computers that have C com­
pilers. The list of such machines grows daiiy; in
addition to the original PDp· 1 I , it currently

includes at least Honeywell 6000, IBM 370,
Interdata 8/32, Data General Nova and Eclipse,
HP 2100, Harris 17, VAX 111780, SEt and
Zilog Z80. Calls to the standard I/O library will
work on all of these machines.

There are a number of supporting programs
that go with C. Unt checks C programs for
potential portability problems, and detects errors
such as mismatched argument types and unini@
till.lized variables.

For larger programs (anything whose $ource
is on more than one file) make allows you to
specify the dependencies among the source files
and the processing steps needed to make a new
version; it then checks the times that the pieces
were last changed and does the minimal amount
of recompiling to create a consistent updated ver­
sion.

The debugger Ildb is useful for digging
through the dead bodies of C programs. but is
rather hard to learn to use effectively. The most
effective debugging tool is stilI careful thought,
coupled with judiciously placed print statemerlts.

The C compiler provides a limited ir.!Stfu­
mentation service, so you can find out where
proilams spend their time and what parts are
worth optimizing. Compile the routines with the
-p option; after the test run, use prof to print
an execution profile. The command time will
live you the gross run·time statistic.'!! of a pro­
Stam, but they are not super accurate or repro~
ducible.

Other Laquaaes
If you iw.ve to use Fortran, there are two

possibilities. You might consider Ratfor, which
gives you the decent control structures and free­
form input that characterize C, yet lets you write
code that is still portable to other environments.
Bear in mind that UNiX Fortran tends to produce
large and relatively slow~runnins programs.
Furthermore, supporting software like adb, prof,
etc., are all virtually useless with Fortran pro­
grams. There may. also be a Fortran 17 compiler
on your system. If so, this is a viable alternative
to Rauer, and has the non-trivial advantage that
it is compatible with C and related programs.
(The R.utor processor and C tools can be used
with Fortran i1 too,)

If your appliCltion requires you to translate a
language into a set of actiam> or another
language, you are in effect building a compiler,
though probably a small one. In that case, you
should be using the yaa: compiler-compiler,
which helps you develop a compiler quickly. The
lex lexical analyzer generator does the same job
for the simpler languages that can be expressed

3-14

as expressions. It can be used by itself,
or as a front end to recognize inputs for a
yace-based program. Both yacc and lex require
some to use, but the initial effort
of learning them can be many times over
in programs that are easy to change later 011.

Most UNIX systems also make available
other such as Basic,

Pascal, and Snobol. Whether these are
useful depends on the ioeal environment:
if someone cares about the language and has
worked on it, it may be in shape. If not,
the odds are strong that it will be more trouble
tlian it's worth.

V. UNIX READING LIST

and D. M.
Bell

system routines and
and some of the maintenance pro-

cedures. You can' live without although
you will probably need to read section 1.

Documents jor Use with the UNIX
System. Volume:2 of the Manual.
This contains more extMsive descriptions of
major commands, and tutorials and reference
manuals. All of the papers lisr.ed below are in it,
as are descriptions of most of the programs men­
tioned above.

D. M. Ritchie and K. L
Time-sharing System,"
overview of the system, for

"The UNiX
1974. An

operating systems. Worth anyone
who programs. Contains a remarkable number
of one-sentence observations on how to do
things right.

The Bell Spe-
cial Issue on UNIX, August, 1978, contains
many papers describing recent developments.
and some retrospective material.

The 2nd International Conference on Software
Engineering 1976) contains several
papers describing the use of the
Workbench (PWB) version of UNiX.

Document Prepulldon:

B. W. Kernighan. "A Tutorial Introduction to
the UNiX Text Editor" and Advanced Editing
on UNIX," Bell 1978, Beginners
need the introduction; (he advanced material will
help you get the most out of the editor.

M. E. Lesk, "Typing Documents on UNIX," Bell
Laboratories, 1978. the - ms macro
package. which isolates the novice' from the
vagaries of ntoff and trotf, and takes care of

most formatting situations. If this specific pack­
age isn't available on your system, something
similar is. The most likely alternative is
the P\VBJUNIX macro package - mm; see your
local guru if you use PWB/UNXX.

B. W. and L L. "A System
for Typesetting Mathematics," Bell Laboratories

Science Tech. Rep. 17.

M. E. "Tbl - A Program to Format
Tables," Bell Laboratories CSTR 49, 1976.

1. F. Ossanna, "NROFF/TROFF User's
Manual," Bell Laboratories CSTR 54, 1976.
trof! is the basic formatter used by - ms, eqn
and till. The reference manual is indispensable
if you are going to write or maintain these or
similar programs. But start with:

B. W. Kernighan, "A TROFF Tutorial," Bell
Laboratories, 1976. An attempt to unravel the
intricacies of troff.

B. W. and D. M. Ritchie, The C Pro­
gramming Language, Prentice-Hall, 1978. Con­

of all
manual.

complete discussions
and the reference

B. W. Kernighan and D. M. Ritchie, "UN!X Pro-
" Bell 1978. Describes

how to interface with the system from C pro-
grams: I/O signals, processes.

S. R. Bourne, "An Introduction to the UNIX
Shell," Bell Laboratories, 1978. An introduction
and reference manual for the Version 7 shell.
Mandatory if you intend to make
effective use of the programming power of this
sheil.

VH"'''''', "Yacc - Yet Another Compiler-
," Bell Laboratories CSTR 32, 1978.

M. E "Lex - A Lexical Analyzer Gen-
erator," Bell Laboratories CSTR 39, 1975.

S. C. "Lint, a C Checker,"
Bell Laboratories CSTR65, 1977.

"MAKE - A Program for Main­
" Bell Laboratories

CSTR 57, 1977.

1. F. Maranzano and S. R. Bourne, "A Tutorial
Introduction to " BeB Laboratories CSTR

1977. An introduction to a powerful but
tool.

S. L Feldman and P. J. Weinberger, "A Portable
Fortran 77 " Bell Laboratories, 1978.
A full Fortran 77 for UNIX systems.

3-15

':, , ,

A Tutorial Introduction to the UNIX Text Editor

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Almost all text input on the UNIXt operating system is done with the text­
editor ed This memorandum is a tutorial guide to help beginners get started
with text editing.

Although it does not cover everything, it does discuss enough for most
users' day-to-day needs. This includes printing, appending. changing, deleting,
moving and inserting entire lines of text; reading and writing files; context
searching and line addressing; the substitute command; the global commands;
and the use of special characters for advanced editing.

September 21, 1978

tUNIX is a Trademark of Bell Laboralories.

4-1

A Tutorial I ntroGuction to the UNI X Text Editor

BriOn W. Kerlllghall

Bell Laboratories
Murr~y Hill. New Jersey 07974

Introduction

Ed is a "text editor", thaI is. an interactive
program for crealing and modifying "text".
using directions provided by a user at a terminal.
The text is often a document like this one. or a
program or perhaps data for a program.

This introduction is meant to simplify learn­
ing ed. The recommended way to learn ed is to
read this document. simultaneously uSinl ed to
follow the examples. then to read the descriplion
in section I of the UNIX Programmer's Mallual, all
the while experimenting with ed. (Solicitation of
advice from experienced users is also useful.)

Do the exercises! They cover material not
completely discussed in the actual text. An
appendix summarizes the commands.

Disclaimer

This is an introduction and a tutorial. For
this reason. no attempt is made to cover more
than a part of the facilities that ed offers
(although this fraction includes the most useful
and frequently used parts). When you have
mastered the Tutorial. try AdWlllced Edllillg 01/

UNIX. Also. there is not enough space to explain
basic UNIX procedures. We will assume that you
know how to log on to UNIX. and that you have
al ast Ii vque understanding of what a file is.
For more on that. read UNIX Jor Begilltlers.

Yo~ must also know what character to type
as the end-of-line on your particular terminal.
This character is the RETURN key on most t~r­

minats. Throughout. we will refer to this charac­
ter. whatever it is. as RETURN.

~ttiQI Started

We'lI assume that you have logged in to your
syslem and it has just printed the prompt charac­
ter • usually eith'er a S or a '¥w. The easiest way to
get eo is to type

cd (followed by a return)

You are now ready to go - eo is waiting for you
10 tell it what to do.

4-2

Crearing Text - the Append command "a"

As your first problem. suppose you want to
create some text starting from scratch. Perhaps
you :tre typing the very first draft of a paper:
clearly it will have to start somewhere. and
undergo modifications later. This section will
show how to get some texl in. just to get started.
Later we'll talk about how to change it.

When ed is first started. it is rather like work­
ing with a blank piece of paper - there is no
text or information present. This must be sup­
plied by the person using ed: it is usually done by
typing in the text. or by reading it into ed from a
file. We will Slart by typing in some text. and
return shortly to how to read files.

First a bit of terminology. In ed jargon. the
text being worked on is said to be "kept in a
buffer." Think of the buffer as a work space, if
you like. or simply as the information that you
are going to be editing. In effect the buffer is
like the piece of paper, on which we will write
things, then change some of them, and finally
file the whole thing away for another day.

The user tells ed what to do to his text by
typing instructions called "commands." Most
commands consist of a single letter. which must
be typed in lower case. Each command is typed
on a separate line. (Sometimes the command is.
preceded by information about what line or lines
of text are to be alrecled - we will discuss these
shortly.> Ed makes no response to most com­
mands - there is no prompting or typing of
messages like "ready". (This silence is preferred
by experienced users. but sometimes a hangup
for beginners.)

The first command is appel/d. written as the
letter

a

all by itself. It means "append (or add) lext
lines to the buffer. as I type them in." Append­
ing is rather like writing fresh material on a piece
of paper.

So to enter lines of text into the buffer. just
type an a followed by a RETURN. rollowed by

,
/

the lines of text you want, like this:

a
Now is the time
for all good men
to come to the aid of their party.

The only way to stop appending is to type a
line tha t co ntains 0 nly a period. The"." is used
to tell ed that you have finished appending.
(Even experienced users forget that terminating
"." sometimes. If ed seems to be ignoring you,
type an extra line with just "." on it. You may
then find you've added some garbage lines to
your text, which you'll have to take out later.)

After the append command has been done,
the buffer will contain the three lines

Now is the time
for all good men
to come to the aid of their party.

The "a" and"." aren't there, because they are
not text.

To add more text to what you already have,
just issue another a command, and continue typ­
ing.

Error Messages - "?"

If at any time you make an error in the com­
mands you type to ed. it will tell you by typing

'!

This is about as cryptic as it can be, but with
practice, you can usually figure out how you
goofed.

Writing text out as a file - the Write command
"w"

It's likely that you'll want to save your text.
for later use. To write out the contents of the
buffer onto a file, use the write command

w

followed by the filename you want to write on.
This will copy the buffer's contents onto the
specified file (destroying any previous informa­
tion on the file). To save the text on a file
named junk, for example, type

w junk

4-3

Leave a space between wand the file name. Ed
will respond by printing the number of characters
it wrote ouI. In this case. edwould respond with

68

(Remember that blanks and the return character
at the end of each line are included in the char­
acter count.) Writing a file just makes a copy of

the text - the buffer's contents are not dis­
turbed, so you can go on adding lines to it. This
is an important point. Ed at aU times works on a
copy of a file, not the file ilSelf. No change in
the contents of a file takes place until you give a
w command. (Writing out the text onto a file
from time to time as it is being created is a good
idea, since if the system crashes or if you make
some horrible mistake, you will lose aU the text
in the buffer but any text that was written onto a
file is relatively safe.>

Leaving ed - the Quit command "q"

To terminate a session with ed, save the text
you're working on by writing it onto a file using
the" command, and then type the command

q

which stands for qUit. The system will respond
with the prompt character ($ or %L At this
point your buffer vanishes, with aU its text.
which is why you want to write it out before
Quiuing.t

Exerc:ise 1:

Enter edand create some text using

a
... text ...

Write it out using w. Then leave ed with the q
command, and print the file, to see that every­
thing worked. (To print a file, say

pr filename

or

cat filename

in response to the prompt character. Try both.)

Reading text from. file - the Edit command
"en

A common way to get text into the buffer is
to read it from a file in the file system. This is
what you do to edit text that you saved with the
" command in a previous session. The edit com­
mand e fetches the entire contents of a file into
the buffer. So if you had saved the three lines
"Now is the time", etc .• with a w command in
an earlier session. the edcommand

ejunk

would fetch the entire contents of the file junk
into the buffer. and respond

tActually, t'd will print? if you try to quit without writ­
ing. At that point, wrne if you want; if not, another q
will get you out regardless.

68

which is the number of characters in junk. 11
anything was already in (he blQfer. it is deletedfirst.

If you use the e command to read a file into
the buffer. then you need not use a file name
after a subsequent 'If command; ed remembers
the last file name used in an e command. and w
wiU write on this file. Thus a good way to
operate is

ed
e file
[editial session)
w
q

This way. you can simply say 'If from time to
time. and be secure in the knowledge that if you
got the file name right at the beginning. you are
writing into the proper file each time.

You can find out at any time what file name
ed is remembering by typing the file command f.
In this example. if you typed

r
f'd would reply

junk

RudinC text from a flle - the Read command
··r Jt

Sometimes you want to read a file into the
buffer without destroyinl anything that is already
there. This is done by the fc.>adcommand r. The
command

rjunk

will read the file junk into the buffer; it adds it
to the end of whatever is already in the buffer.
So if you do a read after an edit:

e junk
r junk

the buffer will contain {'NO copies of the text (six
lines).

Now is the time
for alliood men
to come to the aid of their party.
Now is the time
for all lood men
to come to the aid of ~heir party.

Like the wand e commands. r prints the number
of characters read in. after the reading operation
is coml)lele.

GeneraUy speakinl, r is much less used than
e.

4-4

Exercise 2:

Experiment with the e command - try read­
ing and printing various files. You may gel :In
error ?name, where name is the name of J tile:
this means that the file doesn't exist, tYPically
because you speUed the file name wrong, or
perhaps that you are not allowed to read or write
it. Try alternately reading and appending to see
that they work similarly. Verify that

ed filename

is exactly equivalent to

ed
e filename

What does

f filename

do?

Printing the contents of the buffer - the Print
command "p"

To print or list the contents of the buffer (or
parts of it) on the terminal, use the print com­
mand

p

The way this is done is as follows. Specify the
lines where you want printing to begin and where
you want it to end, separated by a comma, and
followed by the letter p. Thus to print. the first
two lines of the buffer, for example, (that is,
lines I through 2) say

1,2p (starting line -1. ending line - 2 p)

Edwill respond with

Now is the time
for all good men

Suppose you want to print all the lines in the
buffer. You could use 1,Jp as above if you knew
there were exactly 3 lines in the buffer. But in
general, you don't know how many there are, so
what do you use for the ending line number? Ed
provides a shorthand symbol for "line number
of last line in buffer" - the dollar sign S. Use it
this way:

1,Sp

This will print all the lines in the buffer (line I ~o
last line.> If you want to stop the printing before

'it is finished. push the DEL or Delete key; edwill
typ.e

?

and wait for the next command.

To print the last line of the buffer, you could
use

...
/

,
J

$,Sp

but ed lets you abbreviate this to

$p

You can print any single line by typing the line
number followed by a p. Thus

Ip

produces the response

Now is the time

which is the first line of the buffer.

In fact, ed lets you abbreviate even further:
you can print any single line by typing jusl the
line number - no need to type the letter p. So
if you say

$

ed will prin t the last line of the buffer.

You can also use $ in combinations like

$-l,$p

which prints the last two lines of the buffer.
This helps when you want to see how far you got
in typing.

4-5

Exercise 3:

As before, create some text using the a com­
mand and experiment with the p command. You
will find, for example, that you can't print line 0
or a line beyond the end of the buffer, and that
attempts to print a buffer in reverse order by say­
ing

3,lp

don't work.

The current line - "Dot" or "."

Suppose your buffer still contains the six
lines as above, that you have just typed

1,3p

and ed has prin ted the three lines for you. Try
typing just

p (no line numbers)

This will print

to come to the aid of their party.

which is the third line of the buffer. In fact it is
the last (most recent) line that you have done
anything with. (You just printed it!) You can
repeat this p command without line numbers,
and it will continue to print line 3.

The reason is that ed maintains a record of
the last line that you did anything to (in this
case, line 3, which you just printed) so that it

can be used instead of an explicit line number.
This most recent line is referred to by the short­
hand symbol

(pronounced "dot").

Dot is a line number in the same way that $ is; it
means exactly "the current line", or loosely,
"the line you most recently did something to."
You can use it in several ways - one possibility
is to say

.,Sp

This will prin t all the lines from (including) the
current line to the end of the buffer. In our
example these are lines 3 through 6.

Some commands change the value of dot,
while others do not. The p command sets dot to
the number of the last line printed; the last com­
mand will set both. and $ to 6.

Dot is most useful when used in combina­
tions like this one:

.+1 (or equivalently, . + I p)

This means "print the next line" and is a handy
way to step slowly through a buffer. You can
also say

.-1 (or. -lp)

which means "print the line bejore the current
line." This enables you to go backwards if you
wish. Another useful one is something like

. -3,. -Ip

which prints the previous three lines.

Don't forget that all of these change the
value of dol. You can find out what dot is at any
time by typing

£dwiIJ respond by printing the value of dol.

Let's summarize some things about the p
command and dol. Essentially p can be preceded
by 0, I, or 2 line numbers. If there is no line
number given, it prints the "current line", the
line that dot refers to. If there is one line
number given (with or without the letter pi. It

prints that line (and dot is set there); and if
there are two line numbers, it prints all the lines
in that range (and sets dot to the last line
printed,) If two line numbers are specified the
first can't be bigger than the second (see Exer­
cise 2,)

Typing a single return will cause printing of
the next line - it's equivalent to .+lp. Try it.
Try typing a -; you will find that it's equivalent
to .-lp.

Deletinc lines: the "d" c:omllUlnd

Suppose you want to let rid of the three
extra lines in the buffer. This is done by tile
delete command

d

Except that d deletes lines instead of pnnlml
t/'\em. its action is similar to that of p. The lines
to be deleted are specified for Ii exa.=lly as tney
are for p:

startln' line. ending line d

Thus ~he command

4,Sd

deletes lines 4 through the end. There are now
three lines left. as you can check by uslng

l,$p

And notice that S now is line 3! Dot is set to the
next line after the last line deleted, unless the
last line deleted is the last line in the buffer. In
that case. dot is set to S.

Exercise 4:

Experiment with ., e, r, 'If. p and Ii until you
are sure that you know what they do, and until
you understand how dot, S, and line numbers
are used.

If you are adventurous, try using line
numbers with •• r and 'If as well. You will find
that. will append lines after the line number that
you specify (rather than after dot); that r reads a
file in ajier the line number you specify (not
necessarily at the end of the buffer); and that 'If

will write out exactly the lines you specify, not
necessarily the whole buffer. These variations
are sometimes handy. For instance you can
insert a fi Ie a t the beginni.,. of a buffer by say ing

Or filename

and you can enter lines at the beginning of the
buffer by saying

0.
text . ..

Notice that .w is very different from

w

Modityinl text: the Substitute command ··s"

We are now ready to try one of the most
importa.,t of all commands - the substitute
command

s

4-6

This is the command lhal is used to chanle indi­
vidual words or letters within a line or group of
lines. It is what you use, for example, for
correcting spelling mistakes and typing errors.

Suppose that by a typing error, line 1 says

Now is th time

Ihe ~ has been left off {he. You can use s to
fix this up as fonows:

ls/th/thel

This says: "in line I, substitute for the characters
th the characters the." To verify that it works (ed
will not prin t the result a utoma ticaily) say

p

and get

Now is the time

which is what you wanted. Notice that dot must
have been set to the line where the substitution
took place. since the p command printed that
line. Dot is always set this way with the s com­
mand.

. The general way to use the substitute com­
mand is

starting-line. ending-line 51 change thisl to thisl

Whatever string of characters is between the first
pair of slashes is replaced by whatever is between
the second pair, in all the lines between slarring­
line and ending-line. Only the first occurrence on
each line is changed, however. If you want to
change every occurrence, see Exercise S. The
rules for line numbers are the same as those for
P. except that dot is set to the last line changed.
(But there is a trap for the unwary: if no substi­
tution took place. dOl is not changed. This
causes an error ? as a warning.)

Thus you can say

1,Ss/speling/spellingl

and correct the first spelling mistake on each line
in the text (This is useful for people who are
consiste nt misspellers!)

If no line numbers are given, the s command
assumes we mean "make the substitution on line
dOl", so it changes things only on the current
line. This leads to the very common sequence

s/something/something else/p

which makes some correction on the current
line, and then prints it, to make sure it worked
out right. If it didn't, you can try again. (Notice
that there is a p on the same line as the s com­
mand. With few exceptions, p can follow any
command; no other multi-command lines are
legal.)

.",
.\

It's also legal to say

sl ... I I

which means "change the first string of charac­
ters to "nothing", i.e., remove them. This is
useful for deleting extra words in a line or
removing extra letters from words. For instance,
if you had

Nowxx is the time

you can say

s/xxllp

to get

Now is the time

Notice that I I (two adjacent slashes) means "no
characters", not a blank. There is a difference!
(See below for another meaning of In

Exercise S:

Experiment with the substitute command.
See what happens if you substitute for some
word on a line with several occurrences of that
word. For example, do this:

a
the other side of the coin

s/the/on the/p

You will get

on the other side of the coin

A substitute command changes only the first
occurrence of the first string. You can change all
occurrences ·by adding a g (for "global") to the s
command. like this:

sl ... I ... /gp

Try other characters instead of slashes to delimit
the two sets of characters in the s command -
anything should work except blanks or tabs.

4-7

(If you get funny results using any of the
characters

$ • \ cl

read the section on "Special Characters"')

Context searching - "I ... I"

With the substitute command mastered, you
can move on to another highly important idea of
ed - context searching.

Suppose you have the original three line text
in the buffer:

Now is the time
for all good men
to come to the aid of their party.

Suppose you want to find the line that contains
their so you can change it to the. Now with only
three lines in the buffer. it's pretty easy to keep
track of what line the word their is on. But if the
buffer contained several hundred lines, and
you'd been making changes, deleting and rear­
ranging lines, and so on, you would no longer
really know what this line number would be.
Context searching is simply a method of specify­
ing the desired line, regardless of what its
number is, by specifying some context on it.

The way to say "search for a line that con­
tains this particular string of characters" is to
type

I string 0/ characters we want to find!

For example, the edcommand

Itheirl

is a context search which is sufficient to find the
desired line - it will locate the next occurrence
of the characters between slashes ("their">. It
also sets dot to that line and prints the line for
verifica tio n:

to come to the aid of their party.

"Next occurrence" means that ed starts looking
for the string at line. + 1, searches to the end of
the buffer, then continues at line I and searches
to line dot. (That is, the search "wraps around"
from $ to 1.) It scans all the lines in the buffer
until it either finds the desired line or gets back
to dot again. If the given string of characters
can't be found in any line, ed types the error
message

?

Otherwise it prints the line it found.

You can do both the search for the desired
line and a substitution all at once, like this:

Itheirl s/their/thel p

which will yield

to come to the aid of the party.

There were three parts to that last command:
context search for the desired line, make the
substitution, print the line.

The expression Itheirl is a context search
expression. In their simplest form. all context
search expressions are like this - a string of
characters surrounded by slashes. Context
searches are interchangeable with line numbers,
so they can be used by themselves to find and
print a desired line, or as line numbers for some
other command, like s. They were used both
ways in the examples above.

Suppose the buffer contains the three familiar
lines

Now is the time
for all good men
to come to the aid of their party.

Then the ed line numbers

INow/+l
Igoodl
Iparty/-l

are all context search expressions. and they aU
refer to the same line (line 2). To make a
change in line 2, you could say

INowl + Is/good/badl

or

Igood/s/good/badl

or

Iparty/-ts/good/badl

The choice is dictated only by convenience. You
could print all three lines by, for instance

INow/,lparty/p

or

INowl ,1Nowl + 2p

or by any number of similar combinations. The
first one of these might be better if you don't
know how many lines are involved. (Of course,
if there were only three lines in the buffer, you'd
use

l,$p

but not if there were several hundred'>

The basic rule is: a context search expression
is the SOnlt' as a line number, so it can be used
wherever a line number is needed.

[",eise 6:

Experiment with context searching. Try a
body of text with several occurrences of the
same string of characters. and scan through it
using the same context search.

Try using context searches as line numbers
for the substitute. print and delete commands.
(They CNt also be used with r, ~, and aJ

Try context searching using ?text? instead
of ltext/. This scans lines in the buffer in
revene order rather than normal. This is some­
times useful if you go too far while looking for
some string of characters - it's an easy way to
back up.

(If you get funny results with any of the
chantcte1'S'

4-8

$ • \ &:

read the section on "Special' Characters"'>

Ed provides a shorthand for repeating a con­
text search for the same string. For example,
the ed line number

Istringl

will find the next occurrence of string. It often
happens that this is not the desired line. so the
search must be repeated. This can be done by
typing merely

/1

This shorthand 5tands for "the most recently
used context search expression." It can also be
used as the first string of the substitute com­
mand, as in

Istringllsllstring21

which will find the next occurrence of stringl
and replace it by string2. This can save a lot of
typing. Similarly

??

means "scan backwards for the same expres­
sion.

Change and Insert - "c" and Hi"

This section discusses the change command

c

which is used to change or replace a group of
one or more lines. and the msert command

which is used for inserting a group of one or
more lines.

"Change", written as

c

is used [0 replace a number of lines with
different lines. which are typed in at the termi­
nal. For example. to change lines. + I through $
to something else, type

.+l,Sc

... type the lines of rext you wont here . ..

The lines you type between the c command and
the. will take the place of the original lines
between start line and end line. This is most
useful in replacing a line or several lines which
,have errors in them.

If only one line is specified in the c com­
mand, then just that line is replaced. (You can
type in as many replacement lines as you like.)
Notice the use of. to end the input - this
works just like the. in the append command

j

and must appear by itself on a new line. If no
line number is given, line dot is replaced. The
value of dol is set to the last line you typed in.

"Insert" is similar to append - for instance

Istring/i
. . . type the lines to be inserted here . ..

will insert the given lext be/ore the next line that
contains "string". The text between I and. is
inserted be/ore the specified line. If no line
number is specified dot is used. Dot is set to the
last line inserted.

Exercise 7:

"Change" is rather like a combination of
delete followed by insert. Experiment to verify
that

start, end d

· .. text . ..

is almost the same as

start, end c

4-9

· .. text . ..

These are not precisely the same if line $ gets
deleted. Check this out. What is dot?

Experiment with a and I, to see that they are
similar, but not the same. You will observe that

line-number a
· .. text . ..

appends after the given line, while

line-number i
· .. text. ..

inserts be/ore it. Observe that if no line number
is given, i inserts before line dot, while a
appends after line dot.

Moving text around: the .om" command

The move command m is used for cutting
and pasting - it lets you move a group of lines
from one place to another in the buffer. Sup­
pose you want to put the first three lines of the
buffer at the end instead. You could do it by
saying:

l,3w temp
Sr temp
1,3d

(Do you see why?) hut you (an do it a lot easier
with the m wmmand:

1,3m$

The general case is

start line, end line m after this line

Notice that there is a third line to be specified -
the place where the moved stuff gets put. Of
course the lines to be moved can be specified by
context searches; if you had

First paragraph

end of first paragraph.
Second paragraph

end of second paragraph.

you could reverse the two paragraphs like this:

ISecondl,lend of second/m/First/-l

Notice the -1: the moved text goes a/ler the line
mentioned. Dot gets set to the last line moved.

The glom.l commands "g" and "v"

The global command g is used to execute one
or more ed commands on all those lines in the
buffer that match some specified string. For
example

I/peling/p

prints all lines that contain pellng. More use­
fully,

I/peling/sllpellinB/BP

makes the substitution everywhere on the line,
then prints each corrected line. Compare this to

l,$s/peling/peJlinB/gp

which only prints the last line substituted.
Another subtle difference is that the g command
does not give a ? if peling is not found where
the s command will.

There may be several commands (including
a, C, i, r, W, but not g); in that case, every line
except the last must end with a backslash \:

g/xxx/. -ls/abc/def/B
. +2s/ghi/jkl/B
.-2,.p

makes changes in the lines before and after each
line that contains xxx, then prints all three lines.

The v command is the same as g, except that
the commands are executed on every line that
does not match the string following v:

vlld

deletes every line that does not contain a blank.

SpeciaA Characters

You may have noticed that thing~ don't
work right when you used some characters liKe "
., $, and others in context searches and the sub~
StiltHe command. The reason is raiher compiex,
although the cure is simple. Basically, ed trealS
the$e charactt:rs ,1$ special, with special mean­
ings. For instance. in a comext search or Ihe iirsl
Sfrtrlg of rhe substmue command only, . means
"any character." no t Ii period, so

Ix.yl

means "a line with an 'Ii. f,lflY charaCTer. and a y,"
not just "a line with an ;c, a and a y." A
complete lisa of the special characters lOla can
cause trouble is Ihe following:

\

Warl'llflg: The backsiash character \ is to

ed. For safety's sake, avoid it where possible. If
you have to USe one of the special characters in a
substitute command, you can tum off its
meaning temporarily by preceding it with the
baCKS lash. Thus

s/\\\,\"/backs!ash dot starl

will change \.' into "backslash dot

Here is a hurried synopsis of the other
characters. the circumflex • Signifies the
beginning 0 f a line. Thus

rmingl

finds string only if it is at the beginning of a
lit'l!!: it wil! Ii nd

strini

the suing ...

rhe dollar-sign S is just the
circumflex: it means the end of a line:

lstriniSI

of the

wiH only find an occurrence of s~rinlil that is at
the .end of some line. This impiies, of course,
that

rstrin,SI

wii! find only a line that contains just !ltrinll. and

r.sl
one character.

The character ., as we mentioned above,
match<isanything;

/x.yl

matchesiUwof

4-10

x
x-y
x y
x.y

This is useful in fiction with *, which is a
repetition character: :li~ is a shorthand for
number of a '5.," SO " matches any number of
any This is used like this:

51. ~/3tlJf.f1

s/.

which deletes all characters in the line up to and
induding the last comma. (Since.$ finds {he

possible match, this goes up to the las!
comma.}

! is used with I [0 form '\:harac!er classes";
for example,

!

matches any single - anyone of the char·
acters inside the braces wlH cause a match. This
can be abbreviated to 10-91.

, the & is another shorthand character
- it is used on the par! of a sub­
stitute command where it means "whatever was
matched on the left-hand side". It is used to
save Suppo::;,e the current line corHained

Now is the time

and you wanted to put parentheses around it.
You could retype the line, but this is tedi·
01.15. Or you could say

sriU
s/S/)I

your of • and S. But the easiest
.,ivay llses the &:

This says "match the whole and it
by itSelf surrounded parentheses." The &: can
be used severa! times in a tine; consider

s/."l&1 &!!I

to

N ow is the time? N QW is the time!!

You don't have to match the whole
course: if the buffer contains

the end of the world

you could type

! world lsi 1 &. is at ha ndl

to nn'Ui!<.:E

of

the end of the world is at hand

Observe this expression carefully, for it illus·
trates how to take advantage of ed to save typing.
The string Iworldl found the desired line; the
shorthand I I found the same word in the line;
and the & saves you from typing it again.

The & is a special character only within the
replacement text of a substitute command, and
has no special meaning elsewhere. You can turn
off the special meaning of & by preceding it with
a \:

sl ampersand/\&1

will convert the word "ampersand" into the
literal symbol & in the current line.

Summary o(Commands and Line Numbers

The general form of ed commands is the
command name, perhaps preceded by one or two
line numbers, and, in the case of e, r, and w,
followed by a file name. Only one command is
allowed per line, but a p command may follow
any other command (except for e, r, wand q).

a: Append, that is, add lines to the buffer (at line
dot, unless a different line is specified). Append­
ing continues until. is typed on a new line. Dot
is set to the last line appended.

c: Change the specified lines to the new text
which follows. The new lines are terminated by
a ., as with a. If no lines are specified, replace
line dol. Dot is set to last line changed.

d: Delete the lines specified. If none are
specified, delete line dol. Dot is set to the first
undeleted line, unless $ is deleted, in which case
dot is set to S. •

e: Edit new file. Any previous contents of the
buffer are thrown away, so issue a w beforehand.

(: Print remembered filename. If a name follows
(the remembered name will be set to it.

g: The command

gl ---/commands

4-11

will execute the commands on those lines that
contain ---, which can be any context search
expression.

i: Insert lines before specified line (or dot) until
a . is typed on a new line. Dot is set to last line
inserted.

m: Move lines specified to after the line named
after m. Dot is set to the last line moved.

p: Print specified lines. If none specified, print
line dot. A single line number is equivalent to
line-number p. A single return prints .+1, the

next line.

q: Quit ed Wipes out aU text in buffer if you
give it twice in a row without first giving a w
command.

r: Read a file into buffer (at end unless specified
elsewhere.) Dot set to last line read.

s: The command

s/stringl/string21

substitutes the characters stringl into string2 in
the specified lines. If no lines are specified,
make the substitution in line dol. Dot is set to
last line in which a substitution took place, which
means that if no substitution took place, dot is
not changed. s changes only the first occurrence
of stringl on a line; to change aU of them, type
a g after the fi nal slash.

v: The command

v/---/commands

executes commands on those lines that do not
contain ---.

w: Write out buffer onto a file. Dot is not
changed.

.-: Print value of dot. (- by itself prints the
value of $.)

!: The line

!command-line

causes command-line to be executed as a UNIX
command.

I -----/: Context search. Search for next line
which contains this string of characters. Print it.
Dot is set to the line where string was found.
Search starts at . + l, wraps around from $ to I,
and continues to dot, if necessary.

? -----?: Context search in reverse direction.
Start search at . -1, scan to 1, wrap around to $.

Advanced Editing on UNIX

Brian IV. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper is meant to help secretaries, typists and programmers to make
effective use of the UNlxt facilities for preparing and editing text. It provides

and of

• special characters, line addressing and global commands in the editor ed;

1& commands for and paste" operations on files and parts of files,
the mv, cp, cat and rm commands, and the r, IN, m and t com­

mands of the editor;

editing and editor-based programs like grep and sed.

Although the treatment is aimed at nOrl-programmers, new users with any
should find helpful hints on how to get their jobs done more easily.

4, 1978

tUNIX is 2 Trademark; of Bell Laboratories.

5

Advanced Editing on UNIX

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

1. INTRODUCTION

Although UNlxt provides remarkably
effective tools for text editing, that by itself is no
guarantee that everyone will automatically make
the most etrective use of them. In particular.
people who are not computer specialistS - typ­
ists. secretaries, casual users - often use the
system less etrectively than they might.

This document is intended as a sequel to A
Tutorial Introduction to the UNIX Text Editor 0].
providing explanations and examples of how to
edit with less etrort. (You should also be fami­
liar with the material in UNIX For Beginners [2].)
Further information on all commands discussed
here can be found in The UNIX Programmer's
Manual (3J.

Examples are based on observations of
users and the difficulties they encounter. Topics
covered include special characters in searches
and substitute commands. line addressing, the
global commands. and line moving and copying.
There are also brief discussions of effective use
of related tools, like those for file manipulation,
and those based on eel, like grep and sed.

A word of caution. There is only one way
to learn to use something, and that is to use it.
Reading a description is no substitute for trying
something. A paper like ems QM should give
you ideas about what to try. but until you actu­
aUy try something, you will not learn it.

2. SPECIAL CHARACTERS

The editor ed is the primary interface to
the system for many people, so it is worthwhile
to know how to get the most out of ed for the
least effort.

The next few sections will discuss
shortcuts and labor-saving devices. Not all of
these will be instantly useful to anyone person.
of course. but a few will be, and tile others
should give you ideas to store away fpr future
use. And as always. until you try these things,

tUNIX is a Trademark of Bell Laboratories.

5-2

they will remain theoretical knowledge. not
something you have confidence in.

The List command 'I'

ed provides two commands for printing the
contents of the lines you' re editing. Most people
are familiar with p, in combinations like

1.$1'

to print all the lines you're editing, or

sl abcl def I p

to change 'abc' to 'def on the current line. Less
familiar is the list command 1 (the letter 'I').
which gives slightly more information than p. In
particular, 1 makes visible characters that are
normally invisible, such as tabs and backspaces.
If you list a line that contains some of these, I
will print each tab as ~ and each backspace as
000(. This makes it much easier to correct the sort
of typing mistake that inserts extra spaces adja­
cent to tabs, or inserts a backspace followed by a
space.

The I command al~o 'folds' long lines for
printing - any line that exceeds 72 characters is
printed on multiple lines; each printed line
except the last is terminated by a backs lash· \. so
you can tell it was folded. This is useful for
printing long lines on short terminals.

Occasionally the I command will print in a
line a string of numbers preceded by a backslash.
such as \07 or \ 16. These combinations are used
to make visible characters that normally don't
print. like form feed or vertical tab or bell. Each
such combination is a single character. When
you see such characters. be wary - they may
have surprising meanings when printed on some
terminals. Often their presence means that your
finger slipped while you were typing; you almost
never want them.

The Substitute Command 's'

Most of the next few sections will be taken
up with a discussion of the substitute command
s. Since this is the command for changing the

_.,.>'

.:. ... ,-

contents of individual lines, it probably has the
most complexity of any eel command, and the
most potential for effective use.

As the simplest place to begin, recall the
meaning of a trailing g after a substitute com­
mand. With

s/this/thatl

and

s/this/thatl g

the first one replaces the ,first 'this' on the line
with 'that'. If there is more than one 'this' on
the line, the second form with the trailing g
changes a/l of them.

Either form of the s command can be fol­
lowed by p or I to 'print' or 'list' (as described in
the previous section) the contents of the line:

s/this/that/p
sl thisl thatll
s/this/thatl gp
s/this/thatl gl

are all legal, and mean slightly different things.
Make sure you know what the differences are.

Of course, any s command can be pre­
ceded by one or two 'line numbers' to specify
that the substitution is to take place on a group
of lines. Thus

1, $sl mispelll misspelll

changes thefi,st occurrence of 'mispell' to
'misspell' on every line of the file. But

1 ,$s/mispell/misspelli g

changes every occurrence in every line (and this
is more likely to be what you wanted in this par­
ticular case).

You should also notice that if you add a p
or I to the end of any of these substitute com­
mands, only the last line that got changed will be
printed, not all the lines. We will talk later about
how to print all the lines that were modified.

The Undo Command 'u'

Occasionally you will make a substitution
in a line, only to realize too late that it was a
ghastly mistake. The 'undo' command u lets
you 'undo' the last substitution: the last line that
was substituted can be restored to its previous
state by typing the command

u

5-3

The Metacharacter '.'

As you have undoubtedly noticed when
you use ed, certain characters have unexpected
meanings when they occur in the left side of a
substitute command, or in a search for a particu­
lar line. In the next several sections. we will talk
about these special characters, which are often
called 'metacharacters'.

The first one is the period '.'. On the left
side of a substitute command, or in a search with
'1 .. .1', '.' stands for any single character. Thus
the search

Ix.yl

finds any line where 'x' and 'y' occur separated
by a single character, as in

x+y
x-y
Xoy
x.y

and so on. (We will use 0 to stand for a space
whenever we need to make it visible.)

Since '.' matches a single character, that
gives you a way to deal with funny characters
printed by I. Suppose you have a line that, when
printed with the I command, appears as

.... th\07is

and you want to get rid of the \07 (which
represents the bell character, by the way).

The most obvious solution is to try

s/\0711

but this will fail. (Try it.) The brute force solu­
tion, which most people would now take, is to
re-type the entire line. This is guaranteed, and is
actually quite a reasonable tactic if the line in
question isn't too big, but for a very long line,
re-typing is a bore. This is where the metachar­
acter '.' comes in handy. Since '\07' really
represents a single character, if we say

sl th .isl th isl

the job is done. The'.' matches the mysterious
character between the 'h' and the 'i', whatel'er it
is.

•
Bear in mind that since '.' matches any

single character, the command

sl .1,1

converts the first character on a line into a ',',
which very often is not what you intended.

As is true of many characters in ed, the'.'
has several meanings. depending on its context.
This line shows all three:

.51./ ./

The first'.' is a iine number, the number of the
tine we are editing, which is called 'line dot'.
(We will discuss line dot more in Section 3.) The
second '.' is a metacharacter that matches any

character on that line. The third'.' is the
Got!: that really is an honest literal

On the nghr side of a substitution, '.' is not spe­
cial. If you apply this command to the line

Now is the time.

the result will be

.ow is the time.

which is probably not what you intended.

The Ihckslash '\'

Since a means character'. the
naturally arises of what to do when you

For example, how do you

Now is the time.

IIHO

Now is the time'?

The does the job. A backslash
tums off any meaning that the next char-
acter ha ve; in particular, '\,' con "lefts the
'.' from a 'match anything' into a so you
can use it to the in

Now is the time.

like this:

.I? /

The pair of characters '\,' is considered
be a. single real period.

ed to

The bacKslash can also be used when
for lines that contain a charae-

you are looking for a line that con-
tains

.PP

The search

/ ,PPI

isn'l adequate, it will find a line like

THE APPUCA nON OF .. ,

because the' .' matches the letter' A'. But if yol.l
say

I\.PP!

you will find only lines that conlain '.PP'.

The backslash can also be used to tum off
special meanings for characters other than '.'.
For exam pie, consi<Uf finding a line that con-

5-4

tains a ba.ckslash. The search

won't work, because the' isn't it literal
instead means that the second 'r no
delimits the search, But a backs lash
with another one, you can search for a litera!
backslash. Thu3

does WOdL you can search for a for-
ward slash ' /' with

of the
'/' so that it doesn't ter­

minate the 1 .. ,/ construction

As an before
find two substitute commands each of which wil!
convert the iine

intO the line

Here are several sOlutions;
works as advertised.

that each

of miscellaneous notes about
backslashes and characters. you
can use any character to delimit the of an
§ command: there is sacred about
slashes. you must use slashes for context

For instll.flce, in a !ine that contains a
lot of slashes , like

flexec II etc."

you could use a colon ;>s the delimiter - to
delete all tnt.'! type

s:/::g

if # and @ are you, character.
erase and line kill characters. you have to type
\ # and this is true whether to
~ or any other program.

When you are
backslash is not

ti!xt with Ii or i or c.
put

in one backs!ash for each one you

The Doilar 'S'

The next the '$', stands for
'the end of the line', As its most obvious use,
suppose you have the line

Now is the

and you wish to add the word 'time' to the end.
Use the $ like this:

s/$/ atimel

to get

Now is the time

Notice that a space is needed before 'time' in the
substitute command, or you will get

Now is thetime

As another example, the second
comma in the line with a peiiod
without altering the first:

Now is the for all good men,

The command needed is

s/,$I.I

The $ sign here context to make specific
which comma we mean. Without it, of course,
the s command would operate on the first
comma to

Now is the time, for ail good men,

As another to convert

Now is the time.

into

Now is the time?

as we did we can use

s/.S!?1

Like .,', the '$' hilS multiple meanings

""''''''''''"'.,,''' on context. in the line

$s/$I$/

the first '$' refers to the last line of the the

second refers to the end of that line, and the
third is a literai doHar to be added to that
line.

The Circumflex ,"

The circumt1ex (or hat or
for the of the line. For

with

Ithel

you will in all likelihood find several lines that
contain 'the' in the middle before arriving at the
one you want. But with

nhel

you narrow the context, and thus arrive at the
desired one more

5-5

The other use of' is of course to enable
you to insert something at the beginning of a
line:

places a space at the beginning of ?he current
line.

Metacharacters can be combined. To
search for a line that contains only the characters

.P?

you can use the command

;'\.PPS/

The Star '.'

you have a line that looks like
this:

lext x y {ext

where (eXI stands for lots of text, and there are
some indeterminate number of spaces between
the x and the y. Suppose the job is to replace all
the spaces between x and y a single space.
The line is too to retype, and there are too
many spaces to count. What now?

This is where the metacharacter '.' comes
in handy, A character foHowed by a star stands
for as many consecutive occurrences of that
character as To refer to all the spaces
at once, say

six rJ *y/x 0 yl

The construction '0·' means 'as many spaces as
possible'. thus 'xo means 'an x, as many
spaces as possible, then a y'.

The star can be llsed with any character,
not just space. If the example was
instead

lex! x - - -- - - - - .- y leXI

then ali '_.' can be by a single
space with the command

s/x-

suppose that the line was

lexi x , ,y lex/

Can you see what trap lies in wait for the
unwary? If you blindly type

six oyl

what will ? The answer, naturally, is that
it depends. If there are no other x's or y's on
the line, then works, but it's blind

no! management. Remember that·.'
matches any single character? Then' ,.' matches
as many characters as possible, and unless

you're careful, it can eat up a lot more of the
line thal1 YOll expected. If the line was, for
example, like this:

leXI x lext x ••••••• o •••••••• y lex! y leXI

then saying

six ,·y/x c 'II

will take everything from the jim 'x' to the last
, Which, in this example, is more

than you wan ted.

The solution, of course, is to tum off the
special of ',' with '\,':

Now everything works, for '\ •• ' means 'as many
as possible'.

There are times when the pattern ',.' is
what you want. For example, to change

Now is the time for all men

into

Now is the time 0

use' ,.' to eat up after the 'for':

s/ofor •• I.1

There are a couple of additional
associated with '$' that you should be aware of.
Most notable is the fact that 'as many as possi­
bie' means zero or more. The fact that zero is a
legitimate possibility is sometimes rather surpris­
ing. For example, if our line contained

U!Xf xy rex! X

and we said

s/xc ·'11':(0'11

Y iexf

thefirSf 'xy' matches this pattern, for it consists
of an 'x', zero spaces, and a . The reSUlt is
that the substitute acts on the first 'xy', and does
not touch the later one that actually contains
some intervening spaces.

The way around this, if it matters, is to
specify a pattern !ike

which says 'an x, a space, then as many more
spa.ces as possible, then a y'. in other words. one
or more spaces.

The other startling behavior of '.' is again
related to the fact that leTO is a legitimate
number of occurrences of something fo!!owed by
a star. The command

slx·ty/g

when applied to the line

abcdef

which is almost not what was intended.
The this behavior is zero is a

and there are no x's at
that gels converted

, [Jor between the'a' and. the '0'
that gets converted into a), nor ... and so on..
Make sure you want zero matches; if 1"101,

in this case ',nite

'xx·' is one or more x's.

The Brackets 'I I'

that
numbers that appear
of a file. You
of commands like

and 51) on, but
ever if the numbers

delete any
of all lines

a series

to take for­
Unless you

warit to repeat the commands over and over until
ail numbers are gone., must get all the
on one pass. This is the purpose of the

brackets and J.
The construction

23456

matches any whole is
calied. a 'character class'. With a character class,
the is easy. The pattern
matches zero
so

-/ f

deletes all all lines.

Any characters can appear within a charac-
ter class, and to confuse the issue there are

no characters inside the brack-
ets:, even the have a

characters, for To search
you can say

I

Within ,the T is not To get 'J'
into a character make it the t1rst character.

It's a nuisance to ha'fe out the
so you can abbl'eviati:; them as [0 - 9j;

[a - zl stands for the lower case letters,
for upper- cast:.

As a final rriii on character classes, ;:ou can

a class that means 'none of the foHowing
characters'. This is done by beginning the class
with a ,A,:

-- 9J
stands for character excel'! a digit'. Thus
you find the first line Iha! doesn'l begin
with a tab or space by a search like

IT (!ab)]1

Within a character class, the circumflex has
a if it occurs at the
ning. Just to convince yourself, verify that

finds a line that does!l't with a circumflex.

The Ampersand '&'

The ampersand '&' is used primarily to
save typing. you have the line

Now is the time

and you want to make it

Now is Ihe best time

Of course you can always say

s/lne/the best!

but it seems to have to repeat the 'the'.
The '&' is used to eliminate the On
the right side of a substitute, the ampersand
means 'whatever was just matched', so you can
say

s/thel & bestl

and the '&' wi!! stand for 'the'. Of course this
isn't much of a saving if the matched is

'the', but if it is something truly long or
awful, or if it is like '.*' which
matches a lot of text, you can save some tedious

There is also much less chance of mal;:­
the replacement tex!. For

a of its

51 .~I

can occur more than once

slthe! & best and & worst!

makes

Now is the best and the worst time

and

s/ •• I&? &!!i

con verts Ihe line into

5 "' -I

Now is the time? Now is the time!:

To get a literal naturally the
backslash is used to turn off the special meaning:

51 ampersand/\&1

converts the word into the symbol. Notice that
'&;' is not 011 the lefi side of a substitute,
only on the side.

Newlines

eli a for
line into two or more shorter lines

in a newline'. A.s the simplest sup-
pose a Hile has gotten unmanageably long
because of because it was

typed). If it looks like

lext xy lex!

you can break it between the 'x' and the 'y' iike
this:

s/xy/x\
yl

This is although it is
typed on in mind that '\'
turns off it seems relatively
intuitive that a '\' at the end of a line would
make the newline there no spedal.

You can in fact make a line into
several lines with this same mechanism. As a
large consider underlining the word
'very' in a iong line splitting 'very' onto a
separate and it the raft' or lU'off

command' .u!'.

reXi a very Text

The command

51 0 very CJ 1\
.u!\

I

converts the line into four shorter preced­
ing the word 'very' the line '.ul', and elim­
inating the spaces around the 'very', all at the
same time.

When a newline is substituted in, dot is
left at the la;;t line created.

Lines

Line;; may also be but this
is done with the j command instead of s. Given
the lines

Now is
othe time

and ~U!:n.Jtl~Hl\! that dot is set to the firs! of them,

then. the command

them together. No blanks are added, which
is why we showed a blank ;H the

of the second line.

All by itself, a j command
line dot + 1, but any
be Just
line numbers. For

I,Sjp

line dOl to
lines can

and

joins all the lines into one one and it.
(More on line numbers in Section

a Line with \ (... \)

(This section should be skipped on first
reading.) Recall that • &' is a shorthand that
stands for whatever was matched the left side
of an s command. In much the same way you
can capture separate of what was matched;
the difference is that you have to on
the left side what you're interested in.

for that you have a file
of lines that consist of names in the form

Smith, A. B.
Jones, C

and so on, and you want the initials to '''''1'"." ..
the na.me, as in

A. B. Smith
C Jones

It is possible to do this with a series of editing
commands. bl.H it is tediolls and error-prone.
is instructive to out how it is done,
though.)

The alternative is to the of the
pattern (in this case, the lasl name, and the ini­
tials), and then rearrang~ the Or! the left
side of a substitution, if part of the pattern is
enclosed between \ (and \), whatever matched
that pan is remembered, and available for use on
the right side. On the right the symbol '\ l'
refers to whaiever matched the first \ pail",
'\2' to the second \ L\), and so on.

The command

1,$$/"\ ,i ,c-\<'-\)/\20\1I

hard to read, does the The first
\ L\) match!!!::!> the last name, which is any
\.II' to the comma; this is referred to on the
side wilh '\ 1'. The second \ (... \) is whatever
foHows the comma and any spaces, and is
referred to as '\2'.

Of course. with any editing sequence this
it's foolhardy to simply run it and

5-8

The
in section 4

commands g; and 'I discussed
a \<flay

exactly those lines were
substitute command, 3.nd thus
what you wanted in ali cases.

you to print
affecied by the

that it did

3. LINE ADDRESS l\iG IN THE EDITOR

area we will discuss is
t.hat is, how you

be affected
commands. We have already used constn.lctlons
like

on lines, most users

the next line, and with

to find a i.ine that contains
is the

. This is ""iJ"'''·'''''H
ize that the
up the page from

The slash and

of
Less

occurrence of
when YOll real-

m.ark are the
characters you can use to delimit a context

you can use
acter II'! a substitUle command.

:my char-

The next step is
numbers [ike'.', '$', '/
and' -'. Thus

combine the line
and ~? .. ,?~ w"ith • ...b ~

the next to last line of the
current
Far
ous

file one line before line
to n~catl how fes you got in a

session,

$-

Ihe last six lines. sure yo!.! uI'Hierstand
ifs not five.) there aren't of

course, get an error message.

As another

from three lines before where you are now
line to three lines after, thus you

a bit of context way, the' +' can be
omiued:

.-3,

is identical in

5- 9

Anotner area in which you can save typing
effort in !.ines is to use' -' and '+' as
iine numbers by themselves.

itself is a command to move back up one line
in the file. In you can string several minus

to move back up that many lines:

moves up three lines, as does' - 3'. Thus

-3,+

is also identical to the above.

Since '-' is shorter than ',,~ 1', construc­
tions like

are useful. This 'bad' to 'good' on the
line and on the CUfient line.

'+' and '. -' can be used in combination
with searches using 'looP and '?oo?', and with

finds ihe line , and
you two lines before il.

Searches

YOIl ask fo!' the search

Ihorrible thingl

and when the line is printed you discover that it
isn't the horrible that you wanted, so it is
necessary to repeat the search You don '(
have to !'e-iype the search, for the construction

1/

is a shorthand for 'the thing that was
searched for', whatever it was. This can be

as many times as necessary. You can
also go backwards:

??

searches for the same
direction.

but in the reverse

Not only can you repeat the search, but
you can use '/1' as the left side of a substitute
command, to mean 'the most recent

!horrible
ed prmls line with 'horrlble !hinr;:' .

s/

To go backwards and line, say

Of course, you can still use the '&' on the
hand of a substitute to stand for whatever

got matched:

Ils/I&c&/p

finds the next occurrence of whatever you
searched for replaces it by tvvo copies of
itself, then
worked.

the line just to verify that it

Default Line Numbers and the Value of Dot

One of the most effective ways 10 up
your is always to know what lines wiil be
affected by a command if you don'l specify the
lines it is to act on, and on what line you will be
positioned the value of dot! when a com­
mand finishes. If you can edit without specifying
unnecessary line you can save a lot of

As Ihe most obvious example, if you issue
a search command like

IthingJ

you are !eft pointing at the next line that con­
tains 'thing'. Then no address is required with
commands like s to make a substitution on that
line, or p to it, or I to list it, or Ii to delete
it, or a to append text after it, or c to change it,
or i to insert text before it.

What if there was no 'thing'?
Then you are left where you were - dot is
unchanged. This is also true if you were sitting
on the only when you issued the com­
mand. The same rules hold for searches that use
'?oo '1'; the only difference is the direction in
which you search.

The delete command d leaves dot pointing
at the line that followed Ihe last deleted line.
When line '$' gets deleted, however, dot points
at the new line '$'.

The line-changing commands ll, C and i by
default all affect the current line -- if you give
no line number with a appends text after
the current line, c the current line, and i
inserts text before the current line.

a, C, and i behave identically in one
respect - when you stop appending, changing or

dot points at the last line entered.
This is exactly what you want for typing and edit­

on the fly. For example, you can say

a
... text ...
... botch oo'

s/botchl correctl
a

oo. more text .oo

(minor error)

(fix botched line)

without any line number for the sub-

stitute command or for the second append com­
mand. Or you can say

a
... text ...
... horrible botch ... (major error)

c (replace entire line)
... fixed up line ...

You should exp(.riment to determine what
happens if you add flO lines with a., c or i.

The r command will read a file into the
text being edited, either at the end if you give no
address, or after the specified line if you do. In
either case. dot points at the last line read in.
Remem ber that you can even say Or to read a
file in at the beginning of the text. (You can
also say 0. or 1i to start adding text at the begin­
ning.)

The V'I command writes out the entire file.
If you precede the command by one line
number. that line is written, while if you precede
it by two line numbers, that range of lines is
written. The V'I command does /lot change dot:
the current line remains the same. regardless of
what lines are written. This is true even if you
say something like

i"\.ABI ,/"\.AE/w abstract

which involves a context search.

Since the V'I c~mmand is so easy to use,
you should save what you are editing regularly as
you go along just in case the system crashes, or
in case you do something foolish. like clobbering
what you're editing.

The least intuitive behavior, in a sense, is
that of the s command. The rule is simple -
you are left silting on the last line that got
changed. If there were no changes. then dot is
unchanged.

To illustrate, suppose that there are three
lines in the buffer, and you are sitting on the
middle one:

xl
x2
x3

Then the command

-,+s/x/y/p

prints the third line. which is the last one
changed. But if the three lines had been

xl
y2
y3

and the same command had been issued while

5-10

dot pointed at the second line, then the result
would be to change and print only the first line,
and that is where dot would be set. .

Semicolon ';'

Searches with 'I .. .!' and '?.?' start at the
current line and move forward or backward
respectively until they either find the pattern or
get back to the current line. Sometimes this IS

not what is wanted. Suppose, for example, that
the buffer contains lines like this:

ab

be

Starting at line I, one would expect that the
command

lal,lblp

prints all the lines from the 'ab' to the 'bc'
inclusive. Actually this is not what happens.
80th searches (for 'a' and for 'b') start from the
same point, and thus they both find the line that
contains 'ab', The result is to print a single line.
Worse, if there had been a line with a 'b' in it
before the 'ab' line, then the print command
would be in error, since the second line number
would be less than the first. and it is illegal to try
to print lines in reverse order.

This is because the comma separator for
line numbers doesn't set dot as each address is
processed; each search starts from the same
place. In edt the semicolon ':' can be used just
like comma, with the single difference that use
of a semicolon forces dot to be set at that point
as the line numbers are being evaluated. In
effect. the semicolon 'moves' dot. Thus in our
example above, the command

la/;/b/p

prints the range of lines from 'ab' to 'be',
because after the 'a' is found, dot is set to that
line, and then 'b' is searched for, starting beyond
that line.

This property is most often useful in a
very simple situation. Suppose you want to find
the second occurrence of 'thing'. You couid say

Ithingl
I I.

but this prints the first occurrence as well as the

second, and is a nuisance when you know very
well that it is the second one you're
interested in. The soluiion is to say

Ithing!j I

This says to find the first occurrence of 'thing',
set dot to thaI line, then find the second and
print only that.

Closely related is for the second
previous occurrence of something, as in

the third or fourth or ... in either din~c··
tion is left as an exercise.

, bear in mind thai if you want to
find the first occurrence of something in a fiie,

within the file, it is

because this fails if occurs on line 1. But
it is to say

(one of the few where 0 is a legal line
number), for this starts the search at line !.

the Editor

As a final note on what aO! gets set to, you
should be aware that if you hit the interrupt or
delete or mooul or break while ell is doing a
command, are put back together again and
your state is restored as much as possible to what
it was before the command began. Naturally,

are irrevocable - if you are read­

clean but
(which is
them l.

a file or
these in some

state in the middle
stop

is more clear cut. Dot is no!
is done. Thus if you

line, then hit
delete, you are 1101 on Ihat line or even
near it. Dot is left where it was when Ihe p com-
mand was starte;d.

4. GLOBAL COMMANDS

The commands g and v are used to
one or more commands on all

lines that either contain
:I pallern.

As the

gl

or don't contain

the command

all lines that contain the word 'UNIX'.
Tlle pattern that goes between the slashes can be

5-11

anything that could be llsed in a line search OJ in
a substitute command; exactly the same rules
and limitations appiy

As another then.

g/"'\

prints all the formatting commands in a file
(lines that begin with':).

The v command is identical !o g, except
that it operates on those line thai do 1101 contain
an occurrence of the pa!lern. (Don"! look too
hard for mnemonic to the letter 'v'.)
So

all the lines that don't
actual text lines.

with'.' - the

The command that follows g or l! can be
anything:

gf'\.!d

deletes all lines that

gr$/d

deletes all empty lines.

with' ,'. and

Probably the most useful command that
Can follow a global is the substitute command,
for this can be used to make a change and print
each affected line for verification. For example,
we could change the word 'Unix' to 'UNIX'
everywhere, and verify that it really worked, with

g/Unix/s! /UNIX/gp

Notice that we used 'I/' in the substitute com­
mand to mean 'the previous pattern', in this
case, 'Unix'. The p command is done on every
line that matches the pattern, no! just those on
which a substitution took place.

The global command operates by making
two passes over the file. On the first pass, all
lines that match the pattern are marked. On the
second pass, each marked line in turn is exam­
ined, dot is set to that line. and the command
execlIled. This means thai it is possible for the
command that roilows a g or v to use addresses,
set dO!, and so on, quite freely.

gr\,PPI +
the line that follows each '.PP' command

for a new paragraph in some format­
. Remember that' +' means 'one

line past dot'. And

g/topicn-\ .SH? I

searches for each line that contains 'topic', scans
backwards until it finds a line that begins' .sH'
(a section heading) and prints the line that fol­
lows that, thus the section headings

under which 'topic' is mentioned. Finally,

gr\.EQI +F\.EN/-p

prints all the lines that lie between lines
[ling with'. EQ' and' .EN' formatting commands.

The g and v commands can also be pre­
ceded by line numbers, in which case the lines
searched are only those in the range

Multi·line Global Cor:tmll.nds

It is possible to do more than one com-
mand under the comrol of a command,
aitnough the syntax for
is not natural or As an
example, suppose the task is to 'x' to
and 'a' to 'b' on all lines that contain 'thing'.
Then

s/a/bi

is sufficient. The '\' the g command that
the set of commands continues on the next
it terminates on the first line that do/!,'S not end
with . (As a minor blemish. you can '(use a
substitute command to insert a newline within iii.

g command.)

You should watch out for this
the command

gix/slly/\
s/a/bl

does 1101 work as you expect. The remembered
pauern is the last paltern that was actually exe·
cuted, so sometimes it wiH be 'x' expected),
and sometimes it will be 'a' (not . You
must spell it out, like this:

gJx/s/x/y/\
sJa/b/

It is also possible to execute a, c and i
commands under a global command; as with
other multi-line constructions. all that is needed
is w add a '\' at the end of each line except the
last. Thus to add a '.of' and '.51" command
before each '.EQ' line, type

gr\.EQIi\
.nf\
.sp

There is no need for a final line containing a .:
10 terminate the i command. I..m!ess there are
further commands being done under the global.
On the other hand, it does no harm 10 put it in
either.

5-12

5. CVT AND PASTE WITH UNIX COM·
\-IANDS

One area in which non-
programmers seem nO!. very confident is in what

be caHed

file somewhere
one to another in a tlie.
the middle of another.
and

Yet most of these are
easy. if you keep your ",its about you and

go The several sections talk
about cut ::md paste. We 'Nith the UNIX

commands for
discuss
files.

You
want it to
done?

The

the Name of

have a file
be called

UNIX

around~ then
on of

File

named ~r(lemO' and you
How ;",

.~ it

that renames files is
called mv ~move'): it "moves J the file from
one name to like this:

mv memo paper

Hlaf:; all there is to it: mv from the old name 10

the new name.

mv o!dname newname

there
new name, its present contents '",iIi be
clobbered by the information from the other file.
The one is that you can" move a file
10 itself -

mv x x

is

a of il File

Sometimes what you want is il. GOpy of a
file - an fresh version. This be
because you want to work on a and yet save
a copy in case ger,S fouled up, or
because re

In any case, the wa;{ to do it is with the ep
command. lep stands , the system is

on short command names, which are

cp

This

users, but someiimes a strain for
you have a file called

to save a copy before you make

onto

Choose a name
- then type

" and you now

/

have two identical copies of the file 'good'. (If
'savegood' previously contained something, it
gets overwritten.)

Now if you decide at some time that you
want to get back to the original state of 'good',
you can say

mv savegood good

(if you're not interested in 'savegood' any
more), or

cp savegood good

if you still want to retain a safe copy.

In summary, mv just renames a file; ep
makes a duplicate copy. Both of them dobber
the 'target' file if it already exists, so you had
better be sure that's what you want to do be/are
you do it.

Removing a File

If you decide you are really done with a
file forever, you can remove it with the rm com­
mand:

rm savegood

throws away (irrevocably) the file called
'savegood' .

Two or More Files Together

The next step is the familiar one of collect-
two or more files into one big one. This will

be needed, for example, when the author of a
paper decides that several sections need (0 be
combined into one. There are several ways to do
ii, of which the cleanest, once you get used to it,
is a program called cat. (Not all programs have
two-letter names.) cat is short for 'concatenate',
which is what we want to do.

Suppose the job is to combine the files
'filel' and 'fiJe2' into a single file called 'bigfile'.
If you say

cat file

the contents of 'file' will get printed on your ter·
minal. If you say

cat filel file2

the contents of 'file l' and then the contents of
'me2' will both be prjnted on your terminal, in
that order. So cat combines the files, all right,
but it's not much help to print them on the ter­
minal - we want them in 'bigfile'.

Fortunately, there is a way. You can tel!
(he Hstcm that instead of prmting on \'our rer·

you want the -same information put in a
file, The way to do it is 10 add to the command
line the character > and the name of the file

5-13

where you want the outpU! to go, Then you can
say

cat file 1 file2 > bigfile

and the job is done. (As with cp and mv, you're
putting something into 'bigfile', and anything
that was already there is destroyed.)

This ability to 'capture' the output of a
program is one of the most useful aspects of the
system. Fortunately it's not limited to the cat
program - you can use it with any program that
prints on your terminal. We'll see some more
uses for it in a moment.

Naturally, you can combine several files,
not just two:

cat file 1 file2 file3 ... > bigfile

collects a whole bunch.

and

Question: is there any difference between

cp good savegood

cat good >savegood

Answer: for most purposes, no. You might rea·
sonably ask why there are two programs in that
case, since cat is obviously all you need. The
answer is that cp will do some other things as
well, which you can investigate for yourself by
reading the manuaL For now we'll stick to sim­
ple usages.

Adding Something 10 the End of 2 File

Sometimes you want to add one file to the
end of another. We have enough building blocks
now that you can do it; in fact before reading
further it would be valuable if you figured out
how. To be specifiC, how would you use cp, rill'

and/or cat to add the file 'goodl' to the end of
the file 'good""

You could try

cat good good 1 > temp
mv temp good

which is probably most direct. You should also
understand why

cat good good! :> good

doesn't work. (Don't practice with a good
'good'!)

The easy way is to use a variant of >.
called> >. In fact. > > is identical to :> except
that instead of clobbering the aid file, it simply
t;.lcks stuff' on at the end, Thus you could say

cat good! > > good

and 'goodl' is added to the end of 'good'. {And

if 'good' didn't exist, this makes a copy of
l' called 'good'.)

6. CUT AND PASTE WITH THE EDITOR

Now we move on to
of files - individual lines or grou.ps of lines.
This is another area where new users seem
unsure of themselves.

Fihm:unes

The first step is to ensure that you know
the eli commands for and writing fiies.
Of course you can't go very far without "",.,,,,,,,,a
rand w. but less wei! known, is
the 'edit' command e. Within ed, the command

e newfile

says 'I want to edit a new file called
without leaving the editor.' The e command dis-
cards whatever currently on and
starts over on new/Uf!. It's the same as if
you had with the q command, then re­
entered eli with a new file name, except that if
you have a pattern remembered, then a C(lm~

mana like /1 will still work.

If you enter cd with the command

ed file

ed remembers the name of the file, and any sub­
sequent e, I' or w commands that don't contain a
filename will refer to this remembered file. Thus

eo filed

w

w

back in file 1)
without

(and so does a series of edits on various files
without ever ed and without typing the
name of any file more than once. an
if you examine the sequence of commands here,
you can see many UNIX systems use III as a
synonym for ed';

You can find out the remem.bered file
name at any time wilh the f command~ type
f withom a file name. You can also the
name of the remembered file name with f; a use­
ful sequence is

(editing) ...

which gets a copy of a precious then uses r
to guarantee that a careless w command won't
clobber the original.

5-14

you have a file caJled 'memo'.
and you want the file cailed 'tabLe' to be inserted
just after {he reference to Table L Tllat in
'memo' somewhere is a line that says

Table 1 shows that '00

and the data contained in 'tabie' has to go
so wi!! be formatted mrcft'

or iroff. Now what?

This one is ~a5Y, Edit 'memo', find 'Table
1', and add the file "table' there:

eli memo
ITab!e 11
Table J shows

The critical line is the iast one, As we said ear-
the r command reads a here you asked

for it to be read in after line dot, An r
command withoU1. any address adds lines at the

it is the same 3S Sf.

G1iJt Part 1)f a

The other side of the coi/:l is
part of the document

you wan!
file that table from the
can be forma.tted and tested
that in the file edited we have

.. TE

out
For exam-

which is the way a tabie is up for (he ttli oro­
gram. To is(li;;u;;: the tabie in a separate' file
called 'table', first find the sum of the taJde
'.TS' , then wl'it<! out the part:

.TSI
. is fJf!nfS the line

'\.TE/w table

and the is done. you are
can do it all at once ",-j.h

".TElw tabie

you

The the w command can write
inst.ead of the whole tHe. In

you can write ;jU! a line if you like;
one line number instead of two. For
if you have a

line and you know that it
like it) is to be needed later, then save it
- don't re-type it. In the say

a
.. .lots of stuff .. .
. .. horrible line .. .

.w temp
a
... more stuff ...

.r temp
a
••• more stuff •.•

This last ex.ample is worth
you appreciate what's going on.

Moving Lines Around

to be sure

you want to move a paragraph
from its present position in a paper to the end.
How would you do it? As a concrete example,
suppose each paragraph in the paper begins with
the command '.PP'. Think about it
and write down the details before reading on.

The brute force way (not necessarily bad)
is to write the paragraph onto a temporary
delete it from its current position, then read in
the temporary file at the end. Assuming that
you are sitting on the' .PP' command that begins
the paragraph, this is the sequence of commands:

• ,r\.PP! -w temp
.,II-·ct
$f temp

That is, from where you are now (':) until one
line before the next '.PP' (' r\ .PP! - ') write
onto 'temp'. Then delete the same lines.
finally, read 'temp' at the end.

As we said, that's the brule force way.
The easier way (often) is to use the move com-
mand m that ed - it lets you do the
whole set of at one crack, without any
temporary file.

The m command is like many other ed
commands in that it takes up to two line
numbers in front that tell what iines are to be
affected. It is also followed by a line number that
tens where the iines are to go. Thus

line 1, line2 m lind

says to move all the lines between 'line l' and
'line2' after 'line3'. Naturally, any of 'linel'
etc., can be patterns between $ signs, or
other ways to lines.

again that you're sitting at the
firs! line of the Then you can say

0,1'\ .PP/- m$

That's alL

15

As another example of a fi'equent opera­
tion, you can reverse the order of two adjacent
lines by moving the first one to after the second .
Suppose that you are positioned at the first.
Then

m+

does it. It says to move line dot to after one line
after line dot. If you are positioned on the
second line,

m--'

does the interchange.

As you can see, the m comm<md is more
succinct and direct than writing, deleting and re­
reading. When is brute force better anyway?
This is a matter of persona! taste - do what you
have most confidence in. The main difficulty
with the m command is that if you use patterns
to specify both the lines you are moving and the
target, you have to take care that you specify
them properly, or you may well not move the
lines you thought you did. The result of a
botched In command can be a ghastly mess.

the job a step at a time makes it easier for
you to verify at each step that you accomplished
what you wanted to. h's also a good idea to
issue a Vf command before doing anything com·
plicated; then if you goof, it's easy to back up to
where you were .

Marks

ed provides a facility for marking a line
with a particular name so you can later reference
it by name regardless of its actual line number.
This can he handy for moving lines, and for
keeping track of them as they move. The mark
command is k; the command

kx

marks the current !ine with the name 'x'. If a
line number precedes the k, that line is marked.
(The mark name must be a single lower case
letter.) Now you ,:an refer to the marked line
with the address

'x

Marks are most useful for moving things
around. find the first line of the block to be
moved, and mark it with 'a. Then find the last
line and mark it with 'b. Now position yourself
at the place where the stulf is to go and say

'a:bm.

Bear in mind that only one line can have a
particular mark name associated with it at any
given time.

Copying Lines

We mentioned earlier the idea of saving a
line that was hard to type or used often, so as to
cut down on typing time. Of course this could
be more than one line; then the saving is
presumably even greater.

ed provides another command, called t
(for 'transfer') for making a copy of a group of
one or more lines at any point. This is often
easier than writing and reading.

The t command is identical to the m com­
mand, except that instead of moving lines it sim­
ply duplicates them at the place you named.
Thus

l,StS

5-16

duplicates the entire contents that. you are edit­
ing. A more common use for t is for creating a·
series of lines that differ only slightly. For
example, you can say

a

t.
s/x/yl
t.
s/y/zl

and so on.

x (long line)

(make a copy)
(change it a bit)
(make third copy)
(change it a bit)

The Temporary Escape ':'

Sometimes it is convenient to be able to
temporarily escape from the editor to do some
other UNIX command. perhaps one of the file
copy or move commands discussed in section S.
without leaving the editor. The 'escape' com­
mand ! provides a way to do this.

If you say

'any UNIX command

your current editing state is suspended, and the
UNIX command you asj(ed for is executed. When
the command finishes, ed will signal you by
printing another !; at that point you can resume
editing.

You can really do am' UNIX command.
including another ed. (This is quite common. in
fact.> In this case. you can even do another !.

7. SUPPORTING TOOLS

There are several tools and techniques that
go along with the editor. all of which are rela­
tively easy once you know how ed works.
because they are all based on the editor. In this
section we will give some fairl.y cursory examples
of these tools, more to indicate their existence
thJn to provide ~ complete tutorial. More infor-

mation on each can be found in (3).

Grep

Sometimes you want to find all
occurrences of some word or pattern in a set of
files, to edit them or perhaps just to verify their
presence or absence. It may be possible to edit
each file separately and look for the pattern of
interest, but if there are many files this can get
very tedious. and if the files are really big, it may
be impossible because of limits in ed.

The program grep was invented to get
around these limitations. The search patterns
that we have described in the paper are often
called 'regular expressions', and 'grep' stands for

glrelp

That describes exactly what grep does - it prints
every line in a set of files that contains a particu­
lar pattern. Thus

grep 'thing' file 1 file2 file3 ...

finds 'thing' wherever it occurs in any of the files
'file 1', 'file2'. etc. grep also indicates the file in
which the line was found. so you can later edit it
if you like.

The pattern represented by 'thing' can be
any pattern you can use in the editor, since grep
and ed use exactly the same mechanism for pat­
tern searching. It is wisest always to enclose the
pattern in the single quotes ' .. .' if it contains any
non-alphabetic characters, since many such char­
acters also mean something special to the UNIX

command interpreter (the 'shell'). If you don't
quote them, the command interpreter will try to
interpret them before grep gets a chance.

There is also a way to find lines that dOli',
contain a pattern:

grep - v 'thing' file I file2 ...

finds all lines that don '[contains 'thing'. The
- v must occur in Ihe position shown. Given
grep and gre!) - v. it is possible to do things like
selecting all lines that contain some combination
of patterns. For example. to get all lines that
contain 'x' but not 'y':

grep x file... i grep - v y

(The notation I is a 'pipe', which causes the out­
put of the first command to be used as input to
the second command: see [2].)

Editin~ Scrip(s

If a fairly complicated set of editing opera­
tions is to be done on a whole set of files, the
easiest thing to do is to make up a 'script', i.e., a
file that contains the operations you want to per­
form. then apply this script to each file in turn.

5-17

For example, suppose you want to change
every 'Unix' to 'UNIX' and every 'Gcos' to
'GCOS' in a large number of files. Then put
into the fiie 'script' the lines

g/Unix/sllUNIX/g
g/Gcos/sllGCOS/g
w
q

Now you can say

ed file! <script
ed file2 <script

This causes ed to take its commands from the
prepared script. Notice that the whole job has to
be planned in advance.

And of course by using the UNIX command
interpreter, you can cycle through a set of files
automatically, with varying degrees of ease.

Sed

sed ('stream editor') is a version of the
editor with restricted capabilities but which is
capable of processing unlimited amounts of
input. Basically sed copies its input to its output,
applying one or more editing commands to each
line of input.

As an example, suppose that we want to
do the 'Unix' to 'UNIX' part of the example
given above, but without rewriting the files.
Then the command

sed '51 Unixl UNIX/ g' file 1 file2 ...

applies the command 's/Unix/UNIX/g' to all
lines from 'file 1', 'ftle2', etc., and copies all lines
to the output. The advantage of using sed in
such a case is that it can be used with input too
large for cd to handle. All the output can be col­
lected in one place, either in a file or perhaps
piped into another program.

If the editing transformation is so compli­
cated that more than one editing command is
needed, commands can be supplied from a file,
or on the command line, with a slightly more
complex syntax. To take commands from a file,
for example,

sed - f cmdfile input - files ...

sed has further capabilities, including con­
ditional testing and branching, which we cannot
go into here.

Acknowledgement·

I am grateful to Ted Dolotta for his careful
reading and vaiuable suggestions.

References

[1] Brian W. Kernighan, A TUioriallnrroducrion
10 the UNIX Tex! Editor. Bei! Laboratories
internal memorandum.

[21 Brian W. Kernighan, UNIX For Beginners.
Bell Laboratories internal memorandum.

!JJ Ken L. Thompson and Dennis M. Ritchie,
The UNIX Programmer's Manual. Bell
Laboratories.

An Introduction to the UNIX Shell

S. R. Bourne

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

The shell is a command programming language that provides an interface to the
UNlxt operating system. Its features include control-flow primitives, parameter
passing, variables and string substitution. Constructs such as whi/(', if then else.
case and for are available. Two-way communication is possible between the
shell and commands. String-valued parameters, typically file names or flags,
may be passed to a command. A return code is set by commands that may be
used to determine control-flow, and the standard output from a command may
be used as shell input.

The shell can modify the environment in which commands run. Input and out­
put can be redirected to files, and processes that communicate Ihrough 'pipes'
can be invoked. Commands are found by searching directories in the file sys­
tem in a sequence that can be defined by the user. Commands can be read
either from the terminal or from a file, which allows command procedures to be
stored for later use.

November 12, 1978

tUNIX is a Trademark of Bell Laboratories.

6-1

An

1.0 Introduction

The shell is both a command
to the UNIX system.
The section covers most of the
with UNIX is an
Section 2
cedures.

A

S. R.

and a

The last section describes the more advanced
pipe (2)" are to a section of the UNIX

1.1 commands

Simple commands consist one or
name of the command to be any
command. For

who

UN

07974

an interface
the UNIX sheiL

shell pro­
the

References of the form "see

the
to the

is a command that the names users in. The command

Is -I

prints a list in the current The ~ i tells /5 to status inf orma-
tion, size and the creation date for each

1.2 Background commands

To execute a command the shell creates a new process and waits for to . A
command may be run. without waitin.g for it to For

cc pgm.c &

calls the C compiler to the file pgm.c. The
not to wait for the command to To

its process number
obtained using the ps command.

1.3 redirection

its creation. A

Most comrnands output on the standard output that is
naL This output may be sent to a file by for example,

Is --I >

The notation >fife is interpreted

that instructs the
a process the sheil

active processes may be

connected to the termi-

as an to Is. If does
not exist then the shell creates it; otherwise the
output from Is. Output may be to a file

contents offill? are with tbe
,he notation

2

(

6-3

Is -I »file

In this case file is also created if it does not already exist.

The standard input of a command may be taken from a file instead of the terminal by writing,
for example,

we <file

The command we reads its standard input (in this case redirected fromfi/e) and prints the
number of characters, words and lines found. If only the number of lines is required then

we -I <file

could be used.

1.4 Pipelines and filters

The standard output of one command may be connected to the standard input of another by
writing the 'pipe' operator, indicated by I, as in,

Is -I I wc

Two commands connected in this way constitute a pipeline and the overall effect is the same as

Is -\ > file; wc < file

except that no .file is used. Instead the two processes are connected by a pipe (see pipe (2)) and
are run in paraliel. Pipes are unidirectional and synchronization is achieved by halting we when
there is nothing to read and haiting Is when the pipe is full.

A filter is a command that reads its standard input, transforms it in some way, and prints the
result as output. One such filter, grep, selects from its input those lines that contain some
specified string. For example,

Is i grep old

prints those lines, if any, of the output from Is that contain the string old. Another useful filter
is sort. For example,

who I sort

will print an alphabetically sorted list of logged in users.

A pipeline may consist of more than two commands, for example,

Is I grep old i we --)

prints the number file names in the current directory containing the string old.

1,5 FUe name generation

Many commands accept arguments which are file names. For example,

prints

The shell
example.

Is -I main.c

relating to the file maif/.c.

a mechanism for generating a list of file names that match a pattern. For

is -! "',C

as arguments to Is, all file names in the current directory that end in .c. The charac­
ter '" is a pattern that will match any string including the null string. In general pGlfernS are

as follows.

6-4

* Matches any string of characters including the null string.

? Matches any single character.

\. .. \ Matches anyone of the chara€:ters enclosed. A pair of characters separated by a
minus will match any character lexically between the pair.

For example,

[a-z]·

matches all names in the current directory beginning with one of the letters a through :.

lusr/fred/test/?

matches all names in the directory lusr/freci/test that consist of a single character. If no file
name is found that matches the pattern then the pattern is passed, unchanged, as an argument.

This mechanism is useful both to save typing and to select names according to some pattern. It
may also be used to find files. For example,

echo lusr/fred/*/core

finds and prints the names of all core files in sub-directories of lusr/fred. (echo is a standard
UNIX command that prints its arguments, separated by blanks.) This last feature can be expen-
sive, requiring a scan of all sub-directories of lusr/fred. .

There is one exception to the general rules given for patterns. The character' .' at the start of a
file name must be explicitly matched.

echo •

will therefore echo all file names in the current directory not beginning with' .' .

echo .•

will echo all those file names that begin with '.'. This avoids inadvertent matching of the
names '.' and ' • .' which mean 'the current directory' and 'the parent directory' respectively.
(Notice that Is suppresses inform~tion for the files' .' and' . .' .)

1.6 Quoting

Characters that have a special meaning to the shell, such as < > • ? I &, are called metachar­
acters. A complete list of metacharacters is given in appendix B. Any character preceded by a
\ is quoted and loses its special meaning, if any. The \ is elided so that

echo \'?

will echo a single ? • and

echo \\

will echo a single \. To allow long strings to be continued over more than one line the
sequence \newline is ignored.

\ is convenient for quoting single characters. When more than one character needs quoting the
above mechanism is clumsy and error prone. A string of characters may be quoted by enclos­
ing the string between single quotes. For example,

echo xx' •• *·'xx

will echo

The quoted string may not contain a single quote but may contain newlines, which are
preserved. This quoting mechanism is the most simple and is recommended for casual use .

•

(

(

(

{

\,

6-5

A third quoting mechanism using double quotes is also available that prevents interpretation of
some but not all metacharacters. Discussion of the details is deferred to section 3.4.

1.7 Prompting

When the shell is used from a terminal it will issue a prompt before reading a command. By
default this prompt is '$ '. It may be changed by saying, for example,

PS 1 = yesdear

that sets the prompt to be the string yesdear. If a newline is typed and further input is needed
then the shell will issue the prompt' > '. Sometimes this can be caused by mistyping a quote
mark. If it is unexpected then an interrupt (DEL) will return the shell to read another com­
mand. This prompt may be changed by saying, for example,

PS2=more

1.8 The shell and login

Following login (1) the shell is called to read and execute commands typed at the terminal. If
the login directory contains the file .profile then it is assumed to contain commands and
is read by the shell before reading any commands from the terminal.

1.9 Summary

e Is
Print the names of files in the current directory.

,. Is > file
Put the output from Is into .file.

• Is I we-)
Print the number of files in the current directory.

.. Is I grep old
Print those file names containing the string old.

• Is I grep old I we-I
Print the number of files whose name contains the string old.

• cc pgm.c &
Run cc in the background.

6

2.0 Shell procedures

The sheil may be used to read alid execute commands contained in a

file I args ...]

For example,

calls the shell to read commands from Such. a file is called a command or shell
Arguments may be wilh the call and are to in

tional sa, example, if the wg

who I grep $1

then

sll wg fred

is equivalent to

grep

UNIX files have attributes, write and execute. command
chmod (1) may be used to make a executable. For

chmod +x wg

will ensure that file wg has execute status. Following the command

wg

is equivalent to

sh wg fred

allows shell procedures and programs to
process is created to run the command.

used In either case new

As well as names for the
in the call is available as $#. executed is

A special parameter $* is used to substitute fOi" positional
typical use of this is to provide some default arguments, as in,

simply reoencls some arguments to

2.1 Control How - for

A frequent use of shell procedures is to
commands once each argument. An
lusrllib/telnos that contains lines the

fred mh0123
bert mh0789

The text tel is

i
do grep $l lusrllib/telnos; done

The command

tel fred

prints those lines in lusrllib/teinos that contain the string fred.

except $0. A

.. J
is lei that searches the file

(

6-7

tel fred bert

prints those lines containing fred followed by those for bert.

The for loop notation is recognized by the shell and has the general form

for name in wI w2 ...
do command-list
done

A command-list is a sequence of one or more simple commands separated or terminated by a
newline or semicolon. Furthermore, reserved words like do and done are only recognized fol­
lowing a newline or semicolon. name is a shell variable that is set to the words wI w2 ..• in
turn each time the command-list following do is executed. If in wI w2 •.. is omitted then the
loop is executed once for each positional parameter; that is, in $* is assumed.

Another example of the use of the for loop is the creaTe command whose text is

for i do >$i~ done

The command

create alpha beta

ensures that two empty files alpha and beTa exist and are empty. The notation >/ile may be
used on its own to create or clear the contents of a file. Notice also that a semicolon (or new­
line) is required before done.

2.2 Control flow - case

A multiple way branch is provided for by the case notation. For example,

case $# in
1) cat »$1 ~~
2) cat »$2 <$1 ~~
*) echo 'usage: append [from] to' ;;

esac

is an append command. When called with one argument as

append file

$# is the string I and the standard input is copied onto the end of .me using the cat command.

append file 1 file2

appends the contents offilel onto .file2. If the number of arguments supplied to append is other
than 1 or 2 then a message is printed indicating proper usage.

The general form of the case command is

case word in
pattern) command-list;;

esae

The shell attempts to match word with each pattern. in the order in which the patterns appear.
If a match is found the associated command-lisT is executed and execution of the case is com­
plete. Since * is the pattern that matches any string it can be used for the default case.

A word of caution: no check is made to ensure that only one pattern matches the case argu­
ment. The first match found defines the set of commands to be executed. In the example
below the commands following the second * will never be executed.

case $# in
*} ••• ;;
.) ... ;~

esac

6-8

Another example of the use of the nse construction is to distinguish between different forms
of an argument. The following example is a fragment of a cc command.

for i
do case $i in

-[ocs]) ... ~~
-*) echo 'unknown flag $j' ;;
*.c) /lib/cO $i .•• ;;
*) echo 'unexpected argument $i' ;;
esac

done

To allow the same commands to be associated with more than one pattern the case command
provides for alternative patterns separated by a I. For example,

is equivalent to

case $i in
-x I-y)

esac

case $i in
-[xyJ)

esac

The usual quoting conventions apply so that

case $i in
\ ?)

will match the character ? .

2.3 Here documents

The shell procedure lei in section 2. t uses the file lusr/lib/telnos to supply the data for Krep.
An alternative is to include this data within the shell procedure as a here document, as in,

for i
do grep $i «!

fred mhOt23
bert mh0789

done

In this example the shell takes the lines between «! and ! as the standard input for Krep.
The string! is arbitrary. the document being terminated by a line that consists of the string fol­
lowing «.
Parameters are substituted in the document befor~ it is made available to Krep as illustrated oy
the following procedure called edg.

(

. - -~

/

The call

ed $3 «%
g/$1/sll$2/g
w
%

edg string! string2 file

is then equivalent to the command

ed file «%
g/stringllsllstring2/g
w
%

6-9

and changes all occurrences of stringJ in file to string}. Substitution can be prevented using \ to
quote the special character $ as in

ed $3 «+
1,\$s/$I/$2/g
w

+
(This version of edg is equivalent to the first except that ed will print a ? if there are no
occurrences of the string $1.) Substitution within a here document may be prevented entirely
by quoting the terminating string, for example,

grep $i «\#

The document is presented without modification to grefJ. If parameter substitution is not
required in a here document this latter form is more efficient.

2.4 Shell variables

The shell provides string-valued variables. Variable names begin with a letter and consist of
letters, digits and underscores. Variables may be given values by writing, for example,

user=fred box=mOOO acct==mhOOOO

which assigns values to the variables user. box and acct. A variable may be set to the null
string by saying, for example,

null=

The value of a variable is substituted by preceding its name with $; for example,

echo $user

will echo fred.

Variables may be used interactively to provide abbreviations for frequently used strings. For
example,

b == lusr/fred/bin
mv pgm $b

will move the file pgm from the current directory to the directory lusr/fred/bin. A more gen­
eral notation is available for parameter (or variable) substitution, as in,

echo Sluserl

which is equivalent to

6-10

echo Suser

and is used when the parameter name is followed by a letter or digit. For example,

tmp -Itmp/ps
psa >${tmp!a

will direct the output of ps to the file Itmp/psa. whereas,

ps a >Stmpa

would cause the value of the variable tmpa to be substituted.

Except for 51 the following are set initially by the shell. $1 is set after executing each com­
mand.

$?

$#

$$

The exit status (return code) of the last command executed as a decimal string.
Most commands return a zero exit status if they complete successfully, otherwise
a non-zero exit status is returned. Testing the value of return codes is dealt with
later under if and while commands.

The number of positional parameters (in decimal). Used, for example, in the
append command to check the number of parameters.

The process number of this shell (in deciman. Since process numbers are
unique among all existing processes, this string is frequently used to generate
unique temporary file names. For example,

ps a >/tmp/ps$$

rm Itmp/ps$$

$! The process number of the last process run in the background (in decimal).

$- The current shell flags, such as -x and -v.
Some variables have a special meaning to the shell and should be avoided for general use.

SMAIL When used interactively the shell looks at the file specified by this variable
before it issues a prompt. If the specified file has been modified since it was last
looked at the shell prints the message you have mail before prompting for the
next command. This variable is typically set in the file .profile, in the user's
login directory. For example,

MAIL == lusr/mail/fred

SHOME The default argument for the cd command. The current directory is used to
resolve file name references that do not begin with a / , and is changed using the
cd command. For example,

cd lusr/fred/bin

makes the current directory /usr/fred/bin.

cat wn

will print on the terminal the file wn in this directory. The command cd with no
argument is equivaient to

cd $HOME

This variable is also typically set in the the user's login profile.

SPATH A list of directories that contain commands (the search path). Each time a com­
mand is executed by the shell a list of directories is searched for an executable

(

6-11

file. If $PATH is not set then the current directory, Ibin, and lusr/bin are
searched by default. Otherwise SPATH consists of directory names separated by
.. For example,

PATH = :/usr/fred/bin :/bin :/usr/bin

specifies that the current directory (the null string before the first :),
/usr/fred/bin, /bin and lusr/bin are to be searched in that order. In this way
individual users can have their own 'private' commands that are accessible
independently of the current directory. If the command name contains a I then
this directory search is not used; a single attempt is made to execute the com­
mand.

$PSI The primary shell prompt string, by default, '$ '.

$PS2 The sheli prompt when further input is needed, by default, '> '
$IFS The set of characters used by blank inferprefalion (see section 3.4).

2.5 The test command

The lest command, although not part of the shell, is intended for use by shell programs. For
example,

test -f file

returns zero exit status if ./ile exists and non-zero exit status otherwise. In general leSI evaluates
a predicate and returns the result as its exit status. Some of the more frequently used fest argu-
ments are given here, see les! 0) a complete specification.

test s
test -f
test -r file
test -w file
test -d file

true if the argument s is not the null string
true if file exists
true if ./i/e is readable
true if/ile is writable
true if file is a directory

2.6 Control How - while

The actions of the for loop and the case branch are determined by data available to the shell.
A while or until loop and an if then else branch are also provided whose actions are deter­
mined by the exit status returned by commands. A while loop has the general form

while command-lisl;
do command-lisl,
done

The value tested by the while command is the exit status of the last simple command following
while. Each time round the loop command-lis!, is executed; if a zero exit status is returned
then command-list} is executed; otherwise, the loop terminates. For example,

is equivalent to

while test $1
do ...

done

for i
do .. ,
done

shtli is a shell command that renames the positional parameters $2, $3, .. , as S1, $2, ... and
loses

6 2

Another kind of use for the while/until ioop is to wait until some externai event occurs and
then run some commands. In an loop the is For exam-

until test -f file
do sleep 300; done
commands

will loop until file exists. Each round the it waits for 5 minutes
(Presumably another process will eventually create the file.)

207 Control flow - if

Also available is a general conditional branch the

if command-list
then command-list
else command-list
fi

that tests the value returned by the last command

if command may be used in conjunction with the test command to test
a file as in

if test -f file
then process{!fe
else do else
fi

An example of the use of if, case and for constructions is

A multiple test if command of the

if .•.
then
else if ...

then
else if ., •

fi
fi

fi

may be written using an extension

if ...
then
elif
then

fi

the if notation as,

in section 2.

trying

existence

following example is the iOIiCh command which changes the 'last modified' time
of files. The command may be used in conjunction with make (0 to a
list of files.

(
\

flag =
for i
do case $i in

--c) flag = N ~;

*) if test -f $i

6-13

then In $i junk$$; rm junk$$

esac
done

elif test Sflag
then echo file \'$i\' does not exist
else >$i
fi

The -c flag is used in this command to force subsequent files to be created if they do not
already exist. Otherwise, if the file does not exist, an error message is printed. The shell vari­
able tfa~ is set to some non-null string if the -c argument is encountered. The commands

In ... ; rm ...

make a link to the file and then remove it thus causing the last modified date to be updated.

The sequence

if commandl
then command2
fi

may be written

command 1 && command2

Conversely,

command 1 I I command2

executes command2 only if command J fails. In each case the value returned is that of the last
simple command executed.

2.8 Command grouping

Commands may be grouped in two ways,

(command-lisl ; 1

and

(command-list)

In the first command-list is simply executed. The second form executes command-list as a
separate process. For example,

(cd x; rm junk)

executes rm jllllk. in the directory x without changing the current directory of the invoking shell.

The commands

cd x; rm junk

have the same effect but leave the invoking shell in the directory x.

6-14

2.9 Debugging shell procedures

The shell provides two tracing mechanisms to help when debugging shell procedures. The first
is invoked within the procedure as

set -v

(v for verbose) and causes lines of the procedure to be printed as they are read. It is useful to
help isolate syntax errors. It may be invoked without modifying the procedure by saying

sh -v proc ...

where proc is the name of the shell procedure. This flag may be used in conjunction with the
-n flag which prevents execution of subsequent commands. (Note that saying set -11 at a ter­
minal will render the terminal useless until an end-of-file is typed.)

The command

set -x

will produce an execution trace. Following parameter substitution each command is printed as
it is executed. (Try these at the terminal to see what effect they have.) Both flags may be
turned off by saying

set -

and the current setting of the shell flags is available as $- .

2.10 The man command

The following is the mall command which is used to print sections of the UNIX manual. It is
called, for example. as

man sh
man -t ed
man 2 fork

In the first the manual section for sh is printed. Since no section is specified, section 1 is used.
The second example will typeset (-t option) the manual section for ed. The last prints the .fork
manual page from section 2.

"'-
(

6-15

cd lusr/man

: 'colon is the comment command'
: 'default is nroff ($N), section 1 ($s)'
N=n s=l

f . . or 1

do case $i in

s=$i ;;

-t) N=t;;

-n) N=n;;

-*) echo unknown flag \'$i\' ;;

*) if test -f man$s/Si.$s

esac
done

then ${Nlroff manO/S!N}aa man$s/$i.$s
else : 'look through all manual sections'

found=no

fi

for j in 1 2 3 4 5 6 7 8 9
do if test -f man$j/$i.$j

then man $j $i
found=yes

fi
done
case $found in

no) echo 'Si: manual page not found'
esac

Figure 1. A version of the man command

6-16

3.0 Keyword parameters

Shell variables may be given values by assignment or when a An
argument to a shell procedure the name=value that name
causes value to be assigned to name before execution the value of
name in the invoking shell is not affected. example,

user=fred command

wii! execute command with user set to fred -k causes arguments the
name = value to be interpreted in this way anywhere in the argument list. names are some-
times called keyword parameterso If any arguments remain they are available as
parameters $1, $2, .. , .

The set command may also be used to set positional parameters
example,

set - "'

within a For

will set $1 to the name in the current $2 to the next, and so 011. that
the first argument, -, ensures correct treatment when the name with a -.

3.1 Parameter transmission

When a shell procedure is invoked both positional and
with the call. Keyword parameters are also made available
specifying in advance that such parameters are to be

export IJser box

marks the user and a shell
made of all exportable variables use within the invoked
variables within the procedure does not affect the values in the
true of a shell procedure that it may not modify the state of its caBer without
on the part of the caller. (Shared file descriptors are an to this

Names whose value is intended to remain constant may be declared
command is the same as that of the export

readonly name."

Subsequent attempts to set variables are illegal.

Parameter substitution

If a shell parameter is not set then the null string is
able d is not set

echo $d

or

echo $id}

will echo nothing. A default string may be given as in

echo

which will echo the value of the variable Ii if it is set and'.' otherwise.
evaluated using the usual quoting conventions so that

echo S(d-':;.'}

will echo'" if the variable d is not set. Similarly

this

if the vari-

is

c

I
I),

6-17

echo ${d-$l}

will echo the value of d if it is set and the value (if any) of $1 otherwise. A variable may be
assigned a default value using the notation

echo ${d=.}

which substitutes the same string as

echo ${d-,}

and if Ii were not previously set then it will be set to the string '.'. (The notation $(••• -,.,J is
not available for positional parameters,)

If there is no sensible default then the notation

echo ${d?message)

will echo the value of the variable Ii if it has one, otherwise message is printed by the shell and
execution of the shell procedure is abandoned. If message is absent then a standard message is

A shell procedure that requires some parameters to be set might start as follows.

I ${acct?} ${bin?}

(:) is a command that is built in to the shell and does nothing once its arguments have
been evaluated. If any of the variables user, iU:ct or bin are not set then the shell will
execution of the procedure.

3.3 Command substitution

The standard output from a command can be substituted in a similar way to parameters. The
command pwd prints on its standard the name of the current directory. For example, if
the current directory is lusrlfredlbin then the command

d='pwd'

is to

d = lusr Ifred/bin

The entire string between grave accents c..:) is taken as the command to be executed and is
replaced with the output. from the command. The command is written using the usual quoting
conventions except that a ' must escaped using a \. For example,

Is "$1 ,,'

is equivalent to

Is $1

Command substitution occurs in all contexts where parameter substitution occurs (including
here documents) and the treatment of the resulting text is the same in both cases. This
mechanism allows string processing commands to be used within shell procedures. An example
of such a command is base name which removes a specified suffix from a string. For example,

base name main.c .c

will prim the main, use is by the following fragment from a cc command.

case in

*.cJ B='basename .C

esac

6-18

that sets B to the part of SA with the suffix .c stripped.

Here are some composite examples.

•

•

for i in 'Is -t'; do ...
The variable i is set to the names of files in time order, most recent first.

set 'date'; echo $6 52 $3, $4
will print, e.g., 1977 Nov I, 23:59:59

3.4 Evaluation and quoting

The shell is a macro processor that provides parameter substitution, command substitution and
file name generation for the arguments to commands. This section discusses the order in which
these evaluations occur and the effects of the various quoting mechanisms.

Commands are parsed initially according to the grammar given in appendix A. Before a com­
mand is executed the following substitutions occur.

• parameter substitution, e.g. $user

• command substitution, e.g. 'pwd'

Only one evaluation occurs so that if, for example, the value of the variable X is the
string $y then

echo $X

will echo $y.

• blank interpretation

Following the above substitutions the resulting characters are broken into non-blank
words (blank interpretation). For this purpose 'blanks' are the characters of the
string SIFS. By default, this string consists of blank, tab and newline. The null
string is not regarded as a word unless it is quoted. For example,

echo .,

will pass on the null string as the first argument to echo, whereas

echo Snull

will call echo with no arguments if the variable null is not set or set to the null
string.

• file name generation

Each word is then scanned for the file pattern characters *. ? and I. . .J and an alpha­
betical list of file names is generated to replace the word. Each such file name is a
separate argument.

The evaluations just described also occur in the list of words associated with a for loop. Only
substitution occurs in the word used for a case branch.

As well as the quoting mechanisms described earlier using \ and' .. : a third quoting mechan­
ism is provided using double quotes. Within double quotes parameter and command substitu­
tion occurs but file name generation and the interpretation of blanks does not. The following
characters have a special meaning within double quotes and may be quoted using \.

For example,

$

\

parameter substitution
command substitution
ends the quoted string
quotes the special characters S ' " \

echo "$x"

(

(

(

-" ~;Y'

6-19

will pass the value of the variable x as a single argument to echo. Similarly,

echo "S*"

will pass the positional parameters as a single argument and is equivalent to

echo "SI S2 ••. "

The notation $@ is the same as $. except when it is quoted.

echo "S@"

will pass the positional parameters, unevaluated, to echo and is equivalent to

echo "SI" "S2" .••

The following table gives, for each quoting mechanism, the shell metacharacters that are
evaluated.

metacharacter
\ S • ..
n n n n n
y n n t n n
y y n y t n

t terminator
y interpreted
n not interpreted

Figure 2. Quoting mechanisms

In cases where more than one evaluation of a string is required the built-in command eva! may
be used. For example, if the variable X has the value $y, and if y has the value pqr then

eval echo SX

will echo the string pqr.

In general the eva! command evaluates its arguments (as do all commands) and treats the result
as input to the shell. The input is read and the resulting command(s) executed. For example,

is equivalent to

wg -' eval who I grep'
Swg fred

who I grep fred

In this example, eva! is required since there is no interpretation of metacharacters, such as I •
following substitution.

3.5 Error handling
The treatment of errors detected by the shell depends on the type of error and on whether the
shell is being used interactively. An interactive shell is one whose input and output are con­
nected to a terminal (as determined by guy (2». A shell inV6ked with the -I flag is also
interactive.

Execution of a command (see also 3.7) may fail for any of tn~

• Input output redirection may fail. For example, if a
created.

jns reasons.

be

6-20

@ The command itself does not exist or cannot be executed.

The command terminates abnormally, for example, with a or
See Figure 2 below for a list of UNIX """'''''''''''

The command terminates but returns a non-zero exit status.

all of these cases the sheil will go 011 to execute the next command. the last case
an error message will be the sheiL All remaining errors cause the shell to exit
a command procedure. An interactive shell will return to read another command from the ter­
minal. Such errors include the following.

(8 Syntax errors. e.g., if ... then ... done

A signal such as interrupt shell waits for the current
cution and then either exits or returns to the terminal.

'* Failure any of the built-in commands such as cd.

The shell -e causes the sheil to terminate if any error is detected.

1
2 interrupt

quit
4'" illegal instruction
5'" trace

lOT instruction
7'" EMT instruction
8'" floating point
9 kill be caught. or

bus error
II'" segmentation violation
12* bad to system call
13 write on a pipe with no one to read it
14 alarm clock
15 software termination (from kill (1»

Figure 3. UNIX

Those signals marked with an asterisk if not
itself ignores which is the only external that can cause a
list of potentia! interest to sheli programs are 1, 2, 3, 14 and 1.5.

3.6 Fault handling

Shell procedures normally terminate when ali interrupt is
command is if some up is such as
pie,

trap Itmp/ps$$; exit' 2

sets a trap for signal 2 {terminal
mands

rm Itmp/ps$$; exit

, and if this signal is

exit is another built-in command that terminates execution a shell

if any, exe-

in this

trap
exam-

wiil execute the com-

required; otherwise, after the trap has been taken, the sheil will resume
exit is

the pro-
cedure at the place where it was

UNIX signals can be handled in one of three ways.
nal is never sem to the process. They can be
what action to take when the is received. Lastly,

can be in which case the
in which case the process must decide

can be left to cause termination

(

"'-.

6-21

the process without it having to take any further action. If a signal is being ignored on entry to
the shell procedure, for example, by invoking it in the background (see 3.7) then trap com­
mands (and the signal) are ignored.

The use of trap is illustrated by this modified version of the touch command (Figure 4). The
cleanup action is to remove the file junkSS.

flag ==
trap 'rm -f junk$$; exit' 1 2 3 I'S
for i
do case $i in

-c) flag=N;;
*) if test -f $i

esac
done

then In $i junk$$; rm junk$$
elif test Sflag
then echo file \'$i\' does not exist
else >$i
fi

Figure 4. The touch command

The trap command appears before the creation of the temporary file; otherwise it would be pos­
sible for the process to die without removing the file.

Since there is no signal 0 in UNIX it is used by the shell to indicate the commands to be exe­
cuted on exit from the shell procedure.

A procedure may, itself, elect to ignore signals by specifying the null string as the argument to
trap. The following fragment is taken from the nohup command.

trap" 1 2 3 IS

which causes hangup, interrupt. quit and kill to be ignored both by the procedure and by invoked
commands.

Traps may be reset by saying

trap 2 3

which resets the traps for signals 2 and 3 to their default values. A list of the current values of
traps may be obtained by writing

trap

The procedure scan (Figure S) is an example of the use of trap where there is no exit in the
trap command. scan takes each directory in the current directory, prompts with its name, and
then executes commands typed at the terminal until an end of file or an interrupt is received.
Interrupts are ignored while executing the requested commands but cause termination when
scan is waiting for input.

d-'pwd'
for i in •
do if test -d $d/$i

then cd $d/$i
while echo "$i:"

trap exit 2
read x

6-22

do trap: 2; eval $x; done
fi

done

Figure S. The scan command

read x is a built-in command that reads one line from the standard input and places the result in
the variable x. It returns a non-zero exit status if either an end-of-file is read or an interrupt is
received.

3.7 Command execution

To run a command (other than a built-in) the shell first creates a new process using the system
call fork. The execution environment for the command includes input, output and the states of
signals, and is established in the child process before the command is executed. The built-in
command exec is used in the rare cases when no fork is required and simply replaces the shell
with a new command. For example, a simple version of the nohup command looks like

trap" 1 2 3 15
exec $.

The trap turns off the signals specified so that they are ignored by subsequently created com­
mands and exec replaces the shell by the command specified.

Most forms of input output redirection have already been described. In the following word is
only subject to parameter and command substitution. No file name generation or blank
interpretation takes place so that, for example,

echo ... >·.c

will write its output into a file whose name is c. Input output specifications are evaluated left
to right as they appear in the command.

> word

» word

< word

« word

>& digit

<& digit

The standard output (file descriptor 1) is sent to the file word which is created if it
does not already exist. .

The standard output is sent to file word. If the file exists then output is appended
(by seeking to the end); otherwise the file is created.

The standard input (file descriptor 0) is taken from the file word.

The standard input is taken from the lines of shell input that follow up to but not
including a line consisting only of word. If word is quoted then no interpretation
of the document occurs. If word is not quoted then parameter and eommand sub­
stitution occur and \ is used to quote the characters \ $. and the first character of
word. In the latter case \newline is ignored (c.r. quoted strings).

The file descriptor digit is duplicated using the system call dup (2) and the result is
used as the standard output.

The standard input is duplicated from file descriptor digit.

(

(

'\

6-23

<&- The standard input is closed.

>&- The standard output is closed.

Any of the above may be preceded by a digit in which case the file descriptor created is that
specified by the digit instead of the default 0 or 1. For example,

... 2>file

runs a command with message output (file descriptor 2) directed to .file .

... 2>&1

runs a command with its standard output and message output merged. (Strictly speaking file
descriptor 2 is created by duplicating file descriptor 1 but the effect is usually to merge the two
streams.)

The environment for a command run in the background such as

list *.c I Ipr &

is modified in two ways. Firstly, the default standard input for such a command is the empty
file Idev/null. This prevents two processes (the shell and the command), which are running
in parallel, from trying to read the same input. Chaos would ensue if this were not the case.
For example,

ed file &

would allow both the editor and the shell to read from the same input at the same time.

The other modification to the environment of a background command is to turn off the QUIT
and INTERRUPT signals so that they are ignored by the command. This allows these signals
to be used at the terminal without causing background commands to terminate. For this reason
the UNIX convention for a signal is that if it is set to 1 (ignored) then it is never changed even
for a short time. Note that the shell command trap has no effect for an ignored signal.

3.8 Invoking the shell
The following flags are interpreted by the shell when it is invoked. If the first character of
argument zero is a minus, then commands are read from the file .proftl~.

-c string
If the -c flag is present then commands are read from string.

-s If the -s flag is present or if no arguments remain then commands are read from the
standard input. Shell output is written to file descriptor 2.

-i If the -i flag is present or if the shell input and output are attached to a terminal (as told
by guy) then this shell is interactive. In this case TERMINATE is ignored (so that kill 0
does not kill an interactive shell) and INTERRUPT is caught and ignored (so that wait is
interruptable). In all cases QUIT is ignored by the shell.

Acknowledgements
The design of the shell ;s based in part on the original UNIX shellJ and the PWB/UNIX shell,4
some features having been taken from both. Similarities also exist with the command inter­
preters of the Cambridge Multiple Access SystemS and of CTSS.6

I would like to thank Dennis Ritchie and John Mashey for many discussions during the design
of the shell. I am also grateful to the members of the Computing Science Research Center and
to Joe Maranzano for their comments on drafts of this document.

6-24

References

1. B. W. Kernighan, UNIX for Beginners, Bell Laboratories internal memorandum (1978),

2. K. Thompson and D. M. Ritchie, UNIX Programmer's Manual. Bell Laboratories (978).
Seventh Edition.

3. K. Thompson, "The UNIX Command Language," pp. 375-384 in
Programming-Injotech Slate oj (he Art Report, Infotech International
House, Maidenhead, Berkshire, England (March 1975).

4. J. R. Mashey, PWBIUNIX Sheil Tutorial, Bell Laboratories internal memorandum (Sep­
tember 30, 1977).

5. D. F. Hartley (EdJ, Cambridge Multiple Access System - Manual.
University Mathematical Laboratory, Cambridge, (968).

6. P. A. Crisman (Ed.), The Compatible Time-Sharing System. M. Press,
(965). (

6-25

Appendix A - Grammar

item: word
input-output
name - value

simple-command: item
simple-command item

command: simple-command
(command-list)
{ command-list}
for name do command-list done
for name in word ••• do command-iisl done
while command-list do command-list done
until command-list do command-list done
case word in case-part • •• esac
if command-list then command-lislelse-part II

pipeline: command
pipeline I command

andor: pipeline
andor &:&: pipeline
andor I I pipeline

command-list: andor

input-output:

file:

case-part:

pattern:

else-part:

empty:

word:

name:

digit:

command-list;
command-list &:
command-list; andor
command-list &: andor

> file
< file
» word
« word

word
&: digit
&:-

pattern) cOfnmand-list;;

word
pa ttern I word

elif command-list then command-list else-part
else command-list
empty

a sequence of non-blank characters

a seql,lence of letters, digits or underscores starting with a letter

0123456789

6-26

Appendb B - Meta-characters and Reserved Words

a) syntactic

I pipe symbol

&& 'andf symbol

I I 'orf symbol

command separator

"

'" ()
<
«
>
»

b) patterns

case delimiter

background commands

command grouping

input redirection

input from a here document

output creation

output append

*" match any character including none

? match any single character

1...1 match any of the enclosed characters

c) substitution

S{ ... } substitute shell variable

substitute command output

d) quoting

\

" "

quote the next character

quote the enclosed characters except for'

Quote the enclosed characters except for $, \ "

e) reserved words

if then else em fi
case in esac
for while until do done
{ I

LEARN - Computer-Aided Instruction on UNIX
(Second Edition)

W. Kernighan

Michael E. Lesk

Laboratories
Murray Hill, Jersey 07974

This paper describes the second version of the learn program for interpret-
ing CAl scripts on. the system, and a set of scripts that provide
a introduction to the system.

basic commands and file handling, the editor,
the eqn program for mathematical typing,

macros, and an introduction to the C pro-
now include a total of about lessons.

a wide variety of backgrounds have used learn to
Most usage involves the first two an introduc-

and the text editor.

second faster the previous
one in CPU utilization, and much in perceived time because of better

computing and printing. It also requires less file space the first
version. Many of the revised; new material has been added
to changes and enhancements in the UNIX itself.Scrjpt~writing is
also easier because revisions to the script language.

30, 1979

tUNDI: is II Tradermuk of Bell Laboratories.

7 - 1

LEARN - Computer-Aided Instruction on UNIX
(Second Edition)

Brian W. Kernighan

Michael E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

1. Introduction.

Learn is a driver for CAl scripts. It is intended to permit the easy composition of lessons
and lesson fragments to teach people computer skills. Since it is teaching the same system on
which it is implemented, it makes direct use of UNixt facilities to create a controlled UNIX

environment. The system includes two main parts: (1) a driver that interprets the lesson
scripts; and (2) the lesson scripts themselves. At present there are six scripts:

ing:

basic file handling commands

the UNIX text editor ed

advanced file handling

the eqn language for typing mathematics

the "-ms" macro package for document formatting

the C programming language

The purported advantages of CAl scripts for training in computer skills include the follow-

(a) students are forced to perform the exercises that ~re in fact the basis of training in
any case;

(b) students receive immediate feedback and confirmation of progress;

(c) students may progress at their own rate;

(d) no schedule requirements are imposed; students may study at any time convenient
for them;

(e) the lessons may be improved individually and the improvements are immediately
available to new users;

(f) since the student has access to a computer for the CAl script there is a place to do
exercises;

(I) the use of high technology will improve student motivation and the interest of their
management.

Opposed to this, of course, is the absence of anyone to whom the student may direct questions.
If CAl is used without a "counselor" or other assistance, it should properly be compared to a
textbook, lecture series, or taped course, rather than to a seminar. CAl has been used for
many years in a variety of educational areas)· 2. J The use of a computer to teach itself, how­
ever, offers unique advantages. The skills develoRed to get through the script are exactly those
needed to use the computer; there is no waste effort.

The scripts written so far are bllsed on some familiar assumptions about education; these

tUNIX is a Trademark of Bell Laboratories.

71-2

(

(

7-3

of

with

2.

yes or no answer to a
the correct

second type asks word or as an answer. For a lesson on
say

student is

Ilnswer 7

each correct response the
son number that has been

errors in the lessons.

is assumed that there
, what he Of she is

out

if the student "under-
the current !11t!<tS u. r e

mance. not if the student can

broken
vided.

the student does is checked for

wrong answers. In
universal solution to student error is to

and it is

can be to
in a single chunk is

a

if it can
subdi·

an is made in the and editor
The sequence

tutorial manual and should be review and
track is intended most users and is roughly twice as

7-4

Figure I: Sample dialog from basic files script

(Student responses in italics; 'S' is the prompt)

A file can be printed on your terminal
by using the ·cat" command. Just say
"cat file" where "file" is the file name.
For example. there is a file named
"food" in this directory. List it
by saying "cat food"; then type "ready".
S cat/ood

this is the file
named food.

S ready

Good. Lesson 3.3a 0)

Of course. you can print any file with "cat".
In particular, it is common to first use
"Is" to find the name of a file and then "cat"
to print it. Note the difference between
"Is", which tells you the name of the file,
and "cat", which tells you. the contents.
One file in the current directory is named for
a President. Print the file, then type "ready".
S cat President
cat: can't open President
S ready

Sorry. that's not right. Do you want to try again? yes
Try the problem again.
S Is
.ocopy
Xl
roosevelt
S cat roosevelt

this file is named roosevelt
and contains three lines of
text.

$ ready

Good. Lesson 3.3b (0)

The "cat" command can also print several files
at once. In fact, it is named "cat" as an abbreviation
for "concatenate"

long. Typically. for example. the fast track might present an idea and ask for a variation on the
example shown; the normal track will first ask the student to repeat the example that was
shown before attempting a variation. The third and slowest track. which is often three or four
times the length of the fast track. is intended to be adequate for anyone. (The lessons of Fig­
ure 1 are from the third track.) The multiple tracks also mean that a student repeating a course
is unlikely to hit the same series of lessons; this makes it profitable for a shaky user to back up

(

(

7-5

and try again, and many students have done so.

The tracks are not completely distinct; however. Depending on the number of correct
answers the student has given for the last few lessons,the program.may switch tracks. The
driver is actually capable of following an arbitrary directed graph of lesson sequences, as dis­
cussed.in section 5. Some more structured arrangement, however, is used in all current scripts
to aid the script writer in organizing the material into lessons. It is sufficiently difficult to write
lessons that the three-track theory is not followed very closely except in the files and editor
scripts. Accordingly, in some cases, the fast track is produced merely by skipping lessons from
the slower track. In others, there is essentially only one track.

The rr: lin reason for using the learn program rather than simply writing the same material
as a workbo~·'< is not the selection of tracks, but actual hands-on experience. Learning by doing
is much more effective than pencil and paper exercises.

Learn also provides a mechanical check on performance. The first version in fact would
not let the student proceed unless it received correct answers to the questions it set and it
would not tell a student the right answer. This somewhat Draconian approach has been
moderated in version 2. Lessons are sometimes badly worded or even just plain wrong; in such
cases, the student has no recourse. But if a student is simply unable to complete one lesson,
that should not prevent access to the rest. Accordingly, the current version of learn allows the
student to skip a lesson that he cannot pass; a "no" answer to the "Do you want to try again?"
question in Figure 1 will pass to the next lesson. It is still true that learn will not tell the stu­
dent the right answer.

Of course, there are valid objections to the assumptions above. In particular, some stu­
dents may object to not understanding what they are doing; and the procedure of smashing
everything into small pieces may provoke the retort "you can't cross a ditch in two jumps."
Since writing CAl scripts is considerably more tedious than ordinary manuals, however, it is
safe to assume that there will always be alternatives to the scripts as a way of learning. In fact,
for a reference manual of 3 or 4 pages it would not be surprising to have a tutorial manual of
20 pages and a (multi-track) script of 100 pages. Thus the reference manual will exist long
before the scripts.

3. Scripts.

As mentioned above, the present scripts try at most to follow a three-track theory. Thus
little of the potential complexity of the possible directed graph is employed, since care must be
taken in lesson construction to see that every necessary fact is presented in every possible path
through the units. In addition, it is desirable that every unit have alternate successors to deal
with student errors.

In most existing courses, the first few lessons are devoted to checking prerequisites. For
example, before the student is allowed to proceed through the editor script the script verifies
that the student understands files and is able to type. It is felt that the sooner lack of student
preparation is detected, the easier it will be on the student. Anyone proceeding through the
scripts should be getting mostly correct answers; otherwise,the.system will be unsatisfactory
both because the wrong habits are being learned and because the scripts ·make little effort to
deal with wrong answers. Unprepared students should not be. encouraged to continue with
scripts.

There are some preliminary items which the student must know before any scripts can be
tried. In particular, the student must know how to connect to a UNIX system, set the terminal
properly, log in, and execute simple commands (e.g., learn itself). In addition, the character
erase and line kill conventions (# and @) should be known. It is hard to see how this much
could be taught by computer-aided instruction, since a student who does not know these basic
skills will not be able to run the learning program. A brief description on paper is provided
(see Appendix A), although assistance will be needed for the first few minutes. This assis­
tance, however, need not be highly skilled.

7-6

The first script in the current set deals with files. It assumes the basic knowledge above
and teaches the student about the Is, cat, mv, rm, ep and diff commands. It also deals with
the abbreviation characters ., ?, and [] in file names. It does not cover pipes or I/O redirec­
tion, nor does it present the many options on the Is command.

This script contains 31 lessons in the fast track; two are intended as prerequisite checks,
seven are review exercises. There are a total of 75 lessons in all three tracks, and the instruc­
tional passages typed at the student to begin each lesson total 4,476 words. The average lesson
thus begins with a 60-word message. In general, the fast track lessons have somewhat longer
introductions, and the slow tracks somewhat shorter ones. The longest message is 144 words
and the shortest 14.

The second script trains students in the use of the context editor ed, a sophisticated editor
using regular expressions for searching.S All editor features except encryption, mark names and
';' in addressing are covered. The fast track contains 2 prerequisite checks, 93 lessons, and a
review lesson. It is supplemented by 146 additional lessons in other tracks.

A comparison of sizes may be of interest. The ed description in the reference manual is
2,572 words long. The ed tutorial6 is 6,138 words long. The fast track through the ed script is
7,407 words of explanatory messages, and the total ed script, 242 lessons, has 15,615 words.
The average ed lesson is thus also about 60 words; the largest is 171 words and the smallest 10.
The original ed script represents about three man-weeks of effort. .

The advanced file handling script deals with Is options, I/O diversion, pipes, and support­
ing programs like pr, we, fail, spell and grep. (The basic file handling script is a prerequisite.)
It is not as refined as the first two scripts; this is reflected at least partly in the fact that it pro­
vides much less of a full three-track sequence than they do. On the other hand, since it is per­
ceived as "advanced," it is hoped that the student will have somewhat more sophistication and
be better able to cope with it at a reasonably high I~vel of performance.

A fourth script covers the eqn language for typing mathematics. This script must be run
on a terminal capable of printing mathematics, for instance the DASI 300 and similar Diablo­
based terminals, or the nearly extinct Model 37 teletype. Again, this script is relatively short of
tracks: of 76 lessons, only 17 are in the second track and 2 in the third track. Most of these
provide additional practice for students who are having trouble in the first track.

The -ms script for formatting macros is a short one-track only script. The macro pack­
age it describes is no longer the standard, so this script will undoubtedly be superseded in the
future. Furthermore, the linear style of a single learn script is somewhat inappropriate for the
macros, since the macro package is composed of many independent features, and few users
need all of them. It would be better to have a selection of short lesson sequences dealing with
the features independently.

The script on C is in a state of transition. It was originally designed to follow a tutorial on
C, but that document has since become obsolete. The current script has been partially con­
verted to follow the order of presentation in The C Programming Language.7 but this job is not
complete. The C script was never intended to teach C; rather it is supposed to be a series of
exercises for which the computer provides checking and (upon success) a suggested solution.

This combination of scripts covers much of the material which any user will need to know
to make effective use of the UNIX system. With enlargement of the advanced files course to
include more on the command interpreter, there will be a relatively complete introduction to
UNIX available via learn. Although we make no pretense that learn will replace other instruc­
tional materials, it should provide a useful supplement to existing tutorials and reference manu­
als.

(

4. with ,''''~'.'''Cj'

Learn has
first two

ical
son, most

At

imation,

5.

7-7

UNIX systems. Most usage is on the
and polished. As a sample

at Indian Hill les-
script, 4100 in editor, and

about 4 lessons are passed for
users the files and 58 of the editor. On

4000 lessons over four weeks that include
up.

sessions with the many exist of some­
as do instances someone

learn, the average "",,,,,,",,,n
The distribution is quite broad and
and there were shorter

80 seconds. numbers are
at approximately seconds per les-

1.4
and a system typing quickly took 15 seconds

section.

take at least a minute. as a approx-
with some spare

for the script writer
control to and

and usage of the
Readers only interested

The structure used learn is is one directory
(named lib) the script data. Within this are subdirectories, one for each
subject in which a course is available, one logging (named log), and one in which user sub-

called LI1.

When
learn

the student to
may assume that
is deleted after each "'"'~' .. "W'"

The writer must

(1) the text the

). The directory contains master copies of aJI les-
In a subdirectory, each lesson is a

the file that contains lesson n is

within the
(mostly data

is made each time a student starts iii so script writer
is reinitialized each time a lesson is entered. The student directory

records mllst be elsewhere.

certain basic items in each lesson:

the

the

commands to be executed

if any, which the user is

t.he user control;

to edit, or otherwise process~

the commands to be executed
whether the answer is and

a list

Learn tries

student

work
is in

the user has finished the lesson, to decide

installation, so that most of the effort
tutorial paragraphs, and coding tests

7-8

Figure 2: Directory structure for learn

lib

editor

The basic sequence events is as
for each lesson, learn reads the

student

student2

LO.la
Ib

The lines in the are: 0) commands to
a files, to test something, etc.:,
sent to the shell to be executed.
IJser can run any UNIX commands,
ready, or answer. At this
is selected, and if not the old one is

"1 f '1 Ii es or S!UCl.ent ...

lessons course

learn creates the

Let llS illustrate this with the the second iesson of this is shown in
Figure 3.
Lines which begin with # are commands to the learn

#print

causes printing of any text that up to the next line that

#prinr file

prints the contems of ; it is the same as cat
have the added property that if a lesson is
time through; this avoids annoying the student by

=""."u.ro jj/ename

creates a of the specified name, and
is used for creating and

#user

any
and

gives control to the student; each line he or she types is
#user mode is terminated when the student one
time, the driver resumes interpretation of the script.

#copyin
#uncopyin

Anything the st.udent types between commands is
the script writer interrogate the student's responses upon

the second

text up to a the
data for the lessons.

to the shell for execution. The
or cnswer. At that

called
control.

This lets

(

(

#uncapyoU!

I Fig;re 3

#prmt

7"··9

Of course, you can any with "cat".
In particular, it is common to use
"Is" to name a and then "cat"
to print it. Note the between
"\s", which tells you the name the files,
and "cat", which you the contents.

file in is named
then "ready".

lines

3.2b 2

Between these commands, any materia! typed at the student by any program is copied to the file
.orapy. This lets the writer the effect what the student typed, which true
believers in the performance prefer to the student's actual input.

#pipe
#unpipe

Normally the student commands are fed to the UNIX command interpreter
(the one line at a tirne. won't do a sequence of editor commands
is since the to the to the editor. not to the sheil.
Accordingly, the material between and commands is fed through a

so that such sequences work.
brackets.

if copyow is ,11510 desired the copyoUi brackets must include
the

There are several commands status after the student has attempted the lesson.

file J file2

!s an of emf), which compares two for identity.

The last line of the student's is
according to it. Extraneous things like
made. may be several

This is similar to #malch,
used to produce hints for

to and success or fail status is set
are stripped the comparison is
a convenient mechanism handling

a #mafch is

to failure answers; this can be
have been by the script

J

writer.

#succeed
#!ail

7-10

Figure 4: Another Sample Lesson

#print
What command will move the current line
to the end of the file? Type
"answer COMMAND", where COMMAND is the command.
#copyin
#user
#uncopyin
#match mS
#match .mS
"mS" is easier.
#log
#next
63.1d 10

print a message upon success or failure (as determined by some previous mechanism).

When the student types one of the "commands" yes, no, ready, or answer, the driver
terminates the #user command, and evaluation of the student's work can begin. This can be
done either by the built-in commands above, such as #match and #cmp. or by status returned
by normal UNIX commands, typically grep and test. The last command should return status true
(0) if the task was done successfully and false (non-zero) otherwise; this status return tells the·
driver whether or not the student has successfully passed the lesson.

Performance can be logged:

#/og file

writes the date, lesson, user name and speed rating, and a success/failure indication on file.
The command

log

by itself writes the logging information in the logging directory within the learn hierarchy, and
is the normal form.

#next

is followed by a few lines, each with a successor lesson name and an optional speed rating on it.
A typical set might read

25.1a 10
25.2a 5
25.3a 2

indicating that unit 25.1a is a suitable follow-on lesson for students with a speed rating of 10
units, 25.2a for student with speed near 5, and 25.3a for speed near 2. Speed ratings are main­
tained for each session with a student; the rating is increased by one each time the student gets
a lesson right and decreased by four each time the student gets a lesson wrong. Thus the driver
tries to maintain a level such that the users get 80% right answers. The maximum rating is lim­
ited to 10 and the minimum to O. The initial rating is zero unless the student specifies a
different rating when starting a session.

If the student passes a lesson, a new lesson is selected and the process repeats. If the stu­
dent fails, a false status is returned and the program reverts to the previous lesson and tries

(

(

(

(

.'

7-11

another alternative. If it can not find another alternative, it skips forward a lesson. The stu­
dent can terminate a session at any time by typing bye, which causes a graceful exit from learn.
Hanging up is the usual novice's way out.

The lessons may form an arbitrary directed graph, although the present program imposes
a limitation on cycles in that it will not present a lesson twice in the same session. If the stu­
dent is unable to answer one of the exercises correctly, the driver searches for a previous lesson
with a set of alternatives as successors (following the #next line). From the previous lesson
with alternatives one route was taken earlier; the program simply tries a different one.

It is pe .. fectly possible to write sophisticated scripts that evaluate the student's speed of
response, or 'y to estimate the elegance of the answer, or provide detailed analysis of wrong
answers. Lt"· In writing is so tedious already, however, that most of these abilities are likely to
go unused.

The driver program depends heavily on features of the UNIX system that are not available
on many other operating systems. These include the ease of manipulating files and directories,
file redirection, the ability to use the command interpreter as just another program (even in a
pipeline), command status testing and branching, the ability to catch signals like interrupts, and
of course the pipeline mechanism itself. Although some parts of learn might be transferable to.
other systems, some generality will probably be lost.

A bit of history: The first version of learn had fewer built-in commands in the driver pro­
gram, and made more use of the facilities of the UNIX system itself. For example, file com­
parison was done by creating a cmp process, rather than comparing the two files within learn.
Lessons were not stored as text files, but as archives. There was no concept of the in-line
document; even #print had to be followed by a file name. Thus the initialization for each les­
son was to extract the archive into the working directory (typically 4-8 files), then #prinf the
lesson text.

The combination of such things made learn rather slow and demanding of system
resources. The new version is about 4 or 5 times faster, because fewer files and processes are
created. Furthermore, it appears even faster to the user because in a typical lesson, the printing
of the message comes first, and file setup with #create can be overlapped with printing, so that
when the program finishes printing, it is really ready for the user to type at it.

It is also a great advantage to the script maintainer that lessons are now just ordinary text
files, rather than archives. They can be edited without any difficulty, and UNIX text manipUla­
tion tools can be applied to them. The result has been that there is much less resistance to
going in and fixing substandard lessons.

6. Conclusions

The following observations can be made about secretaries, typists, and other non­
programmers who have used learn:

(a) A novice must have assistance with the mechanics of communicating with the computer
to get through to the first lesson or two; once the first few lessons are passed people can
proceed on their own.

(b) The terminology used in the first few lessons is obscure to those inexperienced with com­
puters. It would help if there were a low level reference card for UNIX to supplement the
existing programmer oriented bulky manual and bulky reference card.

(c) The concept of "substitutable argument" is hard to grasp, and requires help.

(d) They enjoy the system for the most part. Motivation matters a great deal, however.

It takes an hour or two for a novice to get through the script on file handling. The total time
for a reasonably intelligent and motivated novice to proceed from ignorance to a reasonable
ability to create new files and manipulate old ones seems to be a few days, with perhaps half of
each day spent on the machine.

'!t' was broken

:oblems.

(

as a

References

1. D. L.
tion
ed.

2.

3. P.

for the second

puter in American
(1

4. B. F. "Why We

5. K.

in Educational
. (1961).

and to

7"-·13

Plum for his efforts to improve c

a Large Scale Computer Based
Assisfed Instrucfion, Testing and Guidance,

New York (19iO).

S. Lichtenstein, and N. Nimmervoll,
Trans. Educi:uiiin E-200), pp. 73-77

to Individualize Instruction," pp. 11-24 in The
Bushnell and W. Allen, John Wiley, New York

"

's

Educ. Review 31, pp.377-398,
Rinehart & Winston (New

Bell (1978).

6. B. W. tutorial infroduction 10 the UNIX text Bell Laboratories internal

7. B: '",V. c
wo!)d

7-14

.-........ ,

APPENDIX A - Page given to new users

How to Get Started

Absolutely basic information for using the UNIX system
from DASI, Terminet. or HP terminals

First time. BRING A FRIEND. Anyone who has used UNIX before, however briefly, will be of
enormous help for the first fifteen minutes to show you where all the switches are and supply
information missing from this page.

Terminals. Turn the power on. There are many kinds of terminals. Look at the telephone
used with the terminal to distinguish them. Terminals may have

- old style dawsets (if the phone set is a small gray box with "talk" and "data" buttons
at the right above the handset)
- new style datasets (if the phone set is a black six button phone with a red "data" button
on the left, sitting on a rectangular box with a glass front)
- acoustic couplers (if an ordinary telephone is used to call and the terminal has rubber
receptacles that the handset fits into) or
- modems (if the phone used for calling has a white button for the left button of the pair
of buttons the handset usually rests on).
- none of the above (in which case there is probably a switch somewhere that should be
flipped to signal the computer).

Calling in. For your local UNIX call _____ _
- If the terminal doesn't use a phone, ignore this section, and proceed to Login ..
- On terminals with datasets you must push the "talk" button to get a dial tone.
- If the terminal has a separate coupler turn the coupler power on.
- If the line is busy UNIX is probably full.
- If there is no answer UNIX is broken.

Usually the phone rings only once; UNIX answers and whistles at you.

Connecting the terminal. Remember what kind of terminal you have. If it uses a
- dataset, push down the "data" button, let it spring back up, and then hang up the
handset (IN THAT ORDER).
- coupler, place the handset in the rubber receptacles. There will be an indication of
where the phone cord should be (it matters). You may get better results by placing the
handset in the receptacles as you dial.
- modem. pull up the white button on the telephone and put the handset down some­
where (but don't hang up the phone!).

Login. UNIX should type "login:". If it does not:
- Your terminal may be in "local" mode - check that the "local/line" switch is on
"line". Also, Terminets may have their "interrupt" light on - turn it off by pushing
"ready. "
- If the message is garbled, the speed is wrong. Somewhere on the terminal is a switch
labeled "rate" or "baud" with positions of either "10,15,30" or "110,150,300". Set it to
30 or 300. Push the break or interrupt button slowly a few times. If "login:" doesn't
appear, call for help.
- UNIX may be broken (call ext. __ to check on that).

Type your userid, followed by "return". Your use rid is ___ _
- If each letter appears twice, find the switch labele~ "full/half duplex" and set it to
"full" .
- If the computer typed back your userid in upper case, find the "all caps" switch or
"shift lock" and turn it off. Then dial in again.

Normally UNIX says "Password:" and you should enter your password: printing will be turned
off while you do.

ff you misspell it, UNIX will say "Login incorrect. login:" and you can then retype your
userid and password correctly.

UNIX will say "$". You have successfully logged in.

7-15

7 -16

Commands. When UNIX has typed "$" you can type commands, one per line. For example,
you can type "date" to find out what day and time it is, or "who" to find out who is logged on.
Every command must end with a "return". After typing a command, wait for the next "$" to
see what happens. For example, your terminal paper might look like this (what the computer
typed is in italics):

login: myid
Password: < you can't see it >
$ date
Thu Jan 15 10:58:21 EST 1979
$

There are a great many other commands you can type (see the guides below) and in particular
the learn command can help you learn some features of UNIX.

- If you make a mistake typing: the charact~r # will erase the previous character, so that
typing

dax#te
is the same as typing

date
and the character @ will erase the entire line~ typing

xxxxx@
date

is the same as typing "date". UNIX supplies the carriage return after the @.
- You must hit return if you expect the computer to notice what you typed; otherwise it
will wait patiently and silently for you to do so. When in doubt, type return and see what
happens.
- If you make a typing error and don't correct it with # or @ before hitting return, the
computer will typically say

datr: not found
where "datr" is the erroneous input line.
- Other messages that may arise from mistyping include "cannot execute" or "No match"
or just "? ". Thp. cure is almost always to retype the offending line correctly.

Terminology. Everything stored on the computer is saved in files. A file might contain, for
example, a memo or a chapter of a book or a letter. Every file has a name, which is used
whenever you want to. refer to it. Sample names might be "chap3" or "mem02". The files
are grouped into directories; each directory contains the names of several files. All users have
directories containing their own files.

Loggihg out. Just hang up. On a terminal with a data set, push the "talk" button. On other
terminals hang up the handset. Turn the terminal power off.

GUides. You should have copies of UNIX For Beginners and A Tutor;allntroduction to the UNIX
Text Editor.

I

\

(

Typing Documents on the UNIX System:
U sing the - ms Macros with Troff and N rolf

M E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This document describes a set of easy-to-use macros for preparing docu­
ments on the UNIX system. Documents may be produced on either the photo­
typesetter or a on a computer terminal, without changing the input.

The macros provide facilities for paragraphs, sections (optionally with
automatic numbering), page titles, footnotes, equations, tables, two-column
format, and cover pages for papers.

This memo includes, as an appendix, the text of the "Guide to Preparing
Documents with - 'which contains additional examples of features of
-ms.

This manual is a revision of, and replaces, "Typing Documents on
UNIX," dated November 22, 1974.

November 13, 1978

8-1

Typing Documents on the UNIX System:
Using the - ms lVlacros with Troff and Nroff

M. E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction. This memorandum describes a package of comlT' .. 'lnds to produce papers
using the troff anJ nroff formatting programs on the UNIX system. As with other roff-derived
programs, text is prepared interspersed with formatting commands. However, this package,
which itself is written in [roff commands, provides higher-level commands than those provided
with the basic troffprogram. The commands available in this package are listed in Appendix A.

Text. Type normally, except that instead of indenting for paragraphs, place a line reading
".PP" before each paragraph. This will produce indenting and extra space.

Alternatively, the command .LP that was used here will produce a left-aligned (block) para­
graph. The paragraph spacing can be changed: see below under "Registers."

Beginning. For a document with a paper-type cover sheet, the input should start as fol­
lows:

[optional overall format .RP - see below]
.TL
Title of document (one or more lines)
.AU
Author(s) (may also be several lines)
.AI
Author's institution (s)
.AB
Abstract; to be placed on the cover sheet of a paper.
Line length is 5/6 of normal; use .11 here to change .
. AE (abstract end)
text .. , (begins with .PP, which see)

To omit some of the standard headings (e.g. no abstract, or no author's institution) just omit
the corresponding fields and command lines. The word ABSTRACT can be suppressed by writing
".AB no" for ".AB". Several interspersed .AU and .AI lines can be used for multiple authors.
The headings are not compulsory: beginning with a .PP command is perfectly OK and will just
start priming an ordinary paragraph. Warning: You can't just begin a document with a line of
text. Some -ms command must precede any text input. When in doubt, use .LP to get
proper initialization, although any of the commands .PP, .LP, .TL, .SH, .NH is good enough.
Figure 1 shows the legal arrangement of commands at the start of a document.

Cover Sheets and First Pages. The first line of a document signals the general format of
the first page. In particular, if it is n.Rpn a cover sheet with title and abstract is prepared. The
default format is useful for scanning drafts.

In general - ms is arranged so that only one form of a document need be stored, contain­
ing all information; the first command gives the format, and unnecessary items for that format
are ignored.

Warning: don't put extraneous material between the .TL and .AE commands. Processing
of the titling items is special, and other data placed in them may not behave as you expect.
Don't forget that some -ms command must precede any input text.

8-2

(

(

8-3

The --ms macros, by defail!t, will a page
number greater than 1). A page footer is in nrolf, where the date is
used. The user can make minor adjustments to the page headings/footings redefining the
strings LH, CH, and RH which are the center and portions of the page

and the LF, CF, and center and portions of
For more com the macros PT and BT,

which are invoked at the top and bottom of each page. The margins from
registers riM and FM for the top and bottom margin respectively) are normally 1 inch; the page

are in the middle of that space. user who these macros should be
not to change such as point size or font them to

values.

Multi~C()lumn If you
the command ".2C" in your document, the
document wiH be in double column

at that point. This
in termina! out-

put, but is often desirable on the typesetter.
The command ".1 will go back to one­
column format and also skip to a new page.
The ". I:ommand is a
case of the command

.MC

which makes multi columns with the
column and as many

columns as will fit across the page are used.
.,. column pages can

be Whenever the number of
columns IS from full

a
new page is started.

To a head-
there are two commands. If you

.NH
section here

may be severa! lines

and of Directors

Every section of either type,
should be by a paragraph beginning

the end of the
Headings may contain more than

one line of text.

The ,NH command also supports more
complex numbering schemes. If a numeri­
cal is given, it is taken to be a
"'!evel" number and an sub-
se(;tion number is level

this

.NH
Erie-Lackawanna
.NH 2
Morris and Essex Division
.NH 3
Giadstone Branch
.NH 3
Montclair Branch
.NH 2

Line

as in

you will 2.

.NH
Care and

L Care and

of

of

For

Heads

Heads

2.1. and Essex Division

2.1.2. Montclair Branch

2.2. [on Line

An 0" will reset the
n of level 1 to one, as here:

Care and ()

will
added:

with no number

1. Penn

Indented paragraphs. (Paragraphs
with hanging numbers, e.g. references. The
sequence

.IP [1]
Text for first paragraph, typed
normally for as long as you would
like on as many lines as needed.
.lP [2]
Text for second paragraph, '"

produces

U 1 Text for first paragraph, typed nor­
mally for as long as you would !ike on
as many lines as needed.

[2] Text for second paragraph, ...

A series of indented paragraphs may be fol­
lowed by an ordinary paragraph beginning
with .PP or .LP, depending on whether you
wish indenting or not. The command .LP
was used here.

More sophisticated uses of .IP are also
possible. If the label is omitted, for exam­
ple, a plain block indent is produced.

.IP
This material will
just be turned into a

8-4

block indent suitable for quotations or
such matter.
.LP

will produce

This materia! will just be turned into a
block indent suitable for quotations or
such matter.

If a non-standard amount indenting is
required, it may be specified after the label
(in character positions) and will remain in
effect until the next .PP or .LP. Thus, the
genera! form of the JP command contains
two additional fields: the label and the
indenting length. For example,

JP first: 9
Notice the longer label, requiring larger
indenting for these paragraphs.
.IP second:
And so forth.
.LP

produces this:

first: Notice the longer
larger

second: And so forth .

requiring
these para-

It is also ble !o multi nested
indents; the command .R.S indicates that the
next jp starts from the current indentation
level. Each .RE will eat up one ievel of

so you should balance. and
.RE commands. The .RS command should
be of as "move " and the .RE
command as "move As an example

jp l.
Bell Laboratories
.RS
JP 1. 1

JP 1.2

JP 1..3

.RS

Hill

.IP 1.3.1
Madison
.RE
JP 1.4
Chester
.RE

wi!! result in

1. Bell Laboratories

Ll Hill

1.2 Holmdel

1.3

1.3.1 Madison

1.4 Chester

All these on .LP leave the right
margin untouched.
poses such as
graph indented is
required.

A single
obtained
.QP. More materia!
(several paragraphs) should be
bracketed with

Of underlining
the typesetter)

say

(

';;

.I.
as much text as you want
can be typed here
.R

as was done for these three words. The .R
command restores the normal (usually
Roman) font. If only one word is to be ital­
icized, it may be just given on the line with
the .I command.

.1 word

and in this case no .R is needed to restore
the previous font. Boldface can be pro­
duced by

.B
Text to be set in boldface
goes here
.R

and also will be underlined on the terminal
or line printer. As with .I, a single word can
be placed in boldface by placing it on the
same line as the .B command.

A few size changes can be specified
similarly with the commands .LG (make
larger). .SM (make smaller), and .NL
(return to normal size). The size change is
two points; the commands may be repeated
for increased elfect (here one .NL canceled two
.SM commands).

If actual underlining as opposed to ital­
icizing is required on the typesetter. the
command

.UL word

will underline a word. There is no way to
underline multiple words on the typesetter.

Footnotes. Material placed between
lines with the commands .FS (footnote) and
.FE (footnote end) will be collected.
remembered, and finally placed at the bot­
tom of the current page·. By default, foot­
notes are 111l2th the length of normal text.
but this can be changed using the FL regis­
ter (see below).

Displays and Tables. To prepare
displays of lines. such as tables, in which the
lines should not be re-arranged, enclose
them in the commands .DS and .DE

• Like this.

8-5

.DS
table lines. like the
examples here, are placed
between .DS and .DE
.DE

By default, lines between .DS and .DE are
indented and left-adjusted. You can also
center lines. or retain the left margin. Lines
bracketed by .DS C and .DE commands are
centered (and not re-arranged); lines brack­
eted by .DS Land .DE are left-adjusted, not
indented, and not re-arranged. A plain .DS
is equivalent to .DS I, which indents and
left-adjusts. Thus.

whereas

these lines were preceded
by .DS C and followed by

a .DE command;

these lines were preceded
by .DS L and followed by
a .DE command.

Note that .DS C centers each line; there is a
variant .DS B that makes the display into a
left-adjusted block of text. and then centers
that entire block. Normally a display is kept
together. on one page. If you wish to have
a long display which may be split across page
boundaries, use .CD •. LD. or .10 in place of
the commands .DS C, .DS L. or .DS I
respectively. An extra argument to the .DS
I or .DS command is taken as an amount to
indent. Note: it is tempting to assume that
.DS R will right adjust lines. but it doesn't
work.

Boxing words or lines. To draw rec­
tangular boxes around words the command

.BX word

will print Iwordl as shown. The boxes will
not be neat on a terminal. and this should
not be used as a substitute for italics.

Longer pieces of text may be boxed by
enclosing them with .Bl and .B2:

.Bl
text...
.B2

I as has been done here.

Keeping blocks together. If you wish
to keep a table or other block of lines
together on a page, there are "keep -

release" commands. If a block of lines pre­
ceded by . KS and by . KE does not
fit on the remainder of the current page, it
wil! begin on a new page. Lines bracketed
by .DS and .DE commands are

together this way. is also a
"keep Iloating" command: if the block to be

together is preceded .KF instead of
.KS and does not fit on the current page, it
will be moved down the text until
the of the next page. no
blank space will be,.,introduced in the docu­
ment.

commands.
useful commands the
programs are the
with both typesetter and terminal

.bp - new page .

. br - ' , stop text
from line to line .

. sp n - insert n blank lines .

. oa -

By default, documents
on computer have the date at the
bottom each page; documents
on the To force the

say ".ND".
".DA 4,

date at the
bottom of each page. The command

in ".RP" format
the cover sheet and

the date on
nowhere else. Place

this line before the title.

You can obtain a sig­
piacing the command .SG in

the document. The authors' names will be
output in place of the .SG
ment to .SG is used as a

and placed after The
.SG command is in released paper
formal.

Registers. Certain of the
used by - ms can be al tered to
default settings. They should be changed
with .m commands, as with

. m PS 9

to make the point size 9 point. If
the effect is needed immediately, the normal

8-6

should be used in addition to
the number

Defines

PS
VS
LL
LT
PO
PI para. indent
FL footnote
CV" cOlumn \"idth
G\V intercolumn gap~"y
PO page offset
HM
FM

You rnay also alter

letter over which the
Here are the

Use.
and stored

e

--msfile

and you can it
the command

(roff -ms

are

Takes
effect

Default

next p3ra. 0
neX.t 12 PiS
next para. 611

next para. 6"

next 2(:
next 2C
next page
next page
next

vs
5 ens
1 12 LL
71 5 LL
11 5 LL
26127"

I"

and

nlark
the

is to appear.

a
v
e

it on a

with

In each case,
if your document. is stored in several

list all the we
used" '. If are
eqn andlor fbI must be invoked as prepro­
cessors .

• !f .2e was used, l:llpe the nroff output through
col; make the first iir.e of the inpul H .pi
/usr/bin/coL~)

(

If you

1.0
for a numbered
(1

macros .TS and. are
tables text

with a little space.

use the

related NIX commands is in
that do not seem

easier
such tasks as

to to

manual.

[lJ

8

[4]
Bell Laboratories

Science Report no. 51.

and M.
V",'Hu'nnlffl,r'p '$

Bell

8-8

Appendix A
List of Commands

IC Return to single column format. LG Increase type size.
0-

2C Start double column format. LP Left aligned block paragraph.
AB Begin abstract. (AE End abstract.
AI Specify author's institution.
AU Specify author. ND Change or cancel date.
B Begin boldface. NH Specify numbered heading.
DA Provide the date on each page. NL Return to normal type size.
DE End display. PP Begin paragraph.
DS Start display (also CD, LD, ID).
EN End equation. R Return to regular font (usually Roman).
EQ Begin equation. RE End one level of relative indenting.
FE End footnote. RP Use released paper format.
FS Begin footnote. RS Relative indent increased one level.

SG Insert signature line.
Begin italics. SH Specify section heading.

SM Change to smaller type size.
IP Begin indented paragraph. TL Specify title.
KE Release keep.
KF Begin floating keep. UL Underline one word.
KS Start keep.

Register Names

The following register names are used by -ms internally. Independent use of these
names in one's own macros may produce incorrect output. Note that no lower case letters are
used in any - ms internal name.

Number registers used in - ms
DW GW HM IQ LL NA OJ PO T. TV

#T EF HI HT IR LT NC PD PQ TB VS
IT FL H.3 IK KI MM NF PF PX TD YE
AV FM H4 1M L1 MN NS PI RO TN YY
CW FP HS IP LE MO OI PN ST TQ ZN

String registers used in - ms
AS CB DW EZ 1 KF MR RI RT TL
AB CC DY FA 11 KQ ND R2 SO TM
AE CD EI FE 12 KS NH R3 SI TQ
AI CF E2 FJ 13 LB NL R4 S2 TS
AU CH E3 FK 14 LD NP R5 SG TT

, B CM E4 FN 15 LG OD RC SH UL
IC BG CS E5 FO ID LP OK RE SM WB
2C BT CT EE FQ IE ME PP RF SN WH
Al C D EL FS 1M MF PT RH SY WT (
A2 CI DA EM FV IP MH PY RP TA XD
A3 C2 DE EN FY IZ MN QF RQ TE XF
A4 CA DS EQ HO KE MO R RS TH XK

'-

8-9

P

1
AU

1
AI

AE

/

PP, LP

J
text ...

Figure 1

8-10

M. E.

Bell Laboratories

2.

3.

's
user should also have A
the

's
son and D. M. Ritchie.

AIM
released

An internal memo, and
and

2. The new

5

7

8

is shown in

is shown in

to

ment no.

8-11

a

.TM 1978 .. 5b3 9999999999·

.NO 1, 197fJ

.n
The of the Allen Wrench in Modern
E!ectronics
.AU "MH 2<3- i "234:5

Q .
. AU
X.

.MH

.OK
Tools

J"a
This abstract should be. short
fit on a page cover sheet.
H must attract the rfHKler

complete memorandurn .
. AE
.CS 1 2 1 r, , c .

. NH
Introduction .
. PP

67

to

Now of actua i lext ...

Last !ine of !ext.
.SG MH-1234··JQP!XYH-unix
.NH
References _ ..

Commands not ne:eded :n a
nored.

format are

1--------'----- ·--·------·---~I

!
Cover Sheet for ™ I

~I-:,~-,s·--,'."'O· rmr.-fIO-." -,5-------------·-·--- II
'f '4" empiovEes 0/ Bell Laboratorif'S. {GEl 13. ~J)

---,-------_---------~--

Title- The of the Allen Wrench
in Modem Electronics

Dille· April 1, 1976 i
I

Oliler Keyword!;- Tools
Design

TM· 19'1§-5b3

AUlh(}(LOC;Hion txt. Chnrging Case- 99999
J. Penciipusher
X. . }-iardwired

MH 2G-ll 2345 Filing Case- 99€J99a
MH IK-222 5432

ABSTRACT

This abs!fa(:t should be shon enough
on a ::;ingie fx~ge cover sheet. It mus~

atFacl the i!HO sending for the com·
ptete rnernorandum.

Text 10 Other 2 TOlal 12

5 No. 'feloles 6 No. Refs. 7

I

I
!

j

I
I
I
I

I I
i H~3,U 16·73) SEE ReVERSE SlOE FOR DISTRIBUTION UST I
L _______________ . _____ . .J

._'\

j

,1
~,'

A R~leased Paper with Mathematics

.EO
dellm $$
.EN
.RP

... (u for a TM)

. CS 10 2 1 2 5 e 7

.NH
Introduction
.PP
The solution to the torque handle equation
.EO (1)
sum from 0 to inf F (x sub i) - G (x)
.EN
is found with the transformation $ x - rho over
theta $ where $ rho - G prime (x) $ and $theta$
is derived ...

The Role of the Allen Wrench
in Modem Electronics

J. Q. Pencilpuslr~r

X. Y. Htudwir~

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This abstract should be short enough to fit on a
sinaJe pale cover sheet. It must attract the
reader into sending for the complete memoran­
dum.

April I, 1976

The Role of the Allen Wrench
in Modern Electronics

J. Q. Pencilpusher

X. Y. Hardwired

Bell Laeoratories
Murray Hill. New Jersey 07974

1. Introduction
The solution to the torque handle equation ..

!F(x)-G<x) (I)
o

is found with the transformation x-t where p-G'(x) and

, is derived from well·known principles.

~---------------------------------------
8-12

An Internal Memorandum

.IM

.NO January 24, 1956

.TL
The 1 956 Consent Decree
.AU
Able. Baker &
Charley, Attys .
.PP
Plaintiff. United States of America. having filed
its complaint herein on January 14. 1949; the
defendants having appeared and tiled their
answer to such complaint denying the
substantive allegations thereof; and the parties.
by their attorneys. '"

@
Bell Laboratories

Subject: The 19S6 Consent Decree date: January 24. 1956

from: Able. Baker a:
Charley. Attys.

Plaintiff, United States of America, having filed its com·
plaint herein on January 14. 1949; the defendants having
appeared and filed their answer to such complaint denying
the substantive allegations thereof; and the parties, by their
attorneys. having severally consented to the entry of this
Final Judgment. without trial or adjudication of any issues
of fact or law herein and without this Final Judgment con·
stituting any evidence or admission by any party in respect
of any such issues;

Now, therefore before any testimony has been taken
herein, and without trial or adjudication of any issue of fact
or law herein. and upon the consent of all parties hereto. it
is hereby

Ordered, adjudged and decreed as follows:

I. (Sherman Act!
This Court has jurisdiction of the subject matter herein

and of all the parties hereto. The complaint states a claim
upon which relief may be granted against each of the
defendants under Sections I. 2 and 3 of the Act of
Congress of July 2. 1890. entitled "An act to protect trade
and commerce against unlawful restraints and monopo­
lies," commonly known as the Sherman Act, as amended.

II. [Definitions)
For the purposes of this Final Judgment:
(a> "Western" shall mean the defendant Western Elec­

tric Company. Incorporated.

Other formats possible (specify before .TU are: .MR
("memo for record")' .MF ("memo for file"), .EG
("engineer's notes") and .TR (Computing Science
Tech. Report).

.NH
Introduction.
.PP
text text text

1. Introduction
text text text

Headings

.SH
Appendix I
.PP
text text text

Appendix I
text [ext text

-_/

\
j

A Simple List

.IP 1.
J. Pencil pusher and X. Hardwired,
• 1
A New Kind of Set Screw,
.R
Proc. IEEE
.B 75
(1976), 23-255.
.lP 2.
H. Nails and R. Irons,
.1
Fasteners for Printed Circuit Boards,
. R
Proc. ASME
.B 23
(1974), 23-24.
.LP (terminates list)

1. J. Pencil pusher and X. Hardwired. A New Kind
of Set Screw, Proc. IEEE 75 (1976).23-255.

2. H. Nails and R. Irons. Fasteners for Printed Or­
cui' Boards, Proc. ASME 23 (1974). 23-24.

Displays

text text text text text text
.DS
and now
for something
completely different
.DE
text text text text text text

hoboken harrison newark roseville avenue grove
street east orange brick church orange highland ave­
nue mountain station south orange maplewood
millburn short hills summit new providence

and now
for something
completely different

murray hill berkeley heights gillette stirling milling­
ton lyons basking ridge bernardsville far hills
peapack gladstone

Options: .DS L: left-adjust; .DS C: line-by-line
center; .DS B: make block. then center.

Footnotes

Among the most important occupants
of the workbench are the long-nosed pliers.
Without these basic tools·
.FS
• As first shown by Tiger & Leopard
(1975).
.FE
few assemblies could be completed. They may
lack the popular appeal of the sledgehammer

Among the most important occupants of the work­
bench are the long-nosed pliers. Without these basic
tools· few assemblies could be completed. They
may lack the popular appeal of the sledgehammer

• As firsl shown by Tiger & Leopard (! 915). 8 - 13

Multiple Indents

This is ordinary text to point out
the margins of the page.
.IP 1 .
First level item
.RS
.IP a)
Second level.
.IP b)
Continued here with another second
level item, but somewhat longer.
.RE
.IP 2 .
Return to previous value of the
indenting at this point.
.IP 3.
Another
line.

This is ordinary text to point out the margins of the
page.
I. First level item

a) Second level.
b) Continued here with another second level

item. but somewhat longer.
2. Return to previous value of the indenting at this

point.
3. Another line.

Keeps

Lines bracketed by the following commands are kept
together. and will appear entirely on one page:

.KS not moved .KF may float

.KE through lext .KE in text

Double Column

.TL
The Declaration of Independence
.2C
.PP
When in the course of human events, it becomes
necessary for one people to dissolve the
political bonds which have connected them with
another, and to assume among the powers of the
earth the separate and equal station to which
the laws of Nature and of Nature's God entitle
them, a decent respect to the opinions of

The Declaration of Independence

When in the course of they should declare the
human events. it be- causes which impel them
comes necessary for one to the separation .
people to dissolve the We hold these truths
political bonds which to be self-evident, that
have connected them all men are created
with another. and to as- equal. that they are en­
sume among the powers dowed by their creator
of the earth the separate with certain unalienable
and equal station to rights. that among these
which the laws of Nature are life. liberty. and the
and of Nature's God en- pursuit of happiness.
title them, a decent That to secure these
respect to the opinions rights. governments are
of mankind requires that instituted among men,

Equations

A displayed equation is marked
with an equation number at the right margin
by adding an argument 10 the EQ iine:
.EO (1.3)
)(sup 2 over a sup 2 -"" - sqrt (p z sup 2 +qz+rl
.EN

A displayed equation is marked with ail equation
number at the right margin by adding an argument
to the EO line:

(1.3)

.EQ I (2.2a)
bold V bar sub nu-= -left [pile (8 above b above
c I right J + left { matrix I col (A(11) above.
above. I col { . above. above.) col Labove.
above A(33) II right J cdot ieft [pile (alpha
above beta above gamma I right]
.EN

- [a] f[A (l J). . 1 ral
V v "" b + .. 1'113 (2.2a)

c . . A (3)) lyJ

.EQ L
F hat (chi) - mark"'" -I del V 1 sup 2
.EN
.EO l
lineup "",- (left ({partial vj over (partial xl right)
I sUP 2 + { left ((partial vI over (partial y] right
) I sup 2 ------ lambda - > inf
.EN

11.-00

$ a dot $, $ b dotdot$, $ xi tilde limes y vec$:

(with de!im $$ on, see panel 3).

See also the equations in the second table, panel 8.

Some Registers You Can Change

Line length
.m LL 7i

Tille length
.m L T 7i

Point size
.m PS 9

Vertical spacing
.nrVS II

Column width
.m CW)i

Intercolumn spacing
.m GW .5i

Margins - head and foot
.m HM .7Si
.m FM .75i

Paragraph indent
.nr Pi 2n

Paragraph spacing
.m PD 0

Page offset
.nr PO O.5i

Page heading
.ds CH Appendix

(center)
.ds RH 7-25-76

(right)
.ds LH Private

(left)

Page footer
.ds CF Draft
.ds LF ..
.ds R F Slnl liar

Page numbers
.m %)

8-14

.TS (('f) indicates a b)
allbox;
c s s
c c c
n n n.
AT&T Common Stock
Year ('f) Price ('f) Dividend
1971 ('f)41-54 ('f)$2.60
2CD41~54CD2.70

iAT&T Common Stock

'I YeaITPrice 1 Dividend

1 •• _1971141-~41 sf~
r 2 41-5Tf 2.70
1--1'-46 -~ [J287 i J. -:L .

3 CD 46-55 CD 2.87
r 4140 -53 I j~ r----sr45 -52 I JAG 4 CD40-53 ('f)3.24

5 CD45-52 CD3.40
[--iq 51-59 1 .95" I l __ . __ .L... ____ ...J

6 CDS1-59 CD.95· • (first quarter only)

.TE
• (first quarter

Tile meanings of the
men! of each entry are:

the align-

C center n numerical
right-adjust a subcolumn
left-adjust s

The global table are center, box,
daublabox, allbox, tab (x) and linesize (n).

.TS delim SS on, see J)
doubiebox, center;
c c
I I.
Name CDDefinition

.. sp
Gamma (f)$GAMMA (z) = int sub a sup inf \

t sup Iz-11 e sup -I dt$
Sine CD$sin (x) = lover 2i (e sup IX - e sup -IX)$
ErrorCD$ roman ed = 2 over sqrt pi \

int sub 0 sup z e sup 21 dl$
Bessel CD$ J sub 0 over pi \

int sub 0 sup pi cos (z sin theta) d theta $
Zeta CD S zeta (s) = \

sum from k=1 to in! k sup -13 --(Re-s > 1)S
.TE

~
Name

~amma

::,me

Error

I Bessel

l Zela

Definition

r(::)=
o

1

sin (x) ~ -=- (e IS -~" e --IV)
2.1

err(:)

Usage

Documents with just text:
trotT -ms files

With equations only:
eqn files 1 trolf oms

With tables only:
tbl files ilrotT < ms

With botil tables and equations:
101 filesieqnlrrotT -rns ----
The above generates ST.\RE output on Geos: replace
-st with -ph for typesener OUlPUt.

(
'-.

(

Typesetting Mathematics - User's Guide (Second Edition)

Brian W. Kernighan and Lorinda Cherry

Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This is the user's guide for a system for typesetting mathematics,
typesetters on the UNIXt and Geos operating systems.

the photo-

expressions are described in a """b"""!!>-­
who know neither mathematics nor typesetting. Enough

to be easy to use by people
to set in-line expres-

siom; like sin 2x '"" 1 or I~quations like

G G(z)

- . -I

--~- zm

can be in an hour or so.

The language directly with the phototypesetting language TROFF, so mathemati-
pnlSS!OrJIS can embedded in the running text a manuscript, and the document

in one process. This is an example output.

same may be used with the UNIX NROFF to set
on DASI and GSl and 37

August 15,

tUN IX is a Tflldemllrk of Bell Laboratories.

9-1

Typesetting Mathematics - User's Guide (Second Edition)

Brian W. Kernighan and Lorinda L. Cherry

Bell Laboratories
Murray Hill, New Jersey 07974

1. Introduction

EQN is a program for typesetting
mathematics on the Graphics Systems pho­
totypesetters on UNIX and GCOS. The EQN
language was designed to be easy to use by
people who know neither mathematics nor
typesetting. Thus EQN knows relatively little
about mathematics. In particular,
mathematical symbols like +, x,
parentheses, and so on have no special
meanings. EQN is quite happy to set garbage
(but it will look good).

EQN works as a preprocessor for the
typesetter formatter, TROFF[1l, so the nor­
mal mode of operation is to prepare a docu­
ment with both mathematics and ordinary
text interspersed, and let EQN set the
mathematics while TROFF does the body of
the text.

On UNIX, EQN will also produce
mathematics on DASI and GSI terminals and
on Model 37 teletypes. The input is identi­
cal, but you have to use the programs NEQN
and NROFF instead of EQN and TROFF. Of
course, some things won't look as good
because terminals don't provide the variety
of characters, sizes and fonts that a
typesetter does, but the output is usually
adequate for proofreading.

To use EQN on UNIX,

eqn files I trofT

GCOS use is discussed in section 26.

2. Displayed Equations
To tell EQN where a mathematical

expression begins and ends, we mark it with
lines beginning .EQ and .EN. Thus if you
type the lines

9-2

.EQ
x=y+z
.EN

your output will look like

x=y+z

The .EQ and .EN are copied through
untouched; they are not otherwise processed
by EQN. This means that you ha.ve to take
care of things like centering, numbering,
and so on yourself. The most common way
is to use the TROFF and NROFF macro pack­
age package '-ms' developed by M. E.
Lesk[31, which allows you to center, indent,
left-justify and number equations.

With the '-ms' package, equations are
centered by default. To left-justify an equa­
tion, use .EQ L instead of .EQ. To indent it,
use .EQ I. Any of these can be followed by
an arbitrary 'equation number' which will be
placed at the right margin. For example,
the input

.EQ I (3.1a)
x == f(y/2) + y/2
.EN

produces the output

X"" j(y/2)+y/2 (3.1a)

There is also a shorthand notation so
in-line expressions like 'IT ~ can be entered
without .EQ and .EN. We will talk about it in
section 19.

3. Input spaces
Spaces and newlines within an expres­

sion are thrown away by EQN. (Normal text
is left absolutely alone.) Thus between .EQ
and .EN,

x==y+z

and

"'"
+z

and so on all

to make your
easy to edi t-
are a bad

y

the same

fix if you make a mistake.

4.
extra spaces into the output,

use a tilde" -" for each space you want:

x=y+z

It is
may

also be used to an expres-
but the tab stops must be set TROFF

commands.

s. Names.
EQN knows some mathematical sym­
some mathernatical names, and the

x=2

ddt

the spaces in the
to tel! EQN that int,

are necessary
sin and omega are

entities that should
2, and

instead of are set in roman
omega are made

does not

and in! becomes the

leave spaces around
A very common

without
As a

and

3

6.

names appears
"UI<,,,i:&UlC users can also

names any-

is

words stand
with tildes or

is much same as the last
except that the tHdes not

words like sin, omega, and so on, but
also add extra spaces, one space per tilde:

1.
and

obtained with the words sub

x sup 2 + y k

dl

size
to make

are

sub and sup must be
x

mark
A common error is to

y= sup 1

which causes

y-

instead the intended

Subscripted subscripts and super­
scripted superscripts also work:

x sub i sub 1

is

A subscript and superscript on the same
thing are printed one above the other if the
subscript comes first:

x sub i sup 2

is

x 2 ,

Other than this special case, sub and
sup group to the right, so x sup y sub z
means xY:, not xY z'

8. Braces (or Grouping

Normally, the end of a subscript or
superscript is marked simply by a blank (or
tab or tilde, etc.) What if the subscript or
superscript is something that has to be typed
with blanks in it? In that case, you can use
the braces { and} to mark the beginning and
end of the subscript or superscript:

e sup {j omega tl
is

Rule: Braces can always be used to force
EQN to treat something as a unit, or just to
make your intent perfectly clear. Thus:

x sub {j sub I} sup 2

is

with braces, but

x sub i sub 1 sup 2

is

X if

which is rather different.

Braces can occur within braces if
necessary:

e sup (i pi sup {rho + I}}

is

9-4

The general rule is that anywhere you could
use some single thing like x. you can use an
arbitrarily complicated thing if you enclose it
in braces. EQN will look after all the de tails
of positioning it and making it the right size.

In all cases, make sure you have the
right number of braces. Leaving one out or
adding an extra will cause EQN to complain
bitterly.

Occasionally you will have to print
braces. To do this, enclose them in double
quotes, like "{". Quoting is discussed in
more detail in section 14.

9. Fractions

To make a fraction, use the word over:

a+b over 2c -1

gives

a+b -1
2c

The line is made the right length and posi­
tioned automatically. Braces can be used to
make clear what goes over what:

(alpha + beta} over {sin (x)}

is

a.+f3
sin (x)

What happens when there is both an over
and a sup in the same expression? In such
an apparently ambiguous case, EQN does the
sup before the over, so

-b sup 2 over pi
2

. -b2 • d f b 11" Th I h' h IS -- mstea 0 - e ru es w IC
7T'

decide which operation is done first in cases
like this are summarized in section 23.
When in doubt, however, use braces to
make clear what goes with what.

10. Square Roots

To draw a square root, use SQrt:

sqrt a + b + I over sqrt {ax sup 2 + bx +c}

is

(

9- 5

{a sup 2 over b sub 2}

is

be Her wri Hen
to the power 112:

which is
x

(a sup sub 2) sup
is

and similar and
constructions are easy:

sum i=O to {i =

any
braces around them,

and
but if both are

occur in that order.

and

you

x sup i

ends. No
lower part

and to
must lise

are both
have to

characters can
sum in our

lim x sub !1

is

lim

size 1 ". I

If
roman, italic

sam::e to

can sel a

thereafter affects all equations. At the
beginning of any equation, you might say,
for instance,

.EQ
gsize 16
gfont R

.EN

to set the size to 16 and the font to roman
thereafter. In place of R, you can use any
of the TROFF font names. The size after
gsize can be a relative change with + or -.

Generally, gsize and gfont will appear at
the beginning of a document but they can
also appear thoughout a document: the glo­
bal font and size can be changed as often as
needed. For example, in a footnote* you
will typically want the size of equations to
match the size of the footnote text, which is
two points smaller than the main text.
Don't forget to reset the global size at the
end of the footnote.

13. Diacritical Marks

To get funny marks on top of letters,
there are several words:

x dot x
x dotdot x
x hat

A

x
x tilde X-
x vec x
x dyad x
x bar x
x under ~

The diacritical mark is placed at the right
height. The bar and under are made the
right length for the entire construct, as in
x+y+z; other marks are centered.

14. Quoted Text
Any input entirely within quotes

(" ... ") is not subject to any of the font
changes and spacing adjustments normally
done by the equation setter. This provides a
way to do your own spacing and adjusting if
needed:

*Like this one, in which we have a few random
expressions like X, and 11"2. The sizes for these
were set by the command gSizt! - 2.

9-6

italic "sin(x)" + sin (x)

is

sin(x)+sin(x)

Quotes are also used to get braces and
other EQN keywords printed:

"{ size alpha J"
is

{ size alpha I
and

roman "{ size alpha J"
is

{ size alpha }

The construction "" is often used as a
place-holder when grammatically EQN needs
something, but you don't actually want any­
thing in your output. For example, to make
i-Ie, you can't just type sup 2 roman He
because a sup has to be a superscript on
something. Thus you must say

"" sup 2 roman He

To get a literal quote use "\"". TROFF
characters like \ (bs can appear unquoted,
but more complicated things like horizontal
and vertical motions with \ hand \ v should
always be quoted. (If you've never heard of
\ hand \ v, ignore this section.)

IS. Lining Up Equations
Sometimes it's necessary to line up a

series of equations at some horizontal posi­
tion, often at an equals sign. This is done
with two operations called mark and lineup.

The word mark may appear once at
any place in an equation. It remembers the
horizontal position where it appeared. Suc­
cessive equations can contain one
occurrence of the word lineup. The place
where lineup appears is made to line up with
the place marked by the previous mark if at
all possible. Thus, for example, you can say

(

to

.. ,'-"

that

x mark

there
the

.\5

work
mind

mark

7

17, Piles

will

<

makes

1 if x>O
sign(x) - 0 if x-O

-1 if x<O

Notice the left brace without a matching
right one.

18. Matrices

It is also possible to make matrices.
For example, to make a neat array like

you have to type

matrix {

Xi x 2

Yi y2

ccol { x sub i above y sub i }
ccol { x sup 2 above y sup 2 }

}

This produces a matrix with two centered
columns. The elements of the columns are
then listed just as for a pile, each element
separated by the word above. You can also
use Icol or rcol to left or right adjust
columns. Each column can be separately
adjusted, and there can be as many columns
as you like.

The reason for using a matrix instead
of two adjacent piles, by the way, is that if
the elements of the piles don't all have the
same height, they won't line up properly. A
matrix forces them to line up, because it
looks at the entire structure before deciding
what spacing to use.

A word of warning about matrices -
each column must have the same number of
elements in it. The world will end if you get
this wrong.

19. Shorthand for In-line Equations
In a mathematical document, it is

necessary to follow mathematical conven­
tions not just in display equations, but also
in the body of the text, for example by mak­
ing variable names like x italic. Although
this could be done by surrounding the
appropriate parts with .EQ and .EN, the con­
tinual repetition of .EQ and .EN is a nuisance.
Furthermore, with '-ms', .EQ and .EN imply
a dispiayed equation.

9-8

EQN provides a shorthand for short in­
line expressions. You can define two char­
acters to mark the left and right ends of an
in-line equation, and then type expressions
right in the middle of text lines. To set
both the left and right characters to dollar
signs, for example, add to the beginning of
your document the three lines

.EQ
delim $$
.EN

Having done this, you can then say things
like

Let $alpha sub i$ be the primary
variable, and let $beta$ be zero.
Then we can show that $x sub 1 $ is
$> =0$.

This works as you might expect - spaces,
newlines, and so on are significant in the
text, but not in the equation part itself.
Multiple equations can occur in a single
input line.

Enough room is left before and after a
line that contains in-line expressions that

n

something like LX, does not interfere with
,-I

the lines surrounding it.

To turn off the delimiters,

.EQ
delim off
.EN

Warning: don't use braces, tildes,
circumflexes, or double quotes as delimiters
- chaos will result.

20. Definitions
EQN provides a facility so you can give

a frequently-used string of characters a
name, and thereafter just type the name
instead of the whole string. For example, if
the sequence

x sub i sub 1 + y sub i sub 1

appears repeatedly throughout a paper, you
can save re-typing it each time by defining it
like this:

define xy IX sub i sub 1 + Y sub i sub l'

This makes .xy a shorthand for whatever
characters occur between the single quotes
in the definition. You can use any character

(

"--

to mark the ends of the
as it t appear inside

Now you can this:

xy ...
.EN

and so on. occurrence
what was

around
so

for.
via us

to watch out
can use pre-

xi I x sub
xi 'xi sub 1 I

.EN

terms A

X I roman X '

since X is nO\\1

X I roman "XI! I

the second

EQN

can make / mean over

I i over f

or

'/ I

If you need on
a terminal and on the typesetter,
times

9

horizontal spaces can be obtained with tilde
and can also say back nand

to move small amounts horizontally.
is how to move in of an em

em is about the width of the letter 'm'.)
back 50 moves back about half the

width of an rn. you can move
up or down with up n and down n. As

sub Of sup, the local affect the

enclosed in braces.

be
if it is

Here is the source the
three in the abstract of this

.EQ I
G(z)~mark ~- e sup (In - G(z) 1
-~- exp left (
sum from k> = l(S sub k z sup kl over II: right)

prod from k> = 1 e sup (S sub k z sup k
.EN
.EQ
lineup left (! + S sub 1 z +
(S sub 1 sup 2 z sup 2 lover 21 + .. right)
left (! + (S sub z sup 2) over 2
+ I S sub 2 sup 2 z sup 4) over! 2 sup 2 coot 21 1
+ ... right) ...
.EN
.EQl
lineup = surn from m> =0 ieft (
sum from
pile { k sub

above
sub 2 p'" k sub >-0

k sub 1 + 21: sub 2 + ... +- rnl< sub IT< ...

(S sub 1 sup !I; slib !l lover !l sup k sub I k sub I 1 I •
(S sub 2 sup !k sub 2ll over !2 sup sub 2 k sub 2 ! 1 -

(S sub m sup !I<; sub
right) z sup

lover sup k sub m k sub mil

.EN

If you t use
the order

EQN will do
in this list.

vee under bar tilde haf dOl dOidot
back down up

roman italic bold size
.sub sup sqr/ over

to

group the

over sqn

All others group to

Digits, parentheses, brackets, punctua­
tion marks, and these mathematical words
are converted to Roman font when encoun­
tered:

sin cos tan sinh cosh tanh arc
max min lim log In exp
Re 1m and if for det

These character sequences are recognized
and translated as shown.

>­
<---
1-

+­
->
<-
« «
» »
inf 00

panial a
half 1/2
prime
approx
nothing
cdot
times
del
grad

sum

int

prod
union
inter

x
\l
\l

L
f
n
u
n

To obtain Greek letters, simply
them out in whatever case you want:

DELTA A iota ,
GAMMA r kappa K

LAMBDA A lambda A
OMEGA n mu IJ.
PHI <I> nu II

PI n omega w

PSI 'I' omicron 0

SIGMA r phi <P
THETA e pi 1T

UPSILON Y psi
'" XI - rho p --

alpha a sigma CT

spell

9-10

beta {3 tau T

chi X theta lJ
delta S upsilon v
epsilon E Xl ~
eta T/ zeta ,
gamma "Y

These are all the words known to EON

(except for characters with names), together
with the section where they are discussed.

above 17, 18 Ipile 17
back 21 mark 15
bar 13 matrix 18
bold 12 ndefine 20
ccol 18 over 9
col 18 pile 17
cpile 17 rcol 18
define 20 right 16
delim 19 roman 12
dot 13 rpile 17
dotdot 13 size 12
down 21 sqrt 10
dyad 13 sub 7
fat 12 sup 7
font 12 tdefine 20
from 11 tilde 13
fwd 21 to 11
gfont 12 under 13
gsize 12 up 21
hat 13 vee 13
italic 12 , 4, 6
leol 18 { I 8
left 16 " " 8, 14
lineup 15

24. Troubleshooting

If you make a mistake in an equation,
like leaving out a brace (very common) or
having one too many (very common) or
having a sup with nothing before it (com­
man), EON will tell you with the message

syntax error between lines x and y, file z

where x and yare approximately the lines
between which the trouble occurred, and z is
the name of the file in question. The line
numbers are approximate - look nearby as
well. There are also self-explanatory mes­
sages that arise if you leave out a quote or
try to run EON on a non-existent file.

If you want to check a document
before actually printing it (on UNIX only),

(~

c

(,

-.... -

eqn files>

will away the output but the
messages.

as
If you use like dollar signs

it is easy to leave one ouL
causes very pro-

gram checkeq (on GCOS, use .kheckeq
instead) checks misplaced or
dollar and similar

"line
exceeded an even
cure this is to break the equation
two ones.

25.

EQN does not break
you must split

up across multiple lines by your-

eqn

each by a .EQ EN
does warn. about equations

on one

that contains

If are any TROFF options, they go after
the TROFF the command. exam-

eqn files I -ms

9-11

run the same document on the GCOS

use

eqn -g (other options) 1

A compatible version
used on
GSI

on a

neqn

forward

use

by
NEQN is idemicai to that EQN, aithough of
course the is more restricted.

as the

neqn files: rlroff --Tx

where x is the terminal type you are using,
such as 300 or 300S.

EQN and NEON can be used with the
TBL program [2] for setting tables that con­
tain mathematics. Use TBL before [N]EQN.

like this:

tbl files I eqn I troff
tbl files I neqn I nroff

26. Acknowledgments

We are deeply indebted to l F.
Ossanna, author of TROFF, for his wil­
lingness to extend TROFF to make our task
easier, and for his continuous assistance
during development and evolution of
EQN. We are also grateful to A. V. Aho for
advice on design, to S. C. Johnson
for assistance with the Y ACC compiier­
compiler, and to all the EQN users who have
made helpful suggestions and criticisms.

References

OJ 1. F. Ossanna, "NROFF/TROFF User's
, Bell Laboratories Computing

Science Technical Report #54, 1976.

[2] M. Lesk, "Typing Documents on
UNIX", Bell Laboratories, 1976.

[3] M. E. Lesk, "TBL - A Program for
Setting Tables", Bell Laboratories
Computing Science Technical Report
#49, 1976.

9-12

A System for Typesetting Mathematics

Brian W. Kernighan and Lorinda L. Cherry

Bell Laboratories
Murray , New Jersey 07974

ABSTRACT

This paper describes the design and implementation of a system for typesetting
mathematics. The language has been designed to be easy to learn and to use by people
(for example, secretaries and mathematical typists) who know neither mathematics nor

Experience indicates that the language can be learned in an hour or so, for
it has few rules and fewer exceptions. For typical expressions, the size and font
changes, line drawing, and the like necessary to print according to
mathematica! conventions are all done automatically, For example, the input

sum from i =0 to infinity x sub i ~ pi over 2

produces

1'1'
=-~-

2

The syntax of the language is by a small context-free grammar; a
compiier-compiler is used to make a compiler that translates this language into typeset-

commands. Output may be on either a phototypesetter or on a terminal
with forward and reverse half-line motions. The system interfaces directly with text
formatting programs, so mixiures of text and mathematics may be handled simply.

This paper is a revision of a paper originally published in CACM, March, 1975.

1. Introduction character of mathematics, which the superscript
and limits in the preceding example showed in its
simplest form. This is carried further by

"Mathematics is known in the trade as
di/]icull. or copy because it is
more diffh;;ult, and more to set in type
than any other kind of copy normally occurring
in books and journals." [1]

One with mathematical text is the
multip!icity of characters, sizes, and fonts. An
expression such as

lim (tan x),m h "'" 1
If-fr/2

an intimate mixture of roman, italic and
letters, in three sizes, and a special charac­

ter or two. is the wrong
'word, but mathematics has its own typographical

different from those
of such an

traditional methods is still an
manual

A second difficulty is the two dimensional

9-13

hi
Go+

and still further

These also show line-drawing, built-up
characters like braces and radicals, and a spec­
trum of positioning problems. (Section 6 shows

what a user has to type to produce these on our
system.)

2. Photocomposition

Photocomposition techniques can be used
to solve some of the problems of typesetting
mathematics. A phototypesetter is a device
which exposes a piece of photographic paper or
film, placing characters wherever they are
wanted. The Graphic Systems phototypesetter(2)
on the UNIX operating system [3 J works by shin­
ing light through a character stencil. The charac­
ter is made the right size by lenses, and the light
beam directed by fiber optics to the desired place
on a piece of' photographic paper. The exposed
paper is developed and typically used in some
form of photo-offset reproduction.

On UNIX, the phototypesetter is driven by
a formatting program called TROFF (4). TROFF
was designed for setting running text. It also
provides all of the facilities that one needs for
doing mathematics, such as arbitrary horizontal
and vertical motions, line-drawing, size changing,
but the syntax for describing these special opera­
tions is difficult to learn, and difficult even for
experienced users to type correctly.

For this reason we decided to use TROFF
as an "assembly language," by designing a
language for describing mathematical expres­
sions. and compiling it into TROFF.

3. Language Design

The fundamental principle upon which we
based our language design is that the language
should be easy to use by people (for example.
secretaries) who know neither mathematics nor
typesetting.

This principle implies several things. First,
"normal" mathematical conventions about
operator precedence, parentheses, and the like
cannot be used, for to give special meaning to
such characters means that the user has to
understand what he or she is typing. Thus the
language should not assume, for instance, that
parentheses are always balanced, for they are not
in the half-open interval (a ,b). Nor should it
assume that that -.fa +b can be replaced by
(a +b) ''\ or that 1/ (I -x) is better written as

1 (or vice versa).
I-x

Second, there should be relatively few
rules, keywords, special symbols and operators.
and the like. This keeps the language easy to
learn and remember. Furthermore. there should
be few exceptions to the rules that do exist: if
something works in one situation, it should work
everywhere. If a variable can have a subscript,
then a subscript can have a subscript, and so on

9-14

without limit.

Third. "standard" things should happen
automatically. Someone who types
"x-y+z+l" should get "x=v+;+I". Sub­
scripts and superscripts should automatically be
printed in an appropriately smaller size, with no
special intervention. Fraction bars have to be
made the right length and positioned at the right
height. And so on. Indeed a mechanism for
overriding default actions has to exist, but its
application is the exception, not the rule.

We assume that the typist has a reasonable
picture (a two-dimensional representation) of the
desired final form, as might be handwritten by
the author of a paper. We also assume that the
input is typed on a computer terminal much like
an ordinary typewriter. This implies an input
alphabet of perhaps 1 00 characters, none of them
special.

A secondary, but still important, goal in
our design was that the system should be easy to
implement. since neither of the authors had any
desire to make a long-term project of it. Since
our design was not firm, it was also necessary
that the program be easy to change at any time.

To make the program easy to build and to
change, and to guarantee regularity ("it should
work everywhere"), the language is defined by a
context-free grammar, described in Section 5.
The compiler for the language was built using a
compiler-compiler.

A priori, the grammar/compiler-compiler
approach seemed the right thing to do. OUf sub­
sequent experience leads us to believe that any
other course would have been folly. The original
language was designed in a few days. Construc­
tion of a working system sufficient to try
significant examples required perhaps a person­
month. Since then. we have spent a modest
amount of additional time over several years
tuning, adding facilities, and occasionally chang­
ing the language as users make criticisms and
suggestions.

We also decided quite early that we would
let TROFF do our work for us whenever possible.
TROFF is quite a powerful program, with a macro
facility, text and arithmetic variables, numerical
computation and testing, and conditional branch­
ing. Thus we have been able to avoid writing a
lot of mundane but tricky software. For exam­
ple, we store no text strings, but simply pass
them on to TROFF. Thus we avoid having to
write a storage management package. Further­
more, we have been able to isolate ourselves
from most details of the particular device and
character set currently in use. For example, we
let TROFF compute the widths of all strings of

9-15

characters; we need know nothing about them.

A third design goal is special to our
environment. Since our program is only useful
for it is necessary that it
interface cleanly with the
language for the benefit of users who want to set

mathematics and text (the usual
. The standard mode of operation is that

when a document is typed, mathematical expres··
sians are as part of the text, but marked by
user settable delimiters. The program reads this
input and treats as comments those things which
are not simply passing them
through untouched. At the same time it con­
verts the mathematical input into the necessary
TROFF commands. The resulting ioutput is
passed to TROFF where the comments
and the mathematical parts both become text
and/or TROPF commands.

4. The

We will not try to describe the language
precisely interested readers may refer 10

the appendix for more details. Throughout this
we will write as they

are handed to the typesetting program
called "EQN"), except that we won'l

show the delimiters that the user types to mark
the and end of the The
interface between EQN and TROFF is described at
the end of this Section.

As we said, typing x""'y+z+l should pro­
duce x-y+::+l, and indeed it does. Variables
are made italic, operators and become
roman, and normal spacings between letters and
operators are altered a more
pleasing appearance.

Input is free-form. and new lines
in the are used EQN to separate pieces
of the are not used to create space in
the output. Thus

x y

+ z + 1

Free-form input is easier also gives x=y+:+l.
to type initially; is also easier,

may be typed as many short for an expression
lines.

Extra white space can be forced into the
output by several characters of various sizes. A
tilde " - " a space equal to the normal word

in text; a circumflex half this
much, and a tab charcter spaces to the next tab
stop.

(or tildes, etc.) also serve to delimit
of the

we write

f(t) = 2 pi int sin (omega I)dt

Here spaces are necessary in the input to indicate
that sm, pi, int, and omega are special, and poten­
tially worth special treatment. EQN looks up
each such string of characters in a lable, and if
appropriate gives it a translation. In this case, pi
and omega become their greek equivalents, inl

becomes the integral sign (which must be moved
down and enlarged so it looks "right"), and sin

is made roman, following conventional
mathematical practice. Parentheses, digits and
operators are automatically made roman wher­
ever found.

Fractions are with the keyword
over:

a+b over c+d+e - I

produces

a +b -I
c+d+e

Similarly, subscripts and superscripts are
introduced by the keywords sub and SliP:

is produced by

x sup 2 + Y sup 2 "'" z sup 2

The spaces after the 2's are necessary to mark
the end of the superscripts; similarly the keyword
Slip has to be marked off by spaces or some

delimiter. The return to the proper
baseline is automatic. Multiple levels of sub­
scripts or superscripts are of course allowed:
"x sup y sup z" is x .. '. The construct "some­
thing sub something SliP is recog­
nized as a special case, so "x sub i sup 2" is x,:

instead of x,".
More complicated expressions can now be

formed with these

is by

Ipartial sup 2 fl over {partial x sup 2 J

x ~up 2 over a sup 2 + Y sup 2 over b sup 2

Braces II are used to group objects together~ in
this case they indicate unambiguously what goes
over what on the left-hand side of the expres­
sion. The language defines the precedence of SLIP

to be higher than that of over, so no braces are
needed to get the correct association on the right
side. Braces can always be used when in doubt
about precedence.

The braces convention is an example of

the power of using a recursive grammar to define
the language. It is part of the language that if a
construct can appear in some context, then any

expression in braces can also occur in that con­
text.

There is a sqrl operator for making square
roots of the appropriate size: "sqrt a + b" pro­
duces -Ja +0 • and

x..., !-b +- sqrt{b sup 2 -4acll over 2a

is

2a

Since large radicals look poor on our typesetter,
sqrf is not useful for tall expressions.

Limits on summations, integrals and simi­
lar constructions are specified with the keywords
from and (0. To get

!,x,-o
,-0

we need only type

sum from i-O to inf x sub i -> 0

Centering and making the r big enough and the
limits smaller are all automatic. The from and fO

parts are both optional, and the central part
the r) can in fact be anything:

lim from (x -> pi 121 (tan-x) "" inf

is

lim (tan x) ... "",
)(-«/2

Again, the braces indicate just what goes into the
from part.

There is a facility for making braces,
brackets, parentheses, and vertical bars of the
right height, using the keywords leli and right:

left [x +y over 2a right]-"'-1

makes

A left need not have a corresponding right, as we
shaH see in the next example. Any characters
may follow left and right, but generally only vari­
ous parentheses and bars are meaningful.

Big brackets, etc., are often used with
another facility, called piles, which make vertical
piles of objects. For example, to get

sign (x) == 1 ~
-1

if x>O

if x-O
if x<O

9-16

we can type

sign (x) -- "",- left {
{I above 0 above -

--ipile above if above
--1 pile (x> 0 above X"" 0 above < 0 I

The construction "left (" makes a left brace big
enough to enclose the , which is a
right-justified pile of "above ... above ... ".
"lpile" makes a There are also
centered piles. Because of ihe recursive
definition, a pile can contain any number of ele­
ments; any element of a can of course con­
tain

Although EQN makes it. valiant to
use the right sizes and there are times
when the default are not
what is wanted. For instance the italic sign in the

would be in
roman. Slides and

characters than normal text.·
size and font commands: "size

12 bold {A -x-""-yl" will
Size is followed by a number
acter size in
paper is set in 9

If necessary, an
in " .. .", which turns off
and any font or that
erwise be done on it. Thus we can say

iim- roman ~x sub n = 0

to ensure that the supremum doesn't become a
superscript:

lim sup x"

Diacritical
tional are

is made

x dot under + x hat + y tilde
+ X hat + Y dotdot ""'" z+Z bar

There are also facilities for
ing default sizes and fonts, for

in tradi-

ing viewgraphs or for chemical equaiionso
The aHows for and for lining
up equations at the same horizontal position.

Finally, there is a definition
user can say

define name N •• :

so a

at any time in the document; henceforth, any
occurrence of the token "name" in an expres­
sion will be expanded into whatever was inside
the double quotes in its definition. This lets
users tailor the to their own

(

'

'\

.. ,J

9-17

specifications, for it is quite possible to redefine
keywords like sup or over. Section 6 shows an
example of definitions.

The EQN preprocessor reads intermixed
text and equations, and passes its output to
TROFF. Since TROFF uses lines beginning with a
period as control words (e.g., ".ce" means
"center the next output line"), EQN uses the
sequence ".EQ" to mark the beginning of an
equation and ".EN" to mark the end. The
".EQ" and" .EN" are passed through to TROFF
untouched, so they can also be used by a
knowledgeable user to center equations, number
them automatically, etc. By default, however,
".EQ" and" .EN" are simply ignored by TROFF,
so by default equations are printed in-line.

".EQ" and ".EN" can be supplemented
by TROFF commands as desired; for example, a
centered display equation can be produced with
the input:

.ce

.EQ
x sub i - y sub i ...
.EN

Since it is tedious to type ".EQ" and
... EN" around very short expressions (single
letters, for instance), the user can also define
two characters to serve as the left and right del­
imiters of expressions. These characters are
recognized anywhere in subsequent text. For
example if the left and right delimiters have both
been set to "#", the input:

Let #x sub i#, #y# and #alpha# be positive

produces:

Let Xi, Y and a be positive

Running a preprocessor is strikingly easy
on UNIX. To typeset text stored in file "f", one
issues the command:

eqn f I troff

The vertical bar connects the output of one pro­
cess (EQN) to the input of another (TROFF).

S. Language Theory

The basic structure of the language is not a
particularly original one. Equations are pictured
as a set of "boxes," pieced together in various
ways. For example, something with a subscript
is just a box followed by another box moved
downward and shrunk by an appropriate amount.
A fraction is just a box centered above another
box, at the right altitude, with a line of correct
length drawn between them.

The grammar for the language is shown

below. For purposes of exposition, we have col­
lapsed some productions. In the original gram­
mar, there are about 70 productions, but many
of these are simple ones used only to guarantee
that some keyword is recognized early enough in
the parsing process. Symbols in capital letters
are terminal symbols; lower case symbols are
non-terminals, i.e., syntactic categories. The
vertical bar I indicates an alternative; the brack­
ets [1 indicate optional material. A TEXT is a
string of non-blank characters or any string
inside double quotes; the other terminal symbols
represent literal occurrences of the corresponding
keyword.

eqn : box I eqn box

box : text
I I eqn I
I box OVER box
I SQRT box
I box SUB box I box SUP box
I [L I C I R]PILE I list I
I LEFT text eqn [RIGHT text]
I box [FROM box 1 [TO box]
I SIZE text box
I [ROMAN I BOLD I ITALIC] box
I box [HAT I BAR I DOT I DOTDOT I TILDE]
I DEFINE text text

list : eqn I list ABOVE eqn

text: TEXT

The grammar makes it obvious why there
are few exceptions. For example, the observa­
tion that something can be replaced by a more
complicated something in braces is implicit in the
productions:

eqn : box I eqn box
box : text I I eqn I

Anywhere a single character could be used, any
legal construction can be used. .

Clearly, our grammar is highly ambiguous .
What, for instance, do we do with the input

a over b over c ?

Is it

la over bl over c

or is it

a over {b over cl ?

To answer questions like this, the grammar
is supplemented with a small set of rules that
describe the precedence and associativity of
operators. In particular, we specify (more or less
arbitrarily) that over associates to the left, so the
first alternative above is the one chosen. On the
other hand, sub and sup bind to the right,

because this is closer to standard mathematical
. Th . b. (h) practice. at IS, we assume x" IS X a , not

(XO)b.

The precedence rules resolve the ambiguity
in a construction like

a sup 2 over b

We define sup 10 have a higher precedence than

over, so this construction is parsed as Qb
2 instead

1.
of a b.

Naturally, a user can always force a partic­
ular parsing by placing braces afollnd expres­
sions.

The ambiguous grammar approach seems
to be quite usefuL The grammar we use is small
enough to be easily understood, for it contains
none of the productions that would be normally
used for resolving ambiguity. Instead the sup­
plemental information about precedence and
associativity (also small enough to be under­
stood) provides the compiler-compiler with the
information it needs to make a fast, deterministic
parser for the specific language we want When
the language is supplemented by the disambi­
guating rules, it is in fact LR (l) and thus easy to
!,lliS!! (5].

The output code is generated as the input
is scanned. Any lime a production of the gram­
mar is recognized, (potentially) some TROFF
commands are output. For example, when the
lexical analyzer reports Iha! it has found a TEXT
(i.e., a string of contiguous characters). we have
recognized Ihe production:

text : TEXT

The translation of this is simple. We generate a
local name for the string, then hand the name
and the string to TROFF, and let TROFF perform
the storage management. All we save is the
name of the string, its height, and its baseline.

As another example, the translation associ­
ated with the production

box : box OVER box

is:

9-18

Width of output box =
slightly more than width

Height of output box =
slightly more than slim of heights

Base of output box -
slightly more than of bottom input box

String describing output box ""
move down:
move right to center bottom box;
draw bottom box (i.e., copy for bOHom
move up; move left to center top box;
draw top box (i.e., copy for top box):
move down and draw line full width;
return to proper base line.

Mosl of the other
pIe semantic actions.
set of properly
sequence of

have equally sim­
the output as a

boxes makes the

ous. The main

With a grammar, it is
extend the language. For

quile obvi­
the right
position-

dear how to
one of our

users a TENSOR operator, to make
constructions like

, i

,I" T
!II

Grammatically, this is easy: it is sufficient to add
a like

box : TENSOR (lis! I
Semantically, we need
the right places.

6.

There are
interest- how well EQN
well it satisfies its of
and how easy it was to build.

the boxes to

aspects of
how

The first question is addressed. This
entire paper has been set by the program.
Readers can for themselves whether it is
good enough for their purposes. One of our
users commented that the output is not
as good as the best hand-set material, it is still
better than average. and much better Hun the
worst. In any case, who cares? Printed books
cannot compete with the birds and flowers of
illuminated on esthetic

but
advantages.

Some of the deficiencies in the output
could be cleaned up with more work on our part.
For exampie, we sometimes ieave too much
space between a roman letter and an italic one.
If we were willing to keep track of the fonts
involved, we could do this better more of the

.\
./

.r"

9-19

time.

Some other weaknesses are inherent in our
output device. It is hard, for instance, to draw a
line of an arbitrary length without getting a per­
ceptible overstrike at one end.

As to ease of use, at the time of writing,
the system has been used by two distinct groups.
One user population consists of mathematicians,
chemists, physicists, and computer scientists.
Their typical reaction has been something like:

(I) It's easy to write, although I make the fol­
lowing mistakes ...

(2) How do I do ... ?

(3) It botches the following things Why
don't you fix them?

(4) You really need the following features ...

The learning time is short. A few minutes
gives the general flavor, and typing a page or two
of a paper generally uncovers most of the
misconceptions about how it works.

The second user group is much larger, the
secretaries and mathematical typists who were
the original target of the system. They tend to
be enthusiastic converts. They find the language
easy to learn (most are largely self-taught), and
have little trouble producing the output they
want. They are of course less critical of the
esthetics of their output than users trained in
mathematics. After a transition period, most
find using a computer more interesting than a
regular typewriter.

The main difficulty that users have seems
to be remembering that a blank is a delimiter;
even experienced users use blanks where they
shouldn't and omit them when they are needed.
A common instance is typing

f(x sub j)

which produces

instead of

l (X;)

l(x,)

Since the EQN language knows no mathematics,
it cannot deduce that the right parenthesis is not
part of the subscript.

The language is somewhat prolix, but this
doesn't seem excessive considering how much is
being done, and it is certainly more compact than
the corresponding TROFF commands. For exam·
pie, here is the source for the continued fraction
expression in Section 1 of this paper:

a sub 0 + b sub lover
la sub 1 + b sub 2 over

la sub 2 + b sub 3 over
la sub 3 + ... III

This is the input for the large integral of Section
1; notice the use of definitions:

define emx "Ie sup mxl"
define mab "1m sqrt abl"
define sa "{sqrt al"
define sb "{sqrt bl"
int dx over {a emx - be sup -mxl --­
left (Ipile (

lover {2 mabl -log-
{sa emx - sbl over {sa emx + sb}

above
lover mab - tanh sup -1 (sa over sb emx)

above
-lover mab - coth sup -1 (sa over sb emx)

As to ease of construction, we have
already mentioned that there are really only a
few person-months invested. Much of this time
has gone into two things-fine-tuning (what is
the most esthetically pleasing space to use
between the numerator and denominator of a
fraction?), and changing things found deficient
by our users (shouldn't a tilde be a delimiter?).

The program consists of a number of
small, essentially unconnected modules for code
generation, a simple lexical analyzer, a canned
parser which we did not have to write, and some
miscellany associated with input files and the
macro facility. The program is now about 1600
lines of C (6), a high-level language reminiscent
of BCPL. About 20 percent of these lines are
"print" statements, generating the output code.

The semantic routines that generate the
actual TROFF commands can be changed to
accommodate other formatting languages and
devices. For example, in less than 24 hours, one
of us changed the entire semantic package to
drive NROFF, a variant of TROFF, for typesetting
mathematics on teletypewriter devices capable of
reverse line motions. Since many potential users
do not have access to a typesetter, but still have
to type mathematics, this provides a way to get a
typed version of the final output which is close
enough for debugging purposes, and sometimes
even for ultimate use.

7. Conclusions

We think we have shown that it is possible
to do acceptably good typesetting of mathematics
on a phototypesetter, with an input language that
is easy to learn and use and that satisfies many
users' demands. Such a package can be imple­
mented in short order, given a compiler-compiler

and a decent typesetting program underneath.

Defining a language, and building a com­
piler for it with a compiler-compiler seems like
the only sensible way to do business. Our
experience with the use of a grammar and a
compiler-compiler has been uniformly favorable.
If we had written everything into code directly,
we would have been locked into our original
design. Furthermore, we would have never been
sure where the exceptions and special cases were.
But because we have a grammar, we can change
our minds readily and. still be reasonably sure
that if a construction works in one place it will
work everywhere.

Acknowledgements

We are deeply indebted to J. F. Ossanna,
the author of TROFF, for his willingness to
modify TROFF to make our task easier and for
his continuous assistance during the develop­
ment of our program. We are also grateful to A.
V. Aho for help with language theory, to S. C.
Johnson for aid with the compiler-compiler, and
to our early users A. V. Aho, S. l. Feldman, S.
C. Johnson, R. W. Hamming, and M. D. Mcilroy
for their constructive criticisms.

References

11] A Manual q(Style. 12th Edition. Univer­
sity of Chicago Press, 1969. p 295.

[2] Model ClAIT Phototypesener. Graphic Sys­
tems, Inc ... Hudson, N. H.

[3] Ritchie, D. M., and Thompson, K. L.,
"The- UNIX time-sharing system." Comm.
ACM /7. 7 (July 1974), 365-375.

[4] Ossanna, 1. F., TROFF User's Manual.
Bell Laboratories Computing Science
Technical Report 54, 1977.

[5] Aho, A. V., and Johnson, S. C., "LR
Parsing." Compo Surv. 6. 2 (June 1974).
99-124.

[6] B. W. Kernighan and D. M. Ritchie. The C
Programming Language. Prentice-Hall.
Inc .• 1978.

9-20

(

(

Tbl - A Program to Format Tables

M.E.

Bell Laboratories
Murray Hill, New Jersey 07974

A CT

Tbl is a document formatting preprocessor for (roff or nro.ff which makes
even fairly easy to specify and enter. It is available on the PDP-
11 UNIX· system and on Honeywell 6000 Geos. Tables are made up of columns
which may be independently centered, right-adjusted, lefl-adjusted, or aligned
by decimal points. Headings may be over single columns or groups of
columns. A table entry may contain equations, or may consist of several rows
of text. Horizontal or vertical lines may be drawn as desired in the and
any table or element may be enclosed in a box. For eX<.Jmple:

~1970 Federal Transfers

--~~~~---
- -!Taxes Money

! State I Il rl I i Net I ' co ecte~
I New Yark ----r--n9T-+---2':-1.-]-S-f----I.-:---i
, New Jersey I -8:33 6.96
I Connecticut I 4.12 3.10

I Maine II 0.74 0,67
22.29 22.42 +0.13

l~lew ~exico I 0.70 1.49 +0.79\
Georgia I 3.30 4.28 +0.98
Mississippi i 1.15 L 2.32 + 1.17 I
l:exas J..-______ ~-"--+ 1.80 I

16, 1979

• UN1X is a Trademark/Service Mark of Ihe Bell System

10-1

Tbl - A "f'ormat

Introduction.

Tbl turns a simple description a table into a or [U program of com-
mands) thai prints the table. Tbl may be used on the PDP·! 1 UNiX system and on the
Honeyweii Geos system. It
handle and leave the remainder
formatting program eqn or macro
their functions.

This memorandum is
then some

beginning user may
arrangements. A section
tion., read fro/fas

The input to [bl is text
command and a "
froff and leaves the
" . TE" lines are too, so that
macros [4]) can use these to

with tables
command. fbi processes the

the text

and place tables as
arguments on the" .TS" or "
document layout macro commands.

lines are copied but

The format of the is as

text
.TS
fable
.TE
text
.1'5
fable
.TE
text

where the

.TS
options ;

dow

each table is as

Each table is independent, and must contain
entered in the table, The formatting information,
rows of the table. may be by a
description of tables is in the next section.

10-2

information followed the data to be
which describes the individual columns and

that affect the entire table, A detailed

commands,

allowable

center

spaces,
are:

- center

10-3

section describing
and data are always

as foHows:

the table. If present, this
and must contain a list option names

or commas, and must be terminated by a semicolon. The

table

box

- make the table as wide as

"'''."v",,-" the table in a

current line length;

- enclose each item in the table in a

doublebox

tab

linesize

delim

- use x instead of tal:) to data items.

in n or (e.g. type;

x and y as the eqn delimiters.

fbI program tables on one page by issuing "need"

<- are calculated from the number of lines in the tables,
and if are v"'~'M"'''' ,,, .. ''''',, .. ''' in the input, these requests may be inaccu­

such as macros, in that case. The user who
table should use macros for this purpose, as

rate; use normal
must have a

below under

the layout of the columns. Each line
to one line of that last line corresponds to

lines up to the next :r &, if any -. see , and each line contains a key­
to separate the key letters for each

is one of the following:
each column of the table. It is

spaces or tabs.

L or to indicate a

R or r to indicate a

column entry;

column entry;

Core to a centered column

N or n to indicate a numerical column entry, to be
entries so that the units numbers line up;

with other numerical

A or a subcolumn; all entries are aligned on
widest is centered within the column (see

S or s to indicate a """,,,,,"P
column continues across this column allowed

; or

to indicate a

When

a the
centered in the column,
used to override

the items

that the entry from the
allowed the first row

shown on the right:

10-4

13
4.2
26.4.12
abc
abc\&:
43\&:3.22
749.12

13
4.2

26.4.12
abc

abc
433.22

749.12

Note: If numerical data are used in the same column with wider L or r type table entries,
the widest number is centered relative to the wider Lor r items (L is used instead of 1 for
readability; they have the same meaning as key-letters). Alignment within the numerical
items is preserved. This is similar to the behavior of a type data, as explained above.
However, alphabetic subcolumns (requested by the a key-letter) are always slightly
indented relative to L items; if necessary, the column width is increased to force this.
This is not true for n type entries.

Warning: the n and a items should not be used in the same column.

For readability, the key-letters describinl each column should be separated by spaces.
The end of the format section is indi&aled by a period. The layout of the key-letters in
the format section resembles the layout of the actual data in the table. Thus a simple for­
mat might appear as:

c s s
Inn.

which specifies a table of three columns. The first line of the table contains a heading cen­
tered across all three columns; each remaining line contains a left-adjusted item in the
first column followed by two columns of numerical data. A sample table in this format
might be:

Overall title
hem-a . 34.22 9.1
Ittm-b 12.65 .02
Items: c,d,e 23 5.8
Total 69.87 14.92

There are some additional features of the key-letter system:

Horizontal lines - A key-letter may be replaced by '_' (underscore) to indicate a hor­
izon·tal line in plate of the corresponding column entry, or by '==' to indicate a dou­
ble borizonta~ line. If an adjacent column contains a horizontal line, or if there are
vertical lines adjoining this colY:mn, this horizontal line is extended to meet the
nearby lines. If any data entry is provided for this column, it is ignored and a warn­
id! meS581e is printed.

VerTical Unes - A vertica1 bar may be placed between column key-letters. This will
cause a vertical line between the corresponding columns of the table. A vertical bar
to the left of the first key-letter or to the right of the last one produces a line at the
edp of the tabie. If two vertical bars appear between key-letters, a double vertical
line is drawn.

Space M~n cO/limits - A number may follow the key-letter. This indicates the
amoutft of separation between this column and the next column. The number nor­
matly Sf)eCdies the separation in ens (one en is about the width of the letter 'n')." If
the "expaoo" option is used, then these numbers are multiplied by a constant such
that the table is as vride as the current line length. The default column separation

• Monr pt'eciseiy, &n en is a number of points (1 point - 1/72 inch) equal to half the current type size.

(

'-"".

.-" ,,/

10-5

number is 3. If the separation is changed the worst case (largest space requested)
governs.

Vertical spanning - Normally, vertically spanned items extending over several rows of
the table are centered in their vertical range. If a key-letter is followed by t or T,
any corresponding vertically spanned item will begin at the top line of its range.

Font changes - A key-letter may be followed by a string containing a font name or
number preceded by the letter f or F. This indicates that the corresponding column
should be in a different font from the default font (usually Roman). All font names
are one or two letters~ a one-letter font name should be separated from whatever
follows by a space or tab. The single letters B, b, I, and i are shorter synonyms for
fB and fI. Font change commands given with the table entries override these
specifications.

Point size changes - A key-letter may be followed by the letter p or P and a number to
indicate the point size of the corresponding table entries. The number may be a
signed digit, in which case it is taken as an increment or decrement from the current
point size. If both a point size and a column separation value are given, one or
more blanks must separate them.

Vertical spaCing changes - A key-letter may be followed by the letter v or V and a
number to indicate the vertical line spacing to be used within a multi-line
corresponding table entry. The number may be a signed digit. in which case it is
taken as an increment or decrement from the current vertical spacing. A column
separation value must be separated by blanks or some other specification from a
vertical spacing request. This request has no effect unless the corresponding table
entry is a text block (see below).

Column Width indication ~ A key-letter may be followed by the letter w or Wand a width
value in parentheses. This width is used as a minimum column width. If the largest
element in the column is not as wide as the width value given after the w, the larg­
est element is assumed to be that wide. If the largest element in the column is
wider than the specified value, its width is used. The width is also used as a default
line length for included text blocks. Normal troff units can be used to scale the
width value; if none are used, the default is ens. If the width specification is a unit­
less integer the parentheses may be omitted. If the width value is changed in a
column, the last one given controls.

Equal width columns - A key-letter may be followed by the letter e or E to indicate
equal width columns. All columns whose key-letters are followed by e or E are
made the same width. This permits the user to get a group of regularly spaced
columns.

Note: The order of the above features is immaterial; they need not be separated by
spaces, except as indicated above to avoid ambiguities involving point size and font
changes. Thus a numerical column entry in italic font and 12 point type with a
minimum width of 2.5 inches and separated by 6 ens from the next column could be
specified as

npI2w(2.5i)fI 6

Alternative notaTion - Instead of listing the format of successive lines of a table on con­
secutive lines of the format section, successive line formats may be given on the
same line. separated by commas, so that the format for the example above might
have been written:

c s s, Inn.

De/ault - Column descriptors missing from the end of a format line are assumed to be
L. The longest line in the format section, however, defines the number of columns
in the table; extra columns in the data are ignored silently.

3) DATA. The data
typed as one line
tel' is \ is with the
columns (the table entries) are
specified in the labs

6

Troll commands wifhln [abies - An line
but a number is assumed to be a command to is
retaining its in the table. space within a t.able may be pro-
duced by ".sp" commands in the data.

FuN width horizontal lines - An

or -

Single horizontal - An
is taken to be a
lines are extended to meet
obtain these characters
them by a space the

Short horizontal lines - An only the is taken to be a
single line as wide as the contents of the column.
ing lines.

It is not extended to meet

a the Repeated charaCfers - An
where x is any character is the character x as wide as the
data in column. extended to meet
columns.

the character Vertica!~v spanned items -
indicates that the table above spans downward over this row. It is
equivalent to a table

Tex! block:; - In order to include a block text as a table entry, and
foHow it by T). the sequence

block
rex!
1'} ..

in the table, that cannot (:011-is the way to en ter, as a
venrently be typed as a between tabs. Note that the end delimiter

tab on the same
text blocks in a
various limits in

must begin a data limy
line. See example
table. If more than
the are such as 'too many
string/macro names' or 'too many number

Text blocks are pulled out from the table, by lro/f. and
in the table as a solid block. If no line is in the block feXi itself,
01' in the table format, the default is to use Lx C I (N + 1) where L is the current line
length, C is the number of table columns by text, and N is the
number of columns in the table, other parameters
in setting the block (if lext are those in at the
the of the ". TS" and any table format
and font, using the p, v and f
within the text block itself are also of course.
within the table data but not within the text block do not

commands
thaI block.

(

10-7

Warnings: - Although any number of lines may be present in a table, only the first 200
lines are used in calculating the widths of the various columns. A multi-page table,
of course, may be arranged as several single-page tables if this proves to be a prob­
lem. Other difficulties with formatting may arise because, in the calculation of
column widths all table entries are assumed to be in the font and size being used
when the". TS" command was encountered, except for font and size changes indi­
cated (a) in the table format section and (b) within the table data (as in the entry
\s + 3\fIdata \fP\sO). Therefore, although arbitrary troff" requests may be sprinkled in
a table, care must be taken to avoid confusing the width calculations; use requests
such as '.ps' with care.

4) ADDITIONAL COMMAND LINES. If the format of a table must be changed after many simi­
lar jines, as with sub-headings or summarizations, the". T &" (table continue) command
can be used to change column parameters. The outline of such a table input is:

.TS
options;
format.
data

.T&
forma! .
data
.T&
format •
data
.TE

as in the on pages 10 and 12. Using this procedure, each table line can be close
to its corresponding format line.

Warning: it is not possible to change the number of columns, the space between columns,
the global options such as box, or the selection of columns to be made equal width.

Usage.

On UNIX, fbI can be run on a simple table with the command

tbl input-file I troff

but for more complicated use, where there are several input files, and they contain equations
and ms memorandum layout commands as weI! as tables, the normal command would be

tbl file-! ... I eql1 I -ms

and, of course, the usual options may be used on the froff and eqn commands. The usage for
nroff is similar to that for troff, but only TELETVPE@ Model 37 and Diablo-mechanism (DASI or
GS!) terminals can print boxed tables directly.

For the convenience of users employing line printers without adequate driving tables or
post-filters, there is a special - TX command line option to fbi which produces output that does
not have fractional line motions in it. The only other command line options recognized by fbi
are -ms and -mm which are turned into commands to fetch the corresponding macro files~
usually it is more convenient to place these arguments on the troff part the command line,
but are accepted by fbI as well.

Note that when eqn and fbI are used together on the same file fbI should be used first. If
there are no within tables, either order works, but it is usually faster to run fbi first,
since eqn normally produces a larger expansion of the input than fbI. However, if there are

within tables (using the delim mechanism in eqn), fbi must be first or the output wi!l
be scrambled. Users must also beware of using equations in n-style columns; this is nearly

1

always wrOr.lg, since fbI attempts to mjmef'k~a~i format items into two
possible with equations. The user can this the de/un
this prevents splining of numerical columns witni;n tl'ie delimiters. For
' H,""." are $$, a numerical column such as "1245 $-l--

1245, not

and this is not
table

if the eqn del­
wiH be divided

limits tables to use more th<.H'l 16 numerical coiumns
may because of timits in the 'too many number
number .. ~"""~"'<"o used by fbI must be avoided the user within
names from 31 to 99, and names
case letter. names and conserve
number names, the n and a hence the restriction above that

may not be used in the same co!umn.

aid in writing macros, fbi "''-·jl''''',,~
width: it is by the that the ".
expansion that macro. to
macro T# is defined to and side and then
invoked at its end. use t.his macro in the page footer a table can be boxed. In
particular, the ms macros can be used to a boxed tabie with a

the H to the" macro. if the table start macro
.TS H

a line of the form

must be

pages as

Eumples.

Here are some
represents a tab

Input:

box;
c c c
I I I.

any table
of each page of

Note that this is nO{ <l

Authors (f) Runs on

Fortran (f) Many G) Almost
PLll(f)
Ccv

IDS CI> Honeywell (j)
Pascal (t Stanford (f) 370
.TE

at the start if . Material up to the
lines in the table are on

but the ms macros.

fbI. The

Authors on

. , ,

10- 9

Input:

allbox;
c s s
c c c
n n n.
AT &T Common Stock
Year C:D Price C:D Dividend
1971 C:D41-S4GJ$2.60
2<i>41-54<i>2.70
3 <i> 46-5 5 <i> 2 . 87
4 GJ40·53 GJ3. 24
5 (j)45-52 C:D3 .40
6(f)51-59GJ.95*
.TE

>to (first quarter on Iy)

Input:

.TS
box;
c s s
clclc
III1 n.
Major New York Bridges

Bridge (j) Designer (j) Length

-
Brooklyn (j) J. A. Roebling (j) 1595
Manhattan CVG. Lindenthal CV 1470
Williamsburg G) L. L. Buck CV 1600

-
Queensborough (j) Palmer & (f) 1182
C:D Hornbostel

-
G) C:D 1380
Triborough CV O. H. Ammann <i> _
C:D (j) 383

\Vhitestone <i> O. H. Ammann (f) 2300
Throgs (j) O. H. Ammann G) 1800

Output:

AT&T Common Stock
Year Price Dividend
1971 41-54 $2.60

2 41·54 2.70
3 46-55 2.87
4 40-53 3.24 I
5 45-52 3.40 J
6 51-59 .95*1

.. (first quarter only)

Output:

Major !'lew York Bridges
Bridge Designer

Brooklyn 1. A. Roebling
Manhattan G. Lindenthal
Williamsburg L. L. Buck

Queensborough I Palmer &

1 Hornbostel -_. !

Triborough O. H. Ammann

Bronx Whitestone O. H. Ammann
Throgs Neck O. H. Ammann
George Washington O. H. Ammann

George WashingtonG)O. H. Ammann(j)3500
·TE

Length
1595
1470
1600
1182

1380

383
2300
1800
3500

Input:

.TS
cc
np-2! n ! .
(f)Stack
(f)_
1 (f)46
<I>_
2 (f) 23
<V_
3(f)15
<V_
4(f)6.5
<V_
S<V2.1
<V_
.TE

Input:

.TS
box~
LLL
LL
L LILS
LL_
L L L.
january <V february (f) march
april <V may
june <I> july (f) Months
august <pseptember
october (f) november eDdecember
.TE

10-10

Output:

Stack
1 46
l 23
J 15
4 6.5
s 2.1

Output:

january
april
june
august
october

,...../

E

(

february march
may
july I Months
september
november december

:'\
;

)

",::",

10-11

Output: Input:

.TS
box;

Composition of Foods

cfB s s s.
Composition of Foods

-
.T&
c I c s s
c I c s s
c I c I c I c.
Food ('f) Percent by Weight
\. ('f)
\ • ('f) Protein ('f) Fat ('f) Carbo­
\ • ('f) \ • ('f) \ • ('f) hydrate

-
.T&
I I n I n In.
Apples <D .4 ('f) .5 <D 13.0
Halibut <D 18.4 <D 5.2 <D .
Lima beans <D 7 .5 <D .8 <D 22.0
Milk ('f) 3.3 <D4.0 <D 5.0
Mushrooms<D3.5<D .4<D6.0
Rye bread <D9.0 ('f) .6 ('f) 52.7
.TE

Input:

.TS
all box;
cll s s
c cw(1j) cw(lj)
Ip91p91p9.
New York Area Rocks
Era <D Formation <D Age (years)
Precambrian ('f) Reading Prong ('f) > 1 billion
Paleozoic <D Manhattan Prong <D 400 million
Mesozoic ('f)T{
.na
Newark Basin, incl.
Stockton, Lockatong, and Brunswick
formations; also Watchungs
and Palisades.
Tl <D200 million
Cenozoic <D Coastal Plain ('f) T {
On Long Island 30,000 years;
Cretaceous sediments redeposited
by recent glaciation •
. ad
Tl
.TE

Food

Apples
Halibut
Lima beans
Milk
Mushrooms
Rye bread

Output:

Era
Precambrian

Paleozoic

Mesozoic

Cenozoic

Percent by Weight
Carbo-

Protein Fat hydrate
.4 .5 13.0

18.4 5.2 ...
7.5 .8 22.0
3.3 4.0 5.0
3.5 .4 6.0
9.0 .6 52.7

New York Area Rocks

Formation Age (years)
Reading Prong > 1 billion

Manhattan Prong 400 million

Newark Basin. 200 million
incl. Stockton.
Lockatong, and
Brunswick for-
mations; also
Watchungs and
Palisades.

. Coastal Plain On Long Island
30,000 years;
Cretaceous sedi-
ments redepo-
sited by recent
glaciation.

I

I

Input:

.EQ
delim $$
.EN

.TS
doublebox;
c c
I!.
Name (f) Definition
.sp
.vs +21'

Output:

sin(x

GammaG)$GAMMA (z) ... iot sub 0 sup t sup 11 e sup-t
Sine (f) $sin (x) ".. 1 over 2i (e sup ix 0 e sup oix) $

2i

Error (f) $ roman erf """ 2 over sqrt pi int sub 0 sup z e sup sup 21

de

s > 1)

Bessel (f) $ J sub 0 (2) = lover pi int sub 0 sup pi cos (z sin theta) d theta $
Zeta (f) S; zeta (5) - sum Ie -1 to inf k sup -s > 1)$
• 'IS -2p
.TE

Input:

.TS
box, tab(:);
cb s s s s
cp-2 s s s s
c!lclclelc
ell c I c I c Ie
r2 II 021 n2! 02 In.
Readability Text
Line Width and Leading for to-Point Type -
Line: Set: I-Point: 2-Point: 4-Point
Width: ; Leading: Leading:

9 :\-9.3:\-6.0:\-5.3:\-7.1
14 Pica:\-4.5:\-0.6: .3:\-1.7
19 Pica: .0:\-5.1: 0.0:\-2
31 :\-3.7:\-3.8:\-2.4:\-3.6
43 Pica: .1 :\-9.0:\-5.9:\-8.8
.TE

Output:

(

Input:

.TS
c s
cip-2 s
In
an,
Some Londo!'! Transport Statistics
(Year 1964)
Raiiway route miles GJ 244
TubeGJ66
Sub-surface CD 22
Surface G) 156
.sp .5
.T&
I r
ar.
Passenger traffic \- railway
Journeys GJ 674 million
Average lengthG)4.55 miles
Passenger miles GJ 3,066 million
.T&
I r
af.

Passenger traffic \- road
Journeys GJ 2,252 million
A verage length G) 2.26 miles
Passenger miles G) 5,094 million
.T&
In
an.
.sp .5
VehiclesG) 12,521
Railway motor cars G) 2,905
Railway trailer cars CD 1,269
Total railwayG)4,174
Omnibuses CD 8,347
.T&
In
a n ~
.sp .5
StaffG)73,739
Administrative, etc. (f) 5,582
Civil engineering CD 5,134
Eiectrical eng. dJ 1,714
Mech. eng. \- railway G) 4,310
Mech. eng. \- roaddJ9,152
Railway operations (f) 8,930
Road operations dJ 35.946
OtherdJ2,971
.TE

10-13

Output:

Some London Transport Statistics
(Year 1964)

Railway route miles
Tube
Sub-surface
Surface

Passenger traffic - railway
Journeys
A verage length
Passenger miles

Passenger traffic - road
Journeys
A verage length
Passenger miles

Vehicles
Railway motor cars
Railway trailer cars
Total railway
Omnibuses

Staff
Administrative, elc.
Civil engineering
Electrical eng.
Mech. eng. _0 railway
Mech. eng. - road
Railway operations
Road operations
Other

244
66
22

156

674 million
4.55 miles

3,066 million

2,252 million
2.26 miles

5,094 million

12,521
2,905
1,269
4,174
8,347

73,739
5,582
5,134
1, 714
4,310
9,152
8,930

35,946
2,971

Input:

.ps 8
• liS

center box~
c s s
ei $ 5

ecc
18 In .

• sp .5
Name Ii)

.sp .5
J. 1'D23 S. White

William J. (f)

J, HowardG:l
Frank Thompson,
Andrew Maguire (flilS W,
Robert A. Roe (i) U . P
Henry Helstoski CD666

W. Rodino, Ie. CD
G. Minish (f)

Helen S. Meyner CD
Dominick V. Daniels (f)
Edward J. Patten (j) Nat! .
. sp .5
.1&
ci s s
IS In.
(Repub!icans)
.sp .5v

14

Millicent ~ 41 N ~ St ~, ''''Tn"" .. ,,,
S. CD Mm St.,

Matthew J. Rinaldo (fl1961 Morris
.TE
.ps 10
.vs 1

(

(

13

-.-.-/"

Output:

10-15

r----~=---- New Jersey Representatives
(Democrals)

Name Office address

James J. Ji'lorio 23 S. White Horse Pike, Somerdale 08083
WilHam ,J. Hughes 2920 Atlantic Ave., Atlantic City 08401
James J. Howard 801 Bangs Ave., Asbury Park 07712
Frallk Thompsoll, Jr. 10 Rutgers PI., Trenton 08618
Andrew Maguire 115 W. Passaic St., Rochelle Park 07662
Robert A. Roe U.S.P.O., 194 Ward St.., Paterson 07510
Henry Heistoski 666 Paterson Ave., East Rutherford 07073
Peter W. Rodino, Jr. Suite 1435A, 970 Broad St., Newark 07102
Joseph G. Minish 308 Main St., Orange 07050
Helen S. Meyner 32 Bridge St., Lambertville 08530
Dominick V. Daniels 895 Bergen Ave., Jersey City 07306
Edward J. Patten Nat!. Bank Bldg., Perth Amboy 08861

Millicent Fenwick
Edwin B. Forsythe
Matthew J. Rinaldo

(Republicans)

41 N. Bridge 51., Somerville 08876
30l Mill St., Moorestown 08057
1961 Morris Ave., Union 07083

Phone

609-627-8222 I

609-345-4844 1

201· 774-1600
609-599-1619
201-843·0240
201·523·5152
201·939·9090
201-645·3213
20! -645-6363
609·397·1830
201-659- 7700
201-826·4610

201-722-8200
609-235-6622
201-687-4235

is a paragraph of normal text placed here only to indicate where the left and right margins
are. In this way the reader can judge the appearance of centered tables or expanded tables, and
observe how such tables are formatted .

. TS
expand;
c s s s
c c c c
II n n.
Bell Labs Locations
Name G') Address (i) Area Code (i) Phone
Holmdei(i)Holmdel, N. 1. 07733 (i)201 CD 949·3000
Murray Hill CI> Murray Hill, N. 1. 07974 (i) 201 (i) 582·6377
Whippany (i) Whippany, N. J. 07981 CI> 201 CI> 386-3000
Indian Hill (i) Naperville, Illinois 60540 <D 312 CD 690·2000

Name

Murray Hill
Whippany
Indian Hill

Bell Labs Locations
Address

Holmdel, N. J. 07733
Murray Hill, N. J. 07974
Whippany, N. J. 07981
Naperville, Illinois 60540

Area Code
201
201
201
312

Phone
949-3000
582-6377
386-3000
690-2000

Input:

.TS
box;
cb 5 S S

c I c Ie s
ltiwOj) Iltw(2i) IlpSllw(l.6i)p8.
Some Inleresting Places

Name (.1) Description (.1) Praelical Information

11
American Museum of Natural Hislory
TI(.1)T(

10-16

The collections lill 11.5 acres (Michelin) or 2S acres (MT A)
of exhibition halls on four floors. There is a full-sized replica
of a blue whale and the world's lar,est star sapphire (sto1en in 1964).
TI (.1) Hours (.1) 10-5. ex. Sun 11-5. Wed. to I}

"(.1)\'~ Location(.1)T(
Central Park West It 79th SI.
TI
\ '(f)\ '(f) Admission(f) Donation; 51.00 ilSked
"(.1)"~SubwaY~AA to 81st St.
"~ \ '~Telephone ~ 212·873·4225

Bronx Zoo(f)T(
About a mile lon, lind .6 mile wide, this is lhe .. ,pst zoo in America.
A lion eats 18 pounds
of meal II day while a sea lion eats 15 poun. of !ish.
TI (.1) Hours (f) Tt
10·4;30 winter. to 5:00 summer
TI
\. (f) \ • ~ Localion (f) T 1
1851h St. &: Southern Blvd. Ihe Bronx.
TI
\·~\·(f)Admission(f)SI.OO, but Tw,We.Th free
\ • ~, • (f) Subway (f) 2. 5 to East Tremont Ave.
\' (f)\' <DTelephone(f) 212-933,1759

Brooklyn Museum (f)TI
Five floors of &alleries contain American and ancient art.
There are American period rooms and IIrcnileetlU'al omamenlS saved
from wreckers, such as a classical ftgure from Pennsylvania SIation.
TI(f)Hours(OWed·Sat. 100S. Swn 12-S
\ -~ \ • (f) Location (f) T {
Eastern Pllrkway &: Washington Ave., Brooklyn.
TI
\' (f) \' (f) Admission (l) Free
\'(l)\'(l)Subway<D2,JIO Eastern Parkway.
\'(0\ -<DTelephone(f) 212,638-5000

11
New. York Historical Society
TI<IlT(
All the orilinal pamti '.r Audubon's
.1
Bir. of America
.Il
are here, as are exhibits.f American decorative ans, New York history,
Hudson Jljver schoof paintmp. carriaaes. and atus pape/weipts.
TI(f)Hours<IlTI
Tues-Fri It s.tn. 1-5; Sal IO-S
TI
\ ' <Il \ ' (l) Location <Il T 1
Central Park West " 77th SI.
TI
\ - <Il' ' <i> Admission (l) Free
,-G')\ '<i>SubwayG') AA to 31st St,
"<Il\ '<i>Telephone(f) 212-873,3400
.TE

(

(

10-17

Output:

Some Interesting Places
Name Description Practical Information

American Muse- The collections fill 11.5 acres Hours 10-5, ex. Sun 11-5, Wed. to 9

um of Natural {Michelin} or 25 acres (MT A) Location Central Park West &; 79th St.
History of exhibition halls on four Admission Donation: 51.00 asked

floors. There is a full-sized re- Subway AA 10 81st St.
plica of a blue whale and the Telephone 212-873-4225
world's largest star sapphire
(stolen in 1964).

Bronx Zoo About a mile long and .6 mile Hours 10-4:30 winter, to 5:00 summer

wide, this is the largest zoo in Location 185th St. &; Southern Blvd, the

America. A lion eats 18 Bronx.

pounds of meat a day while a Admission 51.00, but TU,We,Th free

sea lion eats 15 pounds of fish. Subway 2, 5 to East Tremont Ave.

Telephone 212-933-1759

Brooklyn Museum Five floors of galleries contain Hours Wed-Sat, 10-5, Sun 12-5

American and ancient art. Location Eastern Parkway &; Washinllon

There are American period Ave., Brooklyn.

rooms and architectural orna- Admission Free

ments saved from wreckers, Subway 2,3 10 Eastern Parkway.

such as a classical figure from Telephone 212-638-5000
-- Pennsylvania Station.

New- York His(or- All the original paintings for Hours Tues-Fri &; Sun, 1-5; Sat 10-5

ical Socie(v Audubon's Birds of America are Location Central Park West &; 77th SI.

here, as are exhibits of Ameri- Admission Free

can decorative arts, New York Subway AA 10 81st St.

history, Hudson River school Telephone 212-873-3400

paintings, carriages, and glass
paperweights.

Acknowledgments.

Many thanks are due to 1. C. Blinn, who has done a large amount of testing and assisted
with the design of the program. He has also written many of the more intelligible sentences in
this document and helped edit all of it. All phototypesetting programs on UNIX are dependent
on the work of the late J. F. Ossanna, whose assistance with this program in particular had been
most helpful. This program is patterned on a table formatter originally written by J. F. Gimpel.
The assistance of T. A. Dolotta, B. W. Kernighan, and J. N. Sturman is gratefully ack­
nowledged.

References.
(I] J. F. Ossanna, NROFFITROFF User's Manual. Computing Science Technical Report No. 54,

Bell Laboratories, 1976.
[2] K. Thompson and D. M. Ritchie, "The UNIX Time-Sharing System," Comm. ACM. 17,

PP. 365-75 (974).
[3] B. W. Kernighan and L. L. Cherry, "A System for Typesetting Mathematics," Comm.

ACM. 18, PP. 151-57 (975).

[4] M. E. Lesk, Typing Documents on UNIX. UNIX Programmer's Manual, Volume 2.

(SI M.. L~s~B. w.
AFlPS Nee, vol. 4.6, pp.

1. I.. Mi,l~~Y artd D. W.

0-18

Commuer TYPRseuing o{
(977).

Co".f on So.li!·wlI't' £ngjneeriflfl, . . p}). 117-
and

1 (~tober, 1916).

.lJ$t . .of 'fblCJ)lJunand

CommwlfJ
aA
.U"X
hB
be"
cC
eenter
doubleoox
eE
eX~Dd
fF
iI
IL
.n N
nnn
pP
rR
s5
tT
·tab (x)
T{
vV
wW
.xx

Spanned item

::iPili(,;i!1IR: change
width value

inqll,lded trQ.tfcommand
line

line
Vertical span

s;Pan
DQuble horizontal line

" Pro,. 1m.

2
1
2 (
1
2

1
2
1
2
2
2
2
2
2
2
2
2
1
3
2
2
3
2
2
2
3

2,3
2,3

:;
3

Updating Publication Lists

M. E. Lesk

1. Introduction.

This note describes several commands to update the publication lists: The data base con­
sisting of these lists is kept in a set of files in the directory lusrldictlpapers on the Version 7
UNIXt system. The reason for having special commands to update these files is that they are
indexed, and the only reasonable way to"find the items to be updated is to use the index. How­
ever, altering the files destroys the usefulness of the index, and makes further editing difficult.
So the recommended procedure is to

(I) Prepare additions, deletions, and changes in separate files.

(2) Update the data base and reindex.

Whenever you make changes, etc. it is necessary to run the "add & index" step before logging
off; otherwise the changes do not take effect. The next section shows the format of the files in
the data base. After that, the procedures for preparing additions, preparing changes, preparing
deletions, and updating the public data base are given.

2. Publication Format.

The format of a data base entry is given completely in "Some Applications of Inverted
Indexes on UNIX" by M. E. Lesk, the first part of this report, and is summarized here via a
few examples. In each example, first the output format for an item is shown, and then the
corresponding data base entry.

Journal article:
A. V. Aho, O. J. Hirschberg, and J. O. Ullman, "Bounds on the Com­
plexity of the Maximal Common Subsequence Problem," J. Assoc.
Compo Mach .. vol. 23, no. i, pp. 1-12 (Jan. 1976).

% T Bounds on the Complexity of the Maximal Common
Subsequence Problem
%A A. V. Aho
%A O. S. Hirschberg
%A J. O. Ullman
%J J. Assoc. Compo Mach.
%V 23
%N 1
%P 1-12
%0 Jan. 1976
%M Memo abcd ...

tUNIX is a Trademark of Bell Laboratories.

11-1

Conference .."I"£\£· rl>

Book:

B. Prabhala and R. Sethi,
Common
gramming

OlGA

OfriT Computation
Common Subexpressions

Pmc. ACM
Programming

alnC Ariz.
1978

cloP 222-230

B. W. Kernighan and P. J.
Reading, (1976).

%T Software Tools
()/!l'~ W.
~/ilA P. J. Plauger
%1 Addison-Wesley
%C Reading, Mass.
%D 1976

Article within book:
1. W. de Bakker, ,
in Advances in
num Press, New York, N. Y. (l

%A J. W. de
%T Semantics of
°j,)E J. T. Tau
%B Advances in
%1
%C
%D 1969
%P 173-227

Technical
F. E.
5767, IBM T.
(1975).

%A F. E. Allen
%D1

11-·2

with

%T on Optimization
%R
%1 IBM T. J. Watson Research
%C Yorktown N. Y.

(

"

Vol. 2

11

can emered similarly. Note that conference proceedings are
as if journals, with the conference name on Ii IlfJ line. This is also sometimes appropri·

ate for obscure publications such as series of lecture notes. When something is both a report
and an or both a memorandum and an article, enter all necessary information for bOlh;

see the first above, Extra information (such as "In preparation" or
should be on a line beginning The most common use of

to give an additional reference to a secondary appearance of
the same paper.

Some of the fields a citation are:

Letter
A
B
C
D
E
I
J

Author
Book including item
::ity publication
Date
Editor
Publisher (issuer)
journal name

Letter
K
N
o
P
R
T
V

number
Other

numbers
Report number
Title of item
Volume number

that %B is used to indicate the title a book containing the article being entered: when
an item is an entire book, the title should be entered with a % T as usual.

Normally, the order of items does not matter. The only exception is that if there are
multiple (%A lines) order of authors should that on the paper. If u line is too

may be continued on to the next any line not beginning with % or . (dot) is
to be a continuation the line. see the first article above for an

a long title. Except for authors, do not repeat any items; if two %J lines are given,
the is Multiple items on the same file should be separated by blank

the file, the exact appearance of the items is deter-
mined . programs. Do not to adjust fonts, punctuation.
etc. by the data base; it is wasted effort. In case someone has a real need for a
differently-formatted output, a new set of macros can easily be generated to provide alternative
appearances of the citations.

3,

that are used to manipulate and change the dat<:l
finding references in the data base, (b) adding new

and (d) deleting references. Remember thaI all
and deletions are done preparing separate files and then funning an
step.

what's fhere now. Often you will want to know what is currently in the data base.
is a command !ookbib to look for things and print them ou!. It searches for Jrti-

cles based on words in the or the author's name, or the dale. For example, you could find
the first paper above with

lookbib aho ullman maximal 1976

or

aho

If you severa! items will be found; if you spell some wrong, nothing
will be found. are around 4300 papers in the file; you always use this com-
mand to check when you are not sure whether a certain paper is there or nOlo

Additions. To add new papers, j!Jst type on one or more files, the citations for the nev..

papers. Remember to check
paper has a

than a new
is a blank

Chanxes,
command

pub.eng

where the items
bib command.

lookbib

Another

yace cstr

johnson yace cSU"

wiH
"bibxxx" where "xxx" is a
name it has chosen. If the set
sage is printed and no
separate pub.chg command, and
"bibxxx" as desired to
the first line of the file,
program which item is being
you wish. The changes are not _._~ __ ~"'
commal1ld {Jub.n./!/ (see
that you'd rather leave
will disappear.

Dc'letlons. To delere an entry

pub.del keyl key2 key3 ...

., 1
I,

onto a done with

that the paper, as in the t(J()k~

an error mes-

data base until you run the
you decide

command

where the items key 1, that will the paper, tiS with the {Q{Jkbib

command. if

lookbib Aho

will a paper,

deletes it that upper lower case are
the entry being deleted. It also the name

command is stored. The actual deletion is nOI done
as with th.e pub.c!iI!. command.

mmdabolJt it away, delete
Again, if the lisl of doe's not

that the

someone else may wan! it

if an item is correct, but should nol appear in Ihe "List of Publications" as
aucea. add the hne

OinK DNL

pro-

(

11-5

to the item. This preserves the item intact, but implies "Do Not List" to the to the commands
that print publication lists. The ONL line is normally used for some technical reports, minor
memoranda, or other low-grade publications.

Update and re;ndex. When you have completed a session of changes, you should type the
command

pub. run file 1 file2 .. .

where the names "file 1", ... are the new files of additions you have prepared. You need not
list the "bibxxx" files representing changes and deletions: they are processed automatically.
All of the new items are edited into the standard public data base, and then a new index is
made. This process takes about 15 minutes: during this time, searches of the data base will be
slower.

Normally, you should execute plIb.run just before you logoff after performing some edit
requests. However, if you don't, the various change request files remain in your directory until
you finally do execute plIb.rul/. When the changes are processed, the "bibxxx" files are
deleted. It is not desirable to wait too long before processing changes, however, to avoid
wnllicts with someone else who wishes to change the same file. If executing pUb.r11l/ produces
the message "File bibxxx too old" it means that someone else has been editing the same file
between the lime you prepared your changes, and the time you typed plIb.run. You must delete
such old change Illes and re-enter them.

Note that although f1l1h./'I1I/ discards the "bibxxx" files after processing them, your files of
additions are left around even after pub. 1'1111 is finished. If they were typed in only for purposes
of updating the data base, you may delete them after they have been processed by plIb.rllfl.

bWI/I'I('. Suppose, for example, that you wish to

(I) Add to the data base the memos "The Dilogarithm Function of a Real Argument" by R.
Morris, and "UNIX Software Distribution by Communication Link," by M. E. Lesk and
A. S. Cohen:

(2) Delete from the data base the item "Cheap Typesetters", by M. E. Lesk, SIGLASH
Newsletter, 1973; and

(3) Change "J. Assoc. Compo Mach." to "Jour. ACM" in the citation for Aho, Hirschberg,
and Ullman shown above.

The procedure would be as follows. First, you would make it file containing the additions, here
l:alled "new. I ", in the normal way using the UNIX editor. In the script shown below, the
computer prompts are in italics.

$ ed new.l
'J

a
%T The Dilogarithm Function of a Real Argument
%A Robert Morris
%M abcd
%D 1978

%T UNIX Software Distribution by Communication Link
IYrIA M. E. Lesk
%A A. S. Cohen
I%M abcd
%D 1978
w new.l
/99
q

Next you would specify the deletion, which would be done with the plIb.del command:

.$ pub.del lesk cheap typ(~set.te
to which the computer responds:

Will delete: (file 76)

% T Cheap Typesetfers
I;fJA M. E. Lesk
%J ACM SIGLASH
%V6
%N4
I!4JP 14-16
%D October 197 J

11-6

siglash

And then you would extract Aho, Hirschberg and
shown below. First run pub.chg to extract the paper; it
informing you that it was placed on fHe bibl]). file is then edited.

involved is
(
'-

and

(

. '"

$ pub.chg aho hirschberg ullman
Extracting as/ile bibl23

11-7

%T Bounds on the Complexity o/the Maximal
Common Subsequence Problem
'}fIA A. V. A ho
%A D. S. Hirschberg
%A J. D. Ullman
%J 1. Assoc. Compo Mach.
%V 23
%N I
'1j1P 1-12
%M abcd
%D Jan. 1976

Sed bibl23
312
/ Assoc/s/ J/ Jour/p
%J Jour. Assoc. Compo Mach.
s/ Assoc.· / ACM/p
liM Jour. ACM
l,$p
%# /usrldict/papers/p76 233 245 change
'!tilT Bounds on the Complexity o/the Maximal
Common Subsequence Problem
%A A. V. Aha
%A D. S. Hirschberg
%A J. D. Ullman
%J JOllr. ACM
%V 23
%N I
%P 1-12
%M abed
%D Jan. 1976

w
292
q
S

Finally, execute pUb.run, making sure to remember that you have prepared a new file "new.l ":

S pub.run new.l

and about fifteen minutes later the new index would be complete and all the changes would be
included. I

4. Printing a Publication List

There are two commands for printing a publication list, depending on whether you want
to print one person's list, or the list of many people. To print a list for one person, use the
pub. indiv command:

pub.indiv M Lesk

This runs off' the list for M. Lesk and puts it in fi,le "output". Note that no ',' is given after
the initial. In case of ambiguity two initials can be used. Similarly, to get the list for group of
people, say

11-8

pub.org xxx

which prints all the publications of
list in the tHe
ground; it takes perhaps 15 minutes. Two

pub.indiv - p M Lesk

prints only the papers, leaving out

pub.indiv - t M Lesk I
prints a typeset copy, instead a comptuer
alternate typesetter with the command.
used with the pub.org command as wei!.
zation ZIZ and typeset them, you cou~d

pub. center - t - P zzz I &:

names the
run in the bad­

are available with these commands:

notes, etc. Also

this case it has been directed to an
and may be

all

These publication lists are double column with a citation
cation list macros; the macros, of course, can be changed

(
\

(

Some Applications of Inverted Indexes on the UNIX System

1. Introduction.

M. E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

The UNIXt system has many utilities (e.g. grep. a wk. lex. egrep. fgrep • ...) to search through
files of text, but most of them are based on a linear scan through the entire file, using some
deterministic automaton. This memorandum discusses a program which uses inverted indexes1

and can thus be used on much larger data bases.

As with any indexing system, of course, there are some disadvantages; once an index is
made, the files that have been indexed can not be changed without remaking the index. Thus
applications are restricted to those making many searches of relatively stable data. Further­
more, these programs depend on hashing, and can only search for exact matches of whole key­
words. It is not possible to look for arithmetic or logical expressions (e.g. "date greater than
1970") or for regular expression searching such as that in lex.2

Currently there are two uses of this software, the refer preprocessor to format references,
and the lookall command to search through all text files on the UNIX system.

The remaining sections of this memorandum discuss the searching programs and their
uses. Section 2 explains the operation of the searching algorithm and describes the data col­
lected for use with the lookall command. The more important application, refer has a user's
description in section 3. Section 4 goes into more detail on reference files for the benefit of
those who wish to add references to data bases or write new troff macros for use with refer. The
options to make refer collect identical citations, or otherwise relocate and adjust references, are
described in section 5. The UNIX manual sections for refer, lookall. and associated commands
are attached as appendices.

2. Searching.
The indexing and searching process is divided into two phases, each made of two parts.

These are shown below.

A. Construct the index.

(1) Find keys - turn the input files into a sequence of tags and keys, where each tag
identifies a distinct item in the input and the keys for each such item are the strings
under which it is to be indexed.

(2) Hash and sort - prepare a set of inverted indexes from which, given a set of keys,
the appropriate item tags can be found quickly.

B. Retrieve an item in response to a query.

tUNIX is a Trademark or Bell Laboratories.

1. O. Knuth. Th~ Art 0/ Comp"t~' Programming: Vol. J. Sorting and S~afChing. Addison·Wesley. Reading. Mass.
(1977). See section 6.S.

2. M. E. Lesk, "Lex - A Lexical Analyzer Generator," Compo Sci. Tech. Rep. No. 39, Bell Laboratories, Mur·
ray Hill. New Jersey (0).

11-9

11-10

(3) Search - Given some keys, look through the files prepared by the hashing and sort­
ing facility and derive the appropriate tags.

(4) Deliver - Given the tags, find the original items. This completes the searching pro- ,----"
cess.

The first phase, making the index, is presumably done relatively infrequently. It should, of
course, be done whenever the data being indexed change. In contrast, the second phase,
retrieving items, is presumably done often, and must be rapid.

An effort is made to separate code which depends on the data being handled from code
which depends on the searching procedure. The search algorithm is involved only in steps (2)
and (3), while knowledge of the actual data files is needed only by steps (l) and (4). Thus it is
easy to adapt to different data files or different search algorithms.

To start with, it is necessary to have some way of selecting or generating keys from input
files. For dealing with files that are basically English, we have a key-making program which
automatically selects words and passes them to the hashing and sorting program (step 2). The
format used has one line for each input item, arranged as follows:

name:start,length <tab) key! key2 key3 ...

where name is the file name, start is the starting byte number, and length is the, number of
bytes in the entry.

These lines are the only input used to make the index. The first field (the file name, byte
position, and byte count) is the tag of the item and can be used to retrieve it quickly. Nor­
mally, an item is either a whole file or a section of a file delimited by blank lines. After the
tab, the second field contains the keys. The keys, if selected by the automatic program, are any
alphanumeric strings which are not among the 100 most frequent words in English and which
are not entirely numeric (except for four-digit numbers beginning 19, which are accepted as
dates). Keys are truncated to six characters and converted to lower case. Some selection is

needed if the original items are ver lrge. We normally just take the first n keys, with n less
than 100 or so; this replaces any attempt at intelligent selection. One file in our system is a
complete English dictionary; it would presumably be retrieved for all queries.

To generate an inverted index to the list of record tags and keys, the keys are hashed and
sorted to produce an index. What is wanted, ideally, is a series of lists showing the tags associ­
ated with each key. To condense this, what is actually produced is a list showing the tags asso­
ciated with each hash code, and thus with some set of keys. To speed up access and further
save space, a set of three or possibly four files is produced. These files are:

File Contents
entry Pointers to posting file

for each hash code
posting Lists of tag pointers for

each hash code
tag Tags for each item
key Keys for each item

(optional)

The posting file comprises the real data: it contains a sequence of lists of items posted under
cac;h hash code. To speed up searching, the entry file is an array of pointers into the posting
file, one per potential hash code. Furthermore, the items in the lists in the posting file are not
referred to by their complete tag, but just by an address in the tag file, which gives the com­
plete tags. The key file is optional and contains a copy of the keys used in the indexing.

The searching process starts with a query, containing several keys. The goal is to obtain
all items which were indexed under these keys. The query keys are hashed, and the pointers in
the entry file used to access the lists in the posting file. These lists are addresses in the tag file
of documents posted under the hash codes derived from the query. The common items from

(

(

all lists are
some items which are

have

the

which indicates the
each item.
keys

but may also contain
codes need not

in the query, there
each hash code is

and to
query, the original

.... ''''''',>;;; against

if
to

for
program, since the

is also an coordination level This retrieves items which
but n of the query items are retrieved in the order the number of

that match. Of course, n must be less than the number query is
retrieved unless it matches at least one

As an consider one set 4377

ceSSOf time.

We have also us,:;d
This is the index searchf:d

cessor time.
believe is stored

Science Research
where a memo
and have been worked on
the
dum.

command are

The indexes maintained
To make other the programs

answers must be used.
are not

to index all

are taken flOrn

to save
The total set of

size. It took 8
a query with
same paper with a

tOok 12.3 seconds of pro-

to this document
processor time and sys­

than even the
takes 29 seconds pro-
1I document which you

each with many
Instructions for the use

to this memoran-

the
invoked as parts of

but are available to any user in the

11 - 12

directory /usr/liblrefer. are
files~ inv. which an a set the
delivers the items. Note that the two of the retrievai are combined into one pro-
gram, to avoid the exces~ive system work and which would result these as
separate processes.

These three commands have a number
input The user not in the detailed
3, which describes
towards formattina

Make Keys. The program
phase A. Normally, it reads its

,,~'~.,"~ program

no arguments it reads the standard
separate items. each
keys are written on standard
among the most frequent words in and not
strings are if are between 1900 and 1
lower case, and tn,mcated to six
The following are n:\(;ogn12~ea

-c flame

as

kinds of
to section

oriented

-(name from name and take readl as an

-I chars

-w

The normal
-niOO, and -13,

aU English

ment.
all lines which

in chars.
per

irrelevant.

input, the program processes about
- k option is used
is comparable in size to its

itern.

Hash and invert. inv program computes the hash codes
of

ten. an
index.io, the tag file

nixes the following options:

and writes the set

Le. when the
and the output are not words from the

-hn The hash table size is n
n saves search time and .:"" ... ,.!",

any character

the list of

in are

writes the inverted
section" It
to writ-

Inaex.ia, the
in'll program recog-

space.

(

(

(

11-13

-Uul name Take input from file name, instead of the standard input; if u is
present name is unlinked when the sort is started. Using this
option permits the sort scratch space to overlap the disk space
used for input keys.

-n Make a completely new set of inverted files, ignoring previous
files.

-p Pipe into the sort program, rather than writing a temporary
input file. This saves disk space and spends processor time.

-v Verbose mode; print a summary of the number of keys which
finished indexing.

About half the time used in inv is in the contained sort. Assuming the sort is roughly
linear, however, a guess at the total timing for inv is 250 keys per second. The space used is
usually of more importance: the entry file uses four bytes per possible hash (note the - h
option), and the tag file around 15-20 bytes per item indexed. Roughly, the posting file con­
tains one item for each key instance and one item for each possible hash code; the items are
two bytes long if the tag file is less than 65336 bytes long, and the items are four bytes wide if
the tag file is greater than 65536 bytes long. To minimize storage, the hash tables should be
over-full; for most of the files indexed in this way, there is no other real choice, since the entry
file must fit in memory.

Searchlnl and Retrieving. The hunt program retrieves items from an index. It com­
bines, as mentioned above, the two parts of phase (B): search and delivery. The reason why it
is efficient to combine delivery and search is partly to avoid starting unnecessary processes, and
partly because the delivery operation must be a part of the search operation in any case.
Because of the hashing, the search part takes place in two stages: first items are retrieved which
have the right hash codes associated with them, and then the actual items are inspected to
determine false drops, i.e. to determine if anything with the right hash codes doesn't really
have the right keys. Since the original item is retrieved to check on false drops, it is efficient to
present it immediately, rather than only giving the tag as output and later retrieving the item
again. If there were a separate key file, this argument would not apply, but separate key files
are not common.

Input to hunt is taken from the standard input, one query per line. Each query should be
in mkey -s output format; all lower case, no punctuation. The hunt program takes one argu­
ment which specifies the base name of the index files to be searched. Only one set of index
files can be searched at a time, although many text files may be indexed as a group, of course.
If one of the text files has been changed since the index, that file is searched with /grep; this
may occasionally slow down the searching, and care should be taken to avoid having many out
of date files. The following option arguments are recognized by hunt:

-a
-en

-Flyndl

-I

-I string
-I n

-0 string

Give all output; ignore checking for false drops.
Coordination level n; retrieve items with not more than n
terms of the input missing; default CO, implying that each
search term must be in the output items .
.. - Fy" gives the text of all the items found; "-Fn"
suppresses them. .. - F d" where d is an integer gives the text
of the first d items. The default is - Fy.
Do not use /grep to search files changed since the index was
made; print an error comment instead.
Take string as input, instead of reading the standard input.
The maximum length of internal lists of candidate items is n;
default 1000.
Put text output (" - Fy") in string; of use only when invoked
from another program.

11-14

- p Print hash code frequencies; mostly for use in optimizing hash
table sizes.

-Tlynd) "-Ty" gives the tals of the items found; "-Tn" suppresses
them. "-T d" where d is an integer gives the first d tags. The
default is - Tn .

-t string Put tag output (" -Ty") in string; of use only when invoked
from another proaram.

The timing of hunt is complex. Normally the hash table is overfull, so that there will be
many false drops on any single term; but a multi-term query will have few false drops on aU
terms. Thus if a query is underspecifted (one search term) many potential items will be exam­
ined and discarded as false drops, wasting time. If the query is overspecified (a dozen search
terms) many keys will be examined only to verify that the single item under consideration has
that key posted. The variation of search tjme with number of keys is shown in the table below.
Queries of varying length were constructed to retrieve a particular document from the file of
references. In the sequence to the left. search terms were chosen so as to select the desired
paper as quickly as possible. In the sequence on the right, terms were chosen inefficiently, so
that the query did not uniquely sdect the desired document until four keys had been l,lsed.
The same document was the tarset ia each case., and the final set of eight keys are also identi­
cal; the cii1ferences at five, six aad le1fen keys we produced by measurement error, not by the
slightly different key lists.

Efficient Keys Inefficient Keys
No. keys Total drops Retrieved Search time No. keys Total drops Retrieved Search time

(jncl. false) Documents (seconds) (ind. false) Documents (seconds)

1 15 3 1.27 1 68 55 5.96
2 1 1 0.11 2 29 29 2.72
3 1 1 0.14 3 8 8 0.95
4 1 1 0.17 4 1 1 0.18
5 1 1 0.19 5 1 1 0.21
6 1 1 0.23 6 1 1 0.22
7 1 1 0.27 7 1 1 0.26
8 1 1 0.29 8 1 1 0.29

As would be expected, the optimal search is achieved when the query just specifies the answer;
however, overspecification is Quire cheap. Roughly, the time required by hunt can be approxi­
mated as 30 milliseconds per search «e.yplus 75 milliseconds per dropped document (whether it
is. false drop or a .reaI ~). In tetlC'ral,overspecificatioo can be recommended; it protects
,tM user qainst additions to the database which turn previously uniquely-answered queries into
1I11ibiguous queries.

The ,careful reader will have noted an enormous discrepancy between these times and the
earlier quoted time of around 1.9 seconds for a search. The times here are purely for the
search and retrieval: tbey llre measured by running many searches through a single invocation
uT'tbe hunt program alone. Usually, the UNIX command processor (the shell) must start both
the mkey and hunt processes for each query, and arrange for the output of mkey to be fed to
·the hunt program. This adds a fixed overhead of about 1.7 seconds of processor time to any
siDliescarch. Furthermore, remember tbat all these times are processor times: on a typical
morning .on 'Our PDP 11170 system, with about one dozen people logged on, to obtain 1 sec.ond
of processor time for the search program took between 2 and 12 seconds of real time, with a
median of 3.9 seconds . .and a mean or 4.8 seconds. Thus, although the work involved in a sin­
gle search may be only 200 milli~conds, after you add the 1.7 seconds of startup processor
time and then assume a 4:1 elapsed/processor time ratio, it will be 8 seconds before any
response is printed.

(

(

'--../

11-15

3. Seleetlnl and Formattlnl References for Taon
The major application of the retrieval software is refer. which is a troff preprocessor like

eqn.3 It scans its input looking for items of the form

· [
imprecise citation
·]

where an imprecise citation is merely a string of words found in the relevant bibliographic cita­
tion. This is translated into a properly formatted reference. If the imprecise citation does not
correctly identify a single paper <either selecting no papers or too many) a message is given.
The data base of citations searched may be tailored to each system, and individual users may
specify their own citation files. On our system, the default data base is accumulated from the
publication lists of the members of our organization, plus about half a dozen personal bibliogra­
phies that were collected. The present total is about 4300 citations, but this increases steadily.
Even now, the data base covers a large fraction of local citations.

For example, the reference for the eqn paper above was specified as

preprocessor like
.I eqn.
· [
kernighan cherry acm 1975
J
It scans its input looking for items

This paper was itself printed using refer. The above input text was processed by refer as well as
tbl and troff by the command

refer memo-file I tb/l troff -ms

and the reference was automatically translated into a correct citation to the ACM paper on
mathematical typesetting.

The procedure to use to place a reference in a paper using refer is as follows. First, use
the lookbib command to check that the paper is in the data base and to find out what keys are
necessary to retrieve it. This is done by typing lookbib and then typing some potential queries
until a suitable query is found. For example, had one started to find the eqn paper shown
above by presenting the query

$ lookbib
kernighan cherry
(EOT)

lookbib would have found several items; experimentation would quickly have shown that the
query given above is adequate. Overspecifying the query is of course harmless; it is even desir­
able, since it decreases the risk that a document added to the publication data base in the future
will be retrieved in addition to the intended document. The extra time taken by even a grossly
overspecified query is quite small. A particularly careful reader may have noticed that "acm"
does not appear in the printed citation; we have supplemented some of the data base items with
extra keywords, such as common abbreviations for journals or other sources, to aid in search­
ing.

If the reference is in the data base, the query that retrieved it can be inserted in the text,
between .1 and . J brackets. If it is not in the data base, it can be typed into a private file of

3. B. W. Kernighan and L. L. Cherry, "A System for Typesetting Mathematics," Comm. Assoc. Compo Mac". II,
pp.l51-157 (March 1975).

11 .. , 6

references, using the format discDied in next
search this priVllte file. a command read

-p document I tbll eqn I -ms,

tbl
is essential.

exact formatting is done by some macro ~._ .• ", •. ", ..
be printed.

By the f",,"'''''''.,.,

page.
possibilities are discussed in section 5 below.

4. Reference Files.

A
using the

document
reference
full citation is
format the "' .. ,, " ...

if a user does not like
and to add to the
printed 00.

The letters

and the - ms macros
memorandum is an

be
to read the

such l.L"l the ~- ms macros, to
is detennined the

kind
basic

the macro

blank lines. is a
The remainder of that

it to
can

the -inS

a document
the memorandum vel"

all
title or author lfl""CUJ,Dn,,,

is searched but not

and ---ms, with the kind

~. M. E. Lesk, Typing DIJC'.Ime1'lts all UNIX and GCOS: The oms Macros II)! Troff, Bell Laboulories internal
memorafldum (i 977).

(

(

11-17

Key Information specified Key Information specified
A name N Issue number
B book containing item 0 Other information
C P Page (5) of article
D R Technical report reference
E of book containing item T Title
G (NTIS) ordering number V Volume number
I Issuer (publisher)
J name
K searching) X or
L y or
M Memorandum label Z Information not used by refer

For example, a reference could be as:

O/OT uv,un .. ", on the Complexity of the Maximal
Common
%Z ctrl

A. V.Aho

Problem

D. S. Hirschberg
%A 1. D. Ullman
%1 J. ACM
%V 23
%N 1
GkF 1~12
%M abcd-78
%D Jan.

Order is irrelevant, except that authors are shown in the order given. The output of refer is a
stream string one for each the fields of each reference, as shown below .

.]-

.ds authors' names ...

. ds [T title ...

. ds [J journal ...

• J [tYPIHlUmber

not concern itself with the significance of the strings. The
by except that the X, Y and Z fields are ignored

) in indexing and searching. All refer does is select the appropriate
The macro package must arrange the strings so as to produce an

citation. this process, it uses the convention tha.t the 'T' field is the
and so forth.

program does arrange the citation to simplify the macro package's job, however.
The macro .1- the string definitions !lnd the special macro .11 follows. These
are the. 1 and .1 so that running the same file through refer again is harm-
less. .! - macro can be used by the macro package to initialize. The. J i macro, which

be used to print the is given an argument type-number to indicate the kind of
as

of reference
1 article
2 Book
3
4
5
o

Article within book

The type is determined the presence or absence
article must have a 'J' ill book must have an 'I' . To a small extent,
this violates the above rule that does not concern itself with the contents the '~U''',"''JU.
however, the of the citation in macros would
and obscure program. macro writer may,

to the ,I ! macro.

\.. number\" C]

should be used the mltCfO
for a "'·hr'"

is available to the
that

« >.
where number is the footnote number. The macro V""-"'~'l>'" should tum either the >. or
<. into a period and delete the other one. the to have either the
"erldl31}." 01' "end.3l " as the macro wishes. Note that in one case the pre-
cedes the number and in the other it the number.

In some Clises users wish
the user

lines
to add a few to those in the reference as in

or replacing or whole
besinning with ~; finy 51.11,::0 line is taken as direct

to be "";~"'''''l"iP1'I

. (
key! key2
%Q New format item
%R name
.)

maKes the indicates to the result
be given the first % line.

and use the reference macro
between (and.

the user can wish

done lines
processor rather than

the All of the search must

If no search are an entire citation can be in-line in the text. For
eK,IWJlplli;::. if eqn paper citation were to be hlserted in this way, rather than
it in the data the would read

(

(

(

(

preprocessor like
.I eqn.
· [
%A B. W. Kernighan
%A L. L. Cherry

11-19

%T A System for Typesetting Mathematics
%J Comm. ACM
%V 18
%N 3
%P 151-157
%0 March 1975
.1
It scans its input looking for items

This would produce a citation of the same appearance as that resulting from the file search.

As shown, fields are normally turned into trolf strings. Sometimes users would rather
have them defined as macros, so that other trolf commands can be placed into the data. When
this is necessary, simply double the control character ~ in the data. Thus the input

· [
%V 23
%%M
Bell Laboratories,
Murray Hill, N.J. 07974
·]

is processed by refer into

.ds [V 23

.de [M
Bell Laboratories,
Murray Hill, N.J. 07974

The information after o/to/tM is defined as a macro to be invoked by .IM while the information
after O/OV is turned into a string to be invoked by \-«V. At present -ms expects all informa­
tion as strings.

5. Collecting References and other Refer Options

Normally, the combination of refer and -ms formats output as trolf footnotes which are
consecutively numbered and placed at the bottom of the page. However, options exist to place
the references at the end; to arrange references alphabetically by senior author; and to indicate
references by strings in the text of the form [Name1975a] rather than by number. Whenever
references are not placed at the bottom of a page identical references are coalesced.

For example, the -e option to refer specifies that references are to be collected; in this
case they are output whenever the sequence

. [
SLISTS
.1

is encountered. Thus, to place references at the end of a paper. the user would run refer with
the -e option and place the above SLISTS commands after the last line of the text. Refer will
then move all the references to that point. To aid in formatting the collected references, refer
writes the references preceded by the line

.J <::

ind followed by the

.I>

to invoke

Another
default,

· [
SLISTS
·]

to cal! out
numbers,

macros before and

meaning on
.... sA+T. And to sort on two

the

is the

the numbt'fS indicate how many of
the is -

write -sAlJ.

Other options to """"l!.'" the signal or label inserted in the text for each reference.
Normally and their exact

letter.
the To abbreviate
first m letters and the date to
the eqn paper
nighan in 197.5.

A

If none the
text signals.

If the user wishes to override the --ms
maUl/' to enclose the number in brackets in
done easily. the .I or .1

lines are
to say "See

reference
· [(
imprecise citation ...
. D.

are

NOh~ that blanks are this construction. If a
style of easier to

a macro package
s,pecial options for rearrangements that can not be done
put! nelds into aU upper case CAPS in
what ~F1iformaHon is to be translated to upper case
autho'$~ names and are to in caps.

the -b

the last name are used in
the last li.ame to the

would to
by Ker-

-k

is used

suppresses

is nOf-

fOf exam-

is desired in the
I. and.1

and leaves to

indicated
- cAJ means that

writes the names authors last

(

11-21

name first, that is A. D. Hall, Jr. is written as Hall, A. D. Jr. The citation form of the Journal
of the ACM, for example, would require both -cA and -a options. This produces authors'
names in the style KERNIGHAN, B. W. AND CHERR y, L. L. for the previous example. The - Ii

option may be foHowed by II. number to indicate how many author names should be reversed;
-at (without any -c option) would produce Kernighan, B. W. and L. L. Cherry, for example.

Finally, there is also the previously-mentioned - p option to let the user specify a private
file of references to be searched before the public files. Note that refer does not insist on a pre­
viously made index for these files. If a file is named which contains reference data but is not
indexed, it will be searched (more slowly) by refer using fgrep. In this way it is easy for users to
keep small files of new references, which can later be added to the public data bases.

-.--'

Introduction

NROFF/TROFF User's Manual

Joseph F. Ossanna

Bell Laboratories
Murray Hill, New Jersey 07974

NROFF and TROFF are text processors under the PDP-II UNIX Time-Sharing System l that format text
for typewriter-like terminals and for a Graphic Systems phototypesetter, respectively. They accept lines
of text interspersed with lines of format control information and format the text into a printable,
paginated document having a user-designed style. NROFF and TROFF offer unusual freedom in docu­
ment styling, including: arbitrary style headers and footers; arbitrary style footnotes; multiple automatic
sequence numbering for paragraphs, sections, etc; multiple column output; dynamic font and point-size
control; arbitrary horizontal and vertical local motions at any point; and a family of automatic overstrik­
ing, bracket construction, and line drawing functions.

NROFF and TROFF are highly compatible with each other and it is almost always possible to prepare
input acceptable to both. Conditional input is provided that enables the user to embed input expressly
destined for either program. NROFF can prepare output directly for a variety of terminal types and is
capable of utilizing the full resolution of each terminal.

Usage

The general form of invoking NROFF (or TROFF) at UNIX command level is

nrotf options files (or trotf options files)

where options represents any of a number of option arguments and files represents the list of files con­
taining the document to be formatted. An argum'ent consisting of a single minus (-) is taken to be a
file name corresponding to the standard input. If no file names are given input is taken from the stan­
dard input. The options, which may appear in any order so long as they appear before the files, are:

Option

-olist

-nN
-sN

-mname

-raN

-i

-q

E;J!ect

Print only pages whose page numbers appear in list, which consists of comma­
separated numbers and number ranges. A number range has the form N-M and
means pages N through M: a initial - N means from the beginning to page N; and
a final N - means from N to the end.

Number first generated page N.

Stop every N pages. NROFF will halt prior to every N pages (default N-l) to
allow paper loading or changing, and will resume upon receipt of a newline.
TROFF will stop the phototypesetter every N pages, produce a trailer to allow
changing cassettes, and will resume after the phototypesetter START button is
pressed.

Prepends the macro file /usr/llb/tmac.name to the input files.

Register a (one-character) is set to N.

Read standard input after the input files are exhausted.

Invoke the simultaneous input-output mode of the rd request.

12-1

NROFF/TROFF User's Manual
11, 1976

-Tname

NROFF

any ter­
the DASI·

Produce eQ1LlallY-SPlfceo: words in aaJfl1s:tea terminal resolution.

l'ROJ?F

-t Direct output to the standard output instead

-f

-w

from

Wait until

out paper and

is

at the end the run.

TROFF wil.l
cessing is done.

or available. No text pro-

Send a of the results to the standard

-pN all a!!
motions, to reduce

Each is invoked as a separate

uroff 8-10 -T 300S -malIC

requests a document contained in the named
and invokes the macro abc.

Various pre- and post-processors are available use with NROFF and TROFF.
preprocessors and

construction preprocessor
NROFF output on terminals
sequences that NROFF
NROFF output on a

tbl .lUes I eqn I troff - t

I indicates the
input; and the

TROFF (-g)

of

NROFF TROFP

and

The remainder of this manual consists a Manual
and 11 set of Tutorial Another tutorial is

F.

References

OJ K. D.M. UNiX Sixth Edition

and

and fde},

s output to

10 the

[2) B. W. Kernighan, L L
internal memorandum.

y~~setJrmg Mathematics - User's Guide 'c,,.UJ7JWi Bell Laborawries

!3l M. E. Lesk, Tbl - A Program to Format

[4} Internal on-line documentation, on UNIX.

Bell Laboratories internal memorandum.

B. W. Kernighan, A TROFF Ee!! Laboratories internal memorandum.

2 ,.,
-L

(

.,'

.,
," ,\

NROFF/TROFF User's Manual
October 11, 1976

I/No

SUMMARY AND INDEX

Request
Form

Ilfltlal
Value e Argumelft Notes# Explalfatlolf

1. General Explanation

2. Font and Character Size Control

.ps±N 10 point previous E

.ss N 12/36em ignored E

.csFNM off P

.bd FN off P

.bd SF N off P

.ft F Roman previous E

.fp N F R,I,B,S ignored

3 . Page Control

. pl ±N 11 in 11 in v

.bp ±N N-l B:t,v

.pn ±N N-l ignored

.po ±N 0; 26/27 in previous v

. ne N N-l V D,v

.mk R none internal D

. rt ±N none internal D,v

4. Text Filling, Adjusting, and Centering

. br B

. n fill B,E

.nf fill B,E

.ad c adj,both adjust E

.na adjust E

.ce N off N-l B,E

5. Vertical Spacing

.vs N 1/6in;12pts previous E,p

.Is N N-l previous E

.sp N N-IV B,v

.sv N N==lV v
• os
.ns space D
.rs D

6. Line Length and Indenting

.11 ±N 6.5 in previous E,m

.in ±N N-O previous B,E,m

.tl ±N ignored B,E,m

Point size; also \s ± N. t
Space-character size set to N/36 em. t
Constant character space (width) mode (font F). t
Embolden font F by N-l units. t
Embolden Special Font when current font is F.t
Change to font F - x, xx, or 1-4. Also \fx, \f(xx, \(N.
Font named Fmounted on physical position 1 ~ N~4.

Page length.
Eject current page; next page number N.
Next page number N.
Page offset.
Need N vertical space (V .. vertical spacing) .
Mark current vertical place in register R.
Return (upward only) to marked vertical place .

Break .
Fill output lines .
No filling or adjusting of output lines.
Adjust output lines with mode c.
No output line adjusting.
Center following N input text lines.

Vertical base line spacing (V).

Output N-l Vs after each text output line.
Space vertical distance N in either direction.
Save vertical distance N.
Output saved vertical distance .
Turn no-space mode on.
Restore spacing; turn no-space mode off.

Line length.
Indent.
Temporary indent.

7. Macros, Strings, Diversion, and Position Traps

.de xx yy .}y-.. Define or redefine macro xx; end at call of yy .

. am xx yy .yy-.. Append to a macro .

. ds xx string - ignored Define a string xx containing string .

. as xx string - ignored Append string to string xx.

·Values separated by';' are for NROFF and TROFF respectively.

#Notes are explained at the end of this Summary and Index

tNo effect in NROFF.
*The use of' •• as control character (instead of ".') suppresses the break function.

NltOfF/TROFF User's Manual
October 11, 1976

. rm .xx

. m .xx yy

.dl .xx

.da XX'

. wb N XX'

. eh XX' N

.dt N XX'

.it N XX'

ll1itial
Yalve

.em XX' none

8. Number Reeisters

.nr R ±N M

. af R c arabic

.rr R

UNo
Argumellt

ignored
ignored
end
end

off
off
none

9. Tabs, Leaders, and Fields

. ta Nt ... 0.8; O.Sin none

. te c none none

. Ie c none

. fe a b off off

NOles

D
D
v
v
D,v
E

u

E,m
E
E

Explallatioll

Remove request, macro, or string .
Rename request, macro, or string .xx to yy .
Divert output to macro .xx.
Divert and aPDend to xx.
Set location trap; negative is w.r.t. page bottom .
Change trap location .
Set a diversion trap.
Set an input-line count trap.
End macro is .xx.

Define and set number register R; auto-increment by M.
Assign format to register R (c-l, i, I, a, A) .
Remove register R.

Tab settings; left type, unless I-R(right); C(centered) .
Tab repetition character .
Leader repetition character .
Set field delimiter a and pad character b .

10. Input and Output Conventions and Cbaracter Translations

. ec c \

.eo on

. Ie N -;on

.ul N off

.cu N off

.uf F Italic

. ce c

. c2 c

\

on
N-1
N-1
Italic

Set escape character .
Turn off escape character mechanism.
Ligature mode on if N> O .

E Underline (italicize in TROFF) N input lines.
E Continuous underline in NROFF; like ul in TROFF.

Underline font set to F (to be switched to by uJ).
E Set control character to c .
E Set nobreak control character to c .

.tr abed.... none 0 Translate a to b, etc. on output.

11. Local Horizontal and Vertital Motions, and the Width Function

12. Overstrike, Bracket. Line-drawlnl. and Zero-width Functions

ll. Hyphenation.

.JIh hyphenate

.hy N hyphenate hyphenate

.bc c W. \'Ie

. h" word 1 ... ignored

14. TIl,.. Part Titles.

.tl 'left' Cetfter right'

. pc c '4 off

.tt ± H 6.5 in previous

15. Output LiM NeIderiDC •

.aIR ±NMSI off

.DD N N-l

16. C.,"Utiona~ Acceptance olIn_

.if c .,ythittg

E
E
E

E.m

E
E

No hyphenation .
Hyphenate; N - mode.
Hyphenation ind«:ator character c.
Exception words .

Three part title .
'aae number character .
Lentth of title.

Number mode on or off, set parameters.
Do not number next N lines.

If condition c true, accept anythillg as input,
for muki-line use \{anything\}.

12-4

-. E

(

(

(

User's Manual
October 11, 1

If No Request
Form Value Argument Noles Exp/tlnation

,If !c
.if N
.if ! N anything
.if anything

anything

17. Environment Switching.

N-O previous

u
u

.ev N

18.

. rd prompt
• ex

from the St.andard Input

prompt-BEL-

19. Input/Output File

.SO '''I>'',U:1'>1

. nx ,.,/" ... ,.., ... ",
program

20. Miscellaneous

.me eN E,m

If condition c false, accept anything.
If expression N > 0, accept anything.
If expression N ~ 0, accept anything .
If string1 identical to string2, accept anything .
If string} not identical to string2, accept anything.
If portion of if-else; all above forms (like if).
Else portion of if-else.

Environment switched (push down).

Read insertion .
Exit from NROFF/TROFF .

Switch source (push down).
Next file .

output to program (NROFF only).

Set margin character c and separation N.
.tm

off
newline Print string on terminal (UNIX standard message output).

yy
,pm t

. yy
all

Ignore til! call yy .
macro names and sizes;

.f1 B
if t present, print only total of sizes.
Flush output buffer.

21. Messages

Notese

B causes a break.
D associated with current diversion level.
E are a part of the current environment.
o in until logical output.
P Mode must be still or again in effect at the time of physical output.

v,p,m,u Default scale indicator; if not scale indicators are ignored.

Alpb!l~tkllll Request ~nd Secth:m Number Cross Reference

ad <4 cc 10 ds 7 fc 9 ie 16 II 6 nh 13 pi 19 rn 7
!If !l ee 4 dt 7 fi 4 if 16 is 5 nm 15 pi 3 rr 8
am 7 ch 7 ec 10 !1 20 ill 20 I! 14 nn 15 pm 20 rs 5
as 7 ell 2 el 16 fp 2 in 6 me 20 fir 8 pn 3 r! :;
bo " eu 10 em 7 f! 2 it 7 mk 3 ns 5 po 3 so 19 d-

op .3 all 7 eo 10 he 13 Ie 9 na 4 IlX 19 ps 2 sp 5
or 4 de 7 ev 17 hw 13 Ig 10 riC 3 os 5 rd IS 55 2
e2 10 di 'I ex 18 hy 13 Ii 10 of 4 pc 14 rm 7 51! 5

5

ta <) vs 5
!e ':I wI! 7
Ii 6
tI 14
1m 20
tr 10
uf 10
ul 10

NaOfF/TROFF User's Manual
Octoher 11,1976

Eseape Sequen(es for Characters, Indators, and Functions

~ctlfJ1l

R'fer~llce

10.1
10.1

2.1
2.1
2.1
7

11.1
11.1
11.1
11.1

4.1
10.6
10.7
7.3

13
2.1
7.1
9.1

12.3
4.2

11.1
2.2

11.1
11.3
12.4
12.4
8

12.1
4.1

11.1
2.3
9.1

11.1
11.1
11.2
5.2

12.2
16
16
10.7

Escape
Sequence

\\
\e
\'
\'
\-
\.
\(space)
\0
\1
\A
\&
\!
\.
\SN
\%
\ (xx
\.x, \.(xx
\a
\b' abc ... '
\c
\d
\fx, \f(xx, \f N
\h'N'
\kx
\I'Nc'
\L'Nc'
\nx.\n(xx
\o'abc .. , '
\p
\r
\sN, \s±N
\t
\11
\v'N'
\w'string'
\x'N'
\zc
\{
\}
\ (newline)
\X

M~aning

\ (to prevent or delay the interpretation of \)
Printable version of the current escape character.
, (acute accent): equivalent to \ <aa
t (grave accent); equivalent to \ (Ia
- Minus sign in the current font
Period (dot) (see de)
Unpaddable space-size space character
Digit width space
1/6 em narrow space character (zero width in NROFF)
1/12 em half-narrow space character (zero width in NROFF)
Non-printing, zero width character
Transparent line indicator
Beginning of comment
Interpolate argument 1 ~ N~ 9
Default optional hyphenation character
Character named xx
Interpolate string x or xx
Non-interpreted leader character
Bracket building function
Interrupt text processing
Forward (down) 1/2 em vertical motion 0/2 line in NROFF)
Change to font named x or xx, or position N
Local horizontal motion; move right N (negative left)
Mark horizontal input place in register x
Horizontal line drawing function (optionally with c)
Vertical line drawing function (optionally with c)
Interpolate number register x or xx
Overstrike characters a, b, c, ...
Break and spread output line
Reverse 1 em vertical motion (reverse line in NROFF)
Point-size change function
Non-interpreted horizontal tab
Reverse (up) 1/2 em vertical motion (1/2 line in NROFF)
Local vertical motion; move down N (negative up)
Interpolate width of string
Extra line-space function (negative be/ore, positive after)
Print c with zero width (without spacing)
Begin conditional input
End conditional input
Concealed (ignored) newline
X, any character not listed above

The escape sequences \\, \., \", \$, \., \a, \n. \t, and \(newline) are interpreted in copy mode (§7.2L

12-6

(

. :)1...

./

(

NROFF/TROFF User's Manual
October 11, 1976

Predefined General Number Registers

Section
Refere,!,ce

3
11.2
7.4
7.4

11.3
15

4.1
11.2
11.2

Register
Name

o/t
ct
dl
dn
dw
dy
hp
In
mo
nl
sb
st
yr

Description

Current page number.
Character type (set by width function).
Width (maximum) of last completed diversion.
Height (vertical size) of last completed diversion.
Current day of the week 0-7).
Current day of the month (I -3 1).
Current horizontal place on input line.
Output line number.
Current month (1-12).
Vertical position of last printed text base-line.
Depth of string below base line (generated by width function).
Height of string above base line (generated by width function).
Last two digits of current year.

Predefined Read-Only Number Registers

Section Register
Reference Name Description

7.3 .$ Number of arguments available at the current macro level.
. A Set to 1 in TROFF, if -a option used; always 1 in NROFF .

11.1 .H A vailable horizontal resolution in basic units.
• T Set to 1 in NROFF, if -T option used; always 0 in TROFF .

11.1 . V A vailable vertical resolution in basic units .
5.2 .a Post-line extra line-space most recently utilized using \x' N'.

• C Number of lines read from current input file .
7.4 .d Current vertical place in current diversion; equal to nl, if no diversion.
2.2 of Current font as physical quadrant (1-4).
4 oh Text base-line high-water mark on current page or diversion.
6 .i Current indent.
6 .I Current line length .
4 .n Length of text portion on previous output line.
3 .0 Current page offset.
3 .p Current page length.
2.3 .S Current point size.
7.5 ot Distance to the next trap.
4.1 .u Equal to 1 in fill mode and 0 in nofill mode.
5.1 .V Current vertical line spacing.

11.2 oW Width of previous character.
. x Reserved version-dependent register .
• y Reserved version-dependent register .

7.4 oZ Name of current diversion.

12-7

NROFF/TROFF User's Manual
October 11, 1976

1. General Explanation

REFERENCE MANUAL

1.1. Form 0/ input. Input consists of text lines, which are destined to be printed, interspersed with control
IiMS, which set parameters or otherwise control subsequent processing. Control lines begin with a con-

(

tra/ character-normally. (period) or ' (acute Keen!) -followed by a one or two character name that (
specifies a basic request or the substitution of a user-defined macro in place of the control line. The
control character' suppresses the break function-the forced output of a partially filled line-caused by
certain requests. The control character may be separated from the request/macro name by white space
(spaces and/or tabs) for esthetic reaSOG$. Names must be followed by either space or newline. Control
lines with unrecognized names are ignored.

Various special functions may be iMro4uced anywhere in the input by means of an escape character,
normally \. For example, the function 'nR causes the interpolation of the contents of the number regis­
ter R in place of the function; here R is either a single charKter name as in \nx, or left-parenthesis­
introduced, two-character name as in \.ta.
1.1. Formatter and device resolution. TROFF internally uses 432 units/inch, corresponding to the Graphic
Systems phototypesetter which has a h:orizontal resolution of 1/432 inch and a vertical resolution of
1/144 inch. NROFF internally uses 240 units/inch, corresponding to the least common multiple of the
horizontal and vertical resolutions of various typewriter-like output devices. TROFF rounds
horizontal/vertical numerical parameter input to the actual horizontal/vertical resolution of the Graphic
Systems typesetter. NROFF similarly rounds numerical input to the actual resolution of the output dev­
ice indicated by the -T option (default Model 37 Teletype).

1.1. Numerical parameter input. Both NROFF and TROFF accept numerical input with the appended scale
indicators shown in the following table, where S is the current type size in points, V is the current verti­
cal line spacing in basic units, and C is a nominal characler width in basic units.

Scale Number of basic units
Indicator Meaning T'ROFF NROFF

i Inch 432 240
c Centimeter 432xSO/127 240xSO/127
P Pica - 1/6 inch 72 240/6
m Em - Spoints 6xS C
n En - Em/2 3xS C. same as Em
p Point - 1/72 inch 6 240/72
u Basic unit 1 1 ,. Vertical line space V V

none Default, see below

In NROFF, both the em and the en are taken to be equal to the C, which is output-device dependent;
common values are 1/10 aad 1/12 inch. Actual character widths in NROFF need not be all the same
and constructed characters such as -> (-) are often extra wide. The default scaling is ems for the
horizontally-oriented requests and functions II, in, ti, ta, It, po, me, \h, and \1; Vs for the verticalty­
oriented requests and functions pi, wb, eb, dt, sp, SV, ne, rt, \v, \x, and \L; p for the vs request; and
u for the requests Dr, if, and ie. All other requests ignore any scale indicators. When a number regis­
ter containing an already appropriately scaled number is interpolated to provide numerical input, the
unit scale indicator .. may need to be appended to prevent an additional inappropriate default scaling.

12-8

)'

NROFF/TROFF User's Manual
October 11, 1976

The number, N, may be specified in decimal-fraction form but the parameter finally stored is rounded
to an integer number of basic units.

The absolute position indicator I may be prepended to a number N to generate the distance to the vertical
or horizontal place N. For vertically-oriented requests and functions, I N becomes the distance in basic
units from the current vertical place on the page or in a diversion (§7.4) to the the vertical place N. For
all other requests and functions, I N becomes the distance from the current horizontal place on the input
line to the horizontal place N. For example,

.sp 13.2e

will space in the required direction to 3.2 centimeters from the top of the page.

1.4. Numerical expressions. Wherever numerical input is expected an expression involving parentheses,
the arithmetic operators +, -, I, ., % (mod), and the logical operators <, >, '<-, >-, - (or --),
&: (and), : (or) may be used. Except where controlled by parentheses, evaluation of expressions is
left-to-right; there is no operator precedence. In the case of certain requests, an initial + or - is
stripped and interpreted as an increment or decrement indicator respectively. In the presence of default
scaling, the desired scale indicator must be attached to every number in an expression for which the
desired and default scaling differ. For example, if the number register x contains 2 and the current
point size is 10, then

.11 (4.251+\nxP+3)/2u

will set the line length to 1/2 the sum of 4.25 inches + 2 picas + 30 points.

1.5. Notation. Numerical parameters are indicated in this manual in two ways. ± N means that the
argument may take the forms N, +N, or -N and that the corresponding effect is to set the affected
parameter to N, to increment it by N, or to decrement it by N respectively. Plain N means that an ini­
tial algebraic sign is not an increment indicator, but merely the sign of N. Generally, unreasonable
numerical input is either ignored or truncated to a reasonable value. For example, most requests
expect to set parameters to non-negative values; exceptions are sp, wh, ch, nr, and if. The requests
ps, ft, po, VS, Is, 11, in, and It restore the previous parameter value in the absence of an argument.

Single character arguments are indicated by single lower case letters and one/two character arguments
are indicated by a pair of lower case letters. Character string arguments are indicated by multi-character
mnemonics.

2. Font and Character Size Control

2.1. Character set. The TROFF character set consists of the Graphics Systems Commercial II character
set plus a Special Mathematical Font character set-each having 102 characters. These character sets
are shown in the attached Table I. All ASCII characters are included, with some on the Special Font.
With three exceptions, the ASCII characters are input as themselves, and non-ASCII characters are input
in the form \(xx where xx is a two-character name given in the attached Table II. The three ASCII
exceptions are mapped as follows:

ASCII Input Printed by TROFF
Character Name Character Name

acute accent
,

close quote . grave accent • open quote

- minus - hyphen

The characters', " and - may be input by \" \', and \ - respectively or by their names (Table 11).
The ASCII characters @, #, ., " ., <. >. \, (,), -, A, and _ exist only on the Special Font and are
printed as a I-em space if that Font is not mounted'.

NROFF understands the entire TROFF character set, but can in general print only ASCII characters,
additional characters as may be available on the output device, such characters as may be able to be
constructed by overstriking or other combination, and those that can reasonably be mapped into other
printable characters. The exact behavior is determined bv a driving table prepared for each device. The

1 ?-9

NROFF/TROFF User's Manual
October 11, 1976

characters " " and _ as

2.2. Fonts. The default mounted
the Mathematical

use
where x and xx are the na.me
to to the
but not-mounted font is ignored. TROFF can be
the request. list of known
font-related
1-4.

NROFF understands font control and

Character size.
11, 12, 14, 16, 8,
used to change or restore the point size.
characters by imbedding a at
increment/decrement the size by
between two vaHd sizes the
NROFF ignores type size control.

Request Initial If
Vaiue

.ps ±N previous E

.5S N 12/36 em E

.~sFNM p

.bd FN off p

underlines Italic characters

Point size set ±

Consta.nt character space
F the width will be

is the. is
cc;ntered in this space,

than thL'§
characters the

current is F are also
The

The characters in
A

reasonable valLie
the of 10
mode is turned heads above

with .bd I 3. mode must be still or
when the characters are

in NROFF.

°Notes are explained at the end of the Summllr)! and Index above.

(

(

NROFF/TROFF User's Manual
October 11, 1976

.bd S F N off

.ft FRoman previous

.fp N F R,I,B,S ignored

3. Page control

P

E

The characters in the Special Font will be emboldened
whenever the current font is F. This manual was printed
with .bd S B 3. The mode must be still or again in effect
when the characters are physically printed.

Font changed to F. Alternatively, imbed \fF. The font
name P is reserved to mean the previous font.

Font position. This is a statement that a font named F is
mounted on position N 0-4). It is a fatal error if F is
not known. The phototypesetter has four fonts physically
mounted. Each font consists of a film strip which can be
mounted on a numbered quadrant of a wheel. The
default mounting sequence assumed by TROFF is R, I, B,
and S on positions 1, 2, 3 and 4.

Top and bottom margins are not automatically provided; it is conventional to define two macros and to
set traps for them at vertical positions 0 (top) and -N (N from the bottom). See §7 and Tutorial
Examples §T2. A pseudo-page transition onto the first page occurs either when the first break occurs or
when the first non-diverted text processing occurs. Arrangements for a trap to occur at the top of the
first page must be completed before this transition. In the following, references to the current diversion
(§7.4) mean that the mechanism being described works during both ordinary and diverted output (the
former considered as the top diversion level).

The useable page width on the Graphic Systems' phototypesetter is about 7.54 inches, beginning about
1/27 inch from the left edge of the 8 inch wide, continuous roll paper. The physical limitations on
NROFF output are output-device dependent.

Request Initial 1/ No
Form Value Argument Notes Explanation

.pl ±N 11 in 11 in

.bp ±N

.pn ±N N-l ignored

.po ±N 0; 26/27 int previous

.ne N .Mal V

v

B*,v

v

D,v

Page length set to ± N. The internal limitation is about
75 inches in TROFF and about 136 inches in NROFF,
The current page length is available in the .p register,

Begin page. The current page is ejected and a new page
is begun. If ± N is given, the new page number will be
± N. Also see request ns.

Page number. The next page (when it occurs) will have
the page number ± N. A po must occur before the ini­
tial pseudo-page transition to effect the page number 01

the first page. The current page number is in the %
register.

Page offset. The current left margin is set to ::!: N. The
TROFF initial value provides about 1 inch of paper mar­
gin including the physical typesetter margin of 1/27 inch.
In TROFF the maximum (line-length) + (page-offset) is
about 7.54 inches. See §6. The current page offset is
available in the .0 register.

Need N vertical space. If the distance, D, to the next
trap position (see §7.5) is less than N, a forward vertical
space of size D occurs, which will spring the trap. If
there are no remaining traps on the page, D is the

*The use of" •• as control character (instead of ".") suppresses the break function,

tValues separated by";" are for NROFF and TROFF respectively,

12-11

N",OFFITROFF User's Manual
October 11, 1976

.... kR none internal

.n ±N none internal

D

D,v

distance to the bottom of the page. If D < V, another
line could still be output and spring the trap. In a diver­
sion, D is the distance to the diversion trap, if any, or is
very large .

:\fark the current vertical place in an internal register
(both associated with the current diversion level), or in
register R, if given. See rt request.

Return upward only to a marked vertical place in the
current diversion. If ± N (w.r. t. current place) is given,
the place is ± N from the top of the page or diversion or,
if N is absent, to a place marked by a previous mk. Note
that the sp request (§5.3) may be used in all cases
instead of rt by spacing to the absolute place stored in a
explicit register; e. g. using the sequence .mk R ...
. sp l\oRu.

4. Text Filling, Adjusting, and Centerine

4.1. Filling and adjusting. Normally, words are collected from input text lines and assembled into a out­
pqt text line until some word doesn't fit. An attempt is then made the hyphenate the word in effort to
assemble a part of it into the output line. The spaces between the words on the output line are then
increased to spread out the line to the current line length minus any current indent. A word is any string
of characters delimited by the space character or the beginning/end')f the input line. Any adjacent pair
of words that must be kept together (neither split across output lines nor spread apart in the adjustment
process) can be tied together by separating them with the unpaddable space character"\ " (backslash­
space). The adjusted word spacings are uniform in TROFF and the minimum interword spacing can be
controlled with the ss request (§2). In NROFF. they are normally nonuniform because of quantization
to character-size spaces; however, the command line option -e causes uniform spacing with full output
device resolution. Filling, adjustment, and hyphenation (§13) can all be prevented or controlled. The
tl!)(t length on the last line output is available in the .n register, ano text base-line position on the page
for this line is in the 01 register. The text base-line high-water mark (lowest place) on the current page
is in the .h register.

An input text line ending with., ?, or ! is taken to be the end of a sentence, and an additional space
character is automatically provided during filling. Multiple inter-word space characters found in the
ifltl\,lt are retained, except for trailing spaces; initial spaces also cause a break.

When filling is ifl effect, a \p may be imbedded or attached to a word to cause a break at the end of the
vtor(J l\I\Q have the resulting output line spread out to fill the current line length.

A 'txt input line that happens to begin with a control character can be made to not look like a control
line by prefacing it with the non-printing, zero-width filler character \&. Still another way is to specify
output translation of some convenient character into the control character using tr (§10.5).

4.~. Interrupted text. The copying of a input line in IfOfill (non-fil\) mode can be interrupted by terminat­
ing the panial line with a \e. The next encountered input text line will be considered to be a continua­
tion of the same line of input text. Similarly,:1 word within filled text may be interrupted by terminat­
ing the word. (and line) with \c; the next encountered text will be taken as a continuation of the inter­
rupt~ word. If the interv.ening control lines cause a break, any partial line will be forced out along
with. any partict1 word.

RtI4M-' 11l.i.lkd
For", Y"'e
.br

UNo
Argument NMes· Expiflnotion

B Break. The filling of the line currently being collected is
stopped and the line is output without adjustment. Text
lines beginning with space characters and empty text
lines (blank lines) also cause a break.

12-12

/"' ~~ ..

'\

NROFF/TROFF User's Manual
October 11, 1976

.n fill on B,E

.nf fill on B,E

.ad c adj,both adjust E

.na adjust E

.ce N off B,E

S. Vertical Spacing

Fill subsequent output lines. The register .u is 1 in fill
mode and 0 in nofill mode.

Nofill. Subsequent output lines are neither filled nor
adjusted. Input text lines are copied directly to output
lines without regard for the current line length.

Line adjustment is begun. If fill mode is not on, adjust­
ment will be deferred until fill mode is back on. If the
type indicator c is present, the adjustment type is
changed as shown in the following table.

Indicator Adjust Type
1 adjust left margin only
r adjust right margin only
c center

b or n adjust both margins
absent unchanged

Noadjust. Adjustment is turned off; the right margin will
be ragged. The adjustment type for ad is not changed.
Output line filling still occurs if fill mode is on.

Center the next N input text lines within the current
Woe-length minus indent). If N-O, any residual count
is cleared. A break occurs after each of the N input
lines. If the input line is too long, it will be left adjusted.

5.1. Base-line spacing. The vertical spacing (V) between the base-lines of successive output lines can be
set using the vs request with a resolution of 1/144inch-l/2 point in TROFF, and to the output device
resolution in NROFF. V must be large enough to accommodate the character sizes on the affected out­
put lines. For the common type sizes (9-12 points), usual typesetting practice is to set V to 2 points
greater than the point size; TROFF default is 10-point type on a 12-point spacing (as in this document).
The current V is available in the .v register. Multiple- V line separation (e. g. double spacing) may be
requested with Is.

5.2. Extra line-space. If a word contains a vertically tall construct requiring the output line containing it
to have extra vertical space before and/or after it, the extra-line-space function \x' N' can be imbedded
in or attached to that word. In this and other functions having a pair of delimiters around their parame­
ter (here'), the delimiter choice is arbitrary, except that it can't look like the continuation of a number
expression for N. If N is negative, the output line containing the word will be preceded by N extra
vertical space; if N is positive, the output line containing the word will be followed by N extra vertical
space. If successive requests for extra space apply to the same line, the maximum values are used.
The most recently utilized post-line extra line-space is available in the .a register.

5.3. Blocks 0/ vertical space. A block of vertical space is ordinarily requested using sp, which honors the
no-space mode and which does not space past a trap. A contiguous block of vertical space may be
reserved using sv.

Request
Form

.vsN

.Is N

Initial
Yalue

1/6in;12pts

II No
Argument

previous

previous

Notes Explanation

E,p Set vertical base-line spacing size V. Transient extra
vertical space available with \x' N' (see above).

E Line spacing set to ± N. N-l Vs (blank lines) are
appended to each output text line. Appended blank lines
are omitted, if the text or previous appended blank line

NROFF/TROFF User's Manual
October 11, 1976

.sp N N-IV

.SV N N-l V

.os

.ns space

.rs space

Blank text line.

6. Line Length and Indenting

B,v

v

o

o
B

reached a trap position.

Space vertically in either direction. If N is negative, the
motion is backward (upward) and is limited to the dis­
tance to the top of the page. Forward (downward)
motion is truncated to the distance to the nearest trap. If
the no-space mode is on, no spacing occurs (see ns, and
rs below).

Save a contiguous vertical block of size N. If the dis­
tance to the next trap is greater than N, N vertical space
is output. No-space mode has no effect. If this distance
is less than N, no vertical space is immediately output.
but N is remembered for later output (see os). Subse­
quent Sl' requests will overwrite any still remembered N.

Output saved vertical space. No-space mode has no
effect. Used to finally output a block of vertical space
requested by an earlier sv request.

No-space mode turned on. When on. the no-space mode
inhibits sp requests and bp requests without a next page
number. The no-space mode is turned off when a line of
output occurs, or with rs.

Restore spacing. The no-space mode is turned off.

Causes a break and output of a blank line exactly like
sp 1.

The maximum line length for fill mode may be set with 11. The indent may be set with in; an indent
applicable to only the next output line may be set with ti. The line length includes indent space but not
page offset space. The line-length minus the indent is the basis for centering with ceo The effect of n.
in, or ti is delayed, if a partially collected line exists, until after that line is output. In fill mode the
length of text on an output line is less than or equal to the line length minus the indent. The current
line length and indent are available in registers .1 and .1 respectively. The length of three-part titles pro­
duced by tl (see §14) is independently set by It.

Ret[Ilest Initial UNo
Form Value ArrumeIU Notes Explanation

.n ± N 6.5 in previous

.in ±N N-O previous

.tt ±N ignored

E,m Line length is set to ± N. In TROFF the maximum
(tine-length) + (page-offsel) is about 7.54 inches.

B,E,m Indent is set to ± N. The indent is prepended to each
output line.

B,E,m Temporary indent. The next output text line will be
indented a distance ± N with respect to the current
indent. The resulting total indent may not be negative.
The current indent is not changed.

7. Macros, Strinls,Diversion. and Position Traps

7.1. Macros and strings. A macro is a named set of arbitrary lines that may be invoked by name or with
a trap. A string is a named string of characters, not including a newline character, that may be interpo­
lated by name at any point. Request, macro, and string names share the same name list. Macro and
string names may be one or two characters long and may usurp previously defined request, macro, or
string names. Any of these entities may be renamed with rn or removed with rm. Macros are created
by de and dl, and appended to by am and da; dl and da cause normal output to be stored in a macro.
Strings ate created by ds and appended to by as. A macro is invoked in the same way as a request; a

12-14

E

(

NROFF/TROFF User's Manual
October 11, 1976

control line beginning .xx will interpolate the contents of macro xx. The remainder of the line may
contain up to nine arguments. The strings x and xx are interpolated at any desired point with \-x and
\-(xx respectively. String references and macro invocations may be nested.

7.2. Copy mode input interpretation. During the definition and extension of strings and macros (not by
diversion) the input is read in copy mode. The input is copied without interpretation except that:

• The contents of number registers indicated by \0 are interpolated.
- Strings indicated by \- are interpolated.
• Arguments indicated by \$ are interpolated.
• Concealed new lines indicated by \ (newline) are eliminated.
• Comments indicated by \" are eliminated.
• \t and \a are interpreted as ASCII horizontal tab and SOH respectively (§9).
• \\ is interpreted as \.
• \. is interpreted as ".".

These interpretations can be suppressed by prepending a \. For example, since \ \ maps into a \, \ \n
will copy as \n which will be interpreted as a number register indicator when the macro or string is
reread.

7.3. Arguments. When a macro is invoked by name, the remainder of the line is taken to contain up to
nine arguments. The argument separator is the space character, and arguments may be surrounded by
double-quotes to permit imbedded space characters. Pairs of double-quotes may be imbedded in
double-quoted arguments to represent a single double-quote. If the desired arguments won't fit on a
line, a concealed newline may be used to continue on the next line.

When a macro is invoked the input level is pushed down and any arguments available at the previous
level become unavailable until the macro is completely read and the previous level is restored. A
macro's own arguments can be interpolated at any point within the macro with \$N, which interpolates
the Nth argument (I ~ N ~ 9). If an invoked argument doesn't exist, a null string results. For exam­
ple, the macro xx may be defined by

.de xx \ "begin definition
Today Is \\$1 the \\$2.

\ "end definition

and called by

.xx Monday 14th

to produce the text

Today is Monday the 14th.

Note that the \$ was concealed in the definition with a prepended \. The number of currently available
arguments is in the .$ register.

No arguments are available at the top (non-macro) level in this implementation. Because string
referencing is implemented as a input-level push down, no arguments are available from within a string.
No arguments are available within a trap-invoked macro.

Arguments are copied in copy mode onto a stack where they are available for reference. The mechan­
ism does not allow an argument to contain a direct reference to a long string (interpolated at copy time)
and it is advisable to conceal string references (with an extra \) to delay interpolation until argument
reference time.

7.4. Diversions. Processed output may be diverted into a macro for purposes such as footnote processing
(see Tutorial §T5) or determining the horizontal and vertical size of some text for conditional changing
of pages or columns. A single diversion trap may be set at a specified vertical position. The number
registers dn and dl respectively contain the vertical and horizontal size of the most recently ended
diversion. Processed text that is diverted into a macro retains the vertical size of each of its lines when
reread in l10fill mode regardless of the current V. Constant-spaced (cs) or emboldened (bd) text that is
diverted can be reread correctly only if these modes are again or still in effect at reread time. One way

NROFF/TROFF Manual
11, 1

to do this is to imbed in the diversion cs or bd requests with the
in §lO.6.

may be nested and certain
level top non-diversion level may be
sion trap and associated macro,
current vertical ('d
divl!rsion name ('z register).

7.5.

trap. a page trap
whose vertical size reaches or sweeps /Wst the trap

trap, if any, there is a next page.
able in the .f if there are rIO

returned is the distance to the page bottom.

Request

. am xxyy

,ds xx

.rm ,X.:'<

.mxxyy

.til xx

Initial
Value

in the current diversion may
if there is no
see it below.

.yy s:M ...

end D

a

Remove

space is

output to

occurs diversion
done. The diversion
encountered withom
of this type should

used.

2 6

!11echanism

are the diver­
, the (

(

NROFF/TROFF User's Manual
October 11, 1

end

.wh N xx

. cn xx N

Nxx off

.it N xx off

.em L,(none none

8. Number Registers

D

v

D,v

E

appending to xx (append version of di) .

Install a to invoke xx at page position N; a negative N
will be interpreted with to the page bottom. Any
macro previously planted at N is replaced by xx A zero
N to the of a page. In the absence of xx, the

trap at N, if any, is removed .

Change the trap
absence of N, the

macro .lCX to be N. In the
if any, is removed.

Install a diversion trap at position N in the current diver­
sion to invoke macro xx. Another dt will redefine the
diversion If no arguments are given, the diversion
trap is removed.

Set an input-line-count trap to invoke the macro xx after
N lines of text input have been read (control or request
lines don't count). text may be in-line text or text

,,",v,.,,,,,''''' by inline or macros.

The macro xx will be invoked when all input has ended.
The is the same as if the contents of xx had been
at the end of the last processed.

A variety parameters are avaiiable to the user as named number (see Summary
and Index, page 7). In addition, the user may define his own named Register names are one
or two characters long and do not conflict with request, macro, or names. Except for certain

registers, a number can be written., incremented or
and interpolated into the input in a of One common use of user-defined

to automatically number sections, paragraphs, etc. A number register may be used
any time numerical input is or desired and may be used in numerical expressions (§1.4),

Number registers are created and modified using Ill', which the name, numerical value, and
the auto-increment size. Registers are also modified, if accessed with an auto-incrementing sequence.
If the registers x and xx both contain N and have the auto-increment size M, the following access
sequences have the effect shown:

Request
Form

Initial

.. nrR±N.M

a number

none
x incremented J"J
x decremented by
xx incremented by
xx decremented

lower .. case
by d.

N+M
N-J"I

, decimal with leading zeros,
alphabetic, or upper-case sequential alpha-

number register R is value ± with
The increment for

NROFF/TROFF User's Manual
October 11. 1976

.af R c arabic

.rr R ignored

9. Tabs, Leaders, and Fields

Assign format c to register R. The available formats are:

Numbering
Format Sequence

1 0.1.2,3.4,5, ...
001 000.001,002,003,004,005, ...

i O.i.ii,iii,iv, v, ...
I O,I.II ,m,IV, V, ...
a O,a,b,c, ... ,z,aa,ab, ... ,zz.aaa, ...
A O,A.B,C •...• Z,AA,AB, ...• ZZ.AAA, ...

An arabic format having N digits specifies a field width of (
N digits (example 2 above). The read-only registers and
the width function (§ 11.2) are always arabic.

Remove register R. If many registers are being created
dynamically. it may become necessary to remove no
longer used registers to recapture internal storage space
for newer registers.

9.1. Tabs and leaders. The ASCII horizontal tab character and the ASCII SOH (hereafter known as the
leader character) can both be used to generate either horizontal motion or a string of repeated charac­
ters. The length of the generated entity is governed by internal tab stops specifiable with tao The
default difference is that tabs generate motion and leaders generate a string of periods; te and Ie offer
the choice of repeated character or motion. There are three types of internal tab stops-left adjusting,
right adjusting, and centering. In the following table: D is the distance from the current position on the
input line (where a tab or leader was found) to the next tab stop; next-string consists of the input charac­
ters following the tab (or leader) up to the next tab (or leader) or end of line; and W is the width of
next-string.

Tab Length of motion or Location of
type repeated characters next-string

Left D Following D
Right D-W Right adjusted within D

Centered D-W/2 Centered on right end of D

The length of generated motion is allowed to be negative, but that of a repeated character string cannot
be. Repeated character strings contain an integer number of characters, and any residual distance is
prepended as motion. Tabs or leaders found after the last tab stop are ignored, but may be used as
next-string terminators.

Tabs and leaders are not interpreted in copy mode. \t and \a always generate a non-interpreted tab and
leader respectively. and are equivalent to actual tabs and leaders in copy mode.

9.2. Fields. A field is contained between a pair of field delimiter characters. and consists of sub-strings
separated by padding indicator characters. The field length is the distance on the input line from the
position where the field begins to the next tab stop. The difference between the total length of all the
sub-strings and the field length is incorporated as horizontal padding space that is divided among the
indicated padding places. The incorporated padding is allowed to be negative. For example, if the field
delimiter is # and the padding indicator is A. #"'x:x£ right # specifies a right-adjusted string with the
string x:xx centered in the remaining space.

12-18

NROFF/TROFF User's Manual
October 11, 1976

Request
Form

.ta Nt ...

.te c

Iltltlal
Value

0.8; O.Sin

none

If No
Argumeltt Notes Explaltatlolt

none E,m Set tab stops and types. I-R, right adjusting; I-C,
centering; t absent, left adjusting. TROFF tab stops are
preset every O.Sin.; NROFF every O.Sin. The stop values
are separated by spaces, and a value preceded by + is
treated as an increment to the previous stop value.

none E The tab repetition character becomes c, or is removed
specifying motion .

.Ie c none E The leader repetition character becomes c, or is removed
specifying motion .

. fe a b off off The field delimiter is set to a, the padding indicator is set
to the space character or to b, if given. In the absence of
arguments the field mechanism is turned off.

10. Input and Output Conventions and Character Translations

10.1. Input character translations. Ways of inputting the graphic character set were discussed in §2.1.
The ASCII control characters horizontal tab (§9.D, SOH (§9.D, and backspace (§10.3) are discussed
elsewhere. The newline delimits input lines. In addition, STX, ETX, ENQ, ACK, and BEL are accepted,
and may be used as delimiters or translated into a graphic with tr (§10.S). All others are ignored.

The escape character \ introduces escape sequences-causes the following character to mean another
character, or to indicate some function. A complete list of such sequences is given in the Summary
and Index on page 6. \ should not be confused with the ASCII control character ESC of the same name.
The escape character \ can be input with the sequence \ \. The escape character can be changed with
ee, and all that has been said about the default \ becomes true for the new escape character. \e can be
used to print whatever the current escape character is. If necessary or convenient, the escape mechan­
ism may be turned off with eo, and restored with ee.

Request Initial If No
Form Value Argument Notes Explaltatlolt

.ec c \

.eo on

\ Set escape~character to \, or to c, if given.

Turn escape mechanism off.

10.2. Ligatures. Five ligatures are available in the current TROFF character set - fl, fl, fI, fft, and ftI.
They may be input (even in NROFF) by \(fi, \(fl, \(ff, \(Fi, and \(FI respectively. The ligature mode
is normally on in TROFF, and automatically invokes ligatures during input.

Request Iltitial If No
Form Value Argumeltt Notes Explallation

.Ig N off; on on Ligature mode is turned on if N is absent or non-zero,
and turned off if N-O. If N-2, only the two-character
ligatures are automatically invoked. Ligature mode is
inhibited for request, macro, string, register, or file
names, and in copy mode. No effect in NROFF.

10.3. Backspacing, underlining, overstriking, etc. Unless in copy mode, the ASCII backspace character is
replaced by a backward horizontal motion having the width of the space character. Underlining as a
form of line-drawing is discussed in §12.4. A generalized overstriking function is described in §12.1.

NROFF automatically underlines characters in the underline font, specifiable with uf, normally that on
font position 2 (normally Times Italic, see §2.2). In addition to It and \f F, the underline font may be
selected by ul and cu. Underlining is restricted to an output-device-dependent subset of reasonable
characters.

12-19

NROFF/TROFF User's Manual
October 11, 1976

Request
Fo,.",

.ul N

/nitial
Value

off

UNo
Argument

N-I

Notes Explanation

E Underline in NROFF (italicize in TROFF) the next N
input text lines. Actually, switch to underline font, saving (
the current font for later restoration; other font changes
within the span of a ul will take effect, but the restora-

.cu N off N-1

.uf F Italic Italic

E

tion will undo the last change. Output generated by tl
(§14) is affected by the font change, but does not decre-
ment N. If N> I, there is the risk that a trap interpo-
lated macro may provide text lines within the span;
environment switching can prevent this.

A variant of ul that causes every character to be under­
lined in NROFF. Identical to ul in TROFF.

Underline font set to F. In NROFF, F may not be on
position 1 (initially Times Roman).

10.4. Control characters. Both the control character . and the no-break control character ' may be
changed, if desired. Such a change must be compatible with the design of any macros used in the span
of the change, and particularly of any trap-invoked macros.

Request /nitlal UNo
Form Value Argument Note, Explanation

.cc c E The basic control character is set to c, or reset to ". n.

.c2 c E The nobreak control character is set to c, or reset to .0".

10.5. Output translation. One character can be made a stand-in for another character using tr. All text
processing (e. g. character comparisons) takes place with the input (stand-in) character which appears to
have the width of the final character. The graphic translation occurs at the moment of output (includ­
ing diversion).

Request Initial
Form Value

UNo
Argument Notes Explanation

.tr abcd.... none 0 Translate a into b, c into d, etc. If an odd number of
characters is given, the last one will be mapped into the
space character. To be consistent, a particular translation
must stay in effect from input to output time.

10.6. Transparent throughput. An input line beginning with a \! is read in copy mode and transparently
output (without the initial \!)~ the text processor is otherwise unaware of the line's presence. This
mechanism may be used to pass control information to a post-processor or to imbed control lines in a
macro created by a diversion.

10.7. Comments and concealed newlines. An uncomfortably long input line that must stay one line (e. g.
a string definition. or nofilled text) can be split into many physical lines by ending all but the last one
with the escape \. The sequence \(newline) is always ignored-except in a comment. Comments may
be imbedded at the end of any line by prefacing them with \.. The newline at the end of a comment
cannot be concealed. A line beginning with \- will appear as a blank line and behave like .sp 1; a com­
ment can be on a line by itself by beginning the line with .\-.

11. Local Horiz .. tal and Vertical Motions, and the Width Function

1 J. J. Local Motions. The functions \ v' N' and \h 0 N' can be used for local vertical and horizontal motion
respectively. The distance N may be negative; the positive directions are rightward and downward. A
local motion is one contained within a line. To avoid unexpected vertical dislocations, it is necessary
that the net vertical local motion within a word in filled text and otherwise within a line balance to zero.
The above and certain other escape sequences providing local motion are summarized in the following
table.

12-20

(

:."

NROFF/TROFF User's Manual
October 11, 1976

Vertical Effect in
Local Motion TROFF NROFF

\v'N' Move distance N

\u 112 em up 112 line up
\d V2 em down 112 line down
\r 1 em up 1 line up

Horizontal Effect in
Local Motion TROFF NROFF

\b'N' Move distance N
\ (space) Unpaddable space-size space
\0 Digit-size space

\1 1/6 em space ignored
\A 1/12 em space ignored

As an example, E2 could be generated by the sequence E\s-2\v'-0.4m'2\v'O.4m'\s+2; it should be
noted in this example that the 0.4 em vertical motions are at the smaller size.

11.2. Width Function. The width function \ w' string' generates the numerical width of string (in basic
units). Size and font changes may be safely imbedded in string, and will not affect the current environ­
ment. For example, .ti - \w'1. 'u could be used to temporarily indent leftward a distance equal to the
size of the string "1. ".

The width function also sets three number registers. The registers st and sb are set respectively to the
highest and lowest extent of string relative to the baseline; then, for example, the total height of the
string is \n(stu-\n(sbu. In TROFF the number register ct is set to a value between 0 and 3: 0 means
that all of the characters in string were short lower case characters without descenders (like e); 1 means
that at least one character has a descender Oike y); 2 means that at least one character is tall (like H);
and 3 means that both tall characters and characters with descenders are present.

11.3. Mark horizontal place. The escape sequence \kx will cause the current horizontal position in the
input line to be stored in register x. As an example, the construction \kxword\h'l\nxu +2u' word will
embolden word by backing up to almost its beginning and overprinting it, resulting in word.

12. Overstrike, Bracket, Llne-drawlnK. and Zero-width Functions

12.1.0verstriking. Automatically centered overstriking of up to nine characters is provided by the over­
strike function \0' string'. The characters in string overprinted with centers aligned; the total width is
that of the widest character. string should not contain local vertical motion. As examples, \o'e\" pro­
duces e, and \0'\ (mo\ (sl' produces t.
12.2. ZerO-Width characters. The function \zc will output c without spacing over it, and can be used to
produce left-aligned overstruck combinations. As examples, \z\ (ci\ (pi will produce $, and
\ (br\z\ (rn \ (ul\ (br will produce the smallest possible constructed box O.
12.3. Large Brackets. The Special Mathematical Font contains a number of bracket construction pieces
(r II J { ~ It J r 1) that can be combined into various bracket styles. The function \b'string' may be used
to pile up vertically the characters in string (the first character on top and the last at the bottom); the
characters are vertically separated by 1 em and the total pile is centered 1/2 em above the current base-

line (112 line in NROFF). For example, \b'\Oc\Of'E\I\b'\(rc\(rf'\x' -O.5m'\x'O.5m' produces [E).

1204. Line drawing. The function \ I' Nc' will draw a string of repeated c's towards the right for a dis­
tance N. (\1 is \ (lower case L). If c looks like a continuation of an expression for N, it may insulated
from N with a \&. If c is not specified, the _ (baseline rule) is used (underline character in NROFF). If
N is negative, a backward horizontal motion of size N is made be/ore drawing the string. Any space
resulting from N / (size of c) having a remainder is put at the beginning (left end) of the string. In the
case of characters that are designed to be connected such as baseline-rule _, underrule _, and root­
en -, the remainder space is covered by over-lapping. If N is less than the width of c, a single c is cen­
tered on a distance N. As an example, a macro to .underscore a string can be written

.de us
\\$l\I'IO\(ul'

12-21

NROFF/TROFF User's Manual
October 11, 1976

or one to draw a box around a string

.de bx
\(br\I\\SI\I\(br\ l'IO\(m'\ 1'10\ (ur

such that

.ul "underllned words"

and

.bx "words in a box"

yield underlined words and Iwords in a box L

The function \L' Nc' will draw a vertical line consisting of the (optional) character c stacked vertically
apart 1 em (I line in NROFF), with the first two characters overlapped, if necessary, to form a continu- (
ous line. The default character is the box rule I (\ (br); the other suitable character is the bold vertical I
(\ (bv). The line is begun without any initial motion relative to the current base line. A positive N
specifies a line drawn downward and a negative N specifies a line drawn upward. After the line is drawn
no compensating motions are made; the instantaneous baseline is at the end of the line.

The horizontal and vertical line drawing functions may be used in combination to produce large boxes.
The zero-width box-rule and the 'h-em wide underruJe were designed to form corners when using l-em
vertical spacings. For example the macro

.de eb

.sp -1 \"compensate for next automatic base-line spacing

.nf \ "avoid possibly overflow Inc word buffer
\h' -.5n'\L'I\ \nlu-1'\1'\ \n<.tu+ln\(ur\L' -1\\n8u+l'\rlou-.5n\(ul' \ "draw box
.fi

will draw a box around some text whose beginning vertical place was saved in number register a (e. g.
usin2 .mk I) as done for this oaragraoh.

13. Hyphenation.

The automatic hyphenation may be 5wi;f.d1ed off and on. When switched on with by, several variants
may be set. A hyphenation indicator character may be imbedded in a word to specify desired hyphena­
tionpoims, or may be prepended to suppress hyphenation. In addition, the user may specify a small
exception word list.

Only words that consist of a central alphabetic string surrounded by (usually null) non-alphabetic
strings are considered candidates for automatic hyphenation. Words that were input containing hyphens
(minus), em-dashes (\(em) , or hyphenation indicator characters-such as mother-in-law-are a/ways
subject to splitting after those characters, whether or not automatic hyphenation is on or off.

Request Initial UNo
Form Value Argument Notes Explanation

.nh

.hyN

hyphenate

on,N-l

.he c \%

.hw word1 ...

on,N-l

\%

ignored

E

E

E

Automatic hyphenation is turned off.

Automatic hyphenation is turned on for N ~ 1, or off for
N - O. If N - 2, last lines (ones that will cause a trap)
are not hyphenated. For N - 4 and 8, the last and first
two characters respectively of a word are not split off.
These values are additive; i. e. N-14 will invoke all
three restrictions.

Hyphenation indicator character is set to c or to the
default \%. The indicator does not appear in the output.

Specify hyphenation points in words with imbedded
minus signs. Versions of a word with terminal s are

12-22

NROFF/TROFF User's Manual
October 11, 1976

14. Three TUles.

implied; L e. dig-its. This list is exam-
ined initially and suffix stripping. The space
available is -about 128 characters.

The function tl provides for automatic placement three fields at the left, center, and right of a
line with a title-length specifiable with It. H may used anywhere, and is of the normal
text collecting process. A common use is in header and footer macros.

Request Initial No
Form Value Argument

.tl 'left' center' right'

.pc c %

.It ±N 6.5 in previous

Line Numbering.

Notes Explanation

E,m

The left, center, and right are respectively !eft­
adjusted, centered, and in the current
title··!ength. Any of the
lapping is permitted. If the

%) is found within any the fields it is replaced by
the current page number having the format to

%. character may be used as the string del-
imiter.

The page number character is set to c, or removed. The
page-number register remains %.

Length of title set to ± N. iine-length and the title­
length are independent. Indents do not apply to titles;
page-offsets do.

Automatic sequence numbering of output lines may be requested with urn. When in effect, a
three-digit, arabic number plus a digit-space is prepended to output text lines. The text lines are

3 thus offset by four digit-spaces, and otherwise retain their line length; a reduction in line length
may be desired to keep the right margin with an earlier margin. Blank lines, other vertical
spaces, and lines by tl are not numbered. Numbering can be temporarily suspended with

6 Ini, or with an ,nm followed by a later .nm +0. In a line number indent I, and the
number-text separation S may be specified in digit-spaces. Further, it can be specified that only
those line numbers that are mUltiples of some number AI are to be printed others will appear

9 as blank number fields).

Form
Initial
Value

JjNo
.Argument Notes

.om ±N M S 1 E Line num bel' mode. If ± N is line numbering i~

.rm N N=l

turned on, and the next output line numbered is num-
bered ±N. values are M-I, S-1, and 1=0.
Parameters to arguments are

a non-numeric argument is considered miss­
ing. In the absence of all arguments, numbering is
turned the next line number is preserved for possible
further use in number register In.

The next N text output lines are not numbered.

As an the paragraph portions this section are numbered with iil!- 3: .nm 1 3 was
placed at the beginning; ,om was placed at the end the paragraph; and ,urn +0 was placed

12 this paragraph; and .Dm finally at the end. Line were also changed (by
to the right side aligned. Another example is .nm + 5 5 x 3 which turns on

with the line number of the next line to be 5 greater than the last numbered line, with
15 M= 5, with spacing S and with the indent I set to 3.

12-23

NROFF/TROFF User's Manual
October 11, 1976

16. Conditional Acceptance of Input

In the following, c is a one-character ~ built-in condition name, ! signifies not, N is a numerical expres­
sion, slring1 and string) are strings delimited by any non-blank, non-numeric character not in the
strings, and anything represents what is conditionally accepted.

Request Initial if N'fJ (
Form Value Argument NflttBs ExpiaMtion.

.if c anything

. if !c anything

. if N anything

• if ! N anything

.if • stringi' string)' anything

. if ! 'string1' string2' anything

. ie c anything

• el anything

The built-in condition names are:

Condition
Name

0

e
t
n

If condition c true, accept anything as input; in multi-linc~
case use \{anything\}.

If condition c false, accept anything .

If expression N ::> 0, ~cept anything .

If expression N ~ 0, accept anything .

If slring1 identical to SIl'ing), accept anything.

If string] not identical to string2, accept anything .

If portion of if-else; all above forms (like if) .

Else portion of if-else .

True If
Current page number is odd
Current page number is even
Formatter is TROFF
Formatter is NROFF

If the condition c is true, or if the number N is greater than zero, or if the strings compare identical1y
(including motions and character size and font), anything is accepted as input. If a ! precedes the coJl4i­
tion, number, or string comparison, the senfie of the acceptance is reversed.

Any spaces between the condition and the beginning of anything are skipped over. The anything can be
elther a single input line (text, macro, or wbatever> or a number of input lines. In the multi-line case,
tne first line must begin with a left delimiter \{ and the last line must end with a right delimiter \}. .

The request Ie (if-else) is taemicai to if except that tbe acceptance state is remembered. A subsequent
and matching eI (eJse) request d:len Ii&eS the reverse sense of that state. ie - el pajrs may be nested.

Some eltampies are:

.if e .tt • Even Page 0/0-

which outputs a title if the page number is even; and

.ie \n% > t \{\
'sp e.Si
.tl' Page 0/0'"
'sp 11..ld \}
,ei .sp·jl.5i

whichtrcats .page 1 differently from other pages.

17. Environment Switching.

A number of the parameters that control the text prooessing are gathered together into an environment,
whiCh can be switched by the user. The environment parameters are those associated with requests
noting E in their Notes column; in addition, partially collected lines and words are in the environment.
:Bve'rything else ;isglobal; examples are page-oriented parameters, diversion-oriented parameters,

12-24

NROFF/TROFF User's Manual
October 11, 1976

number registers, and macro and string definitions. All environments are initialized with default

Form

.ev N

values.

Initial

N-O

I/No
Argument Nete... Explcmation

previous Environment switched to environment 0 ~ N~ 2. Switch­
ing is done in push-down fashion so that restoring a pre­
vious environment must be done with .ev rather than
specific reference.

18. Insertions from the Standard Input

The input can be temporarily switched to the system standard input with rd, which will switch back
when two newlines in a row are found (the extra blank line is not used). This mechanism is intended
for insertions in form-letter-like documentation. On UNIX, the standard input can be the user's key-

a pipe, or a fiie.

Request

.rd prompt

.ex

Initial
Value

l/No
Notes Explanation

prompt-BEL- Read insertion from the standard until two new­
lines in a row are found. If the standard input is the
user's keyboard, prompt (or a BEL) is written onto the
user's terminal. td behaves like a macro, and arguments
may be placed after prompt.

Exit from NROFF/TROFF. Text is terminated
exactly as if all had ended.

If are to be taken the terminal keyboard while output is being printed on the terminal,
the command line -q will turn off the of and prompt with BEL.
The input and insertion input cannot simultaneously come from the standard input.

As an example, multiple copies of a form letter may be prepared by entering the insertions for all the
in one file to be used as the standard input, and causing the file containing the letter to reinvoke

using nx (§19); the process would ultimately be ended by an ex in the insertion file.

19. Input/Output File

. ill::

program

.mc eN

Initial
Value

initial
Value

Notes

I/No
Notes

off

Switch source The top input (file reading) level is
switched to filename. The of an so encountered in
a macro is not felt until the input level returns to the file
level. the new file ends, is again taken from
the file. may be nested.

Next is filename. The current file is considered
and the is switched to filename.

output to program only). This request
must occur before any printing occurs. No arguments are
transmitted to program.

Specifies that a margin character c appear a distance N to
of the right margin after each non-empty text

to. If the output line is
can mode} the character will

1?-25

NROFF/TROFF User's Manual
October 11, 1976

.t .. string newline

.I, yy .Y,)I-••

.pm t all

.n

21. Output and Error Messages.

B

be appended to the line. If N is not given, the previous
N is used; the initial N is 0.2 inches in NROFF and 1 em
in TROFF. The margin character used with this para­
graph was a 12-point box-rule.

After skipping initial blanks, string (rest of the line) is
read in copy mode and written on the user's terminal.

Ignore input lines. II behaves exactly like de (§7) except
that the input is discarded. The input is read in copy
mode, and any auto-incremented registers will be
affected.

Print macros. The names and sizes of all of the defined
macros and strings are printed on the user's terminal; if t
is given, only the total of the sizes is printed. The sizes
is given in blocks of 128 characters.

Flush output buffer. Used in interactive debugging to
force output.

The output from tm, pm, and the prompt from rd, as well as various error messages are written onto
UNIX's standard message output. The latter is different from the standard output, where NROFF format­
ted output goes. By default, both are written onto the user's terminal, but they can be independently
redirected.

Various error conditions may occur during the operation of NROFF and TROFF. Certain less serious
errors having only local impact do not cause processing to terminate. Two examples are word overflow,
caused by a word that is too large to fit into the word buffer (in fill mode), and line overflow, caused by
an output line that grew too large to fit in the line buffer; in both cases, a message is printed, the
offending excess is discarded, and the affected word or line is marked at the point of truncation with a •
in NROFF and a'" in TROFF. The philosophy is to continue processing, if possible, on the grounds
that output useful for debugging may be produced .. If a serious error occurs, processing terminates, and
an appropriate message is printed. Examples are the inability to create, read, or write files, and the
exceeding of certain internal limits that make future output unlikely to be useful.

12-26

(

(

Manua!

11,

NROFF and TROFF have design a
syntax earlier text processors"
with the their use, it is almost

necessary to prepare at least a smali set of
to describe most documents.

as page margins
not built into

Instead, the macro and
diversion,
trap, and
the basis

to be discussed are intended to be
somewhat realistic, but won't neces­

cover all relevant contingencies. Explicit
numerical parameters are used in the examples to
make them easier to read and to illustrate typical
values. many cases, number registers would

be used to reduce the number of places
where numerical is kept, and to con-
centrate conditional parameter initialization
that which on whether TROFF or NROFF
is used.

T2. Margins

A.s discussed in §3. macros are
and bottom

,de hd
11

.de fo

.wh 0 bd
,wn -~U fo

\

\ "end definition

inch and bottom mar-
will occur on the first page,

and trap exist to the

'For example: P. A. Crisman, Ed., The Compatible Time­
SY:5!t"m. MIT Press, 1965, Section AH9.01 (Descrip­

RUNOFF pWI!Jam Oil MIT's CTSS system).

EXAMPl,ES

initial transition. In fill mode,
the output line springs the footer trap was
typically forced out because some part or whole
word fit on it. If in the footer
and header that follows causes Ii break, that word
or word will be out. In this and other
examples, requests bp sp that normally
cause breaks are invoked the no-break con-
trol to avoid this. the
header/footer contains material requiring

text processing, the environment
may be switched, most interaction with
the running text

A more realistic

.de bd

.if t ,tl • \(m "\
-if \\n%>1 \{\

would be

IO,5i-l \"tl bue at O.SI
.n "- % -" page number
. ps \ "restore size
.ft font
.ws \}

11.01
.ns

,de fo
.ps 10
.ft R

.n "- %

,wh 0 hd
.w-h -Ii fo

vs
\ ·space to UH
\ "tum on no-space mode

footer/header size
\"'set font

base 0.51 up
page number

spacing
and ultimately

restores them. The material in this case is a page
number at the bottom the page and at the

the pages. If TROFF is used. a
cut mark is drawn in the form of root-en's at each
margin. The sp's to absolute positions to
avoid dependence on the base-line spacing.
Another reason for this in the footer is that the
footer is invoked by printing a line whose vertical
spacing swept past the trap position by possibly as

12-27

Manual

much as the base-Hoe
mode is turned on at the end

text.

above method
presupposes that such

The no-space
hd to render
s, at the

are not used in the text A better
scheme is save and restore both the current and

values as shown size in the
ing:

.de

T3.

.nr d

.ps

.or s2

.de hd

a separate
page

.de on

.U "- o/@-'*

.wh -O.5i-h 1m base O.SI up

the correct
checks that

space remains mort than one and

,de PI
.or
,!t R

indent.

parameter is s,uitable
space, at leas!: as as the

vertical would be more suitable in
NROFF. The choice of space to test

in the ne is the smaHes.
one line available

greater than
vertkal resohl-

A macro to nw:nber section head-

.de sc

.sp 0.4
,ne 2.4
,n

+5 .

look like:

. m SOl

usage is .S!:, section
The n~ test value includes

Another common
where the labe!

indent space.

.de

.pg

.in 0.5i

.ili (I,5f
,tt (j

indented

.ps HI become a part of the

.vs 1

.in (I

~sp 0.4
.fIe 1+
,ti {),21

macros to set parameters once.

12-28

lows .

'1'4.

that it will
duce the bottom
ize a column

column pages
macro to decide; whether it

other than the last
a new column rather than pro­

The header can initial­
the

NROFF/TROFF User's Manual
October 11, 1976

,de bd

.fl'!' d {) 1

.mk

\"header

\ "lnU column count
\ "mark top of text

.de to , "footer

.ie \\n + (d< 2 \{\

.po +3.4i \"next column; 3.1+0.3

.rt \ '"back to mark

.ns \} \"n(Hl'paCe mode

.cl \ {\

.po \\nMu \"restore left margin
It ""

'bp \}

.11 3.B '·column width

.nr M\\nto \"save left margin

Typically a portion of the top of the first page
contains full width text; the request for the nar·
rower line length, as well as another .mk would
be made where the two column output was to
begin.

T5. Footnote Processing

The footnote mechanism to be described is used
')y imbedding the footnotes in the input text at
the point of reference, demarcated by an initial
.fn and a terminal .ef:

.fn
FaDlnole lext and confrol lines ...

.ef

In the following, footnotes are processed in a
separate environment and diverted for later
pMiting in the space immediately prior to the
bottom margin. There is provision for the case
where the last collected footnote doesn't com-
I'" fit in the available space.

.de hd \"header

.llfX!}!

.m y O-\\nb

.en fo -\\nilu

.if\\n(dn .fz

.de fo
nr dn 0
if\\nx\{\

\" init footnote count
\ " cu rrcn t f ooler pi ace

reset footer trap
\" leftover footnote

\ "footer
\" lero last diversion size

. ev 1 \"expand footnotes in evl

. of \ .. retain vertical size

.FN \"footnotes

.rm FN \ "delete it
jf "\ \!1 (.l"fy" .oi \ "end overflow diversion
.!HXO \"disableh

.ev \} \"pop environment

Php

.de fx \"process footnote overflow

.if \ \nx .dl fy \ "divert overflow

.de fn \ M start footnote

.cla FN \ "divert (append) footnote

.ev 1 \ "In environment 1

.if\\n+x ... t .fs \"If first. include separator

.n \ "fill mode

.de ef \ fi end footnote

.br \"finlsh output

.nr z \\ntv \"save spacing

.ev ,"pop ev

.di \"end diversion

.m y -\\n(On \"new footer position,

.If\\nx''''l.m y -(\\n(.v-\\nz)'
\"uncertalnty correction

.eh fo \\nyu \"y Is IU!Kative

.if (\\n(l1l+h»(\\n(.p+\\ny) \

.en to \\ n (11 hI + tv \" It didn't fit

.de fs
\I' H'
.br

\"separator
\" 1 inch rule

.de f1 \" get ieftover footnote

.fn

.nf \ W retain vertical size

.fy \"where h. put it

.ef

.m b l.Oi \"bottom size

. wh 0 hd \" header trap

. wh 12i fo \" footer temp position

.wn -\\nhi.! fx\"h: at footer position

.en fo -\\nbu \"conceal h with fo

The header hd initializes a footnote count regb
ter x, and sets both the current footer trap po~i·
tion register y and the footer trap itself to a nom­
inal position specified in register b. In addition,
if the register dn indicates a leftover footnote, fz
is invoked to reprocess it. The footnote start
macro fn begins a diversion (append) in environ­
ment 1, and increments the count x; if the coum
is one, the footnote separator fs is interpolated .
The separator is kept in a macro 10 per­
mit user redefinition. The footnote end macro ef
restores the previous environment and ends the
diversion after saving the spacing size in regisfe)
l. y is then decremented the si:t':e of t I, ~

NROFF/TROFF User's Manual
October 11, 1976

footnote, available in do; then on the first foot­
note, y is further decremented by the difference
in vertical base-line spacings of the two environ­
ments, to prevent the late triggering the footer
trap from causing the last line of the combined
footnotes to overflow. The footer trap is then set
to the lower (on the page) of y or the current
page position (00 plus one line, to allow for
printing the reference line. If indicated by x, the
footer fo rereads the footnotes from IN in nofill
mode in environment 1, and deletes IN. If the
footnotes were too large to fit, the macro fx will
be trap-invoked to redivert the overflow into fy,
and the register do will later indicate to the
header whether fy is empty. Both fo and fx are
planted in the nominal footer trap position in an
order that causes fx to be concealed unless the fo
tr&p is moved. The footer then terminates the
overflow diversion, if necessary, and zeros x to
disable fx, because the uncertainty correction
together with a not-too-late triggering of the
footer can result in the footnote rereading finish­
ing before reaching the fx trap.

A good exercise for the student is to combine
the multiple-column and footnote mechanisms.

T6. The Last Page

After the last input file has ended, NROFF and
TROFF invoke the end macro (§7), if any, and
when it finishes, eject the remainder of the page.
During the eject, any traps encountered are pro­
cessed normally. At the end of this last page,
processing· terminates unless a partial line, word,
or partial word remains. If it is desired that
another page be started, the end-macro

.de en
\e
'bp

.em en

will deposit a null partial word, and effect
another last page.

12-30

(

(

NROFF/TROFF User's Manual
October 11, 1976

Table I

Font Style Examples

The following fonts are printed in 12-point, with a vertical spacing of 14-point, and with non­
alphanumeric characters separated by!/.! em space. The Special Mathematical Font was specially
prepared for Bell Laboratories by Graphic Systems, Inc. of Hudson, New Hampshire. The Times
Roman, Italic, and Bold are among the many standard fonts available from that company.

Times Roman

abcdefghijklmnopqrstuvwxyz
ABeD EFG HIJKLMNOPQRSTUVWXYZ
1234567890
~$%&()4'*+ _.,/:;=?[]I
II 0 - - _ 1,4 lf2 3,4 fi fl ff ffi ffl 0 t ' ¢ ® ©

Times Jralic

abcdef~h!iklmnopqrstuvwxyz

A BCDEFGHIJKLj\1NOPQRSTUVWXYZ
1234567890
! $ % & () , , '" + - . , / : ; == ? [11
II 0 - - _ '14 if! 3J4.1i flff.ffi ff! 0 t ' f/ ® ©

Times Bold

abcuefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
!$fJ/o&()"*+ -.,/:;=?()\
• 0 - ~ _ 1/4 112 3/4 fi fl ff ffi mOt ' ¢ ® ©

Mathematical Font

"'\A_'_/< > {}#@+_=*
a~yS€~~eLKA~v£O~pU~TV¢X~W
f6.0A=:I1I:Y<I>,vn
J- ~ ~ = - = ;;zf: - .. - i 1 x + + u n c :) c d 00 a
§ v -, f 0: " E :t ... __ @ I 0 (ll H H lJ fll

12-31

(

cnar~.ders and minus on th:~ standard fonts.

(

cnarl,u::tell'S and', " _, +, '--, -, and <I> on the font.

The ASCII characters ,#,",', " <, >, \, {, l, font and. are
as a I'em space if that font is not mounted. on the

font except for the upp.er case letter names
letters in whatever font is mounted on font

math and are
standard fonts.

Name Nome

+ math I(

\(mi math minus A lambda
math equals Ii- mu

... math star il nu
§ section ~ xi

acute accent 0 omicron
grave accent 7! pi

\ (ui underru!e p rho
I '. slash \ a-
u \ ~'

t3
,

beta tau \ r
y \("g gamrna I.'

1) delta ¢;
if. X chi , \("z zeta IjJ
1j \("y eta w omega
9 \("'h theta A

\ iota B \

1 'l" ::It.

NROFF/TROFF User's Manual
October 11, 1976

Input Character Input Character
Char Name Name Char Name Name

r \(*G Gamma I \(br box vertical rule
.1 \(*0 Delta * \(dd double dagger
E \(*E Epsilont ,.. \(rh right hand
Z \(*Z Zetat -- \Oh left hand
H \(*Y Etat @ \(bs Bell System logo
e \(*H Theta I \(or or
I \ (*1 lotat 0 \(ci circle
K \(*K Kappat f \(It left top of big curly bracket
:\ \(*L Lambda l \(lb left bottom
M \(*M Mut 1 \ (rt right top
N \(*N Nut J \(rb right bot

- \(*C Xi i \Ok left center of big curly bracket -
0 \(*0 Omicront ~ \(rk right center of big curly bracket
n \(*P Pi I \(bv bold vertical
P \(*R Rhot l \(If left floor (left bottom of big
! \(*S Sigma square bracket>
T \(*T Taut J \(rf right floor (right bottom)
y \(*U Upsilon r \(lc left ceiling Oeft top)
<ll \(*F Phi 1 \(rc right ceiling (right top)
X V·X Chit
'I' \(*Q Psi
n \(*W Omega
.J \(sr square root

\(rn root en extender
~ \(>- >-
~ \«- <-
- \(- - identically equal
- \(-- approx -

\(ap approximates
~ \0- not equal

\(-> right arrow
\«- left arrow
\(ua up arrow
\(da down arrow

x Vmu multiply
\(di divide

± \(+- plus-minus
U \(eu cup (union)
n Vca cap (intersection)
c \(sb subset of
::::> \(sp superset of
s: \(jb improper subset
~ \(ip improper superset
00 \ (if infinity
a \(pd partial derivative
\l \(gr gradient

\(no not

f \ (is integral sign
a: \(pt proportional to

" \(es empty set
E \(mo member of

12-33

15, 1977

Options

-h

·z

Old Requests

.ad c

. 50 name

New Request

.ab text

FN

Summary Gf rUliIIUi!(!§ to N/TROFF 1976

character widths.

it is
size

.fz 3 -2
"F" to be in

may be llsed to

to as well as
be every 8 nominal character

to every 8 nomina!

message output will occur "trn"s

"e" may now also be a number

will be at the
was done upon return to the

Does not

N. N may have the N ,

the size treatrnent characters

from

is encountered .
level.

is

+ 2 '. .. hen

font F For

wi!! cause automatic reduction of characters would
111USt

New Predefined Number

.k

.j

.P

. L

c.

size the text
if any, in the current environment.

A number the current mode and
mode. saved and later given to the "ad" request to restore a

Read-only. 1 if the current page is and zero otherwise .

the current

in the current

the

Can be

the

A TROFF Tutorial

Brian W. Kernighan

Bell Laboratories
Murray Hill, New 07974

ABSTRACT

trotf is a text-formatting program for driving the Graphic Systems photo­
typesetter on the UNlxt and GCOS operating systems. This device is capable of
producing high quality text~ this paper is an example of troft' output.

The phototypesetter itself normally runs with four fonts, containing
roman, italic and bold letters (as on this page), a full greek alphabet, and a sub­
stantial number of special characters and mathematical symbols. Characters can
be printed in a range sizes, and placed anywhere on the page.

troff allows the llser full control over fonls, sizes, and character positions,
as well as the usual features of a formatter - righI-margin justification,
automatic hyphenation, page titling and numbering, and so on. It also provides
macros, arithmetic variables and operations, and conditional testing, for compli­
cated formatting tasks.

This document is an introduction to the most basic use of troff. It
presents just enough information to enable the lIser to do simple formatting
tasks like making viewgraphs, and to make incremental changes to existing
packages of troff commands. In most respects, the UNIX formatter Kuoff is
identical to troft', so this document also serves as a tutorial on omft'.

4, 1978

tUN!X is a Trademark of Bel! Laboratories.

13-1

A TROFF Tutorial

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

1. Introduction

troff [1 J is a text-formatting program, writ­
ten by 1. F. Ossanna, for producing high-quality
printed output from the phototypesetter on the
UNIX and GCOS operating systems. This docu­
ment is an example of troff output.

The single most important rule of using
troft' is not to use it directly, but through some
intermediary. In many ways, troft' resembles an
assembly language - a remarkably powerful and
Oexible one - but nonetheless such that many
operations must be specified at a level of detail
and in a form that is too hard for most people to
use effectively.

For two special applications, there are pro­
grams that provide an interface to troff for the
majority of users. eqn [2J provides an easy to
learn language for typesetting mathematics; the
eqn user need know no troff whatsoever to
typeset mathematics. tbl [3J provides the same
convenience for producing tables of arbitrary
complexity.

For producing straight text (which may
well contain mathematics or tables), there are a
number of 'macro packages' that define format­
ting rules and operations for specific styles of
documents, and reduce the amount of direct
contact with troff. In particular, the '-ms' [4J
and PWB/MM [5J packages for Bell Labs inter­
nal memoranda and external papers provide most
of the facilities needed for a wide range of docu­
ment preparation. (This memo was prepared
with '-ms',) There are also packages for view­
graphs, for simulating the older roff formatters
on UNIX and GCOS, and for other special applica­
tions. Typically you will find these packages
easier to use than troff once you get beyond the
most trivial operations; you should always con­
sider them first.

In the few cases where existing packages
don't do the whole job, the solution is !lot to
write an entirely new set of troff instructions
from scratch, but to make small changes to adapt
packages that already exist.

13-2

In accordance with this philosophy of let­
ting someone else do the work, the part of troft'
described here is only a small part of the whole,
although it tries to concentrate on the more use­
ful parts. In any case, there is no attempt to be
complete. Rather, the emphasis is on showing
how to do simple things, and how to make incre­
mental changes to what already exists. The con­
tents of the remaining sections are:

2. Point sizes and line spacing
3. Fonts and special characters
4. Indents and line length
5. Tabs
6. Local motions: Drawing lines and characters

Strings 7.
8.
9.

10.
11.
12.
13.
14.

Introduction to macros
Titles, pages and numbering
Number registers and arithmetic
Macros with arguments
Conditionals
Environments
Diversions
Appendix: Typesetter character set·

The troff described here is the C-Ianguage ver­
sion running on UNIX at Murray Hill, as docu­
mented in [I J.

To use troff you have to prepare not only
the actual text you want primed, but some infor­
mation that tells how you want it printed.
(Readers who use roff will find the approach
familiar,) For troff tht: text and the formatting
information are often intertwined quite inti­
mately. Most commands to troff are placed on a
line separate from the text itself, beginning with
a period (one command per line). For example,

Some text.
.ps 14
Some more text.

will change the 'point size', that is, the size of
the letters being printed, to '14 point' (one point
is 1172 inch) like this:

(

13-3

Some text. Some more text.
Occasionally, though, something special

occurs in the middle of a line -" to produce

Area = 7i,2

you have to type

Area = \ (*p\f1r\fR\ i\s8\u2\d\sO

(which we will explain shortly). The backs lash
character \ is used to introduce troff commands
and special characters within a line of text.

2. Point Sizes; Line Spacing

As mentioned above, the command .ps
sets the point size. One point is 1172 inch, so
6-point characters are at most 1/12 inch high.
and 36-point characters are ill inch. There are 15
point sizes, listed below.

6 pOint: Pack my box with five dozen IIQlIor jugs.

7 pClInl: P3ck my box with five dozen liquor jugs.
8 point: Pack my box with five dozen liquor jugs.
9 point: Pack my box with five dozen liquor jugs.
10 point: Pack my box with five dozen liquor
11 Pack my box with five dozen
12 point: Pack my box with five dozen
14 Pack my box with five

16 point 18 point 20 point

2 24 28 3
If the number after .ps is not one of these

legal sizes, it is rounded up to the next valid
value, with a maximum of 36. If no number fol­
lows .1'5, troff reverts to the previous size, what­
ever it was. troff begins with point size 10,
which is usually fine. This document is in 9
point.

The size can a!so be changed in the
middie of a line or even a word with the in-line
command \5. To produce

UNIX runs on a PDP"11l45

type

\s8UN!X\slO runs on a \s8PDP-\slOll/45

As above, \5 should be followed a legal
size, except that causes the size to revert 10

its value. Notice thaI \s1011 can be
understood correclly as 'size 10, followed by an
11', if the size is legal, but not otherwise. Be
cautious with similar constructions.

Relative size
usefuL

are also legal and

\s - 2UNIX\s + 2

temporarily decreases the whatever it is, by
two points, then restores it. Relative size
changes have the advantage that the size
difference is independent of the starting size of
the document. The amount of the relative
change is restricted to a single digit.

The other parameter that determines what
the type looks like is the spacing between lines,
which is set independently of the point size.
Vertical spacing is measured from the bottom of
one line to the bottom of the next. The com­
mand to control vertical spacing is .VS. For run­
ning text, it is usually best to set the vertical
spacing about 20% bigger than the character size.
For example, so far in this document, we have
used "9 on 11", that is,

.ps 9

.vs IIp

If we to

.ps 9

.vs 91'

the running text would look like this. After a
few lines, you will agree it looks a little cramped.
The right vertical spacing is partly a matter of
taste, depending on how much text you want to
squeeze into a given space, and partly a mauer
of traditional printing style. By default, troft'
uses 10 on 12.

Point size and vertical spacing
make a substantial difference in the
amount per square inch.
This is 12 on 14.

Point size t1nd vertical spacing m\1Ke a substanlial difference in
the amount of tex t per square inch. For e~uunple. lOon 12 Y:K:S abou&
!Wlce as my·ch space as 7 on 8. This i5 (, on 7. which is even smaller. It
p<!c~$ it 10\ more words per line. but you tan SO blind tryini lo read it

When used without arguments, .ps and .va
revert to the previous size and vertical spacing
respectively.

The command .51' is used to get extra vert­
ical space. Unadorned, it gives you one extra
blank line (one .vs, whatever that has been set
to). Typically, that's more or less than you
want. so .sp can be followed by information
about how much space you want -

.sp 2i

means 'two inches of vertical space'.

.sp 21'

means 'two points of vertical space'; and

.sp 2

means 'two vertical - two of whatever

· vs is set to (this can also be made explicit with
.sp 2v); troff also understands decimal fractions
in most places, so

.sp LSi

is a space of 1.5 inches. These same scale fac­
tors can be used after . vs to define line spacing,
and in fact after most commands that deal with
physical dimensions.

It should be noted that all size numbers
are converted internally to 'machine units',
which are 1/432 inch 0/6 poind. For most pur­
poses, this is enough resolution that you don '(
have to worry about the accuracy of the
representation. The situation is not quite so
good vertically, where resolution is 1/144 inch
(I/2 point).

3. Fonts and Special Characters

troff and the typesetter allow four different
fonts at anyone time. Normally three fonts
(Times roman, italic and bold) and one collec­
tion of special characters are permanently
mounted.

abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHlJKLMNOPQRSTUVWXYZ
abcdejghijklmnopqrslUvw:xyz OJ lJ456 789
A BCDEFGHfJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvw xy z 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ

The greek, mathematical symbols and miscellany
of the special font are listed in Appendix A.

troff prints in roman unless told otherwise.
To switch into bold, use the .ft command

.ft B

and for italics,

.ft I

To return to roman, use .ft R; to return to the
previous font, whatever it was, use either .ft P or
just .ft. The 'underline' command

.ul

causes the next input line to print in italics. .u1
can be followed by a count to indicate that more
than one line is to be italicized.

Fonts can also be changed within a line or
word with the in-line command \f:

bold/ace text

is produced by

\fBbold\t1face\fR text

If you want to do this so the previous font,
whatever it was, is left undisturbed, insert extra
\fP commands, like this:

13-4

\fBbold\fP\t1face\fP\fR text\fP

Because only the immediately previous font is
remembered, you have to restore the previous
font after each change or you can lose it. The
same is true of .ps and .vs when used without an
argument.

There are other fonts available besides the
standard set, although you can still use only four
at any given time. The command .fp tells troff
what fonts are physically mounted on the
typesetter:

.fp 3 H

says that the Helvetica font is mounted on posi­
tion 3. (For a complete list of fonts and what
they look like, see the troff manuaU Appropriate
.fp commands should appear at the beginning of
your document if you do not use the standard
fonts.

It is possible to make a document rela­
tively independent of the actual fonts used to
print it by using font numbers instead of names;
for example, \fJ and .fe3 mean 'whatever font
is mounted at position 3', and thus work for any
setting. Normal settings are roman font on 1,
italic on 2, bold on 3. and special on 4.

There is also a way to gel 'synthetic' bold
fonts by overstriking letters with a slight offset.
Look at the .bd command in [II.

Special characters have four-character
names beginning with \ (, and they may be
inserted anywhere. For example,

1/4 +112-%

is produced by

\(14 + \02 ,.. \(34

In particular, greek letters are all of the form
\(.-, where - is an upper or lower case roman
letter reminiscent of the greek. Thus to get

r(crx{3) - 00

in bare troff we have to type

\(-S(\(*a\(mu\(*b) \(-> \(if

That line is unscrambled as follows:

\ (-s r
((

\ (·a cr
\(mu x

\(*b /3
))

\(->
\ (if 00

A complete list of these special names occurs in
Appendix A.

(

(

(

(

In eqn [2] the same effect can be achieved
with the input

SIGMA (alpha times beta) - > inf

which is less concise, but clearer to the unini­
tiated.

Notice that each four-character name is a
single character as far as troft' is concerned - the
'translate' command

. tr \(mi\Cem

is perfectly clear, meaning

. tr --

that is, to translate - into -.

Some characters are automatically
translated into others: grave • and acute .
accents (apostrophes) become open and close
single quotes '-'; the combination of" ... " is gen-
erally preferable to the double quotes". Simi-
larly a typed minus sign becomes a hyphen -. To
print an explicit - sign, use \-. To get a
backslash printed, use \e.

4. Indents and Line Lengths

trotJ starts with a line length of 6.5 inches,
too wide for 81/2 x 11 paper. To reset the line
length, use the .n command, as in

.11 6i

As with .sp, the actual length can be specified in
several ways; inches are probably the most intui­
tive.

13-5

The maximum line length provided by the
typesetter is 7.5 inches, by the way. To use the
full width, you will have to reset the default phy­
sical left margin ("page offset"), which is nor­
mally slightly less than one inch from the left
edge of the paper. This is done by the .po com­
mand.

.po 0

sets the offset as far to the left as it will go.

The indent command .in causes the left
margin to be indented by some specified amount
from the page offset. If we use .in to move the
left margin in, and .n to move the right margin
to the left, we can make offset blocks of text:

.in O.3i

.11 -O.3i
text to be set into a block
.11 +O.3i
.in -O.3i

will create a block that looks like this:

Pater noster qui est in cae lis
sanctificetur nomen tuum; adveniat
regnum tuum; fiat voluntas tua, sicut
in caelo, et in terra Amen.

Notice the use of '+' and '-' to specify the
amount of change. These change the previous
setting by the specified amount, rather than just
overriding it. The distinction is quite important:
.11 + Ii makes lines one inch longer; .11 Ii makes
them one inch long .

With .in, .11 and .po, the previous value is
used if no argument is specified .

To indent a single line, use the 'temporary
indent' command .ti. For example, all paragraphs
in this memo effectively begin with the com­
mand

.ti 3

Three of what? The default unit for .ti, as for
most horizontally oriented commands ClI, .in,
.po), is ems; an em is roughly the width of the
letter 'm' in the current point size. (Precisely, a
em in size p is p points,) Although inches are
uSUally clearer than ems to people who don't set
type for a living, ems have a place: they are a
measure of size that is proportional to the
current point size. If you want to make text that
keeps its proportions regardless of point size, you
should use ems for all dimensions. Ems can be
specified as scale factors directly, as in .ti 2.5m.

Lines can also be indented negatively if the
indent is already positive:

.ti -O.3i

causes the next line to be moved back three
tenths of an inch. Thus to make a decorative
initial capital, we indent the whole paragraph,
then move the letter 'P' back with a .ti com­
mand:

Pater noster qui est in caelis
sanctificetur nomen tuum; ad­
veniat regnum tuum; fiat vol un­

tas tua, sicut in caelo, et in terra.
Amen.

Of course, there is also some trickery to make
the 'P' bigger (just a '\s36P\sO'), and to move it
down from its normal position (see the section
on local motions).

5. Tabs

Tabs (the ASCII 'horizontal tab' character)
can be used to produce output in columns, or to
set the horizontal position of output. Typically
tabs are used only in unfilled text. Tab stops are
set by default every half inch from the current
indent, but can be changed by the .t.a command.
To set stops every inch, for example,

13-6

.t3 li 2i 3i 4i 5i 6i

stops are

many numbers, or if 3' OU need
table layout, don use t:rol'f

the tbi program described in

For a handful of numeric columns, you
can do it this vvay: Precede every number by

blanks make it linc up when

.nf

.!a li 2i .3i
tab 2 3

40 lab lab 60
700 tab 800 lab 900
.ft

Then blank into the
This is a character that

that has the same width as a

40
700

It is also

2
50 60

900

fill up tabbed-over
space with some character other than olar.!.;s

the 'tab character' with the
.tt c!Hnmand:

.ta LSi 2.5i

.Ie \

Name lab

To reset the tab character to
use .tc wilh no argument can also

be drawn with the \1 command, de:',cribed in Sec­
tion

trot! also

hila it in this paper.

lincs am.! charac-

Remember 'Area "'" and the -P'
in the Paterf:oster. are they done? trot!
provides a host of commands for charac~

te.s of any sizt! at any place" You can use them
10 draw characters or to tune your omput
for a appearance. Mos! of these COI11-

and to type correctly.

If you won't use eqIl,
are most done

btl 1. messy to read

with
:md super­

the half-line

back up

Area

'To rnake
Since

point sile~ be sure

bracket it with
refer to .he current

isn't the
used to
rnotjofL 'The in-line C(:tTimand

.in

.n ·~~O.3i

.ti --O.3i

in caeliS .. 0

bOlt-!

and
be

vertical

to

A rninus \~'hile no
page. Thus

causes an upv><'anl vertical rnotion of 1\-\/0

line spaces.

There are many
amount of rnotion -

and so on are

is also true of aH
in this secti.on.

verti,:al motions

with
the downward direcuon.

Arbitrary horizonla! ~Tlotjons

the

the scale

quotes~ this
described

also avail-
able -" is "naiogoos to except lilal
Ihe default. scale factor is ems instead of line
spaces. As an

causes a backwards motion of a tenth of an inch.
As a practical matter, consider printing the
mathematical symbol' > >'. The default spacing
is too wide, so eqn replaces this by

>\h'-O.3m'>

to produce ».
Frequently \h is used with the 'Width func­

tion' \w to generate motions equal to the width
of some character string. The construction

\w'thing'

13-7

is a number equal to the width of 'thing' in
machine units (1/432 inch). All trotf computa­
tions are ultimately done in these units. To
move horizontally the width of an 'x', we can
say

\h'\w'x'u'

As we mentioned above, the default scale factor
for all horizontal dimensions is m, ems, so here
we must have the u for machine units, or the
motion produced will be far too large. trotf is
quite happy with the nested quotes, by the way,
so long as you don't leave any out.

As a live example of this kind of construc­
tion, all of the command names in the text, like
.sp, were done by overstriking with a slight
offset. The commands for .sp are

.sp\h' -\w'.sp'u'\h'l u'.sp

That is, put out' .sp', move left by the width of
'.sp', move right 1 unit, and print '.sp' again.
(Of course there is a way to avoid typing that
much input for each command name, which we
will discuss in Section 1 U

There are also several special-purpose trotf
commands for local mOlion. We have already
seen \0, which is an unpaddable white space of
the same width as a digit. 'Unpaddable' means
that it will never be widened or split across a line
by line justification and filling. There is also
\(blank), which is an unpaddable character the
Width of a space, \I, which is half that width, \ -,
which is one quarter of the width of a space, and
\&, which has zero width. (This last one is use­
ful, for example, in entering a text line which
would otherwise begin with a '.'.)

The command \0, used like

\0' set of characters'

causes (up to 9) characters to be overstruck, cen­
tered on the widest. This is nice for accents, as
in

sysl\o"e\ (ga"me t\o"e\ (aa"l\o"e\ (aa"phonique

which makes

systeme telephonique

The accents are \(ga and \(aa, or \' and Y;
remember that each is just one character to troft'.

You can make your own overstrikes with
another special convention, \z, the zero-motion
command. \zx suppresses the normal horizontal
motion after printing the single character x, so
another character can be laid on top of it.
Although sizes can be changed within \0, it
centers the characters on the widest, and there
can be no horizontal or vertical motions, so \z
may be the only way to get what you want:

is produced by

.sp 2
\s8\z\(sq\s14\z\(sq\s22\z\(sq\s36\(sq

The .sp is needed to leave room for the result.

As another example, an extra-heavy semi­
colon that looks like

; instead of ; or ;

can be constructed with a big comma and a big
period above it:

\s +6\z,\ v' -0.25m'.\ v'O.25m'\sO

'O.25m' is an empirical constant.

A more ornate overstrike is given by the
bracketing function \b, which piles up characters
vertically, centered on the current baseline.
Thus we can get big brackets, constructing them
with piled-up smaller pieces:

by typing in only this:

.sp
\b\Ot\Ok\Ob' \b\{\c\Of x \b\(rc\(rf \b\(rt\(rk\(rb'

troft' also provides a convenient facility for
drawing horizontal and vertical lines of arbitrary
length with arbitrary characters. \l'lj' draws a
line one inch long, like this: ______ _
The length can be followed by the character to
use if the _ isn't appropriate; \1'0.5i.' draws a
half-inch line of dots: The construc-
tion \L is entirely analogous, except that it draws
a vertical line instead of horizontal.

7. Strings

Obviously if a paper contains a large
number of occurrences of an acute accent over a
letter 'e', typing \o"e\'· for each e would be a

13-8

great nuisance.

Fortunately, troft' provides a way in which
you can store an arbitrary collection of text in a
'string', and thereafter use the string name as a
shorthand for its contents. Strings are one of
several troft' mechanisms whose judicious use
lets you type a document with less effort and
organize it so that extensive format changes can
be made with few editing changes.

A reference to a string is replaced by what­
ever text the string was defined as. Strings are
defined with the command .ds. The line

.ds e \o"e\'ft

defines the string e to have the value \o"e\'w

String names may be either one or two
characters long, and are referred to by *x for
one character names or \.(xy for two character
names. Thus to get telephone, given the
definition of the string e as above, we can say
t\ oel\ oepho ne.

If a string must begin with blanks, define it
as

. ds xx " text

The double quote signals the beginning of the
definition. There is no trailing quote; the end of
the line terminates the string.

A string may actually be several lines long;
if troft' encounters a \ at the end of any line, it is
thrown away and the next line added to the
current one. So you can make a long string sim­
ply by ending each line but the last with 'a

. backslash:

.ds xx this \
is a very \
long string

Strings may be defined in terms of other
strings, or even in terms of themselves; we will
discuss some of these possibilities later.

8. I ntroduction to Macros

Before we can go much further in troft', we
need to learn a bit about the macro facility. In
its simplest form, a macro is just a shorthand
nOlation quite similar to a string. Suppose we
want every paragraph to start in exactly the same
way - with a space and a temporary indent of
two ems:

.sp

.ti +2m

Then to save typing, we would like to collapse
these into one shorthand line, a troft' 'command'
like

.PP

that would be treated by troft' exactly as

.sp

.ti +2m

.PP is called a macro. The way we tell troff what

.PP means is to define it with the .de command:

.de PP

.sp

.ti +2m

The first line names the macro (we used '.PP'
for 'paragraph', and upper case so it wouldn't
conflict with any name that troft' might already
know about). The last line .. marks the end of
the definition. In between is the text, which is
simply inserted whenever troff sees the 'com­
mand' or macro call

.PP

A macro can contain any mixture of text and
formatting commands.

The definition of .PP has to precede its
first use; undefined macros are simply ignored .
Names are restricted to one or two characters.

Using macros for commonly occurring
sequences of commands is critically important.
Not only does it save typing, but it makes later
changes much easier. Suppose we decide that
the paragraph indent is too small, the vertical
space is much too big, and roman font should be
forced. Instead of changing the whole docu­
ment, we need only change the definition of .PP
to something like

.de PP

.sp 2p

.ti +3m

.ft R

\" paragraph macro

and the change takes effect everywhere we used
.PP.

\. is a troff command that causes the rest
of the line to be ignored. We use it here to add
comments to the macro definition (a wise idea
once definitions get complicated).

As another example of macros, consider
these two which start and end a block of offset,
unfilled text, like most of the examples in this
paper:

(

./

.de BS

. sp

.nf

.in +0.3i

. de BE

.sp

.ft

.in -O.3i

\. start indented block

\" end indented block

Now we can surround text like

Copy to
John Doe
Richard Roberts
Stanley Smith

13-9

by the commands .BS and .BE, and it will come
out as it did above. Notice that we indented by
.in +0.3i instead of .in 0.3i. This way we can
nest our uses of .BS and BE to get blocks within
blocks.

If later on we decide that the indent should
be O.Si, then it is only necessary to change the
definitions of .BS and .BE, not the whole paper.

9. Titles. Pages and Numbering

This is an area where things get tougher,
because nothing is done for you automatically.
Of necessity, some of this section is a cookbook,
to be copied literally until you get some experi­
ence.

Suppose you want a title at the top of each
page, saying just

----left top center top right top----

In rolf, one can say

.he 'left top'center top'right top'

.fo 'left bottom'center bottom'right bottom'

to get headers and footers automatically on every
page. Alas, this doesn't work in trolf, a serious
hardship fqr the novice. Instead you have to do
a lot of specification.

You have to say what the actual title is
(easy); when to print it (easy enough); and what
to do at and around the title line (harder). Tak­
ing these in reverse order, first we define a
macro .NP (for 'new page') to process titles and
the like at the end of one page and the beginning
of the next:

.de NP
'bp
'sp O.5i
.tl 'left top'center top'right top'
'sp O.3i

To make sure we're at the top of a page, we

issue a 'begin page' command 'bp, which causes
a skip to top-of-page (we'll explain the' shortly) .
Then we space down half an inch, print the title
(the use of .tl should be self explanatory; later
we wi\1 discuss parameterizing the titles), space
another 0.3 inches, and we're done .

To ask for .NP at the bottom of each page,
we have to say something like 'when the text is
within an inch of the bottom of the page, start
the processing for a new page.' This is done with
a 'when' command .wh:

.wh -Ii NP

(No '.' is used before NP; this is simply the
name of a macro, not a macro call.) The minus
sign means 'measure up from the bottom of the
page', so '- Ii' means 'one inch from the bot­
tom'.

The .wh command appears in the input
outside the definition of .NP; typically the input
would be

.de NP

.wh -Ii NP

Now what happens? As text is actually
being output, trolf keeps track of its vertical
position on the page, and after a line is printed
within one inch from the bottom, the .NP macro
is activated. (In the jargon, the .wh command
sets a trap at the specified place, which is
'sprung' when that point is passed.) .NP causes a
skip to· the top of the next page (that's what the
'bp was for), then prints the title with the
appropriate margins.

Why 'bp and 'Sp instead of .bp and .sp?
The answer is that .sp and .bp, like several other
commands, cause a break to take place. That is.
all the input text collected but not yet printed is
flushed out as soon as possible, and the next
input line is guaranteed to start a new line of
output. If we had used .sp or .bp in the .NP
macro, this would cause a break in the middle of
the current output line when a new page is
started. The effect would be to print the left­
over part of that line at the top of the page, fol­
lowed by the next input line on a new output
line. This is not what we want. Using' instead
of . for a command tells trolf that no break is to

take place - the output line currently being
filled should not be forced out before the space
or new page.

The list of commands that cause a break is
short and natural:

.bp .br .ce .fi .nf .sp .in .ti

All olhers cause no break. regardless of whether

you use a . or a '. If you really need a break, add
a .br command at the appropriate place.

One other thing to beware of - if you're
changing fonts or point sizes a lot, you may find
that if you cross a page boundary in an unex­
pected font or size, your titles come out in that
size and font instead of what you intended.
Furthermore, the length of a title is independent
of the current line length, so titles will come out
at the default length of 6.5 inches unless you
change it, which is done with the .It command.

There are several ways to fix the problems
of point sizes and fonts in titles. For the sim­
plest applications, we can change .NP to set the
proper size and font for the title, then restore
the previous values, like this:

.de NP
'bp
'sp O.Si
.ft R \" set title font to roman
.ps 10 \" and size to 10 point
.It 6i \" and length to 6 inches
.tt'left'center'right'
.ps \. revert to previous size
.ft P \" and to previous font
iSp 0.3i

This version of .NP does not work if the
fields in the .t1 command contain sile or font
changes. To cope with that requires troff's
'environment' mechanism, which we will discuss
in Section 13.

To get a footer at the bottom of a page,
you can modify .NP so it does some processing
before the 'bp command, or split the job into a
footer macro invoked at the bottom margin and
a header macro invoked at the top of the page.
These variations are left as exercises.

Output page numbers are computed
automatically as each page is produced (starting
at 1), but no numbers are printed unless you ask
for them explicitly. To get page numbers
printed, include the character % in the ,t1 line at
the position where you want the number to
appear. For example

. tl "- % -"

centers the page number inside hyphens, as on
[his page. You can set the page number at any
time with either .bp n, which immediately starts
a new page numbered n, or with .pn n, which
sets the page number for the next page but
doesn't cause a skip to the new page. Again.
.bp +n sets the page number to n more than its
current value; .bp means .bp + 1.

13-10

10. Number Registers and Arithmetic

troff has a facility for doing arithmetic, and
for defining and usmg variables with numeric
values, called number registers. Number regis­
ters, like strings and macros, can be useful in
setting up a document so it is easy to change
later. And of course they serve for any sort of
arithmetic computation.

Like strings, number registers have one or
two character names. They are set by the .nr
command. and are referenced anywhere by \nx
(one character name) or \n(xy (two character
name).

There are quite a few pre-defined number
registers maintained by lroff, among them % for
the current page number; nl for the current Vert­
ical position on the page; dy. mo and yr for the
current day, month and year; and .s and .f for
the current size and font. (The font is a number
from 1 to 4.) Any of these can be used in com­
putations like any other register, but some, like
.s and .f, cannot be changed with .nr .

As an example of the use of number regis­
ters, in the -ms macro package (4], most
significant parameters are defined in terms of the
values of a handful of number registers. These
include the point size for text, the vertical spac­
ing, and the line and title lengths. To set the
point size and vertical spacing for the following
paragraphs, for example, a user may say

.nr PS 9

.nr VS 11

The paragraph macro .PP is defined (roughly) as
follows:

.de PP

.ps \\n(PS

.vs \\n(VSp

.ft R

.sp O.Sv

.ti +3m

\" reset size
\" spacing
\" font
\" half a line

This sets the font to Roman and the point size
and line spacing to whatever values are stored in
the number registers PS and VS.

Why are there two backslashes? This is
the eternal problem of how to quote a quote .
When troll originally reads the macro definition,
it peels off one backslash to see what's coming
next. To ensure that another is left in the
definition when the macro is used. we have to
put in two backslashes in the definition. If only
one backslash is used, point size and vertical
spacing will be frozen at the time the macro is
defined, not when it is used.

Protecting by an extra layer of backslashes

(

(

"

13-17

is only needed for \n, \., \$ (which we haven't
come to yet>, and \ itself. Things like \s, \f, \h,
\ v, and so on do not need an extra backslash,
since they are converted by troff to an internal
code immediately upon being seen.

Arithmetic expressions can appear any­
where that a number is expected. As a trivial
example,

.nr PS \\n(PS-2

decrements PS by 2. Expressions can use the
arithmetic operators +, -, ., I, % (mod), the
relational operators >, > -, <, < -, -, and
I = (not equal), and parentheses.

Although the arithmetic we have done so
far has been straightforward, more complicated
things are somewhat tricky. First, number regis­
ters hold only integers. troff arithmetic uses
truncating integer division, just like Fortran.
Second, in the absence of parentheses, evalua­
tion is done left-to-right without any operator
precedence (including relational operators).
Thus

7--4+3113

becomes '- 1'. Number registers can occur any­
where in an expression, and so can scale indica­
tors like p, i, m, and so on (but no spaces).
Although integer division causes truncation, each
number and its scale indicator is converted to
machine units 0/432 inch) before any arithmetic
is done. so 1 il2u evaluates to O.Si correctly.

The scale indicator u often has to appear
when you wouldn't expect it - in particular.
when arithmetic is being done in a context that
implies horizontal or vertical dimensions. For
example,

.11 7/2i

would seem obvious enough - 3'h inches.
Sorry. Remember that the default units for hor­
izontal parameters like .11 are ems. That's really
'7 ems / 2 inches', and when translated into
machine units, it becomes zero. How about

.11 7i12

Sorry. still no good - the '2' is '2 ems" so
'7i/2' is small, although not zero. You must use

. 11 7i12u

So again. a safe rule is to attach a scale indicator
to every number. even constants.

For arithmetic done within a .nr command,
there is no implication of horizontal or vertical
dimension, so the default units are 'units', and
7i12 and 7i12u mean the same thing. Thus

.nr II 7i12

.11 \\nOlu

does just what you want, so long as you don't
forget the u on the .11 command.

11. Macros with arguments

The next step is to define macros that can
change from one use to the next according to
parameters supplied as arguments. To make this
work, we need two things: first, when we define
the macro, we have to indicate that some parts
of it will be provided as arguments when the
macro is called. Then when the macro is called
we have to provide actual arguments to be
plugged into the definition.

Let us illustrate by defining a macro .sM
that will print its argument two points smaller
than the surrounding text. That is, the macro
call

.SM TROFF

will produce TROFF.

The definition of .SM is

.de SM
\s - 2\\$1 \s + 2

Within a macro definition, the symbol \ \Sn
refers to the nth argument that the macro was
called with. Thus \ \SI is the string to be placed
in a smaller point size when .SM is called.

As a slightly more complicated version, the
following definition of .SM permits optional
second and third arguments that will be printed
in the normal size:

.de SM
\\$3\s- 2\\$1\s + 2\\52

Arguments not provided when the macro is
called are treated as empty, so

.SM TROFF),

produces TROFF), while

.SM TROFF). (

produces (TROFF). It is convenient to reverse
the order of arguments because trailing punctua­
tion is much more common than leading .

By the way, the number of arguments that
a macro was called with is available in number
register .S.

The following macro .BD is the one used
to make the 'bold roman' we have been using
for troff command names in text. It combines
horizontal motions, width computations, and
argument rearrangement.

13-12

·de BD
\&\ \S3\f1\\SI\h' -\w,\ \SI'u + 1 u'\\SI\fP\\S2

The \h and \w commands need no extra
backslash, as we discussed above. The \& is
there in case the argument begins with a period.

Two backslashes are needed with the \ \Sn
commands, though, to protect one of them when
the macro is being defined. Perhaps a second
example will make this clearer. Consider a
macro called .SH which produces section head­
ings rather like those in this paper, with the sec­
tions numbered automatically, and the title in
bold in a smaller size. The use is

.SH "Section title ...•

Of the argument to a macro is to contain blanks,
then it must be surrounded by double quotes,
unlike a string, where only one leading quote is
permitted.)

Here is the definition of the .SH macro:

.nr SH 0

. de SH

.sp O.3i

\" initialize section number

.ft B

.nr SH \\n (SH + 1

.ps \\n(PS-I
\\n(SH. \\$1
. ps \ \n(PS
.sp O.3i
.ftR

\" increment number
\. decrease PS
\" number. title
\. restore PS

The section number is kept in number register
SH, which is incremented each time just before it
is used. (A number register may have the same
name as a macro without conflict but a string
may not.)

We used \\n(SH instead of \n(SH and
\\n(PS instead of \n(PS. If we had used \n(SH,
we would get the value of the register at the time
the macro was defined. not at the time it was
used. If that's what you want, fine, but not here.
Similarly, by using \\n(PS, we get the point size
at the time the macro is called.

As an example that does not involve
numbers, recall our .NP macro which had a

. tl 'left' center' right'

We could make these into parameters by using
instead

.tl \\·(LT\\.(CT'\\.(RT'

so the title comes from three strings called L T,
CT and RT. If these are empty. then the title
will be a blank line. Normally CT would be set

with something like

.ds CT - %-

to give just the page number between hyphens
(as on the top of this page), but a user could
supply private definitions for any of the strings.

12. Conditionals

Suppose we want the .SH macro to leave
two extra inches of space just before section 1
but nowhere else. The cleanest way to do that i~
to test inside the .SH macro whether the section
number is I. and add some space if it is. The.if
command provides the conditional test that we
can add just before the heading line is output:

.if \ \n (SH -I .sp 2i \. first section only

The condition after the .if can be any
arithmetic or logical expression. If the condition
is logically true, or arithmetically' greater than
zero, the rest of the line is treated as if it were
text - here a command. If the condition is
false. or zero or negative, the rest of the line is
skipped .

It is possible to do more than one com­
mand if a condition is true. Suppose several
operations are to be done before section 1. One
possibility is to define a macro .51 and invoke it
if we are about to do section I (as determined by
an .if) .

.de SI
--- processing for section 1 ---

,de SH

,if\\n(SH=-I,SI

An alternate way is to use the extended
form of the .if, like this:

.if \\n (SH -1 \{--- processing
for section 1 ----\J

The braces \(and \} must occur in the positions
shown or you will get unexpected extra lines in
your output. troff also provides an 'if-else' con­
struction. which we will not go into here.

A condition can be negated by preceding it
with !; we get the same effect as above (but less
clearly) by using

.if!\\n(SH>I.Sl

There are a handful of other conditions
that can be tested with .if. For example, is the
current page even or odd?

(

(

· if e . tl "even page title"
.if 0 .t1 "odd page title"

13-13

gives facing pages different titles when used
inside an new page macro.

Two other conditions are t and n, which
tell you whether the formatter is troff or moil.

.if t troff stuff .. .

.if n nroff stuff .. .

Finally, string comparisons may be made
in an -if:

.if 'stringl' string2' stuff

does 'stuff' if string 1 is the same as string2. The
character separating the strings can be anything
reasonable that is not contained in either string.
The strings themselves can reference strings with
\ .. , arguments with and so on.

B. Environments

As we mentioned, there is a potential
problem when going across a page boundary:
parameters like size and font for a page title may
well be different from those in ef'rect in the text
when the page boundary occurs. trofl" provides a
very general way to deal with this and similar
situations. There are three 'environments', each
of which has independently seHabie versions of
many of the parameters associated with process­
ing, including size, font, line and title lengths,
fill! oofil! mode, tab stops, and even partially col­
lected lines. Thus the titling problem may be
readily solved by processing the main text in one
environment and titles in a separate one with its
own suitable parameters.

The command .ev n shifts to environment
0; n must be 0, 1 or 2. The command .ev with
no argument returns to the previous environ­
ment. Environment names are maintained in a
stack, 50 calls for different environments may be
nested and unwound consistently.

we say that the main text is pre­
cessed in environment 0, which is where troff

by default. Then we can modify the new
page macro .NP to process titles in environment
1 like this:

.de NP

.cv 1 \" shift to new environment

.It 6i \" set parameters here

.ft R

.ps 10

... any other processing ...

. ev . \" return to previous environment

It is also lJossib!e to initialize the parameters for
an enviro~ment outside the .NP macro, but the

version shown keeps all the processing in one
place and is thus easier to understand and
change.

14, Diversions

There are numerous occasions in page lay­
out when it is necessary to store some text for a
period of time without actually printing it. Foot­
notes are the most obvious example: the text of
the footnote usually appears in the input well
before the place on the page where it is to be
printed is reached. In fact, the place where it is
output normally depends on how big it is, which
implies that there must be a way to process the
fo~tnote at least enough !O decide its size
without printing it.

troff provides a mechanism called a diver­
sion for doing this processing. Any part of the
output may be diverted into a macro instead of
being printed, and then al some convenient time
the macro may be put back into the input.

The command .oi xy begins a diversion -
all subsequent output is coHected into the macro
xy until the command .di wilh no arguments is
encountered. This terminates the diversion.
The processed text is available al any time
thereafter, simply by giving the command

.xy

The vertical size of the last finished diversion is
contained in the built-in number register dn.

As a simple example, suppose we want to
implement a 'keep-release' operation, so that
text between the commands .KS and .KE will not
be split across a page boundary (as for a figure or
table)' Clearly, when a .KS is encountered, we
have to begin diverting the output so we can find
out how big it is. Then when a .KE is seen., we
decide whether the diverted text will fit on the
current page, and print it either there if it filS, or
at the top of the next page if it doesn't. So:

.de KS

.or

.ev 1

.ft

.di XX

\" start keep
\" start fresh line
\" collect in new environment
\" make it filled text
\" coHee! in XX

.de KE \" end keep

.br \" get last partial line

.di \" end diversion

.if\\n(dn> =\\nCt .bp \" bp if doesn't fit

.nf \" bring it back in no-fill

.XX \" text

.ev \" return to normal environment

Recall that number register nl is the current

position on the output page. Since output was
being diverted, this remains at its value when the
diversion started. dn is the amount of text in
the diversion; .t (another built-in register) is the
distance to the next trap, which we assume is at
the bottom margin of the page. If the diversion
is large enough to go past the trap, the .if is
satisfied, and a .bp is issued. In either case. the
diverted output is then brought back with .XX. It
is essential to bring it back in no-fill mode so
troff will do no further processing on it.

This is not the most general keep-release.
nor is it robust in the face of all conceivable
inputs. but it would require more space than we
have here to write it in full generality. This sec­
tion is not intended to teach everything about
diversions, but to sketch out enough that you
can read existing macro packages with some
comprehension.

Acknowledgements

I am deeply indebted to J. F. Ossanna, the
author of troff, for his repeated patient explana­
tions of fine points, and for his continuing wil­
lingness to adapt troff to make other uses easier.
I am also grateful to Jim Blinn, Ted Doloua,
Doug McIlroy, Mike Lesk and loel Sturman for
helpful comments on this paper.

References

OJ J. F. Ossanna. NROFFITROFF User's
Manual, Bell Laboratories Computing Sci­
ence Technical Report 54, 1976.

[2] B. W. Kernighan, A System for Typesetting
Mathematics - User's Guide (Second Edi­
tion), Bell Laboratories Computing Science
Technical Report 17. 1977.

[31 M. E. Lesk. TBL - A Program to Format
Tables. Bell Laboratories Computing Sci­
ence Technical Report 49. 1976.

[4] M. E. Lesk, Typing Documents on UNIX,
Bell Laboratories. 1978.

13-14

[5] 1. R. Mashey and D. W. Smith. PWBIMM
- Programmer's Workbench Memorandum
Macros. Bell Laboratories internal
memorandum.

(

(

,
."

13-15

Appendix A: Phototypesetter Character Set

These characters exist in roman, italic, and bold. To get the one on the left, type the four-character
name on the right.

ff \ (ff fi \(fi fl \(fl ffi \ (Fi m \(Fl
\(ru \(em 1/. \04 112 \02 J/4 \ (34

0 \(co 0 \(de t \(dg \(fm ¢ \ (ct
~ \(rg • \(bu o \(sq . \(hy

(In bold, \ (sq is -.)

The following are special-font characters:

+ \(pl \(mi x \(mu \(di
\(eq - \(..... ~ \(> - ~ \« -

~ \0 ... ± \(+- ... \(no / \ (sl
\(ap - \(-- a: \(pt \l \(gr
\(-> \«- \(ua 1 \(da

J \ (is a \(pd 00 \ (if .J \(sr
C \(sb ::) \(sp u \(cu n \(ca
~ \(jb ;;;? \(ip E \(mo " \(es

\(aa \(ga 0 \ (ci @ \(bs
§ \(sc * \(dd ... \(lh ",. \(rh

f \ (It 1 \(rt r \ (lc \(rc
\ \(lb J \(rb l \ Of \ (rf

i \Ok ~ \(rk I \(bv ~ \ (ts
I \(br \(or \(ul \(rn
• \(..

These four characters also have two-character names. The' is the apostrophe on terminals; the' is the
other quote mark.

\' \' \- \-

These characters exist only on the special font, but they do not have four-character names:

< > \ # @

For greek, precede the roman letter by \(. to get the corresponding greek; for example, \(e. is Q.

abgdezyhiklmncoprstufxqw
Qay8E'~·9'Kl~vEo~paTu.x.w

ABGDEZYHIKLMNCOPRSTUFXQW
ABr6EZHeIKAMN:OnpLTY~Xvn

Programming Language - Reference Manual

Bell

M. Ritchie

Murray Hill, New Jersey

from The C Programming Language, by Brian W. Ker­
!978.

1. Introduction
This manual describes the C language on the DEC PDP-ll, the DEC V AX-! 1, the Honeywell 6000,

the IBM System/370, and the lnterdata 8/32. Where differences exist, it concentrates on the PDP-II, but
oul implementation-dependent details. With few exceptions, these dependencies follow

properties of the hardware; the, various compilers are generally quite compa-
tibie.

2. Lexical conventions
There are six classes of tokens: identifiers, keywords, constants, strings, operators, and other separa-

tors, tabs. newlines, and comments (collectively, "white space") as described below are ignored
serve to separate tokens. Some white space is required to separate otherwise adjacent

and constants.
stream has been parsed into tokens LIP to a character, the next token is taken to

string of characlers which could possibly constitute a token.

2.1 Comments
The ch;Hacters 1* introduce a comment, which terminates with the characters */. Comments do not

nest.

2.2 Identifiers (Names)
An identifier is a sequence of letters and digits; the firsl character must be a letter. The underscore

counls as a lener. and lower case letters are different. No more than the first eight characters are
be used. External identifiers, which are used by various assemblers and

2.3

DEC PDp·! I
DEC VAX-Il

6000
IBM .3601370
Interdata 8/32

7 characters, 2 cases
8 characters, 2 cases
6 characters, 1 case
7 eh araclers, 1 case
8 characters, 2 cases

identifiers are reserved for use as keywords, and may no! be used otherwise:

The entry is not

t UMl(is a Trader:1arl< of lkll laoor210ries.

int:
char
float
double
struct
union

short

auto

extern else
for
do

static while
gate switch
return case
sizeof default
break entry

'4: J.J,.

by any compiler but is reserved for future use. Some

14-1

14-2

implementations also reserve the words fortran and asm.

2.4 Constants
There are several kinds of constants, as listed below. Hardware characteristics which affect sizes are

summarized in §2.6.

2.4.1 Integer constants
An integer constant consisting of a sequence of digits is taken to be octal if it begins with 0 (digit

zero), decimal otherwise. The digits 8 and 9 have octal value 10 and 11 respectively. A sequence of
digits preceded by Ox or ox (digit zero) is taken to be a hexadecimal integer. The hexadecimal digits
include a or A through f or F with values 10 through 15. A decimal constant whose value exceeds the
largest signed machine integer is taken to be long; an octal or hex constant which exceeds the largest
unsigned machine integer is likewise taken to be long.

2.4.2 Explicit long constants
A decimal, octal, or hexadecimal integer constant immediately followed by 1 (letter ell) or L is a long

constant. As discussed below, on some machines integer and long values may be considered identical.

2.4.3 Character constants
A character constant is a character enclosed in single quotes, as in ' x I. The value of a character

constant is the numerical value of the character in the machine's character set.
Certain non-graphic characters, the single quote ' and the backslash \, may be represented according

to the following table of escape sequences:

newline NL (LF) \n
horizontal tab HT \t
backspace BS \b
carriage return CR \r
form feed FF \f
backslash \ \\
single quote \'
bit pattern ddd \ddd

The escape \ddd consists of the backslash followed by 1, 2, or 3 octal digits which are taken to specify the
value of the desired character. A special case of this construction is \0 (not followed by a digit), which
indicates the character NUL. If the character following a backslash is not one of those specified, the
backslash is ignored.

2.4.4 Floating constants
A floating constant consists of an integer part, a decimal point, a fraction part, an e or E, and all

optionally signed integer exponent. The integer and fraction parts both consist of a sequence of digits.
Either the integer part or the fraction part (not both) may be missing; either the decimal point or the e
and the exponent (not both) may be missing. Every floating constant is taken to be double-precision.

2.5 Strings
A string is a sequence of characters surrounded by double quotes, as in " ... ". A string has type

"array of characters" and storage class static (see §4 below) and is initialized with the given characters.
All strings, even when written identically. are distinct. The compiler places a null byte \0 at the end of
each string so that programs which scan the string can find its end. In a string, the double quote charac­
ter " must be preceded by a \; in addition, the same escapes as described for character constants may be
used. Finally, a \ and an immediately following newline are ignored.

2.6 Hardware characteristics
The following table summarizes certain hardware properties which vary from machine to machine.

Although these affect program portability, in practice they are less of a problem than might be thought a
prior;.

(

(

14-3

DEC PDP-II Honeywell 6000 IBM 370 lnterdata 8/32

ASCII ASCII EBCDIC ASCII
char 8 bits 9 bits 8 bits 8 bits
int 16 36 32 32
short 16 36 16 16
long 32 36 32 32
float 32 36 32 32
double 64 72 64 64
range ± 10:1:38 ± 10:1:38 ±10:l:76 ±1O:l:76

The VAx-II is identical to the PDP-II except that integers have 32 bits.

3. Syntax notation
In the syntax notation used in this manual, syntactic categories are indicated by italic type, and literal

words and characters in bold type. Alternative categories are listed on separate lines. An optional ter­
minal or non-terminal symbol is indicated by the subscript "opt," so that

(expressionopt)

indicates an optional expression enclosed in braces. The syntax is summarized in §I8.

4. What's in a name?
C bases the interpretation of an identifier upon two attributes of the identifier: its storage class and its

type. The storage class determines the location and lifetime of the storage associated with an identifier;
the type determines the meaning of the values found in the identifier's storage.

There are four declarable storage classes: automatic, static, external, and register. Automatic vari­
ables are local to each invocation of a block (§9.2), and are discarded upon exit from the block; static
variables are local to a block, but retain their values upon reentry to a block even after control has left
the block; external variables exist and retain their values throughout the execution of the entire program,
and may be used for communication between functions, even separately compiled functions. Register
variables are (if possible) stored in the fast registers of the machine; like automatic variables they are
local to each block and disappear on exit from the block.

C supports several fundamental types of objects:
Objects declared as characters (char) are large enough to store any member of the implementation's

character set, and if a genuine character from that character set is stored in a character variable, its value
is equivalent to the integer code for that character. Other quantities may be stored into character vari­
ables, but the implementation is machine-dependent.

Up to three sizes of integer, declared .short int, int, and long int, are available. Longer
integers provide no less storage than shorter ones, but the implementation may make either short
integers, or long integers, or both, equivalent to plain integers. "Plain" integers have the natural size
suggested by the host machine architecture; the other sizes are provided to meet special needs.

Unsigned integers, declared unsigned, obey the laws of arithmetic modulo 2n where n is the
number of bits in the representation. (On the PDP-II, unsigned long quantities are not supported.)

Single-precision floating point (float) and double-precision floating point (double) may be
synonymous in some implementations.

Because objects of the foregoing types can usefully be interpreted as numbers, they will be referred
to as arithmetic types. Types char and int of all sizes will collectively be called integral types. float
and double will collectively be called floating types.

Besides the fundamental arithmetic types there is a conceptually infinite class of derived types con-
structed from the fundamental types in the following ways:

arrays of objects of most types;
functions which return objects of a given type;
pointers to objects of a given type;
structures containing a sequence of objects of various types;
unions capable of containing anyone of several objects of various types.

In general these methods of constructing objects can be applied recursively.

4

5.
of storage; an lvalue is an An

for
example. if E is an of type. then wE is an lvalue to
which E The name "Ivalue" comes from the 1-:2 which the left

E1 must be The discussion of each operator below indicates whether it
expects ivalue an !value.

6. COl1versiong
A operators may.

type to another. This section
summarizes the conversions demanded
t.he discussion of each operator.

6.1 Characters and

cause conversion value of an
fron. such conver-

operators; it will as

A character or a short may be used wherever an all cases the value
is converted Conversion of a shorter

Whether or not
to a invc}~ves

occurs for characters is n1acnine
but it is thaI a member of the standard character set is Of the machines treated

this manual. On the PDP-! character variables range in from
-128 to 127; the characters of the ASCli

When a
are discarded.

6.2

6.3 and
Conversions of

extension and may appear
is convened

type tend

A character constant

rather

on the

'Nhenever a float
When a double

in

excess bits

in an

the
The result is undefined if

the value will not fit in the space
Conversions of values 10 type are well be;haved. Some f o.

destination lacks sufficient bits.

6.5

be added to or subtracted from a
in the discussion of the addition operator.

of the same type may be in

in

case the

this conversion is

if the

a case the n.rst is

converted to an

converted to
to the

and there is

to long., the vallie of the result is the same as

that of the Thus the conversion ammHits to with zeros the left.

6.6 Arithmetic conversions
A great many operators cause conversions and

be called the "usual arithmetic conversions.'"
result types in a similar way. Tl'.:is pattern will

any of type char or short are converted to int, and any of ty!'-'e floa.t are con-
verted to double.

(

14-5

Then, if either operand is double, the other is converted to double and that is the type of the
result.
Otherwise, if either operand is long) the other is converted to long and that is the type of the
result.
Otherwise, if either operand is unsigned, the other is converted to unsigned and that is the type
of the result.
Otherwise, both operands must be int, and that is the type of the result.

7. Expressions
The precedence of expression operators is the same as the order of the major subsections of this sec­

tion, highest precedence first. Thus, for example, the expressions referred to as the operands of + (§7.4)
are those expressions defined in §§7 .1-7 .3. Within each subsection, the operators have the same pre­
cedence. Left- or right-associativity is specified in each subsection for the operators discussed therein.
The precedence and associativity of all the expression operators is summarized in the grammar of §18.

Otherwise the order of evaluation of expressions is undefined. In particular the compiler considers
itself free to compute subexpressions in the order it believes most efficient, even if the subexpressions
involve side effects. The order in which side effects take place is unspecified. Expressions involving a
commutative and associative operator (*, +, &, I, A) may be rearranged arbitrarily, even in the presence
of parentheses; to force a particular order of evaluation an explicit temporary must be used.

The handling of overflow and divide check in expression evaluation is machine-dependent. All exist­
ing implementations of C ignore integer overflows; treatment of division by 0, and all floating-point
exceptions, varies between machines, and is usually adjustable by a library function.

7.1 Primary expressions
Primary expressions involving ., ->, subscripting, and function calls group left to right.

primary-expression:
identifier
constant
string
(expression)
primary-expression [expression)
primary-expression (expression-lislop,)

primary-(value • identifier
primary-expression -> identifier

expression-list:
expression
expression-list , expression

An identifier is a primary expression, provided it has been suitably declared as discussed below. Its type
is specified by its declaration. If the type of the identifier is "array of ... ", however, then the value of
the identifier-expression is a pointer to the first object in the array, and the type of the expression is
"pointer to ... ". Moreover, an array identifier is not an Ivalue expression. Likewise, an identifier which
is declared "function returning ... ", when used except in the function-name position of a call, is con­
verted to "pointer to function returning ... ".

A constant is a primary expression. Its type may be int, long, or double depending on its form.
Character constants have type int; floating constants are double.

A string is a primary expression. Its type is originally "array of Char"; but following the same rule
given above for identifiers, this is modified to "pointer to char" and the result is a pointer to the first
character in the string. (There is an exception in certain initializers; see §8.6')

A parenthesized expression is a primary expression whose type and value are identical to those of the
unadorned expression. The presence of parentheses does not affect whether the expression is an Ivalue.

A primary expression followed by an expression in square brackets is a primary expression. The
intuitive meaning is that of a subscript. Usually, the primary expression has type "pointer to ... ", the
subscript expression is int, and the type of the result IS " ... ". The expression E1 (E2] is identical (by
definition) to * ((E1) + (E2)). All the clues needed to understand this notation are contained in this sec­
tion together with the discussions in §§ 7.1,7.2, and 7.4 on identifiers, *, and ... respectively; §14.3 below
summarizes the implications.

14-6

A function call is a primary expression followed by parentheses contamlng a possibly empty,
comma-separated list of expressions which constitute the actual arguments to the function. The primary
expression must be of type "function returning ... ", and the result of the function call is of type ".
As indicated below, a hitherto unseen identifier followed immediately by a left parenthesis is contextually
declared to represent a function returning an integer; thus in the most common case, integer-valued
functions need not be declared.

Any actual arguments of type float are converted to double before the call; any of type char or
short are converted to int; and as usual, array names are converted to pointers. No other conversions
are performed automatically; in particular, the compiler does not compare the types of actual arguments
with those of formal arguments. If conversion is needed, use a cast; see §7.2. 8.7.

In preparing for the call to a function, a copy is made of each actual parameter; thus, all argument­
passing in C is strictly by value. A function may change the values of its formal parameters, but these
changes cannot affect the values of the actual parameters. On the other hand, it is possible to pass a
pointer on the understanding that the function may change the value of the object to which the pointer
points. An array name is a pointer expression. The order of evaluation of arguments is undefined by the
language; take note that the various compilers differ.

Recursive calls to any function are permitted.
A primary expression followed by a dot followed by an identifier is an expression. The first expres­

sion must be an Ivalue naming a structure or a union, and the identifier must name a member of the
structure or union. The result is an Ivalue referring to the named member of the structure or union.

A primary expression followed by an arrow (built from a - and a » followed by an identifier is an
expression. The first expression must be a pointer to a structure or a union and the identifier must name
a member of that structure or union. The result is an Ivalue referring to the named member of the struc­
ture or union to which the pointer expression points.

Thus the expression E1->MOS is the same as (*E1). MOS. Structures and unions are discussed in
§8.5. The rules given here for the use of structures and unions are not enforced strictly, in order to allow
an escape from the typing mechanism. See § 14.1.

7.2 Unary operators
Expressions with unary operators group right-to-Ieft.

unary-expression:
* expression
& Ivalue
- expression
! expression
- expression
++ Ivalue
-- Ivalue
lvalue ++
Ivalue --
(type-name) expression
sizeof expression
sizeof (type-name)

The unary * operator means indirection: the expression must be a pointer, and the result is an Ivalue
referring to the object to which the expression points. If the type of the expression is "pointer to ... " ,
the type of the result is .•... ".

The result of the unary & operator is a pointer to the object referred to by the lvalue. If the type of
the Ivalue is " ... ", the type of the result is "pointer to

The result of the unary - operator is the negative of its operand. The usual arithmetic conversions
are performed. The negative of an unsigned quantity is computed by subtracting its value from 2n ,

where n is the number of bits in an into There is no unary + operator.
The result of the logical negation operator ! is 1 if the value of its operand is 0, 0 if the value of its

operand is non-zero. The type of the result is into It is applicable to any arithmetic type or to pointers.
The - operator yields the one's complement of its operand. The usual arithmetic conversions are

performed. The type of the operand must be integral.
The object referred to by the Ivalue operand of prefix ++ is incremented. The value is the new value

of the operand, but is not an Ivalue. The expression ++x is equivalent to x+=1. See the discussions of
addition (§7.4) and assignment operators (§7.14) for information on conversions.

(

14

-- is decremented analogously to the prefix ++ operator.
When to an lvalue the result is the value of the object referred to by ihc Ivalue.

After the result is the object is incremented in the same marmer as for the prefix ++ operator.
The type the result is the same as the type of the lvalue expression.

When to an lvalue the resull is the value of the object referred to by the Iva!ue.
the object is decremented in the marmer as for the prefix -- operator. The type

of the result is the same as the type of the lvalue expression.
An the name of a data type causes conversion of the value of

the to the named type. This construction is called a cast. Type names are described in §8. 7.
The sizeaf operator the in bytes, of its operand. (A byte is undefined by the language

except in terms of the value of sizeaf. However, in all implementations a byte is the space
required to hold a When applied to an array, the result is the total number of bytes in the array.
The size is determined from the declarations of the objects in the expression. This expression is semanti­
cally an constant and may be used anywhere a constant is required. Its major use is in communi­
cation with routines like storage allocators and 110 systems.

The sizeo! operator may also be to a type name. In that case it yields the
in of an of the indicated type.

The construction sizeaf (l)ipe) is taken to be a unit, so the expression sizeaf «(Vpe) -2 is the
same as (sheef (l)ipe 1) -2.

operators w, i, and % group left-to-right. The usual arithmetic conversions are

expressiON % expression

The binary 1< operator indicates The ,.. operator is associative and expressions with
several at the same level may be rearranged by the

The binary operator indicates division. When positive integers are divided truncation is toward 0,
but the form of truncation is if either is negative. On all machines covered

this as the dividend. It is always true that (a/b) *b + a%b
is to a. b is not

The binary % operator the remainder from the division of the first expression by the second.
The usual arithmetic conversions are The operands must not be float.

7.4 Additive opera.tors
The additive operators ... and - group The usual arithmetic conversions are performed.

There are some additional type possibilities for each operator.

expression .,. eXllre:,Slfll1

The result of the + operator is the sum of the A to an object in an array and a value of
type may be added. The latter is in all cases converted to an address offset by multiplying it

Thus if p is a
the array.

which the The result is a pointer of the same type as the
in the same array, appropriately offset fwm the origi­

the expression P+1 is a pointer to the next

No further type combinations are aBowed for pointers.
The + operator is associative and with several additions at the same level may be rear-

the
The result of the - operator is the difference of the operands. The usual arithmetic conversions are

a value of any type may be subtracted from a and then the
same conversions as for addition

If two of the same type are subtracted, the result is converted (by division by the
the number of objects sepaiating the pointed-to objects.

will in point to objects in the same

14-8

array, since pointers, even to objects of the same type, do not necessarily differ by a multiple of the
object.length.

7.5 Shift operators
The shift operators « and » group left-to-right. Both perform the usual arithmetic conversions on

their operands, each of which must be integral. Then the right operand is converted to int; the type of
the result is that of the left operand. The result is undefined if the right operand is negative. or greater
than or equal to the length of the object in bits.

shift-expression:
expression « expression
expression » expression

The value of E1 «E2 is E1 (interpreted as a bit pattern) left-shifted E2 bits; vacated bits are O-filled.
The value of E1 »E2 is E1 right-shifted E2 bit positions. The right shift is guaranteed to be logical (0-
flit) if E1 is unsigned; otherwise it may be (and is, on the PDP-l 1) arithmetic (fill by a copy of the sign
bit).

7.6 Relational operators
The relational operators group left-to-right, but this fact is not very useful; a<b<c does not mean

what it seems to.

relational-expression:
expression < expression
expression> expression
expression <- expre.'iSion
expression >- expression

The operators < (less than), > (greater than). <- (tess than or equal to) and >- (greater than or equal to)
all yield 0 if the specified relation is false and 1 if it is true. The type of the result is into The usual
arithmetic conversions are performed. Two pointers may be compared; the result depends on the relative
locations in the address space of the pointed-to objects. Pointer comparison is portable only when the
pointers point to objects in the same array.

7.7 Equality operators

equa lity-expression:

expression -- expression
expression ! - expression

The -- (equal to) and the ! - (not equal to) operators are exactly analogous to the relational operators
except for their lower precedence. (Thus a<b -- c<d is 1 whenever a<b and c<d have the same
truth-value) .

A pointer may be compared to an integer. but the result is machine dependent unless the integer is
the constant O. A pointer to which 0 has been assigned is guaranteed not to point to any object, and will
appear to be equal to 0; in conventional usage, such a pointer is considered to be null.

7.8 Bitwise AND operator

and-expression:
expression & expression

The & operator is associative and expressions involving & may be rearranged. The usual arithmetic
conversions are performed; the result is the bitwise AND function of the operands. The operator applies
only to integral operands.

7.9 Bitwise exclusive OR operator

exclusive-or-expression:
expression A expression

The A operator is associative and expressions involving A may be rearranged. The usual arithmetic
conversions are performed; the result is the bitwise exclusive OR function of the operands. The operator
applies only to integral operands.

(

14-9

7.10 Bitwise inclusive OR operator

inclusive-or-expression:
expression I expression

The I operator is associative and expressions involving I may be rearranged. The usual arithmetic
conversions are performed; the result is the bitwise inclusive OR function of its operands. The operator
applies only to integral operands.

7.11 Logical AND operator

!ogical·and-expression:
expression && expression

The &Ii operator groups left-to-right. It returns 1 if both its operands are non-zero. 0 otherwise. Unlike
&, && guarantees left-lo-right evaluation; moreover the second operand is not evaluated if the first
operand is O.

The operands need not have the same type, but each must have one of the fundamental types or be
a pointer. The result is always int.

1.12 Logical OR operator

logical-or-expression:
expression I I expression

The I I operator groups left-io-right. it returns 1 if either of its operands is non-zero, and 0 otherwise.
Unlike !, I! guarantees evaluation; moreover. the second operand is not evaluated if the
value of the first operand is non-zero.

The operands need not have the same type, but each must have one of the fundamental types or be
a pointer. The result is always into

1.13 Conditional operator

conditional-expression:
expression ? expression : expression

Conditional expressions group right-la-left. The first expression is evaluated and if it is non-zero, the
result is the value of the second expression, otherwise that of third expression. If possible, the usual
arithmetic conversions are performed to bring the second and third expressions to a common type; other­
wise, if both are pointers of the same lype, the result has the common type; otherwise, one must be a
pointer and the other the constant 0, and the result has the type of the pointer. Only one of the second
and third is evaluated.

7.14 Assignment operators
There are a number of assignment operators, all of which group right-to-Ieft. All require an lva!ue as

their left and the type of an assignment expression is that of its left operand. The value is the
value stored in the left operand after the assignment has taken place. The two parts of a compound
assignment operator are separate tokens.

In the
the lvalue.

Ivalue '" expressIOn
lvalue +'" PYI"P,,<ill,11

lvaiue ~'" expression

lvaiue "''''' expression
lvalue I"'" expression
Iva lue " .. py'"'P',<ifl'''

ivalue » ... expression
Ivalue « .. expreSSion
Ivalue &'" expression
Ivalue A". expression
lvalue ! ... expression

with ,., the value of the expression replaces that of the object referred to by
have arithmetic type, the right operand is converted to the lype of the left

14-10

preparatory to the assignment.
The behavior of an expression of the form E1 op- E2 may be inferred by taking it as equivalent to

E1 - E1 op (E2); however. E1 is evaluated only onCe. in +- and --. the left operand may be a
pointer, in which case the (integral) right operand is converted as explained in §7.4; all right operands
and all non-pointer left operands must have arithmetic type.

The compilers currently allow a pointer to be assigned to an integer. an integer to a pointer, and a
pointer to a pointer of another type. The assignment is a pure copy operation, with no conversion. This
usage is nonportable, and may produce pointers which cause addressing exceptions when used. However,
it is guaranteed that assignment of the constant 0 to a pointer will produce a null pointer distinguishable
from a pointer to any object.

7.1 S Comma operator

comma-expression:
expression I expression

A pair of expressions separated by a comma is evaluated left-ta-right and the value of the left expression
is discarded. The type and value of the result are the type and value of the right operand. This operator
groups left-to-right. In contexts where comma is given a special meaning, for example in a list of actual
arguments to functions (§7.0 and lists of initializers (§8.6), the comma operator as described in this sec­
tion can only appear in parentheses; for example,

f(a, (t-3, t+2) I c)

has three arguments, the second of which has the value S.

•. Declarations
Declarations are used to specify the interpretation which C gives to each identifier~ they do not

necessarily reserve storage associated with the identifier. Declarations have the form

declaration:
ded-specifiers declarator-list., ;

The declarators in the declarator-list contain the identifiers being declared. The decl-specifiers consist of a
sequence of type and storage class specifiers.

decl-specifiers:
type-specifier dec/-specifiers.,
sc-specifier dec/-specifiers.,

The list must be self-consistent in a way described below .

•. 1 Storage class specifiers
The sc-specifiers are:

sc-specifier:
auto
static
extern
register
typedef

The typedef Specifier does not reserve storage and is called a "storage class specifier" only for syntactic
convenience; it is discussed in §8.8. The meanings of the various storage classes were discussed in §4.

The auto. static. and register declarations also serve as definitions in that they cause an
appropriate amount of storage to be reserved. In the extern case there must be an external definition
(§1O) for the given identifiers somewhere outside the function in which they are declared.

A register declaration is best thought of as an auto declaration, together with a hint to the com­
piler that the variables declared will be heavily used. Only the first few such declarations are effective.
Moreover, only variables of certain types will be stored in registers; on the PDP-II, they are into char,
or pointer. One other restriction applies to register variables: the address-of operator & cannot be applied
to them. Smaller, faster programs can be expected if register declarations are used appropriately, but
future improvements in code generation may render them unnecessary.

(

14-11

At most one sc-specifier may be given in a declaration. If the sc-specifier is missing from a declara­
tion, it is taken to be auto inside a function, extern outside. Exception: functions are never automatic.

8.2 Type specifiers
The type-specifiers are

type-specifier:
char
short
int
long
unsigned
float
double
struct-or-union-specifier
typede/-name

The words long, short, and unsigned may be thought of as adjectives; the following combinations are
acceptable.

short int
long int
unsigned int
long float

The meaning of the last is the same as double. Otherwise, at most one type-specifier may be given in a
declaration. If the type-specifier is missing from a declaration, it is taken to be into

Specifiers for structures and unions are discussed in §8.5; declarations with typedef names are dis­
cussed in §8.8.

8.3 Declarators
The declarator-list appearing in a declaration is a comma-separated sequence of declarators, each of

which may have an initialiler.

declarator-list:
init-declarator
init-declarator I declarator-list

init-declarator:
declarator initializer 0fH

Initializers are discussed in §8.6. The specifiers in the declaration indicate the type and storage class of
the objects to which the declarators refer. Declarators have the syntax:

declarator:
identifier
(declarator)
* declarator
declarator ()
declarator [constant-expressionoPl]

The grouping is the same as in expressions.

8.4 Meaning of declarators
Each declarator is taken to be an assertion that when a construction of the same form as the declara­

tor appears in an expression, it yields an object of the indicated type and storage class. Each declarator
contains exactly one identifier; it is this identifier that is declared.

If an unadorned identifier appears as a declarator, then it has the type indicated by the specifier head­
ing the declaration.

A declarator in parentheses is identical to the unadorned declarator, but the binding of complex
declarators may be altered by parentheses. See the examples below.

Now imaJine a declaration

14-12

T 01

where T is a type-specifier Clike int, etc.) and 01 is a declarator. Suppose this declaration makes the
identifier have type" ... T," where the" is empty if 01 is just a plain identifier (so that the type of
x in .. int x" is just int). Then if 01 has the form

the type of the contained identifier is " . .. pointer to T."
If D1 has the form

D()

then the contained identifier has the type" ... function returning T."
If D1 has the form

o [constant-expression)

or

D[)

then the contained identifier has type " ... array of T." In the first case the constant expression is an
expression whose value is determinable at compile time, and whose type is into (Constant expressions
are defined precisely in §15.) When several "array of' specifications are adjacent, a multi-.dimensional
array is created; the constant expressions which specify the bounds of the arrays may be missing only for
the first member of the sequence. This elision is useful when the array is external and the actual
definition, which allocates storage. is given elsewhere. The first constant-expression may also be omitted
when the declarator is followed by initialization. In this case the size is calculated from the number of
initial elements supplied.

An array may be constructed from one of the basic types, from a pointer, from a structure or union,
or from another array (to generate a multi-dimensional array).

Not all the possibilities allowed by the syntax above are actually permitted. The restrictions are as
follows: functions may not return arrays, structures, unions or functions, although they may return
pointers to such things; there are no arrays of functions. although there may be arrays of pointers to
functions. Likewise a structure or union may not contain a function. but it may contaln a pointer to a
function.

As an example, the declaration

int i, *ip, f () I *fip() , (*pfil () i

declares an integer i. a pointer ip to an integer. a function f returning an integer. a function fip
returning a pointer to an integer, and a pointer pfi to a function which returns an integer. It is espe­
cially useful to compare the last two. The binding of *fip () is * {fip () l, so that the declaration sug­
gests, and the same construction in an expression requires. the calling of a function fip, and then using
indirection through the (pointer) result to yield an integer. In the declarator (*pf i) (), the extra
parentheses are necessary, as they are also in an expression. to indicate that indirection through a pointer
to a function yields a function. which is then called; it returns an integer.

As another example.

float fa(17), *afp[17]i

declares an array of float numbers and an array of pointers to float numbers. Finally,

static int x3d[3] (5] (7}i

declares a static three-dimensional array of integers, with rank 3 x 5 x 7. In complete detail. x3d is an
array of three items; each item is an array of five arrays; each of the latter arrays is an array of seven
integers. Any of the expressions x3d, x3d[i], x3d[i] [j], x3d[i] [j) [k] may reasonably appear in
an expression. The first three have type "array." the last has type into

8.S Structure and union declarations
A structure is an object consisting of a sequence of named members. Each member may have any

type. A union is an object which may, at a given time, contain anyone of several members. Structure
and union specifiers have the same form.

(

(

14-13

struct-or-union-specifier:
struct-or-union { struct-decl-list I
struct-or-union identifier { struct-decl-list I
struct-or-union identifier

struct-or-union:
struct
union

The struct-decl-Iist is a sequence of declarations for the members of the structure or union:

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

struct-declaration:
type-specifier struc/-declarator-Iist ;

struct-declarator-list:
struc t-declarator
struct-declarator I stmcr-declarator-list

In the usual case, a struct-declarator is just a declarator for a member of a structure or union. A struc­
ture member may also consist of a specified number of bits. Such a member is also called a field; its
length is set off from the field name by a colon.

struct-declarator:
declarator
declarator : constant-expression
: constant-expression

Within a structure, the objects declared have addresses which increase as their declarations are read left­
to-right. Each non-field member of a structure begins on an addressing boundary appropriate to its type;
therefore, there may be unnamed holes in a structure. Field members are packed into machine integers;
they do not straddle words. A field which does not fit into the space remaining in a word is put into the
next word. No field may be wider than a word. Fields are assigned right-to-Ieft on the POP-II, left-to­
right on other machines.

A struct-declarator with no declarator, only a colon and a width, indicates an unnamed field useful
for padding to conform to externally-imposed layouts. As a special case, an unnamed field with a width
of 0 specifies alignment of the next field at a word boundary. The "next field" presumably is a field, not
an ordinary structure member, because in the latter case the alignment would have been automatic.

The language does not restrict the types of things that are declared as fields, but implementations are
not required to support any but integer fields. Moreover, even int fields may be considered to be
unsigned. On the POP-II, fields are not signed and have only integer values. In all implementations,
there are no arrays of fields. and the address-of operator & may not be applied to them, so that there are
no pointers to fields.

A union may be thought of as a structure all of whose members begin at offset 0 and whose size is
sufficient to contain any of its members. At most one of the members can be stored in a union at any
time.

A structure or union specifier of the second form. that is. one of

struct identifier { struct-decl-list I
union identifier { struct-decl-list }

declares the identifier to be the structure tag (or union tag) of the structure specified by the list. A subse­
quent declaration may then use the third form of specifier, one of

struct identifier
union identifier

Structure tags allow definition of self-referential structures; they also permit the long part of the declara­
tion to be given once and used several times. It is illegal to declare a structure or union which contains
an instance of itself. but a structure or union may contain a pointer to an instance of itself.

14-14

The names of members and tags may be the same as ordinary variables. However. names of tags
and members must be mutually distinct.

Two structures may share a common initial sequence of members; that is. the same member may
appear in two different structures if it has the same type in both and if all previous members are the same
in both. (Actually. the compiler checks only that a name in two different structures has the same type
and offset in both, but if preceding members differ the construction is nonportable.)

A simple example of a structure declaration is

struct tnode (

I ;

char tword[20];
int count;
struct tnode *left;
struct tnode *righti

which contains an array of 20 characters, an integer, and two poimers to similar structures. Once this
declaration has been given, the declaration

struct tnode S, *sp;

declares s to be a structure of the given sort and sp to be a pointer to a structure of the given sort. With
these declarations, the expression

sp->count

refers to the count field of the structure to which sp points;

s.left

refers to the left subtree pointer of the structure s; and

s. right->tword [0]

refers to the first character of the tword member of the right subtree of s.

8.6 Initialization
A declarator may specify an initial value for the identifier being declared. The initializer is preceded

by ... , and consists of an expression or a list of values nested in braces.

initializer:
- expression
- I inilializer-list I
- (inifializer-list J

initializer-list:
expression
mitializer-list I initializer-list
(initializer-list I

All the expressions in an initializer for a static or external variable must be constant expressions,
which are described in §15, or expressions which reduce to the address of a previously declared variable,
possibly offset by a constant expression. Automatic or register variables may be initialized by arbitrary
expressions involving constants, and previously declared variables and functions.

Static and external variables which are not initialized are guaranteed to start off as 0; automatic and
register variables which are not initialized are guaranteed to start off as garbage.

When an initializer applies to a scalar (a pointer or an object of arithmetic type), it consists of a sin­
gle expression, perhaps in braces. The initial value of the object is taken from the expression; the same
conversions as for assignment are performed.

When the declared variable is an aggregate (a structure or array) then the initializer consists of a
brace-enclosed, comma-separated list of initializers for the members of the aggregate, written in increas­
ing subscript or member order. If the aggregate contains subaggregates, this rule applies recursively to
the members of the aggregate. If there are fewer initializers in the list than there are members of the
aggregate, then the aggregate is padded with O·s. It is nol permitted to initialize unions or automatic
aggregates.

(

14-15

Braces may be elided as follows. If the initializer begins with a left brace, then the succeeding
comma-separated list of initializers initializes the members of the aggregate; it is erroneous for there to
be more initializers than members. If, however, the initializer does not begin with a left brace, then only
enough elements from the list are taken to account for the members of the aggregate; any remaining
members are ieft to initialize the next member of the aggregate of which the current aggregate is a part.

A final abbreviation allows a char array to be initialized by a string. I n this case successive charac­
ters of the string initialize the members of the array.

for example,

int x [] .. ! 1., 3, 5 I;

declares and initializes x as a I-dimensional array which has three members, since no size was specified
and there are three initializers.

float y[4] [3] = (
(1,3,5),
(2,4,6),
! 3, 5, 7 I,

1 ;

is a completely-bracketed initialization: L 3, and 5 initialize the first row of the array y(O)' namely
y(O) [0), yeO] (1], and yeo] [2]. Likewise the next two lines initialize y[1] and y(2]. The initial­
izer ends early and therefore y [3] is initialized with O. Precisely the same effect could have been
achieved by

float y[4] [3] '" (
1, 3, 5, 2, 4, 6, 3, 5, 7

1 ;

The initializer for y begins with a left brace, but that for y (0) does not, therefore 3 elements from the
list are used. Likewise the next three are taken successively for y [1] and y (2). Also,

float y(4] (3] '" {
{ 1 1, { :2 l, { 31, (4 l

I, , ,

initializes the first column of y (regarded as a two-dimensional array) and leaves the rest O.
finally,

char msg [} '" "Syntax error on line %s\n";

shows a character array whose members are initialized with a string.

8.7 Type names
I n two contexts (to specify type conversions explicitly by means of a cast, and as an argument of

sizeof) it is desired to supply the name of a data type. This is accomplished using a "type name,"
which in essence is a declaration for an object of that type which omits the name of the object.

type-name:
type-specij;er abstract-declarator

abstract-declarator:
empty
(abstract-declarator)
." abstract-declarator
abstract-declarator ()
abstract-declarator [constant-expressiol!oPI]

To avoid ambiguity, in the construction

(abstract-declarator)

the abstract-deciarator is required to be non-empty. Under this restriction, it is possible to identify
uniquely the location in the abstract-declarator where the identifier would appear if the construction were
a declarator in a declaration. The named type is then the same as the type of the hypothetical identifier.
For example,

int
int *
int *(3]
int (*) [3]
int * ()
int (*) ()

14-16

name respectively the types "integer." "pointer to integer," "array of 3 pointers to integers." "pointer
to an array of 3 integers." "function returning pointer to integer." and "pointer to function returning an
integer. "

8.8 Typedef
Declarations whose "storage class" is typedef do not define storage. but instead define identifiers

which can be used later as if they were type keywords naming fundamental or derived types.

typede/-name:
identifier

Within the scope of a declaration involving typedef. each identifier appearing as part of any declarator
therein become syntactically equivalent to the type keyword naming the type associated with the identifier
in th~ way described in §8.4. For example, after

typedef int MILES, *KLICKSPi
typedef struct { double re, imil complexi

the constructions

MILES distance;
extern KLICKSP metricPi
complex z, *ZPi

are all legal declarations: the type of distance is into that of metricp is "pointer to int," and that of
z is the specified structure. zp is a pointer to such a structure.

typedef does not introduce brand new types. only synonyms for types which could be specified in
another way. Thus in the example above distance is considered to have exactly the same type as any
other int object

9. Statements
Except as indicated. statements are executed in sequence.

9.1 Expression statement
Most statements are expression statements. which have the form

expression ;

Usually expression statements are assignments or function calls.

9.2 Compound statement, or block
So that several statements can be used where one is expected, the compound statement (also, and

equivalently, called "block") is provided:

compound-statement:
{ declaration-listop, statement-lislop, }

declaration-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

If any of the identifiers in the declaration-list were previously declared, the outer declaration is pushed
down for the duration of the block, after which it resumes its force.

(

(

14-17

Any initializations of auto or register variables are performed each time the block is entered at
the top. It is currently possible (but a bad practice) to transfer into a block; in that case the initializations
are not performed. Initializations of static variables are performed only once when the program begins
execution. Inside a block, extern declarations do not reserve storage so initialization is not permitted.

9.3 Conditional statement
The two forms of the conditional statement are

if (expression) statement
if (expression) statement else statement

In both cases the expression is evaluated and if it is non-zero, the first substatement is executed. In the
second case the second substatement is executed if the expression is O. As usual the "else" ambiguity is
resolved by connecting an else with the last encountered else-less if.

9.4 While statement
The while statement has the form

while (expression) statement

The substatement is executed repeatedly so long as the value of the expression remains non-zero. The
test takes place before each execution of the statement.

9.S Do statement
The do statement has the form

do statement while (expression) i

The substatement is executed repeatedly until the value of the expression becomes zero. The test takes
place after each execution of the statement.

9.6 For statement
The for statement has the form

for (expression-} opt i expression-2op' i expression-lop') statement

This statement is equivalent to

expression-} i
while (expression-2)

statement
expression-] i

Thus the first expression specifies initialization for the loop; the second specifies a test, made before each
iteration, such that the loop is exited when the expression becomes 0; the third expression often specifies
an incrementation which is performed after each iteration.

Any or all of the expressions may be dropped. A missing expression-2 makes the implied while
clause equivalent to while (1); other missing expressions are simply dropped from the expansion above.

9.7 Switch statement
The switch statement causes control to be transferred to one of several statements depending on

the value of an expression. It has the form

swi tch (expression) statement

The usual arithmetic conversion is performed on the expression. but the result must be into The state­
ment is typically compound. Any statement within the statement may be labeled with one or more case
prefixes as follows:

case constant-expression :

where the constant expression must be into No two of the case constants in the same switch may have
the same value. Constant expressions are precisely defined in §15.

There may also be at most one statement prefix of the form

14-18

default :

When the switch statement is executed, its expression is evaluated and compared with each case con­
stant. If one of the case constants is equal to the value of the expression, control is passed to the state­
ment following the matched case prefix. If no case constant matches the expression. and if there is a
defaul t prefix. control passes to the prefixed statement. If no case matches and if there is no defaul t
then none of the statements in the switch is executed.

case and default prefixes in themselves do not alter the flow of control. which continues unim­
peded across such prefixes. To exit from a switch. see break. §9.8.

Usually the statement that is the subject of a switch is compound. Declarations may appear at the
head of this statement. but initializations of automatic or register variables are ineffective.

9.8 Break statement
The statement

break

causes termination of the smallest enclosing while. do, for. or switch statement; control passes to the
statement following the terminated statement.

9.9 Continue statement
The statement

continue

causes control to pass to the loop-continuation portion of the smallest enclosing while, do. or for state­
ment; that is to the end of the loop. More precisely. in each of the statements

while (...) do (for (...)

contin: ; contin: contin: ;
J I while (...); I

a continue is equivalent to goto contin. (Following the contin: is a null statement. §9.13')

9.10 Return statement
A function returns to its caller by means of the return statement, which has one of the forms

return ;
return expression;

In the first case the returned value is undefined. In the second case, the value of the expression is
returned to the caller of the function. If required, the expression is converted. as if by assignment, to the
type of the function in which it appears. Flowing off the end of a function is equivalent to a return with
no returned value.

9.11 GOIO statement
Control may be transferred unconditionally by means of the statement

goto Identifier ;

The identifier must be a label (§9.12) located in the current function.

9.12 Labeled statement
Any statement may be preceded by label prefixes of the form

identijier :

which serve to declare the identifier as a label. The only use of a label is as a target of a goto. The
scope of a label is the current function. excluding any sub-blocks in which the same identifier has been
redeclared. See § II.

(

(

14-1 9

9.13 Null statement
The null statement has the form

A null statement is useful to carry a label just before the of a compound statement or to supply a null
body to a looping statement such as while.

10. External definitions
A C program consists of a sequence of external definitions. An external definition declares an

identifier to have storage class extern (by default) or perhaps static, and a specified type. The type­
specifier (§8.2) may also be empty, in which case the type is taken to be into The scope of external
definitions persists to the end of the file in which they are declared just as the effect of declarations per­
sists to the end of a block. The syntax of external definitions is the same as that of all declarations,
except that only at this level may the code for functions be given.

10.1 External function definitions
Function definitions have the form

function-definition:
decl-specifiersoP' function-declarator function-body

The only sc-specifiers allowed among the decl-specifiers are extern or static; see § il.2 for the distinc­
tion between them. A function declarator is similar to a declarator for a "function returning ... " except
that it lists the forma! parameters of the function being defined.

fu fie tiD n-dec lara tor:
declarator (parameter-list)

opt

para meter- list:
identifier
identifier) parameter-list

The function-body has the form

function-body:
declaration-Itst compound-statement

The identifiers in the parameter list, and only those identifiers, may be declared in the declaration list.
Any identifiers whose type is not given are taken to be int The only storage class which may be
specified is register; if it is specified, the corresponding actual parameter will be copied, if possible,
into a register at the outset of the function.

A simpie example of a function definition is

int max (a, h, c)
int a, h, Ci

into m;

m = (a > hI ? a. : h;
return((m> cl ? m : el;

Here int is the type-specifier; max (a, b, c) is the function-declarator; int a., b, c; is the
declaration-list for the formal parameters; (.. ,) is the block giving the code for the statement.

C converts all float actual parameters to double, so formal parameters declared float have their
declaration adjusted to read double. Also, since a reference to an array in any context (in particular as
an actual parameter) is taken to mean a pointer to the firs I element of the array, declarations of formal
parameters declared "array of ... " are adjusted to read "pointer to ... ". Finally, because structures,
unions and functions cannot be passed to a function, it is useless to declare a formal parameter to be a
structure, union or function (pointers to such objects are of course permitted).

14-20

10.2 External data definitions
An external data definition has the form

data-definition:
declaration

The storage class of such data may be extern (which is the default) or static, but not auto or
register.

11. Scope rules
A C program need not all be compiled at the same time: the source text of the program may be kept

in several files. and precompiled routines may be loaded from libraries. Communication among the func­
tions of a program may be carried out both through explicit calls and through manipulation of external
data.

Therefore, there are two kinds of scope to consider: first, what may be called the lexical scope of an
identifier, which is essentially the region of a program during which it may be used without drawing
"undefined identifier" diagnostics; and second, the scope associated with external identifiers, which is
characterized by the rule that references to the same external identifier are references to the same object.

11.1 Lexical scope
The lexical scope of identifiers declared in external definitions persists from the definition through

the end of the source file in which they appear. The lexical scope of identifiers which are formal parame­
ters persists through the function with which they are associated. The lexical scope of identifiers declared
at the head of blocks persists until the end of the block. The lexical scope of labels is the whole of the
function in which they appear.

Because all references to the same external identifier refer to the same object (see § 11.2) the com­
piler checks all declarations of the same external identifier for compatibility; in effect their scope is
increased to the whole file in which they appear.

In all cases, however, if an identifier is explicitly declared at the head of a block, including the block
constitutir.g a function, any declaration of that identifier outside the block is suspended until the end of
the block.

Remember also (§8.S) that identifiers associated with ordinary variables on the one hand and those
associated with structure and union members and tags on the other form two disjoint classes which do
not conflict. Members and tags follow the same scope rules as other identifiers. typedef names are in
the same class as ordinary identifiers. They may be rededared in inner blocks, but an explicit type must
be given in the inner declaration:

typedef float distance;

auto int distance;

The int must be present in the second declaration, or it would be taken to be a declaration with no
declarators and type distancet.

11.2 Scope of externals
If a function refers \0 an identifier declared to be extern., then somewhere among the files or

libraries constituting the complete program there must be an external definition for the identifier. AI!
functions in a given program which refer to the same external identifier refer to the same object, so care
must be taken that the type and size specified in the definition are compatible with those specified by each
function which references the data.

The appearance of the extern keyword in an external definition indicates that storage for the
identifiers being declared will be allocated in anotht:r file. Thus in a multi-file program, an external data
definition without the extern specifier must appear in exactly one of the files. Any other files which
wish to give an external definition ror the identifier must include the extern in the definition. The
identifier can be initialized only in the declaration where storage is allocated.

Identifiers declared static at the top level in external definitions are not visible in other files.
Functions may be declared static.

tit IS agreed th~1 the ict is thin here.

(:

(

14-21

12. Compiler control lines
The C compiler contains a preprocessor capable of macro substitution, conditional compilation, and

inclusion of named files. Lines beginning with # communicate with this preprocessor. These lines have
syntax independent of the rest of the language; they may appear anywhere and have effect which lasts
(independent of scope) until the end of the source program file.

12.1 Token replacement
A compiler-control line of the form

#def ine identifier token-string

(note: no trailing semicolon) causes the preprocessor to replace subsequent instances of the identifier with
the given string of tokens. A line of the form

#define identifier (identifier, ... , identifier) token-string

where there is no space between the first identifier and the (, is a macro definition with arguments. Sub­
sequent instances of the first identifier followed by a (, a sequence of tokens delimited by commas. and a
) are replaced by the token string in the definition. Each occurrence of an identifier mentioned in the
formal parameter list of the definition is replaced by the corresponding token string from the call. The
actual arguments in the call are token strings separated by commas; however commas in quoted strings or
protected by parentheses do not separate arguments. The number of formal and actual parameters must
be the same. Text inside a string or a character constant is not subject to replacement.

In both forms the replacement string is rescanned for more defined identifiers. In both forms a long
definition may be continued on another line by writing \ at the end of the line to be continued.

This facility is most valuable for definition of "manifest constants," as in

#define TABSIZE 100

int table[TABSIZE];

A control line of the form

#undef identifier

causes the identifier's preprocessor definit!on to be forgotten.

12.2 File inclusion
A compiler control line of the form

inc 1 ude "filename"

causes the replacement of that line by the entire contents of the file filename. The named file is searched
for first in the directory of the original source file, and then in a sequence of standard places. Alterna­
tively, a control line of the form

#include ~kname>

searches only the standard places, and not the directory of the source file.
#include's may be nested.

12.3 Conditional compilation
A compiler control line of the form

i f constant-expression

checks whether the constant expression (see §15) evaluates to non-zero. A control line of the form

#ifdef identifier

checks whether the identifier is currently defined in the preprocessor; that is, whether it has been the
subject of a #define control line. A control line of the form

#ifndef identifier

checks whether the identifier is currently undefined in the preprocessor.
All three forms are followed by an arbitrary number of lines, possibly containing a control line

and then a

which

14.2 Functions

of a

g(

c or forrn

next SOLirce
ident~f~er is

g(funcp)
int (*funcp) () ;
(

(*funcp) () i

14-23

Notice that f must be declared expiicitly in the calling routine since its appearance in 9 (f) was not fol·
lowed by (.

14.3 Arrays, pointers, and subscripting
Every time an identifier of array type appears in an expression, it is converted into a pointer to the

first member of the array. Because of this conversion, arrays are not lvalues. By definition, the subscript
operator (J is interpreted in such a way that E1 [E2] is identical to ... ((E1) + (E2)). Because of the
conversion rules which apply to +, if E1 is an array and E2 an integer, then E1 [E2] refers to the E2-th
member of E1. Therefore, despite its asymmetric appearance, subscripting is a commutative operation.

A consistent rule is followed in the case of multi-dimensional arrays. If E is an n-dimensional array
of rank i X} x ... x k, then E appearing in an expression is converted to a pointer to an (n-l)·
dimensional array with rank jX ... x k. If the "* operator, either explicitly or implicitly as a result of
subscripting, is applied to this pointer, the result is the pointed-to (n -I)-dimensional array, which itself
is immediately converted into a pointer.

For example, consider

int x [3] [5] ;

Here x is a 3 x 5 array of integers. When x appears in an expression, it is converted to a pointer to (the
first of three) 5-membered arrays of integers. In the expression x (i], which is equivalent to * (x+i), x
is first converted to a pointer as described; then i is converted to the type of x., which involves multiply­
ing i by the length the object to which the pointer points, namely 5 integer objects. The results are
added and indirection applied to yield an array (of 5 integers) which in turn is converted to a pointer to
the first of the integers. If there is another subscript the same argument applies again; this time the
result is an integer.

It follows from all this that arrays in C are stored row-wise Oast subscript varies fastest) and that the
first subscript in the declaration helps determine the amount of storage consumed by an array but plays
no other part in subscript calculations.

14.4 Explicit pointer conversions
Certain conversions involving pointers are permitted but have implementation-dependent aspects.

They are all specified by means of an explicit type-conversion operator. §§7.2 and 8.7.
A pointer may be converted to any of the integra! types large enough to hold it. Whether an int or

long is required is machine dependent. The mapping function is also machine dependent, but is
intended to be unsurprising to those who know the addressing structure of the machine. Details for
some particular machines are given below.

An object of integral type may be explicitly converted to a pointer. The mapping always carries an
integer converted from a pointer back to the same pointer, but is otherwise machine dependent.

A pointer to one type may be converted to a pointer to another type. The resulting pointer may
cause addressing exceptions upon use if the subject pointer does not refer to an object suitably aligned in
storage. It is guaranteed that a pointer to an object of a given size may be converted to a pointer to an
object of a smaller size and back again without change.

For example, a storage-allocation routine might accept a size (in bytes) of an object to allocate, and
return a char poinler; it might be used in this way.

extern char *alloc();
double *dPi

dp = (double *) al1oc(sizeof(double);
*dp: 22.0 / 7.0;

alloe must ensure (in a machine-dependent way) that its return value is suitable for conversion to a
pointer to double; then the use of the function is portable.

I . Constant

and in initiaiizers,
Slams. ami

+

or unary

t.he terna.ry

? :

rnachine~

Some difllcu!lies
programs that

'The order

1

constituerHS,

,/ % & »

and is measured In

the word part is in the 18

of

are measured
and

on 1he strictest

constants,

a constant or to the

trouble spots is

divi·

character
be

their own

left on
is also

however, because
rnay be

order in which

characters are
Fields are words and characters to on PDP-! !

These differences are invisible to isolated programs which do flot

v,,'iH not ini[i,dize structures
operators in certain come XIS where

and

m!r.or details. ~i!ost

and does flO! accept a few
is used,

14-25

17. Anachronisms
Since C is an evolving language, certain obsolete constructions may be found in older programs.

Although most versions of the compiler support such anachronisms, ultimately they will disappear, leav­
ing only a portability problem behind.

Earlier versions of C used the form -op instead of op- for assignment operators. This leads to
ambiguities, typified by

x--1

which actually decrements x since the. and the - are adjacent, but which might easily be intended to
assign -1 to x.

The syntax of initializers has changed: previously, the equals sign that introduces an initializer was
not present, so instead of

int x - 1;

one used

int x 1;

The change was made because the initialization

int f (1 +2)

resembles a function declaration closely enough to confuse the compilers.

14-26

18. Syntax Summary
This summary of C syntax is intended more for aiding comprehension than as an exact statement of

the language.

18.1 Expressions
The basic expressions are:

expression:
primary
* expression
& expression
- expression
! expression
- expression
++ [value
-- Ivalue
Ivalue ++
Ivalue --
sizeof expression
(type-name) expression
expression binop expression
expression ? expression : expression
Ivalue asgnop expression
expression , expression

primary:
identifier
constant
string
(expression)
primary (expression-listopl)

primary (expression]
Ivalue . identifier

lvalue:

primary -> identifier

identifier
primary [expression]
Ivalue • identifier
primary -> identifier
* expression
(Ivalue)

The primary-expression operators

() () ->

have highest priority and group left-to-right. The unary operators

* & ++ sizeof (type-name)

have priority below the primary operators but higher than any binary operator, and group right-to-Ieft.
Binary operators group left-Io-right; they have priority decreasing as indicated below. The conditional
operator groups right to left.

(

14-27

binop:

• / ~

+
» «
< > <- >--- I-
&

&&
I I
?:

Assignment operators all have the same priority. and all group right-to-left.

asgnop:
_ +_ __ •• /_ ~_ »_ «_ &_ A. I_

The comma operator has the lowest priority, and groups left-to-right.

18.2 Declarations

dec/aration:
dec/-specifiers init-declarator-listop/ ;

decl-specifiers:
type-specifier decl-specifiersopf
sc-specifier decl-specifiersopf

sc-specifier:
auto
static
extern.
register
typedef

type-specifier:
char
short
int
long
unsigned
float
double
struct-or-union-specifier
typedef-name

init-dec!arator-list:
init-declarator
init-declarator I init-declarator-list

init-declarator:
declarator initializer opf

dec/arator:
identifier
(dec/arator)
• declarator
declarator ()
declarator [conslant-expressionop/]

14-28

struct-or-union-specifier:
struct (struct-decl-list)
struct identifier (struct-decl-list)
struct identifier
union (struct-decl-Iist)
union identifier (struct-decl-list)
union identifier

struct-decl-list:
struct-declaration
struct-declaration struct-decl-lisl

slruct-declaration:
type-specifier struct-declarator-list ;

struct-declarator-list:
struct-declarator
struct-declarator , struct-declarator-Iist

slruct-declarator:
declarator
declarator: constant-expression
: constant-expression

initializer:
- expression
.. (initializer-list I
.. (initializer-list }

initializer-list:
expression
initializer-Iist , initializer-Iist
(initializer-list I

type-name:
type-specifier abstract-declarator

a bSlract-dec lara tor:
empty
(abstract-declarator)
• abstract-declarator
abstract-declarator ()
abstract-declarator [consfant-expressionopt)

typedef-name:
identifier

18.3 Statements

compou nd-sra reme nt:

(declarauon-lisloP1 statement-lis/opt

declara tion-list:
declaration
declarafton declaration-list

(

(

14-29

statement-list:
statement
stammen! statement-list

statement:
compound-statement
expression ;
if (expression) statement
if (expression) statement else statement
while (expression) statement
do statement while (expression) ;
for (expresslOn-l op, ; expression-2oP1 expression-30tJl) statement
swi tch (expression) statement
case constant-expressIOn
def aul t : slatement
break ;
continue ;
return ;
return expression;
goto identifier;
identifier: statement

18.4 Externs! definitions

program:
external-definitIOn
external-definition program

external-definition:
function-definition
data-definition

function-definition:

statement

type-specifieroPI function-declarator function-body

function-declarator:
declarator (parameter-lis/oP')

parameter-list:
identifier
identifier , parameter-list

function-body:
type-ded-list function-statement

!unction-slatement:
(declaration-list statement-list 1

Opl

data-definition:

18.5 Preprocessor

type-specijie'oPI tnii-declarotor-listoP' ;
sta tic fVfW-speClijier I init-declarator-ftSI ; opt ~ v'" Of' Opt

14-30

ide fine identifier token-string
idef ine identifier (identifier} ..• I identifier) loken-string
iundef identifier
#include "filename"
#include <filename>
iif constant-expression
hfdef identifier
#ifndef identifier
ielse
#endif
#line constant identifier

(

'.,/~"" \

Recent Changes to C

November 15, 1978

A few extensions have been made to the C language beyond what is described in the reference docu­
ment ("The C Programming Language," Kernighan and Ritchie, Prentice-Hall, 1978).

1. Structure assignment

Structures may be assigned, passed as arguments to functions, and returned by functions. The types
of operands taking part must be the same. Other plausible operators, such as equality comparison, have
not been implemented.

There is a subtle defect in the PDp· I I implementation of functions that return structures: if an inter­
rupt occurs during the return sequence, and the same function is called reentrantly during the interrupt,
the value returned from the first call may be corrupted. The problem can occur only in the presence of
true interrupts, as in an operating system or a user program that makes significant use of signals; ordinary
recursive calls are quite safe.

2. Enumeration type

There is a new data type analogous to the scalar types of Pascal. To the type-specifiers in the syntax
on p. 193 of the C book add

with syntax

enum-specifier

enum-specifier:
enum { enum-list}
enum identifier { enum-Iist}
enum identifier

enum-list:
enumerator
enum-list, enumerator

enumerator:
identifier
identifier - constant-expression

The role of the identifier in the enum-specifier is entirely analogous to that of the structure tag in a
struct-specifier; it names a particular enumeration. For example,

enum color (chartreuse, burgundy, claret, winedark);

enum color *cp, coli

makes color the enumeration-tag of a type describing various colors, and then declares cp as a pointer
to an object of that type, and col as an object of that type.

The identifiers in the enum-list are declared as constants, and may appear wherever constants are
required. If no enumerators with - appear, then the values of the constants begin at 0 and increase by 1
as the declaration is read from left to right. An enumerator with = gives the associated identifier the
value indicated; subsequent identifiers continue the progression from the assigned value.

Enumeration tags and constants must all be distinct. and, unlike structure tags and members, are
drawn from the same set as ordinary identifiers.

Objects of a given enumeration type are regarded as having a type distinct from objects of all other
types, and lint flags type mismatches. In the PDp·II implementation all enumeration variables are treated
as if they were into

14-31

Lint, a C Program Checker

S. Johnson

Bell
Murray Hill, New Jersey 07974

ABSTRACT

Lint is a command which examines C source programs, detecting a
number bugs obscurities. It enforces the rules of C more strictly
than the C compilers. It may also be used to enforce a number of portability
restrictions involved in moving programs between different machines andlor
operating systems. Another option detects a number of wasteful, or error
prone, constructions which nevertheless are, strictly speaking, legal.

Lint accepts multiple input files and library specifications, and checks them
for consistency.

The separation of function between lint and the C compilers has both his-
torical and rationale. The compilers turn C programs into executable

rapidly and efficiently. This is possible in part because the compilers do
not do sophisticated type especially between separately compiled pro-
grams. takes a more view of the program, looking much
more carefully at the compatibilities.

document discusses the use lim, an overview of the imple-
mentation, and some hints on the writing of machine independent C
code.

July 26,

Introduction and Usage

Lint, a C Program Checker

s. C. Johnson

Bell Laboratories
Murray Hill, New Jersey 07974

Suppose there are two C 1 source files, filel.c and file2.c, which are ordinarily compiled and
loaded together. Then the command

lint file l.c file2.c

produces messages describing inconsistencies and inefficiencies in the programs. The program
enforces the typing rules of C more strictly than the C compilers (for both historical and practi­
cal reasons) enforce them. The command

lint -p filel.c file2.c

will produce, in addition to the above messages, additional messages which relate to the porta­
bility of the programs to other operating systems and machines. Replacing the - p by - h will
produce messages about various error-prone or wasteful constructions which, strictly speaking,
are not bugs. Saying - hp gets the whole works.

The next several sections describe the major messages; the document closes with sections
discussing the implementation and giving suggestions for writing portable C. An appendix
gives a summary of the lint options.

A Word About Philosophy

Many of the facts which lint needs may be impossible to discover. For example, whether
a given function in a program ever gets called may depend on the input data. Deciding whether
exit is ever called is equivalent to solving the famous "halting problem," knC'WI~ to be recur­
sively undecidable.

Thus, most of the lint algorithms are a compromise. If a function is never mentioned, it
can never be called. If a function is mentioned, lint assumes it can be called; this is not neces­
sarily so, but in practice is quite reasonable.

Lint tries to give information with a high degree of relevance. Messages of the form "xxx
might be a bug" are easy to generate, but are acceptable only in proportion to the fraction of
real bugs they uncover. If this fraction of real bugs is too small, the messages lose their credi­
bility and serve merely to clutter up the output, obscuring the more important messages.

Keeping these issues in mind, we now consider in more detail the classes of messages
which lint produces.

Unused Variables and Functions

As sets of programs evolve and develop, previously used variables and arguments to func­
tions may become unused; it is not uncommon for external variables, or even entire functions,
to become unnecessary, and yet not be removed from the source. These "errors of commis­
sion" rarely cause working programs to fail, but they are a source of inefficiency, and make
programs harder to understand and change. Moreover, information about such unused vari­
ables and functions can occasionally serve to discover bugs; if a function does a necessary job,
and is never called, something is wrong!

15-2

(

15-3

tioned. An exception is which are
are defined but not otherwise men­

explicit extern statements but are
never referenced; thus the statement

extern sin 0;

will evoke no comment if sin is never used. Note that agrees with
compiler. In some cases, declarations might be
can be discovered by lint invocation.

styles of
faces; some of the
is available to suppress the

C
they

similar inter­
-v option
-v is in

effect, no messages are unused arguments those arguments which
are unused and also declared as register arguments; this can be considered an active (and

waste resources the

is one case where information about or variables is more dis-
tracting than helpful. This is when lim is applied to some, but not all, files out of a collection
which are to be loaded In this case, many the functions and defined may
not be used, conversely, many and variables elsewhere may be usedo
The -u may be used to suppress the messages which might appear.

Information

Lint to detect cases where a is used it is set. is very difficult
time and space, and still produce messages

detects local variables (automatic and register storage
to do well; many algorithms take a
about valid programs. Lint
classes) whose use appears
the variable. It assumes that
actual use may occur at any later

earlier in the file the assignment to
address a constitutes a "use," since the

fashion.

The restriction to the physical appearance in the makes the algorithm very
simple and quick to the true flow control need not be discovered. It does
mean that Unt can some programs which are but these programs would
probably be considered bad on stylistic contain at least two goto's)o
Because static and external variables are t.o 0, no meaningful information can be
discovered about their useso correctly, however, with automatic
variables, and variables which are used in the which sets them.

The information also of those local variables which are set
and never and may also be symptomatic of
bugs.

Lint
about unlabeled statements

statements. An is made to detect
the cases whHe(1)

which cannot be entered at the
are bad style, at worst

it processeso It win
continue, or return

at the bottom, detect­
about loops

loops, but at best they

Lim has an area blindness in the it has no way of
functions which are called and never return. a call to exit may cause unreach-

able code which lint does not effects of this are in the of
returned function values the next ..,,,-,,,,,,'U'U

One form of unreachable statement is not usually complained about by a break state~
ment that cannot be reached causes no message. by yace, 2 and especially

], may have hundreds of unreachable break statements. The -0 flag in the C

15-4

compiler will often eliminate the resulting object code inefficiency. Thus, these unreached
statements are of little importance, there is typically nothing the user can do about them, and
the resulting messages would clutter up the lint output. If these messages are desired, lint can
be invoked with the -b option.

Function Values

Sometimes functions return values which are never used; sometimes programs incorrectly
use function "values" which have never been returned. Lint addresses this problem in a
number of ways.

Locally, within a function definition, the appearance of both

return (expr);

and

return ~

statements is cause for alarm; lint will give the message

function name contains return (e) and return

The most serious difficulty with this is detecting when a function return is implied by flow of
control reaching the end of the function. This can be seen with a simple example:

f (a) !
if (a) return (3);
g 0;
I

Notice that, if a tests false, fwill call g and then return with no defined return value; this will
trigger a complaint from lint. If g, like exit, never returns, the message will still be produced
when in fact nothing is wrong.

In practice, some potentially serious bugs have been discovered by this feature; it also
accounts for a substantial fraction of the "noise" messages produced by lint.

On a global scale, lint detects cases where a function returns a value, but this value is
sometimes, or always, unused. When the value is always unused, it may constitute an
inefficiency in the function definition. When the value is sometimes unused, it may represent
bad style (e.g., not testing for error conditions).

The dual problem, using a function value when the function does not return one, is also
detected. This is a serious problem. Amazingly, this bug has been observed on a couple of
occasions in "working" programs; the desired function value just happened to have been com­
puted in the function return register!

Type Checking

Lint enforces the type checking rules of C more strictly than the compilers do. The addi­
tional checking is in four major areas: across certain binary operators and implied assignments,
at the structure selection operators, between the definition and uses of functions, and in the use
of enumerations.

There are a number of operators which have an implied balancing between types of the
operands. The assignment, conditional ('?:), and relational operators have this property; the
argument of a return statement, and expressions used in initialization also suffer similar
conversions. In these operations, char, short, int, long, unsigned, float, and double types may
be freely intermixed. The types of pointers must agree exactly, except that arrays of x's can, of
course, be intermixed with pointers to x's.

The type checking rules also require that, in structure references, the left operand of the
- > be a pointer to structure, the left operand of the. be a structure, and the right operand of

(

(

15-5

these operators be a member of the structure implied by the left operand. Similar checking is
done for references to unions.

Strict rules apply to function argument and return value matching. The types Boat and
double may be freely matched, as may the types char, short, int, and unsigned. Also, pointers
can be matched with the associated arrays. Aside from this, all actual arguments must agree in
type with their declared counterparts.

With enumerations, checks are made that enumeration variables or members are not
mixed with other types, or other enumerations, and that the only operations applied are -, ini­
tialization, == ==, ! ==, and function arguments and return values.

Type Casts

The type cast feature in C was introduced largely as an aid to producing more portable
programs. Consider the assignment

p == 1 ;

where p is a character pointer. Lint will quite rightly complain. Now, consider the assignment

p == (char *)1 ;

in which a cast has been used to convert the integer to a character pointer. The programmer
obviously had a strong motivation for doing this, and has clearly signaled his intentions. It
seems harsh for lint to continue to complain about this. On the other hand, if this code is
moved to another machine, such code should be looked at carefully. The -c flag controls the
printing of comments about casts. When -c is in effect, casts are treated as though they were
assignments subject to complaint; otherwise, all legal casts are passed without comment, no
matter how strange the type mixing seems to be.

Nonportable Character Use

On the PDP-ll, characters are signed quantities, with a range from -128 to 127. On
most of the other C implementations, characters take on only positive values. Thus, lint will
flag certain comparisons and assignments as being illegal or nonportable. For example, the
fragment

char c;

if((c == getchar() < 0)

works on the PDP-ll, but will fail on machines where characters always take on positive
values. The real solution is to declare c an integer, since getchar is actually returning integer
values. In any case, lint will say "nonportable character comparison".

A similar issue arises with bitfields; when assignments of constant values are made to
bit fields , the field may be too small to hold the value. This is especially true because on some
machines bitfields are considered as signed quantities. While it may seem unintuitive to con­
sider that a two bit field declared of type int cannot hold the value 3, the problem disappears if
the bitfield is declared to have type unsigned.

Assignments of longs to ints
Bugs may arise from the assignment of long to an int, which loses accuracy. This may

happen in programs which have been incompletely converted to use typedefs. When a typedef
variable is changed from int to long, the program can stop working because some intermediate
results may be assigned to ints, losing accuracy. Since there are a number of legitimate reasons
for assigning longs to ints, the detection of these assignments is enabled by the -a flag.

sages
-11

is

is

++;

which rnay
these cases. If

!-

lint wi!! report '
stant

01'

x

-

which could be taken as

The
substitutiorL

spur the

,
........ 1

the

15-

message

\viH never

best
mt:ssage.

say

the

=+,

staterrient

lint

:. the test

con-

is to such

could cause

15-7

operators.

A similar issue arises with initialization. The older language allowed

int xl;

to initialize x to 1. This also caused syntactic difficulties: for example,

int x (-1);

looks somewhat like the beginning of a function declaration:

int x (y) (...

and the compiler must read a fair ways past x in order to sure what the declaration really is ..
Again, the problem is even more perplexing when the initializer involves a macro. The current
syntax places an equals sign between the variable and the initiaHzer:

int x =- -1;

This is free of any possible syntactic ambiguity.

Pointer Alignment

Certain pointer assignments may be reasonable on some machines, and illegal on others,
due entirely to alignment restrictions. For example, on the PDP-II, it is reasonable to assign
integer pointers to double pointers, since double precision values may begin on any integer
boundary. On the Honeywell 6000, double precision values must begin on even word boun­
daries; thus, not all such assignments make sense. Lint tries to detect cases where pointers are
assigned to other pointers, and such alignment problems might arise. The message "possible
pointer alignment problem" results from this situation whenever either the -p or -h flags are
in effect.

Multiple Uses and Side Effects

In complicated expressions, the best order in which to evaluate subexpressions may be
highly machine dependent. For example, on machines (like the PDP-!!) in which the stack
runs backwards, function arguments will probably be best evaluated from right-to-left; on
machines with a stack running forward, left-to-right seems most attractive. Function calls
embedded as arguments of other functions mayor may not be treated similarly to ordinary
arguments. Similar issues arise with other operators which have side effects, such as the assign­
ment operators and the increment and decrement operators.

In order that the efficiency of C on a particular machine not be unduly compromised, the
C language leaves the order of evaluation of complicated expressions up to the local compiler,
and, in fact, the various C compilers have considerable differences in the order in which they
will evaluate complicated expressions. In particular, if any variable is changed by a side effect,
and also used elsewhere in the same expression, the result is explicitly undefined.

Lint checks for the important special case where a simple scalar variable is affected. For
example, the statement

a[;] .. b(;+ +] ;

will draw the complaint:

warning: i evaluation order undefined

Implementation
Lint consists of two programs and a driver. The first program is a version of the Portable

C Compiler4,5 which is the basis of the IBM 370, Honeywell 6000, and Interdata 8/32 C com­
pilers. This compiler does lexical and syntax analysis on the input text, constructs and main­
tains symbol tables, and builds trees for expressions. Instead of writing an intermediate file

int a ;

which

Geos

1 5-8

this process~ and is for

variables are
a dedaratiGnwithout

resolve these
a. Under the

"[go program. 11

amount of information

character
ebcdic on
to low bit

to left") on the
constants, Of

indices into urrays~ must be looked with
muiti-character character constants.

Of course,
at least when

tUNiX is a Tmdemark of Ben Laboratories.

the

(

of

15-9

x &= 0177700;

to clear the low order six bits of x. This suffices on the PDP-II, but fails badly on GCOS and
IBM. If the bit field feature cannot be used, the same effect can be obtained by writing

x &= ~ 077;

which will work on all machines.

The right operator is arithmetic shift on the PDP-Ii, and logical shift on most other
machines. To obtain a logical shift on all machines, the left operand can be typed unsigned.
Characters are considered signed integers on the PDP-II, and unsigned on the other machines.
This persistence of the sign bit may be reasonably considered a bug in the PDP-1I hardware
which has infiltrated itself into the C language. If there were a good way to discover the pro­
grams which would be affected, C could be changed; in any case, lint is no help here.

The above discussion may have made the problem of portability seem bigger than it in
fact is. The issues involved here are rareiy subtle or mysterious, at least to the implementor of
the program, although they can involve some work to straighten out. The most serious bar to
the portability of UNIX system utilities has been the inability to mimic essential UNIX system
functions on the other systems. The inability to seek to a random character position in a text
file, or to establish a pipe between processes, has involved far more rewriting and debugging
than any of the differences in C compilers. On the other hand, lint has been very helpful in
moving the UNIX operating system and associated utility programs to other machines.

Shutting Lint Up

There are occasions when the programmer is smarter than lint. There may be valid rea­
sons "illegal" type casts, fun.ctions with a variable number of arguments, etc. Moreover, as
specified above, the flow of control information produced by lint often has blind spots, causing
occasional spurious messages about perfectly reasonable programs. Thus, some way of com­
municating with lint, typically to shut it up, is desirable.

The form which this mechan.ism should take is not at all clear. New keywords would
require current and old compilers to recognize these keywords, if only to ignore them. This has
both philosophical and practical problems. New preprocessor syntax suffers from similar prob­
lems.

What was finally done was to cause a number of words to be recognized by lint when they
were embedded in comments. This required minimal preprocessor changes; the preprocessor
just had to agree to pass comments through to its output, instead of deleting them as had been
previousiy done. iint directives are invisible to the compilers, .md the effect on systems
with the oider preprocessors is merely that the lint directives don't work.

The directive is concerned with flow of control information~ if a particular place in
the program cannot be reached, but this is not apparent to lint, this can be asserted by the
directive

I" NOTREACHED "I

at the appropriate spot in the program. Similarly, if it is desired to turn off strict type checking
for the next expression, directive

r NOSTRICT "/

can the reverts to the previous default the next expression. The -v
flag can be turned on for one function by the directive

ARGSUSED "i

itJ"M"'" about variable number of arguments in calls to a function can be turned off by the
directive

15-10

/* VARARGS */

preceding the function definition. In some cases, it is desirable to check the first several argu­
ments, and leave the later arguments unchecked. This can be done by following the
V ARARGS keyword immediately with a digit giving the number of arguments which should be
checked; thus,

/. VARARGS2 */

will cause the first two arguments to be checked, the others unchecked. Finally, the directive

/* LINTLIBRARY ./

at the head of a file identifies this file as a library declaration file; this topic is worth a section by
itself.

. Library Declaration Files

Lint accepts certain library directives, such as

-Iy

and tests the source files for compatibility with these libraries. This is done by accessing library
description files whose names are constructed from the library directives. These files all begin
with the directive

/* LINTLIBRARY */

which is followed by a series of dummy function definitions. The critical parts of these
definitions are the declaration of the function return type, whether the dummy function returns
a value, and the number and types of arguments to the function. The V ARARGS and
ARGSUSED directives can be used to specify features of the library functions.

Lint library files are processed almost exactly like ordinary source files. The only
difference is that functions which are defined on a library file, but are not used on a source file,
draw no complaints. Lim does not simulate a full library search algorithm, and complains if the
source files contain a redefinition of a library routine (this is a featureD.

By default, lint checks the programs it is given against a standard library file, which con­
tains descriptions of the programs which are normally loaded when a C program is run. When
the -p flag is in effect, another file is checked containing descriptions of the standard I/O library
routines which are expected to be portable across various machines. The -0 flag can be used to
suppress all library checking.

Bugs, etc.
Lint was a difficult program to write, partially because it is closely connected with matters

of programming style, and partially because users usually don't notice bugs which cause lint to
miss errors which it should have caught. (By contrast, if lint incorrectly complains about some­
thing that is correct, the programmer reports that immediately!)

A number of areas remain to be further developed. The checking of structures and arrays
is rather inadequate; size incompatibilities go unchecked, and no attempt is made to match up
structure and union declarations across files. Some stricter checking of the use of the· typedef is
clearly desirable, but what checking is appropriate, and how to carry it out, is still to be deter­
mined.

Lint shares the preprocessor with the C compiler. At some point it may be appropriate for
a special version of the preprocessor to be constructed which checks for things such as unused
macro definitions, macro arguments which have side effects which are not expanded at all, or
are expanded more than once, etc.

The central problem with lint is the packaging of the information which it collects. There
are many options which serve only to turn off, or slightly modify, certain features. There are

(

\.

15-11

pressures to add even more of these options.

In conclusion, it appears that the general notion of having two programs is a good one.
The compiler concentrates on quickly and accurately turning the program text into bits which
can be run~ lint concentrates on issues of portability, style, and efficiency. Lint can afford to be
wrong, sin-::e incorrectness and over-conservatism are merely annoying, not fatal. The compiler
can be fast since it knows that lint will cover its flanks. Finally, the programmer can concen­
trate at one stage of the programming process solely on the algorithms, data structures, and
correctness of the program. and then later retrofit, with the aid of lint, the desirable properties
of universality and portability.

15-12

References

1. B. W. Kernighan and D. M. Ritchie, The C Programming Language. Prentice-Hall, Engle­
wood Qiffs, New Jersey (1978).

2. S. C. Johnson, "Yacc - Yet Another Compiler-Compiler," Compo Sci. Tech. Rep. No. C'
32, Bell Laboratories, Murray Hill, New Jersey (July 1975),

3. M. E. Lesk, "Lex - A Lexical Analyzer Generator," Compo Sci. Tech. Rep. No. 39,
Bell Laboratories, Murray Hill, New Jersey (October 1975).

4. S. C. Johnson and D. M. Ritchie, "UNIX Time-Sharing System: Portability of C Programs
and the UNIX System," Bell Sys. Tech. J. 57(6) pp. 2021-2048 (1978).

5. S. C. Johnson, "A Portable Compiler: Theory and Practice," Proc. 5th ACM Symp. on
Principles of Programming Languages, (January 1978).

(

15-13

Appendix: Cunent Lint Options

The command currently has the form

lint [-options] files ... library-descriptors ...

The options are

h Perform heuristic checks

p Perform portability checks

v Don't report unused arguments

u Don't report unused or undefined externals

b Report unreachable break statements.

x Report unused external declarations

a Report assignments of long to int or shorter.

c Complain about questionable casts

n No library checking is done

s Same as h (for historical reasons)

Make - A Program for Maintaining Computer Programs

S. I. Feldman

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

In a programming project, it is easy to lose track of which files need to be
reprocessed or recompiled after a change is made in some part of the source.
Mak.e provides a simple mechanism for maintaining up-to-date versions of pro­
grams that result from many operations on a number of files. It is possible to
tell Mak.e the sequence of commands that create certain files, and the list of
files that require other files to be current before the operations can be done.
Whenever a change is made in any part of the program, the Make command
will create the proper files simply, correctly, and with a minimum amount of
effort.

The basic operation of Make is to find the name of a needed target in the
description, ensure that all of the files on which it depends exist and are up to
date, and then create the target if it has not been modified since its generators
were. The description file really defines the graph of dependencies; Make does
a depth-first search of this graph to determine what work is really necessary.

Make also provides a simple macro substitution facility and the ability to
encapsulate commands in a single file for convenient administration.

August 15, 1978

16-1

Make - A Program for Maintaining Computer Programs

Introduction

S. I. Feldman

Bell Laboratories
Murray Hill, New Jersey 07974

It is common practice to divide large programs into smaller, more manageable pieces.
The pieces may require quite different treatments: some may need to be run through a rnacro
processor, some may need to be processed by a sophisticated program generator (e.g., YacdIl
or Lex[2]). The outputs of these generators may then have to be compiled with special options
and with certain definitions and declarations. The code resulting from these transformations
may then need to be loaded together with certain libraries under the control of special options.
Related maintenance activities involve running complicated test scripts and installing validated
modules. Unfortunately, it is very easy for a programmer to forget which files depend on
which others, which files have been modified recently, and the exact sequence of operations
needed to make or exercise a new version of the program. After a long editing session, one
may easily lose track of which files have been changed and which object modules are still valid,
since a change to a declaration can obsolete a dozen other files. Forgetting to compile a routine
that has been changed or that uses changed declarations will result in a program that will not
work, and a bug that can be very hard to track down. On the other hand, recompiling every­
thing in sight just to be safe is very wasteful.

The program described in this report mechanizes many of the activities of program
development and maintenance. If the information on inter-file dependences and command
sequences is stored in a file, the simple command

make

is frequently sufficient to update the interesting files, regardless of the number that have been
edited since the last "make". In most cases, the description file is easy to write and changes
infrequently. It is usually easier to type the make command than to issue even one of the
needed operations, so the typical cycle of program development operations becomes

think - edit - make - test ...

Make is most useful for medium-sized programming projects; it does not solve the prob­
lems of maintaining multip!e source versions or of describing huge programs. Make was
designed for use on Unix, but a version runs on GCOS.

Basic Features

The basic operation of make is to update a target file by ensuring that all of the files on
which it depends exist and are up to date, then creating the target if it has not been modified
since its dependents were. Make does a depth-first search of the graph of dependences. The
operation of the command depends on the ability to find the date and time that a file was last
modified.

To illustrate, let us consider a simple example: A program named [WOK is made by compil­
ing and loading three C-Ianguage files x.c, y.c, and z.c with the IS library. By convention, the
output of the C compilations will be found in files named x.o, y.o, and z.o. Assume that the
files x.c and y.c share some declarations in a file named de/s, but that z.e does not. That is, x.c

16-2

E

(

16-3

and y.C have the line

#include "defs"

The following text describes the relationships and operations:

prog: x.o y.o z.o
cc x.O y.O z.o -IS -0 prog

x.o y.o: defs

If this information were stored in a file named ma ke/i Ie , the command

make

would perform the operations needed to recreate prog after any changes had been made to any
of the four source files x.C, y.C, Z.C, or defs.

Make operates using three sources of information: a user-supplied description file (as
above), file names and "last-modified" times from the file system, and built-in rules to bridge
some of the gaps. In our example, the first line says that prog depends on three ".0" files.
Once these object files are current, the second line describes how to load them to create prog.
The third line says that x.o and y.o depend on the file defs. From the file system, make discov­
ers that there are three ".c" files corresponding to the needed ".0" files, and uses built-in
information on how to generate an object from a source file (j.e., issue a "cc -c" command).

The following long-winded description file is equivalent to the one above, but takes no
advantage of make's innate knowledge:

prog: x.o y.o z.o
cc x.o y.o z.o -IS -0 prog

x.o: x.c defs
cc -c x.c

y.o: y.c defs
cc -c y.c

z.o: z.c
cc -c z.c

If none of the source or object files had changed since the last time prog was made, all of
the files would be current, and the command

make

would just announce this fact and stop. If, however, the defs file had been edited, x.C and y.C
(but not z.e> would be recompiled, and then prog would be created from the new ".0" files. If
only the file y.L" had changed, only it would be recompiled, but it would still be necessary to
reload prog.

If no target name is given on the make command line, the first target mentioned in the
description is created: otherwise the specified targets are made. The command

make x.o

would recompile x.o if x.c or defs had changed.
If the file exists after the commands are executed, its time of last modification is used in

further decisions; otherwise the current time is used. It is often quite useful to include rules
with mnemonic names and commands that do not actually produce a file with that name.
These entries can· take advantage of make's ability to generate files and substitute macros.
Thus, an entry "save" might be included to copy a certain set of files, or an entry "cleanup"

6-4

unneeded In other cases one may maintain a
track of the lime at which certain actions were This

remote archives and

:'vfake has a macro mechanism su
strings. Macros are ned command

rnacro
than one character mllS! be
after the dollar or a name inside parentheses.

$(

$

last two invocations are identical. IS a dollar

, :5? and $
shows the use:

!.t{
,fj; \

The command

ioads the three fi!es \vith the IS· ii command

make "UBES= -II -IS"

iines and ~:ornmarHj
ernbedded

macro names

Ail of these macros are
values

later. The ng

!oads thern with both the Lex (U II") ano the Standard ("-IS") Ii since macro
lions on the command line override nitlons the necessary

quote arguments with bedded blanks in u

The sections detail the form
and built~in rules in more detail.

nO!1-cornment line is too
the last character of a line is a the

blank.

containing an
to the

are valid macro

HJNIX is a Trademark of Bell laboratories.

commandsJ

the command and dis-

newline, and

characters
with a

a backs!ash. if
blanks and tabs

a colon or a tab.

ng bjanks and tabs

(
\ ...

2 = xyz
abc = -Ii -ly -\S
USES =

1 5

The last definition assigns UBES the null string. A macro that is never explicitly defined has
the null string as value. Macro definitions may also appear on the mak.e command line (see
below)'

Other lines give information about target files. The general form of an entry is:

targetl [target2 ... J :[:] [dependent! .. J [; commands] [# .. .]
[(tab) commands! [# .. .J

Items inside brackets maybe omitted. Targets and dependents are strings of letters. digits,
periods. and slashes. (Shell metacharacters ",." and H?" are expanded,) A command is any
sIring of characters not including a sharp (except in quotes) or newline. Commands may
appear either after a semicolon on a dependency line or on lines beginning with a tab immedi­
ately following a dependency line.

A dependency line may have either a single or a double colon. A target name may appear
on more than one dependency line, but all of those lines must be the same (single or double
colon) type.

1. For the usual single-colon case, at most one of these dependency lines may have a com­
mand sequence associated with it. If the target is out of date with any of the dependents
on any of the lines, and a command sequence is specified (even a null one following a
semicolon or , it is executed~ otherwise a default creation rule may be invoked.

2. In the double-colon case, a command sequence may be associated with each dependency
line; if the target is out of date with any of the files on a particular line, the associated
commands are executed. A built-in rule may also be executed. This detailed form is of
particular value in ng archive-type files.

If a target must be created, the sequence of commands is executed. Normally, each com­
mand line is printed and then passed to a separate invocation of the Shell after substituting for
macros. (The printing is suppressed in silent mode or if the command line begins with an @

sign). Make normally stops if any command signals an error by returning a non-zero error
code. (Errors are ignored if the" - j" flags has been specified on the mo/..e command line, if
the fake target name ".IGNORE" appears in the description file, or if the command string in
the description file begins with a hyphen. Some UNIX commands return meaningless status).
Because each command line is passed to a separate invocation of the Shell, care must be taken
with certain commands (e.g., cd and Shell control commands) that have meaning only within a
single Sheil process; the results are forgotten before the next line is executed.

Before issuing any command, certain macros are set. $@ is set to the name of the file to
be "made". $'} is set to the string of names that were found to be younger than the target. If
the command was generated by an implicit rule (see beloW), $< is the name of the related file
that caused the action, and is the prefix shared by the current and the dependent file names.

If a file must be made but there are no explicit commands or relevant built-in rules, the
commands associated with the name ".DEFAULT" are used. If there is no such name, make
prints a message and slopS.

Command Usage

The make command takes four kinds of arguments: macro
names, and target file names.

make [flags J [macro definitions J [targets J

ni tions, flags, description

16-6

The following summary of the operation of the command explains how these arguments are
interpreted.

First, all macro definition arguments (arguments with embedded equal signs) are analyzed
and the assignments made. Command-line macros override corresponding definitions found in
the description files.

Next, the flag arguments are examined. The permissible Ilags are

- i Ignore error codes returned by invoked commands. This mode is entered if the fake tar­
get name ".IGNORE" appears in the description file.

- s Silent mode. Do not print command lines before executing. This mode is also entered if
the fake target name ".SILENT" appears in the description file.

- r Do not use the built-in rules.

- n No execute mode. Print commands, but do not execute them. Even lines beginning with
an "@" sign are printed.

- t Touch the target files (causing them to be up to date) rather than issue the usual com­
mands.

-q Question. The make command returns a zero or non-zero status code depending on
whether the target file is or is not up to date.

-p Print oul the complete set of macro definitions and target descriptions

-d Debug mode. Print out detailed information on files and times examined.

- f Description file name. The next argument is assumed to be the name of a description
file. A file name of "-" denotes the standard input. If there are no .. - f" arguments,
the file named makejite or Make/it" in the current directory is read. The contents of the
description files override the built-in rules if they are present).

Finally, the remaining arguments are assumed to be the names of targets to be made; they
are done in left to right order. If there <.Ire no such arguments, the first name in the description
files that does not begin with a period is "made".

Implicit Rules

The make program uses a table of interesting suffixes and a set of transformation rules to
supply default dependency information and implied commands. (The Appendix describes these
tables and means of overriding them.) The default suffix list is:

.0 Object file

.(' C source file

.e Ell source file

.r Ratfor source file
J Fortran source file
.S Assembler source file
.y Yacc-C source grammar
.yl' Yacc-Ratfor source grammar
·Yi' Yacc-Efl source grammar
.1 Lex source grammar

The following diagram summarizes the default transformation paths. If there are two paths
connecting a pair of suffixes, the longer one is used only if the intermediate file exists or is
named in the description.

(

16-7

.0

~~ . (.r. e .j . s .y

~ \ \
.y .1 .yl' .ye

If the file :co were needed and there were an x.c in the description or directory, it would
be compiled. If there were also an x.l, that grammar would be run thiOugh Lex before campi!·

the result. However, if there were no x. C but there were an x.l, make would discard the
intermediate C-language file and use the direct link in the graph above.

It is possible to change the names of some of the compilers used in the default, or the flag
arguments with which they are invoked by knowing the macro names used. The compiler
names are the maeros AS, CC, RC, EC, Y ACC, Y ACCR, Y ACCE, and LEX. The command

make CC = newec

will cause the "newec" command to be used instead of the usual C compiler. The macros
CFLAGS, RFLAGS, EFLAGS, YFLAGS, and LFLAGS may be set to cause these commands
to be issued with optional flags. Thus,

make "CFLAGS = -0"

causes the optimizing C compiler to be used.

E

As an example of the use of make. we will present the description file used to maintain
the make command itself. The code for make is spread over a number of C source files and a
Yace grammar. The description file contains:

16-8

Description file for the Make command

P == und - 3 I opr - r2 # send to GCOS to be printed
FILES == Makefile version.c defs main.c doname.c misc.c files.c dosys.cgram.y lex.c gcos.C
OBJECTS = version.o main.o doname.o misc.o files.o dosys.o gram.o C.'
LIBES- -IS
LINT == lint -p
CFLAGS == -0

make: $(OBJECTS)
cc $(CFLAGS) $(OBJECTS) $(LIBES) -0 make
size make

$(OBJECTS): defs
gram.o: lex.c

cleanup:
-rm ·.0 gram.c
-du

install:
@size make lusr/bin/make
cp make lusr/bin/make ; rm make

print: $(FILES) # print recently changed files
pr $? I sp

test:

touch print

make -dp I grep -v TIME> lzap
lusr/bin/make -dp I grep -v TIME >2zap
diff 1 zap 2zap
rm Izap 2zap

lint: dosys.c doname.c files.c main.c misc.c version.c gram.c
$(LINT) dosys.c doname.c files.c main.c misc.c version.c gram.c
rm gram.c

arch:
ar uv Isys/source/s2/make.a $(FILES)

Make usually prints out each command before issuing it. The following output results from
typing the simple command

make

in a directory containing only the source and description file:

cc -c version.c
cc -c main.c
cc -c doname.c
cc -c misc.c
cc -c files.c
cc -c dosys.c
yacc gram.y
mv y.tab.c gram.c
cc -c gram.c
cc version.o main.o doname.o misc.o files.o dosys.o gram.o -IS -0 make
13188+3348+3044 ,.. 19580b - 046174b

Although none of the source files or grammars were mentioned by name in the description file,
make found them using its suffix rules and issued the needed commands. The string of digits

(

16-9

results from the "size make" command; the printing of the command line itself was suppressed
by an @ sign. The @ sign on the size command in the description file suppressed the printing
of the command, so oniy the sizes are written.

The last entries in the description file are useful maintenance sequences. The "print"
entry prints only the files that have been changed since the last "make print" command. A
zero-length file prtnt is maintained to keep track of the time of the printing; the $? macro in the
command line then picks up only the names of the flies changed since print was touched. The
printed output can be sent to a different printer or to a file by changing the definition of the P
macro:

make print "P = opr - spot
or

make print "P= cat >zap"

Suggestions and W amings

The most common difficulties arise from make's specific meaning of dependency. If file
x.c has a "#inc!ude "defs"" line, then the object file x.a depends on d~fs; the source file x.c
does not. (If defs is changed, it is not necessary to do anything to the file x.c, while it is neces­
sary to recreate x.o.)

To discover what make would do, the" - n" option is very useful. The command

mak.e - n

orders make to print out the commands it would issue without actually taking the time to exe·
cute them. If a change to a file is absolutely certain to be benign (e.g., adding a new definition
to an include file), the "- (' (touch) option can save a lot of time: instead of issuing a large
number of superfluous recompiiations, make updates the modification times on the affected file.
Thus, the command

make -ts

("touch silently") causes the relevant files to appear up to date. Obvious care is necessary,
since this mode of operation subverts the intention of make and destroys ail memory of the
previous relationships.

The debugging flag ("-d") causes make to print out a very detailed description of what it
is doing, including the file times. The output is verbose, and recommended only as a last
resort.

Acknowledgments

I would like to thank S. C. Johnson for suggesting this approach to program maintenance
control. I would like to thank S. C. Johnson and H. Gajewska for being the prime guinea pigs
during development make.

References

1. S. C. Johnson, "Yacc - Yet Another Complier-Compiler", Bell Laboratories Computing
Science Technical Report #32, July 1978.

2. M. E. Lesk, "Lex - A lexical l\nalyzer Generator", Computing Science Technical
Report #39, October i 975.

16- 10

Appendix. Suffixes and Transformation Rules

The make program itself does not know what file name suffixes are interesting or how to
transform a file with one suffix into a file with another suffix. This information is stored in an
internal table that has the form of a description file. If the" - r" flag is used, this table is not
used.

The list of suffixes is actually the dependency list for the name ".SUFFIXES"; make
looks for a file with any of the suffixes on the list. If such a file exists, and if there is a
transformation rule for that combination, make acts as described earlier. The transformation
rule names are the concatenation of the two suffixes. The name of the rule to transform a ".r"
file to a ".0" file is thus ".r.a". If the rule is present and no explicit command sequence has
been given in the user's description files, the command sequence for the rule ".r.o" is used. If
a command is generated by using one of these suffixing rules, the macro $- is given the value
of the stem (everything but the suffix) of the name of the file to be made, and the macro $ < is
the name of the dependent that caused the action.

The order of the suffix list is significant, since it is scanned from left to right, and the first
name that is formed that has both a file and a rule associated with it is used. If new names are
to be appended, the user can just add an entry for ".SUFFIXES" in his own description file;
the dependents will be added to the usual list. A ".SUFFIXES" line without any dependents
deletes the current list. (It is necessary to clear the current list if the order of names is to be
changed).

The fol/owing is an excerpt from the default rules file:

.SUFFIXES : .0 .c .e .f .f .y .yr .ye .1 .s
Y ACC==yacc
YACCR=yacc -r
YACCE-yacc -e
YFLAGS=
LEX-lex
LFLAGS===
CC=cc
AS=as -
CFLAGS=
RC=ec
RFLAGS=
EC-ec
EFLAGS-
FFLAGS=
.c.o :

S(CC) $(CFLAGS) -c $<
.e.o .r.o .f.o :

.s.o:

.y.o :

.y.c:

S(EC) $(RFLAGS) $(EFLAGS) $(FFLAGS) -c $<

$(AS) -0 S@ $ <

S(Y ACC} $(YFLAGS) $ <
S(CC) $(CFLAGS) -c y.tab.c
rm y.tab.c
mv y.tab.o S@

SCYACC) $(YFLAGS) $<
mv y.tab.c $@

(

UNIX Programming - Second Edition

Brian W. Kernighan

Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper is an introduction to programming on the UNlxt system. The
emphasis is on how to write programs that interface to the operating system,
either directly or through the standard I/O library. The topics discussed include

• handling command arguments

• rudimentary I/O; the standard input and output

• the standard I/O library; file system access

• low-level I/O: open, read, write, close, seek

• processes: exec, fork, pipes

• signals - interrupts, etc.

There is also an appendix which describes the standard I/O library in detail.

November 12, 1978

tUNIX is a Trademark of Bell Laboratories.

17 -1

argv

argv

around

:2,2,

"17 2

?

con"nnand ~ine are made
array argv to
0] ,3 the command name

back

i)

you want to
external

the < convention: if prof:! uses

(

17-3

then the command line

prog <file

causes prog to read file instead of the terminal. prog itself need know nothing about
where its input is coming from. This is also true if the input comes from another program via
the pipe mechanism:

otherprog I prog

provides the standard input for prog from the standard output of otherprog .

getchar returns the value EOF when it encounters the end of file (or an error) on what­
ever you are reading. The value of EOF is normally defined to be -1, but it is unwise to take
any advantage of that knowledge. As will become clear shortly, this value is automatically
defined for you when you compile a program, and need not be of any concern.

Similarly, put char (c) puts the character c on the "standard output," which is also by
default the terminal. The output can be captured on a file by using >: if prog uses putchar,

prog >outfiie

writes the standard output on outfile instead of the terminal. outfile is created if it
doesn't exist; if it already exists, its previous contents are overwritten. And a pipe can be used:

prog t otherprog

puts the standard output of prog into the standard input of otherprog .

The function printf, which formats output in various ways, uses the same mechanism as
putchar does, so calls to printf and putchar may be intermixed in any order~ the output
will appear in the order of the calls.

Similarly. the function scanf provides for formatted input conversion~ it will read the
standard input and break it up into strings, numbers, etc., as desired. scanf uses the same
mechanism as getchar, so calls to them may also be intermixed.

Many programs read only one input and write one output~ for such programs 110 with
getchar, putchar, scanf, and printf may be entirely adequate, and it is almost always
enough to get started. This is particularly true if the UNIX pipe facility is used to connect the
output of one program to the input of the next. For example, the following program strips out
all ascii control characters from its input (except for newline and tab).

#include <stdio.h>

main()
{

/* ccstrip: strip non-graphic characters */

The line

int Ci
while ((c • getcharl» !- EOF)

if ((c >= ' , && c < 0177) II c -- '\t' II c -- '\n')
putchar (c) i

exit(O)i

#include <stdio.h>

should appear at the beginning of each source file. It causes the C compiler to read a file
Uusrlincludelstdio.h} of standard routines and symbols that includes the definition of EOF.

If it is necessary to treat multiple files, you can use cat to collect the files for you:

cat file1 file2 ... I ccstrip >output

and thus avoid learning how to access files from a program. By the way, the call to exi t at the
end is not necessary to make the program work properly, but it assures that any caller of the

the standard.

" .
! I

returns a

. If there i:; any

read or write the

to

prograrn 'when "

The

and
sys~

con-

to the

which contains
in the

need to kno\v the

a FILE. is a

second argll-'
intend to use

is open. There are several

EOFwhen it reaches

17-5

putc(c, fp)

the character c on the fp and returns c. and return EOF on error.

When a program is are opened automatically, and file pointers are pro-
vided for them. These are the standard the output, and the standard error
output; stdin, stdout, and stderr. Normally

are aU connected to to or pipes as described in
Section stdout and I/O library as standard

error may be anywhere an object type FILE 1< can be.
not variables, so don't try to assign to

With some the way, we can now write we. basic design is
one that has been many programs: if there are command-line arguments,
they are processed in order. If there are no arguments, the standard input is processed. This
way the program can be used stand-alone or as part of a larger process.

#include <stdio.h>

main(argc,
int argc;
char *argv[

1* we: count lines, words, chars *1

int c i, inward;
FILE *fP. (l;
long linect, wordct, charct;
long tlinect ~ 0, twordet = 0, tcharct ~ 0;

i '" 1;
fp ". stdin;
do {

if Large:> 1 && (fp=fopen(argv(i], "rIO) 1 "' .. NULL) {
(stderr, "we: can't open %5\n", argv[ij);

continue;

linect "" wordct .. charct '" inword ... 0,
while (Ic - getc(fpl) !- EOF) (

charct++;
if (c """" f \n')

linect:++;.
if (c ""'" 'f Ie"'''''' f \ t' I I c "'= I \n f)

inword '" 0;
else if (inwox·d "'''' 0) !

imK1rd '"' 1;
wordct++;

("%71d %71d %7ld", linect, wordct, charctl;
(arge » 1 ? " %5\n" : "\n", ax-gyri]);

fel<.:lse(I;
tlinect +- linect;
twordct +~ wordct;
tcharct +n charcti

while (++i < argc);
if :> 2)

("%71d %71d %71d total \0", t.linect, twordct, tcharct);
exit(Ol;

intf is identical to printf, save that the first argument is a
be written.

pointer that

17-6

The function fclose is the inverse of fopen; it breaks the connection between the file
pointer and the external name that was established by fopen, freeing the file pointer for
another file. Since there is a limit on the number of files that a program may have open simul­
taneously, it's a good idea to free things when they are no longer needed. There is also another
reason to call fclose on an output file - it flushes the buffer in which putc is collecting out­
put. (fclose is called automatically for each open file when a program terminates normally.)

3.2. Error Handling - Stderr and Exit

stderr is assigned to a program in the same way that stdin and stdout are. Output
written on stderr appears on the user's terminal even if the standard output is redirected. we
writes its diagnostics on stderr instead of stdout so that if one of the files can't be accessed
for some reason, the message finds its way to the user's terminal instead of disappearing down
a pipeline or into an output file.

The program actually signals errors in another way, using the function exi t to terminate
program execution. The argument of exit is available to whatever process called it (see Sec­
tion 6), so the success or failure of the program can be tested by another program that uses this
one as a sub-process. By convention, a return value of 0 signals that all is well; non-zero
values signal abnormal situations.

exi t itself calls fclose for each open output file, to flush out any buffered output, then
calls a routine named _exit. The function _exit causes immediate termination without any
buffer flushing; it may be called directly if desired.

3 .3. Miscellaneous I/O Functions

The standard I/O library provides several other 110 functions besides those we have illus­
trated above.

Normally output with putc, etc., is buffered (except to stderr); to force it out immedi­
ately, use fflush(fp).

fscanf is identical to scanf, except that its first argument is a file pointer (as with
fprintf) that specifies the file from which the input comes: it returns EOF at end of file.

The functions sscanf and sprintf are identical to fscanf and fprintf, except that
the first argument names a character string instead of a file pointer. The conversion is done
from the string for sscanf and into it for sprintf.

fgets (buf J size, fp) copies the next line from fp, up to and including a newline,
into buf; at most size-1 characters are copied; it returns NULL at end of file.
fputs (buf, fp) writes the string in buf onto file fp.

The function ungetc (c, fp) "pushes back" the character c onto the input stream fp; a
subsequent call to getc, fscanf, etc., will encounter c. Only one character of push back per
file is permitted.

4. LOW-LEVEL I/O

This section describes the bottom level of I/O on the UNIX system. The lowest level of
I/O in UNIX provides no buffering or any other services; it is in fact a direct entry into the
operating system. You are entirely on your own, but on the other hand, you have the most
control over what happens. And since the calls and usage are quite simple, this isn't as bad as
it sounds.

4 . 1. File Descriptors

In the UNIX operating system, all input and output is done by reading or writing files,
because all peripheral devices, even the user's terminal, are files in the file system. This means
that a single, homogeneous interface handles all communication between a program and peri­
pheral devices.

(

(

17-7

In the most general case, before reading or writing a file, it is necessary to inform the sys­
tem of your intent to do so, a process called "opening" the file. If you are going to write on a
file, it may also be necessary to create it. The system checks your right to do so (Does the file
exist? Do you have permission to access it?), and if all is well, returns a small positive integer
called a file descriptor. Whenever I/O is to be done on the file, the file descriptor is used instead
of the name to identify the file. (This is roughly analogous to the use of REAO(S, ...) and
WRITE(6, .. .) in Fortran,} All information about an open file is maintained by the system~ the
user program refers to the file only by the file descriptor.

The file pointers discussed in section 3 are similar in spirit to file descriptors, but file
descriptors are more fundamental. A file pointer is a pointer to a structure that contains,
among other things, the file descriptor for the file in question.

Since input and output involving the user's terminal are so common, special arrangements
exist to make this convenient. When the command interpreter (the "shell") runs a program, it
opens three files, with file descriptors 0, 1, and 2, called the standard input, the standard out­
put, and the standard error output. All of these are normally connected to the terminal, so if a
program reads file descriptor 0 and writes file descriptors 1 and 2, it can do terminal 110
without worrying about opening the files.

If 1/0 is redirected to and from files with < and >, as in

prog <infile >outfile

the shell changes the default assignments for file descriptors 0 and 1 from the terminal to the
named files. Similar observations hold if the input or output is associated with a pipe. Nor­
mally file descriptor 2 remains attached to the terminal, so error messages can go there. In all
cases, the file assignments are changed by the shell, not by the program. The program does not
need to know where its input comes from nor where its output goes, so long as it uses file 0 for
input and 1 and 2 for output.

4.2, Read and Write

All input and output is done by two functions called read and wri teo For both, the first
argument is a file descriptor. The second argument is a buffer in your program where the data
is to come from or go to. The third argulTlent is the number of bytes to be transferred. The
calls are

n_read = read(fd, buf, n)i

n_written = write(fd, buf, n)i

. Each call returns a byte count which is the number of bytes actually transferred. On reading,
the number of bytes returned may be less than the number asked for, because fewer than n
bytes remained to be read. (When the file is a terminal, read normally reads only up to the
next newline, which is generally less than what was requested,) A return value of zero bytes
implies end of file, and -1 indicates an error of some sort. For writing, the returned value is
the number of bytes actually written; it is generally an error if this isn't equal to the number
supposed to be written.

The number of bytes to be read or written is quite arbitrary. The two most common values
are I, which means one character at a time ("unbuffered"). and 512, which corresponds to a
physical blocksize on many peripheral devices. This latter size will be most efficient, but even
character at a time 1/0 is not inordinately expensive.

Putting these facts together, we can write a simple program to copy its input to its output.
This program will copy anything to anything, since the input and output can be redirected to
any ftle or device.

17-8

"define BUFSIZE 512 1* best size for PDP-11 UNIX *1

main ()
(

1* copy input to output *1

char buf(BUFSIZE]i
int n;

while «n - read(O, buf, BUFSIZE» > 0)
write(1, buf, n);

exit(O);

If the file size is not a multiple of BUFSIZE, some read will return a smaller number of bytes
to be written by wri te; the next call to read after that will return zero.

It is instructive to see how read and wri te can be used to construct higher level routines
like getchar, putchar. etc. For example, here is a version of getchar which does
unbuffered input.

#define CMASK 0377 1* for making char's> 0 *1

getchar() 1* unbuffered single character input *1
(

char Ci

return«read(O, &c, 1) > 0) ? c & CMASK : EOF);

c must be declared char. because read accepts a character pointer. The character being
returned must be masked with 0377 to ensure that it is positive; otherwise sign extension may
make it negative. (The constant 0377 is appropriate for the PDP-ll but not necessarily for
other machines.)

The second version of getchar does input in big chunks. and hands out the characters
one at a time.

"define
#define

CMASK
BUFSIZE

0377 1* for making char's> 0 *1
512

getchar() 1* buffered version *1
I

static char
static char
static int

buf(BUFSIZE]i
*bufp = buf;
n .. 0;

if (n == 0) 1* buffer is empty *1
n a read(O, buf, BUFSIZE);
bufp = buf;

return«--n >= 0) ? *bufp++ & CMASK

4. 3. Open, Creat, Close, Unlink

EOF) ;

Other than the default standard input, output and error files, you must explicitly open files
in order to read or write them. There are two system entry points for this. open and creat
[sic1.

open is rather like the fopen discussed in the previous section, except that instead of
returning a file pointer, it returns a file descriptor, which is just an into

(

17-9

int fd;

fd - open(name, rwmode);

As with fopen, the name argument is a character string corresponding to the external file
name. The access mode argument is different, however: rwmode is 0 for read, 1 for write, and
2 for read and write access. opell returns -1 if any error occurs; otherwise it returns a valid
file descriptor.

It is an error to try to open a file that does not exist. The entry point ere at is provided
to create new files, or to re-write old ones.

fd • creat(name, pmode)i

returns a file descriptor if it was able to create the file called name, and -1 if not. If the file
already exists, ereat will truncate it to zero length; it is not an error to ereat a file that
already exists.

If the file is brand new, ereat creates it with the protection mode specified by the pmode
argument. In the UNIX file system, there are nine bits of protection information associated
with a file, controlling read, write and execute permission for the owner of the file, for the
owner's group, and for all others. Thus a three-digit octal number is most convenient for
specifying the permissions. For example, 0755 specifies read, write and execute permission for
the owner, and read and execute permission for the group and everyone else.

To illustrate, here is a simplified version of the UNIX utility cp, a program which copies one
file to another. (The main simplification is that our version copies only one file, and does not
permit the second argument to be a directory.)

#define NULL 0
#define BUFSIZE 512
#define PMODE 0644 1* RW for owner, R for group, others *1

main (argc, argv)
int argc;

1* cp: copy f1 to f2 *1

char *argv[];
(

int f1, f2, n;
char buf[BUFSIZE];

if (argc !- 3)
error ("Usage: cp from to", NULL);

if «f1 - open(argv[1], 0» -- -1)
error("cp: can't open %s", argv(1);

if «(f2 • creat(argv[21, PMODE» .- -1)
error("cp: can't create %S", argv[2);

while (n - read(f1 I buf, BUFSIZE» > 0)
if (write(f2, buf, n) 1- n)

error (tlcp: write error", NULL);
exit(O);

error(s1, 82) 1* print error meSSAge and die *1
char *s1, *52;
(

printf(s1, s2);
printf(tI'n");
exit (1) ;

17-10

As we said earlier, there is a limit (typically 15-25) on the number of files which a program
may have open simultaneously. Accordingly, any program which intends to process many files
must be prepared to re-use file descriptors. The routine close breaks the connection between
a file descriptor and an open file, and frees the file descriptor for use with some other file. Ter­
mination of a program via exit or return from the main program closes all open files.

The function unlink (filename) removes the file filename from the file system.

4 . 4. Random Access - Seek and Lseek

File I/O is normally sequential: each read or write takes place at a position in the file
right after the previous one. When necessary, however, a file can be read or written in any
arbitrary order. The system call lseek provides a way to move around in a file without actu­
ally reading or writing:

lseek(fd, offset, origin);

forces the current position in the file whose descriptor is fd to move to positIon offset,
which is taken relative to the location specified by origin. Subsequent reading or writing will
begin at that position. offset is a long; fd and origin are int's. origin can be 0, 1,
or 2 to specify that offset is to be measured from the beginning, from the current position,
or from the end of the file respectively. For example, to append to a file, seek to the end
before writing:

lseek(fd, OL, 2);

To get back to the beginning ("rewind"),

lseek(fd, OL, 0);

Notice the OL argument; it could also be written as (long) O.

With lseek, it is possible to treat files more or less like large arrays, at the price of slower
access. For example, the following simple function reads any number of bytes from any arbi­
trary place in a file.

get(fd, pas, buf, n) 1* read n bytes from position pas *1
int fd, n;
long pos;
char *bufi
(

lseek(fd, pos, 0); 1* get to pes *1
return(read(fd, buf, n»;

In pre-version 7 UNIX, the basic entry point to the I/O system is called seek. seek is
identical to lseek. except that its offset argument is an int rather than a long. Accord­
ingly, since PDP-II integers have only 16 bits, the offset specified for seek is limited to
65,535; for this reason, origin values of 3, 4, 5 cause seek to multiply the given offset by
512 (the number of bytes in one physical block) and then interpret origin as if it were 0, 1,
or 2 respectively. Thus to get to an arbitrary place in a large file requires two seeks, first one
which selects the block, then one which has origin equal to 1 and moves to the desired byte
within the block.

4 . 5. Error Processing

The routines discussed in this section, and in fact all the routines which are direct entries
into the system can incur errors. Usually they indicate an error by returning a value of -1.
Sometimes it is nice to know what sort of error occurred; for this purpose all these routines,
when appropriate, leave an error number in the external cell errno. The meanings of the
various error numbers are listed in the introduction to Section II of the UNIX Programmer's
Manual. so your program can, for example, determine if an attempt to open a file failed

(

because it did not exist or U";;',",,,"';>I;;;

monly, you may want to
sage the
strings which can be indexed

5 .

It is
section to execute a program

5,1 .

a program

11 program,

main ()

system("date"l;
I .. rest of processing +J/

If command to
sprintf may be

17-11

H'"'''''>''' to read it. more com-
The routine perror will print a mes­

sys_errno is an array of !'n, .. ",,',

their
For

to

terminal
use ff

own. This

of

not be prop-
for see

5.:2 ,

If or if you need control over what happens, you
the more primitive that the stan-

is to execute another program witho!U the rou-
date as the last a program, use

execl("/bin/date", "date" NULL);

argument to execl is the
systern. The second is

but this is

The execl call program with
program.

to know where it is
program name (that

new one, runs that, then

If the
a

into two or more

when is an error, for
Know where da'te is

execl(ii/bin/date"> "date", NULL);
execl("/usr/bin/da.te", "date", N'IJLL);

(stderr, "Someone stole ' dat,!!;' \n") ;

A variant exec 1 called execv is you
there are to be. cal! is

know

an execl call

back occurs
If you

advance how many

execv t, .' argp

if

17

the last the array must
As with ,",xecl, filename IS the in which

is identi-program.

COrf!lnandl

-c", cma, NULL

next
in con-

is the process nU111ber

'k in child *!

or forJ-c~ or
it

returned
the child

's

the
'/arlous kinds
ex t. which

all programs to

17-13

return meaningful status.

When a program is called by the sheil, the three file descriptors 0, 1, and 2 are set up point­
ing at the right files, and all other possible file descriptors are available for use. When this pro­
gram calls another one, correct etiquette suggests making sure the same conditions hold. Nei­
ther fork nor the exec calls affects open files in any way. If the parent is buffering output
that must come out before output from the child, the parent must flush its buffers before the
execl. Conversely, if a caller buffers an input stream, the called program will lose any infor­
mation that has been read by the caller.

5.4. Pipes

A pipe is an 110 channel intended for use between two cooperating processes: one process
writes into the pipe, while the other reads. The system looks after buffering the data and syn­
chronizing the two processes. Most pipes are created by the shell, as in

1s I pr

which connects the standard output of 1s to the standard input of pro Sometimes, however, it
is most convenient for a process to set up its own plumbing~ in this section, we will illustrate
how the pipe connection is established and used.

The system call pipe creates a pipe. Since a pipe is used for both reading and writing, two
file descriptors are returned; the actual usage is like this:

int fd[2]i

stat = pipe(fdl i
if (stat ... : -1)

1* there was an error ... */

fd is an array of two file descriptors, where fd [0] is the read side of the pipe and fd [1] is
for writing. These may be used in read, write and close calls just like any other file
descriptors.

I f a process reads a pipe which is empty, it will wait until data arrives; if a process writes
into a pipe which is too full, it will wait until the pipe empties somewhat. If the write side of
the pipe is closed. a subsequent read will encounter end of file.

To illustrate the use of pipes in a realistic setting. let us write a function called
popen (cmd, mode), which creates a process cmd (just as system does). and returns a file
descriptor that will either read or write that process. according to mode. That is, the call

fout - popen ("pr", WRITE I i

creates a process that executes the pr command; subsequent wri te calls using the file descrip­
tor fout will send their data to that process through the pipe.

popen first creates the the pipe with a pipe system call; it then forks to create two
copies of itself. The child decides whether it is supposed to read or write. closes the other side
of the pipe. then calls the shell (via exec 1) to run the desired process. The parent likewise
closes the end of the pipe it does not use. These closes are necessary to make end-of-file tests
work properly. For example. if a child that intends to read fails to close the write end of the
pipe. it will never see the end of the pipe file, just because there is one writer potentially active.

#include <st:di.o.

#define REi\D 0

#def:i.n'~ WR!,!'E
#define
static

popen
char '#teInd.;
into

p[

i

(p)

17-1

))

0)

"" fork ()

dup (tst: [:READ], P lI'JRI'I'E 1)) ;

f

(t.Rt: (p [READ), p (i'IRITE])) ;
execl(u/bin/sh H , shu H-C'~)l crud, (J);

1); 1* disaster has occurred if we get here *1

[~'lrzITE] J P (READ) ;

id is a bit
t.hat will read data frDrn the parent.

Close

read side open. lines

, p [WRITE])) ;

may
when the child process is
it a to step

need a function pclose to close the created
rather than c los (~ that is desi rat-de

the return value
a

(

\.

17-15

#include <signal.h>

pc lose (fdl
int fdi

1* close pipe fd *1

{

register r, (*hstatl (l, (*istatl (), (*qstat) (li
int status;
extern int popen-pidi

close (fdl ;
istat a signal (SIGINT, SIG_IGNli
qstat = signal(SIGQUIT, SIG_IGN)i
hstat = signal(SIGHUP, SIG_IGNli
while «r - wait(&status» !- popen-pid && r !- -1)i
if (r -1)

status. -1;
signal (SIGINT, istat)i
signal(SIGQUIT, qstat)i
signal(SIGHUP, hstat)i
return(status)i

The calls to signal make sure that no interrupts, etc .• interfere with the waiting process; this
is the topic of the next section.

The routine as written has the limitation that only one pipe may be open at once, because
of the single shared variable popen_pid; it really should be an array indexed by file descrip­
tor. A popen function, with slightly different arguments and return value is available as part
of the standard 1/0 library discussed below. As currently written, it shares the same limitation.

6. SIGNALS - INTERRUPTS AND ALL THAT

This section is concerned with how to deal gracefully with signals from the outside world
Oike interrupts), and with program faults. Since there's nothing very useful that can be done
from within C about program faults, which arise mainly from illegal memory references or from
execution of peculiar instructions, we'll discuss only the outside-world signals: interrupt, which
is sent when the DEL character is typed; qUit, generated by the FS character; hangup, caused by
hanging up the phone; and terminate, generated by the kill command. When one of these
events occurs, the signal is sent to all processes which were started from the corresponding ter­
minal; unless other arrangements have been made, the signal terminates the process. In the
quit case, a core image file is written for debugging purposes.

The routine which alters the default action is called signal. It has two arguments: the
first specifies the signal, and the second specifies how to treat it. The first argument is just a
number code, but the second is the address is either a function, or a somewhat strange code
that requests that the signal either be ignored, or that it be given the default action. The
include file signal. h gives names for the various arguments, and should always be included
when signals are used. Thus

#include <signal.h>

signal (SIGINT, SIG_IGN)i

causes interrupts to be ignored, while

signal (SIGINT, SIG_DFL)i

restores the default action of process termination. In all cases, signal returns the previous
value of the signal. The second argument to signal may instead be the name of a function
(which has to be declared explicitly if the compiler hasn't seen it already). In this case, the
named routine will be called when the signal occurs. Most commonly this facility is used to

17 -16

allow the program to clean up unfinished business before terminating, for example to delete a
temporary file:

'include <signal.h>

maine)
(

int onintr();

if (signal (SIGINT, SIG_IGN) 1- SIG_IGN)
signal (SIGINT, onintr)i

1* Process ... *1

exit(O)i

onintr ()
(

unlink(tempfile);
exit(1);

Why the test and the double call to signal? Recall that signals like interrupt are sent to
a/l processes started from a particular terminal. Accordingly, when a program is to be run non­
interactively (started by &), the shell turns off interrupts for it so it won't be stopped by inter­
rupts intended for foreground processes. If this program began by announcing that all inter­
rupts were to be sent to the onintr routine regardless, that would undo the shell's effort to
protect it when run in the background.

The solution, shown above. is to test the state of interrupt handling, and to continue to
ignore interrupts if they are already being ignored. The code as written depends on the fact
that signal returns the previous state of a particular signal. If signals were already being
ignored, the process should continue to ignore them; otherwise, they should be caught.

A more sophisticated program may wish to intercept an interrupt and interpret it as a
request to stop what it is doing and return to its own command-processing loop. Think of a
text editor: interrupting a long printout should not cause it to terminate and lose the work
already done. The outline of the code for this case is probably best written like this:

#include <signal.h>
#include <setjrnp.h>
jrnp_buf sjbufi

main(l
{

int (*istat) (I, onintr();

istat = signal {SIGINT, SIG_IGNli 1* save original status *1
setjrnp(sjbufl; 1* save current stack position *1
if (istat != SIG_IGNl

signal (SIGINT, onintrl;

1* main processing loop *1

(

(

onintr ()
{

printf("\nlnterrupt\n")i

17 -17

longjmp(sjbuf)i /* return to saved state */

The include file set jmp. h declares the type jmp_buf an object in which the state can be
saved. sjbuf is such an object~ it is an array of some sort. The setjmp routine then saves
the state of things. When an interrupt occurs, a call is forced to the onintr routine, which
can print a message, set flags, or whatever. longjmp takes as argument an object stored into
by setjmp, and restores control to the location after the call to setjmp, so control (and the
stack level) will pop back to the place in the main routine where the signal is set up and the
main loop entered. Notice, by the way, that the signal gets set again after an interrupt occurs.
This is necessary; most signals are automatically reset to their default action when they occur.

Some programs that want to detect signals simply can't be stopped at an arbitrary point, for
example in the middle of updating a linked list. If the routine called on occurrence of a signal
sets a flag and then returns instead of calling exit or longjmp, execution will continue at the
exact point it was interrupted. The interrupt flag can then be tested later.

There is one difficulty associated with this approach. Suppose the program is reading the
terminal when the interrupt is sent. The specified routine is duly called; it sets its flag and
returns. If it were really true, as we said above, that "execution resumes at the exact point it
was interrupted," the program would continue reading the terminal until the user typed another
line. This behavior might well be confusing, since the user might not know that the program is
reading; he presumably would prefer to have the signal take effect instantly. The method
chosen to resolve this difficulty is to terminate the terminal read when execution resumes after
the signal, returning an error code which indicates what happened.

Thus programs which catch and resume execution after signals should be prepared for
"errors" which are caused by interrupted system calls. (The ones to watch out for are reads
from a terminal, wait. and pause.) A program whose onintr program just sets intflag,
resets the interrupt signal, and returns, should usually include code like the following when it
reads the standard input:

if (getchar() -- EOF)
if (intflag)

1* EOF caused by interrupt *1
else

1* true end-of-file */

A final subtlety to keep in mind becomes important when signal-catching is combined with
execution of other programs. Suppose a program catches interrupts, and also includes a method
(like "!" in the editor) whereby other programs can be executed. Then the code should look
something like this:

if (fork () "'= 0)
execl (...) i

signal (SIGINT, SIG_IGN)i 1* ignore interrupts *1
wait(&status)i 1* until the child is done *1
signal (SIGINT, onintr)i /* restore interrupts */

Why is this? Again. it's not obvious but not really difficult. Suppose the program you call
catches its own interrupts. If you interrupt the subprogram. it will get the signal and return to
its main loop, and probably read your terminal. But the calling program will also pop out of its
wait for the subprogram and read your terminal. Having two processes reading yo~r terminal is
very unfortunate. since the system figuratively flips a coin to decide who should get each line of
input. A simple way out is to have the parent program ignore interrupts until the child is done.
This reasoning is reflected in the standard 1/0 library function system:

17 -18

#include <signal.h>

system(s) 1* run command string s *1
char *s;
(

int status, pid, Wi
register int I*istat) I), (*qstatl (I;

if lIpid - fork(») -- 0)
execl("/bin/sh", "sh", "-C" , s, 0);
_exit(127);

istat - signal(SIGINT, SIG_IGN)i
qstat - signal(SIGQUIT, SIG_IGN);
while «w - wait(&status») 1- pid && w 1- -1)

if (w -- -1)

status - -1i
signal (SIGINT, istatl;
signal(SIGQUIT, qstat)i
return(status);

As an aside on declarations, the function signal obviously has a rather strange second
argument. It is in fact a pointer to a function delivering an integer, and this is also the type of
the signal routine itself. The two values SIG_IGN and SIG_DFL have the right type, but are
chosen so they coincide with no possible actual functions. For the enthusiast, here is how they
are defined for the PDP-ll: the definitions should be sufficiently ugly and nonportable to
encourage use of the include file.

#define
#define

References

lint (*) ()10
(int (*) (I) 1

[1] K. L. Thompson and D. M. Ritchie, The UNIX Programmer's Manual. Bell Laboratories,
1978.

(2] B. W. Kernighan and D. M. Ritchie, The C Programming Language. Prentice-Hall, Inc.,
1978.

(3J B. W. Kernighan, "UNIX for Beginners - Second Edition." Bell Laboratories, 1978.

(

(

17-19

Appendix - The Standard 1/0 Library

D. M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

The standard 110 library was designed with the following goals in mind.

1. It must be as efficient as possible, both in time and in space, so that there will be no hesita­
tion in using it no matter how critical the application.

2. It must be simple to use, and also free of the magic numbers and mysterious calls whose
use mars the understandability and portability of many programs using older packages.

3. The interface provided should be applicable on all machines, whether or not the programs
which implement it are directly portable to other systems, or to machines other than the
PDP-II running a version of UNIX.

1. General Usage

Each program using the library must have the line

#include <stdio.h>

which defines certain macros and variables. The routines are in the normal C library, so no
special library argument is needed for loading. All names in the include file intended only for
internal use begin with an underscore _ to reduce the possibility of collision with a user name.
The names intended to be visible outside the package are

stdin The name of the standard input file

stdout The name of the standard output file

stderr The name of the standard error file

EOF is actually -1, and is the value returned by the read routines on end-of-file or error.

NULL is a notation for the null pointer, returned by pointer-valued functions to indicate an
error

FILE expands to struct _iob and is a useful shorthand when declaring pointers to
streams.

BUFSIZ is a number (viz. 512) of the size suitable for an 110 buffer supplied by the user.
See setbuf, below.

getc, getchar, putc, putchar, feof, ferror, fileno
are defined as macros. Their actions are described below; they are mentioned here
to point out that it is not possible to redeclare them and that they are not actually
functions; thus, for example, they may not have breakpoints set on them.

The routines in this package offer the convenience of automatic buffer allocation and out­
put flushing where appropriate. The names stdin, stdout, and stderr are in effect con­
stants and may not be assigned to.

2. Calls

FILE *fopen(filename, type) char *filename, *type;
opens the file and, if needed, allocates a buffer for it. filename is a character string
specifying the name. type is a character string (not a single character). It may be "r",
"w", or "a" to indicate intent to read, write, or append. The value returned is a file
pointer. If it is NULL the attempt to open failed.

FILE *freopen(filename, type, ioptr) char *filename, *type; FILE *ioptr;

17-20

The stream named by ioptr is closed, if necessary, and then reopened as if by fopen. If
the attempt to open fails, NULL is returned, otherwise ioptr, which will now refer to the
new file. Often the reopened stream is stdin or stdout.

int getc(ioptr) FILE *ioptri
returns the next character from the stream named by ioptr. which is a pointer to a file
such as returned by fop en. or the name stdin. The integer EOF is returned on end-of­
file or when an error occurs. The null character \0 is a legal character.

int fgetc(ioptr) FILE *ioptri
acts like getc but is a genuine function. not a macro. so it can be pointed to, passed as an
argument, etc.

putc(c, ioptr) FILE *ioptr;
putc writes the character c on the output stream named by ioptr. which is a value
returned from fopen or perhaps stdout or stderr. The character is returned as value.
but EOF is returned on error.

fputc(c, ioptr) FILE *ioptr;
acts like putc but is a genuine function. not a macro.

fclose(ioptr) FILE *ioptr;
The file corresponding to ioptr is closed after any buffers are emptied. A buffer allocated
by the 110 system is freed. fclose is automatic on normal termination of the program.

fflush(ioptr) FILE *ioptri
Any buffered information on the (output) stream named by ioptr is written out. Output
files are normally buffered if and only if they are not directed to the terminal; however.
stderr always starts off unbuffered and remains so unless setbuf is used, or unless it is
reopened.

exit(errcode)i
terminates the process and returns its argument as status to the parent. This IS a special
version of the routine which calls fflush for each output file. To terminate without flush­
ing, use _ exi t.

feof(ioptr) FILE *ioptr;
returns non-zero when end-of-file has occurred on the specified input stream.

ferror(ioptr) FILE *ioptri
returns non-zero when an error has occurred while reading or writing the named stream.
The error indication lasts until the file has been closed.

getchar()i
is identical to getc (stdin) .

putchar(c)i
is identical to pu tc (c, s tdou t) .

char *fgets(s, n, ioptr) char *s; FILE *ioptr;
reads up to n-1 characters from the stream ioptr into the character pointer s. The read
terminates with a newline character. The newline character is placed in the buffer followed
by a null character. fgets returns the first argument. or NULL if error or end-of-file
occurred.

fputs(s} ioptr) char *Si FILE *ioptri
writes the null-terminated string (character array) s on the stream ioptr. No newline is
appended. No value is returned.

ungetc(c, ioptr) FILE *ioptri

(

(

17-

The argument character c is pushed back on the input stream named by ioptr. Only one
character may be pushed back.

printf(format, a1, ...) char *format;
intf(ioptr, format, a1} ...) FILE *ioptrj char *format;

sprintf(s, format, a1 I •••)char *s} *format;
printf writes on the standard output. fprintf writes on the named output stream.
sprintf puts characters in the character array (string) named by s. The specifications are
as in section printf(3) of the UNIX Programmer's Manual.

scanf(format, a1 I •••) char *format;
fscanf(ioptr, format, a1, ...) FILE *ioptr; char *formati
sscanf (s, format, a1) ...) char *s, *format;

scanf reads from the standard input. fscanf reads from the named input stream.
sscanf reads from character string supplied as s. scanf reads characters, interprets
them according to a format, and stores the results in its arguments. Each routine expects
as arguments a control forma t, and a set of arguments, each which must be a
pointer, indicating where the converted input should be stored.

scanf returns as value the number of successfully matched and assigned input items.
This can be used to decide how many input items were found. On end file, EOF is
returned; note that this is different from 0, which means that the next input character does
not match what was called in the control string.

fread(ptr; sizeof(), nitems} ioptr) FILE *ioptri
reads ni tems of data beginning at ptr from file ioptr. No advance notification that binary
I/O is done is required; when, for portability reasons, it becomes required, it will be done
by an additional character to the mode-string on the fopen call.

I sizeof(*ptr), nitems, ioptr) FILE *ioptr;
but in other direction.

rewind (ioptr) FILE *ioptr;
rewinds the stream named by ioptr. It is not very useful except on input, since a rewound
output file is still open for output.

(string) char *string;
The string is executed by the shell as if typed at the terminal.

(ioptr) FILE *ioptr;
returns the next word from the input stream named by ioptr. EOF is returned on end-of-file
or error, but since this a perfectly good integer feof and ferror should be used. A "word"
is 16 bits on PDP·1l.

putw(w, ioptrl FILE *ioptr;
writes the integer w on the named output stream.

setbuf(ioptr, buf) FILE *ioptr; char *buf;
set.buf may be used a stream been opened but before 110 has started. If buf is
NULL, the stream will be unbuffered. Otherwise the buffer supplied will be used. It must be a
character array

char buf(BUFSIZl;

fileno) FILE * , ,
returns the integer file associated with the file.

fseek , offset J ptrnamel FILE *ioptr; long offset;
the next in stream named by ioptr is adjusted. offset is a long

is 0, the offset is measured from the beginning of the file; if ptrname is
the current read or write pointer; if ptrname is 2, the offset is

the routine accounts properly for any (When

is Ilsed on non-UNIX systems,
must be

char *buf;
searched

imo the character array
then 1 returned.

*malloc(num)
allocates flUID returned is
pose. NULL is returned if no space

to be usable
available.

used

are macros whose

returns l1on·zero if the

i returns

slower (returns non-zero if

returns non-zero if

i.sspaee (c) retumsnon-zero if
space.

character.

non-zero the

non-zero if

::Lsentrl (e:;) returns non-zero if

sascii (el returns non-zero if the

(c) returns upper-case

t:olowar (e) returns lower-case

cal

must

well

can

is

is upper-case

is lower,·case

is

is a

is any

a

is a letter or a

is

returned ft:el1

with named stream IS

be usable

o and

<c .11>.

not a spac~!,

character.

tnan

to lower-case letter c ,

to upper-case c.

I
(
\

.. ",'

A Tutorial Introduction to AD B

J. F. Maranzano

S. R. Bourne

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Debugging tools generally provide a wealth of information about the inner
workings of programs. These tools have been available on UNlxt to allow users
to examine "core" files that result from aborted programs. A new debugging
program, ADB, provides enhanced capabilities to examine "core" and other pro­
gram files in a variety of formats, run programs with embedded breakpoints and
patch files.

ADB is an indispensable but complex tool for debugging crashed systems
and/or programs. This document provides an introduction to ADB with exam­
ples of its use. It explains the various formatting options, techniques for
debugging C programs, examples of printing file system information and patch­
ing.

May 5, 1977

tUNIX is a Trademark of Bell Laboratories.

18-1

/vfararlzano

L

HIe is

a.

(

I format

0126:

Trademark Bell Laoof3wries.

18-3

sets dot to octal 126 and prints the instruction at that address. The request:

.,lO/d

prints 10 decimal numbers starting at dot. Dot ends up referring to the address of the last item
printed. When used with the ? or / requests, the current address can be advanced by typing
newline: it can be decremented by typing ".

Addresses are represented by expressions. Expressions are made up from decimal, octal,
and hexadecimal integers, and symbols from the program under test. These may be combined
with the operators +, -, *, % (integer division), & (bitwise and), I (bitwise inclusive or), #
(round up to the next multiple), and - (not). (All arithmetic within ADB is 32 bits.) When
typing a symbolic address for a C program, the user can type name or _name; ADB will recog­
nize both forms.

2.3. Formats

To print data, a user specifies a collection of letters and characters that describe the format
of the printout. Formats are "remembered" in the sense that typing a request without one will
cause the new printout to appear in the previous format. The following are the most commonly
used format letters.

b one byte in octal
c one byte as a character
o one word in octal
d one word in decimal
f two words in floating point

PDP 11 instruction
s a null terminated character string
a the value of dot
u one word as unsigned integer
n print a newline
r print a blank space

backup dot

(Format letters are also available for "long" values, for example, 'D' for long decimal, and' F
for double floating point.) For other formats see the ADB manual.

2.4. General Request Meanings

The general form of a request is:

address,count command modifier

which sets 'dot' to address and executes the command count times.

The following table illustrates some general ADB command meanings:

Command Meaning
? Print contents from a.out file
/ Print contents from core file
:= Print value of "dot"

Breakpoint control
$ Miscellaneous requests

Request separator
Escape to shell

ADB catches signals, so a user cannot use a quit signal to exit from ADB. The request Sq
or $Q (or cntl-D) must be used to exit from ADB.

c

ng

rnaps,

contents at

argument

:S IS

18-5

The request:

*main .argv ,3/0

prints the octal values of the three consecutive cells pointed to by argv in the function main.
Note that these values are the addresses of the arguments to main. Therefore:

0177770/s

prints the ASCII value of the first argument. Another way to print this value would have been

*"/s

The " means ditto which remembers the last address typed, in this case main.argc the *
instructs ADB to use the address field of the core file as a pointer.

The request:

.-0

prints the current address (not its contents) in octal which has been set to the address of the
first argument. The current address, dot, is used by ADB to "remember" its current location.
It allows the user to reference locations relative to the current address, for example:

.-tO/d

3.2. Multiple Functions

Consider the C program illustrated in Figure 3. This program calls functions.f. g. and h
until the stack is exhausted and a core image is produced.

Again you can enter the debugger via:

adb

which assumes the names a.out and core for the executable file and core image file respectively.
The request:

$c

will fill a page of backtrace references to.f. g. and h. Figure 4 shows an abbreviated list (typing
DEL will terminate the output and bring you back to ADB request level).

The request:

,SSC

prints the five most recent activations.

Notice that each function (f.g.h) has a counter of the number of times it was called.

The request:

fcnt/d

prints the decimal value of the counter for the function I Similarly gcnt and hent could be
printed. To print the value of an automatic variable, for example the decimal value of x in the
last call of the function h. type:

h.x/d

It is currently not possible in the exported version to print stack frames other than the most
recent activation of a function. Therefore, a user can print everything with SC or the
occurrence of a variable in the most recent call of a function. It is possible with the SC request,
however, to print the stack frame starting at some address as addressSC.

18-6

3.3. Setting Breakpoints

Consider the C program in Figure 5. This program, which changes tabs into blanks, is
adapted from So.frware Tools by Kernighan and Plauger, pp. 18-27.

We will run this program under the control of ADB (see Figure 6a) by:

adb a.out -

Breakpoints are set in the program as:

address:b Irequestl

The requests:

settab+4:b
fopen +4:b
getc+4:b
tabpos +4:b

set breakpoints at the start of these functions. C does not generate statement labets. Therefore
it is currently not possible to plant breakpoints at locations other than function entry points
without a knowledge of the code generated by the C compiler. The above addresses are
entered as symbol +4 so that they will appear in any C backtrace since the first instruction of
each function is a call to the C save routine (csl!). Note that some of the functions are from
the C library.

To print the location of breakpoints one types:,

$b

The display indicates a count field. A breakpoint is bypassed count -j times before causing a
stop. The command field indicates the ADB requests to be executed each time the breakpoint is
encountered. In our example no command fields are p'"esent.

By displaying the original instructions at the function sellab we see that the brt:akpoint is
set after the jsr to the C save routine. We can display the instructions using the ADB request:

settab,5?ia

This request displays five instructions starting at seffab with the addresses of each location
displayed. Another variation is:

settab,5?i

which displays the instructions with only the starting address.

Notice that we accessed the addresses from the a.Ol/(file with the? command. In general
when asking for a printout of multiple items, ADB will advance the current address the number
of bytes necessary to satisfy the request; in the above example five instructions were displayed
and the current address was advanced 18 (decimal) bytes.

To run the program one simply types:

:r

To delete a breakpoint, for instance the entry to the function setfab. one types:

settab +4:d

To continue execution of the program from the breakpoint type:

:c

Once the program has stopped (in this case at the breakpoint for lopel/). ADB requests can
be used to display the contents of memory. For example:

$C

(

(

18-7

to display a stack trace, or:

tabs,3/So

to print three lines of 8 locations each from the array called tabs. By this time (at location
fopenJ in the C program, settab has been called and should have set a one in every eighth loca­
tion of tabs.

3.4. Advanced Breakpoint Usage

We continue execution of the program with:

:c

See Figure 6b. Getc is called three times and the contents of the variable c in the function
main are displayed each time. The single character on the left hand edge is the output from the
C program. On the third occurrence of getc the program stops. We can look at the full buffer
of characters by typing:

ibuf+6/20c

When we continue the program with:

:c

we hit our first breakpoint at tabpos since there is a tab following the "This" word of the data.

Several breakpoints of tabpos will occur until the program has changed the tab into
equivalent blanks. Since we feel that tabpos is working, we can remove the breakpoint at that
location by:

tabpos+4:d

If the program is continued with:

:c

it resumes normal execution after ADB prints the message

a.out :running

The UNIX quit and interrupt signals act on ADB itself rather than on the program being
debugged. If such a signal occurs then the program being debugged is stopped and control is
returned to ADB. The signal is saved by ADB and is passed on to the test program if:

:c

is typed. This can be useful when testing interrupt handling routines. The signal is not passed
on to the test program if:

:c 0

is typed.

Now let us reset the breakpoint at settab and display the instructions located there when
we reach the breakpoint. This is accomplished by:

settab+4:b settab,5?la •

It is also possible to execute the ADB requests for each occurrence of the breakpoint but only

• Owing to a bug in early versions of ADB (including the version distributed in Generic 3 UNIX) these state­
ments must be written as:

settab+4:b settab,S?la;O
letc + 4.3:b main.c?C;O
seUab+ 4:b settab,S?la; ptab/o;O

Note that ;0 will set dot to zero and stop at the breakpoint.

18-9

Notice that the addresses on the stack will continue to decrease until no address space is
left for program execution at which time (after many pages of output) the program under test
aborts. A display with names would be produced by requests like the following:

f+4:b fcnt/d; f.af'a-"d; f.b/"b=="d; f.fi/"fi-"d

In this format the quoted string is printed literally and the d produces a decimal display of the
variables. The results are shown in Figure 7.

3.5. Other Breakpoint Facilities

• Arguments and change of standard input and output are passed to a program as:

:r argl arg2 ... < infile > outfile

This request kills any existing program under test and starts the a.out afresh.

• The program being debugged can be single stepped by:

:s

If necessary, this request will start up the program being debugged and stop after executing
the first instruction.

• ADB allows a program to be entered at a specific address by typing:

address:r

• The count field can be used to skip the first n breakpoints as:

,n:r

The request:

,n:c

may also be used for skipping the first n breakpoints when continuing a program.

• A program can be continued at an address different from the breakpoint by:

address:c

• The program being debugged runs as a separate process and can be killed by:

:k

4. Maps

UNIX supports several executable file formats. These are used to tell the loader how to
load the program file. File type 407 is the most common and is generated by a C compiler
invocation such as cc pgm.c. A 410 file is produced by a C compiler command of the form cc
-n pgm.c, whereas a 411 file is produced by cc -i pgm.c. ADB interprets these different file for­
mats and provides access to the different segments through a set of maps (see Figure 8). To
print the maps type:

$m

In 407 files, both text (instructions) and data are intermixed. This makes it impossible
for ADB to differentiate data from instructions and some of the printed symbolic addresses look
incorrect; for example, printing data addresses as offsets from routines.

In 410 files (shared text), the instructions are separated from data and ?* accesses the
data part of the a.out file. The ?* request tells ADB to use the second part of the map in the
a.ouf file. Accessing data in the core file shows the data after it was modified by the execution

18-10

of the program. Notice also that the data segment may have grown during program execution.

In 411 files (separated I & D space), 'he instructions and data are also separated. How­
ever, in this case, since data is mapped through a separate set of segmentation registers. the
base of the data segment is also relative to address zero. In this case since the addresses over­
lap it is necessary to use the ?* operator to access the data space of the a.our file. In both 410
and 411 files the corresponding core file does not contain the program text.

Figure 9 shows the display of three maps for the same program linked as a 407, 410, 411
respectively. The b, e, and f fields are used by ADB to map addresses into file addresses. The
"fl" field is the length of the header at the beginning of the file (020 bytes for an a.ollt file and
02000 bytes for a core file). The "fl" field is the displacement from the beginning of the file to
the data. For a 407 file with mixed text and data this is the same as the length of the header;
for 410 and 411 files this is the length of the header plus the size of the text portion.

The "b" and "e" fields are the starting and ending locations for a segment. Given an
address, A, the location in the file (either a.out or core) is calculated as:

bl~A~el :::i!> file address = (A-bO+f1
b2~ A ~ eZ :::i!> file address = (A - b2) + f2

A user can access locations by using the ADB defined variables. The $v request prints the vari­
ables initialized by ADB:

b base address of data segment
d length of the data segment
s length of the stack
t length of the text
m execution type (407,410,410

In Figure 9 those variables not present are zero. Use can be made of these variables by
expressions such as:

<b

in the address field. Similarly the value of the variable can be changed by an assignment
request such as:

02000> b

that sets b to octal 2000. These variables are useful to know if the file under examination is an
executable or core image file.

ADB reads the header of the core image file to find the values for these variables. If the
second file specified does not seem to be a core file, or if it is missing then the header of the
executable file is used instead.

5. Advanced Usage
It is possible with ADB to combine formatting requests to provide elaborate displays.

Below are several examples.

5.1. Formatted dump

The line:

< b, -1I404"SCn

prints 4 octal words followed by their ASCII interpretation from the data space of the core
image file. Broken down, the various request pieces mean:

< b The base address of the data segment.

(

18-11

<b,-l A count is
used here and elsewhere to or until some error coo-
dition (like end of file) is detected.

The format sen is broken down as follows:

40 Print octal locations.

the current address 4 locations the start the

Print 8 consecutive an escape
character in the range 0 to 037 is as

ng character in the range 0140 to 0177.

n Print a newline.

request:

<b,< SCn

could have been used instead to allow the to stop at the end of the data «0
the data segmem size in

a core

to read in a

can be combined with
ADS is invoked as:

adb a.o!]t core <

of requests. An

=311

Backtrace"

=311"

"'" JI1" Data c..,"''''.'''IO''
< -1

to read in a to

such a is:

sets the width the to]20 characters the width is

80 AD B attempts to addresses as:

+ offset

maximurTI
, The

are prograrn with requests

= 3n" C Stack Backtrace"

spaces three the literal
variables

the

The

to the nearest
literal

all non-zero ADS
matches 10 zero

18-12

thus suppressing the printing of symbolic labels in favor of octal values. Note that this is only
done for the printing of the data segment. The request:

< b, -1/8ona

prints a dump from the base of the data segment to the end of file with an octal address field
and eight octal numbers per line.

Figure 11 shows the results of some formatting requests on the C program of Figure 10.

S.2. Directory Dump

As another illustration (Figure 12) consider a set of requests to dump the contents of a
directory (which is made up of an integer lfiumber followed by a 14 character name):

adb dir -
== nSt" Inum"8t"Name"
0, -I? u8t14en

In this example, the u prints the inumber as an unsigned decimal integer, the 8t means that
ADS will space to the next multiple of 8 on the output line, and the 14e prints the 14 character
file name.

5.3. Ilist Dump

Similarly the contents of the /list of a file system, (e.g. /dev/src, on UNIX systems distri­
buted by the UNIX Support Group; see UNIX Programmer's Manual Section V) could be
dumped with the following set of requests:

adb Idev Isre
02000> b
?m <b
< b, -1 ?"flags" Ston" links,uid.gid" 8t3bn" ,size" 8tbrdn" addf" 8t8un"time.<;" 8t2Y 2na

In this example the value of the base for the map was changed to 02000 (by saying ?m<b)
since that is the start of an ilis! within a file system. An artifice {brd above} was used to print
the 24 bit size field as a byte, a space, and a decimal integer. The last access time and last
modify time are printed with the 2Y operator. Figure 12 shows portions of these requests as
applied to a directory and file system.

5.4. Converting values

ADB may be used to convert values from one representation to another. For example:

072 == odx

will print

072 58 #3a

which is the octal, decimal and hexadecimal representations of 072 (octal). The format is
remembered so that typing subsequent numbers will print them in the Biven formalS. Charac­
ter values may be converted similarly, for example:

'a' == co

prints

a 01 ... 1

It may also be used to evaluate expressions but be warned that all binary operators have the
same precedence which is lower than that for unary operators.

(

(

(

(

18-13

6.

with ADB is accomplished with the wri!e, w or W, request (which is not like
. This is often used in' conjunction with the I or L request

In syntax for i and 'IV are similar as follows:

?l value

The request 1 is used to match on two bytes, L is used for four bytes. The request w is used to
whereas W writes value field in either locare or write requests

is an Therefore, decimal and octal numbers, or character strings are

In order to a ADB must be cailed as:

adb -w

called with this file 1 and file 2 are created if necessary and
iog and

For consider the C program shown in
to "The" in the execu!abie for this program, ex 7, by

adb -VI(ex!

10. We
the

both read-

the word

request .~) starts at dot and at the match of "Th" set dot to the address of
the location found. Note the use of ? to write to the a.out The form ?* would have been
used for a 411

More the request will be typed as:

'?i 'Th'; ?s

and locates the occurrence of "Th" and print the entire string. ADB
request will set dot to the address the nTh" characters.

As another example of the utility of the patching facility, consider a C program thai has
an internal logic flag. The eouid be set by the user through ADS and the program run.
For example:

:c

:5 used to single step through a process or start a process in slep
mode. In this case it starts a.oU! as a subprocess with arguments and If there is a
subprocess ADB writes to it rather than to the so the w request causes to be
changed in the memory the

7. Anomalies

Below is list some that users shouid be aware

1. Function calls and are put on the stack by the C save routine. break-
at the entry point to routines means that the appears not to have been

called when the nt occurs.

2. When ADS uses either text or data
symbol names to be nted

This does not if '? is used text (instructions) 2nd / data.

18-14

3. ADB cannot handle C register variables in the most recently activated function.

8. Acknowledgements

The authors are grateful for the thoughtful comments on how to organize this document
from R. B. Brandt, E. N. Pinson and B. A. Tague. D. M. Ritchie made the system changes
necessary to accommodate tracing within ADB. He also participated in discussions during the
writing of ADB. His earlier work with DB and CDB led to many of the features found in ADB.

9. References

1. D. M. Ritchie and K. Thompson, "The UNIX Time-Sharing System," CACM, July,
1974.

2.
3.

B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978.

K. Thompson and D. M. Ritchie, UNIX Programmer's Manual· 7th Edition, 1978.
4. B. W. Kernighan and P. J. Plauger, Software Tools. Addison-Wesley, 1976.

(

(

(

(

Figure 1: C program with pointer bug

struct buf {
int fildes;
int nleft;
char • nex tp;
char buff[512];
lbb; .

struct buf ·obuf;

char ·charp "this is a sentence.";

main (argc,argv)
int argc;
char ··argv;
{

char cc;

if(argc < 2) {

18-15

printf("!nput file missing\n");
exit(S);

if«fcreat(argv[ll,obuf) < O){
printf("%s : not found\n", argv[I]);
exit(S) ;

charp'" '1';
printf("debug 1 %s\n" ,charp);

while(cc- ·charp+ +)
putc(cc,obuf) ;

ffiush(obuf);

18-16

Figure 2: ADB output for C program of Figure 1

adb a.out core
Sc
-main(02,0177762)
SC
-mainW2.0177762)

urgc: 02
argv: 0177762
cc: 02124

Sr
ps 0170010
pc 0204 -main+0152
sp 0177740
r5 0177752
r4 01
r3 0
r2 0
r I 0
rO 0124
-main+0152: mov _obuf,(sp)
$e
savr5: 0
obuf: 0 -

_charp: 0124
errna: 0 -
fOUl: 0 -

Sm
text map exl'
bl = 0 cl ,.. 02360
b2 == 0 e2 ... 02360
data map 'corel'
bl -0 el == 03500
b2 =- 0175400 e2 - 0200000

fI = 020
f2 = 020

fl = 02000
f2 = 05500

"charp/s
0124: TTTLx

charp/s
_charp: T

_charp+02: this is a sentence.

_charp+026: Input file missing
main.argc/d
0177756: 2
"'main.argIl/30
0177762: 01777700 i 777760177777
0177770/5
0177770: a.out
*main.argv 130
0177762: 017777001777760177777
*" Is
0177770: a.out
.=0

0177770
.-lO/d

0177756: 2
$q

Nh@x&

3:

b)

mainO

18-17

function C program for

in! hi;
hi"" x+
hr ,.. x-y+ 1;
hcn!+ + ;

in! hr;

in! gi; int gr;
gi ..,. q-p;
gr "" I;

in! fi; in! ff;
fi ,.. ,,+2'0;
fr ,.. a+b;
fenl+ + ;
fj:

18-18

Figure 4: ADD output for C program of Figure 3

adb
Sc
-h (04452,0445 J)

-g{04453,OlI124)
-f(02,0445I)
-h(04450,04447)
-g(04451,011120)
-r(02 ,04447)
-h (04446.04445)
-g(04447,OII114)
-f(02,04445)
-h (04444,04443)
HIT DEL KEY
adb
.sse
-h (04452,04451)

x: 04452
y: 04451
hi: ?

-g<04453.011124)
p: 04453
q: 01) 124
gi: 04451
gr: ?

-r(02 ,0445 1)

a: 02
b: 04451
fi: 011124
fr: 04453

-h (04450,04447)
x: 04450
y: 04447
hi: 04451
hr: 02

-gW445I,OllI20)

fcnt/d
fent:

gcnt/d

p:
q:
gi:
gr:

04451
011120
04447
04450

1173

_gent: 1173
hcnt/d
hent: 1172

h.x/d
022004: 2346
$q

/ r
"

/
{
\

(

(

18-19

Figure 5: C program to decode tabs

#define MAXLINE 80
#define YES 1
#define NO 0
#define T ABSP 8

char input[] "data";
char ibuf(518L
int tabs[MAXLINEL

mainO
{

int col, ·ptab;
char c;

ptab ,. tabs;
settab(ptab); rSet initial tab stops 0,
col - 1;
if(fopen(input,ibuf) < 0) (

I

printf("%s : not found\n" ,input);
exit (8);

while((c == getc(ibuf)) ! ... -1) (
switch(c) (

case '\t': r TAB .,
while(tabpos(col) ! - YES) (

putchar(' '); 1* put BLANK 0,
col++ ;

break;
case '\n':I*NEWLINE 0,

putchar('\n') ;
col - 1;

default:
break;

putchar(c) ;
col++ ;

/" Tabpos return YES if col is a tab stop 0/
tabpos(col)
int col;
(

if(col > MAXLINE)
return(YES);

else
return (tabs[colJ);

/0 Settab • Set initial tab stops 0/
settab(tabp)
int "tabp;
(

int i;

forO - 0; i < - MAXLINE; i + +)
(j%T ABSP) ? (tabs!il - NO) : (tabs(i! - YES);

18-20

Figure 6a: ADB output for C program of Figure 5

adb a.out­
settab + 4:b
fopen+4:b
getc+4:b
tabpos+4:b
$b
breakpoints
count bkpt
1 -tabpos+04
1 getc+04
I Jopen+04
1 -settab+04
settab,5 ?ia
-settab: jsr
-settab+04: tst
-settab+06: Clf

-settab+ 012: cmp
-settab+020: bit
-settab+022:
settab.5 ?I
-setlab: jsr

tst
elr
cmp
bit

:r
a.oul: running

command

r5,csv
-(sp)
0\77770(r5)
$0120.0177770(r5)
-settab+076

r5.csv
-(sp)
0\77770(r5)
$0120.0177770(r5)
-settab+076

breakpoint -settab+04: tst -(sp)
settab+4:d
:c
a.out: funning
breakpoint Jopen+04: mov 04(r5) .nulstr+012
SC
Jopen(02302.02472)
-mainWl.0177770)

col: 01
c: 0
ptab: 03500

tabs.3/80
03500: 01 0 0 0 0 0

01 0 0 0 0 0
01 0 0 0 0 0

(

(

0 0 (
0 0
0 0

18-21

Figure 6b: ~DB output for C program of Figure 5

:c
a.out: running
breakpoint getc+04: mov
ibuf+6/20c
_cleanu+0202: This is
:c
a.out: running
breakpoint ·tabpos+04: cmp
tabpos+4:d
settab + 4:b settab.5 ?ia
settab+4:b settab,5?ia; 0
getc+4.3:b main.c?C; 0
settab+4:b settab.5?ia; ptab/o; 0
Sb
breakpoints
count bkpt command
1 ·tabpos+04
3 -.&elc+04 main.c?C;O
1 Jopen+04

04(rS),rl

a test of

$0120,04(r5)

I ·settab+04
·settab: jsr

settab,5? ia;ptab?o;O
r5.csv

·settab+ 04: bpi
·settab+06: elr
·settab+012: cmp
·settab+020: bit
·settab+022:
0177766:
0177744:
TOI77744:
h0177744:
iOI77744:
50177744:

0}77770
@'
T
h

s

0177770(r5)
$0120,0177770(r5)
·settab+076

18-22

Figure 7: ADB output for C program with breakpoints
Idb ex3-
h+4:b hcnt/d; h.hi/; h.hrl
It +4:b \lcnl/d; \l.Ki/: 1I.llrl
f+4:b fcnt/d; f.ft/; UrI
:r
ex): running

fent: 0
0177732: 214
symbol not found
f + 4:b fcnl/d; f.1/; f.b/; f.ftl
It + 4:b Itcnl/d; lI.p/; I.q/: lI.g i /
h+4:b hcnt/d; h.x/; h.y/; h.hil
:c
ex3: running

fent: 0
0177746: 1
0177750: I
0177732: 214

gent: 0
0177726: 2
0177730: 3
0177712: 214

hent: 0
0177706: 2
0177710: I
0177672: 214

fent: I
0177666: 2
0177670: 3
0177652: 214

gent: I
0177646: 5
0177650: 8
0177632: 214
HIT DEL
f+4:b fcnl/d; f.lia - "d; r.bib - "d; f.ftili - "d
g+4:b gcnl/d; lI.pip - "d; g.qiq - "d; g.gil"lI! - "d
h+4:b hcnt/d; h.xix - "d; h.yih - "d; h.hil"hi - "d
:r
ex): running

fent: 0
0177746: a-I
017775~ b - I
0177732: fi - 214

gent: 0
0177726: p - 2
0177730: q - 3
0177712: gi - 214

hent: 0
01 77706: x - 2
0177710: y - 1
0177672: hi - 214

fent: 1
0177666: a - 2
0177670: b - 3
0177652: fi - 214
HIT DEL
$q

(

(

18-23

Figure 8: ADB address maps

40 7 flies

a.out hdr text+data

I
0 0

core hdr text+data stack
I 1 I
0 0 S E

410 flies (shared text)

a.out hdr text data
I I I

0 T B 0

core hdr data stack
·.· ... 1 I

B 0 S E

4 J 1 files (separated I and D space)

a.out hdr text data

I I
0 T 0 0

core hdr data stack

I 1 I
0 0 S E

The following adb variables are set.

407 410 411

b base of data 0 B 0
d length of data 0 D-B 0
s length of stack S S S
t length of text 0 T T

18-24

Figure 9: ADD output for maps

adb map407 core407
Sm
text map map407'

t bi - 0 el - 0256 fl - 020
b2 =- 0 e2 - 0256 f2 - 020
data map

,
core407'

bi ... 0 el - 0300 fl ... 02000
b2 - 0175400 e2 ... 0200000 f2 ,.. 02300
Sv
variables
d ... 0300
m .. 0407

l s - 02400
$q

adb map410 core.nO
Sm
text map · map410'
bi - 0 el - 0200 fl .,.. 020
b2 - 020000 e2 - 020116 f2 - 0220
data map 'core410'
bi - 020000 el - 020200 f1 - 02000
b2 - 0175400 e2 - 0200000 f2 - 02200
$v
variables
b - 020000
d - 0200
m - 0410
s - 02400
t .. 0200
$q

adb map411 core411
Sm
text map · map41l'
bi - 0 el - 0200 fl - 020 (
b2 - 0 e2 - 0116 f2 - 0220
data map · core41l'
bi - 0 el - 0200 fl - 02000
b2 - 0175400 e2 - 0200000 f2 - 02200
Sv
variables
d - 0200
m - 0411 (
s - 02400
t - 0200
$q

18-25

Figure 10: Simple C program for illustrating formatting and patching

char
int
int
long
float
char
mainO
{

str1 [) "This is a character string";
one 1;
number 456;
Inum 1234;
fpt 1.25;
str2 [) "This is the second character string";

one'" 2;

11: ADD

adb Hi con,4Hl
h,-1/8onll.

020000: o
SlfI+O 6: 061541

ber:
0710 0

020163

+026: 060562

savr5 +02: (I

<
020000:

sen

020163
061541
064562

064124 071551

062564 020162

02322040240 o
064164 020145

072143 07 1

0 0 0

124 07 55l
020141 064143
062564 020162
G6J556 0 02

8-26

formats

064440 0.20 63 020141

072 63 064562 063556

OMi24 07!551 064440

062563 067543

071440 [t"" vi 164

0 0

064440 "T"· .
t nlS l

1141 a char
072163 acter st

0710 0 02322040240 H@a@'@"R@d @@

0641 071551 064440 @'@'This i
0201
067543

064 64 020145 062563
062156 061440 060550

060562
164

072143
067151

071 45
0147

071440
'@(@'

o 0
o 0

d3ta adeJress no! found
-<: b ,.2M 404' 8t8,~na
020000: 0

+06: 020 63
+016: 06154!
+026: 064562

o 0
o 0

064124
0201,tl
062564
063556

@'@'@"@'@"@"@'@'

@"@ '@'@'@ "@"

071551 064440
064143 071141
020162 072163
0 02

0710 0 02322040240 HR
o 064124 071551 064440
020163 064164 020145 062563

+0 6: 067543 062156 061440 060550
+026: 060562 072143 071145 071440
+036: 071164 06715\ 0147 0

savrS +02: 0 0
"avr5+012: 0 0 0 0
data 3.ddress not found
< HI/2bSt" Zen
020000:

0124
01 1
040
01
0141
0143
0141
014
01.64

0150
0163
0151
040
040
0 50
0162
0143
0145

[)

Th
is

s
a
ch
aT

ac
te

This i

This i
s a char
(ICier st

s the se
cond eha
racter

43

02

47

!

18-27

Figure 12: Directory and inode dumps

adb dir -
= nt"Inode"t"Name"
0,-1 ?ut14cn

[node
0: 652

82
5971 cap.c
5323 cap
0 pp

adb Idev/src-
02000> b
?m<b

Name

new map
bl == 02000
b2 = 0

'/dev/src'
el
e2

$v
variables
b == 02000

=- 0100000000 fl == 0
==0 f2-0

< b,-l ?" flags" 8ton" links. uid,gid" 8t3bn" size" 8tbrdn" addr" 8t8un" times" 8t2Y 2na
02000: flags 073145

links,uid,gid 0163 01640141
size 0162 10356
addr 28770 . 8236 25956 27766 25455 8236 25956 25206
times1976 Feb 508:34:56 1975 Dec 28 10:55:15

02040: flags 024555
links,uid,gid 012 0163 0164
size 0162 25461
addr 8308 30050 8294 25130 15216 26890 29806 10784
times1976 Aug 17 12:16:511976 Aug 17 12:16:51

02100: flags 05173
links,uid,gid 011 0162 0145
size 0147 29545
addr 25972 8306 28265 8308 25642 15216 2314 25970
times1977 Apr 2 08:58:01 1977 Feb 5 10:21:44

18-28

ADB Summary

Summary
a)

? a.oU! according to

I

=

?w expr

expr

expr

:b

write

write
-

into a.oU!

imo core fiie

locate in a.out

and program control

set at dOl

:c continue running program
:d
:k
:r
:s
c) miscellaneous

::> name

maps

line

dot to variable or

to

Ii

b
c
d
f
i
«)

n
r
s
I1t
u
x
y

the value dot
one in octal
one as a character
one word in decimal
two words in

11 instruction
one word in octal

01 a newline
a blank space

a null terminated character
move to next II space tab
one word as
hexadecimal
date

Expression

a) components

decimal e.g.
octal integer e.g.
hexadecimal e.g.

e.g.
variables e.g.
registers

dyadic

+ add
subtract

% division
bitwise and
bitwise or
round up to the next

narne c) monadic operators

not

18-29

)

