
The UNIX Programmer's Ma~ual

for the UNIX TimeuSharing SysteiD

Seventh Edition, January 1979
Volume 2A
Supplementary Documents, Par{ I

Reproduced with Special Permission
by Computer Resources
June 1980

Computer Resources Document CS 20.16-B

333 Ravenswood /we .• Menlo Park, C!-\ 94025
(415) 859-6200 • TWX: 9"10··373-2046 • Telex: 334486

Copyright 1979. Bell Telephone Laboratories,
Incorporated. Holders of a UNIX™ software
license are permitted to copy this document,
or any portion of it, as necessary for
licensed use of the software, provided this
copyright notice and statement of permission
are included.

ii

THE UNIX PROGRAMMER'S MANUAL

VOLUME 2A

SUPPLEMENTARY DOCUMENTS, PART I

FOREWORD

There are a few differences between this printing of the UNIX

Programmer's Manual for the Seventh Edition of the UNIX time-sharing

system and the November 1979 Computer Resources' printing. The mainte

nance section of Volume 1 and several articles in Volume 2B have been

deleted and are available only on written permission by the Director

of Facilities, Computer Resources.

This documentation is published in three volumes for convenience both

in subject matter and in size of each bound volume. The three volumes

are as follows:

(1) Volume 1: The "On-line UNIX Programmer's Manual".

(2) Volume 2A: The "Supplementary Documents," Part I, including
such topices as general works, getting started, document
preparation, and programming.

(3) Volume 2B: The "Supplementary Documents," Part II, including
such topics as supporting tools and languages, and imple
mentation and miscellaneous subjects.

Each of these volumes is available from the Computer Resources

Distribution Center, extension 3736.

Volumes 1 and 2A are the fundamental documentation for the UNIX

Edition 7 user. Volume 2B contains documents of a more advanced or

specialized nature that may not be of interest to the typical UNIX user.

iii

CONTENTS

VOLUME 1

THE ON-LINE UNIX PROGRAMMER'S MANUAL

FOREWORD

PREFACE

INTRODUCTION TO VOLUME 1

HOW TO GET STARTED

CONVERTING FROM THE 6th EDITION

PERMUTED INDEX

COMMANDS (1)

SYSTEM CALLS (2)

SUBROUTINES (3)

SPECIAL FILES (4)

FILE FORMATS AND CONVENTIONS (5)

GAMES (6)

MACRO PACKAGES AND LANGUAGES CONVENTIONS (7)

FOREWORD

VOLUME 2A

SUPPLEMENTARY PAPERS, PART I

INTRODUCTION TO VOLUMES 2A AND 2B

GENERAL WORKS

1. 7th Edition UNIX--Summary

2. The UNIX Time-sharing System

GETTING STARTED

3. UNIX for Beginners

4. A Tutorial Introduction to the UNIX Text Editor

5. Advanced Editing on UNIX

v

6. An Introduction to the UNIX Shell

7. Learn--Computer Aided Instruction on UNIX

DOCUMENT PREPARATION

8. Typing Documents on the UNIX System

9. A System for Typesetting Mathematics

10. TLB--A Program to Format Tables

11. Some Applications of Inverted Indexes on the

UNIX System

12. NROFF/TROFF User's Manual

13. A TROFF Tutorial

PROGRAMMING

14. The C Programming Language--Reference Manual

15. Lint, A C Program Checker

16. Make--A Program for Maintaining Computer Pr9grams

17. UNIX Programming

18. A Tutorial Introduction to ADB

FOREWORD

VOLUME 2B

SUPPLEMENTARY DOCUMENTS, PART 1

INTRODUCTION TO VOLUMES 2A AND 2B

SUPPORTING TOOLS AND LANGUAGES

19. YACC: Yet another Compiler-compiler

20. LEX--A Lexical Analyzer Generator

21. A Portable FORTRAN 77 Compiler

22. Ratfor--A Preprocessor for a Rational FORTRAN

23. The M4 Macro Processor

24. SED--A Noninteractive Text Editor

25. AWK--A Pattern Scanning and Processing Language

26. DC--An Interactive Desk Calculator

27. -BC--An Arbitrary Precision Desk-Calculator Language

28. UNIX Assembler Reference Manual

vi

IMPLEMENTATION AND MISCELLANEOUS

29. UNIX Implementation

30. The UNIX I/O System

31. A Tour Through the UNIX C Compiler

32. A Tour Through the Portable C Compiler

33. A Dial-up Network of UNIX Systems

34. UUCP Implementation Description

35. Password Security: A Case History

vii

· '

INTRODUCTION TO VOLUMES 2A AND 2B

This volume contains documents which supplement the information

* contained in Volume 1 of The UNIX Programmer's Manual. The documents

here are grouped roughly into the areas of basic~, editing, language

tools, document preparation, and miscellaneous. Further general informa

tion may be found in the Bell System Technical Journal special issue

on UNIX, July-August, 1978.

Many of the documents cited within this volume as Bell Laboratories

internal memoranda or Computing Science Technical Reports (CSTR) are

also contained here.

These documents contain occasional localisms, typically references

to other operating systems like GCOS and IBM. In all cases, such references

may be safely ignored by UNIX users.

VOLUME 2A

General Works

1. 7th Edition UNIX--Summary.

A concise summary of the facilities available on UNIX.

2. The UNIX Time-Sharing System. D. M. Ritchie and K. Thompson.

The original UNIX paper, reprinted from CACM.

Getting Started

3. UNIX for Beginners--Second Edition. B. W. Kernighan.

An introduction to the most basic use of the system.

4. A Tutorial Introduction to the UNIX Text Editor. B. W. Kernighan.

An easy way to get started with the editor.

5. Advanced Editing on UNIX. B. W. Kernighan.

The next step.

* UNIX is a Trademark of Bell Laboratories.

1

6. An Introduction to the UNIX Shell. S. R. Bourne.

An introduction to the capabilities of the command
interpreter, the shell.

7. Learn--Computer Aided Instruction on UNIX. M. E. Lesk and
B. W. Kernigham.

Describes a computer-aided instruction program that walks
new users through the basics of files, the editor, and
document preparation software.

Document Preparation

8. Typing Documents on the UNIX System. M. E. Lesk.

Describes the basic use of the formatting tools. Also
describes "-ms" , a standardized package of formatting requests
that can be used to layout most documents (including those
in this volume).

9. A System for Typesetting Mathematics. B. W. Kernighan and L. L. Cherry.

Describes EQN, an easy-to-learn language for doing high
quality mathematical typesetting.

10. TBL--A Program to Format Tables. M. E. Lesk

A program to permit easy specification of tabular material
for typesetting. Again, easy to learn and use.

11. Some Applications of Inverted Indexes on the UNIX System. M. E. Lesk.

Describes, among other things, the program REFER which fills
in bibliographic citations from a data base automatically.

12. NROFF/TROFF User's Manual. J. F. Ossanna.

The basic formatting program.

13. A TROFF Tutorial. B. W. Kernighan.

An introduction to TROFF for those who really want to know
such things.

Programming

14. The C Programming Language--Reference Manual. D. M. Ritchie.

Official statement of the syntax and semantics of C. Should
be supplemented by The C Programming Language, B. W. Kernighan
and D. M. Ritchie, Prentice-Hall, 1978, which contains a
tutarial introduction and many examples.

15. Lint, A C Program Checker. S. C. Johnson

Checks C programs for syntax errors, type violations, portability
problems, and a variety of probable errors.

2

16. Make--A Program for Maintaining Computer Programs. S. I. Feldman.

Indispensable tool for making sure that large programs are
properly compiled with minimal effort.

17. UNIX Programming. B. W. Kernighan and D. M. Ritchie.

Describes the programming interface to the operating system
and the standard I/O library.

18. A Tutorial Introduction to ADB. J. F. Maranzano and S. R. Bourne.

How to use the ADB debugger.

VOLUME 2B

Supporting Tools and Languages

19. YACC: Yet Another Compiler-Compiler. S. C. Johnson

Converts a BNF specification of a language and semantic
actions written in C into a compiler for the language.

20. LEX--A Lexical Analyzer Generator. M. E. Lesk and E. Schmidt~

Creates a recognizer for a set of regular expressions; each
regular expression can be followed by arbitrary C code which
will be executed when the regular expression is found.

21. A Portable Fortran 77 Compiler. S. I. Feldman and P. J. Weinberger.

The first Fortran 77 compiler, and still one of -the best.

22. Ratfor--A Preprocessor for a Rational Fortran. B. W. Kernighan.

Converts a Fortran with C-like control structures and
cosmetics into real, ugly Fortran.

23. The M4 Macro Processor. B. W. Kernighan and D. M. Ritchie.

M4 is a macro processor useful as a front end for C, Ratfor,
Cobol, and in its own right.

24. SED--A Non-interactive Text Editor. L. E. McMahon.

A variant of the editor for processing large inputs.

25. AWK--A Pattern Scanning and Processing Language. A. V. Aho,
B. Kernighan and P. J. Weinberger.

Makes it easy to specify many data transformation and
selection operations.

26. DC--An Interactive Desk Calculator. R. H. Morris and L. L. Cherry.

P snper HP calculator, if you don't need floating point.

3

27. BC--An Arbitrary Precision Desk-Calculator Language. L. L. Cherry
and R. H. Morris.

A front end for DC that provides infix notation, control
flow, and built-in functions.

28. UNIX Assembler Reference Manual. D. M. Ritchie.

The ultimate dead language.

Implementation and Miscellaneous

29. UNIX Implementation. K. Thompson.

How the system actually works inside.

30. The UNIX I/O System. Do M. Ritchie.

How the I/O system really works.

31. A Tour Through the UNIX C Compiler. D. M. Ritchie

How the PDP-II compiler works inside.

32. A Tour Through the Portable C Compiler. S. C. Johnson.

How the portable C compiler works inside.

33. A Dial-Up Network of UNIX Systems. D. A. Nowitz and M. E. Lesk.

Describes UUCP, a program for communicating files between
UNIX systems.

34. UUCP Implementation Description. D. A. Nowitz.

How UUCP works, and how to administer it.

35. Password Security: A Case History. R. H. Morris and K. Thompson

How the bad guys used to be able to break the password
algorithm, and why they can't now, at least not so easily. ,

4

GENERAL WORKS

•

7th Edition UNIX - Summary

September 6, /978

Bell laboratories
Murray Hill, New Jersey 07974

A. What's new; highlights of the 7th edition UNIXt System

Aimed at larger systems. Devices are addressable to 231 brtes, files to 230 bytes. 128K
memory (separate instruction and data space) is needed for some utilities.

Portability. CoJe of the operating system and most utilities has been extensively revised to
minimize its dependence on particular hardware.

Fortran 77. F77 compiler for the new standard language is compatible with C at the object
level. A Fortran structurer, STRUCT, converts old, ugly Fortran into RATFOR, a structured
dialect usable with F77.

Shell. Completely new SH program supports string variables, trap handling, structured pro
gramming, user profiles, settable search path, multilevel file name generation, etc.

Document preparation. TROFF phototypesetter utility is standard. NROFF (for terminals) is
now highly compatible with TROFF. MS macro package provides canned commands for many
common formatting and layout situations. TBl provides an easy to learn language for prepar
ing complicated tabular material. REFER fills in bibliographic ~itations from a data base.

UNIX-to-UNIX file copy. UUCP performs spooled file transfers between any two machines.

Data processing. SED stream editor does multiple ec;iting functions in parallel on a data
stream of indefinite length. A WK report generator does free-field pattern selection and arith
metic operations.

Program development. MAKE controls re-creation of complicated software, arranging for
minimal recompilation.

Debugging. ADB does postmortem and breakpoint debugging, handles separate instruction and
data spaces, floating point, etc.

C language. The language now supports definable data types, generalized initialization, block
structure, long integers, unions, explicit type conversions. The LINT verifier does strong type
checking and detection of probable errors and portability problems even across separately com
piled functions.

Lexical analyzer generator. lEX converts specification of regular expressions and semantic
actions into a recognizing subroutine. Analogous to Y ACC.

Graphics. Simple graph-drawing utility, graphic subroutines, and generalized plotting filters
adapted to various devices are now standard.

Standard input-output package. Highly efficient buffered stream I/O is integrated with format
ted input and cutput.

Other. The operating system and utilities have been enhanced and freed of restrictions in
many other ways too numerous to relate.

t UNIX is a Trademark of Bell Laboratories.

- 2 -

B. Hardware

The 7th edition UNIX operating system runs on a DEC POP-ll/4S or 11170· with at least
the following equipment:

128K to 2M words of managed memory~ parity not used.

disk: RP03, RP04, RP06, RKOS (more than 1 RKOS) or equivalent.

console typewriter.

clock: KWll-L or KWll-P.

The following equipment is strongly recommended:

communications controller such as OL1l or OHll.

full duplex 96-character ASCII terminals.

9-track tape or extra disk for system backup.

The system is normally distributed on 9-track tape. The mInimum memory and disk space
specified is enough to run and maintain UNIX. More will be needed to keep all source on line,
or to handle a large number of users, big data bases, diversified complements 'of devices, or
large programs. The resident code occupies 12-20K words depending on configuration~ system
data occupies lO-28K words.

There is no commitment to provide 7th edition UNIX on POP-ll/34, 11/40 and 11/60
hardware.

C. Software
Most of the programs available as UNIX commands are listed. Source code and printed

manuals are distributed for all of the listed software except games. Almost all of the code is
written in C. Commands are self-contained and do not require extra setup information, unless
specifically noted as "interactive." Interactive programs can be made to run from a prepared
script simply by redirecting input. Most programs intended for interactive use (e.g., the editor)
allow for an escape to command level (the Shen>. Most file processing commands can also go
from standard input to standard output ("filters"). The piping facility of the Shell may be used
to connect such filters directly to the input or output of other programs.

1. Basic Software
This includes the time-sharing operating system with utilities, a machine language assem

bler and a compiler for the programming language C-enough software to write and run new
applications and to maintain or modify UNIX itself.

1.1. Operating System
o UNIX The basic resident code on which everything else depends. Supports the system

calls, and maintains the file system. A general description of UNIX design phi
losophy and system facilities appeared in the Communications of the ACM,
July, 1974. A more extensive survey is in the Bell System Technical Journal
for July-August 1978. Capabilities include:
o Reentrant code for user processes.
o Separate instruction and data spaces.
o "Group" access permissions for cooperative projects, with overlapping

memberships.
OAlarm-clock timeouts.

'PDP is a Trademark of Digital Equipment Corporation.

"

- 3 -

a Timer-interrupt sampling and interprocess monitoring for debugging and
measurement.

a Multiplexed 110 for machine-to-machine communication.

o DEVICES All 1/0 is logically synchronous. 1/0 devices are simply files in the file system.
Normally, invisible buffering makes all physical record structure and device
characteristics transparent and exploits the hardware's ability to do overlapped
110. Unbuffered physical record 110 is available for unusual applications.
Drivers for these devices are available; others can be easily written:
a Asynchronous interfaces: DH II, DL II. Support for most common ASCII

terminals.
aSynchronous interface: DPIl.
a Automatic calling unit interface: DNIl.
a Line printer: LPII.
a Magnetic tape: TUIO and TUI6.
a DECtape: TCIL
a Fixed head disk: RS II, RS03 and RS04.
a Pack type disk: RP03, RP04, RP06; minimum-latency seek scheduling.
a Cartridge-type disk: RK05, one or more physical devices per logical device.
a Null device.
a Physical memory of PDP-II, or mapped memory in resident system.
a Phototypesetter: Graphic Systems System/l through DR II C.

o BOOT Procedures to get UNIX started.

o MKCONF Tailor device-dependent system code to hardware configuration. As distributed,
UNIX can be brought up directly on any acceptable CPU with any acceptable
disk, any sufficient amount of core, and either clock. Other changes, such as
optimal assignment of directories to devices, inclusion of floating point simula
tor, or installation of device names in file system, can then be made at leisure.

1.2. User Access Control

o LOGIN Sign on as a new user.
a Verify password and establish user's individual and group (project) identity.
a Adapt to characteristics of terminal.
a Establish working directory.
a Announce presence of mail (from MAIL>.
a Publish message of the day.
a Execute user-specified profile.
a Start command interpreter or other initial program.

o P ASSWD Change a password.
a User can change his own password.
a Passwords are kept encrypted for security.

o NEWGRP Change working group (project>. Protects against unauthorized changes to pro
jects.

1.3. Terminal Handling

o TABS

o STIY

Set tab stops appropriately for specified terminal type.

Set up options for optimal control of a terminal. In so far as they are deducible
from the input, these options are set automatically by LOGIN.

- 4 -

o Half vs. full duplex.
o Carriage return + line feed vs. newline.
o Interpretation of tabs.
o Parity.
o Mapping of upper case to lower.
o Raw vs. edited input.
o Delays for tabs, newlines and carriage returns.

1.4. File Manipulation

o CAT

o CP

o PR

o LPR

o CMP

o TAIL

o SPLIT

DOD

o SUM

Concatenate one or more files onto standard output. Particularly used for una
dorned printing, for inserting data into a pipeline, and for buffering output that
comes in dribs and drabs. Works on any file regardless of contents.

Copy one file to another, or a set of files to a directory. Works on any file
regardless of contents.

Print files with title, date, and page number on every page.
o Multicolumn output.
o Parallel column merge of several files.

Off-line print. Spools arbitrary files to the line printer.

Compare two files and report if different.

Print last 11 lines of input
o May print last f/ characters, or from 11 lines or characters to end.

Split a large file into more manageable pieces. Occasionally necessary for edit
ing (ED).

Physical file format translator, for exchanging data with foreign systems, espe
cially IBM 370's.

Sum the words of a file.

1.5. Manipulation of Directories and File Names

o RM

o LN

o MV

o CHMOD

o CHOWN

o CHGRP

o MKDIR

DRMDIR

o CD

o FIND

Remove a file. Only the name goes away if any other names are linked to the
file.
o Step through a directory deleting files interactively.
o Delete entire directory hierarchies.

"Link" another name (alias) to an existing file.

Move a file or files. Used for renaming files.

Change permissions on one or more files. Executable by files' owner.

Change owner of one or more files.

Change group (project) to which a file belongs.

Make a new directory.

Remove a directory.

Change working directory.

Prowl the directory hierarchy finding every file that meets specified criteria.

,.

- 5 -

o Criteria include:
name matches a given pattern,
creation date in given range,
date of last use in given range,
given permissions,
given owner,
given special file characteristics,
boolean combinations of above.

o Any directory may be considered to be the root.
o Perform specified command on each file found.

1.6. Running of Programs

o SH

o TEST

o EXPR

o WAIT

DREAD

o ECHO

o SLEEP

o NOHUP

o NICE

The Shell, or command language interpreter.
o Supply arguments to and run any executable program.
o Redirect standard input, standard output, and standard error files.
o Pipes: simultaneous execution with output of one process connected to the

input of another.
o Compose compound commands using:

if ... then ... else,
case switches,
while loops,
for loops over lists,
break, continue and exit,
parentheses for grouping.

o Initiate background processes.
o Perform Shell programs, i.e., command scripts with substitutable arguments.
o Construct argument lists from all file names satisfying specified patterns.
o Take special action on traps and interrupts.
o User-settable search path for finding commands.
o Executes user-settable profile upon login.
o Optionally announces presence of mail as it arrives.
o Provides variables and parameters with default setting.

Tests for use in Shell conditionals.
o String comparison.
o File nature and accessibility.
o Boolean combinations of the above.

String computations for calculating command arguments.
o Integer arithmetic
o Pattern matching

Wait for termination of asynchronously running processes.

Read a line from terminal, for interactive Shell procedure.

Print remainder of command line. Useful for diagnostics or prompts in Shell
programs, or for inserting data into a pipeline.

Suspend execution for a specified time.

Run a command immune to hanging up the terminal.

Run a command in low (or high) priority.

o KILL

o CRON

OAT

o TEE

- 6 -

Terminate named processes.

Schedule regular actions at specified times.
o Actions are arbitrary programs.
o Times are conjunctions of month, day of month, day of week, hour and

minute. Ranges are specifiable for each.

Schedule a one-shot action for an arbitrary time.

Pass data between processes and divert a copy into one or more files.

1. 7. Status Inquiries

o LS

o FILE

o DATE

o OF

o DU

o QUOT

o WHO

o PS

o lOST AT

o TTY

oPWD

List the names of one, several, or all files in one or more directories.
o Alphabetic or temporal sorting, up or down.
o Optional information: size, owner, group, date last modified, date last

accessed, permissions, i-node number.

Try to determine what kind of information is in a file by consulting the file sys
tem index and by reading the file itself.

Print today's date and time. Has considerable knowledge of calendric and horo
logical peculiarities.
o May set UNIX's idea of date and time.

Report amount of free space on file system devices.

Print a summary of total space occupied by all files in a hierarchy.

Print summary of file space usage by user id.

Tell who's on the system.
o List of presently logged in users, ports and times on.
o Optional history of all logins and logouts.

Report on active processes.
o List your own or everybody's processes.
o Tell what commands are being executed.
o Optional status information: state and scheduling info, priority, attached ter-

minal, what it's waiting for, size.

Print statistics about system 110 activity.

Print name of your terminal.

Print name of your working directory.

1.S. Backup and Maintenance

o MOUNT Attach a device containing a file system to the tree of directories. Protects
against nonsense arrangements.

o UMOUNT Remove the file system contained on a device from the tree of directories.
Protects against removing a busy device.

o MKFS Make a new file system on a device.

o MKNOD Make an i-node (file system entry) for a special file. Special files are physical
devices, virtual devices, physical memory, etc.

oTP

o TAR

o DUMP

o RESTOR

o SU

o DCHECK

OICHECK

o NCHECK

o CLRI

o SYNC

·7·

Manage file archives on magnetic tape or DECtape. TAR is newer.
o Collect files into an archive.
o Update DECtape archive by date.
o Replace or delete DECtape files.
o Print table of contents.
o Retrieve from archive.

Dump the file system stored on a specified device, selectively by date, or
indiscriminately.

Restore a dumped file system, or selectively retrieve parts thereof.

Temporarily become the super user with all the rights and privileges thereof.
Requires a password.

Check consistency of file system.
o Print gross statistics: number of files, number of directories, number of spe-

cial files, space used, space free.
o Report duplicate use of space.
o Retrieve lost space.
o Report inaccessible files.
o Check consistency of directories.
o List names of all files.

Peremptorily expunge a file and its space from a file system. Used to repair
damaged file systems.

Force all outstanding I/O on the system to completion. Used to shut down
gracefully.

1.9. Accounting

The timing information on which the reports are based can be manually cleared or shut off
completely.

o AC

o SA

Publish cumulative connect time report.
o Connect time by user or by day.
o For all users or for selected users.

Publish Shell accounting report. Gives usage information on each command
executed.
o Number of times used.
o Total system time, user time and elapsed time.
o Optional averages and percentages.
o Sorting on various fields.

1.10. Communication

o MAIL . Mail a message to one or more users. Also used to read and dispose of incom
ing mail. The presence of mail is announced by LOGIN and optionally by SH.
o Each message can be disposed of individually.
o Messages can be saved in files or forwarded.

- 8 -

o CALENDAR Automatic reminder service for events of today and tomorrow.

o WRITE

o WALL

o MESO

o CU

o UUCP

Establish direct terminal communication with another user.

Write to all users.

Inhibit receipt of messages from WRITE and WALL.

Call up another time-sharing syStem.
o Transparent interface to remote machi-ne.
o File transmission.
o Take remote input from local file or put remote output into local file.
o Remote system need not be UNIX.

UNIX to UNIX copy.
o Automatic queuing until line becomes available and remote machine is up.
o Copy between two remote machines.
o Differences, mail, etc., between two machines.

1.11. Basic Program Development Tools

Some of these utilities are used as integral parts of the higher level languages described in sec"
tion 2.

OAR

o AS

o Library

Maintain archives and libraries. Combines severlil fiies into one for housekeep
ing effiCiency.
o Create new archive.
o Update archive by date.
o Replace or delete files.
o Print table of contents.
o Retrieve from archive.

Assembler. Simiiar to PAL-II, but differ-edt iri detiliL
o Creates object program consisting of

code, possibly read-only,
initialized data or read-write code,
uninitialized data.

o Relocatable object code is directly executable withoiJt further transformation.
o Object code normally includes a symbol table.
o Multiple source files.
o Local labels.
o Conditional assembly.
a "Conditional jump;' instructions become branches or branches plus jumps

depending on distance.

The basic run-time library. These routines are used freely by all software.
o Buffered character-by-character 1/0.
o Formatted input and output conversion (SCANF and PRINTF) for standard

input and output, files, in-memory conversion.
o Storage allocator.
o Time conversiorts.
o NUmber conversions,
o PassWord encryption.
o QUicksort.
o Random hiJml:ier generator;
o Mathematical function librarY, inchniinl trigonometric· functions and

inverses, elf 'onential, logarithm, square root, bessel fUnctions.

- 9 -

D ADB Interactive debugger.
o Postmortem dumping.
o Examination of arbitrary files, with no limit on size.
o Interactive breakpoint debugging with the debugger as a separate process.
o Symbolic reference to local and global variables.
OStack trace for C programs.
o Output formats:

1-, 2-, or 4-byte integers in octal, decimal, or hex
single and double floating point
character and string
disassembled machine instructions

o Patching.
o Searching for integer, character, or floating patterns.
o Handles separated instruction and data space.

D OD Dump any file. Output options include any combination of octal or decimal by
words, octal by bytes, ASCII, opcodes, hexadecimal.
o Range of dumping is controllable.

D LD Link edit. Combine relocatable object files. Insert required routines from
specified libraries.
o Resulting code may be sharable.
o Resulting code may have separate instruction and data spaces.

D LORDER Places object file names in. proper order for loading, so that files depending on
others come after them.

D NM Print the name list (symbol table) of an object program. Provides control over
the style and order of names that are printed.

D SIZE Report the core requirements of one or more object files.

D STRIP Remove the relocation and symbol table information from an object file to save
space.

D TIME

D PROF

D MAKE

Run a command and report timing information on it.

Construct a profile of time spent per routine from statistics gathered by time
sampling the execution of a program. Uses floating point.
o Subroutine call frequency and average times for C programs.

Controls creation of large programs. Uses a control file specifying source file
dependencies to make new version~ uses time last changed to deduce minimum
amount of work necessary.
o Knows about CC, Y ACC, LEX, etc.

1.12. UNIX Programmer's Manual

D Manual Machine-readable version of the UNIX Programmer's Manual.
o System overview.
o All commands.
o All system calls.
o All subroutines in C and assembler libraries.
o All devices and other special files.
o Formats of file system and kinds of files known to system software.
o Boot and maintenance procedures.

- 10 -

OMAN Print specified manual section on your terminal.

1.13. Computer-Aided Instruction

o LEARN

2. Languages

A program for interpreting CAl scripts, plus scripts for learning about UNIX by
using it.
o Scripts for basic files and commands, editor, advanced files and commands,

EQN, MS macros, C programming language.

2.1. The C Language

o CC

o LINT

o CB

2.2. Fortran

Compile and/or link edit programs in the C language. The UNIX operating sys
tem, most of the subsystems and C itself are written in C. For a full descrip
tion of C, read The C Programming Language. Brian W. Kernighan and Dennis
M. Ritchie, Prentice-Hall, 1978.
o General purpose language designed for structured programming.
o Data types include character, integer, float, double, pointers to all types;

functions returning above tYpes, arrays of all types, structures and unions of
all types.

o Operations intended to give machine-independent control of full machine
facility, including to-memory operations and pointer arithmetic.

o Macro preprocessor for paramet~rized code and inclusion of standard files.
o All procedures recursive, with parameters by value.
o Machine-independent pointer manipulation.
o Object code uses full addressing capability of the PDP-II.
o Runtime library gives access to all system facilities.
o Definable data types.
o Block structure

Verifier for C programs. Reports questionable or nonportable usage such as:
Mismatched data declarations and procedure interfaces.
Nonportable type conversions.
Unused variables, unreachable code, no-effect operations.
Mistyped pointers.
Obsolete syntax.

o Full cross-module checking of separately compiled programs.

A beautifier for C programs. Does proper indentation and placement of braces.

o F77 A full compiler for ANSI Standard Fortran 77.
o Compatible with C and supporting tools at object level.
o Optional source compatibilitY with Fortran 66.
o Free format source.
o Optional subscript-range checking, detection of uninitialized variables.
o All widths of arithmetic: 2- and 4-byte inteaet; and 8-byte real; 8- and 16-

byte complex.

o RATFOR Ratfor adds rational control structure i la C to Fortran.
o Compound statements.

o STRUCT

- 11 -

o If-else, do, for, while, repeat-until, break, next statements.
o Symbolic constants.
o File insertion.
o Free format source
o Translation of relationals like >, > -.
o Produces genuine Fortran to carry away.
o May be used with F77.

Converts ordinary ugly Fortran into structured Fortran (j.e., Ratfor), using
statement grouping, if-else, while, for, repeat-until.

2.3. Other Algorithmic Languages

o BAS

DOC

o BC

An interactive interpreter, similar in style to BASIC. Interpret unnumbered
statements immediately, numbered statements upon 'run'.
o Statements include:

comment,
dump,
for ... next,
goto,
if ... else ... fi,
list,
print,
prompt,
return,
run,
save.

o All calculations double precision.
o Recursive function defining and calling.
o Builtin functions include log, exp, sin, cos, atn, int, sqr, abs, rnd.
o Escape to ED for complex program editing.

Interactive programmable desk calculator. Has named storage locations as well
as conventional stack for holding integers or programs.
o Unlimited precision decimal arithmetic.
o Appropriate treatment of decimal fractions.
o Arbitrary input and output radices, in particular binary, octal, decimal and

hexadecimal.
o Reverse Polish operators:

+ - -,
remainder, power, square root,
load, store, duplicate, clear,
print, enter program text, execute.

A C-like interactive interface to the desk calculator DC.
o All the capabilities of DC with a hiah-Ievel syntax.
o Arrays and recursive functions.
o Immediate evaluation of expressions and evaluation of functions upon call.
o Arbitrary precision elementary functions: exp, sin, cos, atan.
o Go-to-less programming.

2.4. Macroprocessing

o M4

- 12 -

A general purpose macroprocessor.
a Stream-oriented, recognizes macros anywhere in text.
a Syntax fits with functional syntax of most higher-level languages.
o Can evaluate integer arithmetic expressions.

2.S. Compiler-compilers

o YACC

o LEX

An LR (1) -based compiler writing system. During execution of resulting
parsers, arbitrary C functions may be caUed to do code generation or semantic
actions.
a BNF syntax specifications.
a Precedence relations.
a Accepts formally ambiguous grammars with non-BNF resolution rules.

Generator of lexical analyzers. Arbitrary C functions may be called upon isola
tion of each lexical token.
a Full regular expression, plus left and right context dependence.
o Resulting lexical analysers interface cleanly with Y ACC parsers.

3. Text Processing

3.1. Document Preparation

OED

o PTX

o SPELL

o LOOK

o TYPO

o CRYPT

Interactive context editor. Random access to all lines of a file.
a Find lines by number or pattern. Patterns may include: specified characters.

don't care characters. choices among characters. repetitions of these con
structs, beginning of line, end of line.

a Add, delete, change, copy, move or join lines.
o Permute or split contents of a line.
a Replace one or all instances of a pattern within a line.
a Combine or split files.
o Esc~pe to Shell (command language) during editing.
a Do any of above operations on every pattern-selected line in a given range.
a Optional encryption for extra security.

Make a permuted (key word in context> index.

Look for spelling errors by comparing each word in a document against a word
list.
a 25,OOO-word list includes proper names.
a Handles common prefixes and suffixes.
a Collects words to help tailor local spelling lists.

Search for words in dictionary that begin with specified prefix.

Look for spelling errors by a statistical technique; not limited to English.

Encrypt and decrypt files for security.

3.2. Document Formatting

o ROFF A typesetting program for terminals. Easy for nontechnical people to learn, and
good for simple documents. Input consists of data lines intermixed with con
trol lines, such as

.sp 2 insert two lines of space

.ce center the next line
ROFF is deemed to be obsolete; it is intended only for casual use.

"

o TROFF

o NROFF

- 13 -

o Justification of either or both margins.
o Automatic hyphenation.
o Generalized running heads and feet, with even-odd page capability, number

ing, etc.
o Definable macros for frequently used control sequences (no substitutable

arguments) .
o All 4 margins and page size dynamically adjustable.
o Hanging indents and one-line indents.
o Absolute and relative parameter settings.
o Optional legal-style numbering of output lines.
o Multiple file capability.
o Not usable as a filter.

Advanced typesetting. TROFF drives a Graphic Systems phototypesetter;
NROFF drives ascii terminals of all types. This summary was typeset using
TROFF. TROFF and NROFF style is similar to ROFF, but they are capable of
much more elaborate feats of formatting, when appropriately programmed.
TROFF and NROFF accept the same input language.
o All ROFF capabilities available or definable.
o Completely definable page format keyed to dynamically planted "interrupts"

at specified lines.
o Maintains several separately definable typesetting environments (e.g., one for

body text, one for footnotes, and one for unusually elaborate headings).
o Arbitrary number of output pools can be combined at will.
o Macros with substitutable arguments, and macros invocable in mid-line.
o Computation and printing of numerical quantities.
o Conditional execution of macros.
o Tabular layout facility.
o Positions expressible in inches, centimeters, ems, points, machine units or

arithmetic combinations thereof.
o Access to character-width computation for unusually difficult layout prob

lems.
o Overstrikes, built-up brackets, horizontal and vertical line drawing.
o Dynamic relative or absolute positioning and size selection, globally or at the

character level.
o Can exploit the characteristics of the terminal being used, for approximating

special characters, reverse motions, proportional spacing, etc.

The Graphic Systems typesetter has a vocabulary of several I02-character fonts (4 simultane
ously) in 15 sizes. TROFF provides terminal output for rough sampling of the product.

NROFF will produce multicolumn output on terminals capable of reverse line feed, or through
the postprocessor COL.

High programming skill is required to exploit the formatting capabilities of TROFF and
NROFF, although unskilled personnel can easily be trained to enter documents according to
canned formats such as those provided by MS, below. TROFF and EQN are essentially identi
cal to NROFF and NEQN so it is usually possible to define interchangeable formats to produce
approximate proof copy on terminals before actual typesetting. The preprocessors MS, TBL,
and REFER are fully compatible with TROFF and NROFF.

o MS A standardized manuscript layout package for use with NROFF/TROFF. This
document was formatted with MS.

o EQN

o NEQN

o TBL

o REFER

o TC

o GREEK

o COL

- 14 -

o Page numbers and draft dates.
o Automatically numbered subheads.
o Footnotes.
o Single or double column.
o Paragraphing, display and indentation.
o Numbered equations.

A mathematical typesetting preprocessor for TROFF. Translates easily readable
formulas, either in-line or displayed, into detailed typesetting instructions. For
mulas are written in a style like this:

sigma sup 2 - = - lover N sum from i = I to N (x sub i-x bar) sup 2

which produces:

o Automatic calculation of size changes for subscripts, sub-subscripts, etc.
o Full vocabulary of Greek letters and special symbols, such as 'gamma',

'GAMMA', 'integral'.
o Automatic calculation of large bracket sizes.
o Vertical "piling" of formulae for matrices, conditional alternatives, etc.
o Integrals, sums, etc., with arbitrarily complex limits.
o Diacriticals: dots, double dots, hats, bars, etc.
o Easily learned by nonprogrammers and mathematical typists.

A version of EQN for NROFF; accepts the same input language. Prepares for
mulas for display on any terminal that NROFF knows about, for example.
those based on Diablo printing mechanism.
o Same facilities as EQN within graphical capability of terminal.

A preprocessor for NROFF/TROFF that translates simple descriptions of table
layouts and contents into detailed typesetting instructions.
o Computes column widths.
o Handles left- and right-justified columns, centered columns and decimal-point

alignment.
o Places column titles.
o Table entries can be text, which is adjusted to fit.
o Can box all or parts of table.

Fills in bibliographic citations in a document from a data base (not supplied).
o References may be printed in any style, as they occur or collected at the end.
o May be numbered sequentially, by name of author, etc. (

Simulate Graphic Systems typesetter on Tektronix 4014 scope. Useful for
checking TROFF page layout before typesetting.

Fancy printing on Diablo-mechanism terminals like DASI-300 and DASI-450,
and on Tektronix 4014.
o Gives half-line forward and reverse motions.
o Approximates Greek letters and other special characters by overstriking.

Canonicalize files with reverse line feeds for one-pass printing.

o DEROFF Remove all TROFF commands from input.

o CHECKEQ Check document for possible errors in EQN usage.

- 15 -

4. Information Handling

o SORT

o TSORT

o UNIQ

OTR

o DIFF

oCOMM

o JOIN

o GREP

o LOOK

OWC

o SED

o AWK

Sort or merge ASCII files line-by-line. No limit on input size.
o Sort up or down.
o Sort lexicographically or on numeric key.
o Multiple keys located by delimiters or by character position.
o May sort upper case together with lower into dictionary order.
o Optionally suppress duplicate data.

Topological sort - converts a partial order into a total order.

Collapse successive duplicate lines in a file into one line.
o Publish lines that were originally unique, duplicated, or both.
o May give redundancy count for each line.

Do one-to-one character translation according to an arbitrary code.
o May coalesce selected repeated characters.
o May delete selected characters.

Report line changes, additions and deletions necessary to bring two files into
agreement.
o May produce an editor script to convert one file into another.
o A variant compares two new versions against one old one.

Identify common lines in two sorted files. Output in up to 3 columns shows
lines present in first file only, present in both, and/or present in second only.

Combine two files by joining records that have identical keys.

Print all lines in a file that satisfy a pattern as used in the editor ED.
o May print all lines that fail to match.
o May print count of hits.
o May print first hit in each file.

Binary search in sorted file for lines with specified prefix.

Count the lines, "words" (blank-separated strings) and characters in a file.

Stream-oriented version of ED. Can perform a sequence of editing operations
on each line of an input stream of unbounded length.
o Lines may be selected by address or range of addresses.
o Control flow and conditional testing.
o Multiple output streams.
o Multi-line capability.

Pattern scanninl and processing language. Searches input for patterns, and per
forms actions on each line of input that satisfies the pattern.
o Patterns include reaular expressions, arithmetic and lexicographic conditions,

boolean combinations and ranles of these.
o Data treated as string or numeric as appropriate.
o Can break input into fields; fields are variables.
o Variables and arrays (with non-numeric subscripts).
o Full set of arithmetic operators and control flow.
o Multiple output streams to files and pipes.
o Output can be formatted as desired.
o Multi-line capabilities.

- 16 -

5. Graphics

The programs in this section are predominantly intended for use with Tektronix 4014 storage
scopes.

o GRAPH

o SPLINE

o PLOT

Prepares a graph of a set of input numbers.
o Input scaled to fit standard plotting area.
o Abscissae may be supplied automatically.
o Graph may be labeled.
o Control over grid style, line style, graph orientation, etc.

Provides a smooth curve through a set of points intended for GRAPH.

A set of filters for printing graphs produced by GRAPH and other programs on
various terminals. Filters provided for 4014, DASI terminals, Versatec
printer/plotter.

6. Novelties, Games, and Things That Didn't Fit Anywhere Else

o BACKGAMMON
A player of modest accomplishment.

o CHESS Plays good class D chess.

o CHECKERS Ditto, for checkers.

o BCD Converts ascii to card-image forni

o PPT Converts ascii to paper tape form.

o BJ A blackjack dealer.

o CUBIC An accomplished player of 4x4x4 tic-tac-toe.

o MAZE Constructs random mazes for you to solve.

o MOO A fascinating number-guessing game.

o CAL Print a calendar of specified month and year.

o BANNER Print output in huge letters.

o CHING The I Ching. Place your own interpretation on the output.

o FORTUNE Presents a random fortune cookie on each invocation. Limited jar of cookies
included.

o UNITS

o TTT

Convert amounts between different scales of measurement. Knows hundreds
of units. For example, how many km/sec is a parsec/megayear?

A tic-tac-toe program that learns. It never makes the same mistake twice.

o ARITHMETIC
Speed and accuracy test for number facts.

o FACTOR Factor large integers.

o QUIZ Test your knowledge of Shakespeare, Presidents, capitals, etc.

o WUMP Hunt the wumpus, thrilling search in a dangerous cave.

o REVERSI A two person board game, isomorphic to Othello·.

o HANGMAN Word-guessing game. Uses the dictionary supplied with SPELL.

- 17 -

o FISH Children's card-guessing game.

The UNIX Time-Sharing System·

D. M. Ritchie and K. Thompson

ABSTRACT

UNIXt is a general-purpose, multi-user, interactive operating system for
the larger Digital Equipment Corporation pOP-II and the Interdata 8/32 com
puters. It offers a number of features seldom found even in larger operating
systems, including

A hierarchical file system incorporating demountable volumes,

ii Compatible file, device, and inter-process I/O,

iii The ability to initiate asynchronous processes,

iv System command language selectable on a per-user basis,

v Over 100 subsystems including a dozen languages,
vi High degree of portability.

This paper discusses the nature and implementation of the file system and of
the user command interface.

1. INTRODUCTION

There have been four versions of the UNIX time-sharing system. The earliest (circa
1969-70) ran on the Digital Equipment Corporation pop-7 and -9 computers. The second ver
sion ran on the unprotected poP-U120 computer. The third incorporated multiprogramming
and ran on the pop-I 1/34, /40, /45, /60, and 170 computers; it is the one described in the pre
viously published version of this paper, and is also the most widely used today. This paper
describes only the fourth, current system that runs on the pop-11170 and the Interdata 8/32
computers. In fact, the differences among the various systems is rather small; most of the revi
sions made to the originally published version of this paper, aside from those concerned with
style, had to do with details of the implementation of the file system.

Since PDP-II UNIX became operational in February, 1971, over 600 installations have been
put into service. Most of them are engaged in applications such as computer science education,
the preparation and formatting of documents and other textual material, the collection and pro
cessing of trouble data from various switching machines within the Bell System, and recording
and checking telephone service orders. Our own installation is used mainly for research in
operating systems, languages, computer networks. and other topics in computer science, and
also for document preparation.

Perhaps the most important achievement of UNIX is to demonstrate that a powerful
operating system for interactive use need not be expensive either in equipment or in human
effort: it can run on hardware costing as little as $40,000, and less than two man-years were
spent on the main system software. We hope, however, that users find that the most important

• Copyright 1974, Association for Computing Machinery, Inc., reprinted by permission. This is a revised ver
sion of an article that appeared in Communications of the AeM, 17, No.7 (July 1974), pp. 365-375. That arti
cle was a revised version of a paper presented at the Fourth "eM Symposium on Operating Systems Princi
ples, IBM Thomas J. Watson Research Center, Yorktown Heights, New York, October 15-17, 1973.
fUNIX is a Trademark of Bell Laboratories.

- 2 -

characteristics of the system are its simplicity, elegance, and ease of use.

Besides the operating system proper, some major programs available under UNIX are

C compiler
Text editor based on QEDl
Assembler, linking loader, symbolic debugger
Phototypesetting and equation setting programs2,3

Dozens of languages including Fortran 77, Basic, Snobol, APL, Algol 68, M6,
TMG, Pascal

There is a host of maintenance, utility, recreation and novelty programs, all written locally.
The UNIX user community, which numbers in the thousands, has contributed many more pro
grams and languages. It is worth noting that the system is totally self-supporting. All UNIX
software is maintained on the system; likewise, this paper and all other documents in this issue
were generated and formatted by the UNIX editor and text formatting programs.

II. HARDWARE AND SOFTWARE ENVIRONMENT

The pop-uno on which the Research UNIX system is installed is a I6-bit word (8-bit
byte) computer with 768K bytes of core memory; the system kernel occupies 90K bytes about
equally divided between code and data tables. This system, however, includes a very large
number of device drivers and enjoys a generous allotment of space for I/O buffers and system
tables~ a minimal system capable of running the software mentioned above can require as little
as 96K bytes of core altogether. There are even larger installations; see the description of the
PWB/UNIX systems,4, 5 for example. There are also much smaller, though somewhat restricted,
versions of the system.6 .

Our own POP-II has two 200-Mb moving-head disks for file system storage and swapping.
There are 20 variable-speed communications interfaces attached to 300- and I200-baud data
sets, and an additional 12 communication lines hard-wired to 9600-baud terminals and satellite
computers. There are also several 2400- and 4800-baUd synehronous communication interfaces
used for machine-to-machine file transfer. Finally, there is a variety of miscellaneous devices
including nine-track magnetic tape, a line printer, a voice synthesizer, a phototypesetter, a digi
tal switching network, and a chess machine.

The preponderance of UNIX software is written in the abovementioned C language. 7 Early
versions of the operating system were written in assembly language, but during the summer of
1973, it was rewritten in C. The size of the new system was about one-third greater than that
of the old. Since the new system not only became much easier to understand and to modify

. but also included many functional improvements, including multiprogramming and the ability
to share reentrant code among several user programs, we consider this increase in size quite
acceptable.

III. THE FILE SYSTEM

The most important role of the system is to provide a file system. From the point of view
of the user, there are three kinds of files: ordinary disk files, directories, and special files.

3.1 Ordinary files

A file contains whatever information the user places on it, for example, symboliC or
binary (object) prograins. No particular strUcturing is expected by the system. A file of text
consists simply of a string of charactets, with lines demarcated by the newline character. Binary
programs are sequences of words as they will appear in core memory when the program starts
executing. A few user programs manipulate files with inOre structure; for example, the assem
bler generates, and the loader expects, an object file in a particular format. However, the struc
ture of files is controlled by the programs that use them, not by the system:

- 3 -

3.2 Directories

Directories provide the mapping between the names of files and the files themselves, and
thus induce a structure on the file system as a whole. Each user has a directory of his own
files; he may also create subdirectories to contain groups of files conveniently treated together.
A directory behaves exactly like an ordinary file except that it cannot be written on by
unprivileged programs, so that the system controls the contents of directories. However, any
one with appropriate permission may read a directory just like any other file.

The system maintains several directories for its own use. One of these is the root direc
tory. All files in the system can be found by tracing a path through a chain of directories until
the desired file is reached. The starting point for such searches is often the root. Other system
directories contain all the programs provided for general use; that is, all the commands. As will
be seen, however, it is by no means necessary that a program reside in one of these directories
for it to be executed.

Files are named by sequences of 14 or fewer characters. When the name of a file is
specified to the system, it may be in the form of a path name, which is a sequence of directory
names separated by slashes, "''', and ending in a file name. If the sequence begins with a
slash, the search begins in the root directory. The name 1.lpha/beta/g.m causes the sys
tem to search the root for directory .lpha, then to search .lph. for bet •• finally to find gamma
in beta. gamma may be an ordinary file, a directory, or a special file. As a limiting case, the
name "'" refers to the root itself.

A path name not starting with "'" causes the system to begin the search in the user's
current directory. Thus, the name .Ipha/bet. specifies the file named bet. in subdirectory
alpha of the current directory. The simplest kind of name, for example. alpha, refers to a file
that itself is found in the current directory. As another limiting case, the null file name refers
to the current directory.

The same non-directory file may appear in several directories under possibly different
names. This feature is called linking, a directory entry for a file is sometimes called a link. The
UNIX system differs from other systems in which linking is permitted in that all links to a file
have equal status. That is. a file does not exist within a particular directory; the directory entry
for a file consists merely of its name and a pointer to the information actually describing the
file. Thus a file exists independently of any directory entry, although in practice a file is made
to disappear along with the last link to it.

Each directory always has at least two entries. The name" ... in each directory refers to
the directory itself. Thus a program may read the current directory under the name"."
without knowing its complete path name. The .!ame by convention refers to the parent
of the directory in which it appears, that is, to the directory in which it was created.

The directory structure is constrained to have the form of a rooted t."ee. Except for the
special entries " ." and , each directory must appear as an entry in exactly one other
directory, which is its parent. The reason for this is to simplify the writing of programs that
visit subtrees of the directory structure. and more important, to avoid the separation of portions
of the hierarchy. If arbitrary links to directories were permitted, it would be quite difficult to
detect when the last connection from the root to a dir-.,ctory was severed.

3.3 Special files

Special files constitute the most unusual feature of the UNIX file system. Each supported
110 device is associated with at least one such file. Special files are read and written just like
ordinary disk files, but requests to read or write result in activation of the associated device.
An entry for each special file resides in directory Idey, although a link may be made to one of
these files just as it may to an ordinary file. Thus, for example, to write on a magnetic tape one
may write on the file 'dev/mt. Special files exist for each communication line, each disk, each
tape drive, and for physical main memory. Of course. the active disks and the memory special
file are protected from indiscriminate access.

- 4 -

There is a threefold advantage in treating 110 devices this way: file and device 1/0 are as
similar as possible; file and device names have the same syntax and meaning, so that a program
expecting a file name as a parameter can be passed a device name; finally. special files are sub
ject to the same protection mechanism as regular files.

3.4 R.emo'Yable file systems

Although the root of the file system is always stored on the same device. it is not neces
sary that the entire file system hierarchy reside on this device., There is a mount system
request with two arguments: the name of an existing ordinary file, and the name of a special file
whose associated storage volume (e.g., a disk pack) should have the structure of an indepen
dent file system containing its own directory hierarchy. The effect of mount is to cause refer
ences to the heretofore ordinary file to refer instead to the root directory of the file system on
the removable volume. In effect. mount replaces a leaf of the hierarchy tree (the ordinary file)
by a whole new subtree (the hierarchy stored on the removable volume). After the mount,
there is virtually no distinction between files on the removable volume and those in the per
manent file system. In our installation, for example, the root directory resides on a small parti
tion of one of our disk drives. while the other drive, which contains the user's files, is mounted
by the system initialization sequence. A mountable file system is generated by writing on its
corresponding special file. A utility program is available to create an empty file system, or one
may simply copy an existing file syst.em.

There is only one exception to the rule of identical treatment of files on different devices:
no link may exist between one file system hierarchy and another. This restriction is enforced
so as to avoid the elaborate bookkeeping that would otherwise be required to assure removal of
the links whenever the removable volume is dismounted.

3.S Protection
Although the access con!rol scheme is quite simple, it has some unusual features. Each

user of the system is assigned a unique user identification number. When a file is created, it is
marked with the user 10 of its owner. Also given for new files is a set of ten protection bits.
Nine of these specify independently read, write, and execute permission for the owner of the
file, for other members of his group, and for all remaining users.

If the tenth bit is on, the system will temporarily change the user identification (hereafter,
user 10) of the current user to that of the creator of the file whenever the file is executed as a
program. This change in user 10 is effective only during the execution of the program that calls
for it. The set-user-IO feature provides for privileged programs that may use files inaccessible
to other users. For example, a program may keep an accounting file that should neither be read
nor changed except by the program itself. If the set-user-ID bit is on for the program, it may
access the file although this access might be forbidden to other programs invoked by the given
program's user. Since the actual user 10 of the invoker of any program is always available, set
user-ID programs may take any measures desired to satisfy themselves as to their invoker's
credentials. This mechanism is used to allow users to execute the carefully written commands
that call privileged system entries. For example, there is a system entry invokable only by the
"super-user" (below) that creates an empty directory. As indicated above, directories are
expected to have entries for" . " and" •• ". The command which creates a directory is owned
by the super-user and has the set-user-ID bit set. After it checks its invoker's authorization to
create the specified directory, it creates it and makes the entries for" • " and " .• ".

Because anyone may set the set-user-ID bit on one of his own files, this mechanism is
generally available without administrative intervention. For example, this protection scheme
easily solves the MOO accounting problem posed by "Aleph-null." 8

The system recognizes one particular user 10 (that of the "super-user") as exempt from
the usual constraints on file access; thus (for example), programs may be written to dump and
reload the file system without unwanted interference from the protection system.

- 5 -

3.6 110 calls

The system calls to do 110 are designed to eliminate the differences between the various
devices and styles of access. There is no distinction between "random" and "sequential" 110,
nor is any logical record size imposed by the system. The size of an ordinary file is determined
by the number of bytes written on it; no predetermination of the size of a file is necessary or
possible.

To illustrate the essentials of 110, some of the basic calls are summarized below in an
anonymous language that will indicate the required parameters without getting into the underly
ing complexities. Each call to the system may potentially result in an error return, which for
simplicity is not represented in the calling sequence.

To read or write a file assumed to exist already, it must be opened by the following call:

filep == open (name, flag)

where name indicates the name of the file. An arbitrary path name may be given. The flag
argument indicates whether the file is to be read, written, or "updated," that is, read and writ
ten simultaneously.

The returned value filep is called a file descriptor. It is a small integer used to identify the
file in subsequent calls to read, write, or otherwise manipulate the file.

To create a new file or completely rewrite an old one, there is a create system call that
creates the given file if it does not exist, or truncates it to zero length if it does exist; create
also opens the new file for writing and, like open, returns a file descriptor.

The file system maintains no locks visible to the user, nor is there any restriction on the
number of users who may have a file open for reading or writing. Although it is possible for
the contents of a file to become scrambled when two users write on it simultaneously, in prac
tice difficulties do not arise. We take the view that locks are neither necessary nor sufficient, in
our environment, to prevent interference between users of the same file. They are unnecessary
because we are not faced with large, single-file data bases maintained by independent processes.
They are insufficient because locks in the ordinary sense, whereby one user is prevented from
writing on a file that another user is reading, cannot prevent confusion when, for example, both
users are editing a file with an editor that makes a copy of the file being edited.

There are, however, sufficient internal interlocks to maintain the logical consistency of the
file system when two users engage simultaneously in activities such as writing on the same file,
creating files in the same directory, or deleting each other's open files.

Except as indicated below, reading and writing are sequential. This means that if a partic
ular byte in the file was the last byte written (or read), the next I/O call implicitly refers to the
immediately following byte. For each open file there is a pointer, maintained inside the system,
that indicates the next byte to be read or written. If n bytes are read or written, the pointer
advances by n bytes.

Once a file is open, the following calls may be used:

n - read (filep, buffer, count)
n == write (filep, buffer, count)

Up to count bytes are transmitted between the file specified by fIIep and the byte array specified
by buffer. The returned value n is the number of bytes actually transmitted. In the write case,
n is the same as count except under exceptional conditions, such as I/O errors or end of physi
cal medium on special files~ in a read, however, n may without error be less than count. If the
read pointer is so near the end of the file that reading count characters would cause reading
beyond the end, only sufficient bytes are transmitted to reach the end of the file~ also,
typewriter-like terminals never return more than one line of input. When a read call returns
with n equal to zero, the end of the file has been reached. For disk files this occurs when the
read pointer becomes equal to the current size of the file. It is possible to generate an end~of
file from a terminal by use of an escape sequence that depends on the device used.

- 6 -

Bytes written affect only those parts of a file implied by the position of the write pointer
and the count; no other part of the file is changed. If the last byte lies beyond the end of the
file, the file is made to grow as needed.

To do random (direct-access) I/O it is only necessary to move the read or write pointer to
the appropriate location in the file.

location - lseek (filep, offset, base)

The pointer associated with filep is moved to a position offset bytes from the beginning of the
file, from ~he current position of the pointer, or from the end of the file, depending on base.
offset may be negative. For some devices (e.g., paper tape and terminals) seek calls are
ignored. The actual offset from the beginning of the file to which the pointer was moved is
returned in location.

There are several additional system entries having to do with I/O and with the file system
that will not be discussed. For example: close a file, get the status of a file, change the protec
tion mode or the owner of a file, create a directory, make a link to an existing file, delete a file.

IV. IMPLEMENTATION OF THE FILE SYSTEM
As mentioned in Section 3.2 above, a directory entry contains only a name for the associ

ated file and a pointer to the file itself. This pointer is an integer called the i-number (for index
number) of the file. When the file is accessed, its i-number is used as an index into a system
table (the i-list) stored in a known part of the device on which the directory resides. The entry
found thereby (the file's i-node) contains the description of the file:

the user and groUP-ID of its owner
ii its protection bits

iii the physical disk or tape addresses for the file contents

iv its size
v time of creation, last use, and last modification

vi the number of links to the file, that is, the number of times it appears in a directory

vii a code indicating whether the file is a directory, an ordinary file, or a special file.
The purpose of an open or create system call is to turn the path name given by the user into an
i-number by searching the explicitly or implicitly named directories. Once a file is open, its
device, i-number, and read/write pointer are stored in a system table indexed by the file
descriptor returned by the open or create. Thus, during a subsequent call to read or write the
file, the descriptor may be easily related to the information necessary to access the file.

When a new file is created, an i-node is allocated for it and a directory entry is made that
contains the name of the file and the i-node number. Making a link to an existing file involves
creating a directory entry with the new name, copying the i-number from the original file entry,
and incrementing the link-count field of the i-node. Removing (deleting) a file is done by
decrementing the link-count of the i-node specified by its directory entry and erasing the direc
tory entry. If the link-count drops to 0, any disk blocks in the file are freed and the i-node is
de-allocated.

The space on all disks that contain a file system is divided into a number of S12-byte
blocks logically addressed from 0 up to a limit that depends on the device. There is space in
the i-node of each file for 13 device addresses. For nonspecial files; the first 10 device
addresses point at the first 10 blocks of die file. If the file is iarger than 10 blocks, the 11 dev
ice address points to an indirect block containing up to 128 addresses of additional blocks in the
file. Still larger files use the twelfth device address of the i-node to point to a double-indirect
block miming 128 indirect blocks, eachpoirtting to 128 blocks of the file. If required, the thir
teenth device address is a triple-indirect block. Thus files may conceptually grow to
[(10+ 128+ 1282+ 1283)'512] bytes. Once opened, bytes numbered below 5120 can be read
with a single disk access; bytes in the range 5120 to 70,656 require two accesses; bytes in the

- 7 -

range 70,656 to 8,459,264 require three accesses~ bytes from there to the largest file
(1,082,201,088) require four accesses. In practice, a device cache mechanism (see below)
proves effective in eliminating most of the indirect fetches.

The foregoing discussion applies to ordinary files. When an I/O request is made to a file
whose i-node indicates that it is special, the last 12 device address words are immaterial, and
the first specifies an internal device name, which is interpreted as a pair of numbers represent
ing, respectively, a device type and subdevice number. The device type indicates which system
routine will deal with I/O on that device~ the subdevice number selects, for example, a disk
drive attached to a particular controller or one of several similar terminal interfaces.

In this environment, the implementation of the mount system call (Section 3.4) is quite
straightforward. mount maintains a system table whose argument is the i-number and device
name of the ordinary file specified during the mount, and whose corresponding value is the
device name of the indicated special file. This table is searched for each i-number/device pair
that turns up while a path name is being scanned during an open or create~ if a match is found,
the i-number is replaced by the i-number of the root directory and the device name is replaced
by the table value.

To the user, both reading and writing of files appear to be synchronous and unbuffered.
That is, immediately after return from a read call the data are available; conversely, after a
write the user's workspace may be reused. In fact, the system maintains a rather complicated
buffering mechanism that reduces greatly the number of I/O operations required to access a
file. Suppose a write call is made specifying transmission of a single byte. The system will
search its buffers to see whether the affected disk block currently resides in main memory; if
not, it will be read in from the device. Then the affected byte is replaced in the buffer and an
entry is made in a list of blocks to be written. The return from the write call may then take
place, although the actual I/O may not be completed until a later time. Conversely, if a single
byte is read, the system determines whether the secondary storage block in which the byte is
located is already in one of the system's buffers; if so, the byte can be returned immediately. If
not, tl1e block is read into a buffer and the byte picked out.

The system recognizes when a program has made accesses to sequential blocks of a file,
and asynchronously pre-reads the next block. This significantly reduces the running time of
most programs while adding little to system overhead.

A program that reads or writes files in units of 512 bytes has an advantage over a program
that reads or writes a single byte at a time, but the gain is not immense; it comes mainly from
the avoidance of system overhead. If a program is used rarely or does no great volume of I/O,
it may quite reasonably read and write in units as small as it wishes.

The notion of the i-list is an unusual feature of UNIX. In practice, this method of organiz
ing the file sYstem has proved quite reliable and easy to deal with. To the system itself, one of
its strengths is the fact that each file has a short, unambiguous name related in a simple way to
the protection, addressing, and other information needed to access the file. It also permits a
quite simple and rapid algorithm for checking the consistency of a file sYstem, for example,
verification that the portions of each device containing useful information and those free to be
allocated are disjoint and together exhaust the space on the device. This algorithm is indepen
dent of the directory hierarchy, because it need only scan the linearly organized i-list. At the
same time the notion of the i-list induces certain peculiarities not found in other file system
organizations. For example, there is the question of who is to be charged for the space a file
occupies, because all directory entries for a file have equal status. Charging the owner of a file
is unfair in general, for one user may create a file, another may link to it, and the first user may
delete the file. The first user is still the owner of the file, but it should be charged to the
second user. The simplest reasonably fair algorithm seems to be to spread the charges equally
among users who have links to a file. Many installations avoid the issue by not charging any
fees at all.

- 8 -

V. PROCESSES AND IMAGES

An image is a computer execution environment. It includes a memory image, general
register values, status of open files, current directory and the like. An image is the current
state of a pseudo-computer.

A process is the execution of an image. While the processor is executing on behalf of a
process, the image must reside in main memory; during the execution of other processes it
remains in main memory unless the appearance of an active, higher-priority process forces it to
be swapped out to the disk.

The user-memory part of an image is divided into three logical segments. The program
text segment begins at location 0 in the virtual address space. During execution, this segment
is write-protected and a single copy of it is shared among all processes executing the same pro
gram. At the first hardware protection byte boundary above the program text segment in the
virtual address space begins a non-shared, writable data segment, the size of which may be
extended by a system call. Starting at the highest address in the virtual address space is a stack
segment, which automatically grows downward as the stack pointer fluctuates.

5.1 Processes

Except while the system is bootstrapping itself into operation, a new process can come
into existence only by use of the fork system call:

processid - fork ()

When fork is executed, the process splits into two independently executing processes. The two
processes have independent copies of the original.memory image, and share all open files. The
new processes differ only in that one is considered the parent process: in the parent, the
returned processid actually identifies the child process and is never 0, while in the child, the
returned value is always O.

Because the values returned by fork in the parent and child process are distinguishable,
each process may determine whether it is the parent or cnild.

5.2 Pipes

Processes may communicate with related processes using the same system read and write
calls that are used for file-system I/O. The call:

filep - pipe ()

returns a file descriptor filep and creates an inter-process channel called a pipe. This channel,
like other open files, is passed from parent to child process in the image by the fork call. A
read using a pipe file descriptor waits until another process writes using the file descriptor for
the same pipe. At this point, data are passed between the images of the two processes. Neither
process need know that a pipe, rather than an ordinary file, is involved.

Although inter-process communication via pipes is a quite valuable tool (see Section 6.2),
it is not a completely general mechanism, because the pipe must be set up by a common ances
tor of the processes involved.

5.3 Execution of programs

Another major system primitive is invoked by

execute (file, argl' arg2, ... , argn)

which requests the system to read in and execute the program named by file, passing it string
arguments alii' 81"12' ••• ,alln· All the code and data in the process invoking execute is
replaced from the file, but open files, current directory, and inter-process relationships are
unaltered. Only if the call fails, for example because file could not be found or because its
execute-permission bit was not set, does a return take place from the execute primitive; it

- 9 -

resembles a "jump" machine instruction rather than a subroutine call.

5.4 Process synchronization

Another process control system call:

processid = wait (status)

causes its caller to suspend execution until one of its children has completed execution. Then
wait returns the processid of the terminated process. An error return is taken if the caIling
process has no descendants. Certain status from the child process is also available.

5.5 Termination

Lastly:

exit (status)

terminates a process, destroys its image, closes its open files, and generally obliterates it. The
parent is notified through the wait primitive, and status is made available to it. Processes may
also terminate as a result of various illegal actions or user-generated signals (Section VII
below).

VI. THE SHELL
For most users, communication with the system is carried on with the aid of a program

called the shell. The shell is a command-line interpreter: it reads lines typed by the user and
interprets them as requests to execute other programs. (The shell is described fully elsewhere,9

so this section will discuss only the theory of its operation.) In simplest form, a command line
consists of the command name followed by arguments to the command, all separated by spaces:

command arg l arg2 ... argn

The shell splits up the command name and the arguments into separate strings. Then a file
with name command is sought; command may be a path name including the "/" character to
specify any file in the system. If command is found, it is brought into memory and executed.
The arguments collected by the shell are accessible to the command. When the command is
finished, the shell resumes its own execution, and indicates its readiness to accept another com
mand by typing a prompt character.

If file command cannot be found, the shell generally prefixes a string such as / bin I to
command and attempts again to find the file. Directory I bin contains commands intended to
be generally used. (The sequence of directories to be searched may be changed by user
request,)

6.1 Standard I/O

The discussion of 110 in Section III above seems to imply that every file used by a pro
gram must be opened or created by the program in order to get a file descriptor for the file.
Programs executed by the shell, however, start off with three open files with file descriptors 0,
t, and 2. As such a program begins execution, file 1 is open for writing, and is best understood
as the standard output file. Except under circumstances indicated below, this file is the user's
terminal. Thus programs that wish to write informative information ordinarily use file descrip
tor 1. Conversely, file 0 starts off open for reading, and programs that wish to read messages
typed by the user read this file.

The shell is able to change the standard assignments of these file descriptors from the
user's terminal printer and keyboard. If one of the arguments to a command is prefixed by
"> ", file descriptor 1 will, for the duration of the command, refer to the file named after the
"> ". For example:

- 10 -

Is

ordinarily lists, on the typewriter, the names of the files in the current directory. The com
mand:

Is >there

creates a file called there and places the listing there. Thus the argument > there means "place
output on there." On the other hand:

ed

ordinarily enters the editor, which takes requests from the user via his keyboard. The com
mand

ed <script

interprets script as a file of editor commands; thus < script means "take input from script."

Although the file name following "<" or ">" appears to be an argument to the com
mand, in fact it is interpreted completely by the shell and is not passed to the command at all.
Thus no special coding to handle I/O redirection is needed within each command; the com
mand need merely use the standard file descriptors 0 and 1 where appropriate.

File descriptor 2 is, like file 1, ordinarily associated with the terminal output stream.
When an output-diversion request with ">" is specified, file 2 remains attached to the termi
nal, so that commands may produce diagnostic messages that do not silently end up in the out
put file.

6.2 Filters

An extension of the standard I/O notion is used to direct output from one command to
the input of another. A sequence of commands separated by vertical bars causes the shell to
execute all the commands simultaneously and to arrange that the standard output of each com
mand be delivered to the standard input of the next command in the sequence. Thus in the
command line:

Is I pr - 2 I opr

Is lists the names of the files in the current directory; its output is passed to pr, which paginates
its input with dated headings. (The argument "-2" requests double-column output,) Likewise,
the output from pr is input to opr; this command spools its input onto a file for off-line print
ing.

This procedure could have been carried out more clumsily by:

Is >templ
pr -2 <tempI >temp2
opr <temp2

followed by removal of the temporary files. In the absence of the ability to redirect output and
input, a still clumsier method would have been to require the Is command to accept user
requests to paginate its output, to print in multi-column format, and to arrange that its output
be delivered off-line. Actually it would be surprising, and in fact unwise for efficiency reasons,
to expect authors of commands such as Is to provide such a wide variety of output options.

A program such as pr which copies its standard input to its standard output (with process
ing) is called a filter. Some fitters that we have found useful perform character transliteration,
selection of lines according to a pattern, sorting of the input, and encryption and decryption.

- 11 -

6.3 Command separators; multitasking

Another feature provided by the shell is relatively straightforward. Commands need not
be on different lines; instead they may be separated by semicolons:

Is; ed

will first list the contents of the current directory, then enter the editor.

A related feature is more interesting. If a command is followed by "&," the shell will not
wait for the command to finish before prompting again; instead, it is ready immediately to
accept a new command. For example: .

as source >output &

causes source to be assembled, with diagnostic output going to output; no matter how long the
assembly takes, the shell returns immediately. When the shell does not wait for the completion
of a command, the identification number of the process running that command is printed. This
identification may be used to wait for the completion of the command or to terminate it. The
"&" may be used several times in a line:

as source >output & Is > files &

does both the assembly and the listing in the background. In these examples, an output file
other than the terminal was provided; if this had not been done, the outputs of the various
commands would have been intermingled.

The shell also allows parentheses in the above operations. For example:

(date; Is) >x &

writes the current date and time followed by a list of the current directory onto the file x. The
shell also returns immediately for another request.

6.4 The shell as a command; command files

The shell is itself a command, and may be called recursively. Suppose file tryout contains
the lines:

as source
mv a.out testprog
testprog

The mv command causes the file a.out to be renamed testpl'Ol. a.out is the (binary) output of
the assembler, ready to be executed. Thus if the three lines above were typed on the keyboard,
source would be assembled, the resulting program renamed testpl'Ol, and testpl'Ol executed.
When the lines are in tryout, the command:

sh <tryout

would cause the shell sh to execute the commands sequentially.

The shell has further capabilities, including the ability to substitute parameters and to con
struct argument lists from a specified subset of the file names in a directory. It also provides
general conditional and looping constructions.

6.5 Implementation of the shell
The outline of the operation of the shell can now be understood. Most of the time, the

shell is waiting for the user to type a command. When the newline character ending the line is
typed, the shell's read call returns. The shell analyzes the command line, putting the argu
ments in a form appropriate for execute. Then fork is called. The child process, whose code of
course is still that of the shell, attempts to perform an execute with the appropriate arguments.
If successful, this will bring in and start execution of the program whose name was given.
Meanwhile, the other process resulting from the fork, which is the parent process, waits for the

- 12 -

child process to die. When this happens, the shell knows the command is finished, so it types
its prompt and reads the keyboard to obtain another command.

Given this framework, the implementation of background processes is trivial~ whenever a
command line contains "a," the shell merely refrains from waiting for the process that it
created to execute the command.

Happily, all of this mechanism meshes very nicely with the notion of standard input and
output files. When a process is created by the fork primitive, it inherits not only the memory
image of its parent but also all the files currently open in its parent, including those with file
descriptors 0, 1, and 2. The shell, of course, uses these files to read command lines and to
write its prompts and diagnostics, and in the ordinary case its children-the command
programs-inherit them automatically. When an argument with "<" or ">" is given, how
ever, the offspring process, just before it performs execute, makes the standard I/O file descrip
tor (0 or 1, respectively) refer to the named file. This is easy because, by agreement, the smal
lest unused file descriptor is assigned when a new file is opened (or created); it is only neces
sary to close file 0 (or 1) and 'open the named file. Because the process in which the command
program runs simply terminates when it is through, the association between a file specified after
"<" or ">" and file descriptor 0 or 1 is ended automatically when the process dies. There
fore the shell need not know the actual names of the files that are its own standard input and
output, because it need never reopen them.

Filters are straightforward extensions of standard I/O redirection with pipes used instead
of files.

In ordinary circumstances, the main loop of the shell never terminates. (The main loop
includes the branch of the return from fork belonging to the parent process; that is, the branch
that does a wait, then reads another command lineJ The one thing that causes the shell to ter
minate is discovering an end-of-file condition on its input file. Thus, when the shell is exe
cuted as a command with a given input file, as in:

sh <comfile

the commands in comfile will be executed until the end of comfile is reached; then the instance
of the shell invoked by sh will terminate. Because this shell process is the child of another
instance of the shell, the wait executed in the latter will return, and another command may
then be processed.

6.6 Initialization
The instances of the shell to which users type commands are themselves children of

another process. The last step in the initialization of the system is the creation of a single pro
cess and the invocation (via execute) of a program called init. The role of init is to create one
process for each terminal channel. The various subinstances of init open the appropriate termi
nals for input and output on files 0, 1, and 2, waiting, if necessary, for carrier to be established
on dial-up lines. Then a message is typed out requesting that the user log in. When the user
types a name or other identification, the appropriate instance of init wakes up, receives the
log-in line, and reads a password file. If the user's name is found, and if he is able to supply
the correct password, init changes to the user's default current directory, sets the process's user
ID to that of the person logging in, and performs an execute of the shell. At this point, the
shell is ready to receive commands and the logging-in protocol is complete.

Meanwhile, the mainstream path of lnit (the parent of all the subinstances of itself that
will later become shells) does a wait. If one of the child processes terminates, either because a
shell found an end of file or because a user typed an incorrect name or password, this path of
lnil simply recreates the defunct process, which in turn reopens the appropriate input and out
put files and types another log-in message. Thus a user may log out simply by typing the end
of-file sequence to the shell.

- 13 -

6.7 Other programs as shell

The shell as described above is designed to allow users full access to the facilities of the
system, because it will invoke the execution of any program with appropriate protection mode.
Sometimes, however, a different interface to the system is desirable, and this feature is easily
arranged for.

Recall that after a user has successfully logged in by supplying a name and password, Inft
ordinarily invokes the shell to interpret command lines. The user's entry in the password file
may contain the name of a program to be invoked after log-in instead of the shell. This pro
gram is free to interpret the user's messages in any way it wishes.

For example, the password file entries for users of a secretarial editing system might
specify that the editor ed is to be used instead of the shell. Thus when users of the editing sys
tem log in, they are inside the editor and can begin work immediately~ also, they can be
prevented from invoking programs not intended for their use. In practice, it has proved desir
able to allow a temporary escape from the editor to execute the formatting program and other
utilities.

Several of the games (e.g., chess, blackjack, 3D tic-tac-toe) available on the system illus
trate a much more severely restricted environment. For each of these, an entry exists in the
password file specifying that the appropriate game-playing program is to be invoked instead of
the shell. People who log in as a player of one of these games find themselves limited to the
game and unable to investigate the (presumably more interesting) offerings of the UNIX system
as a whole.

VII. TRAPS

The pOP-II hardware detects a number of program faults, such as references to non
existent memory, unimplemented instructions, and odd addresses used where an even address
is required. Such faults cause the processor to trap to a system routine. Unless other arrange
ments have been made, an illegal action causes the system to terminate the process and to write
its image on file core in the current directory. A debugger can be used to determine the state
of the program at the time of the fault.

Programs that are looping, that produce unwanted output, or about which the user has
second thoughts may be halted by the use of the interrupt signal, which is generated by typing
the "delete" character. Unless special action has been taken, this signal simply causes the pro
gram to cease execution without producing a core file. There is also a quit signal used to force
an image file to be produced. Thus programs that loop unexpectedly may be halted and the
remains inspected without prearrangement.

The hardware-generated faults and the interrupt and quit signals can, by request, be either
ignored or caught by a process. For example, the shell ignores quits to prevent a quit from log
ging the user out. The editor catches interrupts and returns to its command level. This is use
ful for stopping long printouts without losing work in progress (the editor manipulates a copy of
the file it is editing). In systems without floating-point hardware, unimplemented instructions
are caught and floating-point instructions are interpreted.

VIII. PERSPECTIVE
Perhaps paradoxically, the success of the UNIX system is largely due to the fact that it was

not designed to meet any predefined objectives. The first version was written when one of us
(Thompson), dissatisfied with the available computer facilities, discovered a little-used PDP-7
and set out to create a more hospitable environment. This (essentially personal) effort was
sufficiently successful to gain the interest of the other author and several colleagues, and later
to justify the acquisition of the PDP.11120, specifically to support a text editing and formatting
system. When in turn the 11120 was outgrown, the system had proved useful enough to per
suade management to invest in the PDP-ll/45, and later in the PDP-l1nO and Interdata 8/32
machines, upon which it developed to its present form. Our goals throughout the effort, when

- 14 -

articulated at all, have always been to build a comfortable relationship with the machine and to
explore ideas and inventions in operating systems and other software. We have not been faced
with the need to satisfy someone else's requirements, and for this freedom we are grateful.

Three considerations that influenced the design of UNIX are visible in retrospect.

First: because we are programmers, we naturally designed the system to make it easy to
write, test, and run programs. The most important expression of our desire for programming
convenience was that the system was arranged for interactive use, even though the original ver
sion only supported one user. We believe that a properly designed interactive system is much
more productive and satisfying to use than a "batch" system. Moreover, such a system is
rather easily adaptable to noninteractive use, while the converse is not true.

Second: there have always been fairly severe size constraints on the system and its
software. Given the partially antagonistic desires for reasonable efficiency and expressive
power, the size constraint has encouraged not only economy, but also a certain elegance of
design. This may be a thinly disguised version of the "salvation through suffering" philosophy,
but in our case it worked.

Third: nearly from the start, the system was able to, and did, maintain itself. This fact is
more important than it might seem. If designers of a system are forced to use that system,
they quickly become aware of its functional and superficial deficiencies and are strongly
motivated to correct them before it is too late. Because all source programs were always avail
able and easily modified on-line, we were willing to revise and rewrite the system and its
software when new ideas were invented, discovered, or suggested by others.

The aspects of UNIX discussed in this paper exhibit clearly at least the first two of these
design considerations. The interface to the file system, for example, is extremely convenient
from a programming standpoint. The lowest possible interface level is designed to eliminate
distinctions between the various devices and files and between direct and sequential access. No
large "access method" routines are required to insulate the programmer from the system calls;
in fact, all user programs either call the system directly or use a small library program, less than
a page long, that buffers a number of characters and reads or writes them all at once.

Another important aspect of programming convenience is that there are no "control
blocks" with a complicated structure partially maintained by and depended on by the file system
or other system calls. Generally speaking, the contents of a program's address space are the
property of the program, and we have tried to avoid placing restrictions on the data structures
within that address space.

Given the requirement that all programs should be usable with any file or device as input
or output, it is also desirable to push device-dependent considerations into the operating system
itself. The only alternatives seem to be to load, with all programs, routines for dealing with
each device, which is expensive in space, or to depend on some means of dynamically linking
to the routine appropriate to each device when it is actually needed, which is expensive either
in overhead or in hardware.

Likewise, the process-control scheme and the command interface have proved both con
venient and efficient. Because the shell operates as an ordinary, swappable user program, it
consumes no "wired-down" space in the system proper, and it may be made as powerful as
desired at little cost. In particular, given the framework in which the shell executes as a process
that spawns other processes to perform commands, the notions of I/O redirection, background
processes, command files, and user-selectable system interfaces all become essentially trivial to
implement.

Influences

The success of UNIX lies not so much in new inventions but rather in the full exploitation
of a carefully selected set of fertile ideas, and especially in showing that they can be keys to the
implementation of a small yet powerful operating system.

- 15 -

The fork operation, essentially as we implemented it, was present in the GENIE time
sharing system. 10 On a number of points we were influenced by Multics, which suggested the
particular form of the I/O system caUsll and both the name of the shell and its general func
tions. The notion that the shell should create a process for each command was also suggested
to us by the early design of Multics, although in that system it was later dropped for efficiency
reasons. A similar scheme is used by TENEX.12

IX. STATISTICS

The following numbers are presented to suggest the scale of the Research UNIX operation.
Those of our users not involved in document preparation tend to use the system for program
development, especially language work. There are few important "applications" programs.

Overall, we have today:

125
33

1,630
28,300

301,700

user population
maximum simultaneous users
directories
files
512-byte secondary storage blocks used

There is a "background" process that runs at the lowest possible priority; it is used to soak up
any idle CPU time. It has been used to produce a million-digit approximation to the constant e,
and other semi-infinite problems. Not counting this background work, we average daily:

X. ACKNOWLEDGMENTS

13,500
9.6
230
62

240

commands
CPU hours
connect hours
different users
log-ins

The contributors to UNIX are, in the traditional but here especially apposite phrase, too
numerous to mention. Certainly, collective salutes are due to our colleagues in the Computing
Science Research Center. R. H. Canaday contributed much to the basic design of the file sys
tem. We are particularly appreciative of the inventiveness, thoughtful criticism, and constant
support of R. Morris, M. D. Mcilroy, and J. F. Ossanna.

References

1. L. P. Deutsch and B. W. Lampson, "An online editor," Comm. Assoc. Compo Mach.
10(12) pp. 793-799, 803 (December 1967).

2. B. W. Kernighan and L. L. Cherry, "A System for Typesetting Mathematics," Comm.
Assoc. Compo Mach. 18 pp. 151-157 (March 1975).

3. B. W. Kernighan, M. E. Lesk, and 1. F. Ossanna, "UNIX Time-Sharing System: Docu
ment Preparation," Bell Sys. Tech. J. 57(6) pp. 2115-2135 (1978).

4. T. A. Dolotta and J. R. Mashey, "An Introduction to the Programmer's Workbench,"
Proc. 2nd Int. Corif'. on Software Engineering, pp. 164-168 (October 13-15, 1976).

5. T. A. Dolotta, R. C. Haight, and J. R. Mas hey, "UNIX Time-Sharing System: The
Programmer's Workbench," BellSys. Tech. J. 57(6) pp. 2177-2200 (1978).

- 16 -

6. H. Lyck~ "UNIX Time-Sharing System: UNIX on a Microprocessor," Bell Sys. Tech. J.
57(6) pp. 2087-2101 (I978).

7. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Engle
wood Cliffs, New Jersey (I978).

8. Aleph-null, "Computer Recreations," Software Practice and Experience 1 (2) pp. 201-204
(April-June 1971). .

9. S. R. Bourne, "UNIX Time-Sharing System: The UNIX Shell," Bell Sys. Tech. J. 57 (6) pp.
1971-1990 (1978).

10. L. P. Deutsch and B. W. Lampson, "SDS 930 time-sharing system preliminary reference
manual," Doc. 30.10.10, Project GENIE, Univ. Cal. at Berkeley (April 1965).

11. R. J. Feiertag and E. I. Organick, "The Multics input-output system," Proc. Third Sympo
sium on Operating Systems Principles, pp. 35-41 (October 18-20, 1971).

12. D. G. Bobrow, J. D. Burchfiel, D. L. Murphy, and R. S. Tomlinson, "TENEX, a Paged
Time Sharing System for the PDP-10," Comm. Assoc. Compo Mach. 15(3) pp. 135-143
(March 1972).

,.

GETTING STARTED

(

UNIX For Beginners - Second Edition

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper is meant to help new users get started on the UNIXt operating
system. It includes:

• basics needed for day-to-day use of the system - typing commands, correct
ing typing mistakes, logging in and out, mail, inter-terminal communication,
the file system, printing files, redirecting I/O, pipes, and the shell.

• document preparation - a brief discussion of the major formatting programs
and macro packages, hints on preparing documents, and capsule descriptions
of some supporting software.

• UNIX programming - using the editor, programming the shell, program
ming in C, other languages and tools.

• An annotated UNIX bibliography.

September 30, 1978

tUNIX is a. Trademark of Bell Laboratories.

UNIX For Beginners - Second Edition

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

INTRODUCTION

From the user's point of view, the UNIX
operating system is easy to learn and use, and
presents few of the usual impediments to getting
the job done. It is hard, however, for the
beginner to know where to start, and how to
make the best use of the facilities available. The
purpose of this introduction is to help new users
get used to the main ideas of the UNIX system
and start making effective use of it quickly.

You should have a couple of other docu
ments with you for easy reference as you read
this one. The most important is The UNIX
Programmer's Manllal; it's often easier to' tell you
to read about something in the manual than to
repeat its contents here. The other useful docu
ment is A TlItorial I nlrodllcfion to the UNIX Text
Editor, which will tell you how to use the editor
to get text - programs, data, documents - into
the computer.

A word of warning: the UNIX system has
become quite popular, and there are several
major variants in widespread use. Of course
details also change with time. So although the
basic structure of UNIX and how 10 use it is com
mon to all versions, there will certainly be a few
things which are different on your system from
what is described here. We have tried to minim
ize the problem, but be aware of it. In cases of
doubt, this paper describes Version 7 UNIX.

This paper has five sections:

1. Getting Started: How 10 log in, how 10 type,
what 10 do about mistakes in typing, how to
log out. Some of this is dependent on which
system you log into (phone numbers, for
example) and what terminal you use, so this
section must necessarily be supplemented by
local information ..

2. Day-Io-day Use: Things you need every day
to use the system effectively: generally use
ful commands; the file system.

3. Document Preparation: Preparing manu
scripts is one of the most common uses for
UNIX systems. This section contains advice,
but nOI extensive instructions on any of the
formatting tools.

4. Writing Programs: UNIX is an excellent sys
tem for developing programs. This section
talks about some of the tools, but again is
not a tutorial in any of the programming
languages provided by the system.

5. A UNIX Reading List. An annotated
bibliography of documents that new users
should be aware of.

I. GETTING STARTED

Logging In

You must have a UNIX login name, which
you can get from whoever administers your sys
tem. You also need to know the phone number,
unless your system uses permanently connected
terminals. The UNIX system is capable of deal
ing with a wide variety of terminals: Termine!
300's: Execuport, TI and similar portables; video
(CRT) terminals like the HP2640, etc.; high
priced graphics terminals like the Tektronix
4014: plotting terminals like those from aSI and
DASI; and even the venerable Teletype in its
various forms. But note: UNIX is strongly
oriented towards devices with lower casc. If your
terminal produces only upper case (e.g., model
33 Teletype, some video and portable terminals),
life will be so difficult that you should look for
another terminal.

Be sure to set the switches appropriately on
your device. Switches that might need to be
adjusted include the speed, upper/lower case
mode, full duplex, even parity, and any others
that local wisdom advises. Establish a connec
tion using whatever magic is needed for your ter
minal; this may involve dialing a telephone call
or merely flipping a switch. I n either case, UNIX
should type "login:" at you. If it types garbage,
you may be at the wrong speed; check the
switches. If that fails, push the "break" or

"interrupt" key a few times, slowly. If that fails
to produce a login message, consult a guru.

When you get a login: message, type your
login name in lower case. Follow it by a
RETURN; the system will not do anything until
you type a RETURN. If a password is required,
you will be asked for it, and (if possible) printing
will be turned off while you type it. Don't forget
RETURN.

The culmination of your login efforts is a
"prompt character," a single character that indi
cates that the system is ready to accept com
mands from you. The prompt character is usu
ally a dollar sign $ or a percent sign %. (You
may also get a message of the day just before the
prompt character, or a notification that you have
maiI.) •

Typing Commands

Once you've seen the prompt character, you
can type commands, which are requests that the
system do something. Try typing

date

followed by RETURN. You should get back
something like

Mon Jan 16 14:17:10 EST 1978

Don't forget the RETURN after the command, or
nothing will happen. If you think you're being
ignored, type a RETURN; something should hap
pen. RETURN won't be mentioned again, but
don't forget it - it has to be there at the end of
each line.

Another command you might try is who,
which tells you everyone who is currently logged
in:

who

gives something like

mit
ski
gam

ttyOl
uyOS
uyU

Jan 16
Jan 16
Jan 16

09:11
09:33
13:07

The time is when the user logged in; "ttyxx" is
the system's idea of what terminal the user is on.

If you make a mistake typing the command
name, and refer to a non-existent command, you
will be told. For example, if you type

whom

you will be told

whom: not found

Of course, if you inadvertently type the name of
some other command, it will run, with more or
less mysterious results.

- 2 -

Strange Terminal BehaYior

Sometimes you can get into a state where
your terminal acts strangely. For example, each
letter may be typed twice, or the RETURN may
not cause a line feed or a return to the left mar
gin. You can often fix this by logging out and
logging back in. Or you can read the description
of the command stty in section I of the manual.
To get intelligent treatment of tab characters
(which are much used in UNIX) if your terminal
doesn't have tabs, type the command

stty -tabs

and the system will convert each tab into the
right number of blanks for you. If your terminal
does have computer-settable tabs, the command
tabs will set the stops correctly for you.

Mistakes in Typing

If you make a typing mistake, and see it
before RETURN has been typed, there are two
ways to recover. The sharp-character # erases
the last character typed; in fact successive uses of
erase characters back to the beginning of the
line (but not beyond). So if you type badly, you
can correct as you go:

dd#atte##e

is the same as date.

The at-sign @ erases all of the characters
typed so far on the current input line. so if the
line is irretrievably fouled up, type an @ and
start the line over.

What if you must enter a sharp or at-sign as
part of the text? If you precede either # or @
by a backslash \, it loses its erase meaning. So
to enter a sharp or at-sigo in something, type \#
or \@. The system will always echo a newline at
you after your at-sign, even if preceded by a
backslash. Don't worry - the at-sign has been
recorded.

To erase a backsJash. you have to type two
sharps or two at-signs, as in \##. The backslash
is used extensively in UNIX to indicate that the
following c:haracter is in some way special.

Read-ahead

UNIX has full read-ahead, which means that
you can type as fast as you want, whenever you
want, even when some command is typing at
you. If you type during output, your input char
acters will appear intermixed with the output
characters, but they will be stored away and
interpreted in the correct order. So you can type
several commands one after another without
waiting for the first to finish or even begin.

Stopping a Program

You can stop most programs by typing the
character "DEL" (perhaps called "delete" or
"rubout" on your terminal). The "interrupt" or
"break" key found on most terminals can also
be used. In a few programs, like the text editor,
DEL stops whatever the program is doing but
leaves you in that program. Hanging up the
phone will stop most programs.

Logging Out

The easiest way to log out is to hang up the
phone. You can also type

login

and let someone else use the terminal you were
on. It is usually not sufficient just to turn off the
terminal. Most UNIX systems do not use a
time-out mechanism, so you'll be there forever
unless you hang up.

Mail

When you log in, you may sometimes get
the message

You have mail.

UNIX provides a postal system so you can com
municate with other users of the system. To
read your mail, type the command

mail

Your mail will be printed, one message at a time,
most recent message first. After each message,
mail waits for you to say what to do with it. The
two basic responses are d, 'which deletes the mes
sage, and RETURN, which does not (so it will
still be there the next time you read your mail
box). Other responses are described in the
manual. (Earlier versions of mail do not process
one message at a time, but are otherwise simi
lar.)

How do you send mail to someone else?
Suppose it is to go to "joe" (assuming "joe" is
someone's login name). The easiest way is this:

mail joe
now (Ype in the text of the letler
on as many lines as you like ...
After the last line of the letter
(Ype the character "control-d",
that is, hold down "control" and (ype
a letter "d".

And that's it. The "control-d" sequence, often
called "EOF" for end-of-file, is used throughout
the system to mark the end of input from a ter
minal, so you might as well get used to it.

For practice, send mail to yourself. (This
isn't as strange as it might sound - mail to one-

- 3 -

self is a handy reminder mechanism.)

There are other ways to send mail you
can send a previously prepared letter, and you
can mail to a number of people all at once. For
more details see maiHI). (The notation mail(l)
means the command mail in section 1 of the
UNIX Programmer's Manuaf.}

Writing to other users

At some point, out of the blue will come a
message like

Message from joe tty07 •..

accompanied by a startling beep. It means that
Joe wants to talk to you, bUI unless y.ou take
explicit action you won't be able to talk back. To
respond, type the command

write joe

This establishes a two-way communication path.
Now whatever Joe types on his terminal will
appear on yours and vice versa. The path is
slow, rather like talking to the moon. (If you are
in the middle of something, you have to get to a
state where you can type a command. Normally,
whatever program you are funning has to ter
minate or be terminated. If you're editing, you
can escape temporarily from the editor - read
the editor tutorial.)

A protocol is needed to keep what you type
from getting garbled up with what Joe types,
Typically it's like this:

Joe types write smith and waits.
Smith types write joe and waits.
Joe now types his message (as many lines
as he likes). When he's ready for a reply,
he signals it by typing (0), which stands
for "over".
Now Smith types a reply, also terminated
by (0).

This cycle repeats until someone gels
tired; he then signals his intent to quit
with (00), for "over and oUI".
To terminate the conversation, each side
must type a "control-d" character alone
on a line. ("Delete" also works.) When
the other person types his "conlrol-d",
you will get the message EOF on your
terminal.

If you write to someone who isn't logged in,
or who doesn't want to be disturbed, you'll be
told. If the target is logged in but doesn't answer
after a decent interval, simply type "control-d".

On-line Manual

The UNIX Programmer's Manual is typically
kept on-line. If you get stuck on something, and
can't find an expert to assist you, you can print
on your terminal some manual section that
might help. This is also useful for getting the
most up-to-date information on a command. To
print a manual section, type "man command
name". Thus to read up on the who command,
type

man who

and, of course,

man man

tells all about the man command.

Computer Aided Instrudion

Your UNIX system may have available a pro
gram called learn, which provides computer
aided instruction on the file system and basic
commands, the editor, docum nt preparation,
and even C programming. Try typing the com
mand

learn

If learn exists on your system, it will tell you
what to do from there.

II. DAY -TO-DAY USE

Cnatina Flies - The Editor

If you have to type a paper or a letter or a
program, how do you get the information stored
in the machine? Most of these tasks are done
with the UNIX "text editor" ed. Since ed is
thoroughly documented in ed(t) and explained
in A Tutorial Introduction to the UNIX Text Editor,
we won't spend any time here describing how to
use it. All we want it for right now is to make
some files. (A file is just a collection of informa
tion stored in the machine, a simplistic but ade
quate definition.)

To create a file called junk with some text in
it, do the following:

ed junk
a
now type in

(jnvokes the text editor)
(command to "ed", to add text>

whatever text you want ...
(sianals the end of adding text>

The "." that signals the end of adding text must
be at the beginning of a line by itself. Don't for
get it, for until it is typed, no other ed com
mands will be recognized - everything you type
will be treated as text to be added.

At this point you can do various editing
operations on the text you typed in, such as

- 4 -

correcting spelling mistakes, rearranging para
graphs and the like. Finally, you must write the
information you have typed into a file with the
editor command w:

ed will respond with the number of characters it
wrote into the file junk.

Until the w command, nothing is stored per
manently, so if you hang up and go home the
information is lost. t But after w the information
is there permanently; you can re-access it any
time by typing

edjunk

Type a q command to quit the editor. (If you try
to quit without writing, ed will print a ? to rem
ind you. A second q gets you out regardless.)

Now create a second file called temp in the
same manner. You should now have two files,
junk and temp.

What Ales are out then?

The Is (for "list") command lists the names
(not contents) of any of the files that UNIX
knows about. If you type

Is

the response will be

junk
temp

which are indeed the two files just created. The
names are sorted into alphabetical order
automatically, but other variations are possible.
For example, the command

Is -t

causes the files to be listed in the order in which
they were last changed, most recent first. The
-I option gives a "long" listing:

Is -I

will produce something like

-rw-rw-rw- 1 bwk 41 Julll 2:56 junk
-rw-rw-rw- 1 bwk 78 Jul 21 2:57 temp

The date and time are of the last change to the
file. The 41 and 78 are the number of characters
(which should agree with the numbers you got
from ed). Inrk is the owner of the file, that is,
the person who created it. The -rw-rw-rw
tells who has permission to read and write the
file, in this case everyone.

t This is not strictly true - if you hlna up while edilinl.
the data you were watkinl on is saved in a file called
N.h." which you can continue with al your next session.

Options can be combined: Is -It gives the
same thing as Is -I, but sorted into time order.
You can also name the files you're interested in,
and Is will list the information about them only.
More details can be found in IsO).

The use of optional arguments that begin
with a minus sign, like -t and -It, is a com
mon convention for UNIX programs. In general,
if a program accepts such optional arguments,
they precede any filename arguments. It is also
vital that you separate the various arguments
with spaces: Is-I is not the same as Is -I.

Printina Files

Now that you've got a file of text, how do
you print it so people can look at it? There are a
host of programs that do that, probably more
than are needed.

One simple thing is to use the editor, since
printing is often done just before making
changes anyway. You can say

edjunk
I.$p

ed will reply. with the count of the characters in
junk and then print all the lines in the file.
After you learn how to use the editor, you can
be selective about the parts you print.

There are times when it's not feasible to use
the editor for printing. For example, there is a
limit on how big a file ed can handle (several
thousand lines). Secondly, it will only print one
file at a time, and sometimes you want to print
several, one after another. So here are a couple
of alternatives.

First is cat, the simplest of all the printing
programs. eat simply prints on the terminal the
contents of all the files named in a list. Thus

eat junk

prints one file, and

cat junk temp

prints two. The files are simply concatenated
(hence the name "cat") onto the terminal.

pr produces formatted printouts of files. As
with cat, pr prints all the files named in a list.
The difference is that it produces headings with
date, time, page number and file name at the top
of each page, and extra lines to skip over the
fold in the paper. Thus,

pr junk temp

will print jUDk neatly, then skip to the top of a
new page and print temp neatly.

pr can also produce multi-column output:

- 5 -

pr -3 junk

prints junk in 3-column format. You can use
any reasonable number in place of "3" and pr
will do its best. pr has other capabilities as well;
see prO).

It should be noted that pr is not a formatting
program in the sense of shuffling lines around
and justifying margins. The true formatters are
nroff and troff, which we will get to in the sec
tion on document preparation.

There are also programs that print files on a
high-speed printer. Look in your manual under
opr and Ipr. Which to use depends on what
equipment is attached to your machine.

Shufllina FUes About

Now that you have some files in the file sys
tem and some experience in printing them, you
can try bigger things. For example, you can
move a file from one place to another (which
amounts to giving it a new name), like this:

mv junk precious

This means that what used to be "junk" is now
"precious". If you do an Is command now, you
will get

precious
temp

Beware that if you move a file to another one
that already exists, the already existing contents
are lost forever.

If you want to make a copy of a file (that is,
to have two versions of something), you can use
the cp command:

cp precious tempi

makes a duplicate copy of precious in tempi.

Finally, when you get tired of creating and
moving files, there is a command to remove files
from the file system, called rm.

rm temp tempi

will remove both of the files named.

You will get a warning message if one of the
named files wasn't there, but otherwise rm, like
most UNIX commands, does its work silently.
There is no prompting or chatter, and error mes
sages are occasionally curt. This terseness is
sometimes disconcerting to newcomers, but
experienced users find it desirable.

What·s tD a Filename

So far we have used filenames without ever
saying what's a legal name, so it's ti~e. for a
couple of rules. First, filenl~mes are hml!~ to
14 characters, which is enoul;h to be descnptlve.

Second, although you can use almost any charac
ter in a filename, common sense says you should
stick to ones that are visible, and that you should
probably avoid characters that might be used
with other meanings. We have already seen, for
example, that in the Is command, Is -t means
to list in time order. So if you had a file whose
name was -t, you would have a tough time list
ing it by name. Besides the minus sign, there
are other characters which have special meaning.
To avoid pitfalls, you would do well to use only
letters, numbers and the period until you're fam
iliar with the situation.

On to some more positive suggestions. Sup
pose you're typing a large document like a book.
Logically this divides into many small pieces, like
chapters and perhaps sections. Physically it must
be divided too, for ed will not handle really big
files. Thus you should type the document as a
number of files. You might have a separate file
for each chapter, called

ehapl
ehap2
etc ...

Or, if each chapter were broken into several files,
you might have

ehapl.l
ehapl.2
ehapl.3

ehap2.1
ehap2.2

You can now tell at a glance where a particular
file fits into the whole.

There are advantages to a systematic naming
convention which are not obvious to the novice
UNIX user. What if you wanted to print the
whole book? You could say

pr chapl.l chapl.2 ehapl.3 ..•...

but you would get tired pretty fast, and would
probably even make mistakes. Fortunately,
there is a shortcut. You can say

pr chap·

The • means "anything at all," so this translates
into "print all files whose names begin with
chap", listed in alphabetical order.

This shorthand notation is not a property of
the pr command, by the way. It is system-wide,
a service of the program that interprets com
mands (the "shell," shO)). Using that fact,
you can see how to list the names of the files in
the book:

- 6 -

Is chap·

produces

chapl.l
ehapl.2
chapl.3

The • is not limited to the last position in a
filename - it can be anywhere and can occur
several times. Thus

rm ·junk· ·temp·

removes all files that contain junk or temp as
any part of their name. As a special case, • by
itself matches every filename, so

pr •

prints all your files (alphabetical order), and

rm •

removes all files. (You had better be very sure
that's what you wanted to say!)

The • is not the only pattern-matching
feature available. Suppose you want to print
only chapters 1 through 4 and 9. Then you can
say

pr chapl12349'·

The I ... J means to match any of the characters
inside the brackets. A range of consecutive
letters or digits can be abbreviated, so you can
also do this with

pr ehapll-491·

Letters can also be used within brackets: I. - zl
matches any character in the range a through z.

The? pattern matches any single character,
so

Is ?

lists all files which have single-character names,
and

Is -I chap?l

lists information about the first file of each
chapter (chapl.l, chap2.1, etc.).

Of these niceties, • is certainly the most use
ful, and you should get used to it. The others
are frills, but worth knowing.

If you should ever have to turn off the spe
cial meaning of ., ?, etc., enclose the entire
argument in single quotes, as in

I '?' S •

We'll see some more examples of this shortly.

What's in a Filename, Continued

When you first made that file called Junk,
how did the system know that there wasn't
another junk somewhere else, especially since
the person in the next office is also reading this
tutorial? The answer is that generally each user
has a private directory, which contains only the
files that belong to him. When you log in, you
are "in" your directory. Unless you take special
action, when you create a new file, it is made in
the directory that you are currently in; this is
most often your own directory, and thus the file
is unrelated to any other file of the same name
that might exist in someone else's directory.

The set of all files is organized into a (usu
ally big) tree, with your files located several
branches into the tree. It is possible for you to
"walk" around this tree, and to find any file in
the system, by starting at the root of the tree and
walking along the proper set of branches. Con
versely, you can start where you are and walk
toward the root.

Let's try the latter first. The basic tools is
the command pwd ("print working directory"),
which prints the name of the directory you are
currently in.

Although the details will vary according to
the system you are on, if you give the command
pwd, it will print something like

lusr/your-name

This says that you are currently in the directory
your-name, which is in turn in the directory
lusr, which is in turn in the root directory called
by convention just I. (Even if it's not called
lusr on your system, you will get something
analogous. Make the corresponding changes and
read on.)

If you now type

Is lusr/your-name

you should get exactly the same list of file names
as you get from a plain Is: with no arguments, Is
lists the contents of the current directory; given
the name of a directory, it lists the contents of
that directory.

Next, try

Is lusr

This should print a long series of names, among
which is your own login name your-name. On
many systems, usr is a directory that contains
the directories of all the normal users of the sys
tem, like you.

The next step is to try

Is I

- 7 -

You should get a response something like this
(although again the details may be different):

bin
dey
etc
lib
tmp
usr

This is a collection of the basic directories of files
that the system knows about; we are at the root
of the tree.

Now try

cat lusr/your-name/junk

(if junk is still around in your directory). The
name

lusr/your-name/junk

is called the pathname of the file that you nor
mally think of as "junk". "Pathname" has an
obvious meaning: it represents the full name of /
the path you have to follow from the root
through the tree of directories to get to a particu
lar file. It is a universal rule in the UNIX system
that anywhere you can use an ordinary filename,
you can use a pathname.

Here is a picture which may make this
clearer:

bin
1\\

(root)

11\ I \
I \

11\ I \ 11\ /1\
/ \

etc ulr dev twp

I \
adam eve mary
I / \ \

I \ junk
junk temp

Notice that Mary's junk is unrelated to Eve's.

This isn't too exciting if all the files of
interest are in your own directory, but if you
work with someone else or on several projects
concurrently, it becomes handy indeed. For
example, your friends can print your book by
saying

pr lusr/your-name/chap*

Similarly, you can find out what files your neigh
bor has by saying

Is lusr/neighbor-name

or make your own copy of one of his files by

cp lusr/your-neighbor/his-file your file

If your neighbor doesn't want you poking
around in his files, or vice versa, privacy can be

arranged. Each file and directory has read-write~
execute permissions for the owner, a group, and
everyone else, which can be set to control access.
See IsO) and chmod(1) for details. As a matter
of observed fact, most users most of the time
find openness of more benefit than privacy.

As a final experiment with pathnames, try

Is Ibin lusr/bin

Do some of the names look familiar? When you
run a program, by typing its name after the
prompt character, the system simply looks for a
file of that name. It normally looks first in your
directory (where it typically doesn't find it), then
in Ibin and finally in lusr/bin. There is nothing
magic about commands like cat or Is, except that
they have been collected into a couple of places
to be easy to find and administer.

What if you work regularly with someone
else on common information in his directory?
You could just log in as your friend each time
you want to, but you can also say "I want to
work on his files instead of my own". This is
done by changing the directory that you are
currently in:

cd lusr/your-friend

(On some systems, cd is spelled chdir.) Now
when you use a filename in something like cat or
pr, it refers to the file in your friend's directory.
Changing directories doesn't affect any permis
sions associated with a file - if you couldn't
access a file from your own directory, changing
to another directory won't alter that fact. Of
course, if you forget what directory you're in,
type

pwd

to find out.

It is usually convenient to arrange your own
files so that all the files related to one thing are
in a directory separate from other projects. For
example, when you write your book, you might
want to keep all the text in a directory called
book. So make one with

mkdir book

then go to it with

cd book

then start typing chapters. The book is now
found in (presumably)

lusr/your-name/book

To remove the directory book, type

rm book/·
rmdir book

- 8 -

The first command removes all files from the
directory; the second removes the empty direc
tory.

You can go up one level in the tree of files
by saying

cd ••

" .. " is the name of the parent of whatever direc
tory you are currently in. For completeness, "."
is an alternate name for the directory you are in.

Using Files instead of the Terminal

Most of the commands we have seen so far
produce output on the terminal; some, like the
editor, also take their input from the terminal. It
is universal in UNIX systems that the terminal
can be replaced by a file for either or both of
input and output. As one example,

Is

makes a list of files on your terminal. But if you
say

is >fiIeUst

a list of your files will be placed in the file metist
(which will be created if it doesn't already exist,
or overwritten if it does). The symbol> means
"put the output on the following file, rather than
on the terminal." Nothing is produced on the
terminal. As another example, you could com
bine several files into one by capturing the out
put of cat in a file:

cat n n f3 >temp

The symbol > > operates very much like >
does, except that it means "add to the end of."
That is,

cat n n f3 > >temp

means to concatenate n, nand f3 to the end of
whatever is already in temp, instead of overwrit
ing the existing contents. As with >, if temp
doesn't exist, it will be created for you.

In a similar way. the symbol < means to
take the input for a program from the following
file, instead of from the terminal. Thus, you
could make up a script of commonly used editing
commands and put them into a file called script.
Then you can run the script on a file by saying

ed file < script

As another example, you can use ed to prepare a
letter in file let, then send it to several people
with

mail adam eve mary joe < let

Pipes

One of the novel contributions of the UNIX
system is the idea of a pipe. A pipe is simply a
way to connect the output of one program to the
input of another program, so the two run as a
sequence of processes - a pipeline.

For example,

pr f I h

will print the files f, I, and h, beginning each on
a new page. Suppose you want them run
together instead. You could say

cat f I h >temp
pr <temp
rmtemp

but this is more work than necessary. Clearly
what we want is to take the output of cat and
connect it to the input of pro So let us use a
pipe:

catfl h Ipr

The vertical bar I means to take the output from
cat, which would normally have gone to the ter
minal, and put it into pr to be neatly formatted.

There are many other examples of pipes.
For example,

Is Ipr-3

prints a list of your files in three columns. The
program we counts the number of Jines, words
and characters in its input, and as we saw earlier,
who prints a list of currently-lOlled on people,
one per line. Thus

wholwe

tells how many people are logged on. And of
course

Is Iwe

counts your files.

Any program that reads from the terminal
can read from a pipe instead; any program that
writes on the terminal can drive a pipe. You can
have as many elements in a pipeline as you wish.

Many UNIX programs are written so that
they will take their input from one or more files
if file arguments are given; if no arguments are
given they will read from the terminal, and thus
can be used in pipelines. pr is one example:

pr -3 abe

prints files a, It and e in order in three columns.
But in

cat abe I pr -3

pr prints the information coming down the pipe-
line, still in three columns. .

- 9 -

The Shell

We have already mentioned once or twice
the mysterious "shell," which is in fact sh(l).
The shell is the program that interprets what you
type as commands and arguments. It also looks
after translating ., etc., into lists of filenames,
and <, >, and I into changes of input and out
put streams.

The shell has other capabilities too. For
example, you can run two programs with one
command line by separating the commands with
a semicolon; the shell recognizes the semicolon
and breaks the line into two commands. Thus

date; who

does both commands before returning with a
prompt character.

You can also have more than one program
running simultoneous!y if you wish. For example,
if you are doing something time-consuming, like
the editor script of an earlier section, and you
don't want to wait around for the results before
starting something else, you can say

ed file < script "

The ampersand at the end of a command line
says "start this command running, then take
further commands from the terminal immedi
ately," that is, don't wait for it to complete.
Thus the script will begin, but you can do some
thing else at the same time. Of course, to keep
the output from interfering with what you're
doing on the terminal, it would be better to say

eel file < script > script.out "

which saves the output lines in a file called
scrlpt.out.

When you initiate a command with Ie, the
system replies with a number called the process
number, which identifies the command in case
you later want to stop it. If you do, you can say

kill process-numNr

If you forget the process number, the command
ps will tell you about everything you have run
ning. (If you are desperate, kill 0 will kill all
your processes.) And if you're curious about
other people, ps a will tell you about 0/1 pro
grams that are currently running.

You can say

(command-!; command·l; command-3) "

'to start three commands in the background, or
you can start a background pipeline with

command·! I command·l "

Just as you can tell the editor or some simi-

lar program to take its input from a file instead
of from the terminal, you can tell the shell to
read a file to get commands. (Why not? The
shell, after all, is just a program, albeit a clever
one.) For instance, suppose you want to set tabs
on your terminal, and find out the date and
who's on the system every time you log in.
Then you can put the three necessary commands
<tabs, date, who) into a file, let's call it startup,
and then run it with

sh startup

This says to run the shell with the file startup as
input. The effect is as if you had typed the con
tents of startup on the terminal.

If this is to be a regular thing, you can elim
inate the need to type sh: simply type, once only,
the command

chmod + x startup

and thereafter you need only say

startup

to run the sequence of commands. The
chmodO) command marks the file executable;
the shell recognizes this and runs it as a
sequence of commands.

If you wailt startup to run ilutomatically
every time you log in, create a file in your login
directory called . profile. and place in it the line
startup. When the shell first gains control when
you log in, it looks for the .profile file and does
whatever commands it finds in it. We'li get back
to the shell in the section on programming.

III. DOCUMENT PREPARATION

UNIX systems are used extensively for docu
ment preparation. There are two major format
ting programs, that is, programs that produce a
text with justified right margins. automatic page
numbering and titling, automatic hyphenation,
and the like. nroff is designed to produce output
on terminals and line-printers. troff (pro
nounced "tee-roff") instead drives a photo
typesetter, which produces very high quality out
put on photographic paper. This paper was for
matted with troff.

Formatting Packages

The basic idea of nroff and troff is that the
text to be formatted contains within it "format
ting commands" that indicate in detail how the
formatted text is to look. For example, there
might be commands that specify how long lines
are, whether to use single or double spacing, and
what running titles to use on each page.

- 10-

Because oroff and troff are relatively hard to
learn to use effectively, several "packages" of
canned formatting requestS are available to let
you specify paragraphs, running titles. footnotes,
multi-column output, and so on, with little effort
and without having to learn oroff and troff.
These packages take a modest effort to learn, but
the rewards for using them are so great that it is
time well spent.

In this section, we will provide a hasty look
at the "manuscript" package known as -ms.
Formatting requestS typically consist of a period
and two upper-case letters, such as • TL, which is
used to introduce a title, or .PP to begin a new
paragraph.

A document is typed so it looks something
like this:

.TL
title of documeDt
.AU
author Dame
.SH
sectioD headl ...
.PP
parqraph ...
.PP
another parqraph ...
.SH
another sectiOD headl ...
.PP
ete.

The lines that begin with a period are the f'Or
matting requests. For example, .PP calls for
starting a new paragraph. The precise meaning
of .PP depends on what output device is being
used (typesetter or terminal, for instance), and
on what publication the document will appear in.
For example, -ms normally assumes that a
paragraph is preceded by a space (one line in
oroff, V2 line in troff) , and the first word is
indented. These rules can be changed if you
like, but they are changed by changing the
interpretation of .PP, not by re-typing the docu
ment.

To actually produce a document in standard
format using -ms, use the command

lroff -- ms files ...

for the typesetter, and

nroff - ms files ...

for a terminal. The -ms argument tells troff
and Droff to use the manuscript package of for
matting requests.

There are several similar packages; check
with a local expert to determine which ones are
in common use on your machine.

Supportlol ToOls

In addition to the basic formatters, there is a
host of supporting programs that help with docu
ment preparation. The list in the next few para
graphs is far from complete, so browse through
the manual and check with people around you
for other possibilities.

eqn and neqn let you integrate mathematics
into the text of a document, in an easy-ta-Iearn
language that closely resembles the way you
~ould speak it aloud. For example, the eqn
mput

sum from 1·0 to n x sub i -.- pi oller 1

produces the output

" l:x; - !!..
;-0 2

The program tb) provides an analogous ser
vice for preparing tabular material; it does all the
computations necessary to align complicated
columns with elements of varying widths.

refer prepares bibliographic citations from a
data base, in whatever style is defined by the for
matting package. It looks after all the details of
numbering references in sequence, filling in page
and volume numbers, getting the author's initials
and the journal name right, and so on.

spell and typo detect possible spelling mis
takes in a document. spell works by comparing
the words in your document to a dictionary,
printing those that are not in the dictionary. It
knows enough about English spelling to detect
plurals and the like, so it does a very good job.
typo looks for words which are "unusual", and
prints those. Spelling mistakes tend to be more
unusual, and thus show up early when the most
unusual words are printed first.

grep looks through a set of files for lines
that contain a particular text pattern (rather like
the editor's context search does, but on a bunch
of files). For example,

grep 'ingS' chap·

- 11-

will find all lines that end with the letters ing in
the files chap·. (It is almost always a good prac
tice to put single quotes around the pattern
you're searching for, in case it contains charac
ters like • or S that have a special meaning to the
shelJ.) grep is often useful for finding out in
which of a set of files the misspelled words
detected by spell are actually located.

diff prints a list of the differences between
two files, so you can compare two versions of
something automatically (which certainly beats
proofreading by hand).

we counts the words, lines and characters in
a set of files. tr translates characters into other
characters; for example it will convert upper to
lower case and vice versa. This translates upper
into lower:

tr A-Z a-z <input >output

sort sorts files in a variety of ways; eref
makes cross-references; ptx makes a permuted
index (keyword-in-context listing). sed provides
many of the editing facilities of ed, but can apply
them to arbitrarily long inputs. awk provides the
ability to do both pattern matching and numeric
computations, and to conveniently process fields
within lines. These programs are for more
advanced users, and they are not limited to
document preparation. Put them on your list of
things to learn about.

Most of these programs are either indepen
dently documented Oike eqo and tbn, or are
sufficiently simple that the description in the
UNIX Programmer's Manual is adequate explana
tion.

Hints for Preparing Documents

Most documents go through several versions
(always more than you expected) before they are
finally finished. Accordingly, you should do
whatever possible to make the job of changing
them easy.

First, when you do the purely mechanical
operations of typing, type ·so that subsequent
editing will be easy. Start each sentence on a
new line. Make lines short, and break lines at
natural places, such as after commas and semi
colons, rather than randomly. Since most people
change documents by rewriting phrases and
adding, deleting and rearranging sentences, these
precautions simplify any editing you have to do
later.

Keep the individual files of a document
down to modest size, perhaps ten to fifteen
thousand characters. Larger files edit more
slowly, and of course if you make a dumb mis
take it's better to have clobbered a small file
than a big one. Split into files at natural boun
daries in the document, for the same reasons
that you start each sentence on a new line.

The second aspect of making change easy is
to not commit yourself to formatting details too
early. One of the advantages of formatting pack
ages like -ms is that they permit you to delay
decisions to the last possible moment. Indeed,
until a document is printed, it is not even
decided whether it will be typeset or put on a line
printer.

As a rule of thumb, for all but the most
trivial jobs, you should type a document in terms
of a set of requests like .PP, and then define
them appropriately, either by using one of the
canned packages (the better way) or by defining
your own nroff and troff commands. As long as
you have entered the text in some systematic
way, it can always be cleaned up and re
formatted by a judicious combination of editing
commands and request definitions.

IV. PROGRAMMING

There will be no attempt made to teach any
of the programming languages available but a
few words of advice are in order. One of the
reasons why the UNIX system is a productive
programming environment is that there is
already a rich set of tools available, and facilities
like pipes, 110 redirection, and the capabilities of
the shell often make it possible to do a job by
pasting together programs that already exist
instead of writing from scratch.

The Shell
The pipe mechanism lets you fabricate quite

complicated operations out of spare parts that
already exist. For example, the first draft of the
spell program was (roughly)

cat .••
I tr •••
I tr .••
lsort
luniq
leomm

collect the files
put each word on a new line
delete punctuation. etc.
into dictionary order
discard duplicates
print words in text

but not in dictionary

More pieces have been added subsequently, but
this goes a long way for such a small effort.

The editor can be made to do things that
would normally require special programs on
other systems. For example, to list the first and
last lines of each of a set of files, such as a book,
you could laboriously type

ed
e chapl.1
Ip
$p
e chapl.l
Ip
$p
etc.

But you can do the job much more easily. One
way is to type

Is chap· > temp

to get the list of filenames into a file. Then edit
this file to make the necessary series of editing

- 12 -

commands (using the global commands of ed),
and write it into script Now the command

ed <script

will produce the same output as the laborious
hand typing. Alternately (and more easily), you
can use the fact that the shell will perform loops,
repeating a set of commands over and over again
for a set of arguments:

for i in chap·
do

ed $I < script
done

This sets the shell variable i to each file name in
turn, then does the command. You can type this
command at the terminal, or put it in a file for
later execution.

Procrammlng the Shell
An option often overlooked by newcomers is

that the shell is itself a programming language,
with variables, control now Hf-else, while, for,
ease), subroutines, and interrupt handling. Since
there are many building-block programs, you can
sometimes avoid writing a new program merely
by piecing together some of the building blocks
with shell command files.

We will not go into any detaiis here; exam
ples and rules can be found in An Introduction 10

the UNIX She/~ by S. R. Bourne.

P1'OI1'amming in C
If you are undertaking anything substantial,

e is the only reasonable choice of programming
language: everything in the UNIX system is tuned
to it. The system itself is written in e, as are
most of the programs that run on it. It is also a
easy lanluage to use once you get started. C is
introduced and fully described in The C Program
ming Language by B. W. Kernighan and D. M.
Ritchie (Prentice-Hall, 1978). Several sections
of the manual describe the system interfaces,
that is, how you do 110 and similar functions.
Read UNIX Programming for more complicated
things.

MOst input and output in C is best handled
with the standard I/O library, which provides a
set of I/O functions that exist in compatible
form on most machines that have e compilers.
In general, it's wisest to confine the system
interactions in a program to the facilities pro
vided by this library.

e programs that don't depend too much on
special features of UNIX (such as pipes) can be
moved to other computers that have e com
pilers. The list of such machines grows daily; in
addition to the original PDP-ll , it currently

includes at least Honeywell 6000, IBM 370,
Interdata 8/32, Data General Nova and Eclipse,
HP 2100, Harris 17, VAX 111780, SEL 86, and
Zilog Z80. Calls to the standard I/O library will
work on all of these machines.

There are a number of supporting programs
that go with C. lint checks C programs for
potential portability problems, and detects errors
such as mismatched argument types and unini
tialized variables.

For larger programs (anything whose source
is on more than one file) make allows you to
specify the dependencies among the source files
and the processing steps needed to make a new
version; it then checks the times that the pieces
were last changed and does the minimal amount
of recompiling to create a consistent updated ver
sion.

The debugger adb is useful for digging
through the dead bodies of C programs, but is
rather hard to learn to use effectively. The most
effective debugging tool is still careful thought,
coupled with judiciously placed print statements.

The C compiler provides a limited instru
mentation service, so you can find out where
programs spend their time and what parts are
worth optimizing. Compile the routines with the
-p option; after the test run, use prof to print
an execution profile. The command time will
give you the gross run-time statistics of a pro
gram, but they are not super accurate or repro
ducible.

Other Languages

If you have to use Fortran, there are two
possibilities. You might consider Ratfor, which
gives you the decent control structures and free
form input that characterize C, yet lets you write
code that is still portable to other environments.
Bear in mind that UNIX Fortran tends to produce
large and relatively slow-running programs.
Furthermore, supporting software like adb, prof,
etc., are all virtually useless with Fortran pro
grams. There may also be a Fortran 77 compiler
on your system. If so, this is a viable alternative
to Ratfor, and has the non-trivial advantage that
it is compatible with C and related programs.
(The Ratfor processor and C tools can be used
with Fortran 77 too.)

If your application requires you to translate a
language into a set of actions or another
language, you are in effect building a compiler,
though probably a small one. In that case, you
should be using the yaee compiler-compiler,
which helps you develop a compiler quickly. The
lex lexical analyzer generator does the same job
for the simpler languages that can be expressed

- 13 -

as regular expressions. It can be used by itself,
or as a front end to recognize inputs for a
yace-based program. Both yaee and lex require
some sophistication to use, but the initial effort
of learning them can be repaid many times over
in programs that are easy to change later on.

Most UNIX systems also make available
other languages, such as Algol 68, APL, Basic,
Lisp, Pascal, and Snobol. Whether these are
useful depends largely on the local environment:
if someone cares about the language and has
worked on it, it may be in good shape. If not,
the odds are strong that it will be more trouble
than it's worth.

V. UNIX READING LIST

General:

K. L. Thompson and D. M. Ritchie. The UNIX
Programmer's Manual. Bell Laboratories, 1978.
Lists commands, system routines and interfaces,
file formats, and some of the maintenance pro
cedures. You can't live without this, although
you will probably only need to read section 1.

Documents jor Use with the UNIX Time-sharing
System. Volume 2 of the Programmer's Manual.
This contains more extensive descriptions of
major commands, and tutorials and reference
manuals. All of the papers listed below are in it,
as are descriptions of most of the programs men·
tioned above.

D. M. Ritchie and K. L. Thompson, "The UNIX
Time-sharing System," CACM, July 1974. An
overview of the system, for people interested in
operating systems. Worth reading by anyone
who programs. Contains a remarkable number
of one-sentence observations on how to do
things right.

The Bell System Technical Journal (BSTJ) Spt··
cia I Issue on UNIX, July/August, 1978, contains
many papers describing recent developments,
and some retrospective material.

The 2nd International Conference on Software
Engineering (October, 1976) contains several
papers describing the use of the Programmer's
Workbench (PWB) version of UNIX.

Document Preparation:

B. W. Kernighan, "A Tutorial Introduction to
the UNIX Text Editor" and "Advanced Editing
on UNIX," Bell Laboratories, 1978. J}eginners
need the introduction; the advanced material will
help you get the most out of the editor.

M. E. Lesk, "Typing Documents on UNIX," Bell
Laboratories, 1978. Describes the -ms macro
package, which isolates the novice from the
vagaries of nroff and troff, and takes care of

most formatting situations. If this specific pack
age isn't available on your system, something
similar probably is. The most likely alternative is
the PWB/UNIX macro package - mm; see your
local guru if you use PWB/UNIX.

B. W. Kernighan and L. L. Cherry, "A System
for Typesetting Mathematics," Bell Laboratories
Computing Science Tech. Rep. 17.

M. E. Lesk, "Tbl - A Program to Format
Tables," Bell Laboratories CSTR 49, 1976.

J. F. Ossanna, Jr., "NROFF/TROFF User's
Manual," Bell Laboratories CSTR 54, 1976.
troff is the basic formatter used by -ms, eqn
and tbl. The reference manual is indispensable
if you are going to write or maintain these or
similar programs. But start with:

B. W. Kernighan, "A TROFF Tutorial," Bell
Laboratories, 1976. An attempt to unravel the
intricacies of trott.

Programming:

B. W. Kernighan and D. M. Ritchie, The C Pro
gramming Language, Prentice-Hall, 1978. Con
tains a tutorial introduction, complete discussions
of all language features, and the reference
manual.

B. W. Kernighan and D. M. Ritchie, "UN~X Pro
gramming," Bell Laboratories, 1978. Describes
how to interface with the system from C pro
grams: I/O calls, signals, processes.

S. R. Bourne, "An Introduction to the UNIX
Shell," Bell Laboratories. 1978. An introduction
and reference manual for the Version 7 shell.
Mandatory reading if you intend to make
effective use of the programming power of this
shell.

S. C. Johnson, "Yacc - Yet Another Compiler
Compiler." Bell Laboratories CSTR 32, 1978.

M. E. Lesk, "Lex - A Lexical Analyzer Gen
erator," Bell Laboratories CSTR 39, 1975.

S. C. Johnson, "Lint, a C Program Checker,"
Bell Laboratories CSTR '65, 1977.

S. I. Feldman, "MAKE ...:. A Program for Main
taining Computer Programs," Bell Laboratories
CSTR 57, 1977.

J. F. Maranzano and S. R. Bourne, "A Tutorial
Introduction to ADB," Bell Laboratories CSTR
62. 1977. An introduction to a powerful but
complex debugging tool.

S. I. Feldman and P. 1. Weinberger, "A Portable
Fortran 77 Compiler," Bell Laboratories, 1978.
A full Fortran 77 for UNIX systems.

- 14 -

A Tutorial I ntroduc:tion to the UNIX Text Editor

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Almost all text input on the UNlxt operating system is done with the text
editor ed This memorandum is a tutorial luide to help belinners get started
with text editina.

Althoulh it does not cover everything, it does discuss enough for most
users' day-to-day needs. This includes printinl, appendinl, changing, deleting,
moving and inserting entire lines of text~ reading and writing files~ context
searching and line addressing; the substitute command; the global commands;
and the use of special characters for advanced editing.

September 21, 1978

tUNIX is a Trademark of Bell Laboratories.

A Tutorial I ntroduction to the UNI X Text Editor

Brion W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction

Ed is a "text editor", that is, an interactive
program for creating and modifying "text",
using directions provided by a user at a terminal.
The text is often a document like this one, or a
program or perhaps data for a program.

This introduction is meant to simplify learn
ing ed. The recommended way to learn ed is to
read this document, simultaneously using ed to
follow the examples, then to read the description
in section I of the UNIX Programmer's Mallllal. all
the while experimenting with ed. (Solicitation of
advice from experienced users is also useful,)

Do the exercises! They cover material not
completely discussed in the actual text. An
appendix summarizes the commands.

Disclaimer

This is an introduction and a tutorial. For
this reason, no attempt is made to cover more
than a part of the facilities that ed offers
(although this fraction includes the most useful
and frequently used parts). When you have
mastered the Tutorial, try Adva /Iced Edilltlg 011

UNIX. Also, there is not enough space to explain
basic UNIX procedures. We will assume that you
know how to log on to UNIX, and that you have
at least a vague understanding of what a file is.
For more on that, read UNIX jor Begillners.

You must also know what character to type
as the end-of-line on your particular terminal.
This character is the RETURN key on most ter
minals. Throughout, we will refer to this charac
ter, whatever it is, as RETURN.

Getting Started

We'll assume that you have logged in to your
system and it has just printed the prompt charac
ter, usually either a $ or a %. The easiest way to
get ed is to type

ed (followed by a return)

You are now ready to go - ed is waiting for you
to tell it what to do.

Creating Text - the Append command "a"

As your first problem, suppose you want to
create some text starting from scratch. Perhaps
you are typing the very first draft of a paper;
clearly it will have to start somewhere, and
undergo modifica tions later. This section will
show how to get some text in, just to get started.
Later we'll talk about how to change it.

When edis first started, it is rather like work
ing with a blank piece of paper - there is no
text or information present. This must be sup
plied by the person using ed; it is usually done by
typing in the text, or by reading it into edfrom a
file. We will start by typing in some text, and
return shortly to how to read files.

First a bit of terminology. In ed jargon, the
text being worked on is said to be "kept in a
buffer." Think of the buffer as a work space, if
you like, or simply as the information that you
are going to be editing. In effect the buffer is
like the piece of paper, on which we will write
things, then change some of them, and finally
file the whole thing away for another day.

The user tells ed what to do to his text by
typing instructions called "commands." Most
commands consist of a single letter, which must
be typed in lower case. Each command is typed
on a separate line. (Sometimes the command is
preceded by information about what line or lines
of tex! are to be affected - we will discuss these
shortly.) Ed makes no response to most com
mands - there is no prompting or typing of
messages like "readY". (This silence is preferred
by experienced users, but sometimes a hangup
for beginners.)

The first command is append. written as the
letter

a

all by itself. It means "append (or add) text
lines to the buffer, as I type them in." Append
ing is rather like writing fresh material on a piece
of paper.

So to enter lines of text into the buffer, just
type an a followed by a RETURN, followed by

the lines of text you want, like this:

a
Now is the time
for all good men
to come to the aid of their party.

The only way to stop appending is to type a
line that contains only a period. The "." is used
to tell ed that you have finished appending.
(Even experienced users forget that terminating
"." sometimes. If ed seems to be ignoring you,
type an extra line with just "." on it. You may
then find you've added some garbage lines to
your text, which you'll have to take out later.)

After the append command has been done,
the buffer will contain the three lines

Now is the time
for all good men
to come to the aid of their party.

The "a" and "." aren't there, because they are
not text.

To add more text to what you already have,
just issue another a command, and continue typ
ing.

Error Messages - "?"

If at any time you make an error in the com
mands you type to ed, it will tell you by typing

?

This is about as cryptic as it can be, but with
practice, you can usually figure out how you
goofed.

Writing text out as a file - the Write command
"w"

It's likely that you'll want to save your text
for later use. To write out the contents of the
buffer onto a file, use the write command

w

followed by the filename you want to write on.
This will copy the buffer's contents onto the
specified file (destroying any previous informa
tion on the file). To save the text on a file
named junk, for example, type

w junk

Leave a space between wand the file name. Ed
will respond by printing the number of characters
it wrote out. In this case, edwould respond with

68

(Remember that blanks and the return character
at the end of each line are included in the char
acter count.) Writing a file just makes a copy of

- 2 -

the text - the buffer's contents are not dis
turbed, so you can go on adding lines to it. This
is an important point. Ed at all times works on a
copy of a file, not the fi Ie itself. No change in
the contents of a file takes place until you give a
w command (Writing out the text onto a file
from time to time as it is being created is a good
idea, since if the system crashes or if you make
some horrible mistake, you will lose all the text
in the buffer but any text that was written onto a
file is relatively safe.)

Leaving ed - the Quit command "q"

To terminate a session with ed, save the text
you're working on by writing it onto a file using
the w command, and then type the command

q

which stands for quit. The system will respond
with the prompt character ($ or %). At this
point your buffer vanishes, with all its text,
which is why you want to write it out before
quitting.t

Exercise 1:

Enter ed and create some text using

a
... text ...

Write it out using w. Then leave ed with the q
command, and print the file, to see that every
thing worked. (To print a file, say

pr filename

or

cat filename

in response to the prompt character. Try both.)

R.eading text from a file - the Edit command
He"

A common way to get text into the buffer is
to read it from a file in the file system. This is
what you do to edit text that you saved with the
w command in a previous session. The edit com
mand e fetches the entire contents of a file in to
the buffer. So if you had saved the three lines
"Now is the time", etc" with a w command in
an earlier session, the edcommand

ejunk

would fetch the entire contents of the file junk
into the buffer, and respond

tActually, pd will print? if you lry to quil without wril·
ing. At that poinl, write if you want; if not, another q
will get you out regardless.

68

which is the number of characters in junk. If
anything was already in the bWfer. it is deletedfirsf.

If you use the e command to read a file into
the buffer, then you need not use a file name
after a subsequent w command; ed remembers
the last file name used in an e command, and w
will write on this file. Thus a good way to
operate is

ed
e file
(editing session]
w
q

This way, you can simply say w from time to
time, and be secure in the knowledge that if you
got the file name right at the beginning, you are
writing into the proper file each time.

You can find out at any time what file name
ed is remembering by typing the .file command f.
In this example, if you typed

f

edwould reply

junk

Reading text from a file - the Read command
"i"

Sometimes you want to read a file into the
buffer without destroying anything that is already
there. This is done by the read command r. The
command

r junk

will read the file junk into the buffer; it adds it
to the end of whatever is already in the buffer.
So if you do a read after an edit:

e junk
rjunk

the buffer will contain two copies of the text (six
lines).

Now is the time
for alllood men
to come to the aid of their party.
Now is the time
for all good men
to come to the aid of their party.

Like the wand e commands, r prints the number
of characters read in, after the reading operation
is complete.

Generally speaking, r is much less used than
e.

·3-

Exercise 2:

Experiment with the e command - try read
ing and printing various files. You may get an
error ?name, where name is the name of a file~

this means that the file doesn't exist, typically
because you spelled the file name wrong, or
perhaps that you are not allowed to read or write
it. Try alternately reading and appending to see
that they work similarly. Verify that

ed filename

is exactly equivalent to

ed
e filename

What does

f filename

do?

Printing the contents of the buffer - the Print
command up"

To print or list the contents of the buffer (or
parts of it) on the terminal, use the print com
mand

p

The way this is done is as follows. Specify the
lines where you want printing to begin and where
you want it to end, separated by a comma, and
followed by the letter p. Thus to print the first
two lines of the buffer, for example, (that is,
lines 1 through 2) say

1,2p (starting line-l, ending line-2 p)

Edwill respond with

Now is the time
for all good men

Suppose you want to print all the lines in the
buffer. You could use 1,3p a.s above if you knew
there were exactly 3 lines in the buffer. But in
general, you don't know how many there are, so
what do you use for the ending line number? Ed
provides a shorthand symbol for "line number
of last line in buffer" - the dollar sign S. Use it
this way:

l,$p

This will print all the lines in the buffer (line 1 to
last line,) If you want to stop the printing before

'it is finished, push the DEL or Delete key; edwill
type

?

and wait for the next command.

To print the /ast line of the buffer, you could
use

$,$p

but ed lets you abbreviate this to

$p

You can print any single line by typing the line
number followed by a p. Thus

Ip

produces the response

Now is the time

which is the first line of the buffer.

In fact, ed lets you abbreviate even further:
you can print any single line by typing just the
line number - no need to type the letter p. So
if you say

$

ed will print the last line of the buffer.

You can also use $ in combinations like

$-I,$p

which prints the last two lines of the buffer.
This helps when you want to see how far you got
in typing.

Exercise 3:

As before, create some text using the a com
mand and experiment with the p command. You
will find, for example, that you can't print line 0
or a line beyond the end of the buffer, and that
attempts to print a buffer in reverse order by say
ing

3,1p

don't work.

The current line - "Dot" or "."

Suppose your buffer still contains the six
lines as above, that you have just typed

I,Jp

and ed has printed the three lines for you. Try
typing just

p (no line numbers)

This will print

to come to the aid of their party.

which is the third line of the buffer. In fact it is
the last (most recent) line that you have done
anything with. (You just printed it!) You can
repeat this p command without line numbers,
and it will continue to print line 3.

The reason is that ed maintains a record of
the last line that you did anything to (in this
case, line 3, which you just printed) so that it

- 4 -

can be used instead of an explicit line number.
This most recent line is referred to by the short
hand symbol

(pronounced "dot").

Dot is a line number in the same way that $ is; it
means exactly "the current line", or loosely,
"the line you most recently did something to."
You can use it in several ways - one possibility
is to say

.,$p

This will prin t all the lines from (including) the
current line to the end of the buffer. In our
example these are lines 3 through 6.

Some commands change the value of dot,
while others do not. The p command sets dot to
the number of the last line printed; the last com
mand will set both. and $ to 6.

Dot is most useful when used in combina
tions like this one:

.+1 (or equivalently, . + 1 p)

This means "print the next line" and is a handy
way to step slowly through a buffer. You can
also say

.-1 (or. -lp)

which means "print the line bejore the current
line." This enables you to go backwards if you
wish. Another useful one is something like

.-J,.-lp

which prints the previous three lines.

Don't forget that all of these change the
value of dot. You can find out what dot is at any
time by typ ing

Ed will respond by printing the value of dot.

Let's summarize some things about the p
command and dot. Essentially p can be preceded
by 0, 1, or 2 line numbers. If there is no line
number given, it prints the "current line", the
line that dot refers to. If there is one line
number given (with or without the letter p), it
prints that line (and dot is set there); and if
there are two line numbers, it prin ts all the lines
in that range (and sets dot to the last line
printed.) If two line numbers are specified the
first can't be bigger than the second (see Exer
cise 2.)

Typing a single return will cause prin ting of
the next line - it's equivalent to .+lp. Try it.
Try typing a -; you will find that it's equivalent
to .-lp.

De Ie tina lines: the "d" command

Suppose you want to get rid of the three
extra lines in the buffer. This is done by the
delete command

d

Except that d deletes lines instead of printing
them, its action is similar to that of p. The lines
to be deleted are specified for d exactly as they
are for p:

storting line, ending line d

Thus the command

4,Sd

deletes lines 4 through the end. There are now
three lines left, as you can check by using

l,Sp

And notice that S now is line 3! Dot is set to the
next line after the last line deleted, unless the
last line deleted is the last line in the buffer. In
that case, dot is set to S.

E xereise 4:

Experiment with a, e, r, W, P and d until you
are sure that you know what they do, and until
you understand how dot, S, and line numbers
are used.

If you are adventurous, try using line
numbers with a, rand W as well. You will find
that a will append lines after the line number that
you specify (rather than after dot>; that r reads a
file in after the line number you specify (not
necessarily at the end of the buffer); and that W

will write out exactly the lines you specify, not
necessarily the whole buffer. These variations
are sometimes handy. For instance you can
insert a file at the beginning of a buffer by saying

Or filename

and you can enter lines at the beginning of the
buffer by saying

Oa
... text . ..

Notice that. w is very different from

w

Modifying tut: the Substitute command "s"

We are now ready to try one of the most
important of all commands - the substitute
command

I

- 5 -

This is the command that is used to change indi
vidual words or letters within a line or group of
lines. It is what you use, for example, for
correcting spelling mistakes and typing errors.

Suppose that by a typing error, line 1 says

Now is th time

the e has been left off the. You can use s to
fix this up as follows:

ls/th/the/

This says: "in line 1, substitute for the characters
th the characters the." To verify that it works (ed
will not print the result automaticaDy) say

p

and get

Now is the time

which is what you wanted. Notice that dot must
have been set to the line where the substitution
took place, since the p command printed that
line. Dot is always set this way with the s com
mand.

The general way to use the substitute com
mand is

starting-line, ending-line 1/ change this! to this!

Whatever string of characters is between the first
pair of slashes is replaced by whatever is between
the second pair, in Q 1/ the lines between storting
line and ending-line. Only the first occurrence on
each line is changed, however. If you want to
change every occurrence, see Exercise· 5. The
rules for line numbers are the same as those for
p, except that dot is set to the last line changed.
(But there is a trap for the unwary: if no substi
tution took place, dot is not changed. This
causes an error ? as a warning.)

Thus you can say

l,Ss/spelina/spellina/

and correct the first spelling mistake on each line
in the text (This is useful for people who are
consistent misspeDers!)

If no line numbers are given, the s command
assumes we mean "make the substitution on line
dot", so it changes things only on the current
line. This leads to the very common sequence

s/something/something else/p

which makes some correction on the current
line, and then prints it, to make sure it worked
out right. If it didn't, you can try again. (Notice
that there is a p on the same line as the s com
mand. With few exceptions, p can follow any
command; no other multi-command lines are
Iegat.)

It's also legal to say

sl ... II

which means "change the first string of charac
ters to "nothing", i.e., remove them. This is
useful for deleting extra words in a line or
removing extra letters from words. For instance,
if you had

Nowxx is the time

you can say

s/xxllp

to get

Now is the time

Notice that II (two adjacent slashes) means "no
characters", not a blank. There is a difference!
(See below for another meaning of //.)

Exercise 5:

Experiment with the substitute command.
See what happens if you substitute for some
word on a line with several occurrences of that
word. For example, do this:

a
the other side of the coin

slthelon thelp

You will get

on the other side of the coin

A substitute command changes only the first
occurrence of the first string. You can change all
occurrences by adding a g (for "glo bal") to the s
command, like this:

sl ... I ... /gp

Try other characters instead of slashes to delimit
the two sets of characters in the s command -
anything should work except blanks or tabs.

(If you get funny results using any of the
characters

$ • \ &

read the section on "Special Characters"')

Context searching - "I ... I"

With the substitute command mastered, you
can move on to another highly important idea of
ed - context searching.

Suppose you have the original three line text
in the buffer:

Now is the time
for all good men
to come to the aid of their party.

- 6 -

Suppose you want to find the line that contains
their so you can change it to the. Now with only
three lines in the buffer, it's pretty easy to keep
track of what line the word their is on. But if the
buffer contained several hundred lines, and
you'd been making changes, deleting and rear
ranging lines, and so on, you would no longer
really know what this line number would be.
Context searching is simply a method of specify
ing the desired line, regardless of what its
number is, by specifying some context on it.

The way to say "search for a line that con
tains this particular string of characters" is to
type

I string 0/ characters we want to find!

For example, the edcommand

Itheirl

is a context search which is sufficient to find the
desired line - it will locate the next occurrence
of the characters between slashes ("their"). It
also sets dot to that line and prints the line for
verification:

to come to the aid of their party.

"Next occurrence" means that ed starts looking
for the string at line .+1, searches to the end of
the buffer, then continues at line 1 and searches
to line dot. (That is, the search "wraps around"
from $ to 1.) It scans all the lines in the buffer
until it either finds the desired line or gets back
to dot again. If the given string of characters
can't be found in any line, ed types the error
message

?

Otherwise it prints the line it found.

You can do both the search for the desired
line and a substitution all at once, like this:

Itheirlsl theirlthelp

which will yield

to come to the aid of the party.

There were three parts to that last command:
context search for the desired line, make the
substitution. print the line.

The expression Itheirl is a context search
expression. In their simplest form, all context
search expressions are like this - a string of
characters surrounded by slashes. Context
searches are interchangeable with line numbers,
so they can be used by themselves to find and
print a desired line, or as line numbers for some
other command, like s. They were used both
ways in the examples above.

Suppose the buffer contains the three familiar
lines

Now is the time
for aillood men
to come to the aid of their party.

Then the ed line numbers

INow/+l
IIOOdl
Iparty/-l

are all context search expressions, and they all
refer to the same line (line 2). To make a
change in line 2, you could say

INowl + lslloodlbadl

or

Ilood/s/lood/badl

or

Iparty I-Is/lood/badl

The choice is dictated only by convenience. You
could print all three lines by, for instance

INow/,/party/p

or

INow/,lNow/+2p

or by any number of similar combinations. The
first one of these mighl be better if you don't
know how many Jines are involved. (Of course,
if there were only Ihree lines in the buffer, you'd
use

1.Sp

but nOI if there were several hundred.)

The basic rule is: a context search expression
is 1M SlIme as a line number, so tt can be used
wherever a line number is needed.

(
Exercise 6:

Experiment wilh context searching. Try a
body of text with several occurrences of the
same string of characters, and scan through it
using the same context search.

Try using context searches as line numbers
for the substitute, print and delete commands.
(They can also be used with r, W, and aJ

Try context searching using ?text? instead
of Itext/. This scans lines in the buffer in
reverse order rather than normal. This is some
times useful if you go too far while looking for
some string of characters - it's an easy way to
back up.

(If you get funny results with any of the
characters

- 7 -

$ • \ &:

read the section on "Special Characters"')

Ed provides a shorthand for repeating a con
text search for the same string. For example,
the ed line number

ISlringl

will find the next occurrence of string. It often
happens that this is not the desired line, so the
search must be repeated. This can be done by
typing merely

/I

This shorthand stands for "the most recently
used context search expression." It can also be
used as the first string of the substitute com
mand, as in

ISlringl/sllSlring2/

which will find the next occurrence of stringl
and replace it by strin&2. This can save a lot of
typing. Similarly

??

means "scan backwards for the same expres
sion."

Change and Insert ~ "c" and "i"

This section discusses the change command

c

which is used to change or replace a group of
one or more lines, and the il/sert command

which is used for inserting a group of one or
more lines.

"Change", written as

c

is used to replace a number of lines with
different lines, which are typed in at the termi
nal. For example, to change lines .+1 through $
to something else, type

.+l,Sc
• • • (Ype the lines of It! XI you wa lit here. . .

The lines you type between the c command and
the . will take the place of the original lines
between start line and end line. This is most
useful in replacing a line or several lines which
.nave errors in them.

If only one line is specified in the c com
mand, then just that line is replaced. <You can
type in as many replacement lines as you likeJ
Notice the use of. to end the input - this
works just like the • in the append command

and must appear by itself on a new line. If no
line number is given, line dot is replaced. The
value of dot is set to the last line you typed in.

"Insert" is similar to append - for instance

Istrina/i
• . . type the lines to be inserted here . ..

will insert the given text be/ore the next line that
contains "string". The text between I and. is
inserted be/ore the specified line. If no line
number is specified dot is used. Dot is set to the
last line inserted.

Exercise 7:

"Change" is rather like a combination of
delete followed by insert. Experiment to verify
that

start, endd
i
· .. text . ..

is almost the same as

start. endc
· .. text . ..

These are not precisely the same if line S gets
deleted. Check this out. What is dot?

Experiment with a and i, to see that they are
similar, but not the same. You will observe that

line-number a
· . . text . .•

appends after the given line, while

line-number i
· .. text . ..

inserts be/ore it. Observe that if no line number
is given, i inserts before line dot, while a
appends after line dot.

Moving text around: the "m" command

The move command m is used for cutting
and pasting - it lets you move a group of lines
from one place to another in the buffer. Sup
pose you want to put the first three lines of the
buffer at the end instead. You could do it by
saying:

1,3w temp
Sr temp
I,3d

(Do you see why?) but you can do it a lot easier
with the m command:

- 8 -

1.3mS

The general case is

start line. end line m after this line

Notice that there is a third line to be specified -
the place where the moved stuff gets put. Of
course the lines to be moved can be specified by
context searches; if you had

First paralraph

end of first paraaraph.
Second paralraph

end of second paralraph.

you could reverse the two paragraphs like this:

ISecond/.lend of second/m/Firstl-l

Notice the -I: the moved text goes after the line
mentioned. Dot gets set to the last line moved.

The global commands "g" and ''T''

The global command g is used to execute one
or more ed commands on all those lines in the
buffer that match some specified string. For
example

I/peUol/p

prints aU lines that contain pellnl. More use
fully,

I/peUol/sllpeUbll/lP

makes the substitution everywhere on the line,
then prints each corrected line. Compare this to

1,Ss/peUng/pelling/ap

which only prints the last line substituted.
Another subtle difference is that the I command
does not give a ? if peling is not found where
the s command will.

There may be several commands (including
a, C, i, r, w, but not g); in that case, every line
except the last must end with a backslash \:

a/xxx/. -ls/abc/def/B
. +2s/ahiljkllB
.-2 •. p

makes changes in the lines before and after each
line that contains xxx, then prints all three lines.

The v command is the same as g, except that
the commands are executed on every line that
does not match the string following v:

vlld

deletes every line that does not contain a blank.

Special Characters

You may have noticed that things just don't
work right when you used some characters like .,
-, S, and others in context searches and the sub
stitute command. The reason is rather complex,
although the cure is simple. Basically, ed treats
these characters as special, with special mean
ings. For instance, in a context search or the first
string oj the substitute command onlY • . means
"any character," not a period, so

Ix.yl

means "a line with an x, any character. and a y,"
not just "a line with an x, a period, and a y." A
complete list of the special characters that can
cause trouble is the following:

S • \

Warning: The backslash character \ is special to
ed. For safety's sake, avoid it where possible. If
you have to use one of the special characters in a
substitute command, you can turn otT its malic
meaning temporarily by preceding it with the
backslash. Thus

1/\\\. \ ./backslash dot star I

will chanle \.- into "backslash dot star".

Here is a hurried synapsis of the other special
characters. First, the circumflex A signifies the
beginning of a line. Thus

rstrin&1
finds strina only if it is at the beginning of a
line: it will fi nd

strina

but not

the string ...

The dollar-sign S is just the opposite of the
circumflex; it means the end of a line:

IstringSI

will only find an occurrence of strinl that is at
the end of some line. This implies, of course,
that

rstrinaSI

will find only a line that contains just string, and

r.sl
finds a line containing exactly one character.

The. character " as we mentioned above,
matches anything;

Ix.yl

matches any of

- 9 -

x+y
x-y
xy
x.y

This is useful in conjunction with -, which is a
repetition character: a- is a shorthand for "any
number of • 's," so .- matches any number of
any things. This is used like this:

s/.·/stuffl

which changes an entire line, or

s/.-,II

which deletes all characters in the line up to and
including the last comma. (Since.- finds the
Ionlest possible match, this goes up to the lasl
comma.)

I is used with I to form "character classes";
for example,

/1012345678911

matches any single digit - anyone of the char
acters inside the braces will cause a match. This
can be abbreviated to 10-91.

Finally, the &: is another shorthand character
- it is used only on the right-hand part of a sub
stitute command where it means "whatever was
matched on the left-hand side". It is used to
save typing. Suppose the current line contained

Now is the time

and you wanted to put parentheses around it.
You could just retype the line, but this is tedi
ous. Or you could say

srlV
s/SOI

using your knowledge of A and S. But the easiest
way uses the &::

s/.-/(A)I

This says "match the whole line, and replace it
by itself surrounded by parentheses." The Ii: can
be used several times in a line; consider using

s/.-/A? Al!1

to produce

Now is the time? Now is the time!!

You don't have to match the whole line, of
course: if the butTer contains

the end of the world

you could type

IworldlsllA is at handl

to produce

the end of the world is at hand

Observe this expression carefully, for it iIlus·
trates how to take advantage of ed to save typing.
The string Iworldl found the desired line; the
shorthand II found the same word in the line;
and the" saves you from typing it again.

The" is a special character only within the
replacement text of a substitute command, and
has no special meaning elsewhere. You can tUfn
off the special meaning of" by preceding it with
a \:

s/ampersand/\&1

will convert the word "ampersand" into the
literal symbol" in the current line.

Summary of Commands and Line Numbers

The general form of ed commands is the
command name, perhaps preceded by one or two
line numbers, and, in the case of e, r, and w,
followed by a file name. Only one command is
allowed per line, but a p command may follow
any other command (except for e, r, wand q).

a: Append, that is, add lines to the buffer (at line
dot, unless a different line is specified). Append
ing continues until. is typed on a new line. Dot
is set to the last line appended.

c: Change the specified lines to the new text
which follows. The new lines are terminated by
a ., as with a. If no lines are specified, replace
line dot. Dot is set to last line changed.

d: Delete the lines specified. If none are
specified, delete line dot. Dot is set to the first
undeleted line, unless $ is deleted, in which case
dot is set to $.

e: Edit new file. Any previous contents of the
buffer are thrown away, so issue a w beforehand.

f: Print remembered filename. If a name follows
r the remembered name will be set to it.

g: The command

g/---I commands

will execute the commands on those lines that
contain ---, which can be any context search
expression.

i: Insert lines before specified line (or dot) until
a . is typed on a new line. Dot is set to last line
inserted.

m: Move lines specified to after the line named
after m. Dot is sel to the last line moved.

p: Prinl specified lines. If none specified, print
line dot. A single line number is equivalent to
line-number p. A single rei urn prin IS • + 1, the

• 10 -

next line.

q: Quit ed Wipes out all text in buffer if you
give it twice in a row without first giving a w
command.

r: Read a file inlo buffer (at end unless specified
elsewhere.) Dot set to last line read.

s: The command

51 string 11 string2/

substitutes the characters string 1 into string2 in
the specified lines. If no lines are specified,
make the substitution in line dot. Dot is sel to
last line in which a substitution took place, which
means that if no substitution took place, dot is
not changed. 5 changes only the first occurrence
of stringl on a line; to change all of them, type
a g after the final slash.

v: The command

v/---/commands

executes commands on those lines that do not
contain ---.

w: Write out buffer onto a file. Dot is not
changed.

. -: Prin t value of dot. (- by itself prin IS the
value of $.)

!: The line

!command-line

causes command-line to be executed as a UNIX
command.

1-----/: Context search. Search for next line
which contains this string of characters. Print it.
Dot is set to the line where string was found.
Search starts at • + 1, wraps around from $ to 1,
and continues to dot, if necessary.

1 ----- 1: Context search in reverse direction.
Start search at .-1, scan to 1, wrap around to $.

Advanced Editing on UNIX

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper is meant to help secretaries, typists and programmers to make
effective use of the UNIXt facilities for preparing and editing text. It provides
explanations and examples of

• special characters, line addressing and global commands in the editor 00;

• commands for "cut and paste" operations on files and parts of files,
including the mv, cp, cat and rm commands, and the r, W, m and t com
mands of the editor;

• editing scripts and editor-based programs like grep and sed.

Although the treatment is aimed at non-programmers, new users with any
background should find helpful hints on how to get their jobs done more easily.

August 4, 1978

tUNIX is a Trademark of Bell Laboratories.

Advanced Editing on UNIX

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

1. INTRODUCTION

Although UNlxt provides remarkably
effective tools for text editing, that by itself is no
guarantee that everyone will automatically make
the most effective use of them. In particular,
people who are not computer specialists - typ
ists, secretaries, casual users - often use the
system less effectively than they might.

This document is intended as a sequel to A
Tutorial Introduction to the UNIX Text Editor [1),
providing explanations and examples of how to
edit with less effort. (You should also be fami
liar with the material in UNIX For Beginners (2).)
Further information on all commands discussed
here can be found in The UNIX Programmer's
Manual (3].

Examples are based on observations of
users and the difficulties they encounter. Topics
covered include special characters in searches
and substitute commands, line addressing, the
global commands, and line moving and copying.
There are also brief discussions of effective use
of related tools, like those for file manipulation,
and those based on ed, like grep and sed.

A word of caution. There is only one way
to learn to use something, and that is to use it.
Reading a description is no substitute for trying
something. A paper like this Qne should give
you ideas about what to try, but until you actu
ally try something, you will not learn it.

2. SPECIAL CHARACTERS

The editor ed is the primary interface to
the system for many people, so it is worthwhile
to know how to get the most out of ed for the
least effort.

The next few sections will discuss
shortcuts and labor-saving devices. Not all of
these will be instantly useful to anyone person,
of course, but a few will be, and the others
should· give you ideas to store away for future
use. And as always, until you try these things,

tUNIX is a Trademark of Bell Laboratories.

they will remain theoretical knowledge, not
something you have confidence in.

The List command '.' /

ed provides two commands for printing the
contents of the lines you're editing. Most people
are familiar with p, in combinations like

l,$p

to print all the lines you're editing, or

s/abc/def/p

to change 'abc' to 'der on the current line. Less
familiar is the list command • (the letter '1'),
which gives slightly more information than p. In
particular, • makes visible characters that are
normally invisible, such as tabs and backspaces.
If you list a line that contains some of these, I
will print each tab as ~ and each backspace as
..(. This makes it much easier to correct the sort
of typing mistake that inserts extra spaces adja
cent to tabs, or inserts a backspace followed by a
space.

The I command also 'folds' long lines for
printing - any line that exceeds 72 characters is
printed on multiple lines; each printed line
except the last is terminated by a backslash \, so
you can tell it was folded. This is useful for
printing long lines on short terminals.

Occasionally the I command will print in a
line a string of numbers preceded by a backslash,
such as \07 or \16. These combinations are used
to make visible characters that normally don't
print, like form feed or vertical tab or bell. Each
such combination is a single character. When
you see such characters, be wary - they may
have surprising meanings when printed on some
terminals. Often their presence means that your
finger slipped while you were typing; you almost
never want them.

The Substitute Command '5'

Most of the next few sections will be taken
up with a discussion of the substitute command
s. Since this is the command for changing the

contents of individual lines, it probably has the
most complexity of any ed command, and the
most potential for effective use.

As the simplest place to begin, recall the
meaning of a trailing g after a substitute com
mand. With

s/this/thatl

and

sl this/that! g

the first one replaces the .first 'this' on the line
with 'that'. If there is more than one 'this' on
the line, the second form with the trailing g
changes all of them.

Either form of the s command can be fol
lowed by p or I to 'print' or 'list' (as described in
the previous section) the contents of the line:

s/this/that/p
s/this/that/l
s/this/that/gp
s/this/thatl gl

are all legal, and mean slightly different things.
Make sure you know what the differences are.

Of course, any s command can be pre
ceded by one or two 'line numbers' to specify
that the substitution is to take place on a group
of lines. Thus

l,$s/mispell/misspelli

changes the .first occurrence of 'mispell' to
'misspell' on every line of the file. But

1 ,$sl mispelll misspelll g

changes every occurrence in every line (and this
is more likely to be what you wanted in this par
ticular case).

You should also notice that if you add a p
or I to the end of any of these substitute com
mands, only the last line that got changed will be
printed, not all the lines. We will talk later about
how to print all the lines that were modified.

The Undo Command 'u'

Occasionally you will make a substitution
in a line, only to realize too late that it was a
ghastly mistake. The 'undo' command u lets
you 'undo' the last substitution: the last line that
was substituted can be restored to its previous
state by typing the command

u

- 2 -

The Metacharacter '.'

As you have undoubtedly noticed when
you use ed, certain characters have unexpected
meanings when they occur in the left side of a
substitute command, or in a search for a particu
lar line. In the next several sections, we will talk
about these special characters, which are often
called 'metacharacters'.

The first one is the period '.'. On the left
side of a substitute command, or in a search with
'1 .. .1', '.' stands for any single character. Thus
the search

Ix..yl

finds any line where 'x' and 'y' occur separated
by a single character, as in

x+y
x-y
Xoy
x.y

and so on. (We witt use 0 to stand for a space
whenever we need to make it visible.)

Since '.' matches a single character, that
gives you a way to deal with funny characters
printed by I. Suppose you have a line that, when
printed with the I command, appears as

.... th\07is

and you want to get rid of the \07 (which
represents the bell character, by the way).

The most obvious solution is to try

s/\0711

but this will fail. (Try it.) The brute force solu
tion, which most people would now take, is to
re-type the entire line. This is guaranteed, and is
actually quite a reasonable tactic if the line in
question isn't too big, but for a very long line,
re-typing is a bore. This is where the metachar
acter '.' comes in handy. Since '\01' really
represents a single character, if we say

51th .is/thisl

the job is done. The '.' matches the mysterious
character between the 'h' and the 'i', whatever it

is.

Bear in mind that since '.' matches any
single character, the command

sl .1,1

converts the first character on a line into a ',',
which very often is not what you intended.

As is true of many characters in ed, the '.'
has several meanings, depending on its context.
This line shows all three:

.sl .! .1

The first'.' is a line number, the number of the
line we are editing, which is called 'line dot'.
(We will discuss line dot more in Section 3.) The
second '.' is a metacharacter that matches any
single character on that line. The third '.' is the
only one that really is an honest literal period.
On the right side of a substitution, '.' is not spe
cial. If you apply this command to the line

Now is the time.

the result will be

.ow is the time.

which is probably not what you intended.

The Backslash '\'

Since a period means 'any character', the
question naturally arises of what to do when you
really want a period. For example, how do you
convert the line

Now is the time.

into

Now is the time?

The backslash '\' does the job. A backslash
turns off any special meaning that the next char
acter might have; in particular, '\ .. converts the
'.' from a 'match anything' into a period, so you
can use it to replace the period in

Now is the time.

like this:

s/\.I? I

The pair of characters '\.' is considered by ed to
be a single real period.

The backslash can also be used when
searching for lines that contain a special charac
ter. Suppose you are looking for a line that con
tains

.PP

The search

I.PPI

isn't adequate, for it will find a line like

THE APPLICA nON OF ...

because the'.' matches the letter' A'. But if you
say

I\.PPI

you will find only lines that contain '.PP'.

The backslash can also be used to turn off
special meanings for characters other than '.'.
For example, consider finding a line that con-

- 3 -

tains a backslash. The search

1\1

won't work, because the '\' isn't a literal '\', but
instead means that the second 'I' no longer
delimits the search. But by preceding a backslash
with another one, you can search for a literal
backslash. Thus

1\\1

does work. Similarly, you can search for a for
ward slash 'I' with

1\11

The backslash turns off the meaning of the
immediately following 'I' so that it doesn't ter
minate the 1 .. .1 construction prematurely.

As an exercise, before reading further,
find two substitute commands each of which will
convert the line

\x\.\y

into the line

\x\y

Here are several solutions; verify that each
works as advertised.

s/\\\.11
six •• /xl
s/ •• y/yl

A couple of miscellaneous notes about
backslashes and special characters. First, you
can use any character to delimit the pieces of an
s command: there is nothing sacred about
slashes. (But you must use slashes for context
searching.) For instance, in a line that contains a
lot of slashes already, like

Ilexec Ilsys.fort.go II etc ...

you could use a colon as the delimiter - to
delete all the slashes, type

s:I::g

Second, if # and @ are your character
erase and line kill characters, you have to type
\# and \@; this is true whether you're talking to
~d or any other program.

When you are adding text with a or j or c,
backs lash is not special, and you should only put
in one backslash for each one you really want.

The Dollar Sign'S'

The next metacharacter, the '$', stands for
'the 1lnd of the line'. As its most obvious use,
suppose you have the line

Now is the

and you wish to add the word 'time' to the end.
Use the $ like this:

s/$/otimel

to get

Now is the time

Notice that a space is needed before 'time' in the
substitute command, or you will get

Now is thetime

As another example, replace the second
comma in the following line with a period
without altering the first:

Now is the time, for all good men,

The command needed is

s/,$I.1

The $ sign here provides context to make specific
which comma we mean. Without it, of course,
the s command would operate on the first
comma to produce

into

Now is the time. for all good men,

As another example, to convert

Now is the time.

Now is the time?

as we did earlier, we can use

s/.$1?1

Like '.', the '$' has multiple meanings
depending on context. In the line

$s/$/$I

the first '$' refers to the last line of the file, the
second refers to the end of that line, and the
third is a literal dollar sign, to be added to that
line.

The Circumflex ,",

The circumflex (or hat or caret) ," stands
for the beginning of the line. For example, sup
pose you are looking for a line that begins with
'the'. If you simply say

Ithel

you will in all likelihood find several lines that
contain 'the' in the middle before arriving at the
one you want. But with

I"thel

you narrow the context, and thus arrive at the
desired one more easily.

- 4 -

The other use of '"' is of course to enable
you to insert something at the beginning of a
line:

sl"lo/

places a space at the beginning of the current
line.

Metacharacters can be combined. To
search for a line that contains only the characters

.PP

you can use the command

r\.pPs/

The Star '.'

Suppose you have a line that looks like
this:

text x y text

where lext stands for lots of text, and there are
some indeterminate number of spaces between
the x and the y. Suppose the job is to replace all
the spaces between x and y by a single space.
The line is too long to retype, and there are too
many spaces to count. What now?

This is where the metacharacter '.' come~
in handy. A character followed by a star stands
for as many consecutive occurrences of that
character as possible. To refer to all the spaces
at once, say

six rJ ·y/x oyl

The construction • 0·' means 'as many spaces as
possible'. Thus 'xooy' means 'an x, as many
spaces as possible, then a y'.

The star can be used with any character,
not just space. If the original example was
instead

text x - - - - - - - - y text

then all • -' signs can be replaced by a single
space with the command

s/x-oy/xoyl

Finally, suppose that the line was

text x •.•••.•.•.•••. ••.. y text

Can you see what trap lies in wait for the
unwary? If you blindly type

s/x.·y/xoyl

what will happen? The answer, naturally, is that
it depends. If there are no other x's or y's on
the line, then everything works, but it's blind
luck, not good management. Remember that '.'
matches any single character? Then' .0' matches
as many single characters as possible, and unless

you're careful, it can eat up a lot more of the
line than you expected. If the line was, for
example, like this:

text x (ext x •••••••••••••••• y (ext y text

then saying

s/x.-y/xoyl

will take everything from the first 'x' to the lost
'y', which, in this example, is undoubtedly more
than you wanted.

The solution, of course, is to tum oft'the
special meaning of '.' with '\.':

s/x\.-y/xoyl

Now everything works, for '\.-' means 'as many
periods as possible'.

There are times when the pattern '.-' is
exactly what you want. For example, to change

Now is the time for all good men

into

Now is the time.

use' .-' to eat up everything after the 'for':

sl o for .-1.1

There are a couple of additional pitfalls
associated with '-' that you should be aware of.
Most notable is the fact that 'as many as possi
ble' means zero or more. The fact that zero is a
legitimate possibility is sometimes rather surpris
ing. For example, if our line contained

text xy text x

and we said

s/xo-y/xoyl

y tex~

the .first 'xy' matches this pattern, for it consists
of an 'x" zero spaces, and a 'y'. The result is
that the substitute acts on the first 'xy', and does
not touch the later one that actually contains
some intervening spaces.

The way around this, if it matters, is to
specify a pattern like

Ixoo-yl

which says 'an x, a space, then as many more
spaces as possible, then a y', in other words, one
or more spaces.

The other startling behavior of '-' is again
related to the fact that zero is a legitimate
number of occurrences of something followed by
a star. The command

s/x-/y/g

when applied to the line

- 5 -

abcdef

pr~uces

yaybycydyeyfy

which is almost certainly not what was intended.
The reason for this behavior is that zero is a
legal number of matches, and there are no x's at
the beginning of the line (so that gets converted
into a 'y'), nor between the 'a' and the 'b' (so
that gets converted into a 'y'), nor ... and so on.
Make sure you really want zero matches; if not,
in this case write

s/xx-/y/g

'xx-' is one or more x's.

The Brackets 'I "
Suppose that you want to delete any

numbers that appear at the beginning of all lines
of a file. You might first think of trying a series
of commands like

I,ssrl-"
I,Ssr2-11
I,Ssr3-"

and so on. but this is clearly going to take for
ever if the numbers are at all long. Unless you
want to repeat the commands over and over until
finally all numbers are gone, you must get a\l the
digits on one pass. This is the purpose of the
brackets [and).

The construction

[0123456789)

matches any single digit - the whole thing is
called a 'character class'. With a character class,
the job is easy. The pattern '[0123456789)-'
matches zero or more digits (an entire number),
so

I,Ssr (0123456789] -II

deletes all digits from the beginning of a\l lines.

Any characters can appear within a charac
ter class, and just to confuse the issue there are
essentially no special characters inside the brack
ets; even the backslash doesn't have a special
meaning. To search for special characters, for
example, you can say

I [.\S" []I

Within [",1, the '[' is not special. To get a '1'
into a character class, make it the first character.

It's a nuisance to have to spell out the
digits, so you can abbreviate them as [0-91;
similarly, [a -z1 stands for the lower case letters,
and [A - Z] for upper case.

As a final frill on character classes, you can

specify a class that means 'none of the following
characters'. This is done by beginning the class
with a'"':

["0-9]

stands for 'any character except a digit'. Thus
you might find the first line that doesn't begin
with a tab or space by a search like

IT (space) (tab)]1

Within a character class, the circumflex has
a special meaning only if it occurs at the begin
ning. Just to convince yourself, verify that

IT"]I

finds a line that doesn't begin with a circumflex.

The Ampersand '&'

The ampersand '&' is used primarily to
save typing. Suppose you have the line

Now is the time

and you want to make it

Now is the best time

Of course you can always say

s/the/the bestl

but it seems silly to have to repeat the 'the'.
The '&' is used to eliminate the repetition. On
the right side of a substitute, the ampersand
means 'whatever was just matched', so you can
say

s/thel & bestl

and the '&' will stand for 'the'. Of course this
isn't much of a saving if the thing matched is
just 'the', but if it is something truly long or
awful, or if it is something like ' .• ' which
matches a lot of text, you can save some tedious
typing. There is also much less chance of mak
ing a typing error in the replacement text. For
example, to parenthesize a line, regardless of its
length,

s/.*/(&)1

The ampersand can occur more than once
on the right side:

s/the/& best and & worstl

makes

Now is the best and the worst time

and

s/.*I&? &!!I

converts the original line into

- 6 -

Now is the time? Now is the time!!

To get a literal ampersand, naturally the
backslash is used to turn oft' the special meaning:

sl ampersand/\&1

converts the word into the symbol. Notice that
'&' is not special on the left side of a substitute,
only on the right side.

Substituting Newlines

ed provides a facility for splitting a single
line into two or more shorter lines by 'substitut
ing in a newline'. As the simplest example, sup
pose a line has gotten unmanageably long
because of editing (or merely because it was
unwisely typed). If it looks like

text xy text

you can break it between the 'x' and the 'y' like
this:

s/xy/x\
yl

This is actually a single command, although it is
typed on two lines. Bearing in mind that '\'
turns otT special meanings, it seems relatively
intuitive that a '\' at the end of a line would
make the newline there no longer special.

You can in fact make a single line into
several lines with this same mechanism. As a
large example, consider underlining the word
'very' in a long line by splitting 'very' onto a
separate line, and preceding it by the roft" or nroft"
formatting command '. ul'.

text a very big te:x.t

The command

s/overyo/\
.ul\
very\
I

converts the line into four shorter lines, preced
ing the word 'very' by the line '.ul', and elim
inating the spaces around the 'very', all at the
same time.

When a newline is substituted in, dot is
left pointing at the last line created.

Joining Lines

Lines may also be joined together, but this
is done with the j command instead of s. Given
the lines

Now is
othe time

and supposing that dot is set to the first of them,

then the command

joins them together. No blanks are added, which
is why we carefully showed a blank at the begin
ning of the second line.

Al! by itself, a j command joins line dot to
line dot + 1, but any contiguous set of lines can
be joined. Just specify the starting and ending
line numbers. For example,

l,$jp

joins all the lines into one big one and prints it.
(More on line numbers in Section 3.)

Rearranging a Line with \ ('" \)

(This section should be skipped on first
reading.) Recall that '&' is a shorthand that
stands for whatever was matched by the left side
of an s command. In much the same way you
can capture separate pieces of what was matched;
the only difference is that you have to specify on
the left side just what pieces you're interested in.

Suppose, for instance, that you have a file
of lines that consist of names in the form

Smith, A. B.
Jones, C.

and so on, and you want the initials to precede
the name, as in

A. B. Smith
C. Jones

It is possible to do this with a series of editing
commands, but it is tedious and error-prone. (It
is instructive to figure out how it is done,
though.)

The alternative is to 'tag' the pieces of the
pattern (in this case, the last name, and the ini
tials), and then rearrange the pieces. On the left
side of a substitution, if part of the pattern is
enclosed between \ (and \), whatever matched
that part is remembered, and available for use on
the right side. On the right side, the symbol '\ I'
refers to whatever matched the first \ Coo\) pair,
'\2' to the second \C .. \), and so on.

The command

1 ,Ssr\ ([' ,J.\), D -\ (.-\)/\2D \ 11

although hard to read, does the job. The first
\ (...\) matches the last name, which is any string
up to the comma; this is referred to on the right
side with '\1'. The second \ C.\) is whatever
follows the comma and any spaces, and is
referred to as '\2'.

Of course, with any editing sequence this
complicated, it's foolhardy to simply run it and

- 7 -

hope. The global commands g and v discussed
in section 4 provide a way for you to print
exactly those lines which were affected by the
substitute command, and thus verify that it did
what you wanted in all cases.

3. LINE ADDRESSING IN THE EDITOR

The next general area we will discuss is
that of line addressing in ed, that is, how you
specify what lines are to be affected by editing
commands. We have already used constructions
like

l,$s/x/yl

to specify a change on all lines. And most users
are long since familiar with using a single new
line (or return) to print the next line, and with

Ithingl

to find a line that contains 'thing'. Less familiar,
surprisingly enough, is the use of

?thing?

to scan backwards for the previous occurrence of
'thing'. This is especially handy when you real
ize that the thing you want to operate on is back
up the page from where you are currently edit
ing.

The slash and question mark are the only
characters you can use to delimit a context
search, though you can use essentially any char
acter in a substitute command.

Address Arithmetic

The next step is to combine the line
numbers like ',', 'S', '1 ... 1' and '? ... ?' with '+'
and '-'. Thus

S-1
is a command to print the next to last line of the
current file (that is, one line before line'S').
For example, to recall how far you got in a previ
ous editing session,

$-5,$p

prints the last six lines. (Be sure you understand
why it's six, not five.) If there aren't six, of
course, you'll get an error message.

As another example,

.-3,.+3p

prints from three lines before where you are now
(at line dot) to three lines after, thus giving you
a bit of context. By the way, the '+' can be
omitted:

.-3,.3p

is absolutely identical in meaning.

Another area in which you can save typing
effort in specifying lines is to use' -' and' +' as
line numbers by themselves.

by itself is a command to move back up one line
in the file. In fact, you can string several minus
signs together to move back up that many lines:

moves up three lines, as does' - 3'. Thus

-3,+3p

is also identical to the examples above.

Since '-' is shorter than '. -\ " construc
tions like

- , .sl bad I goodl

are useful. This changes 'bad' to 'good' on the
previous line and on the current line.

'+' and '-' can be used in combination
with searches using '1 .. .1' and '? ... ?', and with
'$'. The search

Ithing/- -

finds the line containing 'thing', and positions
you two lines before it.

Repeated Searches

Suppose you ask for the search

Ihorrible thingl

and when the line is printed you discover that it
isn't the horrible thing that you wanted, so it is
necessary to repeat the search again. You don't
have to re-type the search, for the construction

/I

is a shorthand for 'the previous thing that was
searched for', whatever it was. This can be
repeated as many times as necessary. You can
also go backwards:

??

searches for the same thing, but in the reverse
direction.

Not only can you repeat the search, but
you can use '/I' as the left side of a substitute
command, to mean 'the most recent pattern'.

Ihorrible thingl
.... ed prints line with 'horrible thing' ...

s/lgood/p

To go backwards and change a line, say

??sllgoodl

Of course, you can still use the '&' on the right
hand side of a substitute to stand for whatever

- 8 -

got matched:

/lsl/&o&/p

finds the next occurrence of whatever you
searched for last, replaces it by two copies of
itself, then prints the line just to verify that it
worked.

Default Line Numbers and the Value of Dot

One of the most effective ways to speed up
your editing is always to know what lines will be
affected by a command if you don't specify the
lines it is to act on, and on what line you will be
positioned (i.e., the value of dot) when a com
mand finishes. If you can edit without specifying
unnecessary line numbers, you can save a lot of
typing.

As the most obvious example, if you issue
a search command like

Ithingl

you are left pointing at the next line that con
tains 'thing'. Then no address is required with
commands like s to make a substitution on that
line, or p to print it, or I to list it, or d to delete
it, or a to append text after it, or c to change it,
or i to insert text before it.

What happens if there was no 'thing'?
Then you are left right where you were - dot is
unchanged. This is also true if you were sitting
on the only 'thing' when you issued the com
mand. The same rules hold for searches that use
'?.?'; the only difference is the direction in
which you search.

The delete command d leaves dot pointing
at the line that followed the last deleted line.
When line '$' gets deleted, however, dot points
at the new line '$'.

The line-changing commands a, c and i by
default all affect the current line - if you give
no line number with them, a appends text after
the current line, c changes the current line, and i
inserts text before the current line.

a, C, and i behave identically in one
respect - when you stop appending, changing or
inserting, dot points at the last line entered.
This is exactly what you want for typing and edit
ing on the fly. For example, you can say

a
... text ...
... botch ...

sl botch I correctl
a
... more text ...

(minor error)

(fix botched line)

without specifying any line number for the sub-

stitute command or for the second append com
mand. Or you can say

a
... text ...
... horrible botch ... (major error)

c (replace entire line)
... fixed up line ...

You should experiment to determine what
happens if you add no lines with ft, c or i.

The r command will read a file into the
text being edited, either at the end if you give no
address, or after the specified line if you do. In
either case, dot points at the last line read in.
Remember that you can even say Or to read a
file in at the beginning of the text. (You can
also say Oa or Ii to start adding text at the begin
ning.)

The w command writes out the entire file.
If you precede the command by one line
number, that line is written, while if you precede
it by two line numbers, that range of lines is
written. The w command does no/ change dot:
the current line remains the same, regardless of
what lines are written. This is true even if you
say something like

r\.AB/,r\.AE/wabstract

which involves a context search.

Since the w command is so easy to use,
you should save what you are editing regularly as
you go along just in case the system crashes, or
in case you do something foolish, like clobbering
what you're editing.

The least intuitive behavior, in a sense, is
that of the s command. The rule is simple -
you are left sitting on the last line that got
changed. If there were no changes, then dot is
unchanged.

To illustrate, suppose that there are three
lines in the buffer, and you are sitting on the
middle one:

xl
x2
x3

Then the command

-,+s/x/y/p

prints the third line, which is the last one
changed. But if the three lines had been

xl
y2
y3

and the same command had been issued while

- 9 -

dot pointed at the second line, then the result
would be to change and print only the first line,
and that is where dot would be set.

Semicolon ';'

Searches with '/ .. ./' and '?.?' start at the
current line and move forward or backward
respectively until they either find the pattern or
get back to the current line. Sometimes this is
not what is wanted. Suppose, for example, that
the buffer contains lines like this:

ab

bc

Starting at line 1, one would expect that the
command

/al./b/p

prints all the lines from the 'ab' to the 'bc'
inclusive. Actually this is not what happens.
BOlli searches (for 'a' and for 'b') start from the
same point, and thus they both find the line that
contains 'ab'. The result is to print a single line.
Worse, if there had been a line with a 'b' in it
before the 'ab' line, then the print command
would be in error, since the second line number
would be less than the first, and it is illegal to try
to print lines in reverse order.

This is because the comma separator for
line numbers doesn't set dot as each address is
processed; each search starts from the same
place. In ed, the semicolon ';' can be used just
like comma, with the single difference that use
of a semicolon forces dot to be set at that point
as the line numbers are being evaluated. In
effect, the semicolon 'moves' dot. Thus in our
example above, the command

/a/;/b/p

prints the range of lines from 'ab' to 'bc',
because after the 'a' is found, dot is set to that
line, and then 'b' is searched for, starting beyond
that line.

This property is most often useful in a
very simple situation. Suppose you want to find
the second occurrence of 'thing'. You could say

/thing!
1/

but this prints the first occurrence as well as the

second, and is a nuisance when you know very
well that it is only the second one you're
interested in. The solution is to say

Ithing!J I

This says to find the first occurrence of 'thing',
set dot to that line, then find the second and
print only that.

Closely related is searching for the second
previous occurrence of something, as in

?something?;? ?

Printing the third or fourth or '" in either direc
tion is left as an exercise.

Finally, bear in mind that if you want to
find the first occurrence of something in a file,
starting at an arbitrary place within the file, it is
not sufficient to say

l;/thingl

because this fails if 'thing' occurs on line 1. But
it is possible to say

O;/thingl

(one of the few places where 0 is a legal line
number), for this starts the search at line 1.

Interrupting the Editor

As a final note on what dot gets set to, you
should be aware that if you hit the interrupt or
delete or rubout or break key while ed is doing a
command, things 'lre put back together again and
your state is restored as much as possible to what
it was before the command began. Naturally,
some changes are irrevocable - if you are read
ing or writing a file or making substitutions or
deleting lines, these will be stopped in some
clean but unpredictable state in the middle
(which is why it is not usually wise to stop
them). Dot mayor may not be changed.

Printing is more clear cut. Dot is not
changed until the printing is done. Thus if you
print until you see an interesting line, then hit
delete, you are 1101 sitting on that line or even
near it. Dot is left where it was when the p com
mand was started.

4. GLOBAL COMMANDS

The global commands g and v are used to
perform one or more editing commands on all
lines that either contain (g) or don't contain (v)
a specified pattern.

As the simplest example, the command

g/UNIX/p

prints all lines that contain the word 'UNIX'.
The pattern that goes between the slashes can be

- 10 -

anything that could be used in a line search or in
a substitute command: exactly the same rules
and limitations apply.

As another example, then,

g/"\.Ip

prints all the formatting commands in a file
(lines that begin with'.').

The v command is identical to g, except
that it operates on those line that do /lot contain
an occurrence of the pattern. (Don't look too
hard for mnemonic significance to the letter 'v'.)
So

v/"\./p

prints all the lines that don't begin with'.' - the
actual text lines.

The command that follows g or v can be
anything:

gr\.ld

deletes all lines that begin with '.', and

grS/d

deletes all empty lines.

Probably the most useful command that
can follow a global is the substitute command,
for this can be used to make a change and print
each affected line for verification. For example,
we could change the word 'Unix' to 'UNIX'
everywhere, and verify that it really worked, with

g/Unix/s/IUNIX/gp

Notice that we used 'I/' in the substitute com
mand to mean 'the previous pattern', in this
case, 'Unix'. The p command is done on every
line that matches the pattern, not just those on
which a substitution took place.

The global command operates by making
two passes over the file. On the first pass, all
lines that match the pattern are marked. On the
second pass, each marked line in turn is exam
ined, dot is set to that line, and the command
executed. This means that it is possible for the
command that follows a g or v to use addresses,
set dot, and so on, quite freely.

g/"\.PP/+

prints the line that follows each' .PP' command
(the signal for a new paragraph in some format
ting packages). Remember that' +' means 'one
line past dot'. And

g/topicl ?A\ .SH? 1

searches for each line that contains 'topic', scans
backwards until it finds a line that begins '.SH'
(a section heading) and prints the line that fol
lows that, thus showing the section headings

under which 'topic' is mentioned. Finally,

g/'\.EQI + ,1'\ .EN/-p

prints all the lines that lie between lines begin
ning with '.EQ' and '.EN' formatting commands.

The g and v commands can also be pre
ceded by line numbers, in which case the lines
searched are only those in the range specified.

Multi-line Global Commands

It is possible to do more than one com
mand under the control of a global command,
although the syntax for expressing the operation
is not especially natural or pleasant. As an
example, suppose the task is to change 'x' to 'y'
and 'a' to 'b' on all lines that contain 'thing'.
Then

g/thing/s/x/yl\
s/a/bl

is sufficient. The '\' signals the g command that
the set of commands continues on the next line;
it terminates on the first line that does not end
with '\'. (As a minor blemish, you can't use a
substitute command to insert a newline within a
g command.)

- 11 .

You should watch out for this problem:
the command

g/x/slly/\
s/a/b/

does 1101 work as you expect. The remembered
pattern is the last pattern that was actually exe
cuted, so sometimes it will be 'x' (as expect~d),
and sometimes it will be 'a' (not expected). You
must spell it out, like this:

g/x/s/x/y/\
s/a/b/

It is also possible to execute a. c and j

commands under a global command; as with
other multi-line constructions. all that is needed
is to add a '\' at the end of each line except the
last. Thus to add a '.nf and '.sp' command
before each '.EQ' line, type

gi"\.EQIi\
.nf\
.sp

There is no need for a final line containing a '.'
to terminate the i command, unless there are
further commands being done under the global.
On the .other hand. it does no harm to put it in
either.

5. CUT AND PASTE WITH UNIX COM
MANDS

One editing area in which non-
programmers seem not very confident is in what
might be called 'cut and paste' operations -
changing the name of a file, making a copy of a
file somewhere else, moving a few lines from
one place to another in a file, inserting one file in
the middle of another, splitting a file into pieces,
and splicing two or more files together.

Yet most of these operations are actually
quite easy, if you keep your wits about you and
go cautiously. The next several sections talk
about cut and paste. We will begin with the UNIX

commands for moving entire files around, then
discuss ed commands for operating on pieces of
files.

Changing the Name of a File

You have a file named 'memo' and you
want it to be called 'paper' instead. How is it
done?

The UNIX program that renames files is
called mv (for 'move'); it 'moves' the file from
one name to another, like this:

mv memo paper

That's all there is to it: mv from the old name to
the new name.

mv oldname newname

Warning: if there is already a file around with the
new name, its present contents will be silently
clobbered by the information from the other file.
The one exception is that you can't move a file
to itself -

mv x x

is illegal.

Making a Copy of a File

Sometimes what you want is a copy of a
file - an entirely fresh version. This might be
because you want to work on a file, and yet save
a copy in case something gets fouled up, or just
because you're paranoid.

In any case, the way to do it is with the cp
command. (cp stands for 'copy'; the system is
big on short command names, which are appreci
ated by heavy users, but sometimes a strain for
novices.) Suppose you have a file called 'good'
and you want to save a copy before you make
some dramatic editing changes. Choose a name
- 'savegood' might be acceptable - then type

cp good savegood

This copies 'good' onto 'savegood', and you now

have two identical copies of the file 'good'. (If
'savegood' previously contained something, it
gets overwritten.)

Now if you decide at some time that you
want to get back. to the original state of 'good',
you can say

mv savegood good

(if you're not interested in 'savegood' any
more), or

cp sa vegood good

if you still wanl to retain a safe copy.

In summary, mv just renames a file; cp
makes a duplicate copy. Both of them clobber
the 'target' file if it already exists, so you had
better be sure that's what you want to do before
you do it.

Removing a File

If you decide you are really done with a
file forever, you can remove it with the rm com
mand:

rm savegood

throws away (irrevocably) the file called
'savegood'.

Putting Two or More Files Together

The next step is the familiar one of collect
ing two or more files into one big one. This will
be needed, for example, when the author of a
paper decides that several sections need to be
combined into one. There are several ways to do
it, of which the cleanest, once you get used to it,
is a program called cat. (Not all programs have
two-letter names.) cat is short for 'concatenate',
which is exactly what we want to do.

Suppose the job is to combine the files
'file l' and 'file2' into a single file called 'bigfile'.
If you say

cat file

the contents of 'file' will get printed on your ter
minal. If you say

cat file 1 file2

the contents of 'file l' and then the contents of
'file2' will both be pr.inted on your terminal, in
that order. So cat combines the files, all right,
but it's not much help to print them on the ter
minal - we want them in 'bigfile'.

Fortunately, there is away. You can tell
the system that instead of printing on your ter
minal, you want the -same information put in a
file. The way to do it is to add to the command
line the character > and the name of the file

- 12 -

where you want the output to go. Then you can
say

cat file 1 file2 > bigfile

and the job is done. (As with cp and my, you're
putting something into 'bigfile', and anything
that was already there is destroyed.)

This ability to 'capture' the output of a
program is one of the most useful aspects of the
system. Fortunately it's not limited to the cat
program - you can use it with allY program that
prints on your terminal. We'll see some more
uses for it in a moment.

Naturally, you can combine several files,
not just two:

cat file 1 file2 file3 .,. > bigfile

collects a whole bunch.

Question: is there any difference between

cp good savegood

and

cat good >savegood

Answer: for most purposes, no. You might rea
sonably ask why there are two programs in that
case, since cat is obviously all you need. The
answer is that cp will do some other thing~ a:'.
well, which you can investigate for yourself bv
reading the manual. For now we'll stick to ~im

pIe usages.

Adding Something to the Erid of a File

Sometimes you want to add one file to the
end of another. We have enough building block;,
now that you can do it; in fact before reading
further it would be valuable if you figured Ollt

how, To be specific, how would you use cpo 111\

and/ or cat to add the file 'good I' to the end ilt
the file 'good'?

You could try

cat good good 1 > tern p
mv temp good

which is probably most direct. You should ~ih"

understand why

cat good good 1 > good

doesn't work. (Don't practice with agoI'd
'good'!)

The easy way is to use a variant of >
called> >. In fact, > > is identical to > ext'epr
that instead of clobbering the old file, it simply

tacks stuff on at the end. Thus you could say

cat good 1 > > good

and 'good I ' is added to the end of 'good', (And

if 'good' didn't exist, this makes a copy of
'good l' called 'good'.)

6. CUT AND PASTE WITH THE EDITOR

Now we move on to manipulating pieces
of files - individual lines or groups of lines.
This is another area where new users seem
unsure of themselves.

Filenames

The first step is to ensure that you know
the ed commands for reading and writing files.
Of course you can't go very far without knowing
rand w. Equally useful, but less well known, is
the 'edit' command e. Within ed, the command

e newfile

says 'I want to edit a new file called ne~file.

without leaving the editor.' The e command dis
cards whatever you're currently working on and
starts over on ne~file. It's exactly the same as if
you had quit with the q command, then re
entered ed with a new file name, except that if
you have a pattern remembered, then a com
mand like / / will still work.

If you enter ed with the command

ed file

ed remembers the name of the file, and any sub
sequent e, r or w commands that don't contain a
filename will refer to this remembered file. Thus

ed filel
... (editing) ...

w (writes back in file 1)
e file2 (edit new file, without leaving editor)
'" (editing on file2) ...

w (writes back on file2)

(and so on) does a series of edits on various files
without ever leaving ed and without typing the
name of any file more than once. (As an aside,
if you examine the sequence of commands here,
you can see why many UNIX systems use e as a
synonym for ed.)

You can find out the remembered file
name at any time with the f command; just type
f without a file name. You can also change the
name of the remembered file name with f; a use
ful sequence is

ed precious
f junk
... (editing) ...

which gets a copy of a precious file, then uses f
to guarantee that a careless w command won't
clobber the original.

- 13 -

Inserting One File into Another

Suppose you have a file called 'memo'.
and you want the tile called 'table' to be inserted
just after the reference to Table 1. That is, in
'memo' somewhere is a line that says

Table 1 shows that ...

and the data contained in 'table' has to go there,
probably so it will be formatted properly by nroff
or troff. Now what?

This one is easy. Edit 'memo', find 'Table
1', and add the file 'table' right there:

ed memo
ITable 11
Table 1 shows rhar ... fresponse from edj
.r table

The critical line is the last one. As we said ear
lier, the r command reads a file; here you asked
for it to be read in right after line dot. An r
command without any address adds lines at the
end, so it is the same as Sr.

Writing out Part of a File

The other side of the coin is writing out
part of the document you're editing. For exam
ple, maybe you want to split out into a separate
file that table from the previous example, so it
can be formatted and tested separately. Suppose
that in the file being edited we have

.TS
... [lots of stuff)

.• TE

which is the way a table is set up for the tbl pro
gram. To isolate the table in a separate file
called 'table', first find the start of the table (the
'. TS' line), then write out the interesting part:

r\.TSI
• TS fed prints the line it foul/d]
.,r\.TE/w table

and the job is done. If you are confident, YOll

can do it all at once with

r\.TS/;r\.TE/w table

The point is that the w command can write
out a group of lines, instea,d of the whole file. In
fact, you can write out a single line if you like;
just give one line number instead of two. For
example, if you have just typed a horribly com
plicated line and you know that it (or something
like it) is going to be needed later, then save it
- don't re-type it. In the editor, say

a
... Iots of stuff .. .
... horrible line .. .

.w temp
a
... more stuff ...

.r temp
a
... more stuff ...

This last example is worth studying, to be sure
you appreciate what's going on.

Moving Lines Around

Suppose you want to move a paragraph
from its present position in a paper to the end.
How would you do it? As a concrete example,
suppose each paragraph in the paper begins with
the formatting command '.PP'. Think about it
and write down the details before reading on.

The brute force way (not necessarily bad)
is to write the paragraph onto a temporary file,
delete it from its current position, then read in
the temporary file at the end. Assuming that
you are sitting on the' .PP' command that begins
the paragraph, this is the sequence of commands:

. ,r\.PPI -w temp

.,/ I-d
$r temp

That is, from where you are now ('. ') until one
line before the next '.PP' (' r\ .PP/- ') write

_onto 'temp'. Then delete the same lines.
Finally, read 'temp' at the end.

As we said, that's the brute force way.
The easier way (often) is to use the move com
mand m that ed provides - it lets you do the
whole set of operations at one crack, without any
temporary file.

The m command is like many other ed
commands in that it takes up to two line
numbers in front that tell what lines are to be
affected. It is also followed by a line number that
tells where the lines are to go. Thus

line1, line2 m line3

says to move all the lines between 'line1' and
'line2' after 'line3'. Naturally, any of 'line1'
etc., can be patterns between slashes, $ signs, or
other ways to specify lines.

Suppose again that you're sitting at the
first line of the paragraph. Then you can say

.,r\.PPI -m$

That's all.

- 14 -

As another example of a frequent opera
tion, you can reverse the order of two adjacent
lines by moving the first one to after the second .
Suppose that you are positioned at the first.
Then

m+

does it. It says to move line dot to after one line
after line dot. If you are positioned on the
second line,

m--

does the interchange.

As you can see, the m command is more
succinct and direct than writing, deleting and reo
reading. When is brute force better anyway?
This is a matter of personal taste - do what you
have most confidence in. The main difficulty
with the m command is that if you use patterns
to specify both the lines you are moving and the
target, you have to take care that you specify
them properly, or you may well not move the
lines you thought you did. The result of a
botched m command can be a ghastly mess.
Doing the job a step at a time makes it easier for
you to verify at each step that you accomplished
what you wanted to. It's also a good idea to
issue a w command before doing anything com
plicated; then if you goof, it's easy to back up to
where you were .

Marks

ed provides a facility for marking a line
with a particular name so you can later reference
it by name regardless of its actual line number.
This can be handy for moving lines, and for
keeping track of them as they move. The mark
command is k; the command

kx

marks the current line with the name 'x'. If a
line number precedes the k, that line is marked.
(The mark name must be a single lower case
letter.) Now you can refer to the marked line
with the address

'x

Marks are most useful for moving things
around. Find the first line of the block to be
moved, and mark it with 0. Then find the last
line and mark it with 'b. Now position yourself
at the place where the stuff is to go and say

'a,'bm.

Bear in mind that only one line can have a
particular mark name associated with it at any
given time.

Copying Lines

We mentioned earlier the idea of saving a
line that was hard to type or used often, so as to
cut down on typing time. Of course this could
be more than one line; then the saving is
presumably even greater.

ed provides another command, called t
(for 'transfer') for making a copy of a group of
one or more lines at any point. This is often
easier than writing and reading.

The t command is identical to the m com
mand, except that instead of moving lines it sim
ply duplicates them at the place you named.
Thus

1,t

duplicates the entire contents that you are edit
ing. A more common use for t is for creating a
series of lines that differ only slightly. For
example, you can say

a

t.
s/x/y/
t.
s/y/z/

and so on.

x (long line)

(make a copy)
(change it a bit)
(make third copy)
(change it a bit)

The Temporary Escape '!'

Sometimes it is convenient to be able to
temporarily escape from the editor to do some
other UNIX command, perhaps one of the file
copy or move commands discussed in section 5,
without leaving the editor. The 'escape' com
mand ! provides a way to do this.

If you say

!any UNIX command

your current editing state is suspended, and the
UNIX command you asked for is executed. When
the command finishes, ed will signal you by
printing another !; at that point you can resume
editing.

You can really do am' UNIX command,
including another ed. (This is quite common, in
fact.) In this case, you can even do another !.

7. SUPPORTING TOOLS

- 15 -

There are several tools and techniques that
go along with the editor, all of which are rela
tively easy once you know how ed works,
because they are all based on the editor. In this
section we will give some fairly cursory examples
of these tools, more to indicate their existence
than to provide a complete tutorial. More infor-

mation on each can be found in [31.

Grep

Sometimes you want to find all
occurrences of some word or pattern in a set of
files, to edit them or perhaps just to verify their
presence or absence. It may be possible to edit
each file separately and look for the pattern of
interest, but if there are many files this can get
very tedious, and if the files are really big, it may
be impossible because of limits in ed.

The program grep was invented to get
around these limitations. The search patterns
that we have described in the paper are often
called 'regular expressions', and 'grep' stands for

g/re/p

That describes exactly what grep does - it prints
every line in a set of files that contains a particu
lar pattern. Thus

grep 'thing' file I file2 file3 ...

finds 'thing' wherever it occurs in any of the files
'file 1', 'file2', etc. grep also indicates the file in
which the line was found, so you can later edit it
if you like.

The pattern represented by 'thing' can be
any pattern you can use in the editor, since grep
and ed use exactly the same mechanism for pat
tern searching. It is wisest always to enclose the
pattern in the single quotes ' .. .' if it contains any
non-alphabetic characters, since many such char
acters also mean something special to the UNIX

command interpreter (the 'shell'). If you don '(
quote them, the command interpreter will try to
interpret them before grep gets a chance.

There is also a way to find lines that dOli',

contain a pattern:

grep - v 'thing' file I file2 ...

finds all lines that don't contains 'thing'. The
- v must occur in the position shown. Given
f:rep and grep - v, it is possible to do things like
selecting all lines that contain some combination
of patterns. For example, to get all lines thaI
contain 'x' but not 'y':

grep x file... I grep - v y

(The notation I is a 'pipe', which causes the out
put of the first command to be used as input to
the second command; see [2].)

Editing Scripts

If a fairly complicated set of editing opera
tions is to be done on a whole set of files, the
easiest thing to do is to make up a 'script', i.e., a
file that contains the operations you want to per
form, then apply this script to each file in turn.

For example, suppose you want to change
every 'Unix' to 'UNIX' and every 'Gcos' to
'GCOS' in a large number of files. Then put
into the file 'script' the lines

glUnix/s/IUNIX/g
g/Gcos/s//GCOS/g
w
q

Now you can say

ed filel <script
ed file2 <script

This causes ed to take its commands from the
prepared script. Notice that the whole job has to
be planned in advance.

And of course by using the UNIX command
interpreter, you can cycle through a set of files
automatically, with varying degrees of ease.

Sed

sed ('stream editor') is a version of the
editor with restricted capabilities but which is
capable of processing unlimited amounts of
input. Basically sed copies its input to its output,
applying one or more editing commands to each
line of input.

As an example, suppose that we want to
do the 'Unix' to 'UNIX' part of the example
given above, but without rewriting the files.
Then the command

sed 's/Unix/UNIX/g' filel file2 '"

applies the command 's/Unix/UNIX/g' to all
lines from 'file 1', 'file2', etc., and copies all lines
to the output. The advantage of using sed in
such a case is that it can be used with input too
large for ed to handle. All the output can be col
lected in one place, either in a file or perhaps
piped into another program.

If the editing transformation is so compli
cated that more than one editing command is
needed, commands can be supplied from a file,
or on the command line, with a slightly more
complex syntax. To take commands from a file,
for example,

sed -f cmdfile input-files ...

sed has further capabilities, including con
ditional testing and branching, which we cannot
go into here.

Acknowledgement·

I am grateful to Ted Dolotta for his careful
reading and valuable suggestions.

- 16 -

References

0] Brian W. Kernighan, A TUloriallntroductioll
to the UNIX Texl Editor. Bell Laboratories
internal memorandum.

(2] Brian W. Kernighan, UNIX For Beginners.
Bell Laboratories internal memorandum.

[3] Ken L. Thompson and Dennis M. Ritchie,
The UNIX Programmer's Manual. Bell
Laboratories.

An Introduction to the UNIX Shell

S. R. Bourne

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

The shell is a command programming language that provides an interface to the
UNlxt operating system. Its features include control-flow primitives, parameter
passing, variables and string substitution. Constructs such as while. if thell else.
case and for are available. Two-way communication is possible between the
shell and commands. String-valued parameters, typically file names or flags,
may be passed to a command. A return code is set by commands that may be
used to determine control-flow, and the standard output from a command may
be used as shell input.

The shell can modify the environment in which commands run. Input and out
put can be redirected to files, and processes that communicate through 'pipes'
can be invoked. Commands are found by searching directories in the file sys
tem in a sequence that can be defined by the user. Commands can be read
either from the terminal or from a file, which allows command procedures to be
stored for later use.

November 12, 1978

tUNIX is a Trademark of Bell Laboratories.

An Introduction to the UNIX Shell

1.0 Introduction

S. R. Bourne

Bell Laboratories
Murray Hill, New Jersey 07974

The shell is both a command language and a programming language that provides an interface
to the UNIX operating system. This memorandum describes, with examples, the UNIX shell.
The first section covers most of the everyday requirements of terminal users. Some familiarity
with UNIX is an advantage when reading this section; see, for example, "UNIX for beginners". 1

Section 2 describes those features of the shell primarily intended for use within shell pro
cedures. These include the control-flow primitives and string-valued variables provided by the
shell. A knowledge of a programming language would be a help when reading this section.
The last section describes the more advanced features of the shell. References of the form "see
pipe (2)" are to a section of the UNIX manual. 2

1.1 Simple commands

Simple commands consist of one or more words separated by blanks. The first word is the
name of the command to be executed; any remaining words are passed as arguments to the
command. For example,

who

is a command that prints the names of users logged in. The command

Is -I

prints a list of files in the current directory. The argument -I tells Is to print status informa
tion, size and the creation date for each file.

1.2 Background commands

To execute a command the shell normally creates a new process and waits for it to finish. A
command may be run without waiting for it to finish. For example,

cc pgm.c &

calls the C compiler to compile the file pgm.c. The trailing & is an operator that instructs the
shell not to wait for the command to finish. To help keep track of such a process the shell
reports its process number following its creation. A list of currently active processes may be
obtained using the ps command.

1.3 Input output redirection
Most commands produce output on the standard output that is initially connected to the termi
nal. This output may be sent to a file by writing, for example,

Is -I > file

The notation >.file is interpreted by the shell and is not passed as an argument to Is. If file does
not exist then the shell creates it; otherwise the original contents of .file are replaced with the
output from Is. Output may be appended to a file using the notation

- 2 -

Is-I »file

In this case .tile is also created if it does not ah;eady exist.

The standard input of a command may be taken from a file instead of the terminal by writing,
for example,

wc <file

The command wc reads its standard input (in this case redirected from file) and prints the
number of characters, words and lines found. If only the number of lines is required then

wc -I <file

could be used.

1.4 Pipelines and filters

The standard output of one command may be connected to the standard input of another by
writing the 'pipe' operator, indicated by I, as in,

Is -I I wc

Two commands connected in this way constitute a plj)eline and the overall effect is the same as

Is -I > file: wc < file

except that no .file is used. Instead the two processes are connected by a pipe (see plI)e (2» and
are run in parallel. Pipes are unidirectional and synchronization is achieved by halting wc when
there is nothing to read and halting Is when the pipe is full.

A .filter is a command that reads its standard input, transforms it in some way, and prints the
result as output. One such filter, grep. selects from its input those lines that contain some
specified string. For example,

Is I grep old

prints those lines, if any, of the output from Is that contain the string old. Another useful filter
is sort. For example,

who I sort

will print an alphabetically sorted list of logged in users.

A pipeline may consist of more than two commands, for example,

Is I grep old I wc -I

prints the number of file names in the current directory containing the string old.

1.5 File name generation

Many commands accept arguments which are file names. For example.

Is -I main.c

prints information relating to the file mail/.c.

The shell provides a mechanism for generating a list of file names that match a pattern. For
example,

Is -I *.C

generates, as arguments to Is. all file names in the current directory that end in .c. The charac
ter * is a pattern that will match any string including the null string. In general pal1ems are
specified as follows.

- 3 -

* Matches any string of characters including the null string.

? Matches any single character.

I ••• 1 Matches anyone of the characters enclosed. A pair of characters separated by a
minus will match any character lexically between the pair.

For example,

[a-z]*

matches all names in the current directory beginning with one of the letters a through z.

/usr/fred/test/ ?

matches all nar:nes in the directory fusrffredftest that consist of a single character. If no file
name is found that matches the pattern then the pattern is passed, unchanged, as an argument.

This mechanism is useful both to save typing and to select names according to some pattern. It
may also be used to find files. For example,

echo /usr/fred/*/core

finds and prints the names of all core files in sub-directories of fusrffred. (echo is a standard
UNIX command that prints its arguments, separated by blanks.) This last feature can be expen
sive, requiring a scan of all sub-directories of fusrffred.

There is one exception to the general rules given for patterns. The character' .' at the start of a
file name must be explicitly matched.

echo *

will therefore echo all file names in the current directory not beginning with '.' .

echo .*

will echo all those file names that begin with '.'. This avoids inadvertent matching of the
names '.' and ' • .' which mean 'the current directory' and 'the parent directory' respectively.
(Notice that Is suppresses information for the files'.' and ' . .' .)

1.6 Quoting

Characters that have a special meaning to the shell, such as < > * ? I ", are called metachar
acters. A complete list of metacharacters is given in appendix B. Any character preceded by a
\ is quoted and loses its special meaning, if any. The \ is elided so that

echo \?

will echo a single ?, and

echo \\

will echo a single \. To allow long strings to be continued over more than one line the
sequence \newline is ignored.
\ is convenient for quoting single characters. When more than one character needs quoting the
above mechanism is clumsy and error prone. A string of characters may be quoted by enclos
ing the string between single quotes. For example,

echo xx· •• ·.·xx

will echo

xx····xx
The quoted string may not contain a single quote but may contain newlines, which are
preserved. This quoting mechanism is the most simple and is recommended for casual use.

•
- 4 -

A third quoting mechanism using double quotes is also available that prevents interpretation of
some but not all metacharacters. Discussion of the details is deferred to section 3.4.

1.7 Prompting

When the shell is used from a terminal it will issue a prompt before reading a command. By
default this prompt is '$'. It may be changed by saying, for example,

PS 1 - yesdear

that sets the prompt to be the string yesdear. If a newline is typed and further input is needed
then the shell will issue the prompt '> '. Sometimes this can be caused by mistyping a quote
mark. If it is unexpected then an interrupt (DEL) will return the shell to read another com
mand. This prompt may be changed by saying, for example,

PS2=more

1.8 The shell and login

Following IORin (t) the shell is called to read and execute commands typed at the terminal. If
the user's login directory contains the file .profile then it is assumed to contain commands and
is read by the shell before reading any commands from the terminal.

1.9 Summary

• Is
Print the names of files in the current directory.

• Is > file
Put the output from Is into .lile.

• lsi we-I
Print the number of files in the current directory.

• Is I grep old
Print those file names containing the string old.

• Is I grep old I we-I
Print the number of files whose name contains the string old.

• ee pgm.e &
Run cc in the background.

- 5 -

2.0 Shell procedures

The shell may be used to read and execute commands contained in a file. For example,

sh file [args ...]

calls the shell to read commands from .tile. Such a file is called a command procedure or shell
procedure. Arguments may be supplied with the call and are referred to in .tile using the posi
tional parameters $1. $2 •.... For example, if the file wg contains

who I grep $1

then

sh wg fred

is equivalent to

who I grep fred

UNIX files have three independent attributes, read, wrife and execute. The UNIX command
chmod (1) may be used to make a file executable. For example,

chmod +x wg

will ensure that the file wg has execute status. Following this, the command

wg fred

is equivalent to

sh wg fred

This allows shell procedures and programs to be used interchangeably. In either case a new
process is created to run the command.

As well as providing names for the positional parameters, the number of positional parameters
in the call is available as $#. The name of the file being executed is available as $0.

A special shell parameter $* is used to substitute for all positional parameters except $0. A
typical use of this is to provide some default arguments, as in,

nroff - T450 -ms $*

which simply prepends some arguments to those already given.

2.1 Control flow· for

A frequent use of shell procedures is to loop through the arguments ($1, 52, ...) executing
commands once for each argument. An example of such a procedure is lei that searches the file
lusrllib/telnos that contains lines of the form

fred mh0123
bert mh0789

The text of tel is

for i
do grep $i lusrllib/telnos; done

The command

tel fred

prints those lines in lusr/lib/telnos that contain the string fred.

- 6 -

tel fred bert

prints those lines containing fred followed by those for bert.

The for loop notation is recognized by the shell and has the general form

for name in wI w2 ...
do command-list
done

A command-list is a sequence of one or more simple commands separated or terminated by a
newline or semicolon. Furthermore, reserved words like do and done are only recognized fol
lowing a newline or semicolon. name is a shell variable that is set to the words wi w2 ... in
turn each time the command-list following do is executed. If in wI w2 . .. is omitted then the
loop is executed once for each positional parameter; that is, in $* is assumed.

Another example of the use of the for loop is the create command whose text is

for i do >$i; done

The command

create alpha beta

ensures that two empty files alpha and bela exist and are empty. The notation >.file may be
used on its own to create or clear the contents of a file. Notice also that a semicolon (or new
line) is required before done.

2.2 Control flow - case

A multiple way branch is provided for by the case notation. For example,

case $# in
1) cat »$1 ;;
2) cat »$2 <$1 ;;
"') echo 'usage: append [from] to' ;;

esac

is an append command. When called with one argument as

append file

$# is the string I and the standard input is copied onto the end of .file using the cat command.

append file 1 file2

appends the contents of .file I onto .file 2. If the number of arguments supplied to append is other
than 1 or 2 then a message is printed indicating proper usage.

The general form of the case command is

case word in
paffern) command-list;;

esac

The shell attempts to match word with each paflern. in the order in which the patterns appear.
If a match is found the associated command-list is executed and execution of the case is com
plete. Since'" is the pattern that matches any string it can be used for the default case.

A word of caution: no check is made to ensure that only one pattern matches the case argu
ment. The first match found defines the set of commands to be executed. In the example
below the commands following the second'" will never be executed.

case $# in

esac

*) .•. ~~
*) ... ~~

- 7 -

Another example of the use of the case construction is to distinguish between different forms
of an argument. The following example is a fragment of a cc command.

for i
do case $i in

-[oes]) ... ;;
-*) echo 'unknown flag $i' ;;
*.c) Ilib/cO $i ... ;;
*) echo 'unexpected argument $i' ;;
esac

done

To allow the same commands to be associated with more than one pattern the case command
provides for alternative patterns separated by a I. For example,

is equivalent to

case $i in
-x I-y)

esac

case Si in
-[xy))

esac

The usual quoting conventions apply so that

case $i in
\ ?)

will match the character ? .

2.3 Here documents

The shell procedure leI in section 2.1 uses the file lusrllib/telnos to supply the data for grep.
An alternative is to include this data within the shell procedure as a here document, as in,

for i
do grep Si «!

fred mh0123
bert mh0789

done

In this example the shell takes the lines between «! and ! as the standard input for grep.
The string! is arbitrary, the document being terminated by a line that consists of the string fol
lowing «.
Parameters are substituted in the document befor~ it is made available to grep as illustrated by
the following procedure called edg.

The call

ed $3 «%
g/SlIs/ /$2/g
w
%

edg stringl string2 file

is then equivalent to the command

ed file «%
g/stringl/s/ /string2/g
w
%

- 8 -

and changes all occurrences of sIring 1 in file to string2. Substitution can be prevented using \ to
quote the special character $ as in

ed $3 «+
l,\$s/$1/$2/g
w
+

(This version of edg is equivalent to the first except that ed will print a ? if there are no
occurrences of the string 51.) Substitution within a here document may be prevented entirely
by quoting the terminating string, for example,

grep $i «\#

The document is presented without modification to grefJ. If parameter sUbstitution is not
required in a here document this latter form is more efficient.

2.4 Shell variables

The shell provides string-valued variables. Variable names begin with a letter and consist of
letters, digits and underscores. Variables may be given values by writing, for example,

user-fred box -mOOO acct===mhOOOO

which assigns values to the variables user, box and acct. A variable may be set to the null
string by saying, for example,

null =

The value of a variable is substituted by preceding its name with 5; for example,

echo $user

will echo fred.

Variables may be used interactively to provide abbreviations for frequently used strings. For
example,

b=/usr/fred/bin
mv pgm $b

will move the file pgm from the current directory to the directory lusr/fred/bin. A more gen
eral notation is available for parameter (or variable) substitution, as in,

echo ${userl

which is equivalent to

- 9 -

echo Suser

and is used when the parameter name is followed by a letter or digit. For example,

tmp-/tmp/ps
ps a >S{tmp}a

will direct the output of ps to the file /tmp/pss. whereas,

ps a >Stmpa

would cause the value of the variable tmps to be substituted.

Except for $? the following are set initially by the shell. $? is set after executing each com
mand.

$? The exit status (return code) of the last command executed as a decimal string.
Most commands return a zero exit status if they complete successfully, otherwise
a non-zero exit status is returned. Testing the value of return codes is dealt with
later under if and while commands.

S# The number of positional parameters (in decimal). Used, for example, in the
append command to check the number of parameters.

$S The process number of this shell (in decimal). Since process numbers are
unique among all existing processes, this string is frequently used to generate
unique temporary file mimes. For example,

ps a >/tmp/psSS

rm Itmp/psSS

S! The process number of the last process run in the background (in decimal).

S- The current shell flags, such as -x and -v.
Some variables have a special meaning to the shell and should be avoided for general use.

SMAIL When used interactively the shell looks at the file specified by this variable
before it issues a prompt. If the specified file has been modified since it was last
looked at the shell prints the message you have mail before prompting for the
next command. This variable is typically set in the file . profile. in the user's
login directory. For example,

MAIL-/usr/maillfred

SHOME The default argument for the cd command. The current directory is used to
resolve file name references that do not begin with a / , and is changed using the
cd command. For example,

cd lusr/fred/bin

makes the current directory /usr/fred/bin.

cat wn

will print on the terminal the file wn in this directory. The command cd with no
argument is equivaient to

cd SHOME

This variable is also typically set in the the user's login profile.

SPATH A list of directories that contain commands (the search path). Each time a com
mand is executed by the shell a list of directories is searched for an executable

- 10 -

file. If $PATH is not set then the current directory, Ibin, and lusrlbin are
searched by default. Otherwise SPA TH consists of directory names separated by
.. For example,

PATH = :/usr/fred/bin :/bin :/usr/bin

specifies that the current directory (the null string before the first :),
lusrlfredlbin, Ibin and lusrlbin are to be searched in that order. In this way
individual users can have their own 'private' commands that are accessible
independently of the current directory. If the command name contains a I then
this directory search is not used; a single attempt is made to execute the com
mand.

$PSJ The primary shell prompt string, by default, '$ '.

$PS2 The shell prompt when further input is needed, by default, '> '
$IFS The set of characters used by blank interpretation (see section 3.4).

2.5 The test command

The test command, although not part of the shell, is intended for use by shell programs. For
example,

test -f file

returns zero exit status if .file exists and non-zero exit status otherwise. In general test evaluates
a predicate and returns the result as its exit status. Some of the more frequently used fest argu
ments are given here, see test (1) for a complete specification.

test s
test -f file
test -r file
test -w file
test -d file

true if the argument s is not the null string
true if file exists
true if file is readable
true if file is writable
true if file is a directory

2.6 Control flow - while

The actions of the for loop and the case branch are determined by data available to the shell.
A while or until loop and an if then else branch are also provided whose actions are deter
mined by the exit status returned by commands. A while loop has the general form

while command-list,
do command-list!
done

The value tested by the while command is the exit status of the last simple command following
while. Each time round the loop command-list, is executed; if a zero exit status is returned
then command-list] is executed; otherwise, the loop terminates. For example,

is equivalent to

while test $1
do .,.

shift
done

for i
do ...
done

shi/i is a shell command that renames the positional parameters $2, 53, ... as 51, 52, ... and
loses 51. .

- 11 -

Another kind of use for the while/until loop is to wait until some external event occurs and
then run some commands. In an until loop the termination condition is reversed. For exam
ple,

until test -f file
do sleep 300; done
commands

will loop until file exists. Each time round the loop it waits for 5 minutes before trying again.
(Presumably another process will eventually create the file.)

2.7 Control flow - If

Also available is a general conditional branch of the form,

If command-list
then command-list
else command-list
fi

that tests the value returned by the last simple command following if.

The if command may be used in conjunction with the test command to test for the existence of
a file as in

if test -f file
then process .file
else do something else
fi

An example of the use of if. ease and for constructions is given in section 2.10.

A multiple test If command of the form

if ...
then
else if ...

then
else if ...

fi
fi

fi

may be written using an extension of the if notation as,

if ...
then
elif
then
elif

fi

The following example is the touch command which changes the 'last modified' time for a list
of files. The command may be used in conjunction with make (1) to force recompilation of a
list of files.

flag
for i
do case Si in

-c) flag-N;;
*) if test -f Si

- 12 -

then In Si junkSS; rm junkSS
elif test Sflag
then echo file \'Si\' does not exist
else >Si
fi

esac
done

The -c flag is used in this command to force subsequent files to be created if they do not
already exist. Otherwise, if the file does not exist, an error message is printed. The shell vari
able flag is set to some non-null string if the -c argument is encountered. The commands

In ..• ; rm ...

make a link to the file and then remove it thus causing the last modified date to be updated.

The sequence

if commandl
then command2
fi

may be written

command 1 && command2

Conversely,

command 1 I I command2

executes command2 only if command J fails. In each case the value returned is that of the last
simple command executed.

2.8 Command grouping

Commands may be grouped in two ways,

{ command-list; I
and

(command-list)

In the first command-list is simply executed. The second form executes command-list as a
separate process. For example,

(cd x; rm junk)

executes rm junk in the directory x without changing the current directory of the invoking shell.

The commands

cd x; rm junk

have the same effect but leave the invoking shell in the directory x.

- 13 •

2.9 Debugging shell procedures

The shell provides two tracing mechanisms to help when debugging shell procedures. The first
is invoked within the procedure as

set -v

(v for verbose) and causes lines of the procedure to be printed as they are read. It is useful to
help isolate syntax errors. It may be invoked without modifying the procedure by saying

sh -v proc ...

where proc is the name of the shell procedure. This flag may be used in conjunction with the
-n flag which prevents execution of subsequent commands. (Note that saying set -11 at a ter
minal will render the terminal useless until an end-of-file is typed.)

The command

set -x

will produce an execution trace. Following parameter substitution each command is printed as
it is executed. (Try these at the terminal to see what effect they have.) Both flags may be
turned off by saying

set -

and the current setting of the shell flags is available as S- .

2.10 The man command

The following is the man command which is used to print sections of the UNIX manual. It is
called, for example, as

man sh
man -t ed
man 2 fork

In the first the manual section for sh is printed. Since no section is specified, section 1 is used.
The second example will typeset (-t option) the manual section for ed. The last prints the fink
manual page from section 2.

- 14 -

cd lusrlman

: 'colon is the comment command'
: 'default is nroft' (SN), section 1 (Ss)'
N-n s-1

for i
do case Si in

s Si ~~

-n) N n ~~

-.) echo unknown flag \'Si\' ~;

.) if test -f manSs/Si.Ss

esac
done

then S{N}roft' manO/S{N}aa manSs/Si.$s
else : 'look through all manual sections'

found-no

fi

for j in 1 2 3 4 5 6 7 8 9
do if test -f manSj/Si.Sj

then man $j Si .
found-yes

fi
done
case $found in

no) echo 'Si: manual page not found'
esac

Figure 1. A version of the man command

- 15 -

3.0 Keyword parameters

Shell variables may be given values by assignment or when a shell procedure is invoked. An
argument to a shell procedure of the .form name-value that precedes the command name
causes value to be assigned to name before execution of the procedure begins. The value of
name in the invoking shell is not affected. For example,

user -fred command

will execute command with user set to fred The -k flag causes arguments of the form
name-value to be interpreted in this way anywhere in the argument list. Such names are some
times called keyword parameters. If any arguments remain they are available as positional
parameters $1, $2, ••••

The set command may also be used to set positional parameters from within a procedure. For
example,

set - •

will set $1 to the first file name in the current directory, $2 to the next, and so on. Note that
the first argument, -, ensures correct treatment when the first file name begins with a - .

3.1 Parameter transmission

When a shell procedure is invoked both positional and keyword parameters may be supplied
with the call. Keyword parameters are also made available implicitly to a shell procedure by
specifying in advance that such parameters are to be exported. For example.

export user box

marks the variables user and box for export. When a shell procedure is invoked copies are
made of all exportable variables for use within the invoked procedure. Modification of such
variables within the procedure does not affect the values in the invoking shell. It is generally
true of a shell procedure that it may not modify the state of its caller without explicit request
on the part of the caller. (Shared file descriptors are an exception to this rule.)

Names whose value is intended to remain constant may be declared readon/y. The form of this
command is the same as that of the export command.

readonly name ••.

Subsequent attempts to set readonly variables are illegal.

3.2 Parameter substitution
If a shell parameter is not set then the null string is substituted for it. For example, if the vari
able d is not set

echo Set

or

echo SId)

will echo nothing. A default string may be given as in

echo S{d-.)

which will echo the value of the variable d if it is set and '.' otherwise. The default string is
evaluated using the usual quoting conventions so that

echo S{d-'·')

will echo * if the variable d is not set. Similarly

- 16 -

echo S{d-Sl}

will echo the value of d if it is set and the value (if any) of $1 otherwise. A variable may be
assigned a default value using the notation

echo S{d-.}

which substitutes the same string as

echo S{d-.}

and if d were not previously set then it will be set to the string '.'. (The notation S{ ••• - ••• l is
not available for positional parameters.)

If there is no sensible default then the notation

echo S{d?message}

will echo the value of the variable d if it has one, otherwise message is printed by the shell and
execution of the shell procedure is abandoned. If message is absent then a standard message is
printed. A shell procedure that requires some parameters to be set might start as follows.

: S{user?} S{acct?} S{bin?}

Colon (:) is a command that is built in to the shell and does nothing once its arguments have
been evaluated. If any of the variables user, acet or bin are not set then the shell will abandon
execution of the procedure.

3.3 Command substitution
The standard output from a command can be substituted in a similar way to parameters. The
command pwd prints on its standard output the name of the current directory. For example, if
the current directory is lusr/fred/bin then the command

d-'pwd'

is equivalent to

d -/usr/fred/bin

The entire string between grave accents C •.• ') is taken as the command to be executed and is
replaced with the output from the command. The command is written using the usual quoting
conventions except that a ' must be escaped using a \. For example,

Is 'echo "SI It-

is equivalent to

Is SI

Command substitution occurs in all contexts where parameter substitution occurs (jncluding
here documents) and the treatment of the resulting text is the same in both cases. This
mechanism allows string processing commands to be used within shell procedures. An example
of such a command is base name which removes a specified suffix from a string. For example,

base name main.c .c

will print the string main. Its use is illustrated by the following fragment from a cc command.

case SA in

*.c) B 'base name SA .c'

esac

- 17 -

that sets B to the part of $A with the suffix .c stripped.

Here are some composite examples.

• for i in 'Is -t'; do •..
The variable I is set to the names of files in time order, most recent first.

• set 'date'; echo $6 S2 $3, $4
will print; e.g., 1977 Nov 1, 23:59:59

3.4 Evaluation and quoting

The shell is a macro processor that provides parameter substitution, command substitution and
file name generation for the arguments to commands. This section discusses the order in which
these evaluations occur and the effects of the various quoting mechanisms.

Commands are parsed initially according to the grammar given in appendix A. Before a com
mand is executed the following substitutions occur.

• parameter substitution, e.g. $user

• command substitution, e.g. 'pwd'

Only one evaluation occurs so that if, for example, the value of the variable X is the
string $y then

echo SX

will echo $y.

• blank interpretation

Following the above substitutions the resulting characters are broken into non-blank
words (blank interpretatiotd. For this purpose 'blanks' are the characters of the
string SIFS. By default, this string consists of blank, tab and newline. The null
string is not regarded as a word unless it is quoted. For example,

echo .,

will pass on the null string as the first argument to echo, whereas

echo Snull

will call echo with no arguments if the variable null is not set or set to the null
string.

• file name generation

Each word is then scanned for the file pattern characters *, ? and 1 ••• 1 and an alpha
betical list of file names is generated to replace the word. Each such file name is a
separate argument.

The evaluations just described also occur in the list of words associated with a for loop. Only
substitution occurs in the word used for a case branch.

As well as the quoting mechanisms described earlier using \ and ' .. : a third quoting mechan
ism is provided using double quotes. Within double quotes parameter and command substitu
tion occurs but file name generation and the interpretation of blanks does not. The following
characters have a special meaning within double quotes and may be quoted using \ .

For example,

$

"
\

parameter substitution
command substitution
ends the quoted string
quotes the special characters $, " \

echo "Sx"

- 18 -

will pass the value of the variable x as a single argument to echo. Similarly,

echo "$*"

will pass the positional parameters as a single argument and is equivalent to

echo "$1 $2 ... "

The notation $@ is the same as $* except when it is quoted.

echo "$@"

will pass the positional parameters, unevaluated, to echo and is equivalent to

echo "$1" "$2" ...

The following table gives, for each quoting mechanism, the shell metacharacters that are
evaluated.

metacharacter
\ $ • "
n n n n n
y n n t n n

" y y n y t n

t terminator
y interpreted
n not interpreted

Filure 2. QuotiDl mechanisms

In cases where more than one evaluation of a string is required the built-in command eval may
be used. For example, if the variable X has the value $y, and if y has the value pqr then

eval echo $X

will echo the string pqr.

In general the eval command evaluates its arguments (as do all commands) and treats the result
as input to the shell. The input is read and the resulting command(s) executed. For example,

is equivalent to

wg -' eva I who I grep'
$wg fred

who I grep fred

In this example, eval is required since there is no interpretation of metacharacters, such as I t
followinl substitution.

3.5 Error handlinl
The treatment of errors detected by the shell depends on the type of error and on whether the
shell is being used interactively. An interactive shell is one whose input and output are con
nected to a terminal (as determined by gtty (2». A shell invoked with the -i flag is also
interactive.

Execution of a command (see also 3.7) may fail for any of the following reasons.

• Input output redirection may fail. For example, if a file does not exist or cannot be
created.

- 19 -

• The command itself does not exist or cannot be executed.

• The command terminates abnormally, for example, with a "bus error" or "memory fault".
See Figure 2 below for a complete list of UNIX signals.

• The command terminates normally but returns a non-zero exit status.

In all of these cases the shell will go on to execute the next command. Except for the last case
an error message will be printed by the shell. All remaining errors cause the shell to exit from
a command procedure. An interactive shell will return to read another command from the ter
minal. SUch. errors include the following.

• Syntax errors. e.g., if •.. then ... done

• A signal such as interrupt. The shell waits for the current command, if any, to finish exe
cution and then either exits or returns to the terminal.

• Failure of any of the built-in commands such as cd.

The shell flag -e causes the shell to terminate if any error is detected.

1 hangup
2 interrupt
3* quit
4* illegal instruction
5* trace trap
6* lOT instruction
7* EMT instruction
8* floating point exception
9 kill (cannot be caught or ignored)
10* bus error
11* segmentation violation
12* bad argument to system call
13 write on a pipe with no one to read it
14 alarm clock
15 software termination (from kill (1»

Filure 3. UNIX silna.s

Those signals marked with an asterisk produce a core dump if not caught. However, the shell
itself ignores quit which is the only external signal that can cause a dump. The signals in this
list of potential interest to shell programs are 1, 2, 3, 14 and 15.

3.6 Fault handllna
Shell procedures normally terminate when an interrupt is received from the terminal. The trap
command is used if some cleaning up is required, such as removing temporary files. For exam
ple,

trap 'rm Itmp/psSS~ exit' 2

sets a trap for signal 2 (terminal interrupt), and if this signal is received will execute the com
mands

rm Itmp/psSS~ exit

exit is another built-in command that terminates execution of a shell procedure. The exit is
required~ otherwise, after the trap has been taken, the shell will resume executing the pro
cedure at the place where it was interrupted.
UNIX signals can be handled in one of three ways. They can be ignored, in which case the sig
nal is never sent to the process. They can be caught, in which case the process must decide
what action to take when the signal is received. Lastly, they can be left to cause termination of

- 20-

the process without it having to take any further action. If a signal is being ignored on entry to
the shell procedure, for example, by invoking it in the background (see 3.7) then trap com
mands (and the signa\) are ignored.

The use of trap is illustrated by this modified version of the touch command (Figure 4). The
cleanup action is to remove the file junkSS.

flag
trap 'rm -f junk$$; exit' 1 2 3 15
for i
do case Si in

-c) flag == N ;;
*) if test -f Si

esac
done

then In Si junkSS; rm junkSS
elif test Sflag
then echo file \'Si\' does not exist
else >Si
fi

Figure 4. The touch command

The trap command appears before the creation of the temporary file; otherwise it would be pos
sible for the process to die without removing the file.

Since there is no signal 0 in UNIX it is used by the shell to indicate the commands to be exe
cuted on exit from the shell procedure.

A procedure may, itself, elect to ignore signals by specifying the null string as the argument to
trap. The following fragment is taken from the nohup command.

trap" 1 2 3 15

which causes hangup. interrupt. quit and kill to be ignored both by the procedure and by invoked
commands.

Traps may be reset by saying

trap 2 3

which resets the traps for signals 2 and 3 to their default values. A list of the current values of
traps may be obtained by writing

trap

The procedure scan (Figure 5) is an example of the use of trap where there is no exit in the
trap command. scan takes each directory in the current directory, prompts with its name, and
then executes commands typed at the terminal until an end of file or an interrupt is received.
Interrupts are ignored while executing the requested commands but cause termination when
scan is waiting for input.

d-'pwd'
for i in *
do if test -d Sd/$i

then cd $d/$i
while echo "$i:"

trap exit 2
read x

• 21 •

do trap: 2; eva I $x; done
fi

done

Figure 5. The scan command

read x is a built-in command that reads one line from the standard input and places the result in
the variable x. It returns a non-zero exit status if either an end-of-file is read or an interrupt is
received.

3.7 Command execution

To run a command (other than a built-in) the shell first creates a new process using the system
call fork. The execution environment for the command includes input, output and the states of
signals, and is established in the child process before the command is executed. The built-in
command exec is used in the rare cases when no fork is required and simply replaces the shell
with a new command. For example, a simple version of the nohup command looks like

trap " 1 2 3 15
exec $*

The trap turns off the signals specified so that they are ignored by subsequently created com
mands and exec replaces the shell by the command specified.

Most forms of input output redirection have already been described. In the following word is
only subject to parameter and command substitution. No file name generation or blank
interpretation takes place so that, for example,

echo ... >*.c

will write its output into a file whose name is *.c. Input output specifications are evaluated left
to right as they appear in the command.

> word The standard output (file descriptor 1) is sent to the file word which is created if it
does not already exist.

»word . The standard output is sent to file word If the file exists then output is appended
(by seeking to the end)~ otherwise the file is created.

< word The standard input (file descriptor 0) is taken from the file word.

«word The standard input is taken from the lines of shell input that follow up to but not
including a line consisting only of word If word is quoted then no interpretation
of the document occurs. If word is not quoted then parameter and command sub
stitution occur and \ is used to quote the characters \ S . and the first character of
word. In the latter case \newline is ignored (c.f. quoted strings).

>& digit The file descriptor digit is duplicated using the system call dup (2) and the result is
used as the standard output.

<& digit The standard input is duplicated from file descriptor digit.

- 22 -

<&- The standard input is closed.

>&- The standard output is closed.

Any of the above may be preceded by a digit in which case the file descriptor created is that
specified by the digit instead of the default 0 or 1. For example,

... 2>file

runs a command with message output (file descriptor 2) directed to .file .

... 2>&1

runs a command with its standard output and message output merged. (Strictly speaking file
descriptor 2 is created by duplicating file descriptor I but the effect is usually to merge the two
streams.)

The environment for a command run in the background such as

list *.c I Ipr &

is modified in two ways. Firstly, the default standard input for such a command is the empty
file Idev/null. This prevents two processes (the shell and the command), which are running
in parallel, from trying to read the same input. Chaos would ensue if this were not the case.
For example,

ed file &

would allow both the editor and the shell to read from the same input at the same time.

The other modification to the environment of a background command is to turn off the QUIT
and INTERRUPT signals so that they are ignored by the command. This allows these signals
to be used at the terminal without causing background commands to terminate. For this reason
the UNIX convention for a signal is that if it is set to 1 (ignored) then it is never changed even
for a short time. Note that the shell commarid trap has no effect for an ignored signal.

3.8 Invoking the shell

The following flags are interpreted by the shell when it is invoked. If the first character of
argument zero is a minus, then commands are read from the file . profi Ie .

-c string
If the -c flag is present then commands are read from string.

-s If the -s flag is present or if no arguments remain then commands are read from the
standard input. Shell output is written to file descriptor 2.

-i If the -i flag is present or if the shell input and output are attached to a terminal (as lOki
by gtty) then this shell is interactive. In this case TERMINATE is ignored (so that kill 0
does not kill an interactive shell) and INTERRUPT is caught and ignored (so that wait is
interruptable). In all cases QUIT is ignored by the shell.

A cknow ledge men ts

The design of the shell is based in part on the original UNIX shell3 and the PWB/lJNIX shell,4
some features having been taken from both. Similarities also exist with the command inter
preters of the Cambridge Multiple Access SystemS and of CTSS.6

I would like to thank Dennis Ritchie and John Mashey for many discussions during the design
of the shell. I am also grateful to the members of the Computing Science Research Center and
to Joe Maranzano for their comments on drafts of this document.

- 23 -

References

1. B. W. Kernighan, UNIX for Beginners, Bell Laboratories internal memorandum (1978).

2. K. Thompson and D. M. Ritchie, UNIX Programmer's Manual, Bell Laboratories (978).
Seventh Edition.

3. K. Thompson, ··The UNIX Command Language," pp. 375-384 in Structured
Programming-lrI!otech State of the Art Report, Infotech International Ltd., Nicholson
House, Maidenhead, Berkshire, England (March 1975).

4. J. R. Mashey, PWBIUNIX Shell Tutorial, Bell Laboratories internal memorandum (Sep
tember 30, 1977).

5. D. F. Hartley (Ed.), The Cambridge Multiple Access System - Users Reference Manual,
University Mathematical Laboratory, Cambridge, England (1968).

6. P. A. Crisman (Ed.), The Compatible Time-Sharing System, M.I.T. Press, Cambridge, Mass.
(1965).

- 24 -

Appendix A . Grammar

item: word
input-output
name = value

simple-command: item
simple-command item

command: simple-comma nd
(command-list)
I command-list}
for name do command-list done
for name in word ... do command-list done
while command-list do command-list done
until command-list do command-list done
case word in case-part . •• esac
if command-list then command-list else-part Ii

pipeline: command
pipeline I command

alldor: pipeline
andor && pipeline
andor I I pipeline

command-list: andor

input-output:

file:

case-part:

pa ttern:

else-part:

empty:

word:

name:

digit:

command-list;
command-list &
command-list; andor
command-list & andor

> file
< file
» word
« word

word
& digit
&-

pattern) command-list;;

word
pattern I word

elif command-list then command-list else-part
else command-list
empty

a sequence of non-blank characters

a sequence of letters, digits or underscores starting with a letter

0123456789

- 25 -

Appendix B - Meta-characters and Rese"ed Words
a) syntactic

I pipe symbol

"" 'aneif' symbol
II 'orf symbol

command separator
.. case delimiter
"

" background commands
() command grouping

< input red~rection

« input from a here document

> output creation

» output append

b) patterns

* match any character(s) including none

? match any single character

1. •• 1 match any of the enclosed characters

c) substitution

S{ ... } substitute shell variable

substitute command output

d) quoting

\

" "

quote the next character

quote the enclosed characters except for'

quote the enclosed characters except for S ' \ "

e) reserved words

if then else ellf ft
case in esac
for while until do done
{ }

LEARN - Computer-Aided Instruction on UNIX
(Second Edition)

Brian W Kernighan

Michael E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper describes the second version of the learn program for interpret
ing CAl scripts on the UNlxt operating system, and a set of scripts that provide
a computerized introduction to the system.

Six current scripts cover basic commands and file handling, the editor,
additional file handling commands, the eqn program for mathematical typing,
the "-ms" package of formatting macros, and an introduction to the C pro
gramming language. These scripts now include a total of about 530 lessons.

Many users from a wide variety of backgrounds have used learn to
acquire basic UNIX skills. Most usage involves the first two scripts, an introduc
tion to files and commands, and the text editor.

The second version of learn is about four times faster than the previous
one in CPU utilization, and much faster in perceived time because of better
overlap of computing and printing. It also requires less file space than the first
version. Many of the lessons have been revised; new material has been added
to reflect changes and enhancements in the UNIX system itself. Script-writing is
also easier because of revisions to the script language.

January 30, 1979

tUNIX is a Trademark of Bell Laboratories.

LEARN - Computer-Aided Instruction on UNIX
(Second Edition)

Brian W. Kernighan

Michael E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

1. Introduction.

Learn is a driver for CAl scripts. It is intended to permit the easy composition of lessons
and lesson fragments to teach people computer skills. Since it is teaching the same system on
which it is implemented, it makes direct use of UNIXt facilities to create a controlled UNIX
environment. The system includes two main parts: (I) a driver that interprets the lesson
scripts~ and (2) the lesson scripts themselves. At present there are six scripts:

ing:

basic file handling commands

the UNIX text editor ed

advanced file handling

the eqn language for typing mathematics

the" -ms" macro package for document formatting

the C programming language

The purported advantages of CAl scripts for training in computer skills include the follow-

(a) students are forced to perform the exercises that ~re in fact the basis of training in
any case;

(b) students receive immediate feedback and confirmation of progress;

(c) students may progress at their own rate;

(d) no schedule requirements are imposed; students may study at any time convenient
for them;

(e) the lessons may be improved individually and the improvements are immediately
available to new users;

(0 since the student has access to a computer for the CAl script there is a place to do
exercises;

(g) the use of high technology will improve student motivation and the interest of their
management.

Opposed to this, of course, is the absence of anyone to whom the student may direct questions.
If CAl is used without a "counselor" or other assistance, it should properly be compared to a
textbook, lecture series, or taped course, rather than to a seminar. CAl has been used for
many years in a variety of educational areas'!. 2. 3 The use of a computer to teach itself, how
ever, offers unique advantages. The skills develoRed to get through the script are exactly those
needed to use the computer; there is no waste effort.

The scripts written so far are based on some familiar assumptions about education; these

tUNIX is a Trademark of Bell Laboratories.

- 2 -

assumptions are outlined in the next section. The remaining sections describe the operation of
the script driver and the particular scripts now available. The driver puts few restrictions on the
script writer, but the current scripts are of a rather rigid and stereotyped form in accordance
with the theory in the next section and practical limitations.

2. Educational Assumptions and Design.

First, the way to teach people how to do something is to have them do it. Scripts should
not contain long pieces of explanation; they should instead frequently ask the student to do
some task. So teaching is always by example: the typical script fragment shows a small example
of some technique and then asks the user to either repeat that example or produce a variation
on it. All are intended to be easy enough that most students will get most questions right, rein
forcing the desired behavior.

Most lessons fall into one of three types. The simplest presents a lesson and asks for a
yes or no answer to a question. The student is given a chance to experiment before replying.
The script checks for the correct reply. Problems of this form are sparingly used.

The second type asks for a word or number as an answer. For example a lesson on files
might say

How many.files are there in the current directory? Type "answer N", where N is the number
offiles.

The student is expected to respond (perhaps after experimenting) with

answer 17

or whatever. Surprisingly often, however, the idea of a substitutable argument (i.e., replacing
N by 17) is difficult for non-programmer students, so the first few such lessons need real care.

The third type of lesson is open-ended - a task is set for the student, appropriate parts of
the input or output are monitored, and the student types ready when the task is done. Figure 1
shows a sample dialog that illustrates the last of these, using two lessons about t.he cat (con
catenate, i.e., print) command taken from early in the script that teaches file handling. Most
learn lessons are of this form.

After each correct response the computer congratulates the student and indicates the les
son number that has just been completed, permitting the student to restart the script after that
lesson. If the answer is wrong, the student is offered a chance to repeat the lesson. The
"speed" rating of the student (explained in section 5) is given after the lesson number when
the lesson is completed successfully; it is printed only for the aid of script authors checking out
possible errors in the lessons.

It is assumed that there is no foolproof way to determine if the student truly "under
stands" what he or she is doing; accordingly, the current learn scripts only measure perfor
mance, not comprehension. If the student can perform a given task, that is deemed to be
"learning. "4

The main point of using the computer is that what the student does is checked for
correctness immediately. Unlike many CAl scripts, however, these scripts provide few facilities
for dealing with wrong answers. In practice, if most of the answers are not right the script is a
failure; the universal solution to student error is to provide a new, easier script. Anticipating
possible wrong answers is an endless job, and it is really easier as well as better to provide a
simpler script.

Along with this goes the assumption that anything can be taught to anybody if it can be
broken into sufficiently small pieces. Anything not absorbed in a single chunk is just subdi
vided.

To avoid boring the faster students, however, an effort is made in the files and editor
scripts to provide three tracks of different difficulty. The fastest sequence of lessons is aimed at
roughly the bulk and speed of a typical tutorial manual and should be adequate for review and
for well-prepared students. The next track is intended for most users and is roughly twice as

- 3 •

Figure I: Sample dialog from basic files script

(Student responses in italics; '$' is the prompt)

A file can be printed on your terminal
by using the "cat" command. Just say
"cat file" where "file" is the file name.
For example, there is a file named
"food" in this directory. List it
by saying "cat food"; then type "ready".
$ cal/ood

this is the file
named food.

$ ready

Good. Lesson 3.3a 0)

Of course, you can print any file with "cat".
In particular, it is common to first use
"Is" to find the name of a file and then "cat"
to print it. Note the difference between
"Is", which tells you the name of the file,
and "cat", which tells you. the contents.
One file in the current directory is named for
a President. Print the file, then type "ready".
$ cat President
cat: can't open President
$ ready

Sorry, that's not right. Do you want to try again? yes
Try the problem again.
$ Is
.ocopy
Xl
roosevelt
$ cat roosevelt

this file is named roosevelt
and contains three lines of
text.

$ ready

Good. Lesson 3.3b (0)

The "cat" command can also print several files
at once. In fact, it is named "cat" as an abbreviation
for "concatenate"

long. Typically, for example, the fast track might present an idea and ask for a variation on the
example shown; the normal track will first ask the student to repeat the example that was
shown before attempting a variation. The third and slowest track, which is often three or four
times the length of the fast track, is intended to be adequate for anyone. (The lessons of Fig
ure 1 are from the third track.) The multiple tracks also mean that a student repeating a course
is unlikely to hit the same series of lessons; this makes it profitable for a shaky user to back up

- 4 -

and try again, and many students have done so.

The tracks are not completely distinct, however. Depending on the number of correct
answers the student has given for the last few lessons, the program may switch tracks. The
driver is actually capable of following an arbitrary directed graph of lesson sequences, as dis
cussed in section 5. Some more structured arrangement, however, is used in all current scripts
to aid the script writer in organizing the material into lessons. It is sufficiently difficult to write
lessons that the three-track theory is not followed very closely except in the files and editor
scripts. Accordingly, in some cases, the fast track is produced merely by skipping lessons from
the slower track. In others, there is essentially only one track.

The main reason for using the learn program rather than simply writing the same material
as a workbook is not the selection of tracks, but actual hands-on experience. Learning by doing
is much more effective than pencil and paper exercises.

Learn also provides a mechanical check on performance. The first version in fact would
not let the student proceed unless it received correct answers to the questions it set and it
would not tell a student the right answer. This somewhat Draconian approach has been
moderated in version 2. Lessons are sometimes badly worded or even just plain wrong; in such
cases, the student has no recourse. But if a student is simply unable to complete one lesson,
that should not prevent access to the rest. Accordingly, the current version of learn allows the
student to skip a lesson that he cannot pass; a "no" answer to the "Do you want to try again?"
question in Figure 1 will pass to the next lesson. It is still true that learn will not tell the stu
dent the right answer.

Of course, there are valid objections to the assumptions above. In particular, some stu
dents may object to not understanding what they are doing; and the procedure of smashing
everything into small pieces may provoke the retort "you can't cross a ditch in two jumps."
Since writing CAl scripts is considerably more tedious than ordinary manuals, however, it is
safe to assume that there will always be alternatives to the scripts as a way of learning. In fact,
for a reference manual of 3 or 4 pages it would not be surprising to have a tutorial manual of
20 pages and a (multi-track) script of 100 pages. Thus the reference manual will exist long
before the scripts.

3. Scripts.

As mentioned above, the present scripts try at most to follow a three-track theory. Thus
little of the potential complexity of the possible directed graph is employed, since care must be
taken in lesson construction to see that every necessary fact is presented in every possible path
through the units. In addition, it is desirable that every unit have alternate successors to deal
with student errors.

In most existing courses, the first few lessons are devoted to checking prerequisites. For
example, before the student is allowed to proceed through the editor script the script verifies
that the student understands files and is able to type. It is felt that the sooner lack of student
preparation is detected, the easier it will be on the student. Anyone proceeding through tht!
scripts should be getting mostly correct answers; otherwise, the system will be unsatisfactory
both because the wrong habits are being learned and because the scripts make little effort to
deal with wrong answers. Unprepared students should not be encouraged to continue with
scripts.

There are some preliminary items which the student must know before any scripts can be
tried. In particular, the student must know how to connect to a UNIX system, set the terminal
properly, log in, and execute simple commands (e.g., learn itself). In addition, the character
erase and line kill conventions (# and @) should be known. It is hard to see how this much
could be taught by computer-aided instruction, since a student who does not know these basic
skills will not be able to run the learning program. A brief description on paper is provided
(see Appendix A), although assistance will be needed for the first few minutes. This assis
tance, however, need not be highly skilled.

- 5 -

The first script in the current set deals with files. It assumes the basic knowledge above
and teaches the student about the Is, cat, mv, rm, cp and difJ commands. It also deals with
the abbreviation characters", ?, and [] in file names. It does not cover pipes or 110 redirec
tion, nor does it present the many options on the Is command.

This script contains 31 lessons in the fast track; two are intended as prerequisite checks,
seven are review exercises. There are a total of 75 lessons in all three tracks, and the instruc
tional passages typed at the student to begin each lesson total 4,476 words. The average lesson
thus begins with a 60-word message. In general, the fast track lessons have somewhat longer
introductions, and the slow tracks somewhat shorter ones. The longest message is 144 words
and the shortest 14.

The second script trains students in the use of the context editor ed, a sophisticated editor
using regular expressions for searching.5 All editor features except encryption, mark names and
';' in addressing are covered. The fast track contains 2 prerequisite checks, 93 lessons, and a
review lesson. It is supplemented by 146 additional lessons in other tracks.

A comparison of sizes may be of interest. The ed description in the reference manual is
2,572 words long. The ed tutorial6 is 6,138 words long. The fast track through the ed script is
7,407 words of explanatory messages, and the total ed script, 242 lessons, has 15,615 words.
The average ed lesson is thus also about 60 words; the largest is 171 words and the smallest 10.
The original ed script represents about three man-weeks of effort.

The advanced file handling script deals with Is options, I/O diversion, pipes, and support
ing programs like pr, we, tail, spell and grep. (The basic file handling script is a prerequisite.)
It is not as refined as the first two scripts; this is reflected at least partly in the fact that it pro
vides much less of a full three-track sequence than they do. On the other hand, since it is per
ceived as "advanced," it is hoped that the student will have somewhat more sophistication and
be better able to cope with it at a reasonably high level of performance.

A fourth script covers the eqn language for typing mathematics. This script must be run
on a terminal capable of printing mathematics, for instance the DASI 300 and similar Diablo
based terminals, or the nearly extinct Model 37 teletype. Again, this script is relatively short of
tracks: of 76 lessons, only 17 are in the second track and 2 in the third track. Most of these
provide additional practice for students who are having trouble in the first track.

The -ms script for formatting macros is a short one-track only script. The macro pack
age it describes is no longer the standard, so this script will undoubtedly be superseded in the
future. Furthermore, the linear style of a single learn script is somewhat inappropriate for the
macros, since the macro package is composed of many independent features, and few users
need all of them. It would be better to have a selection of short lesson sequences dealing with
the features independently.

The script on C is in a state of transition. It was originally designed to follow a tutorial on
C, but that document has since become obsolete. The current script has been partially con
verted to follow the order of presentation in· The C Programming Language,7 but this job is not
complete. The C script was never intended to teach C; rather it is supposed to be a series of
exercises for which the computer provides checking and (upon success) a suggested solution.

This combination of scripts covers much of the material which any user will need to know
to make effective use of the UNIX system. With enlargement of the advanced files course to
include more on the command interpreter, there will be a relatively complete introducti.)O to
UNIX available via learn. Although we make no pretense that learn will replace other ins .ruc
tional materials, it should provide a useful supplement to existing tutorials and reference nanu
als.

- 6 -

4. Experience with Students.

Learn has been installed on many different UNIX systems. Most of the usage is on the
first two scripts, so these are more thoroughly debugged and polished. As a (random) sample
of user experience, the learn program has been used at Bell Labs at Indian Hill for 10,500 les
sons in a four month period. About 3600 of these are in the files script, 4100 in the editor, and
1400 in advanced files. The passing rate is about 80%, that is, about 4 lessons are passed for
everyone failed. There have been 86 distinct users of the files script, and 58 of the editor. On
our system at Murray Hill, there have been nearly 4000 lessons over four weeks that include
Christmas and New Year. Users have ranged in age from six up.

It is difficult to characterize typical sessions with the scripts; many instances exist of some
one doing one or two lessons and then logging out, as do instances of someone pausing in a
script for twenty minutes or more. In the earlier version of learn, the average session in the
files course took 32 minutes and covered 23 lessons. The distribution is quite broad and
skewed, however; the longest session was 130 minutes and there were five sessions shorter
than five minutes .. The average lesson took about 80 seconds. These numbers are roughly typ
ical for non-programmers; a UNIX expert can do the scripts at approximately 30 seconds per les
son, most of which is the system printing.

At present working through a section of the middle of the files script took about 1.4
seconds of processor time per lesson, and a system expert typing quickly took 15 seconds of
real time per lesson. A novice would probably take at least a minute. Thus, as a rough approx
imation, a UNIX system could support ten students working simultaneously with some spare
capacity.

S. The Script Interpreter.
The learn program itself merely interprets scripts. It provides facilities for the script writer

to capture student responses and their effects, and simplifies the job of passing control to and
recovering control from the student. This section describes the operation and usage of the
driver program, and indicates what is required to produce a new script. Readers only interested
in the existing scripts may skip this section.

The file structure used by learn is shown in Figure 2. There is one parent directory
(named lib) containing the script data. Within this directory are subdirectories, one for each
subject in which a course is available, one for logging (named log), and one in which user sub
directories are created (named play). The subject directory contains master copies of all les
sons, plus any supporting material for that subject. In a given subdirectory, each lesson is a
single text file. Lessons are usually named systematically; the file that contains lesson n is
called Ln.

When learn is executed, it makes a private directory for the user to work in, within the
learn portion of the file system. A fresh copy of all the files used in each lesson (mostly data
for the student to operate upon) is made each time a student starts a lesson, so the script writer
may assume that everything is reinitialized each time a lesson is entered. The student directory
is deleted after each session; any permanent records must be kept elsewhere.

The script writer must provide certain basic items in each lesson:

(1) the text of the lesson;

(2) the set-up commands to be executed before the user gets control;

(3) the data, if any, which the user is supposed to edit, transform, or otherwise process;

(4) the evaluating commands to be executed after the user has finished the lesson, to decide
whether the answer is right; and

(5) a list of possible successor lessons.

Learn tries to minimize the work of bookkeeping and installation, so that most of the effort
involved in script production is in planning lessons, writing tutorial paragraphs, and coding tests
of student performance.

lib

- 7 -

Figure 2: Directory structure for learn

play

files

editor

(other courses)

log

studentl

student2

LO.la
LO.lb

files for student 1. ..

files for student2 ...

lessons for files course

The basic sequence of events is as follows. First, learn creates the working directory.
Then, for each lesson, learn reads the script for the lesson and processes it a line at a time.
The lines in the script are: (1) commands to the script interpreter to print something, to create
a files, to test something, etc.; (2) text to be printed or put in a file; (3) other lines, which are
sent to the shell to be executed. One line in each lesson turns control over to the user; the
user can run any UNIX commands. The user mode terminates when the user types yes, no,
ready, or answer. At this point, the user's work is tested; if the lesson is passed, a new lesson
is selected, and if not the old one is repeated.

Let us illustrate this with the script for the second lesson of Figure 1; this is shown in
Figure 3.

Lines which begin with # are commands to the learn script interpreter. For example,

#print

causes printing of any text that follows, up to the next line that begins with a sharp.

#print file

prints the contents of file; it is the same as cat file but has less overhead. Both forms of #print
have the added property that if a lesson is failed, the #print will not be executed the second
time through; this avoids annoying the student by repeating the preamble to a lesson.

#create filename

creates a file of the specified name, and copies any subsequent text up to a # to the file. This
is used for creating and initializing working files and reference data for the lessons.

user

gives control to the student; each line he or she types is passed to the shell for execution. The
#user mode is terminated when the student types one of yes, no, ready or answer. At that
time, the driver resumes interpretation of the script.

#copyin
#uncopyin

Anything the student types between these commands is copied onto a file called . copy. This lets
the script writer interrogate the student's responses upon regaining control.

#copyout
#uncopyout

- 8 -

Figure 3: Sample Lesson

#print
Of course, you can print any file with "cat".
In particular, it is common to first use
"Is" to find the name of a file and then "cat"
to print it. Note the difference between
"Is", which tells you the name of the files,
and "cat", which tells you the contents.
One file in the current directory is named for
a President. Print the file, then type "ready".
#create roosevelt

this file is named roosevelt
and contains three lines of
text.

#copyout
#User
#uncopyout
tail - 3 .ocopy > Xl
#cmp X 1 roosevelt
#Iog
#next
3.2b 2

Between these commands, any material typed at the student by any program is copied to the file
.ocopy. This lets the script writer interrogate the effect of what the student typed, which true
believers in the performance theory of learning usually prefer to the student's actual input.

#pljJe
#unpipe

Normally the student input and the script commands are fed to the UNIX command interpreter
(the "shell") one line at a time. This won't do if, for example, a sequence of editor commands

, I

is provided, since' the input to the editor must be handed to the editor, not to the shell.
Accordingly, the material between #pljJe and #unpipe commands is fed continuously through a
pipe so that such sequences work. If copyout is also desired the copyout brackets must include
the pipe brackets.

There are several commands for setting status after the student has attempted the lesson.

#cmp .file 1 .file 2

is an in-line implementation of cmp, which compares two files for identity.

#malch stuff

The last line of the student's input is compared to SIl(ff, and the success or fail status is set
according to it. Extraneous things like the word answer are stripped before the comparison is
made. There may be several #mafch lines: this provides a convenient mechanism for handling
multiple "right" answers. Any text up to a # on subsequent lines after a successful #mafch is
printed: this is illustrated in Figure 4, another sample lesson.

#bad SIl(ff

This is similar to #malch, except that it corresponds to specific failure answers; this can be
used to produce hints for particular wrong answers that have been anticipated by the script

writer.

#succeed
#/ail

- 9 -

Figure 4: Another Sample Lesson

#print
What command will move the current line
to the end of the file? Type
"answer COMMAND", where COMMAND is the command.
#copyin
#User
#Uncopyin
#match mS
#match .mS
"mS" is easier.
#log
#next
63.1d 10

print a message upon success or failure (as determined by some previous mechanism).

When the student types one of the "commands" yes, no, ready, or answer, the driver
terminates the #user command, and evaluation of the student's work can begin. This can be
done either by the built-in commands above, such as #match and #cmp, or by status returned
by normal UNIX commands, typically grep and test. The last command should return status true
(0) if the task was done successfully and false (non-zero) otherwise; this status return tells the
driver whether or not the student has successfully passed the lesson.

Performance can be loned:
#Iogjile

writes the date, lesson, user name and speed rating, and a success/failure indication on jile.
The command

#/og

by itself writes the logging information in the logging directory within the learn hierarchy, and
is the normal form.

#next
is followed by a few lines, each with a successor lesson name and an optional speed rating on it.
A typical set might read

25.la 10
25.21 5
25.3a 2

indicating that unit 25.1a is a suitable follow-on lesson for students with a speed fating of 10
units, 25.2a for student with speed near 5, and 25.3a for speed near 2. Speed ratings are main
tained for each session with a student; the rating is increased by one each time the student gets
a lesson right and decreased by four each time the student gets a lesson wrong. Thus the driver
tries to maintain a level such that the users get 80% right answers. The maximum rating is lim
ited to· 10 and the minimum to O. The initial rating is zero unless the student specifies a
different rating when starting a session.

If the student passes a lesson, a new lesson is selected and the process repeats. If the stu
dent fails, a false status is returned and the program reverts to the previous lesson and tries

- 10 -

another alternative. If it can not find another alternative, it skips forward a lesson. The stu
dent can terminate a session at any time by typing bye, which causes a graceful exit from learn.
Hanging up is the usual novice's way out.

The lessons may form an arbitrary directed graph, although the present program imposes
a limitation on cycles in that it will not present a lesson twice in the same session. If the stu
dent is unable to answer one of the exercises correctly, the driver searches for a previous lesson
with a set of alternatives as successors (following the #next line). From the previous lesson
with alternatives one route was taken earlier; the program simply tries a different one . .

It is perfectly possible to write sophisticated scripts that evaluate the student's speed of
response, or try to estimate the elegance of the answer, or provide detailed analysis of wrong
answers. Lesson writing is so tedious already, however, that most of these abilities are likely to
go unused.

The driver program depends heavily on features of the UNIX system that are not available
on many other operating systems. These include the ease of manipulating files and directories,
file redirection, the ability to use the command interpreter as just another program (even in a
pipeline), command status testing and branching, the ability to catch signals like interrupts, and
of course the pipeline mechanism itself. Although some parts of learn might be transferable to
other systems, some generality will probably be lost.

A bit of history: The first version of learn had fewer built-in commands in the driver pro
gram, and made more use of the facilities of the UNIX system itself. For example, file com
parison was done by creating a cmp process, rather than comparing the two files within learn.
Lessons were not stored as text files, but as archives. There was no concept of the in-line
document; even #print had to be followed by a file name. Thus the initialization for each les
son was to extract the archive into the working directory (typically 4-8 files), then #print the
lesson text.

The combination of such things made learn rather slow and demanding of system
resources. The new version is about 4 or 5 times faster, because fewer files and processes are
created. Furthermore, it appears even faster to the user because in a typical lesson, the printing
of the message comes first, and file setup with #create can be overlapped with printing, so that
when the program finishes printing, it is really ready for the user to type at it.

It is also a great advantage to the script maintainer that lessons are now just ordinary text
files, rather than archives. They can be edited without any difficulty, and UNIX text manipula
tion tools can be applied to them. The result has been that there is much less resistance to
going in and fixing substandard lessons.

6. Conclusions

The following observations can be made about secretaries, typists, and other non
programmers who have used learn:

(a) A novice must have assistance with the mechanics of communicating with the computer
to get through to the first lesson or two; once the first few lessons are passed people can
proceed on their own.

(b) The terminology used in the first few lessons is obscure to those inexperienced with com
puters. It would help if there were a low level reference card for UNIX to supplement the
existing programmer oriented bulky manual and bulky reference card.

(c) The concept of "substitutable argument" is hard to grasp, and requires help.

(d) They enjoy the system for the most part. Motivation matters a great deal, however.

It takes an hour or two for a novice to get through the script on file handling. The total time
for a reasonably intelligent and motivated novice to proceed from ignorance to a reasonable
ability to create new files and manipulate old ones seems to be a few days, with perhaps half of
each day spent on the machine.

- 11 -

The normal way of proceeding has been to have students in the same room with someone
who knows the UNIX system and the scripts. Thus the student is not brought to a halt by
difficult questions. The burden on the counselor, however, is much lower than that on a
teacher of a course. Ideally, the students should be encouraged to proceed with instruction
immediately prior to their actual use of the computer. They should exercise the scripts on the
same computer and the same kind of terminal that they will later use for their real work, and
their first few jobs for the computer should be relatively easy ones. Also, both training and ini
tial work should take place on days when the hardware and software are working reliably.
Rarely is all of this possible, but the closer one comes the better the result. For example, if it
is known that the hardware is shaky one day, it is better to attempt to reschedule training for
another one. Students are very frustrated by machine downtime; when nothing is happening, it
takes some sophistication and experience to distinguish an infinite loop, a slow but functioning
program, a program waiting for the user, and a broken machine.'"

One disadvantage of training with learn is that students come to depend completely on the
CAl system, and do not try to read manuals or use other learning aids. This is unfortunate, not
only because of the increased demands for completeness and accuracy of the scripts, but
because the scripts do not cover all of the UNIX system. New users should have manuals
(appropriate for their level) and read them; the scripts ought to be altered to recommend suit
able documents and urge students to read them.

There are several other difficulties which are clearly evident. From the student's
viewpoint, the most serious is that lessons still crop up which simply can't be passed. Some
times this is due to poor explanations, but just as often it is some error in the lesson itself - a
botched setup, a missing file, an invalid test for correctness, or some system facility that
doesn't work on the local system in the same way it did on the development system. It takes
knowledge and a certain healthy arrogance on the part of the user to recognize that the fault is
not his or hers, but the script writer's. Permitting the student to get on with the next lesson
regardless does alleviate this somewhat, and the logging facilities make it easy to watch for les
sons that no one can pass, but it is still a problem.

The biggest problem with the previous learn was speed (or lack thereof) - it was often
excruciatingly slow and a significant drain on the system. The current version so far does not
seem to have that difficulty, although some scripts, notably eqn, are intrinsically slow. eqn, for
example, must do a lot of work even to print its introductions, let alone check the student
responses, but delay is perceptible in all scripts from time to time.

Another potential problem is that it is possible to break learn inadvertently, by pushing
interrupt at the wrong time, or by removing critical files, or any number of similar slips. The
defenses against such problems have steadily been improved, to the point where most students
should not notice difficulties. Of course, it will always be possible to break learn maliciously,
but this is not likely to be a problem.

One area is more fundamental - some commands are sufficiently global in their effect
that learn currently does not allow them to be executed at all. The most obvious is cd, which
changes to another directory. The prospect of a student who is learning about directories inad
vertently moving to some random directory and removing files has deterred us from even writ
ing lessons on cd, but ultimately lessons or. such topics probably should be added.

7. Acknowledgments

We are grateful to all those who have tried learn. for we have benefited greatly from their
suggestions and criticisms. In particular, M. E. Bittrich, J. L. Blue, S. I. Feldman, P. A. Fox,
and M. J. McAlpin have provided substantial feedback. Conversations with E. Z. Rothkopf also
provided many of the ideas in the system. We are also indebted to Don Jackowski for serving

• We have even known an expert programmer to decide the computer was broken when he had simply left
his terminal in local mode. Novices have great difficulties with such problems.

- 12 -

as a guinea pig for the second version, and to Tom Plum for his efforts to improve the C script.

References

1. D. L. Bitzer and D. Skaperdas, "The Economics of a Large Scale Computer Based Educa
tion System: Plato IV," pp. 17-29 in Computer Assisted Instruction, Testing and Guidance,
ed. Wayne Holtzman, Harper and Row, New York (970).

2. D. C. Gray, J. P. Hulskamp, J. H. Kumm, S. Lichtenstein, and N. E. Nimmervoll,
"COALA - A Minicomputer CAl System," IEEE Trans. Education E-20(1), pp.73-77
(Feb. 1977).

3. P. Suppes, "On Using Computers to Individualize Instruction," pp. 11-24 in The Com
puter in American Education, ed. D. D. Bushnell and D. W. Allen, John Wiley, New York
(1967).

4. B. F. Skinner, "Why We Need Teaching Machines," Harv. Educ. Review 31, pp.377-398,
Reprinted in Educational Technology, ed. J. P. DeCecco, Holt, Rinehart & Winston (New
York, 1964). (1961).

5. K. Thompson and D. M. Ritchie, UNIX Programmer's Manual, Bell Laboratories (1978).
See section ed (I).

6. B. W. Kernighan, A tutorial introduction to the UNIX text editor, Bell Laboratories internal
memorandum (1974).

7. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Engle
wood Cliffs, New Jersey (1978).

APPENDIX A - Page given to new users

How to Get Started

Absolutely basic information for using the UNIX system
from DASI. Terminet. or HP terminals

First time. BRING A FRIEND. Anyone who has used_ UNIX before, however briefly, will be of
enormous help for the first fifteen minutes to show you where all the switches are and supply
information missing from this page.

Terminals. Turn the power on. There are many kinds of terminals. Look at the telephone
used with the terminal to distinguish them. Terminals may have

- old style datasets (if the phone set is a small gray box with "talk" and "data" buttons
at the right above the handset)
- new style datasets (if the phone set is a black six button phone with a red "data" button
on the left, sitting on a rectangular box with a glass front)
- acoustic couplers (if an ordinary telephone is used to call and the terminal has rubber
receptacles that the handset fits into) or
- modems (if the phone used for calling has a white button for the left button of the pair
of buttons the handset usually rests on).
- none of the above (in which case there is probably a switch somewhere that should be
flipped to signal the computer). .

Calling in. For your local UNIX call _____ _
- If the terminal doesn't use a phone, ignore this section, and proceed to Login ..
- On terminals with datasets you must push the "talk" button to get a dial tone.
- If the terminal has a separate coupler turn the coupler power on.
- If the line is busy UNIX is probably full.
- If there is no answer UNIX is broken.

Usually the phone rings only once~ UNIX answers and whistles at you.

Connecting the terminal. Remember what kind of terminal you have. If it uses a
- dataset. push down the "data" button, let it spring back up, and then hang up the
handset (IN THAT ORDER).
- coupler. place the handset in the rubber receptacles. There will be an indication of
where the phone cord should be (it matters). You may get better results by placing the
handset in the receptacles as you dial.
- modem. pull up the white button on the telephone and put the handset down some
where (but don't hang up the phone!).

Login. UNIX should type "login:". If it does not:
- Your terminal may be in "local" mode - check that the "local/line" switch is on
"line". Also, Terminets may have their "interrupt" light on - turn it off by pushing
"ready."
- If the message is garbled, the speed is wrong. Somewhere on the terminal is a switch
labeled "rate" or "baud" with positions of either "10,15,30" or "110,150,300". Set it to
30 or 300. Push the break or interrupt button slowly a few times. If "login:" doesn't
appear, call for help.
- UNIX may be broken (call ext. to check on that).

Type your userid, followed by "return". Your userid is ___ _
- If each letter appears twice, find the switch labeled "full/half duplex" and set it to
"full" .
- If the computer typed back your userid in upper case, find the "all caps" switch or
"shift lock" and turn it off. Then dial in again.

Normally UNIX says "Password:" and you should enter your password~ printing will be turned
off while you do.

If you misspell it, UNIX will say "Login incorrect. login:" and you can then retype your
userid and password correctly.

UNIX will say "$". You have successfully logged in.

A-2

Commands. When UNIX has typed "$" you can type commands, one per line. For example,
you can type "date" to find out what day and time it is, or "who" to find out who is logged on.
Every command must end with a "return". After typing a command, wait for the next "$" to
see what happens. For example, your terminal paper might look like this (what the computer
typed is in italics):

login: myid
Password: < you can't see it>
$ date
Thu Jan 15 10:58:21 EST 1979
$

There are a great many other commands you can type (see the guides below) and in particular
the learn command can help you learn some features of UNIX.

- If you make a mistake typing: the character # will erase the previous character, so that
typing

dax#te
is the same as typing

date
and the character @ will erase the entire line; typing

xxxxx@
date

is the same as typing "date". UNIX supplies the carriage return after the @.
- You must hit return if you expect the computer to notice what you typed; otherwise it
will wait patiently and silently for you to do so. When in doubt, type return and see what
happens.
- If you make a typing error and don't correct it with # or @ before hitting return, the
computer will typically say

datr: not found
where "datr" is the erroneous input line.
- Other messages that may arise from mistyping include "cannot execute" or "No match"
or just "? ". Thp. cure is almost always to retype the offending line correctly.

Terminology. Everything stored on the computer is saved in jiles. A file might contain, for
example, a memo or a chapter of a book or a letter. Every file has a name, which is used
whenever you want to refer to it. Sample names might be "chap3" or "mem02". The files
are grouped into directories; each directory contains the names of several files. All users have
directories containing their own files.

Logging out. Just hang up. On a terminal with a data set, push the "talk" button. On other
terminals hang up the handset. Turn the terminal power off.

Guides. You should have copies of UNIX For Beginners and A Tutorial Introduction to the UNIX
Text Editor.

•

.'.

DOCUMENT

PREPARATION

o

Typing Documents on the UNIX System:
Using the -ms Macros with Troff and Nroff

M. E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This document describes a set of easy-to-use macros for preparing docu
ments on the UNIX system. Documents may be produced on either the photo
typesetter or a on a computer terminal, without changing the input.

The macros provide facilities for paragraphs, sections (optionally with
automatic numbering), page titles, footnotes, equations, tables, two-column
format, and cover pages for papers.

This memo includes, as an appendix, the text of the "Guide to Preparing
Documents with -ms" which contains additional examples of features of
-ms.

This manual is a revision of, and replaces, "Typing Documents on
UNIX," dated November 22, 1974.

November 13, 1978

Typing Documents on the UNIX System:'
Using the -ms Macros with Troff and Nroff

M. E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction. This memorandum describes a package of commands to produce papers
using the troffand nroffformatting programs on the UNIX system. As with other roff-derived
programs, text is prepared inte'l'spersed with formatting commands. However, this package,
which itself is written in troff commands, provides higher-level commands than those provided
with the basic troffprogram. The commands available in this package are listed in Appendix A.

Text. Type normally, except that instead of indenting for paragraphs, place a line reading
".PP" before each paragraph. This will produce indenting and extra space.

Alternatively, the command .LP that was used here will produce a left-aligned (block) para
graph. The paragraph spacing can be changed: see below under "Registers."

Beginning. For a document with a paper-type cover sheet, the input should start as fol
lows:

[optional overall format .RP - see below]
.TL
Title of document (one or more lines)
.AU
Author(s) (may also be several lines)
.AI
Author's institution (s)
.AB
Abstract~ to be placed on the cover sheet of a paper.
Line length is 5/6 of normal~ use .11 here to change .
. AE (abstract end)
text ... (begins with .PP, which see)

To omit some of the standard headings (e.g. no abstract, or no author's institution) just omit
the corresponding fields and command lines. The word ABSTRACT can be suppressed by writing
".AB no" for ".AB". Several interspersed .AU and .AI lines can be used for multiple authors.
The headings are not compulsory: beginning with a .PP command is perfectly OK and will just
start printing an ordinary paragraph. Warning: You can't just begin a document with a line of
text. Some -ms command must precede any text input. When in doubt, use .LP to get
proper initialization, although any of the commands .PP, .LP, .TL, .SH, .NH is good enough.
Figure 1 shows the legal arrangement of commands at the start of a document.

Cover Sheets and First Pages. The first line of a document signals the general format of
the first page. In particular, if it is fI.RP" a cover sheet with title and abstract is prepared. The
default format is useful for scanning drafts.

In general -ms is arranged so that only one form of a document need be stored, contain
ing all information~ the first command gives the format, and unnecessary items for that format
are ignored.

Warning: don't put extraneous material between the .TL and .AE commands. Processing
of the titling items is special, and other data placed in them may not behave as you expect.
Don't forget that some -ms command must precede any input text.

- 2 -

Page headings. The -ms macros, by default, will print a page heading containing a page
number (if greater than 1). A default page footer is provided only in nroff., where the date is
used. The user can make minor adjustments to the page headings/footings by redefining the
strings LH, CH, and RH which are the left, center and right portions of the page headings,
respectively; and the strings LF, CF, and RF, which are the left, center and right portions of
the page footer. For more complex formats, the user can redefine the macros PT and BT,
which are invoked respectively at the top and bottom of each page. The margins (taken from
registers HM and FM for the top and bottom margin respectively) are normally 1 inch; the page
header/footer are in the middle of that space. The user who redefines these macros should be
careful not to change parameters such as point size or font without resetting them to default
values.

Multi-column formals. If you place
the command ".2C" in your document, the
document will be printed in double column
format beginning at that point. This feature
is not too useful in computer terminal out
put, but is often desirable on the typesetter.
The command ".lC" will go back to one
column format and also skip to a new page.
The ". 2C" command is actually a special
case of the command

.MC [column width [gutter width]]

which makes multiple columns with the
specified column and gutter width; as many
columns as will fit across the page are used.
Thus triple, quadruple, ... column pages can
be printed. Whenever the number of
columns is changed (except going from full
width to some larger number of columns) a
new page is started.

Headings. To produce a special head-
ing, there are two commands. If you type

.NH
type section heading here
may be several lines

you will get automatically numbered section
headings (1, 2, 3, ...), in boldface. For
example,

.NH
Care and Feeding of Department Heads

produces

1. Care and Feeding of Department Heads

Alternatively,

.SH
Care and Feeding of Directors

will print the heading with no number
added:

Care and Feeding of Directors

Every section heading, of either type,
should be followed by a paragraph beginning
with .PP or .LP, indicating the end of the
heading. Headings may contain more than
one line of text.

The . NH command also supports more
complex numbering schemes. If a numeri
cal argument is given, it is taken to be a
"level" number and an appropriate sub
section number is generated. Larger level
numbers indicate deeper sub-sections, as in
this example:

.NH
Erie- Lackawanna
.NH 2
Morris and Essex Division
.NH 3
Gladstone Branch
.NH 3
Montclair Branch
.NH 2
Boonton Line

generates:

2. Erie-Lackawanna

2.1. Morris and Essex Division

2.1.1. Gladstone Branch

2.1.2. Montclair Branch

2.2. Boonton Line

An explicit ".NH 0" will reset the
numbering of level 1 to one, as here:

.NHO
Penn Central

1. Penn Central

Indented paragraphs. (Paragraphs
with hanging numbers, e.g. references') The
sequence

.IP [I]
Text for first paragraph, typed
normally for as long as you would
like on as many lines as needed.
.IP [2]
Text for second paragraph, ...

produces

[I] Text for first paragraph, typed nor
mally for as long as you would like on
as many lines as needed.

[2] Text for second paragraph, ...

A series of indented paragraphs may be fol
lowed by an ordinary paragraph beginning
with .PP or .LP, depending on whether you
wish indenting or not. The command .LP
was used here.

More sophisticated uses of .IP are also
possible. If the label is omitted, for exam
ple, a plain block indent is produced.

.IP
This material will
just be turned into a

- 3 -

block indent suitable for quotations or
such matter.
.LP

will produce

This material will just be turned into a
block indent suitable for quotations or
such matter.

If a non-standard amount of indenting is
required, it may be specified after the label
(in character positions) and will remain in
effect until the next .PP or .LP. Thus, the
general form of the .IP command contains
two additional fields: the label and the
indenting length. For example,

.lP first: 9
Notice the longer label, requiring larger
indenting for these paragraphs.
.IP second:
And so forth.
.LP

produces this:

first: Notice the longer label, requiring
larger indenting for these para
graphs.

second: And so forth .

It is also possible to produce multiple nested
indents~ the command .RS indicates that the
next .IP starts from the current indentation
level. Each .RE will eat up one level of
indenting so you should balance .RS and
.RE commands. The .RS command should
be thought of as "move right" and the .RE
command as "move left". As an example

.IP 1.
Bell Laboratories
.RS
.IP 1.1
Murray Hill
.IP 1.2
Holmdel
.IP 1.3
Whippany
.RS
.IP 1.3.1
Madison
.RE
.IP 1.4
Chester
.RE
.LP

will result in

1. Bell Laboratories

1.1 Murray Hill

1.2 Holmdel

1.3 Whippany

1.3.1 Madison

1.4 Chester

All of these variations on .LP leave the right
margin untouched. Sometimes, for pur
poses such as setting off a quotation, a para
graph indented on both right and left is
required.

A single paragraph like this is
obtained by preceding it with
.QP. More complicated material
(several paragraphs) should be
bracketed with .QS and .QE.

Emphasis. To get italics (on the typesetter)
or underlining (on the terminal) say

.I
as much text as you want
can be typed here
.R

as was done for these three words. The.R
command restores the normal (usually
Roman) font. If only one word is to be ital
icized, it may be just given on the line with
the .1 command.

.1 word

and in this case no .R is needed to restore
the previous font. Boldface can be pro
duced by

.B
Text to be set in boldface
goes here
.R

and also will be underlined on the terminal
or line printer. As with .1, a single word can
be placed in boldface by placing it on the
same line as the .B command.

A few size changes can be specified
similarly with the commands .LG (make
larger). .SM (make smaller), and .NL
(return to normal size). The size change is
two points; the commands may be repeated
for increased effect (here one .NL canceled two
.SM commands).

If actual underlining as opposed to ital
icizing is required on the typesetter, the
command

.UL word

will underline a word. There is no way to
underline multiple words on the typesetter.

Footnotes. Material placed between
lines with the commands .FS (footnote) and
.FE (footnote end) will be collected,
remembered, and finally placed at the bot
tom of the current page*. By default, foot
notes are 11112th the length of normal text,
but this can be changed using the FL regis
ter (see below).

Displays and Tables. To prepare
displays of lines, such as tables, in which the
lines should not be re-arranged, enclose
them in the commands .DS and .DE

• Like this.

- 4 -

.DS
table lines, like the
examples here, are placed
between .DS and .DE
.DE

By default, lines between .DS and .DE are
indented and left-adjusted. You can also
center lines. or retain the left margin. Lines
bracketed by .DS C and .DE commands are
centered (and not re-arranged); lines brack
eted by .DS Land .DE are left-adjusted, not
indented, and not re-arranged. A plain .DS
is equivalent to .DS I, which indents and
left-adjusts. Thus,

whereas

these lines were preceded
by .DS C and followed by

a .DE command;

these lines were preceded
by .DS L and followed by
a .DE command.

Note that .DS C centers each line; there is a
variant .DS B that makes the display into a
left-adjusted block of text, and then centers
that entire block. Normally a display is kept
together, on one page. If you wish to have
a long display which may be split across page
boundaries, use .CD, .LD, or .10 in place of
the commands .DS C, .DS L, or .DS I
respectively. An extra argument to the. OS
I or .DS command is taken as an amount to
indent. Note: it is tempting to assume that
.DS R will right adjust lines, but it doesn't
work.

Boxing words or lines. To draw rec
tangular boxes around words the command

.BX word

will print Iwordl as shown. The boxes will
not be neat on a terminal, and this should
not be used as a substitute for italics.

Longer pieces of text may be boxed by
enclosing them with .BI and .B2:

.Bl
text. ..
.B2

as has been done here.

Keeping blocks together. If you wish
to keep a table or other block of lines
together on a page, there are "keep -

release" commands. If a block of lines pre
ceded by .KS and followed by .KE does not
fit on the remainder of the current page, it
will begin on a new page. Lines bracketed
by .DS and .DE commands are automatically
kept together this way. There is also a
"keep floating" command: if the block to be
kept together is preceded by . KF instead of
. KS and does not fit on the current page, it
will be moved down through the text until
the top of the next page. Thus, no large
blank space will be introduced in the docu
ment.

Nro1/TTrojf commands. Among the
useful commands from the basic formatting
programs are the following. They all work
with both typesetter and computer terminal
output:

. bp - begin new page.

.br - "break", stop running text
from line to line.

.sp n - insert n blank lines.

. na - don't adjust right margins.

. Date. By default, documents produced
on computer terminals have the date at the
bottom of each page; documents produced
on the typesetter don't. To force the date,
say ".DA". To force no date, say ".ND".
To lie about the date, say ".DA July 4,
1776" which puts the specified date at the
bottom of each page. The command

.ND May 8, 1945

in ".RP" format places the specified date on
the cover sheet and nowhere else. Place
this line before the title.

Signature line. You can obtain a sig
nature line by placing the command .SO in
the document. The authors' names will be
output in place of the .SG line. An argu
ment to .SG is used as a typing identification
line, and placed after the signatures. The
.SO command is ignored in released paper
format.

Registers. Certain of the registers
used by - ms can be altered to change
default settings. They should be changed
with .nr commands, as with

. nr PS 9

to make the default point size 9 point. If
the effect is needed immediately, the normal

- 5 -

troff command should be used in addition to
changing the number register.

Register Defines Takes Default
effect

PS point size next para. 10
VS line spacing next para. 12 pts
LL line length next para. 6"
LT title length next para. 6"-
PD para. spacing next para . 0.3 VS
PI para. indent next para. 5 ens
FL footnote length next FS 11/12 LL
CW column width next 2C 7/15 LL
GW intercolumn gap next 2C 1115 LL
PO page offset next page 26/27"
HM top margin next page 1"
FM bottom margin next page 1"

You may also alter the strings LH, CH, and
RH which are the left, center, and right
headings respectively; and similarly LF, CF,
and RF which are strings in the page footer.
The page number on output is taken from
register PN, to permit changing its output
style. For more complicated headers and
footers the macros PT and BT can be
redefined, as explained earlier .

Accents. To simplify typing certain
foreign words, strings representing common
accent marks are defined. They precede the
letter over which the mark is to appear.
Here are the strings:

Input Output Input Output
*'e e *-a a
*'e e *Ce • e
*:u U \ *,c c
*Ae e

Use. After your document is prepared
and stored on a file, you can print it on a
terminal with the command*

nroff - ms file

and you can print it on the typesetter with
the command

(roff - ms .file

(many options are possible). In each case,
if your document is stored in several files,
just list all the filenames where we have
used .. file" . If equations or tables are used,
eqn and/or fbI must be invoked as prepro
cessors .

• If .2e was used, pipe the nrojf output through
col; make the first line of the input ".pi
lusr/bin/col. "

References and further study. If you
have to do Greek or mathematics, see eqn
[1] for equation setting. To aid eqn users,
-ms provides definitions of .EQ and .EN
which normally center the equation and set
it off slightly. An argument on .EQ is taken
to be an equation number and placed in the
right margin near the equation. In addition,
there are three special arguments to EQ: the
letters C, I, and L indicate centered
(default), indented, and left adjusted equa
tions, respectively. If there is both a format
argument and an equation number, give the
format argument first, as in

.EQ L 0.3a)

for a left-adjusted equation numbered
0.3a).

Similarly, the macros .TS and .TE are
defined to separate tables (see [2]) from text
with a little space. A very long table with a
heading may be broken across pages by
beginning it with .TS H instead of .TS, and
placing the line .TH in the table data after
the heading. If the table has no heading
repeated from page to page, just use the
ordinary .TS and .TE macros.

To learn more about tro.trsee [3] for a
general introduction, and [4] for the full
details (experts only). Information on
related UNIX commands is in [5]. For jobs
that do not seem well-adapted to -ms, con
sider other macro packages. It is often far
easier to write a specific macro packages for
such tasks as imitating particular journals
than to try to adapt - ms. -

Acknowledgment. Many thanks are
due to Brian Kernighan for his help in the
design and implementation of this package,
and for his assistance in preparing this
manual.

References

[1] B. W. Kernighan and L. L. Cherry,
Typesetting Mathematics - Users Guide
(2nd edition). Bell Laboratories Com
puting Science Report no. 17.

[2] M. E. Lesk, Tbl - A Program to For
mat Tables. Bell Laboratories Comput
ing Science Report no. 45.

- 6 -

[3] B. W. Kernighan, A Troff Tutorial. Bell
Laboratories, 1976.

[4) 1. F. Ossanna. NrofflTroff Reference
Manual. Bell Laboratories Computing
Science Report no. 51.

[5] K. Thompson and D. M. Ritchie,
UNIX Progtammer's Manual. Bell
Laboratories, 1978.

- 7 -

Appendix A
List of Commands

I C Return to single column format. LG Increase type size.
2C Start double column format. LP Left aligned block paragraph.
AB Begin abstract.
AE End abstract.
AI Specify author's institution.
AU Specify author. ND Change or cancel date.
B Begin boldface. NH Specify numbered heading.
DA Provide the date on each page. NL Return to normal type size.
DE End display. PP Begin paragraph.
DS Start display (also CD, LD, ID).
EN End equation. R Return to regular font (usually Roman).
EQ Begin equation. RE End one level of relative indenting.
FE End footnote. RP Use released paper format.
FS Begin footnote. RS Relative indent increased one level.

SG Insert signature line.
Begin italics. SH Specify section heading.

SM Change to smaller type size.
IP Begin indented paragraph. TL Specify title.
KE Release keep.
KF Begin floating keep. UL Underline one word.
KS Start keep.

Register Names

The following register names are used by -ms internally. Independent use of these
names in one's own macros may produce incorrect output. Note that no lower case letters are
used in any - ms internal name.

Number registers used in - ms
DW GW HM IQ LL NA OJ PO T. TV

#T EF HI HT IR LT NC PD PQ TB VS
IT FL H3 IK KI MM NF PF PX TD YE
AV FM H4 1M L1 MN NS PI RO TN YY
CW FP H5 IP LE MO 01 PN ST TQ ZN

String registers used in - ms
A5 CB DW EZ I KF MR Rl RT TL
AB CC DY FA 11 KQ ND R2 SO TM
AE CD El FE 12 KS NH R3 SI TQ
AI CF E2 FJ I3 LB NL R4 S2 TS
AU CH E3 FK 14 LD NP R5 SG TT

, B CM E4 FN IS LG 00 RC SH UL
IC BG CS ES FO 10 LP OK RE SM WB
2C BT CT EE FQ IE ME PP RF SN WH
Al C D EL FS 1M MF PT RH SY WT
A2 CI DA EM FV IP MH PY RP TA XD
A3 C2 DE EN FY IZ MN QF RQ TE XF
A4 CA DS EQ HO KE MO R RS TH XK

Order of Commands in Input

- 8 -

1
AU

1
AI

AE

NH, SH

~
PP,LP

J
text ...

Figure 1

A System for Typesetting Mathematics

Brian W. Kernif(han and Lorinda L. Cherry

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

T'1is paper describes the design and implementation of a system for typesetting
mathematics. The language has been designed to be easy to learn and to use by people
(for example, secretaries and mathematical typists) who know neither mathematics nor
typesetting. Experience indicates that the language can be learned in an hour or so, for
it has few rules and fewer exceptions. For typical expressions, the size and font
changes, positioning, line drawing, and the like necessary to print according to
mathematical conventions are all done automatically. For example, the input

sum from i =0 to infinity x sub i "" pi over 2

produces

The syntax of the language is specified by a small context-free grammar; a
compiler-compiler is used to make a compiler that translates this language into typeset-.
ting commands. Output may be produced on either a phototypesetter or on a terminal
with forward and reverse half-line motions. The system interfaces directly with text
formatting programs, so mixtures of text and mathematics may be handled simply.

This paper is a revision of a paper originally published in CACM, March, 1975.

1. Introduction

"Mathematics is known in the trade as
diffiCUlt. or penalty. copy because it is slower,
more diffij;ult, and more expensive to set in type
than any other kind of copy normally occurring
in books and journals." [I J

One difficulty with mathematical text is the
multiplicity of characters, sizes, and fonts. An
expression such as

lim (tan x)'in h = 1
,-,,/2

requires an intimate mixture of roman, italic and
greek letters, in three sizes, and a special charac
ter or two. ("Requires" is perhaps the wrong
word, but mathematics has its own typographical
conventions which are quite different from those
of ordinary text.) Typesetting such an expression
by traditional methods is still an essentially
manual operation.

A second difficulty is the two dimensional

character of mathematics, which the superscript
and limits in the preceding example showed in its
simplest form. This is carried further by

b l
ao+------~-----

b 2
a 1+---=---

b)
a 2+-----''--a)+ ...

and still further by

1 Fae"'x-.Jb
2m Fafj log Fa ell/< +.Jb

J dx
aem.'"-be-m.'(=

1 t h-I(Fa m.t)
m Fafj an .Jb e

-=L coth-I(Fa emX)
mFafj .Jb

These examples also show line-drawing, built-up
characters like braces and radicals, and a spec
trum of positioning problems. (Section 6 shows

what a user has to type to produce these on our
system,)

2. Photocomposition

Photocomposition techniques can be used
to solve some of the problems of typesetting
mathematics. A phototypesetter is a device
which exposes a piece of photographic paper or
film, placing characters wherever they are
wanted. The Graphic Systems phototypesetter[2]
on the UNIX operating system(3) works by shin
ing light through a character stencil. The charac
ter is made the right size by lenses, and the light
beam directed by fiber optics to the desired place
on a piece of photographic paper. The exposed
paper is developed and typically used in some
form of photo-offset reproduction.

On UNIX, the phototypesetter is driven by
a formatting program called TROFF [4]. TROFF
was designed for setting running text. It also
provides all of the facilities that one needs for
doing mathematics, such as arbitrary horizontal
and vertical motions, line-drawing, size changing,
but the syntax for describing these special opera
tions is difficult to learn, and difficult even for
experienced users to type correctly.

For this reason we decided to use TROFF
as an "assembly language," by designing a
language for describing mathematical expres
sions. and compiling it into TROFF.

3. Language Design

The fundamental principle upon which we
based our language design is that the language
should be easy to use by people (for example,
secretaries) who know neither mathematics nor
typesetting.

This principle implies several things. First,
"normal" mathematical conventions about
operator precedence, parentheses, and the like
cannot be used, for to give special meaning to
such characters means that the user has to
understand what he or she is typing. Thus the
language should not assume, for instance, that
parentheses are always balanced. for they are not
in the half-open interval (o,b]. Nor should it
assume that that .Jo +b can be replaced by
(o+b)''', or that I/O-x) is better written as

1 (or vice versa).
I-x

Second, there should be relatively few
rules, keywords, special symbols and operators,
and the like. This keeps the language easy to
learn and remember. Furthermore, there should
be few exceptions to the rules that do exist: if
something works in one situation, it should work
everywhere. If a variable can have a subscript,
then a subscript can have a subscript, and so on

- 2 -

without limit.

Third, "standard" things should happen
automatically. Someone who types
"x-y+z+l" should get "x~y+.::+l". Sub
scripts and superscripts should automatically be
printed in an appropriately smaller size. with no
special intervention. Fraction bars have to be
made the right length and positioned at the right
height. And so on. Indeed a mechanism for
overriding default actions has to exist, but its
application is the exception. not the rule.

We assume that the typist has a reasonable
picture (a two-dimensional representation) of the
desired final form. as might be handwritten by
the author of a paper. We also assume that the
input is typed on a computer terminal much like
an ordinary typewriter. This implies an input
alphabet of perhaps 100 characters. none of them
special.

A secondary. but still important, goal in
our design was that the system should be easy to
implement. since neither of the authors had any
desire to make a long-term project of it. Since
our design was not firm. it was also necessary
that the program be easy to change at any time.

To make the program easy to build and to
change. and to guarantee regularity ("it should
work everywhere"), the language is defined by a
context-free grammar. described in Section 5.
The compiler for the language was built using a
compiler-compiler.

A priori. the grammar/compiler-compiler
approach seemed the right thing to do. Our sub
sequent experience leads us to believe that any
other course would have been folly. The original
language was designed in a few days. Construc
tion of a working system sufficient to try
significant examples required perhaps a person
month. Since then. we have spent a modest
amount of additional time over several years
tuning, adding facilities, and occasionally chang
ing the language as users make criticisms and
suggestions.

We also decided quite early that we would
let TROFF do our work for us whenever possible.
TROFF is quite a powerful program. with a macro
facility, text and arithmetic variables. numerical
computation and testing. and conditional branch
ing. Thus we have been able to avoid writing a
lot of mundane but tricky software. For exam
ple, we store no text strings. but simply pass
them on to TROFF. Thus we avoid having to
write a storage management package. Further
more, we have been able to isolate ourselves
from most details of the particular device and
character set currently in use. For example, we
let TROFF compute the widths of all strings of

characters; we need know nothing about them.

A third design goal is special to our
environment. Since our program is only useful
for typesetting mathematics, it is necessary that it
interface cleanly with the underlying typesetting
language for the benefit of users who want to set
intermingled mathematics and text (the usual
case). The standard mode of operation is that
when a document is typed, mathematical expres
sions are input as part of the text, but marked by
user settable delimiters. The program reads this
input and treats as comments those things which
are not mathematics, simply passing them
through untouched. At the same time it con
verts the mathematical input into the necessary
TROFF commands. The resulting ioutput is
passed directly to TROFF where the comments
and the mathematical parts both become text
and/or TROFF commands.

4. The Language

We will not try to describe the language
precisely here; interested readers may refer to
the appendix for more details. Throughout this
section, we will write expressions exactly as they
are handed to the typesetting program
(hereinafter called "EQN"), except that we won't
show the delimiters that the user types to mark
the beginning and end of the expression. The
interface between EQN and TROFF is described at
the end of this section.

As we said, typing x -y+z + 1 should pro
duce x ==y +.: + 1, and indeed it does. Variables
are made italic, operators and digits become
roman, and normal spacings between letters and
operators are altered slightly to give a more
pleasing appearance.

Input is free-form. Spaces and new lines
in the input are used by EQN to separate pieces
of the input; they are not used to create space in
the output. Thus

x y
+z+l

also gives x =y +.: + 1. Free-form input is easier
to type initially; subsequent editing is also easier,
for an expression may be typed as many short
lines.

Extra white space can be forced into the
output by several characters of various sizes. A
tilde" - " gives a space equal to the normal word
spacing in text; a circumflex gives half this
much, and a tab charcter spaces to the next tab
stop.

Spaces (or tildes, etc.) also serve to delimit
pieces of the input. For example, to get

f (I)=21r f sin (WI)dl

- 3 -

we write

f(t) == 2 pi int sin (omega t)dt

Here spaces are necessary in the input to indicate
that sin. PI, inl. and omeKa are special, and poten
tially worth special treatment. EQN looks up
each such string of characters in a table, and if
appropriate gives it a translation. In this case, pi

and omega become their greek equivalents, inl
becomes the integral sign (which must be moved
down and enlarged so it looks "right"), and sill
is made roman, following conventional
mathematical practice. Parentheses, digits and
operators are automatically made roman wher
ever found.

Fractions are specified with the keyword
over:

a+b over c+d+e = I

produces

a+b =1
c+d+e

Similarly, subscripts and superscripts are
introduced by the keywords sub and SliP:

x 2+y 2"".: 2

is produced by

x sup 2 + Y sup 2 == z sup 2

The spaces after the 2's are necessary to mark
the end of the superscripts; similarly the keyword
SliP has to be marked off by spaces or some
equivalent delimiter. The return to the proper
baseline is automatic. Multiple levels of sub
scripts or superscripts are of course allowed:
"x sup y sup z" is x"=. The construct "some
thing sub something SlIp something" is recog
nized as a special case, so "x sub i sup 2" is x,2

instead of .l}.

More complicated expressions can now be
formed with these primitives:

a2(x 2 v2
~""-+~
axl a 2 b 2

is produced by

(partial sup 2 f} over {partial x sup 21
x sup 2 over a sup 2 + y sup 2 over b sup 2

Braces II are used to group objects together; in
this case they indicate unambiguously what goes
over what on the left-hand side of the expres
sion. The language defines the precedence of Slip

to be higher than that of over, so no braces are
needed to get the correct association on the right
side. Braces can always be used when in doubt
about precedence.

The braces convention is an example of

the power of using a recursive grammar to define
the language. It is part of the language that if a
construct can appear in some context, then any
expression in braces can also occur in that con
text.

There is a sqrt operator for making square
roots of the appropriate size: "sqrt a+b" pro
duces ,j a +b , and

x - (-b +- sqrt(b sup 2 -4acll over 2a

is

Since large radicals look poor on our typesetter,
sqrt is not useful for tall expressions.

Limits on summations, integrals and simi
lar constructions are specified with the keywords
from and to. To get

~Xj-o
j-O

we need only type

sum from i-a to inf x sub i -> 0

Centering and making the 1: big enough and the
limits smaller are all automatic. The from and to
parts are both optional, and the central part (e.g.,
the 1:) can in fact be anything:

lim from (x -> pi 121 (tan"x) - inf

is

lim (tan x)_00
x_12

Again, the braces indicate just what goes into the
from part.

There is a facility for making braceS,
brackets, parentheses, and vertical bars of the
right height, using the keywords le.!t and right:

left (x+y over 2a right]"-"1

makes

[X2:Y] - 1

A le.!i need not have a corresponding right, as we
shall see in the next example. Any characters
may follow f~ft and right, but generally only vari
ous parentheses and bars are meaningful.

Big brackets, etc., are often used with
another facility, called piles, which make vertical
piles of objects. For example, to get

1
1 if x >0

sign (x) == 0 if x-o
-1 if x <0

- 4 -

we can type

sign (x) "--"left (
rpile (1 above 0 above -11
"-Ipile (if above if above if!
""Ipile Ix>O above x-O above x<OI

The construction "left (" makes a left brace big
enough to enclose the "rpile { ... I", which is a
right-justified pile of "above ... above ... ".
"Ipile" makes a left-justified pile. There are also
centered piles. Because of the recursive language
definition, a pile can contain any number of ele
ments; any element of a pile can of course con
tain piles.

Although EQN makes a valiant attempt to
use the right sizes and fonts, there are times
when the default assumptions are simply not
what is wanted. For instance the italic sign in the
previous example would conventionally be in
roman. Slides and transparencies often require
larger characters than normal text. Thus we also
provide size and font changing commands: "size
12 bold (A-x"--yl" will produce A X - y.
Size is followed by a number representing a char
acter size in points. (One point is 1172 inch; this
paper is set in 9 point type.)

If necessary, an input string can be quoted
In " .. .", which turns off grammatical Significance,
and any font or spacing changes that might oth
erwise be done on it. Thus we can say

lim" roman ·sup· "x sub n - 0

to ensure that the supremum doesn't become a
superscript:

lim sup x O

Diacritical marks, lilng a problem in tradi
tional typesetting, are straightforward:

!+x+Y+X+Y-z+Z

is made by typing

x dot under + x hat + y tilde
+ X hat + Y dotdot - z+Z bar

There are also facilities for globally chang
ing default sizes and fonts, for example for mak
ing viewgraphs or for setting chemical equations.
The language allows for matrices, and for lining
up equations at the same horizontal position.

Finally; there is a definition facility, so a
user can say

define name n •• ."

at any time in the document; henceforth, any
occurrence of the token "name" in an expres
sion will be expanded into whatever was inside
the double quotes in its definition. This lets
users tailor the language to their own

specifications, for it is quite possible to redefine
keywords like sup or over. Section 6 shows an
example of definitions.

The EQN preprocessor reads intermixed
text and equations, and passes its output to
TROFF. Since TROFF uses lines beginning with a
period as control words (e.g., ".ce" means
"center the next output line"), EQN uses the
sequence ".EQ" to mark the beginning of an
equation and ".EN" to mark the end. The
".EQ" and" .EN" are passed through to TROFF
untouched, so they can also be used by a
knowledgeable user to center equations, number
them automatically, etc. By default, however,
".EQ" and ".EN" are simply ignored by TROFF,
so by default equations are printed in-line.

".EQ" and ".EN" can be supplemented
by TROFF commands as desired; for example, a
centered display equation can be produced with
the input:

.ce

.EQ
x sub i = y sub i ...
.EN

Since it is tedious to type ".EQ" and
".EN" around very short expressions (single
letters, for instance), the user can also define
two characters to serve as the left and right del
imiters of expressions. These characters are
recognized anywhere in subsequent text. For
example if the left and right delimiters have both
been set to "#", the input:

Let #x sub i#, #Y# and #alpha# be positive

produces:

Let Xi, Y and a be positive

Running a preprocessor is strikingly easy
on UNIX. To typeset text stored in file "f", one
issues the command:

eqn f I trolf

The vertical bar connects the output of one pro
cess (EQN) to the input of another (TROFF).

5. Language Theory

The basic structure of the language is not a
particularly original one. Equations are pictured
as a set of "boxes," pieced together in various
ways. For example, something with a subscript
is just a box followed by another box moved
downward and shrunk by an appropriate amount.
A fraction is just a box centered above another
box, at the right altitude, with a line of correct
length drawn between them.

The grammar for the language is' shown

- 5 -

below. For purposes of exposition, we have col
lapsed some productions. In the original gram
mar, there are about 70 productions, but many
of these are simple ones used only to guarantee
that some keyword is recognized early enough in
the parsing process. Symbols in capital letters
are terminal symbols; lower case symbols are
non-terminals, i.e., syntactic categories. The
vertical bar I indicates an alternative; the brack
ets [] indicate optional material. A TEXT is a
string of non-blank characters or any string
inside double quotes; the other terminal symbols
represent literal occurrences of the corresponding
keyword.

eqn : box I eqn box

box : text
II eqn I
I box OVER box
I SQRT box
I box SUB box I box SUP box
I { L I C I R]PILE { list I
I LEFT text eqn [RIGHT text J
I box! FROM box] [TO box]
I SIZE text box
I (ROMAN I BOLD I ITALIC] box
I box [HAT I BAR I DOT I DOTDOT I TILDE]
I DEFINE text text

list : eqn I list ABOVE eqn

text : TEXT

The grammar makes it obvious why there
are few exceptions. For example, the observa
tion that something can be replaced by a more
complicated something in braces is implicit in the
productions:

eqn : box I eqn box
box : text I { eqn I

Anywhere a single character could be used, any

legal construction can be used.

Clearly, our grammar is highly ambiguous.
What, for instance, do we do with the input

a over b over c ?

Is it

{a over bl over c

or is it

a over {b over c\ ?

To answer questions like this, the grammar
is supplemented with a small set of rules that
describe the precedence and associativity of
operators. In particular, we specify (more or less
arbitrarily) that over associates to the left, so the
first alternative above is the one chosen. On the
other hand, sub and sup bind to the right,

because this is closer to standard mathematical
practice. That is, we assume x ab is X(obl, not
(Xa)b.

The precedence rules resolve the ambiguity
in a construction like

a sup 2 over b

We define sup to have a higher precedence than
2

over, so this construction is parsed as ~ instead
1.

of a b.

Naturally, a user can always force a partic
ular parsing by placing braces around expres
sions.

The ambiguous grammar approach seems
to be quite useful. The grammar we use is small
enough to be easily understood, for it contains
none of the productions that would be normally
used for resolving ambiguity. Instead the sup
plemental information about precedence and
associativity (also small enough to be under
stood) provides the compiler-compiler with the
information it needs to make a fast, deterministic
parser for the specific language we want. When
the language is supplemented by the disambi
guating rules, it is in fact LR(l) and thus easy to
parserS].

The output code is generated as the input
is scanned. Any time a production of the gram
mar is recognized, (potentially) some TROFF
commands are output. For example, when the
lexical analyzer reports that it has found a TEXT
(i.e., a string of contiguous characters), we have
recognized the production:

text : TEXT

The translation of this is simple. We generate a
local name for the string, then hand the name
and the string to TROFF, and let TROFF perform
the storage management. All we save is the
name of the string, its height, and its baseline.

As another example, the translation associ
ated with the production

box : box OVER box

is:

- 6 -

Width of output box =-
slightly more than largest input width

Height of output box =
slightly more than sum of input heights

Base of output box ...
slightly more than height of bottom input box

String describing output box ...
move down;
move right enough to center bottom box;
draw bottom box (i.e., copy string for bottom box);
move up; move left enough to center top box;
draw top box (i.e., copy string for top box);
move down and left; draw line full width;
return to proper base line.

Most of the other productions have equally sim
ple semantic actions. Picturing the output as a
set of properly placed boxes makes the right
sequence of positioning commands quite obvi
ous. The main difficulty is in finding the right
numbers to use for esthetically pleasing position
ing.

With a grammar, it is usually clear how to
extend the language. For instance, one of our
users suggested a TENSOR operator, to make
constructions like

I k j

/liT
IIi

Grammatically. this is easy: it is sufficient to add
a production like

box : TENSOR { list I
Semantically, we need only juggle the boxes to
the right places.

6. Experience

There are really three aspects of
interest-how well EQN sets mathematics, how
well it satisfies its goal of being "easy to use,"
and how easy it was to build.

The first question is easily addressed. This
entire paper has been set by the program.
Readers can judge for themselves whether it is
good enough for their purposes. One of our
users commented that although the output is not
as good as the best hand-set material, it is still
better than average, and much better than the
worst. In any case, who cares? Printed books
cannot compete with the birds and flowers of
illuminated manuscripts on esthetic grounds,
either, but they have some clear economic
advantages.

Some of the deficiencies in the output
could be cleaned up with more work on our part.
For example, we sometimes leave too much
space between a roman letter and an italic one.
If we were willing to keep track of the fonts
involved, we could do this better more of the

time.

Some other weaknesses are inherent in our
output device. It is hard, for instance, to draw a
line of an arbitrary length without getting a per
ceptible overstrike at one end.

As to ease of use, at the time of writing,
the system has been used by two distinct groups.
One user population consists of mathematicians,
chemists, physicists, and computer scientists.
Their typical reaction has been something like:

(1) It's easy to write, although I make the fol
lowing mistakes ...

(2) How do I do ... ?

(3) It botches the following things.... Why
don't you fix them?

(4) You really need the following features ...

The learning time is short. A few minutes
gives the general flavor, and typing a page or two
of a paper generally uncovers most of the
misconceptions about how it works.

The second user group is much larger, the
secretaries and mathematical typists who were
the original target of the system. They tend to
be enthusiastic converts. They find the language
easy to learn (most are largely self-taught), and
have little trouble producing the output they
want. They are of course less critical of the
esthetics of their output than users trained in
mathematics. After a transition period, most
find using a computer more interesting than a
regular typewriter.

The main difficulty that users have seems
to be remembering that a blank is a delimiter~
even experienced users use blanks where they
shouldn't and omit them when they are needed.
A common instance is typing

f(x sub j)

which produces

instead of

f(x;)

Since the EQN language knows no mathematics,
it cannot deduce that the right parenthesis is not
part of the subscript.

The language is somewhat prolix, but this
doesn't seem excessive considering how much is
being done, and it is certainly more compact than
the corresponding TROFF commands. For exam
ple, here is the source for the continued fraction
expression in Section 1 of this paper:

- 7 -

a sub 0 + b sub lover
{a sub 1 + b sub 2 over

la sub 2 + b sub 3 over
la sub 3 + ... JI}

This is the input for the large integral of Section
1; notice the use of definitions:

define emx "Ie sup mx}"
define mab "1m sqrt ab\"
define sa "(sqrt a)"
define sb "(sqrt b)"
int dx over la emx - be sup -mx I --
left { Ipile {

lover (2 mab) -Iog-
(sa emx - sb) over {sa emx + sbJ

above
lover mab - tanh sup -1 (sa over sb emx)

above
-lover mab - coth sup -1 (sa over sb emx)

As to ease of construction, we have
already mentioned that there are really only a
few person-months invested. Much of this time
has gone into two things-fine-tuning (what is
the most esthetically pleasing space to use
between the numerator and denominator of a
fraction?), and changing things found deficient
by our users (shOUldn't a tilde be a delimiter?).

The program consists of a number of
small, essentially unconnected modules for code
generation, a simple lexical analyzer, a canned
parser which we did not have to write, and some
miscellany associated with input files and the-
macro facility. The program is now about 1600
lines of C (6), a high-level language reminiscent
of BCPL. About 20 percent of these lines are
"print" statements, generating the output code.

The semantic routines that generate the
actual TROFF commands can be changed to
accommodate other formatting languages and
devices. For example, in less than 24 hours, one
of us changed the entire semantic package to
drive NROFF. a variant of TROFF, for typesetting
mathematics on teletypewriter devices capable of
reverse line motions. Since many potential users
do not have access to a typesetter, but still have
to type mathematics, this provides a way to get a
typed version of the final output which is close
enough for debugging purposes, and sometimes
even for ultimate use.

7. Conclusions

We think we have shown that it is possible
to do acceptably good typesetting of mathematics
on a phototypesetter, with an input language that
is easy to learn and use and that satisfies many
users' demands. Such a package can be imple
mented in short order, given a compiler-compiler

and a decent typesetting program underneath.

Defining a language, and building a com
piler for it with a compiler-compiler seems like
the only sensible way to do business. Our
experience with the use of a grammar and a
compiler-compiler has been uniformly favorable.
If we had written everything into code directly,
we would have been locked into our original
design. Furthermore, we would have never been
sure where the exceptions and special cases were.
But because we have a grammar, we can change
our minds readily and still be reasonably sure
that if a construction works in one place it will
work everywhere.

Acknow ledgements

We are deeply indebted to J. F. Ossanna,
the author of TROFF, for his willingness to
modify TROFF to make our task easier and for
his continuous assistance during the develop
ment of our program. We are also grateful to A.
V. Aho for help with language theory, to S. C.
Johnson for aid with the compiler-compiler, and
to our early users A. V. Aho, S. I. Feldman, S.
C. Johnson, R. W. Hamming, and M. D. Mcilroy
for their constructive criticisms.

References

[1] A Manual 0/ Style, 12th Edition. Univer
sity of Chicago Press, 1969. p 295.

[2] Model ClAIT Phototypesetter. Graphic Sys
tems, Inc ... Hudson, N. H.

[3] Ritchie, D. M., and Thompson, K. L.,
"The UNIX time-sharing system." Comm.
ACM 17, 7 (July 1974), 365-375.

[4] Ossanna, 1. F., TROFF User's Manual.
Bell Laboratories Computing Science
Technical Report 54, 1977.

[5] Aho, A. V., and Johnson, S. c., "LR
Parsing." Compo Surv. 6, 2 (June 1974),
99-124.

[6] B. W. Kernighan and D. M. Ritchie, The C
Programming Language. Prentice-Hall,
Inc., 1978.

- 8 -

Typesetting Mathematics - User's Guide <Second Edition)

Brian W. Kernighan and Lorinda L. Cherry

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This is the user's guide for a system for typesetting mathematics, using the photo
typesetters on the UNIXt and GCOS operating systems.

Mathematical expressions are described in a language designed to be easy to use by people
who know neither mathematics nor typesetting. Enough of the language to set in-line expres
sions like lim (tan x)sin 2x - 1 or display equations like

X-fr/2

I G()
[

SkZk 1 S zk/k G (z) - e n z - exp 1: -- - IT e k

k;;'1 k k;;'1

++SIZ+ S1;' + ... 1[1+ S;:' + :!;; + .. ·1···
S~I S~2

1: -lk,k , 2k2k I
k l·k2···· .km;;'O I' 2'

-1:
m;;'O

k l+2k2+ ... +mkm-m

can be learned in an hour or so.

The language interfaces directly with the phototypesetting language TROFF, so mathemati
cal expressions can be embedded in the running text of a manuscript, and the entire document
produced in one process. This user's guide is an example of its output.

The same language may be used with the UNIX formatter NROFF to set mathematical
expressions on DASI and GSI terminals and Model 37 teletypes.

August 15, 1978

tUNIX is a Trademark of Bell Laboratories.

Typesetting Mathematics - User's Guide (Second Edition)

Brian W. Kernighan and Lorinda L. Cherry

Bell Laboratories
Murray Hill, New Jersey 07974

1. Introduction

EQN is a program for typesetting
mathematics on the Graphics Systems pho
totypesetters on UNIX and GCOS. The EQN

language was designed to be easy to use by
people who know neither mathematics nor
typesetting. Thus EQN knows relatively little
about mathematics. In particular,
mathematical symbols like +, x,
parentheses, and so on have no special
meanings. EQN is quite happy to set garbage
(but it will look good).

EQN works as a preprocessor for the
typesetter formatter, TROFF[I], so the nor
mal mode of operation is to prepare a docu
ment with both mathematics and ordinary
text interspersed, and let EQN set the
mathematics while TROPF does the body of
the text.

On UNIX, EQN will also produce
mathematics on DASI and GSI terminals and
on Model 37 teletypes. The input is identi
cal, but you have to use the programs NEQN

and NROFF instead of EQN and TROFF. Of
course, some things won't look as good
because terminals don't provide the variety
of characters, sizes and fonts that a
typesetter does, but the output is usually
adequate for proofreading.

To use EQN on UNIX,

eqn files I troff

GCOS use is discussed in section 26.

2. Displayed Equations
. To tell EQN where a mathematical

expression begins and ends, we mark it with
lines beginning .EQ and .EN. Thus if you
type the lines

.EQ
x=y+z
.EN

your output will look like

x=y+z

The .EQ and .EN are copied through
untouched; they are not otherwise processed
by EQN. This means that you have to take
care of things like centering, numbering,
and so on yourself. The most common way
is to use the TROPF and NROFF macro pack
age package '-ms' developed by M. E.
Lesk{31, which allows you to center, indent,
left-justify and number equations.

With the '-ms' package, equations are
centered by default. To left-justify an equa
tion, use .EQ L instead of .EQ. To indent it,
use .EQ I. Any of these can be followed by
an arbitrary 'equation number' which will be
placed at the right margin. For example,
the input

.EQ I 0.1a)
x f(y/2) + y/2
.EN

produces the output

X"" j(y/2)+y/2 O.la)

There is also a shorthand notation so
in-line expressions like 1T 1 can be entered
without .EQ and .EN. We will talk about it in
section 19.

3. Input spaces
Spaces and newlines within an expres

sion are thrown away by EQN. (Normal text
is left absolutely alone.) Thus between .EQ

and .EN,

x=y+z

and

and

x-y+z

x - Y
+z

and so on all. produce the same output

x-y+z

You should use spaces and new lines freely
to make your input equations readable and
easy to edit. In particular, very long lines
are a bad idea, since they are often hard to
fix if you make a mistake.

4. Output spaces

To force extra spaces into the output,
use a tilde" -" for each space you want:

x---y-+-z

gives

x-y+z

You can also use a circumflex "-", which
gives a space half the width of a tilde. It is
mainly useful for fine-tuning. Tabs may
also be used to position pieces of an expres
sion, but the tab stops must be set by TROFF
commands.

5. Symbols, Special Names, Greek
EQN knows some mathematical sym

bols, some mathematical names, and the
Greek alphabet. For example,

x - 2 pi int sin (omega t)dt

produces

X-21T f sin(w t) dt

Here the spaces in the input are necessary
to tell EQN that int, pi, sin and omega are
separate entities that should get special
treatment. The sin, digit 2, and parentheses
are set in roman type instead of italic; pi and
omega are made Greek; and int becomes the
integral sign.

When in doubt, leave spaces around
separate parts of the input. A very common
error is to type j(pi) without leaving spaces
on both sides of the pi. As a result, EQN
does not recognize pi as a special word, and
it appears as j(pi) instead of j(1T).

- 2 -

A complete list of EQN names appears
in section 23. Knowledgeable users can also
use TROFF four-character names for any
thing EQN doesn't know about, like \ (bs for
the Bell System sign @.

6. Spaces, Again

The only way EQN can deduce that
some sequence of letters might be special is
if that sequence is separated from the letters
on either side of it. This can be done by
surrounding a special word by ordinary
spaces (or tabs or newlines), as we did in
the previous section.

You can also make special words stand
out by surrounding them with tildes or
circumflexes:

x---rprinCsin-(-omega-C)-dt

is much the same as the last example,
except that the tildes not only separate the
magic words like sin, omega, and so on, but
also add extra spaces, one space per tilde:

x - 2 1T J sin (w t) dt

Special words can also be separated by
braces { } and double quotes n ••• n , which
have special meanings that we will see soon.

7. Subscripts and Superscripts
Subscripts and superscripts are

obtained with the words sub and sup.

x sup 2 + Y sub k

gives

x~Yk

EQN takes care of all the size changes and
vertical motions needed to make the output
look right. The words sub and sup must be
surrounded by spaces; x sub2 will give you
xsub2 instead of X2. Furthermore, don't
forget to leave a space (or a tilde, etc.) to
mark the end of a subscript or superscript.
A common error is to say something like

y - (x sup 2) + 1

which causes
Y_(X2)+1

instead of the intended

y-(x2)+l

/

Subscripted subscripts and super
scripted superscripts also work:

x sub i sub 1

is

A subscript and superscript on the same
thing are printed one above the other if the
subscript comes first:

x sub i sup 2

is

x 2
I

Other than this special case, sub and
sup group to the right, so x sup y sub z

Yz t Y means x ,no x z'

8. Braces for Grouping

Normally, the end of a subscript or
superscript is marked simply by a blank (or
tab or tilde, etc.) What if the subscript or
superscript is something that has to be typed
with blanks in it? In that case, you can use
the braces { and } to mark the beginning and
end of the subscript or superscript:

e sup {i omega tl
is

Rule: Braces can always be used to force
EQN to treat something as a unit, or just to
make your intent perfectly clear. Thus:

x sub {i sub I} sup 2

is

with braces, but

x sub i sub 1 sup 2

is

which is rather different.

Braces can occur within braces if
necessary:

e sup {i pi sup {rho + 1}}

is

- 3 -

The general rule is that anywhere you could
use some single thing like x. you can use an
arbitrarily complicated thing if you enclose it
in braces. EQN will look after all the details
of positioning it and making it the right size.

In all cases, make sure you have the
right number of braces. Leaving one out or
adding an extra will cause EQN to complain
bitterly.

Occasionally you will have to print
braces. To do this, enclose them in double
quotes, like "(H. Quoting is discussed in
more detail in section 14.

9. Fractions
To make a fraction, use the word over:

a + b over 2c -1

gives

a+b=l
2c

The line is made the right length and posi
tioned automatically. Braces can be used to
make clear what goes over what:

(alpha + beta) over (sin (x) I
is

a +(3
sin (x)

What happens when there is both an over
and a sup in the same expression? In such
an apparently ambiguous case, EQN does the
sup before the over, so

-b sup 2 over pi
2

. - b2 . d f b 1T Th I h' I IS -- mstea 0 - e ru es w IC 1
7T

decide which operation is done first in cases
like this are summarized in section 23.
When in doubt, however, use braces to
make clear what goes with what.

10. Square Roots

To draw a square root, use sqrt:

sqrt a+b + lover sqrt {ax sup 2 +bx+c}

is

Warning - square roots of tall quantities
look lousy, because a root-sign big enough
to cover the quantity is too dark and heavy:

sqrt {a sup 2 over b sub 2}

is

Big square roots are generally better written
as something to the power 1/2:

(0 2/ b2) 'Il

which is

(a sup 2 /b sub 2) sup half

11. Summation, Integral, Etc.
Summations, integrals, and similar

constructions are easy:

sum from i -0 to (j - inf) x sup i

produces

Notice that we used braces to indicate where
the upper part i-oo begins and ends. No
braces were necessary for the lower part
i-O, because it contained no blanks. The
braces will never hurt, and if the from and to
parts contain any blanks, you must use
braces around them.

The from and to parts are both
optional, but if both are used, they have to
occur in that order.

Other useful characters can replace the
sum in our example:

int prod union inter

become, respectively,

f II u n
Since the thing before the from can be any
thing, even something in braces, from-to can
often be used in unexpected ways:

lim from {n - > inf} x sub n -0

is

- 4 -

12. Size and Font Chances
By default, equations are set in 10-

point type (the same size as this guide),
with standard mathematical conventions to
determine what characters are in roman and
what in italic. Although EQN makes a vali
ant attempt to use esthetically pleasing sizes
and fonts, it is not perfect. To change sizes
and fonts, use size n and roman, italic, bold
and fat. Like sub and sup, size and font
changes affect only the thing that follows
them, and revert to the normal situation at
the end of it. Thus

is

and

gives

bold x y

xy

size 14 bold x - y +
size 14 (alpha + beta)

x-y+a+13
As always, you can use braces if you want to
affect something more complicated than a
single letter. For example, you can change
the size of an entire equation by

size 12 (...)

Legal sizes which may follow size are
6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24,
28, 36. You can also change the size by a
given amount~ for example, you can say
size +2 to make the size two points bigger,
or size -3 to make it three points smaller.
This has the advantage that you don't have
to know what the current size is.

If you are using fonts other than
roman, italic and bold, you can say font X
where X is a one character TROFF name or
number for the font. Since EQN is tuned for
roman, italic and bold, other fonts may not
give quite as good an appearance.

The fat operation takes the current
font and widens it by overstriking: fat grad is
V and fat {x sub ,} is Xj.

If an entire document is to be in a
non-standard size or font, it is a severe nui
sance to have to write out a size and font
change for each equation. Accordingly, you
can set a "global" size or font which

thereafter affects all equations. At the
beginning of any equation, you might say,
for instance,

.EQ
gsize 16
gfont R

.EN

to set the size to 16 and the font to roman
thereafter. In place of R, you can use any
of the TROFF font names. The size after
gSize can be a relative change with + or -.

Generally, gsize and gfonl will appear at
the beginning of a document but they can
also appear thoughout a document: the glo
bal font and size can be changed as often as
needed. For example, in a footnote* you
will typically want the size of equations to
match the size of the footnote text, which is
two points smaller than the main text.
Don't forget to reset the global size at the
end of the footnote.

13. Diacritical Marks

To get funny marks on top of letters,
there are several words:

x dot x
x dotdot x
x hat X-
x tilde X-
x vec x
x dyad x
x bar x
x under !

The diacritical mark is placed at the right
height. The bar and under are made the
right length for the entire construct, as in
x+y+z~ other marks are centered.

14. Quoted Text
Any input entirely within quotes

(" ... ") is not subject to any of the font
changes and spacing adjustments normally
done by the equation setter. This provides a
way to do your own spacing and adjusting if
needed:

*Like this one, in which we have a few random
expressions like Xi and '/r'2. The sizes for these
were set by the command gsize - 2.

- 5 -

italic "sin(x)" + sin (x)

is

sin(x)+sin(x)

Quotes are also used to get braces and
other EQN keywords printed:

"{ size alpha }"

is

{ size alpha }

and

roman "(size alpha }"

is

{ size alpha}

The construction "" is often used as a
place-holder when grammatically EQN needs
something, but you don't actually want any
thing in your output. For example, to make
2fie, you can't just type sup 2 roman He
because a sup has to be a superscript on
something. Thus you must say

"" sup 2 roman He

To get" a literal quote use "\"". TROFF
characters like \ (bs can appear unquoted,
but more complicated things like horizontal
and vertical motions with \h and \ v should
always be quoted. (If you've never heard of
\ hand \ v, ignore this section.)

15. Linin. Up Equations
Sometimes it's necessary to line up a

series of equations at some horizontal posi
tion, often at an equals sign. This is done
with two operations called mark and lineup.

The word mark may appear once at
any place in an equation. It remembers the
horizontal position where it appeared. Suc
cessive equations can contain one
occurrence of the word lineup. The place
where lineup appears is made to line up with
the place marked by the previous mark if at
all possible. Thus, for example, you can say

.EQ I
x+y mark == z
.EN
. EQ I
x lineup == 1
.EN

to produce

x+y==z

x=1

For reasons too complicated to talk about,
when you use EQN and '-ms', use either
.EQ I or .EQ L. mark and lineup don't work
with centered equations. Also bear in mind
that mark doesn't look ahead;

x mark 1

x+y lineup ==z

isn't going to work, because there isn't
room for the x+y part after the mark
remembers where the x is.

16. Big Brackets. Etc.
To get big brackets [1, braces {},

parentheses (), and bars II around things,
use the left and right commands:

left { a over b + 1 right}
--- left (cover d right)
+ left [e right}

is

The resulting brackets are made big enough
to cover whatever they enclose. Other char
acters can be used besides these, but the are
not likely to look very good. One exception
is the floor and ceiling characters:

left floor x over y right floor
< == left ceiling a over b right ceiling

produces

Several warnings about brackets are in
order. First, braces are typically bigger than
brackets and parentheses, because they are
made up of three, five, seven, etc., pieces,
while brackets can be made up of two,

- 6 -

three, etc. Second, big left and right
parentheses often look poor, because the
character set is poorly designed .

The right part may be omitted: a "left
something" need not have a corresponding
"right something". If the right part is omit
ted, put braces around the thing you want
the left bracket to encompass. Otherwise,
the resulting brackets may be too large.

If you want to omit the left part, things
are more complicated, because technically
you can't have a right without a correspond
ing left. Instead you have to say

left "" right)

for example. The left "" means a "left noth
ing". This satisfies the rules without hurt
ing your output.

17. Piles
There is a general facility for making

vertical piles of things; it comes in several
flavors. For example:

A ---left [
pile { a above b above c }
-- pile { x above y above z }

right]

will make

A -I~ ~
The elements of the pile (there can be as
many as you want) are centered one above
another, at the right height for most pur
poses. The keyword above is used to
separate the pieces; braces are used around
the entire list. The elements of a pile can
be as complicated as needed, even contain ..
ing more piles.

Three other forms of pile exist: Ipile
makes a pile with the elements left-justified;
rpile makes a right-justified pile; and cpi/e
makes a centered pile, just like pile. The
vertical spacing between the pieces is some
what larger for 1-, r- and cpiles than it is for
ordinary piles.

roman sign (x)-""
left {

Ipile {I above 0 above -IJ
-- lpile
{irx>O above irx==O above irx<OJ

makes

sign(x) -I~
-1

if x>O
if x-O
if x<O

Notice the left brace without a matching
right one.

18. Matrices·

It is also possible to make matrices.
For example, to make a neat array like

you have to type

matrix I

Xi x 2

Yi y2

ceol { x sub i above y sub i }
ceol { x sup 2 above y sup 2 }

}

This produces a matrix with two centered
columns. The elements of the columns are
then listed just as for a pile, each element
separated by the word above. You can also
use Icol or rcol to left or right adjust
columns. Each column can be separately
adjusted, and there can be as many columns
as you like.

The reason for using a matrix instead
of two adjacent piles, by the way, is that if
the elements of the piles don't all have the
same height, they won't line up properly. A
matrix forces them to line up, because it
looks at the entire structure before deciding
wbat spacing to use.

A word of warning about matrices -
each column must have the same number oj
elements in it The world will end if you get
this wrong.

19. Shorthand for In-line Equations
In a mathematical document, it is

necessary to follow mathematical conven
tions not just in display equations, but also
in the body of the text, for example by mak
ing variable names like X italic. Although
this could be done by surrounding the
appropriate parts with .EQ and .EN, the con
tinual repetition of .EQ and .EN is a nuisance.
Furthermore, with '-ms', .EQ and .EN imply
a displayed equation.

- 7 -

EQN provides a shorthand for short in
line expressions. You can define two char
acters to mark the left and right ends of an
in-line equation, and then type expressions
right in the middle of text lines. To set
both the left and right characters to dollar
signs, for example, add to the beginning of
your document the three lines

.EQ
delim SS
.EN

Having done this, you can then say things
like

Let $alpha sub is be the primary
variable, and let SbetaS be zero.
Then we can show that $x sub 1 $ is
S> -OS.

This works as you might expect - spaces,
newlines, and so on are significant in the
text, but not in the equation part itself.
Multiple equations can occur in a single
input line.

Enough room is left before and after a
line that contains in-line expressions that

n
something like l:Xi does not interfere~ith

i-I
the lines surrounding it.

To turn off the delimiters,

.EQ
delim off
.EN

Warning: don't use braces, tildes,
circumflexes, or double quotes as delimiters
- chaos will result.

20. Definitions

EQN provides a facility so you can give
a frequently-used string of characters a
name, and thereafter just type the name
instead of the whole string. For example, if
the sequence

x sub i sub 1 + y sub i sub 1

appears repeatedly throughout a paper, you
can save re-typing it each time by defining it
like this:

define xy 'x sub i sub 1 + Y sub i sub l'

This makes x.v a shorthand for whatever
characters oceur between the single quotes
in the definition. You can use any character

instead of quote to mark the ends of the
definition, so long as it doesn't appear inside

, the definition.

Now you can use xy like this:

.EQ
f(x) == xy ...
.EN

and so on. Each occurrence of xy will
expand into what it was defined as. Be care
ful to leave spaces or their equivalent
around the name when you actually use it,
so EQN will be able to identify it as special.

There are several things to watch out
for. First, although definitions can use pre
vious definitions, as in

. EQ
define xi I x sub i I

define xil I xi sub 1 I

.EN

don't define something in terms of itself A
favorite error is to say

define X I roman X I

This is a guaranteed disaster, since X is now
defined in terms of itself. If you say

define X I roman "X" I

however, the quotes protect the second X,
and everything works fine.

EQN keywords can be redefined. You
can make I mean over by saying

define I 'over I

or redefine over as I with

define over I I I

If you need different things to print on
a terminal and on the typesetter, it is some
times worth defining a symbol differently in
NEQN and EQN. This can be done with
ndefine and tdefine. A definition made with
ndefine only takes effect if you are running
NEQN~ if you use tdefine, the definition only
applies for EQN. Names defined with plain
define apply to both EQN and NEQN.

21. Local Motions
Although EQN tries to get most things

at the right place on the paper, it isn't per
fect, and occasionally you will need to tune
the output to make it just right. Small extra

- 8 -

horizontal spaces can be obtained with tilde
and circumflex. You can also say back nand
fWd n to move small amounts horizontally.
n is how far to move in 1II00's of an em
(an em is about the width of the letter 'm'.)
Thus back 50 moves back about half' the
width of an m. Similarly you can move
things up or down with up n and down n. As
with sub or sup, the local motions affect the
next thing in the input, and this can be
something arbitrarily complicated if it is
enclosed in braces.

22. A Large Example

Here is the complete source for the
three display equations in the abstract of this
guide .

.EQI
G(z)-mark -- e sup lin - G(z) I
--- exp left (
sum from k> -I Is sub k z sup kl over k right)
--- prod from k> -I e sup Is sub k z sup k Ikl
.EN
.EQI
lineup - left (I + S sub 1 z +
I S sub 1 sup 2 z sup 2 lover 2! + ... right)
left (1 + (S sub 2 z sup 2 lover 2
+ I S sub 2 sup 2 z sup 4 lover I 2 sup 2 cdot 2! I
+ ... right) ...
.EN
.EQI
lineup - sum from m> -0 left (
sum from
pile { k sub I ,k sub 2 , ... , k sub m >-0
above
k sub 1 +2k sub 2 + ... +mk sub m -ml
I S sub 1 sup Ik sub II lover 11 sup k sub 1 k sub 1 ! I -
I S sub 2 sup Ik sub 21 lover 12 sup k sub 2 k sub 2 ! I -
...
I S sub m sup (k sub mIl over 1m sup k sub m k sub m ! I
right) z sup m
.EN

23. Keywords. Precedences. Etc.
If you don't use braces, EQN will do

operations in the order shown in this list.

dyad vee under bar tilde hat dot doldol
fwd back down up
fat roman italic bold size
sub sup sqrt over
from to

These operations group to the left:

over sqrt left right

All others group to the right.

Digits, parentheses, brackets, punctua
tion marks, and these mathematical words
are converted to Roman font when encoun
tered:

sin cos tan sinh cosh tanh arc
max min lim log In exp
Re 1m and if for det

These character sequences are recognized
and translated as shown.

>
<---
+
->
<-
«
»
inf
partial
half
prime
approx
nOlhing
cdot
limes
del
grad

, ... ,
sum

int

prod
union
inter

¢

± -
«
»
00

a
1/2

x
'\l
'\l

I.
f
II
U
n

To obtain Greek letters, simply
them out in whatever case you want:

DELTA ~ iota ,
GAMMA r kappa K

LAMBDA A lambda A
OMEGA n mu J.L
PHI <I> nu 11

PI n omega w
PSI 'It omicron 0

SIGMA 1: phi 4>
THETA 8 pi 'IT

UPSILON Y psi 1/1
XI 0;:: rho p -alpha a sigma CT

spell

- 9 -

beta f3 tau T

chi X theta fJ
delta 8 upsilon v
epsilon E xi e
eta 11 zeta ,
gamma 'Y

These are all the words known to EQN
(except for characters with names), together
with the section where they are discussed.

above 17, 18 Ipile 17
back 21 mark 15
bar 13 matrix 18
bold 12 ndefine 20
ccol 18 over 9
col 18 pile 17
cpile 17 rcol 18
define 20 right 16
delim 19 roman 12
dot 13 rpile 17
dotdot 13 size 12
down 21 sqrt 10
dyad 13 sub 7
fat 12 sup 7
font 12 tdefine 20
from 11 tilde 13
fwd 21 to 11
gfont 12 under 13
gsize 12 up 21
hat 13 vec 13
italic 12 , 4,6
Icol 18 { } 8
left 16 n " 8, 14
lineup 15

24. Troubleshootiol

If you make a mistake in an equation,
like leaving out a brace (very common) or
having one too many (very common) or
having a sup with nothing before it (com
mon), EQN will tell you with the message

syntax error between lines x and y, file z

where x and yare approximately the lines
between which the trouble occurred, and z is
the name of the file in question. The line
numbers are approximate - look nearby as
well. There are also self-explanatory mes
sages that arise if you leave out a quote or
try to run EQN on a non-existent file.

If you want to check a document
before actually printing it (on UNIX only),

eqn files> /dev/null

will throwaway the output but print the
messages.

If you use something like dollar signs
as delimiters, it is easy to leave one out.
This causes very strange troubles. The pro
gram checkeq (on GCOS, use .kheckeq
instead) checks for misplaced or missing
dollar signs and similar troubles.

In-line equations can only be so big
because of an internal buffer in TROFF. If
you get a message "word overflow", you
have exceeded this limit. If you print the
equation as a displayed equation this mes
sage will usually go away. The message
"line overflow" indicates you have
exceeded an even bigger buffer. The only
cure for this is to break the equation into
two separate ones.

On a related topic, EON does not break
equations by itself - you must split long
equations up across multiple lines by your
self, marking each by a separate .EO EN

sequence. EON does warn about equations
that are too long to fit on one line.

25. Use on UNIX

To print a document that contains
mathematics on the UNIX typesetter,

eqn files I troff

If there are any TROFF options, they go after
the TROFF part of the command. For exam
ple,

eqn files I troff -ms

To run the same document on the GCOS

typesetter, use

- 10 -

eqn files I troff -g (other options) I gcat

A compatible version of EON can be
used on devices like teletypes and DASI and
GSI terminals which have half-line forward
and reverse capabilities. To print equations
on a Model 37 teletype, for example, use

neqn files I nroff

The language for equations recognized by
NEON is identical to that of EON, although of
course the output is more restricted.

To use a GSI or DASI terminal as the
output device,

neqn files I nroff - T x

where x is the terminal type you are using,
such as 300 or 300S.

EON and NEON can be used with the
TBL program [2] for setting tables that con
tain mathematics. Use TBL before [NIEQN,

like this:

tbl files I eqn I troff
tbl files I neqn I nroff

26. Acknowledgments

We are deeply indebted to J. F.
Ossanna, the author of TROFF, for his wil
lingness to extend TROFF to make our task
easier, and for his continuous assistance
during the development and evolution of
EON. We are also grateful to A. V. Aho for
advice on language design, to S. C. johnson
for assistance with the Y ACC compiler
compiler, and to all the EON users who have
made helpful suggestions and criticisms.

References

[1] 1. F. Ossanna, "NROFF/TROFF User's
Manual", Bell Laboratories Computing
Science Technical Report #54, 1976.

[2] M. E. Lesk, "Typing Documents on
UNIX", Bell Laboratories, 1976.

[3] M. E. Lesk, "TBL - A Program for
Setting Tables", Bell Laboratories
Computing Science Technical Rcporl
#49, 1976.

Tbl - A Program to Format Tables

M. E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Tbl is a document formatting preprocessor for Iroff or "roff which makes
even fairly complex tables easy to specify and enter. It is available on the PDp·
II UNIX· system and on Honeywell 6000 Geos. Tables are made up of columns
which may be independently centered, right-adjusted, left-adjusted, or aligned
by decimal points. Headings may be placed over single columns or groups of
columns. A table entry may contain equations, or may consist of several rows
of text. Horizontal or vertical lines may be drawn as desired in the table, and
any table or element may be enclosed in a box. For example:

1970 Federal Budget Transfers
(in billions of dollars)

State
Taxes Money

Net
collected spent

New York 22.91 21.35 -1.56
New Jersey 8.33 6.96 -1.37
Connecticut 4.12 3.10 -1.02
Maine 0.74 0.67 -0.07
California 22.29 22.42 +0.13
New Mexico 0.70 1.49 +0.79
Georgia 3.30 4.28 +0.98
Mississippi 1.15 2.32 + 1.17
Texas 9.33 11.13 + 1.80

January 16, 1979

• UNIX is a Trademark/Service Mark of the Bell System

Introduction.

Tbl - A Program to Format Tables

M. E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

Tbl turns a simple description of a table into a froff or nroff [1] program (Jist of com
mands) that prints the table. Tbl may be used on the PDP·)) UNIX [2] system and on the
Honeywell 6000 GCOS system. It attempts to isolate a portion of a job that it can successfully
handle and leave the remainder for other programs. Thus fbi may be used with the equation
formatting program eqn [3] or various layout macro packages (4,5,6J, but does not duplicate
their functions.

This memorandum is divided into two parts. First we give the rules for preparing fbI
input; then some examples are shown. The description of rules is precise but technical, and the
beginning user may prefer to read the examples first, as they show some common table
arrangements. A section explaining how to invoke fbi precedes the examples. To avoid repeti
tion, henceforth read fro.tfas "'ro.ffor nro.tf."

The input to ,bl is text for a document, with tables preceded by a ". TS" (table start)
command and followed by a ". TE" (table end) command. Tbl processes the tables, generating
fro.tf formatting commands, and leaves the remainder of the text unchanged. The". TS" and
" . TE" lines are copied, too, so that fro.ff page layout macros (such as the memo formatting
macros [4]) can use these lines to delimit and place tables as they see fit. In particular, any
arguments on the" • TS" or " . TE" lines are copied but otherwise ignored, and may be used by
document layout macro commands.

The format of the input is as follows:

text
.TS
fable
.TE
text
.TS
fable
.TE
text

where the format of each table is as follows:

.TS
opfions ;
Rumaf •
dafa
.TE

Each table is independent, and must contain formatting information followed by the data to be
entered in the table. The formatting information, which describes the individual columns and
rows of the table, may be preceded by a few options that affect the entire table. A detailed
description of tables is given in the next section.

- 2 -

Input commands.

As indicated above, a table contains, first, global options, then a format section describing
the layout of the table entries, and then the data to be printed. The format and data are always
required, but not the options. The various parts of the table are entered as follows:

1) OPTIONS. There may be a single line of options affecting the whole table. If present, this
line must follow the . TS line immediately and must contain a list of option names
separated by spaces, tabs, or commas, and must be terminated by a semicolon. The
allowable options are:

center - center the table (default is left-adjust);

expand

box

- make the table as wide as the current line length;

- enclose the table in a box;

allbox - enclose each item in the table in a box;

doublebox - enclose the table in two boxes;

tab (x) - use x instead of tab to separate data items.

linesize (n) - set lines or rules (e.g. from box) in n point type;

delim (xy) - recognize x and y as the eqn delimiters.

The fbI program tries to keep boxed tables on one page by issuing appropriate "need"
(. ne) commands. These requests are calculated from the number of lines in the tables,
and if there are spacing commands embedded in the input, these requests may be inaccu
rate; use normal troffprocedures, such as keep-release macros, in that case. The user who
must have a multi-page boxed table should use macros designed for this purpose, as
explained below under 'Usage.'

2) FORMAT. The format section of the table specifies the layout of the columns. Each line
in this section corresponds to one line of the table (except that the last line corresponds to
all following lines up to the next . T &, if any - see below), and each line contains a key
letter for each column of the table. It is good practice to separate the key letters for each
column by spaces or tabs. Each key-letter is one of the following:

L or I to indicate a left-adjusted column entry;

R or r to indicate a right-adjusted column entry;

C or c to indicate a centered column entry;

Nor n to indicate a numerical column entry, to be aligned with other numerical
entries so that the units digits of numbers line up;

A or a to indicate an alphabetic subcolumn; all corresponding entries are aligned on
the left, and positioned so that the widest is centered within the column (see
example on page 12);

S or s to indicate a spanned heading, i.e. to indicate that the entry from the previous
column continues across this column (not allowed for the first column, obvi
ously); or

to indicate a vertically spanned heading, i.e. to indicate that the entry from the
previous row continues down through this row. (Not allowed for the first row
of the table, obviously).

When numerical alignment is specified, a location for the decimal point is sought. The
rightmost dot (.) adjacent to a digit is used as a decimal point; if there is no dot adjoining
a digit, the rightmost digit is used as a units digit; if no alignment is indicated, the item is
centered in the column. However, the special non-printing character string \& may be
used to override unconditionally dots and digits, or to align alphabetic data; this string
lines up where a dot normally would, and then disappears from the final output. In the
example below, the items shown at the left will be aligned (in a numerical column) as

shown on the right:

- 3 -

13
4.2
26.4.12
abc
abc\&
43\&3.22
749.12

13
4.2

26.4.12
abc

abc
433.22

749.12

Note: If numerical data are used in the same column with wider Lor r type table entries,
the widest number is centered relative to the wider Lor r items (L is used instead of J for
readability; they have the same meaning as key-letters). Alignment within the numerical
items is preserved. This is similar to the behavior of a type data, as explained above.
However, alphabetic subcolumns (requested by the a key-letter) are always slightly
indented relative to L items; if necessary, the column width is increased to force this.
This is not true for n type entries.

Warning: the n and a items should not be used in the same column.

For readability, the key-letters describing each column should be separated by spaces.
The end of the format section is indicated by a period. The layout of the key-letters in
the format section resembles the layout of the actual data in the table. Thus a simple for
mat might appear as:

c s s
Inn.

which specifies a table of three columns. The first line of the table contains a heading cen
tered across all three columns; each remaining line contains a left-adjusted item in the
first column followed by two columns of numerical data. A sample table in this format
might be:

Overall title
Jtem-a 34.22 9.1
Item-b 12.65 .02
Items: c,d,e 23 5.8
Total 69.87 14.92

There are some additional features of the key-letter system:

Horizontal lines - A key-letter may be replaced by '_' (underscore) to indicate a hor
izontal line in place of the corresponding column entry, or by ',-' to indicate a dou
ble horizontal line. If an adjacent column contains a horizontal line, or if there are
vertical lines adjoining this column, this horizontal line is extended to meet the
nearby lines. If any data entry is provided for this column, it is ignored and a warn
ing message is printed.

Vertical lines - A vertical bar may be placed between column key-letters. This will
cause a vertical line between the corresponding columns of the table. A vertical bar
to the left of the first key-letter or to the right of the last one produces a line at the
edge of the table. If two vertical bars appear between key-letters, a double vertical
line is drawn.

Space between columns - A number may follow the key-letter. This indicates the
amount of separation between this column and the next column. The number nor
mally specifies the separation in ens (one en is about the width of the letter 'n '). * If
the "expand" option is used, then these numbers are multiplied by a constant such
that the table is as wide as the current line length. The default column separation

• More precisely, an en is a number of points (1 point - 1172 inch) equal to half the current type size.

- 4 -

number is 3. If the separation is changed the worst case (largest space requested)
governs.

Vertical spanning - Normally, vertically spanned items extending over several rows of
the table are centered in their vertical range. If a key-letter is followed by t or T,
any corresponding vertically spanned item will begin at the top line of its range.

Font changes - A key-letter may be followed by a string containing a font name or
number preceded by the letter for F. This indicates that the corresponding column
should be in a different font from the default font (usually Roman). All font names
are one or two letters; a one-letter font name should be separated from whatever
follows by a space or tab. The single letters B, b, I, and i are shorter synonyms for
fB and fI. Font change commands given with the table entries override these
specifications.

Point size changes - A key-letter may be followed by the letter p or P and a number to
indicate the point size of the corresponding table entries. The number may be a
signed digit, in which case it is taken as an increment or decrement from the current
point size. If both a point size and a column separation value are given, one or
more blanks must separate them.

Vertical spacing changes - A key-letter may be followed by the letter v or V and a
number to indicate the vertical line spacing to be used within a multi-line
corresponding table entry. The number may be a signed digit, in which case it is
taken as an increment or decrement from the current vertical spacing. A column
separation value must be separated by blanks or some other specification from a
vertical spacing request. This request has no effect unless the corresponding table
entry is a text block (see below).

Column width indication - A key-letter may be followed by the letter w or Wand a width
value in parentheses. This width is used as a minimum column width. If the largest
element in the column is not as wide as the width value given after the w, the larg
est element is assumed to be that wide. If the largest element in the column is
wider than the specified value, its width is used. The width is also used as a default
line length for included text blocks. Normal troff units can be used to scale the
width value; if none are used, the default is ens. If the width specification is a unit
less integer the parentheses may be omitted. If the width value is changed in a
column, the last one given controls.

Equal width columns - A key-letter may be followed by the letter e or E to indicate
equal width columns. All columns whose key-letters are followed by e or E are
made the same width. This permits the user to get a group of regularly spaced
columns.

Note: The order of the above features is immaterial; they need not be separated by
spaces, except as indicated above to avoid ambiguities involving point size and font
changes. Thus a numerical column entry in italic font and 12 point type with a
minimum width of 2.5 inches and separated by 6 ens from the next column could be
specified as

np12w(2.5j)fI 6

Alternative notation - Instead of listing the format of successive lines of a table on con
secutive lines of the format section, successive line formats may be given on the
same line, separated by commas, so that the format for the example above might
have been written:

c s s, Inn.

De/ault - Column descriptors missing from the end of a format line are assumed to be
L. The longest line in the format section, however, defines the number of columns
in the table; extra columns in the data are ignored silently.

- 5 -

3) DATA. The data for the table are typed after the format. Normally, each table line is
typed as one line of data. Very long input lines can be broken: any line whose last charac
ter is \ is combined with the following line (and the \ vanishes). The data for different
columns (the table entries) are separated by tabs, or by whatever character has been
specified in the option tabs option. There are a few special cases:

Trojf commands within tables - An input line beginning with a '.' followed by anything
but a number is assumed to be a command to trojfand is passed through unchanged,
retaining its position in the table. So, for example, space within a table may be pro
duced by ".sp" commands in the data.

Full width horizonta/lines - An input line containing only the character _ (underscore)
or - (equal sign) is taken to be a single or double line, respectively, extending the
full width of the tab/e.

Single column horizontal lines - An input table entry containing only the character _ or -
is taken to be a single or double line extending the full width of the column. Such
lines are extended to meet horizontal or vertical lines adjoining this column. To
obtain these characters explicitly in a column, either precede them by \& or follow
them by a space before the usual tab or newline.

Short horizontal lines - An input table entry containing only the string '- is taken to be a
single line as wide as the contents of the column. It is not extended to meet adjoin
ing lines.

Repeated characters - An input table entry containing only a string of the form \Rx
where x is any character is replaced by repetitions of the character x as wide as the
data in the column. The sequence of x's is not extended to meet adjoining
columns.

Vertically spanned items - An input table entry containing only the character string \ A

indicates that the table entry immediately above spans downward over this row. It is
equivalent to a table format key-letter of 'A'.

Text blocks - In order to include a block of text as a table entry, precede it by T(and
follow it by T}. Thus the sequence

.•. T(
block 0/
text
T} .••

is the way to enter, as a single entry in the table, something that cannot con
veniently be typed as a simple string between tabs. Note that the T} end delimiter
must begin a line~ additional columns of data may follow after a tab on the same
line. See the example on page 10 for an illustration of included text blocks in a
table. If more than twenty or thirty text blocks are used in a table, various limits in
the trojfprogram are likely to be exceeded, producing diagnostics such as 'too many
string/macro names' or 'too many number registers:

Text blocks are pulled out from the table, processed separately by troff, and replaced
in the table as a solid block. If no line length is specified in the block of text itself.
or in the table format, the default is to use L xC/(N+l) where L is the current line
length, C is the number of table columns spanned by the text, and N is the total
number of columns in the table. The other parameters (point size, font, etc.) used
in setting the block 0/ text are those in effect at the beginning of the table (including
the effect of the". TS" macro) and any table format specifications of size, spacing
and font, using the p, v and f modifiers to the column key-letters. Commands
within the text block itself are also recognized, of course. However, trojf commands
within the table data but not within the text block do not affect that block.

- 6 -

Warnings: - Although any number of lines may be present in a table, only the first 200
lines are used in calculating the widths of the various columns. A multi-page table,
of course, may be arranged as several single-page tables if this proves to be a prob
lem. Other difficulties with formatting may arise because, in the calculation of
column widths all table entries are assumed to be in the font and size being used
when the". TS" command was encountered, except for font and size changesindi
cated (a) in the table format section and (b) within the table data (as in the entry
\s+3\fldata\fP\sO). Therefore, although arbitrary troffrequests may be sprinkled in
a table, care must be taken to avoid confusing the width calculations~ use requests
such as '.ps' with care.

4) ADDITIONAL COMMAND LINES. If the format of a table must be changed after many simi
lar lines, as with sub-headings or summarizations, the ". T &" (table continue) command
can be used to change column parameters. The outline of such a table input is:

.TS
options;
formaf.
data

.T&
format.
dala
.T&
format.
data
.TE

as in the examples on pages 10 and 12. Using this procedure, each table line can be close
to its corresponding format line.
Warning: it is not possible to change the number of columns, the space between columns,
the global options such as box. or the selection of columns to be made equal width.

Usage.

On UNIX, tbl can be run on a simple table with the command

tbl input-file I troft"

but for more complicated use, where there are several input files, and they contain equations
and ms memorandum layout commands as well as tables, the normal command would be

tbl file-} file-2 ••• I eqn I troft" -ms

and, of course, the usual options may be used on the troff and eqn commands. The usage for
nroff is similar to that for troff, but only TELETYPE~ Model 37 and Diablo-mechanism (DASI or
GSI) terminals can print boxed tables directly.

For the convenience of users employing line printers without adequate driving tables or
post-filters, there is a special - TX command line option to tbl which produces output that does
not have fractional line motions in it. The only other command line options recognized by fbi
are -ms and -mm which are turned into commands to fetch the corresponding macro files~
usually it is more convenient to place these arguments on the troff part of the command line,
but they are accepted by fbi as well.

Note that when eqn and fbi are used together on the same file fbi should be used first. If
there are no equations within tables, either order works, but it is usually faster to run fbi first,
since eqn normally produces a larger expansion of the input than fbi. However, if there are
equations within tables (using the delim mechanism in eqn), fbi must be first or the output will
be scrambled. Users must also beware of using equations in n-style columns; this is nearly

- 7 -

always wrong, since ,bl attempts to split numerical format items into two parts and this is not
possible with equations. The user can defend against this by giving the delim(xx) table option~
this prevents splitting of numerical columns within the delimiters. For example, if the eqn del
imiters are $$, giving delim($$) a numerical column such as "1245 $ + - 16$" will be divided
after 1245, not after 16.

Thllimits tables to twenty columns~ however, use of more than 16 numerical columns
may fail because of limits in 'roff, producing the 'too many number registers' message. Troff
number registers used by fbi must be avoided by the user within tables~ these include two-digit
names from 31 to 99, and names of the forms #x, x+, x~ AX, and x-, where X is any lower
case letter. The names ##, #-, and #A are also used in certain circumstances. To conserve
number register names, the n and a formats share a register~ hence the restriction above that
they may not be used in the same column.

For aid in writing layout macros, fbi defines a number register TW which is the table
width~ it is defined by the time that the ". TE" macro is invoked and may be used in the
expansion of that macro. More importantly, to assist in laying out multi-page boxed tables the
macro T# is defined to produce the bottom lines and side lines of a boxed table, and then
invoked at its end. By use of this macro in the page footer a multi-page table can be boxed. In
particular, the ms macros can be used to print a multi-page boxed table with a repeated heading
by giving the argument H to the" ,TS" macro. If the table start macro is written

,TS H
a line of the form

,TH
must be given in the table after any table heading (or at the start if none). Material up to the
.. ,TH" is placed at the top of each page of table~ the remaining lines in the table are placed on
several pages as required. Note that this is nOf a feature of fbi. but of the ms layout macros.

Examples,

Here are some examples illustrating features of fbi. The symbol <V in the input
represents a tab character.

Input:

,TS
box~
ccc
I I I,
language (I) Authors (j) Runs on

Fortran (j) Many (j) Almost anything
Pl/l (j) IBM (j) 360/370
C (j) BTL (j) 11145,H6000,370
BLISS (j)Carnegie-Mellon (I) PDP-IO,11
IDS (j) Honeywell (j) H6000
Pascal (I) Stanford (j) 370
,TE

Output:

language

Fortran
Pl/t
C
BLISS
IDS
Pascal

Authors Runs on

Many Almost anything
IBM 360/370
BTL 11l45,H6000,370
Carnegie-Mellon PDP-IO,ll
Honeywell H6000
Stanford 370

- 8 -

Input:

.TS
allbox;
c s s
ccc
n n n.
AT&T Common Stock
Year <D Price @ Dividend
1971 <D41-54@S2.60
2 <D41-54@2.70
3 <D46-55 <D 2 .87
4<D40-53 <D3.24
5<D45-52<D3.40
6@51-59@.95*
.TE
* (first quarter only)

Input:

.TS
box;
c s s
clclc
1111n.
Major New York Bridges ...
Bridge <D Designer <D Length

Brooklyn @J. A. Roebling <D 1595
Manhattan <DG. Lindenthal <D 1470
Williamsburg <D L. L. Buck <D 1600

Queensborough <D Palmer & <D 1182
<D Hornbostel

<D <D 1380
Triborough <DO. H. Ammann <D_
<D <D383

Bronx Whitestone <D O. H. Ammann <D 2300
Throgs Neck <D O. H. Ammann <D 1800

Output:

AT&T Common Stock
Year Price Dividend
1971 41-54 52.60

2 41-54 2.70
3 46-55 2.87
4 40-53 3.24
5 45-52 3.40
6 51-59 .95*

* (first quarter only)

Output:

Major New York Bridges
Bridge Designer

Brooklyn J. A. Roebling
Manhattan G. Lindenthal
Williamsburg L. L. Buck
Queensborough Palmer &

Hornbostel

Triborough O. H. Ammann

Bronx Whitestone O. H. Ammann
Throgs Neck O. H. Ammann
George Washington O. H. Ammann

George Washington <DO. H. Ammann <D3500
.TE

Length
1595
1470
1600
1182

1380

383
2300
1800
3500

Input:

.TS
cc
np-21 n I.
G:>Stack
Ci>_
1 G:>46
Ci>_
2Ci>23
Ci>_
3Ci>15
Ci>_
4Ci>6.5
Ci>_
5Ci>2.1
Ci>_
.TE

Input:

.TS
box~
LLL
LL
L LrLB
LL_
L L L.
jan uary <T> february <T> march
april Ci> may
june <T>july G:> Months
august Ci>september
october G:> november G:>december
.TE

- 9 -

Output:

Stack
1 46
2 23
3 15
4 6.5
5 2.1

Output:

january
april
june
august
october

february march

may I
july Months
september '-------I

november december

- 10 -

Input: Output:

.TS Composition of Foods
box;
cfBsss.
Composition of Foods

-
.T&
c I c s s
c I c s s
c I c I c I c.
Food GJ Percent by Weight
\~ GJ
\ ~ GJ Protein GJ Fat GJ Carbo
\ ~ GJ \~ GJ \ ~ GJ hydrate

-
.T&
I I n I n In.
Apples GJ .4 GJ .5 GJ 13.0
HalibutGJI8.4GJ5.2GJ .
Lima beans GJ 7 . 5 GJ .8 GJ 22.0
Milk GJ3.3 GJ4.0GJ5.0
MushroomsGJ3.5GJ .4GJ6.0
Rye breadGJ9.0GJ .6GJ52.7
.TE

Input:

.TS
al\box;
cfl s s
c cw(Ii) cw(Ii)
Ip9 Ip9 Ip9.
New York Area Rocks
Era GJ Formation GJ Age (years)
Precambrian G'> Reading Prong GJ > 1 billion
Paleozoic GJ Manhattan Prong GJ 400 million
MesozoicGJT{
.na
Newark Basin, incl.
Stockton, Lockatong, and Brunswick
formations; also Watchungs
and Palisades.
TJ GJ 200 million
Cenozoic GJCoastal Plain G'>T{
On Long Island 30,000 years;
Cretaceous sediments redeposited
by recent glaciation. .
.ad
T}
.TE

Food

Apples
Halibut
Lima beans
Milk
Mushrooms
Rye bread

Output:

Era
Precambrian

Paleozoic

Mesozoic

Cenozoic

Percent by Weight
Carbo-Protein Fat hydrate

.4 .5 13.0
18.4 5.2 ...
7.5 .8 22.0
3.3 4.0 5.0
3.5 .4 6.0
9.0 .6 52.7

New York Area Rocks
Formation Age (years)

Reading Prong > 1 billion

Manhattan Prong 400 million

Newark Basin, 200 million
incl. Stockton,
Lockatong, and
Brunswick for-
mations; also
Watchungs and
Palisades.

Coastal Plain On Long Island
30,000 years;
Cretaceous sedi-
ments redepo-
sited by recent
glaciation.

Input:

.EQ
delim S5
.EN

- 11 -

Output:

Name

Gamma

Sine

Definition

r(z)-fo"" tz-1e- t dt

sin(x)- ~i (eiX_e- ix)

.TS
'doublebox~

cc

Error

Bessel

erf(z}-]; foZe-t2dl

Jo(z)_l. r" cos(zsin9}d9
1T J o

II.
Name <V Definition
.sp
.vs +2p

Zeta
00

'(s)- I k- S (Re s > 1)
..k.."'!.l

Gamma<vSGAMMA (z) - int sub 0 sup inf t sup {z-II e sup -t dtS
Sine<vSsin (x) - lover 2i (e sup ix - _e sup -ix)S
Error<VS roman erf (z) - 2 over sqrt pi int sub 0 sup z e sup {-t sup 21 dtS
Bessel <vS J sub 0 (z) - lover pi int sub 0 sup pi cos (z sin theta) d theta 5
Zeta<vS zeta (s) - sum from k-I to inf k sup -s --(Re-s > 1)S
.vs -2p
.TE

Input:

.TS

Output:

Readability of Text
box, tab(:)~
cb s s s s
cp-2 s s s s
cllclclclc
cllclclclc

Line Width and Leading for to-Point Type

r211 n21 n2 1 n2 1 n.
Readability of Text
Line Width and Leading for 10-Point Type -
Line: Set: I-Point: 2-Point: 4-Point
Width: Solid: Leading: Leading: Leading

"9 Pica:\-9.3:\-6.0:\-5.3:\-7.1
14 Pica: \-4.5: \-0.6: \-0.3: \-1. 7
19 Pica:\-5.0:\-5.1: 0.0:\-2.0
31 Pica:\-3.7:\-3.8:\-2.4:\-3.6
43 Pica: \-9.1: \-9.0: \-5.9: \-8.8
.TE

Line
Width
9 Pica

14 Pica
19 Pica
31 Pica
43 Pica

Set
Solid
-9.3
-4.5
-5.0
-3.7
-9.1

I-Point 2-Point 4-Point
Leading Leading Leading

-6.0 -5.3 -7.1
-0.6 -0.3 -1.7
-5.1 0.0 -2.0
-3.8 -2.4 -3.6
-9.0 -5.9 -8.8

Input:

.TS
cs
cip-2 s
I n
an.
Some London Transport Statistics
(Year 1964) .
Railway route miles <D 244
Tube<D66
Sub-surface <D 22
Surface G) 156
.sp .5
.T&
I r
a r.
Passenger traffic \- railway
Journeys G) 674 million
Average length G)4.55 miles
Passenger miles G) 3,066 million
.T&
I r
a r.
Passenger traffic \- road
Journeys G) 2,252 million
A verage length G) 2 .26 miles
Passenger miles G) 5,094 million
.T&
In
an.
.sp .5
VehiclesG) 12,521
Railway motor cars G) 2,905
Railway trailer cars G) 1,269
Total railway G)4, 174
Omnibuses G)8,347
.T&
In
an .
. sp .5
StaffG) 73,739
Administrative, etc. G) 5,582
Civil engineering G) 5,134
Electrical eng. G) 1,714
Mech. eng. \- railwayG)4,310
Mech. eng. \- roadG)9,152
Railway operations G) 8,930
Road operations G) 35,946
Other G) 2,971
.TE

- 12 -

Output:

Some London Transport Statistics
(Year 1964)

Railway route miles
Tube
Sub-surface
Surface

Passenger traffic - railway
Journeys
A verage length
Passenger miles

Passenger traffic - road
Journeys
A verage length
Passenger miles

Vehicles
Railway motor cars
Railway trailer cars
Total railway
Omnibuses

Staff
Administrative, etc.
Civil engineering
Electrical eng.
Mech. eng. - railway
Mech. eng. - road
Railway operations
Road operations
Other

244
66
22

156

674 million
4.55 miles

3,066 million

2,252 million
2.26 miles

5,094 million

12,521
2,905
1,269
4,174
8,347

73,739
5,582
5,134
1,714
4,310
9,152
8,930

35,946
2,971

Input:

.ps 8

.vs lOp

.TS
center box;
c s s
ci s s
ccc
IB In.
New Jersey Representatives
(Democrats)
.sp .5
Name G)Office address G) Phone
.sp .5

• 13 •

James 1. F1orioG:l23 S. White Horse Pike, Somerdale 08083G)609·627·8222
William 1. HughesG:l2920 Atlantic Ave., Atlantic City 08401 G:l609·345-4844
James 1. Howard G) 801 Bangs Ave., Asbury Park 07712 G:l 201· 774·1600
Frank Thompson, Jr. G:l 10 Rutgers Pl., Trenton 08618G)609·599·1619
Andrew MaguireG)115 W. Passaic St., Rochelle Park 07662G)201·843·0240
Robert A. RoeG:lU.S.P.O., 194 Ward St., Paterson 07510G:l201·523·5152
Henry Helstoski G)666 Paterson Ave., East Rutherford 07073 G:l201·939-9090
Peter W. Rodino, Jr. G)Suite 1435A, 970 Broad St., Newark 07102G)201·645·3213
Joseph G. Minish G) 308 Main St., Orange 07050 G) 201·645·6363
Helen S. MeynerG:l32 Bridge St., Lambertville 08530 G:l 609·397· 1 830
Dominick V. DanielsG)895 Bergen Ave., Jersey City 07306G)201-659-7700
Edward 1. Patten G)Natl. Bank Bldg., Perth Amboy 08861 G)201-826-4610
.sp .5
.T&
ci s s
IB In.
(Republicans)
.sp .5v
Millicent FenwickG)41 N. Bridge St., Somerville 08876 G) 201·722·8200
Edwin B. ForsytheG)301 Mill St., Moorestown 08057G)609-235·6622
Matthew 1. RinaldoG:l1961 Morris Ave., Union 07083G)201·687-4235
.TE
.ps 10
. vs 12p

Output:

Name

James J. Florio
William J. Hughes
James J. Howard
Frank Thompson. Jr.
Andrew Maguire
Robert A. Roe
Henry Helstoskl
Peter W. Rodino. Jr.
Joseph G. Minish
Helen S. Meyner
Dominick V. Daniels
Edward J. Patten

Millicent Fenwick
Edwin B. Forsythe
Matthew J. Rinaldo

- 14 -

New Jersey Representatives
(Democrats)

Office address

23 S. White Horse Pike, Somerdale 08083
2920 Atlantic Ave., Atlantic City 08401
801 Bangs Ave., Asbury Park 07712
10 Rutgers PI., Trenton 08618
1I5 W. Passaic St., Rochelle Park 07662
U.S.P.O., 194 Ward St., Paterson 07510
666 Paterson Ave., East Rutherford 07073
Suite 1435A, 970 Broad St., Newark 07102
308 Main St., Orange 07050
32 Bridge St., Lambertville 08530
895 Bergen Ave., Jersey City 07306
Natl. Bank Bldg., Perth Amboy 08861

(Republicans)

41 N. Bridge St., Somerville 08876
301 Mill St., Moorestown 08057
1961 Morris Ave., Union 07083

Phone

609-627-8222
609-345-4844
201-774-1600
609-599-1619
201-843-0240
201-523-5152
201-939-9090
201-645-3213
201-645-6363
609-397-1830
201-659-7700
201-826-4610

201-722-8200
609-235-6622
201-687-4235

This is a paragraph of normal text placed here only to indicate where the left and right margins
are. In this way the reader can judge the appearance of centered tables or expanded tables, and
observe how such tables are formatted.

Input:

.TS
expand;
c s s s
c c c c
II n n.
Bell Labs Locations
Name <D Address <D Area Code <D Phone
Holmdel <D Holmdel, N. 1. 07733 <D 201 <D 949-3000
Murray Hill <DMurray Hill, N. 1. 07974<D201 <D582-6377
Whippany <DWhippany, N. 1. 07981 <D201 <D386-3000
Indian Hill <D Naperville, Illinois 60540 <D 312 <D 690-2000
.TE

Output:

Name
Holmdel
Murray Hill
Whippany
Indian Hill

Bell Labs Locations
Address

Holmdel, N. 1. 07733
Murray Hill, N. 1. 07974
Whippany, N. 1. 07981
Naperville, Illinois 60540

Area Code
201
201
201
312

Phone
949-3000
582-6377
386-3000
690-2000

Input:

.TS
box;
cb s s s
c 1 c Ic s
Itiw(Ji) IlIw(2j) Ilpsllw(J .6i)pS.
Some Interesting Places

NameG) Dcscriptio~ G) Practical Information

1'1
American Museum of Natural History
TI(j)T(

- 15 -

The collections fill 11.5 acres (Michelin) or 25 acres (MT A)
of exhibition halls on four Hoors. There is a full-sized replica
of a blue whale and the world's largest star sapphire (stolen in 1964).
T\ G) HoursG) 10-5. ex. Sun 11-5. Wed. to 9
\ " (j) \ "(j) Location (j) T (
Central Park West&. 79th St.
TI
\ "(j)\"G) AdmissionG) Donation: SI.00 asked
\"G)n'i'SubwayG)AA to 81st St.
\ "(j)\ "(j)TelephoneG) 212-873-4225

Bronx Zoo(j)T(
About a mile long and .6 mile wide. this is the Iaracst zoo in America.
A lion eats IS pounds
of meat a day while a sea lion eats 15 pounds of fish.
TIG)Hours(j)T(
10-4:30 winter. to 5:00 summer
TI
\ " (j) \ " G) Location G) T (
185th St. &. Southern Blvd. the Bronx.
TI
\ "(j)\"(j) AdmissionG)SI.00. but Tu, We,Th free
\ "(j)\ "G)Subway(j)~ 5 to East Tremont Ave.
\" G)\ "(j)Telephonew 212-933-1759

Brooklyn MuseumG)T(
Five Hoors of galleries contain American and ancient an.
There are American period rooms and architectural ornaments saved
from wreckers. such as a c.lassical Ii,ure from Pennsylvania Station.
TI G) HoursG) Wed-Sat. 10-5. Sun 12-5
\ -G) \ -G) Location G) T(
Eastern Parkway&. Washington Ave •• Brooklyn.
TI
\ -(j)\'G) Admission(j) Free
\"G)\"(j)SubwayG) 2.3 to Eastern Parkway.
\. (j)\ "(j)TelephoneG) 212-638-5000

1'{
New. York Historical Society
TI(j)T{
All the original paintinp for Audubon',
.1
Birds of America
.R
are here. as are exhibits of American decorative ans, New York history.
Hudson River school paintinp, carriqes, and aIass paperwcipts.
TI G) Hours G) T(
Tues·Fri &. Sun, 1-5; Sat 100S
TI
\ "(j)\"(j) Location G) T(
Central Park West&. 77th St.
TI
\ "(j)\"(j) AdmissionG) Free
\. (j)\' G)Subway(j) AA to 81st St.
\ "(j)\ "(j)TelephoneG) 212-873-3400
.TE

- 16 -

Output:

Some Interesling Places

Name Description Practical Information

American Muse- The collections fill 11.5 acres Hours 10-5. ex. Sun 11·5. Wed. to 9

um Q(Natural (Michelin) or 25 acres (MT A) Location Central Park West" 79th SI.

History of exhibition halls on four Admission Donation: SI.OO asked

floors. There is a full-sized re- Subway AA to 81st SI.

plica of a blue whale and the Telephone 212·873·4225

world's largest star sapphire
(stolen in 1964).

Bronx Zoo About a mile long and .6 mile Hours 10·4:30 winter. to 5:00 summer
wide, this is the largest zoo in Location 185th St. " Southern Blvd. the
America. A lion eats 18 Bronx.

pounds of meat a day while a Admission SI.OO. but Tu.We.Th free

sea lion eats 15 pounds of fish. Subway 2. 5 to East Tremont Ave.
Telephone 212·933·1759

Brooklyn Museum Five floors of galleries contain Hours Wed·Sat. 10-5. Sun 12·5

American and ancient art. Location Eastern Parkway cl Washington

There are American period Ave .• Brooklyn.

rooms and architectural orna- Admission Free

ments saved from wreckers, Subway 2.3 to Eastern Parkway.

such as a classical figure from Telephone 212·638·5000

Pennsylvania Station.

New- York Histor- All the original paintings for Hours Tues·Fri cl Sun. 1·5; Sat 10-5

ical Society Audubon's Birds Q(America are Location Central Park West" 77th St.

here, as are exhibits of Ameri- Admission Free

can decorative arts, New York Subway AA to 81st SI.

history, Hudson River school Telephone 212·873·3400

paintings, carriages, and glass
paperweights.

Acknowledgments.

Many thanks are due to J. C. Blinn, who has done a large amount of testing and assisted
with the design of the program. He has also written many of the more intelligible sentences in
this document and helped edit all of it. All phototypesetting programs on UNIX are dependent
on the work of the late 1. F. Ossanna, whose assistance with this program in particular had been
most helpful. This program is patterned on a table formatter originally written by J. F. Gimpel.
The assistance of T. A. Dolotta, 8. W. Kernighan, and J. N. Sturman is gratefully ack
nowledged.

References.

[1] J. F. Ossanna, NROFFITROFF User's Manual. Computing Science Technical Report No. 54,
Bell Laboratories, 1976.

[2] K. Thompson and D. M. Ritchie, "The UNIX Time-Sharing System," Camm. ACM. 17,
pp. 365-75 (1974).

[3] B. W. Kernighan and L. L. Cherry, "A System for Typesetting Mathematics," Comm.
ACM. 18, pp. 151-57 (975).

[4] M. E. Lesk, Typing Documents on UNIX. UNIX Programmer's Manual, Volume 2.

- 17 -

[5] M. E. Lesk and B. W. Kernighan, Computer Typesetting of TeChnical JOllrnals on UNIX. Proc.
AFIPS NCC, vol. 46, pp. 879-888 (1977).

[6] J. R. Mashey and D. W. Smith, "Documentation Tools and Techniques," Proc. 2nd Int.
Con/. on Software Engineering, pp. 177-181 (October, 1976).

List of Tbl Command Characters and Words

Command Meaning Section
aA Alphabetic subcolumn 2
allbox Draw box around all items 1
bB Boldface item 2
box Draw box around table 1
cC Centered column 2
center Center table in page 1
doublebox Doubled box around table 1
eE Equal width columns 2
expand Make table full line width .1
fF Font change 2
i I Italic item 2
I L Left adjusted column 2
nN Numerical column 2
nnn Column separation 2
pP Point size change 2
rR Right adjusted column 2
sS Spanned item 2
tT Vertical spanning at top 2
tab (x) Change data separator character 1
T{ T) Text block 3
yV Vertical spacing change 2
wW Minimum width value 2
.XX" Included (roff command 3
I Vertical line 2
II Double vertical line 2
• Vertical span 2
\. Vertical span 3 - Double horizontal line 2,3

Horizontal line 2,3

'- Short horizontal line 3
\Rx Repeat character 3

Some Applications of Inverted Indexes on the UNIX System

1. Introduction.

M. E. Leak

Bell Laboratories
Murray Hill, New Jersey 07974

The UNIXt system has many utilities (e.g. grep, awk, lex, egrep, fgrep, .. .) to search through
files of text, but most of them are based on a linear scan through the entire file, using some
deterministic automaton. This memorandum discusses a program which uses inverted indexes1

and can thus be used on much larser data bases.

As with any indexing system, of course, there are some disadvantages; once an index is
made, the files that have been indexed can not be changed without remaking the index. Thus
applications are restricted to those making many searches of relatively stable data. Further
more, these programs depend on hashing, and can only search for exact matches of whole key
words. It is not possible to look for arithmetic or logical expressions (e.g. "date greater than
1970") or for regular expression searching such as that in lex.2

Currently there are two uses of this software, the refer preprocessor to format references,
and the lookall command to search through all text files on the UNIX system.

The remaining sections of this memorandum discuss the searching programs and their
uses. Section 2 explains the operation of the searching algorithm and describes the data col
lected for use with the loo/cQ/I command. The more important application, refer has a user's
description in section 3. Section 4 goes into more detail on reference files for the benefit of
those who wish to add references to data bases or write new troff macros for use with refer. The
options to make refer collect identical citations, or otherwise relocate and adjust references, are
described in section 5. The UNIX manual sections for refer, lookall, and associated commands
are attached as appendices.

2. Seareblnl •

. The indexing and searching process is divided into two phases, each made of two parts.
These are shown below.

A. Construct the index.
(I) Find keys - tum the input files into a sequence of tags and keys, where each tag

identifies a distinct item in the input and the keys for each such item are the strings
under which it is to be indexed.

(2) Hash and sort - prepare a set of inverted indexes from which, given a set of keys,
the appropriate item tags can be found quickly.

B. Retrieve an item in response to a query.

tUNIX is a Trademark of Bell Laboratories.

1. D. Knuth. Th~ Aft 0/ ComputV Prorrammlng: Vol. J, Sorting and S«Irchlng, Addison·Wesley, Readinl. Mass.
(1977). See section 6.S.

2. M. E. Lesk. "Lex - A Lexical Analyzer Generator." Compo Sci. Tech. Rep. No. 39. Bell Laboratories, Mur
ray Hill. New Jersey (D).

- 2 -

(3) Search - Given some keys, look through the files prepared by the hashing and sort
ing facility and derive the appropriate tags.

(4) Deliver - Given the tags, find the original items. This completes the searching pro-
cess.

The first phase, making the index, is presumably done relatively infrequently. It shoulq, of
course, be done whenever the data being indexed change. In contrast, the second phase,
retrieving items, is presumably done often, and must be rapid.

An effort is made to separate code which depends on the data being handled from code
which depends on the searching procedure. The search algorithm is involved only in steps (2)
and (3), while knowledge of the actual data files is needed only by steps (1) and (4). Thus it is
easy to adapt to different data files or different search algorithms.

To start with, it is necessary to have some way of selecting or generating keys from input
files. For dealing with files that are basically English, we have a key-making program which
automatically selects words and passes them to the hashing and sorting program (step 2). The
format used has one line for each input item, arranged as follows:

name:start,length (tab) keyl key2 key3 ...

where name is the file name, start is the starting byte number, and length is the number of
bytes in the entry.

These lines are the only input used to make the index. The first field (the file name, byte
position, and byte count) is the tag of the item and can be used to retrieve it quickly. Nor
mally, an item is either a whole file or a section of a file delimited by blank lines. After the
tab, the second field contains the keys. The keys, if selected by the automatic program, are any
alphanumeric strings which are not among the 100 most frequent words in English and which
are not entirely numeric (except for four-digit numbers beginning 19, which are accepted as
dates). Keys are truncated to six characters and converted to lower case. Some selection is

needed if the original items are ver lrge. We normally just take the first n keys, with n less
than 100 or so; this replaces any attempt at intelligent selection. One file in our system is a
complete English dictionary; it would presumably be retrieved for all queries.

To generate an inverted index to the list of record tags and keys, the keys are hashed and
sorted to produce an index. What is wanted, ideally, is a series of lists showing the tags associ
ated with each key. To condense this, what is actually produced is a list showing the tags asso
ciated with each hash code, and thus with some set of keys. To speed up access and further
save space, a set of three or possibly four files is produced. These files are:

File Contents
entry Pointers to posting file

for each hash code
posting Lists of tag pointers for

each hash code
tag Tags for each item
key Keys for each item

(optional)

The posting file comprises the real data: it contains a sequence of lists of items posted under
each hash code. To speed up searching, the entry file is an array of pointers into the posting
file, one per potential hash code. Furthermore, the items in the lists in the posting file are not
referred to by their complete tag, but just by an address in the tag file, which gives the com
plete tags. The key file is optional and contains a copy of the keys used in the indexing.

The searching process starts with a query, containing several keys. The goal is to obtain
all items which were indexed under these keys. The query keys are hashed, and the pointers in
the entry file used to access the lists in the posting file. These lists are addresses in the tag file
of documents posted under the hash codes derived from the query. The common items from

- 3 -

all lists are determined; this must include the items indexed by every key, but may also contain
some items which are false drops, since items referenced by the correct hash codes need not
actually have contained the correct keys. Normally, -if there are several keys in the query, there
are not likely to be many false drops in the final combined list even though each hash code is
somewhat ambiguous. The actual tags are then obtained from the tag file, and to guard against
the possibility that an item has false-dropped on some hash code in the query, the original
items are normally obtained from the delivery program (4) and the query keys checked against
them by string comparison.

Usually, therefore, the check for bad drops is made against the original file. However, if
the key derivation procedure is complex, it may be preferable to check against the keys fed to
program (2). In this case the optional key file which contains the keys associated with each
item is generated, and the item tag is supplemented by a string

;start,length

which indicates the starting byte number in the key file and the length of the string of keys for
each item. This file is not usually necessary with the present key-selection program, since the
keys always appear in the original document.

There is also an option (.Cn) for coordination level searching. This retrieves items which
match all but n of the query keys. The items are retrieved in the order of the number of keys
that they match. Of course, n must be less than the number of query keys (nothing is
retrieved unless it matches at least one key).

As an example, consider one set of 4377 references, comprising 660,000 bytes. This
included 51,000 keys, of which 5,900 were distinct keys. The hash table is kept full to save
space (at the expense of time); 995 of 997 possible hash codes were used. The total set of
index files (no key file) included 171,000 bytes, about 26% of the original file size. It took 8
minutes of processor time to hash, sort, and write the index. To search for a single query with
the resulting index took 1.9 seconds of processor time, while to find the same paper with a
sequential linear search using grep (reading all of the tags and keys) took 12.3 seconds of pro
cessor time.

We have also used this software to index all of the English stored on our UNIX system.
This is the index searched by the lookall command. On a typical day there were 29,000 files in
our user file system, containing about 152,000,000 bytes. Of these 5,300 files, containing
32,000,000 bytes (about 21%) were English text. The total number of 'words' (determined
mechanically) was 5,100,000. Of these 227,000 were selected as keys; 19,000 were distinct,
hashing to 4,900 (of 5,000 possible) different hash codes. The resulting inverted file indexes
used 845,000 bytes, or about 2.6% of the size of the original files. The particularly small
indexes are caused by the fact that keys are taken from only the first 50 non-common words of
some very long input files.

Even this large lookall index can be searched quickly. For example, to find this document
by looking for the keys "lesk inverted indexes" required 1.7 seconds of processor time and sys
tem time. By comparison, just to search the 800,000 byte dictionary (smaller than even the
inverted indexes, let alone the 32,000,000 bytes of text files) with grep takes 29 seconds of pro
cessor time. The lookall program is thus useful when looking for a document which you
believe is stored on-line, but do not know where. For example, many memos from the Com
puting Science Research Center are in its UNIX file system, but it is often difficult to guess
where a particular memo might be (it might have several authors, each with many directories,
and have been worked on by a secretary with yet more directories). Instructions for the use of
the lookall command are given in the manual section, shown in the appendix to this memoran
dum.

The only indexes maintained routinely are those of publication lists and all English files.
To make other indexes, the programs for making keys, sorting them, searching the indexes,
and delivering answers must be used. Since they are usually invoked as parts of higher-level
commands, they are not in the default command directory, but are available to any user in the

- 4 -

directory IusrAiblrefer. Three programs are of interest: mkey, which isolates keys from input
files; inv, which makes an index from a set of keys; and hunt, which searches the index and
delivers the items. Note that the two parts of the retrieval phase are combined into one pro
gram, to avoid the excessive system work and delay which would result from running these as
separate processes.

These three commands have a large number of options to adapt to different kinds of
input. The user not interested in the detailed description that now follows may skip to section
3, which describes the refer program, a packaged-up version of these tools specifically oriented
towards formatting references.

Make Keys. The program mkey is the key-making program corresponding to step (1) in
phase A. Normally, it reads its input from the file names given as arguments, and if there are
no arguments it reads from the standard input. It assumes that blank lines in the input delimit
separate items, for each of which a different line of keys should be generated. The lines of
keys are written on the standard output. Keys are any alphanumeric string in the input not
among the most frequent words in English and not entirely numeric (except that all-numeric
strings are acceptable if they are between 1900 and 1999). In the output, keys are translated to
lower case, and truncated to six characters in length; any associated punctuation is removed.
The following Oag arguments are recognized by mkey:

-c name
-f name

-i chars

-kn
-In
-nm

-5

-w

Name of file of common words; default is IusrAibleign.
Read a list of files from name and take each as an input argu
ment.
Ignore all lines which begin with '%' followed by any character
in chars.
Use at most n keys per input item.
Ignore items shorter than n letters long.
Ignore as a key any word in the first m words of the list of
common English words. The default is 100.
Remove the labels (file:start,length) from the output; just give
the keys. Used when searching rather than indexing.
Each whole file is a separate item; blank lines in files are
irrelevant.

The normal arguments for indexing references are the defaults, which are -e !usrllibleign,
-nlOO, and -13. For searching, the -s option is also needed. When the big lookal/ index of
all English files is run, the options are -w, -k50, and -f (filelisl). When running on textual
input, the mkey program processes about 1000 English words per processor second. Unless the
-k option is used (and the input files are long enough for it to take effect) the output of mkey
is comparable in size to its input.

Hash and invert. The inv program computes the hash codes and writes the inverted files.
It reads the output of mkey and writes the set of files described earlier in this section. It
expects one argument, which is used as the base name for the three (or four) files to be writ
ten. Assuming an argument of Index (the default) the entry file is named Index.ia, the posting
file Index.ib, the tag file Index.ie, and the key file (if present) Index.id. The inv program recog
nizes the following options:

-a Append the new keys to a previous set of inverted files, making
new files if there is no old set using the same base name.

-d Write the optional key file. This is needed when you can not
check for false drops by looking for the keys in the original
inputs, i.e. when the key derivation procedure is complicated
and the output keys are not words from the input files.

-hn The hash table size is n (default 997); n should be prime.
Making n bigger saves search time and spends disk space.

- 5 -

-Uul name Take input from file name, instead of the standard input; if u is
present name is unlinked when the sort is started. Using this
option permits the sort scratch space to overlap the disk space
used for input keys.

-n Make a completely new set of inverted files, ignoring previous
files.

-p Pipe into the sort program, rather than writing a temporary
input file. This saves disk space and spends processor time.

-v Verbose mode; print a summary of the number of keys which
finished indexing.

About half the time used in inv is in the contained sort. Assuming the sort is roughly
linear, however, a guess at the total timing for inv is 250 keys per second. The space used is
usually of more importance: the entry file uses four bytes per possible hash (note the -h
option), and the tag file around 15-20 bytes per item indexed. Roughly, the posting file con
tains one item for each key instance and one item for each possible hash code; the items are
two bytes long if the tag file is less than 65336 bytes long, and the items are four bytes wide if
the tag file is greater than 65536 bytes long. To minimize storage, the hash tables should be
over-full; for most of the files indexed in this way, there is no other real choice, since the entry
file must fit in memory.

Sean:hlnl and Retrievlnl. The hunt program retrieves items from an index. It com
bines, as mentioned above, the two parts of phase (B): search and delivery. The reason why it
is efficient to combine delivery and search is partly to avoid starting unnecessary processes, and
partly because the delivery operation must be a part of the search operation in any case.
Because of the hashing, the search part takes place in two stages: first items are retrieved which
have the right hash codes associated with them, and then the actual items are inspected to
determine false drops, i.e. to determine if anything with the right hash codes doesn't really
have the right keys. Since the original item is retrieved to check on false drops, it is efficient to
present it immediately, rather than only giving the tag as output and later retrieving the item
again. If there were a separate key file, this argument would not apply, but separate key files
are not common.

Input to hunt is taken from the standard input, one query per line. Each query should be
in mkey -s output format; all lower case, no punctuation. The hunt program takes one argu
ment which specifies the base name of the index files to be searched. Only one set of index
files can be searched at a time, although many text files may be indexed as a group, of course.
If one of the text files has been changed since the index, that file is searched with /grep; this
may occasionally slow down the searching, and care should be taken to avoid having many out
of date files. The following option arguments are recognized by hunt:

-a
-en

-Fl1ndl

-I

-I string
-In

-0 string

Give all output; ignore checking for false drops.
Coordination level n: retrieve items with not more than n
terms of the input missing; default CO, implying that each
search term must be in the output items.
"-Fy" gives the text of all the items found; "-Fn"
suppresses them. "-Fd" where d is an integer gives the text
of the first d items. The default is - Fy.
Do not use fgrep to search files changed since the index was
made; print an error comment instead.
Take string as input, instead of reading the standard input.
The maximum length of internal lists of candidate items is n;
default 1000.
Put text output (" - Fy") in string; of use only when invoked
from another program.

- 6 -

-p Print hash code frequencies; mostly for use in optimizing hash
table sizes.

-Tlyndl "-Ty" gives the tags of the items found; "-Tn" suppresses
them. "-T d" where d is an integer gives the first d tags. The
default is - Tn .

-t string Put tag output ("-Ty") in string; of use only when invoked
from another program.

The timing of hunt is complex. Normally the hash table is overfull, so that there will be
many false drops on any single term; but a multi-term query will have few false drops on all
terms. Thus if a query is underspecified (one search term) many potential items will be exam
ined and discarded as false drops, wasting time. If the query is overspecified (a dozen search
terms) many keys will be examined only to verify that the single item under consideration has
that key posted. The variation of search time with number of keys is shown in the table below.
Queries of varying length were constructed to retrieve a particular document from the file of
references. In the sequence to the left, search terms were chosen so as to select the desired
paper as quickly as possible. In the sequence on the right, terms were chosen inefficiently, so
that the query did not uniquely select the desired document until four keys had been used.
The same document was the target in each case, and the final set of eight keys are also identi
cal; the differences at five, six and seven keys are produced by measurement error, not by the
slightly different key lists.

Efficient Keys Inefficient Keys
No. keys Total drops Retrieved Search time No. keys Total drops Retrieved Search time

(jncl. false) Documents (seconds) (incl. false) Documents (seconds)

1 15 3 1.27 1 68 55 5.96
2 1 1 0.11 2 29 29 2.72
3 1 1 0.14 3 8 8 0.95
4 1 1 0.17 4 1 1 0.18
5 1 1 0.19 5 1 1 0.21
6 1 1 0.23 6 1 1 0.22
7 1 1 0.27 7 1 1 0.26
8 1 1 0.29 8 1 1 0.29

As would be expected, the optimal search is achieved when the query just specifies the answer;
however, overspecification is quite cheap. Roughly, the time required by hunt can be approxi
mated as 30 milliseconds per search key plus 75 milliseconds per dropped document (whether it
is a false drop or a real answer). In general, overspecification can be recommended; it protects
the user against additions to the data base which turn previously uniquely-answered queries into
ambiguous queries.

The careful reader will have noted an enormous discrepancy between these times and the
earlier quoted time of around 1.9 seconds for a search. The times here are purely for the
search and retrieval: they are measured by running many searches through a single invocation
of the hunt program alone. Usually, the UNIX command processor (the shell) must start both
the mkey and hunt processes for each query, and arrange for the output of mkey to be fed to
the hunt program. This adds a fixed overhead of about 1.7 seconds of processor time to any
single search. Furthermore, remember that all these times are processor times: on a typical
morning on our PDP 11170 system, with about one dozen people logged on, to obtain 1 second
of processor time for the search program took between 2 and 12 seconds of real time, with a
median of 3.9 seconds and a mean of 4.8 seconds. Thus, although the work involved in a sin
gle search may be only 200 milliseconds, after you add the 1.7 seconds of startup processor
time and then assume a 4:1 elapsed/processor time ratio, it will be 8 seconds before any
response is printed.

- 7 -

3. Seleetlnl and Formattlnl References for Taorr
The major application of the retrieval software is refer. which is a troff preprocessor like

eqn.3 It scans its input looking for items of the form

. [
imprecise citation .]

where an imprecise citation is merely a string of words found in the relevant bibliographic cita
tion. This is translated into a properly formatted reference. If the imprecise citation does not
correctly identify a single paper (either selecting no papers or too many) a message is given.
The data base of citations searched may be tailored to each system, and individual users may
specify their own citation tiles. On our system, the default data base is accumulated from the
publication lists of the members of our organization, plus about half a dozen personal bibliogra
phies that were collected. The present total is about 4300 citations, but this increases steadily.
Even now, the data base covers a large fraction of local citations.

For example, the reference for the eqn paper above was specified as

preprocessor like
.I eqn .
. [
kernighan cherry acm 197 S
.J
It scans its input looking for items

This paper was itself printed using refer. The above input text was processed by refer as well as
tbl and troff by the command

refer memo-jiie I tb/l troff - ms

and the reference was automatically translated into a correct citation to the ACM paper on
mathematical typesetting.

The procedure to use to place a reference in a paper using refer is as follows. First, use
the lookbib command to check that the paper is in the data base and to tind out what keys are
necessary to retrieve it. This is done by typing lookbib and then typing some potential queries
until a suitable query is found. For example, had one started to find the eqn paper shown
above by presenting the query

S lookbib
kernighan cherry
(EOT)

lookbib would have found several items; experimentation would quickly have shown that the
query given above is adequate. Overspecifying the query is of course harmless; it is even desir
able, since it decreases the risk that a document added to the publication data base in the future
will be retrieved in addition to the intended document. The extra time taken by even a grossly
overspecitied query is quite small. A particularly careful reader may have noticed that "acm"
does not appear in the printed citation; we have supplemented some of the data base items with
extra keywords, such as common abbreviations for journals or other sources, to aid in search
ing.

If the reference is in the data base, the query that retrieved it can be inserted in the text,
between • (and •) brackets. If it is not in the data base, it can be typed into a private tile of

3. B. W. Kerniahan and L. L. Cherry, "A System for Typesetlina Mathematics," Comm. Auoc. Compo MiJdJ. II,
pp.ISI·IS7 (March 1975).

·8·

references, using the format discaaed in the next section, and then the - p option used to
search this private file. Such a command might read (if the private references are called myfile)

refer - p myfile document I tb/l eqn I trolf - ma • . .

where tbl and/or eqn could be omitted if not needed. The use of the -ma macros4 or some
other macro package, however, is essential. Refer only generates the data for the references;
exact formatting is done by some macro package, and if none is supplied the references will not
be printed.

By default, the references are numbered sequentially, and the -ma macros format refer
ences as footnotes at the bottom of the pase. This memorandum is an example of that style.
Other possibilities are discussed in section 5 below.

4. Referenee Flies.
A reference file is a set of bibliographic references usable with refer. It can be indexed

using the software described in section 2 for fast searching. What refer does is to read the
input document stream, looking for imprecise citation references. It then searches through
reference files to find the fUll citations, and inserts them into the document. The format of the
full citation is arranged to make it convenient for a macro package, such as the -ma macros, to
format the reference for printing. Since the format of the final reference is determined by the
desired style of output, which is determined by the macros used, refer avoids forcing any kind
of reference appearance. AU it does is define a set of string registers which contain the basic
information about the reference; and provide a macro call which is expanded by the macro
package to format the reference. It is the responsibility of the final macro package to see that
the reference is actually printed; if no macros are used, and the output of refer fed untranslated
to troff, nothing at all will be printed.

The strings defined by refer are taken directly from the files of references, which are in
the following format. The references should be separated by blank lines. Each reference is a
sequence of lines beginning with ~ and followed by a key-letter. The remainder of that line,
and successive lines until the next line beginning with ~, contain the information specified by
the key-letter. In general, refer does not interpret the information, but merely presents it to
the macro package for final formattinB. A user with a separate macro package, for example, can
add new key-letters or use the existing ones for other purposes without botherinB refer.

The meaning of the key-letters Biven below, in particular, is that assigned by the - ma
macros. Not all information, obviously, is used with each citation. For example, if a document
is both an internal memorandum and a journal article, the macros ignore the memorandum ver
sion and cite only the journal article. Some kinds of information are not used at ~l in printing
the reference; if a user does not like finding references by specifying title or author keywords,
and prefers to add specific keywords to the citation, a field is available which is searched but not
printed (K).

The key letters currently recognized by refer and -ms, with the kind of information
implied, are:

4. M. E. Lesk, Typing Documents on UNIX and GCOS: 17r~ oms Macros for Tro1f, Bell Laboratories internal
memorandum (I 977).

- 9 -

Key Information specified
A Author's name
B Title of book containing item
C City of publication
D Date
E Editor of book containing item
G Government (NTIS) ordering number
I Issuer (publisher)
J Journal name
K Keys (for searching)
L Label
M Memorandum label

For example, a sample reference could be typed as:

%T Bounds on the Complexity of the Maximal
Common Subsequence Problem
%Z ctr127
%A A. V. Aho
%A D. S. Hirschberg
%A J. D. Ullman
%J J. ACM
%V 23
%N 1
%P 1-12
%M abcd-78
%D Jan. 1976

Key Information specified
N Issue number
o Other information
P Page (s) of article
R Technical report reference
T Title
V Volume number

X or
Y or
Z Information not used by refer

Order is irrelevant, except that authors are shown in the order given. The output of refer is a
stream of string definitions, one for each of the fields of each reference, as shown below .

. J-

.ds [A authors' names ...

. ds [T title ...

. ds [J journal ...

. J [type-number

The refer program, in general, does not concern itself with the significance of the strings. The
different fields are treated identically by refer, except that the X, Y and Z fields are ignored
(see the -I option of mkey) in indexing and searching. All refer does is select the appropriate
citation, based on the keys. The macro package must arrange the strings so as to produce an
appropriately formatted citation. In this process, it uses the convention that the 'T' field is the
title, the 'J' field the journal, and so forth.

The refer program does arrange the citation to simplify the macro package's job, however.
The special macro .1- precedes the strina definitions and the special macro .11 follows. These
are changed from the input .1 and .1 so that running the same file through refer again is harm
less. The .1- macro can be used by the macro package to initialize. The .11 macro, which
should be used to print the reference, is given an argument type-number to indicate the kind of
reference, as follows:

Value
1
2
3
4
5
o

- lO -

Kind of reference
Journal article
Book
Article within book
Technical report
Bell Labs technical memorandum
Other

The type is determined by the presence or absence of particular fields in the citation (a journal
article must have a 'J' field, a book must have an 'I' field, and so forth). To a small extent,
this violates the above rule that refer does not concern itself with the contents of the citation;
however, the classification of the citation in troff macros would require a relatively expensive
and obscure program. Any macro writer may, of course, preserve consistency by ignoring the
argument to the • J I macro.

The reference is flagged in the text with the sequence

,- ([.number'- (.]

where number is the footnote number. The strings I. and. 1 should be used by the macro
package to format the reference flag in the text. These strings can be replaced for a particular
footnote, as described in section S. The footnote number (or other signal) is available to the
reference macro .J I as the string register IF. To simplify dealing with a text reference that
occurs at the end of a sentence, refer treats a reference which follows a period in a special way.
The period is removed, and the reference is preceded by a call for the string <. and followed
by a call for the string >. For example, if a reference follows "end." it will appear as

end'-(<.,-([.number'-(.]'-(>.

where number is the footnote number. The macro package should turn either the string >. or
<. into a period and delete the other one. This permits the output to have either the form
"end[3I]." or "end.ll " as the macro package wishes. Note that in one case the period pre-

. cedes the number and in the other it follows the number.

In some cases users wish to suspend the searching, and merely use the reference macro
formatting. That is, the user doesn't want to provide a search key between • f and • J brackets,
but merely the reference lines for the appropriate document. Alternatively, the user can wish
to add a few fields to those in the reference as in the standard file, or override some fields.
Altering or replacing fields, or supplying whole references, is easily done by inserting lines
beginning with ~; any such line is taken as direct input to the reference processor rather than
keys to be searched. Thus

. [
keyl key2 key3 ...
%Q New format item
%R Override report name
.]

makes the indicates changes to the result of searching for the keys. All of the search keys must
be given before the first ~ line.

If no search keys are provided, an entire citation can be provided in-line in the text. For
example, if the eqn paper citation were to be inserted in this way, rather than by searching for
it in the data base, the input would read

preprocessor like
.I eqn .
. [
%A B. W. Kemilhan
%A L. L. Cherry

• 11 •

%T A System for Typesettinl Mathematics
%JComm. ACM
%V 18
%N 3
%P 151·157
%0 March 1975
.1
It scans its input lookinl for items

This would produce a citation of the same appearance as that resultinl from the file search.

As shown, fields are normally turned into troll striop. Sometimes users would rather
have them defined as macros, so that other troll commands can be placed into the data. When
this is necessary, simply double the control character" in the data. Thus the input

. [
%V 23
%%M
Bell Laboratories,
Murray Hill, N.J. 07974
.J

is processed by refer into

.ds [V 23

.de (M
Bell Laboratories,
Murray Hill, N.J. 07974

The information after ""M is defined as a macro to be invoked by .IM while the information
after "-V is turned into a strinl to be invoked by \-(lV. At present -ms expects all informa
tion as strinls.

5. CollectAa, Refereaces ad otber Refer Optloa.

Normally, the combination of refer and -ms formats output as troll footaotes which are
consecutively numbered and placed at the bottom of the paae. However, options exist to place
the references at the end; to arranae references alphabetically by senior author; and to indicate
references by strinas in the text of the form (Name1975a] rather than by number. Whenever
references are not placed at the bottom of a paae identical references are coalesced.

For example, the -e option to refer specifies that references are to be collected; in this
case they are output whenever the sequence

. [
SLISTS
.]

is encountered. Thus, to place references at the end of a paper, the user would run refer with
the -e option and place the above SLISTS commands after the last line of the text. Refer will
then move all the references to that point. To aid in formattin, the collected references, refer
writes the references preceded by the liae

.J<
and followed by the line

.J>

- 12 -

to invoke special macros before and after the references.

Another possible option to refer is the -s option to specify sorting of references. The
default, of course, is to list references in the order presented. The -s option implies the -e
option, and thus requires a

· [
SLISTS
.)

entry to callout the reference list. The - s option may be followed by a string of letters,
numbers, and • +' signs indicating how the references are to be sorted. The sort is done using
the fields whose key-letters are in the string as sorting keys; the numbt!rs indicate how many of
the fields are to be considered, with • +. taken as a large number. Thus the default is - sAD
meaning "Sort on senior author, then date." To sort on all authors and then title. specify
-sA+T. And to sort on two authors and then the journal, write -sA1J.

Other options to refer change the signal or label inserted in the text for each reference.
Normally these are just sequential numbers, and their exact placement (within brackets, as
superscripts, etc.) is determined by the macro package. The -I option replaces reference
numbers by strings composed of the senior author's last name, the date, and a disambiguating
letter. If a number follows the 1 as in -13 only that many letters of the last name are used in
the label string. To abbreviate the date as well the form -Im,n shortens the last name to the
first m letters and the date to the last n digits. For example, the option -13.1 would refer to
the eqn paper (reference 3) by the signal Ker75a, since it is the first cited reference by Ker
nighan in 1975.

A user wishing to specify particular labels for a private bibliography may use the - k
option. Specifying - kx causes the field x to be used as a label. The default is L. If this field
ends in -. that character is replaced by a sequence letter; otherwise the field is used exactly as
given.

If none of the refer-produced signals are desired, the -b option entirely suppresses
automatic text signals.

If the user wishes to override the -ms treatment of the reference signal (which is nor
mally to enclose the number in brackets in nrojf and make it a superscript in trojf) this can be
done easily. If the lines .1 or .J contain anything following these characters, the remainders of
these lines are used to surround the reference signal, instead of the default. Thus, for exam·
pie, to say "See reference (2)." and avoid "See reference.2" the input might appear

See reference
· ((
imprecise citation ...
· n.

Note that blanks are significant in this construction. If a permanent change is desired in the
style of reference signals, however, it is probably easier to redefine the strings I. and.J (which
are used to bracket each signal) than to change each citation.

Although normally refer limits itself to retrieving the data for the reference, and leaves to
a macro package the job of arranging that data as required by the local format, there are two
special options for rearrangements that can not be done by macro packages. The -c option
puts fields into all upper case (CAPS-SMALL CAPS in trojf output). The key-letters indicated
what information is to be translated to upper case follow the c, so that -cAJ means that
authors' names and journals are to be in caps. The -a option writes the names of authors last

- 13 -

name first, that is A. D. Hall, Jr. is written as Hal/, A. D. Jr. The citation form of the Journal
of the ACM, for example, would require both -cA and -a options. This produces authors'
names in the style KERNIGHAN, B. W. AND CHERRY, L. L. for the previous example. The -.
option may be followed by a number to indicate how many author names should be reversed;
-at (without any -c option) would produce Kernighan, B. W. and L. L. Cherry, for example.

Finally, there is also the previously-mentioned -p option to let the user specify a private
file of references to be searched before the public files. Note that refer does not insist on a pre
viously made index for these files. If a file is named which contains reference data but is not
indexed, it will be searched (more slowly) by refer using fgrep. In this way it is easy for users to
keep small files of new references, which can later be added to the public data bases.

Updating Publication Lists

M. E. Lesk

1. Introduction.

This note describes several commands to update the publication lists; The data base con
sisting of these lists is kept in a set of files in the directory lusrldictfpapers on the Version 7
UNixt system. The reason for having special commands to update these files is that they are
indexed, and the only reasonable way tO,find the items to be updated is to use the index. How
ever, altering the files destroys the usefulness of the index, and makes further editing difficult.
So the recommended procedure is to

(I) Prepare additions, deletions, and changes in separate files.

(2) Update the data base and reindex.

Whenever you make changes, etc. it is necessary to run the "add & index" step before logging
off; otherwise the changes do not take effect. The next section shows the format of the files in
the data base. After that, the procedures for preparing additions, preparing changes, preparing
deletions, and updating the public data base are given.

2. Publication Format.

The format of a data base entry is given completely in "Some Applications of Inverted
Indexes on UNIX" by M. E. Lesk, the first part of this report, and is summarized here via a
few examples. In each example, first the output format for an item is shown, and then the
corresponding data base entry.

Journal article:
A. V. Aho, O. 1. Hirschberg, and 1. O. Ullman, "Bounds on the Com
plexity of the Maximal Common Subsequence Problem," J. Assoc.
Compo Mach., vol. 23, no. 1, pp. 1-12 (Jan. 1976).

%T Bounds on the Complexity of the Maximal Common
Subsequence Problem
%A A. V. Aho
%A O. S. Hirschberg
%A J. O. Ullman
%J J. Assoc. Compo Mach.
%V 23
%N 1
%P 1-12
%0 Jan. 1976
%M Memo abed ...

tUNIX is a Trademark of Bell Laboratories.

- 2 -

Conference proceedings:

Book:

B. Prabhala and R. Sethi, "Efficient Computation of Expressions with
Common Subexpressions," Proc. 5th ACM Symp. on Principles of Pro
gramming Languages, pp. 222-230, Tucson, Ariz. (January 1978).

%A B. Prabhala
%A R. Sethi
%T Efficient Computation of Expressions with
Common Subexpressions
%J Proc. 5th ACM Symp. on Principles
of Programming Languages
%C Tucson, Ariz.
%0 January 1978
%P 222-230

B. W. Kernighan and P. J. Plauger, Software Tools, Addison-Wesley,
Reading, Mass. (976).

%T Software Tools
%A B. W. Kernighan
%A P. J. Plauger
%1 Addison-Wesley
%C Reading, Mass.
%0 1976

Article within book:
J. W. de Bakker, "Semantics of Programming Languages," pp. 173-227
in Advances in lriformation Systems Science, Vol. 2, ed. J. T. Tou, Ple
num Press, New York, N. Y. (1969).

%A J. W. de Bakker
%T Semantics of programming languages
%E J. T. Tou
%B Advances in Information Systems Science, Vol. 2
%1 Plenum Press
%C New York, N. Y.
%0 1969
%P 173-227

Technical Report:
F. E. Allen, "Bibliography on Program Optimization," Report RC-
5767, IBM T. J. Watson Research Center, Yorktown Heights, N. Y.
(1975).

%A F. E. Allen
%0 1975
%T Bibliography on Program Optimization
%R Report RC-5767
%1 IBM T. J. Watson Research Center
%C Yorktown Heights, N. Y.

- 3 -

Other forms of publication can be entered similarly. Note that conference proceedings are
entered as if journals, with the conference name on a %J line. This is also sometimes appropri
ate for obscure publications such as series of iecture notes. When something is both a report
and an article, or both a memorandum and an article, enter all necessary information for both;
see the first article above, for example. Extra information (such as "In preparation" or
"Japanese translation") should be placed on a line beginning %0. The most common use of
%0 lines now is for .. Also in ... " to give an additional reference to a secondary appearance of
the same paper.

Some of the possible fields of a citation are:

Letter Meaning Letter Meaning
A Author K Extra keys
B Book including item N Issue number
C City of publication 0 Other
0 Date P Page numbers
E Editor of book R Report number
I Publisher (issuer) T Title of item
J Journal name V Volume number

Note that %8 is used to indicate the title of a book containing the article being entered; when
an item is an entire book, the title should be entered with a % T as usual.

Normally, the order of items does not matter. The only exception is that if there are
multiple authors (%A lines) the order of authors should be that on the paper. If a line is too
long, it may be continued on to the next line; any line not beginning with % or . (dot) is
assumed to be a continuation of the previous line. Again, see the first article above for an
example of a long title. Except for authors, do not repeat any items; if two %J lines are given,
for example, the first is ignored. Multiple items on the same file should be separated by blank
lines.

Note that in formatted printouts of the file, the exact appearance of the items is deter
mined by a set of macros and the formatting programs. Do not try to adjust fonts, punctuation,
etc. by editing the data base; it is wasted effort. In case someone has a real need for a
differently-formatted output, a new set of macros can easily be generated to provide alternative
appearanceS of the citations.

3. Updating and Re-indexing.
This section describes the commands that are used to manipulate and change the data

base. It explains the procedures for (a) finding references in the data base, (b) adding new
references, (c) changing existing references, and (d) deleting references. Remember that all
changes, additions, and deletions are done by preparing separate files and then running an
'update and reindex' step.

Checking what's there now. Often you will want to know what is currently in the data base.
There is a special command !ookbib to look for things and print them out. It searches for arti
cles based on words in the title, or the author's name, or the date. For example, you could find
the first paper above with

lookbib aho ullman maximal subsequence 1976

or

lookbib aho ullman hirschberg

If you don't give enough words, several items will be found; if you spell some wrong, nothing
will be found. There are around 4300 papers in the public file; you should always use this com
mand to check when you are not sure whether a certain paper is there or not.

Additions. To add new papers, just type in, on one or more files, the citations for the new

- 4 -

papers. Remember to check first if the papers are already in the data base. For example, if a
paper has a previous memo version, this should be treated as a change to an existing entry,
rather than a new entry. If several new papers are being typed on the same file, be sure that
there is a blank line between each two papers.

Changes. To change an item, it should be extracted onto a file. This is done with the
command

pub.chg keyl key2 key3 ...

where the items keyl, key2, key3, etc. are a set of keys that will find the paper, as in the look
bib command. That is, if

look bib johnson yacc cstr

will find a item (to, in this case, Computing Science Technical Report No. 32, "Y ACC: Yet
Another Compiler-Compiler," by S. C. Johnson) then

pub.chg johnson yacc cstr

will permit you to edit the item. The plIb.chg command extracts the item onto a file named
"bibxxx" where "xxx" is a 3-digit number, e.g. "bib234". The command will print the file
name it has chosen. If the set of keys finds more than one paper (or no papers) an error mes
sage is printed and no file is written. Each reference to be changed must be extracted with a
separate pub.chg command, and each will be placed on a separate file. You should then edit the
"bibxxx" file as desired to change the item, using the UNIX editor. Do not delete or change
the first line of the file, however, which begins %# and is a special code line to tell the update
program which item is being altered. You may delete or change other lines, or add lines, as
you wish. The changes are not actually made in the public data base until you run the update
command pub.rtlfl (see below). Thus, if after extracting an item and modifying it, you decide
that you'd rather leave things as they were, delete the "bibxxx" file, and your change request
will disappear.

Deletions. To delete an entry from the data base, type the command

pub.del keyl key2 key3 ...

where the items keyl, key2, etc. are a set of keys that will find the paper, as with the look bib
command. That is, if

lookbib Aho hirschberg ullman

will find a paper,

pub. del aho hirsch berg ullman

deletes it. Note that upper and lower case are equivalent in keys. The pub. del command will
print the entry being deleted. It also gives the name of a "bibxxx" file on which the deletion
command is stored. The actual deletion is not done until the changes, additions, etc. are pro
cessed, as with the pub. chg command. If, after seeing the item to be deleted, you change your
mind about throwing it away, delete the "bibxxx" file and the delete request disappears.
Again, if the list of keys does not uniquely identify one paper, an error message is given.

Remember that the default versions of the commands described here edit a public data
base. Do not delete items unless you are sure deletion is proper~ usually this means that there
are duplicate entries for the same paper. Otherwise, view requests for deletion with skepticism;
even if one person has no need for a particular item in the data base, someone else may want it
there.

If an item is correct, but should not appear in the "List of Publications" as normally pro
duced, add the line

%K DNL

- 5 -

to the item. This preserves the item intact, but implies "Do Not List" to the to the commands
that print publication lists. The DNL line is normally used for some technical reports, minor
memoranda, or other low-grade publications.

Update and reindex. When you have completed a session of changes, you should type the
command

pub. run filel file2 .. .

where the names "file 1", ... are the new files of additions you have prepared. You need not
list the "bibxxx" files representing changes and deletions; they are processed automatically.
All of the new items are edited into the standard public data base, and then a new index is
made. This process takes about 15 minutes; during this time, searches of the data base will be
slower.

Normally, you should execute pub.rlm just before you logoff after performing some edit
requests. However, if you don't, the various change request files remain in your directory until
you finally do execute pub.",Il. When the changes are processed, the "bibxxx" files are
deleted. It is not desirable to wait too long before processing changes, however, to avoid
conflicts with someone else who wishes to change the same file. If executing pub.rull produces
the message "File bibxxx too old" it means that someone else has been editing the same file
between the time you prepared your changes, and the time you typed pub.rul1. You must delete
such old change flies and re-enter them.

Note that although pUh.run discards the "bibxxx" files after processing them, your files of
. auditions are left around even after pub.rI", is finished. If they were typed in only for purposes
of updating the data base, you may delete them after they have been processed by pllb.rllll.

bW11"It'. Suppose, for example, that you wish to

(I) Add to the data base the memos "The Dilogarithm Function of a Real Argument" by R.
Morris, and "UNIX Software Distribution by Communication Link," by M. E. Lesk and
A. S. Cohen;

(2) Delete from the data base the item "Cheap Typesetters", by M. E. Lesk, SIGLASH
Newsletter, 1973; and

(3) Change "J. Assoc. Compo Mach." to "Jour. ACM" in the citation for Aho, Hirschberg,
and Ullman shown above.

The procedure would be as follows. First, you would make a file containing the additions, here
called "new. I ", in the normal way using the UNIX editor. In the script shown below, the
computer prompts are in italics.

Sed new.1
?
a
%T The Dilogarithm Function of a Real Argument
OfoA Robert Morris
OfoM abed
OfoD 1978

OfoT UNIX Software Distribution by Communication Link
%A M. E. Lesk
%A A. S. Cohen
%Mabed
%0 1978
w new.1
/99
q

Next you would specify the deletion, which would be done with the pub. del command:

- 6 -

$ pub. del lesk cheap typesetters siglash
to which the computer responds:

Will delete: (file bib 1 76)

% T Cheap Typesetters
%A M. E. Lesk
%J ACM SIGLASH Newsletter
%V6
%N4
%P 14-16
%D October /97 J

And then you would extract the Aho. Hirschberg and Ullman paper. The dialogue involved is
shown below. First run pub.chg to extract the paper~ it responds by printing the citation and
informing you that it was placed on file bib 1 23. That file is then edited.

$ pub.chg aho hirschberg ullman
Extracting as .file bib I 23

- 7 -

%T Bounds on the Complexity of the Maximal
Common Subsequence Problem
%A A. V. Aho
%A D. S. Hirschberg
%A J. D. Ullman
%J J. Assoc. Comp. Mach.
(ff, V 23
%N I
%P 1-12
%M abed
%D Jan. 1976

Sed bib123
312
I Assoc/sl JI Jour/p
%J Jour. Assoc. Comp. Mach.
sl Assoc. * I ACM/p
%J Jour. ACM
1,$p
%# lusrldictlpaperslp76 233 245 change
% T Bounds on the Complexity of the Maximal
Common Subsequence Problem
%A A. V. Aho
%A D. S. Hirschberg
%A J. D. Ullman
%J JOllr. ACM
%V 23
%N I
%P 1-12
(!II,M abed
%D Jail. 1976

w
292
q
$

Finally, execute pUb.run, making sure to remember that you have prepared a new file "new.}":

$ pub. run new.1

and about fifteen minutes later the new index would be complete and all the changes would be
included.

4. Printing a Publication List

There are two commands for printing a publication list, depending on whether you want
to print one person's list, or the list of many people. To print a list for one person, use the
pub. indiv command:

pub.indiv M Lesk

This runs off the list for M. Lesk and puts it in file "output". Note that no '.' is given after
the initial. In case of ambiguity two initials can be used. Similarly, to get the list for group of
people, say

- 8 -

pub.org xxx

which prints all the publications of the members of organization xxx, taking the names for the
list in the file lusridictipaperslcentlistlxxx. This command should normally be run in the back
ground; it takes perhaps 15 minutes. Two options are available with these commands:

pub.indiv - p M Lesk

prints only the papers, leaving out unpublished notes, patents, etc. Also

pub.indiv - t M Lesk I gcat

prints a typeset copy, instead of a computer printer copy. In this case it has been directed to an
alternate typesetter with the 'gcat' command. These options may be used together, and may be
used with the pub.org command as well. For example, to print only the papers for all of organi
zation zzz and typeset them, you could type

pub.center -t -p zzz I gcat &

These publication lists are printed double column with a citation style taken from a set of publi
cation list macros; the macros, of course, can be changed easily to adjust the format of the lists.

Introduction

NROFF/TROFF User's Manual

Joseph F. Ossanna

Bell Laboratories
Murray Hill, New Jersey 07974

NROFF and TROFF are text processors under the PDP-ll UNIX Time-Sharing System1 that format text
for typewriter-like terminals and for a Graphic Systems phototypesetter, respectively. They accept lines
of text interspersed with lines of format control information and format the text into a printable,
paginated document having a user-designed style. NROFF and TROFF offer unusual freedom in docu
ment styling. including: arbitrary style headers and footers; arbitrary style footnotes; multiple automatic
sequence numbering for paragraphs. sections, etc; multiple column output; dynamic font and point-size
control; arbitrary horizontal and vertical local motions at any point; and a family of automatic overstrik
ing, bracket construction, and line drawing functions.

NROFF and TROFF are highly compatible with each other and it is almost always possible to prepare
input acceptable to both. Conditional input is provided that enables the user to embed input expressly
destined for either program. NROFF can prepare output directly for a variety of terminal types and· is
capable of utilizing the full resolution of each terminal.

Usale

The general form of invokinl NROFF (or TROFF) at UNIX command level is

nro. options files (or tro. options files)

where options represents any of a number of option arguments and files represents the list of files con
taining the document to be formatted. An argument consisting of a single minus (-) is taken to be a
file name corresponding to the standard input. If no file names are given input is taken from the stan
dard input. The options, which may appear in any order so long as they appear before the files, are:

Option I;6«t

-o/lst Print only pages whose page numbers appear in list, which consists of comma
separated numbers and number ranles. A number range has the form N - M and
means pages N throuah M: a initial - N means from the beainning to page N; and
a final N - means from N to the end.

-nN Number first aenerated page N.

-sN Stop every N pages. NROFF will halt prior to every N pages (default N- I) to
allow paper loading or changing. and will resume upon receipt of a newline.
TROFF will stop the phototypesetter every N pages, produce a trailer to allow
chanaing cassettes, and will resume after the phototypesetter START button is
pressed.

-mname Prepends the macro file /usr/llb/tmac:.name to the input files.

-raN Reaister a (one-character) is set to N.

-I Read standard input after the input files are exhausted.

-q Invoke the simultaneous input-output mode of the rd request.

- 1 -

NROFF/TROFF User's Manual
October 11, 1976

NROFFOnly

- T name Specifies the name of the output terminal type. Currently defined names are 37
for the (default) Model 37 TeletypeS, tn300 for the GE TermiNet 300 (or any ter
minal without half-line capabilities), 300S for the DASI-300S, 300 for the DASI-
300, and 450 for the DASI-450 (Diablo Hyterm).

-e Produce equally-spaced words in adjusted lines, using full terminal resolution.

TROFF Only

-t Direct output to the standard output instead of the phototypesetter.

-f Refrain from feeding out paper and stopping phototypesetter at the end of the run.

-w Wait until phototypesetter is available, if currently busy.

-b TROFF will report whether the phototypesetter is busy or available. No text pro-
cessing is done.

- a Send a printable (ASCII) approximation of the results to the standard output.

-pN Print all characters in point size N while retaining all prescribed spacings and
motions, to reduce phototypesetter elasped time.

-g Prepare output for the Murray Hill Computation Center phototypesetter and direct
it to the standard output.

Each option is invoked as a separate argument; for example,

nroff -04,8-10 -T JOOS -mabc file1 file2

requests formatting of pages 4, 8, 9, and 10 of a document contained in the files named file1 and file2,
specifies the output terminal as a DASI-300S, and invokes the macro package abc.

Various pre- and post-processors are available for use with NROFF and TROFF. These include the
equation preprocessors NEQN and EQN2 (for NROFF and TROFF respectively), and the table
construction preprocessor TBL3. A reverse-line postprocessor COL 4 is available for multiple-column
NROFF output on terminals without reverse-line ability; COL expects the Model 37 Teletype escape
sequences that NROFF produces by default. TK4 is a 37 Teletype simulator postprocessor for printing
NROFF output on a Tektronix 4014. TCAT4 is phototypesetter-simulator postprocessor for TROFF that
produces an approximation of phototypesetter output on a Tektronix 4014. For example, in

tbi files I eqn I troff - t options I teat

the first I indicates the piping of TBL's output to EQN's input; the second the piping of EQN's output to
TROFF's input; and the third indicates the piping of TROFF's output to TCAT. GCAT4 can be used to
send TROFF (-g) output to the Murray Hill Computation Center.

The remainder of this manual consists of: a Summary and Index; a Reference Manual keyed to the
index; and a set of Tutorial Examples. Another tutorial is [5].

Joseph F. Ossanna

References

[ll K. Thompson, D. M. Ritchie, UNIX Programmer's Manual, Sixth Edition (May 1975).

[2] B. W. Kernighan, L. L. Cherry, Typesetting Mathematics - User's Guide (Second Edition), Bell Laboratories
internal memorandum.

[3] M. E. Lesk, Tbl - A Program to Format Tables, Bell Laboratories internal memorandum.

[4J Internal on-line documentation, on UNIX.

[5] B. W. Kernighan, A TROFF Tutorial, Bell Laboratories internal memorandum.

- 2 -

NROFF/TROFF User's Manual
October 11, 1976

SUMMARY AND INDEX

Request 1"",./
Fo"" Value-

UNo
",.",me"t Note. ExpIa"atlo"

1. General Explanation

2. Font and Cbarader Size Control

.ps ±N 10 point previous E

.55 N 12/36em ignored E

.csFNM off P

.beI F N off P

.beI SF N off P
• ft F Roman previous E
.fp N F R,I,B,S ignored

3. Pale Control

.pl±N 11 in 11 in v

.bp ±N N-l B*,v

.pn ±N N-l ignored

.po ±N 0; 26/27 in previous v

. ne N N-IV D,v

.mk R none internal D

. rt ±N none internal D,v

4. Text FlIIlnl. AdJustlnl. and Centerinl

.br B
~ ~ ~E
. nf fill B,E
. ad c adj,both adjust E
. na adjust E
• ce N off N-l B,E

5. Vertical Spacinl

. n N 1/6in;12pts previous
• 15 N N-l previous
. sp N N-l V
.sv N N-l V
• 05

.ns space

.n
6. Line Lenltb and Indentlnl

E,p
E
B,v

D
D

Point size; also \5 ± N. t
Space-character size set to N/36 em. t
Constant character space (width) mode (font n.t
Embolden font F by N-I units. t
Embolden Special Font when current font is F.t
Change to font F - x, xx, or 1-4. Also \fx, \f(xx, \fN .
Font named F mounted on physical position 1 ~ N~ 4.

Page length.
Eject current page; next page number N.
Next page number N.
Page offset.
Need N vertical space (V - vertical spacing) .
Mark current vertical place in register R.
Return (upward only) to marked vertical place .

Break.
Fill output lines .
No filling or adjusting of output lines .
Adjust output lines with mode c .
No output line adjusting .
Center following N input text lines.

Vertical base line spacing (II) .
Output N-l Vs after each text output line .
Space vertical distance N in either direction .
Save vertical distance N.
Output saved vertical distance .
Turn no-space mode on.
Restore spacing; tum no-space mode off.

.11 ± N 6.5 in previous E,m Line length .

. in ± N N-O previous B,E,m Indent .

. ti ± N ignored B,E,m Temporary indent.

7. Macros. Strinls, D enion, and Position Traps

.de xx yy .yy-.. Define or redefine macro xx; end at call of yy .

. am xx yy .yy-.. Append to a macro .

. ds xx stririg - ignored Define a string xx containing string .

. as xx string - ignored Append string to string xx.

·Values separated by "j" are for NROFF and nOFF respectively.
#Notes are explained at the end of this Summary and Index
tNo effect in NROFF.

*The use of ••• as control character (instead of'.') suppresses the break function.

- 3 -

NROFF/TROFF User's Manual
October 11, 1976

UNo Request
Form

Initial
Value Argument Notes Explanation

.rm xx

.rn xx yy

.di xx

.da xx

. wb Nxx

. eb xx N

. dt Nxx

.it N xx

.em xx none

8. Number Registers

.nr R ±N M
• af R c arabic
. rr R

ignored
ignored
end
end

otT
otT
none

9. Tabs, Leaders, and Fields

. ta Nt ... 0.8; 0.5in none

.te c none none

.Ie c none

. fe a b otT otT

o
o
y

y

D,v
E

u

E,m
E
E

Remove request, macro, or string.
Rename request, macro, or string xx to Y.Y.
Divert output to macro xx.
Divert and append to xx.
Set location trap; negative is w.r.t. page bottom .
Change trap location .
Set a diversion trap .
Set an input-line count trap.
End macro is xx.

Define and set number register R; auto-increment by M
Assign format to register R (c-l, i, I, a, A) .
Remove register R .

Tab settings; left type, unless t -R (right), C (centered) .
Tab repetition character.
Leader repetition character.
Set field delimiter a and pad character b .

10. Input and Output Conventions and Character Translations

. ec e \

.eo on

. 11 N -; on

.ul N otT

.cu N otT

.uf F Italic

\

on
N-l
N-l
Italic

E
E

Set escape character .
Turn otT escape character mechanism.
Ligature mode on if N>O .
Underline (italicize in TROFF) N input lines.
Continuous underline in NROFF; like ul in TROFF.
Underline font set to F (to be switched to by uI).

.ce c E Set control character to c .

. c2 c E Set nobreak control character to c .

. tr abed.... none 0 Translate a to b, etc. on output.

11. Local Horizontal and Vertical Motions, and the Width Function

12. Overstrike,Bracket, Line-drawing, and Zero-width Functions

13. Hypbenation.

.nh hyphenate

.hy N hyphenate

.hc e \'It

.hw word1 ...

14. Three Part Titles.

. tl 'left' center' right'

.pc e 'It

.It ± N 6.5 in

hyphenate
\'It
ignored

otT
previous

15. Output Line Numbering .

. nm ± N M S I otT

.nn N N-l

16. Conditional Acceptance of Input

.if c anything

E
E
E

E,m

E
E

No hyphenation.
Hyphenate; N - mode.
Hyphenation indicator character c.
Exception words.

Three part title .
Page number character.
Length of title.

Number mode on or otT, set parameters.
Do not number next N lines.

If condition c true, accept anything as input,
for multi-line use \(anything\).

- 4 -

NROFF/TROFF User's Manual
October 11, 1976

I/No Request
Form

Initial
Value Argument Notes Explanation

.if !e anything

.if N anything

.if ! N anything

.if 'string}' string2' anything

.if ! 'string}' string2' anything

.ie e anything

.el anything

17. Environment Switcbing.

. ev N N-O previous

u
u

u

18. Insertions from tbe Standard Input

.rd prompt

. ex
prompt -BEL-

19. Input/Output File Switcbing

. so filename

.nx filename

. pi program

20. Miscellaneous

.mc eN

end-of-file -

E,m

If condition e false, accept anything .
If expression N > 0, accept anything.
If expression N ~ 0, accept anything.
If string} identical to string2, accept anything .
If string} not identical to string2, accept anything .
If portion of if-else; all above forms (Jike if).
Else portion of if-else.

Environment switched (push down) .

Read insertion.
Exit from NROFF/TROFF .

Switch source file (push down) .
Next file.
Pipe output to program (NROFF only) .

Set margin cbatacter c and separation N.
.tm string
. il yy

off
newline
.Y.Y-••

Print string on terminal (UNIX standard message output).
Ignore till call of Y.Y .

.pm t all Print macro names and sizes;

.n B
if t present, print only total of sizes.
Flush output buffer.

21. Output and Error Messales

Notes-

B Request normally causes a break.
D Mode or relevant parameters associated with current diversion level.
E Relevant parameters are a part of the current environment.
0 Must stay in effect until logical output.
P Mode must be still or again in effect at the time of physical output.

v,p,m,u Default scale indicator; if not specified, scale indicators are ignored.

Alphabetical Request and Section Number Cross Reference

ad 4 cc 10 ds 7 fe 9 ie 16 II 6 nh 13 pi 19 rn 7
af 8 ee 4 dt 7 fI 4 if 16 Is 5 nm 15 pi 3 rr 8
am 7 ch 7 ec 10 n 20 is 20 It 14 nn 15 pro 20 rs 5
as 7 cs 2 el 16 fp 2 in 6 me 20 nr 8 pn 3 rt 3
bd 2 eu 10 em 7 ft 2 it 7 mk 3 ns 5 po 3 so 19
bp 3 da 7 eo 10 he 13 Ie 9 na 4 nx 19 ps 2 sp 5
br 4 de 7 ev 17 hw 13 Ig 10 ne 3 os 5 rd 18 ss 2
c2 10 di 7 ex 18 hy 13 Ii 10 nf 4 pc 14 rm 7 sv 5

- 5 -

ta 9 vs 5
Ie 9 wh 7
ti 6
tI 14
1m 20
tr 10
uf 10
ul 10

NROFF/TROFF User's Manual
October 11, 1976

Escape Sequences for Characters, Indicators, and Functions

Section Escape
Reference Sequence

10.1
10.1

2.1
2.1
2.1
7

11.1
11.1
11.1
11.1
4.1

10.6
10.7
7.3

13
2.1
7.1
9.1

12.3
4.2

11.1
2.2

11.1
11.3
12.4
12.4
8

12.1
4.1

11.1
2.3
9.1

11.1
ILl
11.2
5.2

12.2
16
16
10.7

\\
\e
\'
\'
\-
\.
\(space)
\0
\1
\A
\&
\!
\-
\$N
\%
\(xx
\-x, \-(xx
\a
\h' abc ... '
\c
\d
\f x, \f (xx, \f N
\h'N'
\kx
\1' Nc'
\L'Nc'
\nx,\n(xx
\0' abc ... '
\p
\r
\sN, \s±N
\t
\u
\v'N'
\w' string ,
\x'N'
\zc
\{
\}
\(newline)
\X

Meaning

\ (to prevent or delay the interpretation of \)
Printable version of the current escape character.
, (acute accent); equivalent to \ (aa
. (grave accent); equivalent to \(ga
- Minus sign in the current font
Period (dot) (see de)
Unpaddable space-size space character
Digit width space
1/6 em narrow space character (zero width in NROFF)
1/12 em half-narrow space character (zero width in NROFF)
Non-printing, zero width character
Transparent line indicator
Beginning of comment
Interpolate argument 1 ~ N~ 9
Default optional hyphenation character
Character named xx
Interpolate string x or xx
Non-interpreted leader character
Bracket building function
Interrupt text processing
Forward (down) 1/2 em vertical motion 0/2 line in NROFF)
Change to font named x or xx, or position N
Local horizontal motion; move right N (negative left)
Mark horizontal input place in register x
Horizontal line drawing function (optionally with c)
Vertical line drawing function (optionally with c)
Interpolate number register x or xx
Overstrike characters a, b, c, ...
Break and spread output line
Reverse 1 em vertical motion (reverse line in NROFF)
Point-size change function
Non-interpreted horizontal tab
Reverse (up) 1/2 em vertical motion 0/2 line in NROFF)
Local vertical motion; move down N (negative up)
Interpolate width of string
Extra line-space function (negative be/ore, positive after)
Print c with 2;ero width (without spacing)
Begin conditional input
End conditional input
Concealed (ignored) newline
X, any character not listed above

The escape sequences \\, \., \., \$, \-, \a, \0, \t, and \(newline) are interpreted in copy mode (§7.2).

- 6 -

NROFF/TROFF User's Manual
October 11, 1976

Predelned General Number Reclsten

SectIon
Reference

3
11.2
7.4
7.4

11.3
15

4.1
11.2
11.2

Regl6ter
Name J)acrlptloll

~ Current page number.
c:t Character type (set by width function).
dl Width (maximum) of last completed diversion.
dn Height (vertical size) of last completed diversion.
dw Current day of the week 0-7).
dy Current day of the month 0-31).
bp Current horizontal place on input line.
In Output line number.
IDG Current month (1-12).
nl Vertical position of last printed text base-line.
sb Depth of strins below base line (senerated by width function).
st Height of string above base line (generated by width function).
yr Last two digits of current year.

Predelned Read-Only Number Realsten

SectlOII Regl6ter
RtJ/erellce Name

7.3 .S
. A

11.1 .H
. T

11.1 . V
5.2 .a

• C
7.4 • d
2.2 .f
4 • b
6 .1
6 • 1
4 .n
3 .0

3 .p
2.3 .s
7.5 .t
4.1 .u
5.1 .T

11.2 .w
• x
• y

7.4 .J

DelCrlptloll

Number of arguments available at the current maero level.
Set to 1 in TROFF, if -a option used; always 1 in NROFF .
Available horizontal resolution in basic units .
Set to 1 in NROFF, if -T option used; always 0 in TROFF .
Available vertical resolution in basic units.
Post-line extra line-space most recently utilized using \x' N'.
Number of lines read from current input file .
Current vertical place in current diversion; equal to nl, if no diversion .
Current font as physical quadrant (1-4).
Text base-line high-water mark on current page or diversion .
Current indent.
Current line length .
Length of text portion on previous output line.
Current page offset.
Current page length.
Current point size.
Distance to the next trap.
Equal to 1 in fill mode and 0 in nofill mode.
Current vertical line spacing.
Width of previous character.
Reserved version-dependent register .
Reserved version-dependent register .
Name of current diversion.

- 7 -

/

NROFF/TROFF User's Manual
October 11, 1976

1. General Explanation

REFERENCE MANUAL

1.1. Form of input. Input consists of text lines, which are destined to be printed, interspersed with control
lines, which set parameters or otherwise control subsequent processing. Control lines begin with a con
trol character- normally . (period) or • (acute accent) - followed by a one or two character name that
specifies a basic request or the substitution of a user-defined macro in place of the control line. The
control character' suppresses the break function-the forced output of a partially filled line-caused by
certain requests. The control character may be separated from the request/macro name by white space
(spaces and/or tabs) for esthetic reasons. Names must be followed by either space or newline. Control
lines with unrecognized names are ignored.

Various special functions may be introduced anywhere in the input by means of an escape character,
normally \. For example, the function \nR causes the interpolation of the contents of the number regIs
ter R in place of the function; here R is either a single character name as in \nx, or left-parenthesis
introduced, two-character name as in \n (xx.

1.2. Formatter and device resolution. TROFF internally uses 432 units/inch, corresponding to the Graphic
Systems phototypesetter which has a horizontal resolution of 1/432 inch and a vertical resolution of
1/144 inch. NROFF internally uses 240 units/inch, corresponding to the least common multiple of the
horizontal and vertical resolutions of various typewriter-like output devices. TROFF rounds
horizontal/vertical numerical parameter input to the actual horizontal/vertical resolution of the Graphic
Systems typesetter. NROFF similarly rounds numerical input to the actual resolution of the output dev
ice indicated by the -T option (default Model 37 Teletype).

1.3. Numerical parameter input. Both NROFF and TROFF accept numerical input with the appended scale
indicators shown in the following table, where S is the current type size in points, V is the current verti
cal line spacing in basic units, and C is a nominal character width in basic units.

Scale Number of basic units
Indicator Meariing TROFF NROFF

i Inch 432 240
c Centimeter 432xSO/127 240xSO/127
P Pica - 1/6 inch 72 240/6
m Em - Spoints 6xS C
n En - Em/2 3xS C, same as Em
p Point - 1/72 inch 6 240/72
u Basic unit 1 1
v Vertical line space V V

none Default, see below

In NROFF, both the em and the en are taken to be equal to the C, which is output-device dependent;
common values are 1/10 and 1/12 inch. Actual character widths in NROFF need not be all the same
and constructed characters such as - > (-) are often extra wide. The default scaling is ems for the
horizontally-oriented requests and functions II, in, ti, ta, It, po, me, \h, and \1; Vs for the vertically
oriented requests and functions pi, wh, ch, dt, sp, sv, ne, rt, \v, \x, and \L; p for the vs request; and
u for the requests nr, if, and ie. All other requests ignore any scale indicators. When a number regis
ter containing an already appropriately scaled number is interpolated to provide numerical input, the
unit scale indicator u may need to be appended to prevent an additional inappropriate default scaling.

- 8 -

NROFF/TROFF User's Manual
October 11, 1976

The number, N, may be specified in decimal-fraction form but the parameter finally stored is rounded
to an integer number of basic units.

The absolute poSition indicator I may be prepended to a number N to generate the distance to the vertical
or horizontal place N. For vertically-oriented requests and functions, I N becomes the distance in basic
units from the current vertical place on the page or in a diversion (§7.4) to the the vertical place N. For
all other requests and functions, I N becomes the distance from the current horizontal place on the input
line to the horizontal place N. For example,

.sp 13.1e

will space in the required direction to 3.2 centimeters from the top of the page.

1.4. Numerical expressions. Wherever numerical input is expected an expression involving parentheses,
the arithmetic operators +, -, /, ., ~ (mod), and the logical operators <, >, <-, >-, - (or --),
a (and), : (or) may be used. Except where controlled by parentheses, evaluation of expressions is
left-to-right; there is no operator precedence. In the case of certain requests, an initial + or - is
stripped and interpreted as an increment or decrement indicator respectively. In the presence of default
scaling, the desired scale indicator must be attached to every number in an expression for which the
desired and default scaling differ. For example, if the number register x contains 2 and the current
point size is 10, then

.11 (4.15l+\nxP+3)/lu

will set the line length to 1/2 the sum of 4.25 inches + 2 picas + 30 points.

1.5. Notation. Numerical parameters are indicated in this manual in two ways. ± N means that the
argument may take the forms N, +N, or -N and that the corresponding effect is to set the affected
parameter to N, to increment it by N, or to decrement it by N respectively. Plain N means that an ini
tial algebraic sign is not an increment indicator, but merely the sign of N. Generally, unreasonable
numerical input is either ignored or truncated to a reasonable value. For example, most requests
expect to set parameters to non-negative values; exceptions are sp, wb, eb, Df, and if. The requests
ps, ft, po, 1'5, Is, II, in, and It restore the previous parameter value in the absence of an argument.

Single character arguments are indicated by single lower case letters and one/two character arguments
are indicated by a pair of lower case letters. Character string arguments are indicated by multi-character
mnemonics.

1. Font and Cbaracter Size Control

1.1. Character set. The TROFF character set consists of the Graphics Systems Commercial II character
set plus a Special Mathematical Font character set-each having 102 characters. These character sets
are shown in the attached Table I. All ASCII characters are included, with some on the Special Font.
With three exceptions, the ASCII characters are input as themselves, and non-ASCII characters are input
in the form \ bx where xx is a two-character name given in the attached Table II. The three ASCII
exceptions are mapped as follows:

ASCII Input Printed by TROFF
Character Name Character Name . acute accent

, close quote . grave accent • open quote
- minus - hyphen

The characters " " and - may be input by \', \" and\- respectively or by their names (Table 11).
The ASCII characters 0, #, ., " " <, >, \, {, }, -, ", and _ exist only on the Special Font and are
printed as a I-em space if that Font is not mounted'.

NROFF understands the entire TROFF character set, but can in general print only ASCII characters,
additional characters as may be available on the output device, such characters as may be able to be
constructed by overstriking or other combination, and those that can reasonably be mapped into other
printable characters. The exact behavior is determined by a driving table prepared for each device. The

- 9 -

NROFF/TROFF User's Manual
October 11, 1976

characters " " and _ print as themselves.

2.2. Fonts. The default mounted fonts are Times Roman (R), Times Italic (I), Times Bold (B), and
the Special Mathematical Font (S) on physical typesetter positions 1, 2, 3, and 4 respectively. These
fonts are used in this document. The current font, initially Roman, may be changed (among the
mounted fonts) by use of the ft request, or by imbedding at any desired point either \fx, \f<.xx, or \fN
where x and xx are the name of a mounted font and N is a numerical font position. It is not necessary
to change to the Special font; characters on that font are automatically handled. A request for a named
but not-mounted font is ignored. TROFF can be informed that any particular font is mounted by use of
the fp request. The list of known fonts is installation dependent. In the subsequent discussion of
font-related requests, F represents either a one/two-character font name or the numerical font position,
1-4. The current font is available (as numerical position) in the read-only number register .f.

NROFF understands font control and normally underlines Italic characters (see §10.5).

2.3. Character size. Character point sizes available on the Graphic Systems typesetter are 6, 7, 8, 9, 10,
11, 12, 14, 16, 18, 20, 22, 24, 28, and 36. This is a range of 1/12 inch to 1/2 inch. The ps request is
used to change or restore the point size. Alternatively the point size may be changed between any two
characters by imbedding a \sN at the desired point to set the size to N, or a \s±N (l~N~9) to
increment/decrement the size by N, \sO restores the previous size. Requested point size values that are
between two valid sizes yield the larger of the two. The current size is available in the .s register.
NROFF ignores type size control.

Request Initial 1/ No
Form Value Argument Notes· Explanation

.ps ± N 10 point previous

.ss N 12/36 em ignored

.cs FNM off

.bd F N off

E

E

P

p

Point size set to ± N. Alternatively imbed \sN or \s ± N.
Any positive size value may be requested; if invalid, the
next larger valid size will result, with a maximum of 36.
A paired sequence + N, - N will work because the previ
ous requested value is also remembered. Ignored in
NROFF.

Space-character size is set to N/36 ems. This size is the
minimum word spacing in adjusted text. Ignored in
NROFF.

Constant character space (width) mode is set on for font
F (if mounted); the width of every character will be
taken to be N/36 ems. If M is absent, the em is that of
the character's point size; if M is given, the em is M
points. All affected characters are centered in this space,
including those with an actual width larger than this
space. Special Font characters occurring while the
current font is F are also so treated. If N is absent, the
mode is turned off. The mode must be still or again in
effect when the characters are physically printed. Ignored
in NROFF.

The characters in font Fwill be artificially emboldened by
printing each one twice, separated by N-l basic units. A
reasonable value for N is 3 when the character size is in
the vicinity of 10 points. If N is missing the embolden
mode is turned off. The column heads above were
printed with .bd I 3. The mode must be still or again in
effect when the characters are physically printed. Ignored
in NROFF.

°Notes are explained at the end of the Summary and Index above.

- 10 -

NROff/TROFF User's Manual
October 11, 1976

.bd SF N off

.ft FRoman previous

.fp N F R,I,B,S ignored

3. Pate control

P

E

The characters in the Special Font will be emboldened
whenever the current font is F. This manual was printed
with .bd S B 3. The mode must be still or again in effect
when the characters are physically printed.

Font changed to F. Alternatively, imbed \fF. The font
name P is reserved to mean the previous font.

Font position. This is a statement that a font named F is
mounted on position N 0-4). It is a fatal error if F is
not known. The phototypesetter has four fonts physically
mounted. Each font consists of a film strip which can be
mounted on a numbered quadrant of a wheel. The
default mounting sequence assumed by TROFF is R, I, B,
and S on positions 1, 2, 3 and 4.

Top and bottom margins are not automatically provided; it is conventional to define two macros and to
set traps for them at vertical positions 0 (top) and -N (N from the bottom). See §7 and Tutorial
Examples §T2. A pseudo-page transition onto the first page occurs either when the first break occurs or
when the first non-diverted text processing occurs. Arrangements for a trap to occur at the top of the
first page must be completed before this transition. In the following, references to the current diversion
(§7.4) mean that the mechanism being described works during both ordinary and diverted output (the
former considered as the top diversion level).

The useable page width on the Graphic Systems phototypesetter is about 7.54 inches, beginning about
1/27 inch from the left edge of the 8 inch wide, continuous roll paper. The physical limitations on
NROFF output are output-device dependent.

Re".,at 1,,1tItl1 UNo
Fo"" YIII". .4rpllN"t Nota E:qlil"lItlOII

.pl ±N 11 in 11 in

.hp ±N N-l

.po ±N N-l ignored

.po ±N 0; 26/27 int previous

.ne N N-l V

Page length set to ± N. The internal limitation is about
75 inches in TROFF and about 136 inches in NROFF.
The current page length is available in the .p register.

B· ,T Begin page. The current page is ejected and a new page
is begun. If ± N is given, the new page number will be
± N. Also see request ns.

Page number. The next page (when it occurs) will have
the page number ± N. A po must occur before the ini
tial pseudo-page transition to effect the page number of
the first page. The current page number is in the 0/0
register.

T Page offset. The current left margin is set to ± N. The
TROFF initial value provides about 1 inch of paper mar
gin including the physical typesetter margin of 1/27 inch.
In TROFF the maximum (line-length) + (page-offset) is
about 7.54 inches. See §6. The current page offset is
available in the .0 register.

O,T Need N vertical space. If the distance, D, to the next
trap position (see §7.5) is less than N, a forward vertical
space of size D occurs, which will spring the trap. If
there are no remaining traps on the page, D is the

·The use of ••• as control character (instead of ".") suppresses the break function.

tValues separated by";" are for NROFF and TROFF respectively.

- 11 -

NROFF/TROFF User's Manual
October' 11, 1976

. mk R none internal

.rt ±N none internal

D

D,v

distance to the bottom of the page. If D < V, another
line could still be output and spring the trap. In a diver
sion, D is the distance to the diversion trap, if any, or is
very large .

Mark the current vertical place in an internal register
(both associated with the current diversion level), or in
register R, if given. See rt request.

Return upward only to a marked vertical place in the
current diversion. If ±N (w.r.t. current place) is given,
the place is ± N from the top of the page or diversion or,
if N is absent, to a place marked by a previous mk. Note
that the sp request (§5.3) may be used in all cases
instead of rt by spacing to the absolute place stored in a
explicit register; e. g. using the sequence .mk R ...
. sp l\nRu.

4. Text Filling, Adjusting, and Centering

4.1. Filling and adjusting. Normally, words are collected from input text lines and assembled into a out
put text line until some word doesn't fit. An attempt is then made the hyphenate the word in effort to
assemble a part of it into the output line. The spaces between the words on the output line are then
increased to spread out the line to the current line length minus any current indent. A word is any string
of characters delimited by the space character or the beginning/end of the input line. Any adjacent pair
of words that must be kept together (neither split across output lines nor spread apart in the adjustment
process) can be tied together by separating them with the unpaddable space character"\ It (backs lash
space). The adjusted word spacings are uniform in TROFF and the minimum interword spacing can be
controlled with the ss request (§2). In NROFF, they are normally nonuniform because of quantization
to character-size spaces; however, the command line option -e causes uniform spacing with full output
device resolution. Filling, adjustment, and hyphenation (§13) can all be prevented or controlled. The
text length on the last line output is available in the .n register, and text base-line position on the page
for this line is in the nl register. The text base-line high-water mark (lowest place) on the current page
is in the .h register.

An input text line ending with ., ?, or ! is taken to be the end of a sentence, and an additional space
character is automatically provided during filling. Multiple inter-word space characters found in the
input are retained, except for trailing spaces; initial spaces also cause a break.

When filling is in effect, a \p may be imbedded or attached to a word to cause a break at the end of the
word and have the resulting output line spread out to fill the current line length.

A text input line that happens to begin with a control character can be made to not look like a control
line by prefacing it with the non-printing, zero-width filler character \&. Still another way is to specify
output translation of some convenient character into the control character using tr (§10.5).

4.2.1nterrupted text. The copying of a input line in nofill (non-fill) mode can be interrupted by terminat
ing the partial line with a \c. The next encountered input text line will be considered to be a continua
tion of the same line of input text. Similarly, a word within filled text may be interrupted by terminat
ing the word (and line) with \c; the next encountered text will be taken as a continuation of the inter
rupted word. If the intervening control lines cause a break, any partial line will be forced out along
with any partial word.

Request Initial
Form Value

.br

UNo
Argument Notes Explanation

B Break. The filling of the line currently being collected is
stopped and the line is output without adjustment. Text
lines beginning with space characters and empty text
lines (blank lines) also cause a break.

- 12 -

NROFF/TROff User's Manual
October 11, 1976

.n fill on

.nf fill on

• ad c adj,both adjust

.na adjust

.ce N off N-I

5. Vertical Spaclnl

B,E

B,E

E

E

B,E

Fill subsequent output lines. The register .u is 1 in fill
mode and 0 in nofill mode.

Nofill. Subsequent output lines are neither filled nor
adjusted. Input text lines are copied directly to output
lines without regard for the current line length ..

Line adjustment is begun. If fill mode is not on, adjust
ment will be deferred until fill mode is back on. If the
type indicator c is present, the adjustment type is
changed as shown in the following table.

Indicator Adjust Type
I adjust left margin only
r adjust right margin only
c center

b or n adjust both margins
absent unchanged

Noadjust. Adjustment is turned off; the right margin will
be ragged. The adjustment type for ad is not changed.
Output line filling still occurs if fill mode is on.

Center the next N input text lines within the current
(line-length minus indent). If N-O, any residual count
is cleared. A break occurs after each of the N input
lines. If the input line is too long, it will be left adjusted.

5.1. Base-line spacing. The vertical spacing (V) between the base-lines of successive output lines can be
set usina the ys request with a resolution of l/144inch-l/2 point in TROFF, and to the output device
resolution in NROFF. V must be large enouah to accommodate the character sizes on the affected out
put lines. For the common type sizes (9-12 points), usual typesetting practice is to set V to 2 points
greater than the point size; TROFF default is 10-point type on a 12-point spacing (as in this document).
The current V is available in the • y register. Multiple- V line separation (e. g. double spacing) may be
requested with Is.

5.2. Extra line-space. If a word contains a vertically tall construct requiring the output line containing it
to have extra vertical space before and/or after it, the extra-line-space function \s:' N' can be imbedded
in or attached to that word. In this and other functions having a pair of delimiters around their parame
ter (here'), the delimiter choice is arbitrary, except that it can't look like the continuation of a number
expression for N. If N is negative, the output line containing the word will be preceded by N extra
vertical space; if N is positive, the output line containing the word will be followed by N extra vertical
space. If successive requests for extra space apply to the same line, the maximum values are used.
The most recently utilized post-line extra line-space is available in the .a register.

5.3. Blocks 0/ vertical space. A block of vertical space is ordinarily requested using sp, which honors the
no-space mode and which does not space past a trap. A contiguous block of vertical space may be
reserved using SY.

Request IIt/tltll
Fo"" Yalue

I/No
.4""",eltt

.n N 1/6in;12pts previous

.lsN N-l previous

Notes ExpIaltat/olt

E,p

E

Set vertical base-line spacing size V. Transient extra
vertical space available with \s:' N' (see above).

Line spacing set to ±: N. N-I Vs (blank lines) are
appended to each output text line. Appended blank lines
are omitted, if the text or previous appended blank line

- 13 -

NROFFITROFF User's Manual
October 11, 1976

.sp N N-IV

.sv N N-IV

.05

.ns space

.rs space

Blank text line.

6. Line Lenltb and Indentinl

B,v

v

D

D

B

reached a trap position.

Space vertically in either direction. If N is negative, the
motion is backward (upward) and is limited to the dis
tance to the top of the page. Forward (downward)
motion is truncated to the distance to the nearest trap. If
the no-space mode is on, no spacing occurs (see ns, and
rs below).

Save a contiguous vertical block of size N. If the dis
tance to the next trap is greater than N, N vertical space
is output. No-space mode has no effect. If this distance
is less than N, no vertical space is immediately output,
but N is remembered for later output (see os). Subse
quent sv requests will overwrite any still remembered N.

Output saved vertical space. No-space mode has no
effect. Used to finally output a block of vertical space
requested by an earlier sv request.

No-space mode turned on. When on, the no-space mode
inhibits sp requests and bp requests without a next page
number. The no-space mode is turned off when a line of
output occurs, or with rs.

Restore spacing. The no-space mode is turned off.

Causes a break and output of a blank line exactly like
sp 1.

The maximum line length for fill mode may be set with II. The indent may be set with In; an indent
applicable to only the next output line may be set with tt. The line length includes indent space but not
page offset space. The line-length minus the indent is the basis for centering with ceo The effect of II,
In, or tl is delayed, if a partially collected line exists, until after that line is output. In fill mode the
length of text on an output line is less than or equal to the line length minus the indent. The current
line length and indent are available in registers .1 and .1 respectively. The length of three-part titles pro
duced by tl (see § 14) is independently set by It.

Reque8t Initial (f No
Form Vallie Arpment Note8 Exp/llnatlon

.11 ± N 6.5 in previous

.In ±N N-O previous

.tl ±N ignored

E,m Line length is set to ± N. In TROFF the maximum
Wne-Iength) + (page-offset) is about 7.54 inches.

B,E,m Indent is set to ± N. The indent is prepended to each
output line.

B,E,m Temporary indent. The next output text line will be
indented a distance ± N with respect to the current
indent. The resulting total indent may not be negative.
The current indent is not changed.

7. Macros, Strings, Diversion. and Position Traps

7.1. Macros and strings. A macro is a named set of arbitrary lines that may be invoked by name or with
a trap. A string is a named string of characters, not including a newline character, that may be interpo
lated by name at any point. Request, macro, and string names share the same name list. Macro and
string names may be one or two characters long and may usurp previously defined request, macro, or
string names. Any of these entities may be renamed with m or removed with rm. Macros are created
by de and dl, and appended to by am and da; dl and da cause normal output to be stored in a macro.
Strings are created by ds and appended to by as. A macro is invoked in the same way as a request; a

- 14 -

NROFF/TROFF User's Manual
October 11, 1976

control line beginning .xx will interpolate the contents of macro xx: The remainder of the line may
contain up to nine arguments. The strings x and xx are interpolated at any desired point with \ex and
\-(xx respectively. String references and macro invocations may be nested.

7.2. Copy mode input interpretation. During the definition and extension of strings and macros (not by
diversion) the input is read in copy mode. The input is copied without interpretation except that:

• The contents of number registers indicated by \n are interpolated.
• Strings indicated by \- are interpolated.
• Arguments indicated by \$ are interpolated.
• Concealed new lines indicated by \ (newline) are eliminated.
• Comments indicated by \. are eliminated.
• \t and \a are interpreted as ASCII horizontal tab and SOH respectively (§9) .
• \\ is interpreted as \.
• \. is interpreted as ".".

These interpretations can be suppressed by prepending a \. For example, since \ \ maps into a \, \ \n
will copy as \n which will be interpreted as a number register indicator when the macro or string is
reread.

7.3. Arguments. When a macro is invoked by name, the remainder of the line is taken to contain up to
nine arguments. The argument separator is the space character, and arguments may be surrounded by
double-quotes to permit imbedded space characters. Pairs of double-quotes may be imbedded in
double-quoted arguments to represent a single double-quote. If the desired arguments won't fit on :]
line, a concealed newline may be used to continue on the next line.

When a macro is invoked the input level is pushed down and any arguments available at the previous
level become unavailable until the macro is completely read and the previous level is restored. A
macro's own arguments can be interpolated at any point within the macro with \$N, which interpolates
the Nth argument (1 ~N~9). If an invoked argument doesn't exist, a null string results. For exam
ple, the macro xx may be defined by

.de xx \ '"belln deftnitlon
Today is \\$1 the \\$1.

\ -end deftnition

and caUed by

.xx Monday 14th

to produce the text

Today is Monday tbe 14tb.

Note that the \S was concealed in the definition with a prepended \. The number of currently availabk
arguments is in the .S register.

No arguments are available at the top (non-macro) level in this implementation. Because SIring
referencing is implemented as a input-level push down, no arguments are available from within a strin~
No arguments are available within a trap-invoked macro.

Arguments are copied in copy mode onto a stack where they are available for reference. The mechan
ism does not allow an argument to contain a direct reference to a long string (interpolated at copy tirrw)
and it is advisable to conceal string references (with an extra \) to delay interpolation until argunwn r
reference time.

7.4. Diversions. Processed output may be diverted into a macro for purposes such as footnote pro..:t:SSlIlt'
(see Tutorial §T5) or determining the horizontal and vertical size of some text for conditional chal1gl!lv,
of pages or columns. A single diversion trap may be set at a specified vertical position. The llumbc'!
registers dn and dl respectively contain the vertical and horizontal size of the most recently endel
diversion. Processed text that is diverted into a macro retains the vertical size of each of its lines wil'~n
reread in nofill mode regardless of the current V. Constant-spaced (cs) or emboldened (bd) text thar \~
diverted can be reread correctly only if these modes are again or still in effect at reread time. One W~l~,

- 15 -

NROFF/TROFF User's Manual
October 11, 1976

to do this is to imbed in the diversion the appropriate cs or bd requests with the transparent mechanism
described in §10.6.

Diversions may be nested and certain parameters and registers are associated with the current diversion
level (the top non-diversion level may be thought of as the Oth diversion level). These are the diver
sion trap and associated macro, no-space mode, the internally-saved marked place (see mk and rt), the
current vertical place (.d register), the current high-water text base-line (.b register), and the current
diversion name (.1 register). .

7.5. Traps. Three types of trap mechanisms are available-page traps, a diversion trap, and an input
line-count trap. Macro-invocation traps may be planted using wb at any page position including the top.
This trap position may be changed using cb. Trap positions at or below the bottom of the page have no
effect unless or until moved to within the page or rendered effective by an increase in page length.
Two traps may be planted at the same position only by first planting them at different positions and
then moving one of the traps; the first planted trap will conceal the second unless and until the first one
is moved (see Tutorial Examples §TS). If the first one is moved back, it again conceals the second
trap. The macro associated with a page trap is automatically invoked when a line of text is output
whose vertical size reaches or sweeps past the trap position. Reaching the bottom of a page springs the
top-of-page trap, if any, provided there is a next page. The distance to the next trap position is avail
able in the .t register; if there are no traps between the current position and the bottom of the page, the
distance returned is the distance to the page bottom.

A macro-invocation trap effective in the current diversion may be planted using dt. The.t register
works in a diversion; if there is no subsequent trap a large distance is returned. For a description of
input-line-count traps, see it below.

Request lllitlill II No
Fo"" Yalue ..4rrumellt Notes Explllllattoll

.de xxyy

• am xxyy

.ds xx string -

.as xx string -

.rm xx

.m xxyy

.dl xx

.yy-..

. yy-..

ignored

ignored

ignored

ignored

end D

Define or redefine the macro xx. The contents of the
macro begin on the next input line. Input lines are
copied in copy mode until the definition is terminated by a
line beginning with .yy, whereupon the macro yy is
called. In the absence of yy, the definition is terminated
by a line beginning with " .. ". A macro may contain de
requests provided the terminating macros differ or the
contained definition terminator is concealed. " • ." can be
concealed as \ \ .. which will copy as \ .. and be reread as
" "

Append to macro (append version of de) .

Define a string xx containing string. Any initial double
quote in string is stripped off to permit initial blanks.

Append string to string xx (append version of ds).

Remove request, macro, or string. The name xx is
removed from the name list and any related storage
space is freed. Subsequent references will have no effect.

Rename request, macro, or string xx to yy. If yy exists, it
is first removed.

Divert output to macro xx. Normal text processing
occurs during diversion except that page offsetting is not
done. The diversion ends when the request dl or da is
encountered without an argument; extraneous requests
of this type should not appear when nested diversions are
being used.

- 16 -

NROFF/TaOFf' User's Manual
October 11, 1976

.da .xx

.wb N.xx

. ch .xx N

.dt N.xx

.It N xx

.em xx none

8. Number Realsters

end

off

off

none

D

Y

Y

D,Y

E

Divert, appending to .xx (append version of di).

Install a trap to invoke .xx at page position N; a negative N
will be interpreted with respect to the page bottom. Any
macro previously planted at N is replaced by xx. A zero
N refers to the top of a page. In the absence of xx, the
first found trap at N, if any, is removed .

Change the trap position for macro xx to be N. In the
absence of N, the trap, if any, is removed.

Install a diversion trap at position N in the current diver
sion to invoke macro xx. Another dt will redefine the
diversion trap. If no arguments are given, the diversion
trap is removed.

Set an input-line-count trap to invoke the macro .xx after
N lines of text input have been read (control or request
lines don't count). The text may be in-line text or text
interpolated by inline or trap-invoked macros.

The macro .xx will be invoked when all input has ended,
The effect is the same as if the contents of xx had been
at the end of the last file processed.

A variety of parameters are available to the user as predefined, named number registers (see Summary
and Index, page 7). In addition, the user may define his own named registers. Register names are one
or two characters long and do not conflict with request, macro, or string names. Except for certain
predefined read-only registers, a number register can be read, written, automatically incremented or
decremented, and interpolated into the input in a variety of formats. One common use of user-defined
registers is to automatically number sections, paragraphs, lines, etc. A number register may be used
any time numerical input is expected or desired and may be used in numerical expressions (§1.4).

Number registers are created and modified using ar, which specifies the name, numerical value, and
the auto-increment size. Registers are also modified, if accessed with an auto-incrementing sequence.
If the registers x and·.xx both contain N and have the auto-increment size M, the following access
sequences have the effect shown:

Effect on Value
Sequence Register Interpolated
\ax none N
\a(.xx none N
\a+x x incremented by M N+M
\a-x x decremented by M N-M
\a+(.xx .xx incremented by M N+M
\n-(.xx .xx decremented by M N-M

When interpolated, a number register is converted to decimal (default), decimal with leading zeros,
lower-case Roman, upper-case Roman, lower-case sequential alphabetic, or upper-case sequential alpha
betic according to the format specified by af.

Requat Inltla' 1/ No
Form Yalue Arp",ent Notes Exp/(lnatlon

.nrR ±NM u The number register R is assigned the value ± N with
respect to the previous value, if any. The increment for
auto-incrementing is set to M.

- 17 -

NROFF/TROFF User's Manual
October 11, 1976

.af R c arabic

.rr R ignored

9. Tabs. Leaders, and Fields

Assign format c to register R. The available formats are:

Numbering
Format Sequence

1 0,1,2,3,4,5, ...
001 000,001,002,003,004,005, ...

j O,i,ii,iii,iv, v, ...
J O,I,II,III,IV, V, ...
a O,a,b,c •... ,z,aa,ab, ... ,zz,aaa, ...
A O,A,B,C, ... ,Z,AA,AB, ... ,ZZ,AAA, ...

An arabic format having N digits specifies a field width of
N digits (example 2 above). The read-only registers and
the width function (§11.2) are always arabic.

Remove register R. If many registers are being created
dynamically, it may become necessary to remove no
longer used registers to recapture internal storage space
for newer registers.

9.1. Tabs and leaders. The ASCII horizontal tab character and the ASCII SOH (hereafter known as the
leader character) can both be used to generate either horizontal motion or a string of repeated charac
ters. The length of the generated entity is governed by internal tab stops specifiable with ta. The
default difference is that tabs generate motion and leaders generate a string of periods; te and Ie offer
the choice of repeated character or motion. There are three types of internal tab stops-left adjusting,
right adjusting, and centering. In the following table: D is the distance from the current position on the
input line (where a tab or leader was found) to the next tab stop; next-string consists of the input charac
ters following the tab (or leader) up to the next tab (or leader) or end of line; and W is the width of
next-string.

Tab Length of motion or Location of
type repeated characters next-string

Left D Following D
Right D-W Right adjusted within D

Centered D-W/2 Centered on right end of D

The length of generated motion is allowed to be negative, but that of a repeated character string cannot
be. Repeated character strings contain an integer number of characters, and any residual distance is
prepended as motion. Tabs or leaders found after the last tab stop are ignored, but may be used as
next-string terminators.

Tabs and leaders are not interpreted in copy mode. \t and \a always generate a non-interpreted tab and
leader respectively, and are equivalent to actual tabs and leaders in copy mode.

9.2. Fields. A field is contained between a pair of field delimiter characters, and consists of sub-strings
separated by padding indicator characters. The field length is the distance on the input line from the
position where the field begins to the next tab stop. The difference between the total length of all the
sub-strings and the field length is incorporated as horizontal padding space that is divided among the
indicated padding places. The incorporated padding is allowed to be negative. For example, if the field
delimiter is # and the padding indicator is A, #A xxxA right # specifies a right-adjusted string with the
string xxx centered in the remaining space.

- 18 -

NaoFFITRoFF User's Manual
October 11, 1976

Requat
Form

.ta NI ...

.te c

0.8; O.Sin

none

QNo ,.",,,,.,,t Notes ExpltJutlo"

none E,m Set tab stops and types. I-R, right a(ljusting; I-C,
centering; I absent, left adjusting. TROFF tab stops are
preset every O.Sin.; NROFF every 0.8in. The stop values
are separated by spaces, and a value preceded by + is
treated as an increment to the previous stop value.

none E The tab repetition character becomes C, or is removed
specifying motion .

• Ie c none E The leader repetition character becomes c, or is removed
specifying motion .

• Ie a b off off The field delimiter is set to a, the padding indicator is set
to the space character or to b, if given. In the absence of
arguments the field mechanism is turned off.

10. Input and Output Conyentlons and Cbaracter Translations

10.1. Input chamcter Imnsladons. Ways of inputting the graphic character set were discussed in §2.1.
The ASCII control characters horizontal tab (§9.1), SOH (§9.1), and backspace (§10.3) are discussed
elsewhere. The newline delimits input lines. In addition, STX, ETX, ENQ, ACK, and BEL are accepted,
and may be used as delimiters or translated into a graphic with tr (§10.S). All others are ignored.

The escape character \ introduces escape sequences-causes the following character to mean another
character, or to indicate some function. A complete list of such sequences is given in the Summary
and Index on page 6. \ should not be confused with the ASCII control character ESC of the same name.
The escape character \ can be input with the sequence \ \. The escape character can be changed with
ec:, and all that has been said about the default \ becomes true for the new escape character. \e can be
used to print whatever the current escape character is. If nec:essary or convenient, the escape mechan
ism may be turned off with eo, and restored with ec:.

Requat I",tial Q No
Form Value ,."""."t Nota Expiautlo"

.ec: c \ \ Set escape character to \, or to c, if given.

.eo on Tum escape mechanism off.

10.1. Ligatures. Five ligatures are available in the current TROFF character set - 8, 8, ft, fB, an.d fB.
They may be input (even in NROFF) by \(ft, \(0, \(11, \(Fi, and \(Fl respectively. The ligature mode
is normally on in TROFF, and automatically invokes ligatures during input.

Requnt I"ltlal Q No
Form Value ,."""."t Nota Expia,",,'on
.11 N off; on on Ligature mode is turned on if N is absent or non-zero,

and turned off if N-O. If N-2, only the two-character
ligatures are automatically invoked. Ligature mode is
inhibited for request, macro, string, register, or file
names, and in copy mode. No effect in NROFF.

10.3. BackspaCing, underlining, overstriklng, etc. Unless in copy mode, the ASCII backspace character is
replaced by a backward horizontal motion having the width of the space character. Underlining as a
form of line-drawing is discussed in §12.4. A generalized overstriking function is described in §12.1.

NROFF automatically underlines characters in the underline font, specifiable with ul, normally that on
font position 2 (normally Times Italic, see §2.2). In addition to It and \IF, the underline font may be
selected by ul and eu. Underlining is restricted to an output-device-dependent subset of reasonable

characters.

- 19 -

NROFFITROFF User's Manual
October 11, 1916

Requat
For",

.ul N

.eu N

.af F

Inltltl/
Ytllue

off

off

Italic

N-l

Italic

Notel ExI!/anation

E Underline in NROFF (italicize in TROFP) the next N
input text lines. Actually, switch to underline font, saving
the current font for later restoration; other font changes
within the span of a al will take effect, but the restora
tion will undo the last change. Output generated by tl
(§14) is affected by the font change, but does not decre
ment N. If N> 1, there is the risk that a trap interpo
lated macro may provide text lines within the span;
environment switching can prevent this.

E A variant of al that causes eW!ry character to be under
lined in NROFF. Identical to al in TROFF.

Underline font set to F. In NROFF, F may not be on
position 1 (initially Times Roman).

10.4. Control characters. Both the control character . and the no-break control character • may be
changed, if desired. Such a change must be compatible with the design of any macros used in the span
of the change, and particularly of any trap-invoked macros.

Requelt Inltill/ UNo
Form Ya/lle A""",ent Notel Expltlnatlon

.Ct c E The basic control character is set to c, or reset to " ••.

. cl c E The nobreak control character is set to C, or reset to

10.5. Output translation. One character can be made a stand-in for another. character using tr. All text
processing (e. g. character comparisons) takes place with the input (stand-in) character which appears to
have the width of the final character. The graphic translation occurs at the moment of output (includ
ing diversion).

Requat Inltill/
For", Ya/ue

.tr abed.... none

UNo
A""",ent Notel Expltlnatlon

o Translate a into b, c into d, etc. If an odd number of
characters is given, the last one will be mapped into the
space character. To be consistent, a particular translation
must stay in effect from input to output time.

10.6. Transparent throughput. An input line beginning with a \! is read in copy mode and transparently
output (without the initial \0; the text processor is otherwise unaware of the line's presence. This
mechanism may be used to pass control information to a post-processor or to imbed control lines in a
macro created by a diversion.

10.7. Comments and concealed newlines. An uncomfortably long input line that must stay one line (e. g.
a string definition, or nofilled text) can be split into many physical lines by ending all but the last one
with the escape \. The sequence \(newline) is always ignored-except in a comment. Comments may
be imbedded at the end of any line by prefacing them with \ -. The newline at the end of a comment
cannot be concealed. A line beginning with \ - will appear as a blank line and behave like .sp 1; a com
ment can be on a line by itself by beginning the line with • \-.

11. Local Horizontal and Vertical Motions. and tbe Wldtb Fanction

11.1. Local Motions. The functions \Y' N' and \b' N' can be used for local vertical and horizontal motion
respectively. The distance N may be negative; the positiW! directions are rightward and downward A
local motion is one contained within a line. To avoid unexpected vertical dislocations, it is necessary
that the net vertical local motion within a word in filled text and otherwise within a line balance to zero.
The above and certain other escape sequences providing local motion are summarized in the following
table.

·20·

NROFF/TRoFF User's Manual
October 11, 1976

Vertical Effect in
Local Motion TROFF NROFF

\v'N' Move distance N

\u V2 em up 1/2 line up
\d 1/2 em down V2 line down
\r 1 em up 1 line up

Horizontal Effect in
Local Motion TROFF NROFF

\h'N' Move distance N
\ (space) Unpaddable space-size space
\0 Digit-size space

\1 1/6 em space ignored
\" 1/12 em space ignored

As an example, E1 could be generated by the sequence E\s-1\v'-0.4m'l\v'O.4m'\s+1~ it should be
noted in this example that the 0.4 em vertical motions are at the smaller size.

11.2. Width Function. The width function \w'string' generates the numerical width of string (in basic
units). Size and font chanses may be safely imbedded in string, and will not affect the current environ
ment. For example, .tt -\w'l. 'u could be used to temporarily indent leftward a distance equal to the
size of the strins "I. to. .

The width function also sets three number registers. The registers st and sb are set respectively to the
highest and lowest extent of string relative to the baseline; then, for example, the total height of the
string is \n(stu-\n(sbu. In TROFF the number register ct is set to a value between 0 and 3: 0 means
that all of the characters in string were short lower case characters without descenders (like e); 1 means
that at least one character has a descender (Uke y); 2 means that at least one character is tall Oike H) ~
and 3 means that both tall characters and characters with descenders are present.

11.3. Mark horizontal place. The escape sequence \kx will cause the cu"ent horizontal position in the
input line to be stored in resister x. As an example, the construction \kxword\h'l\nxu+lu'word will
embolden word by backing up to almost its beginning and overprinting it, resulting in word.

12. Oventrlke, Bracket, Llne-4rawlnl. and Zero-width Functions

12.1.0Ilf!rstriJcing. Automatically centered overstriking of up to nine characters is provided by the ollf!r
strike function \0' string'. The characters in string overprinted with centers aligned; the total width is
that of the widest character. string should not contain local vertical motion. As examples, \o'e\" pro
duces e, and \0'\ (DlO\ (51' produces *,.

12.2. Zero-width characters. The function \ze will output e without spacing over it, and can be used to .
produce left-aligned overstruck combinations. As examples, \1\ (d\ (pi will produce $, and
\(br\z\(m\(ul\Cbr will produce the smallest possible constructed box O.
12.3. Large Brackets. The Special Mathematical Font contains a number of bracket construction pieces
(r II J i ~ It J r 1) that can be combined into various bracket styles. The function \b'string' may be used
to pile up vertically the characters in string (the first character on top and the last at the bottom); the
characters are vertically separated by 1 em and the total pile is centered 1/2 em above the current base-

line (Iflline in NROFF). For example, \b'\Oc\Of'E\I\b'\(re\(rf'\x' -0.5D1'\x'O.5m' produces (E).

12.4. Line drawing. The function \1' Ne' will draw a string of repeated c's towards the right for a dis
tance N. (\1 is \ (lower case L). If c looks like a continuation of an expression for N, it may insulated
from Nwith a \A. If cis not specified, the _ (baseline rule) is used (underline character in NROFF). If
N is negative, a backward horizontal motion of size N is made btifore drawing the string. Any space
resulting from N / (size of c) having a remainder is put at the beginning (left end) of the string. In the
case of characters that are designed to be connected such as baseline-rule _, underrule _, and root
en -, the remainder space is covered by over-lapping. If N is less than the width of c, a single c is cen
tered on a distance N. As an example, a macro to ,underscore a string can be written

.de us
\\$1\1 'IO\(ul'

- 21 -

NROFFITROFF User's Manual
October 11, 1976

or one to draw a box around a string

.de bx
\(br\I\\SI\I\(br\I'IO\(m\ l'IO\(ul'

such that

.ul ·underlined words·

and

.bx ·words in a box·

yield underlined words and IwordS in a box L

The function \L' Nc' will draw a vertical line consisting of the (optional) character c stacked vertically
apart I em (t line in NROFF), with the first two characters overlapped, if necessary, to form a continu
ous line. The default character is the box rule I (\(br)~ the other suitable character is the bold vertical I
(\ (b ...). The line is begun without any initial motion relative to the current base line. A positive N
specifies a line drawn downward and a negative N specifies a line drawn upward. After the line is drawn
no compensating motions are made~ the instantaneous baseline is at the end of the line.

The horizontal and vertical line drawing functions may be used in combination to produce large boxes.
The zero-width box-rule and the In-em wide underrule were designed to form comers when using l-em
vertical spacings. For example the macro

.deeb

.sp -1 \ ·compensate for next automatie base-line spaeinl

.nf \ • oid possibly o ... erlowinl word buffer
\h'-.5n\L'I\\nau-l\l\\n(.lu+ln\(ul\L'-I\\nau+l\I'IOu-.5n\(ul' \·draw box
.ft

will draw a box around some text whose beginning vertical place was saved in number register a (e. g.
usina .mk a) as done for this paralraph.

13. Hyphenation.

The automatic hyphenation may be switched off' and on. When switched on with hy, several variants
may be set. A hyphenation indicator character may be imbedded in a word to specify desired hyphena
tion points, or may be prepended to suppress hyphenation. In addition, the user may specify a small
exception word list.

Only words that consist of a central alphabetic string surrounded by (usually null) non-alphabetic
strings are considered candidates for automatic hyphenation. Words that were input containing hyphens
(minus), em-dashes (\(em) , or hyphenation indicator characters-such as mother-in-Iaw-are always
subject to splitting after those characters, whether or not automatic hyphenation is on or off'.

Request Inllllli q No
Form Yalue ATBllment Notes Exp/tInatlon

.nh

.hyN

.he c

.hw word1 ...

hyphenate

on,N-l on,N-1

\~

ignored

E

E

E

Automatic hyphenation is turned off'.

Automatic hyphenation is turned on for N~ I, or off' for
N-O. If N-2, last lines (ones that will cause a trap)
are not hyphenated. For N-4 and 8, the last and first
two characters respectively of a word are not split off'.
These values are additive; i. e. N-14 will invoke all
three restrictions.

Hyphenation indicator character is set to c or to the
default \~. The indicator does not appear in the output.

Specify hyphenation points in words with imbedded
minus signs. Versions of a word with terminal s are

- 22 -

NROFF/TROFF User's Manual
October 11, 1976

14. Three Part Titles.

implied; i. e. dig-it implies dig-its. This list is exam
ined initially and after each suffix stripping. The space
available is small-about 128 characters.

The titling function tl provides for automatic placement of three fields at the left, center, and right of a
line with a title-length specifiable with It. tI may be used anywhere, and is independent of the normal
text collecting process. A common use is in header and footer macros.

Request Initial UNo
Form Valult Argumltnt NOIlts Explanation

.tl 'left' center right'

.pc c % off

.It ±N 6.5 in previous

15. Output Line Numberlnl.

E,m

The strings left, center, and right are respectively left
adjusted, centered, and right-adjusted in the current
title-length. Any of the strings may be empty, and over
lapping is permitted. If the page-number character (ini
tially %) is found within any of the fields it is replaced by
the current page number having the format assigned to
register %. Any character may be used as the string del
imiter.

The page number character is set to c, or removed. The
page-number register remains %.

Length of title set to ± N. The line-length and the title
length are independent. Indents do not apply to titles;
page-offsets do.

Automatic sequence numbering of output lines may be requested with nm. When in effect, a
three-digit, arabic number plus a digit-space is prepended to output text lines. The text lines are

3 thus offset by four digit-spaces, and otherwise retain their line length; a reduction in line length
may be desired to keep the right margin aligned with an earlier margin. Blank lines, other vertical
spaces, and lines generated by tt are not numbered. Numbering can be temporarily suspended with

6 nn, or with an .nm followed by a later .nm +0. In addition, a line number indent I, and the
number-text separation S may be specified in digit-spaces. Further, it can be specified that only
those line numbers that are multiples of some number M are to be printed (the others will appear

9 as blank· number fields).

Request
Form

Initial
Valult

.nm ±NMSI

.on N

UNo
Argument

off

Notlts Explanation

E Line number mode. If ± N is given, line numbering is
turned on, and the next output line numbered is num
bered ± N. Default values are M .. 1, S'" 1, and I .. O.
Parameters corresponding to missing arguments are
unaffected; a non-numeric argument is considered miss
ing. In the absence of all arguments, numbering is
turned off; the next line number is preserved for possible
further use in number register In.

E The next N text output lines are not numbered.

As an example, the paragraph portions of this section are numbered with M-3: .om 1 3 was
placed at the beginning; .om was placed at the end of the first paragraph; and .nm +0 was placed

12 in front of this paragraph; and .nm finally placed at the end. Line lengths were also changed (by
\,,'OOOO'u) to keep the right side aligned. Another example is .nm +55 x 3 which turns on
numbering with the line number of the next line to be 5 greater than the last numbered line, with

15 M-5, with spacing Suntouched, and with the indent I set to 3.

- 23 -

NROFF/TROFF User's Manual
October 11, 1976

16. Conditional Acceptance of Input

In the following, c is a one-character, built-in condition name, ! signifies not, N is a numerical expres
sion, stringl and string] are strings delimited by any non-blank, non-numeric character not in the
strings, and anything represents what is conditionally accepted.

Request Initial II No
Form Yalue Argument Notes Explanation

.if c anything

.if ! c anything

. If N anything

.if ! N anything

• If 'stringl' string]' anything

.if ! ' stringl' string]' anything

• Ie c anything

. el anything

u

u

u

The built-in condition names are:

Condition
Name

0

e
t
n

If condition c true, accept anything as input; in multi-line
case use \{anything\}.

If condition c false, accept anything .

If expression N> 0, accept anything .

If expression N ~ 0, accept anything.

If stringl identical to string], accept anything .

If stringl not identical to string], accept anything.

If portion of if-else; all above forms Oike If) .

Else portion of if-else .

True If
Current page number is odd
Current page number is even
Formatter is TROFF
Formatter is NROFF

If the condition c is true, or if the number N is greater than zero, or if the strings compare identically
(including motions and character size and font), anything is accepted as input. If a ! precedes the condi
tion, number, or string comparison, the sense of the acceptance is reversed.

Any spaces between the condition and the beginning of anything are skipped over. The anything can be
either a single input line (text, macro, or whatever) or a number of input lines. In the multi-line case,
the first line must begin with a left delimiter \{ and the last line must end with a right delimiter \}.

The request Ie (if-else) is identical to If except that the acceptance state is remembered. A subsequent
and matching el (else) request then uses the reverse sense of that state. Ie - el pairs may be nested.

Some examples are:

.If e .tl • EYen Pale ~ ...

which outputs a title if the page number is even; and .

. Ie \n~>l \{\
'sp 0.51
.tl • Pale ~ ...
'sp 11.21 \}
.el .sp 12.51

which treats page 1 differently from other pages.

17. Eoylroomeot S"ltchiol.

A number of the parameters that control the text processing are gathered together into an environment,
which can be switched by the user. The environment parameters are those associated with requests
noting E in their Notes column; in addition, partially collected lines and words are in the environment.
Everything else is global; examples are page-oriented parameters, diversion-oriented parameters,

- 24 -

NROFF/TROFF User's Manual
October 11, 1976

number registers, and
parameter values.

R~qw6t 1"'1.1
Fo"" Yal,,~

.ev N N-O

macro and string definitions. All environments are initialized with default

QNo
.4,.."",~"t Nol~. Expla"atlo"

previous Environment switched to environment O:>;'N:>;'2. Switch
ing is done in push-down fashion so that restoring a pre
vious environment must be done with .el' rather than
specific reference.

18. Insertions from tbe Standard Input

The input can be temporarily switched to the system standard input with rd, which will switch back
when two newlines in a row are found (the extra blank line is not used). This mechanism is intended
for insertions in form-letter-like documentation. On UNIX, the standard input can be the user's key
board, a pipe, or a file.

Reqllat 1",l1li1
Fo"" Yalu~

.rd prompt -

.ell

Note. Explautlo"

prompt-BEL- Read insertion from the standard input until two new
lines in a row are found. If the standard input is the
user's keyboard, prompt (or a BEL) is written onto the
user's terminal. rd behaves like a macro, and arguments
may be placed after prompt

Exit from NROFF/TROFF. Text processing is terminated
exactly as if all input had ended.

If insertions are to be taken from the terminal keyboard while output is being printed on the terminal,
the command line option -q will turn off the echoing of keyboard input and prompt only with BEL.
The relular input and insertion input cannot simultaneously come from the standard input.

As an example, multiple copies of a form letter may be prepared by entering the insertions for all the
copies in one file to be used as the standard input, and causing the file containing the letter to reinvoke
itself usinl ax (119); the process would ultimately be ended by an ell in the insertion file.

1'. laput/Output File Swltcblna

Requat 1,,'t.1 q No
Fo,,,, Yalue .4""",ent Note. ExpIa"allon

.50 filena",e Switch source file. The top input (file reading) level is
switched to filename. The effect of an so encountered in
a macro is not felt until the input level returns to the file
level. When the new file ends, input is again taken from
the original file. so's may be nested.

.nll filename

.pl program

10. Miscellaneous

Requat
Fo""
.mc cN

1",l1li1
Yal"e

end-of-file - Next file is filename. The current file is considered
"ended, and the input is immediately switched to filename.

QNo
.4,."",.",
off

Pipe output to program (NROFF only). This request
must occur be/ore any printing occurs. No arguments are
transmitted to program.

Not.. &plautlo"
E,m Specifies that a margin character c appear a distance N to

the right of the right margin after each non-empty text
line (except those produced by tt). If the output line is
too-Iona (as can happen in nofill mode) the character will

- 25 -

NROPF/TROFF User's Manual
October 11, 1976

.tm string newline

.il YY .yy-••

.pm t all

.n

21. Oatput Ind Error Messlles.

B

be appended to the line. If N is not pven, the previous
N is used; the initial N is 0.2 inches in NROFF and 1 em
in TROFF. The margin character used with this para
graph was a 12-point box-rule.

After skipping initial blanks, string (rest of the line) is
read in copy mode and written on the user's terminal.

Ignore input lines. 1, behaves exactly like de (§7) except
that the input is discarded. The input is read in copy
mode, and any auto-incremented repsters will be
affected.

Print macros. The names and sizes of all of the defined
macros and strings are printed on the user's terminal; if t
is given, only the total of the sizes is printed. The sizes
is given in blocks of 128 characters.

Flush output buffer. Used in interactive debuail18 to
force output.

The output from tm, pm, and the prompt from rd, as well as various error messages are written onto
UNIX's standllrd message output. The latter is different from the standard output, where NROFF format
ted output goes. By default, both are written onto the user's terminal, but they can be independently
redirected.

Various emJr conditions may occur during the operation of NROFF and TROFF. Certain less serious
errors having only local impact do not cause processing to terminate. Two examples are word overflow,
caused by a word that is too l8rge to fit into the word buffer (in fill mode), and line overflow, caused by
an output line that grew too large to fit in the line buffer; in both cases, a message is printed, the
offending excess is discarded, and the affected word or line is marked at the point of truncation with a •
in NROFF and a .. in TROFF. The philosophy is to continue processing, if possible, on the grounds
that output useful for debuuil18 may be produced. If a serious error occurs, processing terminates, and
an appropriate message is printed. Examples are the inability to create, read, or write files, and the
exceeding of certain internal limits that make future output unlikely to be useful.

- 26 -

NROFFITROFF User's Manual
October II, 1976

TUTORIAL EXAMPLES

Tl. IDtnductloD

Althouah NROFF and TROFF have by desian a
syntax reminiscent of earlier text processors
with the intent of easins their use, it is almost
always necessary to prepare at least a small set of
macro definitions to describe most documents.
Such common formattins needs as pase marsins
and footnotes are deliberately not built into
NROFF and TROFF. Instead, the macro and
strins definition, number resister, diversion,
environment switchins. Pille-position trap. and
conditional input mechanisms provide the basis
for user-defined implementations.

The examples to be discussed are intended to be
useful and somewhat realistic. but won't neces
sarily cover all relevant continsencies. Explicit
numerical parameters are used in the examples to
make them easier to read and to illustrate typical
values. In many cases, number registers would
really be used to reduce the number of places
where numerical information is kept, and to con
centrate conditional parameter initialization like
that which depends on whether TROFF or NROFF
is beins used.

Tl. Pap MUIlDI

As discussed in f3. h«lder and looter macros are
usually defined to describe the top and bottom
Pille marsin areas respectively. A trap il planted
at PIlle position 0 for the header, and at -N (N
from the PIlle bottom) for the footer. The sim
plest such definitions miaht be

.de hd \-deflDe header
's,1I

\ -eDd debltiOD
.de fo \ -debe footer

'"
.wh 0 hd
.wh -11 fo

\ -eDd deftDltloD

which provide blank 1 inch top and bottom mar
gins. The header wiD occur on the fint PIlle,
only if the definition and trap exist prior to the

eFor Cllample: P. A. Crisman, Ed., TIHt CDIft/IfIIIbIlt 1'IIIw
S/NuIIr6 $y.rMII. MIT Press, 1965, Section AB9.01 (Descrip
tion of RUNOFF proaram on MIT's crss system).

initial pseudo-pase transition (13). In fill mode,
the output line that springs the footer trap was
typically forced out because some part or whole
word didn't fit on it. If anything in the footer
and header that follows causes a break, that word
or part word will be forced out. In this and other
examples, requests like b, and. sp that normally
cause breaks are invoked usins the no-break con
trol character • to avoid this. When the
header/footer desip contains material requiring
independent text processins, the environment
may be switched, avoiding most interaction with
the running text.

A more realistic example would be

.de bd \ 8beader

.if t .tl '\(m"\(m' \-troft' cut mark

.if \\D~>1 \(\
• sp 10.51-1 \ 8tl base at 0.5i
.tl •• - ~ -" \ -ceDtend pa.e number
.ps \ -restore size
.ft \ -restore fODt
• YI \) \ -restore 'fS

'sp 11.01 \ ·space to 1.0i
.DS \ -tam on Do-space mode

.de fo \ ·footer
~ps 10 \-set footer/beader size
.ft R \ -set font
• 'fS Up \ 8 set base-line spadDK
.if \\D~-1 \{\
'sp I\\D(.pu-0.51-1 \-tI base O.SI up
.tl •• - " -" \} \ -ftrst page Dumber

"p
.wh 0 bd
.wh -11 fo

which sets the size, font, and base-line spacing
for the header/footer material, and ultimately
restores them. The material in this case is a page
number at the bottom of the first page and at the
top of the remaining pages. If TROFF is used, a
cut mark is drawn in the form of root-en's at each
margin. The sp's refer to absolute positions to
avoid dependence on the base-line spacing.
Another reason for this in the footer is that the
footer is invoked by printing a line whose vertical
spacing swept past the trap position by possibly as

- 27 -

NROFF/TROFF User's Manual
October 11, 1976

much as the base-line spacing. The no-space
mode is turned on at the end of bd to render
ineffective accidental occurrences of sp at the top
of the running text.

The above method of restoring size, font, etc.
presupposes that such requests (that set previous
value) are not used in the running text. A better
scheme is save and restore both the current and
previous values as shown for size in the follow
ing:

• de fo
.nr sl \ \n (.s
.ps
.nr s2 \\n (.s

· -
.de bd
· _.-
.ps \\n(s2
.ps \\n(st

\ -current size

\ -pJ'e'fious size
\ -rest of footer

\ "beader stuff
\ "restore previous size
\ "restore current size

Page numbers may be printed in the bottom mar
gin by a separate macro triggered during the
footer's page ejection:

.de bn \ ~ttom number

.tl •• - " -" \ -centered pale number ..

. wh -0.51-h bn \"tl base 0.51 up

T3. Paralrapbs and HeadlnlS

The housekeeping associated with startil1l a new
paragraph should be collected in a paragraph
macro that, for example, does the desired
pre paragraph spacing, forces the correct font,
size, base-line spacing, and indent, checks that
enough space remains for more than one line, and
requests a temporary indent.

• de PI \ "paraaraph
.br \~reak
. ft R \ "force font,
.ps 10 \"slze,
• YS 12p \ "spaelnl,
. In 0 \ "and Indent
.sp 0.4 \ "prespace
.ne l+\\n(.Vu \-want more than 1 line
.tl 0.21 \ "temp Indent

The first break in PI will force out any previous
partial lines, and must occur before the vs. The
forcing of font, etc. is partly a defense against
prior error and partly to permit things like sec
tion heading macros to set parameters only once.

The prespacing parameter is suitable for TROFF;
a larger space, at least as big as the output device
vertical resolution, would be more suitable in
NROFF. The choice of remaining space to test
for in the ne is the smallest amount greater than
one line (the .V is the available vertical resolu
tion).

A macro to automatically number section head
ings might look like:

.de se \ "section

. -- \ "foree font, etc •

.sp 0.4 \ "prespace

.ne 2.4+\\n(.Vu \"want 2.4+ lines

.ft
\\n+S.

.nr SOl

The usage is .se, followed by the section heading
text, followed by .PI. The ne test value includes
one line of heading, 0.4 line in the following PI.
and one line of the paragraph text. A word con
sisting of the next section number and a period is
produced to begin the heading line. The format
of the number may be set by af (§8).

Another common form is the labeled. indented
paragraph, where the label protrudes left into the
indent space .

.de Ip
·PI
.in 0.51
.ta 0.21 0.51
.tl 0
\t\\S1\t\e

\ ~abeled parallSpb

\ "paralrapb Indent
\ "label, paralraph

\ -80w Into parallS,b

The intended usage is ... Ip label"; label will begin
at 0.2 inch, and cannot exceed a length of
0.3 inch without intruding into the paragraph .
The label could be right adjusted against 0.4 inch
by setting the tabs instead with .ta 0.41R 0.51 .
The last line of I, ends with \e so that it will
become a part of the first line of the text that fol
lows .

T4. Multiple Column OUtput

The production of multiple column pages
requires the footer macro to decide whether it
was invoked by other than the last column, so
that it will begin a new column rather than pro
duce the bottom margin. The header can initial
ize a column register that the footer will incre
ment and test. The following is arranged for two
columns, but is easily modified for more.

- 28 -

NROFF/TROFF User's Manual
October 11, 1976

.de hd

. ---

.nr cl 0 1

.mk
\-Init column count
\ -mark top of text

.de fo \ -footer

.ie \\n + (c1< 2 \{\

.po +3.4i \-next column; 3.1 +0.3

.rt \ -back to mark

.ns \} \-no-space mode

.el \{\

.po \\nMu \-restore left margin

. ---
'bp \}

.11 3.11 \-column width

.nr M \\n(.o \-save left margin

Typically a portion of the top of the first page
contains full width text; the request for the nar
rower line length, as well as another .mk would
be made where the two column output was to
begin.

T!. Footnote Processing

The footnote mechanism to be described is used
by imbedding the footnotes in the input text at
the point of reference, demarcated by an initial
.fn and a terminal .ef:

.fn
Footnote text and controllines ...
.ef

In the following, footnotes are processed in a
separate environment and diverted for later
printing in the space immediately prior to the
bottom margin. There is provision for the case
where the last collected footnote doesn't com
pletely fit in the available space.

.de hd \-header

. ---

.nr x 0 1 \ -inlt footnote count

.nr y O-\\nb \-current footer place

.ch fo -\\nbu \-reset footer trap

.If \\n(dn .fz \-Ieftover footnote

.de fo

.nr dn 0

.if\\nx \{\

\ -footer
\-zero last diversion size

.ev 1 \ -expand footnotes in evl

. nf \ -retain vertical size

.FN \-footnotes

.rm FN \ -delete it

.if -, \n(.z-fy" .di \ -end overflow diversion

.nr x 0 \ -disable Ix

.ev \} \ -pop environment

. ---
'bp

.de fx , -process footnote overftow

.if \\nx .di fy \ -divert overflow

.de fn \ -start footnote

.da FN \ -divert (append) footnote

.ev 1 \ -in environment 1

.if\\n+x-l .fs ,-if first, include separator

.fi \ -fill mode

.de ef \ -end footnote

.br \ -finish output

.nr z \\n(.v \-save spacing

.ev \-pop ev

.di \ -end diversion
• nr y - \ \ n (dn \ -new footer position,
.if\\nx-l .nr y - (\\n(.v-\\nz) \

\ -uncertainty correction
.ch fo \\nyu \ -y is negative
.if (\\n(nl'+lv» (\\n(.p+\\ny) \
.ch fo \\n(nlu+lv \-it didn't fit

.de fs
\I' U'
.br

.de fz

.fn'

.nf

.fy

.ef

\ -separator
\-1 inch rule

\ -get leftover footnote

'-retaln vertical size
,-where fx put it

.nr b 1.01 \ -bottom margin size

.wh 0 hd '-header trap

.wh 121 fo \-footer trap, temp position

.wh -\\nbu fx\-Ix at footer position

.ch fo -\\nbu \-conceal fx with fo

The header hd initializes a footnote count regis
ter x, and sets both the current footer trap posi
tion register y and the footer trap itself to a nom
inal position specified in register b. In addition,
if the register dn indicates a leftover footnote, fz
is invoked to reprocess it. The footnote start
macro fn begins a diversion (append) in environ
ment 1, and increments the count x; if the count
is one, the footnote separator fs is interpolated .
The separator is kept in a separate macro to per
mit user redefinition. The footnote end macro ef
restores the previous environment and ends the
diversion after saving the spacing size in register
z. y is then decremented by the size of the

- 29-

NROFF/TROFF User's Manual
October 11, 1976

footnote, available in dn; then on the first fool
note, y is further decremented by the difference
in vertical base-line spacings of the two environ
ments, to prevent the late triggering the footer
trap from causing the last line of the combined
footnotes to overflow. The footer trap is then,set
to the lower (on the page) of y or, the current
page position (ol) plus one line, to. allow for
printing the reference line. If indicated by x, the
footer fo rereads the footnotes from FN. in notUl
mode in environment 1, and deletes FN, If the
footnotes were too large to fit, the macro fx will
be trap-invoked to redivert the overflow into fy,
and the register do wiJl later indicate to the
header whether fy is empty. Both fo and fx are
planted in the nominal footer trap position. in. an
order that causes fx to be concealed unless the fo
trap is moved. The footer then terminates the
overflow diversion, if necessary, and. zeros x to,
disable lx, because the uncertainty correction.
together with a not-too-late triggering of the
footer can result in the footnote rereading finish
ing before reaching the fx trap.

A good exercise for the student is to. combine
the multiple-column and footnote mechanisms.

T6. The Last Page

After the last input file has. ended. NROFF and
TROPP invoke the end macro (§7), if any, and.
when it finishes, eject the remainder of the page.
During the eject, any traps encountered· are pro
cessed normally. At. the end of this last. page,
processing terminates unless a partial line, w.ord,
or partial word remains. If it is desired that
another page be started, the end-macro

.de eo ,-end.macrp
\c
'bp

.em en

will deposit a null partial word. and, effect.
another last page.

- 30-

NROFF/TROFF User's Manual
October 11, 1976

Table I

Font Style Examples

The following fonts are printed in 12-point, with a vertical spacing of 14-point, and with non
alphanumeric characters separated by 14 em space. The Special Mathematical Font was specially
prepared for Bell Laboratories by Graphic Systems, Inc. of Hudson, New Hampshire. The Times
Roman, Italic, and Bold are among the many standard fonts available from that company.

Times Roman

abcdefghijklmnopqrstuvwxyz
ABCDEFGHUKLMNOPQRSTUVWXYZ
1234567890
!$%&() "* + - .,/:~ -? []I
.0 - - _I~ In J~ fi fl ffffi mOt' ¢ @©

Times Italic

abcde.!."r{hiiklmnopqrstuvwxyz
A BCDEFGHUKLMNOPQRSTUVWXYZ
1234567890
! $ % & () , , '* + - .. I: .. - ? [JI
• 0 - - _ ~ 0 3f4.1i fl.ff.ffi.tfI 0 t ' t ® ©

Times Bold

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
!$%&()"* + - .,/:; = ?IJI
• 0 - - _ 1/4 liz 3f4 fi ft If ffi til 0 t ' t @ ©

Special Mathematical Font

,,'\A _'_/< > {}#@+_==*
a~y6E~~9LKA~vgo~pu~TV~X~W
raeA2nrY<I>'I'O
.J- ~ ~ = - = ;c - -1 ! x + ± U n c ::) ~ ::) 00 a
§\7..,fa:0 E ; @IO(llHHlHll

- 31 -

NROFF/TROFF User's Manual
October 11, 1976

Table II

Input Naming Conventions for', ',and
and for Non-ASCII Special Characters

Non-ASCII characters and minus on tbe standard fonts.

Input Character Input Character
Char Name Name Char Name Name

close quote fi \ (fi fi
open quote fl \ (fl fl

\{em 3/4 Em dash if \{if if
hyphen or ffi \(Fi ffi

\(hy hyphen fI1 \(FI fI1
\- current font minus ~ \(de degree

• \{bu bullet t \(dg dagger
0 \(sq square \(fm foot mark

\(ru rule ¢ \(ct cent sign
1/. \(14 1/4 1& \{rg registered
1/2 \(12 1/2 till \{co copyright
3/. \{34 3/4

Non-ASCII characters and " \ -1 +, -::-, !'!", and • o~ the special font.

The ASCII characters @, #, ", " ~, <, >, \, {, J, ~, A, and _ exist only on the special font and are
printed as a I-em space if that font is not mounted. The following characters exist only on the special
font except for the upper case Gr~ek letter names followed by t which are mapped into upper case
English letters in whatever font {s mounted on font position one (default Times Roman). The special
math plus, minus, an~ equals are provided to insulate the appearance of equations from the choice of
standard fonts.

Input Char.fl~ter 11I~ Character
Char Name Name (:har NflllJe Nflme

+ \ (pI math plus IC \('''k k/ilppa
\(mi math minus A \('1 lambda
\(eq math equals JL \{*m mu

* \(** math star v \(~n nu
§ \(sc section e \(*c xi

\(aa acute accent 0 \(*0 omicron
\(ga grave liccent 'Tr \f~p pi
\(ul underrule p \ ('I~r rho

/ \(51 slash (matching bllcksla~h) a \('s sigma
a \(*a alpha S' \(ts terminal sigma
~ \(*b beta T \ (*t tau
'Y \('g gllwma v \{*u upsilon
8 \(*a delta rp \(*f phi
E \{'e epsilon X \('x chi , \(*z zeta t/J \(*q psi
1'/ \(*y eta w \('w omega
(} \('h theta A \(*A Alphat

\ (*i iota B \(*B Betat

- 32 -

NROFF/TROFF User's Manual
October 11, 1976

Input Character Input Character
Char Name Name Char Name Name
r W'G Gamma I \(br box vertical rule
A \(*0 Delta * \(dd double dagger
E \(*E Epsilont ,.. \(rh right hand
Z \(*Z Zetat ... \(lh left hand
H \(*Y Etat @ \(bs Bell System logo
e \(*H Theta I \(or or
I \(*1 Iotat 0 \(ci circle
K \(*K Kappat (\ (It left top of big curly bracket
A \(*L Lambda l \(lb left bottom
M \(*M Mut , \(rt right top
N V*N Nut J \(rb right bot - \(*C Xi { \Ok left center of big curly bracket -
0 \(*0 Omicront J \(rk right center of big curly bracket
n \(*P Pi I \(bv bold vertical
P \(*R Rhot. l \Of left floor (left bottom of big
!. \(*S Sigma square bracket)
T \(*T Taut J \(rf right floor (right bottom)
y \(*U Upsilon r \(lc left ceiling Oeft top)
II» \(*F Phi 1 \(rc right ceiling (right top)
X \(*X Chit
'IJI \(*Q Psi
n \(*W Omega

-!. \(sr square root
\(rn root en extender

~ \(>- >-
~ \«- <-
- \ (- - identically equal
- \(-- approx -

\(ap approximates
~ \0- not equal

\(-> right arrow
\«- left arrow
\(ua up arrow
\ (cia down arrow

x \(mu multiply
\(di divide

± \(+- plus-minus
U \(cu cup (union)
n \(ca cap (intersection)
C \(sb subset of
::::> \(sp superset of
~ \(jb improper subset
;;;;l \(ip improper superset
00 \ (if infinity
fJ \(pd partial derivative
'V \(gr gradient

\(no not
f \ (is integral sign
a: \(pt proportional to

" \(es empty set
E \(mo member of

- 33 •

May 15, 1977

Options

-h

-z

Old Requests

.ad c

. so name

New Request

.ab text

.fz FN

Summary of Changes to N/TROFF Since October 1976 Manual

(Nroff only) Output tabs used during horizontal spacing to speed output as well as
reduce output byte count. Device tab settings assumed to be every 8 nominal character
widths. The default settings of input (logical) tabs is also initialized to every 8 nominal
character widths.

Efficiently suppresses formatted output. Only message output will occur (from "tm"s
and diagnostics).

The adjustment type indicator Pc" may now also be a number previously obtained from
the ".j" register (see below).

The contents of file "name" will be interpolated at the point the "so" is encountered .
Previously, the interpolation was done upon return to the file-reading input level.

Prints "text" on the message output and terminates without further processing. If "text"
is missing, "User Abort." is printed. Does not cause a break. The output buffer is
flushed.

forces [ont "F" to be in si~e N. N may have the form N, + N, or -N. For example,
.fz 3 -2

will cause an implicit \s-2 every time font 3 is entered, and a corresponding \s + 2 when
it is left. Special font characters occurring during the reign of font F will have the same
size modification. If special characters are to be treated differently,

.fz S F N
may be used to specify the size treatment of special characters during font F. For
example,

.fz 3 -3

.fz S 3 -0
will cause automatic reduction of font 3 by 3 points while the special characters would
not be affected. Any ".fp" request specifying a font on some position must precede
".fz" requests relating to that position.

New Predefined Number Registers.

.k

.j

. P

. L

c.

Read-only. Contains the horizontal size of the text portion (without indent) of the
current partially collected output line, if any, in the current environment.

Read-only. A number representing the current adjustment mode and type. Can be
saved and later given to the "ad" request to restore a previous mode.

Read-only. I if the current page is being printed, and zero otherwise .

Read-only. Contains the current line-spacing parameter ("Is") .

General register access to the input line-number in the current input file. Contains the
same value as the read-only" .c" register.

A TROFF Tutorial

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

trotf is a text-formatting program for driving the Graphic Systems photo
typesetter on the UNlxt and GCOS operating systems. This device is capable of
producing high quality text; this paper is an example of trotf output.

The phototypesetter itself normally runs with four fonts, containing
roman, italic and bold letters (as on this page), a full greek alphabet, and a sub
stantial number of special characters and mathematical symbols. Characters can
be printed in a range of sizes, and placed anywhere on the page.

trotf allows the user full control over fonts, sizes, and character positions,
as well as the usual features of a formatter - right-margin justification,
automatic hyphenation, page titling and numbering, and so on. It also provides
macros, arithmetic variables and operations, and conditional testing, for compli
cated formatting tasks.

This document is an introduction to the most basic use of trotf. It
presents just enough information to enable the user to do simple formatting
tasks like making viewgraphs. and to make incremental changes to existing
packages of trotf commands. In most respects, the UNIX formatter nrotf is
identical to trotf, so this document also serves as a tutorial on nrotf.

August 4, 1978

tUN IX is a Trademark of Bell Laboratories.

A TROFF Tutorial

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

1. Introduction

troft' UJ is a text-formatting program, writ
ten by J. F. Ossanna, for producing high-quality
printed output from the phototypesetter on the
UNIX and GCOS operating systems. This docu
ment is an example of troft' output.

The single most important rule of using
troft' is not to use it directly, but through some
intermediary. In many ways, troft' resembles an
assembly language - a remarkably powerful and
flexible one - but nonetheless such that many
operations must be specified at a level of detail
and in a form that is too hard for most people to
use effectively.

For two special applications, there are pro
grams that provide an interface to troft' for the
majority of users. eqn (2) provides an easy to
learn language for typesetting mathematics; the
eqn user need know no troft' whatsoever to
typeset mathematics. tbl (3) provides the same
convenience for producing tables of arbitrary
complexity.

For producing straight text (which may
well contain mathematics or tables), there are a
number of 'macro packages' that define format
ting rules and operations for specific styles of
documents, and reduce the amount of direct
contact with troft'. In particular, the '-ms' (4)
and PWB/MM (5) packages for Bell Labs inter
nal memoranda and external papers provide most
of the facilities needed for a wide range of docu
ment preparation. (This memo was prepared
with '-ms'.) There are also packages for view
graphs, for simulating the older roft' formatters
on UNIX and GCOS, and for other special applica
tions. Typically you will find these packages
easier to use than troft' once you get beyond the
most trivial operations; you should always con
sider them first.

In the few cases where existing packages
don't do the whole job, the solution is not to
write an entirely new set of troft' instructions
from scratch, but to make small changes to adapt
packages that already exist.

In accordance with this philosophy of let
ting someone else do the work, the part of troft'
described here is only a small part of the whole,
although it tries to concentrate on the more use
ful parts. In any case, there is no attempt to be
complete. Rather, the emphasis is on showing
how to do simple things, and how to make incre
mental changes to what already exists. The con
tents of the remaining sections are:

2. Point sizes and line spacing
3. Fonts and special characters
4. Indents and line length
5. Tabs
6. Local motions: Drawing lines and characters
7. Strings
8. Introduction to macros
9. Titles, pages and numbering

10. Number registers and arithmetic
11. Macros with arguments
12. Conditionals
13. Environments
14. Diversions

Appendix: Typesetter character set

The troft' described here is the C-Ianguage ver
sion running on UNIX at Murray Hill, as docu
mented in [I J.

To use troft' you have to prepare not only
the actual text you want printed, but some infor
mation that tells how you want it printed.
(Readers who use roft' will find the approach
familiar.) For troft' tht: text and the formatting
information are often intertwined quite inti
mately. Most commands to trolf are placed on a
line separate from the text itself, beginning with
a period (one command per line). For example,

Some text.
.ps 14
Some more text.

will change the 'point size', that is, the size of
the letters being printed, to '14 point' (one point
is 1172 inch) like this:

Some text. Some more text.
Occasionally, though, something special

occurs in the middle of a line - to produce

Area" rr,2

you have to type

Area .. \ (.p\flr\fR\l\s8\u2\d\sO

(which we will explain shortly). The backslash
character \ is used to introduce troO' commands
and special characters within a line of text.

2. Point Sizes; Line Spacing

As mentioned above, the command .ps
sets the point size. One point is 1172 inch, so
6-point characters are at most 1112 inch high,
and 36-point characters are 1/2 inch. There are 15
point sizes, listed below.

b poinl: Pack my box with fIVe dozen liquor juas.
7 poinl: P.,k my box wilh five dozen liquor jugs.
8 point: Pack my box with five dozen liquor jugs.
9 point: Pack my box with five dozen liquor jugs.
10 point: Pack my box with five dozen liquor
11 point: Pack my box with five dozen

- 2 -

12 point: Pack my box with five dozen
14 point: Pack my box with five

16 point 18 point 20 point

22 24 28 36
If the number after .ps is not one of these

legal sizes, it is rounded up to the next valid
value, with a maximum of 36. If no number fol
lows .P5, troO' reverts to the previous size, what
ever it was. troO' begins with point size 10,
which is usually fine. This document is in 9
point.

The point size can also be changed in the
middle of a line or even a word with the. in-line
command \s. To produce

UNIX runs on a PDP-ll/4S

type

\s8UNIX\sIO runs on a \s8PDP-\slOI 1/45

As above, \s should be followed by a legal point
size, except that \sO causes the size to revert to
its previous value. Notice that \s1011 can be
understood correctly as 'size 10, followed by an
11', if the size is legal, but not otherwise. Be
cautious with similar constructions.

Relative size changes are also legal and
useful:

\s-2UNIX\s+2

temporarily decreases the size, whatever it is, by
two points, then restores it. Relative size
changes have the advantage that the size
difference is independent of the starting size of
the document. The amount of the relative
change is restricted to a single digit.

The other parameter that determines what
the type looks like is the spacing between lines,
which is set independently of the point size.
Vertical spacing is measured from the bottom of
one line to the bottom of the next. The com
mand to control vertical spacing is . vs. For run
ning text, it is usually best to set the vertical
spacing about 20% bigger than the character size.
For example, so far in this document, we have
used "9 on 11", that is,

.ps 9

.vs IIp

If we changed to

.ps 9

.vs 9p

the running text would look like .this. After a
few lines, you will agree it looks a little cramped.
The right vertical spacing is partly a matter of
taste, depending on how much text you want to
squeeze into a given space, and partly a matter
of traditional printing style. By default, tro.
uses 10 on 12.

Point size and vertical spacing
make a substantial difference in the
amount of text per square inch.
This is 12 on 14.

Poinl si. and verlical ~in. make a su""'nlial c1ift'crence in
lhe amounl or lexl per squar. inch. For ... mple. 10 on 12 aboul
IWice IS much --= as 7 on S. This is 6 on 7. which is e n smaller. II
podol a 101 more words per line. bul you c:an 10 blind l'1inllo rcad il.

When used without arguments, .ps and .vs
revert to the previous size and vertical spacing
respectively.

The command .sp is used to get extra vert
ical space. Unadorned, it gives you one extra
blank line (one .vs, whatever that has been set
to). Typically, that's more or less than you
want, so .sp can be followed by information
about how much space you want -

.sp 2i

means 'two inches of vertical space'.

.sp 2p

means 'two points of vertical space'; and

.sp 2

means 'two vertical spaces' - two of whatever

· VI is set to (this can also be made explicit with
.sp 2v); tro« also understands decimal fractions
in most places, so

.sp l.Si

is a space of 1.5 inches. These same scale fac
tors can be used after . VI to define line spacing,
and in fact after most commands that deal with
physical dimensions.

It should be noted that all size numbers
are converted internally to 'machine units',
which are 1/432 inch (1/6 point). For most pur
poses, this is enough resolution that you don't
have to worry about the accuracy of the
representation. The situation is not quite so
good vertically, where resolution is 1/144 inch
(112 point).

3. Fonts and Special Characters

tro« and the typesetter allow four different
fonts at anyone time. Normally three fonts
(Times roman, italic and bold) and one collec
tion of special characters are permanently
mounted.

abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrslUvwxyz 0123456789
A BCDEFGHUKLMNOPQRSTU V WXY.Z
abedeflbijklmnopqntuYlrX7Z 0113456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ

The greek, mathematical symbols and miscellany
of the special font are listed in Appendix A.

troff prints in roman unless told otherwise.
To switch into bold, use the .ft command

.ft B

and for italics,

.ft I

To return to roman, use .ft R; to return to the
previous font. whatever it was. use either 1t P or
just .ft. The 'underline' command

.ul

causes the next input line to print in italics. .ul
can be followed by a count to indicate that more
than one line is to be italicized.

Fonts can also be changed within a line or
word with the in-line command \f:

bol...,-ace text

is produced by

\fBbold\t1face\fR text

If you want to do this so the previous font,
whatever it was, is left undisturbed, insert extra
\fP commands, like this:

- 3 -

\fBbold\fP\t1face\fP\fR text\fP

Because only the immediately previous font is
remembered, you have to restore the previous
font after each change or you can lose it. The
same is true of .ps and . VI when used without an
argument.

There are other fonts available besides the
standard set, although you can still use only four
at any given time. The command .fp tells troff
what fonts are physically mounted on the
typeseHer:

.fp 3 H

says that the Helvetica font is mounted on posi
tion 3. (For a complete list of fonts and what
they look like, see the tro« manual.) Appropriate
.fp commands should appear at the beginning of
your document if you do not use the standard
fonts.

It is possible to make a document rela
tively independent of the actual fonts used to
print it by using font numbers instead of names;
for example, \f3 and .ft-3 mean 'whatever font
is mounted at position 3', and thus work for any
setting. Normal settings are roman font on 1,
italic on 2, bold on 3, and special on 4.

There is also a way to get 'synthetic' bold
fonts by overstriking letters with a slight offset.
Look at the .bd command in (1].

Special characters have four-character
names beginning with \ (, and they may be
inserted anywhere. For example,

1/4+lh-3~

is produced by

\(14 + \02 - \(34

In particular, greek letters are all of the form
\(.-, where - is an upper or lower case roman
letter reminiscent of the greek. Thus to get

I.(aXIi) - co

in bare troff we have to type

\ (-S(\ (-a\(mu\ (-b) \ (-> \ (if

That line is unscrambled as follows:

\(-S I.
((
\(-a a
\(mu x
\(-b Ii
))

\(->
\ (if co

A complete list of these special names occurs in
Appendix A.

In eqn [2] the same effect can be achieved
with the input

SIGMA (alpha times beta) - > inf

which is less concise, but clearer to the unini
tiated.

Notice that each four-character name is a
single character as far as troft is concerned - the
'translate' command

. tr \(mi\(em

is perfectly clear, meaning

. tr --

that is, to translate - into -.

Some characters are automatically
translated into others: grave . and acute •
accents (apostrophes) become open and close
single quotes '.'; the combination of " is gen
erally preferable to the double quotes •.. .". Simi
larlya typed minus sign becomes a hyphen -. To
print an explicit - sign, use \-. To get a
backslash printed, use \e.

4. Indents and Line Lenlths

troff starts with a line length of 6.5 inches,
too wide for 81/2 x 11 paper. To reset the line
length, use the .11 command, as in

.11 6i

As with .sp, the actual length can be specified in
several ways; inches are probably the most intui
tive.

The maximum line length provided by the
typesetter is 7.5 inches, by the way. To use the
full width, you will have to reset the default phy
sical left margin ("page offset"), which is nor
mally slightly less than one inch from the left
edge of the paper. This is done by the .po com
mand.

.po 0

sets the offset as far to the left as it will go.

The indent command .in causes the left
margin to be indented by some specified amount
from the page offset. If we use .in to move the
left margin in, and .11 to move the right margin
to the left, we can make offset blocks of text:

.in O.3i

.11 -O.3i
text to be set into a block
.11 +O.3i
.in -O.3i

will create a block that looks like this:

- 4 -

Pater noster qui est in caelis
sanctificetur nomen tuum; adveniat
regnum tuum; fiat voluntas tua, sicut
in caelo, et in terra. ... Amen.

Notice the use of '+' and '-' to specify the
amount of change. These change the previous
setting by the specified amount, rather than just
overriding it. The distinction is quite important:
.11 + Ii makes lines one inch longer; .II 1i makes
them one inch long .

With .in, .11 and .po, the previous value is
used if no argument is specified .

To indent a single line, use the 'temporary
indent' command .li. For example, all paragraphs
in this memo effectively begin with the com
mand

.tiJ

Three of what? The default unit for .ti, as for
most horizontally oriented commands til, .in,
.po), is ems; an em is roughly the width of the
letter 'm' in the current point size. (Precisely, a
em in size p is p points,) Although inches are
usually clearer than ems to people who don't SCI

type for a living, ems have a place: they are a
measure of size that is proportional to the
current point size. If you want to make text that
keeps its proportions regardless of point size, you
should use ems for all dimensions. Ems can be
specified as scale factors directly, as in .ti 205m.

Lines can also be indented negatively if the
indent is already positive:

.ti -O.3i

causes the next line to be moved back thr~t:

tenths of an inch. Thus to make a decorative
initial capital, we indent the whole paragraph,
then move the letter 'P' back with a .ti com
mand:

Pater noster qui est in caehs
sanctificetur nomen tuum; ad
veniat regnum tuum; fiat volun

tas tua, sicut in caelo, et in terra. ...
Amen.

Of course, there is also some trickery 10 malic
the 'P' bigger (just a '\s36P\sO'), and to move it
down from its normal position (see the serlinll
on local motions).

S. Tabs

Tabs (the ASCII 'horizontal tab' characlt:rl
can be used to produce output in columns. or to

set the horizontal position of output. Typically
tabs are used only in unfilled text. Tab stops ai.
set by default every half inch from the curreut
indent, but can be changed by the .ta command.
To set stops every inch, for example.

.ta Ii 2i 3i 4i Si 6i

Unfortunately the stops are left-justified
only (as on a typewriter), so lining up columns
of right-justified numbers can be painful. If you
have many numbers, or if you need more com
plicated table layout, don't use troff directly; use
the tbl program described in [3 J.

For a handful of numeric columns, you
can do it this way: Precede every number by
enough blanks to make it line up when typed.

.nf

.ta Ii 2i 3i
1 tab 2 tab 3

40 tab 50 tab 60
700 tab 800 tab 900
.fi

Then change each loading blank into the string
\0. This is a character that does not print, but
that has the same width as a digit. When
printed, this will produce

1
40

700

2
50

800

3
60

900

It is also possible to fill up tabbed-over
space with some character other than blanks by
setting the 'tab replacement character' with the
.le command:

.ta LSi 2.Si

.tc \ (ru (\ (ru is "_")
Name tab Age tab

produces
Name _______ Age ___ _

To reset the tab replacement character to a
blank, use .le with no argument. (Lines can also
be drawn with the \1 command, described in Sec
tion 6.)

trotf also provides a very general mechan
ism called 'fields' for setting up complicated
columns. (This is used by tbO. We will not go
into it in this paper.

6. Local MotloDS: Drawina lines aDd ebarac-
ters

Remember 'Area - 1I'r2, and the big 'P'
in the Paternoster. How are they done? troff
provides a host of commands for placing charac
ters of any size at any place. You can use them
to draw special characters or to tune your output
for a particular appearance. Most of these com
mands are straightforward, but messy to read
and tough to type correctly.

If you won't use eqD, subscripts and super
scripts are most easily done with the half-line

- 5 -

local motions \u and \d. To go back up the page
half a point-size, insert a \u at the desired place;
to go down, insert a \d. (\u and \d should always
be used in pairs, as explained below.) Thus

Area - \(.pr\u2\d

produces

Area" 1I'r2

To make the '2' smaller, bracket it with
\s-2 ... \sO. Since \u and \d refer to the current
point size, be sure to put them either both inside
or both outside the size changes, or you will get
an unbalanced vertical motion.

Sometimes the space given by \u ~nd \d
isn't the right amount. The \v command can be
used to request an arbitrary amount of vertical
motion. The in-line command

\ v' (amount)'

causes motion up or down the page by the
amount specified in '(amount)'. For example, to
move the 'P' down, we used

.in +O.6i (move paragraph in)

.11 -O.3i (shorten lines)

.ti -O.3i (move P back)
\ v'2'\s36P\sO\ v' - 2' ater noster qui est
in cae lis ...

A minus sign causes upward motion, while no
sign or a plus sign means down the page. Thus
\ v' - 2' causes an upward vertical motion of two
line spaces.

There are many other ways to specify the
amount of motion -

\ v·O.Ii'
\v'3p'
\v'-O.Sm'

and so on are all legal. Notice that the scale
specifier i or p or m goes inside the quotes. Any
character can be used in place of the quotes; this
is also true of all other troff commands described
in this section.

Since troff does not take within-the-line
vertical motions into account when figuring out
where it is on the page, output lines can have
unexpected positions if the left and right ends
aren't at the same vertical position. Thus \v,
like \u and \d, should always balance upward
vertical motion in a line with the same amount
in the downward direction.

Arbitrary horizontal motions are also avail
able - \h is quite analogous to \v, except that
the default scale factor is ems instead of line
spaces. As an example,

\h'-O.li'

causes a backwards motion of a tenth of an inch.
As a practical matter, consider printing the
mathematical symbol' > >'. The default spacing
is too wide, so eqn replaces this by

>\h'-O.3m'>

to produce ».
Frequently \h is used with the 'width func

tion' \ w to generate motions equal to the width
of some character string. The construction

\w'thing'

is a number equal to the width of 'thing' in
machine units 0/432 inch). All trolf computa
tions are ultimately done in these units. To
move horizontally the width of an 'x', we can
say

\h'\w'x'u'

As we mentioned above, the default scale factor
for all horizontal dimensions is m, ems, so here
we must have the u for machine units, or the
motion produced will be far too large. trolf is
quite happy with the nested quotes, by the way,
so long as you don't leave any out.

As a live example of this kind of construc
tion, all of the command names in the text, like
.sp, were done by overstriking with a slight
offset. The commands for .sp are

.sp\h' -\w'.sp'u'\h'lu'.sp

That is, put out '.sp', move left by the width of
'.sp', move right 1 unit, and print '.sp' again.
(Of course there is a way to avoid typing that
much input for each command name, which we
will discuss in Section 11.)

There are also several special-purpose trolf
commands for local motion. We have already
seen \0, which is an unpaddable white space of
the same width as a digit. 'Unpaddable' means
that it will never be widened or split across a line
by line justification and filling. There is also
\ (blank), which is an unpaddable character the
width of a space, \I, which is half that width, \-,
which is one quarter of the width of a space, and
\&t, which has zero width. (This last one is use
ful, for example, in entering a text line which
would otherwise begin with a '.'.)

The command \0, used like

\o'set of characters'

causes (up to 9) characters to be overstruck, cen
tered on the widest. This is nice for accents, as
in

syst\o"e\ (ga"me t\o"e\ (aa"l\o"e\ (aa"phonique

which makes

- 6 -

systeme telephonique

The accents are \(ga and \(aa, or \' and \';
remember that each is just one character to trolf.

You can make your own overstrikes with
another special convention, \z, the zero-motion
command. \zx suppresses the normal horizontal
motion after printing the single character x, so
another character can be laid on top of it.
Although sizes can be changed within \0, it
centers the characters on the widest, and there
can be no horizontal or vertical motions, so \z
may be the only way to get what you want:

is produced by

.sp 2
\s8\z\ (sq\s14\z\ (sq\s22\z\ (sq\s36\ (sq

The .sp is needed to leave room for the result.

As another example, an extra-heavy semi
colon that looks like

; instead of ; or ;

can be constructed with a big comma and a big
period above it:

\s+6\z,\v'-O.25m'.\v·0.25m'\sO

'0.25m' is an empirical constant.

A more ornate overstrike is given by the
bracketing function \b, which piles up characters
vertically, centered on the current baseline.
Thus we can get big brackets, constructing them
with piled-up smaller pieces:

by typing in only this:

.sp
\b'\ (It\ Ok\ Ob' \b'\ (lc\ or x \b'\(rc\ (rr \b'\ (rt\ (rk\ (rb'

trolf also provides a convenient facility for
drawing horizontal and vertical lines of arbitrary
length with arbitrary characters. WH' draws a
line one inch long, like this: .
The length can be followed by the character to
use if the _ isn't appropriate; \1'O.5i.' draws a
half-inch line of dots: The construc-
tion \L is entirely analogous, except that it draws
a vertical line instead of horizontal.

7. StriDls

Obviously if a paper contains a large
number of occurrences of an acute accent over a
letter 'e', typing \oRe"R for each e would be a

great nuisance.

Fortunately, trotf provides a way in which
you can store an arbitrary collection of text in a
'string', and thereafter use the string name as a
shorthand for its contents. Strings are one of
several trotf mechanisms whose judicious use
lets you type a document with less effort and
organize it so that extensive format changes can
be made with few editing changes.

A reference to a string is replaced by what
ever text the string was defined as. Strings are
defined with the command .ds. The line

.ds e \o"e\'·

defines the string e to have the value \o·e\'"

String names may be either one or two
characters long, and are referred to by \-x for
one character names or \-(xy for two character
names. Thus to get telephone, given the
definition of the string e as above, we can say
t\ *el\ ·ephone.

If a string must begin with blanks, define it
as

. ds xx • text

The double quote signals the beginning of the
definition. There is no trailing quote; the end of
the line terminates the string.

A string may actually be several lines long;
if trotf encounters a \ at the end of a~ line, it is
thrown away and the next line added to the
current one. So you can make a long string sim
ply by ending each line but the last with a
backslash:

.ds xx this \
is a very \
long string

Strings may be defined in terms of other
strings, or even in terms of themselves; we will
discuss some of these possibilities later.

8. Introduction to Macros
Before we can go much further in trotf, we

need to learn a bit about the macro facility. In
its simplest form, a macro is just a shorthand
notation quite similar to a string. Suppose we
want every paragraph to start in exactly the same
way - with a space and a temporary indent of
two ems:

.sp

.ti +2m

Then to save typing, we would like to collapse
these into one shorthand line, a trotf 'command'
like

- 7 -

.PP

that would be treated by trotf exactly as

.sp

.ti +2m

.PP is called a macro. The way we tell troff what

.PP means is to define it with the .de command:

.de PP

.sp

.ti +2m

The first line names the macro (we used '.PP'
for 'paragraph', and upper case so it wouldn't
conflict with any name that troff might already
know about). The last line .. marks the end of
the definition. In between is the text, which is
simply inserted whenever trolf sees the 'com
mand' or macro call

.PP

A macro can contain any mixture of text and
formatting commands.

The definition of .PP has to precede its
first use; undefined macros are simply ignored .
Names are restricted to one or two characters.

Using macros for commonly occurring
sequences of commands is critically important.
Not only does it save typing, but it makes later
changes much easier. Suppose we decide that
the paragraph indent is too small, the vertical
space is much too big, and roman font should be
forced. Instead of changing the whole docu
ment, we need only change the definition of .PP
to something like

.de PP

.sp 2p

.ti +3m

.ft R

\" paragraph macro

and the change takes effect everywhere we used
.PP.

\" is a troff command that causes the rest
of the line to be ignored. We use it here to add
comments to the macro definition (a wise idea
once definitions get complicated).

As another example of macros, consider
these two which start and end a block of offset,
unfilled text, like most of the examples in this
paper:

.de BS

. sp

.nf

.in +O.3i

.de BE

.sp

.fi

.in -O.3i

\" start indented block

\" end indented block

Now we can surround text like

Copy to
John Doe
Richard Roberts
Stanley Smith

by the commands .DS and .BE, and it will come
out as it did above. Notice that we indented by
.in +O.3i instead of .in O.3i.· This way we can
nest our uses of .DS and BE to get blocks within
blocks.

If later on we decide that the indent should
be O.Si, then it is only necessary to change the
definitions of .DS and .BE, not the whole paper.

9. Titles, Pages and Numberi ...

This is an area where things get tougher,
because nothing is done for you automatically.
Of necessity, some of this section is a cookbook,
to be copied literally until you get some experi
ence.

Suppose you want a title at the top of each
page, saying just
----left top center top right top----

In roft", one can say

.he 'left top'center top'right top'

.fo 'left bottom'center bottom'right bottom'

to get headers and footers automatically on every
page. Alas, this doesn't work in troft", a serious
hardship for the novice. Instead you have to do
a lot of specification.

You have to say what the actual title is
(easy); when to print it (easy enough); and what
to do at and around the title line (harder). Tak
ing these in reverse order, first we define a
macro .NP (for 'new page') to process titles and
the like at the end of one page and the beginning
of the next:

.de NP
'bp
'sp O.Si
.tI 'left top'center top'right top~
'sp 0.3i

To make sure we're at the top of a page, we

- 8 -

issue a 'begin page' command 'bp, which causes
a skip to top-of-page (we'll explain the' shortly) .
Then we space down half an inch, print the title
(the use of .tI should be self explanatory; later
we will discuss parameterizing the titles), space
another 0.3 inches, and we're done.

To ask for .NP at the bottom of each page,
we have to say something like 'when the text is
within an inch of the bottom of the page, start
the processing for a new page.' This is done with
a 'When' command .wh:

.wh -Ii NP

(No '.' is used before NP; this is simply the
name of a macro, not a macro call.) The minus
sign means 'measure up from the bottom of the
page', so '-Ii' means 'one inch from the bot
tom'.

The .wh command appears in the input
outside the definition of .NP; typically the input
would be

.de NP

.wh -Ii NP

Now what happens? As text is actually
being output, troft" keeps track of its vertical
position on the page, and after a line is printed
within one inch from the bottom, the .NP macro
is activated. (In the jargon, the .wh command
sets a trop at the specified place, which is
'sprung' when that point is passed.) .NP causes a
skip to the top of the next page (that's what the
'bp was for), then prints the title with the
appropriate margins.

Why 'bp and 'sp instead of .bp and .sp?
The answer is that .sp and .bp, like several other
commands, cause a break to take place. That i:i,
all the input text collected but not yet printed :s
flushed out as soon as possible, and the next
input line is guaranteed to start a new line of
output. If we had used .sp or .bP in the .NP
macro, this would cause a break in the middle of
the current output line when a new page is
started. The effect would be to print the left
over part of that line at the top of the page, fol
lowed by the next input line on a new output
line. 'This is not what we want. Using , instead
of . for a command tells troft" that no break is to
take place - the output line currently being
filled should not be forced out before the space
or ne~ page.

The list of commands that cause a break is
short and natural:

.bp .br .ce .fi .nf .sp .in .ti

All others cause no break, regardless of whether

you use a . or a '. If you really need a break, add
a .br command at the appropriate place.

One other thing to beware of - if you're
changing fonts or point sizes a lot, you may find
that if you cross a page boundary in an unex
pected font or size, your titles come out in that
size and font instead of what you intended.
Furthermore, the length of a title is independent
of the current line length, so titles will come out
at the default length of 6.5 inches unless you
change it, which is done with the .It command.

There are several ways to fix the problems
of point sizes and fonts in titles. For the sim
plest applications, we can change .NP to set the
proper size and font for the title, then restore
the previous values, like this:

.de NP
'bp
'sP O.Si
.ft R \" set title font to roman
.ps 10 \ .. and size to 10 point
.It 6i \. and length to 6 inches
.t1 'left'center'right'
.ps \ .. revert to previous size
.ft P \" and to previous font
'sp O.3i

This version of .NP does not work if the
fields in the .tt command contain size or font
changes. To cope with that requires troft"s
'environment' mechanism, which we will discuss
in Section 13.

To get a footer at the bottom of a page,
you can modify .NP so it does some processing
before the 'bp command, or split the job into a
footer macro invoked at the bottom margin and
a header macro invoked at the top of the page.
These variations are left as exercises.

Output page numbers are computed
automatically as each page is produced (starting
at 1), but no numbers are printed unless you ask
for them explicitly. To get page numbers
printed, include the character % in the .tl line at
the position where you want the number to
appear. For example

. tI n_ %_n

centers the page number inside hyphens, as on
this page. You can set the page number at any
time with either .bp n, which immediately starts
a new page numbered n, or with .pn n, which
sets the page number for the next page but
doesn't cause a skip to the new page. Again,
. bp +0 sets the page number to n more than its
current value; .bp means .bp + 1.

- 9 -

10. Number Registers and Arithmetic

trolf has a facility for doing arithmetic, and
for defining and using variables with numeric
values, called number registers. Number regis
ters, like strings and macros, can be useful in
setting up a document so it is easy to change
later. And of course they serve for any sort of
arithmetic computation.

Like strings, number registers have one or
two character names. They are set by the .nr
command, and are referenced anywhere by \nx
(one character name) or \n(xy (two character
name).

There are quite a few pre-defined number
registers maintained by trolf, among them % for
the current page number; nl for the current 'vert
ical position on the page; dy, mo and yr for the
current day, month and year; and .s and .f for
the current size and font. (The font is a number
from 1 to 4.) Any of these can be used in com
putations like any other register, but some, like
.s and .f, cannot be changed with .nr .

As an example of the use of number regis
ters, in the -ms macro package [4], most
significant parameters are defined in terms of the
values of a handful of number registers. These
include the point size for text, the vertical spac
ing, and the line and title lengths. To set the
point size and vertical spacing for the following
paragraphs, for example, a user may say

.or PS 9

.nr VS 11

The paragraph macro .PP is defined (roughly) as
follows:

.de PP

.ps \\n(PS

.vs \\n(VSp

.ft R

.sp O.5v

.ti +3m

\" reset size
\" spacing
\. font
\ .. half a line

This sets the font to Roman and the point size
and line spacing to whatever values are stored in
the number registers PS and VS.

Why are there two backslashes? This is
the eternal problem of how to quote a quote .
When trotT originally reads the macro definition,
it peels off one backslash to see what's coming
next. To ensure that another is left in the
definition when the macro is used, we have to
put in two backslashes in the definition. If only
one backs lash is used, point size and vertical
spacing will be frozen at the time the macro is
defined, not when it is used .

Protecting by an extra layer of backslashes

is only needed for \n, \., \$ (which we haven't
come to yet), and \ itself. Things like \s, \f, \h,
\v, and so on do not need an extra backs lash,
since they are converted by troff to an internal
code immediately upon being seen.

Arithmetic expressions can appear any
where that a number is expected. As a trivial
example,

.m PS \\n(PS-2

decrements PS by 2. Expressions can use the
arithmetic operators +, -, ., I, % (mod), the
relational operators >, > =, <, < ==, ==, and
,== (not equal), and parentheses.

Although the arithmetic we have done so
far has been straightforward, more complicated
things are somewhat tricky. First, number regis
ters hold only integers. troff arithmetic uses
truncating integer division, just like Fortran.
Second, in the absence of parentheses, evalua
tion is done left-to-right without any operator
precedence (including relational operators).
Thus

7*-4+3113

becomes' -1'. Number registers can occur any
where in an expression, and so can scale indica
tors like p, i, m, and so on (but no spaces).
Although integer division causes truncation, each
number and its scale indicator is converted to
machine units 0/432 inch) before any arithmetic
is done, so 1 i/2u evaluates to O.Si correctly.

The scale indicator u often has to appear
when you wouldn't expect it - in particular,
when arithmetic is being done in a context that
implies horizontal or vertical dimensions. For
example,

.11 7/2i

would seem obvious enough - 3 lh inches.
Sorry. Remember that the default units for hor
izontal parameters like .11 are ems. That's really
'7 ems 1 2 inches', and when translated into
machine units, it becomes zero. How about

.11 7i/2

Sorry, still no good - the '2' is '2 ems', so
'7i/2' is small, although not zero. You must use

. 11 7i12u

So again, a safe rule is to attach a scale indicator
to every number, even constants.

For arithmetic done within a .nr command,
there is no implication of horizontal or vertical
dimension, so the default units are 'units', and
7i/2 and 7i/2u mean the same thing. Thus

- 10 -

.Of II 7i/2

.11 \ \n (liu

does just what you want, so long as you don't
forget the u on the .11 command.

11. Macros with arguments

The next step is to define macros that can
change from one use to the next according to
parameters supplied as arguments. To make this
work, we need two things: first, when we define
the macro, we have to indicate that some parts
of it will be provided as arguments when the
macro is called. Then when the macro is called
we have to provide actual arguments to be
plugged into the definition.

Let us illustrate by defining a macro .SM
that will print its argument two points smaller
than the surrounding text. That is, the macro
call

.SM TROFF

will produce TROFF.

The definition of .SM is

.de SM
\s-2\\$I\s+2

Within a macro definition, the symbol \\$n
refers to the nth argument that the macro was
called with. Thus \\$1 is the string to be placed
in a smaller point size when .SM is called.

As a slightly more complicated version, the
following definition of .SM permits optional
second and third arguments that will be printed
in the normal size:

.de SM
\\$3\s- 2\\$1 \s+2\\$2

Arguments not provided when the macro is
called are treated as empty, so

.SM TROFF),

produces TROFF), while

.SM TROFF). (

produces (TROFF). It is convenient to reverse
the order of arguments because trailing punctua
tion is much more common than leading .

By the way. the number of arguments that
a macro was called with is available in number
register .s.

The following macro .BD is the one used
to make the 'bold roman' we have been usins
for troff command names in text. It combines
horizontal motions, width computations, and
argument rearrangement.

·de BD
\&\ \S3\fl\ \$l\h' -\w,\ \Sl'u + lu'\\$1\fP\\S2

The \h and \w commands need no extra
backs lash, as we discussed above. The \& is
there in case the argument begins with a period.

Two backslashes are needed with the \ \Sn
commands. though, to protect one of them when
the macro is being defined. Perhaps a second
example will make this clearer. Consider a
macro called .SH which produces section head
ings rather like those in this paper, with the sec
tions numbered automatically, and the title in
bold in a smaller size. The use is

.SH "Section title .. ."

(If the argument to a macro is to contain blanks,
then it must be surrounded by double quotes,
unlike a string, where only one leading quote is
permittedJ

Here is the definition of the .SH macro:

.nr SH 0 \" initialize section number

. de SH

.sp O.3i

.ft B

.nr SH \\n(SH + 1

.ps \\n(PS-l
\\n(SH. \\51
. ps \ \n(PS
.sp O.3i
.ft R

\. increment number
\" decrease PS
\. number. title
\" restore PS

The section number is kept in number register
SH. which is incremented each time just before it
is used. (A number register may have the same
name as a macro without conflict but a string
may not.) -

We used \\n(SH instead of \n(SH and
\\n(PS instead of \n(PS. If we had used \n(SH,
we would get the value of the register at the time
the macro was dtdined, not at the time it was
used. If that's what you want, fine, but not here.
Similarly, by using \\n(PS, we get the point size
at the time the macro is called.

As an example that does not involve
numbers, recall our .NP macro which had a

. tI 'left' center' right'

We could make these into parameters by using
instead

- 11 -

so the title comes from three strings called LT,
CT and RT. If these are empty, then the title
will be a blank line. Normally CT would be set

with something like

.ds CT - %-

to give just the page number between hyphens
(as on the top of this page), but a user could
supply private definitions for any of the strings.

12. Conditionals

Suppose we want the .SH macro to leave
two extra inches of space just before section 1,
but nowhere else. The cleanest way to do that is
to test inside the .SH macro whether the section
number is 1, and add some space if it is. The.if
command provides the conditional test that we
can add just before the heading line is output:

.if \ \n(SH -1 .sp 2i \. first section only

The condition after the .if can be any
arithmetic or logical expression. If the condition
is logically true, or arithmetically greater than
zero, the rest of the line is treated as if it were
text - here a command. If the condition is
false, or zero or negative, the rest of the line is
skipped .

It is possible to do more than one com
mand if a condition is true. Suppose several
operations are to be done before section 1. One
possibility is to define a macro .SI and invoke it
if we are about to do section 1 (as determined by
an .if) .

.de SI
--- processing for section 1 ---

.de SH

.if\ \n(SH -1 .SI

An alternate way is to use the extended
form of the .if, like this:

.if\\n(SH-I \{--- processing
for section 1 ----\1

The braces \{ and \) must occur in the positions
shown or you will get unexpected extra lines in
your output. troll also provides an 'if-else' con
struction, which we will not go into here.

A condition can be negated by preceding it
with !; we get the same effect as above (but less
clearly) by using

.if !\ \n (SH > 1 .S 1

There are a handful of other conditions
that can be tested with . if. For example, is the
current page even or odd?

·if e .tl "even page title"
.if 0 . tl "odd page title"

gives facing pages different titles when used
inside an appropriate new page macro.

Two other conditions are t and n, which
tell you whether the formatter is trolf or nrolf.

.if t troff stuff .. .

.if n nroff stuff .. .

Finally, string comparisons may be made
in an .if:

.if 'string I' string2' stuff

does 'stuff' if string] is the same as string2. The
character separating the strings can be anything
reasonable that is not contained in either string.
The strings themselves can reference strings with
\., arguments with \$, and so on.

13. Enyironments

As we mentioned, there is a potential
problem when going across a page boundary:
parameters like size and font for a page title may
well be different from those in effect in the text
when the page boundary occurs. trolf provides a
very general way to deal with this and similar
situations. There are three 'environments', each
of which has independently settable versions of
many of the parameters associated with process
ing, including size, font, line and title lengths,
filllnofill mode, tab stops, and even partially col
lected lines. Thus the titling problem may be
readily solved by processing the main text in one
environment and titles in a separate one with its
own suitable parameters.

The command .ev n shifts to environment
n; n must be 0, 1 or 2. The command .ev with
no argument returns to the previous environ
ment. Environment names are maintained in a
stack, so calls for different environments may be
nested and unwound consistently.

Suppose we say that the main text is pro
cessed in environment 0, which is where trolf
begins by default. Then we can modify the new
page macro .NP to process titles in environment
1 like this:

.de NP

.ev 1

.It 6i

.ft R

.ps 10

\" shift to new environment
\ .. set parameters here

... any other processing ...

.ev \" return to previous environment

It is also possible to initialize the parameters for
an environment outside the .NP macro, but the

- 12 -

version shown keeps all the processing in one
place and is thus easier to understand and
change.

14. Diversions

There are numerous occasions in page lay
out when it is necessary to store some text for a
period of time without actually printing it. Foot
notes are the most obvious example: the text of
the footnote usually appears in the input well
before the place on the page where it is to be
printed is reached. In fact, the place where it is
output normal!y depends on how big it is, which
implies that there must be a way to process the
footnote at least enough to decide its size
without printing it.

trolf provides a mechanism called a diver
sion for doing this processing. Any part of the
output may be diverted into a macro instead of
being printed, and then at some convenient time
the macro may be put back into the input.

The command .di xy begins a diversion -
all subsequent output is collected into the macro
xy until the command .di with no arguments is
encountered. This terminates the diversion.
The processed text is available at any time
thereafter, simply by giving the command

.xy

The vertical size of the last finished diversion is
contained in the built-in number register do.

As a simple example, suppose we want to
implement a 'keep-release' operation, so that
text between the commands .KS and .KE will not
be split across a page boundary (as for a figure or
table). Clearly, when a .KS is encountered, we
have to begin diverting the output so we can find
out how big it is. Then when a .KE is seen, we
decide whether the diverted text will fit on the
current page, and print it either there if it fits, or
at the top of the next page if it doesn't. So:

.de KS \" start keep

.br \" start fresh line

.ev 1 \" collect in new environment

.fi \" make it filled text

.di XX \" collect in XX

.de KE \ .. end keep

. br \" get last partial line

.di \" end diversion

.if\\n(dn>-\\nCt .bp \" bp if doesn't fit

.nf \ .. bring it back in no-fill

.XX \ .. text

.ev \" return to normal environment

Recall that number register nl is the current

position on the output page. Since output was
being diverted, this remains at its value when the
diversion started. dn is the amount of text in
the diversion; .t (another built-in register) is the
distance to the next trap, which we assume is at
the bottom margin of the page. If the diversion
is large enough to go past the trap, the .if is
satisfied, and a .bp is issued. In either case, the
diverted output is then brought back with .XX. It
is essential to bring it back in no-fill mode so
troff will do no further processing on it.

This is not the most general keep-release,
nor is it robust in the face of all conceivable
inputs, but it would require more space than we
have here to write it in full generality. This sec
tion is not intended to teach everything about
diversions, but to sketch out enough that you
can read existing macro packages with some
comprehension.

Acknowledgements

I am deeply indebted to 1. F. Ossanna, the
author of troff, for his repeated patient explana-·
tions of fine points, and for his continuing wil
lingness to adapt troff to make other uses easier.
I am also grateful to Jim Blinn, Ted Dolotta,
Doug Mcilroy, Mike Lesk and Joel Sturman for
helpful comments on this paper.

References

[Il 1. F. Ossanna, NROFFITROFF User's
Manual, Bell Laboratories Computing Sci
ence Technical Report 54, 1976.

(2] B. W. Kernighan, A System for Typesetting
Mathematics - User's GUide (Second Edi
tion), Bell Laboratories Computing Science
Technical Report 17, 1977.

[3] M. E. Lesk, TBL - A Program to Format
Tables. Bell Laboratories Computing Sci
ence Technical Report 49, 1976.

[41 M. E. Lesk, Typing Documents on UNIX.
Bell Laboratories, 1978.

- 13 -

[5] 1. R. Mashey and D. W. Smith, PWBIMM
- Programmer's Workbench Memorandum
Macros. Bell Laboratories internal
memorandum.

- 14 -

Appendix A: Phototypesetter Character Set

These characters exist in roman, italic, and bold. To get the one on the left, type the four-character
name on the right.

ft" \ (ft"
\(ru

© \(co
<!!J \(rg

fi \(fi
\(em

o \(de
• \(bu

fl \ (fl ffi \ (Fi
1/4 \(14 112 \(12
t \(dg \(fm
o \(sq \(hy
(In bold, \ (sq is • .)

The following are special-font characters:

+ \(pl \(mi x \(mu
\(eq - \(...... ~ \(>

;,c \0- ± \(+- \(no
\(ap - \ (~ a: \(pt
\(-> \«- \(ua

I \(is a \(pd 00 \ (if
C \(sb ::> \(sp u \(cu
~ \(ib ;;2 \ (jp E \(mo

\(aa \(ga 0 \(ci
§ \ (sc * \(dd ... \Oh

f \Clt 1 \ (rt r \ (lc

l \Ob J \(rb 1 \ Of

~ \Ok } \(rk I \(bv

I \(br \(or \(ul

• \(..

m \(FI
3/4 \ (34
¢ \ (ct

.,.. \(di
~ \«-
/ \ (sl
\l \(gr

i \(da

.J \(sr
n \ (ca
eI \(es
@ \(bs ,.,. \(rh

1 \ (rc

J \ {rf
~ \ {ts

\(rn

These four characters also have two-character names. The ' is the apostrophe on terminals; the ' is the
other quote mark.

\' \' \-

These characters exist only on the special font, but they do not have four-character names:

< > \ # @

For greek, precede the roman letter by \(. to get the corresponding greek; for example. \(.a is Q.

abgdezyhiklmncoprstufxqw
Q~yaE'~O'KA~V~O~pUTV~X~W

ABGDEZYHIKLMNCOPRSTUFXQW
ABrdEZH8IKAMNEOrrpLTY~X~n

~ .,'

PROGRAMMING

c

The C Programming Language - Reference Manual

Dennis M. Ritchie

Bell Laboratories, Murray Hill, New Jersey

This manual is reprinted, with minor changes, from The C Programming Language, by Brian W. Ker
nighan and Dennis M. Ritchie, Prentice-Hall, Inc., 1978.

l. Introduction
This manual describes the C language on the DEC PDP-II, the DEC V AX-II, the Honeywell 6000,

the IBM System/370, and the Interdata 8/32. Where differences exist, it concentrates on the PDP-II, but
tries to point out implementation-dependent details. With few exceptions, these dependencies follow
directly from the underlying properties of the hardware; the various compilers are generally quite compa
tible.

2. Lexical conventions
There are six classes of tokens: identifiers, keywords, constants, strings, operators, and other separa

tors. Blanks, tabs, newlines, and comments (collectively, "white space") as described below are ignored
except as they serve to separate tokens. Some white space is required to separate otherwise adjacent
identifiers, keywords, and constants.

If the input stream has been parsed into tokens up to a given character, the next token is taken to
include the longest string of characters which could possibly constitute a token.

2.1 Comments
The characters / * introduce a comment, which terminates with the characters * /. Comments do not

nest.

2.2 Identifiers (Names)
An identifier is a sequence of letters and digits; the first character must be a letter. The underscore

counls as a letter. Upper and lower case letters are different. No more than the first eight characters are
significant, although more may be used. External identifiers, which are used by various assemblers and
loaders, are more restricted:

DEC PDP·It
DEC VAX-ll
Honeywell 6000
IBM 360/370
Interdata 8/32

2.3 Keywords

7 characters, 2 cases
8 characters, 2 cases
6 characters, 1 case
7 characters, I case
8 characters, 2 cases

The following identifiers are reserved for use as keywords, and may not be used otherwise:

int extern else
char register for
float typedef do
double static while
struct go to switch
union return case
long sizeof default
short break entry
unsigned contiI?-ue
auto if

The entry keyword is not currently implemented by any compiler but is reserved for future use. Some

t UNIX is a Trademark of Bell Laboratories.

- 2 -

implementations also reserve the words fortran and asm.

2.4 Constants
There are several kinds of constants, as listed below. Hardware characteristics which affect sizes are

summarized in §2.6.

2.4.1 Integer constants
An integer constant consisting of a sequence of digits is taken to be octal if it begins with 0 (digit

zero), decimal otherwise. The digits 8 and 9 have octal value 10 and 11 respectively. A sequence of
digits preceded by Ox or ox (digit zero) is taken to be a hexadecimal integer. The hexadecimal digits
include a or A through for F with values 10 through 15. A decimal constant whose value exceeds the"
largest signed machine integer is taken to be long; an octal or hex constant which exceeds the largest
unsigned machine integer is likewise taken to be long.

2.4.2 Explicit long constants
A decimal, octal, or hexadecimal integer constant immediately followed by 1 Oetter ell) or L is a long

constant. As discussed below, on some machines integer and long values may be considered identical.

2.4.3 Character constants
A character constant is a character enclosed in single quotes, as in ' x '. The value of a character

constant is the numerical value of the character in the machine's character set.
Certain non-graphic characters, the single quote ' and the backslash \, may be represented according

to the following table of escape sequences:

newline Nt (LF) \n
horizontal tab HT \t
backspace BS \b
carriage return CR \r
form feed FF \f
backslash \ \\
single quote \ '
bit pattern ddd \ddd

The escape \ddd consists of the backslash followed by 1, 2, or 3 octal digits which are taken to specify the
value of the desired character. A special case of this construction is \0 (not followed by a digit), which
indicates the character NUL. If the character following a backslash is not one of those specified, the
backslash is ignored.

2.4.4 Floating constants
A floating constant consists of an integer part, a decimal point, a fraction part, an e or E, and an

optionally signed integer exponent. The integer and fraction parts both consist of a sequence of digits.
Either the integer part or the fraction part (not both) may be missing; either the decimal point or the e
and the exponent (not both) may be missing. Every floating constant is taken to be double-precision.

2.5 Strings
A string is a sequence of characters surrounded by double quotes, as in " ... It. A string has type

"array of characters" and storage class static (see §4 below) and is initialized with the given characters.
All strings, even when written identically, are distinct. The compiler places a null byte \0 at the end of
each string so that programs which scan the string can find its end. In a string, the double quote charac
ter " must be preceded by a \; in addition, the same escapes as described for character constants may be
used. Finally, a \ and an immediately following newline are ignored.

2.6 Hardware characteristics
The following table summarizes certain hardware properties which vary from machine to machine.

Although these affect program portability, in practice they are less of a problem than might be thought a
priori.

- 3 -

DEC PDP-II Honeywell 6000 IBM 370 Interdala 8/32

ASCII ASCII EBCDIC ASCII
char 8 bits 9 bits 8 bils 8 bits
int 16 36 32 32
short 16 36 16 16
10nq 32 36 32 32
float 32 36 32 32
double 64 72 64 64
range ±10%31 ±1O%38 ±10%76 ±10%76

The VAX-ll is identical to the PDP-ll except that integers have 32 bits.

3. SYDtax notation
In the syntax notation used in this manual, syntactic categories are indicated by itlllic type, and literal

words and characters in bold type. Alternative categories are listed on separate lines. An optional ter
minal or non-terminal symbol is indicated by the subscript "opt," so that

(expression. I

indicates an optional expression enclosed in braces. The syntax is summarized in §18.

4. What's in a name?
C bases the interpretation of an identifier upon two attributes of the identifier: its storage class and its

type. The storage class determines the location and lifetime of the storage associated with an identifier~
the type determines the meaning of the values found in the identifier's storage.

There are four declarable storage classes: automatic, static, external, and register. Automatic vari
ables are local to each invocation of a block (§9.2), and are discarded upon exit from the block; static
variables are local to a block, but retain their values upon reentry to a block even after control has left
the block; external variables exist and retain their values throughout the execution of the entire program,
and may be used for communication between functions, even separately compiled functions. Register
variables are (if possible) stored in the fast registers of the machine; like automatic variables they are
local to each block and disappear on exit from the block.

C supports several fundamental types of objects:
Objects declared as characters (char) are large enough to store any member of the implementation's

character set, and if a genuine character from that character set is stored in a character variable, its value
is equivalent to the integer code for that character. Other quantities may be stored into character vari
ables, but the implementation is machine-dependent.

Up to three sizes of integer, declared short int, int, and 10nq int, are available. Longer
integers provide no less storage than shorter ones, but the implementation may make either short
integers, or long integers, or both, equivalent to plain integers. "Plain" integers have the natural size
suggested by the host machine architecture; the other sizes are provided to meet special needs.

Unsigned inte&ers, declared unsiqned, obey the laws of arithmetic modulo 2" where n is the
number of bits in the representation. (On the PDP-II, unsigned long quantities are not supported.)

Single-precision floating point (float> and double-precision floating point (double) may be
synonymous in some implementations.

Because objects of the foregoing types can usefully be interpreted as numbers, they will be referred
to as arithmetic types. Types char and int of all sizes will collectively be called integral types. float
and double will collectively be called floating types.

Besides the fundamental arithmetic types there is a conceptually infinite class of derived types con-
structed from the fundamental types in the following ways:

a"DYS of 'objects of most types;
jUnctions which return objects of a given type;
pointers to objects of a given type~
structures containing a sequence of objects of various types;
unions capable of containing anyone of several objects of various types.

In general these methods of constructing objects can be applied recursively.

- 4 -

5. Objects and lvalues
An object is a manipulatable region of storage; an lvalue is an expression referring to an object. An

obvious example of an Ivalue expression is an identifier. There are operators which yield Ivalues: for
example, if E is an expression of pointer type, then *E is an Ivalue expression referring to the object to
which E points. The name "Ivalue" comes from the assignment expression E1 = E2 in which the left
operand E1 must be an Ivalue expression. The discussion of each operator below indicates whether it
expects Ivalue operands and whether it yields an Ivalue.

6. Conversions
A number of operators may, depending on their operands, cause conversion of the value of an

operand from one type to another. This section explains the result to be expected from such conver
sions. §6.6 summarizes the conversions demanded by most ordinary operators; it will be supplemented as
required by the discussion of each operat(lr.

6.1 Characters and integers
A character or a short integer may be used wherever an integer may be used. In all cases the value

is converted to an integer. Conversion of a shorter integer to a longer always involves sign extension;
integers are signed quantities. Whether or not sign-extension occurs for characters is machine dependent,
but it is guaranteed that a member of the standard character set is non-negative. Of the machines treated
by this manual, only the PDP- I1 sign-extends. On the PDP-ll, character variables range in value from
-128 to 127; the characters of the ASCII alphabet are all positive. A character constant specified with an
octal escape suffers sign extension and may appear negative; for example, '\377' has the value -1.

When a longer integer is converted to a shorter or to a char, it is truncated on the left; excess bits
are simply discarded.

6.2 Float and double
All floating arithmetic in C is carried out in double-precision; whenever a float appears in an

expression it is lengthened to double by zero-padding its fraction. When a double must be converted
to float, for example by an assignment, the double is rounded before truncation to float length.

6.3 Floating and integral
Conversions of floating values to integral type tend to be rather machine-dependent; in particular the

direction of truncation of negative numbers varies from machine to machine. The result is undefined if
the value will not fit in the space provided.

Conversions of integral values to floating type are well behaved. Some loss of precision occurs if the
destination lacks sufficient bits.

6.4 Pointers and integers
An integer or long integer may be added to or subtracted from a pointer; in such a case the first is

converted as specified in the discussion of the addition operator.
Two pointers to objects of the same type may be subtracted; in this case the result is converted to an

integer as specified in the discussion of the subtraction operator.

6.5 Unsigned
Whenever an unsigned integer and a plain integer are combined. the plain integer is converted to

unsigned and the result is unsigned. The value is the least unsigned integer congruent to the signed
integer (modulo 2wordsize). In a 2's complement representation, this conversion is conceptual and there is
no actual change in the bit pattern.

When an unsigned integer is converted to lonq, the value of the result is the same numerically as
that of the unsigned integer. Thus the conversion amounts to padding with zeros on the left.

6.6 Arithmetic conversions
A great many operators cause conversions and yield result types in a similar way. This pattern will

be called the "usual arithmetic conversions."

First, any operands of type char or short are converted to int, and any of type float are con
verted to double.

- 5 -

Then, if either operand is double, the other is converted to double and that is the type of the
result.
Otherwise, if either operand is long, the other is converted to long and that is the type of the
result.
Otherwise, if either operand is unsigned, the other is converted to unsigned and that is the type
of the result.
Otherwise, both operands must be int, and that is the type of the result.

7. Expressions
The precedence of expression operators is the same as the order of the major subsections of this sec

tion, highest precedence first. Thus, for example, the expressions referred to as the operands of + (§7.4)
are those expressions defined in §§7.l-7.3. Within each subsection, the operators have the same pre
cedence. Left- or right-associativity is specified in each subsection for the operators discussed therein.
The precedence and associativity of all the expression operators is summarized in the grammar of §18.

Otherwise the order of evaluation of expressions is undefined. In particular the compiler considers
itself free to compute subexpressions in the order it believes most efficient, even if the subexpressions
involve side effects. The order in which side effects take place is unspecified. Expressions involving a
commutative and associative operator (*, +, fa, I, ..) may be rearranged arbitrarily, even in the presence
of parentheses; to force a particular order of evaluation an explicit temporary must be used.

The handling of overflow and divide check in expression evaluation is machine-dependent. All exist
ing implementations of C ignore integer overflows; treatment of division by 0, and all floating-point
exceptions, varies between machines, and is usually adjustable by a library function.

7.1 Primary expressions
Primary expressions involving ., ->, subscripting, and function calls group left to right.

primary-expression:
identifier
constant
SITing
(expression)
primary-expression [expression]
primary-expression (expression-listopt)
prirnary-lvalue • identifier
primary-expression -> identifier

expression-list"
expression
expression-list , expression

An identifier is a primary expression, provided it has been suitably declared as discussed below. Its type
is specified by its declaration. If the type of the identifier is "array of ... ", however, then the value of
the identifier-expression is a pointer to the first object in the array, and the type of the expression is
"pointer to " .". Moreover, an array identifier is not an Ivalue expression. Likewise, an identifier which
is declared "function returning ... ", when used except in the function-name position of a call, is con
verted to "pointer to function returning ... ".

A constant is a primary expression. Its type may be into long, or double depending on its form.
Character constants have type int; floating constants are double.

A string is a primary expression. Its type is originally "array of Char"; but following the same rule
given above for identifiers, this is modified to "pointer to char" and the result is a pointer to the first
character in the string. (There is an exception in certain initializers; see §8.6.)

A parenthesized expression is a primary expression whose type and value are identjcal to those of the
unadorned expression. The presence of parentheses does not affect whether the expression is an Ivalue.

A primary expression followed by an expression in square brackets is a primary expression. The
intuitive meaning is that of a subscript. Usually, the primary expression has type "pointer to ... ", the
subscript expression is into and the type of the result i's ". The expression E1 [E2] is identical (by
definition) to * ((E1) + (E2)). All the clues needed to understand this notation are contained in this sec
tion together with the discussions in §§ 7.1, 7.2, and 7.4 on identifiers, *, and + respectively; §14.3 below
summarizes the implications.

- 6 -

A function call is a primary expression followed by parentheses containing a possibly empty,
comma-separated list of expressions which constitute the actual arguments to the function. The primary
expression must be of type "function returning ... ", and the result of the function call is of type ".
As indicated below, a hitherto unseen identifier followed immediately by a left parenthesis is contextually
declared to represent a function returning an integer; thus in the most common case, integer-valued
functions need not be declared.

Any actual arguments of type float are converted to double before the call; any of type char or
short are converted to int; and as usual, array names are converted to pointers. No other conversions
are performed automatically; in particular, the compiler does not compare the types of actual arguments
with those of formal arguments. If conversion is needed, use a cast; see §7.2, 8.7.

In preparing for the call to a function, a copy is made of each actual parameter; thus, all argument
passing in C is strictly by value. A function may change the values of its formal parameters, but these
changes cannot affect the values of the actual parameters. On the other hand, it is possible to pass a
pointer on the understanding that the function may change the value of the object to which the pointer
points. An array name is a pointer expression. The order of evaluation of arguments is undefined by the
language; take note that the various compilers differ.

Recursive calls to any function are permitted.
A primary expression followed by a dot followed by an identifier is an expression. The first expres

sion must be an Ivalue naming a structure or a union, and the identifier must name a member of the
structure or union. The result is an Ivalue referring to the named member of the structure or union.

A primary expression followed by an arrow (built from a - and a » followed by an identifier is an
expression. The first expression must be a pointer to a structure or a union and the identifier must name
a member of that structure or union. The result is an Ivalue referring to the named member of the struc
ture or union to which the pointer expression points.

Thus the expression E1->MOS is the same as (*E1) .MOS. Structures and unions are discussed in
§8.S. The rules given here for the use of structures arid unions are not enforced strictly, in order to allow
an escape from the typing mechanism. See §14.1.

7.2 Unary operators
Expressions with unary operators group right-to-Ieft.

unary-expression:
* expression
& [value
- expression
I expression
- expression
++ [value
-- {value
Ivalue ++
[value --
(type-name) expression
sizeof expression
sizeof (type-name)

The unary * operator means indirection: the expression must be a pointer, and the result is an Ivalue
referring to the object to which the expression points. If the type of the expression is "pointer to ... ",
the type of the result is ".

The result of the unary & operator is a pointer to the object referred to by the Ivalue. If the type of
the Ivalue is ", the type of the result is "pointer to ... ".

The result of the unary - operator is the negative of its operand. The usual arithmetic conversions
are performed. The negative of an unsigned quantity is computed by subtracting its value from 2n ,

where n is the number of bits in an into There is no unary + operator.
The result of the logical negation operator I is I if the value of its operand is 0, 0 if the value of its

operand is non-zero. The type of the result is into It is applicable to any arithmetic type or to pointers.
The - operator yields the one's complement of its operand. The usual arithmetic conversions are

performed. The type of the operand must be integral.
The object referred to by the Ivalue operand of prefix ++ is incremented. The value is the new value

of the operand, but is not an Ivalue. The expression ++x is equivalent to x+ .. 1. See the discussions of
addition (§7.4) and assignment operators (§7.l4) for information on conversions.

- 7 -

The Ivalue operand of prefix -- is decremented analogously to the prefix ++ operator.
When postfix ++ is applied to an Ivalue the result is the value of the object referred to by the Ivalue.

After the result is noted, the object is incremented in the same manner as for the prefix ++ operator.
The type of the result is the same as the type of the Ivalue expression.

When postfix -- is applied to an Ivalue the result is the value of the object referred to by the Ivalue.
After the result is noted, the object is decremented in the manner as for the prefix -- operator. The type
of the result is the same as the type of the Ivalue expression.

An expression preceded by the parenthesized name of a data type causes conversion of the value of
the expression to the named type. This construction is called a cast. Type names are described in §8.7.

The sizeof operator yields the size, in bytes, of its operand. (A byte is undefined by the language
except in terms of the value of sizeof. However, in all existing implementations a byte is the space
required to hold a char.> When applied to an array, the result is the total number of bytes in the array.
The size is determined from the declarations of the objects in the expression. This expression is semanti
cally an inteaer constant and may be used anywhere a constant is required. Its major use is in communi
cation with routines like storage allocators and 110 systems.

The sizeof operator may also be applied to a parenthesized type name. In that case it yields the
size, in bytes, of an object of the indicated type.

The construction sizeof (type) is taken to be a unit, so the expression sizeof (type) -2 is the
same as (sizeof (type)) -2.

7.3 Multiplicative operators
The multiplicative operators *, /, and" group left-to-right. The usual arithmetic conversions are

performed.

multiplicative-expression:
expression * expression
expression / expression
expression" expression

The binary * operator indicates multiplication. The * operator is associative and expressions with
several multiplications at the same level may be rearranged by the compiler.

The binary / operator indicates division. When positive integers are divided truncation is toward 0,
but the form of truncation is machine-dependent if either operand is negative. On all machines covered
by this manual, the remainder has the same sign as the dividend. It is always true that (a/b) *b + ."b
is equal to a (if b is not 0).

The binary " operator yields the remainder from the division of the first expression by the second.
The usual arithmetic conversions are performed. The operands must not be float.

7.4 Additive operators
The additive operators + and - group left-to-right. The usual arithmetic conversions are performed.

There are some additional type possibilities for each operator.

additive-expression:
expression + expression
expression - expression

The result of the + operator is the sum of the operands. A pointer to an object in an array and a value of
any integral type may be added. The latter is in all cases converted to an address offset by multiplying it
by the length of the object to which the pointer points. The result is a pointer of the same type as the
original pointer, and which points to another object in the same array, appropriately offset from the origi
nal object. Thus if P is a pointer to an object in an array, the expression P+1 is a pointer to the next
object in the array.

No further type combinations are allowed for pointers.
The + operator is associative and expressions with several additions at the same level may be rear

ranged by the compiler.
The result of the - operator is the difference of the operands. The usual arithmetic conversions are

performed. Additionally, a value of any integral type may be subtracted from a pointer, and then the
same conversions as for addition apply.

If two pointers to objects of the same type are subtracted, the result is converted (by division by the
length of the object) to an int representing the number of objects separating the pointed-to objects.
This conversion will in general give unexpected results unless the pointers point to objects in the same

- 8 -

array, since pointers, even to objects of the same type, do not necessarily differ by a multiple of the
object-length.

7.5 Shift operators
The shift operators « and » group left-to-right. Both perform the usual arithmetic conversions on

their operands, each of which must be integral. Then the right operand is converted to int; the type of
the result is that of the left operand. The result is undefined if the right operand is negative, or greater
than or equal to the length of the object in bits.

shift-expression:
expression « expression
expression » expression

The value of E1 «E2 is E1 (interpreted as a bit pattern) left-shifted E2 bits; vacated bits are O-filled.
The value of E1 »E2 is E1 right-shifted E2 bit positions. The right shift is guaranteed to be logical (0-
fiJI) if E1 is unsigned; otherwise it may be (and is, on the PDP-Il) arithmetic (fill by a copy of the sign
bit).

7.6 Relational operators
The relational operators group left-to-right, but this fact is not very useful; a<b<c does not mean

what it seems to.

relational-expression:
expression < expression
expression > expression
expression <- expression
expression >- expression

The operators < (Jess than), > (greater than), <- (less than or equal to) and >- (greater than or equal to)
all yield 0 if the specified relation is false and I if it is true. The type of the result is into The usual
arithmetic conversions are performed. Two pointers may be compared; the result depends on the relative
locations in the address space of the pointed-to objects. Pointer comparison is portable only when the
pointers point to objects in the same array.

7.7 Equality operators

equa lity-expression:
expression -- expression
expression ! - expression

The (equal to) and the ! .. (not equal to) operators are exactly analogous to the relational operators
except for their lower precedence. (Thus a<b -- c<d is 1 whenever a<b and c<d have the same
truth-value). .

A pointer may be compared to an integer, but the result is machine dependent unless the integer is
the constant O. A pointer to which 0 has been assigned is guaranteed not to point to any object, and will
appear to be equal to 0; in conventional usage, such a pointer is considered to be null.

7.8 Bitwise AND operator

and-expression:
expression & expression

The & operator is associative and expressions involving & may be rearranged. The usual arithmetic
conversions are performed; the result is the bitwise AND function of the operands. The operator applies
only to integral operands.

7.9 Bitwise exclusive OR operator

exclusive-or-expression:
expression ,. expression

The ,. operator is associative and expressions involving A may be rearranged. The usual arithmetic
conversions are performed; the result is the bitwise exclusive OR function of the operands. The operator
applies only to integral operands.

7.10 Bitwise inclusive OR operator

inclusive-or-expression:
expression 1 expression

- 9 -

The 1 operator is associative and expressions involving 1 may be rearranged. The usual arithmetic
conversions are performed~ the result is the bitwise inclusive OR function of its operands. The ·operator
applies only to integral operands.

7.11 LOlical AND operator

logical-and-expression:
expression && expression

The && operator groups left-to-right. It returns I if both its operands are non-zero, 0 otherwise. Unlike
&, && guarantees left-to-right evaluation; moreover the second operand is not evaluated if the first
operand is O.

The operands need not have the same type, but each must have one of the fundamental types or be
a pointer. The result is always int.

7.12 Loaical OR operator

Iogica/-or-expression:
expression 1 1 expression

The 1 1 operator groups left-to-right. It returns 1 if either of its operands is non-zero, and 0 otherwise.
Unlike I, 1 1 guarantees left-to-right evaluation; moreover, the second operand is not evaluated if the
value of the first operand is non-zero..

The operands need not have the same type, but each must have one of the fundamental types or be
a pointer. The result is always int.

7.13 Conditional operator

conditional-expression:
expression ? expression : expression

Conditional expressions group right-to-Ieft. The first expression is evaluated and if it is non-zero, the
result is the value of the second expression, otherwise that of third expression. If possible, the usual
arithmetic conversions are performed to bring the second and third expressions to a common type; other
wise, if both are pointers of the same type, the result has the common type; otherwise, one must be a
pointer and the other the constant 0, and the result has the type of the pointer. Only one of the second
and third expressions is evaluated.

7.14 Assianment operato"
There are a number of assignment operators, all of which group right-to-Ieft. All require an Ivalue as

their left operand, and the type of an assignment expression is that of its left operand. The value is the
value stored in the left operand after the assignment has taken place. The two parts of a compound
assignment operator are separate tokens.

assignment-expression:
/value - expression
/value +- expression
/value -- expression
/value *- expression
/value / - expression
/value expression
/value »- expression
/value «- expression
/value &- expression
/value A_ expression
/value 1- expression

In the simple assignment with -, the value of the expression replaces that of the object referred to by
the lvalue. If both operands have arithmetic type, the right operand is converted to the type of the left

- 10-

preparatory to the assignment.
The behavior of an expression of the form E1 op- E2 may be inferred by taking it as equivalent to

E1 - E1 op (E2); however, E1 is evaluated only onCe. In +- and -a, the left operand may be a
pointer, in which case the (integral) right operand is converted as explained in §7.4; all right operands
and all non-pointer left operands must have arithmetic type.

The compilers currently allow a pointer to be assigned to an integer, an integer to a pointer, and a
pointer to a pointer of another type. The assignment is a pure copy operation, with no conversion. This
usage is nonportable, and may produce pointers which cause addressing exceptions when used. However,
it is guaranteed that assignment of the constant 0 to a pointer will produce a null pointer distinguishable
from a pointer to any object.

7.15 Comma operator

comma-expression:
expression , expression

A pair of expressions separated by a comma is evaluated left-to-right and the value of the left expression
is discarded. The type and value of the result are the type and value of the right operand. This operator
groups left-to-right. In contexts where comma is given a special meaning, for example in a list of actual
arguments to functions (§7.1) and lists of initializers (§8.6), the comma operator as described in this sec
tion can only appear in parentheses; for example,

f(a, (t-l, t+2), c)

has three arguments, the second of which has the value 5.

8. Declarations
Declarations are used to specify the interpretation which C gives to each identifier; they do not

necessarily reserve storage associated with the identifier. Declarations have the form

declaration:
dec/-specifters declarator-list"" ;

The declarators in the declarator-list contain the identifiers being declared. The decl-specifiers consist of a
sequence of type and storage class specifiers.

decl-specifiers:
type-specifier dec/-specifiers""
sc-specifter decl-speciflers""

The list must be self-consistent in a way described below.

8.1 Storage class specifieD
The sc-specifiers are:

sc-specifier:
auto
static
extern
reqister
typedef·

The typedef specifier does not reserve storage and is called a "storage class specifier" only for syntactic
convenience; it is discussed in §8.8. The meanings of the various storage classes were discussed in 14.

The auto, static, and reqister declarations also serve as definitions in that they cause an
appropriate amount of storage to be reserved. In the extern case there must be an external definition
(§10) for the given identifiers somewhere outside the function in which they are declared.

A reqister declaration is best thought of as an auto declaration, together with a hint to the com
piler that the variables declared will be heavily used. Only the first few such declarations are effective.
Moreover, only variables of certain types will be stored in registers; on the POP-ll, they are into char,
or pointer. One other restriction applies to register variables: the address-of operator & cannot be applied
to them. Smaller, faster programs can be expected if register declarations are used appropriately, but
future improvements in code generation may render them unnecessary.

- 11 -

At most one sc-specifier may be given in a declaration. If the sc-specifier is missing from a declara
tion. it is taken to be auto inside a function. extern outside. Exception: functions are never automatic.

8.2 Type specifiers
The type-specifiers are

type-specifier:
char
short
int
long
unsigned
float
double
slrUCt-or-union-specijier
typede/-name

The words long, short, and unsigned may be thought of as adjectives; the following combinations are
acceptable.

short int
long int
unsigned int
lonq float

The meaning of the last is the same as double. Otherwise, at most one type-specifier may be given in a
declaration. If the type-specifier is missing from a declaration, it is taken to be into

Specifiers for structures and unions are discussed in §8.S; declarations with typedef names are dis
cussed in §8.8.

8.3 Declarators
The declarator~list appearing in a declaration is a comma-separated sequence of declarators, each of

which may have an initializer.

declarator-list·
init-declarator
init-declarator I declarator-list

init-declarator:
declarator initializer opt

Initializers are discussed in §8.6. The specifiers in the declaration indicate the type and storage class of
the objects to which the declarators refer. Declarators have the syntax:

declarator:
identijier
(declarator)
* declarator
declarator ()
declarator [constanM!Xpressionopt]

The grouping is the same as in expressions.

8.4 Meaning of declarators
Each declarator is taken to be an assertion that when a construction of the same form as the declara

tor appears in an expression, it yields an object of the indicated type and storage class. Each declarator
contains exactly one identifier; it is this identifier that is declared.

If an unadorned identifier appears as a declarator, then it has the type indicated by the specifier head
ing the declaration.

A declarator in parentheses is identical to the unadorned declarator. but the binding of complex
declarators may be altered by parentheses. See the examples below.

Now imazjne a declaration

- 12 -

T 01

where T is a type-specifier (like int, etc.) and 01 is a declarator. Suppose this declaration makes the
identifier have type " . .. T," where the" ... " is empty if 01 is just a plain identifier (so that the type of
x in .. int x" is just int>. Then if 01 has the form

the type of the contained identifier is " . .. pointer to T."
If 01 has the form

O()

then the contained identifier has the type" ... function returning T."
If 01 has the form

o [constant-expression]

or

O(]

then the contained identifier has type " . .. array of T." In the first case the constant expression is an
expression whose value is determinable at compile time, and whose type is into (Constant expressions
are defined precisely in §15.) When several "array of' specifications are adjacent, a multi-dimensional
array is created; the constant expressions which specify the bounds of the arrays may be missing only for
the first member of the sequence. This elision is useful when the array is external and the actual
definition, which allocates storage, is given elsewhere. The first constant-expression may also be omitted
when the declarator is followed by initialization. In this case the size is calculated from the number of
initial elements supplied.

An array may be constructed from one of the basic types, from a pointer, from a structure or union,
or from another array (to generate a multi-dimensional array).

Not all the possibilities allowed by the syntax above are actually permitted. The restrictions are as
follows: functions may not return arrays, structures, unions or functions, although they may return
pointers to such things; there are no arrays of functions, although there may be arrays of pointers to
functions. Likewise a structure or union may not contain a function, but it may contain a pointer to a
function.

As an example, the declaration

int i, *ip, f{), *fip{) , (*pfil ();

declares an integer i, a pointer ip to an integer, a function f returning an integer, a function fip
returning a pointer to an integer, and a pointer pfi to a function which returns an integer. It is espe
cially useful to compare the last two. The binding of *fip () is * (fip (l), so that the declaration sug
gests, and the same construction in an expression requires, the calling of a function fip, and then using
indirection through the (pointer) result to yield an integer. In the declarator (*pfi l (), the extra
parentheses are necessary, as they are also in an expression, to indicate that indirection through a pointer
to a function yields a function, which is then called; it returns an integer.

As another example,

float fa[17], *afp[17]i

declares an array of float numbers and an array of pointers to float numbers. Finally,

static int x3d[3][SJ[7];

declares a static three-dimensional array of integers, with rank 3x5x7. In complete detail, x3d is an
array of three items; each item is an array of five arrays; each of the latter arrays is an array of seven
integers. Any of the expressions x3d, x3d [i], x3d [i] [j), x3d [i] [j] [k] may reasonably appear in
an expression. The first three have type "array," the last has type into

8.S Structure and union declarations
A structure is an object consisting of a sequence of named members. Each member may have any

type. A union is an object which may, at a given time. contain anyone of several members. Structure
and union specifiers have the same form.

- 13 -

struct-or-union-specifier:
struct-or-union (struct-decl-Iist)
struct-or-union identifier (struct-decl-list)
struct-or-union identifier

struct-or-union:
struct
union

The struct-decl-list is a sequence of declarations for the members of the structure or union:

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

struct-decloration:
type-specifier struct-declorator-Iist ;

struct-declorator-list:
struct-declarator
struct-declarator J struct-declarator-Iist

In the usual case, a struct-declarator is just a declarator for a member of a structure or union. A struc
ture member may also consist of a specified number of bits. Such a member is also called a field; its
length is set off from the field name by a colon.

struct-declorator:
declarator
declarator : constant-expression
: constant-expression

Within a structure, the objects declared have addresses which increase as their declarations are read left
to-right. Each non-field member of a structure begins on an addressing boundary appropriate to its type;
therefore, there may be unnamed holes in a structure. Field members are packed into machine integers;
they do not straddle words. A field which does not fit into the space remaining in a word is put into the
next word. No field may be wider than a word. Fields are assigned right-to-Ieft on the PDP-II, left-to
right on other machines.

A struct-declarator with no declarator, only a colon and a width. indicates an unnamed field useful
for padding to conform to externally-imposed layouts. As a special case, an unnamed field with a width
of 0 specifies alignment of the next field at a word boundary. The "next field" presumably is a field, not
an ordinary structure member, because in the latter case the alignment would have been automatic.

The language does not restrict the types of things that are declared as fields, but implementations are
not required to support any but integer fields. Moreover, even int fields may be considered to be
unsigned. On the PDP-ll, fields are not signed and have only integer values. In al\ implementations,
there are no arrays of fields. and the address-of operator &. may not be applied to them. so that there are
no pointers to fields.

A union may be thought of as a structure all of whose members begin at offset 0 and whose size is
sufficient to contain any of its members. At most one of the members can be stored in a union at any
time.

A structure or union specifier of the second form, that is, one of

struct identifier (struct-decl-list I
union identifier (struct-decl-list)

declares the identifier to be the structure tag (or union tag) of the structure specified by the list. A subse
quent declaration may then use the third form of specifier, one of

struct identifier
union identifier

Structure tap allow definition of self-referential structures; they also permit the long part of the declara
tion to be given once and used several times. It is illegal to declare a structure or union which contains
an instance of itself, but a structure or union may contain a pointer to an instance of itself.

- 14 -

The names of members and tags may be the same as ordinary variables. However, names of tags
and members must be mutually distinct.

Two structures may share a common initial sequence of members; that is, the same member may
appear in two different structures if it has the same type in both and if all previous members are the same
in both. (Actually, the compiler checks only that a name in two different structures has the same type
and offset in both, but if preceding members differ the construction is non portable.)

A simple example of a structure declaration is

struct tnode (

) ;

char tword(20)i
int count;
struct tnode *lefti
struct tnode *righti

which contains an array of 20 characters, an integer, and two pointers to similar structures. Once this
declaration has been given, the declaration

struct tnode s, *SPi

declares s to be a structure of the given sort and sp to be a pointer to a structure of the given sort. With
these declarations, the expression

sp->count

refers to the count field of the structure to which sp points;

s.left

refers to the left subtree pointer of the structure s; and

s.right->tword[O)

refers to the first character of the tword member of the right subtree of s.

8.6 Initialization
A declarator may specify an initial value for the identifier being declared. The initializer is preceded

by -, and consists of an expression or a list of values nested in braces.

in i tia lizer:
.. expression
.. (initializer-list)
.. { initializer-list ,

initializer-list:
expression
initializer-list , initializer-list
(initializer-list)

All the expressions in an initializer for a static or external variable must be constant expressions,
which are described in §15, or expressions which reduce to the address of a previously declared variable,
possibly offset by a constant expression. Automatic or register variables may be initialized by arbitrary
expressions involving constants, and previously declared variables and functions.

Static and external variables which are not initialized are guaranteed to start off as 0; automatic and
register variables which are not initialized are guaranteed to start off as garbage.

When an initializer applies to a scalar (a pointer or an object of arithmetic type), it consists of a sin
gle expression, perhaps in braces. The initial value of the object is taken from the expression; the same
conversions as for assignment are performed.

When the declared variable is an aggregate (a structure or array) then the initializer consists of a
brace-enclosed, comma-separated list of initializers for the members of the aggregate, written in increas
ing subscript or member order. If the aggregate contains subaggregates, this rule applies recursively to
the members of the aggregate. If there are fewer initializers in the list than there are members of the
aggregate, then the aggregate is padded with O's. It is not permitted to initialize unions or automatic
aggregates.

- 15 -

Braces may be elided as follows. If the initializer begins with a left brace, then the succeeding
comma-separated list of initializers initializes the members of the aggregate; it is erroneous for there to
be more initializers than members. If, however, the initializer does not begin with a left brace, then only
enough elements from the list are taken to account for the members of the aggregate; any remaining
members are left to initialize the next member of the aggregate of which the current aggregate is a part.

A final abbreviation allows a char array to be initialized by a string. In this case successive charac
ters of the string initialize the members of the array.

For example,

int x [] - (1, 3, 5 I;

declares and initializes x as a i-dimensional array which has three members, since no size was specified
and there are three initializers.

float y[4] [3] - (
(1 , 3, 5 I ,
(2, 4, 6 I J

(3, 5, 7 I ,
I ;

is a completely-bracketed initialization: i, 3, and 5 initialize the first row of the array yeo]' namely
yeo] [0], yeo] [1], and yeo] [2]. Likewise the next two lines initialize y(1) and y[2]. The initial
izer ends early and therefore y (3] is initialized with O. Precisely the same effect could have been
achieved by

float y[4] [3] = {
1, 3, 5, 2, 4, 6, 3, 5, 7

I ;

The initializer for y begins with a left brace, but that for y [0] does not, therefore 3 elements from the
list are used. Likewise the next three are taken successively for y [1] and y [2]. Also,

float y[4] [31 - {
{ 1 I, { 2 I, { 3 I, I 4 I

I ;

initializes the first column of y (regarded as a two-dimensional array) and leaves the rest O.
Finally,

char msg[] .. "Syntax error on line %8\n";

shows a character array whose members are initialized with a string.

8.7 Type names
In two contexts (to specify type conversions explicitly by means of a cast, and as an argument of

sizeof) it is desired to supply the name of a data type. This is accomplished using a "type name,"
which in essence is a declaration for an object of that type which omits the name of the object.

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
(abstract-declarator)
'" abstract-declarator
abstract-declarator ()
abstract-declarator [constant-expressionop/]

To avoid ambiguity, in the construction

(abstract-declarator)

the abstract-declarator is required to be non-empty. Under this restriction, it is possible to identify
uniquely the location in the abstract-declarator where the identifier would appear if the construction were
a declarator in a declaration. The named type is then the same as the type of the hypothetical identifier.
For example,

int
int *
int *[3]
int (*) [3]
int * ()
int (*) ()

, - 16 -

name respectively the types "integer," "pointer to integer," "array of 3 pointers to integers," "pointer
to an array of 3 integers," "function returning pointer to integer," and "pointer to function returning an
integer. "

8.8 Typedef
Declarations whose "storage class" is typedef do not define storage, but instead define identifiers

which can be used later as if they were type keywords naming fundamental or derived types.

typedef-name:
identifier

Within the scope of a declaration involving typedef, each identifier appearing as part of any declarator
therein become syntactically equivalent to the type keyword naming the type associated with the identifier
in the way described in §8.4. For example, after

typedef int MILES, *KLICKSPi
typedef struct (double re, imiJ complexi

the constructions

MILES distancei
extern KLICKSP metricpi
complex z, *ZPi

are all legal declarations; the type of distance is int, that of metricp is "pointer to int," and that of
z is the specified structure. zp is a pointer to such a structure.

typedef does not introduce brand new types, only synonyms for types which could be specified in
another way. Thus in the example above distance is considered to have exactly the same type as any
other int object.

9. Statements
Except as indicated, statements are executed in sequence.

9.1 Expression statement
Most statements are expression statements, which have the form

expression i

Usually expression statements are assignments or function calls.

9.2 Compound statement, or block
So that several statements can be used where one is expected, the compound statement (also, and

equivalently, called "block") is provided:

compound-statement:
{ declaration-list"", statement-list"", J

declaration-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

If any of the identifiers in the declaration-list were previously declared, the outer declaration is pushed
down for the duration of the block, after which it resumes its force.

- 17 -

Any initializations of auto or reqister variables are performed each time the block is entered at
the top. It is currently possible (but a bad practice) to transfer into a block; in that case the initializations
are not performed. Initializations of static variables are performed only once when the program begins
execution. Inside a block, extern declarations do not reserve storage so initialization is not permitted.

9.3 Conditional statement
The two forms of the conditional statement are

if (expression) statement
if (expression) statement else statement

In both cases the expression is evaluated and if it is non-zero, the first substatement is executed. In the
second case the second substatement is executed if the expression is O. As usual the "else" ambiguity is
resolved by connecting an else with the last encountered else-less if.

9.4 While statement
The while statement has the form

while (expression) statement

The substatement is executed repeatedly so long as the value of the expression remains non-zero. The
test takes place before each execution of the statement.

9.S Do statement
The do statement has the form

do statement while (expression) ;

The substatement is executed repeatedly until the value of the expression becomes zero. The test takes
place after each execution of the statement.

9.6 For statement
The for statement has the form

for (expression-I",,; expression-2"" ; expression-3"") statement

This statement is equivalent to

expression- I ;
while (expression-2)

statement
expression-3 ;

Thus the first expression specifies initialization for the loop; the second specifies a test, made before each
iteration, such that the loop is exited when the expression becomes 0; the third expression often specifies
an incrementation which is performed after each iteration.

Any or all of the expressions may be dropped. A missing expression-2 makes the implied while
clause equivalent to while (1); other missing expressions are simply dropped from the expansion above.

9.7 Switch statement
The switch statement causes control to be transferred to one of several statements depending on

the value of an expression. It has the form

swi tch (expression) statement

The usual arithmetic conversion is performed on the expression, but the result must be into The state
ment is typically compound. Any statement within the statement may be labeled with one or more case
prefixes as follows:

case constant-expression :

where the constant expression must be into No two of the case constants in the same switch may have
the same value. Constant expressions are precisely defined in §15.

There may also be at most one statement prefix of the form

- IS -

default :

When the switch statement is executed, its expression is evaluated and compared with each case con
stant. If one of the case constants is equal to the value of the expression, control is passed to the state
ment following the matched case prefix. If no case constant matches the expression, and if there is a
default prefix, control passes to the prefixed statement. If no case matches and if there is no default
then none of the statements in the switch is executed.

case and default prefixes in themselves do not alter the flow of control, which continues unim
peded across such prefixes. To exit from a switch, see break, §9.S.

Usually the statement that is the subject of a switch is compound. Declarations may appear at the
head of this statement, but initializations of automatic or register variables are ineffective.

9.8 Break statement
The statement

break

causes termination of the smallest enclosing while, do, for, or switch statement; control passes to the
statement following the terminated statement.

9.9 Continue statement
The statement

continue

causes control to pass to the loop-continuation portion of the smallest enclosing while, do, or for state
ment; that is to the end of the loop. More precisely, in each of the statements

while (...)

contin: ;
}

do (

contin:
} while (...);

for (...)

contin: ;
}

a continue is equivalent to go to contino (Following the contin: is a null statement, §9.l3,)

9.10 Return statement
A function returns to its caller by means of the return statement, which has one of the forms

return ;
return expression i

In the first case the returned value is undefined. In the second case, the value of the expression is
returned to the caller of the function. If required, the expression is converted, as if by assignment, to the
type of the function in which it appears. Flowing off the end of a function is equivalent to a return with
no returned value.

9.11 Goto statement
Control may be transferred unconditionally by means of the statement

goto identifier ;

The identifier must be a label (§9.12) located in the current function.

9.12 Labeled statement
Any statement may be preceded by label prefixes of the form

identifier :

which serve to declare the identifier as a label. The only use of a label is as a target of a goto. The
scope of a label is the current function, excluding any sub-blocks in which the same identifier has been
redeclared. See § II .

- 19 -

9.13 Null statement
The null statement has the form

A null statement is useful to carry a label just before the } of a compound statement or to supply a null
body to a looping statement such as while.

10. External definitions
A C program consists of a sequence of external definitions. An external definition declares an

identifier to have storage class extern (by default) or perhaps static, and a specified type. The type
specifier (§8.2) may also be empty, in which case the type is taken to be into The scope of external
definitions persists to the end of the file in which they are declared just as the effect of declarations per
sists to the end of a block. The syntax of external definitions is the same as that of all declarations,
except that only at this level may the code for functions be given.

10.1 External function definitions
Function definitions have the form

/unction-definition:
decl-speciflers"" /unction-declarator /unction-body

The only sc-specifiers allowed among the decl-specifiers are extern or static; see §11.2 for the distinc
tion between them. A function declarator is similar to a declarator for a "function returning ... " except
that it lists the formal parameters of the function being defined.

/unction-declarator:
declarator (parameter-list"")

parameter-list:
identifier
identifier , parameter-list

The function-body has the form

/unction-body:
declaration-list compound-statement

The identifiers in the parameter list, and only those identifiers, may be declared in the declaration list.
Any identifiers whose type is not given are taken to be int. The only storage class which may be
specified is register; if it is specified, the corresponding actual parameter will be copied, if possible,
into a register at the outset of the function.

A simple example of a complete function definition is

int max(a, b, c)
int a, b, c;
I

int m;

m • (a > b) ? a : b;
return«m> c) ? m c);

Here int is the type-specifier; max(a, b, c) is the function-declarator; int a, b, c; is the
declaration-list for the formal parameters; { ..• } is the block giving the code for the statement.

C converts all float actual parameters to double, SO formal parameters declared float have their
declaration adjusted to read double. Also, since a reference to an array in any context (in particular as
an actual parameter) is taken to mean a pointer to the first element of the array, declarations of formal
parameters declared "array of ... " are adjusted to read "pointer to ... ". Finally, because structures,
unions and functions cannot be passed to a function, it is useless to declare a formal parameter to be a
structure, union or function (pointers to such objects are of course permitted).

- 20 -

10.2 External data definitions
An external data definition has the form

data-definition:
declaration

The storage class of such data may be extern (which is the default) or static, but not auto or
register.

11. Scope rules
A C program need not all be compiled at the same time: the source text of the program may be kept

in several files, and precompiled routines may be loaded from libraries. Communication among the func
tions of a program may be carried out both through explicit calls and through manipulation of external
data.

Therefore, there are two kinds of scope to consider: first, what may be called the lexical scope of an
identifier, which is essentially the region of a program during which it may be used without drawing
"undefined identifier" diagnostics; and second, the scope associated with external identifiers, which is
characterized by the rule that references to the same external identifier are references to the same object.

11.1 Lexical scope
The lexical scope of identifiers declared in external definitions persists from the definition through

the end of the source file in which they appear. The lexical scope of identifiers which are formal parame
ters persists through the function with which they are associated. The lexical scope of identifiers declared
at the head of blocks persists until the end of the block. The lexical scope of labels is the whole of the
function in which they appear.

Because all references to the same external identifier refer to the same object (see § 11.2) the com
piler checks all declarations of the same external identifier for compatibility; in effect their scope is
increased to the whole file in which they appear.

In all cases, however, if an identifier is explicitly declared at the head of a block, including the block
constituting a function, any declaration of that identifier outside the block is suspended until the end of
the block.

Remember also (§8.5) that identifiers associated with ordinary variables on the one hand and those
associated with structure and union members and tags on the other form two disjoint classes which do
not conflict. Members and tags follow the same scope rules as other identifiers. typedef names are in
the same class as ordinary identifiers. They may be redeclared in inner blocks, but an explicit type must
be given in the inner declaration:

typedef float distance;

auto int distance;

The int must be present in the second declaration, or it would be taken to be a declaration with no
declarators and type distancet.

11.2 Scope of externals
If a function refers to an identifier declared to be extern, then somewhere among the files or

libraries constituting the complete program there must be an external definition for the identifier. All
functions in a given program which refer to the same external identifier refer to the same object, so care
must be taken that the type and size specified in the definition are compatible with those specified by each
function which references the data.

The appearance of the extern keyword in an external definition indicates that storage for the
identifiers being declared will be allocated in another file. Thus in a multi-file program, an external data
definition without the extern specifier must appear in exactly one of the files. Any otner files which
wish to give an external definition for the identifier must include the extern in the definition. The
identifier can be initialized only in the declaration where storage is allocated.

Identifiers declared static at the top level in external definitions are not visible in other files.
Functions may be declared static.

tit is agreed that the ice is thin here.

- 21 -

12. Compiler control lines
The C compiler contains a preprocessor capable of macro substitution, conditional compilation, and

inclusion of named files. Lines beginning with # communicate with this preprocessor. These lines have
syntax independent of the rest of the language; they may appear anywhere and have effect which lasts
(independent of scope) until the end of the source program file.

12.1 Token replacement
A compiler-control line of the form

#de fine identifier token-string

(note: no trailing semicolon) causes the preprocessor to replace subsequent instances of the identifier with
the given string of tokens. A line of the form

#define identifier< identifier, ... , identifier l token-string

where there is no space between the first identifier and the (, is a macro definition with arguments. Sub
sequent instances of the first identifier followed by a (, a sequence of tokens delimited by commas, and a
) are replaced by the loken string in the definition. Each occurrence of an identifier mentioned in the
formal parameter list of the definition is replaced by the corresponding token string from the call. The
actual arguments in the call are token strings separated by commas; however commas in quoted strings or
protected by parentheses do not separate arguments. The number of formal and actual parameters must
be the same. Text inside a string or a character constant is not subject to replacement.

In both forms the replacement string is rescanned for more defined identifiers. In both forms a long
definition may be continued on another line by writing \ at the end of the line to be continued.

This facility is most valuable for definition of "manifest constants," as in

#define TABSIZE 100

int table(TABSIZE]i

A control line of the form

#undef identifier

causes the identifier's preprocessor definition to be forgotten.

12.2 File inclusion
A compiler control line of the form

inc 1 ude "filename"

causes the replacement of that line by the entire contents of the file filename. The named file is searched
for first in the directory of the original source file, and then in a sequence of standard places. Alterna
tively. a control line of the form

#include ~kname>

searches only the standard places, and not the directory of the source file.
#include's may be nested.

12.3 Conditional compilation
A compiler control line of the form

!tif constant-expression

checks whether the constant expression (see §IS) evaluates to non-zero. A control line of the form

#ifdef identifier

checks whether the identifier is currently defined in the preprocessor; that is, whether it has been the
subject of a #define control line. A control line of the form

#ifndef identifier

checks whether the identifier is currently undefined in the preprocessor.
All three forms are followed by an arbitrary number of lines, possibly containing a control line

#else

and then by a control line

#endif

- 22 -

If the checked condition is true then any lines between #else and #endif are ignored. If the checked
condition is false then any lines between the test and an #else or, lacking an #else, the #endif, are
ignored.

These constructions may be nested.

12.4 Line control
For the benefit of other preprocessors which generate C programs, a line of the form

#line constant identifier

causes the compiler to believe, for purposes of error diagnostics, that the line number of the next source
line is given by the constant and the current input file is named by the identifier. If the identifier is
absent the remembered file name does not change.

13. Implicit declarations
It is not always necessary to specify both the storage class and the type of identifiers in a declaration.

The storage class is supplied by the context in external definitions and in declarations of formal parame
ters and structure members. In a declaration inside a function, if a storage class but no type is given, the
identifier is assumed to be int; if a type but no storage class is indicated, the identifier is assumed to be
auto. An exception to the latter rule is made for functions, since auto functions are meaningless (C
being incapable of compiling code into the stack); if the type of an identifier is "function returning ... ". it
is implicitly declared to be extern.

In an expression, an identifier followed by (and not already declared is contextually declared to be
"function returning int".

14. Types revisited
This section summarizes the operations which can be performed on objects of certain types.

14.1 Structures and unions
There are only two things that can be done with a structure or union: name one of its members (by

means of the. operator); or take its address (by unary &). Other operations, such as assigning from or
to it or passing it as a parameter, draw an error message. In the future, it is expected that these opera
tions, but not necessarily others, will be allowed.

§7.l says that in a direct or indirect structure reference (with. or -» the name on the right must
be a member of the structure named or pointed to by the expression on the left. To allow an escape
from the typing rules, this restriction is not firmly enforced by the compiler. In fact, any lvalue is allowed
before ., and that Ivalue is then assumed to have the form of the structure of which the name on the
right is a member. Also, the expression before a -> is required only to be a pointer or an integer. If a
pointer, it is assumed to point to a structure of which the name on the right is a member. If an integer,
it is taken to be the absolute address, in machine storage units, of the appropriate structure.

Such constructions are non-portable.

14.2 Functions
There are only two things that can be done with a function: call it, or take its address. If the name

of a function appears in an expression not in the function-name position of a call, a pointer to the func
tion is generated. Thus, to pass one function to another, one might say

int f () i

g(fli

Then the definition of g might read

g(funcp)
int (*funcp) () ;
(

- 23 -

Notice that f must be declared explicitly in the calling routine since its appearance in 9 (f) was not fol
lowed by (.

14.3 Arrays, pointers, and subscripting
Every time an identifier of array type appears in an expression, it is converted into a pointer to the

first member of the array. Because of this conversion, arrays are not Ivalues. By definition, the subscript
operator (] is interpreted in such a way that E1 (E2] is identical to *((E1)+(E2». Because of the
conversion rules which apply to +, if E1 is an array and E2 an integer, then E1 [E2] refers to the E2-th
member of E1. Therefore, despite its asymmetric appearance, subscripting is a commutative operation.

A consistent rule is followed in the case of multi-dimensional arrays. If E is an n-dimensional array
of rank iXjX ... xk, then E appearing in an expression is converted to a pointer to an (n-I)
dimensional array with rank j x ... x k. If the * operator, either explicitly or implicitly as a result of
subscripting, is applied to this pointer, the result is the pointed-to (n -I)-dimensional array, which itself
is immediately converted into a pointer.

For example, consider

int x[3].[S];

Here x is a 3x5 array of integers. When x appears in an expression, it is converted to a pointer to (the
first of three) 5-membered arrays of integers. In the expression x (i). which is equivalent to * (x+i), x
is first converted to a pointer as described; then i is converted to the type of x, which involves multiply
ing i by the length the object to which the pointer points, namely 5 integer objects. The results are
added and indirection applied to yield an array (of 5 integers) which in turn is converted to a pointer to
the first of the integers. If there is another subscript the same argument applies again; this time the
result is an integer.

It follows from all this that arrays in C are stored row-wise (last subscript varies fastest) and that the
first subscript in the declaration helps determine the amount of storage consumed by an array but plays
no other part in subscript calculations.

14.4 Explicit pointer conversions
Certain conversions involving pointers are permitted but have implementation-dependent aspects.

They are all specified by means of an explicit type-conversion operator, §§7.2 and 8.7.
A pointer may be converted to any of the integral types large enough to hold it. Whether an int or

long is required is machine dependent. The mapping function is also machine dependent, but is
intended to be unsurprising to those who know the addressing structure of the machine. Details for
some particular machines are given below.

An object of integral type may be explicitly converted to a pointer. The mapping always carries an
integer converted from a pointer back to the same pointer, but is otherwise machine dependent.

A pointer to one type may be converted to a pointer to another type. The resulting pointer may
cause addressing exceptions upon use if the subject pointer does not refer to an object suitably aligned in
storage. It is guaranteed that a pointer to an object of a given size may be converted to a pointer to an
object of a smaller size and back again without change.

For example, a storage-allocation routine might accept a size (in bytes) of an object to allocate, and
return a char pointer; it might be used in this way.

extern char *alloc()j
double *dpi

dp = (double *) alloc(sizeof(double)}i
*dp = 22.0 / 7.0;

I

alloc must ensure (in a machine-dependent way) that its return value is suitable for conversion to a
pointer to double; then the use of the function is portable.

- 24 -

The pointer representation on the PDP-II corresponds to a 16-bit integer and is measured in bytes.
chars have no alignment requirements; everything else must have an even address.

On the Honeywell 6000, a pointer corresponds to a 36-bit integer; the word part is in the left 18 bits,
and the two bits that select the character in a word just to their right. Thus char pointers are measured
in units of 216 bytes; everything else is measured in units of 218 machine words. double quantities and
aggregates containing them must lie on an even word address (0 mod 219).

The IBM 370 and the Interdata 8/32 are similar. On both, addresses are measured in bytes; elemen
tary objects must be aligned on a boundary equal to their length, so pointers to short must be 0 mod 2,
to int and float 0 mod 4, and to double 0 mod 8. Aggregates are aligned on the strictest boundary
required by any of their constituents.

15. Constant expressions
In several places C requires expressions which evaluate to a constant: after case, as array bounds,

and in initializers. In the first two cases, the expression can involve only integer constants, character con
stants, and sizeof expressions, possibly connected by the binary operators

+ * / ... &

or by the unary operators

or by the ternary operator

?:

« » z= != < > <_ >=

Parentheses can be used for grouping, but not for function calls.
More latitude is permitted for initializers; besides constant expressions as discussed above, one can

also apply the unary & operator to external or static objects, and to external or static arrays subscripted
with a constant expression. The unary & can also be applied implicitly by appearance of unsubscripted
arrays and functions. The basic rule is that initializers must evaluate either to a constant or to the
address of a previously declared external or static object plus or minus a constant.

16. Portability considerations
Certain parts of C are inherently machine dependent. The following list of potential trouble spots is

not meant to be all-inclusive, but to point out the main ones.
Purely hardware issues like word size and the properties of floating point arithmetic and integer divi

sion have proven in practice to be not much of a problem. Other facets of the hardware are reflected in
differing implementations. Some of these, particularly sign extension (converting a negative character
into a negative integer) and the order in which bytes are placed in a word, are a nuisance that must be
carefully watched. Most of the others are only minor problems.

The number of register variables that can actually be placed in registers varies from machine to
machine, as does the set of valid types. Nonetheless, the compilers all do things properly for their own
machine; excess or invalid register declarations are ignored.

Some difficulties arise only when dubious coding practices are used. It is exceedingly unwise to write
programs that depend on any of these properties.

The order of evaluation of function arguments is not specified by the language. It is right to left on
the PDP-II, and V AX-II, left to right on the others. The order in which side effects take place is also
unspecified.

Since character constants are really objects of type int, multi-character character constants may be
permitted. The specific implementation is very machine dependent, however, because the order in which
characters are assigned to a word varies from one machine to another.

Fields are assigned to words and characters to integers right-to-Ieft on the PDP-II and VAX- I I and
left-to-right on other machines. These differences are invisible to isolated programs which do not indulge
in type punning (for example, by converting an int pointer to a char pointer and inspecting the
pointed-to storage), but must be accounted for when conforming to externally-imposed storage layouts.

The language accepted by the various compilers differs in minor details. Most notably, the current
PDP-l I compiler will not initialize structures containing bit-fields, and does not accept a few assignment
operators in certain contexts where the value of the assignment is used.

- 25 -

17. Anachronisms
Since C is an evolving language, certain obsolete constructions may be found in older programs.

Although most versions of the compiler support such anachronisms, ultimately they will disappear, leav
ing only a portability problem behind.

Earlier versions of C used the form -op instead of op- for assignment operators. This leads to
ambiguities, typified by

x--1

which actually decrements x since the - and the - are adjacent, but which might easily be intended to
assign -1 to x.

The syntax of initializers has changed: previously, the equals sign that introduces an initializer was
not present, so instead of

int x - 1;

one used

int x 1;

The change was made because the initialization

int f (1 +2)

resembles a function declaration closely enough to confuse the compilers.

- 26 -

18. Syntax Summary
This summary of C syntax is intended more for aiding comprehension than as an exact statement of

the language.

18.1 Expressions
The basic expressions are:

expression:
primary

* expression
& expression
- expression
! expression
- expression
++ lvalue
-- lvalue
[value ++
lvalue --
sizeof expression
(type-name l expression
expression binop expression
expression ? expression : expression
lvalue asgnop expression
expression , expression

primary:
identifier
constant
string
(expression)

primary (expression-listOfJ/ l
primary (expression]
lvalue • identifier

lvalue:

primary -> identifier

identifier
primary [expression]
lvalue • identifier
primary -> identifier
* expression
({value)

The primary-expression operators

() [] ->

have highest priority and group left-to-right. The unary operators

* & ++ sizeof (type-name)

have priority below the primary operators but higher than any binary operator, and group right-to-Ieft.
Binary operators group left-to-right; they have priority decreasing as indicated below. The conditional
operator groups right to left.

- 11 -

binop:

* / " +
» «
< > <- >-.- I-
&

&&
II
1:

Assignment operators all have the same priority, and all group right-to-Ieft.

asgnop:
_ +_ __ *_ /_ ". »_ «_ &_ A. 1_

The comma operator has the lowest priority. and groups left-to-right.

18.2 Declarations

declaration:
dec/-specifiers init-deciarator-listOl1l ;

decl-specifiers:
type-specifier rJecl-specifiersopt
sc-specifier decl-specifiersopt

sc-specifier:
auto
static
extern
register
typedef

type-specifier:
char
short
int
long
unsigned
float
double
struct-or-union-specifter
typedej-name

in it-declarator-list:
init-dec/arator
init-declarator , init-decillratBl'-lisI

in it-declarator:
declarator initializer opt

declarator:
identifier
(dec/ara tor)
* declarator
dec/orator ()
declarator (constant-expressionOPf]

- 28 -

struct-or-union-specij'ter:
struct (struct-decl-list I
struct identifier { struct-decl-Iist I
struct identifier
union (struct-decl-list I
union identifier (struct-decl-Iisl I
union identifier

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

struct-declaration:
type-specifier struct-declarator-list ;

struct-declarator-list:
struct-declarator
struct-declarator I struct-declarator-list

struct-declarator:
declarator
declarator: constant-expression
: constant-expression

initializer:
.. expression
... (initializer-list I
.. (initializer-list I

initiaJizer-list:
expression
initializer-list , initializer-list
(initializer-list I

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
(abstract-declarator)
* abstract-declarator
abstract-declarator ()
abstract-declarator { constant-expressionopl J

typedef-name:
identifier

18.3 Statements

compound-statement:
(deciaration-listOpt statement-listopl I

declaration-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

statement:
compound-statement
expression ;
if (expression) statement

- 29 -

if (expression) statement else statement
while (expression) statement
do statement while (expression) ;
for (expression-lopl; expression-2op1 ; expression-JopI) statement
swi tch (expression) statement
case constant-expression: statement
defaul t : statement
break ;
continue ;
return ;
return expression ;
g'oto identifier ;
identifier : statement

18.4 Externa. definitions

program:
external-definition
external-definition program

external-definition:
junction-definition
data-definition

junction-definition:
type-specifier opIjunction-declarator junction-body

junction-declarator:
declarator (parameter-listopl)

parameter-list:
identifier
identifier , parameter-list

junction-body:
type-decl-list junction-statement

junction-statement:
(declaration-listopl statement-list)

data-definition:

II.S Preprocessor

externopl type-specifier opI init-declarator-list"", ;
staticopl type-specifier opI init-declarator-list"", ;

- 30 -

Idefine identifier token-string
Ide fine identifier(identifier J ••• J identifier) token-string
lundef identifier
linclude "filename"
linclude ~lename>
lif COnStDnl-expression
Jifdef identifier
lifndef identifier
lelse
lendif
lline conStDnl identifier

Recent Changes to C

November 15, 1978

A few extensions have been made to the C language beyond what is described in the reference docu
ment ("The C Programming Language," Kernighan and Ritchie, Prentice-Hall, 1978).

1. Structure assignment

Structures may be assigned, passed as arguments to functions, and returned by functions. The types
of operands taking part must be the same. Other plausible operators, such as equality comparison, have
not been implemented.

There is a subtle defect in the PDP-II implementation of functions that return structures: if an inter
rupt occurs during the return sequence, and the same function is called reentrantly during the interrupt,
the value returned from the first call may be corrupted. The problem can occur only in the presence of
true interrupts, as in an operating system or a user program that makes significant use of signals; ordinary
recursive calls are quite safe.

2. Enumeration type

There is a new data type analogous to the scalar types of Pascal. To the type-specifiers in the syntax
on p. 193 of the C book add

with syntax

enum-specifier

enum~specifier:

enum I enum-list I
enum identifier { enum-list I
enum identifier

enum-list:
enumerator
enum-list, enumerator

enumerator:
identifier
identifier .. constant-expression

The role of the identifier in the enum-specifier is entirely analogous to that of the structure tag in a
struct-specifier; it names a particular enumeration. For example,

enum color { chartreuse, burgundy, claret, winedark li

enum color *cp, coli

makes color the enumeration-tag of a type describing various colors, and then declares cp as a pointer
to an object of that type, and col as an object of that type.

The identifiers in the enum-Iist are declared as constants, and may appear wherever constants are
required. If no enumerators with", appear, then the values of the constants begin at 0 and increase by 1
as the declaration is read from left to right. An enumerator with ... gives the associated identifier the
value indicated; subsequent identifiers continue the progression from the assigned value.

Enumeration tags and constants must all be distinct, and, unlike structure tags and members, are
drawn from the same set as ordinary identifiers.

Objects of a given enumeration type are regarded as having a type distinct from objects of all other
types, and lint flags type mismatches. In the PDP-ll implementation all enumeration variables are treated
as if they were into

Lint, a C Program Checker

s. C. Johnson

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Lint is a command which examines C source programs, detecting a
number of bugs and obscurities. It enforces the type rules of C more strictly
than the C compilers. It may also be used to enforce a number of portability
restrictions involved in moving programs between different machines and! or
operating systems. Another option detects a number of wasteful, or error
prone, constructions which nevertheless are, strictly speaking, legal.

Lint accepts multiple input files and library specifications, and checks them
for consistency.

The separation of function between lint and the C compilers has both his
torical and practical rationale. The compilers tum C programs into executable
files rapidly and efficiently. This is possible in part because the compilers do
not do sophisticated type checking, especially between separately compiled pro
grams. Lint takes a more global, leisurely view of the program, looking much
more carefully at the compatibilities.

This document discusses the use of lint, gives an overview of the imple
mentation, and gives some hints on the writing of machine independent C
code.

July 26, 1978

Introduction and Usale

Lint, a C Program Checker

S. C. Johnson

Bell Laboratories
Murray Hill, New Jersey 07974

Suppose there are two C1 source files, filel.c and file2.c, which are ordinarily compiled and
loaded tOlether. Then the command

lint file1.c file2.c

produces messales describina inconsistencies and inefficiencies in the proarams. The proaram
enforces the typinl rules of C more strictly than the C compilers (for both historical and practi
cal reasons) enforce them. The command

lint -p file1.c file2.c

will produce, in addition to the above messales, additional messages which relate to the porta
bility of the programs to other operating systems and machines. Replacing the - p by - h will
produce messages about various error-prone or wasteful constructions which, strictly speaking,
are not bup. Saying - hp gets the whole works.

The next several sections describe the mlijor messages; the document closes with sections
discussing the implementation and giving suUestions for writing portable C. An appendix
gives a summary of the lint options.

A Word About Phllosophy

Many of the facts which lint needs may be impossible to discover. For example, whether
a given function in a proaram ever gets called may depend on the input data. Deciding whether
exit is ever called is equivalent to solving the famous "halting problem," knCWI~ to be recur
sively undecidable.

Thus, most of the lint algorithms are a compromise. If a function is never mentioned, it
can never be called. If a function is mentioned, lint assumes it can be called; this is not neces
sarily so, but in practice is quite reasonable.

Lint tries to give information with a high degree of relevance. Messages of the form ".\xx

might be a bug" are easy to generate, but are acceptable only in proportion to the fraction of
real bup they uncover. If this fraction of real bup is too small, the messages lose their credi
bility and serve merely to clutter up the output, obscuring the more important messages.

Keeping these issues in mind, we now consider in more detail the classes of messages
which lint produces.

Unused Variables and Functions

As sets of programs evolve and develop, previously used variables and arguments to func
tions may become unused; it is not uncommon for external variables, or even entire functions,
to become unnecessary, and yet not be removed from the source. These "errors of commis
sion" rarely cause working proarams to fail, but they are a source of inefficiency, and make
proarams harder to understand and change. Moreover, information about such unused vari
ables and functions can occasionally serve to discover bup; if a function does a necessary job,
and is never called, something is wrong!

- 2 -

Lint complains about variables and functions which are defined but not otherwise men
tioned. An exception is variables which are declared through explicit extern statements but are
never referenced; thus the statement

extern float sin ();

will evoke no comment if sin is never used. Note that this agrees with the semantics of the C
compiler. In some cases, these unused external declarations might be of some interest; they
can be discovered by adding the -x flag to the lint invocation.

Certain styles of programming require many functions to be written with similar inter
faces; frequently, some of the arguments may be unused in many of the calls. The -Y option
is available; to suppress the printing of complaints about unused arguments. When -Y is in
effect, no messages are produced about unused arguments except for those arguments which
are unused and also declared as register arguments; this can "be considered an active (and
preventable) waste of the register resources of the machine.

There is one case where information about unused, or undefined, variables is more dis
tracting than helpful. This is when lint is applied to some, but not all, files out of a collection
which are to be loaded together. In this case, many of the functions and variables defined may
not be used, and, conversely, many functions and variables defined elsewhere may be used.
The -uflag may be used to suppress the spurious messages which might otherwise appear.

Set/Used Information
Lint attempts to detect cases where a variable is used before it is set. This is very difficult

to do well; many algorithms take a good deal of time and space, and still produce messages
about perfectly valid programs. Lint detects local variables (automatic and register storage
classes) whose first use appears physically earlier in the input file than the first assignment to
the variable. It assumes that taking the address of a variable constitutes a "use," since the
actual use may occur at any later time, in a data dependent fashion.

The restriction to the physical appearance of variables in the file makes the algorithm very
simple and quick to implement, since the true flow of control need not be discovered. It does
mean that lint can complain about some programs which are legal, but these programs would
probably be considered bad on stylistic grounds (e.g. might contain at least two 10to'S).
Because static and external variables are initialized to 0, no meaningful information can be
discovered about their uses. The algorithm deals correctly, however, with initialized automatic
variables, and variables which are used in the expression which first sets them.

The set/used information also permits recognition of those local variables which are set
and never used; these form a frequent source of inefficiencies, and may also be symptomatic of
bugs.

Flow of Control
Lint attempts to detect unreachable portions of the programs which it processes. It will

complain about unlabeled statements immediately following loto, break, continue, or return
statements. An attempt is made to detect loops which can never be left at the bottom, detect
ing the special cases while(1) and for(;;) as infinite loops. Lint also complains about loops
which cannot be entered at the top; some valid programs may have such loops, but at best they
are bad style, at worst bugs.

Lint has an important area of blindness in the flow of control algorithm: it has no way of
detecting functions which are called and never return. Thus, a call to exit may cause unreach
able code which lint does not detect; the most serious effects of this are in the determination of
returned function values (see the next section).

One form of unreachable statement is not usually complained about by lint,' a break state
ment that cannot be reached causes no message. Programs generated by yacc,2 and especially
lex, 3 may have literally hundreds of unreachable break statements. The -0 flag in the C

- 3 -

compiler will often eliminate the resulting object code inefficiency. Thus, these unreached
statements are of little importance, there is typically nothing the user can do about them, and
the resulting messages would clutter up the lint output. If these messages are desired, lint can
be invoked with the -b option.

Fundion Values

Sometimes functions return values which are never used; sometimes programs incorrectly
use function "values" which have never been returned. Lint addresses this problem in a
number of ways.

and

Locally, within a function definition, the appearance of both

retum(expr);

return ;

statements is cause for alarm; lint will give the message

function name contains return (e) and return

The most serious difficulty with this is detecting when a function return is implied by flow of
control reaching the end of the function. This can be seen with a simple example:

f (a) {
if (a) return (3);
gO;
}

Notice that, if a tests false, jwill call g and then return with no defined return value; this will
trigger a complaint from lint. If g, like exit, never returns, the message will still be produced
when in fact nothing is wrong.

In practice, some potentially serious bugs have been discovered by this feature; it also
accounts for a substantial fraction of the "noise" messages produced by lint.

On a global scale, lint detects cases where a function returns a value, but this value is
sometimes, or always, unused. When the value is always unused, it may constitute an
inefficiency in the function definition. When the value is sometimes unused, it may represent
bad style (e.g., not testing for error conditions).

The dual problem, using a function value when the function does not return one, is also
detected. This is a serious problem. Amazingly, this bug has been observed on a couple of
occasions in "working" programs; the desired function value just happened to have been com
puted in the function return register!

Type Checkina

Lint enforces the type checking rules of C more strictly than the compilers do. The addi
tional checking is in four mlijor areas: across certain binary operators and implied assignments,
at the structure selection operators, between the definition and uses of functions, and in the use
of enumerations.

There are a number of operators which have an implied balancing between types of the
operands. The assignment, conditional ('?:), and relational operators have this property; the
argument of a return statement, and expressions used in initialization also suffer similar
conversions. In these operations, char, short, int, long, unsigned, float, and double types may
be freely intermixed. The types of pointers must agree exactly, except that arrays of x's can, of
course, be intermixed with pointers to x's.

The type checking rules also require that, in structure references, the left operand of the
- > be a pointer to structure, the left operand of the. be a structure, and the right operand of

- 4 -

these operators be a member of the structure implied by the left operand. Similar checking is
done for references to unions. '-

Strict rules apply to function argument and return value matching. The types float and
double may be freely matched, as may the types char, short, int, and unsigned. Also, pointers
can be matched with the associated arrays. Aside from this, all actual arguments must agree in
type with their declared counterparts.

With enumerations, checks are made that enumeration variables or members are not
mixed with other types, or other enumerations, and that the only operations applied are =, ini
tialization, - -, ! -, and function arguments and return values.

Type Casts

The type cast feature in C was introduced largely as an aid to producing more portable
programs. Consider the assignment

where p is a character pointer. Lint will quite rightly complain. Now, consider the assignment

p .. (char .)1 ;

in which a cast has been used to convert the integer to a character pointer. The programmer
obviously had a strong motivation for doing this, and has clearly signaled his intentions. It
seems harsh for lint to continue to complain about this. On the other hand, if this code is
moved to another machine, such code should be looked at carefully. The -c flag controls the
printing of comments about casts. When -c is in effect, casts are treated as though they were
assignments subject to complaint; otherwise, all legal casts are passed without comment, no
matter how strange the type mixing seems to be.

Nonportable Character Use

On the PDP-ll, characters are signed quantities, with a range from -128 to 127. On
most of the other C implementations, characters take on only positive values. Thus, lint will
flag certain comparisons and assignments as being illegal or non portable. For example, the
fragment

char c;

if((c - getchar (» < 0)

works on the PDP-ll, but will fail on machines where characters always take on positive
values. The real solution is to declare c an integer, since getchar is actually returning integer
values. In any case, lint will say "nonportable character comparison".

A similar issue arises with bitfields; when assignments of constant values are made t(\
bitfields, the field may be too small to hold the value. This is especially true because on some
machines bitfields are considered as signed quantities. While it may seem unintuitive to con
sider that a two bit field declared of type lnt cannot hold the value 3, the problem disappears if
the bitfield is declared to have type unsigned.

Assignments of longs to ints
Bugs may arise from the assignment of long to an int, which loses accuracy. This may

happen in programs which have been incompletely converted to use typedefs. When a typedef
variable is changed from Int to long, the program can stop working because some intermediate
results may be assigned to Ints, losing accuracy. Since there are a number of legitimate reasons
for assigning longs to ints, the detection of these assignments is enabled by the -a flag.

- 5 -

Strange Constructions

Several perfectly legal, but somewhat strange, constructions are flagged by lint; the mes
sages hopefully encourage better code quality, clearer style, and may even point out bugs. The
- b flag is used to enable these checks. For example, in the statement

.p++ ;

the • does nothing; this provokes the message "null effect" from lint. The program fragment

unsigned x;
if(x < 0) ...

is clearly somewhat strange; the test will never succeed. Similarly, the test

if(x > 0) ...

is equivalent to

if(x ! - 0)

which may not be the intended action. Lint will say "degenerate unsigned comparison" in
these cases. If one says

if(1 ! - 0)

lint will report "constant in conditional context", since the comparison of 1 with 0 gives a con
stant result.

Another construction detected by lint involves operator precedence. Bugs which arise
from misunderstandings about the· precedence of operators can be accentuated by spacing and
formatting, making such bugs extremely hard to find. For example, the statements

if(x&077 - - 0) '"

or

x«2 + 40

probably do not do what was intended. The best solution is to parenthesize such expressions,
and lint encourages this by an appropriate message.

Finally, when the -b flag is in force lint complains about variables which are redeclared in
inner blocks in a way that conflicts with their use in outer blocks. This is legal, but is con
sidered by many (including the author) to be bad style, usually unnecessary, and frequently a
bug.

Ancient History
There are several forms of older syntax which are being officially discouraged. These fall

into two classes, assignment operators and initialization.

The older forms of assignment operators (e.g., == +, == -, ...) could cause ambiguous
expressions, such as

a --1;

which could be taken as either

a -- 1;

or

a -1;

The situation is especially perplexing if this kind of ambiguity arises as the result of a macro
substitution. The newer, and preferred operators (+ -, - -, etc.) have no such ambiguities.
To spur the abandonment of the older forms, lint complains about these old fashioned

- 6-

operators.

A similar issue arises with initialization. The older language allowed

int xl;

to initialize x to 1. This also caused syntactic difficulties: for example,

int x (-});

looks somewhat like the beginning of a function declaration:

int x (y) { ...

and the compiler must read a fair ways past x in order to sure what the declaration really is ..
Again, the problem is even more perplexing when the initializer involves a macro. The current
syntax places an equals sign between the variable and the initiaHzer:

int x - -1;

This is free of any possible syntactic ambiguity.

Pointer Alignment

Certain pointer assignments may be reasonable on some machines, and illegal on others,
due entirely to alignment restrictions. For example, on the PDP-ll, it is reasonable to assign
integer pointers to double pointers, since double precision values may begin on any integer
boundary. On the Honeywell 6000, double precision values must begin on even word boun
daries; thus, not all such assignments make sense. Lint tries to detect cases where pointers are
assigned to other pointers, and such alignment problems might arise. The message "possible
pointer alignment problem" results from this situation whenever either the -p or -h flags are
in effect.

Multiple Uses and Side Etrects

In complicated expressions, the best order in which to evaluate subexpressions may be
highly machine dependent. For example, on machines (like the PDP-ll) in which the stack
runs backwards, function arguments will probably be best evaluated from right-to-Ieft; on
machines with a stack running forward, left-ta-right seems most attractive. Function calls
embedded as arguments of other functions mayor may not be treated similarly to ordinary
arguments. Similar issues arise with other operators which have side effects, such as the assign
ment operators and the increment and decrement operators.

In order that the efficiency of C on a particular machine not be unduly compromised, the
C language leaves the order of evaluation of complicated expressions up to the local compiler,
and, in fact, the various C compilers have considerable differences in the order in which they
will evaluate complicated expressions. In particular, if any variable is changed by a side effect,
and also used elsewhere in the same expression, the result is explicitly undefined.

Lint checks for the important special case where a simple scalar variable is affected. For
example, the statement

ali] - b[i+ +] ;

will draw the complaint:

warning: i evaluation order undefined

Implementation

Lint consists of two programs and a driver. The first program is a version of the Portable
C Compiler4, 5 which is the basis of the IBM 370, Honeywell 6000, and Interdata 8/32 C com
pilers. This compiler does lexical and syntax analysis on the input text, constructs and main
tains symbol tables, and builds trees for expressions. Instead of writing an intermediate file

- 7 -

which is passed to a code generator, as the other compilers do, lint produces an intermediate file
which consists of lines of ascii text. Each line contains an external variable name, an encoding
of the context in which it was seen (use, definition, declaration, etc.), a type specifier, and a
source file name and line number. The information about variables local to a function or file is
collected by accessing the symbol table, and examining the expression trees.

Comments about local problems are produced as detected. The information about exter
nal names is collected onto an intermediate file. After all the source files and library descrip
tions have been collected, the intermediate file is sorted to bring all information collected about
a given external name together. The second, rather small, program then reads the lines from
the intermediate file and compares all of the definitions, declarations, and uses for consistency.

The driver controls this process, and is also responsible for making the options available
to both passes of lint.

Portability

C on the Honeywell and IBM systems is used, in part, to write system code for the host
operating system. This means that the implementation of C tends to follow local conventions
rather than adhere strictly to UNlxt system conventions. Despite these differences, many C
programs have been successfully moved to GCOS and the various IBM installations with little
effort. This section describes some of the differences between the implementations, and
discusses the lint features which encourage portability.

Uninitialized external variables are treated differently in different implementations of C.
SUl>pose two files both contain a declaration without initialization, such as

int a ;

outside of any function. The UNIX loader will resolve these declarations, and cause only a sin
gle word of storage to be set aside for Q. Under the GCOS and IBM implementations, this is
not feasible (for various stupid reasons!) so each such declaration causes a word of storage to
be set aside and called a. When loading or library editing takes place, this causes fatal conflicts
which prevent the proper operation of the program. If lint is invoked with the -p flag, it will
detect such multiple definitions. .-

A related difficulty comes from the amount of information retained about external names
during the loading process. On the UNIX system, externally known names have seven
significant characters, with the upper/lower case distinction kept. On the IBM systems, there
are eight significant characters, but the case distinction is lost. On GCOS, there are only six
characters, of a single case. This leads to situations where programs run on the UNIX system,
but encounter loader problems on the IBM or GCOS systems. Lint -p causes all external sym
bols to be mapped to one case and truncated to six characters, providing a worst-case analysis.

A number of differences arise in the area of character handling: characters in the UNIX
system are eight bit ascii, while they are eight bit ebcdic on the IBM, and nine bit ascii on
GCOS. Moreover, character strings go from high to low bit positions ("left to right") on
GCOS and IBM, and low to high ("right to left") on the PDP-ll. This means that code
attempting to construct strings out of character constants, or attempting to use characters as
indices into arrays, must be looked at with great suspicion. Lint is of little help here, except to
flag multi-character character constants.

Of course, the word sizes are different! This causes less trouble than might be expected,
at least when moving from the UNIX system (16 bit words) to the IBM (32 bits) or GCOS (36
bits). The main problems are likely to arise in shifting or masking. C now supports a bit-field
facility, which can be used to write much of this code in a reasonably portable way. Frequently,
portability of such code can be enhanced by slight rearrangements in coding style. Many of the
incompatibilities seem to have the flavor of writing

tUNIX is a Trademark of Ben Laboratories.

- 8 -

x &- 0177700 ;

to clear the low order six bits of x. This suffices on the PDP-ll, but fails badly on GCOS and
IBM. If the bit field feature cannot be used, the same effect can be obtained by writing

x &= - 077;

which will work on all these machines.

The right shift operator is arithmetic shift on the PDP-ll, and logical shift on most other
machines. To obtain a logical shift on all machines, the left operand can be typed unsigned.
Characters are considered signed integers on the PDP-ll, and unsigned on the other machines.
This persistence of the sign bit may be reasonably considered a bug in the PDP-II hardware
which has infiltrated itself into the C language. If there were a good way to discover the pro
grams which would be affected, C could be changed; in any case, lint is no help here.

The above discussion may have made the problem of portability seem bigger than it in
fact is. The issues involved here are rarely subtle or mysterious, at least to the implementor of
the program, although they can involve some work to straighten out. The most serious bar to
the portability of UNIX system utilities has been the inability to mimic essential UNIX system
functions on the other systems. The inability to seek to a random character position in a text
file, or to establish a pipe between processes, has involved far more rewriting and debugging
than any of the differences in C compilers. On the other hand, lint has been very helpful in
moving the UNIX operating system and associated utility programs to other machines.

Shutting Lint Up
There are occasions when the programmer is smarter than lint. There may be valid rea

sons for "illegal" type casts, functions with a variable number of arguments, etc. Moreover, as
specified above, the flow of control information produced by lint often has blind spots, causing
occasional spurious messages about perfectly reasonable programs. Thus, some way of com
municating with lint, typically to shut it up, is desirable.

The form which this mechanism should take is not at all clear. New keywords would
require current and old compilers to recognize these keywords, if only to ignore them. This has
both philosophical and practical problems. New preprocessor syntax suffers from similar prob
lems.

What was finally done was to cause a number of words to be recognized by lint when they
were embedded in comments. This required minimal preprocessor changes; the preprocessor
just had to agree to pass comments through to its output, instead of deleting them as had been
previously done. Thus, lint directives are invisible to the compilers, and the effect on systems
with the older preprocessors is merely that the lint directives don't work.

The first directive is concerned with flow of control information; if a particular place in
the program cannot be reached, but this is not apparent to lint, this can be asserted by the
directive

/* NOTREACHED */

at the appropriate spot in the program. Similarly, if it is desired to tum off strict type checking
for the next expression, the directive

1* NOSTRICf * /
can be used; the situation reverts to the previous default after the next expression. The -v
flag can be turned on for one function by the directive

1* ARGSUSED * /

Complaints about variable number of arguments in calls to a function can be turned off by the
~~~ . 



- 9 -

/", VARARGS ",/ 

preceding the function definition. In some cases, it is desirable to check the first several argu
ments, and leave the later arguments unchecked. This can be done by following the 
V ARARGS keyword immediately with a digit giving the number of arguments which should be 
checked; thus, 

/", VARARGS2 ",/ 

will cause the first two arguments to be checked, the others unchecked. Finally, the directive 

1* LINTLIBRAR Y ", / 

at the head of a file identifies this file as a library declaration file; this topic is worth a section by 
itself. 

Library Declaration Files 

Lint accepts certain library directives, such as 

-Iy 

and tests the source files for compatibility with these libraries. This is done by accessing library 
description files whose names are constructed from the library directives. These files all begin 
with the directive 

1* LINTLIBRAR Y ", / 

which is followed by a series of dummy function definitions. The critical parts of these 
definitions are the declaration of the function return type, whether the dummy function returns 
a value, and the number and types of arguments to the function. The V ARARGS and 
ARGSUSED directives can be used to specify features of the library functions. 

Lint library files are processed almost exactly like ordinary source files. The only 
difference is that functions which are defined on a library file, but are not used on a source file, 
draw no complaints. Lint does not simulate a full library search algorithm, and complains if the 
source files contain a redefinition of a library routine (this is a feature!). 

By default, lint checks the programs it is given against a standard library file, which con
tains descriptions of the programs which are normally loaded when a C program is run. When 
the -p flag is in effect, another file is checked containing descriptions of the standard I/O library 
routines which are expected to be portable across various machines. The -n flag can be used to 
suppress all library checking. 

Bugs, etc. 
Lint was a difficult program to write, partially because it is closely connected with matters 

of programming style, and partially because users usually don't notice bugs which cause lint to 
miss errors which it should have caught. (By contrast, if lint incorrectly complains about some
thing that is correct, the programmer reports that immediately!) 

A number of areas remain to be further developed. The checking of structures and arrays 
is rather inadequate; size incompatibilities go unchecked, and no attempt is made to match up 
structure and union declarations across files. Some stricter checking of the use of the typedef is 
clearly desirable, but what checking is appropriate, and how to carry it out, is still to be deter
mined. 

Lint shares the preprocessor with the C compiler. At some point it may be appropriate for 
a special version of the preprocessor to be constru~ted which checks for things such as unused 
macro definitions, macro arguments which have side effects which are not expanded at all, or 
are expanded more than once, etc. 

The central problem with lint is the packaging of the information which it collects. There 
are many options which serve only to turn off, or slightly modify, certain features. There are 



- 10-

pressures to add even more of these options. 

In conclusion, it appears that the general notion of having two programs is a good one. 
The compiler concentrates on quickly and accurately turning the program text into bits which 
can be run~ lint concentrates on issues of portability, style, and efficiency. Lint can afford to be 
wrong, since incorrectness and over-conservatism are merely annoying, not fatal. The compiler 
can be fast since it knows that lint will cover its flanks. Finally, the programmer can co~cen
trate at one stage of the programming process solely on the algorithms, data structures, and 
correctness of the program, and then later retrofit, with the aid of lint, the desirable properties 
of universality and portability. 



- 11 -

References 

1. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Engle
wood ours, New Jersey (1978). 

2. S. C. Johnson, "Yacc - Yet Another Compiler-Compiler," Compo Sci. Tech. Rep. No. 
32, Bell Laboratories, Murray Hill, New Jersey (July 1975). 

3. M. E. Lesk, "Lex - A Lexical Analyzer Generator," Compo Sci. Tech. Rep. No. 39, 
Bell Laboratories, Murray Hill, New Jersey (October 1975). 

4. S. C. Johnson and D. M. Ritchie, "UNIX Time-Sharing System: Portability of C Programs 
and the UNIX System," Bell Sys. Tech. J. 57(6) pp. 2021-2048 (1978). 

5. S. C. Johnson, "A Portable Compiler: Theory and Practice," Proc. 5th ACM Symp. on 
Principles 0/ Programming Languages, (January 1978). 



- 12 -

Appendix: Current Lint Options 

The command currently has the form 

lint [-options] files ... library-descriptors ... 

The options are 

h Perform heuristic checks 

p Perform portability checks 

v Don't report unused arguments 

u Don't report unused or undefined externals 

b Report unreachable break statements. 

x Report unused external declarations 

a Report assignments of long to iot or shorter. 

c Complain about questionable casts 

o No library checking is done 

s Same as h (for historical reasons) 



Make - A Program for Maintaining Computer Programs 

S. I. Feldman 

Bell Laboratories 
Murray Hill, New Jersey 07974 

ABSTRACT 

In a programming project, it is easy to lose track of which files need to be 
reprocessed or recompiled after a change is made in some part of the source. 
Make provides a simple mechanism for maintaining up-to-date versions of pro
grams that result from many operations on a number of files. It is possible to 
tell Make the sequence of commands that create certain files, and the list of 
files that require other files to be current before the operations can be done. 
Whenever a change is made in any part of the program, the Make command 
will create the proper files simply, correctly, and with a minimum amount of 
effort. 

The basic operation of Make is to find the name of a needed target in the 
description, ensure that all of the files on which it depends exist and are up to 
date, and then create the target if it has not been modified since its generators 
were. The description file really defines the graph of dependencies~ Make does 
a depth-first search of this graph to determine what work is really necessary. 

Make also provides a simple macro substitution facility and the ability to 
encapsulate commands in a single file for convenient administration. 

August 15, 1978 





Make - A Program for Maintaining Computer Programs 

Introduction 

S. I. FC'ldmall 

Bell Laboratories 
Murray Hill, New Jersey 07974 

It is common practice to divide large programs into smaller, more manageable pieces. 
The pieces may require quite different treatments: some may need to be run through a macro 
processor, some may need to be processed by a sophisticated program generator (e.g., Yacc[l] 
or Lex [2]). The outputs of these generators may then have to be compiled with special options 
and with certain definitions and declarations. The code resulting from these transformations 
may then need to be loaded together with certain libraries under the control of special options. 
Related maintenance activities involve running complicated test scripts and installing validated 
modules. Unfortunately, it is very easy for a programmer to forget which files depend on 
which others, which files have been modified recently, and the exact sequence of operations 
needed to make or exercise a new version of the program. After a long editing session, one 
may easily lose track of which files have been changed and which object modules are still valid, 
since a change to a declaration can obsolete a dozen other files. Forgetting to compile a routine 
that has been changed or that uses changed declarations will result in a program that will not 
work, and a bug that can be very hard to track down. On the other hand, recompiling every
thing in sight just to be safe is very wasteful. 

The program described in this report mechanizes many of the activities of program 
development and maintenance. If the information on inter-file dependences and command 
sequences is stored in a file, the simple command 

make 

is frequently sufficient to update the interesting files, regardless of the number that have been 
edited since the last "make". In most cases, the description file is easy to write and changes 
infrequently. It is usually easier to type the make command than to issue even one of the 
needed operations, so the typical cycle of program development operations becomes 

thinK - edit - make - test ... 

Make is most useful for medium-sized programming projects; it does not solve the prob
lems of maintaining multiple source versions or of describing huge programs. Make was 
designed for use on Unix, but a version runs on GCOS. 

Basic Features 
The basic operation of make is to update a target file by ensuring that all of the files on 

which it depends exist and are up to date, then creating the target if it has not been modified 
since its dependents were. Make does a depth-first search of the graph of dependences. The 
operation of the command depends on the ability to find the date and time that a file was last 
modified. 

To illustrate, let us consider a simple example: A program named prof( is made by compil
ing and loading three C-Ianguage files x.c, y.c, and z.c with the IS library. By convention, the 
output of the C compilations will be found in files named x.o, y.o, and z.o. Assume that the 
files x.C and y.c share some declarations in a file named defs, but that z.c does not. That is, x.c 



- 2 -

and y.c have the line 

#include "defs" 

The following text describes the relationships and operations: 

prog: x.o y.o z.o 
cc x.o y.o z.o -IS -0 prog 

x.o y.o: defs 

If this information were stored in a file named make/ile, the command 

make 

would perform the operations needed to recreate prog after any changes had been made to any 
of the four source files x.c, y.c, Z.C, or dels. 

Make operates using three sources of information: a user-supplied description file (as 
above), file names and "last-modified" times from the file system, and built-in rules to bridge 
some of the gaps. In our example, the first line says that prog depends on three ".0" files. 
Once these object files are current, the second line describes how to load them to create prog. 
The third line says that x.o and y.o depend on the file dels. From the file system, make discov
ers that there are three ".c" files corresponding to the needed ".0" files, and uses built-in 
information on how to generate an object from a source file (j.e .• issue a "cc -c" command). 

The following long-winded description file is equivalent to the one above, but takes no 
advantage of make's innate knowledge: 

prog: x.o y.O z.o 
cc x.o y.o z.o -IS -0 prog 

x.o: x.c defs 
cc -c X.c 

y.O : y.c defs 
cc -c y.c 

z.o : z.c 
cc -c z.c 

If none of the source or object files had changed since the last time prog was made, all of 
the files would be current, and "the command 

make 

would just announce this fact and stop. If, however, the dels file had been edited, x.c and y.c 
(but not z.e) would be recompiled, and thenprog would be created from the new ".0" files. If 
only the file y.£' had changed, only it would be recompiled, but it would still be necessary to 
reload prog. 

If no target name is given on the make command line, the first target mentioned in the 
description is created; otherwise the specified targets are made. The command 

make x.o 

would recompile x.o if x.c or de/s had changed. 

If the file exists after the commands are executed, its time of last modification is used in 
further decisions; otherwise the current time is used. It is often quite useful to include rules 
with mnemonic names and commands that do not actually produce a file with that name. 
These entries can take advantage of make's ability to generate files and substitute macros. 
Thus, an entry "save" might be included to copy a certain set of files, or an entry "cleanup" 



- 3 -

might be used to throwaway unneeded intermediate files. In other cases one may maintain a 
zero-length file purely to keep track of the time at which certain actions were performed. This 
technique is useful for maintaining remote archives and listings. 

Make has a simple macro mechanism for substituting in dependency lines and command 
strings. Macros are defined by command arguments or description file lines with embedded 
equal signs. A macro is invoked by preceding the name by a dollar sign; macro names longer 
than one character must be parenthesized. The name of the macro is either the single character 
after the dollar sign or a name inside parentheses. The following are valid macro invocations: 

$(CFLAGS) 
$2 
Sexy) 
$Z 
$(Z) 

The last two invocations are identical. $$ is a dollar sign. All of these macros are assigned 
values during input, as shown below. Four special macros change values during the execution 
of the command: $*, $@, $?, and $<. They will be discussed later. The following fragment 
shows the use: 

OBJECTS == x.o y.o z.o 
UBES = -IS 
prog: $(OBJECTS) 

cc $(OBJECTS) $(UBES) -0 prog 

The command 

make 

loads the three object files with the IS library. The command 

make "UBES - -II-IS" 

loads them with both the Lex (" -II") and the Standard (" -IS") libraries, since macro 
definitions on the command line override definitions in the description. (It is necessary to 
quote arguments with embedded blanks in UNlxt commands,) 

The following sections detail the form of description files and the command line, and dis
cuss options and built-in rules in more detail. 

Description Files and Substitutions 

A description file contains three types of informalion: macro definitions, dependency 
information, and executable commands. There is also a comment convention: all characters 
after a sharp (#) are ignored, as is the sharp itself. Blank lines and lines beginning with a sharp 
are totally ignored. If a non-comment line is too long, it can be continued using a backslash. If 
the last character of a line is a backslash, the backslash, newline, and following blanks and tabs 
are replaced by a single blank. 

A macro definition is a line containing an equal sign not preceded by a colon or a tab. 
The name (string of letters and digits) to the left of the equal sign (trailing blanks and tabs are 
stripped) is assigned the string of characters following the equal sign (leading blanks and tabs 
are strippedJ The following are valid macro definitions: 

tUN IX is a Trademark of Bell Laboratories. 



2 = xyz 
abc = -II -Iy -IS 
UBES = 

- 4 -

The last definition assigns UBES the null string. A macro that is never explicitly defined has 
the null string as value. Macro definitions may also appear on the make command line (see 
below). 

Other lines give information about target files. The general form of .an entry is: 

target 1 [target2 .. .1 : [:] [dependent 1 ... J [; commands] [# .. .1 
[(tab) commands] {# .. .J 

Items inside brackets may be omitted. Targets and dependents are strings of letters, digits, 
periods, and slashes. (Shell metacharacters ",," and "?" are expanded.) A command is any 
string of characters not including a sharp (except in quotes) or newline. Commands may 
appear either after a semicolon on a dependency line or on lines beginning with a tab immedi
ately following a dependency line. 

A dependency line may have either a single or a double colon. A target name may appear 
on more than one dependency line, but all of those lines must be of the same (single or double 
colon) type. 

1. For the usual single-colon case, at most one of these dependency lines may have a com
mand sequence associated with it. If the target is out of date with any of the dependents 
on any of the lines, and a command sequence is specified (even a null one following a 
semicolon or tab), it is executed; otherwise a default creation rule may be invoked. 

2. In the double-colon case, a command sequence may be associated with each dependency 
line; if the target is out of date with any of the files on a particular line, the associated 
commands are executed. A built-in rule may also be executed. This detailed form is of 
particular value in updating archive-type files. 

If a target must be created, the sequence of commands is executed. Normally, each com
mand line is printed and then passed to a separate invocation of the Shell after substituting for 
macros. (The printing is suppressed in silent mode or if the command line begins with an @ 

sign). Make normally stops if any command signals an error by returning a non-zero error 
code. (Errors are ignored if the" - i" flags has been specified on the make command line, if 
the fake target name ".IGNORE" appears in the description file, or if the command string in 
the description file begins with a hyphen. Some UNIX commands return meaningless status). 
Because each command line is passed to a separate invocation of the Shell, care must be taken 
with certain commands (e.g., cd and Shell control commands) that have meaning only within a 
single Shell process; the results are forgotten before the next line is executed. 

Before issuing any command, certain macros are set. $@ is set to the name of the file to 
be "made". $? is set to the string of names that were found to be younger than the target. If 
the command was generated by an implicit rule (see below)' $< is the name of the related file 
that caused the action, and $* is the prefix shared by the current and the dependent file names. 

If a file must be made but there are no explicit commands or relevant built-in rules, the 
commands associated with the name ".DEFAULT" are used. If there is no such name, make 
prints a message and stops. 

Command Usage 

The make command takes four kinds of arguments: macro definitions, flags, description 
file names, and target file names. 

make [ flags 1 [macro definitions 1 [targets] 



- 5 -

The following summary of the operation of the command explains how these arguments are 
interpreted. 

First, all macro definition arguments (arguments with embedded equal signs) are analyzed 
and the assignments made. Command-line macros override corresponding definitions found in 
the description files. 

Next, the flag arguments are examined. The permissible /lags are 

- i Ignore error codes returned by invoked commands. This mode is entered if the fake tar
get name ".IGNORE" appears in the description file. 

- s Silent mode. Do not print command lines before executing. This mode is also entered if 
the fake target name ".SILENT" appears in the description file. 

- r Do not use the built-in rules. 

- n No execute mode. Print commands, but do not execute them. Even lines beginning with 
an "@" sign are printed. 

- t Touch the target files (causing them to be up to date) rather than issue the usual com
mands. 

-q Question. The make command returns a zero or non-zero status code depending on 
whether the target file is or is not up to date. 

- p Print out the complete set of macro definitions and target descriptions 

-d Debug mode. Print out detailed information on files and times examined. 

- f Description file name. The next argument is assumed to be the name of a description 
file. A file name of "-" denotes the standard input. If there are no "-f" arguments, 
the file named mala.'./ile or Make./i/e in the current directory is read. The contents of the 
description files override the built-in rules if they are present). 

Finally, the remaining arguments are assumed to be the names of targets to be made; they 
are done in left to right order. If there are no such arguments, the first name in the description 
files that does not begin with a period is "made". 

Implicit Rules 
The make program uses a table of interesting suffixes and a set of transformation rules to 

supply default dependency information and implied commands. (The Appendix describes these 
tables and means of overriding them,) The default suffix list is: 

.0 

.C 

.e 

.r 

.f 

.S 

.y 

.yl' 

.ye 

.1 

Object file 
C source file 
Efl source fi Ie 
Ratfor source file 
Fortran source file 
Assembler source file 
Yacc-C source grammar 
Yacc-Ratfor source grammar 
Yacc-Efl source grammar 
Lex source grammar 

The following diagram summarizes the default transformation paths. If there are two paths 
connecting a pair of suffixes, the longer one is used only if the intermediate file exists or is 
named in the description. 



- 6 -

~o~ 
.( .r.e .f .S .y .yr .ye .1 .d 

~ \ \ 
.y.1 .yr .ye 

If the file x.o were needed and there were an x.c in the description or directory, it would 
be compiled. If there were also an x.l, that grammar would be run through Lex before compil
ing the result. However, if there were no x.c but there were an x.l, make would discard the 
intermediate C-Ianguage file and use the direct link in the graph above. 

It is possible to change the names of some of the compilers used in the default, or the flag 
arguments with which they are invoked by knowing the macro names used. The compiler 
names are the macros AS, CC, RC, EC, Y ACC, Y ACCR, Y ACCE, and LEX. The command 

make CC == newcc 

will cause the "newcc" command to be used instead of the usual C compiler. The macros 
CFLAGS, RFLAGS, EFLAGS, YFLAGS, and LFLAGS may be set to cause these commands 
to be issued with optional flags. Thus, 

make "CFLAGS== -0" 

causes the optimizing C compiler to be used. 

Example 
As an example of the use of make. we will present the description file used to maintain 

the make command itself. The code for make is spread over a number of C source files and a 
Yacc grammar. The description file contains: 



- 7 -

# Description file for the Make command 

P - und -31 opr -r2 # send to GCOS to be printed 
FILES - Makefile version.c defs main.c doname.c misc.c files.c dosys.cgram.y lex.c gcos.c 
OBJECTS - version.o main.o doname.o misc.o files.o dosys.o gram.o 
LIBES ... -IS 
LINT - lint -p 
CFLAGS .... -0 

make: $(OBJECTS) 
cc $(CFLAGS) $(OBJECTS) $(LIBES) -0 make 
size make 

$(OBJECTS): defs 
gram.o: lex.c 

cleanup: 
-rm ·.0 gram.c 
-du 

install: 
@size make lusr/bin/make 
cp make lusr/bin/make ; rm make 

print: $(FILES) # print recently changed files 
pr S? 1 SP 

test: 

touch print 

make -dp I grep -v TIME> 1 zap 
lusr/bin/make -dp I grep -v TIME >2zap 
ditf 1 zap 2zap 
rm I zap 2zap 

lint: dosys.c doname.c files.c main.c misc.c version.c gram.c 

arch: 

S(LINT) dosys.c doname.c files.c main.c misc.c version.c gram.c 
rm gram.c 

ar uv Isys/source/s2lmake.a S(FILES} 

Make' usually prints out each command before issuing it. The following output results from 
typing the simple command 

make 

in a directory containing only the source and description file: 

cc -c version.c 
cc -c main.c 
cc -c doname.c 
cc -c misc.c 
cc - c files.c 
cc -c dosys.c 
yacc gram.y 
mv y. tab.c gram.c 
cc -c gram.c 
cc version.o main.o doname.o misc.o files.o dosys.o gram.o -IS - 0 make 
13188+3348+3044 - 19580b - 046174b 

Although none of the source files or grammars were mentioned by name in the description file, 
make found them using its suffix rules and issued the needed commands. The string of digits 



- 8 -

results from the "size make" command; the printing of the command line itself was suppressed 
by an @ sign. The @ sign on the size command in the description file suppressed the printing 
of the command, so only the sizes are written. 

The last few entries in the description file are useful maintenance sequences. The "print" 
entry prints only the files that have been changed since the last "make print" command. A 
zero-length file prillt is maintained to keep track of the time of the printing; the $? macro in the 
command line then picks up only the names of the files changed since print was touched. The 
printed output can be sent to a different printer or to a file by changing the definition of the P 
macro: 

make print "P === opr -sp" 
or 

make print "P - cat > zap" 

Suggestions and Warnings 

. The most common difficulties arise from make's specific meaning of dependency. If file 
x.c has a "#include "defs"" line, then the object file x.o depends on defs; the source file x.c 
does not. (If defs is changed, it is not necessary to do anything to the file x.c, while it is neces
sary to recreate x.oJ 

To discover what make would do, the" - n" option is very useful. The command 

make -n 

orders make to print out the commands it would issue without actually taking the time to exe
cute them. If a change to a file is absolutely certain to be benign (e.g., adding a new definition 
to an include file), the "- t" (touch) option can save a lot of time: instead of issuing a large 
number of superfluous recompilations, make updates the modification times on the affected file. 
Thus, the command 

make -ts 

("touch silently") causes the relevant files to appear up to date. Obvious care is necessary, 
since this mode of operation subverts the intention of make and destroys all memory of the 
previous relationships. 

The debuggfng flag ("-d") causes make to print out a very detailed description of what it 
is doing, including the file times. The output is verbose, and recommended only as a last 
resort. 

Ack now ledgments 

I would like to thank S. C. Johnson for suggesting this approach to program maintenance 
control. I would like to thank S. C. Johnson and H. Gajewska for being the prime guinea pigs 
during development of make. 

References 

1. S. C. Johnson, "Yacc - Yet Another Com·piler-Compiler", Bell Laboratories Computing 
Science Technical Report #32. July 1978. 

2. M. E. Lesk, "Lex - A Lexical Analyzer Generator", Computing Science Technical 
Report #39, October 1975. 



- 9 -

Appendix. Suffixes and Transformation Rules 
The make program itself does not know what file name suffixes are interesting or how to 

transform a file with one suffix into a file with another suffix. This information is stored in an 
internal table that has the form of a description file. If the" - r" flag is used, this table is not 
used. 

The list of suffixes is actually the dependency list for the name ".SUFFIXES"; make 
looks for a file with any of the suffixes on the list. If such a file exists, and if there is a 
transformation rule for that combination, make acts as described earlier. The transformation 
rule names are the concatenation of the two suffixes. The name of the rule to transform a ".," 
file to a ".0" file is thus" .,.0". If the rule is' present and no explicit command sequence has 
beer;J given in the user's description files, the command sequence for the rule ".r.o" is used. If 
a command is generated by using one of these suffixing rules, the macro S· is given the value 
of the stem (everything but the suffix) of the name of the file to be made, and the macro $ < is 
the name of the dependent that caused the action. 

The order of the suffix list is significant, since it is scanned from left to right, and the first 
name that is formed that has both a file and a rule associated with it is used. If new names are 
to be appended, the user can just add an entry for ".SUFFIXES" in his own description file; 
the dependents will be added to the usual list. A" .SUFFIXES" line without any dependents 
deletes the current list. (It is necessary to clear the current list if the order of names is to be 
changed). 

The following is an excerpt from the default rules file: 

.SUFFIXES : .0 .c .e .r .f .y .yr .ye .1 .s 
YACC-yacc 
YACCR-yacc -r 
YACCE-yacc -e 
YFLAGS-
LEX-lex 
LFLAGS-
CC-cc 
AS-as -
CFLAGS-
RC-ec 
RFLAGS-
EC-ec 
EFLAGS-
FFLAGS-
.c.o: 

S(CC) S(CFLAGS) -c $< 
.e.o .r.o .f.o : 

.s.o: 

.y.o: 

.y.c : 

$(EC) S(RFLAGS) S(EFLAGS) S(FFLAGS) -c $< 

$(AS) -0 S@ $< 

$(YACC) $(YFLAGS) S< 
$(CC) $(CFLAGS) -c y.tab.c 
rm y.tab.c 
mv y.tab.o $@ 

$(YACC) $(YFLAGS) $< 
mv y.tab.c $@ 





UNIX Programming - Second Edition 

Brian W. Kernighan 

Dennis M. Ritchie 

Bell Laboratories 
Murray Hill, New Jersey 07974 

ABSTRACT 

This paper is an introduction to programming on the UNIXt system. The 
emphasis is on how to write programs that interface to the operating system, 
either directly or through the standard 110 library. The topics discussed include 

• handling command arguments 
• rudimentary I/O; the standard input and output 

• the standard I/O library; file system access 

• low-level I/O: open, read, write, close, seek 

• processes: exec, fork, pipes 

• signals - interrupts, etc. 
There is also an appendix which describes the standard I/O library in detail. 

November 12, 1978 

tUNIX is a Trademark of Bell Laboratories. 





UNIX Programming - Second Edition 

1. INTRODUCTION 

Brian W. Kernighan 

Dennis M. Ritchie 

Bell Laboratories 
Murray Hill, New Jersey 07974 

This paper describes how to write programs that interface with the UNIX operating system 
in a non-trivial way. This includes programs that use files by name, that use pipes, that invoke 
other commands as they run, or that attempt to catch interrupts and other signals during execu
tion. 

The document collects material which is scattered throughout several sections of The UNIX 
Programmer's Manual [I] for Version 7 UNIX. There is no attempt to be complete; only gen
erally useful material is dealt with. It is assumed that you will be programming in C, so you 
must be able to read the language roughly up to the level of The C Programming Language (21. 
Some of the material in sections 2 through 4 is based on topics covered more carefully there. 
You should also be familiar with UNIX itself at least to the level of UNIX for Beginners [3]. 

2. BASICS 

2 . 1. Program Arguments 
When a C program is run as a command, the arguments on the command line are made 

available to the function main as an argument count argc and an array argv of pointers to 
character strings that contain the arguments. By convention, argv [0] is the command name 
itself, so argc is always greater than O. 

The following program illustrates the mechanism: it simply echoes its arguments back to 
the terminal. (This is essentially the echo command.) 

main (argc, argv) 
int argc; 
char *argv(]; 
{ 

int i; 

1* echo arguments *1 

for (i - 1; i < argci i++) 
printf(II"s~", argv[il, (i<argc-1) ? ' , : '\n'); 

argv is a pointer to an array whose individual elements are pointers to arrays of characters; 
each is terminated by \0, so they can be treated as strings. The program starts by printing 
argv [1] and loops until it has printed them all. 

The argument count and the arguments are parameters to main. If you want to keep them 
around so other routines can get at them, you must copy them to external variables. 

2.2. The "Standard Input" and "Standard Output" 
The simplest input mechanism is to read the "standard input," which is generally the 

user's terminal. The function getchar returns the next input character each time it is called. 
A file may be substituted for the terminal by using the < convention: if prog uses getchar, 



- 2 -

then the command line 

prog <file 

causes prog to read file instead of the terminal. prog itself need know nothing about 
where its input is coming from. This is also true if the input comes from another program via 
the pipe mechanism: 

otherprog I prog 

provides the standard input for prog from the standard output of otherprog. 

getchar returns the value EOF when it encounters the end of file (or an error) on what
ever you are reading. The value of EOF is normally defined to be -1, but it is unwise to take 
any advantage of that knowledge. As will become clear shortly, this value is automatically 
defined for you when you compile a program, and need not be of any concern. 

Similarly, putchar (c) puts the character c on the "standard output," which is also by 
default the terminal. The output can be captured on a file by using >: if prog uses putchar, 

prog >outfile 

writes the standard output on outfile instead of the terminal. outfile is created if it 
doesn 't exist~ if it already exists, its previous contents are overwritten. And a pipe can be used: 

prog I otherproq 

puts the standard output of prog into the standard input of otherprog . 

The function printf, which formats output in various ways, uses the same mechanism as 
putchar does, so calls to printf and putchar may be intermixed in any order~ the output 
will appear in the order of the calls. 

Similarly, the function scanf provides for formatted input conversion~ it will read the 
standard input and break it up into strings, numbers, etc., as desired. scanf uses the same 
mechanism as getchar, so calls to them may also be intermixed. 

Many programs read only one input and write one output; for such programs I/O with 
getchar, putchar, scanf, and printf may be entirely adequate, and it is almost always 
enough to get started. This is particulady true if the UNIX pipe facility is used to connect the 
output of one program to the input of the next. For example, the following program strips out 
all ascii control characters from its input (except for newline and tab). . 

#include <stdio.h> 

main ( ) 
{ 

1* ccstrip: strip non--qraphic characters *1 

The line 

int Ci 
while «c - qetchar(» 1- EOF) 

if «c >- ' , && c <0177) II c -- '\t' II c -- '\n') 
putchar(c)i 

exit(O)i 

#include <stdio.h> 

should appear at the beginning of each source file. It causes the C compiler to read a file 
(/usrlinclude/stdio.h) of standard routines and symbols that includes the definition of EOF. 

If it is necessary to treat multiple files, you can use cat to collect the files for you: 

cat file1 file2 ... I ccstrip >output 

and thus avoid learning how to access files from a program. By the way, the call to exit at the 
end is not necessary to make the program work properly, but it assures that any caller of the 



- 3 -

program will see a normal termination status (conventionally 0) from the program when it com
pletes. Section 6 discusses status returns in more detail. 

3. THE STANDARD 1/0 LIBRARY 
The "Standard I/O Library" is a collection of routines intended to provide efficient and 

portable 1/0 services for most C programs. The standard I/O library is available on each sys
tem that supports C, so programs that confine their system interactions to its facilities can be 
transported from one system to another essentially without change. 

In this section, we will discuss the basics of the standard I/O library. The appendix con
tains a more complete description of its capabilities. 

3 . 1. File Access 
The programs written so far have all read the standard input and written the standard out

put, which we have assumed are magically pre-defined. The next step is to write a program that 
accesses a file that is not already connected to the program. One simple example is we, which 
counts the lines, words and characters in a set of files. For instance, the command 

we x.e y.c 

prints the number of lines, words and characters in x. c and y. c and the totals. 

The question is how to arrange for the named files to be read - that is, how to connect the 
file system names to the I/O statements which actually read the data. 

The rules are simple. Before it can be read or written a file has to be opened by the stan
dard library function fopen. fopen takes an external name (like x. c or y. C), does some 
housekeeping and negotiation with the operating system, and returns an internal name which 
must be used in subsequent reads or writes of the file. 

This internal name is actually a pointer, called a file pointer, to a structure which contains 
information about the file, such as the location of a buffer, the current character position in the 
buffer, whether the file is being read or written, and the like. Users don't need to know the 
details, because part of the standard I/O definitions obtained by including stdio. h is a struc
ture definition called FILE. The only declaration needed for a file pointer is exemplified by 

FILE *fp, *fopen()i 

This says that fp is a pointer to a FILE, and fopen returns a pointer to a FILE. (FILE is a 
type name, like int, not a structure tag. 

The actual call to fopen in a program is 

fp a fopen(name, mode); 

The first argument of fopen is the name of the file, as a character string. The second argu
ment is the mode, also as a character string, which indicates how you intend to use the file. 
The only allowable modes are read (" r"), write ("w"), or append (" a ,,). 

If a file that you open for writing or appending does not exist, it is created (if possible). 
Opening an existing file for writing causes the old contents to be discarded. Trying to read a 
file that does not exist is an error, and there may be other causes of error as well (like trying to 
read a file when you don't have permission). If there is any error, fopen will return the null 
pointer value NULL (which is defined as zero in stdio. h). 

The next thing needed is a way to read or write the file once it is open. There are several 
possibilities, of which getc and putc are the simplest. getc returns the next character from 
a file; it needs the file pointer to tell it what file. Thus 

c = getc(fp) 

places in c the next character from the file referred to by fp; it returns EOF when it reaches 
end of file. putc is the inverse of getc: 



- 4 -

pute(e, fp) 

puts the character c on the file fp and returns c. getc and putc return EOF on error. 

When a program is started, three files are opened automatically, and file pointers are pro
vided for them. These files are the standard input, the standard output, and the standard error 
output; the corresponding file pointers are called stdin, stdout, and stderr. Normally 
these are all connected to the terminal, but may be redirected to files or pipes as described in 
Section 2.2. stdin, stdout and stderr are pre-defined in the 1/0 library as the standard 
input, output and error files; they may be used anywhere an object of type FILE * can be. 
They are constants, however, not variables, so don't try to assign to them. 

With some of the preliminaries out of the way, we can now write we. The basic design is 
one that has been found convenient for many programs: if there are command-line arguments, 
they are processed in order. If there are no arguments, the standard input is processed. This 
way the program can be used stand-alone or as part of a larger process. 

#include <stdio.h> 

main(argc, argv) 
int argc; 

1* wc: count lines, words, chars *1 

char *argv(]; 
( 

int c, i, inword; 
FILE *fp, *fopen(); 
long linect, wordet, charct; 
long tlinect z 0, twordet - 0, tcharct c 0; 

i .. 1; 
fp .. stdin; 
do { 

if (arge > 1 && (fp-fopen(argv(iJ, "r"» ..... NULL) ( 
fprintf(stderr, "we: can't open ~s\n", argv(i]); 
continue; 

linect .. wordct ... charct ... inword .. 0; 
while «e ... getc(fp» I- EOF) { 

charct++; 
if (c ..... '\n') 

lineet++;· 
if (e -- ' , I I c -- ' \ t' I I c ..... ' \n' ) 

inword .. OJ 
else if (inword -- 0) ( 

inword ... 1; 
wordct++; 

printf(II~71d ~71d ~71d", linect, wordct, charct)i 
printf(argc > 1 ? II ~s\n" : "\n lt , argv[i]); 
fclose(fp) ; 
tlinect +- linect; 
twordct +- wordct; 
tcharct +- charct; 

while (++i < argc)i 
if (argc > 2) 

printf(II~7ld ~71d ~71d total\n", tlinect, twordct, tcharct); 
exit(O); 

The function fprintf is identical to printf, save that the first argument is a file pointer that 
specifies the file to be written. 



- 5 -

The function fclose is the inverse of fop en; it breaks the connection between the file 
pointer and the external name that was established by fopen, freeing the file pointer for 
another file. Since there is a limit on the number of files that a program may have open simul
taneously, it's a good idea to free things when they are no longer needed. There is also another 
reason to call fclose on an output file - it flushes the buffer in which putc is collecting out
put. (fclose is called automatically for each open file when a program terminates normallyJ 

3.2. Error Handling - Stderr and Exit 

stderr is assigned to a program in the same way that stdin and stdout are. Output 
written on stderr appears on the user's terminal even if the standard output is redirected. we 

writes its diagnostics on stderr instead of stdout so that if one of the files can't be accessed 
for some reason, the message finds its way to the user's terminal instead of disappearing down 
a pipeline or into an output file. 

The program actually signals errors in another way, using the function exi t to terminate 
program execution. The argument of exit is available to whatever process called it (see Sec
tion 6), so the success or failure of the program can be tested by another program that uses this 
one as a sub-process. By convention, a return value of 0 signals that all is well; non-zero 
values signal abnormal situations. 

exi t itself calls fclose for each open output file, to flush out any buffered output, then 
calls a routine named _exit. The function _exit causes immediate termination without any 
buffer flushing; it may be called directly if desired. 

3 . 3. Miscellaneous 110 Functions 
The standard I/O library provides several other I/O functions besides those we have illus

trated above. 

Normally output with putc, etc., is buffered (except to stderr); to force it out immedi
ately, use fflush(fp). 

fscanf is identical to scanf, except that its first argument is a file pointer (as with 
fprintf) that specifies the file from which the input comes; it returns EOF at end of file. 

The functions sscan£ and sprintf are identical to fscanf and fprintf, except that 
the first argument names a character string instead of a file pointer. The conversion is done 
from the string for sscanf and into it for sprintf. 

fgets (buf, size, fp) copies the next line from fp, up to and including a newline, 
into buf; at most size-1 characters are copied; it returns NULL at end" of file. 
fputs (buf, fp) writes the string in buf onto file fp. 

The function ungetc (c, fp) "pushes back" the character c onto the input stream fp; a 
subsequent call to getc, fscanf, etc., will encounter c. Only one character of push back per 
file is permitted. 

4. LOW-LEVEL 1/0 
This section describes the bottom level of I/O on the UNIX system. The lowest level of 

110 in UNIX provides no buffering or any other services; it is in fact a direct entry into the 
operating system. You are entirely on your own, but on the other hand, you have the most 
control over what happens. And since the calls and usage are quite simple, this isn't as bad as 
it sounds. 

4 . 1. File Descriptors 
In the UNIX operating system, all input and output is done by reading or writing files, 

because all peripheral devices, even the user's terminal, are files in the file system. This means 
that a single, homogeneous interface handles all communication between a program and peri
pheral devices. 



- 6 -

In the most general case, before reading or writing a file, it is necessary to inform the sys
tem of your intent to do so, a process called "opening" the file. If you are going to write on a 
file, it may also be necessary to create it. The system checks your right to do so (Does the file 
exist? Do you have permission to access it?), and if all is well, returns a small positive integer 
called a fife descriptor. Whenever 110 is to be done on the file, the file descriptor is used instead 
of the name to identify the file. (This is roughly analogous'to the use of REAO(S; .. J and 
WRITE(6, ... ) in Fortran.) All information about an open file is maintained by the system; the 
user program refers to the file only by the file descriptor. 

The file pointers discussed in section 3 are similar in spirit to file descriptors, but file 
descriptors are more fundamental. A file pointer is a pointer to a structure that contains, 
among other things, the file descriptor for the file in question. 

Since input and output involving the user's terminal are so common, special arrangements 
exist to make this convenient. When the command interpreter (the "shell") runs a program, it 
opens three files, with file descriptors 0, 1, and 2, called the standard input, the standard out
put, and the standard error output. All of these are normally connected to the terminal, so if a 
program reads file descriptor 0 and writes file descriptors 1 and 2, it can do terminal I/O 
without worrying about opening the files. 

If 110 is redirected to and from files with < and >, as in 

prog <infile >outfile 

the shell changes the default assignments for file descriptors 0 and 1 from the terminal to the 
named files. Similar observations hold if the input or output is associated with a pipe. Nor
mally file descriptor 2 remains attached to the terminal, so error messages can go there. In all 
cases, the file assignments are changed by the shell, not by the program. The program does not 
need to know where its input comes from nor where its output goes, so long as it uses file 0 for 
input and 1 and 2 for output. 

4 . 2. Read and Write 

All input and output is done by two functio'ns called read and write. For both, the first 
argument is a file descriptor. The second argument is a buffer in your program where the data 
is to come from or go to. The third argument is the number of bytes to be transferred. The 
calls are 

n_read - read(fd, buf, n)i 

n_written - write(fd, buf, n)i 

Each call returns a byte count which is the number of bytes actually transferred. On reading, 
the number of bytes returned may be less than the number asked for, because fewer than n 
bytes remained to be read. (When the file is a terminal, read normally reads only up to the 
next newline, which is generally less than what was requested.) A return value of zero bytes 
implies end of file, and -1 indicates an error of some sort. For writing, the returned value is 
the number of bytes actually written; it is generally an error if this isn't equal to the number 
supposed to be written. 

The number of bytes to be read or written is quite arbitrary. The two most common values 
are 1, which means one character at a time ("unbuffered"), and 512, which corresponds to a 
physical blocksize on many peripheral devices. This latter size will be most efficient, but even 
character at a time 110 is not inordinately expensive. 

Putting these facts together, we can write a simple program to copy its input to its output. 
This program will copy anything to anything, since the input and output can be redirected to 
any file or device. 



- 7 -

Idefine BUFSIZE 512 1* best size for POP-11 UNIX *1 

main ( ) 
I 

1* copy input to output *1 

char buf[BUFSIZE); 
int n; 

while «n - read(O, buf, BUFSIZE» > 0) 
write(1, buf, n); 

exit(O); 

If the file size is not a multiple of BUFSIZE, some read will return a smaller number of bytes 
to be written by wri te; the next call to read after that will return zero. 

It is instructive to see how read and write can be used to construct higher level routines 
like qetchar, putchar, etc. For example, here is a version of qetchar which does 
unbuffered input. 

Idefine CMASK 0377 1* for makinq char's> 0 *1 

qetchar() 1* unbuffered sinqle character input *1 
I 

char c; 

return«read(O, &c, 1) > 0) ? c & CMASK : EOF); 

c must be declared char, because read accepts a character pointer. The character being 
returned must be masked with 0377 to ensure that it is positive; otherwise sign extension may 
make it negative. (The constant 0377 is appropriate for the PDP-ll but not necessarily for 
other machines.) 

The second version of qetchar does input in big chunks, and hands out the characters 
one at a time. 

Idefine CMASK 0377 1* for makinq char's> 0 *1 
Idefine BUFSIZE 512 

qetchar() 1* buffered version *1 
I 

static char 
static char 
static int 

buf[BUFSIZE]; 
*bufp - buf; 
n - 0; 

if (n -- 0) 1* buffer is empty *1 
n - read(O, buf, BUFSIZE); 
bufp - buf; 

return«--n >- 0) ? *bufp++ & CMASK EOF); 

4 . 3. Open, Creat, Close, Unlink 
Other than the default standard input, output and error files, you must explicitly open files 

in order to read or write them. There are two system entry points for this, open and crea t 
[sicl. 

open is rather like the fopen discussed in the previous section, except that instead of 
returning a file pointer, it returns a file descriptor, which is just an into 



- 8 -

int fdi 

fd - open(name, rwmode)i 

As with fopen, the name argument is a ·character string corresponding to the external file 
name. The access mode argument is different, however: rwmode is 0 for read, 1 for write, and 
2 for read and write access. open returns -1 if any error occurs; otherwise it returns a valid 
file descriptor. 

It is an error to try to open a file that does not exist. The entry point ereat is provided 
to create new files, or to re-write old ones. 

fd • creat(name, pmode)i 

returns a file descriptor if it was able to create the file called name, and -1 if not. If the file 
already exists. ereat will truncate it to zero length; it is not an error to ere at a file that 
already exists. 

If the file is brand new, erea t creates it with the protection mode specified by the pmode 
argument. In the UNIX file system, there are nine bits of protection information associated 
with a file, controlling read, write and execute permission for the owner of the file, for the 
owner's group, and for all others. Thus a three-digit octal number is most convenient for 
specifying the permissions. For example, 0755 specifies read, write and execute permission for 
the owner, and read and execute permission for the group and everyone else. 

To illustrate, here is a simplified version of the UNIX utility cp, a program which copies one 
file to another. (The main simplification is that our version copies only one file, and does not 
permit the second argument to be a directory.) 

'define NULL 0 
'define BUFSIZE 512 
'define PMODE 0644 1* RW for owner, R for qroup, others *1 

main (arqc, arqv) 
int arqci 

1* cp: copy f1 to f2 *1 

char *arqv[]i 
( 

int f1, f2, ni 
char buf[BUFSIZE)i 

if (arqc I- 3) 
error ("Usaqe: cp from to", NULL)i 

if «f1 - open(arqv[1], 0» .- -1) 
error ("cp: can't open ,,"s", arqv[1])i 

if «f2 - creat(arqv[2], PMODE» -- -1) 
error ("cp: can't create ,,"s", arqv[2])i 

while «n • read(f1, buf, BUFSIZE» > 0) 
if (write (f2, buf, n) I- n) 

error ("cp: write error", NULL)i 
exit(O)i 

error(s1, s2) 1* print error messaqe and die *1 
char *s1, *s2i 
( 

printf(s1, s2)i 
printf(It\n lt ); 

exit(1)i 



- 9 -

As we said earlier, there is a limit (typically 15-25) on the number of files which a program 
may have open simultaneously. Accordingly, any program which intends to process many files 
must be prepared to re-use file descriptors. The routine close breaks the connection between 
a file descriptor and an open file, and frees the file descriptor for use with some other file. Ter
mination of a program via exit or return from the main program closes all open files. 

The function unlink (filename) removes the file filename from the file system. 

4 . 4. Random Access - Seek and Lseek 
File 1/0 is normally sequential: each read or write takes place at a position in the file 

right after the previous one. When necessary, however, a file can be read or written in any 
arbitrary order. The system call lseek provides a way to move around in a file without actu
ally reading or writing: 

lseek(fd, offset, origin); 

forces the current position in the file whose descriptor is fd to move to position offset, 
which is taken relative to the location specified by origin. Subsequent reading or writing will 
begin at that position. offset is a long~ fd and origin are int's. origin can be 0, 1, 
or 2 to specify that offset is to be measured from the beginning, from the current position, 
or from the end of the file respectively. For example, to append to a file, seek to the end 
before writing: 

lseek(fd, OL, 2); 

To get back to the beginning (Hrewind"), 

lseek(fd, OL, 0); 

Notice the OL argument~ it could also be written as (long) O. 
With lseek, it is possible to treat files more or less like large arrays, at the price of slower 

access. For example, the following simple function reads any number of bytes from any arbi
trary place in a file. 

get(fd, pos, buf, n) 1* read n bytes from position pos *1 
int fd, n; 
long pos; 
char *buf; 
{ 

lseek(fd, pos, a}; 1* get to pos *1 
return (read (fd, buf, n}); 

In pre-version 7 UNIX, the basic entry point to the 110 system is called seek. seek is 
identical to lseek, except that its offset argument is an int rather than a long. Accord
ingly, since PDP-II integers have only 16 bits, the offset specified for seek is limited to 
65,535~ for this reason, origin values of 3, 4, 5 cause seek to multiply the given offset by 
512 (the number of bytes in one physical block) and then interpret origin as if it were 0, 1, 
or 2 respectively. Thus to get to an arbitrary place in a large file requires two seeks, first one 
which selects the block, then one which has origin equal to 1 and moves to the desired byte 
within the block. 

4 . S. Error Processinl 
The routines discussed in this section, and in fact all the routines which are direct entries 

into the system can incur errors. Usually they indicate an error by returning a value of -1. 
Sometimes it is nice to know what sort of error occurred; for this purpose all these routines, 
when appropriate, leave an error number in the external cell errno. The meanings of the 
various error numbers are listed in the introduction to Section II of the UNIX Programmer's 
Manual. so your program can, for example, determine if an attempt to open a file failed 



- 10 -

because it did not exist or because the user lacked permission to read it. Perhaps more com
monly, you may want to print out the reason for failure. The routine perror will print a mes
sage associated with the value of errno~ more generally, sys_errno is an array of character 
strings which can be indexed by errno and printed by your program. 

5. PROCESSES 

It is often easier to use a program written by someone else than to invent one's own. This 
section describes how to execute a program from within another. 

5 . 1. The "System" Function 

The easiest way to execute a program from another is to use the standard library routine 
system. system takes one argument, a command string exactly as typed at the terminal 
(except for the newline at the end) and executes it. For instance, to time-stamp the output of 
a program, 

main ( ) 
( 

system("date") ; 
1* rest of processinq *1 

If the command string has to be built from pieces, the in-memory formatting capabilities of 
sprintf may be useful. 

Remember than qetc and putc normally buffer their input~ terminal 110 will not be prop
erly synchronized unless this buffering is defeated. For output, use fflush~ for input, see 
setbuf in the appendix. 

5 . 2. Low-Level Process Creation - Execl and Execv 
If you're not using the standard library, or if you need finer control over what happens, you 

will have to construct calls to other programs using the more primitive routines that the stan
dard library's system routine is based on. 

The most basic operation is to execute another program without returning, by using the rou
tine execl. To print the date as the last action of a running program, use 

execl("/bin/date", "date", NULL); 

The first argument to execl is the file name of the command~ you have to know where it is 
found in the file system. The second argument is conventionally the program name (that is, 
the last component of the file name), but this is seldom used except as a place-holder. If the 
command takes arguments, they are strung out after this~ the end of the list is marked by a 
NULL argument. 

The execl call overlays the existing program with the new one, runs that, then exits. 
There is no return to the original program. 

More realistically, a program might fall into two or more phases that communicate only 
through temporary files. Here it is natural to make the second pass simply an execl call from 
the first. 

The one exception to the rule that the original program never gets control back occurs 
when there is an error, for example if the file can't be found or is not executable. If you don't 
know where date is located, say 

execl("/bin/date", "date", NULL); 
execl("/usr/bin/date", "date", NULL); 
fprintf(stderr, "Someone stole 'date'\n"); 

A variant of execl called execv is useful when you don't know in advance how many 
arguments there are going to be. The call is 



- 11 -

execv(filename, argp)i 

where argp is an array of pointers to the arguments; the last pointer in the array must be 
NULL so execv can tell where the list ends. As with execl, filename is the file in which 
the program is found, and argp [0] is the name of the program. (This arrangement is identi
cal to the argv array for program arguments.) 

Neither of these routines provides the niceties of normal command execution. There is no 
automatic search of multiple directories - you have to know precisely where the command is 
located. Nor do you get the expansion of metacharacters like <, >, *, ?, and [] in the argu
ment list. If you want these, use execl to invoke the shell sh, which then does all the work. 
Construct a string commandl ine that contains the complete command as it would have been 
typed at the terminal, then say 

execl("/bin/sh", "sh", "-c", commandline, NULL); 

The shell is assumed to be at a fixed place, /bin/ sh. Its argument -c says to treat the next 
argument as a whole command line, so it does just what you want. The only problem is in con
structing the right information in commandline. 

5.3. Control of Processes - Fork and Wait 

So far what we've talked about isn't really all that useful by itself. Now we will show how 
to regain control after running a program with exec 1 or execv. Since these routines simply 
overlay the new program on the old one, to save the old one requires that it first be split into 
two copies; one of these can be overlaid, while the other waits for the new, overlaying program 
to finish. The splitting is done by a routine called fork: 

proc_id - fork(); 

splits the program into two copies, both of which continue to run. The only difference between 
the two is the value of proc_id, the "process id." In one of these processes (the "child"), 
proc_id is zero. In the other (the "parent"), proc_id is non-zero; it is the process number 
of the child. Thus the basic way to caU, and return from, another program is 

if (fork () .... 0) 
execl("/bin/sh", "sh" , "-c", coo, NULL); 1* in child */ 

And in fact, except for handling errors, this is sufficient. The fork makes two copies of the 
program. In the child, the value returned by fork is zero, so ,it calls execl which does the 
command and then dies. In the parent, fork returns non-zero so it skips the execl. (If 
there is any error, fork returns -1). 

More often, the parent wants to wait for the child to terminate before continuing itself. 
This can be done with the function wai t: 

int status; 

if (fork() "'" .. 0) 
execl ( ... ) ; 

wait(&status)i 

This still doesn't handle any abnormal conditions, such as a failure of the execl or fork, or 
the possibility that there might be more than one child running simultaneously. (The wait 
returns the process id of the terminated child, if you want to check it against the value returned 
by fork,) Finally, this fragment doesn't deal with any funny behavior on the part of the child 
(which is reported in status). Still, these three lines are the heart of the standard library's 
system routine, which we'll show in a moment. 

The status returned by wait encodes in its low-order eight bits the system's idea of the 
child's termination status; it is 0 for normal termination and non-zero to indicate various kinds 
of problems. The next higher eight bits are taken from the argument of the call to exi t which 
caused a normal termination of the child process. It is good coding practice for all programs to 



- 12 -

return meaningful status. 

When a program is called by the shell, the three file descriptors 0, 1, and 2 are set up point
ing at the right files, and all other possible file descriptors are available for use. When this pro
gram calls another one, correct etiquette suggests making sure the same conditions hold. Nei
ther fork nor the exec calls affects open files in any way. If the parent is buffering output 
that must come out before output from the child, the parent must flush its buffers before the 
execl. Conversely, if a caller buffers an input stream, the called program will lose any infor
mation that has been read by the caller. 

5.4. Pipes 
A pipe is an I/O channel intended for use between two cooperating processes: one process 

writes into the pipe, while the other reads. The system looks after buffering the data and syn
chronizing the two processes. Most pipes are created by the shell, as in 

1s I pr 

which connects the standard output of Is to the standard input of pro Sometimes, however, it 
is most convenient for a process to set up its own plumbing~ in this section, we will illustrate 
how the pipe connection is established and used. 

The system call pipe creates a pipe. Since a pipe is used for both reading and writing, two 
file descriptors are returned~ the actual usage is like this: 

int fd[2]; 

stat - pipe(fd); 
if (stat .- -1) 

1* there was an error ... *1 

fd is an array of two file descriptors, where fd [0] is the read side of the pipe and fd [1] is 
for writing. These may be used in read, write and close calls just like any other file 
descriptors. 

If a process reads a pipe which is empty, it will wait until data arrives; if a process writes 
into a pipe which is too full, it will wait until the pipe empties somewhat. If the write side of 
the pipe is closed, a subsequent read will encounter end of file. 

To illustrate the use of pipes in a realistic setting, let us write a function called 
popen (cmd, mode), which creates a process cmd (just as system does), and returns a file 
descriptor that will either read or write that process, according to mode. That is, the call 

fout - popen ( "pr", WRITE); 

creates a process that executes the pr command; subsequent write calls using the file descrip
tor fout will send their data to that process through the pipe. 

popen first creates the the pipe with a pipe system call; it then forks to create two 
copies of itself. The child decides whether it is supposed to read or write, closes the other side 
of the pipe, then calls the shell (via execl) to run the desired process. The parent likewise 
closes the end of the pipe it does not use. These closes are necessary to make end-of-file tests 
work properly. For example, if a child that intends to read fails to close the write end of the 
pipe, it will never see the end of the pipe file, just because there is one writer potentially active. 



- 13 -

#include <stdio.h> 

#define READ ° 
#define WRITE 1 
#define 
static 

tst{a, b) (mode aa READ? (b) 
int popen.J)id; 

popen{cmd, mode) 
char *cmdi 
int modei 

int p(2]i 

if (pipe{p) < 0) 
return{NULL)i 

if «popen.J)id ... fork (» -. 0) I 
close(tst(p[WRITE], p[READ]»j 
close(tst(O, 1»i 

(a) ) 

dup(tst(p[READ] , p[WRITE]»i 
close(tst(p[READ), p[WRITE]»i 
execl("/bin/sh", "sh" , "_C", cmd, O)i 
_exit(1); 1* disaster has occurred if we get here *1 

if (popen_pid =- -1) 
return(NULL)j 

close(tst(p[READ], p[WRITE]»i 
return(tst(p[WRITE], p(READ]»i 

The sequence of closes in the child is a bit tricky. Suppose that the task is to create a child 
process that will read data from the parent. Then the first close closes the write side of the 
pipe, leaving the read side open. The lines 

close{tst(O, 1»; 
dup(tst(p(READ], p[WRITE]»i 

are the conventional way to associate the pipe descriptor with the standard input of the child. 
The close closes file descriptor 0, that is. the standard input. dup is a system call that returns 
a duplicate of an already open file descriptor. File descriptors are assigned in increasing order 
and the first available one is returned, so the effect of the dup is to copy the file descriptor for 
the pipe (read side) to file descriptor O~ thus the read side of the pipe becomes the standard 
input. (Yes, this is a bit tricky. but it's a standard idiom.) Finally. the old read side of the pipe 
is closed. 

A similar sequence of operations takes place when the child process is supposed to write 
from the parent instead of reading. You may find it a useful exercise to step through that case. 

The job is not quite done. for we still need a function pclose to close the pipe created by 
popen. The main reason for using a separate function rather than close is that it is desirable 
to wait for the termination of the child process. First, the return value from pclose indicates 
whether the process succeeded. Equally important when a process creates several children is 
that only a bounded number of unwaited-for children can exist, even if some of them have ter
minated; performing the wai t lays the child to rest. Thus: 



- 14 -

.include <signal.h> 

pclose(fd) 
int fd; 

1* close pipe fd *1 

( 

register r, (*hstat) (), (*istat) (), (*qstat) () ; 
int status; 
extern int popen-pid; 

close(fd); 
istat - siqnal(SIGINT, SIG_IGN); 
qstat - signal(SIGQUIT, SIG_IGN); 
hstat - siqnal(SIGHUP, SIG_IGN); 
while «r - wait(&status» 1- popen-pid && r 1- -1); 
if (r -- -1) 

status - -1; 
siqnal(SIGINT, istat); 
siqnal(SIGQUIT, qstat); 
signal(SIGHUP, hstat); 
return(status); 

The calls to siqnal make sure that no interrupts, etc., interfere with the waiting process; this 
is the topic of the next section. 

The routine as written has the limitation that only one pipe may be open at once, because 
of the single shared variable popen-pid; it really should be an array indexed by file descrip
tor. A popen function, with slightly different arguments and return value is available as part 
of the standard 110 library discussed below. As currently written, it shares the same limitation. 

6. SIGNALS - INTERRUPTS AND ALL THAT 

This section is concerned with how to deal gracefully with signals from the outside world 
(like interrupts), and with program faults. Since there's nothing very useful that can be done 
from within C about program faults, which arise mainly from illegal memory references or from 
execution of peculiar instructions, we'll discuss only the outside-world signals: interrupt, which 
is sent when the DEL character is typed; quit, generated by the FS character; hangup, caused by 
hanging up the phone; and terminate, generated by the kill command. When one of these 
events occurs, the signal is sent to all processes which were started from the corresponding ter
minal; unless other arrangements have been made, the signal terminates the process. In the 
quit case, a core image file is written for debugging purposes. 

The routine which alters the default action is called siqnal. It has two arguments: the 
first specifies the signal, and the second specifies how to treat it. The first argument is just a 
number code, but the second is the address is either a function, or a somewhat strange code 
that requests that the signal either be ignored, or that it be given the default action. The 
include file siqnal.h gives names for the various arguments, and should always be included 
when signals are used. Thus 

#include <signal.h> 

signal (SIGINT, SIG_IGN); 

causes interrupts to be ignored, while 

siqnal(SIGINT, SIG_DFL); 

restores the default action of process termination. In all cases, siqnal returns the previous 
value of the signal. The second argument to siqnal may instead be the name of a function 
(which has to be declared explicitly if the compiler hasn't seen it already). In this case, the 
named routine will be called when the signal occurs. Most commonly this facility is used to 



- 15 -

allow the program to clean up unfinished business before terminating, for example to delete a 
temporary file: 

'include <siqnal.h> 

maine) 
{ 

int onintr()i 

if (siqnal(SIGINT, SIG_IGNI 1- SIG_IGN) 
siqnal(SIGINT, onintrl; 

1* Process ... *1 

exit(O)i 

onintr() 
( 

unlink(tempfile); 
exit('); 

Why the test and the double call to signal? Recall that signals like interrupt are sent to 
all processes started from a particular terminal. Accordingly, when a program is to be run non
interactively (started by &), the shell turns off interrupts for it so it won't be stopped by inter
rupts intended for foreground processes. If this program began by announcing that all inter
rupts were to be sent to the onintr routine regardless, that would undo the shell's effort to 
protect it when run in the background. 

The solution, shown above, is to test the state of interrupt handling, and to continue to 
ignore interrupts if they are already being ignored. The code as written depends on the fact 
that signal returns the previous state of a particular signal. If signals were already being 
ignored, the process should continue to ignore them; otherwise, they should be caught. 

A more sophisticated program may wish to intercept an interrupt and interpret it as a 
request to stop what it is doing and return to its own command-processing loop. Think of a 
text editor: interrupting a long printout should not cause it to terminate and lose the work 
already done. The outline of the code for this case is probably best written like this: 

'include <siqnal.h> 
'include <setjmp.h> 
jmp_buf sjbufi 

main ( I 
{ 

int (*istat) (I, onintr()i 

istat = siqnal(SIGINT, SIG_IGN)i /* save oriqinal status */ 
setjmp(sjbufli /* save current stack position */ 
if (istat 1= SIG_IGNI 

siqnal(SIGINT, onintrli 

/* main processinq loop */ 



onintr() 
( 

printf("\nlnterrupt\n"); 

- 16 -

lonqjmp(sjbuf); 1* return to saved state *1 

The include file setjmp. h declares the type jmp_buf an object in which the state can be 
saved. sjbuf is such an object; it is an array of some sort. The setjmp routine then saves 
the state of things. When an interrupt occurs, a call is forced to the onintr routine, which 
can print a message, set flags, or whatever. lonqjmp takes as argument an object stored into 
by set jmp, and restores control to the location after the call to set jmp, so control (and the 
stack level) will pop back to the place in the main routine where the signal is set up and the 
main loop entered. Notice, by the way, that the signal gets set again after an interrupt occurs. 
This is necessary; most signals are automatically reset to their default action when they occur. 

Some programs that want to detect signals simply can't be stopped at an arbitrary point, for 
example in the middle of updating a linked list. If the routine called on occurrence of a signal 
sets a flag and then returns instead of calling exit or lonqjmp, execution will continue at the 
exact point it was interrupted. The interrupt flag can then be tested later. 

There is one difficulty associated with this approach. Suppose the program is reading the 
terminal when the interrupt is sent. The specified routine is duly called; it sets its flag and 
returns. If it were really true, as we said above, that "execution resumes at the exact point it 
was interrupted," the program would continue reading the terminal until the user typed another 
line. This behavior might well be confusing, since the user might not know that the program is 
reading; he presumably would prefer to have the signal take effect instantly. The method 
chosen to resolve this difficulty is to terminate the terminal read when execution resumes after 
the signal, returning an error code which indicates what happened. 

Thus programs which catch and resume execution after signals should be prepared for 
"errors" which are caused by interrupted system calls. (The ones to watch out for are reads 
from a terminal, wait, and pause.) A program whose onintr program just sets intflaq, 
resets the interrupt signal, and returns, should usually include code like the following when it 
reads the standard input: 

if (qetchar() -- EOF) 
if ( intflaq) 

1* EOF caused by interrupt *1 
else 

1* true end-of-file *1 

A final subtlety to keep in mind becomes important when signal-catching is combined with 
execution of other programs. Suppose a program catches interrupts, and also includes a method 
(like "!" in the editor) whereby other programs can be executed. Then the code should look 
something like this: 

if (fork () -- 0) 
execl ( ... ) i 

siqnal(SIGINT, SIG_IGN)i 1* iqnore interrupts *1 
wait(&status)i 1* until the child is done *1 
siqnal(SIGINT, onintr)i 1* restore interrupts *1 

Why is this? Again, it's not obvious but not really difficult. Suppose the program you call 
catches its own interrupts. If you interrupt the subprogram, it will get the signal and return to 
its main loop, and probably read your terminal. But the calling program will also pop out of its 
wait for the subprogram and read your terminal. Having two processes reading your terminal is 
very unfortunate, since the system figuratively flips a coin to decide who should get each line of 
input. A simple way out is to have the parent program ignore interrupts until the child is done. 
This reasoning is reflected in the standard 1/0 library function system: 



- 17 -

#include <signal.b> 

system(s) 1* run command strinq s *1 
char *s; 
( 

int status, pid, Wi 
reqister int (*istat) (), (*qstat) (); 

if «pid • fork(» -- 0) 
execl("/bin/sh", "sh", "-c", s, 0); 
_exit(127) ; 

istat - signal(SIGINT, SIG_IGN); 
qstat - siqnal(SIGgUiT, SIG_IGN); 
while «w - wait(&status» I- pid && w I- -1) 

if (w -- -1) 
status - -1; 

signal (SIGINT, istat); 
signal (SIGQUIT, qstat); 
return(status); 

As an aside on declarations, the function signal obviously has a rather strange second 
. argument. It is in fact a pointer to a function delivering an integer, and this is also the type of 

the signal routine itself. The two values SIG_IGN and SrG_DFL have the right type, but are 
chosen so they coincide with no possible actual functions. For the enthusiast, here is how they 
are defined for the PDP- I 1 ~ the definitions should be sufficiently ugly and non portable to 
encourage use of the include file. 

,define SIG_OFL 
'define SIG_IGN 

References 

(int (*) () ) 0 
(int (*) () ) 1 

[t] K. L. Thompson and D. M. Ritchie, The UNIX Programmer's Manual, Bell Laboratories, 
1978. 

(2] B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Inc., 
1978. 

[3] B. W. Kernighan. "UNIX for Beginners - Second Edition." Bell Laboratories, 1978. 



- 18 -

Appendix - The Standard 110 Library 

D. M. Ritchie 

Bell Laboratories 
Murray Hill, New Jersey 07974 

The standard I/O library was designed with the following goals in mind. 

1. It must be as efficient as possible, both in time and in space, so that there will be no hesita
tion in using it no matter how critical the application. 

2. It must be simple to use, and also free of the magic numbers and mysterious calls whose 
use mars the understandability and portability of many programs using older packages. 

3. The interface provided should be applicable on all machines, whether or not the programs 
which implement it are directly portable to other systems, or to machines other than the 
PDP-II running a version of UNIX. 

1. General Usale 
Each program using the library must have the line 

'include <stdio.h> 

which defines certain macros and variables. The routines are in the normal C library, so no 
special library argument is needed for loading. All names in the include file intended only for 
internal use begin with an underscore _ to reduce the possibility of collision with a user name. 
The names intended to be visible outside the package are 

stdin The name of the standard input file 

stdout The name of the standard output file 

stderr The name of the standard error file 

EOF is actually -1, and is the value returned by the read routines on end-of-file or error. 

NULL is a notation for the null pointer, returned by pointer-valued functions to indicate an 
error 

FILE expands to struct _iob and is a useful shorthand when declaring pointers to 
streams. 

BUFSIZ is a number (viz. 512) of the size suitable for an I/O buffer supplied by the user. 
See setbuf, below. 

getc, getchar, putc, putchar, feof, ferror, fileno 
are defined as macros. Their actions are described below; they are mentioned here 
to point out that it is not possible to redeclare them and that they are not actually 
functions; thus, for example, they may not have breakpoints set on them. 

The routines in this package offer the convenience of automatic buffer allocation and out
put flushing where appropriate. The names stdin, stdout, and stderr are in effect con
stants and may not be assigned to. 

2. Calls 

FILE *fopen(filename, type) char *filename, ~typei 
opens the file and, if needed, allocates a buffer for it. filename is a character string 
specifying the name. type is a character string (not a single character). It may be "r", 
"w", or "a" to indicate intent to read, write, or append. The value returned is a file 
pointer. If it is NULL the attempt to open failed. 

FILE *freopen(filename, type, ioptr) char *filename, *typei FILE *ioptr; 



- 19 -

The stream named by ioptr is closed, if necessary, and then reopened as if by fopen. If 
the attempt to open fails, NULL is returned, otherwise ioptr, which will now refer to the 
new file. Often the reopened stream is stdin or stdout. 

int getc(ioptr) FILE *ioptri 
returns the next character from the stream named by ioptr, which is a pointer to a file 
such as returned by fopen, or the name stdin. The integer EOF is returned on. end-of
file or when an error occurs. The null character \0 is a legal character. 

int fgetc(ioptr) FILE *ioptrj 
acts like getc but is a genuine function, not a macro, so it can be pointed to, passed as an 
argument, etc. 

putc(c, ioptr) FILE *ioptr; 
putc writes the character c on the output stream named by ioptr, which is a value 
returned from fopen or perhaps stdout or stderr. The character is returned as vl\lue, 
but EOF is returned on error. 

fputc(c, ioptr) FILE *ioptrj 
acts like putc but is a genuine function, not a macro. 

fclose(ioptr) FILE *ioptri 
The file corresponding to ioptr is closed after any buffers are emptied. A buffer allocated 
by the 110 system is freed. fclose is automatic on normal termination of the program. 

fflush(ioptr) FILE *ioptri 
Any buffered information on the (output) stream named by ioptr is written out. Output 
files are normally buffered if and only if they are not directed to the terminal; however, 
stderr always starts off unbuffered and remains so unless setbuf is used, or unless it is 
reopened. 

exit(errcode)i 
terminates the process and returns its argument as status to the parent. This is a special 
version of the routine which calls fflush for each output file. To terminate without flush
ing, use _ exi t. 

feof(ioptr) FILE *ioptri 
returns non-zero when end-of-file has occurred on the specified input stream. 

ferror(ioptr) FILE *ioptrj 
returns non-zero when an error has occurred while reading or writing the named stream. 
The error indication lasts until the file has been closed. 

getchar()i 
is identical to getc (stdin) . 

putchar(c)i 
is identical to putc (c, stdout). 

char *fgets(s, n, ioptr) char *s; FILE *ioptri 
reads up to n-1 characters from the stream ioptr into the character pointer s. The read 
terminates with a newline character. The newline character is placed in the buffer followed 
by a null character. fgets returns the first argument, or NULL if error or end-of-file 
occurred. 

fputs(s, ioptr) char *Si FILE *ioptrj 
writes the null-terminated string (character array) s on the stream ioptr. No newline is 
appended. No value is returned. 

ungetc(c, ioptr) FILE *ioptri 



- 20 -

The argument character c is pushed back on the input stream named by ioptr. Only one 
character may be pushed back. 

printf(format, a1, ... ) char *formati 
fprintf(ioptr, format, a1, ... ) FILE *ioptri char *formati 
sprintf(s, format, a1, ... )char *s, *formati 

printf writes on the standard output. fprintf writes on the named output stream. 
sprintf puts characters in the character array (string) named by s. The specifications are 
as described in section printf(3) of the UNIX Programmer's Manual. 

scanf(format, a1, ... ) char *formati 
fscanf(ioptr, format, a1, ... ) FILE *ioptri char *format; 
sscanf(s, format, a1, ... ) char *s, *formati 

scanf reads from the standard input. fscanf reads from the named input stream. 
sscanf reads from the character string supplied as s. scanf reads characters, interprets 
them according to a format, and stores the results in its arguments. Each routine expects 
as arguments a control string format, and a set of arguments, each of which must be a 
pointer, indicating where the converted input should be stored. 

scanf returns as its value the number of successfully matched and assigned input items. 
This can be used to decide how many input items were found. On end of file, EOF is 
returned; note that this is different from 0, which means that the next input character does 
not match what was called for in the control string. 

fread(ptr, sizeof(*ptr), nitems, ioptr) FILE *ioptri 
reads ni terns of data beginning at ptr from file ioptr. No advance notification that binary 
I/O is being done is required; when, for portability reasons, it becomes required, it will be done 
by adding an additional character to the mode-string on the fopen call. 

fwrite(ptr, sizeof(*ptr), nitems, ioptr) FILE *ioptri 
Like fread, but in the other direction. 

rewind (ioptr) FILE *ioptr; 
rewinds the stream named by ioptr. It is not very useful except on input, since a rewound 
output file is still open only for output. 

system (string) char *stringi 
The string is executed by the shell as if typed at the terminal. 

getw(ioptr) FILE *ioptri 
returns the next word from the input stream named by ioptr. EOF is returned on end-of-file 
or error, but since this a perfectly good integer feof and ferror should be used. A "word" 
is 16 bits on the PDP-II. 

putw(w, ioptr) FILE *ioptri 
writes the integer w on the named output stream. 

setbuf(ioptr, buf) FILE *ioptri char *buf; 
setbuf may be used after a stream has been opened but before 110 has started. If buf is 
NULL, the stream will be unbuffered. Otherwise the buffer supplied will be used. It must be a 
character array of sufficient size: 

char buf[BUFSIZ]i 

fileno(ioptr) FILE *ioptri 
returns the integer file descriptor associated with the file. 

fseek(ioptr, offset, ptrname) FILE *ioptr; long offseti 
The location of the next byte in the stream named by ioptr is adjusted. offset is a long 
integer. If ptrname is 0, the offset is measured from the beginning of the file; if ptrname is 
1, the offset is measured from the current read or write pointer; if ptrname is 2, the offset is 
measured from the end of the file. The routine accounts properly for any buffering. (When 



- 21 -

this routine is used on non-UNIX systems, the offset must be a value returned from ftell and 
the ptrname must be 0). 

long ftell(ioptr) FILE *ioptrj 
The byte offset, measured from the beginning of the file, associated with the named stream is 
returned. Any buffering is properly accounted for. (On non-UNIX systems the value of this 
call is useful only for handing to fseek, so as to position the file to the same place it was when 
ftell was called.) 

getpw(uid, buf) char *bufj 
The password file is searched for the given integer user to. If an appropriate line is found, it is 
copied into the character array bUf, and 0 is returned. If no line is found corresponding to the 
user ID then I is returned. 

char *malloc(num}i 
allocates num bytes. The pointer returned is sufficiently well aligned to be usable for any pur
pose. NULL is returned if no space is available. 

char *calloc(num, size); 
allocates space for num items each of size size. The space is guaranteed to be set to 0 and the 
pointer is sufficiently well aligned to be usable for any purpose. NULL is returned if no space is 
available. 

cfree(ptr) char *ptrj 
Space is returned to the pool used by calloc. Disorder can be expected if the pointer was not 
obtained from calloc. 

The following are macros whose definitions may be obtained by including <ctype . h>. 

isalpha (c) returns non-zero if the argument is alphabetic. 

isupper (c) returns non-zero if the argument is upper-case alphabetic. 

islower (c) returns non-zero if the argument is lower-case alphabetic. 

isdigit (c) returns non-zero if the argument is a digit. 

isapace (c) returns non-zero if the argument is a spacing character: tab, newline, carriage 
return, vertical tab, form feed, space. 

ispunct (c) returns non-zero if the argument is any punctuation character, i.e., not a space, 
letter, digit or control character. 

i salnum (c) returns non-zero if the argument is a letter or a digit. 

isprint (c) returns non-zero if the argument is printable - a letter, digit, or punctuation 
character. 

iscntrl (c) returns non-zero if the argument is a control character. 

isaacii (c) returns non-zero if the argument is an ascii character, i.e., less than octal 0200. 

toupper (c) returns the upper-case character corresponding to the lower-case letter c . 

tolower (c) returns the lower-case character corresponding to the upper-case letter c. 





A Tutorial Introduction to AD B 

J. F. Maranzano 

S. R. Bourne 

Bell Laboratories 
Murray Hill, New Jersey 07974 

ABSTRACT 

Debugging tools generally provide a wealth of information about the inner 
workings of programs. These tools have been available on UNIXt to allow users 
to examine "core" files that result from aborted programs. A new debugging 
program, ADB, provides enhanced capabilities to examine "core" and other pro
gram files in a variety of formats, run programs with embedded breakpoints and 
patch files. 

ADB is an indispensable but complex tool for debugging crashed systems 
and/or programs. This document provides an introduction to ADB with exam
ples of its use. It explains the various formatting options, techniques for 
debugging C programs, examples of printing file system information and patch
ing. 

May 5, 1977 

tUNIX is a Trademark of Bell Laboratories. 





A Tutorial Introduction to ADD 

1. F. Maranzano 

s. R. Bourne 

Bell Laboratories 
Murray Hill, New Jersey 07974 

1. Introduction 

ADS is a new debugging program that is available on UNIX. It provides capabilities to 
look at "core" files resulting from aborted programs, print output in a variety of formats, patch 

i.\ files, and run programs with embedded breakpoints. This document provides examples of the 
more useful features of ADS. The reader is expected to be familiar with the basic commands 
on UNIXt with the C language, and with References 1, 2 and 3. 

2. A Quick Survey 

2.1. Invocation 

ADB is invoked as: 

adb objftle coreftle 

where objfile is an executable UNIX file and core.file is a core image file. Many times this will 
look like: 

adb a.out core 

or more simply: 

adb 

where the defaults are a.out and core respectively. The filename minus (-) means ignore this 
argument as in: 

adb - core 

ADS has requests for examining locations in either file. The ? request examines the 
contents of objfile, the / request examines the core.file. The general form of these requests is: 

address ? format 

or 

address / format 

2.2. Current Address 

ADS maintains a current address, called dot, similar in function to the current pointer in 
the UNIX editor. When an address is entered, the current address is set to that location, so 
that: 

0126?1 

tUNIX is a Trademark of Bell Laboratories. 



- 2 -

sets dot to octal 126 and prints the instruction at that address. The request: 

.,tO/d 

prints 10 decimal numbers starting at dot. Dot ends up referring to the address of the last item 
printed. When used with the ? or I requests, the current address can be advanced by typing 
newline; it can be decremented by typing ~. 

Addresses are represented by expressions. Expressions are made up from decimal, octal, 
and hexadecimal integers, and symbols from the program under test. These may be combined 
with the operators +, -, ., % (integer division). & (bitwise and), I (bitwise inclusive or), #" 
(round up to the next multiple), and - (not). (All arithmetic within ADD is 32 bits.) When 
typing a symbolic address for a C program, the user can type name or _name; ADD will recog
nize both forms. 

2.3. Formats 

To print data, a user specifies a collection of letters and characters that describe the format 
of the printout. Formats are "remembered" in the sense that typing a request without one will 
cause the new printout to appear in the previous format. The following are the most commonly 
used format letters. 

b one byte in octal 
c one byte as a character 
o one word in octal 
d one word in decimal 
f two words in floating point 
i PDP 11 instruction 
s a null terminated character string 
a the value of dot 
u one word as unsigned integer 
n print a newline 
r print a blank space 

backup dot 

(Format letters are also available for "long" values, for example, 'D' for long decimal, and 'F 
for double floating point.) For other formats see the ADD manual. 

2.4. General Request Meanings 

The general form of a request is: 

address,count command modifier 

which sets 'dot' to address and executes the command count times. 

The following table illustrates some general ADD command meanings: 

Command Meaning 
? Print contents from a.out file 
I Print contents from core file 
- Print value of "dot" 

Breakpoint control 
$ Miscellaneous requests 

Request separator 
Escape to shell 

ADB catches signals, so a user cannot use a quit signal to exit from ADD. The request $q 
or $Q (or cntl-D) must be used to exit from ADD. 



- 3 -

3. Debugging C Programs 

3.1. Debugging A Core Image 

Consider the C program in Figure 1. The program is used to illustrate a common error 
made by C programmers. The object of the program is to change the lower case "t" to upper 
case in the string pointed to by charp and then write the character string to the file indicated by 
argument 1. The bug shown is that the character "T" is stored in the pointer charp instead of 
the string pointed to by charp. Executing the program produces a core file because of an out of 
bounds memory reference. 

ADB is invoked by: 

adb a.out core 

The first debugging request: 

$c 

is used to give a C backtrace through the subroutines called. As shown in Figure 2 only one 
function (main) was called and the arguments argc and argv have octal values 02 and 0177762 
respect!vely. Both of these values look reasonable; 02 == two arguments, 0177762 == address 
on stack of parameter vector. 
The next request: 

SC 

is used to give a C backtrace plus an interpretation of all the local variables in each function 
and their values in octal. The value of the variable cc looks incorrect since cc was declared as a 
character. 

The next request: 

Sr 

prints out the registers including the program counter and an interpretation of the instruction at 
that location. 

The request: 

$e 

prints out the values of all external variables. 

A map exists for each file handled by ADB. The map for the a.OUf file is referenced by ? 
whereas the map for core file is referenced by /. Furthermore, a good rule of thumb is to use .,. 
for instructions and I for data when looking at programs. To print out information about the 
maps type: 

Sm 

This produces a report of the contents of the maps. More about these maps later. 

In our example, it is useful to see the contents of the string pointed to by charp. This is 
done by: 

*charp/s 

which says use charp as a pointer in the core file and print the information as a character string. 
This printout clearly shows that the character buffer was incorrectly overwritten and helps iden
tify the error. Printing the locations around charp shows that the buffer is unchanged but that 
the pointer is destroyed. Using ADB similarly, we 'could print information about the arguments 
to a function. The request: 

main.arge/d 

prints the decimal core image value of the argument argc in the function main. 



- 4 -

The request: 

*main.argv,3/0 

prints the octal values of the three consecutive cells pointed to by argv in the function main. 
Note that these values are the addresses of the arguments to main. Therefore: 

0177770/s 

prints the ASCII value of the first argument. Another way to print this value would have been 

*" Is 
The " means ditto which remembers the last address typed, in this case main.argc the * 
instructs ADB to use the address field of the core file as a pointer. 

The request: 

.-0 

prints the current address (not its contents) in octal which has been set to the address of the 
first argument. The current address, dot, is used by ADB to "remember" its current location. 
It allows the user to reference locations relative to the current address, for example: 

.-10/d 

3.2. Multiple Functions 
Consider the C program illustrated in Figure 3. This program calls functions.r. g. and h 

until the stack is exhausted and a core image is produced. 

Again you can enter the debugger via: 

adb 

which assumes the names a.out and core for the executable file and core image file respectively. 
The request: 

$c 

will fill a page of back trace references to.r. g. and h. Figure 4 shows an abbreviated list (typing 
DEL will terminate the output and bring you back to ADB request level). 

The request: 

,SSC 

prints the five most recent activations. 

Notice that each function (r.g.h) has a counter of the number of times it was called. 

The request: 

(cnt/d 

prints the decimal value of the counter for the function.f. Similarly gent and hcnt could be 
printed. To print the value of an automatic variable, for example the decimal value of x in the 
last call of the function h. type: 

h.x/d 

It is currently not possibl.e in the exported version to print stack frames other than the most 
recent activation of a function. Therefore, a user can print everything with SC or the 
occurrence of a variable in the most recent call of a function. It is possible with the SC request, 
however, to print the stack frame starting at some address as addressSC. 



- 5 -

3.3. Setting Breakpoints 

Consider the C program in Figure 5. This program, which changes tabs into blanks, is 
adapted from SofTware Tools by Kernighan and Plauger, pp. 18-27. 

We will run this program under the control of ADB (see Figure 6a) by: 

adb a.out -

Breakpoints are set in the program as: 

The requests: 

address:b (request I 

settab+4:b 
fopen +4:b 
getc+4:b 
tabpos+4:b 

set breakpoints at the start of these functions. C does not generate statement labels. Therefore 
it is currently not possible to plant breakpoints at locations other than function entry points 
without a knowledge of the code generated by the C compiler. The above addresses are 
entered as symbol + 4 so that they will appear in any C back trace since the first instruction of 
each function is a call to the C save routine (csv). Note that some of the functions are from 
the C library. 

To print the location of breakpoints one types: 

Sb 

The display indicates a count field. A breakpoint is bypassed count -1 times before causing a 
stop. The command field indicates the ADB requests to be executed each time the breakpoint is 
encountered. In our example no command fields are present. 

By displaying the original instructions at the function seffab we see that the breakpoint is 
set after the jsr to the C save routine. We can display the instructions using the ADB request: 

settab,5?ia 

This request displays five instructions starting at seftab with the addresses of each location 
displayed. Another variation is: 

settab,5?i 

which displays the instructions with only the starting address. 

Notice that we accessed the addresses from the a.out file with the ? command. In general 
when asking for a printout of multiple items, ADB will advance the current address the number 
of bytes necessary to satisfy the request; in the above example five instructions were displayed 
and the current address was advanced 18 (decimal) bytes. 

To run the program one simply types: 

:r 

To delete a breakpoint, for instance the entry to the function sertab, one types: 

settab+4:d 

To continue execution of the program from the breakpoint type: 

:c 
Once the program has stopped (in this case at the breakpoint for fopen), ADB requests can 

be used to display the contents of memory. For example: 

SC 



- 6 -

to display a stack trace, or: 

tabs,3/80 

to print three lines of 8 locations each from the array called tabs. By this time (at location 
fopen) in the C program, settab has been called and should have set a one in every eighth loca
tion of tabs. 

3.4. Advanced Breakpoint Usage 

We continue execution of the program with: 

:c 

See Figure 6b. Getc is called three times and the contents of the variable c in the function 
main are displayed each time. The single character on the left hand edge is the output from the 
C program. On the third occurrence of getc the program stops. We can look at the full buffer 
of characters by typing: 

ibuf+6/20c 

When we continue the program with: 

:c 

we hit our first breakpoint at tabpos since there is a tab following the "This" word of the data. 

Several breakpoints of tabpos will occur until the program has changed the tab into 
equivalent blanks. Since we feel that tabpos is working, we can remove the breakpoint at that 
location by: 

tabpos+4:d 

If the program is continued with: 

:c 

it resumes normal execution after ADB prints the message 

a.out :running 

The UNIX quit and interrupt signals act on ADB itself rather than on the program being 
debugged. If such a signal occurs then the program being debugged is stopped and control is 
returned to ADB. The signal is saved by ADB and is passed on to the test program if: 

:c 

is typed. This can be useful when testing interrupt handling routines. The signal is not passed 
on to the test program if: 

:c 0 

is typed. 

Now let us reset the breakpoint at settab and display the instructions located there when 
we reach the breakpoint. This is accomplished by: 

settab+4:b settab,5?ia .. 

It is also possible to execute the ADB requests for each occurrence of the breakpoint but only 

• Owing to a bug in early versions of ADB (including the version distributed in Generic 3 UNIX) these state
ments must be written as: 

settab+4:b settab.S?la;O 
getc+4.3:b maiD~c?C;O 

settab+4:b sett.b,S?la; ptab/o;O 
Note that ;0 will set dot to zero and stop at the breakpoint. 



- 7 -

stop after the third occurrence by typing: 

getc+4,3:b main.c?C ... 

This request will print the local variable c in the function main at each occurrence of the break
point. The semicolon is used to separate multiple ADB requests on a single line. 

Warning: setting a breakpoint causes the value of dot to be changed; executing the pro
gram under ADB does not change dot. Therefore: 

settab + 4:b .,5 ?ia 
fopen+4:b 

will print the last thing dot was set to (in the example ./open +4) not the current location (set
lab+4) at which the program is executing. 

A breakpoint can be overwritten without first deleting the old breakpoint. For example: 

settab+4:b settab,5?ia; ptab/o .. 

could be entered after typing the above requests. 

Now the display of breakpoints: 

Sb 

shows the above request for the sellab breakpoint. When the breakpoint at seltab is encoun
tered the ADB requests are executed. Note that the location at seftab +4 has been changed to 
plant the breakpoint; all the other locations match their original value. 

Using the functions, ./: g and h shown in Figure 3, we can follow the execution of each 
function by planting non-stopping breakpoints. We call ADB with the executable program of 
Figure 3 as follows: 

adb ex3 -

Suppose we enter the following breakpoints: 

h+4:b 
g+4:b 
f+4:b 
:r 

hcnt!d; h.hil; h.hrl 
gcnt/d; g.gil; g.grl 
fcnt/d; ('H/; Uri 

Each request line indicates that the variables are printed in decimal (by the specification d). 
Since the format is not changed, the d can be left off all but the first request. 

The output in Figure 7 illustrates two points. First, the ADB requests in the breakpoint 
line are not examined until the program under test is run. That means any errors in those 
ADB requests is not detected until run time. At the location of the error ADB stops running 
the program. 

The second point is the way ADB handles register variables. ADB uses the symbol table 
to address variables. Register variables, like .lfr above, have pointers to uninitialized places on 
the stack. Therefore the message "symbol not found". 

as: 
Another way of getting at the data in this example is to print the variables used in the call 

f+4:b 
g+4:b 
:c 

fcnt/d; f.a/; f.b/; f.HI 
gcnt/d; g.p!; g.q/; g.gil 

The operator / was used instead of? to read values from the core file. The output for each 
function, as shown in Figure 7, has the same format. For the function.f. for example, it shows 
the name and value of the external variable fent. It also shows the address on the stack and 
value of the variables a, b and fl. 



- 8 -

Notice that the addresses on the stack will continue to decrease until no address space is 
left for program execution at which time (after many pages of output) the program under test 
aborts. A display with names would be produced by requests like the following: 

f+4:b fcnt/d; f.al'a="d; f.bl'b="d; f.ftl'ft-"d 

In this format the quoted string is printed literally and the d produces a decimal display of the 
variables. The results are shown in Figure 7. 

3.5. Other Breakpoint Facilities 

• Arguments and change of standard input and output are passed to a program as: 

:r argl arg2 ... < inftle > outftle 

This request kills any existing program under test and starts the a.OUf afresh. 

• The program being debugged can be single stepped by: 

:s 

If necessary, this request will start up the program being debugged and stop after executing 
the first instruction. 

• ADB allows a program to be entered at a specific address by typing: 

address:r 

• The count field can be used to skip the first n breakpoints as: 

,n:r 

The request: 

,n:c 

may also be used for skipping the first n breakpoints when continuing a program. 

• A program can be continued at an address different from the breakpoint by: 

address:c 

• The program being debugged runs as a separate process and can be killed by: 

:k 

4. Maps 

UNIX supports several executable file formats. These are used to tell the loader how to 
load the program file. File type 407 is the most common and is generated by a C compiler 
invocation such as cc pgm.c. A 410 file is produced by a C compiler command of the form cc 
-n pgm.c, whereas a 411 file is produced by cc -i pgm.c. ADB interprets these different file for
mats and provides access to the different segments through a set of maps (see Figure 8). To 
print the maps type: 

$m 

In 407 files, both text (instructions) and data are intermixed. This makes it impossible 
for ADB to differentiate data from instructions and some of the printed symbolic addresses look 
incorrect~ for example, printing data addresses as offsets from routines. 

In 410 files (shared text), the instructions are separated from data and ?* accesses the 
data part of the a.oUf file. The ?* request tells ADB to use the second part of the map in the 
a.oUf file. Accessing data in the core file shows the data after it was modified by the execution 



- 9 -

of the program. Notice also that the data segment may have grown during program execution. 

In 411 files (separated I & D space), the instructions and data are also separated. How
ever. in this case, since data is mapped through a separate set of segmentation registers, the 
base of the data segment is also relative to address zero. In this case since the addresses over
lap it is necessary to use the ?* operator to access the data space of the a.Olll file. In both 410 
and 411 files the corresponding core file does not contain the program text. 

Figure 9 shows the display of three maps for the same program linked as a 407, 410, 411 
respectively. The b, e, and f fields are used by ADB to map addresses into file addresses. The 
"fl" field is the length of the header at the beginning of the file (020 bytes for an a.oUI file and 
02000 bytes for a core file). The "f2" field is the displacement from the beginning of the file to 
the data. For a 407 file with mixed text and data this is the same as the length of the header; 
for 410 and 411 files this is the length of the header plus the size of the text portion. 

The "b" and "elf fields are the starting and ending locations for a segment. Given an 
address, A, the location in the file (either a.oul or core) is calculated as: 

bl~A~el ~ file address - (A-bt)+f1 
b2~ A~e2 ~ file address == (A -b2) +f2 

A user can access locations by using the ADB defined variables. The $v request prints the vari
ables initialized by ADB: 

b base address of data segment 
d length of the data segment 
s length of the stack 
t length of the text 
m execution type (407,410,411) 

In Figure 9 those variables not present are zero. Use can be made of these variables by 
expressions such as: 

<b 

in the address field. Similarly the value of the variable can be changed by an assignment 
request such as: 

02000>b 

that sets b to octal 2000. These variables are useful to know if the file under examination is an 
executable or core image file. 

ADB reads the header of the core image file to find the values for these variables. If the 
second file specified does not seem to be a core file, or if it is missing then the header of the 
executable file is used instead. 

5. Advanced Usage 
It is possible with ADB to combine formatting requests to provide elaborate displays. 

Below are several examples. 

5.1. Formatted dump 

The line: 

< b, -11404"8Cn 

prints 4 octal words followed by their ASCII interpretation from the data space of the core 
image file. Broken down, the various request pieces mean: 

< b The base address of the data segment. 



- 10 -

< b, -1 Print from the base address to the end of file. A negative count is 
used here and elsewhere to loop indefinitely or until some error con
dition (like end of file) is detected. 

The format 404A 8Cn is broken down as follows: 

40 Print 4 octal locations. 

4 A Backup the current address 4 locations (to the original start of the 
field) . 

8C Print 8 consecutive characters using an escape convention; each 
character in the range 0 to 037 is printed as @ followed by the 
corresponding character in the range 0140 to 0177. An @ is printed 
as@@. 

n Print a newline. 

The request: 

< b, < dl404A 8Cn 

could have been used instead to allow the printing to stop at the end of the data segment «d 
provides the data segment size in bytes). 

The formatting requests can be combined with ADB's ability to read in a script to produce 
a core image dump script. ADB is invoked as: 

adb a.out core < dump 

to read in a script file, dump. of requests. An example of such a script is: 

120$w 
4095$s 
$v 
-3n 
$m 
-3n"C Stack Backtrace" 
$C 
-3n"C External Variables" 
$e 
- 3n"Registers" 
$r 
O$s 
-3n"Data Segment" 
<b,-lISona 

The request 120$w sets the width of the output to 120 characters (normally, the width is 
80 characters). ADB attempts to print addresses as: 

symbol + offset 

The request 4095$5 increases the maximum permissible offset to the nearest symbolic address 
from 255 (default) to 4095. The request - can be used to print literal strings. Thus, headings 
are provided in this dump program with requests of the form: 

- 3n" C Stack Backtrace" 

that spaces three lines and prints the literal string. The request $v prints all non-zero ADB 
variables (see Figure 8). The request 0$5 sets the maximum offset for symbol matches to zero 



- 11 -

thus suppressing the printing of symbolic labels in favor of octal values. Note that this is only 
done for the printing of the data segment. The request: 

<b,-1I8ona 

prints a dump from the base of the data segment to the end of file with an octal address field 
and eight octal numbers per line. 

Figure 11 shows the results of some formatting requests on the C program of Figure 10. 

5.2. Directory Dump 

As another illustration (Figure 12) consider a set of requests to dump the contents of a 
directory (which is made up of an integer inumber followed by a 14 character name): 

adb dir -
-n8t"Inum"8t"Name" 
0, -I? u8t14cn 

In this example, the u prints the in umber as an unsigned decimal integer, the 8t means that 
ADB will space to the next multiple of 8 on the output line, and the 14c prints the 14 character 
file name. 

5.3. llist Dump 

Similarly the contents of the ilist of a file system, (e.g. Idev/src, on UNIX systems distri
buted by the UNIX Support Group; see UNIX Programmer's Manual Section V) could be 
dumped with the following set of requests: 

adb Idev/src -
02000>b 
?m <b 
< b, -1 ?"ftags" 8ton" Iinks,uid,gid"8t3bn" ,size"Stbrdn"addr"StSun"times"St2Y2na 

In this example the value of the base for the map was changed to 02000 (by saying ?m< b) 
since that is the start of an ilist within a file system. An artifice (brd above) was used to print 
the 24 bit size field as a byte, a space, and a decimal integer. The last access time and last 
modify time are printed with the 2Y operator. Figure 12 shows portions of these requests as 
applied to a directory and file system. 

5.4. Converting values 

ADB may be used to convert values from one representation to another. For example: 

072 = odx 

will print 

072 58 #3a 

which is the octal, decimal and hexadecimal representations of 072 (octal). The format is 
remembered so that typing subsequent numbers will print them in the given formats. Charac
ter values may be converted similarly, for example: 

'a' == co 

prints 

a 0141 

It may also be used to evaluate expressions but be warned that all binary operators have the 
same precedence which is lower than that for unary operators. 



- 12 -

6. Patching 

Patching files with ADB is accomplished with the write, w or W, request (which is not like 
the ed editor write command). This is often used in· conjunction with the locale, I or L request. 
In general, the request syntax for I and ware similar as follows: 

11 value 

The request 1 is used to match on two bytes, L is used for four bytes. The request w is used to 
write two bytes, whereas W writes four bytes. The value field in either locate or write requests 
is an expression. Therefore, decimal and octal numbers, or character strings are supported. 

In order to modify a file, ADB must be called as: 

adb - w filel file2 

When called with this option, filel and file2 are created if necessary and opened for both read
ing and writing. 

For example, consider the C program shown in Figure 10. We can change the word 
"This" to "The" in the executable file for this program, ex7, by using the following requests: 

adb -w ex7 -
11 'Th' 
1W 'The' 

The request 11 starts at dot and stops at the first match of "Th" having set dot to the address of 
the location found. Note the use of 1 to write to the a.out file. The form ?* would have been 
used for a 411 file. 

More frequently the request will be typed as: 

?I 'Th'; 1s 

and locates the first occurrence of "Th" and print the entire string. Execution of this ADB 
request will set dot to the address of the "Th" characters. 

As another example of the utility of the patching facility, consider a C program thaI has 
an internal logic flag. The flag could be set by the user through ADB and the program run. 
For example: 

adb a.out -
:s argt arg2 
ftag/w 1 
:c 

The :s request is normally used to single step through a process or start a process in single step 
mode. In this case it starts a.out as a subprocess with arguments argt and arg2. If there is a 
subprocess running ADB writes to it rather than to the file so the w request causes flag to be 
changed in the memory of the subprocess. 

7. Anomalies 

Below is a list of some strange things that users should be aware of. 

1. Function calls and arguments are put on the stack by the C save routine. Putting break
points at the entry point to routines means that the function appears not to have been 
called when the breakpoint occurs. 

2. When printing addresses, ADB uses either text or data symbols from the a.out file. This 
sometimes causes unexpected symbol names to be printed with data (e.g. savr 5 + 022). 
This does not happen if 1 is used for text (instructions) "nd / for data. 



- 13 -

3. ADB cannot handle C register variables in the most recently activated function. 

8. Acknowledgements 
The authors are grateful for the thoughtful comments on how to organize this document 

from R. 8. Brandt, E. N. Pinson and B. A. Tague. D. M. Ritchie made the system changes 
necessary to accommodate tracing within ADB. He also participated in discussions during the 
writing of ADB. His earlier work with DB and CDB led to many of the features found in ADB. 

9. References 

1. D. M. Ritchie and K. Thompson, "The UNIX Time-Sharing System," CACM, July, 
1974. 

2. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978. 

3. K. Thompson and D. M. Ritchie, UNIX Programmer's Manual - 7th Edition, 1978. 

4. B. W. Kernighan and P. J. Plauger, Software Tools, Addison-Wesley. 1976. 



Figure 1: C program with pointer bug 

slruct buf I 
inl fildes; 
inl nleft; 
char *nextp; 
char bulf[512]; 
)bb; 

slruct buf ·obuf; 

char ·charp "this is a sentence."; 

main (argc,argv) 
int argc; 
char u argv; 
I 

char cc; 

if(argc < 2) I 

- 14 -

prinlf("Input file missing\n"); 
exileS); 

if«fcreat(argv[I] ,obuO) < o){ 
printf("%s : not found\n", argv[I»; 
exit(S) ; 

charp - 'T'; 
printf("debug 1 %s\n",charp); 

while(cc- *charp+ +) 
putc(cc,obuf) ; 

ffiush(obuf); 



- 15 -

Figure 2: ADD output for C program of Figure t 

adb a.out core 
$c 
-main (02,0177762) 
$C 
-main(02,0177762) 

argc: 02 
argv: 0177762 
cc: 02124 

$r 
ps 0170010 
pc 0204 -main+0152 
sp 0177740 
r5 0177752 
r4 01 
r3 0 
r2 0 
rl 0 
rO 0124 
-main+0152: mov _obuf,(sp) 
$e 
savr5: 0 
obuf: 0 -

_charp: 0124 
errno: 0 -
fout: 0 

$m 
text map exl' 
bl ... 0 el "'" 02360 
b2 == 0 e2 == 02360 
data map corel' 
bl == 0 el :00 03500 
b2 == 0175400 e2 - 0200000 

fI =- 020 
f2 == 020 

fI -= 02000 
f2 "" 05500 

"'charp/s 
0124: TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTLx 

charp/s 
_charp: T 

_charp+02: this is a sentence. 

_charp+026: Input file missing 
main.argc/d 
0177756: 2 
"'main.argv 130 
0177762: 017777001777760177777 
0177770/s 
0177770: a.out 
"'main .argv 130 
0177762: 017777001777760177777 
.... /s 
0177770: a.out 
,=0 

0177770 
.-tO/d 

0177756: 2 
$q 



- 16 -

Figure 3: Multiple function C program for stack trace illustration 

int fent,gent,hent; 
h(x,y) 
{ 

g(p,q) 
{ 

f(a,b) 
{ 

mainO 
{ 

int hi; register int hr; 
hi - x+l; 
hr - x-y+ I; 
hent++ ; 
hj: 
f(hr,hi); 

int gi; register int gr; 
gi - q-p; 
gr - q-p+l; 
gent++ ; 
gj: 
h(gr,gi); 

int fi; register int fr; 
fi - a+2*b; 
fr - a+b; 
fent+ + ; 
fj: 
g(fr,fi); 

f(I, 1); 



- 17 -

Figure 4: ADB output for C program of Figure 3 

adb 
$c 
-h(04452,04451 ) 
-g(04453,OII124) 
-f(02,04451) 
-h(04450,04447) 
-g(04451,011 120) 
-f(02,04447) 
-h (04446,04445) 
-g(04447,011114) 
-f(02.04445) 
-h(04444.04443) 
HIT DEL KEY 
adb 
,sse 
-h(04452.0445J) 

x: 04452 
y: 04451 
hi: ? 

-g(04453,01 1 124) 
p: 04453 
q: 011124 
gi: 04451 
gr: ? 

-r(02 ,04451) 
a: 02 
b: 04451 
fi: 011124 
fr: 04453 

-h(04450,04447) 
x: 04450 
y: 04447 
hi: 04451 
hr: 02 

-g(0445 I ,011120) 
p: 04451 
q: 011120 
gi: 04447 
gr: 04450 

fcnt/d 
fent: 1173 

gcnt/d 
_gent: 1173 
hcnt/d 
hent: 1172 

h.x/d 
022004: 2346 
$q 



- 18 -

Figure 5: C program to decode tabs 

#define MAXLINE 80 
#define YES 1 
#define NO 0 
#define T ABSP 8 

char input[] "data"; 
char ibuf[S 181; 
int tabs[MAXLINE]; 

mainO 
{ 

int col, *ptab; 
char c; 

ptab - tabs; 
settab(ptab) ; I*Set initial tab stops */ 
col". 1; 
if(fopen(input,ibuO < 0) ( 

I 

printf("%s : not found\n",input); 
exit(S) ; 

while( (c - getc(ibuO) ! - -I) { 
switch(c) ( 

case '\1': 1* TAB * / 
while(tabpos(col) !- YES) ( 

break; 

putchar(' '); r put BLANK */ 
col++ ; 

case '\n':I*NEWLINE */ 
putchar('\n') ; 
col - 1; 

default: 
break; 

putchar(c) ; 
col++ ; 

1* Tabpos return YES if col is a tab stop "/ 
tabpos(col) 
int col; 
( 

if(col > MAXLINE) 
return (YES); 

else 
return (tabs[col)); 

/* Settab - Set initial tab stops */ 
settab(tabp) 
int *tabp; 
( 

int i; 

for(j - 0; i<- MAXLINE; i++) 
(i%TABSP) ? (tabsli1 - NO) : (tabs[i] - YES); 



- 19 -

Figure 6a: ADB output for C program of Figure 5 

adb a.out
settab+4:b 
fopen+4:b 
getc+4:b 
tabpos+4:b 
$b 
breakpoints 
count bkpt 
1 -tabpos+04 
1 Jetc+04 
1 Jopen+04 
1 -settab+04 
settab,S?ia 
-settab: jsr 
-settab+04: tst 
-settab+06: clf 
-settab+012: cmp 
-settab+020: bit 
-seltab+022: 
settab,S'?i 
-settab: jsr 

tst 
clr 
cmp 
bit 

:r 
a.out: funning 

command 

rS,csv 
-(sp) 
o 177770(r5) 
$0120,0177770(rS) 
-settab+076 

rS,csv 
-(sp) 
0177770(r5) 
$0120,OI77770(r5) 
-settab+076 

breakpoint -settab+04: 1st -(sp) 
settab+4:d 
:c 
a.out: running 
breakpoint Jopen+04: mov 04(r5) ,nulstr+012 
$C 
fopen(02302,02472) 

::main(01,0177770) 
col: 
c: 
ptab: 

tabs.3/So 
03500: 

01 
o 
03500 

01 0 
01 0 
01 0 

o 
o 
o 

o 
o 
o 

o 
o 
o 

o 
o 
o 

o 
o 
o 

o 
o 
o 



- 20 -

Figure 6b: ADD output for C program of Figure 5 

:c 
a.out: running 
breakpoint ..setc+04: mov 04(rS).rl 
ibuf+6/20c 
_eleanu+0202: This is a test of 
:c 
a.out: running 
breakpoint -tabpos+04: cmp 
tabpos+4:d 
settab+4:b settab,S?ia 
settab+4:b settab,S?ia; 0 
getc+4,3:b main.c?C; 0 
settab+4:b settab,S?ia; ptab/o; 0 
Sb 
breakpoints 
count bkpt command 
1 ·tabpos+04 
3 ..setc+04 main.c?C;O 
1 Jopen+04 

S0120.04(rS) 

1 -settab+04 
·settab: 
·settab+04: 
-settab+06: 
·settab+012: 
-settab+020: 
·settab+022: 
0177766: 
0177744: 

jsr 
bpt 
elr 
cmp 
bit 

settab.S ?ia;ptab?o;O 
r5.csv 

TOI77744: 
hOI77744: 
iOI77744: 
sOI77744: 

0177770 
@' 
T 

'h 

s 

0177770(rS) 
SO 120.0) 77770(r5) 
-sellab+076 



- 21 -

Figure 7: ADB output for C program with breakpoints 
adb exJ-
b+4:b hent/d; h.hll; h.hrl 
1+4:b Imt/d; I.II/: 1.lrl 
f+4:b Imt/d; r.ft/: UrI 
:r 
ex3: runnina 
fent: 0 

0177732: 214 
symbol nol found 
f+4:b fent/d; f.a/: f.b/: f.ftl 
1+4:b Imt/d: I.P/: I.q/; 1.11/ 
b+4:b bmt/d; h.x/; h.y/; h.hil 
:e 
ex3: runninl 
fent 0 

0177746: 1 
0177750: 1 
0177732: 214 
Jenl: 0 
0177726: 2 
0177730: 3 
0177712: 214 

hent: 0 
0177706: 2 
0177710: 1 
0177672: 214 
fent 1 

0177666: 2 
0177670: 3 
0177652: 214 
Jenl: 1 
0177646: 5 
0177650: 8 
0177632: 214 
HIT DEL 
f+4:b fent/d; I.al"a - "d; f.bl"b - ad; I.ftl"ft - "d 
1+4:b lent/d; I.PI"P - "d; I.ql"q - "d; 1.111"11 - "d 
h+4:b hmt/d; b.xl"x - "d; b.yl"b - "d; h.hll"hl - "d 
:r 
ex3: running 
fent 0 

0117746: a-I 
0177750: b - I 
0177732: Ii - 214 
Jent: 0 
0177726: p - 2 
0177730: Q - 3 
0177712: gi - 214 

hent: 0 
0177706: x - 2 
0177710: y - 1 
0117672: hi - 214 

fent 1 
0177666: a - 2 
0177670: b - 3 
0177652: Ii - 214 
HIT DEL 
Sq 



- 22 -

Figure 8: ADD address maps 
407.files 

a.out hdr text+data 

I I 
0 D 

core hdr text+data stack 

I ..... ·1 I 
0 D S E 

4 J 0 .files (shared text) 

a.out hdr text data 

I I I 
0 T B D 

core hdr data stack 

I ...... 1 I 
B D S E 

4 J J .files (separated I and D space) 

a.out hdr text data 

I I I 
0 T 0 D 

core hdr data stack 

I ...... I I 
0 D S E 

The following adb variables are set. 

407 410 411 

b base of data 0 B 0 
d length of data D D-B D 
s length of stack S S S 
t length of text 0 T T 



Figure 9: ADD output for maps 

adb map407 core407 
Sm 
text map 'map407' 
bi .... 0 el 
b2 =- 0 e2 
data map 

, 
core407' 

bl .. 0 el 
b2 =- 0175400 e2 
$v 
variables 
d - 0300 
m =- 0407 
s - 02400 
$q 

adb map410 core410 
Sm 
text map 'map410' 
bI .. 0 el 
b2 - 020000 e2 
data map 'core410' 
bl ... 020000 el 
b2 - 0175400 e2 
$v 
variables 
b - 020000 
d - 0200 
m - 0410 
s - 02400 
t - 0200 
$q 

adb map411 core411 
$m 
text map 
bI - 0 
b2 - 0 
data map 
bi - 0 

'map411' 
el 
e2 

'core411' 
el 

b2 - 0175400 
$v 

e2 

variables 
d - 0200 
m - 0411 
s - 02400 
t - 0200 
$q 

- 23 -

.... 0256 f1 ... 020 
- 0256 f2 - 020 

.. 0300 f1 - 02000 
- 0200000 f2 - 02300 

== 0200 fl - 020 
=- 020116 f2 - 0220 

- 020200 fl - 02000 
,.. 0200000 f2 aD 02200 

- 0200 
- 0116 

- 0200 
- 0200000 

f1 - 020 
f2 - 0220 

f1 - 02000 
f2 - 02200 



- 24 -

Figure 10: Simple C program for illustrating formatting and patching 

char 
int 
int 
long 
float 
char 
mainO 
( 

str I [J "This is a character string"; 
one 1; 
number 456; 
Inurn 1234; 
fpt 1.25; 
str2[J "This is the second character string"; 

one - 2; 



- 25 -

Figure 11: ADB output illustrating fancy formats 
adb map410 core410 
<b,-1/8ona 
020000: 0 

_slrl +016: 061541 

_number: 
_number: 0710 0 

_str2+06: 020163 

_slr2 +026: 060562 

savr5+02: 0 0 

< b,20/404" 8en 

064124 071551 

062564 020162 

02322040240 0 

064164 020145 

072143 071145 

0 0 0 0 

064440 

072163 

064124 

062563 

071440 

0 0 

020163 

064562 

071551 

067543 

071164 

020000: 0 064124 071551 064440 @'@'This i 
020163 020141 064143 071141 s a char 
061541 062564 020162 072163 acter sl 
064562 063556 0 02 ring@'@'@b@' 

_number: 0710 0 02322040240 H@a@'@'R@d @@ 
o 064124 071551 064440 @'@'This i 
020163 064164 020145 062563 s the se 
067543 062156 061440 060550 cond cha 
060562 072143 071145 071440 racter s 
071164 067151 0147 0 Iring@'@'@' 
o 0 0 0 @'@'@'@'@'@'@'@' 
o 0 0 0 @'@'@'@'@'@'@'@' 

data address not found 

This i 

020141 

063556 

064440 

062156 

067151 

< b,20/404" 8t8cna 
020000: 0 
_strl +06: 020163 
_strl +016: 061541 
_strl +026: 064562 

064124 
020141 
062564 
063556 

071551 
064143 
020162 
o 02 

064440 
071141 
072163 

s a char 
acter st 

ring 
_number: 
_number: 0710 0 02322040240 HR 
Jpt+02: 0 064124 071551 064440 This i 
_str2+06: 020163 064164 020145 062563 s the se 
_str2+016: 067543 062156 061440 060550 cond cha 
_str2+026: 060562 072143 071145 071440 racIer s 
_str2+036: 071164 067151 0147 0 tring 
savr5 +02: 0 0 0 0 
savr5+012: 0 0 0 0 
data address not found 
<b,1012b8C2cn 
020000: 0 

_slrl: 0124 0150 
0151 0163 
040 0151 
0163 040 
0141 040 
0143 0150 
0141 0162 
0141 0143 
0164 0145 

$Q 

0 

Th 
is 
i 

s 
a 
ch 
ar 
ac 
te 

064143 

o 02 

061440 

0147 0 

071141 

060550 



- 26 -

Figure 12: Directory and inode dumps 

adb dir-
= nt"Inode"t" Name" 
0,-1 ?ut14cn 

Inode 
0: 652 

82 
5971 cap.c 
5323 cap 
0 pp 

adb Idev/src-
02000> b 
?m<b 

Name 

new map 
bl = 02000 
b2 == 0 

'/dev/src' 
el 
e2 

$v 
variables 
b = 02000 

= 0100000000 f1 == 0 
=0 f2=0 

< b, -1 ?"ftags" 8ton" links, uid,gid" 8t3bn" size" 8tbrdn" addr" 8t8un" times" 8t2 Y 2na 
02000: flags 073145 

links,uid,gid 0163 01640141 
size 0162 10356 
addr 28770 8236 25956 27766 25455 8236 25956 25206 
times1976 Feb 5 08:34:56 1975 Dec 28 10:55:15 

02040: flags 024555 
links,uid,gid 012 0163 0164 
size 0162 25461 
addr 8308 30050 8294 25130 15216 26890 29806 10784 
times1976 Aug 17 12:16:511976 Aug 17 12:16:51 

02100: flags 05173 
links,uid,gid 011 0162 0145 
size 0147 29545 
addr 25972 8306 28265 8308 25642 15216 2314 25970 
timesl977 Apr 2 08:58:01 1977 Feb 5 10:21:44 



ADBSummary 

Command Summary 
a) formatted printina 

1 formal print from a.oul file accordina to 
formal 

1 formal print from core file accordina to 
formal 

- formal print the value of dol 

1w expr write expression into a.OUI file 
I", expr . write expression into core file 

?l expr locate expression in a.out file 
b) breakpoint and program control 
:b 
:e 
:d 
:k 
:r 
:5 

c> 
SIt 
Ie 
$e 
Sf 
Sm 

~ 
Ss 
$v 
Sw 
d) 

set breakpoint at dol 
continue running program 
delete breakpoint 
kill the program being debugged 
run a.oul file under ADB control 
sinale step 

miscellaneous printing 
print current breakpoints 
C stack trace 
external variables 
floating registers 
print ADB seament maps 
exit from ADB 
general registers 
set offset for symbol match 
print ADB variables 
set output line width 

calling the shell 
call shell to read rest of line 

e) assignment to variables 
> name assign dot to variable or register name 

Format Summary 
a the value of dot 
b one byte in octal 
e one byte as a character 
d one word in decimal 
f two words in floating point 
I PDP 11 instruction 
o one word in octal 
n print a newline 
r print a blank space 
s a null· terminated character string 
nt move to next n space tab 
u one word as unsigned integer 
x hexadecimal 
Y date 
... backup dot 
"" print string 

Expression Summary 
a) expression components 
decimal inteter e.g. 256 
octal inieter e.a. 0277 
hexadecimal e.g. '#ff 
symbols e.a. flag _main main.arac 
variables e.a. < b 
reaisters e.g. < pc < rO 
(expression) expression arouping 
b) dyadic operators 
+ add 

subtract 
• multiply 
'" inteaer division 
" bitwise and 
I bitwise or 
# round up to the next multiple 
c) monadic operators 

not 
• contents of location 

integer negate 








