
~
fS
©

DI ... _~

SRI
International

~~~® 

The UNIX Programmer's Manual 

for the UNIX Time-Sharing System 

Seventh Edition, January 1979 
Volume 1 
On-line UNIX Programmer's Manual 

Reproduced with Special Permission 
by Computer Resources 
June 1980 

333 Ravenswood Ave .• Menlo Park, CA 94025 
(415) 859-6200 • TWX: 910-373-2046 • Telex: 334486 



Copyright 1979, Bell Telephone Laboratories, 
Incorporated. Holders of a UNIX™ software 
license are permitted to copy this document, 
or any portion of it, as necessary for 
licensed use of the software, provided this 
copyright notice and statement of permission 
are included. 

-b-



THE UNIX PROGRAMMER'S MANUAL 

VOLUME 1 

THE ON-LINE UNIX PROGRAMMER'S MANUAL 

FOREWORD 

There are a few differences between this printing of the UNIX 

Programmer's Manual for the Seventh Edition of the UNIX time-sharing 

system and the November 1979 Computer Resources' printing. The mainte

nance section of Volume 1 and several articles in Volume 2B have been 

deleted are are available only on written permission by the Director of 

Facilities, Computer Resources. 

This documentation is published in three volumes for convenience 

both in subject matter and in size of each bound volume. The three 

volumes are as follows: 

(1) Volume 1: The "On-line UNIX Programmer's Manual". 

(2) Volume 2A: The "Supplementary Documents," Part I, including 
such topics as general works, getting started, document 
preparation, and programming. 

(3) Volume 2B: The "Supplementary Documents," Part II, including 
such topics as supporting tools and langua~es, and imple
mentation and miscellaneous subjects. 

Each of these volumes is available from the Computer Resources 

Distribution Center, extension 3736. 

Volumes 1 and 2A are the fundamental documentation for the UNIX 

Edition 7 user. Volume 2B contains documents of a more advanced or 

specialized nature that may not be of interest to the typical UNIX user. 

-c-





CONTENTS 

VOLUME 1 

THE ON-LINE UNIX PROGRAMMER'S MANUAL 

FOREWORD 

PREFACE 

INTRODUCTION TO VOLUME 1 

HOW TO GET STARTED 

CONVERTING FROM THE 6th EDITION 

PERMUTED INDEX 

COMMANDS (1) 

SYSTEM CALLS (2) 

SUBROUTINES (3) 

SPECIAL FILES (4) 

FILE FORMATS AND CONVENTIONS (5) 

GAMES (6) 

MACRO PACKAGES AND LANGUAGES CONVENTIONS (7) 

FOREWORD 

VOLUME 2A 

SUPPLEMENTARY PAPERS, PART I 

INTRODUCTION TO VOLUMES 2A AND 2B 

GENERAL WORKS 

1. 7th Edition UNIX--Summary 

2. The UNIX Time-sharing System 

GETTING STARTED 

3. UNIX for Beginners 

4. A Tutorial Introduction to the UNIX Text Editor 

5. Advanced Editing on UNIX 

-e-



6. An Introduction to the UNIX Shell 

7. Learn--Computer Aided Instruction on UNIX 

DOCUMENT PREPARATION 

8. Typing Documents on the UNIX System 

9. A System for Typesetting Mathematics 

10. TLB--A Program to Format Tables 

11. Some Applications of Inverted Indexes on the 

UNIX System 

12. NROFF/TROFF User's Manual 

13. A TROFF Tutorial 

PROGRAMMING 

14. The C Programming Language--Reference Manual 

15. Lint, A C Program Checker 

1"6. Make--A Program for Maintaining Computer Programs 

17. UNIX Programming 

18. A Tutorial Introduction to ADB 

FOREWORD 

VOLUME 2B 

SUPPLEMENTARY DOCUMENTS, PART I 

INTRODUCTION TO VOLUMES 2A AND 2B 

SUPPORTING TOOLS AND LANGUAGES 

19. YACC: Yet another Compiler-compiler 

20. LEX--A Lexical Analyzer Generator 

21. A Portable FORTRAN 77 Compiler 

22~ Ratfor--A Preprocessor for a Rational FORTRAN 

23. The M4 Macro Processor 

24. SED--A Noninteractive Text Editor 

25. AWK--A Pattern Scanning and Processing Language 

26. DC--An Interactive Desk Calculator 

27. BC--An Arbitrary Precision Desk-Calculator Language 

28. UNIX Assembler Reference Manual 

-f-



IMPLEMENTATION AND MISCELLANEOUS 

29. UNIX Implementation 

30. The UNIX I/O System 

31. A Tour Through the UNIX C Compiler 

32. A Tour Through the Portable C Compiler 

33. fi Dial-up Network of UNIX Systems 

34. UUCP Implementation Description 

35. Password Security: A Case History 





PREFACE 

Although this Seventh Edition no longer bears their byline, Ken Thompson and Dennis Ritchie 
remain the fathers and preceptors of the UNIXt time-sharing system. - Many of the improve
ments here described bear their mark. Among many, many other people who have contributed 
to the further flowering of UNIX, we wish especially to acknowledge the contributions of A. V. 
Aho, S. R. Bourne, L. L. Cherry, G. L. Chesson, S. 1. Feldman, C. 8. Haley, R. C. Haight, S. 
C. Johnson, M. E. Lesk, T. L. Lyon, L. E. McMahon, R. Morris, R. Muha, D. A. Nowitz, L. 
Wehr, and P. 1. Weinberger. We appreciate also the effective advice and criticism of T. A. 
Dolotta, A. G. Fraser, 1. F. Maranzano, and J. R. Mashey; and we remember the important 
work of the late Joseph F. Ossanna. 

tUNIX is a Trademark of Bell Laboratories. 

8. W. Kernighan 
M. D. McIlroy 



- iv -

at full-duplex. (This switch will often have to be changed since many other systems require 
half-duplex). When a connection is established, the system types 'login:'; you type your user 
name, followed by the 'return' key. If you have a password, the system asks for it and turns 
off the printer on the terminal so the password will not appear. After you have logged in, the 
'return', 'new line', or 'linefeed' keys will give exactly the same results. 

1200- and 150-baud terminals: If there is a halflfull duplex switch, set it at full-duplex. When 
you have established a data connection, the system types out a few garbage characters <the 
'login:' message at the wrong speed). Depress the 'break' (or 'interrupt') key; this is a speed
independent signal to UNIX that a different speed terminal is in use. The system then will type 
'login:,' this time at another speed. Continue depressing the break key until 'login:' appears in 
clear, then respond with your user name. From the TTY 37 terminal, and any other which has 

. the 'newline' function (combined carriage return and linefeed), terminate each line you type 
with the 'new line' key, otherwise use the 'return' key. 

Hard-wired terminals. Hard-wired terminals usually begin at the right speed, up to 9600 baud; 
otherwise the preceding instructions apply. 

For all these terminals, it is important that you type your name in lower-case if possible; if you 
type upper-case letters, UNIX will assume that your terminal cannot generate lower-case letters 
and will translate all subsequent upper-case letters to lower case. 

The evidence that you have successfully logged in is that the Shell program will type a'S' to 
you. (The Shell is described below under 'How to run a program. ') 

For more information, consult stl)l(1) , which tells how to adjust terminal behavior, getl)l(S) , 
which discusses the login sequence in mor~ detail, and tl)l(4), which discusses terminal I/O. 

Logging out. There are three ways to log out: 

You can simply hang up the phone. 

You can log out by typing an end-of-file indication (EOT character, control-d) to the 
Shell. The Shell will terminate and the 'login: ' message will appear again. 

You can also log in directly. as another user by giving a login 0 ) command. 

How to communicate through your terminaL When you type characters, a gnome deep in the sys
tem gathers your characters and saves them in a secret place. The characters will not be given 
to a program until you type a return (or newline), as described above in Logging in. 

UNIX terminal 1/0 is full-duplex. It has full read-ahead, which means that you can type at any 
time, even while a program is typing at you. Of course, if you type during output, the printed 
output will have the input characters interspersed. However, whatever you type will be saved 
up and interpreted in correct sequence. There is a limit to the amount of read-ahead, but it is 
generous and not likely to be exceeded unless the system is in trouble. When the read-ahead 
limit is exceeded, the system throws away all the saved characters. 

The character '@' in typed input kills all the preceding characters in the line, so typing mistakes 
can be repaired on a single line. Also, the character '#' erases the last character typed. Succes
sive uses of '#' erase characters back to, but not beyond, the beginning of the line. '@' and 
'#' can be transmitted to a program by preceding them with '\'. (So, to erase '\', you need two 
'#'s). These conventions can be changed by the st(YO) command. 

The 'break' or 'interrupt' key causes an interrupt signal, as does the The ASCII 'delete' (or 
'rubouC) character, which is not passed to programs. This signal generally causes whatever 
program you are running to terminate. It is typically used to stop a long printout that you don't 
want. However, programs can arrange either to ignore this signal altogether, or to be notified 
when it happens (instead of being terminated). The editor, for example, catches interrupts and 
stops what it is doing, instead of terminating, so that an interrupt can be used to halt an editor 
printout without losing the file being edited. 

The quit signal is generated by typing the ASCII FS chatacter. (FS appears many places on 
different- terminals, most commonly as control-\ or contrOl-I.> It not only causes a running 



- v -

program to terminate but also generates a file with the core image of the terminated process. 
Quit is useful for debugging. 

Besides adapting to the speed of the terminal, UNIX tries to be intelligent about whether you 
have a terminal with the newline function or whether it must be simulated with carriage-return 
and line-feed. In the latter case, all input carriage returns are turned to newline characters (the 
standard line delimiter) and both a carriage return and a line feed are echoed to the terminal. 
If you get into the wrong mode, the stO'O) command will rescue you. 

Tab characters are used freely in UNIX source programs. If your terminal does not have the tab 
function, you can arrange to have them turned into spaces during output, and echoed as spaces 
during input. The system assumes that tabs are set every eight columns. Again, the stO'O) 
command will set or reset this mode. Also, the command tabs ( 1) will set the tab stops 
automatically on many terminals. 

How to run a program: the Shell When you have successfully logged in, a program called the 
Shell is listening to your terminal. The Shell reads typed-in lines, splits them up into a com
mand name and arguments, and executes the command. A command is simply an executable 
program. The Shell looks first in your current directory (see below) for a program with the 
given name, and if none is there, then in a system directory. There is nothing special about 
system-provided commands except that they are kept in a directory where the Shell can find 
them. 

The command name is always the first word on an input line; it and its arguments are separated 
from one another by spaces. 

When a program terminates, the Shell will ordinarily regain control and type a '$' at you to 
indicate that it is ready for another command. 

The Shell has many other capabilities, which are described in detail in section sh(I). 

The current directory. UNIX has a file system arranged in a hierarchy of directories. When the 
system administrator gave you a user name, he also created a directory for you (ordinarily with 
the same name as your user name). When you log in, any file name you type is by default in 
this directory. Since you are the owner of this directory, you have full permission to read, 
write, alter, or destroy its contents. Permissions to have your will with other directories and 
files will have been granted or denied to you by their owners. As a matter of observed fact, 
few UNIX users protect their files from destruction, let alone perusal, by other users. 

To change the current directory (but not the set of permissions you were endowed with at 
login) use cd( 1) . 

Path names. To refer to files not in the current directory, you must use a path name. Full 
path names begin with '/', the name of the root directory of the whole file system. After the 
slash comes the name of each directory containing the next sub-directory (followed by a '/') 
until finally the file name is reached. For example, lusrllemlfilex refers to the file filex in the 
directory lem: lem is itself a subdirectory of usr: usr springs directly from the root directory. 

If your current directory has subdirectories, the path names of files therein begin with the name 
of the subdirectory with no prefixed '/'. 

A path name may be used anywhere a file name is required. 
Important commands which modify the contents of files are cpO), mv(I), and rmO), which 
respectively copy, move (j.e. rename) and remove files. To find out the status of files or direc
tories, use /sO). See mkdir(I) for making directories and rmdir Gn rm(l» for destroying 
them. 
For a fuller discussion of the file system, see 'The UNIX Time-Sharing System,' by Ken Thomp
son and Dennis Ritchie. It may also be useful to glance through section 2 of this manual; 
which discusses system calls, even if you don't intend to deal with the system at that level. 
Writing a program. To enter the text of a source program into a UNIX file, use the editor ed(1). 
The three principal languages in UNIX are provided by the C compiler cc(I), the Fortran 



- vi -

compiler .177(1), and the assembler as(l). After the program text has been entered through 
the editor and written on a file, you can give the file to the appropriate language processor as an 
argument The output of the language processor will be left on a file in the current directory 
named 'a.out'. (If the output is precious, use mv to move it to a less exposed name soon.) If 
you wrote in assembly language,. you will probably need to load the program with library sub
routines; see IdO). The other two language processors call the loader automatically. 

When you have finally gone through this entire process without provoking any diagnostics, the 
resulting program can be run by giving its name to the Shell in response to the'S' prompt. 

Your programs can receive arguments from the command line just as system programs do, see 
exec(2). 

Text processing. Almost all text is entered through the editor ed(1). The commands most 
often used to write text on a terminal are: cat. pro roffand nroff. all in section l. 

The cat command simply dumps ASCII text on the terminal, with no processing at aU. The pr 
command paginates the text, supplies headings, and has a facility for multi-column output 
Nroffis an elaborate text formatting program. Used naked, it requires careful forethought, but 
for ordinary documents it has been tamed; see ms(7). Roff is a simpler text formatting prO
gram, and requires somewhat less forethought. 

Troff prepares documents for a Graphics Systems phototypesetter; it is very similar to nroff. and 
often works from exactly the same source text. It was used to produce this manual. 

Status inquiries. Various commands exist to provide you with useful information. Who 0) 
prints a list of users presently logged in. DateO) prints the current time and date. Ls(I) will 
list the files in your directory or give summary information about particular files. 

Surprises. Certain commands provide inter-user communication. Even if you do not plan to 
use them, it would be well to learn something about them, ~cause someone else may aim 
them at you. 

To communicate with another user currently logged in, write(I) IS used; mai/O) will leave a 
message whose presence will be· announced to another user when he next logs in. The write
ups in the manual also suggest how to respond to the two commands if you are a target. 

When you log in, a message-of-the-day may greet you before the first'S'. 

CONVERTING FROM THE 6TH EDITION 

There follows a catalogue of significant, mostly incompatible, changes that will affect old users 
converting to the 7th edition. No attempt is made to list all new facilities, or even all minor, 
but easily spotted changes, just the bare essentials without which it will be almost impossible to 
do anything. 
Addressing files. Byte addresses in files are now long {32-bit} integers. Accordingly seek has 
been replaced by lseek(2). Every program that contains a seek must be modified. Stat and 
!stat(2) have been affected similarly, since file lengths are now 32- rather than 24-bit quantities. 

Assembly language. System entry points are no longer built in symbols. Their values must be 
obtained from /usr/include/sys.s. see intro(2). All system calls modify rOo This means that 
sequences like 

mov file,rO 
sys Iseek,O,O,2 
sys write,buf,n 

will no longer work. (In fact, Iseek now modifies rl as well, so be doubly cautious.) 

The sleep(2) entry point is gone; see the more general facility, alarm. plus pause. 

Few library functions have assembly language entry points any more. You will have to simulate 
the C calling sequence. 



- vii -

Slty and gtty. These system calls have been extensively altered, see ;oct/(2) and tty (4) . 

Archive files. The format of files produced by adD has been altered. To convert to the new 
sty Ie, use arcv (1 ) . 

C language, lint The official syntax for initialization requires an eqllal sign - before an initial
izer, and brackets I } around compound initial values; arrays and structures are now initialized 
honestly. Two-address operators, such as - + and --, are now written + - and -- to avoid 
ambiguities, although the old style is still accepted. You will also certainly want to learn about 

long integers 
type definitions 
casts (for type conversion) 
unions (for more honest storage sharing) 
#include < filename> (which searches in standard places) 

The program lincO) checks for obsolete syntax and does strong type checking of C programs, 
singly or in groups that are expected to be loaded together. It is indispensable for conversion 
work. 

FortTan. The old Ic is repiaced by j77, a true compiler for Fortran 77, compatible with C. 
There are substantial changes in the language; see 'A Portable Fortran 77 Compiler' in Volume 
2. 
StTeam editor. The program sed(1) is adapted to massive, repetitive editing jobs of the sort 
encountered in converting to the new system. It is well worth learning. 

SlIlndord 110. The old lopen, gerc, pute complex and the- old -Ip package are both dead, and 
even gerchar has changed. All have been 'replaced by the clean, highly efficient, stdio(3) pack
age. The first things to know are that getchar(3) returns the integer EOF (-1), which is not a 
possible byte value, on end of file, that S18-byte buffers are out, and that there is a defined 
FILE data type. 

Make. The program make ( 1) handles the recompilation and loading of software in an orderly 
way from a 'makefile' recipe given for each piece of software. It remakes only as much as the 
modification dates of the input files show is necessary. The makefiles will guide you in building 
your new system. 

SheiL ehdir. F. L. Bauer once said Algol 68 is the Everest that must be climbed by every com
puter scientist because it is there. So it is with the shell for UNIX users. Everything beyond 
simple command invocation from a terminal is different. Even ehdir is now spelled cd. You 
will want to study shU) long and hard. 
Debugging. Adb(1) is a far more capable replacement for the debugger db. The first-time user 
should be especially careful about distinguishing I and ? in adb commands, and watching to 
make sure that the x whose value he asked for is the real x. and not just some absolute loca
tion equal to the stack offset of some automatic x. You can always use the 'true' name, _x, to 
pin down a C external variable. 
Dsw. This little-known, but indispensable facility has been taken over by rm -rio 

Boot procedures. Needless to say, these are all different. See section 8 of this volume, and 
'Setting up UNIX' in Volume 2. 



PERMUTED INDEX 

fabs, floor, ceil -

phys - allow a process 10 

access - del ermine 
ac - lOgin 

sa, accton - system 
acct - execution 

acct - lurn 
sa, 

sin, cos, tan, asin, 
dn - ON-II 

phys - allow a prceess to access physical 
bascname - strip filename 

plot: open 1'1 el 

brk, sbrk, break - chanle core 
malice, free, realloc, callce - main memory 

lex - lenerator of lexical 
bcd, 1'1'1 - convert to 

be
tp - manipulate tape 

ar -
ar -

tar - tape 
arcv - convert 

echo - echo 
expr - evaluate 

pow, lcd, rpow - multiple precision inteler 

be - arbitrary-precision 

ascIi me, timezone - convert date and time to 

ASCII . 
functions 

atof, aloi, atol - convert 
. clime, localtime, Imtime, 

. sin. cos. tan. 
as-

a.out -

setbuf -

sin, cos. tan, asin. acos. 

wait-
lanluale ................... . 

slore, delete, firslkey, nextkey - data 

bas -

cb - C proaram 

abort - generate lOT fault . . . . . . 
abs - inteler absolute value . . . . . 
absolute value. floor. ceiling functions 
ac - login accounting . . . . . . . . . 
accc:ss - determine accessibility of file 
access physical addresses 
accessibility of file 
accounting . . . . . . 
accountinl . . . . . . 
accounting file . . .. 
accounting on or off . 
aceton - system accounting. 
acos, atan, atan2 - trigonometric functions 
ACU interface . 
adb - debuller . . . . 
addresses ....... . 
affixes ........ . 
al. - graphics interface 
alarm - schedule signal after specified lime 
allocation .... . 
al1ocator .... . 
analysis proarams 
antique media . . 
a.out - assembler and link editor output. 
ar - archive and library maintainer . 
ar - archive (library) file format ... 
arbitrary-precision arithmetic lanluale 
archive ............ . 
archive and library maintainer. 
archive (library) file format 
archiver ....... . 
archives to new formal .. 
arguments ........ . 
arguments as an expression 
arithmelic ... '.' .. /msub, mult, mdiv. min, mout. 
arithmetic - provide drill in number facts . . . . . . . 
arithmetic language . . . . . . . . . . . . . . . . . . . 
as - assembler .... . . . . . . . . . . . . . . . . . 
ASCII. . . . . . . . . . . . . ctime, localtime, gmtime. 
ascii - map of ASCII character set . . . . . . . 
ASCII to numbers . . . . . .......... . 
asctime, timezone - convert date and time to . 
asin. acos, atan, atan2 - trigonometric . 
assembler ........... . 
assembler and link editor output 
assert - program verification . . 
assign buffering to a stream . . . 
at - execute commands at a later time. 
atan. alan2 - Irilonometric functions . 
atof, aloi. atol - convert ASCII 10 numbers . 
await completion of process . . . . . . . 
awk - pattern scannin, and prceessinl . 
backpmmon - the game . . 
banner - make lonl posters . . . 
bas - basic .......... .. 
base subroutines . . . . . . . . . . 
bascname - strip filename affixes 
basic ............... . 

. dbminit. fetch, 

be - arbitrary-precision arithmetic lan,uaae 
bcd. ppt - convert to antique media. . 
beautifier . . . . . . . . . . . . . . . . . . . 

abort (3) 
abs(3) 

floor(3) 
ac(l) 

access (2) 
physm 

access (2) 
ac(I) 
sam 

acct(S) 
acct(2) 

sa (1) 
sinO) 
dn(4) 

adb(I) 
phys(2) 

bascname ( I ) 
plot(3) 

alarm(2) 
brk(2) 

malJce(3) 
lex (1) 
bcd(6) 

a.out(S) 
adD 
adS) 
be (1) 
tp(l) 
ar(D 
ar(S) 

tarm 
arcv(1) 
echoW 
expr(}) 

mp(3) 
arithmetic(6) 

bcm 
asm 

ctimeO) 
ascji(7) 
atof(J) 

etime(3) 
sin(3) 
as 0> 

a.out(S) 
asscrt(3) 
setbuf(J) 

at(}) 
sin(3) 

atof(J) 
wait (1) 
awk(1) 

backpmmon(6) 
banner(6) 

basm 
dbm(3) 

bascname(l) 
bas (I) 
be (1) 

bed (6) 
cb(I) 



jO, jl, jn, yO, yl, yn -
fread, fwrite - buffered 

sync - update the super 
sync - update super

update - periodically update the super 
sum - sum and count 

ching, fortune - the 

brk, sbrk, 
expon, login,! ......... sh. for, case, if, while, 

fread. fwrite -
stdio - standard 

setbuf - assign 
mknod -

13tol, hol3 - conven between 3-
swab - swap 

cc, pee -
cb -

lint - a 
hypot, 

dc - desk 
cal - print 

indir - indirect system 
cu -

malloc, free, realloc. 
intro, errno - introduction to system 

exec. exit, export, login., newgrp,! ...... sh. for. 

signal -
cat -

sh, for, case, if, while. break, continue. 
functions . . . . . . . . . . . . . . . . ' .. fabs. floor. 

brk, sbrk. break -
chdir -

passwd -
chmod -
chmod -
chown -

chown, chgrp -
cd -

ching. fortune - the book of 
pipe - create an interprocess 

ungetc - push 
ispunct. isprint, iscntrl, isascii -

eqnchllr - special 
getc. getchar, fgetc. getw - get 

putc, putchar, fpute, putw - put 
ascii - map of ASCII 

tr - translate 

dcheck - file system directory consistency 
icheck - file system storage consistency 

eqn. neqn, 

other cookies ........ . 

chess - the game of 
chown, 

isprint. iscntrl. isascii - character 
c1ri -

feof, ferror, 

- ix -

bessel functions . . . . . . . 
binary input/output ..... 
bj - the game of black jack . 
block 
block .. . 
block .. . 
blocks in a file ......... . 

. book of changes and other cookies 
boot - startup procedures .... 
break - change core allocation . . 
break, continue, cd, eval, exec, exit, 
brk, sbrk, break - change core allocation 
buffered binary input/output . 
buffered input/output package 
buffering to a stream ..... 
build special file . . . . . . . . 
byte integers and long integers 
bytes ........ . 
C compiler ..... . 
C program beautifier. 
C program verifier . . 
cabs - euclidean distance . 
cal - print calendar 
calculator . . . . . . . . . . 
calendar ......... . 
calendar - reminder service 
call ............. . 
call UNIX ......... . 
calloc - main memory allocator 
calls and error numbers . . . . . 
case, if, while. break, continue, cd, eval, 
cat - catenate and print. . . . 
cat - phototypesetter interface 
catch or ignore signals . . . 
catenate and print . . . . . 
cb - C program beautifier 
cc, pee - C compiler .. . 
cd - change working directory 
cd. eval. exec. exit, export. login. newgrp,/ 
ceil - absolute value, floor. ceiling. 
change core allocation . . 
change default directory . 
change login password . . 
change mode. . . . . . . 
change mode of file . . . 
change owner and group of a file 
change owner or group . . 
change working directory . . . . 
changes and other cookies. . .. 
channel. .. . ........ . 
character back into input stream 
character classification ........ lisalnum. isspace. 
character definitions for eqn . . 
character or word from stream 
character or word on a stream 
character set . . . . . . . . . . 
characters .......... . 
chdir - change default director)' 
check .............. . 
check .............. . 
checkeq - typeset mathematics . 
checkers - game . . . . . . . . 
chess .............. . 
chgrp - change owner or group 
ching. fortune - the book of changes and 
chmod - change mode . . . . . . . . . . 
chmod - change mode of file .' 
chown - change owner and group of a file. 
chown. chgrp - change owner or group . . 
Classification ......... lisalnum. isspace. ispunet, 
clear i-node .... ......... . 
c1earerr. fileno - stream status inquiries . . . . . . .. 

jO(3) 
fread(3) 

bj(6} 
sync(J) 
sync(2) 

update(S) 
sum(l) 

ching(6) 
booteS) 

brk(2) 
sh(l) 

brk (2) 
fread (3) 
stdio(3) 

setbuf(3) 
mknod(l) 

13to1(3) 
swab (3) 

ce(J) 
cb(l) 

Hnt(l) 
hypot(3) 

cal(l) 
dc(J) 
cal(l } 

calendar (J) 
indir(2) 

cu(J) 
malloc(3) 

intro(2) 
sh(J) 

cat (I) 
cat (4) 

signal(2} 
cat(\) 
cbO) 
cc(J) 
cd(J} 
sh(I) 

floor(3} 
brk (2) 

chdir(2) 
passwd(J } 
chmod(l) 
chmod(2) 
chown(2} 
chown(J) 

cd(!) 
ching(6) 

pipe(2) 
ungete(3} 

ctype(3} 
eqnchar(7} 

getd3) 
putc(3) 
ascii (7) 

tr(I) 
chdir(2) 

dcheck(1 ) 
icheck (I) 

eQn(J) 
checkers(6) 

chess(6) 
chown(!} 

ching(6l 
chmod(J) 
.chmod(2) 
chown(2) 
chown(J) 

ctype(3) 
c1ri (I) 

ferrod3) 



cron -

fclose. mush -

sorted files ' , . , . , . . . . 
system - issue a shell 

test - condition 
time - time a 

nice. nohup - run a 
uux - unix to unix 

set. shift. times. trap. umask. wait -
intro - introduction to 

at - eltecute 
comm - select or reject lines 

diff - differential file 
cmp -

dilf3 - 3-way differential file 
ce. pee - C 

n7 - Fortran 77 
yacc - yet another compiler-

wait - await 
test -

mkconf - generate 
dcheck - file system directory 

icheck - file system storage 
mkfs -

deroff - remove nroff. troff. tbl and eqn 
Is - list 

10gin.1 . , .. , .... sh. for. case. if. while. break. 
ioctl, stty. gtty -
init. rc - process 

terminals
ecvt. fcvt. gevt - output 

printf. fprintf. sprintf - formatted output 
stanf. fseanf. sseanf - formatted input 

units -
dd -

arcv -

integers 
atof. atoi. atol -

, . . . . , , . . . . . . . . 13tol, Itol3 -
localtime. gmtime. asetime. timezone -

bcd, ppt -
fortune - the book of changes and other 

cp -
uucp, uulog - unix to unix 

dd - convert and 

brk, sbrk. break - change 
core - format of 

memo kmem -
trigonometric functions . . . , . . . . . . . sin, 

sinh, 
wc - word 

sum - sum and 

pipe -
umask - set file 

- convert date and time to ASCII . . . . . . . . 

ttt, 
spline - interpolate smooth 

eron - clock 
prof - display profile 

ttys - terminal initialization 
fetch. store, delete, firstkey. nextkey -

- X -

clock daemon ,..,. 
close - close a file 
close or flush a stream . 
clri - clear i-node ' , , 
cmp - compare two files 
col - filter reverse line feeds 
comm - select or reject lines common to two 
command 
command ..,','" 
command """" 
command at low priority 
command execution . . 
command languag~ . . . , , ,/ newgrp, read, readonly. 
commands ........ , 
commands at a later time . 
common to two sorted files 
comparator. , . . 
compare two files 
comparison. 
compiler 
compiler .. 
compiler .. 
completion of process 
condition command 
configuration tables . 
consistency check . 
consistency check , , 
construct a file system 
constructs .. , . . . 
contents of directory. 
continue, cd. eval. exec. exit. export. 
control device . . . 
control initialization 
conventional names 
conversion 
conversion . . . . . 
conversion ..... 
conversion program 
convert and copy a file. 
convert archives to new format 
convert ASCII to numbers . . 
convert between 3-byte integers and long 
convert date and time to ASCII , , . , , , . , . ctime. 
convert to antique media . . . . . . . . . . . . . . . . 
cookies. . . . . . . . . . . . . . . . . . . . . . . chin" 
copy .............. . 
copy .............. . 
copy a file ........... . 
core - format of core image file 
core allocation 
core image file . . . . . . . . . . 
core memory. . . . . . . , . . . 
cos, tan, asin. acos, atan, atan2 -
cosh. tanh - hyperbolic functions 
count, ...... , . 
count blocks in a file. . . , . , , . 
cp - copy .. , ......... . 
crash - what to do when the system crashes 
creat - create a new file ,., 
create an interprocess channel, 
creation mode mask , . 
cron - clock daemon . . . . . 
crypt - encode/ decode . , . . 
crypt, setkey. encrypt - DES encryption 
ctime, locaitime, gmtime. asctime. timezone 
cu - call UNIX .. 
cubic - tic-tac-toe . 
curve, . 
daemon 
data .. . 
data .. . 
data base subroutines. . . . . . . . , , . , . ,dbminit, 

eron (8) 
close(2) 

fclose (3) 
clri (J) 

cmp([) 
col( 1l 

commO) 
system (3) 

test (I) 
time(l) 
nice(l) 
uux (I) 

sh (1) 
intro(l ) 

at (J) 

commO) 
diff(l) 

cmp(l) 
diff3 (I) 

ec (I) 
n7(I) 

yacc(I) 
waitO) 
test (I) 

mkconf(l) 
dcheck (1) 
icheck( I) 

mkfs(J) 
deroff( I) 

Is(t) 
sh(I) 

ioetH2) 
init (8) 

term (7) 
ecvt(J) 

printf(3) 
scanf(3) 
units(t ) 

dd (\) 
arcv( !) 
atof(3) 
13101(3) 

ctime(J) 
bed (6) 

ching(6) 
cp(!) 

uucp( 1) 
dd( \) 

core(S) 
brk(2) 

core(S) 
mem(4) 

sin (3) 
sinh (3) 

wc(J) 
sumO) 

ep(I) 
crash (8) 
creal (2) 
pipe(2) 

umask(2) 
eron (8) 
crypt (I) 
crypt (J) 

ctime(3) 
cu(l) 
ttt(6) 

spline(\) 
eron (8) 
prof( \) 
ttys(S) 

dbmUl 



null -
types - primitive system 

join - relational 
du, dp - DU-}} 201 

date - print and set the 
time, ftime - set 

smtime, asctime, timezone - convert 
touch - update 

nextkey - data base subroutines . 

check ............... . 

dump, 
adb -

tp -
crypt - encodel 

tc - TC-11/TUS6 
chdir - change 

eqnchar - special character 
subroutines . . . . . . . . dbminit, fetch, store, 

tail -
mesg - permit or 

constructs . . . 
crypt, setkey. encrypt -

dup, dup2 - duplicate an open file 
dc -

access -
file -

ioetl, stty, gtty - control 

diff ..: 
diff3 - 3-way 

mv - move or rename files and 
cd - chanse working 

chdir - change default 
Is - list contents of 

mkdir - make a 
dcheck :.... file system 

unlink - remove 
pwd - working 

mknod - make a 
hp - RH-ll/RP04, RPOS, RP06 moving-head 

rk - RK·ll/RK03 or RKOS 
rp - RP-1l/RP03 movins-head 

hs - RHl1/RS03·RS04 fixed·head 
rf - RFII/RSII fixed-head 

df -
du - summarize 

mount, umount - mount and 
prof -

hypot. cabs - euclidean 

descriptor 

- find and insert literature references in 
du, 

Teversi - a game of 
graph -

arithmetic - provide 
pk - packet 

pkclose, pkread, pkwrite. pkfail - packet 

dump - incremental file system 
od - octal 

dumpdir - print the names of files on a 

• xi • 

data sink ...... . 
data types ..... . 
database operator . . 
data-phone interface . 
date ........ :. 
date and time .... . 
date and time to ASCII . . . . . . . . ctime, localtime, 
date last modified of a file . . . . . . . . . . 
dbminit, fetch, store, delete, firstkey, .... 
dc - desk calculator. . . . . . . . . . . . . 
dcheck - file system directory consistency . 
dd - convert and copy a file . . . 
ddate - incremental dump format 
debuller ....... . 
DEClmag tape formats 
decode ...... . 
DECtape ....... . 
default directory . . . . 
definitions for eqn .......... . 
delete, firslkey, nextkey - data base . 
deliver the last part of a file . . . . . . 
deny messases . . . . . . . . . . . . . . 
deroff - remove nroff, troff. tbl and eqn 
DES encryption ...... . 
descriptor ......... . 
desk calculator . . . . . . . . 
determine accessibility of file 
determine file type. . . . . . 
device ........... . 
df - disk free . . . . . . . . 
diff - differential file comparator . 
diff3 - 3-way differential file comparison 
differential file comparator 
differential file comparison 
dir - format of directories 
directories 
directory 
directory . 
directory . 
directory. . 
directory consistency check 
directory entry . . . . . . 
directory name . . . . . . 
directory or a special file . 
disk .. . 
disk .. . 
disk .. . 
disk file. 
disk file. 
disk free 
disk usage . 
dismount file system . 

. display profile data . . 
distance ...... . 
dn - DN·II ACU interface 
documents ................ refer, lookbib 
dp - DU-ll 201 data-phone interface 
dramatic reversals . . 
draw a sraph . . . . . 
drill in number facts . 
driver ........ . 
driver simulator . . . . . . . . . . . . . . . . . pkopen. 
du - summarize disk usage. . . . . . . . 
duo dp - DU-ll 201 dala-phone interface 
dump ................... . 
dump ................... . 
dump - incremental file system dump .. 
dump, ddate - incremental dump format 
dump tape ............. . 
dup, dup2 - duplicate an open file . 
echo - echo arguments . . . . . . . 
ecv!, fcv!. gcvt - output conversion 

null(4) 
types(S) 
join (1) 

du(4) 
date(J) 
time (2) 

ctime(3) 
touch(J) 
dbm(3) 

dc(J) 
dcheck(1) 

dd(J) 
dump(S) 

adb(J) 
tp(S) 

crypt(J) 
tc(4) 

chdir(2) 
eqnchar(7) 

dbm(3) 
tail(l) 

mesg(J) 
deroff(J ) 
crypt (3) 
dup(2) 

dc(J) 
access (2) 

file(J ) 
ioctJ(2) 

df(J) 
diff(J) 

diff3(J) 
diff(1) 

diff3(l) 
dir(S) 
mv(1} 
cd(J) 

chdir(2) 
IsO) 

mkdir(1 ) 
dcheck(1) 
unlink (2) 

pwd(] ) 
mknod(2) 

hp(4) 
rk(4) 
rp(4) 
hs(4) 
rf(4) 
df(J) 
du(J) 

mount(]) 
prof(J) 

hypot(3) 
dn(4) 

refer(}) 
du(4) 

reversi(6) 
graph ( I) 

arithmetic(6) 
pk(4) 

pkopen(3) 
du(\) 
du(4) 

dump(l) 
od(1) 

dump(!) 
dump(S) 

dumpdir(\) 
dup(2) 

echo (1) 
ecvt(3) 



program . 

end, etext. 
ed - text 

sed - stream 
a.out - assembler and link 

grep. 
crypt -

crypt. setkey, 
makekey - generate 

getgrent. getlraid, getgrnam, setgrent, 
getpwent. getpwuid, getpwnam, setpwent, 

xsend. xget. 
nlist - get 

setgrent. endgrent - get group file 
setpwent. endpwent - get password file 

unlink - remove directory 
exec:le, exec:ve, exec:lp, exec:vp, exec, exec:e. 

,etenv - value for 
eqnchar - special character definitions for 

deroff - remove nroff, troff, tbl and 

eqn .......................... . 
error numbers . . . . . . . . . . . . . . . . . . intro. 

perror. sys_errlist, sys_nerr - system 
ermo - introduction to system calls and 

spell. spellin. spellout - find spellinl 
pkon. pkoff -

end. 
hypot, cabs -

for, case, if. while, break. continue. cd. 
expr -' 

execl, exec:v, execle, execve, exec:lp, exec:vp, 
lease, if, while, break, continue, cd, eval, 

exec:v, exec:le, exec:ve. exec:lp, exec:vp, exec:, 
at -

uux - unix to unix command 
acc:t -

sleep - suspend 
sleep - suspend 

monitor - prepare 
profil -

exec:e. environ - exec:ute a file ........ exec:l, 

/if. while, break, continue. cd, eval. exec:. 
loaarithm. power, square root ............ . 

frexp, Idexp. modf - split into mantissa and 
exp, 101. 10110, pow, sqrt -

Iwhile, break. continue. cd. eval. exec. exit, 

ceilinl functions . . . . . .. . . . . . . . . . . . . . 
factor. primes -

true. 
abort - generate lOT 

ecvt. 
fopen. freopen. 

status inquiries. . . . . . . . . . . . . . . . . . . . . 
data base subroutines ............ dbminit. 

fclose. 
stream . . . . . . . . . . . . . . . . . . ,etc, letchar. 

gets. 
arep. egrep, 

access - determine accessibility of 
ac:c:t - execution ac:countinl 

chmod - chanle mode of 
chown - change owner and group of a 

close - close a 
core - format of core imale 

creat - create a new 

- xii -

ed - text editor . . . . . . . . . . 
edata - last locations in program . 
editor ............... . 
editor ............... . 
editor output . . . . . . . . . . . . 
egrep. farep - search a file for a pattern 
encodel decode . . . . . . . 
encrypt - DES encryption ..... 
encryption key . . . . . . . . . . . . 
end. etext. edata - last locations in 
endgrent - get group file entry . . . 
endpwent - ,et password file entry 
enroll - secret mail . . . . . . . . . 
entries from name list . . . . . . . . 
entry ........... getgrent. ,etgraid. ,etgrnam. 
entry .......... ,etpwent. ,etpwuid. ,etpwnam. 
entry . . . . . . . . . . . . . . ...... . 
environ - exec:ute a tile .. . execl. execv. 
environ - user environment 
environment name 
eqn ............. . 
eqn constructs . . . . . . . . 
eqn, neqn. chec:keq - typeset mathematics 
eqnchar ...; special character definitions for. 
errno - introduction to system calls and . 
error messa,es . . . . . . 
error numbers ..... . 
errors .......... . 
establish packet protocol . 
etext, ed~ta - last locations in program 
euclidean distance . . . . . . . . . . . . 

. intro, 

eval. exec:. exit. export, login. newgrp.1 . . . . . . . sh. 
evaluate arguments as an expression . . 
exec. exece, environ - exec:ute a file ........ . 
exec. exit, export, lo,in, newgrp, read.l . . . . . . . . 
exec:e, environ - execute a file. . . . . . . . . . exec:l. 
execute commands at a later time. 
execution ........ . 
execution ac:countinl file 
execution for an interval 
execution for interval 
execution profile . . . . . 
execution time profile . . 
exec:v. exec:le, exec:ve, exec:lp, exec:vp. exec:, 
exit - terminate process . . . . . . . . . . 
exit, export. loain, newlrp. read, readonly.l 
expo 101. 10110, pow. sqrt - exponential. . 
exponent .................. . 
exponential, loaarithm, power. square root. 
export, login, newgrp, read, readonly, set,l 
expr - evaluate arluments as an expression . 
n7 - Fortran 77 compiler . . . . . . . 
fabs. Roor. ceil - absolute value. Ooor. 
factor a number. ,enerate lar,e primes . 
false - provide truth values ..... . 
fault .................. . 
fclose, fIlush - close or flush a stream . 
fcvt, gc:vt - output conversion . . . . . 
fdopen - open a stream ....... . 
feof. ferror. clearerr, fileno - stream . 
fetch, store. delete. tirstkey. nextkey -
fIlush - close or flush a stream. . . . . 
fgetc. ,etw - ,et character or word from 
flets - ,et a strin, from a stream 
fgrep - search a file for a pattern . 
file 
file 
file 
file 
file 
file 
file 

ed(I) 
end(3) 

ed(l) 
sed (I) 

a.out(S) 
,rep(l) 

crypt(l) 
crypt (3) 

makekey(S) 
end(3) 

,etgrent (3) 
letpwent(3) 

xsend(l) 
nlist(3) 

,etgrent(J) 
letpwent(3) 

unlink(2) 
exec(2) 

environ(S) 
,etenv(3) 

eqnchar(7) 
deroff(l) 

eqn(t) 
eqnchar(7) 

intro(2) 
perror(3) 

intro(2) 
spell (I) 
pkon(2) 

end(3) 
hypot(3) 

sh(I) 
expr(I) 
exec(2) 

sh(I) 
exec (2) 

atm 
uux(1) 
ac:c:t(S) 

sleep(l) 
sleep(3) 

monitor(3) 
proftH2) 
exec(2) 
exit(2) 

shm 
exp(3) 

frexpO) 
exp(3) 
shm 

expr(I) 
n7(I) 

Ooor(3) 
factor(J) 

trueW 
abort(3) 
fclose(3) 

ec:vt(3) 
fopen(3) 
ferror(3) 

dbm(3) 
fclose(3) 

gete(3) 
gets(3) 
,rep(}) 

ac:c:ess (2) 
ac:c:t(S) 

chmod(2) 
chown(2) 

close (2) 
core(S) 
creat(2) 



dd - convert and copy a 
execvp, exec, exece, environ - execute a 

group - group 
hs - RH 11/RS03-RS04 fixed-head disk 

link - link to a 
mlmod - build special 

mknod - make a directory or a special 
passwd - password 

pr - print 
read - read from 

rev - reverse lines of a 
rf - RFII/RSII fixed-head disk 

size - size of an object 
sum - sum and count blocks in a 

tail - deliver the last part of a 
touch - update date last modified of a 

uniq - report repeated lines in a 
write - write on a 

diff - differential 
diff'3 - 3-way differential 

umask - set 
dup, dup2 - duplicate an open 

getgrnam, setgrent, endgrent - get group 
getpwnam, setpwent, endpwent - get password 

grep, egrep, fgrep - search a 
ar - archive (library) 

split - split a 
mktemp - make a unique 

Sial, fstat - get 
mkfs - construct a 

mount, umount - mount and dismount 
mount, umount - mount or remove 

dcheck -
dump - incremental 

hier -
quO! - summarize 

restor - incremental 
icheck -

mtab - mounted 
filsys, flblk, ino - format of 

utime - set 
file - determine 

basename - strip 
feof, ferror. c1earerr, 
cmp - compare two 

select or reject lines common to two sorted 
find - find 

rm, rmdir - remove (unlink) 
sort - sort or merge 

mv - move or rename 
dumpdir - print the names of 

volume ....... . 
col -

plot - graphics 

documents .............. refer, lookbib -
find -
look -

ttyname, isatty, ttyslot -
lorder -

spell. spellin, spellout -
dbminit, fetch, store, delete. 

hs - RHl1/RS03-RS04 
rf - RFIlIRSll 

filsys, 
functions . . . . . . . . . . . . . . . . . fabs, 

fclose. mush - close or 

ar - archiveOibrary) file 
arcv - convert archives to new 

- xiii -

file ........................... . 
file ........ execl, execv, execle, execve. execlp, 
file 
file 
file 
file 
file 
file 
file 
file 
file 
file 
file 
file 
file 
file 
file 
file 
file - determine file type 
file comparator. . . . . 
file comparison . . . . . 
file creation mode mask 
file descriptor ..... 
file entry . . . . . . . . . . . . ... getgrent, getgrgid, 
file entry .............. getpwent, getpwuid, 
file for a pattern 
file format .. 
file into pieces 
file name. 
file sla t us . 
file system 
file system 
file system 
file system directory consistency check 
file system dump. . . 
file system hierarchy . . . . . . . . . 
file system ownership . . ." . . . . . 
file system restore . . . . . . . . . . 
file system storage consistency check 
file system table . . 
file system volume. 
file times ... . 
file type ..... . 
filename affixes .. 
fileno - stream status inquiries . 
files. 
files. . comm -
files. 
files. 
files. 
files and directories 
files on a dump tape . 
filsys, flblk, ino - format of file system 
filter reverse line feeds 
filters " . . . . . . . . . . . . . .... 
find - find files . . . . . . . . . . . . 
find and insert literature references in 
find files . . . . . . . . . 
find lines in a sorted list . . . . . . . . 
find name of a terminal . . . . . . . . 
find ordering relation for an object library 
find spelling errors .. ......... . 
firstkey, nextkey - data base subroutines 
fixed-head disk file. . . . . . . . . . . . . 
fixed-head disk file. . . . . . . . . . . . . 
flblk, ino - format of file system volume 
floor. ceil - absolute value, floor, ceiling 
flush a stream . . . . . . . . . . . . . . . 
fopen. freopen, fdopen - open a stream. 
fork - spawn new process 
format 
format .... " ..... . 

dd(!) 
exec(2) 

group(S) 
hs(4) 

link (2) 
mknod(I) 
mknod(2) 
passwd (S) 

prO) 
read (2) 
rev (1) 

rr(4) 
size 0) 
sum (I) 

tailO) 
louch (l) 

uniq(!) 
wrile(2) 

file (l) 
diffO) 

diff3 (1) 
umask(2) 

dup(2) 
gelgrent (3) 

getpwent(3) 
grep(1) 

ar(5) 
split (I) 

mktemp(3) 
stat (2) 

mkfs{J) 
mount (I) 
moun! (2) 
dcheck(l) 
dump(I) 

hier(7) 
quot (I) 

reSlor (1) 
icheck (1) 

mtab(S) 
filsys (5) 

utime(2) 
file (J) 

basename (1) 
ferrorO) 

cmp(l ) 
comm(l) 

find (!) 
rm(l) 

sort (l) 
mv(J) 

dumpdir(l ) 
filsys(S) 

col (J) 
plot (J ) 
find(!) 

referOl 
find (l) 
look (J) 

ttyname(3) 
larder< J) 

spell (1) 
dbmO) 

hs(4) 
rf(4) 

filsys(S) 
floor(3) 

fclose(3) 
fopen (3) 

fork (2) 
ar(5) 

arcv(J ) 



dump, ddate - incremental dump 
core -

dir -
filsys, nblk, ina -

tbl -
roff -

tp - DECImal tape 
scanf, fscanf, sscanf -

printf, fprintf, sprintf _. 
troff, nroff - text 
ms - macros for 

f77 -
ratfor - rational 

struc:t - structure 
cookies ..................... chinl, 
conversion . . . . . . . . . . . printf, 
stream. . . . . . . . . . . . . . . . . . putc, putchar, 

allocator .. 

exponent .. 

puts, 

df - disk 
.. malloc, 

fopen, 

scanf, 

stat, 
fseek, 
time, 

floor, ceil - absolute value, noor, ceilinl 
intra - introduction to library 

jO, jl, jn, yO, yl, yn ...; bessel 
tan, asin, acos, atan. atan2 - trilonometric 

sinh. cosh. tanh - hyperbolic 
fread, 

backpmmon - the 
checkers -

moo - luessinl 
bj - the 

chess - the 
reversi - a 

. wump - the 
hansman, words - word 

itom. madd. msub, mult, mdiv, min, mout, pow, 
ecvt, fCYt, 

maze -
mkconf -

makekey -
abort -

factor, primes - factor a number, 
ncheck -

rand, srand - random number 
lex -

or word from stream 
letuid, ,etaid, leteuid. 

identity . . . . . . . . . . . . . . . . . letuid. letaid. 
endllent - let IIOUP file entry. . . . . . . . . . . 

endpwent - ,et password file entry 

and aroup identity . 

time to ASCII . . . 
,etc, letchar. fletc. 

. . . . . . . clime, local time, 
setjmp, lonajmp - non-local 

araph - draw a 
plot -

plot: openpl et al. -
plot -

• xiv -

format ........... . 
format of core imale file . . 
format of directories ..... 
forinat of file system volume 
format tables for nroff or troff 
format text ......... . 
formats ........... . 
formatted input conversion . 
formatted output conversion 
formattinl and typesettinl . 
formattinl manuscripts 
Fortran 77 compiler . . . . 
Fortran dialect . . . . . . . 
Fortran prOllams . . . . .. . . 
fortune - the book of chanles and other 
fprintf, sprintf - formatted output . . . . 
fputc, putw - put character or word on a 
fputs - put a strinl on a stream . . . 
fread, fwrite - buffered binary input/output. 
free ................. . 
free, realloc. calloc - main memory . . . . . 
freopen, fdopen - open a stream. . . . . . . 
frexp, Idexp, modf - split into mantissa and. 
fscanf, sscanf - formatted input conversion 
fseek. ftell, rewind - reposition a stream 
fstat - let file status ...... . 
fiell, rewind - reposition a stream . . ... 
ftime - let date and time. . . . . . . .. . 
functions . . . . . . . . . . . . . . . . . . . . . . fabs, 
func:tions . . . . . . . . . . . . . . . . . . . . . . . . . 
functions ........................ . 
functions ...... . . . . . . . . . . . . . . sin, cos, 
functions ............... . 
fwrite - buffered binary input/output 
pme ....... . 
pme ....... . 
pme ....... . 
lame of black jack . 
pme of chess . . . 
pme of dramatic reversals 
pme of hunt-the-wumpus 
pmes .......... . 
lcd, rpow - multiple precision intelerl 
ICYt - output conversion . . 
lenerate a maze problem . . 
lenerate confiluration tables 
lenerate encryption key . . . 
lenerate lOT fault . . . . . . 
,enerate larle primes . . . . 
lenerate names from i~numbers 
lenerator ............ . 
lenerator of lexical analysis proarams 
letc. letchar, fletc, letw - let character 
leteaid - let user and aroup identity . 
letenv - value for environment name . 
leteuid, leteaid - let user and aroup 
letllent, letllaid, ,et,,"am. setarent, 
leUoain - get loain name. . . . . 
.. tpass - read a password ..... . 
,etpid - let process identification .. 
letPW - let name from UID . . . . . 
letpwent. letpwuid, ,etpwnam, setpwent, 
lets, fpts - let a strinl from a stream . 
letty - set typewriter mode ...... . 
,etuid. ,etaid, geteuid, leteaid - get user 
letw - let character or word from stream . 
gmtime, asctime, timezone - convert date and 
,oto ...... . 
araph ...... . 
araphics filters . . 
araphics interface 
araphics interface 

dump(S) 
core(S) 

dir(S) 
filsys(5) 

tbl( j) 
roff( I) 

tp(S) 
scanfO) 
printf(J) 
trofffIi 

ms(7) 
m(l) 

ratfor{\ ) 
struct (I) 
chinl(6) 
printf(J) 

putc(J) 
puts(3) 

freadO> 
df(l) 

mallod) 
fopen(J) 
frexp{J) 
scanf(J) 
fseekO) 

stat (2) 
fseek(J) 
time (2) 
110or(J) 
intro() 

jO(J) 
sine)~ 

sinh(J) 
fread(J) 

backgammon (6) 
checkers (6) 

moo(6) 
bj(6) 

chess(6) 
re .. ::rsj(6) 
wUl!!p{6) 
words(6) 

mp(J) 
ecvtO) 

maze(6) 
mkconf(\) 

makekey(S) 
abon(J) 
factor 0 ) 

ncheck(l) 
rand 0) 

lex(\) 
lerd) 

letuid(2) 
getenv(J) 
getuid(2) 

letgrent (J) 
gctlolin (J) 
getpass{J} 
letpid(2) 
getpw(3) 

letpwent(J) 
gets(J) 

getty(8) 
getuid(2) 

getc(J) 
ctime(J) 

setjmp(J) 
graph(J) 

plot(J) 
plot(J) 
plot(S) 



pattern ..... . 
chown, chgrp - change owner or 

newgrp - log in to a new 

gelgrgid, getgrnam, setgrent, endgrent - get 
seluid, setgid - set user and 

gelgid, geteuid, getegid - get user and 
chown - change owner and 

make - maintain program 
ioctl, stt y • 

moo -

check ...... 

wump - the game of 
sinh, cosh, tanh -

setuid, setgid - set user and group 
su - substitute user 
getpid - get process 

geteuid, getegid - get user and group 
exit, export, login, newgrp,l ...... sh, for, case, 

signal - catch or 
core - format of core 

dump, ddate -
dump -
restor -

ptx - permuted 
strcmp, strncmp, strcpy, strncpy, strlen. 

ttys - terminal 
popen, pclose -

filsys, flblk, 
clri - clear 

scanf, fscanf, sscanf - formatted 
ungetc - push character back into 

fread, fwrite - buffered binary 
stdio - standard buffered 

ferror. clearerr, fileno - stream status 
refer, lookbib - find and 

cat - phototypesetter 
dn - ON-ll ACU 

du, dp - OU-ll 201 data-phone 
ht - RH-11/TU-16 magtape 
plot: openpl et al. - graphics 

plot - graphics 
tm - TM-II/TU-I0 magtape 

tty - general terminal 
spline -

pipe - create an 
intro -
intro -

numbers ................ intro, errno -
ncheck - generate names from 

iosta! - report 
popen, pclose - initiate 

abort - generate 
isasciii . . . isalpha, isupper, islower, isdigit, 

ttyname, 
lisdigi!, isalnum, isspace, ispunct, isprint, 

system -
ispuncl, isprint, iscntrl, isascii! . . . . . . . . isalpha, 
gcd, rpow - multiple precision integer! ...... . 

bj - the game of black 
jO, jl, 

- xv -

grep, egrep, fgrep - search a file for a 
group ....... . 
group ................. . 
group - group file. . . . . . . . . . . . . . 
group file entry . . . . . . . . . . . . . . . .. getgrent, 
group IO ........................ . 
group identity. . . . . . . . . . . . . . . . . . . getuid, 
group of a file . . . . . . 
groups ....... . 
gtty -control device . . .... 
guessing game . . . . . . . . . . 
hangman, words - word games 
hier - file system hierarchy. . . 
hp - RH-ll/RP04, RPOS, RP06 moving-head disk 
hs - RHII/RS03-RS04 fixed-head disk file 
hI - RH-II/TU-16 magtape interface 
hunt-the-wumpus . . . . . . . . . . . . 
hyperbolic functions . . . . . . . . . . . 
hypot, cabs - euclidean distance . . . . 
icheck - file system storage consistency 
ID ...... 
id temporarily ............. . 
identification . . . . . . . . . . . . . . . 
identity . . . . . . . . . . . . . . . . . . getuid, getgid, 
if, while; break, continue, cd, eval, exec, . 
ignore signals ....... . 
image file ........... . 
incremental dump format . . . 
incremental file system dump . 
incremental file system restore 
index ............. . 
index, rind ex - string operations . . . .... /stmcat, 
indir - indirect system call . . . . . . 
in it, rc - process control initialization 
initialization data. . . . . . . . . . . 
initiate 110 to/from a process .... 
ino - format of file system volume 
i-node ..... . 
input conversion . 
input stream . . . 
input/output ... 
input/output package 
inquiries. . . . . . . . . . . . . . . . . . . . . . . feof, 
insert literature references in documents 
interface 
interface 
interface 
interface 
interface 
interface 
interface 
interface 
interpolate smooth curve 
interprocess channel . . . 
introduction to commands 
introduction to library functions 
introduction to system calls and error. 
i-numbers ..... . 
1/0 statistiCS . . . . . . . . . . . 
I/O to/from a process . . . . . . 
ioctl, stty, gtty - control device 
iostat - report I/O statistics .. 
lOT fault ............ . 
isalnum, isspace, ispunct, isprint, iscntrl, 
isatty, uyslot - find name of a terminal 
iscntrl, isascii - character classification . 
issue a shell command . . . . . . . . . . 
isupper, islower, isdigit, isalnum, isspace, . 
itom, madd, msub, mult, mdiv, min, mout, pow, 
jO, jl, jn, yO, yl, yn - bessel functions. 
jack ............... . 
jn, yO, yl, yn - bessel functions .... 

grep(I) 
chownO) 

newgrp(I) 
group(S) 

getgrent (3) 
setuid(2) 
getuid(2) 
chown(2) 
make (1) 

ioctl (2) 
moo(6) 

words(6) 
hier(7) 

hp(4) 
hs(4) 
ht(4) 

wump(6) 
sinh (3) 

hypotO) 
icheck(l) 
setuid (2) 

suO) 
getpid (2) 
getuid (2) 

sh(J) 
signal (2) 

core(S) 
dump(S) 
dump(l) 
restor(J) 

ptx (l) 
string(3) 
indir(2) 

init(S) 
ttys(S) 

popen(3) 
filsys(S) 

clriO) 
scanf(3) 

ungetc(3) 
fread(3) 
stdioO) 

ferrorO) 
refer(]) 

cat(4) 
dn(4) 
du(4) 
ht (4) 

plot(3) 
plot (5) 
tm(4) 
tty (4) 

spline(l) 
pipe (2) 

intro (1) 
intro(3) 
intro (2) 

ncheck (1) 
iostat (J) 

popen(3) 
ioctl(2) 

iostat (1) 
abortO) 
ctype(3) 

ttyname(3) 
ctype(3) 

system (3) 
ctype(3) 

mpO) 
jO(3) 
bj(6) 
JOO) 



makekey - generate encryption 

prejudice ..... . 
mem, 

integers and long integers 

exponent 

awk - pattern scanning and processing 
bc - arbitrary-precision arithmetic 

shift, times, trap, umask, wait - command 

. . . . . . . . . . . . . . . . . . frexp, 

- find ordering relation for an object 
at - archive ( 

intro - introduction to 
ar - archive and 

col - filter reverse 
comm - select or reject 

uniq - report repeated 
look - find 

rev - reverse 
In ... make a 

a.out - assembler and 
link -

look - find lines in a sorted 
nlist - get entries from name 

nm - print name 
Is -

refer, lookbib - find and insert 

Id -
convert date and time to ASCII . . . . . . . . ctime, 

end, etext, edata - last 

newgrp -
logarithm, power, square root . . . . . . . exp, 

ac -
getlogin - get 

/continue, cd, eval, exec, exit, export, 
passwd - change 

utmp, wtmp -
setjmp, 

references in documents. 
object library. . . 

. refer, 

long integers . . . . . . .. . . . . . . . . . . . 13tol, 

ms -
man -

rpow - multiple precision integer/ . . . . . . . itom, 
tp - DEC/ 

ht - RH-II/TU-16 
tm - TM-II/TU-lO 

xsend, xget, enroll - secret 

malloc, free, 'realloe, calloe -
make -

ar - archive and library 

allocator ................. . 

mkdir -
mknod -

In -
mktemp -

banner -

- xvi -

join - relational database operator 
key ................ . 
kill - send signal to a process .. 
kill - terminate a process with extreme 
kmem - core memory . . . . . . . . 
13tol. Itol3 - convert between 3-byte . 
language .......... . 
language ............... . 
language . . . . . . Ilogin, newgrp, read, readonly, set, 
Id - loader ................ . 
Idexp, modf - split into mantissa and . . . . . . . . . 
lex - generator of lexical analysis programs . . . . . . 
library . . . . . . . . . . . . . . . . . . . . . . . lorder 
library) file format. 
library functions . 
library maintainer . 
line feeds ..... . 
lines common to two sorted files 
lines in a file . . . . 
lines in a sorted list 
lines of a file . . . . 
link ........ . 
link - link to a file 
link editor output . 
link to a file . . . . 
lint - a C program verifier 
list 
list ........... . 
list ........... . 
list contents of directory . 
literature references in documents 
In - make a link ........ . 
loader .............. . 
localtime, gmtime, asctime, timezone -
locations in program .......... . 
lock - lock a proeess in primary memory 
log in to a new group . . . . . . . . 
log, log10, pow, sqrt - exponential, 
login - sign on . . . . . .' . . . . . 
login accounting . . . . . . . . . . . 
login name ............. . 
login, newgrp, read, readonly, set, shift,! 
login password . . . . . . . 
login records . . . . . . . . . . . . . 
longjmp - non-local goto . . . . . . 
look - find lines in a sorted list .. 
look bib - find and insert literature . 
larder - find ordering relation for an 
Is - list contents of directory ..... 
!seek, tell - move read/write pointer 
Itol3 - convert between 3-byte integers and 
m4 - macro proeessor . . . . . . . . . . . 
macros for formatting manuscripts . . . . . 
macros to typeset manual . . . . . . . . . . 
madd, msub, mult, mdiv, min, mout, pow, gcd, . 
mag tape formats 
magtape interface . . . . . . . . . . . . . 
magtape interface . . . . . . . . . . . . . 
mail ................... . 
mail - send or receive mail among users 
main memory allocator . 
maintain program groups . . . . . 
maintainer . . . . . . . . . . . . . 
make - maintain program groups 
make a directory . . . . . . . . . 
make a directory or a special file 
make a link ...... . 

. make a unique file name .... 
make long posters . . . . . . . . 
make key - generate encryption key 
malioe, free, realIoe, calloe - main memory . 
man - macros to typeset manual. . . . . . . 

ioin(l) 
makekey(S) 

kill (2) 
kill (l) 

mem(4) 
13tol (3) 
awk(l) 

bc(l) 
sh(l) 
Id(I) 

frexp(3) 
(ex (1) 

(orderO) 
adS) 

intro(3) 
arm 

coHO 
commO> 

uniq(I) 
look (I) 
rev(l) 

In(l) 
Iink(2) 

a.out (5) 
link (2) 
lint (I) 

look(l) 
nlist (3) 
nm(I) 

Ism 
referW 

Inm 
Id(l) 

ctime(3) 
end(3) 
loek(2) 

newgrp(l) 
exp(3) 

login(l) 
acW 

actlogin (3) 
sh(l) 

passwd(l) 
utmp(S) 

setjmp(3) 
look (I) 
refer (I) 

lorder(t) 
Is(l) 

lseek(2) 
13101(3) 

m4(1) 
ms(7) 

man (7) 
mp(3) 

tp(S) 
ht(4) 

tm(4) 
xscnd(l) 

mail(l) 
mailoe(3) 
make(l) 

ar(1) 
make(l) 

mkdir(l) 
mknod(2) 

Inm 
mktemp(3) 

banner(6) 
makekey(S) 

malloe(3) 
man(7) 



tp -
frexp, Idexp, modf - split into 

man - print sections of this 
man - macros to typeset 

ms - macros for formatting 
umask - set file creation mode 

eqn, neqn, checkeq - typeset 

precision integer/ ...... itom, madd, msub, mult, 
bcd, ppt - conver. to antique 

lock - lock a process in primary 
mem, kmem - core 

malloc, free, realloe, calloe - main 
sort - sort or 

perror, sys_errlist, sys_nerr - system error 
precision/ ...... itom, madd, msub, mult, mdiv, 

system 

chmod - change 
getty - set typewriter 

umask - set file creation 
chmod - change 

frexp, Idexp, 
touch - update date last 

mount, umount -
mount, umount -

mtab -
integer/ .... itom, madd, msub, mult, mdiv, min, 

mv -
Iseek, tell -

hp - RH-ll/RP04, RPOS, RP06 
rp - RP-1l!RP03 

- multiple precision integerl . . . . . . itom, madd. 

multiple precision integer! . . . . itom, madd, msub, 

trap,! . . 

getenv - value for environment 
get login - get login 

mktemp - make a unique file 
pwd - working directory 

tty - get terminal 
getpw - get 

nlist - get entries from 
nm - print 

ttyname, isatty, uyslot - find 
terminals- conventional 

ncheck - generate 
dumpdir - print the 

eqn, 
creat - create a 

arev - convert archives to 
newgrp - log in La a 

fork - spawn 

. lcd, eval, exec, exit, export, login, 
dbminit, fetch, store, delete, first key , 

- xvii -

man - print sections of this manual 
manipulate tape archive 
mantissa and exponent 
manual .. . 
manual .. . 
manuscripts 
mask .... 
mathematics 
maze - generate a maze problem 
mdiv, min, mout, pow, ged, rpow - multiple 
media ............ . 
mem, kmem - core memory . 
memory .... . 
memory .... . 
memory allocator 
merge files . . . . 
mesg - permit or deny messages . 
messages ............. . 
min, mout, pow, ged, rpow - multiple. 
mkconf - generate configuration tables 
mkdir - make a directory ...... . 
mkfs - construct a file system .... . 
mknod - build special file . . .... . 
mknod - make a directory or a special file 
mktemp - make a unique file name 
mode ... . 
mode ... . 
mode mask 
mode of file 
modf - split into mantissa and exponent 
modified of a file. . . . . . . . . . . 
monitor - prepare execution profile 
moo - guessing game. . . . . . . . 
mount and dismount file system .. 
mount or remove file system . . . . 
mount, umount - mount and dismount file . 
mount, umount - mount or remove file system 
mounted file system table .'. . . . . . . . . 
mout, pow, ged, rpow - multiple precision 
move or rename files and directories 
move read/ write pointer. . . . . . . . . . 
moving-head disk . . . . . . . . . . . . . 
moving·head disk . . . . . . . . . . . . . 
ms - macros for formatting manuscripts . 
msub, mult, mdiv, min, mout, pow, ged, £pow 
mtab - mounted file system table . . . . . 
mull, mdiv, min, mout, pow, ged, rpow - . 
mv - move or rename files and directories 
name. 
name. 
name. 
name. 
name. 
name from UID 
name list ... . 
name list ... . 
name of a terminal 
names ...... . 
names from i-numbers 
names of files on a dump tape 
neheck - generate names from i-numbers. 
neqn, checkeq - typeset mathematics 
new file ... 
new format. 
new group . 
new process 
newgrp - log in to a new group 
newgrp, read, readonly, set, shift, times, . 
next key - data base subroutines . . . . . 
nice - set program priority . . . . . . . . 
nice, nohup - run a command at low priority 
nlist - get entries from name list. . . . . . . 

man(I) 
tp(I) 

frexp(3) 
man (1) 
man(7) 

ms(7) 
umask(2) 

eqnO) 
maze(6) 

mp(3) 
bed (6) 

mem(4) 
lock (2) 

mem(4) 
mallod3) 

sort 0) 
mesgO) 

perror(3) 
mp(J) 

mkconf(1) 
mkdir(1) 
mkfs(I) 

mknod(l) 
mknod(2) 

mktemp(J) 
chmod(l) 

getty (8) 
umask(2) 
chmod(2) 

frexp(3) 
touch (I) 

monitor(3) 
moo(6) 

mount (1) 
mount(2) 
mount (1) 
mount (2) 

mlab(5) 
mp(J) 
mv(J) 

Iseek (2) 
hp(4) 
rp(4) 

ms(7) 
mp(3) 

mtab(S) 
mp(J) 
mv(l) 

getenv(3) 
getlogin (3) 
mktemp(3) 

pwd(l) 
tlyO) 

getpw(3) 
nlist (3) 
nm(l) 

ttyname(J) 
term (7) 

ncheck (I) 
dumpdir(J) 

ncheck(I) 
eqn(!) 

creal (2) 
arcv(l) 

newgrp(l) 
fork (2) 

newgrp(l) 
sh(I} 

dbm(3) 
nicem 
nice (1) 
nlist (3) 



clri - clear i
nice, 

setjmp, longjmp -
troft', 

tbl - format tables for 
deroft' - remove 

arithmetic - provide drill in 
factor, primes - factor a 

rand, srand - random 
atof, atoi, atol - convert ASCII to 

- introduction to system calls and error 
ncheck - generate names from i

size - size of an 
lorder - find orderinl relation for an 

od-

fopen, freopen, fdopen -
dup, dup2 - duplicate an 

open -
plot: 

strncpy, strlen, index, rindex - strinl 
join - relational database 

SUy - set terminal 
lorder - find 

a.out - assembler and link editor 
fread, fwrite - buft'ered binary inputl 

ecvt, fcvt, Icvt -
printf, fprintf, sprintf - formatted 

stdio - standard buft'ered inputl 
chown - chanle 

chown, charP - chanle' 
quot - summarize file system 

pk -
pkopen, pkclose, pkread, pkwrite, pkfail -

pkon, pkoft' - establish 
tk -

letpass - read a 
passwd - chanle loain 

passwd -
letpwuid, letpwnam, setpwent, endpwent - get 

Irep, earep, farep - search a file for a 
awk -

ce, 
popen, 

mesl -
ptx -

messaaes ........ . 
du, dp - DU-tl 201 data

cat
tc -

addresses ................... . 

driver simulator . . . . 

packet driver simulator 

process ....... . 

tee -

. pkopen, 
pkon, 

vI' - Versatec printer
!seek, tell - move read/write 

banner - make Ion I 
itom, madd, msub, mult, mdiv, min, mout, 

square root .............. ex 1', 101, 10110, 
bcd, 

- xviii -

nm - print name list . . . . . . . . . . 
node .................. . 
nohup - run a command at low priority 
non-local goto . . . . . . . . . . . . . . 
nroft' - text formatting and typesettinl 
nroft' or troft' . . . . . . . . . . . . 
nroft', troft', tbl and eqn constructs 
null - data sink . . . . . . . . 
number facts . . . . . . . . . . 
number, lenerate large primes 
number generator . . . . .. . 
numbers ........... . 
numbers. . . . . . . . . . . . . . . . . , ,intro, errno 
numbers. . . . ...... . 
object file. . . . . . . . . . . . . . . 
object library . . . . . . . . . . . . . 
octal dump ............. . 
open - open for reading or writing. 
open a stream . . . . . . . . . . . . 
open file descriptor ........ . 
open for reading or writing . . . . . 
openpl et al. - graphics interface . . 
operations ...... Istrncat, strcmp, strncmp, strepy, 
operator ............... . 
options ................ . 
orderinl relation for an object library . 
output ..... . 
output ..... . 
output conversion 
output conversion 
output packale . . 
owner and group of a file 
owner or group . . . . 
ownership ...... . 
packet driver . . . . . . 
packet driver simulator 
packet protocol. . . . . 
paainator for the Tektronix 4014 
passwd - chanle login password 
passwd - password file 
password ..... . 
password ....... . 
password file . . .. . . . . . . . . . . . . . . 
password file entry .............. getpwent, 
pattern .................. . 
pattern scanning and processinl lanluale . 
pause - stop until silnal. . . . . . . . 
pee - C compiler . . . . . . . . . . . . 
pelose - initiate 110 tolrrom a process . 
permit or deny messaaes ....... . 
permuted index . . . . . . . . . . . . . 
perror, sys_errlist, sys_nerr - system error 
phone interface ............. . 
phototypesetter interface ........ . 
photypesetter simulator . . . . . . . . . . 
phys - allow a process to access physical . 
pipe - create an interprocess channel ., 
pipe filtinl . . . . . . . . . . . . . . . . . 
pk - packet driver ........... . 
pkclose, pkread, pkwrite, pkfail - packet 
pkoft' - establish packet protocol . . . . . 
pkopen, pkclose, pkread, pkwrite, pkfail - . 
plot - araphics filters . . . . . . . . . 
plot - graphics interface ...... . 
plot: openpl et al. - graphics interface 
plottet ................ . 
pointer ................ . 
popen, pelose - initiate 110 to/from a 
posters ................ . 
pow, gcd, rpow - multiple precision intelerl 
pow, sqrt - exponential, loaarithm, power, 
ppt - convert to antique media. . . . . . . . 

nm(l) 
c1ri (1) 

nicem 
setjmp(J) 

trolf(l) 
tbl(1) 

derolf(l) 
null (4) 

arithmetic(6) 
factor 0 ) 

rand (3) 
atof(J) 

intro(2) 
ncheck(1) 

size(t) 
10rder(1) 

od(J) 
open (2) 

fopen(J) 
dup(2) 

open (2) 
plot(J) 

string(3) 
join (1 ) 

stty(1) 
lorded!) 
a.out(S) 
fread(3) 
ecvt(J) 

printf(3) 
stdio(3) 

chown(2) 
chown(l) 

quot(!) 
pk(4) 

pkopen(J) 
pkon(2) 

tk(l) 
passwd(1) 
passwd(S) 
letpass(3) 
passwd(t) 
passwd(S) 

getpwent (3) 
grep(!) 
awk(1) 

pause (2) 
ccm 

popen(J) 
mesl(l) 

ptx (t) 
perrod3) 

du(4) 
cat(4) 
tcm 

phys(2) 
pipe(2) 
tee(J) 
pk(4) 

pkopen(3) 
pkon(2) 

pkopen(3) 
plot(l) 
plot(5) 
plot(3) 

vp(4) 
Iseek(2) 

popen(3) 
banner(6) 

mp(3) 
exp(3) 
bcd(6) 



be - arbitrary· 
mdiv. min. moul. pow. Icd. rpow - multiple 

monitor -
lock - lock a process in 

primes - factor a number. lenerate large 
types -

cat - catenate and 
date -
cal
pr -

nm -
man -
pstat

dumpdir -

conversion 
vp - Versatec 

niee. nohup - run a command at low 
niee - set prOlram 

boot - startup 
exit - terminate 

fork - spawn new 
kill - send sisnal to a 

popen. pclose - initiate 1/0 to/from a 
wait - await completion of 

init. rc -
letpid - let 

lock - lock a 
ps-

times - let 
phys - allow a 
wait - wait for, 

ptraee -
kill -terminate a 

awk - pattern scanniril and 
m4 - macro 

monitor - prepare execution 
profil - execution time 

prof - display 
end. etext. edata - last locations in 

units - conversion 
cb - C 

make - maintain 
niee - set 

assert -
, lint - a C 

lex - lenerator of lexical analysis 
struct - structure Fortran 

pkon. pkoft' - establish packet 
arithmetic -
true. false -

unletc -
puts. fputs -

putc. putchar. fputc. putw -

putc. putchar. fputc. 

init. 

letpass -
read -

- xix -

pr - print file . . . . . . . . . . . . . . . . . . . . . . 
precision arithmetic lanluage ... , ......... . 
precision inteler arithmetic ........ Imsub. mult. 
prepare execution profile ...............' 
primary memory . . . . . . . . . . . . . . . . . . . . . 
primes . . . . . . . . . . . . . . . . . . . . , . . factor. 
primitive system data types 
print ........ . 
print and set the date 
print calendar ... . 
print file ...... . 
print name list ...... . 
print sections of this manual 
print system facts . . , . . . 
print the names of files on a dump tape 
printer-plotter . . . . . . . . . . , . . . 
printf. fprintf. sprintf - formatted output 
priority .. 
priority .. 
procedures 
process . 
process . 
process . 
process . 
process. . 
process control initialization . 
proc:ess identification. . . , 
process in primary memory . 
process status ......'. 
process times. . . . . , . . . 
process to access physical addresses . 
process to terminate . . . , . . 
process traee , . . . . . . . . . 
process with extreme prejudic:e 
processinl lanluaae . . . . . . 
processor , . . . . . . . . , . . 
prof - display profile data .. 
profil - execution time profile 
profile .. . 
profile .... .. 
profile data . , . . . 
proaram .... .. 
prOlram ... , .. 
prOlram beautifier . 
procram Iroups , . 
proaram priority . . 
prOlram verification 
program verifier 
prOlrams ..... . 
programs ..... . 
protocol ..... . 
provide drill in number facts 
provide truth values . . . . 
ps - proc:ess status . . . . 
pstat - print system facts . 
ptraee - process trace , , . 
ptx - permuted index ... 
push character back into input stream 
put a string on a stream . , . . . . , , 
put character or word on a stream ., 
puts. fputs - put a string on a stream 
putw - put character or word on a stream . 
pwd - working directory name , . . , , , 
qsort - quicker sorl . , , . . , , , , , , . 
quiz - test your knowledge, . . , . , . . 
quot - summarize file system ownership 
rand. srand - random number lenerator 
ratfor - rational Fonran dialecl . 
re - process control initialization . 
read - read from file 
read a password , , 
read from file ., , . 

pr(1) 
bem 

mp(3) 
monitor(3) 

lock (2) 
factor (I) 
types(S) 

cat (I) 
date (I) 

caJ(I) 
pr(I) 

nmm 
man(J) 
pstat(l) 

dumpdir(I) 
vp(4) 

printf(3) 
nice(J) 
nice(2) 
boot (8) 
exit(2) 
fork (2) 

kil](2) 
popen(3) 

wait (I) 
inil(8) 

lelpid(2) 
lock (2) 

ps(1) 
times(2) 
phys(2) 
wait(2) 

ptrace(2) 
kill (I) 

awk(I) 
m4(l) 

proW) 
profiH2) 

monitor(3) 
profiH2) 
proW) 
end(3) 

units(l) 
cb(J) 

make(J) 
nice (2) 

assert (3) 
lint (I) 
lex (1) 

struel (I) 
pkon(2) 

arithmetic(6) 
true (1 ) 

ps(1) 
pstat (1) 

ptrace (2) 
ptx (1) 

unleld3) 
puts(3) 
putd3) 
puts(3) 
putd3) 
pwd()) 

qsort(3) 
quiz(6) 
quol(\) 
rand (3) 

ratfor(\) 
init(8) 

read (2) 
getpass(3) 

read (2) 



lcd, eval, exec, exit, export, login, newarp, 
open - open for 

lexec. exit, export, login, newlrp, read, 
!seek, tell - move 

malloc, free, 
mail - send or 

utmp, wtmp - login 
references in documents .. 

comm - select or 
lorder - find orderinl 

join -
strip - remove symbols and 

calendar -
unlink -

mount, umount - mount or 
deralf -

strip -
rm, rmdir -

mv - move or 
uniq - report 

iostat -
uniq -

fseek, ftell, rewind -

reversi - a pme of dramatic 
col - filter 

rev -

fseek, ftell, 

hp -
hs -' 
ht -

stmcmp, strcpy, stmcpy, strlen, index, 

sqrt - exponential, loprithm, power, square 

tip - RH-lli 
rp

Imadd, msub, mult, mdiv, min, mout, pow, gcd, 
hs - RHIII 
rf - RFIII 

nice, nohup -

brk, 
c~nversion 

files. 

awk - pattern 
alarm -

arep, earep, farep -
xsend, xaet, enroll -

man - print 

. ............ comm -
mail

kill -
ascii - map of ASCII character 

umask -
utime -

nice -
lexit, export, login, newarp, read, readonly, 

stty -
tabs -

date - print and 
stime -
aetty -

setuid, setgid -

setuid, 
aetarent, aetaraid, getamam, 

- xx -

read, readonly, set, shift, times, trap,! . 
readina or writinl . . . . . . . . . . . . 
readonly, set, shift, times, trap, umask,1 
read/write pointer ........... . 
realloc, calloc - main memory allocator 
receive mail amonl users . . . . . . . . 
records ................. . 
refer, lookbib - find and insert literature 
reject lines common to two sorted tiles . 
relation for an object library . 
relational database operator 
relocation bits ..... 
reminder service . . . . . . 
remove directory enlry . . 
remove file system. . . .. ... . 
remove nrolf, trolf, tbl and eqn constructs . 
remove symbols and relocation bits . 
remove' (unlink) files . . . 
rename files and directories . 
repeated lines in a file . . . . 
report 110 statistics ... . . 
report repeated lines in a file 
reposition a stream ..... 
restor - incremental file system restore 
rev - reverse lines of a file . 
reversals ................ . 
reverse line feeds . . . . . . . . . . . . 
reverse lines of a file ......... . 
reversi - a game of dramatic reversalS . 
rewind - reposition a stream . . . . . . 
rf - RFII/RSII fixed-head disk /ile .. 
RH-IIIRP04, RPOS, RP06 movins-head disk 
RHll/RS03-RS04 Ilxed-head disk file .... 
RH-II/TU-16 maltape interface . 
rindex - slrina operations .... . Istmeat, stremp, 
rk - RK-llIRK03 or RKOS disk. 
rm, rmdir - remove (unlink) files ......... . 
rolf - format text . . . . . . . .. ......... . 
root ............ ' .... exp, ioa. loS10, pow, 
rp - RP-IIlRP03 movina-head disk ..... 
RP04, RPOS, RP06 movini-head disk. . . . . 
RP-IllRP03 movins-head disk ....... . 
rpow - mUltiple precision inteaer arithmetic . 
RS03-RS04 fixed-head disk file 
RS II fixed-head disk file . . . . 
run a command at low priority . 
sa, aceton - system aceountins . 
sbrk, break - chan Ie core allocation . 
scanf, fscanf, ssc:anf - formatted input. 
scannini and processina lanauaae . 
schedule sianal after specified time 
search a file for a pattern 
secret mail ...... . 
sections of this manual . 
sed - stream editor . . . 
select or reject lines common to two sorted 
send or receive mail amona users. 
send sianal to a proc~ . . 
set ............ . 
set /ile creation mode mask 
set file times . . . . . . . . 
set proaram priority . . . . 
set, shift, times, trap, umask, wait - I 
set terminal options 
set terminal tabs . . 
set the date ... . 
set time ..... . 
set typewriter mode 
set user and aroup 10 . 
setbuf - assian bulferinl to a stream 
setgid - set user and Iroup 10 . . .. . 
,etarent, endarent - let group .file entry . 

sh(I) 
open (2) 

sh(l) 
Iseek(2) 

malloc(J) 
maiJ(I) 

utmp(S) 
refer (I) 

comm(l) 
10rder(I) 

join(J) 
strip(1) 

calendar ( I ) 
unlink(2) 
mount(2) 
derolf(l) 

strip (I) 
rm(I) 
mv(I) 

uniq(I) 
iostat(J) 
uniq(I) 

fseek(3) 
restor(I) 

rev(I) 
reversi(6) 

col (1) 
rev (I) 

reversj(6) 
fseek(3) 

rf(4) 
hp(4) 
hs(4) 
ht(4) 

5trina(3) 
rk(4) 

rm(I) 
rolf(l) 
exp(3) 

rp(4) 
hp(4) 
rp(4) 

mp(3) 
hs(4) 
rf(4) 

nice (I) 
sam 

brk(2) 
scanf(3) 
awk(l) 

alarm (2) 
grep(}) 

xsend(I) 
man (I) 
sed (I) 

comm(I) 
mail(l) 

kilJ(2) 
ascij(7) 

umask(2) 
utime(2) 

nice (2) 
sh(J} 

stty(l) 
tabs (1) 
dace (I) 

stime(2) 
letty(8) 

setuid(2) 
setbuf(3) 
setuid(2) 

letaren t (J) 



crypt, 
letpwent, letpwuid, getpwnam, 

cd, eval, exec, exit, export, loain, newarp,l . . . . . 
system - issue a 

!export, 10lin, newgrp, read. readonly, set, 
. 10ain-

pause - stop until 

alarm - schedule 
kill - send 

signal - catch or ilnore 
pkread. pkwrite. pkfail - packet driver 

tc - photypcsetter 
trigonometric functions . . . . . . . . . . . . . . . . 

null - data 

spline - interpolate 
qsort - quicker 

150rt - topoloaical 

comm - select or reject lines common to two 
look - find lines in a 

fork -
alarm - schedule Signal after 

errors ....... . 

frexp, Idexp. modf -
printf. fprintf. 

root ............... expo log. 10110, pow •. 

packale ... 

rand. 
scanf. fscanf. 

stdio -
boot -

iostat - report 110 
ps - process 

stat. fstat - let file 
feof. ferror, clearerr. fileno - stream 

pause -
icheck - file system 

subroutines .............. dbminit. fetch. 
strnepy. strlen. index. rindex - string! ...... . 

fclose. mush - close or flush a 
. fopen. freopen. fdopen - open a 
fseek. ftell. rewind - reposition a 

fgetc. getw - get character or word from 
gets, fgets - get a string from a 

fpute. putw - PUI character or word on a 
puts. fputs - pUI a string on a 
setbuf - assign buffering to a 

ungetc - push character back into input 
sed

feof. ferror. clearerr. fileno -
gets, flets - get a 

puts. fputs - put a 
strepy. strnepy, strlen. index, rindex -

basename -
Istmeal. strcmp, strncmp, strcpy, strnepy, 

ioctl. 

store, delete, firstkey. nextkey - data base 

- xxi -

setjmp. lonlimp - non-Iocalloto ..... . 
setkey, encrypt - DES encryption . . . . . . 
setpwent, endpwent - let password file entry 
setuid, setaid - set user and group ID . . . . 
sh. for. case, if. while, break, continue, ... 
shell command. . . . . . . . . • . . . . . . . 
shift, times, trap. umask, wait - commandl . 
sian on ............. . 
sianal. ; ............ . 
sianal - catch or ianore sianals . 
sianal after specified time 
signal to a process 
signals ......... . 
simulator ........ . 
simulator ........ . . .. 

. pkopen. pkclose. 

sin. cos, tan, &sin, aeos. atan. atan2 - . 
sinh. cosh, tanh - hyperbolic functions 
sink ................... '. 
size - size of an object file . . . . . . . 
sleep - suspend execution for an interval 
sleep - suspend execution for interval . 
smooth curve ...... . 
sort ............ . 
sort ............ . 
sort - sort or merle files . 
sorted files . . . . . 
sorted list ........ . 
spawn new process. . . . . 
Specified time ... . . . .. ... 
spell. spellin. spellout - find spellinl . 
spline - interpolate smooth curve . . 
split - split a file into pieces . . . . . 
split into mantissa and exponen! ... 
sprintf - formatted output conversion. . 
sqrt - exponential, logarithm. power, square 
srand - random number lenerator ... 
ascanf - formatted input conversion . . 
standard buffered input/output packale 
startup procedures . . . . . 
stat, fstat - let file status . 
statistics 
status ........... . 
status .•.......... 
status inquiries . . . . . . . . . 
stdio - standard buffered input/output 
stime - set time. . . . . . . . . . . . . 
stop until sianal . . . . . . . . . . . . . 
storage consistency check . . . . . . . . . 
store. delete, firstkey, nextkey - data base 

'streat, stmcat. strcmp, stmcmp. strepy •. 
stream 
stream 
stream 
stream . . . . . . . . . . . . . . . . ... gete. letchar. 
stream ......................... . 
stream . . . . . . . . . . . . . . . . . . . pute. putchar. 
stream ... . 
stream ... . 
stream ... . 
stream editor . 
stream status inquiries . 
string from a stream . . 
string on a stream . . . 
string operations . . . . . . . !stmcat. strcmp. stmcmp. 
strip - remove symbols and relocation bits 
strip filename affixes. . . . . . . . . . . . 
strlen. index. rindex - string operations . 
struct - structure Fortran programs 
stty - set terminal options . . . . . 
Stly. gtty - control device ..... 
su - substitute user id temporarily . 
subroutines ............. . dbminit. fetch. 

setjmp(3) 
crypt (3) 

getpwent (3) 
setuid(2) 

sh(I) 
system (3) 

sh(J) 
loain (I) 

pause (2) 
signaH2) 
alarm(:) 

kill (2) 
signaH2) 

pkopen(3) 
tc(l) 

sin(3) 
sinhO) 
nu11(4) 
size (1) 

sleep (1) 
sleep(3) 

spline(} ) 
qsort(3) 
tsortO) 
sort (I) 

comm(1) 
look (I) 
fork(2) 

alarm (2) 
spell (I) 

spline (1) 
split (1) 

frexP(3) 
printf(3) 

expO) 
rand (3\ 

seanf(3) 
stdio(3) 
boot(8) 
stat (2) 

iostltO) 
psIJ) 

st31(2) 
ferror(3) 
stdio(3) 
stime(2) 
pause (2) 

icheck(l) 
dbmO) 

string 0) 
fclose(3) 
fopen (3) 
fseek (3) 

geld3) 
gets 0) 
putd3) 
puts(3) 

setbuf(3) 
ungetc(3) 

sed (1) 
ferrorO) 

getsO) 
puts (3) 

stringO) 
strip (1) 

basename (1) 
suing (3) 
struct (}) 

stty (1) 
ioctl(2) 

su(1) 
dbm 0) 



su -

du -
quot -

sync - update the 
update - periodically update the 

sync - update 
sleep -
sleep -

strip - remove 

messaaes . . . . . . . . . . . . . . . . . . . . perror. 
mtab - mounted file system 

mkconf - lenerate connluration 
tbl - format 

tabs - set terminal 

functions . . . . . . . . . . . . . . . . . . . sin. cos. 
sinh. cosh. 

dumpdir - print the names of files on a dump 
tp - manipulate 

tar -
tp - DECImal 

derolf' - remove nrolf'. trolf'. 

tk - paainator for the 
lseek. 

su - substitute user id 
ttyname. isatty. ttyslot - find name of a 

ttys -
tty - leneral 

tty - let 
stty - set 
tabs - set 

wait - wait for process to 
kill -

exit -

quiz .... 
rolf' - format 

ed -
trolf'. nrolf' -

ttt. cubic -
alarm - schedule sianal after specified 

at - execute commands at a later 
stime - set 

time. (time - let date and 

profil - execution 
, &mtime. asctime. timezone - convert date and 

times - iet process 
utime - set file 

/Ioain. newarP. read. readonly. set. shift. 
Clime. localtime. &mtime. asctime. 

tsort -

ptrace - process 
tr -

- xxii -

substitute user id temporarily 
sum - sum and count blocks in a file 
summarize disk usage . . . . . . 
summarize file system ownership 
super block. . . . . . . . . . . . 
super block. . . . . . . . . . . . 
super·block. . . . . . . . . . . . . 
suspend execution for an interval . 
suspend execution for interval 
swab - swap bytes . . . . . . 
symbols and relocation bits . . 
sync - update super·block . . 
sync - update the super block 
sys_errlist. sys_nerr - system error 
table ......... . 
tables. . . . . . . . . . . .. .. 
tables for nrolf' or trolT . . . . . . 
tabs ................ . 
tail - deliver the last part of a file 
tan. asin. acos. atan. atan2 - trigonometric 
tanh - hyperbolic functions 
tape ..... . 
tape archive .. . . 
tape archiver . . . . . . . . . 
tape formats ........ . 
tar - tape archiver . . . . . . . . . . 
tbl - format tables for nrolf' or trolf' . 
tbl and eqn constructs . . . . 
tc - photypesetter simulator 
tc - TC·lI/TUS6 DECtape . 
tee - pipe fininl ..... . 
Tektronix 4014 ....... . 
tell - move read/write pointer 
temporarily. . . . . . . . . 
terminal ......... '. 
terminal initialization data . 
terminal interface 
terminal name . . . . . . . 
terminal options . . . . . . 
terminal tabs . . . . . . . . 
terminais- conventional names 
terminate ............ . 
terminate a process with extreme prejudice. 
terminate process . . . . . 
test - condition command 
test your knowledle . . . . 
text ............ . 
text editor . . . . . . . . . 
text formaninl and typeseninl 
tic·tac-toe 
time 
time 
time 
time 
time - time a command 
time. ftime - let date and time 
time profile. . 
time to ASCn 
times ..... 

. Clime. local time. 

times. . . . . . .... . 
times - iet process times. . .. ..... . 
times. trap. umask. wait - command lanluaae 
timezone - convert date and time to ASCII . 
tk - paainator for the Tektronix 4014 .. . 
tm - TM·ll/TU·IO maltape interface .. . 
topoloaical sort. . . . . . . . . . . . . . . . 
touch - update date last modified of a file . 
tp - DEC/mag tape formats 
tp - manipulate tape archive 
tr - translate characters . 
trace ....... . 
translate characters ... 

su(l) 
sum(J) 

du(l) 
quot(J) 
sync(l) 

update(S) 
sync(2) 
sleep(l) 
sleep(J) 
swabO) 
strip(l ) 
5ync(2) 
sync()) 

perror(3) 
mtab(S) 

mkconf(J) 
tbl(1) 

tabsO) 
tail(\) 
sinO) 

sinh(3) 
dumpdidl) 

tp(I) 
tadl) 
tp(S) 

tar(\) 
tbI( l) 

derolf'(I) 
tcm 
tc(4) 

teeW 
tk(I) 

Iseek (2) 
su(J) 

uyname(3) 
ttY5(S) 
tty (4) 
tty()) 

stty(l) 
tabs (I) 

term (7) 
wait(2) 
kil1(l) 

exit(2) 
test (I) 

quiz(6) 
rolf'(I) 
ed(1) 

trolf(1) 
m(6) 

alarm (2) 
at (1) 

stime(2) 
time (2) 
time(i) 
time(2) 

profiH2) 
ctime(3) 
times(2) 
utime(2) 
timcs(2) 

she I) 
ctime(3) 

tk(l) 
tm(4) 

tsort(I) 
touch (I ) 

tp(S) 
tp(l) 
tr(l) 

ptrace(2) 
trW 



typesetting . 

newgrp, read, readonly, set, shift, times, 
sin, cos, tan, asin, acos, atan, atan2 -

tbl - format tables for nrolf or 

derolf - remove nrolf, 

terminal .......•....... 

Uyname, isatty, 
tm - TM·lll 
ht - RH·llI 
tc - TC·lll 

file - determine file 
types - primitive system data 

man - macros to 
eqn, ncqn, chcckeq -

trolf, nrolf - text formatting and 
getty - set 

getpw - get name from 

read, readonly, set, shift, times, trap, 
mount, 
mount, 

stream ............. . 

mktemp - make a 

cu - cali, 
uux - unix to 

uucp, uulo& - unix to 
uux -

uucp, uulog -

rm, rmdir - remove ( 

touch -
sync -
sync -

update - periodically 
du - summarize disk 

write - write to another 
setuid, setgid - set 

getuid, getgid, geteuid, gete&id - get 
environ -

su - substitute 
mail - send or receive mail among 

wall - write to all 

abs - integer absolute 
fabs, floor, ceil - absolute 

getenv -
true. false - provide truth 

assert - program 
lint - a C program 

vp -
filsys, flblk, ino - format of file system 

readonl}" set, shift. times, trap, umaslc, 

crash -
export, login. newgrp,! . . . . . . . . sh, for, case. if, 

- xxiii -

trap, umask, wait - command language .... Ilogin, 
trigonometric functions . . . . . . 
trolf ............... . 
trolf, nrolf - text formatting and 
trolf, tbl and cqn constructs . . . . 
true, false - provide truth values 
tsort - topological sort . . . . . 
tti, cubic - tic-tac-toe . . . . . . . 
tty - general terminal interface. . 
tty - let terminal name. . . . . . 
ttyname, isatty, ttyslot - find name of a . 
ttys - terminal initialization data . 
ttyslot - find name of a terminal . 
TU·IO magtape interface 
TU·I6 magtape interface 
TUS6 DECtape 
type ........ . 
types ....... . 
typeset manual . . . 
typeset mathematics 
typesetting . . . . . 
typewriter mode . . 
UID ....... . 
umaslc - set file creation mode mask 
umask, wait - command !anguale ...... /newgrp, 
umount - mount and dismount file system 
umount - mount or remove file system 
ungetc - push character back into input 
uniq - report repeated lines in a file 
unique file name . . . . . . . 
units - conversion program 
UNIX .......... 
unix command execution . . 
unix copy .......... . 
unix to unix command execution . 
unix to unix copy . . . . . . . . . 
unlink - remove directory entry . 
unlink) files . . . . . . . ... . . . 
update - periodically update the super block 
update date last modified of a file . 
update super·block. . . 
update the super block 
update the super block 
usa,e ......... . 
user ......... . 
user and group 10 . . . 
user and group identity 
user environment . 
user id temporarily. . 
users . , ...... . 
users ........ . 
utime - set file times 
utmp, wtmp - login records 
uucp, uulog - unix to unix copy 
uux - unix to unix command execution . 
value ........ , ... . 
value, floor, ceiling functions 
value for environment name 
values .. 
verification . . . . . . . 
verifier . , . . . . . . . 
Versatec printer·plotter 
volume ....... , , 
vp - Versatec printer·plotter 
wait - await completion of process . 
wait - command language . . . .. . Inewgrp. read. 
wait '- wait for process to terminate 
wall - write to all users . . . . . . . 
wc - word count . . . . . . . . . . 
what to do when the system crashes 
while, break, continue. cd. eval, exec, exit. 
who - who is on the system . . . . . . . . 

sh(1) 
sin (3) 
tbl(1) 

trolf(l) 
derolf(1) 

true (1) 
tsort(l) 

til (6) 
tly(4) 
tlyO) 

ttyname(3) 
uys(S) 

lIyname(3) 
tm(4) 
ht(4) 
tc(4) 

file(J) 
types(S) 
man (7) 
cqn(I) 

trolf(l) 
getty (8) 

getpw(3) 
umaslc(2) 

shm 
mount (1) 
mount(2) 
ungetc(3) 

uniq(l) 
mlctemp(3) 

units (1) 
cu(J) 

uux(}) 
uucp(l) 
uux(l) 

uucp(]) 
unlink (2) 

rm(J) 
update (8) 
touch(}) 

sync (2) 
sync(J) 

update(8) 
du(}) 

write (1) 
setuid(2) 
getuid(2) 

environ(S) 
sue!) 

mail{l) 
wall (1) 

utime(2) 
utmp(S) 
uucp(I) 
uux(1) 
abs(3) 

fioor(3) 
getenv(3) 

true(11 
assert (3) 

lint (1) 
vp(4) 

filsys(S) 
vp(4) 

wait (1) 
shU) 

wail(2) 
wall (1) 

wc(l) 
crash (8) 

sh(1) 
whoW 



we -
letchar, fletc, letw - let character or 

hanaman, words -
putchar, fputc, putw - put character or 

hanlman, 
cd - chanae 

pwd -

write -
!seek, tell - move read/ 

wall -
write - . 

open - open for readina or 
utmp, 

ltsend. 
jO.jl,jn, 

- xxiv -

word count ....................... . 
word from stream ................. letc. 
word pmes ...................... . 
word on a stream . . . . . . . . . . . . . . . . . . pute. 
words - word pmes . 
workina directory . . . . . . . 
workina directory name . . . . 
write - write on a file. . . . . 
write - write to another user . 
write on a file . . 
write pointer ..... 
write to all users . . . 
write to another user 
writina ....... . 
wtmp - lolin records . 
wump - the pme of hunl-the-wumpus 
xlet. enroll - secret mail . . .. . . . . 
yO. y 1. yn - bessel functions . . . . . 
yacc - yet another compiler-compiler 

we(l) 
letc() 

words (6) 
pute() 

words (6) 
cd (I) 

pwd(l) 
write (2) 
write(l) 
write(2) 
Iseek(2) 
wall (1) 

wrileO> 
open (2) 
utmp(S) 

wump(6) 
ltsend(l) 

jO() 
yacc(l) 



INTRO (1) INTRO (1) 

NAME 
intro - introduction to commands 

DESCRIPTION 
This section describes publicly accessible commands in alphabetic order. Certain distinctions of 
purpose are made in the headings: 

(1) Commands of general utility. 

(lC) Commands for communication with other systems. 

(10) Commands used primarily for graphics and computer-aided design. 

OM) Commands used primarily for system maintenance. 

The word 'local' at the foot of a page means that the command may not work on all machines; 
'PDP11' means the description is peculiar to UNIX systems on that family of machines. 

SEE ALSO 
Section (6) for computer games. 

How to get started, in the Introduction. 

DIAGNOSTICS 
Upon termination each command returns two bytes of status, one supplied by the system giving 
the cause for termination, and (in the case of 'normal' termination) one supplied by the pro
gram, see wait and exit (2) . The former byte is 0 for normal termination, the latter is cus
tomarily 0 for successful execution, nonzero to indicate troubles such as erroneous parameters, 
bad or inaccessible data, or other inability to cope with the task at hand. It is called variously 
'exit code', 'exit status' or 'return code', and is described only where special conventions are 
involved. 

7th Edition 1 



AC(IM) AC(IM) 

NAME 
ac - login accounting 

SYNOPSIS 
ac [ - w wtmp J [ - p] [ - d ) [ people ) ... 

DESCRIPTION 

FILES 

A c produces a printout giving connect time for each user who has logged in during the life of 
the current wImp file. A total is also produced. -w is used to specify an alternate wImp file. 
-p prints individual totals; without this option, only totals are printed. -d causes a printout 
for each midnight to midnight period. Any people will limit the printout to only the specified 
login names. If no wImp file is given, lusrladm/wlmp is used. 

The accounting file IUSTladm/wlmp is maintained by ini! and login. Neither of these programs 
creates the file, so if it does not exist no connect-time accounting is done. To start accounting, 
it should be created with length O. On the other hand if the file is left undisturbed it will grow 
without bound, so periodically any information desired should be collected and the file 
truncated. 

lusr/adm/wtmp 

SEE ALSO 
init(S), 10gin(1), utmp(S). 

7th Edition 1 



ADB (1) ADB (1) 

NAME 
adb - debugger 

SYNOPSIS 
adb [- w] [objfil [ corfil ] ] 

DESCRIPTION 
Adb is a general purpose debugging program. It may be used to examine files llnd to provide a 
controlled environment for the execution of UNIX programs. 

Obffil is normally an executable program file, preferably containing a symbol table~ if not then 
the symbolic features of adb cannot be used although the file can still be examined. The 
default for obffil is a.out. Corfi! is assumed to be a core image file produced after executing 
obffi/~ the default for corfi! is core. 

Requests to adb are read from the standard input and responses are to the standard output. If 
the - w flag is present then both obffil and corfi! are created if necessary and opened for reading 
and writing so that files can be modified using adb. Adb ignores QUIT; INTERRUPT causes 
return to the next adb command. 

In general requests to adb are of the form 

[address] [, count] [command] [~] 

If address is present then dot is set to address. Initially dor is set to O. For most commands 
count specifies how many times the command will be executed. The default count is 1. Address 
and count are expressions. 

The interpretation of an address depends on the context it is used in. If a subprocess is being 
debugged then addresses are interpreted in the usual way in the address space of the subpro
cess. For further details of address mapping see ADDRESSES. 

EXPRESSIONS 

+ 

" 

The value of dot. 

The value of dot incremented by the current increment. 

The value of dot decremented by the current increment. 

The last address typed. 

integer An octal number if integer begins with a O~ a hexadecimal number if preceded by #; 
otherwise a decimal number. 

integer J'raction 
A 32 bit floating point number. 

, cccc' The ASCII value of up to 4 characters. \ may be used to escape a '. 

< name 
The value of name, which is either a variable name or a register name. Adb maintains a 
number of variables (see VARIABLES) named by single letters or digits. If name is a 
register name then the value of the register is obtained from the system header in 
corfil. The register names are rO ••• r5 sp pc ps. 

symbol A symbol is a sequence of upper or lower case letters, underscores or digits, not starting 
with a digit. The value of the symbol is taken from the symbol table in obffil. An ini
tial _ or - will be prepended to symbol if needed. 

symbol 
- . In C, the 'true name' of an external symbol begins with _. It may be necessary to utter 

this name to disinguish it from internal or hidden variables of a program. 

routine .name 

7th Edition 



ADB (1) ADB(l) 

The address of the variable name in the specified C routine. Both routine and name are 
symbols. If name is omitted the value is the address of the most recently activated C 
stack frame corresponding to routine. 

(exp) The value of the expression expo 

Monadic operators 

-exp The contents of the location addressed by exp in corfil. 

@exp The contents of the location addressed by exp in obffil. 

- exp Integer negation. 

- exp Bitwise complement. 

Dyadic operators are left associative and are less binding than monadic operators. 

eJ +e2 Integer addition. 

e J - e2 Integer subtraction. 

eJ-e2 Integer multiplication. 

eJ%e2 

eJ&e2 

eJle2 

eJ#e2 

COMMANDS 

Integer division. 

Bitwise conjunction. 

Bitwise disjunction. 

EJ rounded up to the next multiple of e2. 

Most commands consist of a verb followed by a modifier or list of modifiers. The following 
verbs are available. (The commands '?' and 'r may be followed by '-'; see ADDRESSES for 
further details.) 

?f Locations starting at address in obffil are printed according to the format f 
If Locations starting at address in corfi! are pri,nted according to the format f 
- f The value of address itself is printed in the styles indicated by the format f (For i for-

mat '?' is printed for the parts of the instruction that reference subsequent words.) 

A format consists of one or more characters that specify a style of printing. Each format charac
ter may be preceded by a decimal integer that is a repeat count for the format character. While 
stepping through a format dot is incremented temporarily by the amount given for each format 
letter. If no format is given then the last format is used. The format letters available are as 
follows. 

7th Edition 

02 
04 
q 2 
Q4 
d 2 
D4 
x 2 
X4 
u 2 
U4 
f 4 
F 8 
b 1 
c 1 
C 1 

Print 2 bytes in octal. 
Print 4 bytes in octal. 
Print in signed octal. 

All octal numbers output by adb are preceded by O. 

Print long signed octal. 
Print in decimal. 
Print long decimal. 
Print 2 bytes in hexadecimal. 
Print 4 bytes in hexadecimal. 
Print as an unsigned decimal number. 
Print long unsi,gned decimal. 
Print the 32 bit value as a floating point number. 
Print double floating point. 
Print the addressed byte in octal. 
Print the addressed character. 
Print the addressed character using the following escape convention. Character 

-2 



ADBO) 

s n 
S n 

Y4 
i n 

a 0 

I 
? -

p 2 

t 0 

r 0 
n 0 
• ...• 0 

+ 

ADB (1) 

values 000 to 040 are printed as @ followed by the corresponding character in 
the range 0100 to 0140. The character @ is printed as @@. 
Print the addressed characters until a zero character is reached. 
Print a string using the @ escape convention. n is the length of the string 
including its zero terminator. 
Print 4 bytes in date format (see ctime(3». 
Print as PDP11 instructions. n is the number of bytes occupied by the instruc
tion. This style of printing causes variables 1 and 2 to be set to the offset parts 
of the source and destination respectively. 
Print the value of dot in symbolic form. Symbols are checked to ensure that 
they have an appropriate type as indicated below. 

local or global data symbol 
local or global text symbol 
local or global absolute symbol 

Print the addressed value in symbolic form using the same rules for symbol 
lookup as L 

When preceded by an integer tabs to the next appropriate tab stop. For exam
ple, 8t moves to the next 8-space tab stop. 
Print a space. 
Print a newline . 
Print the enclosed string. 
Dot is decremented by the current increment. Nothing is printed. 
Dot is incremented by 1: Nothing is printed. 

.; Dot is decremented by 1. Nothing is printed . 

newline 
If the previous command temporarily incremented dot, make the increment permanent. 
Repeat the previous command with a count of 1. . 

[ ? /11 value mask 
Words starting at dot are masked with mask and compared with value until a match is 
found. If L is used then the match is for 4 bytes at a time instead of 2. If no match is 
found then dot is unchanged; otherwise dot is set to the matched location. If mask is 
omitted then -1 is used. 

[?/1" value .•. 
Write the 2-byte value into the addressed location. If the command is W, write 4 bytes. 
Odd addresses are not allowed when writing to the subprocess address space. 

[?/1m bl el j1(?/1 
New values for (bl. el. fl) are recorded. If less than three expressions are given then 
the remaining map parameters are left unchanged. If the '?' or '/' is followed by'·' 
then the second segment (b2, e2,.I2) of the mapping is changed. If the list is ter
minated by'?' or 'I' then the file (objfil or corfU respectively) is used for subsequent 
requests. (So that, for example, '1m?' will cause '/' to refer to objfif.) 

> name Dot is assigned to the variable or register named. 

A shell is called to read the rest of the line following '!'. 

$ modifier 
Miscellaneous commands. The available modifiers are: 

<I Read commands ·from the file 1 and return. 
> 1 Send output to the file /. which is created if it does not exist. 
r Print the general registers and the instruction addressed by pc. Dot is set to pc. 
f Print the floating registers in single or double length. If the floating point 

7th 'Fciition 3 



ADB (1) 

b 
a 

c 

e 
w 
s 
o 
d 
q 
v 
m 

ADB(I ) 

status of ps is set to double (0200 bit) then double length is used anyway. 
Print all breakpoints and their associated counts and commands. 
ALGOL 68 stack backtrace. If address is given then it is taken to be the 
address of the current frame (instead of r4). If count is given then only the 
first count frames are printed. 
C stack backtrace. If address is given then it is taken as the address of the 
current frame (instead of rS). If C is used then the names and (I6 bit) values 
of all automatic and static variables are printed for each active function. If 
count is given then only the first count frames are printed. 
The names and values of external variables are printed. 
Set the page width for output to address (default 80). 
Set the limit for symbol matches to address (default 255). 
All integers input are regarded as octal. 
Reset integer input as described in EXPRESSIONS. 
Exit from adb. 
Print all non zero variables in octal. 
Print the address map. 

:modi/ier 

VARIABLES 

Manage a subprocess. Available modifiers are: 

bc Set breakpoint at address. The breakpoint is executed count-l times before 
causing a stop. Each time the breakpoint is encountered the command c is exe
cuted. If this command sets dar to zero then the breakpoint causes a stop. 

d Delete breakpoint at address. 

r Run objfil as a subprocess. If address is given explicitly then the program is 
entered at this point; otherwise the program is entered at its standard entry 
point. count specifies how many breakpoints are to be ignored before stopping. 
Arguments to the subprocess may be supplied on the same line as the com
mand. An argument starting with < or > causes the standard input or output 
to be established for the command. All signals are turned on on entry to the 
subprocess. 

es The subprocess is continued with signal s c s, see signal(2). If address is given 
then the subprocess is continued at this address. If no signal is specified then 
the signal that caused the subprocess to stop is sent. Breakpoint skipping is the 
same as for r. 

5S As for c except that the subprocess is single stepped count times. If there is no 
current subprocess then objfil is run as a subprocess as for r. In this case no 
signal can be sent; the remainder of the line is treated as arguments to the sub
process. 

k The current subprocess, if any, is terminated. 

Adb provides a number of variables. Named variables are set initially by adb but are not used 
subsequently. Numbered variables are reserved for communication as follows. 

o The last value printed. 
1 The last offset part of an instruction source. 
2 The previous value of variable 1. 

On entry the following are set from the system header in the corfil. If corfil does not appear to 
be a core file then these values are set from objfil. 

b The base address of the data segment. 

7th Edition 4 



ADB (1) ADB (1) 

d 
e 
m 
s 
t 

The data segment size. 
The entry point. 
The 'magic' number (0405,0407,0410 or 0411). 
The stack segment size. 
The text segment size. 

ADDRESSES 

FILES 

The address in a file associated with a written address is determined by a mapping associated 
with that file. Each mapping is represented by two triples (b I. e I, fI) and (b2. e2 •. 12) and the 
.file address corresponding to a written address is calculated as follows. 

bI:!/;,address<eI -> .file address-address+fl-bJ. otherwise, 

b2:!/;, address < e 2 - > .file address - address +.12 - b2. 

otherwise, the requested address is not legal. In some cases (e.g. for programs with separated I 
and D space) the two segments for a file may overlap. If a ? or / is followed by an * then only 
the second triple is used. 

The initial setting of both mappings is suitable for normal a.out and core files. If either file is 
not of the kind expected then, for that file, bi is set to 0, e 1 is set to the maximum file size and 
fl is set to O~ in this way the whole file can be examined with no address translation. 

So that adb may be used on large files all appropriate values are kept as signed 32 bit integers. 

/dev/mem 
/dev/swap 
a.out 
core 

SEE ALSO 
ptrace(2). a.out(S), core(S) 

DIAGNOSTICS 

BUGS 

'Adb' when there is no current command or format. Comments about inaccessible files, syntax 
errors, abnormal termination of commands, etc. Exit status is 0, unless last command failed or 
returned nonzero status. 

A breakpoint set at the entry point is not effective on initial entry to the program. 
When single stepping, system calls do not count as an executed instruction. 
Local variables whose names are the same as an external variable may foul up the accessing of 
the external. 

7th Edition 5 



AR (1) AR (1) 

NAME 
ar - archive and library maintainer 

SYNOPSIS 
ar key [ posname ] afile name ... 

DESCRIPTION 

FILES 

Ar maintains groups of files combined into a single archive file. Its main use is to create and 
update library files as used by the loader. It can be used, though, for any similar purpose. 

Key is one character from the set drqtpmx, optionally concatenated with one or more of 
vuaibcl. Ajile is the archive file. The names are constituent files in the archive file. The mean
ings of the key characters are: 

d Delete the named files from the archive file. 

r Replace the named files in the archive file. If the optional character u is used with r, 
then only those files with modified dates later than the archive files are replaced. If an 
optional positioning character from the set abi is used, then the posname argument 
must be present and specifies that new files are to be placed after (a) or before (b or j) 
posname. Otherwise new files are placed at the end. 

q Quickly append the named files to the end of the archive file. Optional positioning 
characters are invalid. The command does not check whether the added members are 
already in the archive. Useful only to avoid quadratic behavior when creating a large 
archive piece-by-piece. 

Print a table of contents of 'the archive file. If no names are given, all files in the ar
chive are tabled. If names are given, only those files are tabled. 

p Print the named files in the archive. 

m Move the named files to the end of the archive. If a positioning character is present, 
then the posname argument must be present and, as in r, specifies where the files are to 
be moved. 

x Extract the named files. If no names' are given, all files in the archive are extracted. In 
neither case does x alter the archive file. 

v Verbose. Under the verbose option, ar gives a file-by-file description of the making of 
a new archive file from the old archive and the constituent files. When used with t, it 
gives a long listing of all information about the files. When used with p, it precedes 
each file with a name. 

c Create. Normally ar will create afiJe when it needs to. The create option suppresses 
the normal message that is produced when qfiJe is created. 

Itmp/v· 

Local. Normally ar places its temporary files in the directory Itmp. This option causes 
them to be placed in the local directory. 

temporaries 

SEE ALSO 
Id (1), adS), 10rderO) 

BUGS 
If the same file is mentioned twice in an argument list, it may be put in the archive twice. 

7th Edition 



ARCV (1M) 

NAME 
arcv - convert archives to new format 

SYNOPSIS 
HCV file ... 

DESCRIPTION 

ARCV OM) 

Arcv converts archive files (see orO). or(S» from 6th edition to 7th edition format. The 
conversion is done in place. and the command ref~s to alter a file not in old archive format. 

FILES 

Old archives are marked with a magic number of 0177SSS at the start; new archives have 
0177S4S. 

Itmp/v·. temporary copy 

SEE ALSO 
arO). areS) 

7th Edition 1 



AS (l) AS (1) 

NAME 
as - assembler 

SYNOPSIS 
as [ - ] [ -0 objfile ] file ... 

DESCRIPTION 

FILES 

As assembles the concatenation of the named files. If the optional first argument - is used, all 
undefined symbols in the assembly are treated as ,lobat. 

The output of the assembly is left on the file obifile; if that is omitted, a.out is used. It is exe
cutable if no errors occurred during the assembly, and if there were no unresolved external 
references. 

Ilib/as2 pass 2 of the assembler 
Itmp/atm[I-3]? temporary 
a.out . object 

SEE ALSO 
Id(1), nm(l), adb(l), a.out(S) 
UNIX Assembler Manual'by D. M. Ritchie 

DIAGNOSTICS 

BUGS 

When an input file cannot be read, its name followed by a question mark is typed and assembly 
ceases. When syntactic or semantic errors occur, a sinale-character diagnostic is typed out 
together with the line number and the.file name in which it occurred. Errors in pass 1 cause 
cancellation of pass 2. The possible errors are: 

) Parentheses error 
] Parentheses error 
< String not terminated properly 
• Indirection used illegally 

llIesal assignment to '.' 
a Error in address 
b Branch instruction is odd or too remote 
e Error in expression 
f Error in local ('r or 'b') type symbol 
g Garbage (unknown) character 
i End of file inside an if 
m Multiply defined symbol as label 
0 Word quantity assembled at odd address 
p • .' different in pass 1 and 2 
r Relocation error 
u Undefined symbol 
x Syntax error 

Syntax errors can cause incorrect line numbers in followina diagnostics. 

7th Edition PDPll 



AT ( 1 ) AT (1) 

NAME 
at - execute commands at a later time 

SYNOPSIS 
at time [ day] [ file] 

DESCRIPTION 

FILES 

A I squirrels away a copy of the named jile (standard input default) to be used as input to sh(1} 
at a specified later time. A cdO) command to the current directory is inserted at the 
beginning, followed by assignments to all environment variables. When the script is run, it 
uses the user and group ID of the creator of the copy file. 

The lime is 1 to 4 digits, with an optional following' A', 'P', 'N' or 'M' for AM, PM, noon or 
midnight. One and two digit numbers are taken to be hours, three and four digits to be hours 
and minutes. If no letters follow the digits. a 24 hour clock time is understood. 

The optional day is either (1) a month name followed by a day number, or (2) a day of the 
week~ if the word 'week' follows invocation is moved seven days further off. Names of months 
and days may be recognizably truncated. Examples of legitimate commands are 

at Sam jan 24 
at 1530 fr week 

A I programs are executed by periodic execution of the command IlIsrllibialTlln from cron(S). 
The granularity of at depends upon how often atrlln is executed. 

Standard output or error output is lost unless redirected. 

lusrispool/at/yy.ddd.hhhh.uu 
activity to be performed at hour hhhh of year day ddd of year yy. 1111 is a unique number. 
/usrlspoollat/lasttimedone contains hhhh for last hour of activity. 
lusrlspoollat/past directory of activities now in progress 
lusr/lib/atrun program that executes activities that are due 
pwd(1) . 

SEE ALSO 
calendar(I), cron(S) 

DIAGNOSTICS 

BUGS 

Complains about various syntax errors and times out of range. 

Due to the granularity of the execution of IlIsrllibiamm. there may be bugs in scheduling things 
almost exactly 24 hours into the future. 

7th Edition 1 





AWK(}) AWl< (l) 

NAME 
awk - pattern scanning and processing language 

SYNOPSIS 
8wk ( -Fc1 [ prog ] ( file] ... 

DESCRIPTION 
Awk scans each input file for lines that match any of a set of patterns specified in prog. With 
each pattern in prog there can be an associated action that will be performed when a line of a 
file matches the pattern. The set of patterns may appear literally as prog, or in a file specified as 
-f file. 

Files are read in order~ if there are no files, the standard input is read. The file name '-' 
means the standard input. Each line is matched against the pattern portion of every pattern
action statement~ the associated action is performed for each matched pattern. 

An input line is made up of fields separated by white space. (This default can be changed by 
using FS, vide infra.) The fields are denoted 51, 52, ... ~ SO refers to the entire line. 

A pattern-action statement has the form 

pattern ( action } 

A missing ( action } means print the line; a missing pattern always matches. 

An action is a sequence of statements. A statement can be one of the following: 

if ( conditional) statement [ else statement] 
while ( conditional ) statement 
for ( expression ~ conditional; expression ) statement 
break 
continue 
( [ statement ] ... } 
variable - expression 
print ( expression-list] ( >expression ] 
printf format ( , expression-list] [ >expression ] 
next # skip remaining patterns on this input line 
exit # skip the rest of the input 

Statements are terminated by semicolons, newlines or right braces. An empty expression-list 
stands for the whole line. Expressions take on string or numeric values as appropriate, and are 
built using the operators +, -, ., I, %, and concatenation (indicated by a blank). The C 
operators ++, --, +-, --, ·-,1-, and %- are also available in expressions. Variables 
may be scalars, array elements (denoted xU]) or fields. Variables are initialized to the null 
string. Array subscripts may be any string, not necessarily numeric~ this allows for a form of 
associative memory. String constants are quoted ....... . 

The print statement prints its arguments on the standard output (or on a file if > file is present), 
separated by the current output field separator, and terminated by the output record separator. 
The prinifstatement formats its expression list according to the format (see printj(3». 

The built-in function length returns the length of its argument taken as a string, or of the whole 
line if no argument. There are also built-in functions exp; log, sqrt, and int. The last truncates 
its argument to an integer. subsrr(s, m, n) returns the n-character substring of s that begins at 
position m. The function sprintj(fmt, expr, expr, .. .J formats the expressions according to the 
printj(3) format given by /mt and returns the resulting string. 

Patterns are arbitrary Boolean combinations 0, II, &&, and parentheses) of regular expressions 
and relational expressions. Regular expressions must be surrounded by slashes and are as in 
egrep. Isolated regular expressions in a pattern apply to the entire line. Regular expressions 
may also occur in relational expressions. 

7th Edition 1 



AWK (1 ) AWK (1) 

A palLern may consist of two palLerns separated by a comma~ in this case, the action is per
formed for all lines between an occurrence of the first pattern and the next occurrence of the 
second. 

A relational expression is one of the following: 

expression matchop regular-expression 
expression retop expression 

where a relop is any of the six relational operators in C, and a matchop is either - (for contains) 
or !- (for does not contain). A conditional is an arithmetic expression, a relational expression, 
or a Boolean combination of these. 

The special patterns BEGIN and END may be used to capture control before the first input line 
is read and after the last. BEGIN must be the first pattern, END the last. 

A single character c may be used to separate the fields by starting the program with 
BEGIN { FS .. "cIt I 

or by using the - F c option. 

Other variable names with special meanings include NF, the number of fields in the current 
record~ NR, the ordinal number of the current record~ FILENAME. the name of the current 
input file~ OFS, the output field separator (default blank); ORS, the output record separator 
(default newline); and OFMT, the output format for numbers (default "%.6g"). 

EXAMPLES 
Print lines longer than 72 characters: ' 

length> 72 

Print first two fields in opposite order: 

( print $2, $1 } 

Add up first column, print sum and average: 

(s+-$l} 
END (print "sum is", s, .. average is", s/NR } 

Print fields in reverse order: 

{ for (j - NF; i > 0; --j) print $i } 

Print all lines between start/stop pairs: 

/start/, /stop/ 

Print all lines whose first field is different from previous one: 

$1 !- prev ( print; prev - $1 } 

SEE ALSO 

BUGS 

lex (I) ,sed (1) 
A. V. Aho, B. W. Kernighan, P. J. Weinberger, Awk - a pattern scanning and processing 
language 

There are no explicit conversions between numbers and strings. To force an expression to be 
treated as a number add 0 to it~ to force it to be treated as a string concatenate .. " to it. 

7th l"riitinn 2 



BAS ( 1 ) BAS ( 1 ) 

NAME 
bas - basic 

SYNOPSIS 
bas [ file] 

DESCRIPTION 
Bas is a dialect of Basic. If a file argument is provided, the file is used for input before the ter
minal is read .. Bas accepts lines of the form: 

statement 
integer statement 

Integer numbered statements (known as internal statements) are stored for later execution. 
They are stored in sorted ascending order. Non-numbered statements are immediately execut· 
ed. The result of an immediate expression statement (that does not have' .... ' as its highest 
operator) is printed. Interrupts suspend computation. 

Statements have the following syntax: 

expression 
The expression is executed for its side effects (assignment or function cal\) or for printing 
as described above. 

comment ... 
This statement is ignored. It is used to interject commentary in a program. 

done 
Return to system level. 

dump 

edit 

The name and current value of every variable is printed. 

The UNIX editor, ed, is invoked with the file argument. After the editor exits, this file is 
recompiled. 

for name - expression expression statement 
for name - expression expression 

next 
The for statement repetitively executes a statement (first form) or a group of statements 
(second form) under control of a named variable. The variable takes on the value of the 
first expression, then is incremented by one on each loop, not to exceed the value of the 
second expression. 

goto expression 
The expression is evaluated, truncated to an integer and execution goes to the 
corresponding integer numbered statment. If executed from immediate mode, the inter
nal statements are compiled first. 

if expression statement 
if expression 

[ else 

fi 

7th Edition 

... 1 

The statement (first form) or group of statements (second form) is executed if the ex
pression evaluates to non-zero. In the second form, an optional else allows for a group of 
statements to be executed when the first group is not. 



BAS (I) BAS (I) 

list (expression [expression]] 
is used to print out the stored internal statements. If no arguments are given, all internal 
statements are printed. If one argument is given, only that internal statement is listed. If 
two arguments are given, all internal statements inclusively between the arguments are 
printed. 

print list 
The list of expressions and strings are concatenated and printed. (A string is delimited by 
" characters.) 

prompt list 
Prompt is the same as print except that no newline character is printed. 

return [expression] 

run 

The expression is evaluated and the result is passed back as the value of a function call. 
If no expression is given, zero is returned. 

The internal statements are compiled. The symbol table is re-initialized. The random 
number generator is reset. Control is passed to the lowest numbered internal statement. 

save [expression [expression]] 
Save is like list except that the output is written on the file argument. If no argument is 
given on the command, b.out is used. 

Expressions have the following syntax: 

name 
A name is used to specify a variable. Names are composed of a letter followed by letters 
and digits. The first four characters of a name are significant. 

number 
A number is used to represent a constant value. A number is written in Fortran style, 
and contains digits, an optional decimal point, and possibly a scale factor consisting of an 
e followed by a possibly signed exponent. 

( expression ) 
Parentheses are used to alter normal order of evaluation. 

_ expression 
The result is the negation of the expression. 

expression operator expression 
Common functions of two arguments are abbreviated by the two arguments separated by 
an operator denoting the function. A complete list of operators is given below. 

expression ( (expression [ • expression] ... ] ) 
Functions of an arbitrary number of arguments can be called by an expression followed by 
the arguments in parentheses separated by commas. The expression evaluates to the line 
number of the entry of the function in the internally stored statements. This causes the 
internal statements to be compiled. If the expression evaluates negative, a builtin func
tion is called. The list of builtin functions appears below. 

name ( expression [ • expression ] ... I 
Each expression is truncated to an integer and used as a specifier for the name. The 
result is syntactically identical to a name. a11.21 is the same as a(tH21. The truncated ex
pressions are restricted to values between 0 and 32767. 

The following is the list of operators: 

- - is the assignment operator. The left operand must be a name or an array element. 
The result is the right operand. Assignment binds right to left, 



BAS (1) BAS (1) 

FILES 

&1 & (logical and) has result- zero if either of its arguments are zero. It has result one if 
both its arguments are non-zero. I (logical or) has result zero if both of its arguments 
are zero. It has result one if either of its arguments are non-zero. 

< <- > >- -- <> 
The relational operators « less than, < - less than or equal, > greater than, > .. 
greater than or equal, - - equal to, < > not equal to) return one if their arguments 
are in the specified relation. They return zero otherwise. Relational operators at the 
same level extend as follows: a>b>c is the same as a>b&b>c. 

+ - Add and subtract. 

• I Multiply and divide. 

Exponentiation. 

The following is a list of builtin functions: 

ara(t) is the value of the i -th actual parameter on the current level of function call. 

exp(x) is the exponential function of x. 

101 (x) is the natural logarithm of x. 

sqr(x) is the SQuare root of x. 

sin (x) is the sine of x (radians). 

eos(x) is the cosine of x (radians). 

atn(x) is the arctangent of x. Its value is between -1T/2 and 1T12. 

rnd() is a uniformly distributed .random number between zero and one. 

expr( ) 
is the only form of program input. A line is read fro.m the input and evaluated as an 
expression. The resultant value is returned. 

aba(d is the absolute value of x. 

int(d returns x truncated <towards 0) to an integer. 

Itmp/btm? temporary 
b.out save file 
Ibinl ed for edit· 

DIAGNOSTICS 
Syntax errors cause the incorrect line to be typed with an underscore where the parse failed. 
All other diagnostics are self explanatory. 

BUGS 
Has been known to give core images. 
Catches interrupts even when they are turned off. 

7th Edition 3 



BASENAME ( 1 ) 

NAME 
basename - strip filename affixes 

SYNOPSIS 
basename string [ suffix ] 

DESCRIPTION 

BASEN AME ( 1 ) 

Basename deletes any prefix ending in • I' and the sl.d!ix. if present in sIring, from string, and 
prints the result on the standard output. It is normally used inside substitution marks ' , in 
shell procedures. 

This shell procedure invoked with the argument lusrlsrdcmdlcat.c compiles the named file and 
moves the output to car in the current directory: 

SEE ALSO 
sh(1) 

7th Edition 

cc 51 
mv a.out 'basename 51 .c' 



BC (1) Be ( 1 ) 

NAME 
be - arbitrary-precision arithmetic language 

SYNOPSIS 
be [ - c 1 [ -I 1 [ file ... 1 

DESCRIPTION 
Be is an interactive processor for a language which resembles C but provides unlimited preci· 
sion arithmetic. It takes input from any files given, then reads the standard input. The -I ar
gument slands for the name of an arbitrary precision math library. The syntax for be programs 
is as follows; L means letter a-z, E means expression. S means statement. 

Comments 
are enclosed in 1* and */. 

Names 
simple variables: L 
array elements: L [ E ] 
The words 'ibase·. 'obase·. and 'scale' 

Other operands 
arbitrarily long numbers with optional sign and decimal point. 
( E ) 
sqrt ( E ) 
length ( E ) 
scale ( E ) 
L(E, .... E) 

number of significant decimal digits 
number of digits right of decimal point 

Operators 
+ - • / % A (% is remainder; • is power) 
+ + (prefix and postfix; apply to names) 
-- <- >- !- < > 
- -+ -- -* -/ -% -'" 

Statements 
E 
(S; ... ;S} 
if ( E ) S 
while ( E) S 
for ( E ; E ~ E ) S 
null statement 
break 
quit 

Function definitions 
define L ( L .... , L ) { 

auto L, ... , L 
S; ... S 
return ( E) 

Functions in -I math library 
s(x) sine 
c(x) cosine 
e(x) exponential 
\(x) log 
a(x) arctangent 
j(n,x) Bessel function 

7th Edition 



BC(I ) 

FILES 

BC(I ) 

All function arguments are passed by ,value. 

The value of a statement that is an expression is printed unless the main operator is an assign
ment. Either semicolons or newlines may separate statements. Assignment to scaie influences 
the number of digits to be retained on arithmetic operations in the manner of dd!). Assign
ments to ibase or obase set the input and output number radix respectively. 

The same letter may be used as an array; a function, and a simple variable simultaneously. All 
variables are global to the program. 'Auto' variables are pushed down during function calls. 
When using arrays as function arguments or defining them as automatic variables empty square 
brackets must follow the array name. 

For example 

scale - 20 
define e(x) { 

auto a, b, C, i, s 
a - I 
b - I 
s - I 
forG-I; 1--1; i++){ 

a - a·x 
b - b·i 
C - alb 
if(c --.0) retum(s) 
s - s+c 

defines a function to compute an approximate value of the exponential function and 

forO-I; i< -10; i+ +) e(j) 

prints approximate values of the exponential funttion of the first ten integers. 

Be is actually a preprocessor for ddt), which it invokes automatically, unless the -c (compile 
only) option is present. In this case the dcinput is sent to the standard output instead. 

lusr/lib/lib.b mathematical library 
de( 1) desk calculator proper 

SEE ALSO 
de(t) 
L._ L. Cherry and R. Morris, Be - A n arbitrary precision desk-calculotor Iongullge 

BUGS 
No &&, II, or ! operators. 
For statement must have all three E's. 
Quit is interpreted when read, not when executed. 

7th Edition 2 



CAL (1) 

NAME 
cal - print calendar 

SYNOPSIS 
cal [ month] year 

DESCRIPTION 

CAL (1) 

Cal prints a calendar for the specified year. If a month is also specified, a calendar just for that 
month is printed. Year can be between 1 and 9999. The month is a number between I and 12. 
The calendar produced is that for England and her colonies. 

BUGS 
Try September 1752. 

The year is always considered to start in January .even though this is historically naive. 
Beware that 'cal 78' refers to the early Christian era, not the 20th century. 

7th Edition 



CALENDAR (1) CALEND AR ( 1 ) 

NAME 
calendar - reminder service 

SYNOPSIS 
calendar [ - ] 

DESCRIPTION 

FILES 

Calendar consults the file 'calendar' in the current directory and prints out lines that contain 
today's or tomorrow's date anywhere in the line. Most reasonable month-day dates such as 
'Dec. 7,' 'december 7,' '12/7,' etc., are recognized, but not '7 December' or '7112'. On 
weekends 'tomorrow' extends through Monday. 

When an argument is present, calendar does its job for every user who has a file 'calendar' in 
his login directory and sends him any positive results by mallO)' Normally this is done daily in 
the wee hours under control of cron(S). 

calendar 
lusr/lib/calendar to figure out today's and tomorrow's dates 
I etcl passwd 
!tmp/cal-
egrep, sed, mail subprocesses 

SEE ALSO 

BUGS 

atO), cron (S), mail (1) 

Your calendar must be public information for you to get reminder service. 
Calendar's extended idea of 'tomorrow' doesn't account for holidays. 

7th Edition 



CAT (1) 

NAME 
cat - catenate and print 

SYNOPSIS 
cat [ - u 1 file ... 

DESCRIPTION 
Cat reads each file in sequence and writes it on the standard output. Thus 

cat file 

prints the file. and 

cat file 1 file2 > file3 

concatenates the first two files and places the result on the third. 

CAT (l) 

If no input file is given. or if the argument '-' is encountered. cat reads from the standard 
input file. Output is buffered in 512-byte blOCKS unless the standard output is a terminal or the 
- u option is specified. 

SEE ALSO 
prO), cpO) 

BUGS 
Beware of 'cat a b >a' and 'cat a b >b', which destroy the input files before reading them. 

7th Edition 1 



CB (1) 

NAME 
cb - C program beautifier 

SYNOPSIS 
cb 

DESCRIPTION 

CB (1) 

Cb places a copy of the C program frorn the standard input on the standard output with spacing 
and indentation that displays the structure of the program. 

BUGS 

7th Edition 



CC (1) CC ( 1 ) 

NAME 
cc, pcc - C compiler 

SYNOPSIS 
cc [ option] ... file .. , 

pec [ option] ... file ... 

DESCRIPTION 
Cc is the UNIX C compiler. It accepts several types of arguments: 

Arguments whose names end with '.c' are taken to be C source programs; they are compiled, 
and ·each object program is left on the file whose name is that of the source with '.0' substituted 
fot '.c'. The '.0' file is normally deleted, however, if a single C program is compiled and 
loaded all at one go. 

In the same way, arguments whose names end with '.s' are taken to be assembly source 
programs and are assembled, producing a '.0' file. 

The following options are interpreted by cc. See IdO) for load-time options. 

-c Suppress the loading phase of the compilation: and force an object file to be produced 
even if only one program is compiled. 

-p Arrange for the compiler to produce code which counts the number of times each 
routine is called; also, if loading takes place, replace the standard startup routine by 
one which automatically calls monitor(J) at the start and arranges to write out a 
mon.out file at normal termina,tion of execution of the object program. An execution 
profile can then be generated by use of proj(I). 

-f In systems without hardware floating-point, use a version of the C compiler which 
handles floating-point constants and loads the object program with the floating-point 
interpreter. Do not use if the hardware is present. 

-0 Invoke an object-code optimizer. 

-s Compile the named C programs, and leave the assembler-language output on 
corresponding files suffixed '.5'. 

-P Run only the macro preprocessor and place the result for each '.c' file in a 
corresponding'.j' file and has no '#' lines in it. 

-E Run only the macro preprocessor and send the result to the standard output. The 
output is intended for compiler debugging; it is unacceptable as input to cc. 

-0 output 
Name the final output file output. If this option is used the file 'a. out' will be left 
undisturbed. 

-Dname-dej 
-Dname 

Define the name to the preprocessor. as if by '#define'. If no definition is given, the 
name is defined as 1. 

-Uname 
Remove any initial definition of name. 

- J dir '#include' files whose names do not begin with '/' are always sought first in the 
directory of the file argument, then in directories named in - I options, then in 
directories on a standard list. 

-Bstring 

7th Edition 

Find substitute compiler passes in the files named string with the suffixes cpp, cO, cl 
and c2. If string is empty, use a standard backup version. 

PDPll 



cc (1 ) 

FILES 

CCo) 

-t[p012] 
Find only the designated compiler passes in the files whose names are constructed by a 
-B option. In the absence of a -B option, the string is taken to be '/usr/c/'. 

Other arguments are taken to be either loader option arguments, or C-compatible object 
programs, typically produced by an earlier ee run, or perhaps libraries of C-compatible routines. 
These programs, together with the results of any compilations specified, are loaded (in the 
order given) to produce an executable program with name a.out. 

The major purpose of the 'portable C compiler', pee, is to serve as a model on which to base 
other compilers. Pee does not support options - f, - E, - B, and - t. I t provides, in addition 
to the language of ee, unsigned char type data and initialized bit fields. 

file.c 
file.o 
a.out 
Itmp/ctm? 
llib/cpp 
llib/c[OIl 
lusr/c/oc[012] 
I usr I cl oCPP 
llib/fc[OIJ 
llib/c2 
llib/crtO.o 
llib/mcrtO.o 
llib/fcrtO.o 
llib/libc.a 
lusr/include 
Itmp/pc· 
lusr/Jib/ccom 

input file 
object file 
loaded output 
temporaries for ce 
preprocessor 
compiler for cc 
backup compiler for ce 
backup preprocessor 
floating-point compiler 
optional optimizer 
runtime startoff 
startoff for profiling 
startoff for floating-point interpretation 
standard library, see intro(3) 
standard directory for • #include' files 
temporaries for pee 
compiler for pee 

SEE ALSO 
B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978 
D. M. Ritchie, C Reference Mantlal 
moni tod3), prof( I), adb (1 ), ld (I ) 

DIAGNOSTICS 

BUGS 

The diagnostics produced by C itself are intended to be self-explanatory. Occasional messages 
may be produced by the assembler or loader. Of these, the most mystifying are from the 
assembler, as(1), in particular 'm', which means a multiply-defined external symbol (function 
or data). 

Pee is little tried on the PDP}1; specialized code generated for that machine has not been well 
shaken down. The -0 optimizer was designed to work with ee; its use with pee is suspect. 

7th Edition 2 



CD (1) 

NAME 
cd - change working directory 

SYNOPSIS 
cd directory 

DESCRIPTION 

CD (I) 

Directory becomes the new working directory. The process must have execute (search) permis
sion in directory. 

Because a new process is created to execute each command, cd would be ineffective if it were 
written as a normal command. It is therefore recognized and executed by the Shell. 

SE: ALSO 
sh(}), pwd(I), chdir(2) 

7th Edition l' 



CHMOD (1) CHMOD (1) 

NAME 
chmod - change mode 

SYNOPSIS 
chmod mode file ... 

DESCRIPTION 
The mode of each named file is changed according to mode, which may be absolute or symbolic. 
An absolute mode is an octal number constructed from the OR of the foHowing modes: 

4000 set user ID on execution 
2000 set group ID on execution 
1000 sticky bit, see chmod(2) 
0400 read by owner 
0200 write by owner 
0100 execute (search in directory) by owner 
0070 read, write, execute (search) by group 
0007 read, write, execute (search) by others 

A symbolic mode has the form: 

[who] op permission lop permission] ... 

The who part is a combination of the letters u (for user's permissions), I (group) and 0 (other). 
The letter a stands for UIO. If who is omitted, the default is a but the setting of the file creation 
mask (see umask(2» is taken into account. 

Op can be + to add permission to the file's mode, - to take away permission and - to assign 
permission absolutely (all other bits will be reset). 

Permission is any combination of the letters r (read), w (write), x (execute), s (set owner or 
group id) and t (save text - sticky). Letters u, I or 0 indicate that permission is to be taken 
from the current mode. Omitting permission is only useful with - to take away all permissions. 

The first example denies write permission to others, the second makes a file executable: 

chmod o-w file 
chmod + x file 

Multiple symbolic modes separated by commas may be given. Operations are performed in the 
order specified. The letter s is only useful with U or g. 

Only the owner of a file (or the super-user) may change its mode. 

SEE ALSO 
IsO), chmod(2), chown (J), stat(2), umask(2) 

7th Edition 



CHOWN (1) CHOWN (1) 

NAME 
chown, chgrp - change owner or group 

SYNOPSIS 
chown owner file ... 

chgrp group file '" 

DESCRIPTION 

FILES 

Chown changes the owner of the files to owner. The owner may be either a decimal UID or a 
login name found in the password file. 

Chgrp changes the groupoiD of the files to group. The group may be either a decimal GID or a 
group name found in the groupoiD file. 

Only the super-user can change owner or group, in order to simplify as yet unimplemented 
accounting procedures. 

/etc/passwd 
/etc/group 

SEE ALSO 
chown(2), passwd(S), group(S) 

7th Edition 1 



CLRI OM) CLRI (1M) 

NAME 
clri - clear i-node 

SYNOPSIS 
clri filesystem i-number ... 

DESCRIPTION 
Cui writes zeros on the i-nodes with the decimal i-numbers Qn the jilesystem. After cui, any 
blocks in the affected file will show up as 'missing' in an icheck(I) of the jilesystem. 

Read and write permission is required on the specified file system device. The i-node becomes 
allocatable. 

The primary purpose of this routine is to remove a file which for some reason appears in no 
directory. If it is used to zap an i-node which does appear in a directory, care should be taken 
to track down the entry and remove it. Otherwise, when the i-node is reallocated to some new 
file, the old entry will still point to that file. At that point removing the old entry will destroy 
the new file. The new entry will again point to an unallocated i-node, so the whole cycle is 
likely to be repeated again and a.gain. 

SEE ALSO 
icheck(1) 

BUGS 
If the file is open, cui is likely to be ineffective. 

t 

7th Edition 



CMP(l) CMP (I) 

NAME 
cmp - compare two files 

SYNOPSIS 
cmp [ -I ] [ -5 ] filel file2 

DESCRIPTION 
The two files are compared. (If file1 is '-', the standard input is used.) Under default options, 
cmp makes no comment if the files are the same; if they differ, it announces the byte and line 
number at which the difference occurred. If one file is an initial subsequence of the other, that 
fact is noted. 

Options: 

-1 Print the byte number (decimal) and the differing bytes (octal) for each difference. 

-5 Print nothing for differing files; return codes only. 

SEE ALSO 
diff(l), comm( 1) 

DIAGNOSTICS 
Exit code 0 is returned for identical files, 1 for different files, and 2 for an inaccessible or miss
ing argument. 

7th Edition 



COL (I) COL (}) 

NAME 
col - filter reverse line feeds 

SYNOPSIS 
col I-bfx) 

DESCRIPTION 
Col reads the standard input and writes the standard output. It performs the line overlays 
implied by reverse line feeds (ESC-7 in ASCII) and by forward and reverse half line feeds 
(ESC-9 and ESC-8). Col is particularly useful for filtering multicolumn output made with the 
'.rt' command of nrqffand output resulting from use of the tbl(I) preprocessor. 

Although col accepts half line motions in its input, it normally does not emit them on output. 
Instead, text that would appear between lines is moved to the next lower full line boundary. 
This treatment can be suppressed by the -f (fine) option; in this case the output from col may 
contain forward half line feeds (ESC-9), but will still never contain either kind of reverse line 
motion. 

If the -b option is given, col assumes that the output device in use is not capable of backspac
ing. In this case, if several characters are to appear in the same place, only the last one read 
will be taken. 

The control characters SO (ASCII code 017), and SI (016) are assumed to start and end text in 
an alternate character set. The character set (primary or alternate) associated with each printing 
character read is remembered; on output, SO and SI characters are generated where necessary 
to maintain the correct treatment of each character. 

Col normally converts white space to tabs to shorten printing time. If the -x option is given, 
this conversion is suppressed. 

All control characters are removed from the input except space, backspace, tab, return, new
line, ESC (033) followed by one of 789, SI, SO, and VT (013). This last character is an alter
nate form of full reverse line feed, for compatibility with some other hardware conventions. 
All other non-printing characters are ignored. 

SEE ALSO 
trotrO ), tbl (1 ), greek (I ) 

BUGS 
Can't back up more than 128 lines. 
No more than 800 characters, including backspaces, on a line. 

7th Edition 



COMM (1) COMM (1) 

NAME 
comm - select or reject lines common to two sorted files 

SYNOPSIS 
comm [ - [ 123 ] 1 file 1 file2 

DESCRIPTION 
Comm reads file1 and file2. which should be ordered in ASCII collating sequence, and produces 
a three column output: lines only in filel; lines only in file2; and lines in both files. The 
filename '-' means the standard input. 

Flags 1. 2, or 3 suppress printing of the corresponding column. Thus comm -12 prints only 
the lines common to the two files~ comm -23 prints only lines in the first file but not in the 
second~ comm -123 is a no-op. 

SEE ALSO 
cmp( 1). diffO), uniq (1) 

7th Edition 



CP (1) 

NAME 
cp - copy 

SYNOPSIS 
ep file I file2 

c:p file ... directory 

DESCRIPTION 

CPO) 

Filel is copied onto file]. The mode and owner of file] are preserved if it already existed; the 
mode of the source file is used otherwise. 

In the second form, one or more files are copied into the directwy with their oriainal file-names. 

Cp refuses to copy a file onto itself. 

SEE ALSO 
catO), prO), mv(I) 

7th Edition 



CPIO (I) CPIO (I) 

NAME 
cpio - copy file archives in and out 

SYNOPSIS 
cpio -O[ ... } 

cpio -lldrtu ... } [ pattern] 

cpio -p[dlru ... } [ pattern} directory 

DESCRIPTION 

Cpio -0 (copy out) reads the standard input for a list of path names and copies those files onto 
the standard output together with path name and status information. 

Cpio - i (copy in) extracts from the standard input, which is the product of a previous "cpio - 0 ", 

files whose names are selected by a pallern given in the name-generating syntax of sh(I). The pat
tern meta-characters '1" '-', '[...]' will match'/' characters. The pallern argument defaults to N_n. 

Cpio -p (pass) copies out and in in a single operation. Destination pathnames are interpreted 
relative to the named directory. 

The options are: 

d . Directories are to be created as needed. 

r Interactively rename files. If the user types a null line, the file is skipped. 

t Print a table of contents of the input. No files are created. 

u Copy unconditionally (normally, an older file will not replace a newer file with the same 
name). 

v Verbose: causes a list of file names to be printed. When used with the t option, the 
table of contents looks like an "Is -I" (see IsO». 

Whenever possible, link files rather than copying them. Usable only with the -p 
option. 

m Retain previous file modified time (only for the super-user). 

The first example below copies the contents of a directory into an archive; the second duplicates a 
directory hierarchy: 

Is I cpio -0 >/dev/mtO 

chdir olddir 
find. -print I cpio -pdl newdir 

SEE ALSO 

arm 

BUGS 
Path names are restricted to 128 characters. 
If there are too many unique linked files, the program runs out of memory to keep track of them 
and subsequent linking information is lost. 

- I -



CRYPT (1) CRYPT (l) 

NAME 
crypt - encode/decode 

SYNOPSIS 
crypt [ password ] 

DESCRIPTION 

FILES 

Crypt reads from the standard input and writes on the standard output. The password is a key 
that selects a particular transformation. If no password is given, crypt demands a key from the 
terminal and turns off printing while the key is being typed in. Crypt encrypts and decrypts wHh 
the same key: 

crypt key < clear > cypher 
crypt key < cypher I pr 

will print the clear. 

Files encrypted by crypt are compatible with those treated by the editor ed in encryption mode. 

The security of encrypted files depends on three factors: the fundamental method must be hard 
to solve; direct search of the key space must be infeasible; 'sneak paths' by which keys or clear
text can become visible must be minimized. 

Crypt implements a one-rotor machine designed aJong the lines of the German Enigma, but 
with a 256-element rotor. Methods of attack on such machines are known, but not widely; 
moreover the amount of work required is likely to be large. 

The transformation of a key into the internal settings of the machine is deliberately designed to 
be expensive. Le. to take a substantial fraction of a second to compute. However, if keys are 
restricted to (say) three lower-case letters. then encrypted files can be read by expending only a 
substantial fraction of five minutes of machine time. 

Since the key is an argument to the crypt command •. it is pOtentially visible to users executing 
ps(1) or a derivative. To minimize this possibility, crypt takes care to destroy any record of the 
key immediately upon entry. No doubt the choice of keys and key security are the most 
vulnerable aspect of crypt 

/dev/tty for typed key 

SEE ALSO 

BUGS 

ed (1). makekey (8) 

There is no warranty of merchantability nor any warranty of fitneSs for a particular purpose nor 
any other warranty, either express or implied. as to the accuracy of the enclosed materials or as 
to their suitability for any particular purpose. Accordingly. Bell Tel~phone Laboratories 
assumes no responsibility for their use by the recipient. Further, Bell Laboratories assumes no 
obligation to furnish any assistance of any kind whatsoever, or to furnish any additional infor
mation or documentation. 

7th Edition 1 



CU (lC) CU (lC) 

NAME 
eu - call UNIX 

SYNOPSIS 
cu telno [ -t ] [ -5 speed} [ -a aeu ] [ -I line ] 

DESCRIPTION 

FILES 

Cu calls up another UNIX system, a terminal, or possibly a non-UNIX system. It manages an 
interactive conversation with possible transfers of text files. Telno is the telephone number, 
with minus signs at appropriate places for delays. The -t nag is used to dial out to a terminal. 
Speed gives the transmission speed 010, 134, ISO; 300, 1200)~ 300 is the default value. 

The -a and -I values may be used to specify pathnames for the ACU and communications 
line devices. They can be used to override the following built-in choices: 

-a /dev/euaO -1/dev/cuIO 

After making the connection, cu runs as two processes: the send process reads the standard 
input and passes most of it to the remote system; the receive process reads from the remote 
system and passes most data to the standard output. Lines beginning with • ., have special 
meanings. 

The send process interprets the following: 

'"EOT 

-!cmd ... 

"'$cmd ... 

""%take from ho] 

'"%put from [to] 

terminate the conversation. 
terminate the conversation 

send the contents of file to the remote system, as though typed at the 
terminal. 

invoke an interactive shell on the local system. 

run the command on the local system (via sb -c>. 
run the command locally and send its output to the remote system. 

copy file 'from' (on the remote system) to file 'to' on the local system. If 
'to' is omitted, the 'from' name is used both places. 

copy file 'from' (on local system) to file 'to' on remote system. If 'to' is 
omitted, the 'from' name is used both places. 

send the line '- .. ". 

The receive process handles output diversions of the following form: 

-> [> J[:)file 
zero or more lines to be written to file 
-> 
In any case, output is diverted (or appended, if • > >' used) to the file. If ':' is used, the 
diversion is silent. i.e., it is written only to the file. If ':' is omitted, output is written both to 
the file and to the standard output. . The trailing ,->' terminates the diversion. 

The use of ~put requires stty and eDt on the remote side. It also requires that the current 
erase and kill characters on the remote system be identical to the current ones on the local 
system. Backslashes are inserted at appropriate places. 

The use of ~take requires the existence of echo and tee on the remote system. Also, stt)' tabs 
mode is required on the remote system if tabs are to be copied without expansion. 

/dev/cuaO 
/dev/euIO 
/dev/null 

7th Edition 1 



CU (IC) CU (lC) 

SEE ALSO 
dn(4), tty(4) 

DIAGNOSTICS 
Exit code is zero for normal exit, nonzero (various values) otherwise. 

BUGS 
The syntax is unique. 

7th Edition 2 



DATE (1) DATE (1) 

NAME 
date - print and set the date 

SYNOPSIS 
date [ yymmddhhmm [ .55 } } 

DESCRIPTION 

. FILES 

If no argument is given, the current date and time are printed. If an argument. is given, the 
current date is set. yy is the last two digits of the year; the first mm is the mc.nth number; dd is 
the day number in the month; hh is the hour number (24 hour system); the second mm is the 
minute number; .ss is optional and is the seconds. For example: 

date 10080045 

sets the date to Oct 8, 12:45 AM. The year, month and day may be omitted, the current values 
being the defaults. The system operates in GMT. Dale takes care of the conversion to and 
from local standard and daylight time . 

lusr/adm/wtmp to record time-setting 

SEE ALSO 
utmp(5) 

DIAGNOSTICS 
'No permission' if you aren't the super-user and you try tp change the date; 'bad conversion' if 
the date set is syntactically incorrect. 

7th Edition 1 





DCO) DC (I) 

NAME 
dc - desk calculator 

SYNOPSIS 
de [ file] 

DESCRIPTION 
De is an arbitrary precision arithmetic package. Ordinarily it operates on decimal integers, but 
one may specify an input base, output base, and a number of fractional digits to be maintained. 
The overall structure of de is a stacking (reverse Polish) calculator. If an argument is given, in
put is taken from that file until its end. then from the standard input. The following construc
tions are recognized: 

number 
The value of the number is pushed on the stack. A number is an unbroken string of the 
digifs 0-9. It may be preceded by an underscore _ to input a negative number. Numbers 
may contain decimal points. 

+_,.%A 
The top two values on the stack are added (+). subtracted (-), multiplied (.). divided 
(/). remaindered (%), or exponentiated r). The two entries are popped off the stack~ 
the result is pushed on the stack in their place. Any fractional part of an exponent is ig
nored. 

sx The top of the stack is popped and stored into a register named x, where x may be any 
character. If the s is capitalized, x is treated as a stack and the value is pushed on it. 

Ix The value in register x is pushed on the stack. The register x is not altered. All registers 
start with zero value. If the I is capitalized, register x is treated as a stack and its top 
vatue is popped onto the main stack. 

d The top value on the stack is duplicated. 

p The top value on the stack is printed. The top value remains unchanged. P interprets 
the top of the stack as an ascii string, removes it, and prints it. 

r All values on the stack and in registers are printed. 

q exits the program. If executing a string, the recursion level is popped by two. If q is 
capitalized, the top value on the stack is popped and the string execution level is popped 
by that value. 

x treats the top element of the stack as a character string and executes it as a string of dc 
commands. 

X replaces the number on the top of the stack with its scale factor. 

( ••• J puts the bracketed ascii string onto the top of the stack. 

<x >x -x 
The top two elements of the stack are popped and compared. Register x is executed if 
they obey the stated relation. 

v replaces the top element on the stack by its square root. Any existing fractional part of 
the argument is taken into account, but otherwise the scale factor is ignored. 

interprets the rest of the line as a UNIX command. 

c All values on the stack are popped. 

The top value on the stack is popped and used as the number radix for further input. I 
pushes the input base on the top of the stack. 

o The top value on the stack is popped and used as the number radix for further output. 

7th Edition 



DC (I) 

o 
k 

z 
Z 

? 
. . , . 

DC (1) 

pushes the output base on the top of the stack. 

the top of the stack is popped, and that value is used as a non-negative scale factor: the 
. appropriate number of places are printed on output, and maintained during multiplica

tion, division, and exponentiation. The interaction of scale factor, input base, and out
put base will be reasonable if all are changed together. 

The stack level is pushed onto the stack. 

replaces the number on the top of the stack with its length. 

A line of input is taken from the input source (usually the terminal) and executed. 

are used by be for array operations . 

An example which prints the first ten values of n! is 

Ual +dsa*plaIO>y)sy. 
Osal 
Iyx 

SEE ALSO 
bcO), which is a preprocessor for de providing infix notation and a C-Iike syntax whiCh imple
ments functions and reasonable control structures for programs. 

DIAGNOSTICS 
'x is unimplemented' where x is an octal number. 
'stack empty' for not enough elements on the stack to do what was asked. 
'Out of space' when the free list is exhausted (too many digits). 
'Out of headers' for too many numbers being kept around. 
'Out of pushdown' for too many items on the stack. 
'Nesting Depth' for too many levels of nested execution. 

7th Edition 2 



DCHECK( 1M) DCHECK( 1M) 

NAME 
dcheck - file system directory consistency check 

SYNOPSIS 
dcheck [ -I numbers] [ filesystem ] 

DESCRIPTION 

FILES 

.T>check reads the directories in a file system and compares the link-count in each i-node with 
the number of directory entries by which it is referenced. If the file system is not specified, a 
set of default file systems is checked. 

The -I flag is followed by a list of i-numbers~ when one of those i-numbers turns up in a 
directory, the Dumber, the i-number of the directory, and the name of the entry are reported. 

The program is fastest if the raw version of the special file is used, since the i-list is read in 
large chunks. 

Default file systems vary with installation. 

SEE ALSO 
icheck(I), filsys(S), clri(I), ncheck(I) 

DIAGNOSTICS 

BUGS 

When a file turns up for which the link-count and the number of directory entries disagree, the 
relevant facts are reported: Allocated files which have 0 link-count and no entries are also 
listed. The only dangerous situation occurs when there are more entries than Iinks~ if entries 
are removed, so the link-count drops to 0, the remaining entries point to thin air. They should 
be removed. When there are more links than entries, or there is an allocated file with neither 
links nor entries, some disk space may be lost but the situation will not degenerate. 

Since dcheck is inherently two-pass in nature, extraneous diagnostics may be produced if applied 
to active file systems. 

7th Edition 1 





DD (1) DD (1) 

NAME 
dd - convert and copy a file 

SYNOPSIS 
dd [option .... value] ... 

DESCRIPTION 
Dd copies the specified input file to the specified output with possible conversions. The stan
dard input and output are used by default. The input and output block size may be specified to 
take advantage of raw physical I/O. 

option 
if
of-
ibs-n 
obs-n 
bs-n 

values 
input file name; standard input is default 
output file name; standard output is default 
input block size n bytes (default 512) 
output block size (default 512) 
set both input and output block size, superseding ibs and obs: also, if no 
conversion is specified, it is particularly efficient since no copy need be done 

cbs- n conversion buffer size 
skip- n skip n input records before starting copy 
files- n copy n files from (tape) input 
seek - n seek n records from beginning of output file before copying 
count - n copy only n input records 
conv-ascii convert EBCDIC to ASCII 

ebcdic convert ASCII to EBCDIC 
ibm slightly different map of ASCII to EBCDIC 
lcase map alphabetics to lower case 
ucase map alphabetics to upper case 
swab swap every pair of bytes 
noerror do not stop processing on an error 
sync pad every input record to ibs 
... , ... several comma-separated conversions 

Where sizes are specified, a number of bytes is expected. A number may end with k, b or w to 
specify multiplication by 1024, 512, or 2 respectively; a pair of numbers may be separated by x 
to indicate a product. 

Cbs is used only if ascii or ebcdic conversion is specified. In the former ease cbs characters are 
placed into the conversion buffer, converted to ASCII, and trailing blanks trimmed and new
line added before sending the line to the output. In the latter case ASCII characters are read 
into the conversion buffer, converted to EBCDIC, and blanks added to make up an output 
record of size cbs. 

After completion, dd reports the number of whole and partial input and output blocks. 

For example, to read an EBCDIC tape bkcked ten 80-byte EBCDIC card images per record into 
the ASCII file x: 

dd if-/dev/rmtO of-x ibs=800 cbs-gO conv-ascii,lease 

Note the use of raw magtape. Dd is especially suited to 1/0 on the raw physical devices because 
it allows reading and writing in arbitrary record sizes. 

To skip over a file before copying from magnetic tape do 

(dd of"""/dev/null; dd of-x) </dev/rmtO 

SEE ALSO 
cpO), trO) 

7th Edition 



DO (1) DO (1) 

DIAGNOSTICS 

BUGS 

f+p records in(out>: numbers of full and partial records read(wriuen) 

The ASCII/EBCDIC conversion tables are taken from the 256 character standard in the CACM 
Nov, 1968. The 'ibm' conversion, while less blessed as a standard, corresponds better to cer
tain IBM print train conventions. There is no~ universal solution. 

Newlines are inserted only on conversion to ASCII; padding is done only on conversion to 
EBCDIC. These should be separate options. 

7th Edition 2 



DEROFF( 1) DEROFF( 1) 

NAME 
deroff - remove oroft', troft', tbl and eqn constructs 

SYNOPSIS 
deroff [ - w ] file ... 

DESCRIPTION 
Deroffreads each file in sequence and removes all nroffand troffcommand lines, backslash con
structions, macro definitions, eqn constructs (between '.EQ' and' .EN' lines or between delim
iters), and table descriptions and writes the remainder on the standard output. Derofffollows 
chains of included files (' .so' and '.nx' commands)~ if a file has already been included, a '.so' is 
ignored and a '.nx' terminates execution. If no input file is given, deroffreads from the stan
dard input file. 

If the -w flag is given, the output is a word list, one 'word' (string of letters, digits, and apos
trophes, beginning with a letter~ apostrophes are removed) per line, and all other characters ig-
nored. Otherwise, the output follows the original, with the deletions mentioned above. . 

SEE ALSO 

BUGS 

troffO ), eqn (I ), tbl (I) 

Deroff is not a complete troff interpreter, so it can be confused by subtle constructs. Most er
rors result in too much rather than too little output. 

7th Edition 



OF OM) 

NAME 
df - disk free 

SYNOPSIS 
df [ filesystem ] ... 

DESCRIPTION 

OF ( 1M) 

DJ prints out the number of free blocks available on the .filesyslems. If no file system is 
specified, the free space on all of the normally mounted file systems is printed. 

FILES 
Default file systems vary with installation. 

SEE ALSO 
icheck(I) 

7th Edition 



DIFF (1 ) DIFF (I) 

NAME 
diff - differential file comparator 

SYNOPSIS 
diff [ -efbh ] filel file2 

DESCRIPTION 

FILES 

Difftells what lines must be changed in two files to bring them into agreement. If filel (filel) 
is '- " the standard input is used. If file I (filel) is a directory, then a file in that directory 
whose file-name is the same as the file-name of .filel (file]) is used. The normal output con
tains lines of these forms: 

nl a n3,n4 
nl,nl d n3 
nl,nl c n3,n4 

These lines resemble ed commands to convert filel into filel. The numbers after the letters 
pertain to .filel. In fact, by exchanging 'a' for 'd' and reading backward one may ascertain 
equally how to convert .filel into .filel. As in ed, identical pairs where nl - nlor n3 - n4 are 
abbreviated as a single number. 

Following each of these lines come all the lines that are affected in the first file flagged by '<'. 
then all the lines that are affected in the second file flagged by ~> '. 
The - b option causes trailing blanks (spaces and tabs) to be ignored and other strings of 
blanks to compare equal. 

The -e option produces a script of Q, C and d commands for the editor ed, which will recreate 
.filel from .filel. The -f option produces a similar script. not useful with ed. in the opposite 
order. In connection with -e, the following shell program may help maintain multiple versions 
of a file. Only an ancestral file (51) and a chain of version-to-version ed scripts (52,53 ... .) 
made by diffneed be on hand. A 'latest version' appears on the standard output. 

(shift~ cat 5·~ echo '1,5p') led - 51 

Except in rare circumstances, difffinds a smallest sufficient set of file differences. 

Option - h does a fast. half-hearted job. It works only when changed stretches are short and 
well separated, but does work on files of unlimited length. Options -e and -f are unavailable 
with -h. 

Itmp/d????? 
lusr/lib/diffh for -h 

SEE ALSO 
cmp(1), comm(I >. ed(1) 

DIAGNOSTICS 

BUGS 

Exit status is 0 for no differences. 1 for some. 2 for trouble. 

Editing scripts produced under the -eo or -f option are naive about creating lines consisting of 
a single'.'. 

7th Edition 



D1FF3 ( I ) DIFF3 ( 1 ) 

NAME 
diff3 - 3-way differential file comparison 

SYNOPSIS 
dUD [ -ex3 1 file I file2 file3 

DESCRIPTION 

FILES 

DiffJ compares three. versions of a file, and publishes disagreeing ranges of text flagged with 
these codes: 
_ .. =--
---:.-1 

=-=----2 

----3 

all three files differ 

.file I is different 

.file2 is different 

.file3is different 

The type of change suffered in converting a given range of a given file to some other is indicat
ed in one of these ways: 

f: nla Text is to be appended after line number nl in file fi where f- 1, 2, or 3. 

f: nl • n2 c Text is to be changed in the range line nl to line n2. If nl - n2. the range 
may be abbreviated to n I. 

The original contents of the range follows immediately after a c indication. When the contents 
of two files are identical, the contents of the lower-numbered file is suppressed. 

Under the -e option, diffJ publishes a script for the editor ed that will incorporate into file I all 
changes between .file2 and .file3. i.e. the changes that normally would be flagged - - - - and 
- - - -3. Option -x (-3) produces a script to incorporate only changes flagged - - -
( - - - - 3). The following command will apply the resulting script to 'file 1 '. 

(cat script~ echo 'l,$p') I ed - filel 

Itmp/d3????? 
lusr/lib/diff3 

SEE ALSO 

BUGS 

diff( 1) 

Text lines that consist of a single • .' will defeat -e. 
Files longer than 64K bytes won't work. 

7th Edition 



DU (1) DU (1) 

NAME 
du - summarize disk usage 

SYNOPSIS 
du [ - s ] [ - a ] [ name ... ] 

DESCRIPTION 

BUGS 

. Du gives the number of blocks contained in all files and (recursively) directories within each 
specified directory or file name. If name is missing, '.' is used. 

The optional argument -s causes only the grand total to be given. The optional argument -a 
causes an entry to be generated for each file. Absence of either causes an entry to be generated 
for each directory only. 

A file which has two links to it is only counted once. 

Non-directories given as arguments (not under -a option) are not listed. 
If there are too many distinct linked files, du counts the excess files multiply. 

7th Edition 





DUMP (1M) DUMP (1M) 

NAME 
dump - incremental file system dump 

SYNOPSIS 
dump [ key [ argument ... ] filesystem ] 

DESCRIPTION 

FILES 

Dump copies to magnetic tape all files changed after a certain'date in the jiJesystem. The key 
specifies the date and other options about the dump. Key consists of characters from the set 
0123456789fusd. 

f Place the dump on the next argument file instead of the tape. 

u If the dump completes successfully, write the date of the beginning of the dump on file 
'/etc/ddate'. This file records a separate date for each filesystem and each dump level. 

0-9 This number is the 'dump level'. All files modified since the last date stored in the file 
• letc/ddate' for the same filesystem at lesser levels will be dumped. If no date is deter
mined by the level, the beginning of time is assumed; thus the option 0 causes the entire 
filesystem to be dumped. 

s The size of the dump tape is specified in feet. The number of feet is taken from the next 
argument. When the specified size is reached, the dump will wait for reels to be changed. 
The default size is 2300 feet. 

d The density of the tape, expressed in BPI, is taken from the next argument. This is used 
in calculating the amount of tape used per write. The default is 1600. 

If no arguments are given, the key is assumed to be 9u and a default file system is dumped to 
the default tape. 

Now a short suggestion on how perform dumps. Start with a full level 0 dump 

dump Ou 

Next, periodic level 9 dumps should be made on an exponential progression of tapes. (Some
times called Tower of Hanoi - I 2 I 3 1 2 I 4 ... tape 1 used every other time, tape 2 used 
every fourth, tape 3 used every eighth, etc.) 

dump 9u 

When the level 9 incremental approaches a full tape (about 78000 blocks at 1600 BPI blocked 
20), a level I dump should be made. 

dump lu 

After this, the exponential series should progress as uninterrupted. These level 9 dumps are 
based on the level 1 dump which is based on the level 0 full dump. This progression of levels 
of dump can be carried as far as desired. 

default filesystem and tape vary with installation. 
letc/ddate: record dump dates of filesystem/level. 

SEE ALSO 
restor( I), dump(S), dumpdir( 1) 

DIAGNOST1CS 
If the dump requires more than one tape, it will ask you to change tapes. Reply with a new-
line when this has been done. 

BUGS 

7th Edition 



DUMP(IM) DUMP (1M) 

Sizes are based on 1600 BPI blocked tape. The raw magtape device has to be used to approach 
these densities. Read errors on the filesystem are ignored. Write errors on the magtape are 
usually fatal. delim $$ 

7th Edition 2/2217.1 2 



DUMPDIR (1M) 

NAME 
dumpdir - print the names of files on a dump tape 

SYNOPSIS 
dumpdir [ f filename ] 

DESCRIPTION 

DUMPDIR (1M) 

Dumpdir is used to read magtapes dumped with the dump command and list the names and 
inode numbers of all the files and directories on the tape. 

FILES 

The f option causes filename as the name of the tape instead of the default. 

default tape unit varies with installation 
rst* 

SEE ALSO 
dump (I ), restor(I) 

DIAGNOSTICS 

BUGS 

If the dump extends over more than one tape; it may ask you to change tapes. Reply with a . 
new-line when the next tape has been mounted. 

There is redundant information on the tape that could be used in case of tape reading problems. 
Unfortunately, dumpdir doesn't use it. 

7th Edition 



ECHO (I) 

NAME 
echo - echo arguments 

SYNOPSIS 
echo [ - n J [ arg J ..• 

DESCRIPTION 

ECHO (1) 

Echo writes its arguments separated by blanks and terminated by a newline on the standard out
put. If the flag -n is used, no newline is added to the output. 

Echo is useful for producing diagnostics in shell programs and for writing constant data on 
pipes. To send diagnostics to the standard error file, do 'echo ... 1 >&2'. 

7th Edition 



ED (1) ED (1 ) 

NAME 
ed - text editor 

SYNOPSIS 
ed [ - ] [ - x] [ name ] 

DESCRIPTION 
Ed is the standard text editor. 

If a name argument is given, ed simulates an e com(I1and (see below) on the named file; that is 
to say, the file is read into ed's buffer so that it can be edited. If - x is present, an x command 
is simulated first to handle an encrypted file. The optional - suppresses the printing of charac
ter counts bye, r, and w commands. 

Ed operates on a copy of any file it is editing; changes made in the copy have no effect on the 
file until a w (write) command is given. The copy of the text being edited resides in a tem
porary file called the buffer. 

Commands to ed have a simple and regular structure: zero or more addresses followed by a sin
gle character command, possibly followed by parameters to the command. These addresses 
specify one or more lines in the buffer. Missing addresses are supplied by default. 

In general, only one command may appear on a line. Certain commands allow the addition of 
text to the buffer. While ed is accepting text, it is said to be in input mode. In this mode, no 
commands are recognized; all input is merely collected. Input mode is left by typing a period 
, .' alone at the beginning of a line. 

Ed supports a limited form of regular expression notation. A regular expression specifies a set of 
strings of characters. A member of this set of strings is said to be matched by the regular 
expression. In the following specification for regular expressions the word 'character' means 
any character but newline. 

1. Any character except a special character matches itself. Special characters are the regu-
lar expression delimiter plus \ [. and sometimes ~. $. 

2. A . matches any character. 

3. A \ followed by any character except a digit or () m~tches that character. 

4. A nonempty string s bracketed [s] (or r s]) matches any character in (or not in) s. In 
s. \ has no special meaning, and] may only appear as the first letter. A substring a - b, 
with a and b in ascending ASCII order, stands for the inclusive range of ASCII charac
ters. 

S. A regular expression of form 1-4 followed by· matches a sequence of 0 or more 
matches of the regular expression. 

6. A regular expression, x, of form 1-8, bracketed \( x\) matches what x matches. 

7. A \ followed by a digit n matches a copy of the string that the bracketed regular expres
sion' beginning with the nth \ ( matched. 

8. A regular expression of form 1-8, x, followed by a regular expression of form 1-7, y 
matches a match for x followed by a match for y, with the x match being as long as pos
sible while still permitting a y match. 

9. A regular expression of form 1-8 preceded by A (or followed by $), is constrained to 
matches that begin at the left (or end at the right} end of a line. 

10. A regular expression of form 1-9 picks out the longest among the leftmost matches in a 
line. 

11. An empty regular expression stands for a copy of the last regular expression encoun
tered. 

7th Edition 



ED (1) ED (1) 

Regular expressions are used in addresses to specify lines and in one command (see s below) 
to specify a portion of a line which is to be replaced. If it is desired to use one of the regular 
expression metacharacters as an ordinary character, that character may be preceded by '\'. This 
also applies to the character bounding the regular expression (often"') and to '\' itself. 

To understand addressing in ed it is necessary to know that at any time there is a current line. 
Generally speaking, the current line is the last line affected by a command~ however, the exact 
effect on the current line is discussed under the description of the command. Addresses are 
constructed as follows. 

1. The character '.' addresses the current line. 

2. The character '$' addresses the last line of the buffer. 

3. A decimal number n addresses the n-th line of the buffer. 

4. "x addresses the line marked with the name x, which must be a lower-case letter. 
Lines are marked with the k command described below. 

5. A regular expression enclosed in slashes '/' addresses the line found by searching for
ward from the current line and stopping at the first line containing a string that matches 
the regular expression. If necessary the search wraps around to the beginning of the 
buffer. 

6. A regular expression enclosed in queries '?' addresses the line found by searching back
ward from the current line and stopping at the first line containing a string that matches 
the regular expression. If necessary the search wraps around to the end of the buffer. 

7. An address followed by a plus sign '+' or a minus sign '-' followed by a decimal 
number specifies that address plus Crespo minus) the indicated number of lines. The 
plus sign may be omitted. 

8. If an address begins with '+' or '-' the addition or subtraction is taken with respect to 
the current line; e.g. '-5' is understood to mean ',-5'. 

9. If an address ends with '+' or '-', then 1 is added Crespo subtracted). As a conse
quence of this rule and rule 8, the address' -' refers to the line before the current line. 
Moreover, trailing '+' and '-' characters have cumulative effect, so '--' refers to 
the current line less 2. 

10. To maintain compatibility with earlier versions of the editor. the character ,A, in 
addresses is equivalent to '-'. 

Commands may require zero, one, or two addresses. Commands which require no addresses 
regard the presence of an address as an error. Commands which accept one or tWo addresses 
assume default addresses when insufficient are given. If more addresses are given than such a 
command requires, the last one or two (depending on what is accepted) are- used. 

Addresses are separated from each other typically by a comma','. They may also be separated 
by a semicolon ';'. In this case the current line '.' is set to the previous address before the 
next address is interpreted. This feature can be used to determine the starting line for forward 
and backward searches ('I', '?'). The second address of any two-address sequence must 
correspond to a line following the line corresponding to the first address. 

In the following list of ed commands, the default addresses are shown in parentheses. The 
parentheses are not part of the address, but are used to show that the given addresses are the 
default. 

As mentioned, it is generally illegal for more than one command to appear on a line. However, 
most commands may be suffixed by 'p' or by 'I', in which case the current line is either printed 
or listed respectively in the way discussed below. 

7th Edition 2 



ED (1 ) ED (1) 

(.)a 
<text> 

The append command reads the given text and appends it after the addressed line. '.' is 
left on the last line input, if there were any, otherwise at the addressed line. Address '0' 
is legal for this command~ text is placed at the beginning of the buffer. 

(., .) c 
< text> 

The change command deletes the addressed lines, then accepts input text which replaces 
these lines. ' .' is left at the last line input~ if there were none, it is left at the line preced
ing the deleted lines. 

C, .)d 
The delete command deletes the addressed lines from the buffer. The line originally after 
the last line deleted becomes the current line; if the lines deleted were originally at the 
end, the new last line becomes the current line. 

e filename 
The edit command causes the entire contents of the buffer to be deleted, and then the 
named file to be read in. ..' is set to the last line of the buffer. The number of characters 
read is typed. 'filename' is remembered for possible use as a default file name in a subse
quent r or w command. If 'filename' is missing, the remembered name is used. 

E filename 
This command is the same ase. except that no diagnostic results when no w has been 
given since the last buffer alteration. 

f filename 
The filename command prints the currently remembered file name. If 'filename' is given, 
the currently remembered file name is changed to 'filename'. 

(1,$) g/regular expression/command list 

(.) i 

In the global command, the first step is to mark every line which matches the given regu
lar expression. Then for every such line, the given command list is executed with '.' ini
tially set to that line. A single command or the first of multiple commands appears on the 
same line with the global command. All lines of a multi-line list except the last line must 
be ended with "'. A, i, and c commands and associated input are permitted~ the '.' ter
minating input mode may be omitted if it would be on the last line of the command list. 
The commands g and v are not permitted in the command list 

<text> 

This command inserts the given text before the addressed line. '.' is left at the last line 
input, or, if there were none, at the line before the addressed line. This command differs 
from the a command only in the placement of the text. 

(',.+Dj 
This command joins the addressed lines into a single line; intermediate new lines simply 
disappear. • .' is left at the resulting line. 

( . ) kx 
The mark command marks the addressed line with name x. which must be a lower-case 

7th Edition 3 



ED (1) ED (1) 

letter. The address form "x' then addresses this line. 

(., .) I 
The list command prints the addressed lines in an unambiguous way: non~graphic charac
ters are printed in two-digit octal, and long lines are folded. The I command may be 
placed on the same line after any non-i/o command. 

(., .) mo 
The move command repositions the addressed lines after the line addressed by o. The 
last of the moved lines becomes the current line. 

(., .) p 
The print command prints the addressed lines. ' .' is left at the last line printed. The p 
command may be placed on the same line after any non-i/o command. 

(., .)P 
This command is a synonym for p. 

q The quit command causes ed to exit. No automatic write of a file is done. 

Q This command is the same as q, except that no diagnostic results when no w has been 
given since the last buffer alteration. 

($) r filename 
The read command reads in the given file after the addressed line. If no file name is 
given, the remembered file name, if any, is used (see e and jcommands). The file name 
is remembered if there was no remembered file name already. Address '0' is legal for, 
and causes the file to be read at the beginning of the buffer. If the read is successful, the 
number of characters read is typed. '.' is left at the last line read in from the file. 

( ., .) s/regular expression/replacement/ or, 
( ., .) s/regular expression/replacementlg 

The substitute command searches each addressed line for an occurrence of the specified 
regular expression. On each line in which a match is found, all matched strings are 
replaced by the replacement specified, if the global replacement indicator 'g' appears after 
the command. If the global indicator does not appear, only the first occurrence of the 
matched string is replaced. It is an error for the substitution to fail on all addressed lines. 
Any character other than space or new-line may be used instead of'/' to delimit the regu
lar expression and the replacement. '.' is left at the last line substituted. 

An ampersand '&' appearing in the replacement is replaced by the string matching the 
regular expression. The special meaning of '&' in this context may be suppressed by 
preceding it by '\'. The characters ,\n' where n is a digit, are replaced by the text 
matched by the n-th regular subexpression enclosed between '\(' and '\)'. When nested, 
parenthesized subexpressions are present, n is determined by counting occurrences of '\ (' 
starting from the left. 

Lines may be split by substituting new-line characters into them. The new-line in the 
replacement string must be escaped by preceding it by '\'. 

(',.)to 
This command acts just like the m command, except that a copy of the addressed lines is 
placed after address a (which may be 0). ',' is left on the last line of the copy. 

(., .)U 

The undo command restores the preceding contents of the current line, which must be 
the last line in which a substitution was made. 

(J, $) v/regular expression/command list 
This command is the same as the global command g except that the command list is exe
cuted g with'.' initially set to every line except those matching the regular expression. 

II 



ED (1) 

FILES 

ED (1 ) 

(1, $) w filename 
The write command writes the addressed lines onto the given file. If the file does not 
exist, it is created mode 666 (readable and writable by everyone). The file name is 
remembered if there was no remembered file name already. If no file name is given, the 
remembered file name, if any, is used (see e and f commands). '.' is unchanged. If the' 
command is successful, the number of characters written is printed. 

(1, $) W filename 
This command is the same as w, except that the addressed lines are appended to the file. 

x A key string is demanded from the standard input. Later r, e and w commands will 
encrypt and decrypt the text with this key by the algorithm of crypc(1). An explicitly 
empty key turns off encryption. 

($) -
The line number of the addressed line is typed. '.' is unchanged by this command. 

!<shell command> 
The remainder of the line after the '!' is sent to sh(1) to be interpreted as a command. 
'.' is unchanged. 

(. + 1) < newline> 
An address alone on a line causes the addressed line to be printed. A blank line alone is 
equi,valent to '. + 1 p'; it is useful for stepping through text. 

If an interrupt signal (ASCII DEL) is sent, ed prints a '?' and returns to its command level. 

Some size limitations: 512 characters per line, 256 characters per global command list, 64 char
acters per file name, and 128K characters in the temporary file. The limit on the number of 
lines depends on the amount of core: each line takes 1 word. 

When reading a file, ed discards ASCII NUL characters and all characters after the last newline. 
It refuses to read files containing non-ASCII characters. 

Itmp/e* 
ed.hup: work is saved here if terminal hangs up 

SEE ALSO 
B. W. Kernighan, A Tutorial Introduction to the ED Text EdilOr 
B. W. Kernighan, Advanced editing on UNIX 
sed (1 ), crypt (I) 

DIAGNOSTICS 

BUGS 

'?name' for inaccessible file; '?' for errors in commands; '?TMP' for temporary file overflow. 

To protect against throwing away valuable work, a q or e command is considered to be in error, 
unless a w has occurred since the last buffer change. A second q or e will be obeyed regardless. 

The I command mishandles DEL. 
A ! command cannot be subject to a g command. 
Because 0 is an illegal address for a w command, it is not possible to create an empty file with 
ed. 

7th Edition 5 



XSEND, XGET, ENROLL ( 1 ) XSEND, XGET, ENROLL (1) 

NAME 
xsend, xget, enroll - secret mail 

SYNOPSIS 
xsend person 
xget 
enroll 

DESCRIPTION 

FILES 

These commands implement a secure communication channel; it is like mai/(1), but no one can 
read the messages except the intended recipient.· The method embodies a public-key cryptosys
tern using knapsacks. 

To receive messages, use enroll; it asks you for a password that you must subsequently quote in 
order to receive secret mail. 

To receive secret mail, use xget. It asks for your password, then gives you the messages. 

To send secret mail, use xsend in the same manner as the ordinary mail command. (However, 
it will accept only one target). A message announcing the receipt of secret mail is also sent by 
ordinary mail. 

/usr/spool/secretmail/'" .key: keys /usr/spool!secretmaill'". [O-9J: messages 

SEE ALSO 

BUGS 

mail (1) 

It should be integrated with ordinary mail. The announcement of secret mail makes traffic 
analysis possible. 

7th Edition 1 



EQN (I) EQN ( I) 

NAME 
eqn. neqn. checkeq - typeset mathematics 

SYNOPSIS 
eqn [ -dxy ] [ -pn ] [ -sn 1 [ -fn ] [ file] ... 
checkeq [file ] ... 

DESCRIPTION 
Eqn is a troff( I) preprocessor for typesetting mathematics on a Graphic Systems photo
typesetter. neqn on terminals. Usage is almost always 

eqn file ... I troff 
neqn file ... I nroff 

If no files are specified, these programs reads from the standard input. A line beginning with 
• .EQ' marks the start of an equation; the end of an equation is marked by a line beginning with 
•. EN'. Neither of these lines is altered, so they may be defined in macro packages to get 
centering, numbering. etc. It is also possible to set two characters as 'delimiters'; subsequent 
text between delimiters is also treated as eqn input. Delimiters may be set to characters x and y 
with the command-line argument -dxy or (more commonly) with 'delim xy' between .EQ and 
.EN. The left and right delimiters may be identical. Delimiters are turned off by 'delim off. 
All text that is neither between delimiters nor between .EQ and .EN is passed through un
touched. 

The program checkeq reports missing or unbalanced delimiters and .EQ/.EN pairs. 

Tokens within eqn are' separated by spaces, tabs. newlines, braces, double quotes, tildes or 
circumflexes. Braces (} are used for grouping; generally speaking, anywhere a single character 
like x could appear, a complicated construction enclosed in braces may be used instead. Tilde
represents a full space in the output, circumflex A half as much. 

Subscripts and superscripts are produced with the keywords sub and sup. Thus x sub i makes x;, 
a sub i sup 2 produces a/, and e sup (x sup 2 + y sup 2} gives ex2+y2. 

Fractions are made with over: a over b yields :. 

sqrt makes square roots: lover SIIrt (ax sup 2 +bx+c\ results in --:=""""",.;,1 __ _ 
.jax2+bx+c 

n 
The keywords front and to introduce lower and upper limits on arbitrary things: lim :Ex; is 

n-o 
made with lim from (n-> inf) sumfrom 0 to n x sub i. 

Left and right brackets, braces, etc., of the rilht hei~ht are made with left and right: left { x sup 

2 + y sup 2 ... , alpha ,ight} " -"1 produces x'+';;-]- I. The right clause ;s opt;onal. Legal 

characters after left and right are braces, brackets, bars, c and f for ceiling and floor, and "" for 
nothing at all (useful for a right-side-only bracket). 

Vertical piles of things are made with pile, lpile, cpile, and ·rpile: pile (a above b above c\ pro
.a 

duces b. There can be an arbitrary number of elements in a pile. Ipile left-justifies, pile and 
c 

cpile center, with different vertical spacing, and rpile right justifies. 

Matrices are made with matrix: matrix { Icol { x sub i above y sub 2 } ceol { I above 2 I I pro
Xi 1 

duces 2. In addition, there is reol for a right-justified column. 
Y2 

7th Edition 



EQN (1) EQN (I) 

Diacritical marks are made with dot, dotdot, hat, tilde, bar, vee, dyad, and under: x dot - j(tJ 
bar is x-/(1), y dotdot bar - -- n under is y - !!, and x vec --- y dyad is x - y. 
Sizes and font can be changed with size n or size ± n, roman, italie, bold, and font n. Size and 
fonts can be changed globally in a document by gsize nand gfont n, or by the command-line 
arguments -sn and -fn. 

Normally subscripts and superscripts are reduced by 3 point sizes from the previous size; this 
may be changed by the command-line argument -pn. 

Successive display arguments can be lined up. Place mark before the desired lineup point in 
the first equation; place lineup at the place that is to line up vertically in subsequent equations. . . 
Shorthands may be defined or existing keywords redefined with define,' define thing % replace
ment % defines a new token called thing which will be replaced by replacement whenever it ap
pears thereafter. The % may be any character that does not occur in replacemenL 

Keywords like sum (L) int (f) in/ (00) and shorthands like > - (~) - > (-), and ! - (¢) 
are recognized. Greek letters are spelled out in the desired case, as in alpha or GAMMA. 
Mathematical words like sin, cos, log are made Roman automatically. Troff( 1) four-character 
escapes like \(bs (@) can be used anywhere. Strings enclosed in double quotes " ... " are passed 
through untouched; this permits keywords to be entered as text, and can be used to communi
cate with troffwhen all else fails. 

SEE ALSO 

BUGS 

trotrO), tbl( 1), ms(7), eqnchar(7) 
B. W. Kernighan and L. L. Cherry, Typesetting Mathematics--User's GUide 
J. F. Ossanna, NROFFITROFF User's Manual 

To embolden digits. parens, etc., it is necessary to quote them. as in 'bold "12.3'''. 

7th Edition 2 



EXPR (1) EXPR (1 ) 

NAME 
expr - evaluate arguments as an expression 

SYNOPSIS 
expr arg ... 

DESCRIPTION 
The arguments are taken as an expression. After evaluation, the result is writte:: on the stan
dard output. Each token of the expression is a separate argument. 

The operators and keywords are listed below. The list is in order of increasing precedence, with 
equal precedence operators grouped. 

exprl expr 
yields the first expr if it is neither null nor '0', otherwise yields the second expr. 

expr & expr 
yields the first expr if neither expr is null or '0', otherwise yields '0'. 

expr relop expr 
where relop is one of < < - - ! - > - >, yields '1' if the indicated comparison is 
true, '0' if false. The comparison is numeric if both expr are integers, otherwise lexico
graphic. 

expr + expr 
expr· expr 
addition or subtraction of the arguments. 

expr * expr 
expr / expr 
expr % expr 
multiplication, division, or remainder of the arguments. 

expr : expr 

( expr) 

The matching operator compares the string first argument with the regular expression 
second argument: regular expression syntax is the same as that of ed( 1). The \ ( .. , \) 
pattern symbols can be used to select a portion of the first argument. Otherwise, the 
matching operator yields the number of characters matched ('0' on failure>. 

parentheses for grouping. 

Examples: 

To add 1 to the Shell variable a: 

a- 'expr Sa + I' 
To find the filename part (least significant part) of the pathname stored in variable a, which 
mayor may not conlain '/': 

expr Sa : '. */\ (. *\)' 'r Sa 

Note the Quoted Shell metacharacters. 

SEE ALSO 
ed (I ), sh (I ), test (I ) 

DIAGNOSTICS 
Expr returns the following exit codes: 

o if the expression is neither null nor '0', 
1 if the expression is null or '0', 
2 for invalid expressions. 

7th Edition 





F77 ( 1 ) F77 (I ) 

NAME 
f77 - Fortran 77 compiler 

SYNOPSIS 
n7 [ option ] ... file ... 

DESCRIPTION 

FILES 

F77 is the UNIX Fortran 77 compiler. It accepts several types of arguments: 

Arguments whose names end with '.fare taken to be Fortran 77 source programs; they are 
compiled, and each object program is left on the file in the current directory whose name is that 
of the source with '.0' substituted for'.f. 

Arguments whose names end with '.r' or '.e' are taken to be Ratfor or EFL source programs, 
respectively; these are first transformed by the appropriate preprocessor, then compiled by f77. 

In the same way, arguments whose names end with '.c' or '.s' are taken to be C or assembly 
source programs and are compiled or assembled, producing a '.0' file. 

The following options have the same meaning as in cd 1). See Id( I) for load-time options. 

-c Suppress loading and produce '.0' files for each source file. 

- p Prepare object files for profiling, see prof( 1) . 

-0 Invoke an object-code optimizer. 

-S Compile the named programs, and leave the assembler-language output on correspond-
ing files suffixed '.s'. (No' .0' is created.). 

-f . Use a floating point interpreter (for PDP}} 's that lack 11 nO-style floating point). 

-0 output 
Name the final output file output instead of 'a.out'. 

The following options are peculiar to .177. 
-onetrip 

Compile DO loops that are performed at least once if reached. (Fortran 77 DO loops 
are not performed at all if the upper limit is smaller than the lower limit.) 

-u Make the defaull type of a variable 'undefined' rather than using the default Fortran 
rules. 

-C Compile code to check that subscripts are within declared array bounds. 

-w Suppress all warning messages. If the option is '-w66', only Fortran 66 compatibility 
warnings are suppressed. 

- F Apply EFL and Ratfor preprocessor to relevant files. put the result in the file with the 
suffix changed to '. r, but do not compile. 

- m Apply the M4 preprocessor to each' .r' or ·.e' file before transforming it with the Ratfor 
or EFL preprocessor. 

-Ex Use the string xas an EFL option in processing '.e' files. 

-Rx Use the string xas a Ratfor option in processing '.r' files. 

Other arguments are taken to be either loader option arguments, or F77-compatible object pro
grams. typically produced by an earlier run. or perhaps libraries of F77-compatible routines. 
These programs. together with the results of any compilations specified, are loaded (in the ord
er given) to produce an executable program with name 'a.out'. 

7th Edition 



F77 ( 1 ) 

file. [fresc1 input file 
file.o object file 
a.out loaded output 
lusr/libln7passl compiler 
llib/cl pass 2 
llib/c2 optional optimizer 
lusr/lib/libF77.a intrinsic function library 
lusr/Jib/libl77.a Fortran 110 library 
lJib/Jibc.a C library, see section 3 

F77 ( I ) 

SEE ALSO 
S. I. Feldman, P. J. Weinberger, A Portable Fortran 77 Compiler 
prof 0 ), cd I), Id(I) 

DIAGNOSTICS 

BUGS 

The diagnostics produced by j77 itself are intended to be self-explanatory. Occasional messages 
may be produced by the loader. 

The Fortran 66 subset of the language has been exercised extensively; the newer features have 
not. 

7th Edition 2 



FACTOR (1) FACTOR (1) 

NAME 
factor, primes - factor a number, generate large primes 

SYNOPSIS 
factor [ number] 

primes 

DESCRIPTION 
When faclor is invoked without an argument, it waits for a number to be typed in. If you type 
in a positive number less than 256 (about 7.2 xl 016 ) it will factor the number and print its prime 
factors; each one is printed the proper number of times. Then it waits for another number. It 
exits if it encounters a zero or any non-numeric character. 

If faclor is invoked with an argument, it factors the number as above and then exits. 

Maximum time to factor is proportional to ,In and occurs when n is prime or the square of a 
prime. It takes 1 minute to factor a prime near 1014 on a PDPll. 

When primes is invoked, it waits for a number to be typed in. If you type in a positive number 
less than 256 it will print all primes greater than or equal to this number. 

DIAGNOSTICS 
'Ouch.' for input out of range or for garbage input. 

7th Edition 



FILE (l) 

NAME 
file - determine file type 

SYNOPSIS 
file file ... 

DESCRIPTION 

FILE ( 1 ) 

File performs a series of tests on each argument in an attempt to classify it. If an argument ap
pears to be ascii, file examines the first 512 bytes and tries to guess its language. 

BUGS 
It often makes mistakes. In particular it often suggests that command files are C programs. 

7th Edition 



FIND (1 ) FIND (1) 

NAME 
find - find files 

SYNOPSIS 
find pathname-list expression 

DESCRIPTION 
Find recursively descends the directory hierarchy for each pathname in the pathname-lisr (i.e., 
one or more path names) seeking files that match a boolean expression written in the primaries 
given below. In the descriptions, the argument n is used as a decimal integer where +n means 
more than n, - n means less than nand n means exactly n. 

- name filename 
True if the filename argument matches the current file name. Normal Shell argu
ment syntax may be used if escaped (watch out for '[', '1' and '.'). 

-perm onum 
True if the file permission flags exactly match the octal number onum (see 
chmodO». If onum is prefixed by a minus sign. more flag bits (017777, see stat(2» 
become significant and the flags are compared: (fIags&.onumJ - -onum. 

-type c True if the type of the file is c, where cis b, c, d or f for block special file, character 
special file, directory or plain file. 

-links n True if the file has n links. 

-user uname 
True if the file belongs to the user uname (togin name or numeric user 10). 

-group gname 
True if the file belongs to group gname (group name or numeric group 10). 

- size n True if the file is n blocks long (512 bytes per block). 

-inum n True if the file has inode number n. 

-atime n True if the file has been accessed in n days. 

-mtime n 
True if the file has been modified in n days. 

-exec command 
True if the executed command returns a zero value as exit status. The end of the 
command must be punctuated by an escaped semicolon. A command argument '{l' 
is replaced by the current pathname. 

-ok command 

-print 

Like -exec except that the generated .command is written on the standard output, 
then the standard input is read and the command executed only upon response y. 

Always true; causes the current pathname to be printed. 

-newer file 
True if the current file has been modified more recently than the argument file. 

The primaries may be combined using the following operators (in order of decreasing pre
cedence): 

1) A parenthesized group of primaries and operators (parentheses are special to the Shell and 
must be escaped). 

2) The negation of a primary ('!' is the unary not operator). 

3) Concatenation of primaries (the and operation is implied by the juxtaposition of two pri
maries). 

7th Edition 



FIND ( I ) 

4) Alternation of primaries (' -0' is the or operator). 

EXAMPLE 

FILES 

To remove all files named 'a. out' or '*.0' that have not been accessed for a week: 

find / \( -name a.out -0 -name '*.0' \) -atime +7 -exec rm (J \; 

/ etcl passwd 
/etc/group 

SEE ALSO 
sh(I), test(I), filsys(S) 

BUGS 
The syntax is painful. 

7th Edition 

FIND ( 1 ) 

2 



GRAPH (lG) GRAPH (IG) 

NAME 
graph - draw a graph 

SYNOPSIS 
graph [ option ] ... 

DESCRIPTION 
Graph with no options takes pairs of numbers from the standard input as abscissas and ordi
nates of a graph. Successive points are connected by straight lines. The graph is encoded on 
the standard output for display by the plotO) filters. 

If the coordinates of a point are followed by a nonnumeric string, that string is printed as a la
bel beginning on the point. Labels may be surrounded with quotes ....... , in which case they may 
be empty or contain blanks and numbers; labels never contain newlines. 

The following options are recognized, each as a separate argument. 

-a Supply abscissas automatically (they are missing from the input); spacing is given by 
the next argument (default 1). A second optional argument is the starting point for au
tomatic abscissas (default 0 or lower limit given by -x). 

- b Break (disconnect) the graph after each label in the input. 

-c Character string given by next argument is default label for each point. 

-g Next argument is grid style, 0 no grid, 1 frame with ticks, 2 full grid (default). 

-I Next argument is label for graph. 

- m Next argument is mode (style) of connecting lines: 0 disconnected, 1 connected (de-
fault). Some devices give distinguishable line styles for other small integers. 

-s Save screen, don't erase before plotting. 

-x [ I ] 

-y [ I ] 

If 1 is present, x axis is logarithmic. Next 1 (or 2) arguments are lower (and upper) x 
limits. Third argument, if present, is grid spacing on x axis. Normally these quantities 
are determined automatically. 

Similarly for y. 

- h Next argument is fraction of space for height. 

-w Similarly for width. 

-r Next argument is fraction of space to move right before ploning. 

-u Similarly to move up before plotting. 

-t Transpose horizontal and vertical axes. (Option -x now applil!s to the vertical axi~.) 

A legend indicating grid range is produced with a grid unless the -s option is present. 

If a specified lower limit exceeds the upper limit, the axis is reversed. 

SEE ALSO 

BUGS 

spline (I), plot (1 ) 

Graph stores all points internally and drops those for which there isn't room. 
Segments that run out of bounds are dropped, not windowed. 
Logarithmic axes may not be reversed. 

7th Edition 





GREP (1) GREP (1 ) 

NAME 
grep, egrep, fgrep - search a file for a pattern 

SYNOPSIS 
grep [ option] ... expression [ file ] ... 

earep [ option ] ... [expression] [ file ] ... 

(grep [ option ] ... [strings) [ file ] 

DESCRIPTION 
Commands of the grep family search the input files (standard input default) for lines matching a 
pattern. Normally, each line found is copied to the standard output~ unless the - h flag is used, 
the file name is shown if there is more than one input file. 

Grep patterns are limited regular expressions in the style of ed(1) ~ it uses a compact nondeter
ministic algorithm. Egrep patterns are full regular expressions~ it uses a fast deterministic algo
rithm that sometimes needs exponential space. Fgrep patterns are fixed strings; it is fast and 
compact. 

The following options are recognized. 

-v All lines but those matching are printed. 

-c Only a count of matching lines is printed. 

-I The names of files with matching lines are listed (once) separated by newlines. 

- n Each line is preceded by its line number in the file. 

- b Each line is preceded by the block number on which it was found. This is sometimes 
useful in locating disk block numbers by context. 

- s No output is produced, only status. 

- h Do not print filename headers with output lines. 

- y Lower case letters in the pattern will also match upper case letters in the input (grep 
only). 

- e expression 
Same as a simple expreSSion argument, but useful when the expression begins with a -. 

-( file The regular expression (egrep) or string list (fgrep) is taken from the file. 

- x (Exact> only lines matched in their entirety are printed (fgrep only). 

Care should be taken when using the characters S • [ • I ? • " ( ) and \ in the expression as they 
are also meaningful to the Shell. It is safest to enclose the entire expression argument in single 
quotes 
Fgrep searches for lines that contain one of the (newline-separated) strings. 

Egrep accepts extended regular expressions. In the following description 'character' excludes 
newline: 

7th Edition 

A \ followed by a single character matches that character. 

The character· ($) matches the beginning (end) of a line. 

A . matches any character. 
A single character not otherwise endowed with special meaning match~s that character. 

A string enclosed in brackets [] matches any single character from the string. Ranges 
of ASCII character codes may be abbreviated as in 'a-zO-9'. A) may occur only as 
the first character of the string. A literal - must be placed where it can't be mistaken 
as a range indicator. 



GREP (1) GREP (I) 

A regular expression followed by • (+, ?) matches a sequence of 0 or more (1 or 
more, 0 or 1) matches of the regular expression. 

Two regular expressions concatenated match a match of the first followed by a match of 
the second. 

Two regular expressions separated by lor newline match either a match for the first or a 
match for the second. 

A regular expression enclosed in parentheses matches a match for the regular expres
sion. 

The order of precedence of operators at the same parenthesis level is [) then'" +? then con
catenation then I and newline. 

SEE ALSO 
ed (I ), sed (1), sh (} ) 

DIAGNOSTICS 
Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or inaccessible files. 

BUGS 
Ideally there should be only one grep. but we don' t know a single algorithm that spans a wide 
enough range of space-time tradeoffs. 

Lines are limited to 256 characters; longer lines are truncated. 

7th Edition 2 



ICHECK ( 1 M) ICHECK ( 1M) 

NAME 
icheck - file system storage consistency check 

SYNOPSIS 
icheck L -s 1 [-b numbers 1 [ filesystem 1 

DESCRIPTION 

FILES 

Icheck examines a file system, builds a bit map of used blocks. and compares this bit map 
against the free list maintained on the file system. If the file system is not specified, a set of 
default file systems is checked. The normal output of icheck includes a report of 

The total number of files and the numbers of regular. directory. block special and char
acter special files. 

The total number of blocks in use and the numbers of single-, double-, and triple
indirect blocks and directory blocks. 

The number of free blocks. 

The number of blocks missing; i.e. not in any file nor in the free list. 

The -s option causes icheck to ignore the actual free list and reconstruct a new one by rewrit
ing the super-block of the file system. The file system should be dismounted while this is 
done; if this is not possible (for example if the root file system has to be salvaged) care should 
be taken that the system is quiescent and that it is rebooted immediately afterwards so that the 
old, bad in-core copy of the super·block will not continue to be used. Notice also that the 
words in the super-block which indicate the size of the free list and of the i-list are believed. If 
the super-block has been curdled these words will have to be patched. The -s option causes 
the normal output reports to be suppressed. 

Following the - b option is a list of block numbers; whenever any of the named blocks turns 
up in a file, a diagnostic is produced. 

Icheck is faster if the raw version of the special file is used, since it reads the i-list many blocks 
at a time. 

Default file systems vary with installation. 

SEE ALSO 
dcheck(1), ncheck(l), filsys(S), clri(I) 

DIAGNOSTICS 

BUGS 

For duplicate blocks and bad blocks (which lie outside the file system) icheck announces the 
difficulty, the i-number, and the kind of block involved. If a read error is encountered, the 
block number of the bad block is printed and icheck considers it to contain O. 'Bad freeblock' 
means that a block number outside the available space was encountered in the free list. 'n dups 
in free' means that n blocks were found in the free list which duplicate blocks either in some 
file or in the earlier part of the free list. 

Since icheck is inherently two-pass in nature, extraneous diagnostics may be produced if applied 
to active file systems. 
It believes even preposterous super-blocks and consequently can get core images. 

7th Edition 



10STAT OM) IOSTAT(1M) 

NAME 
iostat - report 110 statistics 

SYNOPSIS 
iostat [ option] ... [interval [ count] ] 

DESCRIPTION 

FILES 

Iostat delves into the system and reports certain statistics kept about input-output activity. In
formation is kept about up to three different disks (RF, RK, RP) and about typewriters. For 
each disk, 10 completions and number of words transferred are counted; for typewriters collec
tively, the number of input and output characters are counted. Also, each sixtieth of a second, 
the state of each disk is examined and a tally is made if the disk is active. The tally goes into 
one of four categories, depending on whether the system is executing in user mode, in 'nice' 
(background) user mode, in system mode, or idle. From all these numbers and from the 
known transfer rates of the devices it is possible to determine information such as the degree of 
10 overlap and average seek times for each device. 

The optional interval argument causes iostat to report once each interval seconds. The first re
port is for all time since a reboot and each subsequent report is for the last interval only. 

The optional count argument restricts the number of reports. 

With no option argument iostat reports for each disk the number of transfers per minute, the 
milliseconds per average seek, and the milliseconds per data transfer exclusive of seek time. It 
also gives the percentage of time the system has spend in each of the four categories mentioned 
above. 

The following options are available: 

-t Report the number of characters of terminal 10 per second as well. 

- i Report the percentage of time spend in each of the four categories mentioned above, 
the percentage of time each disk was active (seeking or transferring), the percentage of 
time any disk was active, and the percentage of time spent in '10 wait:' idle, but with a 
disk active. 

- s Report the raw timing information: 32 numbers indicating the percentage of time spent 
in each of the possible configurations of 4 system states and 8 10 states (3 disks each 
active or not). 

- b Report on the usage of 10 buffers. 

Idev/mem, lunix 

7th Edition 



JOIN (1) JOIN ( 1 ) 

NAME 
join - relational database operator 

SYNOPSIS 
join [ options] file 1 file2 

DESCRIPTION 
Join forms, on the standard output, a join of the two relations specified by the lines of .file I and 
file). If file/ is '-', the standard input is used. 

File/ and file2 must be sorted in increasing ASCII collating sequence on the fields on which 
they are to be joined, normally the first in each line. 

There is one line in the output for each pair of lines in file/ and file2 that have identical join 
fields. The output line normally consists of the common field, then the rest of the line from 
file/, then the- rest of the line from file2. 

Fields are normally separated by blank, tab or newline. In this case, multiple separators count 
as one, and leading separators are discarded. 

These options are recognized: 

-an In addition to the normal output, produce a line for each unpairable line in file n. 
where n is I or 2. 

-e s Replace empty output fields by string s. 
- j n m Join on the mth field of file n. If n is missing, use the mth field in each file. 

-0 list Each output line comprises the fields specifed in list, each element of which has the 
form n. m, where n is a file number and m is a field number. 

-tc Use character c as a separator (tab character). Every appearance of c in a line is 
significant. 

SEE ALSO 

BUGS 

sortO), commO), awk(l) 

With default field separation, the collating sequence is that of sort - b; with - t, the sequence is 
that of a plain sort. 

The conventions of jOin. sort. ('omm. lI-niq. look and awk(1) are wildly incongruous. 

7th Edition 



KILL (1 ) KILL (1) 

NAME 
kill - terminate a process with extreme prejudice 

SYNOPSIS 
kill [ -signo } processid ... 

DESCRIPTION 
Kill sends signal IS (terminate) to the specified processes. If a signal number preceded by '-' 
is given as first argument, that signal is sent instead of terminate (see signa/(2». This will kill 
processes that do not catch the signal; in particular 'kill - 9 ... ' is a sure kill. 

By convention, if process number 0 is specified, all members in the process group (Le. 
processes ·resulting from the current login) are signaled. 

The killed processes must belong to the current user unless he is the super-user. To shut the 
system down and bring it up single user the super-user may use 'kill -1 1 '; see init(8). 

The process number of an asynchronous process started with '&' is reported by the shell. Pro
cess numbers can also be found by using ps(I). 

SEE ALSO 
ps (1), kill (2), signaJ(2) 

7th Edition 1 



LD (1 ) UNIX Programmer's Manual LD ( 1 ) 

NAME 
Id - loader 

SYNOPSIS 
Id [ option ] file ... 

DESCRIPTION 
Ld combines several object programs into one, resolves external references, and searches 
libraries. In the simplest case several object files are given, and Id combines them. producing an 
object module which can be either executed or become the input for a further Id run. (In the 
latter case, the -r option must be given to preserve the relocation bits.) The output of Id is left 
on a.out. This file is made executable only if no errors occurred during the load. 

The argument routines are concatenated in the order specified. The entry point of the output is 
the beginning of the first rontine. 

If any argument is· a library. it is searched exactly once at the point it is encountered in the 
argument list. Only those routines defining an unresolved external reference are loaded. If a 
routine from a library references another routine in the library. and the library has not been 
processed by ranJib( 1), the referenced routine must appear after the referencing routine in the 
library. Thus the order of programs within libraries may be important. If the first member of a 
library is named '_.SYMDEF'. then it is understood to be a dictionary for the library such as 
produced by ranlib; the dictionary is searched iteratively to satisfy as many references as possi· 
ble. 

The symbols '_etext', '_eclata' and '_end' ('etext'. 'edata' and 'end' in C) are reserved, and if 
referred to, are set 10 the first location above the program, the first location above initialized 
data, and the first location above all data respectively. It is erroneous to define these symbols. 

Ld understands several options. Except for -I, they should appear before the file names. 

-5 'Strip' the output, that is, remove the symbol table and relocation bilS to save space 
(but impair the usefulness of the debugged. This information can also be removed by 
strip(l) . 

-u Take the foliowing argument as a symbol and enter it as undefined in the symbol table. 
This is useful for loading wholly from a library, since initially the symbol table is empty 
and an unresolved reference is needed to force the loading of the first routine. 

-Ix This option is an abbreviation for the library name '/lib/libx.a', where x is a string. If 
that does not exist, iii tries '/usr/lib/libx.a'. A library is searched when its name is 
encountered, so the placement of a -I is significant. 

- x Do not preserve local (non-.glob\) symbols in the output symbol table: only enter 
external symbols. This option saves some space in the output file. 

- X Save local symbols except for those whose names begin with 'L·. This option is used 
by ceO) to discard internally generated labels while retaining symbols local to routines. 

-r Generate relocation bits in the output file so that it can be the subject of another Id run. 
This flag also prevents final definitions from being given to common symbols, and 
suppresses the 'undefined symbol' diagnostics. 

-d Force definition of common storage even if the -r flag is present. 

-0 Arrange that when the output file is executed, the text portion will be read-only and 
shared among all users executing the file. This involves moving the data areas up to 
the first possible 4K word boundary following the end of the text. 

- i When the output file is executed, the program text and data areas will live in separate 
address spaces. The only difference between this option and - n is that here the dala 
starts at location O. 

".1.- "'''''''-- revised 5179 



LD (1) 

FILES 

UNIX Programmer's Manual LD ( 1 ) 

-0 The name argument after -0 is used as the name of the Id output file, instead of I. OUt. 

-e The following argument is taken to be the name of the entry point of the loaded pro-
gram; location 0 is the default. 

-0 This is an overlay file, only the text segment will be replaced by exed2). Shared data 
must have the same layout as in the program overlaid. 

- D The next argument is a decimal number that sets the size of the data segment. 

/Iib/lib-.a libraries 
/usr/lib/lib-.a more libraries 
a.out output file 

SEE ALSO 
as(l), ar(I), cd 1), ranlib(t) 

BUGS 

7th Edition revised 5179 2 



LEARN (1) LEARN (1) 

NAME 
learn - computer aided instruction about UNIX 

SYNOPSIS 
learn [ -directory] [subject [lesson [speed 1 ] 1 

DESCRIPTION 

FILES 

BUGS 

Learn ~ives CAl courses and practice in the use of UNIX. To get started simply type 'learn'. 
The program will ask questions to find out what you want to do. The questions may be 
bypassed by naming a subject, and the last lesson number that learn told you in the previous ses
sion. You may also include a speed number that was given with the lesson number. (but 
without the parentheses that learn places around the speed number). If lesson is '-', learn 
prompts for each lesson; this is useful for debugging. 

The subjects presently handled are 

editor 
eqn 
files 
macros 
morefiles 
C 

The special command 'bye' terminates a learn session. 

The - directory option allows one to exercise a script in a nonstandard place. 

/usr/learn and all dependent directories and files 

The main strength of fearn. that it asks the student to use the real UNIX, also makes possible 
baffling mistakes. It is helpful, especially for nonprogrammers, to have a UNIX initiate near at 
hand during the first sessions. 

Occasionally lessons are incorrect, sometimes because the local version of a command operates 
in a non-standard way. Such lessons may be skipped, but it takes some sophistication to recog
nize the situation. 

7th Edition 



LEX (I) LEX (I) 

NAME 
lex - generator of lexical analysis programs 

SYNOPSIS 
lex [ - tvfo 1 [ file 1 ... 

DESCRIPTION 
Lex generates programs to be used in simple lexical anaiyis of text. The input files (standard 
input default) contain regular expressions to be searched for, and actions written in C to be ex
ecuted when expressions are found. 

A C source program, 'Iex.yy.c' is generated, to be compiled thus: 

cc Jex.yy.c -II 

This program, when run, copies unrecognized portions of the input to the output, and executes 
the associated C action for each regular expression that is recognized. 

The following lex program converts upper case to lower, removes blanks at the end of lines, 
and replaces multiple blanks by single blanks. 

%% 
[A - Z] pUlchar(yytext [0] + 'a' -' A'); 
[ ] +$ 
[ ] + putchar(' '); 

The options have the following meanings. 

-t Place the result on the standard output instead of in file '!ex.yy.c'. 

-v Print a one-line summary of statistics of the generated analyzer. 

-0 Opposite of -v; -0 is default. 

-f 'Faster' compilation: don't bother to pack the resulting tables; limited to small pro-

SEE ALSO 
yacc(1 ) 

grams. 

M. E. Lesk and E. Schmidt, LEX - Lexical Analyzer Generator 

7th Edition 



LINT ( 1 ) LINT ( I ) 

NAME 
lint - a C program verifier 

SYNOPSIS 
lint [ - abchnpuyx ] file ... 

DESCRIPTION 
Lint attempts to detect features of the C program fiies which are likely to be bugs, or non
portable, or wasteful. It also checks the type usage of the program more strictly than the com
pilers. Among the things which are currently found are unreachable statements, loops not en
tered at the top, automatic variables declared and not used, and logical expressions whose value 
is constant. Moreover, the usage of functions is checked to find functions which return values 
in some places and not in others, functions called with varying numbers of arguments, and 
functions whose values are not used. 

By default, it is assumed that all the fiies are to be loaded together; they are checked for mutual 
compatibility. Function definitions for certain libraries are available to lint, these libraries are 
referred to by a conventional name, such as '-1m', in the style of [dO), 

Any number of the options in the following list may be used. The - D, - U, and -I OPdons of 
cd 1) are also recognized as separate arguments. 

p Attempt to check portability to the IBM and GCOS dialects of C. 

h Apply a number of heuristic tests to attempt to intuit bugs, improve style, and reduce 
waste. 

b Report break statements that cannot be reached. (This is not the default because, un-
fortunately, most lex and many yacc outputs produce dozens of such comments,) 

y Suppress complaints about unused arguments in functions. 

x Report variables referred to by extern declarations, but never used. 

a Report assignments of long values to int variables. 

e Complain about casts which have questionable portability. 

u Do not complain about functions and variables used and not defined, or defined and 
not used (this is suitable for running lint on a subset of files out of a larger program). 

n Do not check compatibility against the standard library. 

Exit(2) and other functions which do not return are not understood; this causes various lies. 

Certain conventional comments in the C source will change the behavior of lint: 

I*NOTREACHEO*I 
at appropriate points stops comments about unreachable code. 

I-V ARARGS n* I 
suppresses the usual checking for variable numbers of arguments in the following func
tion declaration. The data types of the first n arguments are checked~ a missing n is 
taken to be O. 

1* NOSTRICT* I 
shuts off strict type checking in the next expression. 

1* ARGSUSEO*I 
turns on the -y option for the next function. 

I*LINTLIBRAR y* I 
at the beginning of a file shuts off complaints about unused functions in this file. 

7th Edition 



LINT (I) 

FILES 
lusr/lib/Jint[I2] programs 
lusr/Jib/llib-lc declarations for standard functions 
lusr/lib/llib-port declarations for portable functions 

SEE ALSO 
ccO) 
S. C. Johnson, Lint, a C Program Checker 

7th Edition 

LINT (1) 

2 



LN (1) LN ( 1 ) 

NAME 
In - make a link 

SYNOPSIS 
In name 1 [name2 ] 

DESCRIPTION 
A link is a directory entry referring to a file; the same file (together with its size, all its protec
tion information, etc.) may have several links to it. There is no way to distinguish a link to a 
file from its original directory entry; any changes in the file are effective; independently of the 
name by which the file is known. 

Ln creates a link to an existing file name 1. If name2 is given, the link has that name; otherwise 
it is placed in the current directory and its name is the last component of name 1. 

It is forbidden to link to a directory or to link across file systems. 

SEE ALSO 
rm(l) 

7th Edition 1. 



LOGIN (1) LOGIN (1) 

NAME 
login - sign on 

SYNOPSIS 
login [ username J 

DESCRIPTION 

FILES 

The login command is used when a user initially signs ()Il,or it may ~e Used at any time to 
change from one user to another. The latter case is theont surnrnarized above and described 
here. See 'How to Get Started' for how to dial up initially. 

If login is invoked without an argument, it asks for a user name, and, if appropriate, a pass
word. Echoing is turned off (if possible) during the typing of the password, so it will not 
appear on the written record of the session. 

After a successful login, accounting files are updated and the user is informed of the existence 
of .mail and message-of-the-day files. Login initializes the user and group IDs and the working 
directory, then executes a command interpreter (usually shU» according to specifications 
found in a password file. Argument 0 of the command interpreter is '-sh. 

Login is recognized by sh (1) and executed directly (without forkillg). 

letc/utmp 
lusr/adm/wtmp 
lusr/mailr 
letc/motd 
I etcl passwd 

accounting 
accounting 
mail 
rnessage-of-the-day 
password file 

SEE ALSO 
init(8), newgrp(l), getty(8), mailO), passwd(i), passwd(S) 

DIAGNOSTICS 
'Login incorrect,' if the name or the password is bad. 
'No Shell', 'cannot open password file', 'no directory': consult a programming counselor. 

7th Edition 1 



LUUK. { 1 ; 

NAME 
look - find lines in a sorted list 

SYNOPSIS 
look [ -df] string [ file] 

DESCRIPTION 

LUUK. { 1 ) 

Look consults a sorted file and prints all lines that begin with string. It uses binary search. 

FILES 

The options d and f affect comparisons as in sort( 1): 

d 'Dictionary' order: only letters, digits, tabs and blanks participate in comparisons. 

f Fold. Upper case letters compare equal to lower case. 

If no file is specified, lusrldicrlwords is assumed with collating sequence -df. 

lusr/dict/words 

SEE ALSO 
sort (I), grep(I) 

7th Edition 



LOOKALL (1) LOOKALL (1) 

NAME 
lookall - look through all text files on UNIX 

SYNOPSIS 
lookall [ -Cn] 

DESCRIPTION 

FILES 

Lookall accepts keywords from the standard input, performs. search similar to that of refer(1), 
and writes the result on the standard output Lookall consults, however, an index to all the text 
files on the system rather than just bibliographies. Only the first 50 words of each file (roughly) 
were used to make the indexes. Blank lines are taken as delimiters between queries. 

The -C n option specifies a coordination level search: up to n keywords may be missing from the 
answers, and the answers are listed with those containing the most keywords first. 

The command sequence in lusrldictllookalUmakindex regenerates the index. 

The directory lusrldictllookall contains the index files. 

DIAGNOSTICS 

BUGS 

'Warning: index precedes file .. .' means that a file has been changed since the index was made 
and it may be retrieved (or not retrieved) erroneously. 

Coordination level searching doesn't work as described: only those acceptable items with the 
smallest number of missing keywords are retreived. 

7th Edition 1()CA1 1 



LORDER (1) 

NAME 
lorder - find ordering relation for an object library 

SYNOPSIS 
lorder file ... 

DESCRIPTION 

LORDER (1) 

The input is one or more object or library archive (see arO» jiles. The standard output is a list 
of pairs of object file names, meaning that the first file of the pair refers to external identifiers 
defined in the second. The output may be processed by tsort(I) to find an ordering of a library 
suitable for one-pass access by /dO). ' 

This brash one-liner intends to build a new library from existing '.0' files. 

ar cr library 'lorder ·.0 I tsort' 

FILES 
·symref, ·symdef 
nm(1), sed(l), sortO), joinO) 

SEE ALSO 

BUGS 

tsortO), Id(I), adO 

The names of object files, in and out of libraries, must end with '.0'; nonsense results other
wise. 

7th Edition 



LPR (1) 

NAME 
Ipr, vpr - line printer spooler 

SYNOPSIS 
Ipr [ option ] ... [ file ] ... 
vpr [ -b banner] [file] ... 

DESCRIPTION 

LPR (I) 

Lpr causes the fiTes to be queued for printing on A line printer. If no files are named, the stan
dard input is read. The following options are available: 

FILES 

-r Remove the file when it has been ·queued. 

-c Copy the file to insulate against changes that may happen before printing. 

- m Report by mail( 1) when printing is complete. 

- n Do not report by mail. This is the default option. 

Vpr is the program used by ipr when the online prii1ter is a Versatec machine to insert ari identi
fying banner before the output, strip overstrikes, and, where Possible, remove blank lines to 
make 66-line pages fit on 64 lines. If the file /usr/adm/vpacct is writable, vpr places accouting 
information on it. 

lusrlspool/lpd/iock 
lusrlspool/lpd/cf'" data file 
lusrlspool/lpd/df'" daemon coritrol file 
lusrlspooJ/lpd/tf'" temporary version of control file 
lusr/bin/vpr for Versatec printer 
lusr/adm/vpacct 

SEE ALSO 
oprO),lpd(8) 

7th Edition ) ()Cal i 



LS ( 1 ) LS ( I ) 

NAME 
Is - list contents of directory 

SYNOPSIS 
Is [-ltasdrucifg ] name ... 

DESCRIPTION 
For each directory argument, Is lists the contents of the directory: for each file argument, Is re
peats its name and any other ;;iformation requested. The output is sorted alphabetically by de
fault. When no argument is given, the current directory is listed. When several arguments are 
given, the arguments are first sorted appropriately, but file arguments appear before directories 
and their contents. There are se-veral options: 

-I List in long format, giving mode, number of links, owner, size in bytes, and time of 
last modification for each file. (See below.) If the file is a special file the size field will 
instead contain the major and minor device numbers. 

- t Sort by time modified (latest first) instead of by name, as is normal. 

-a List all entries; usually': and .. : are suppressed. 

-s Give size in blocks, including indirect blocks, for each entry. 

-d If argument is a directory, list only its name, not its contents (mostly used with -I to 
get status on directory). 

-r Reverse the order of sort to get reverse alphabetic or oldest first as appropriate. 

-u Use time of last access instead of last modification for sorting (- t) or printing (- J). 

-c Use time of last modification to inode (mode, etc.) instead of last modification to file 
for sorting (- t) or printing (- J). 

-i Print i-number in first column of the report for each file listed. 

-f Force each argument to be interpreted as a directory and list the name found in each 
slot. This option turns off -I, -t, -s, and -r, and turns on -a; the order is the 
order in which entries appear in the directory. 

-g Give group ID instead of owner ID in long listing. 

The mode printed under the -I option contains 11 characters which are interpreted as follows: 
the first character is 

d if the entry is a directory; 
b if the entry is a block-type special file; 
c if the entry is a character-type special file; 

if the entry is a plain file. 

The next 9 characters are interpreted as three sets of three bits each. The first set refers to 
owner permissions: the next to permissions to others in the same user-group; and the last to all 
others. Within each set the three characters indicate permission respectively to read, to write, 
or to execute the file as a program. For a directory, 'execute' permission is interpreted to mean 
permission to search the directory for a speCified file. The permissions are indicated as follows: 

r if the file is readable; 
w if the file is writable; 
x if the file is executable; 

if the indicated permission is not granted. 

The group-execute permission character is given as s if the file has set-group-ID mode; likewise 
the user-execute permission character is given as s if the file has set-user-ID mode. 

7th Edition 



LS ( 1 ) 

FILES 

LS (1) 

The last character of the mode (normally 'x' or '- ') is t if the 1000 bit of the mode is on. See 
chmod( 1) for the meaning of this mode. 

When the sizes of the files in a directory are listed, a total count of blocks, including indirect 
blocks is printed. 

/elc/passwd to get user 10's for 'Is -I'. 
/etc/group to get group 10's for 'Is -g'. 

7th Edition 2 



M4 (1) M4(l) 

NAME 
m4 -- macro processor 

SYNOPSIS 
m4 [ files] 

DESCRIPTION 
M4 is a macro processor intended as a front end for Ratfor, C, and other languages. Each of 
the argument files is processed in order; if there are no arguments, or if an argument is '--', 
the standard input is read. The processed text is written on the standard output. 

Macro calls have the form 

name(argl,arg2, ... , argn) 

The' (' must immediately follow the name of the macro. If a defined macro name is not f 01-
lowed by a '(', it is deemed to have no arguments. Leading unquoted blanks, tabs, and new
lines are ignored while collecting arguments. Potential macro names consist of alphabetic 
letters, digits, and underscore '_', where the first character is not a digit. 

Left and right single quotes (") are used to quote strings. The value of a quoted string is the 
string stripped of the quotes. 

When a macro name is recognized, its arguments are collected by searching for a matching right 
parenthesis. Macro evaluation proceeds normally during the collection of the arguments, and 
any commas or right parentheses which happen to turn up within the value of a nested call are 
as effective as those in the original input text. After argument collection, the value of the 
macro is pushed back onto the input stream and rescanned. 

M4 makes available the following built-in macros. They may be redefined, but once this is 
done the original meaning is lost. Their values are null unless otherwise stated. 

define The second argument is installed as the value of the macro whose name is the first 
argument. Each occurrence of Sn in the replacement text, where n is a digit, is 
replaced by the n-th argument. Argument 0 is the name of the macro; missing 
arguments are replaced by the null string. 

undefine removes the definition of the macro named in its argument. 

ifdef If the first argument is defined, the value is the second argument, otherwise the 
third. If there is no third argument, the value is null. The word unix is predefined 
on UNIX versions of m4. 

changequote 
Change quote characters to the first and second arguments. Changequote without 
arguments restores the original values (i.e., . '). 

divert M4 maintains 10 output streams, numbered 0-9. The final output is the concatena
tion of the streams in numerical order; initially stream 0 is the current stream. The 
divert macro changes the current output stream to its (digit-string) argument. Out
put diverted to a stream other than 0 through 9 is discarded. 

undivert causes immediate output of text from diversions named as arguments, or all diver
sions if no argument. Text may be undiverted into another diversion. Undiverting 
discards the diverted text. 

divnum returns the value of the current output stream. 

dnl reads and discards characters up to and including the next newline. 

ifelse has three or more arguments. If the first argument is the same string as the second, 
then the value is the third argument. If not, and if there are more than four argu
ments, the process is repeated with arguments 4, 5. 6 and 7. Otherwise, the value is 

7th Edition 



M4(I) 

incr 

eva I 

len 

index 

substr 

translit 

include 

M4(1) 

either the fourth string, or, if it is not present, null. 

returns the value of its argument incremented by 1. The value of the argument is 
calculated by interpreting an initial digit-string as a decimal number. 

evaluates its argument as an arithmetic expression, using 32-bit arithmetic. Opera
tors include +, -, ., /, %, • (exponentiation) ~ relationals; parentheses. 

returns the number- of characters in its argument. 

returns the position in its first argument where the second argument begins (zero 
origin), or -1 if the second argument does not occur. 

returns a substring of its first argument. The second argument is a zero origin 
number selecting the first character; the third argument indicates the length of the 
substring. A missing third argument is taken to be large enough to extend to the 
end of the first string. 

transliterates the characters in its first argument from the set given by the second 
argument to the set given by the third. No abbreviations are permitted. 

returns the contents of the file named in the argument. 

sinclude is identical to include, except that it says nothing if the file is inaccessible. 

syscmd executes the UNIX command given in the first argument. No value is returned. 

maketemp fills in a string of XXXXX in its argument with the current process id. 

errprint prints its argument on the diagnostic output file. 

dumpdef prints current names and definitions, for the named items, or for all if no arguments 
are given. 

SEE ALSO 
B. W. Kernighan and D. M. Ritchie, The M4 Macro Processor 

7th Edition 2 



MAIL ( 1 ) MAIL ( I ) 

NAME 
mail - send or receive mail among users 

SYNOPSIS 
mail person .. , 
mail [-r 1 [-q 1 [-p J [-(file] 

DESCRIPTION 

FILES 

Mail with no argument prints a user's mail, message-by-message, in last-in, first-out order: the 
optional argument -r causes first-in, first-out order. If the -p flag is given. the mail is printed 
with no questions asked; otherwise, for each message, mail reads a line from the standard input 
to direct disposition of the message. 

newline 
Go on to next message. 

d Delete message and go on to the next. 

p Print message again. 

Go back to previous message. 

s [.file] ... 
Save the message in the named .files ('mbox' default). 

w[.file] ... 
Save the message, without a header, in the named files ('mbox' default), 

m [ person 1 '" 
Mail the message to the named persons (yourself is default). 

EOT (control-D) 
Put unexamined mail back in the mailbox and stop. 

q Same as EOT. 

x Exit, without changing the mailbox file. 

!command 
Escape to the Shell to do command. 

? Print a command summary. 

An interrupt stops the printing of the current letter. The optional argument -q causes mail to 
exit after interrupts without changing the mailbox. 

When persons are named, mail takes the standard input up to an end-of-file (or a line with just 
',') and adds it to each person's 'mail' file. The message is preceded by the sender's name and a 
postmark. Lines that look like postmarks are prepended with' >'. A person is usually a user 
name recognized by login 0 ). To denote a recipient on a remote system, prefix person by the 
system name and exclamation mark (see uucp( 1»). 

The -( option causes the named file, e.g. 'mbox', to be printed as if it were the mail file. 

Each user owns his own mailbox, which is by default generally readable but not writable. The 
command does not delete an empty mailbox nor change its mode, so a user may make it 
unreadable if desired. 

When a user logs in he is informed of the presence of mail. 

/usr/spool/mail/* mailboxes 
/etc/passwd tv identify sender and locate persons 
mbox saved mail 
/tmp/ma· temp file 

7th Edition 



MAIL (1) 

dead. letter 
uux(1) 

SEE ALSO 

UNIX Programmer's Manual 

unmailable text 

xsend (1), wri te (I ), u ucp (I ) 

BUGS 

MAIL (1) 

There is a locking mechanism intended to prevent two senders from accessing the same mail
box, but it is not perfect and races are possible. 

7th Edition 2 



MAKE(l) MAKE ( 1 ) 

NAME 
make - maintain program groups 

SYNOPSIS 
make [ - f makefile 1 [ option } ... file ... 

DESCRIPTION 
Make executes commands in makefile to update one or more target names. Name is typically a 
program. I f no - f option is present, 'makefile' and 'Makefile' are tried in order. If makefi Ie is 
'-'. the standard input is taken. More than one -f option may appear 

Make updates a target if it depends on prerequisite files that have been modified since the tar
get was I.ast modified, or if the target does not exist. 

Makefile contains a sequence of entries that specify dependencies. The first line of an entry is a 
blank-separated list of targets. then a colon, then a list of prerequisite files. Text following a 
semicolon, and all following lines that begin with a tab, are shell commands to be executed to 
update the target. 

Sharp and newline surround comments. 

The following makefile says that 'pgm' depends on two files 'a.o' and 'b.o', and that they in 
turn depend on '.c' files and a common file 'incl'. 

pgm: a.o b.o 
cc a.o b.o -1m -0 pgm 

a.o: incl a.c 
cc -c a.c 

b.o: incl b.c 
cc -c b.c 

Makefile entries of the form 

string I - string2 

are macro definitions. Subsequent appearances of $(stringJ) are replaced by string2. If string1 is 
a single character, the parentheses are optional. 

Make infers prerequisites for files for which makefile gives no construction commands. For ex
ample, a '.c· file may be inferred as prerequisite for a .. 0' file and be compiled to produce the 
'.0' file. Thus the preceding example can be done more briefly: 

pgm: a.o b.o 
cc a.o b.o -1m -0 pgm 

a.o b.o: incl 

Prerequisites are inferred according to selected suffixes listed as the 'prerequisites' for the spe
cial name '.SUFFIXES'; multiple lists accumulate; an empty list clears what came before. Ord
er is significant; the first possible name for which both a file and a rule as described in the next 
paragraph exist is inferred. The default list is 

.SUFFIXES: .out .0 .c .e .r .f .y .1 .s 

The rule to create a file with suffix s2 that depends on a similarly named file with suffix s1 is 
specified as an entry for the 'target' s1s2. In such an entry, the special macro $* stands for the 
target name with suffix deleted, $@ for the full target name, S < for the complete list of prere
quisites. and S? for the list of prerequisites that are out of date. For example, a rule for mak
ing optimized '.0' files from '.c' files is 

.c.o: ; cc -c -0 -0 $@ $*.c 

7th Edition 



MAKE (I) MAKE ( 1) 

FILES 

Certain macros are used by the default inference rules to communicate optional arguments to 
any resulting compilations. In particular, 'CFLAGS' is used for cc and j77(I) options, 
'LFLAGS' and 'YFLAGS' for lex and yacc(I) options. 

Command lines are executed one at a time, each by its own shell. A line is printed when it is 
executed unless the special target • .SILENT' is in maktifjle. or the first character of the com· 
mand is '@'. 

Commands returning nonzero status (see intro( 1» cause make to terminate unless special tar
get '.IGNORE' is in maktifjieor the command begins with <tab> <hyphen>. 

Interrupt and quit cause the target to be deleted unless the target depends on the special name 
'.PRECIOUS' . 

Other options: 

-i Equivalent to the special entry '.IGNORE:'. 

-k When a command returns nonzero status, abandon work on the current entry, but con-
tinue on branches that do not depend on the current entry. 

-n Trace and print, but do not execute the commands needed to update the targets. 

-t Touch, i.e. update the modified date of targets, without executing any commands. 

-r Equivalent to an initial special entry '.SUFFIXES:' with no.list. 

-s Equivalent to the special entry '.SILENT:'. 

makefiJe, Makefile 

SEE ALSO 

BUGS 

sh(I), touch (I) 
S. I. Feldman Make - A Program jor Maintaining Computer Programs 

Some commands return nonzero status inappropriately. Use -I to overcome the difficulty. 
Commands that are directly executed by the shell, notably cd( I), are ineffectual across newlines 
in make. 

7th Edition 2 



MAN ( 1 ) MAN ~ I) 

NAME 
man - print sections of this manual 

SYNOPSIS 
man [ option ... 1 [chapter J title ... 

DESCRIPTION 

FILES 

Man locates and prints the section of this manual named lir/e in the specified chapfer. (In this 
context. the word 'page' is often used as a synonym for 'section'') The ririe is entered in lower 
case. The chaptC'r number does not need a letter suffix. If no chapIn is specified. the whole 
manual is searched for litle and all occurrences of it are printed. 

Options and their meanings are: 

- t Phototypeset the section using rrQUO). 

- n Print the section on the standard output using nrQfIt 1). 

-k Display the output on a Tektronix 4014 terminal using IrQfIt!) and rcCI). 

-e Appended or prefixed to any of the above causes the manual section to be preprocessed 
by neqllor eqn(l); -e alone means -teo 

-w Print the path names of the manual sections, but do not print the sections themselves. 

(default) 
Copy an already formatted manual section to the terminal. or, if none is available, act 
as -no It may be necessary to use a filter to adapt the output to the particular 
terminal's characteristics. 

Further options. e.g. to specify the kind of terminal you have, are passed on to (rQfIt 1) or nrQft: 
Options and chapler may be changed before each fifle. 

For example: 

man man 

would reproduce this section. as well as any other sections named man that may exist in other 
chapters of the manual, e.g. man(7). 

lusr 1 manl man? 1 * 
lusr/man/cat? I· 

SEE ALSO 

BUGS 

nroff( 1), eqn (l ), te( I), man (7) 

The manual is supposed to be reproducible either on a phototypesetter or on a terminal. 
However, on a terminal some information is necessarily lost. 

7th Edition 



MESG (1) 

NAME 
mesg - permit or deny messages 

SYNOPSIS 
mesg [ n] [ y I 

DESCRIPTION 

MESG (1) 

Mesg with argument n forbids messages via wrifeO} by revoking non-user write permission on 
the user's terminal. Mesg with argument y reinstates permission. All by itself, mesg reports the 
current state without changing it. 

FILES 
Idev/tty· 
/dev 

SEE ALSO 
write (I) 

DIAGNOSTICS 
Exit status is 0 if messages are receivable, 1 if not, 2 on error. 

7th Edition 1 



MKCONF( 1M) MKCONF (1M) 

NAME 
mkconf - generate configuration tables 

SYNOPSIS 
mkconf 

DESCRIPTION 

FILES 

Mkcorif examines a machine configuration table on its standard input. Its output is a pair of 
files I.s and c.c. The first is an assembler program that r:presents the interrupt vectors located in 
low memory addresses; the second contains initialized block and character device switch tables. 

Input to mkcorifis a sequence of lines. The following describe devices on the machine: 

pc (PCIl) 
lp (LPll) 
rf (RSll) 
hs (RS03/RS04) 
tc (TUS6) 
rk (RK03/RKOS) 
tm (TU10) 
rp (RP03) 
hp (RP04ISI6) 
ht (TUI6) 
dc* (OCI1) 
kl* (KLlllOLlI·ABC) 
dl* (OL1I·E) 
dp* (OPI1) 
dn* (ONll) 
dh* (OHIl) 
dhdm* (OM l1·BB) 
du* (OUI1) 

The devices marked with • may be preceded by a num,ber telling how many are to be included. 
The console typewrite is automatically included; don't count it as part of the KL or OL 
specification. Count ON's in units of 4 (I system unit). 

The following lines are also accepted. 

root dev minor 
The specified block device (e.g. hp) is used for the root. minor is a decimal number giv
ing the minor device. This line must appear exactly once. 

swap dev minor 
The speCified block device is used for swapping. If not given the root is used. 

pipe dev minor 
The speCified block device is used to store pipes. If not given the root is used. 

swplo number 

nswap number 
Sets the origin (block number) and size of the area used for swapping. By default, the 
not very useful numbers 4000 and 872. 

pack Include the packet driver. By default it is left out. 

mpx Include the multiplexor driver. By default it is left out. 

I.s, c.e output files 

7th Edition 



MKCONF (1M) MKCONF(lM) 

SEE ALSO 

BUGS 

'Setting up Unix', in Volume 2. 

The set of devices it knows about, the set of drivers included, and the set of devices on the 
machine are mutually incomparable. Some handwork is certain to be necessary. Because of 
floating vectors that may have been missed, It is -mandatory to check the I.s file to make sure it 
corresponds with reality. 

7th Edition 2 



MKDIR (1 ) 

NAME 
mkdir - make a directory 

SYNOPSIS 
mkdir dirname .. ; 

DESCRIPTION 

MKDIR (1 ) 

Mkdir creates specified directories in mode 777. Standard entries. ','. for the directory itself. 
and ' .. ' for its parent. are made automatically. 

Mkdir requires write permission in the parent directory. 

SEE ALSO 
rmO) 

DIAGNOSTICS 
Mkdir returns exit code 0 if all directories were successfully made. Otherwise it prints a diag
nostic and returns nonzero. 

7th Edition 





MKFS (1M) MKFS (1M) 

NAME 
mkfs - construct a file system 

SYNOPSIS 
letc/mkfs special proto 

DESCRIPTION 
MI¢ constructs a file system by writing on the special file special according to the directions 
found in the prototype file proia. The prototype file contains tokens separated by spaces or new 
lines. The first token is the name of a file to be copied onto block zero as the bootstrap pro
gram, see bproC(8). The second token is a number specifying the size of the created file sys
tem. Typically it will be the number of blocks on the device, perhaps diminished by space for 
swapping. The next token is the number of i-nodes in the i-list. The next set of tokens 
comprise the specification for the root file. File specifications consist of tokens giving the 
mode, the user-id, the group id, and the initial contents of the file. The syntax of the contents 
field depends on the mode. 

The mode token for a file is a 6 character string. The first character specifies the type of the 
file. (The characters -bed specify regular, block special, character special and directory files 
respectively.) The second character of the type is either u or - to specify set-user-id mode or 
not. The third is g or - for the set-group-id mode. The rest of the mode is a three digit octal 
number giving the owner, group, and other read, write, execute permissions, see chmod(l). 

Two decimal number tokens come after the mode~ they specify the user and group 10's of the 
owner of the file. 

If the file is a regular file, the next token is a pathname whence the contents and size are 
copied. 

If the file is a block or character special file, two decimal number tokens follow which give the 
major and minor device numbers. 

If the file is a directory, mJifs makes the entries. and •• and then reads a list of names and (re
cursively) file specifications for the entries in the directory. The scan is terminated with the to
ken S. 
If the prototype file cannot be opened and its name consists of a string of digits, ml¢ builds a 
file system with a single empty directory on it. The size of the file system is the value of prOia 
interpreted as a decimal number. The number of i-nodes is calculated as a· function of the 
filsystem size. The boot program is left uninitialized. 

A sample prototype specification follows: 

SEE ALSO 

I usr I mdecl uboot 
4872 55 
d--77731 
usr d - - 777 3 1 

$ 

sh - - -755 3 1 Ibin/sh 
ken d--75561 

$ 
bO b- -644 3 1 0 0 
cO c- -644 3 1 00 
S 

filsys(5), dir(5), bproC(8) 

7th Edition 1 



MKFS OM) MKFS (1M) 

BUGS 
There should be some way to specify links. 

7th Edition 2 



MKNOD (1M) 

NAME 
mknod - build special file 

SYNOPSIS 
/ etc/ mknod name [ c] [ b 1 major minor 

DESCRIPTION 

MKNOD (1M) 

Mknod makes a special file. The first argument is the name of the entry. The second is b if the 
special file ic; block-type (disks, tape) or c if it is character-type (other devices). The last two 
arguments are numbers specifying the mojor device type and the minor device (e.g. unit, drive, 
or line number). 

The assignment of major device numbers is specific to each system. They have to be dug out 
of the system source file conf.c. 

SEE ALSO 
mknod(2) 

7th Edition 



MOUNT (1M) MOUNT (1M) 

NAME 
mount, umount - mount and dismount file system 

SYNOPSIS 
lete/mount [ special name [ - r ] ] 

letc/umount special 

DESCRIPTION 

FILES 

Mount announces to the system that a removable file system is present on the device special. 
The file name must exist already; it must be a directory (unless the root of the mounted file 
system is not a directory). It becomes the name of the newly mounted root. The optional last 
argument indicates that the file system is to be mounted read-only. 

Umount announces to the system that the removable file system previously mounted on device 
special is to be removed. 

These commands maintain a table of mounted devices. If invoked without an argument, mount 
prints the table. 

Physically write-protected and magnetic tape file systems must be mounted read-only or errors 
will occur when access times are updated, whether or not any explicit. write is attempted. 

letc/mtab: mount table 

SEE ALSO 
mount(2), mtab(S) 

BUGS 
Mounting file systems full of garbage will crash the system. 
Mounting a root directory on a non-directory makes some apparently good pathnames invalid. 

7th Edition 



MV(t) MV(1) 

NAME 
mv - move or rename files and directories 

SYNOPSIS 
mv file 1 file2 

mv file ... directory 

DESCRIPTION 
Mv moves (changes the name of) file} to fi1e2. 

If file2 already exists, it is removed before file} is moved. If file2 has a mode which forbids 
writing, mv prints the mode (see chmod(2» and reads the standard input to obtain a line; if the 
line begins with y, the move takes place; if not, mvexits. 

In the second form, one or more files are moved to the directory with their original file-names. 

Mv refuses to move a file onto itself. 

SEE ALSO 

BUGS 

cpO), chmod(2) 

If file} and file2 lie on different file systems, mv must copy the file and delete the original. In 
this case the owner name becomes that of the copying process and any linking relationship with 
other files is lost. 

Mv should take -f flag, like rm, to suppress the question if the target exists and is not writable. 

7th Edition local 1 



NCHECK (1M) NCHECK ( 1M) 

NAME 
ncheck - generate names from i-numbers 

SYNOPSIS 
ncheck [ - i numbers 1 [- a 1 [ - s 1 [filesystem 1 

DESCRIPTION 
Ncheck with no argument generates a pathname vs. i-number list of all files on a set of default 
file systems. Names of directory files are followed by 'I.'. The - i option reduces the report to 
only those files whose i-numbers follow. The - a option allows printing of the names'.' and 
, .. ', which are ordinarily suppressed. suppressed. The - s option reduces the report to special 
files and files with set-user-ID mode; it is intended to discover concealed violations of security 
policy. 

A file system may be specified. 

The report is in no useful order, and probably should be sorted. 

SEE ALSO 
dcheck (l), icheck (l ), sort (t ) 

DIAGNOSTICS 
When the filesystem structure is improper, '??' denotes the 'parent' of a parentless file and a 
pathname beginning with ' .. .' denotes a loop. 

7th Edition' 



NEWGRP (1) NEWGRP(l) 

NAME 
newgrp - log in to a new group 

SYNOPSIS 
newgrp group 

DESCRIPTION 
Newgrp changes the group identification of its caller, analogously to login(I). The same person 
remains logged in, and the current directory is unchanged, but calculations of access permis
sions to files are performed with respect to the new group 10. 

A password is demanded if the group has a password and the user himself does not. 

When most users log in, they are members of the group named ·other.' Newgrp is known to the 
shell, which executes it directly without a fork. 

FILES 
/etc/group, /etc/passwd 

SEE ALSO 
10ginO), group(5) 

7th Edition 1 



NICE (I ) NICE ( I ) . 

NAME 
nice, nohup - run a command at low priority 

SYNOPSIS 
nice [ - number] command [ arguments] 

nohup command [ arguments] 

DESCRIPTION 

FIVES 

Nice executes command with low scheduling priority. If the number argument is present, the 
priority is incremented (higher numbers mean lower priorities) by that amount up to a limit of 
20. The default number is 10. 

The super-user may run commands with priority higher tt"!an normal by using a negative prior-
ity, e.g. '- -10'. . . 

Nohup executes command immune to hangtip and terminate signals from the controlling termi
nal. The priority is incremented by 5. Nohup should be invoked from the shell with '&' in 
order to prevent it from responding to interrupts by or stealing the input from the next person 
who logs in on the same terminal. 

nohup.out standard output and standard error file unde~ nohup 

SEE ALSO 
nice(2) 

DIAGNOSTICS 
Nice returns the exit status of the subject command. 

7th Edition 1 



NM (1) NM (1) 

NAME 
nm - print name list 

SYNOPSIS 
om [ -gnopru ] [ file ... ] 

DESCRIPTION 
Nm prints the name list (symbol table) of each object file in the argument list. If an argument 
is an archive, a listing for each object file in the archive will be produced. If no file is given, 
the symbols in 'a.out' are listed. 

Each symbol name is preceded by its value (blanks if undefined) and one of the letters U 
(undefined), A (absolute), T (text segment symbol), Jj (data segment symbol), B (bss segment 
symbol), or C (common symbol). If the symbol is local (non-external) the type letter is in 
lower case. The output is sorted alphabetically. 

Options are: 

- g Print only global (external) symbols. 

- n Sort numerically rather than alphabetically. 

- 0 Prepend file or archive element name to each output line rather than only once. 

-p Don't sort; print in symbol-table order. 

-r Sort in reverse order. 

-u Print only undefined symbols. 

SEE ALSO 
adl), areS), a.out(S) 

7th Edition 1 



00 (1) aDO) 

NAME 
od - octal dump 

SYNOPSIS 
od [ - bcdox 1 [ file 1 [ [ + 1 offset [ . 1 [ b J ] 

DESCRIPTION 
Od dumps file in one or more formats as selected by the first argument. If the first argument is 
missing, -0 is default. The meanings of the format argument characters are: 

b Interpret bytes in octal. 

c Interpret bytes in ASCII. Certain non-graphic characters appear as C escapes: null-\O, 
backspace-\b, formfeed-\f, newline-\n, return-\r, tab-\t; others appear as 3-digit octal 
numbers. 

d Interpret words in decimal. 

o Interpret words in octal. 

x Interpret words in hex. 

The .file argument specifies which file is to be dumped. If no file argument is specified, the 
standard input is used. . 

The offset argument specifies the offset in the file where dumping is to commence. This argu
ment is normally interpreted as octal bytes. If'.' is appended, the offset is interpreted in 
decimal. If 'b' is appended, the offset is interpreted in blocks of 512 bytes. If the file argument 
is omitted, the offset argument must be preceded' +'. 
Dumping continues until end-of-file. 

SEE ALSO 
adb(I) 

7th Edition 



PASSWD (1 ) PASSWD (1) 

NAME 
passwd - change login password 

SYNOPSIS 
passwd [ name ] 

DESCRIPTION 

FILES 

This command changes (or installs) a password associated with the user name (your own name 
by default). 

The program prompts for the old password and then for the new one. The caller must supply 
both. The new password must be typed twice, to forestall mistakes. 

New passwords must be at least four characters long if they use a sufficiently rich alphabet and 
at least six characters long if monocase. These rules are relaxed if you are insistent enough. 

Only the owner of the name or the super-user may change a password; the owner must prove 
he knows the old password. 

I etcl passwd 

SEE ALSO 
login (I), passwd (5), crypt (3) 
Robert Morris and Ken Thompson, Password SecuriTY: A Case History 

7th Edition PDPll 



PLOT ( IG) PLOT ( IG) 

NAME 
plot - graphics filters 

SYNOPSIS 
plot [ -Tterminal [ raster I 1 

DESCRIPTION 

FILES 

These commands read plotting instructions (see plot(S)) from the standard input, and in gen
eral produce plotting instructions suitable for a particular terminal on the standard output. 

If no terminal type is specified, the environment parameter STERM (see environ(S))· is used. 
Known terminals are: 

4014 Tektronix 4014 storage scope. 

450 DA51 Hyterm 450 terminal (Diablo mechanism). 

300 DA51 300 or G51 terminal (Diablo mechanism). 

3005 DA51 3005 terminal (Diablo mechanism). 

ver Versatec D I 200A printer-plotter. This version of plot places a scan-converted image in 
'/usr/tmp/raster' and sends the result directly to the plotter device rather than to the 
standard output. The optional argument causes a previously scan-converted file raster 
to be sent to the plotter. 

lusr/bin/tek 
lusr Ibin/t4S0 
lusr/bin/t300 
lusr/bin/t300s 
lusr/bin/vplot 
I usr I tmpl raster 

SEE ALSO 
plot(3). plot(S) 

BUGS 
There is no lockout protection for lusr/tmp/raster. 

7th Edition 



PR (1 ) PR (1) 

NAME 
pr - print file 

SYNOPSIS 
pr [ option J ... [file] ... 

DESCRIPTION 

FILES 

Pr produces a printed listing of one or more files. The output is separated into pages headed by 
a date, the name of the file or a specified header, and the page number. If there are no file 
arguments, pr prints its standard input. 

Options apply to all following files but may be reset between files: 

- n Produce n-column output. 

+ n Begin printing with page n. 

- h Take the next argument as a page header. 

- wn For purposes of multi-column output, take the width of the page to be n characters 
instead of the default 72. 

''';'In Take the length of the page to be n lines instead of the default 66. 

- t Do not print the 5-line header or the 5-line trailer normally supplied for each page. 

- sc Separate columns by the single character c instead of by the appropriate amount of 
white space. A missing c is taken to be a tab. 

-m Print all files simulta:1eously, each in one column. 

Inter-terminal messages via wriTe(1) are forbidden during apr. 

Idev/tty? to suspend messages. 

SEE ALSO 
cat (1) 

DIAGNOSTICS 
There are no diagnostics when pr is printing on a terminal. 

7th Edition 



PREP (l ) PREP ( 1 ) 

NAME 
prep - prepare text for statistical processing 

SYNOPSIS 
prep [ - dio ) file ... 

DESCRIPTION 
Prep reads each .file in sequence and writes it on the standard output, one 'word' to a line. A 
word is a string of alphabetic characters and imbedded apostrophes, delimited by space or punc
tuation. Hyphented words are broken apart; hyphens at the end of lines are removed and the 
hyphenated parts are joined. Strings of digits are discarded. 

The following option letters may appear in any order: 

-d Print the word number (in the input stream) with each word. 

-i Take the next .file as an 'ignore' file. These words will not appear in the output. (They 
will be counted, for purposes of the - d count.) 

-0 Take the next .file as an 'only' file. Only these words will appear in the output. (All 
other words will also be counted for the -d count.) 

- p Include punctuation marks (single nonalphanumeric characters) as separate output 
lines. The punctuation marks are not counted for the -d count. 

Ignore and only files contain words, one per line. 

SEE ALSO 
deroff( 1) 

7th Edition 



PROF (1 ) PROF (I) 

NAME 
prof - display profile data 

SYNOPSIS 
prof [ - v ] [ - a ] [ -I ] [ -low [ - high ] ] [ file ] 

DESCRIPTION 

FILES 

Pro/interprets the file mon.out produced by the monitor subroutine. Under default modes, the 
symbol table in the named object file (a. out default) is read and correlated with the mon.out 
profile file. For each external symbol, the percentage of time spent executing between that 
symbol and the next is printed (in decreasing order), together with the number of times that 
routine was called and the number of milliseconds per call. 

If the - a option is used, all symbols are reported rather than just external symbols. If the -I 
option is used, the output is listed by symbol value rather than decreasing percentage. 

If the - v option is used, all printing is suppressed and a graphic version of the profile is pro
duced on the standard output for display by the plotO) filters. The numbers low and high, by 
default 0 and 100, cause a selected percentage of the profile to be plotted with accordingly 
higher resolution. 

In order for the number of calls to a routine to be tallied, the -p option of cc must have been 
given when the file containing the routine was compiled. This option also arranges for the 
mon.out file to be produced automatically. 

mon.out for profile 
a.out for namelist 

SEE ALSO 
monitor(3), profiJ(2), ceO), plotO) 

BUGS 
Beware of quantization errors. 

7th Edition PDP11 1 





PS (1 ) PS ( I ) 

NAME 
ps - process status 

SYNOPSIS 
ps [ aklx ] [ namelist 1 

DESCRIPTION 

FILES 

Ps prints certain indicia about active processes. The a option asks for information about aJl 
processes with terminals (ordinarily only one's own processes are displayed); x asks even about 
processes with no terminal; I asks for a long listing. The short listing contains the process ID, 
tty letter, the cumulative execution time of the process and an approximation to the command 
line. 

The long listing is columnar and contains 

F Flags associated with the process. 01: in core; 02: system process; 04: locked in core 
(e.g. for physical 110); 10: being swapped; 20: being traced by another process. 

S The state of the process. 0:· nonexistent; S: sleeping; w.: waiting; R: running; I: inter
mediate; Z: terminated; T: stopped. 

UID The user ID of the process owner. 

PID The process ID of the process; as in certain cults it is possible to kill a process if you 
know its true name. 

PPID The process ID of the parent process. 

CPU Processor utilization for scheduling. 

PRI The priority of the process; high numbers mean low priority. 

NICE Used in priority computation. 

ADDR The core address of the process if resident, otherwise the disk address. 

SZ The size in brocks of the core image of the process. 

WCHAN 
The event for which the process is waiting or sleeping; if blank, the process is running. 

TTY The controlling tty for the process. 

TIME The cumulative execution time for the process. 

The command and its arguments. 

A process that has exited and has a parent, but has not yet been waited for by the parent is 
marked <defunct>. Ps makes an educated guess as to the file name and arguments given 
when the process was created by examining core memory or the swap area. The method is 
inherently somewhat unreliable and in any event a process is entitled to destroy this informa
tion, so the names cannot be counted on too much. 

If the k option is specified, the file lusrlsyslcore is used in place of Idevlmem. This is used for 
postmortem system debugging. If a second argument is given, it is taken to be the file contain
ing the system's name list. 

lunix system namelist 
I dev I mem core memory 
lusrlsys/core alternate core file 
I dev searched to find swap device and tty names 

SEE ALSO 
kill (I) 

7th Edition PDPll 



PS (1) 

BUGS 

PS (1) 

Things can change while ps is running; the picture it gives is only a close approximation to real
ity. 
Some data printed for defunct processes is irrelevant 

7th Edition 2 



PSTAT OM) 

NAME 
pstat - print system facts 

SYNOPSIS 
pstat [ - aixptuf ] . [ suboptions ] [ file] 

DESCRIPTION 

PSTAT (1M) 

Pstat interprets the contents of certain system tables. If file is given, the tables are sought 
there, otherwise in Idevlmem. The required namelist is taken from lunix. Options are 

- a Under - p, describe all process slots rather than just active ones. 

- i Print the inode table with the these headings: 

LOC The core location of this table entry. 
FLAGS Miscellaneous state variables encoded thus: 

L locked 
U update time fi ls.Ys(5» must be corrected 
A access time must be corrected 
M file system is mounted here 
W wanted by another process (L flag is on) 
T contains a text file 
C changed time must be corrected 

CNT Number of open file table entries for this inode. 
DEV Major and minor device number of file system in which this inode resides. 
INO I-number within the device. 
MODE Mode bits, see chmod(2). 
NLK Number of links to this inode. 
UID User ID of owner. 
SIZ/DEV 

-x 
LOC 
FLAGS 

Number of bytes in an ordinary file, or major and minor device of special file. 

Print the text table with these headings: 

The core location of this table entry. 
Miscellaneous state variables encoded thus: 
T ptrace(2) in effect 
W text not yet written on swap device 
L loading in progress 
K locked 
w wanted (L flag is on) 

DADDR Disk address in swap, measured in multiples of 512 bytes. 

CADDR Core address, measured in multiples of 64 bytes. 

SIZE Size of text segment, measured in multiples of 64 bytes. 

IPTR 

CNT 

CCNT 

-p 

LOC 
S 

7th Edition 

Core location of corresponding inode. 

Number of processes using this text segment. 

Number of processes in core using this text segment. 

Print process table for active processes with these headings: 

The core location of this table entry. 
Run state encoded thus: 
o no process 
1 waiting for some event 
3 runnable 
4 being created 



PST AT OM) PSTAT OM) 

5 being terminated 
6 stopped under trace 

F Miscellaneous state variables, or-ed together: 
01 loaded 
02 the scheduler process 
04 locked 
010 swapped out 
020 traced 
040 used in tracing 
0100 locked in by lock(2). 

PRI Scheduling priority, see nice (2) . 
SIGNAL Signals received (signals 1-16 coded in bits 0-15). 
UID Real user ID. 
TIM Time resident in seconds; times over 127 coded as 127. 
CPU Weighted integral of CPU time, for scheduler. 
NI Nice level, see nice(2). 
PGRP Process number of root of process group (the opener of the controlling terminal). 
PID The process ID number. 
PPID The process ID of parent 9rocess. 
ADDR If in core. the physical address of the 'u-area' of the process measured in multiples of 

64 bytes. If swapped out, the position in the swap area measured in multiples of 512 
bytes. 

SIZE Size of process image in mUltiples of 64 bytes. 
WCHAN Wait channel number of a waiting process. 
LINK Link pointer in list of runnable processes. 
TEXTP If text is pure, pointer to location of text table entry. 
ClKT Countdown for alarm(2) measured in seconds. 

-t Print table for terminals (only DHll and DLlI handled) with these headings: 

RA W Number of characters in raw input queue. 
CAN Number of characters in canonicalized input queue. 
OUT Number of characters in putput queue. 
MODE See t(Y(4). 
ADDR Physical device address. 
DEL Number of delimiters (newlines) in canonicalized input queue. 
Cal Calculated column position of terminal. 
ST A TE Miscellaneous state variables encoded thus: 

W waiting for open to complete 
a open 
S has special (output) start routine 
C carrier is on 
B busy doing output 
A process is awaiting output 
X open for exclusive use 
H hangup on close 

PGRP Process group for which this is controlling terminal. 

-u print information about a user process; the next argument is its address as given by 
ps(l). The process must be in main memory, or the file used can be a core image 
and the address O. 

-f 

laC 
FlG 

Print the open file table with these headings: 

The core location of this table entry. 
Miscellaneous state variables encoded thus: 

., 



PSTAT(lM) 

FILES 

eNT 
INO 
OFFS 

R open for reading 
W open for writing 
P pipe 
Number of processes that know this open file. 
The location of the inode table entry for this file. 
The file offset, see lseek(2). 

/unix name list 
/dev/mem default source of tables 

SEE ALSO 
ps(I), stat(2), filsys(S) 
K. Thompson, UNIX Implementation 

7th Edition 

PSTAT (1M) 

3 



PTX (1) PTX (I) 

NAME 
ptx - permuted index 

SYNOPSIS 
ptx [ option ] ... [input [ output ] 1 

DESCRIPTION 

FILES 

BUGS 

Prx generates a permuted index to file input on file output (standard input and output default). 
It has three phases: the first does the permutation, generating one line for each keyword in an 
input line. The keyword is rotated to the front. The permuted file is then sorted. Finally, the 
sorted lines are rotated so the keyword comes at the middle of the page. Prx produces output 
in the form: 

.xx "tail" "before keyword" "keyword and after" "head" 

where .xx may be an "roffor troff(l) macro for user-defined formatting. The be/ore keyword 
and keyword and after fields incorporate as much of the line as will fit around the keyword when 
it is printed at the middle of the page. Tail and head, at least one of which is an empty string 
"", are wrapped-around pieces small enough to fit in the unused space at the opposite end of the 
line. When original text must be discarded, 'I' marks the spot. 

The following options can be applied: 

- f Fold upper and lower case letters for sorting. 

-t Prepare the output for the phototypesetter~ the default line length is 100 characters. 

-w n Use the next argument, n, as the width of the output line. The default line length is 72 
characters. 

-g n Use the next argument, n, as the number of characters to allow for each gap among the 
four parts of the line as finally printed. The default gap is 3 characters. 

-0 only 
Use as keywords only the words given in the only file. 

-I ignore 
Do not use as keywords any words given in the ignore file. If the -i and -0 options are 
missing, use /usr/lib/eign as the ignore file. 

-b break 
Use the characters in the break file to separate words. In any case, tab, newline, and 
space characters are always used as break characters. 

- r Take any leading nonblank characters of each input line to be a reference identifier (as 
to a page or chapter) separate from the text of the line. Attach that identifier as a 5th 
field on each output line._ 

The index for this manual was generated using ptx. 

Ibin/sort 
/usr/lib/eign 

Line length counts do not account for overstriking or proportional spacing. 

7th Edition 1 



PUBINDEX (1) PUBINDEX ( 1 ) 

NAME 
pubindex - make inverted bibliographic index 

SYNOPSIS 
pubindex ( file ] ... 

DESCRIPTION 

FILES 

Pubindex makes a hashed inverted index to the named files for use by rejer( 1). The files con
tain bibliographic references separated by blank lines. A bioliographic reference is a set of lines 
that contain bibliographic information fields. Each field starts on a line beginning with a '%', 
followed by a key-letter, followed by a blank, and followed by the contents of the field. which 
continues until the next line starting with '%'. The most common key-letters and the 
corresponding fields are: 

A Author name 
B Title of book containing article referenced 
C City 
o Date 
d Alternate date 
E Editor of book containing article referenced 
G Government (CFSTI) order number 
I Issuer ( publisher) 
J Journal 
K Other keywords to use in locating reference 
M Technical memorandum number 
N Issue number within volume 
o Other commentary to be printed at end of reference 
P Page numbers 
R Report number 
r Alternate report number 
T Title of article, book, etc. 
V Volume number 
X Commentary unused by pubindex 

Except for 'A', each field should only be given once. Only relevant fields should be supplied. 
An example is: 

%T S-by-S Palindromic Word Squares 
%A M. D. Mcilroy 
%J Word Ways 
%V 9 
%P 199-202 
%0 1976 

x.ia, x.ib, x.ic where x is the first argument. 

SEE ALSO 
referO) 

7th Edition local 



PWD (I) 

NAME 
pwd - working directory name 

SYNOPSIS 
pwd 

DESCRIPTION 
Pwd prints the path name of the working (current) directory. 

SEE ALSO 
cd(1) . 

7th Edition 

PWD (I) 

1 



QUOT(IM) QUOT ( 1M) 

NAME 
quot - summarize file system ownership 

SYNOPSIS 
quot [ option ] ... [filesystem] 

DESCRIPTION 

FILES 

QUOI printS the number of blocks in the named .Ii1~syst~m currently owned by each user. If no 
.tiI~syst~m is named. a default name is assumed. The following options are available: 

- n Cause the pipeline ncheck ftlesystem I sort + On I quot - n ftlesystem to produce a list 
of all files and their owners. 

-c Print three columns giving file size in blocks. number of files of that size. and cumula
tive total of blocks in that size or smaller file. 

- r Print count of number of files as well as space owned by each user. 

Default file system varies with system. 
/ etc/ passwd to get user names 

SEE ALSO 
IsO), duO) 

BUGS 
Holes in files are counted as if they actually occupied space. 

7th Edition 



RANLIB (1 ) UNIX Prograrnrner's Manual RANLlB ( 1) 

NAME 
ranlib - convert archives to randorn libraries 

SYNOPSIS 
ranlib archive ... 

DESCRIPTION 
Ranlib converts each archive to a forrn which can be loaded rnore rapidly by the loader, by 
adding a table of contents narned _,SYMDEF to the beginning of the archive. It uses ar( 1) 
to reconstruct the archive, so that sufficient ternporary file space rnust be available in the file 
systern containing the current directory. 

SEE ALSO 

BUGS 

IdO), ad}) 

Because generation of a library by ar and randornization by ranlib are separate, phase errors are 
possible. The loader Id warns when the rnodification date of a library is more recent than the 
creation of its dictionary; but this means you get the warning even if you only copy the library. 

7th Edition 



RATFOR (I) 

NAME 
ratfor - rational Fortran dialect 

SYNOPSIS 
ratfor ( option ... ] (filename ... ] 

DESCRIPTION 

RATFOR (1) 

Rar/or converts a rational dialect of Fortran into ordinary irrational Fortran. Rar/or provides 
control flow constructs essentially identical to those in C: 

statement grouping: 
( statemen~ statement; statement } 

decision-making: 
if (condition) statement ( else statement] 
switch (integer value) ( 

case integer: statement 

( default: ] statement 

loops: while (condition) statement 
for (expression; condition; expression) statement 
do limits statement 
repeat statement [ until (condition) ] 
break [n] 
next [n] 

and some syntactic sugar to make programs easier to read and write: 

free form input: 
multiple statements/line; automatic continuation 

comments: 
# this is a comment 

translation of relationals: 
>, > -, etc., become .GT., .GE., etc. 

return (expression) 
returns expression to caller from function 

define: define name replacement 

include: 
include filename 

The option - h causes quoted strings to be turned into 27H constructs. -C copies comments 
to the output, and attempts to format it neatly. Normally, continuation lines are marked with a 
&. in column 1; the option -61: makes the continuation character I: and places it in column 6. 

Rar/or is best used with j17(1). 

SEE ALSO 
n7(1) 
B. W. Kernighan and P. J. Plauger. Software Tools, Addison-Wesley, 1976. 

7th Edition 1 





REFER (1) REFER (1 ) 

NAME 
refer, lookbib - find and insert literature references in documents 

SYNOPSIS 
refer [ option ] .. . 

lookbib [ file ] .. . 

DESCRIPTION 
Lookbib accepts keywords from the standard input and searches a bibliographic data base for 
references that contain those keywords anywhere in title, author,' journal name, etc. Matching 
references are printed on the standard output. Blank lines are taken as delimiters between 
queries. 

Refer is a preprocessor for nrolf or 0'0.6(1) that finds and formats references. The input files 
(standard input default) are copied to the standard output, except for lines between .[ and .J 
command lines, which are assumed to contain keywords as for lookbib, and are replaced by 
information from the bibliographic data base. The user may avoid the search, override fields 
from it, or add new fields. The reference data, from whatever source, are assigned to a set of 
trolfstrings. Macro packages such as ms(7) print the finished reference text from these strings. 
A flag is placed in the text at the point ofreference~ by default the references are indicated by 
numbers. 

The following options are available: 

-ar Reverse the first r author names (Jones, J. A. instead of J. A. Jones). If r is omitted all 
author names are reversed. 

-b Bare mode: do not put any flags in text (neither numbers nor labels). 

-cstring 
Capitalize (with CAPS SMALL CAPS) the fields whose key-letters are in string. 

-e Instead of leaving the references where encountered, accumulate them until a sequence 
of the form 

.l 
SLISTS 
.1 

is encountered, and then write out all references collected so far. Collapse references to 
the same source . 

. - kx Instead of numbering references, use labels as specified in a reference data line begin
ning %x: by default x is L. 

-Im.n 
Instead of numbering references, use labels made from the senior author's last name and 
the year of publication. Only the first m letters of the last name and the last n digits of 
the date are used. If either m or ,n is omitted the entire name or date respectively is 
used. 

- p Take the next argument as a file of references to be searched. The default file is 
searched last. 

- n Do not search the default file. 

-skeys 

7th Edition 

Sort references by fields whose key-letters are in the keys string~ permute reference 
numbers in text accordingly. Implies -e. The key-letters in keys may be followed by a 
number to indicate how many such fields are used, with + taken as a very large number. 
The default is AD which sorts on the senior author and then date; to sort, for example, 
on all authors and then title use -sA +T. 



REFER (1) REFER (1) 

FILES 

To use your own references, put them in the format described in pubindex(}) They can be 
searched more rapidly by running pubindex(I) on them before using refer; failure to index 
results in a linear search. 

When refer is used with eqn, neqn or tbi refer should be first, to minimize the volume of data 
passed through pipes. 

lusrldictJpapers directory of default publication lists and indexes 
lusrllib/refer directory of programs 

SEE ALSO 

7th Edition 2 



RESTOR (1M) RESTOR (1M) 

NAME 
restor - incremental file system restore 

SYNOPSIS 
restor key [ argument ... ] 

DESCRIPTION 

FILES 

Restor is used to read mag tapes dumped with the dump command. The key specifies what is to 
be done. Key is one of the characters rlht optionally combined with f. 

f Use the first argument as the name of the tape instead of the default. 

r or R The tape is read and loaded into the file system specified in argument. This should not 
be done lightly (see below). If the key is R restor asks which tape ora multi volume 
set to start on. This allows restor to be interrupted and then restarted (an icheck - s 
must be done be/ore 

x Each file on the tape named by an argument is extracted. The file name has all 'mount' 
prefixes removed~ for example, /usr/bin/lpr is named /bin/lpr on the tape. The file 
extracted is placed in a file with a numeric name supplied by restor (actually the inode 
number). In order to keep the amount of tape read to a minimum, the following pro
cedure is recommended: 

Mount volume 1 of the set of dump tapes. 

Type the restor command. 

Restor will announce whether or not it found the files, give the number it will name the 
file, and rewind the tape. 

It then asks you to 'mount the desired tape volume'. Type the number of the volume 
you choose. On a multivolume dump the recommended procedure is to mount the last 
through the first volume in that order. Restor checks to see if any of the files requested 
are on the mounted tape (or a later tape, thus the reverse order) and doesn't read 
through the tape if no files are. I( you are working with a single volume dump or the 
number of files being restored is large, respond to the query with '1' and restor will read 
the tapes in sequential order. 

I( you have a hierarchy to restore you can use dumpdir(1) to produce the list of names 
and a shell script to move the resulting files to their homes. 

t Print the date the tape was written and the date the filesystem was dumped from. 

The r option should only be used to restore a complete dump tape onto a clear file system or to 
restore an incremental dump tape onto this. Thus 

/etc/mkfs /dev/rpO 40600 
restor r /dev/cpO 

is a typical sequence to restore a complete dump. Another restor can be done to get an incre
mental dump in on top of this. 

A dump followed by a mkft and a restor is used to change the size of a file system. 

default tape unit varies with installation 
rst· 

7th Edition 1 



RESTOR (1M) RESTOR (1M) 

SEE ALSO 
'dump(I), mkfs(I), dumpdir(l) 

DIAGNOSTICS 

BUGS 

There are various diagnostics involved with reading the tape and writing the disk. There are 
also diagnostics if the i-list or the free list of the file system is not large enough to hold the 
dump. 

If the dump extends over more than one tape, it may ask you to change tapes. Reply with a 
new-line when the next tape has been mounted. 

There is redundant information on the tape that could be used in case of tape reading problems. 
Unfortunately, restor doesn't use it. 

7th Edition 2 



REV (1) 

NAME 
rev - reverse lines of a file 

SYNOPSIS 
rev [ file] ... 

DESCRIPTION 

REV ( I ) 

Rev copies the named files to the standard output, reversing the order of characters in every 
line. If no file is specified. the standard input is copied. 

7th Edition PDP1! 



RM (1) RM(I ) 

NAME 
rm, rmdir - remove (unlink) files 

SYNOPSIS 
rm [ -fri] file ... 

rmdir dir ... 

DESCRIPTION 
Rm removes the entries for one or more files from a directory. If an entry was the last link to 
the file, the file is destroyed. Removal of a file requires write permission in its directory, but 
neither read nor write permission on the file itself. 

If a file has no write permission and the standard input is a terminal, its permissions are printed 
and a line is read from the standard input. If that line begins with 'y' the file is deleted, other
wise the file remains. No questions are asked when the -f (force) option is given. 

If a designated file is a directory, an error comment is printed unless the optional argument - r 
has been used. In that case, rm recursively deletes the entire contents of the specified direc
tory, and the directory itself. 

If the - i (interactive) option is in effect, rm asks whether to delete each file, and, under - r, 
whether to examine each directory. 

Rmdir removes entries for the named directories, which must be empty. 

SEE ALSO 
unlink(2) 

DIAGNOSTICS 
Generally self-explanatory. It is forbidden to remove the file' .. ' merely to avoid the antisocial 
consequences of inadvertently doing something like 'rm -r .• '. 

7th Edition 1 



ROFF ( 1 ) ROFF ( 1 ) 

NAME 
roff - format text 

SYNOPSIS 
roft' [ + n ] [ - n] [ - s ] [ - h ] file '" 

nroft' - mr [ option ] ... file .. . 
troft' - mr [ option ] ... file .. . 

DESCRIPTION 

FILES 

BUGS 

Roffformats text according to control lines embedded in the text in the given files. Encounter
ing a nonexistent file terminates printing. Incoming inter-terminal messages are turned off dur
ing printing. The optional flag arguments mean: 
+n Start printing at the first page with number n. 
-n Stop printing at the first page numbered higher than n. 
-s Stop before each page (including the first) to allow paper manipulation; resume on receipt 

of an interrupt signal. 
- h Insert tabs in the output stream to replace spaces whenever appropriate. 

Input consists of intermixed text lines. which contain information to be formatted, and request 
lines. which contain instructions about how to format it. Request lines begin with a dis
tinguished control character. normally a period. 

Output lines may be filled as nearly as possible with words without regard to input lineation. 
Line breaks may be caused at specified places by certain commands, or by the appearance of an 
empty input line or an input line beginning with a space. 

The capabilities of rolf are specified in the attached Request Summary. Numerical values are 
denoted there by n or +n, titles by t, and single characters by c. Numbers denoted +n may be 
signed + or -, in which case they signify relative changes to a quantity, otherwise they signify 
an absolute resetting. Missing n fields are ordinarily taken to be 1, missing t fields to be empty, 
and c fields to shut off the appropriate special interpretation. 

Running titles usually appear at top and bottom of every page. They are set by requests like 

.he 'part 1 'part2'part3' 

Part 1 is left justified, part2 is centered, and part3 is right justified on the page. Any % sign in a 
title is replaced by the current page number. Any nonblank may serve as a quote. 

ASCII tab characters are replaced in the input by a replacement character. normally a space, 
according to the column settings given by a .ta command. (See .tr for how to convert this char
acter on output,) 

Automatic hyphenation of fiUed output is done under control of .hy. When a word contains a 
designated hyphenation character. that character disappears from the output and hyphens can be 
introduced into the word at the marked places only. 

The - mr option of nroffor rrQff(l) simulates roffto the greatest extent possible. 

lusr/lib/suftab suffix hyphenation tables 
Itmp/rtm? temporary 

Roffis the simplest of the text formatting programs, and is utterly frozen. 

7th Edition 1 



ROFF (1) ROFF (1) 

REQUEST SUMMARY 

Request Break Initial Meaning 
.ad yes yes Begin adjusting right margins . 
. ar no arabic Arabic page numbers . 
. br yes Causes a line break the filling of the current line is stopped . 
. bl n yes Insert of n blank lines, on new page if necessary . 
. bp +n yes n == 1 Begin new page and number it n; no n means • + 1 ' . 
. cc c no C==. Control character becomes 'c' . 
. ce n yes Center the next n input lines, without filling . 
. de xx no Define parameterless macro to be invoked by request '.xx' (definition ends on line 

. ds 

.ef t 

.eh t 

.fi 

yes 
no 
no 
yes 

.fo no 

. hc c no 

.he t no 

. hx no 

. hy n no 

.ig no 

.in +n yes 

.ix +n no 

.Ii n no 

. 11 +n no 

.Is +n yes 

. ml n no 

. m2 n 

. m3 n 

. m4 n 

.na 

.ne n 

no 
no 
no 
yes 
no 

. nn +n no 

. n1 no 

. n2 n no 

. ni +n 

. nf 

. nx file 

.of t 

no 
yes 

no 
.oh t no 
. pa +n yes 
. pl +n no 
. po +n no 
.ro 
. sk n 
.sp n 
.ss 
.ta n n .. 

no 
no 
yes 
yes 

.tc c no 

. ti +n yes 

. tr cdef.. no 

. ul n no 

7th Edition 

beginning' . .'). , 
no Double space; same as '.Is 2' . 
t- Even foot title becomes t. 
t.... Even head title becomes t. 
yes Begin filling output lines. 
I == All fOOl titles are 1. 

none Hyphenation character becomes 'c' . 
All head titles are t. 
Title lines are suppressed . 
Hyph~nation is done, if n -1; and is not done, if n - O . 
Ignore input lines through a line beginning with' .: . 
Indent n spaces from left margin . 
Same as '.in' but without break . 
Literal, treat next n lines as text. 

n -65 Line length including indent is n characters . 
n -1 Line spacing set to n lines per output line . 
n == 2 Put n blank lines between the top of page and head title . 
n == 2 n blank lines put between head title and beginning of text on page . 
n .... 1 n blank lines put between end of text and foot title . 
n == 3 n blank lines put between the foot title and the bottom of page . 
no Stop adjusting the right margin. 

Begin new page, if n output lines cannot fit on present page. 
The next n output lines are not numbered . 

no Add 5 to page offset; number lines in margin from 1 on each page . 
no Add 5 to page offset; number lines from n; stop if n -0 . 
n -0 Line numbers are indented n . 
no Stop filling output lines . 
Switch input to 'file' . 
t == Odd foot title becomes t. 

t - Odd head title becomes t. 
n-1 Sameas'.bp' . 
n == 66 Total paper length taken to be n lines . 
n == 0 Page offset. All lines are preceded by n spaces . 
arabic Roman page numbers. 

Produce n blank pages starling next page . 
Insert block of n blank lines, except at top of page. 

yes Single space output lines, equivalent to '.Is 1'. 
Pseudotab settings. Initial tab settings are columns 9 17 25 , __ 

space Tab replacement character becomes 'c'_ 
Temporarily indent next output line n spaces . 
Translate c into d, e into f, etc . 
Underline the letters and numbers in the next n input lines . 

2 



SA (1M) SA ( 1 M) 

NAME 
sa, accton - system accounting 

SYNOPSIS 
sa [ -abcjlnrstuv 1 [ file] 

/ etc/ accton [ file ] 

DESCRIPTION 

FILES 

With an argument naming an existing file. accton causes system accounting information for 
every process executed to be placed at the end of the file. If no arguemnt is given, accounting 
is turned off. 

Sa reports on, cleans up, and generally maintains accounting files. 

Sa is able to condense the information in /usr/admlacct into a summary file /usrladmlsavacc! 
which contains a count of the number of times each command was called and the time 
resources consumed. This condensation is desirable because on a large system acc! can grow by 
100 blocks per day. The summary file is read before the accounting file, so the reports include 
all available information. 

If a file name is given as the last argument, that file will be treated as the accounting file; sha is 
the default. There are zillions of options: 

a Place all command names containing unprintable ·characters and those used only once 
under the name '···other.' 

b Sort output by sum of user and system time divided by number of calls. Default sort is 
by sum of user and system times. 

c Besides total user, system, and real time for each command print percentage of total 
time over all commands. 

j Instead of total minutes time for each category, give seconds per call. 

I Separate system and user time; normally they are combined. 

m Print number of processes and number of CPU minutes for each user. 

n Sort by number of calls. 

r Reverse order of sort. 

s Merge accounting file into summary file /usr/admlsavacct when done. 

For each command report ratio of real time to the sum of user and system times. 

u Superseding all other flags, print for each command in the accounting file the user 1 D 
and command name. 

v If the next character is a digit n. then type the name of each command used n times or 
fewer. Await a reply from the typewriter; if it begins with 'y', add the command to the 
category '··junk".' This is used to strip out garbage. 

/usr/adm/acct raw accounting 
/usr/adm/savacct summary 
/usr/adm/usracct per-user summary 

SEE ALSO 
ad}), acct(2) 

7th Edition 





SED (I) SED (I) 

NAME 
sed - stream editor 

SYNOPSIS 
sed [ -n ] [ -e script] ( -f sfile ] I file] ... 

DESCRIPTION 
Sed copies the named .files (standard input default) to the standard output, edited according to a 
script of commands. The -f vption causes the script to be taken from file sjile; these options 
accumulate. If there is just one -e option and no .... rs, the flag -e may be omitted. The -n 
option suppresses the default output. 

A script consists of editing commands, one per line, of the following form: 

[address [, address] ] function (arguments] 

In normal operation sed cyclically copies a line of input into a pattern space (unless there is 
something left after a 'D' command), applies in sequence all commands whose addresses select 
that pattern space, and at the end of the script copies the paltern space to the standard output 
(except under - n) and deletes the pattern space. 

An address is either a decimal number that counts input lines cumulatively across files, a '$' 
that addresses the last line of input, or a context address, '/regular expression/', in the style of 
ed(1) modified thus: 

The escape sequence '\n' matches a newline embedded in the pattern space. 

A command line with no addresses selects every pattern space. 

A command line with one address selects each pattern space that matches the address. 

A command line with two addresses selects the inclusive rangt from the first pattern space that 
matches the first address through the next pattern space that matches the second~ (If the 
second address is a number less than or equal to the line number first selected, only one line is 
selected.) Thereafter the process is repeated, looking again for the first address. 

Editing commands can be applied only to non-selected pattern spaces by use of the negation 
function 'r (below). 

In the following list of functions the maximum number of permissible addresses for each func
tion is indicated in parentheses. 

An argument denoted 'ex, consists of one or more lines, all but the last of which end with '\' to 
hide the newline. Backslashes in text are treated like backslashes in the replacement string of 
an's' command, and may be used to protect initial blanks and tabs against the stripping that is 
done on every script line. 

An argument denoted r:f7Ie or M!file must terminate the command line and must be preceded by 
exactly one blank. Each ",file is created before processing begins. There can be at most 10 dis
tinct M!file arguments. 

(l )a\ 
'ex, 

Append. Place ,exlon the output before reading the next input line. 

(2) b label 
Branch to the ':' command bearing the label. If label is empty, branch to the end of the 
script. 

(2) c\ 
leXT 

7th Edition 

Change. Delete the pattern space. With 0 or 1 address or at the end of a 2-address 
range, place lext on the output. Start the next cycle. 

1 



SED ( 1 ) 

(2) d 

(2) D 

(2) g 

(2) G 

(2) h 

(2) H 

(1) i\ 

SED ( I ) 

Delete the pattern space. Start the next cycle. 

Delete the initial segment of the pattern Space through the first newline. Start the next 
cycle. 

Replace the contents of the pattern space by the contents of the hold space. 

Append the contents of the hold space to the pattern space. 

Replace the contents of the hold space by the contents of the pattern space. 

Append the contents of the pattern space to the hold space. 

text Insert. Place text on the standard output. 

(2) I List the pattern space on the standard output in an unambiguous form. Non-printing 
characters are spelled in two digit ascii. and long lines are folded. 

(2) n Copy the pattern space to the standard output. Replace the pattern space with the next 
line of input. 

(2) N Append the next line of input to the pattern space with .an embedded newline. (The 
current line number changes.) 

(2) p Print. Copy the pattern space to the standard output. 

(2) P Copy the initial segment of the pattern space through the first newline to the standard 
output. 

(1) q Quit. Branch to the end of the script. Do not start a new cycle. 

(2) r "file 
Read the contents of '.file. Place them on the output before reading the next input line. 

(2) slregular expressionlreplacement(!fags 
Substitute the replacement string for instances of the regular expression in the pattern 
space. Any character may be used instead of '/'. For a fuller description see ed(I). 
Flags is zero or more of 

g Global. Substitute for all nonoyerlapping iJ:lstances of the regular expression 
rather than just the first one. 

p Print the pattern space if a replacement was made. 

w w.file Write. Append the pattern space to w.file if a replacement was made. 

(2) t label 
Test. Branch to the ':' command bearing the label if any substitutions have been made 
since the most recent reading of an input line or execution of a 't'. If label is empty, 
branch to the end of the script. 

(2) w w.file 
Write. Append the pattern space to w.file. 

(2) x Exchange the contents of the pattern and hold spaces. 

(2) ylstringllstring21 
Transform. Replace all occurrences of characters in srringl with the corresponding 
character in string2. The lengths of string 1 and string2 must be equal. 

(2)! function 
Don't. Apply the function (or group, if function is '{') only to lines 110t selected by the 
address(es). 

(0) : label 
This command does nothing; it bears a label for 'b' and 't' commands to branch to. 

7th Edition 2 



SED (1) UNIX Programmer's Manual SED (1) 

(1) = Place the current line number on the standard output as a line. 

(2) I Execute the following commands through a matching 'J' only when the pattern space is 
selected. 

(0) An empty command is ignored. 

SEE ALSO 
ed(l), grep(I), awk(I) 

7th Edition 3 





SH (1) 

NAME 

SH ( 1 ) 

sh, for, case, if, while, :, ., break, continue, cd, eval, exec, exit, export, login. newgrp, read, 
readonly, set, shift, times, trap, umask, wait - command language 

SYNOPSIS 
sh [ -ceiknrstuvx ] [ arg ] ... 

DESCRIPTION 
Sh is a command programming language that executes commands read from a terminal or a file. 
See invocation for the meaning of arguments to the shell. 

Commands. 
A simple-command is a sequence of non blank words separated by blanks (a blank is a tab or a 
space). The first word specifies the name of the command to be executed. Except as specified 
below the remaining words are passed as arguments to the invoked command. The command 
name is passed as argument 0 (see exec(2». The value of a simple-command is its exit status if 
it terminates normally or 200+ stotus if it terminates abnormally (see signa/(2) for a list of 
status values). 

A pipeline is a sequence of one or more commands separated by I. The standard output of each 
command but the last is connected by a pipe(2) to the standard input of the next command. 
Each command is run as a separate process~ the shell waits for the last command to terminate. 

A list is a seque.nce of one or more pipelines separated by;, &, && or II and optionally ter
minated by ; or &. ; and & have equal precedence which is lower than that of && and II, && 
and II also have equal precedence. A semicolon causes sequential execution~ an ampersand 
causes the preceding pipeline to be executed without waiting for it to finish. The symbol && 
(II) causes the list following to be executed only if the preceding pipeline returns a zero (non 

. zero) value. Newlines may appear in a list. instead of semicolons, to delimit commands. 

A command is either a simple-command or one of the following. The value returned by a com
mand is that of the last simple-command executed in the command. 

for name [in word ... ] do list done 
Each tfme a for command is executed name is set to the next word in the for word list 
If in word ... is omitted then in -$(i- is assumed. Execution ends when there are no 
more words in the list. 

case word in [panern [ I pattern ] ... ) lisl;;) .. , esac 
A case command executes the list associated with the first pattern that matches word. 
The' form of the patterns is the same as that used for file name generation. 

if list then list[ elif list then listl ... [else listl ft 
The list following if is executed and if it returns zero the list following then is executed. 
Otherwise, the lisl following elif is executed and if its value is zero the list following 
then is executed. Failing that the else list is executed. 

while list [do listl done 
A whUe command repeatedly executes the while list and if its value is zero executes 
the do list: otherwise the loop terminates. The value returned by a while command is 
that of the last executed command in the do list. until may be used in place of while to 
negate the loop termination test. 

( list) Execute list in a subshell. 

( list) list is simply executed. 

The following words are only recognized as the.first word of a command and when not quoted. 

if then else elif ft case in esac for while until do done { } 

7th Edition 



SH (1 ) SH (1) 

Command substitution. 
The standard output from a command enclosed in a pair of grave accents (' ') may be used as 
part or all of a word; trailing newlines are removed. 

Parameter substitution. 
The character $ is used to introduce substitutable parameters. Positional parameters may be 
assigned values by set. Variables may be set by writing 

name== value [ name== value 1 .. , 
$ {parameter} 

A parameter is a sequence of letters, digits or underscores (a name), a digit, or any of 
the characters * @ # ? - S !. The value, if any, of the parameter is substituted. The 
braces are required only when parameter is followed by a letter, digit, or underscore that 
is not to be interpreted as part of its name. If parameter is a digit then it is a positional 
parameter. If parameter is * or @ then all the positional parameters, starting with $1, 
are substituted separated by spaces. $0 is set from argument zero when the shell is 
invoked. 

$ {parameter -word} 
If parameter is set then substitute its value; otherwise substitute word. 

$ {parameter- word} 
If parameter is not set then set it to word; the value of the parameter is then substituted. 
Positional parameters may not be assigned to in this way. 

$ {parameter? word} 
If parameter is set then substitute its value; otherwise, print word and exit from the 
shell. If word is omitted then a standard message is printed. 

$ {parameter+word} 
If parameter is set then substitute word; otherwise substitute nothing. 

In the above word is not evaluated unless it is to be used as the substituted string. (So that, for 
example, echo SId - 'pwd') will only execute pwd if d is unset,} 

The following parameters are automatically set by the shell. 

# The number of positional parameters in decimal. 
Options supplied to the shell on invocation or·by set. 

? The value returned by the last executed command in decimal. 
S The process number of this shell. 

The process number of the last background command invoked. 

The following parameters are used but not set by the shell. 

HOME The default argument (home directory) for the cd command. 
PA TH The search path for commands (see execution). 
MAIL If this variable is set to the name of a mail file then the shell informs the user 

of the arrival of mail in the specified file. 
PSI Primary prompt string, by default '$ '. 
PS2 Secondary prompt string, by default' > '. 
IFS Internal field separator", normally space, tab, and newline. 

Blank interpretation. 
After parameter and command substitution, any results of substitution are scanned for internal 
field separator characters (those found in SIFS) and split into distinct arguments where such 
characters are found. Explicit null arguments ( .... or ") are retained. Implicit null arguments 
(those resulting from parameters that have no values) are removed. 

7th Edition 2 



SH ( 1 ) SH ( I) 

File name generation. 
Following substitution, each command word is scanned for the characters *, ? and I. If one of 
these characters appears then the word is regarded as a pattern. The word is replaced with 
alphabetically sorted file names that match the pattern. If no file name is found that matches 
the pattern then the word is left unchanged. The character . at the start of a file name or 
immediately following a I, and the character I, must be matched explicitly. 

• Matches any string, including the null string. 
? Matches any single character. 
I ... I Matches anyone of the characters enclosed. A pair of characters separated by -

matches any character fexically between the pair. 

Quoting. 
The following characters have a special meaning to the shell and cause termination of a word 
unless quoted. . 

; " ( ) I < > newline space tab 

A character may be quoted by preceding it with a \. \newline is ignored. All charac~ers 
enclosed between a pair of quote marks r'), except a single quote, are quoted. Inside double 
quotes (" ") parameter and command substitution occurs and \ quotes the characters \ • " and S. 

"$*" is equivalent to .$] $2 •••• whereas 
"S@" is equivalent to "$] - "$2- .••• 

Prompting. 
When used interactively, the shell prompts with the value of PS 1 before reading a command. If 
at any time a newline is typed and further input is needed to complete a command then the 
secondary prompt (spsz) is issued. 

Input output. 
Before a command is executed its input and output may be redirected using a special notation 
interpreted by the shell. The following may appear anywhere in a simple-command or may pre
cede or follow a command and are not passed on to the invoked command. Substitution occurs 
before word or digit is used. 

<: word Use file word as standard input (file descriptor 0). 

> word Use file word as standard output (file descriptor 1). If the file does not exist then it is 
created; otherwise it is truncated to zero length. 

» word 
Use file word as standard output. If the file exists then output is appended (by seeking 
to the end); otherwise the file is created. 

« word 
The shell input is read up to a line the same as word, or end of file. The resulting 
document becomes the standard· input. If any character of woriJ is quoted then no 
interpretation is placed upon the characters of the document; otherwise, parameter and 
command substitution occurs, \newline is ignored, and \ is used to quote the characters 
\ S • and the first character of word. 

< & digit 
The standard input is duplicated from file descriptor digit; see dup(2). Similarly for the 
standard output using> . 

< & - The standard input is closed. Similarly for the standard output using > . 

If one of the above is preceded by a digit then the file descriptor created is that specified by the 
digit (instead of the default 0 or 1). For example, 

7th Edition 3 



SH (1) SH (1) 

... 2>&1 

creates file descriptor 2 to be a duplicate of file descriptor 1. 

If a command is followed by " then the default standard input for the command is the empty 
file (/dev/nuU). Otherwise, the environment for the execution of a command contains the file 
descriptors of the invoking shell as modified by input output specifications. 

Environment. 
The environment is a list of name-value pairs that is passed to an executed program in the 
same way as a normal argument list~ see exec(2) and environ(S). The shell interacts with the 
environment in several ways. On invocation, the shell scans the environment and creates a 
parameter for each name found, giving it the corresponding value. Executed commands inherit 
the same environment. If the user modifies the values of these parameters or creates new ones, 
none of these affects the environment unless the expo~t command is used to bind the shell's 
parameter to the environment. The environment seen by any executed command is thus com
posed of any unmodified name-value pairs originally inherited by the shell, plus any 
modifications or additions, all of which must be noted in export commands. 

The environment for any simple-command may be augmented by prefixing it with one or more 
assignments to parameters. Thus these two Jines are equivalent 

TERM-4S0 cmd args 
(export TERM~ TERM -4S0~ cmd arp) 

If the - k flag is set, all keyword arguments are placed in the environment, even if the occur 
after the command name. The following prints 'a-b c' and 'c?: 
echo a-b c 
set -k 
echo a-b c 

Signals. 
The INTERRUPT and QUIT signals for an invoked command are ignored if the command is 
followed by ,,~ otherwise signals have the values inherited by the shell from its parent. (But 
see also trap.) . . 

Execution. . 
Each time a command is executed the above substitutions are carried out. Except for the 'spe
cial commands' listed below a new process is created and an attempt is made to execute the 
command via an exe(2). 

The shell parameter SPATH defines the search path for the directory containing the command. 
Each alternative directory name is separated by a colon (:). The default path is :/bin:/usr/bin. 
If the command name contains a / then the search path is not used. Otherwise, each directory 
in the path is searched for an executable file. If the file has execute permission but is not an 
a.out file, it is assumed to be a file containing shell commands. A subshell (j.e., a separate pro
cess) is spawned to read it. A parenthesized command is also executed in a subshell. 

Special commands. 
The following commands are executed in the shell process and except where specified no input 
output redirection is permitted for such commands. 

No effect~ the command does nothing . 
. file Read and execute commands from file and return. The search path SPATH is used to 

find the directory containing file. 
break [ n] 

Exit from the enclosing for or while loop, if any. If n is specified then break n levels. 
continue [ n] 

Resume the next iteration of the enclosing for or while loop. If n is specified then 

7th Edition 4 



SH (1) 

• 

SH ( 1 ) 

resume at the n-th enclosing loop. 
cd [arg] 

Change the current directory to argo The shell parameter SHOME is the default argo 
eval [arg ... ] 

The arguments are read as input to the shell and the resulting command(s) executed. 
exec [arg ... ] 

The command specified by the arguments is executed in place of this shell without 
creating a new process. Input output arguments may appear and if no other arguments 
are given cause the shell input output to be modified. 

exit [ n] 
Causes a non interactive shell to exit with the exit status specified by n. If n is omitted 
then the exit status is that of the last command executed. (An end of file will also exit 
from the shell.) . 

export [ name ... ] 
The given names are marked for automatic export to the environment of subsequently
executed commands. If no arguments are given then a list of exportable names is 
printed. 

login [arg ... ] 
Equivalent to 'exec login arg .. .'. 

newlrp [arg ... ] 
Equivalent to 'exec newgrp arg .. .'. 

read name ... 
One line is read from the standard input~ successive words of the input are assigned to 
the variables name in order, with leftover words to the last variable. The return code is 
o unless the end-of-file is encountered. 

readonly [name ... ] 
The given names are marked readonly and the values of the these names may not be 
changed by subsequent assignment. If no arguments are given then a list of all 
readonly names is printed. 

set [ -eknptuvx [arg ... ]] 
-e If non interactive then exit immediately if a command fails .. 
-k All keyword arguments are placed in the environment for a command, not just 

those that precede the command name. 
- n Read commands but do not execute them. 
-t Exit after reading and executing one command. 
-u Treat unset variables as an error when substituting. 
-y Print shell input lines as they are read. 
- x Print commands and their arguments as they are executed. 

Turn off the -x and -y options. 

These flags can also be used upon invocation of the shell. The current set of flags may 
be found in $-. 

Remaining arguments are positional parameters and are assigned, iQ order, to S1, S2, 
etc. If no arguments are given then the values of all names are printed. 

shift The positional parameters from $2... are renamed S1 ... 

times Print the accumulated user and system times for processes run from the shell. 

trap [arg] [n] ... 
Arg is a command to be read and executed when the shell receives signaI(s) n. (Note 
that arg is scanned once when the trap is set and once when the trap is taken.) Trap 
commands are executed in order of signal number. If arg is absent then all trap(s) n 
are reset to their original values. If arg is the null string then this signal is ignored by 
the shell and by invoked commands. If n is 0 then the command arg is executed on 

7th Edition 5 



SH (1) 

FILES 

SH (1) 

exit from the shell, otherwise upon receipt of signal n as numbered in signa/(2). Trap 
with no arguments prints a list of commands associated with each signal number. 

umask [ nnn] 
The user file creation mask is set to the octal value nnn (see umask(2». If nnn is omit
ted, the current value of the mask is printed. 

wait [ n] 
Wait for the specified process and report its termination status. If n is not given then 
all currently active child processes are waited for. The return code from this command 
is that of the process waited for. 

Invocation. 
If the first character of argument zero is -, commands are read from SHOME/. profile, if such a 
file exists. Commands are then read as described below. The following flags are interpreted by 
the shell when it is invoked. 
-c string If the -c flag is present then commands are read from string. 
-s If the -s flag is present or if no arguments remain then commands are read from 

the standard input. Shell output is written to file descriptor 2. 
- i If the - i flag is present or if the shell input and output are attached to a terminal 

(as told by gtty) then this shell is interactive. In this case the terminate signal 
SIGTERM (see signa/(2» is ignored (so that 'kill O' does not kill an interactive 
shell) and the interrupt signal SIGINT is caught and ignored (so that wait is inter
ruptable). In all cases SIGQUIT is ignored by the shell. 

The remaining flags and arguments are described under the set command. 

$HOME/. profile 
Itmp/sh* 
Idev/null 

SEE ALSO 
testO), exed2), 

DIAGNOSTICS 

BUGS 

Errors detected by the shell, such as syntax errors cause the shell to return a non zero exit 
status. If the shell is being used non interactively then execution of the shell file is abandoned. 
Otherwise, the shell returns the exit status of the last command executed (see also exit). 

If < < is used to provide standard input to an asynchronous process invoked by &, the shell gets 
mixed up about naming the input document. A garbage file Itmp/sh* is created, and the shell 
complains about not being able to find the file by another name. 

7th Edition • 6 



SIZE (1) 

NAME 
size - size of an object file 

SYNOPSIS 
size [ object ... ] 

DESCRIPTION 

SIZE (1) 

Size prints the (decimal) number of bytes required by the text, data, and bss portions, and their 
sum in octal and decimal, of each objectafile argument. If no file is specified, a.out is used. 

SEE ALSO 
a.out(S) 

7th Edition 1 



SLEEP (1) 

NAME 
sleep - suspend execution for an interval 

SYNOPSIS 
sleep time 

DESCRIPTION 

SLEEP (1) 

Sleep suspends execution for time seconds. It is used to execute a command after a certain 
amount of time as in: 

(sleep 105; command)& 

or to execute a command every so often, as in: 

while true 
do 

done 

command 
sleep 37 

SEE ALSO 
alarm(2), sleep(3) 

BUGS 
Time must be less than 65536 seconds. 

7th Edition 1 



SORT 0 ) SORT (1 ) 

NAME 
sort - sort or merge files 

SYNOPSIS 
sort [-mubdfinrtxl [+pa31 [-pas2]] ... [-0 name] [-T directory] [name] ... 

DESCRIPTION 
Sort sorts lines of all the named files together and writes the result on the standard output. The 
name '-' means the standard input. If no input files are named, the standard input is scrted. 

The default sort key is an entire line. Default ordering is lexicographic by bytes in machine 
collating sequence. The ordering is affected globally by the following options, one or more of 
which may appear. 

b Ignore leading blanks (spaces and tabs) . in field comparisons. 

d 'Dictionary' order: only letters, digits and blanks are significant in comparisons. 

f Fold upper case letters onto lower case. 

Ignore characters outside the ASCII range 040-0176 in nonnumeric comparisons. 

n An initial numeric string, conSisting of optional blanks, optional minus sign, and zero or 
more digits with optional decimal point, is sorted by arithmetic value. Option n implies 
option b. 

r Reverse the sense of comparisons. 

tx 'Tab character' separating fields is x. 
The notation + pos} - pas2 restricts a sort key to a field beginning at pas} and ending just be
fore pas2. Pos} and pas2 each have the form m.n, optionally followed by one or more of the 
nags bdfinr, where m teUs a number of fields to skip from the beginning of the line and n tells 
a number of characters to skip further. If any Dags are present they override all the global ord
ering options for this key. If the b option is in effect n is counted from the first nonblank in 
the field~ b is attached independently to pas2. A missing • n means .O~ a missing - pas2 means 
the end of the line. Under the -tx option, fields are strings separated by .r. otherwise fields 
are nonempty non blank strings separated by blanks. 

When there are multiple sort keys, later keys are compared only after all earlier keys compare 
equal. Lines that otherwise compare equal are ordered with all bytes significant. 

These option arguments are also understood: 

c Check that the input file is sorted according to the ordering rules~ give no output unless 
the file is out of sort. 

m Merge only, the input files are already sorted. 

o The next argument is the name of an output file to use instead of the standard output. 
This file may be the same as one of the inputs. 

T The next argument is the name of a directory in which temporary files should be made. 

u Suppress aU but one in each set of equal lines. Ignored bytes and bytes outside keys do 
not participate in this comparison. 

Examples. Print in alphabetical order all the unique spellings in a list of words. Capitalized 
words differ from uncapitalized. 

sort -u +Of +0 list 

Print the password file (passwd(S» sorted by user id number (the 3rd colon-separated field). 

7th Edition 



SORT (1) SORT 0 ) 

sort -t: +2n !etc!passwd 

Print the first instance of each month in an already sorted file of (month day) entries. The op
tions -urn with just one input file make the choice of a unique representative from a set of 
equal lines predictable. 

sort -um +0 -} dates 

FILES 
!usr!tmp!stm*, Itmpl*: first and second tries for temporary files 

SEE ALSO 
uniq(I), commO), rev(}), join(I) 

DIAGNOSTICS 
Comments and exits with nonzero status for various trouble conditions and for disorder 
discovered under option -c. 

BUGS 
Very long lines are silently truncated. 

7th Edition 2 



SPELL ( 1 ) SPELL ( 1 ) 

NAME 
spell. spellin. spellout - find spelling errors 

SYNOPSIS 
spell ( option 1 ... [file 1 ... 
/usr/src/cmd/spell/spellin [ list 1 
/usr/src/cmd/spell/spellout ( -d) list 

DESCRIPTION 

FILES 

BUGS 

Spell collects words from the named documents, and looks them up in a spelling list. Words 
that neither occur among nor are derivable (by applying certain inflections. prefixes or suffixes) 
from words in the spelling list are printed on the standard output. If no files are named, words 
are collected from the standard input. 

Spell ignores most froj]; fbi and eqnO) constructions. 

Under the - v option, all words not literally in the spelling list are printed, and plausible deriva
tions from spelling list words are indicated. 

Under the -b option. British spelling is checked. Besides preferring centre. colour. speciality. 
travelled. etc., this option insists upon -;se in words like standardise. Fowler and the OED to the 
contrary notwithstanding. 

Under the -" option, every plausible stem is printed with' -' for each word. 

The spelling list is based on many sources, and while more haphazard than an ordinary diction
ary, is also more effective in respect to proper names and popular technical words. Coverage of 
the specialized vocabularies of biology, medicine and chemistry is light. 

Pertinent auxiliary files may be specified by name arguments, indicated below with their default 
settings. Copies of all output are accumulated in the history file. The stop list filters out 
misspellings (e.g. thier- thy -y + ied that would otherwise pass. 

Two routines help maintain the hash lists used by spell. Both expect a list of words, one per 
line, from the standard input. Spellin adds the words on the standard input to the preexisting 
list and places a new list on the standard output. If no list is specified. the new list is created 
from scratch. 5pelloLlt looks up each word in the standard input and prints on the standard out
put those that are missing from (or present on, with option -d) the hash list. 

D-/usr/dictlhlistlab): hashed spelling lists, American & British 
S - / usr / dict/hstop: hashed stop list 
H-/usr/dict/spellhist: history file 
/usr/lib/spell 
deroff(l), sortO), tee(!), sed(1) 

The spelling list's coverage is uneven; new installations will probably wish to monitor the out
put for several months to gather local additions. 
British spelling was done by an American. 

7th Edition 



SPLINE (lG) SPLINE (lG) 

NAME 
spline - interpolate smooth curve 

SYNOPSIS 
spline [ option ] ... 

DESCRIPTION 
Spline takes pairs of numbers from the standard input as abcissas and ordinates of a function. It 
produces a similar set, which is approximately equally spaced and includes the input set, on the 
standard output. The cubic spline output (R. W. Hamming, Numerical Methods for Scienlists and 
Engineers, 2nd ed., 349ft') has two continuous derivatives, and sufficiently many points to look 
smooth when plotted, for example by graph (1). 

The following options are recognized, each as a separate argument. 

- a Supply abscissas automatically (they are missing from the input); spacing is given by the 
next argument, or is assumed to be 1 if next argument is not a number. 

- k The constant k used in the boundary value computation 

" k II " k " Yo - YI' Yn - Yn-I 

is set by the next argument. By default k - O. 

- n Space output points so that approximately n intervals occur between the lower and upper x 
limits. <Default n - 100.) 

- p Make output periodic, i.e. match derivatives at ends. First and last input values should 
normally agree. 

- x Next 1 (or 2) arguments are lower (and upper) x limits. Normally these limits are calcu
lated from the data. Automatic abcissas start at lower limit (default 0). 

SEE ALSO 
graph (1) 

DIAGNOSTICS 

BUGS 

When data is not strictly monotone in x, spline reproduces the input without interpolating extra 
points. 

A limit of 1000 input points is enforced silently. 

7th Edition 



SPLIT (1 ) 

NAME 
split - split a file into pieces 

SYNOPSIS 
spilt [ -n] [ file [ name] ] 

DESCRIPTION 

SPLIT ( 1 ) 

Split reads lile and writes it in n-Iine pieces (default 1000), as many as necessary, onto a set of 
output files. The name of the first output file is name with aa appended, and so on lexicograph
ically. If no output name is liven, x is default. 

If no input file is liven. or if - is given in its stead. then the standard input file is used. 

7th Edition 



STRIP (I) STRIP (I ) 

NAME 
strip - remove symbols and relocation bits 

SYNOPSIS 
strip name ... 

DESCRIPTION 
Strip removes the symbol table and relocation bits'ordinaiily attached to the output of the 
assembler and loader. This is useful to save space after a proaram has been debuued. 

The effect of strip is the same as use of the -s option of /d. 

FILES 
/tmp/stm? 

SEE ALSO 
Id(1) 

7th Edition 

temporary file 

1 



STRUCT (1) STRUCT (1) 

NAME 
struct - structure Fortran programs 

SYNOPSIS 
struct [ option J ... file 

DESCRIPTION 

FILES 

Struct translates the Fortran program specified by file (standard input default> into a Ratfor pro
gram. Wherever possible, Ratfor control c::mstructs replace the original Fortran. Statement 
numbers appear only where still necessary. Cosmetic changes are made, including changing 
Hollerith strings into quoted strings and relational operators into symbols Le.g. • .GT.' into 
'> '). The output is appropriately indented. 

The following options may occur in any order. 

- s Input is accepted in standard format, Le. comments are specified by a c, C, or • in 
column 1, and continuation lines are specified by a nonzero, nonblank character in 
column 6. Normally, a statement whose first non blank character is not alphanumeric is 
treated as a continuation. 

- i Do not turn computed goto statements'into switches. (Ratfor does not turn switches 
back into computed goto statements.) 

-8 Turn sequences of else ifs into a non-Ratfor switch of the form 

switch ( 
case pred 1: code 
case pred2: code 
case pred3: code 
default: code 

The case predicates are tested in order; the code appropriate to only one case is exe
cuted. This generalized form of switch statement does not occur in Ratfor. 

- b Generate goto's instead of multilevel break statements. 

- n Generate goto's instead of multilevel next statements. 

- en If n is 0 (default), place code within a loop only if it can lead to an iteration of the loop. 
If n is nonzero, admit code segments with fewer than n statements to a loop if other
wise the loop would have exits to several places including the segment, and the seg
ment can be reached only from the loop. 

Itmp/struct· 
lusr/lib/structr 

SEE ALSO 

BUGS 

f77(1) 

Struct knows Fortran 66 syntax, but not full Fortran 77 (alternate returns, IF ... THEN ... ELSE, 
etc.) 
If an input Fortran program contains identifiers which are reserved words in Ratfor, the struc
tured version of the program will not be a valid Ratfor program. 
Extended range DO's generate cryptic errors. 
Columns 73-80 are not special even when - s is in effect. 
Will not generate Ratfor FOR statements. 

7th Edition 1 





STTY (I) STTY (I) 

NAME 
stty - set terminal options 

SYNOPSIS 
stty [ option ... ] 

DESCRIPTION 
Stry sets certain 110 options on the current output terminal. With no argument, it reports the 
current settings of the options. The option strings are selected from the foliowing set: 

even allow even parity 
-even disallow even parity 
odd allow odd parity 
- odd disallow odd parity 
raw raw mode input (no erase, kill, interrupt, quit, EOT; parity bit passed back) 
- raw negate raw mode 
cooked same as • - raw' 
cbreak make each character available to read(2) as received; no erase and kill 
-cbreak 

-oi 
01 
echo 
-echo 
lease 
-lease 
-tabs 
tabs 
ek 

make characters available to read only when newline is received 
allow carriage return for new-line, and output CR-LF for carriage return or new-line 
accept only new-line to end lines 
echo back every character typed 
do not echo characters 
map upper case to lower case 
do not map case 
replace tabs by spaces when printing 
preserve tabs 
reset erase and kill characters back to normal # and @ 

erase c set erase character to c. C can be of the form ,. X' which is interpreted as a 'control 
X'. 

kill c set kill character to c. ,. X' works here also. 
. crO crl cr2 cr3 

select style of delay for carriage return (see ;oct/(2» 
nlO nil nl2 nl3 

select style of delay for linefeed 
tabO tabl tab2 tab3 

select style of delay for tab 
ffO m select style of delay for form feed 
bsO bsl select style of delay for backspace 
tty33 set all modes suitable for the Teletype Corporation Model 33 terminal. 
tty37 set all modes suitable for the Teletype Corporation Model 37 terminal. 
vtOS set all modes suitable for Digital Equipment Corp. VTOS terminal 
tn300 set all modes suitable for a General Electric TermiNet 300 
ti700 set all modes suitable for Texas Instruments 700 series terminal 
tek set all modes suitable for Tektronix 4014 terminal 
hup hang up dataphone on last close. 
- hup do not hang up dataphone on last close. 
o hang up phone line immediately 
SO 75 110134150 200 300600 1200 18002400 4800 9600 exta extb 

Set terminal baud rate to the number given, if possible. (These are the speeds sup
ported by the DH-ll interface). 

7th Edition 1 



STTY (1) STTY (1) 

SEE ALSO 
ioctl(2), tabs(I) 

" 

7th Edition 2 



SU (1) 

NAME 
su - substitute user id temporarily 

SYNOPSIS 
su [ userid ] 

DESCRIPTION 

SU (1) 

Su demands the password of the specified userid. and if it is given, changes 10 that userid and 
invoices the Shell sh (I) without changing the current directory or the user environment (see 
environ (5». The new user ID stays in force until the Shell exits. 

If no userid is specified, 'root' is assumed. To remind the super~user of his responsibilities, the 
Shell substitutes' #' for its usual prompt. 

SEE ALSO 
sh(l) 

7th Edition 



SUM (1) SUM (l) 

NAME 
sum - sum and count blocks in a file 

SYNOPSIS 
sum file 

DESCRIPTION 
Sum calculates and prints a 16·bit checksum for the named file, and also prints the number of 
blocks in the file. It is typically used to look for bad spots, or to validate a file communicated 
over some transmission line. 

SEE ALSO 
wc(l) 

DIAGNOSTICS 
'Read error' is indistinuishable from end of file on most devices: check the block count. 

7th Edition 1 



SYNC (1M) 

NAME 
sync - update the super block 

SYNOPSIS 
sync 

DESCRIPTION 

SYNC(lM) 

Sync executes the sync system primitive. If the system is to be stopped, sync must be called to 
insure file system integrity. See sync(2) for details. 

SEE ALSO 
sync(2), update(8) 

7th Edition 



TABS (I) TABS ( 1 ) 

NAME 
tabs - set terminal tabs 

SYNOPSIS 
tabs [ - n 1 [ terminal 1 

DESCRIPTION 
Tabs sets the tabs on a variety of terminals. Various of the terminal names given in rerm (7) 
are recognized~ the default is, however, suitable for most 300 baud terminals. If the - n flag is . 
present then the left margin is not indented as is normal. 

SEE ALSO 
stty (1), term (7) 

7th Edition 



TAIL (}) TAIL (1) 

NAME 
tail - deliver the last part of a file 

SYNOPSIS 
tail [ ±number[lbc] ] [ file] 

DESCRIPTION 
Tail copies the named file to the standard output beginning at a designated place. If no file is 
named, the standard input is uS,ed. 

Copying begins at distance +number from the beginning, or -number from the end of the 
input. Number is counted in units of lines, blocks or characters, according to the appended 
option 1, b or c. When no units are specified, counting is by lines. 

SEE ALSO 
ddO) 

BUGS 
Tails relative to the end of the file are treasured up in a buffer, and thus are limited in length. 
Various kinds of anomalous behavior may happen with character special files. 

7th Edition 





TAR (1) TAR (l) 

NAME 
tar - tape archiver 

SYNOPSIS 
tar [ key] [ name ", ] 

DESCRIPTION 
Tar saves and restores files on magtape, Its actions are controlled by the key argument. The 
key is a string of characters containing at most one function lette.- and possibly one or more 
function modifiers, Other arguments to the command are file or directory names specifying 
which files are to be dumped or restored, In all cases, appearance of a directory name refers to 
the files and (recursively). subdirectories of that dir~ctory, 

The function portion of the key is specified by one of the following letters: 

r The named files are written on the end of the tape. The c function implies this, 

x The named files are extracted from the tape. If the named file matches a directory 
whose contents had been written onto the tape, this directory is (recursively) 
extracted. The owner, modification time, and mode are restored (if possible). Ie no 
file argument is given, the entire content of the tape is extracted. Note that if multiple 
entries specifying the same file are on the tape, the last one overwrites all earlier. 

t The names of the specified files are listed each time they occur on the tape. If no file 
argument is given, all of the names on the tape are listed. 

u The named files are added to the tape if either they are not already there or have been 
modified since last put on the tape. 

c Create a new tape; writing begins on the beginning of the tape instead of after the last 
file. This command implies r. 

The following characters may be used in addition to the letter which selects the function 
desired. 

0 •.•• ,7 

v 

w 

f 

b 

m 

7th Edition 

This modifier selects the drive on which the tape is mounted. The default is 1. 

Normally tar does its work silently. The v (verbose) option causes it to type the 
name of each file it treats preceded by the function letter. With the t function, v 
gives more information about the tape entries than just the nam~. 

causes tar to print the action to be taken followed by file name, then wait for user 
confirmation. If a word beginning with 'y' is given. the action is performed. Any 
other input means don't do it. 

causes tar to use the next argument as the name of the archive instead of /dev/mt? 
If the name of the file is • - " tar writes to standard output or reads from standard 
input, whichever is appropriate. Thus, tar can be used as the head or tail of a filter 
chain Tar can also be used to move hierarchies with the command 

cd fromdir~ tar cf - . I (cd todir~ tar xf -) 

causes tar to use the next argument as the blocking factor for tape records. The 
default is 1, the maximum is 20. This option should only be used with raw magnetic 
tape archives (See f above). The block size is determined automatically when read
ing tapes (key letters 'x' and 't'). 

tells tar to complain if it cannot resolve all of the links to the files dumped. If this is 
not specified, no error messages are printed. 

tells tar to not restore the modification times. The mod time will be the time of 
extraction. 

1 



TAR (1) TAR (I) 

FILES 
/dev/mt? 
/tmp/w* 

DIAGNOSTICS 

BUGS 

Complaints about bad key characters and tape read/write errors. 
Complaints if enough memory is not available to hold the link tables. 

There is no way to ask for the n-th occurrence of a file. 
Tape errors are handled ungracefully. 
The·u option can be slow. 
The b option should not be used with archives that are going to be updated. The current 
magtape driver cannot backspace raw magtape. If the archive is on a disk file the b option 
should not be used at all,. as updating an archive stored in this manner can destroy it. 
The current limit on file name length is 100 characters.' 

7th Edition 2 



TBL (1) ltiL t L ) 

NAME 
tbl - format tables for nroff or troff 

SYNOPSIS 
tbl [ files ] ... 

DESCRIPTION 
Tbl is a preprocessor for formatting tables for nroJf or tToJf(1). The input files are copied to the 
standard output, except for lines between .TS and .TE command lines, which are assumed to 
describe tables and reformatted. Details are given in the reference manual. 

As an example, letting \t represent a tab (which should be typed as a genuine tab) the input 

.TS 

yields 

c s s 
ces 
eee 
1 r! n. 
Household Population 
Town\tHouseholds 
\tNumber\tSize 
Bedminster\t789\t3.26 
Bernards Twp.\t3087\t3.74 
Bernardsville\t2018\t3.30 
Bound Brook\t3425\t3.04 
Branchburg\t 1644\t3.49 
Bridgewater\t7897\t3.81 
Far H!Us\t240\t3.19 
.TE 

Household Population 
Town Households 

Bedminster 
Bernards Twp. 
Bernardsville 
Bound Brook 
Branchburg 
Bridgewater 
Far Hills 

Number Size 
789 3.26 

3087 3.74 
2018 3.30 
3425 3.04 
1644 3.49 
7897 3.81 

240 3.19 

If no arguments are given, tbl reads the standard input, so it may be used as a filter. When it is 
used with eqn or neqn the tbl command should be first, to minimize the volume of data passed 
through pipes. 

SEE ALSO 
troffO), eqn (l ) 
M. E. Lesk, TBL. 

7th Edition 



TC (1) TC (1) 

NAME 
tc - photypesetter simulatoor 

SYNOPSIS 
tc [ - t] [ - sN ] [ - pL ] [file ] 

DESCRIPTION 
Te interprets its input (standard input default) as device codes for a Graphic Systems photo
typesetter (cat). The standard output of Ie is intended for a Tektronix 4015 (a 4014 teminal 
with ASCII and APL character sets). The sixteen typesetter sizes are mapped into the 4014's 
four sizes; the entire TROFF character set is drawn using the 4014's character generator, using 
overstruck combinations where necessary. Typical usage: 

trolf -t file I tc 

At the end of each page Ie waits for a newline (empty line) from the keyboard before continu
ing on to the next page. In this wait state, the command e will suppress the screen erase before 
the next page; sN will cause the next N pages to be skipped~ and nine will send line to the 
shell. 

The command line options are: 

- t Don't wait between pages; for directing output into a file. 

- sN Skip the first N pages. 

- pL Set page length to L. L may include the scale factors p (points), i (inches), c (centime-
ters), and P (picas); default is picas. 

I _/ w' Multiply the default aspect ratio, 1.5, of a displayed page by Uw. 

SEE ALSO 
trolfO ), plot (1) 

BUGS 
Font distinctions are lost. 
The aspect ratio option is unbelievable. 

7th Edition 1 



TEE (l) 

NAME 
tee - pipe fitting 

SYNOPSIS 
tee [ - i ] [ - a ] [ file 1 " .. 

DESCRIPTION 

TEE (1) 

Tee transcribes the standard input to the standard output and makes copies in the Jiles. Option 
- i ignores interrupts~ option - a causes the output to be appended to the Jiles rather than 
overwriting them. 

7th Edition 1 



TEST(I) TEST (I) 

NAME 
test - condition command 

SYNOPSIS 
test expr 

DESCRIPTION 
test evaluates the expression expr, and if its value is true then returns zero exit status; other
wise, a non zero exit status is returned. test returns a non zero exit if there are no arguments. 

The following primitives are used to construct expr. 

- r file true if the file exists and is readable. 

- w file true if the file exists and is writable. 

- f file true if the file exists and is not a directory. 

-d file true if the file exists and is a directory. 

- s file true if the file exists and has a size greater than zero. 

-t [ fildes ] 
true if the open file whose file descriptor number is fi/des (1 by default) is associated 
with a terminal device. 

- z s 1 true if the length of string s1 is zero. 

- n s 1 true if the length of the string s1 is nonzero. 

51 - 52 true if the strings s1 and s2 are equal. 

s 1 ! - 52 true if the strings s1 and s2 are not equal. 

51 true if s 1 is not the null string. 

n1 -eq n2 
true if the integers n 1 and n2 are algebraically equal. Any of the comparisons - ne, 
- gt, - ge, -It, or -Ie may be used in place of - eq. 

These primaries may be combined with the following operators: 

unary negation operator 

- a binary and operator 

- 0 binary or operator 

( expr ) 
parentheses for grouping. 

-a has higher precedence than -0. Notice that all the operators and flags are separate argu
ments to test. Notice also that parentheses are meaningful to the Shell and must be escaped. 

SEE ALSO 
sh(l), findO) 

7th Edition 1 



TIME (1) TIME ( I l 

NAME 
time - time a command 

SYNOPSIS 
time command 

DESCRIPTION 

BUGS 

The given command is executed~ after it is complete, time prints the elapsed time during the 
command, the time spe;;.t in the system, and the time spent in execution of the command. 
Times are reported in seconds. 

The execution time can depend on what kind of memory the program happens to land in: the 
user time tn MOS is often half what it is in core. 

The times are printed on the diagnostic output stream. 

Elapsed time is accurate to the second, while the CPU times are measured to the 60th second. 
Thus the sum of the CPU times can be up to a second larger than the elapsed time. 

7th Edition 



TK (1) TKO) 

NAME 
tk - paginator for the Tektronix 4014 

SYNOPSIS 
tk [ - t ] [ - N] [ - pL] [ file ] 

DESCRIPTION 
The output of rk is intended for a Tektronix 4014 terminal. Tk arranges for 66 lines to fit on 
the screen, divides the screen into N columns. and contributes an eight space page offset in the 
(default) single-column case. Tabs, spaces, and backspaces are collected and plotted when 
necessary. Teletype Model 37 half .. and reverse-line sequences are interpreted and plotted. At 
the end of each page tk waits for a newline (empty line) from the keyboard before continuing 
on to the next page. In this wait state, the command !command will send the command to the 
shell. 

The command line options are: 

-t Don't wait between pages~ for directing output into a file. 

- N Divide the screen into N columns and wait after the last column. 

-pL Set page length to L lines. 

SEE ALSO 
prO) 

7th Edition 



TOUCH (1) 

NAME 
touch - update date last modified of a file 

SYNOPSIS 
touch [ -c J file ... 

DESCRIPTION 

TOUCH (1) 

Touch attempts to set the modified date of each file. This is done by reading a character from 
the file and writing it back. 

If a file does not exist, an attempt will be made to create it unless the -c option is specified. 

7th Edition 1 





TP (I) TP (1) 

NAME 
tp - manipulate tape archive 

SYNOPSIS 
tp [ key ] [ name ... ] 

DESCRIPTION 
Tp saves and restores files on DECtape or magtape. Its actions are controlled by the keyargu
ment. The key is a string of characters containing at most one function letter and possibly one 
or more function modifiers. Other arguments to the command are file or directory names 
specifying which files are to be dumped, restored, or listed. In all cases, appearance of a direc
tory name refers to the files and (recursively) subdirectories of that directory. 

The function portion of the key is specified by one of the following letters: 

r The named files are written on the tape. If files with the same names already exist, 
they are replaced. 'Same' is determined by string comparison, so 'Jabc' can never be 
the same as '/usr/dmr/abc' even if '/usr/dmr' is the current directory. If no file argu
ment is given, '.' is the default. 

U updates the tape. u is like r, but a file is replaced only if its modification date is later 
than the date stored on the tape~ that is to say, if it has changed since it was dumped. 
u is the default command if none is given. 

d deletes the named files from the tape. At least one name argument must be given. 
This function is not permitted on magtapes. . 

x extracts the named files from the tape to the file system. The owner and mode are 
restored. If no file argument is given, the entire contents of the tape are extracted. 

t lists the names of the specified files. If no file argument is given, the entire contents 
of the tape is listed. 

The following characters may be used in addition to the letter which selects the function 
desired. 

m 
0, ••• ,7 

v 

c 

f 

7th Edition 

Specifies magtape as opposed to DECtape. 

This modifier selects the drive on which the tape is mounted. For DECtape, x is 
default~ for magtape '0' is the default. 

Normally rp does its work silently. The v (verbose) option causes it to type the 
name of each file it treats preceded by the function letter. With the t function, v 
gives more information about the tape entries than just the name. 

means a fresh dump is being created~ the tape directory is cleared before beginning. 
Usable only with rand u. This option is assumed with magtape since it is impossible 
to selectively overwrite magtape. 

Errors reading and writing the tape are noted, but no action is taken. Normally, 
errors cause a return to the command level. 

Use the first named file, rather than a tape, as the archive. This option is known to 
work only with x. 

causes rp to pause before treating each file, type the indicative letter and the file 
name (as with v) and await the user's response. Response y means 'yes" so the file 
is treated. Null response means 'no', and the file does not take part in whatever is 
being done. Response x means 'exit'~ the tp command terminates immediately. In 
the x function. files previously asked about have been extracted already. With r,u, 
and d no change has been made to the tape. 

deprecated 1 



TP ( 1 ) 

FILES 
Idev/tap? 
Idev/mt? 

SEE ALSO 
ar( 1), tarO) 

DIAGNOSTICS 

BUGS 

Several; the non-obvious one is 'Phase error', which means the file changed after it was 
selected for dumping but before it was dumped. 

A single file with several links to it is treated like several files. 

TP ( 1 ) 

Binary-coded control information makes magnetic tapes written by til difficult to carry to other 
machines; tarO) avoids the problem. . 

7th Edition 2 



TR (1) TR (1) 

NAME 
tr - translate characters 

SYNOPSIS 
tr [ - cds] [string 1 [string2 ] ] 

DESCRIPTION 
Tr copies the standard input to the standard output with substitution or deletion of selected 
characters. Input characters found in string1 are mapped into the corresponding characters of 
string2. When string2 is short it is padded to the length of string1 by duplicating its last charac
ter. Any combination of the options -cds may be used: -c complements the set of characters 
in string} with respect to the universe of characters whose ASCII codes are 01 through 0377 
octal; -d deletes all input characters in string1; -s squeezes all strings of repeated output char
acters that are in string2 to single characters. 

In either string the notation a -b means a range of characters from a to b in increasing ASCn 
order. The character '\' followed by 1, 2 or 3 octal digits stands for the character whose ASCII 
code is given by those digits. A '\' followed by any other character stands for that character. 

The following example creates a list of all the words in 'file1' one per line in 'file2', where a 
word is taken to be a maximal string of alphabetics. The second string is quoted to protect '\' 
from the Shell. 012 is the ASCII code for newline. 

tr -cs A -Za-z '\012' <file} >file2 

SEE ALSO 
ed (I ), ascii (7) 

BUGS 
Won't handle ASCII NUL in string} or string2; always deletes NUL from input 

7th Edition 1 





TROFF ( I ) TROFF ( I) 

NAME 
trolf, nrolf - text formatting and typesetting 

SYNOPSIS 
troft' [ option 1 ... [file] .. . 

nroft' [ option 1 ... [file] .. . 

DESCRIPTION 
Troffformats lext in the named files for printing on a Graphic Systems C/ AfT phototypesetter~ 
nrofffor typewriter-like devices. Their capabilities are described in the NrofflTroffuser's manual. 

If no file argument is present, the standard input is read. An argument consisting of a single 
minus (-) is taken to be a file name corresponding to the standard input. The options, which 
may appear in any order so long as they appear before the files, are: 

-0 list 

-nN 

-sN 

Print only pages whose page numbers appear in the comma-separated list of numbers 
and ranges. A range N- M means pages N through M~ an initial -N means from 
the beginning to page N; and a final N - means from N to the end. 

Number first generated page N. 

Stop every N pages. Nroffwill halt prior to every N pages (default N-l) to allow pa
per loading or changing, and will resume upon receipt of a newline. Troff will stop 
the phototypesetter every N pages, produce a trailer to allow changing cassettes, and 
resume when the typesetter's start button is pressed. 

-mname Prepend the macro file lusr/Ub/tmac/tmac.name to the input jiies. 
-raN Set register a (one-character) to N. 

-i Read standard input after the input files are exhausted. 

-q Invoke the simultaneous input-output mode of the rd request. 

Nroffon/y 

-T name Prepare output for specified terminal. Known names are 37 for the (default) Tele
type Corporation Model 37 terminal, tn300 for the GE TermiNet 300 (or any termi
nal without half-line capability), 300S for the DASI-300S. 300 for the DASI-300, and 
450 for the DASI-450 (Diablo Hyterm). 

-e Produce equally-spaced words in adjusted lines, using full terminal resolution. 

- h Use output tabs during horizontal spacing to speed output and reduce output charac-
ter count. Tab settings are assumed to be every 8 nominal character widths. 

Trqffon/y 

- t Direct output to the standard output instead of the phototypesetter. 

-f Refrain from feeding out paper and stopping phototypesetter at the end of the run. 

-w Wait until phototypesetter is available. if currently busy. 

-b Report whether the phototypesetter is busy or available. No text processing is done. 

-a Send a printable ASCII approximation of the results to the standard output. 

-pN Print all characters in point size N while retaining all prescribed spacings and mo-
tions. to reduce phototypesetter elasped time. 

-I Prepare output for a GCOS phototypesetter and direct it to the standard output (see 
gcatO». 

If the file /usr/adm/traccr is writable. troff keeps phototypesetter accounting records there. The 
integrity of that file may be secured by making troffa 'set user-id' program. 

7th Edition 



TROFF (1) 

FILES 
lusr/lib/suftab 
/tmp/ta· 
lusr/lib/tmac/tmac. • 
lusr/lib/termr 
lusr/lib/fontr 
Idev/cat 
I usr I adm/tracct 

suffix hyphenation tables 
temporary file 
standard macro files 
terminal driving tables for nrqlf 
font width tables for tTq/f 
phototypesetter 
accounting statistics for Idev/cat 

SEE ALSO 
J. F. Ossanna. NroJllTrqlfuser's mtlnual 
B. W. Kernighan. A TROFF Tutorial 
eqn(I). tbl(I) 
col( 1). tk (I) (nroff only) 
tc (I). gcat (1) <troff only) 

7th Edition 

TROFF (1) 

2 



TRUE (1) 

NAME 
true, false - provide truth values 

SYNOPSIS 
true 

false 

DESCRIPTION 

TRUE ( I ) 

True does nothing, successfully. False does nothing, unsuccessfully. They are typically used in 
input to silO) such as: 

while true 
do 

command 
done 

SEE ALSO 
sh( 1) • 

DIAGNOSTICS 
True has exit status zero, false nonzero. 

7th Edition 



TSORT (1) 

NAME 
tsort - topological sort 

SYNOPSIS 
tsort [ file ] 

DESCRIPTION 

TSORT (1) 

Tsort produces on the standard output a totally ordered list of items consistent with a partial 
ordering of items mentioned in the input file. If no file is specified, the standard input is 
understood. 

The input consists of pairs of items (nonempty strings) separated by blanks. Pairs of different 
items indicate ordering. Pairs of identical items indicate presence, but not ordering. 

SEE ALSO 
lorder(1) 

DIAGNOSTICS 
Odd data: there is an odd number of fields in the input file. 

BUGS 
Uses a quadratic algorithm; not worth fixing for the typical use of ordering a library archive file. 

7th Edition 1 



TTY(l) 

NAME 
tty - get terminal name 

SYNOPSIS 
tty 

DESCRIPTION 
Tty prints the pathname of the user's terminal. 

DIAGNOSTICS 
'not a tty' if the standard input file is not a terminal. 

7th Edition 

TTY (\ ) 



UNIQ (1) UNIQ (1) 

NAME 
uniq - report repeated lines in a file 

SYNOPSIS 
uniq [ -ude [ +n ] [ -n ] ] [ input [ output] ] 

DESCRIPTION 
Uniq reads the input file comparing adjacent lines. In the normal case, the second and succeed
ing copies of repeated lines are removed; the remainder is written on the output file. Note that 
repeated lines must be adjacent in order to be found; see sort (I). If the - u flag is used, just 
the lines that are not repeated in the original file are output. The -d option specifies that one 
copy of just the repeated lines is to be written. The normal mode output is the union of the 
- u and - d mode outputs. 

The -e option supersedes -u and -d and generates an output report in default style but with 
each line preceded by a count of the number of times it occurred., 

The n arguments specify skipping an initial portion of each line in the comparison: 

-n The first n fields together with any blanks before each are ignored. A field is defined 
as a string of non-space, non-tab characters separated by tabs and spaces from its 
neighbors. 

+ n The first n characters are ignored. Fields are skipped before characters. 

SEE ALSO 
sort (I ), comm (I ) 

7th Edition PDP1! 1 



UNITS (1) UNITS (1) 

NAME 
units - conversion program 

SYNOPSIS 
units 

DESCRIPTION 

FILES 

BUGS 

Units converts quantities expressed in various standard scales to their equivalents in other 
scales. It works interactively in this fashion: 

You have: inch 
You want: cm 

• 2.54000e+OO 
1 3. 93701e-Ol 

A quantity is specified as a multiplicative combination of units optionally preceded by a numeric 
multiplier. Powers are indicated by suffixed positive integers, division by the usual sign: 

You have: 15 pounds force/in2 
You want: atm 

• 1.0206ge+OO 
I 9. 79730e-Ol 

Units only does multiplicative scale changes .. Thus it can convert Kelvin to Rankine, but not 
Centigrade to Fahrenheit. Most familiar units, abbreviations, and metric prefixes are recog
nized, together with a generous leavening of exotica and a few constants of nature including: 

pi ratio of circumference to diameter 
c speed of light 
e charge on an electron 
g acceleration of gravity 
force same as g 
mole Avogadro's number 
water pressure .head per unit height of water 
au astronomical unit 

'Pound' is a unit of mass. Compound names are run together, e.g. 'light year'. British units 
that differ from their US counterparts are prefixed thus: 'brgallon'. For a complete list of units, 
'cat lusr/lib/units'. 

lusr/lib/units 

Currency conversions are handled, but don't base your financial plans on them. 

7th Edition 





UUCP( IC) UUCP( IC) 

NAME 
uucp, uulog - unix to unix copy 

SYNOPSIS 
uucp [ option ] ...source-file ... destination-file 

uulOC ( option ] ... 

DESCIUPT10N 

FILES 

Uucp copies files named by the source-file arguments to the destination-file argument A file 
name may be a path name on your machine, or may have the form 

system-name! pathname 

where 'system-name' is taken from a list of system names which uucp knows about. Shell 
metacharacters ?* [] appearing in the path name part will be expanded on the appropriate system. 

Pathnames may be one of 

(I) a full pathname~ 

(2) a pathname preceded by - user, where user is a userid on the specified system and is 
replaced by that user's login directory~ 

(3) anything else is prefixed by the current directory. 

If the result is an erroneous pathname for the remote system the copy will fail. If the 
destination-file is a directory, the last part of the source-file name is used. 

Uucp preserves execute permissions across the transmission and gives 0666 read and write per
missions (see chmod(2». 

The following options are interpreted by uucp. 

-d Make all necessary directories for the file copy. 

-c Use the source file when copying out rather than copying the file to the spool directory. 

- m Send mail to the requester when the copy is complete. 

Uulog maintains a summary log of uucp and uux( 1) 
'/usr/spool/uucp/LOOFILE' by gathering information from 
'/usr/spool/uucp/LOO ... ?'. It removes the partial log files. 

The options cause uu/og to print logging information: 

-s~s Print information about work involving system ~s. 

-uuser 
Print information about work done for the specified user. 

lusrlspool/uucp· spool directory 
lusr/tib/uucpr - other data and program files 

transactions in the file 
partial log files named 

SEE ALSO 
uux(1), mail( 1) 
D. A. Nowitz, Uucp Implementation Description 

WARNING 
The domain of remotely accessible files can (and for obvious security reasons, usually should) 
be severely restricted. You will very likely not be able to fetch files by pathname; ask a respon
sible person on the remote system to send them to you. For the same reasons you will prob
ably not be able to send files to arbitrary pathnames. As distributed, the generally accessible 
files are tbose whose names begin lusrlspool/uucp/users. 

7tb Edition 



UUCP (IC) UUCP( IC) 

BUGS 
All files received by uucp will be owned by uucp. 
The - m option will only work ,sending files or receiving a single file. (Receiving multiple files 
specified by special shell characters ?-O will not activate the -m option.) 

7th Edition 2 



UUX{1C) UUX ( Ie) 

NAME 
uux - unix to unix command execution 

SYNOPSIS 
uux [ - ] command-string 

DESCR.IPTION 

FILES 

UUX win gather 0 or more files from various systems, execute a command on a specified system 
and send standard output to a file on a 'specified system. 

The command-string is made up of one or more arguments that look like a shell command line, 
except that the command and file names may be prefixed by system-name!. A null system
name is interpreted as the local system. 

File names may be one of 

(1) a full path name; 

(2) a pathname preceded by -xxx-; where .x::a is a use rid on the specified system and is 
replaced by that user's login directory~ 

(3) anything else is prefixed by the current directory. 

The • -' option will cause the standard input to the uux command to be the standard input to 
the command-string. 

For example, the command 

U'JX ·!dift' usg!/usr/dan/fl pwba!/a4/dan/fl > !fi.ditr' 

will get the fl files from the usg and pwba machines, execute a diff command and put the 
results in fl .dift' in the local directory. 

Any special shell characters such as < > ~ should be quoted either by quoting the entire 
Command-string, or quoting the special characters as individual arguments. 

lusr/uucp/spool - spool directory 
lusr/uucp/· - other data and programs 

SEE ALSO 
uucp(l) 
D. A. Nowitz, Uucp implementation description 

WAR.NING 

BUGS 

An installation may, and for *<:urity reasons generally will, limit the list of commands 
executable on behalf of an incoming request from uux. Typically, a restricted site will permit 
little other than the receipt of mail via uux. 

Only the first command of a shell pipeline may have a system-name!. All other commands are 
executed on the system of the first command. 
The use of the shell metacharacter • will probably not do what you want it to do. 
The shell tokens < < and > > are not implemented . 
. There is no notification of denial of execution on the remote machine. 

7th Edition 1 



WAIT (1) WAIT (1) 

NAME 
wait - await completion of process 

SYNOPSIS 
wait 

DESCRIPTION 
Wait until all processes started with &. have completed, and report on abnormal terminations. 

Because the wair(2) system call must be executed in the parent process, the Shell itself exe
cutes wait. without creating a new process. 

SEE ALSO 
sh (1) 

BUGS 
Not all the processes of a 3- or more-stage pipeline are children of the Shell, and thus can't be 
waited for. 

I 

7th Edition 1 



WALL (lM) 

NAME 
wall - write to all users 

SYNOPSIS 
/ete/wall 

DESCRIPTION 

WALL OM) 

Wall reads its standard input until an end-of-file. It then sends this message, preceded by 
'Broadcast Message ... ', to all logged in users. 

FILES 

The sender should be super-user to override any protections the users may have invoked. 

/dev/tty? 
/etc/utmp 

SEE ALSO 
mesg(1), write(l) 

DIAGNOSTICS 
'Cannot send to ...• when the open on a user's tty file fails. 

7th Edition 1 



WC(1) WC(O 

NAME 
we - word count 

SYNOPSIS 
we: [ -I"e:] [name ... ] 

DESCRIPTION 
We counts lines, words and characters in the named files, or in the standard input if no name 
appears. A word is a maximal string of characters delimited by spaces, tabs or newlines. 

If the optional argument is present, just the specified counts (Jines. words or characters) are 
selected by the letters I. ". or Co 

7th Edition 1 



WHO (I ) WHO (1) 

NAME 
who - who is on the system 

SYNOPSIS 
who [ who-file J [ am I ] 

DESCRIPTION 

FILES 

Who. without an argument. lists the login name, terminal name, and login time for each 
current UNIX user. 

Without an argument, who examines the letc/utmp file to obtain its information. If a file is 
given, that file is examined. Typically the given file will be lusr/adm/wtmp, which contains a 
record of all the logins since it was created. Then who lists logins, logouts, and crashes since 
the creation of the wtmp file. Each login is listed with user name, terminal name (with '/ dey I' 
suppressed), and date and time. When an argument is given, logouts produce a similar line 
without a user name. Reboots produce a line with 'x' in the place of the device name, and a 
fossil time indicative of when the system went down. 

With two arguments, as in 'who am I' (and also 'who are you'), who tells who you are logged 
in as. 

letc/utmp 

SEE ALSO 
getuid (2), utmp(S) 

7th Edition 1 



WRITE (1) WRITE (1) 

NAME 
write - write to another user 

SYNOPSIS 
write user [ tty name ] 

DESCRIPTION 

FILES 

Write copies lines from your terminal to that of another user. When first called, it sends the 
message 

Message from youmame yourttyname ... 

The recipient of the message should write back at this point. Communication continues until 
an end of file is read from the terminal or an interrupt is sent. At that point write writes 'EOT' 
on the other terminal and exits. 

If you want to write to a user who is logged in more than once, the ttyname argument may be 
used to indicate the appropriate terminal name. 

Permission to write may be denied or granted by use of the mesg command. At the outset writ
ing is allowed. Certain commands, in particular nrqifand prO) disallow messages in order to 
prevent messy output. 

If the character '!' is found at the beginning of a line, write calls the shell to execute the rest of 
the line as a command. 

The following protocol is suggested for using write: when you first write to another user, wait 
for him to write back before starting to send. Each party should end each message with a dis
tinctive signal-(o) for 'over' is conventional-that the other may reply. (00) for 'over and 
out' is suggested when conversation is about to be terminated. 

letc/utmp to find user 
Ibin/sh to execute '!' 

SEE ALSO 
mesg(I), who(I), mailO) 

7th Edition 1 



YACC (l) YACC (l) 

NAME 
yacc - yet another compiler-compiler 

SYNOPSIS 
yaee [ -vd ] grammar 

DESCRIPTION 

FILES 

Ya e converts a context-free grammar into a set of tables for a simple automaton which exe
cutes an LR(1) parsing algorithm. The grammar may be ambiguous; specified precedence rules 
are used to break ambiguities. 

The output file,y.tab.e, must be compiled by the C compiler to produce a program yyparse. 
This program must be loaded with the lexical analyzer program, yylex, as well as main and yyer
ror, an error handling routine. These routines must be supplied by the user; LexO) is useful 
for creating lexical analyzers usable by yaee. 

If the -v flag is given, the file y.output is prepared, which contains a description of the parsing 
tables and a report on conflicts generated by ambiguities in the grammar. . 

If the - d flag is used, the file y. tab. h is generated with the define statements that associate the 
yaec-assigned 'token codes' with the user-declared 'token names'. This allows source files other 
than y. tab.e to access the token codes. 

y.output 
y.tab.c 
y.tab.h defines for token names 
yacc.tmp, yacc.acts temporary files 
lusr/lib/yaccpar parser prototype for C programs 
llib/liby.a library with default 'main' and 'yyerror' 

SEE ALSO 
lex(1) 
LR Parsing by A. V. Aho and S. C. Johnson, Computjng Surveys, June, 1914. 
YACC - Yet Another Compiler Compiler by S. C. Johnson. 

DIAGNOSTICS . 

BUGS 

The number of reduce-reduce and shift-reduce conflicts is reported on the standard output; a 
more detailed report is found in the y.OUlpUl file. Similarly, if some rules are not reachable 
from the start symbol, this is also reported. 

Because file names are fixed, at most one yace process can be active in a given directory at a 
time. 

7th Edition 1 





INTRO (2) INTRO (2) 

NAME 
intro, errno - introduction to system calls and error numbers 

SYNOPSIS 
#include < errno. h > 

DESCRIPTION 
Section 2 of this manual lists all the entries into the system. Most of these calls have an error 
return. An error condition is indicated by an otherwise impossible I.;turned value. Almost 
always this is -1 ~ the individual sections specify the details. An error number is also made 
available in the external variable ermo. Ermo is not cleared on successful calls, so it should be 
tested only after an error has occurred. 

There is a table of messages associated with each error, and a routine for printing the message; 
See perror(3). The possible error numbers are not recited with each writeup in section 2, since 
many errors are possible for most of the calls. Here is a list of the error numbers, their names 
as defined in <errno.h >, and the messages available using perror. 

o Error 0 
Unused. 

1 EPERM Not owner 
Typically this error indicates an attempt to modify a file in some way forbidden except 
tn its owner or super-user. It is also returned for attempts by ordinary users to do 
things allowed only to the super-user. 

2 ENOENT No such file or directory 
This error occurs when a file name is specified and the file should exist but doesn't, or 
when one of the directories in a path name does not exist. 

3 ESRCH No such process 
The process whose number was given to signal and ptrace does not exist, or is already 
dead. 

4 EINTR Interrupted system call 
An asynchronous signal (such as interrupt or quit), which the user has elected to catch, 
occurred during a system call. If execution is resumed after processing the signal, it 
will appear as if the interrupted system call returned this error condition. 

S EIO I/O error 
Some physical I/O error occurred during a read or write. This error may in some cases 
occur on a call following the one to which it actually applies. 

6 ENXIO No such device or address 
I/O on a special file refers to a subdevice that does not exist, or beyond the limits of 
the device. It may also occur when, for example, a tape drive is not dialled in or no 
disk: pack is loaded on a drive. 

7 E2BlG Arg list too long 
An argument list longer than S 120 bytes is presented to exec. 

8 ENOEXEC Exec format error 
A request is made to execute a file which, although it has the appropriate permissions, 
does not start with a valid magic number, see a.out(S). 

9 EBADF Bad file number 

7th Edition 

Either a file descriptor refers to no open file, or a read (resp. write) request is made to 
a file that is open only for writing (resp. reading). 



INTRO(2) INTRO (2) 

10 ECHILD No children 
Wait and the process has no living or unwaited-for children. 

11 EAGAIN No more processes 
In a fork. the system's process table is full or the user is not allowed to create any more 
processes. 

12 ENOMEM Not enough core 
During an exec or break. a program asks for more core than the system is able to sup
ply. This is not a temporary condition; the maximum core size is a system parameter. 
The error may also occur if the arrangement of text, data, and stack segments requires 
too many segmentation registers. 

13 EACCES Permission denied 
An attempt was made to access a fiie in a way forbidden by the protection system. 

14 EFAULT Bad address 
The system encountered a hardware fault in attempting to access the arguments of a 
system call. 

15 ENOTBLK Block device required 
A plain file was mentioned where a block device was requlred, e.g. in mount. 

16 EBUSY Mount device busy 
An attempt to mount a device that was already mounted or an attempt was made to 
dismount a device on which there is an active file (open file, current directory, 
mounted-on file, active text segment). . 

17 EEXIST File exists 
An existing file was mentioned in an inappropriate context, e.g. link. 

18 EXDEV Cross-device link 
A link to a file on another device was attempted. 

19 ENODEV No such device 
An attempt was made to apply an inappropriate system call to a device~ e.g. read a 
write-only device. 

20 ENOTDIR Not a directory 
A non-directory was specified where a directory is required, for example in a path name 
or as an argument to chdir. 

21 EISDIR Is a directory 
An attempt to write on a directory. 

22 EINV AL Invalid argument 
Some. invalid argument: dismounting a non-mounted device, mentioning an unknown 
signal in signal. reading or writing a file for which seek has generated a negative pointer. 
Also set by math functions. see intro(3). 

23 ENFILE File table overflow 
The system's table of open files is full. and temporarily no more opens can be accepted. 

24 EMFILE Too many open files 
Customary configuration limit is 20 per process. 

2S ENOTTY Not a typewriter . 
The file mentioned in stty or gtty is not a terminaf or one of the other devices to which 
these calls apply. 

26 ETXTBSY Text file busy 
An attempt to execute a pure-procedure prOlram that is currently open for writing (or 

7th Edition 2 



INTRO (2) INTRO (2) 

reading!). Also an attempt to open for writing a pure-procedure program that is being 
executed. 

27 EFBIG File too large 
The size of a file exceeded the maximum (about 109 bytes). 

28 ENOSPC No space left on device 
During a write to an ordinary file, there is no free space left on the device. 

29 ESPIPE Illegal seek 
An /seek was issued to a pipe. This error should also be issued for other non-seekable 
devices. 

30 EROFS Read-only file system 
An attempt to modify a file or directory was made on a device mounted read-only. 

31 EMLINK Too many links 
An attempt to make more than 32767 links to a file. 

32 EPIPE Broken pipe 
A write on a pipe for which there is no process to read the data. This condition nor
mally generates a signal~ the error is returned if the signal is ignored. 

33 EDOM Math argument 
The argument of a function in the math package (3M) is out of the domain of the 
function. 

34 ERANGE Result too large 

SEE ALSO 
intro(3) 

ASSEMBLER 

The value of a function in the math package (3M) is un representable within machine 
precision. 

as /usr/include/sys.s file ... 

The PDP11 assembly language interface is given for each system call. The assembler symbols 
are defined in '/usr/include/sys.s'. 

Return values appear in registers rO and rl; it is unwise to count on these registers being 
preserved when no value is expected. An erroneous call is always indicated by turning on the 
c·bit of the condition codes. The error number is returned in rOo The presence of an error is 
most easily tested by the instructions bes and bee {'branch on error set (or clear)'). These are 
synonyms for the bes and bee instructions. 

On the lnterdata 8/32, the system call arguments correspond well to the arguments of the C 
routines. The sequence is: 

\a %2,ermo 
I %O,&callno 
svc O.args 

Thus register 2 points to a word into which the error number will be stored as needed~ it is 
cleared if no error occurs. Register 0 contains the system call number~ the nomenclature is 
identical to that on the PDP11. The argument of the SlIC is the address of the arguments, laid 
out in storage as in the C calling sequence. The return value is in register 2 (possibly 3 also, as 
in pipe) and is -1 in case of error. The overflow bit in the program status word is also set 
when errors occur. 

7th Edition 3 



ACCESS (2) ACCESS (2) 

NAME 
access - determine accessibility of file 

SYNOPSIS 
access(name, mode) 
char -name; 

DESCRIPTION 
Access checks the given file name for accessibility according to mode, which is 4 (read), 2 
(write) or 1 (execute) or a combination thereof. Specifying mode 0 tests whether the direc
tories leading to the file can be searched and the file exists. 

An appropriate error indication is returned if name cannot be found or if any of the desired ac
cess modes would not be granted. On disallowed accesses -1 is returned and the error code is 
in errno. 0 is returned from successful tests. 

The user and group lOs with respect to which permission is checked are the real UID and GlD 
of the process, so this call is useful to set-U1D programs. 

Notice that it is only access bits that are checked. A directory may be announced as writable by 
access, but an attempt to open it for writing will fail (although files may be created there): a file 
may look executable, but exec will fail unless it is in proper format. 

SEE ALSO 
stat (2) 

ASSEMBLER 
(access - 33.) 
sys access; name; mode 

7th Edition 

( 



ACCTO} 

NAME 
acct - turn accounting on or off 

SYNOPSIS 
acet(file) 
char -file; 

DESCRIPTION 

ACCTO} 

The system is prepared to write a record in an accounting file for each process as it terminates. 
This call, with a null-terminated string naming an existing file as argument, turns on account
ing~ records for each terminating process are appended to file. An argument of 0 causes 
accounting to be turned off. -

The accounting file format is given in acct(S). 

SEE ALSO 
acct(S), saO} 

DIAGNOSTICS 

BUGS 

On error -1 is returned. The file must exist and the call may be exercised only by the super
user. It is erroneous to try to turn on accounting when it is already on. 

No accounting is produced for programs running when a crash occurs. In particular nonter
minating programs are never accounted for. 

ASSEMBLER 
(acct - 51.) 
sys am; tile 

7th Edition 



ALARM (2) 

NAME 
alarm - schedule signal after specified time 

SYNOPSIS 
alarm (s~Dds) 
uDsilDed s~Dds; 

DESCR.IPTION 

ALARM (2) 

Alarm causes signal SJGALRM. see signa/(2). to be sent to the invoking process in a number 
of seconds given by the argument Unless caught or ignored. the signal terminates the process. 

Alarm requests are not stacked; successive cans reset the alarm clock. If the argument is 0, any 
alarm request is cancelled. Because the clock has a I-second resolution, the signal may occur 
up to one second early; because of scheduling delays, resumption of execution of when the Sig
nal is caught may be delayed an arbitrary amount. The longest specifiable delay time is 65535 
seconds. 

The return value is the amount of time previously remaining in the alarm clock. 

SEE ALSO 
pause (2) , signal (2) , sleep(3) 

ASSEMBLER 
(alarm - 27.) 
(seconds in rO) 
51S alarm 
(previous amount in rO) 

7th Edition 1 



BRK (2) BRK (2) 

NAME 
brk:, sbrk:, break: - change core allocation 

SYNOPSIS 
char *brk(addr) 

char *sbrkUncr) 

DESCRIPTION 
B,k sets the system's idea of the lowest location not used by the program (called the break) to 
add, (rounded up to the next multiple of 64 bytes on the PDPll, 256 bytes on the Interdata 
8/32, 512 bytes on the VAX-1I/780). Locations not less than add, and below the stack: pointer 
are not in the address space and will thus cause a memory violation if accessed. 

In the alternate function sb,k, inc, more bytes are added to the program's data space and a 
pointer to the start of the new area is returned. 

When a program begins execution via exec the break: is set at the highest location defined by 
the program and data storage areas. Ordinarily, therefore, only programs with growing data 
areas need to use b,eak. 

SEE ALSO 
exec(2), malloc(3), end(3) 

DIAGNOSTICS 

BUGS 

Zero is returned if the break could be set~ -1 if the program requests more memory than the 
system limit or if too many segmentation registers would be required to implement the break. 

Setting the break: in the range 0177701 to 0177777 (on the PDPll) is the same as setting it to 
zero. 

ASSEMBLER 
(break - 17.) 
sys break; addr 

Break performs the function of brk. The name of the routine differs from that in C for histori
cal reasons. 

7th Edition 1 



CHOIR (2) 

NAME 
chdir, chroot - change default directory 

SYNOPSIS 
chdir(dirname) 
char *dirname; 

chroot (dirname) 
char *dirname; 

DESCRIPTION 

CHOIR (2) 

Dirname is the address of the pathname of a directory, terminated by a null byte. Chdir causes 
this directory to become the current working directory, the starting point for path names not 
beginning with 'f'. 

Chroot sets the root directory, the starting point for path names beginning with 'f'. The call is 
restricted to the super-user. 

SEE ALSO 
cd(l) 

DIAGNOSTICS 
Zero is returned if the directory is changed~ -1 is returned if the given name is not that of a 
directory or is not searchable. 

ASSEMBLER 
(chdir - 12.) 
sys chdir; dirname 

(chroot - 61.) 
sys chroot; dirname 

7th Edition 



CHMOD (2) CHMOD (2) 

NAME 
chmod - change mode of file 

SYNOPSIS 
cbmod (name, mode) 
cbar ·name; 

DESCRIPTION 
The file whose name is given as the null-terminated string pointed to by name has its mode 
changed to mode. Modes are constructed by ORing together some combination of the follow
in,: 

04000 set user ID on execution 
02000 set group ID on execution 
01000 save text ima,e after execution 
00400 read by owner 
00200 write by owner 
00100 execute (search on directory) by owner 
00070 read, write, execute (search) by ,roup 
00007 read, write, execute (search) by others 

If an executable file is set up for sharing (- n or -I option of Id(1» then mode 1 000 prevents 
the system from abandoning the swap-space image of the prolram-text portion of the file when 
its last user terminates.· Thus when the next user of the file executes it, the text need not be 
read from :he file system but can simply be swapped in, savin, time. Ability to set this bit is 
restricted to the super-user since swap space is consumed by the ima,es; it is only worth while 
for heaily used commands. 

Only the own~r of a file (or the super-user) may change the mode. Only the super-user can set 
the 1000 mode. 

SEE ALSO 
cbmod(l) 

DIAGNOSTIC 
Zero is returned if the mode is changed; -1 is returned if name C&Mot be found or if current 
user is neither the owner of the file nor the super-user. 

ASSEMBLER 
(chmod - IS.) 
S1S cbmod; name; mode 

7th Edition 1 



CHOWN (2) 

NAME 
chown - change owner and group of a file 

SYNOPSIS 
chowa(aame, owner, croup) 
char -name; 

DESCRIPTION 

CHOWN(2) 

The file whose name is given by the null-terminated string pointed to by name has its owner and 
group changed as specified. Only the super-user may execute this call, because if users were 
able to give files away, they could defeat the (nonexistent) file-space accounting procedures. 

SEE ALSO 
chown(l), passwd(S) 

DIAGNOSTICS 
Zero is returned if the owner is changed; - 1 is returned on illegal owner changes. 

ASSEMBLER 
(chown - 16,) 
sys chown; name; owner; croup 

7th Edition 



CLOSE (2) 

NAME 
close - close a file 

SYNOPSIS 
closeUUdes) 

DESCRIPTION 

CLOSE (2) 

Given a file descriptor such as returned from an open, creat, dup or pipe(2) call, close closes the 
associated file. A close of all files is automatic on exit, but since there is a limit on the number 
of open files per process, close is necessary for programs which deal With many' files. 

Files are closed upon termination of a process, ·and certain file descriptors may be closed by 
exed2) (see ioct/(2». 

SEE ALSO 
creat(2), open(2), pipe(2), exec(2), ioctl(2) 

DIAGNOSTICS 
Zero is returned if a file is c1osed~ -1 is returned for an unknown file descriptor. 

ASSEMBLER 
(close - 6.) 
(file descriptor in rO) 
sys close 

7th Edition 1 



CREAT (2) CREAT(2) 

NAME 
creat - create a new file 

SYNOPSIS 
ereat(Dame, mode} 
ehar -Dame; 

DESCRIPTION 
Creal creates a new file or prepares to rewrite an existing file c:alled name, given as the address 
of a null-terminated strina. If the file did not exist, it is given mode mode, as modified by the 
process's mode mask (see umask(2». Also see chmod(2) for the construction of the mode 
argument. 

If the file did exist, its mode and owner remain unchanged but it is truncated to 0 length. 

The file is also opened for writina. and its file descriptor is returned. 

The mode given is arbitrary; it need not allow writing. This feature is used by programs which 
deal with temporary files of fixed names. The creation is done with a mode that forbids writing. 
Then if a second instance of the program attempts a creal, an error is returned and the program 
knows that the name is unusable for the moment. 

SEE ALSO 
write(2). close(2), chmod(2), umask (2) 

DIAGNOSTICS . 
The value -1 is returned if: a needed directory is not searchable; the file does not exist and the 
directory in which it is to be created is not writable; the file does exist and is unwritable~ the file 
is a directory~ there are already too many files open. 

ASSEMBLER 
(creat - 8.) 
S1' ereat; name; mode 
(file descriptor in 10) 

7th Edition 



DUP (2) DUP (2) 

NAME 
dup, dup2 - duplicate an open file descriptor 

SYNOPSIS 
dup(fildes) 
int fildes; 

dup2(fildes, fildes2) 
lnt fildes, fildes2; 

DESCRIPTION 
Given a file descriptor returned from an open, pipe, or creat call, dup allocates another file 
descriptor synonymous with the original. The new file descriptor is returned. 

In the second form of the call, fildes is a file descriptor referring to an open file, and fildesl is a 
non-negative integer less than the maximum value ·allowed for file descriptors (approximately 
19). Dup2 causes fildes2 to refer to the same file as fildes. If fildes2 already referred to an open 
file, it is closed first. 

SEE ALSO 
creat(2), open(2), close(2), pipe(2) 

DIAGNOSTICS 
The value -1 is returned if: the given file descriptor is invalid~ there are already too many 
open files. 

ASSEMBLER 
(dup - 41.) 
(file descriptor in rO) 
(new file descriptor in rl) 
Sf 5 dup 
(file descriptor in rO) 

The dup2 entry is implemented by adding 0100 to fildes. 

7th Edition 1 





EXEC (2) EXEC (2) 

NAME 
execl, execv, execle, execve, execlp, execvp, exec, exece, environ - execute a file 

SYNOPSIS 
execJ(name, argO, argl, ••• f alIn, 0) 
char ·name, ·alIO, ·aral •••.• ·alIn; 
execv(name, arav) 
char ·name. (.aravll; 

execle(name, argO, argl, .•• , aran, 0, envp) 
char ·name, ·argO, ·aral, ••• , ·alIn, *envpll; 
execve(name, arav, envp); 
char ·name, ·aravl I, ·envpll; 
extern char ··environ; 

DESCRIPTION 
Exec in all its forms overlays the calling process with the named file, then transfers to the entry 
point of the core image of the file. There can be no return from a successful exec; the calling 
core image is lost. 

Files remain open across exec unless explicit arrangement has been made; see iOCI/(2). Ignored 
signals remain ignored across these calls, but signals that are caught (see signa/(2» are reset to 
their default values. 

Each user has a reol user 10 and group 10 and an td!eclive user 10 and group 10. The real 10 
identifies the person using the system; the effective 10 determines his access privileges. Exec 
changes the effective user and group 10 to the owner of the executed file if the file has the 
'set-user-IO' or 'set-group.IO' modes. The real user 10 is not affected. 

The name argument is a pointer to the name of the file to be executed. The pointers arr[ 0], 
arg[ll ... address null-terminated strings. Conventionally arr[O] is the name of the file. 

From C. two interfaces are available. Execl is useful when a known file with known arguments 
is being called; the arguments to t!J«C1 are the character strings constitutina the file and the 
arguments; the first argument is conventionally the same as the file name (or its last com
ponent). A 0 argument must end the argument list. 

The exet:V version is useful when the number of arguments is unknown in advance; the argu
ments to execv are the name of the file to be executed and a vector of strings containing the 
arguments. The last argument string must be followed by a 0 pointer. 

When a C program is executed. it is called as follows: 

main(argc, argv, envp) 
int argc; 
char ··argv, ··envp; 

where argc is the argument count and argv is an array of character pointers to the arguments 
themselves. As indicated, arrc is conventionally at least one and the first member of the array 
points to a string containing the name of the file. 

Arrv is directly usable in another execv because argv[arrc) is O. 

Envp is a pointer to an array of strings that constitute the environment of the process. Each 
string consists of a name, an .. - ", and a null-terminated value. The array of pointers is ter
minated by a null pointer. The shell sh(I) passes an environment entry for each global shell 
variable defined when the program is called. See environ(S) for some conventionally used 
names. The C run-time start-off routine places a copy of envp in the global cell environ, which 
is used by txl!CV and txl!ci to pass the environment to any ·subprograms executed by the current 

7th Edition 1 



EXEC (2) EXEC (2) 

FILES 

program. The exec routines use lower-level routines as follows to pass an environment expli
citly: 

execle(file, argO, argl, ... , argn, 0, environ); 
execve(file, argv, environ); 

Execip and execvp are called with the same arguments as execi and execv, but duplicate the 
shell's actions in searching for an executable file in a list of directories. The directory list is 
obtained from the environment. 

/bin/sh shell, invoked if command file found by execlp or execvp 

SEE ALSO 
fork(2), environ(5) 

DIAGNOSTICS 

BUGS 

If the file cannot be found, if it is not executable, if it does not start with a valid magic number 
(see o.out(S», if maximum memory is exceeded, or if the arguments require too much space, 
a return constitutes the diagnostic; the return value is -1. Even for the super-user, at least 
one of the execute-permission bits must be set for a file to be executed. 

If execvp is called to execute a file that turns out to be a shell command file, and if it is impossi
ble to execute the shell, the values of argv[Oi and argyl -J} will be modified before return. 

ASSEMBLER 
(exec - 11.) 
sys exec; name; argv 

(exece - 59,) 
sys exece: name; argv; envp 

Plain exec is obsoleted by exece, but remains for historical reasons. 

When the called file starts execution on the PDPl 1, the stack pointer points to a word contain
ing the number of arguments. Just above this number is a list of pointers to the araument 
strings, followed by a null pointer, followed by the pointers to the environment strings and then 
another null pointer. The strings themselves follow; a 0 word is left at the very top of memory. 

sp- nargs 
argO 

argn 
0 
envO 

envm 
0 

argO: < argO\O > 

envO: < envO\O > 
0 

On the Interdata 8/32. the stack begins at a conventional place (currently OxDOOOO) and grows 
upwards. After exec. the layout of data on the stack is as follows. 

int 0 
argO: byte 

argpO: int argO 

7th Edition 2 



EXEC(2) EXEC (2) 

inl 0 
envpO: int envO 

inl 0 
%2- space 40 

inl nal'JS 
inl arapO 
int envpO 

%3-

This arrangement happens to conform well to C calling conventions. 

7th Edition 3 



EXIT (2) 

NAME 
exit - terminate process 

SYNOPSIS 
exit (status) 
int status; 

_exit(status) 
Int status; 

DESCRIPTION 

EXIT (2) 

Exit is the normal means of terminating a process. Exit closes all the process's files and notifies 
the parent process if it is executing a wait. The low-order 8 bits of status are available to the 
parent process. 

This call can never return. 

The C function exit may cause cleanup actions before the final 'sys exit'. The function _exit cir
cumvents all cleanup. 

SEE ALSO 
wait(2) 

ASSEMBLER 
(exit - 1.) 
(status in rO) 
sys exit 

7th Edition 1 



FORK (2) FORK (2) 

NAME 
fork - spawn new process 

SYNOPSIS 
fork( ) 

DESCR.IPTION 
Fork is the only way new processes are created. The new process's core imase is a copy of that 
of the caller of fork. The only distinction is the fact that the value returned in tho old (parent)· 
process contains the process ID of the new (child) process, while the value returned in the 
child is O. Process IO's ranse from 1 to 30,000. This process ID is used by Wtlit(2). 

Files open before the fork are shared, and have a common read-write pointer. In particular, 
this is the way that standard input and output files are passed and also how pipes are set up. 

SEE ALSO 
wait (2), exec(2) 

DIAGNOSTICS 
Returns -1 and fails to create a process if: there is inadequate swap space, the user is not 
super-user and has too many processes, or the system's process table is full. Only the super
user can take the last process-table slot. 

ASSEMBLER 
(fork - 2.) 
sys fork 
(new process return) 
(old process return, new process ID in rO) 

The return locations in the old and new process differ by one word. The C-bit is set in the old 
process if a new process could not be created. 

7th Edition 1 



GETPID (2) 

NAME 
getpid - get process identification 

SYNOPSIS 
letpid( ) 

DESCRIPTION 

GETPID (2) 

Getpid returns the process ID of the current process. Most often it is used to generate 
uniquely-named temporary files. 

SEE ALSO 
mktemp(3) 

ASSEMBLER 
(getpid - 20,) 
sys letpid 
(pid in rO) 

7th Edition 1 



GETUIO (2) 

NAME 
,ctuid, ,ct,id, ,ctcuid, ,ctc,id - Ict uscr and ,roup idcntity 

SYNOPSIS 
letuld( ) 

leteuld( ) 

leqld( ) 

leteald( ) 

DESCR.IPTION 

GETUIO (2) 

Getuid rcturns thc real uscr 10 of thc current process, geleuid the cffcctive user 10. The real 
user 10 idcntifics the person who is lOlled in, in contradistinction to the effective user 10, 
which dctcrmincs his access permission it the momcnt. It is thus useful to pro,tams which 
opcrate usin& the 'set user 10' mode, to find out who invokcd thcm. 

Getgid returns the real ,roup 10, getegid thc cffectivc group 10. 

SEE ALSO 
setuid(2) 

ASSEMBLER 
(getuid - 24.) 
sys letuld 
(real uscr 10 in rO, cffcctivc uscr 10 in rI) 

(get,id - 47.) 
sys letcld 
(real ,roup 10 in rO, effectivc ,roup 10 in rI) 

7th Edition 1 



INDIR (2) INDIR (2) 

NAME 
indir - indirect system call 

ASSEMBLER 
(jndir - 0.) 
sys indir; call 

The system call at the location call is executed. Execution resumes after the indir call. 

The main purpose of indir is to allow a program to store arguments in system calls and execute 
them out of line in the data segment. This preserves the purity of the text segment. 

If indir is executed indirectly, it is a no-op. If the instruction at the indirect location is not a 
system call, indir returns error code EINV AL; see intro(2). 

7th Edition 1 



IOCTL (2) IOCTL (2) 

NAME 
ioctl, stty, gtty - control device 

SYNOPSIS 
#inelude <sgtty.h> 

ioetHfildes, request, argp) 
struet sgttyb ·argp; 

stty(fildes, argp) 
struet sgttyb ·argp; 

gtty(fildes, argp) 
struet sgttyb ·argp; 

DESCRIPTION 
loc,' performs a variety of functions on character special files (devices). The writeups of vari
ous devices in section 4 discuss how ioe,' applies to them. 

For certain statu~ setting and status inquiries about terminal devices, the functions Sfry and guy 
are equivalent to 

ioetUfildes. TIOCSETP, argp) 
ioetHfildes. TIOCGETP, argp) 

respectively~ see ,ry(4). 

The following two calls, however, apply to any open file: 

ioetHfildes. FlOCLEX, NULL>; 
ioetHfildes. FlONCLEX. NULL>; 

The first causes the file to be closed automatically during a successful exec operation~ the 
second reverses the effect of the first. 

SEE ALSO 
stty( 1). tty(4), exec(2) 

DIAGNOSTICS 

BUGS 

Zero is returned if the call was successful~ -1 if the file descriptor does not refer to the kind of 
file for which it was intended. 

Strictly speaking. since ioe,' may be extended in different ways to devices with different proper
ties. arxp should have an open-ended declaration like 

union ( struet sgttyb ... ; ... ) ·argp; 

The imporlant thing is that the size is fixed by 'struct sguyb'. 

ASSEMBLER 
(iocll - 54.) 
sys ioetl; fildes; request; argp 

(stty - 31.) 
(file descriptor in rO) 
stty; argp 

(gtty - 32.) 
(file descriptor in rO) 
sys gtty; argp 

7th Edition 



KILL (2) KILL (2) 

NAME 
kill - send signal to a process 

SYNOPSIS 
kilHpid, sil); 

DESCRIPTION 
Kill sends the signal sig to the process specified by the process number in rOo See signaJ(2) for 
a list of signals. 

The sending and receiving processes must have the same effective user 10, otherwise this caU 
is restricted to the super-user. 

If the process number is 0, the signal is sent to all other processes in the sender's process 
group; see try(4). . 

If the process number is -1, and the user is the super-user, the signal is broadcast universally 
except to processes 0 and 1, the scheduler and initialization processes, see init(S}. 

Processes may send signals to themselves. 

SEE ALSO 
signal (2), kill (1) 

DIAGNOSTICS 
Zero is returned if the process is killed; -1 is returned if the process does not have the same 
effective user 10 and the user is not super-user, or if the process does not exist. 

ASSEMBLER 
(kill - 37.) 
(process number in rO) 
sys kill; sil 

7th Edition 1 



LINK (2) 

NAME 
link - link to a file 

SYNOPSIS 
link(namel, name2) 
char *namel, ·namel; 

DESCRIPTION 

LINK (2) 

A link to name} is created; the link has the name name2. Either name may be an arbitrary path 
name. 

SEE ALSO 
1nO), unlink(2) 

DIAGNOSTICS 
Zero is returned when a link is made; -1 is returned when name} cannot be found; when 
name] already exists; when the directory of name] cannot be written; when an attempt is made 
10 link to a directory by a user other than the super-user; when an attempt is made to link to a 
file on another file system; when a file has too many links. 

ASSEMBLER 
mnk - 9.) 
sys link; namel; name2 

7th Edition 



LOCK (2) 

NAME 
lock - lock a process in primary memory 

SYNOPSIS 
lock (ftag) 

DESCRIPTION 

LOCK (2) 

If the flag argument is non-zero. the process executing this call will not be swapped except if it 
is required to grow. If the argument is zero. the process is unlocked. This can may only be ex
ecuted by the super-user. 

BUGS 
Locked processes interfere with the compaction of primary memory and can cause deadlock. 
This system call is not considered a permanent part of the system. 

ASSEMBLER 
(tock - 53.) 
sys lock; flag 

7th Edition 



LSEEK (2) LSEEK (2) 

NAME 
lseek, tell - move read/write pointer 

SYNOPSIS 
long lseek (fildes, offset, whence) 
long offset; 

long tell (fildes) 

DESCRIPTION 
The file descriptor refers to a file open for reading or writing. The read Crespo write) pointer for 
the file is set as follows: 

If whence is 0, the pointer is set to oJfset bytes. 

If whence is 1, the pointer is set to its current location plus oJfset. 

If whence is 2, the pointer is set to the size of the file plus oJfset. 

The returned value is the resulting pointer location. 

The obsolete function tel/(fi/des) is identical to iseek(fildes, OL, J). 

Seeking far beyond the end of a file, then writing. creates a gap or 'hole" which occupies no 
physical space and reads as zeros. 

SEE ALSO 
open(2). creat(2), fseek(3) 

DIAGNOSTICS 

BUGS 

-I is returned for an undefined file descriptor, seek on a pipe, or seek to a position before the 
beginning of file. 

L~ek is a no-op on character special files. 

ASSEMBLER 
(Iseek - 19.) 
(file descriptor in rO) 
sys lseek; offsetl; offset2; whence 

Off~tJ and oJfset2 are the high and low words of offset; rO and rl contain the pointer upon re
turn. 

7th Edition 



MKNOD (2) 

NAME 
mknod - make a directory or a special file 

SYNOPSIS 
mknod(name, mode, addr) 
char ·name; 

DESCRIPTION 

MKNOD (2) 

Mknod creates a new file whose name is the null-terminated string pointed to by name. The 
mode of the new file (including directory and special file bits) is initialized from mode. (The 
protection part of the mode is modified by the process's mode mask; see umask(2». The first 
block pointer of the i-node is initialized from addr. For ordinary files and directories addr is 
normally zero. In the case of a special file, addr specifies which special file. 

Mknod may be invoked only by the super-user. 

SEE ALSO 
mkdirO), mknod(l), filsys(5) 

DIAGNOSTICS 
Zero is returned if the file has been made; -1 if the file already exists or if the user is not the 
super-user. 

ASSEMBLER 
(mknod - 14.) 
sys mknod; name; mode; addr 

7th Edition 



MOUNT (2) MOUNT (2) 

NAME 
mount, umount - mount or remove file system 

SYNOPSIS 
mount(speciai, name, rwftag) 
char ·special, ·name; 

umount(speciaI) 
char ·special; 

DESCRIPTION 
Mount announces to the system that a removable file system has been mounted on the block
structured special file special; from now on, references to file nome will refer to the root file on 
the newly mounted file system. Special and name are pointers to noll-terminated strings con
taining the appropriate path names. 

Name must exist already. Name must be a directory (unless the root of the mounted file system 
is not a directory). Its old contents are inaccessible while the file system is mounted. 

The rwflag argument determines whether the file system can be written on~ if it is 0 writing is 
allowed, if non-zero no writing is done. Physically write-protected and magnetic tape file sys
tems must be mounted read-only or errors will occur when access times are updated, whether 
or not any explicit write is attempted. 

Umount announces to the system that the special file is no longer to contain a removable file 
system. The associated file reverts to its ordinary interpretation. 

SEE ALSO 
mount(1) 

DIAGNOSTICS 
Mount returns 0 if the actiofl occurred; -1 if special is inaccessible or not an appropriate file; if 
name does not exist; if special is already mounted~ if name is in use; or if there are already too 
many file systems mounted. 

Umount returns 0 if the action occurred; -1 if if the special file is inaccessible or does not have 
a mounted file system, or if there are active files in the mounted file system. 

ASSEMBLER 
(mount - 21.) 
sys mount; special; name; rwftag 
(umount - 22.) 
sys umount; special 

7th Edition 





MPX (2) MPX (2) 

NAME 
mpx - create and manipulate multiplexed files 

SYNOPSIS 
mpx(name, access) char ·name; 

Join (fd. xd) 

chan(xd) 

extractH. xd) 

attach (I, xd) 

detach H. xd) 

conneet(fd. cd, end) 

nPirpH. xd. Plrp) 

ckUHl. xd. signal) 

#inc:lude <sys/mx.h> 
mpxc:aU (cmd. vee) 
lnt ·vee; 

DESCRIPTION 
mpxc:alHcmd. vee) is the system call shared by the library routines described below. Cmd 
selects a command using values defined in < sysJmx.h>. Vec is the address of a structure coo
taining the arguments for the command. 

mpx(name. access) 

Mpx creates and opens the file name with access permission access (see creat(Z» and returns a 
file descriptor available for reading and writing. A -1 is returned if the fiie cannot be created, 
if name already exists, or if the file table or other operating system data structures are full. The 
file descriptor is required for use with other routines. 

If name designates a null string, a file descriptor is returned as described but no entry is created 
in the file system. 

Once created an mpx file may be opened (see open(2» by any process. This provides a form of 
interprocess communication whereby a process B can 'call' process A by opening an mpx file 
created by A. To B, the file is ordinary with one exception: the connect primitive could be 
applied to it. Otherwise the functions described below are used only in process A and descen
dants that inherit the open mpx file. 

When a process opens an mpx file, the owner of the file receives a control message when the 
file is next read. The method for 'answering' this kind of call involves using attach and detach 
as described in more detail below. 

Once B has opened A's mpx file it is said to have a channel to A. A channel is a pair of data 
streams: in this case, one from B to A and the other from A to B. Several processes may open 
the same mpx file yielding multiple channels within. the one mpx file. By accessing the 
appropriate channel, A can communicate with B and any others. When A reads (see read(2)) 
from the mpx file data written to A by the other processes appears in A's buffer using a record 
format described in mpxio(S). When A writes (see write(2» on its mpx file the data must be 
formatted in a similar way. 

The following commands are used to manipulate mpx files and channels. 

7th Edition 

join- adds a new channel on an mpx file to an open file F. 110 on the new channel is 
110 on F. 
chan- creates a new channel. 



MPX (2) MPX (2) 

extract- file descriptor maintenance. 
connect- similar to join except that the open file F is connected to an existing channel. 
attach and detach- used with call protocol. 
npgrp- manipulates process group numbers so that a channel can act as a control ter
minal (see t(Y(4». 
ckill- send signal (see signa/(2» to process group through channel. 

A maximum of 15 channels may be connected to an mpx file. They are numbered 0 through 
14. Join may be used to make one mpx file appear as a channel on another mpx file. A hierar
chy or tree of mpx files may be set up in this way. In this case one of the mpx files must be 
the root of a tree where the other mpx files are interior nodes. The maximum depth of such a 
tree is 4. 

An index is a 16-bit value that denotes a location in an mpx tree other than the root: the path 
through mpx 'nodes' from the root to the location is expressed as a sequence of 4-bit nibbles. 
The branch taken at the root is represented by the low-order 4-bits of an index. Each succeed
ing branch is specified by the next higher-order nibble. If the length of a path to be expressed 
is less than 4, then the illegal channel number, 15, must be used to terminate the sequence. 
This is not strictly necessary for the simple case of a tree consisting of only a root node: its 
channels can be expressed by the numbers 0 throuah 14. An index i and file descriptor xd for 
the root of an mpx tree are required as arguments to most of the commands described below. 
Indices also serve as channel identifiers in the record formats given in mp;o(S). Since -I is not 
a valid index, it can be returned as a error indication by subroutines that normally return 
indices. 

The operating system informs the process managing an mpx file of changes in the status of 
channels attached to the file by generating messages that are read along with data from the 
channels. The form and content of these messages is described in mp;o(S). 

Join(fd. xd) establishes a connection (channel) between an mpx file and another object. Fd is 
an open file descriptor for a character device or an mpx file and xd is the file descriptor of an 
mpx file. Join returns the index for the new channel if the operation succeeds and -1 if it 
does not. 

Following join, fd may still be used in any system call that would have been meaningful before 
the join operation. Thus a process can read and write directly to fd as well as access it via xd. If 
the number of channels required for a tree of mpx files excCeds the number of open files per
mitted a process by the operating system, some of the file descriptors can be released using the 
standard close(2) call. Following a close on an active file descriptor for a channel or intern8I 
mpx node, that object may still be accessed through the root of the tree. 

chan(xd) allocates a channel and connects one end of it to the mpx file represented by file 
descriptor xd. Chan returns the index of the new channel or a -1 indicating failure. The 
extract primitive can be used to get a non-multiplexed file descriptor for the free end of a chan
nel created by chan. 

Both chan and join operate on the mpx file specified by xd. File descriptors for interior nodes 
of an mpx tree must be preserved or reconstructed with extTact for use with join or chan. For 
the remaining commands described here, xd denotes the file descriptor for the root of an mpx 
tree. 

ExtractH, xd) returns a file descriptor for the object with index i on the mpx tree with root file 
descriptor xd. A -1 is returned by extract if a file descriptor is not available or if the arguments 
do not refer to an existing channel and mpx file. 

attach H. xd) 
detach (l, xd). If a process A has created an mpx file represented by file descriptor xd. then a 
process B can open (see open(2» the mpx file. The purpose is to establish a channel ~tween 

7th Edition 2 



MPX (2) MPX (2) 

FILES 

A and B through the mpx file. Attach and Detach are used by A to respond to such opens. 

An open request by B fails immediately if a new channel cannot be allocated on the mpx file, if 
the mpx file does not exist, or if it does exist but there is no process (A) with a multiplexed file 
descriptor for the mpx file (i.e. xd as returned by mpx(2». Otherwise a channel with index 
number i is allocated. The next time A reads on file descriptor xd, theW A TCH control mes
sage (see mpxio(S» will be delivered on channel i. A responds to this message with attach or 
detach. The former causes the open to complete and return a file descriptor to B. The latter 
deallocates channel i and causes the open to fail. 

One mpx file may be placed in 'listener' mode. This is done by writing ioct/(xd, MXLSTN, 0) 
where xd is an mpx file descriptor and MXLSTN is defined in lusrlincludelsgtty.h. The semantics 
of listener mode are that all file names discovered by open(2) to have the syntax 
system!pathname (see uucpO» are treated as opens on the mpx file. The operating system 
sends the listener process an OPEN message (see mpxio(S» which includes the file name being 
opened. Attach and detach then apply as described above. 

Detach has two other uses: it closes and releases the resources of any active channel it is applied 
to, and should be used to respond to a CLOSE message (see mpxio(S» on a channel so the 
channel may be reused. 

connect(fd, cd, end). Fd is a character file descriptor and cd is a file descriptor for a channel, 
such as might be obtained via extract( chan(xd), xd) or by open(2) followed by attach. Connect 
splices the two streams together. If end is negative, only the output of fd is spliced to the input 
of cd. If end is positive, the output of cd is spliced to the input of fd. If end is zero, then both 
splices are made. 

npgrpH, xd, pgrp). If xd is negative npgrp applies to the process executing it, otherwise i and 
xd are interpreted as a channel index and mpx file descriptor and npgrp is applied to the process 
on the non-multiplexed end of the channel. If pgrp is zero, the process group number of the 
indicated process is set to the process number of that process, otherwise the value of pgTp is 
used as the process group number. 

Npgrp normally returns the new process group number. If i and xd specify a nonexistant chan
nel, npgrp returns -1. 

ckllHI, xli, signal> sends the specified signal (see signa{(2» through the channel specified by i 
and xd. If the channel is connected to anything other than a process, ckill is a null operation. If 
there is a process at the other end of the channel, the process group will be interrupted (see sig
na/(2), kill(2». Ckill normally returns signal. If ch and xd specify a nonexistent channel, ckill 
returns -1. 

lusr/include/sys/mx.h 
lusr/include/sgtty.h 

SEE ALSO 

BUGS 

mpxio(S) 

Mpx files are an experimental part of the operating system more subject to change and prone to 
bugs than other parts. Maintenance programs, e.g. icheck( 1), diagnose mpx files as an illegal 
mode. Channels may only be connected to objects in the operating system that are accessible 
through the line discipline mechanism. Higher performace line disciplines are needed. The 
maximum tree depth restriction is not really checked. A non-destructive disconnect primitive 
{inverse of connect} is not provided. A non-blocking flow control strategy based on messages 
defined in mpxio(S) should not be attempted by novices~ the enabling iOCll command should be 
protected. The join operation could be subsumed by connect. A mechanism is needed for mov
ing a channel from one location in an mpx tree to another. 

7th Edition 3 



NICE (2) NICE(2) 

NAME 
nice - set proaram priority 

SYNOPSIS 
nice (Incr) 

DESCRIPTION 
The scheduling priority of the process is aUlmented by iner. Positive priorities aet less service 
than normal. Priority lOis recommended to users who wish to execute 10Dl-runnina proarams 
without nak from the administration. 

Negative increments are ignored except on behalf of the super-user. The priority is limited to 
the range - 20 (most urgent) to 20 (least). 

The priority of a process is passed to a child process by /ork(2). For a privileged process to 
return to norma) priority from an unknown state, nice should be called successively with IfIU
ments - 40 (goes to priority - 20 because of truncation). 20 (to let to 0). then 0 (to maintain 
compatibility with previous versions of this call). 

SEE ALSO 
nice(1) 

ASSEMBLER 
(nice - 3'4.) 
(priority in rO) 
sys nice 

7th Edition 1 



OPEN (2) 

NAME 
open - open for reading or writing 

SYNOPSIS 
open (name, mode) 
char -name; 

DESCRIPTION 

OPEN (2) 

Open opens the file name for reading (if mode is 0), writing (if mode is I) or for both reading 
and writing (if mode is 2). Name is the address of a string of ASCII characters representing a 
path name, terminated by a null character. 

The file is positioned at the beginning (byte 0). The returned file descriptor must be used for 
subsequent calls for other input-output functions on the file. 

SEE ALSO 
creat(2), read(2), write (2) , dup(2), close(2) 

DIAGNOSTICS 
The value -1 is returned if the file does not exist, if one of the necessary directories does not 
exist or is unreadable, if the file is not readable (resp. writable), or if too many files are open. 

ASSEMBLER 
(open - 5.> 
515 open; name; mode 
(file descriptor in rO) 

7th Edition 1 



PAUSE (2) 

NAME 
pause - stop until signal 

SYNOPSIS 
pause( ) 

DESCRIPTION 

PAUSE (2) 

Pause never returns normally. It is used to live up control while waitina for a sipaJ from 
ki/I(2) or alarm (2) . 

SEE ALSO 
kill(D, kilH2), alarm(2), signaI(2), setjmp(3) 

ASSEMBLER 
(Plluse - 29.) 
sys pause 

7th Edition 1 



PHYS (2) PHYS(2) 

NAME 
phys - allow a process to access physical addresses 

SYNOPSIS 
phys(segreg, size, physadr> 

DESCRIPTION 0 

The argument segreg specifies a process virtual (data-space) address range of 8K bytes starting 
at virtual address segregx 8K bytes. This address range is mapped into physical address phy~ 
sadrx64 bytes. Only the first sizex64 bytes of this mapping is addressable. If size is zero, any 
previous mapping of this virtual address range is nullified. For example, the call 

phys(6, 1, 0177775); 

will map virtual addresses 0160000-0160077 into physical addresses 017777500-017777577. In 
particular. virtual address 0160060 is the PDP-II console located at physical address 017777560. 

This call may only be executed by the super-user. 

SEE ALSO 
PDP-I! segmentation hardware 

DIAGNOSTICS 

BUGS 

The function value zero is returned if the physical mapping is in effect. The value -1 is re
turned if not super-user, if segreg is not in the range 0-7. if size is not in the range 0-127, or if 
the specified segreg is already used for other than a previous call to phys. 

This system call is obviously very machine dependent and very dangerous. This system call is 
not considered a permanent part of the system. 

ASSEMBLER 
(phys - 52,) 
sys phys; segreg; siie; physadr 

7th Edition local 



PIPE (2) PIPE (2) 

NAME 
pipe - create an interprocess channel 

SYNOPSIS 
pipe (fildes) 
int fildesl21; 

DESCRIPTION 
The pipe system call creates an 110 mechanism called a pipe. The file descriptors returned can 
be used in read and write operations. When the pipe is written using the 9escriptor jiJdes111 up 
to 4096 bytes of data are buffered before the writing process is SU$pen9eQ. A read \,lsing the 
descriptor jiJdes[OJ will pick up the data. Writes with a count of 409~ bytes or less are atomic~ 
no other process can intersperse data. . . 

) t is assumed that after the pipe has been set up, two (or more) cooperatin& processes (created 
by subsequent fork calls) will pass data through the pipe with readand write calls. 

The Shell has a syntax to set up a linear array of processes connected by pipes. 

Read calls on an empty pipe (no buffered data) with only One end (aU write file descriptors 
closed) returns an end-of-file. . 

SEE ALSO 
sh(I), read(2), write(2), fork(2) 

DIAGNOSTICS 

BUGS 

The function value zero is returned if the pipe was created; -l if too many files are already 
open. A signal is generated if a write on a pipe with only one end is attempt~. 

Should more than 4096 bytes be necessary in any pipe among a loop of processes, deadlock will 
occur. 

ASSEMBLER 
(pipe - 42.) 
sys pipe 
(read file descriptor in rO) 
(write file descriptor in r 1) . 

7th Edition 



PKON (2) PKON (2) 

NAME 
pkon, pkoff - establish packet protocol 

SYNOPSIS 
pkon(fd, size) 

pkoff(fd) 

DESCRIPTION 
Pkon establishes packet protocol (see pk(4» on the open character special file whose file 
descriptor is jd. Size is a desired packet size, a power of 2 in the range 32 ~ size~ 4096. The size 
is ftegotiated with a remote packet driver, and a possibly smaller actual packet size is returned. 

An asynchronous line used for packet communication should be in raw mode~ see tty(4). 

Pkoffturns off the packet driver on the channel whose file descriptor is jd. 

SEE ALSO 
pk(4), pkopen(3), tty(4), signal(2) 

DIAGNOSTICS 
Pkon returns -1 if jd does not describe an open file. or if packet communication cannot be 
established. 

Pkoffreturns -1 for an unknown file descriptor. 

Writing on a packet driver link that has been shut down by close or pkoffat the other end raises 
signal SIGPIPE in the writing process. 

7th Edition deprecated 1 



PROFIL (2) PROFIL (2) 

NAME 
profil - execution time profile 

SYNOPSIS 
profil (buff, bufsiz, offset, scale) 
char -buff; 
int bufsiz, offset, scale; 

DESCRIPTION 
, BI4ff points to an area of core whose length (in bytes) is given by bujSiz. After this call,' the 

user's program counter (pc) is examined each clock tick (60th second)~ offset is subtracted from 
it, and the result multiplied by scale. If the resulting number corresponds to a word inside b"lff, 
that word is incremented. 

The scale is interpreted as an unsigned, fixed-point fraction with binary point at the left: 
0177777(8) gives a I-I mapping of pc's to words in b&df; 077777(8) ~aps each pair of instruc
tion words together. 02(8) maps all instructions onto the beginning of bI4ff(producing a non
interrupting core clock). 

Profiling is turned off by giving a scale of 0 or 1. It is rendered ineffective by giving a bufsiz of 
O.! Profiling is turned off when an exec is executed. but remains on in child and parent both 
after a fork. Profiling may be turned off if an update in bl46'would cause a memory fault. 

SEE ALSO 
monitor(3), prof 0) 

ASSEMBLER 
(profil - 44,) 
sys profil; buff; bufsiz; offset; scale 

7th Edition 



PTRACE (2) PTRACE(2) 

NAME 
ptrace - process trace 

SYNOPSIS 
#include <signal.h> 

ptrace (request, pid, addr, data) 
int ·addr; 

DESCRIPTION 
Prrace provides a means by which a parent process may control the execution of a child process, 
and examine and change its core image. Its primary use is for the implementation of break
point debugging. There are four arguments whose interpretation depends on a request argu
ment. Generally, pid is the process ID of the traced process, which must be a child (no more 
distant descendant> of the tracing process. A process being traced behaves normally until it 
encounters some signal whether internally generated like 'illegal instruction' or externally gen
erated like 'interrupt.' See signa/(2) for the list. Then the traced process enters a stopped state 
and its parent is notified via waii(2). When the child is in the stopped state, its core image can 
be examined and modified using prrace. If desired, another prrace request can then cause the 
child either to terminate or to continue, possibly ignoring the signal. 

The value of the request argument determines the precise action of the call: 

o This request is the only one used by the child process~ it declares that the process is to be 
traced by its parent. All the other arguments are ignored Peculiar results will ensue if the 
parent does not expect to trace the child. 

1,2 The word in the child process's address space at addr is returned. If I and D space are 
separated, request 1 indicates I space, 2 D space. A ddr must be even. The child must be 
stopped. The input data is ignored • 

3 The word of the system's per-process data area corresponding to addr is returned Addr 
must be even and less tban 512. This space contains the registers and other information 
about the process~ its layout corresponds to the user structure in the system. 

4,5 The given data is written at the word in the process's address space corresponding to addr. 
which must be even. No useful value is returned. If I and D space are separated, request 
4 indicates I space, 5 D space. Attempts to write in pure procedure fail if another process 
is executing the same file. 

6 The process's system data is written, as it is read with request 3. Only a few locations can 
be written in this way: the general registers, the floating point status and registers, and cer
tain bits of the processor status word 

7 The data argument is taken as a signal number and the child's execution continues at loca
tion addr as if it had incurred that signal. Normally the signal number will be either 0 to 
indicate that the signal that caused the stop should be ignored, or that value fetched out of 
the process's image indicating which signal caused the stop. If addr is (jnt .) 1 then execu
tion continues from where it stopped. 

8 The traced process terminates. 

9 Execution continues as in request 7~ however, as soon as possible after execution of at 
least one instruction, execution stops again. The signal number from the stop is 
SIGTRAP. (On the PDP·l1 the T·bit is used and just one instruction is executed~ on the 
Interdata the stop does not take place until a store instruction is executed'> This is part of 
the mechanism for implementing breakpoints. 

As indicated, these calls (except for request 0) can be used only when the subject process has 
stopped. The wait call is used to determine when a process stops~ in such a case the 'termina
tion' status returned by wait has the value 0177 to indicate stoppage rather than genuine 

7th Edition 1 



PTRACE (2) PTRACE(2) 

termination. 

To forestall possible fraud, ptrace inhibits the set-user-id facility on subsequent exec(2) calls. If 
a traced process calls exec, it will stop before executing the first instruction of the new image 
showing signal SIGTRAP. 

On the Interdata 8/32, 'word' means a 32·bit word and 'even' means 0 mod 4. 

SEE ALSO 
wait(2), signal(2) , adb(l) 

DIAGNOSTICS 

BUGS 

The value -1 is returned if request is invalid, pid is not a traceable process, addr is out of 
bounds, or data specifies an illegal signal number. 

On the Interdata 8/32, 'as soon as possible' (request 7) means 'as soon as a store instruction 
has been executed.' 

The request 0 call should be able to specify signals which are to be treated normally and not 
cause a stop. In this way, for example, programs with simulated floating point (which use 'ille
gal instruction' signals at a very high rate) could be efficiently debugged. 
The error indication, -1, is a legitimate function value; errno. see intro(2) , can be used to 
disambiguate. 

I t should be possible to stop a process on occurrence of a system can; in this way a completely 
controlled environment could be provided. 

ASSEMBLER 
(ptrace - 26,) 
(data in rO) 
sys ptrace; pid; addr; request 
(value in rO) 

7th Edition 2 



READ (2) 

NAME 
read - read from file 

SYNOPSIS 
read (fildes. buffer. nbytes) 
char ·buffer; 

DESCRIPTION 

READ (2) 

A file descriptor is a word returned from a successful open, creat, dup. or pipe call. Buffer is the 
location of nbytes contiguous bytes into which the input will be placed. It is not guaranteed that 
all nbytes bytes will be read; for example if the file refers to a typewriter at most one line will be 
returned. In any event the number of characters read is returned. 

If the returned value is 0, then end-of-file has been reached. 

SEE ALSO 
open(2), creat(2), dup(2), pipe(2) 

DIAGNOSTICS 
As .mentioned, 0 is returned w.hen the end of the file has been reached. If the read was other
wise unsuccessful the return value is -1. Many conditions can generate an error: physical I/O 
errors, bad buffer address, preposterous nbytes, file descriptor not that of an input file. 

ASSEMBLER 
(read - 3.) 
(file descriptor in rO) 
sys read; buffer; nbytes 
(byte count in rO) 

7th Edition 



SETUID (2) 

NAME 
setuid, setgid - set user and group ID 

SYNOPSIS 
setuld (uid) 

setgid (gid) 

DESCRIPTION 

SETUID (2) 

The user 10 (group 10) of the current process is set to the llJument. Both the effective and 
the real 10 are set. These calls are only permitted to the super-user or if the argument is the 
realIO. 

SEE ALSO 
getuid(2) 

DIAGNOSTICS 
Zero is returned if the user (group) 10 is set; -1 is returned otherwise. 

ASSEMBLER 
(setuid - 23.) 
(user 10 in rO) 
sys setuid 

(setgid - 46,) 
(group 10 in rO) 
sys setgid 

7th Edition 1 



SIGNAL (2) SIGNAL (2) 

NAME 
signal - catch or ignore signals 

SYNOPSIS 
#include <signal.h> 

(·signaHsig, fune» 0 
(·funC> 0; 

DESCRIPTION 
A signal is generated by some abnormal event, initiated either by user at a typewriter (quit, in
terrupt), by a program error (bus error, etc.), or by request of another program (kill). Normal
ly all signals cause termination of the receiving process, but a signal call allows them either to 
be ignored or to cause an interrupt to a specified location. Here is the list of signals with 'names 
as in the include file. 

SIGHUP 1 hangup 
SIGINT 2 interrupt 
SIGQUIT 3* quit 
SIGILL 4* illegal instruction (not reset when caught) 
SIGTRAP S* trace trap (not reset when caught) 
SIGIOT 6- lOT instruction 
SIGEMT 7* EMT instruction 
SIGFPE 8* floating point exception 
SIGKILL 9 kill (cannot be caught or ignored) 
SIGBUS 10* bus error 
SIGSEGV 11* segmentation violation 
SIGSYS 12* bad argument to system call 
SIGPIPE 13 write on a pipe or link with no one to read it 
SIGALRM 14 alarm clock 
SIGTERM IS software termination signal 

16 unassigned 

The starred signals in the list above cause a core image if not caught or ignored. 

If fune is SIG_OFL, the default action for signal sig is reinstated~ this default is termination, 
sometimes with a core image. If fune is SIG IGN the signal is ignored. Otherwise when the 
signal occurs fune will be called with the signal number as argument. A return from the func
tion will continue the process at the point it was interrupted. Except as indicated, a signal is 
reset to SIG _OFL after being caught. Thus if it is desired to catch every such signal, the catch
ing routine must issue another signal call. 

When a caught signal occurs during certain system calls, the call terminates prematurely. In 
particular this can occur during a read or write(2) on a slow device (like a typewriter~ but not a 
file) ~ and during pause or wait(2). When such a signal occurs, the saved user status is arranged 
in such a way that when return from the signal-catching takes place, it will appear that the sys
tem call returned an error status.. The user's program may then, if it wishes, re-execute the 
call. 

The value of signal is the previous (or initial) value of fune for the particular signal. 

After a jork(2) the child inherits all signals. Exec(2) resets all caught signals to default action. 

SEE ALSO 
kiU(1), kilI(2), ptrace(2), setjmp(3) 

DIAGNOSTICS 

7th Edition 1 



SIGNAL (2) SIGNAL (2) 

BUGS 

The value (int) -1 is returned if the given sienal is out of ranae. 

If a repeated signal arrives before the last one can be reset, there is no chance to catch it 

The type specification of the routine and its june argument are probJematical. 

ASSEMBLER 
(signal - 48,) 
sys sienal; sie; label 
(old label in rO) 

If /Qbe/ is 0, default action is reinstated. If /Qbe/ is odd, the signal is ignored. Any other even 
/Qbe/ specifies an address in the process where an interrupt is simulated. An RTI or RTT in
struction will return from the interrupt. 

7th Edition 2 



STAT (2) STAT (2) 

NAME 
stat, fstat - get file status 

SYNOPSIS 
#include < sys/ types. h > 
#include < Sys/ stat. h > 
stat(name, but> 
char ·name; 
struct stat ·buf; 

fstatUUdes, buf) 
strud stat ·buf; 

DESCRIPTION 
Stat obtains detailed information about a named file. Fstat obtains the same information about 
an open file known by the file descriptor from a successful open, creat, dup or pipe(2) call. 

Name points to a null-terminated string naming a file~ bulis the address of a buffer into which 
information is placed concerning the file. It is unnecessary to have any permissions at all with 
respect to the file, but all directories leading to the file must be searchable. The layout of the 
structure pointed to by buf as defined in < stat.h> is given below. Scmode !sencoded accord
ing to the • #define' statements. 

struct stat 
{ 

}; 

dev _t st_dev; 
ino_t st)no; 
unsigned short st_mode; 
short st_nlink; 
short 5t_ uid; 
short st_gid; 
dev _t stJdev; 
off_t 5t_size; 
time_t st_atime; 
time_t st_mtime; 
time_t st_ctime; 

#defineSJFMT 0110000 r type of file ./ 
#define S_IFDIR 004000O r directory ./ 
#define S JFCHR 0020000 r character special • / 
#define S_IFBLK 0060000 r block special ./ 
#define S JFREO 0100000 r regular • / 
#define S JFMPC 0030000 r multiplexed char special '" / 
#define S_IFMPB 0010000 r multiplexed block special '"I 
#defineS ISUID 0004000 r set user id on execution '"I 
#defineS -ISOID 0002000 r set group id on execution'" / 
#defineS -ISVTX 0001000 r save swapped text even after use • / 
#defineS -IREAD 0000400 r read permission, owner • / 
#defineS -IWRITE 0000200 r write permission, owner • / 
#defineS)EXEC 0000100 r execute/search permission, owner" / 

The mode bits 0000010 and 0000001 encode group and others permissions (see chmod(2)). 
The defined types, ino_t. oLt, time_t, name various width integer values; dev_t encodes major 
and minor device numbers; their exact definitions are in the include file < sys/types.h> (see 
zypes(S). 

7th Edition 1 



STAT (2) STAT (2) 

When fi/des is associated with a pipe, jSlOt reports an ordinary file with restricted permissions. 
The size is the number of bytes queued in the pipe. 

SI atime is the file was last read For reasons of efficiency, it is not set when a directory is 
searched, although this would be more logical. semtime is the time the file was last written or 
created. It is not set by changes of owner, group, link count, or ~ode. sectime is set both 
both by writing and changing the i-node. 

SEE ALSO 
Is (I), filsys(S) 

DIAGNOSTICS 
Zero is returned if a status is available; -1 if the file cannot be found. 

ASSEMBLER 
(stat - 18,) 
sys stat; name; buC 

(fstat - 28,) 
(file descriptor in rO) 
sys fstat: buf 

7th Edition 2 



STIME (2) 

NAME 
stime - set time 

SYNOPSIS 
stime <tp) 
long *tp; 

DESCRIPTION 

STIME (2) 

Slime sets the system's idea of the time and date. Time, pointed to by (P, is measured in 
seconds from 0000 GMT Jan 1, 1970. Only the super-user may use this call. 

SEE ALSO 
date(l), time(2), ctime(3) 

DIAGNOSTICS 
Zero is returned if the time was set; -1 if user is not the super-user. 

ASSEMBLER 
(stime - 25,) 
(time in rO-rl) 
sys stime 

7th Edition 



SYNC (2) 

NAME 
sync - update super-block 

SYNOPSIS 
sync( ) 

DESCRIPTION 

SYNC (2) 

Sync causes all information in core memory that should be on disk to be written out. This in
cludes modified super blocks, modified i-nodes, and delayed block 110. 
h should be used by programs which examine a file system, for example icheck, d/. etc. It is 
mandatory before a boot. 

SEE ALSO 
sync (I ), update(S) 

BUGS 
The writing. although scheduled, is not necessarily complete upon return from sync. 

ASSEMBLER 
(sync - 36.) 
sys sync 

7th Edition 



TIME (2) 

NAME 
time, ftime - get date and time 

SYNOPSIS 
lonl time(O) 

lonl timehloc) 
lonl -Uoc; 

#inelude <sys/types.h> 
#inelude < sysl timeb. h > 
ftimehp) 
struet timeb -tp; 

DESCRIPTION 
Time returns the time since 00:00:00 GMT, Jan. 1, 1970, measured in seconds. 

If tloc is nonnull, the return value is also stored in the place to which tJoe points. 

TIME (2) 

The ftime entry fills in a structure pointed to by its argument, as defined by < sys/timeb.h> : 

r 
* Structure returned by ftime system call 
*1 

struct timeb { 

}; 

time _ t time; 
unsigned shon millitm; 
shon timezone; 
short dstflag; 

The structure contains the time since the epoch in seconds, up to 1000 milliseconds of more
precise interval, the local timezone (measured in minutes of time westward from Greenwich), 
and a flag that, if nonzero, indicates that Daylight Saving time applies locally during the 
appropriate pan of the year. 

SEE ALSO 
date(l), stime(2), ctime(3) 

ASSEMBLER 
(ftime - 35,) 
sys ftime; bufptr 

(time - 13.; obsolete can> 
sys time 
(time since 1970 in rO-rl) 

7th Edition 1 



TIMES (2) 

NAME 
times - get process times 

SYNOPSIS 
times (buffer) 
struct tbuffer ·buffer; 

DESCRIPTION 

TIMES (2) 

Times returns time-accounting information for the current process and for the terminated child 
processes of the current process. All times are in 11HZ seconds, where HZ-60 in North 
America. 

After the call, the buffer will appear as follows: 

struct tbuffer I 
long 
long 
long 
long 

proc user time~ 
proc_system_time~ 
child_user _time~ 
child_system_time~ 

The children limes are the sum of the children's process times and their children's times. 

SEE ALSO 
limeO)' lime(2) 

ASSEMBLER 
(limes - 43.) 
sys times; buffer 

7th Edition 

• 



UMASK(2) 

NAME 
umask - set file creation mode mask 

SYNOPSIS 
umask (complmode) 

DESCRIPTION 

UMASK (2) 

Umask sets a mask used whenever a file is created by creal(2) or mknod(2): the actual mode 
(see chmod(2» of the newly-<:reated file is the logical and of the given mode and the comple
ment of the argument. Only the low-order 9 bits of the mask (the protection bits) participate. 
In other words, the mask shows the bits to be turned off when files are created. 

The previous value of the mask is returned by the call. The value is initially 0 (no restric
tions). The mask is inherited by child processes. 

SEE ALSO 
creat(2), mknod(2), chmod(2) 

ASSEMBLER 
(umask - 60,) 
sys umask; complmode 

7th Edition 1 



UNLINK (2) UNLINK (2) 

NAME 
unlink - remove directory entry 

SYNOPSIS 
unlink (name) 
char -name; 

DESCRIPTION 
Name points to a null-terminated string. Unlink removes the entry for the file pointed to by 
name from its directory. If this entry was the last link to the file, the contents of the file are 
freed and the file is destroyed. If, however, the file was open in any process, the actual des
truction is delayed until it is closed, even though the directory entry has disappeared. 

SEE ALSO 
rm(l). Iink(2) 

DIAGNOSTICS 
Zero is normally returned; -1 indicates that the file does not exist. that its directory caMot be 
written, or that the file contains pure procedure text that is currently in use. Write permission 
is not required on the file itself. It is also illegal to unlink a directory (except for the super
user). 

ASSEMBLER 
(unlink - 10,) 
sys unlink; name 

7th Edition 



UTIME(2) 

NAME 
utime - set file times 

SYNOPSIS 
#Inelade < sysltypes. h> 
atimeUlIe,> timep) 
ehar "ftle; 
tlme_t timeplll; 

DESCRIPTION 

UTIME(2) 

The utime call uses the 'accessed' and 'updated' times in that order from the timep vector to set 
the correspondi118 recorded times for file. 

The caller must be the owner of the file or the super-user. The 'inode-cha118ed' time of the file 
is set to tbe current time. 

SEE ALSO 
stat (2) 

ASSEMBLER 
(utime - 30,) 
sy. utlme; flle; tlmep 

7th EcJition 1 



WAIT (2) WAIT (2) 

NAME 
wait - wait for process to terminate 

SYNOPSIS 
wait(status) 
int ·status; 

wait(O) 

• DESCRIPTION 
Wait causes its caller to delay until a signal is received or one of its child processes terminates. 
If any child has died since the last wait. return is immediate; if there are no children, return is 
immediate with the error bit set (resp. with a value of -1 returned). The normal return yields 
the process ID of the terminated child. In the case of several children several wait calls are 
needed to learn of all the deaths. 

If (jnt) status is nonzero, the high byte of the word pointed to receives the low byte of the argu
ment of exit when the child terminated. The low byte receives the termination status of the 
process. See signa/(2) for a list of termination statuses (signals); 0 status indicates normal ter
mination. A special status (0177) is returned for a stopped process which has not terminated 
and can be restarted. See ptrace(2). If the 0200 bit of the termination status is set, a core im
age of the process was produced by the system. 

If the parent process terminates without waiting on its children, the initialization process (pro
cess 10 - 1) inherits the children. 

SEE ALSO 
exit(2), fork(2), signal(2) 

DIAGNOSTICS 
Returns -1 if there are no children not previously waited for. 

ASSEMBLER 
(wait - 7.) 
sys wait 
(process 10 in rO) 
(status in rn 

The high byte of the status is the low byte of rO in the child at termination. 

7th Edition 1 



WRITE (2) 

NAME 
write - write on a file 

SYNOPSIS 
write<fUdes, buffer, nbytes) 
char *buffer; 

DESCRIPTION 

WRITE (2) 

A file descriptor is a word returned from a successful open, crear, dup, or pipe(2) call. 

Buffer is the address of nbyres contiguous bytes which are written on the output file. The 
number of characters actually written is returned. It should be regarded as an error if this is 
not the same as requested. 

Writes which are multiples of 512 characters long and begin on a 512-byte boundary in the file 
are more efficient than any others. 

SEE ALSO 
creat (2), open (2), pipe(2) 

DIAGNOSTICS 
Returns -Ion error: bad descriptor, buffer address, or count; physical 110 errors. 

ASSEMBLER 
(write - 4.) 
(file descriptor in rO) 
sys write; buffer; nbytes 
(byte count in rO) 

7th Edition 



INTRO(3) INTRO(3) 

NAME 
intro - introduction to library functions 

SYNOPSIS 
#include < stdio.h > 
#include <math.h> 

DESCRIPTION 

FILES 

This section describes functions that may be found in various libraries, other than those func
tions that directly invoke UNIX system primitives, which are described in section 2. Functidns 
are divided into variousJibraries distinguished by the section number at the top of the page: 

(3) These functions, together with those of section 2 and those marked (3S), constitute li
brary fibe. which is automatically loaded by the C compiler cc( 1) and the Fortran com
piler j77( 1) . The link editor fd( 1) searches this library under the "-Ic' option. Declara
tions for some of these functions may be obtained from include files indicated on the ap
propriate pages. 

(3M) These functions constitute the math library, fibm. They are automatically loaded as need
ed by the Fonran compiler j77(1). The link editor searches this library under"the "-1m' 
option. Declarations for these functions may be obtained from the include file 
<math.h>. 

(3S) These functions constitute the "standard 110 package', see sldio(3). These functions are 
in the library fibe already mentioned. Declarations for these functions may be obtained 
from the include file <stdio.h>. 

(3X) Various specialized libraries have not been aiven distinctive captions. The files in which 
these libraries are found are named on the appropriate pages. 

llib/libc.a 
llib/libm.a, lusr/lib/libm.a (one or the other) 

SEE ALSO 
stdio(3), nmO), IdO), ccO), fi70), intro(2) 

DIAGNOSTICS 
Functions in the math library (3M) may return conventional values when the function is 
undefined for the given arguments or when the value is not representable. In these cases the 
external variable e"no (see intro(2» is set to the value EDOM or ERANGE. The values of 
EDOM and ERANGE are defined in the include file < mtllh.h>. 

ASSEMBLER 
In assembly lanauage these functions may be accessed by simulating the C calling sequence. 
For example, ecvl(3) miaht be called this way: 

setd 
mov Ssign,-(sp) 
mov Sdecpt,-(sp) 
mov ndiait,-(sp) 
movf value,-(sp) 
jsr pc,_ecvt 
add S14.,sp 

'7th Edition 1 



ABORT (3) 

NAME 
abort - generate lOT fault 

DESCRIPTION 

ABORT (3) 

Aborr executes the PDPll lOT instruction. This causes a signal that normally terminates the 
process with a core dump, which may be used for debugging. 

SEE ALSO 
adbU), signaH2), exit(2) 

DIAGNOSTICS 
Usually 'lOT trap - core dumped' from the shell. 

7th Edition 



ASS (3) 

NAME 
abs - integer absolute value 

SYNOPSIS 
absm 

DESCRIPTION 
Abs returns the absolute value of its integer operand. 

SEE ALSO 
noor(3) for Jabs 

BUGS 
You get what the hardware gives on the largest negative integer . . 

7th Edition 

ABS(3) 

1 



ASSERT (3X) 

NAME 
assert - program verification 

SYNOPSIS 
#include < assert. h > 
assert (expression) 

DESCRIPTION 

ASSERT (3X) 

Assert is a macro that indicates expression is expected to be true at this point in the program. It 
causes an exil(2) with a diagnostic comment on the standard output when expression is false (0). 
Compiling with the ccO) option - DNDEBUG effectively deletes assertfrom the program. 

DIAGNOSTICS 
'Assertion failed: file [line n.· F is the source file and n the source line number of the assert 
statement. 

7th Edition 1 



ATOF(3) ATOF(3 ) 

NAME 
atof, atoi, atol - convert ASCII to numbers 

SYNOPSIS 
double ato(nptr) 
char *nptr; 

atoi(nptr) 
char *nptr; 

lonl atol(nptr) 
char *nptr; 

DESCRIPTION 
These functions convert a string pointed to by nprr to floating, integer, and long integer 
representation respectively. The first unrecognized character ends the string. 

A/(~f recognizes an optional string of tabs and spaces, then an optional sign, then a string of 
digits optionally containing a decimal point, then an optional 'e' or 'E' followed by an optionally 
,Signed integer. 

Aloi and Qlol recognize an optional string of tabs and spaces. then an optional sign. then a string 
of digits. 

SEE ALSO 
scanf(3) 

BUGS 
There are no provisions for overflow. 

7th Edition 1 



CRYPT (3) CRYPT (3) 

NAME 
crypt, setkey, encrypt - DES encryption 

SYNOPSIS 
char ·crypt (key, salt) 
char "'key, "'salt; 

setkey(key) 
char "'key; 

encrypt (block, edftag) 
char "'block; 

DESCRIPTION 
Crypt is the password encryption routine. It is based on the NBS Data Encryption Standard, 
with variations intended (among other things) to frustrate use of hardware implementations of 
the DES for key search. 

The first argument to crypt is a user's typed password. The second is a 2-character string 
chosen from the set [a-zA-ZO-9./J. The salt string is used to perturb the DES algorithm in one 
of 4096 different ways, after which the password is used as th~key to encrypt repeatedly a con
stant string. The returned value points to the encrypted password, in the same alphabet as the 
salt. The first two characters are the salt itself. 

The other entries provide (rather primitive) access to the actual DES algorithm. The argument 
of setkey is a character array of length 64 containing only the c.haracterswith numerical value 0 
and 1. If this string is divided into groups of 8, the low-o~i' bit in each group is ignored, 
leading to a 56-bit key which is set into the machine. . 

The argument to the encrypt entry is likewise a character !lTTay of length 64 containing O's and 
l's. The argument array is modified in place to a similar array representing the bits of theargu
ment after having been subjected to the DES algorithm using th~ ~ey' set by setkey. If eqjlag is 
0, the argument is encrypted; if non-zero, it is decrypted. ..... . 

SEE ALSO 
passwd(I), passwd(5), login(I), getpass(3) 

BUGS 
The return value points to static data whose content is overwritten by each call. 

7th Edition 



CTIME (3) CTIME (3) 

NAME 
ctime, locaitime, gmtime, asctime, timezone - convert date and time to ASCII 

SYNOPSIS 
char *ctime(clock) 
long *clock; 

#include < time.h > 
struct tm *locaJtime(c)ock) 
long *c)ock; 

struct tm *gmtime(c)ock) 
long *clock; 

char *asctime<tm) 
struct tm *tm; 

char *timezone(zone, dst> 

DESCRIPTION 
Ctime converts a time pointed to by clock such as· returned by time(2) into ASCII and returns a 
pointer to a 26-character string in the following form. All the fields have constant width. 

Sun Sep 1601:03:52 1973\n\0 

Loca/time and gmtime return pointers to structures containing the broken-down time. Loca/time 
corrects for the time zone and possible daylight savings time~ gmtime converts directly to GMT, 
which is the time UNIX uses. Asctime converts a broken-down time to ASCII and returns a 
pointer to a 26-character string. 

The structure declaration from the include file is: 

struct tm ( 1* see ctime(3) *' 
int tm_sec~ 

int tm_min; 
int tm_hour. 
int tm_mday; 
int tm_mon; 
int tmyear; 
int tm_wday; 
int tmyday~ 
int 

}; 
tm_isdst; 

These quantities give the time on a 24-hour clock, day of month 0-31), month of year (0-11), 
day of week (Sunday - 0), year - 1900, day of year (0.365), and a flag that is nonzero if day
light saving time is in effect. 

When loe-,li time is called for, the program consults the system to determine the time zone and 
whether the standard U.S.A. daylight saving time adjustment is appropriate. The program 
knows about the peculiarities of this conversion in 1974 and 1975; if necessary, a table for 
these years can be extended. 

Timezone returns the name of the time zone associated with its first argument, which is meas
ured in minutes westward from Greenwich. If the second argument is 0, the standard name is 
used, otherwise the Daylight Saving version. If the required name does not appear in a table 
built into the routine, the difference from GMT is produced; e.g. in Afghanistan 
timezQne( - (60-4 + 30), 0) is appropriate because it is 4:30 ahead of GMT and the string 
GMT+4:30 is produced. 

7th Edition 1 



CTIME (3) 

SEE ALSO 
time(Z) 

BUGS 
The return values point to static data whose content is overwritten by each call. 

7th Edition 

crIME (3) 

2 



CTYPE(3) CTYPE (3) 

NAME 
isaipha, isupper, isiower, isdigit, isainum, isspace. ispunct, isprint, iscntrl, isascii - character 
classification 

SYNOPSIS 
#include <ctype.h> 

isalpha(c) 

DESCRIPTION 
These macros classify ASCII-coded integer values by table lookup. Each is a predicate return
ing nonzero for true, zero for false. lsaseii is defined on all integer values~ the rest are defined 
only where isasciiis true and on the single non-ASCII value EOF (see srdio(3». 

isa/pha 

isupper 

islower 

isdigit 

isalnum 

isspaee 

ispunef 

isprint 

isentr/ 

isaseii 

SEE ALSO 
ascii (7) 

7th Edition 

c is a letter 

c is an upper case letter 

c is a lower case letter 

e is a digit 

c is an alphanumeric character 

c is a space, tab, carriage return, newline. or formfeed 

c is a punctuation character (neither control n9r alphanumeric) 

c is a printing character, code 040(8) (space) through 0176 (tilde) 

c is a delete character (0177) or ordinary control character (less than 040). 

c is an ASCII character, code less than 0200 





DBM (3X) DBM(3X) 

NAME 
dbminit, fetch, store~ delete, first key , nextkey - data base subroutines 

SYNOPSIS 
typedef struct { char -dptr; lnt dsize; } datum; 

dbminit(file) 
char *file; 

datum fetch(key) 
datum key; 

store (key , content> 
datum key, content; 

delete (key) 
datum key; 

datum firstkeyO; 

datum nextkey(key); 
datum key; 

DESCRIPTION 
These functions maintain key/content pairs in a data base. The functions will handle very large 
(a billion blocks) databases and will access a keyed item in one or two filesystem accesses. The 
functions are obtained with the loader option -ldbm. 

Keys and contents are described by the datum typedef. A datum specifies a string of dsize bytes 
pointed to by dptr. Arbitrary binary data, as well as normal ASCII strings, are allowed. The data 
base is stored in two files. One file is a directory containing a bit map and has • .dir' as its suffix. 
The second file contains all data and has '.pag' as its suffix. 

Before a database can be accessed, it must be opened by dbminit. At the time of this call, the 
files file.dir and file.pag must exist. (An empty database is created by creating zero-length 
'.dir' and < .pag' files.) 

Once open, the data stored under a key is accessed by fetch and data is placed under a key by 
store. A key (and its associated contents) is deleted by delete. A linear pass through all keys in 
a database may be made, in an (apparently) random order, by use of firstkey and nextkey. First~ 
key will return the first key in the database. With any key nextkey will return the next key in 
the database. This code will traverse the data base: 

fodkey - first key 0; key .dptr! - NULL; key - nextkey(key» 

DIAGNOSTICS 

BUGS 

All functions that return an int indicate errors with negative values. A zero return indicates ok. 
Routines that return a datum indicate errors with a null (0) dptr. 

The '.pag' file will contain holes so that its apparent size is about four times its actual content. 
Older UNIX systems may create real file blocks for these holes when touched. These files can
not be copied by normal means (cp, cat, tp, tar, ar) without filling in the holes. 

Dptr pointers returned by these subroutines point inlo static storage that is changed by subse· 
Quent calls. 

The sum of the sizes of a key/content pair must not exceed the internal block size (currently 
512 bytes). Moreover all key/content pairs that hash together must fit on a single block. Store 
will return an error in the event that a disk block fills with inseparable data. 

7th Edition 



DBM OX) DBM OX) 

Delete does not physically reclaim file space, although it does make it available for reuse. 

The order of keys presented by firstkey and nextkey depends on a hashing function, not on any
thing interesting. 

7th Edition 2 



ECVT(3) ECVT(3) 

NAME 
eevt, fevt, gevt - output conversion 

SYNOPSIS 
char *ecvt(value, ndigit, decpt, sign) 
double value; 
int ndigit, *decpt, *sign: 

char ·fcvt(value, ndigit. decpt, sign) 
double value; 
int ndigit, *decpt, ·sign; 

char *gcvt(value, ndigit, bur) 
double value; 
char ·buf; 

DESCRIPTION 
Ecvt converts the value to a null-terminated string of ndigit ASCll digits and returns a pointer 
thereto. The position of the decimal point relative to the beginning of the string is stored in
directly through deepl (negative means to the left of the returned digits). If the sign of the 
result is negative, the word pointed to by sign is non-z.ero, otherwise it is z.ero. The low-order 
digit is rounded. 

Few is identical to eelll, except that the correct digit has been rounded for Fortran F-format out
put of the number of digits specified by ndigits. 

GCV1 converts the value to a null-terminated ASCII string in bufand returns a pointer to buj. It 
attempts to produce ndigir significant digits in Fortran F format if possible, otherwise E format, 
ready for printing. Trailing zeros may be suppressed. 

SEE Al.SO 
printfO) 

The return values point to. stalic data whose content is overwritten by each call. 

7th Edition 



END (3) END (3) 

NAME 
end, etext, edata - last locations in program 

SYNOPSIS 
extern end; 
extern etext; 
extern edata; 

DESCRIPTION 
These names refer neither to routines nor to locations with interesting contents. The address 
of etext is the first address above the program text, edata above the initialized data region, and 
end above the uninitialized data region. 

When execution begins, the program break coincides with end. but many functions reset the 
program break, among them the routines of brk(2) , malloc(3) , standard input/output 
(stdio(3» , the profile (-p) option of cc(l), etc. The current value of the program break is 
reliably returned by 'sbrk (0)', see brk(2). 

SEE ALSO 
brk(2), malloc(J) 

• 

7th Edition 1 



EXP(3M) 

NAME 
exp, log, log10, pow, sqrt - exponential, logarithm. power, SQuare root 

SYNOPSIS 
#include <math.h> 

double exp(:x.) 
double x; 

double log (x) 
double x; 

double log10 (x) 
double x; 

double pow{x, y) 
double x, y; 

double sqrt (x) 
double x; 

DESCRIPTION 
Exp returns the exponential function of x. 

Log returns the natural logarithm of x, logJO returns the base 10 logarithm. 

Pow returns :? 
Sqrt returns the square root of x. 

SEE ALSO 
hypot(3), sinhO), intro(2) 

DIAGNOSTICS 

EXP (3M) 

Exp and pow return a huge value when the correct value would overflow~ errno is set to 
ERANGE. Pow returns a and sets errno to EDOM when the second argument is negative and 
non-integral and when both arguments are O. 

Log returns 0 when x is zero or negative; ermo is set to EDOM. . 

Sqrt returns 0 when x is negatjve~ errno is set to EDOM. 

7th Edition 1 



FCLOSE (3S) FCLOSE (3S) 

NAME 
fclose, fflush - close or flush a stream 

SYNOPSIS 
#include < stdio. h > 
fclose(stream> 
FILE ·stream; 

fHush (stream> 
FILE ·stream; 

DESCRIPTION 
FcJose causes any buffers for the named stream·to be emptied. and the file to be closed. Buffers 
allocated by the standard input/output system are freed. 

FcJose is performed automatically upon calling exit(2). 

F./fush causes any buffered data for the named output stream to be written to that file. The 
stream remains open. 

SEE ALSO 
close(2), fopen(J), setbuf(3) 

DIAGNOSTICS 
These routines return EOF if stream is not associated with an output file, or if buffered data 
cannot be transferred to that file. 

7th Edition 1 



FERROR (3S) 

NAME 
feor, ferror, clearerr, fileno - stream status inquiries 

SYNOPSIS 
#include <stdio.h> 

feof(stream) 
FILE ·stream; 

ferror(stream> 
FILE ·stream 

clearerr{stream) 
FILE ·stream 

ftleno(stream) 
FILE ·stream; 

DESCRIPTION 

FERROR (3S) 

Feo/returns non-zero when end of file is read on the named input stream. otherwise zero. 

Ferror returns non-zero when an error has occurred reading or writing the named stream, other
wise zero. Unless cleared by clearerr. the error indication lasLS until the stream is closed. 

eire" resets the error indication on the named stream. 
Fileno returns the integer file descriptor associated with the stream, see open (2) . 

These functions are implemented as macros~ they cannot be redeclared. 

SEE ALSO 
fopen(J). open(2) 

7th Edition 



FLOOR(3M) 

NAME 
fabs, floor, ceil - absolute value, floor, ceiling functions 

SYNOPSIS 
#include < math.h> 

double ftoor(x) 
double x; 

double ceil <x) 
double x; 

double tabs (x) 
double(x); 

DESCRIPTION 
Fabs returns the absolute value Ix~ 

Floor returns the largest integer not greater than x. 

Ceil returns the smallest integer not less than x. 

SEE ALSO 
abs(3) 

7th Edition 

FLOOR (3M) 

1 



FOPEN (3S) FOPEN (3S) 

NAME 
fopen, freopen, fdopen - open a stream 

SYNOPSIS 
#include < stdio. h > 
FILE "'fopen (filename, type) 
char "'filename, "'type; 

I 

FILE ·freopen(filename. type, stream) 
char "'filename, ·type; 
FI LE ·stream; 

FILE *fdopen(fildes, type) 
char *type; 

DESCRIPTION 
Fopen opens the file named by filename and associates a stream with it. Fopen returns a pointer 
to be used to identify the stream in subsequent operations. 

Type is a character string having one of the following values: 

"r" open for reading 

"w" create for writing 

"a" append: open for writing at end of file, or create for writing 

Freopen substitutes the named file in place of the open stream. It returns the original value of 
stream. The original stream is closed. 

Freopen is typically used to attach the preopened constant names, stdin. stdout, stden, to 
specified files. 

Fdopen associates a stream with a file descriptor obtained from open, dup. creal, or pipe (2) . The 
type of the stream must agree with the mode of the open file. 

SEE ALSO 
open(2), fclose(3) 

DIAGNOSTICS 
Fopen and freopen return the pointer NULL if filename cannot be accessed. 

BUGS 
Fdopen is not portable to systems other than UNIX. 

7th Edition 1 



FREAD (3S) 

NAME 
fread, fwrite - buffered binary input/output 

SYNOPSIS 
#include < stdio. h > 
fread(ptr, sizeof("'ptr), nitems, stream) 
FI LE "'stream; 

fwrite(ptr, sizeof("'ptr), nitems, stream) 
FILE "'stream; 

DESCRIPTION 

FREAD (3S) 

Fread reads, into a block beginning at plr, nitems of data of the type of "ptr from the named in
put stream. It returns the number of items actually read. 

Fwrite appends at most nitems of data of the type of "ptr beginning at ptr to the named output 
stream. It returns the number of items actually written. 

SEE ALSO 
read(2), write(2), fopen(3), getc(3), putc(3), gets(3), puts(3). printf(3), scanf(3) 

DIAGNOSTICS 
Fread and fwrite return 0 upon end of file or error. 

7th Edition 1 



FREXP(3) FREXP(3) 

NAME 
frexp, Idexp, modf - split into mantissa and exponent 

SYNOPSIS 
double frexp(value, eptr) 
double value; 
int "eptr; 

double Idexp( value. exp) 
double value; 

double modf( value. iptr) 
double value, *iptr; 

DESCRIPTION 
Frexp returns the mantissa of a double value as a double quantity, x. of magnitude less than 1 
and stores an integer n such that value - x*2" n indirectly through eptr. 

Ldexp returns the quantity value*2·· expo 

Mot,ifreturns the positive fractional part of value and stores the integer part indirectly through 
iptr. 

7th Edition 



FSEEK(3S) 

NAME 
fseek, ftell, rewind - reposition a stream 

SYNOPSIS 
#include <stdio.h> 

(seek (stream. oft'set. ptrname) 
FILE ·stream; 
lonl oft'set: 

lonl ftell (stream) 
FILE ·stream; 

rewi nd (stream) 

DESCRIPTION 

FSEEK (3S) 

Fseek sets the position of the next input or output operation on the stream. The new position is 
at the signed distance offset bytes from the beginnina. the current position. or the end of the 
file, according as ptrname has the value O. 1. or 2. 

Fseek undoes any effects of ungetc(3). 

Ftell returns the current value of the offset relative to the beainning of the file associated with 
the named stream. It is measured in bytes on UNIX; on some other systems it is a magic cook
ie, and the only foolproof way to obtain an offset (or jseelc. 

Rewind(siream) is equivalent to jseek(stream. OL. 0). 

SEE ALSO 
lseek(2), fopen(3) 

DIAGNOSTICS 
Fseek returns -1 for improper seeks. 

7th Edition 1 



GETC(3S) GETC(3S) 

NAME 
getc, getchar, fgetc, getw - get character or word from stream 

SYNOPSIS 
#include <stdio.h> 

int getdstream) 
FILE ·stream; 

int getcharO 

int fgetdstream) 
FILE ·stream; 

int letw(stream) 
FILE ·stream; 

DESCRIPTION 
Getc returns the next character from the named input stream. 

Getc!7arO is identical to getc(stdinJ. 

Fgetc behaves like getc, but is a genuine function. not a macro~ it may be used to save object 
text. 

Gerw returns the next word from the named input stream. It returns the constant EOF upon 
end of file or error, but since that is a good integer value. leofand ferror(3) should be used to 
check the success of gerw. Getwassumes no special alignment in the file. 

SEE ALSO 
fopen(3). putc(3), gets(3), seanf(3), fread(3), ungetc(3) 

DIAGNOSTICS 

BUGS 

These functions return the integer constant EOF at end of file or upon read error. 

A stop with message. 'Reading bad file', means an attempt has been made to read from a 
stream that has not been opened for reading by lopen. 

The end·of-file return from getc!7ar is incompatible with that in UNIX editions )·6. 

Because it is implemented as a macro, getc treats a stream argument with side effects incorrectly. 
In particular, 'getC(*f + + ) ~' doesn't work sensibly. 

, 

7th Edition 1 



GETENVU) 

NAME 
getenv - value for environment name 

SYNOPSIS 
char *getenv (name) 
char *name: 

DESCRIPTION 

GETENV (3) 

Getenv searches the environment list (see environ(S» for a string of the form name- value and 
relurns value if such a string is present, otherwise 0 (NULL>. 

SEE ALSO 
environ(SL exed2) 

7th Edition 1 



GETGRENT (3) 

NAME 
getgrent, getgrgid, getgmam, setgrent, endgrent - get group tile entry 

SYNOPSIS 
#include <Crp.h> 

struct group *cetcrentO; 

struct group *cetcrgid <lid.) lnt Cid; 

struct croup *.getcrnam(name) char *namej 

int setcrentO; 

int endgrentO; 

DESCRIPTION 

GETGRENT (3 ) 

Gelgrent. gelgrgid and getgrnam each return pointers to an object with the following structure 
containing the broken-out fields of a line in the group tile. 

FILES 

strucl group ( ,- see gelgrent (3) - I 
char -gr_name~ 
char -gr .J)&SSWd~ 
int grJid~ 

}~ 
char ·-gr_mem~ 

The members of this structure are: 

gr_name 
The name of the group. 

gr.J)&SSWd 
. The encrypted password of the group. 

grJid The numerical group-lD. 
gr_mem 

Null-terminated vector of pointers to the individual member names. 

Gelgrent simply reads the next line while ~tgrgid and getgrnam search until a matching gid or 
name is found (or until EOF is encountered). Each routine picks up where the others leave off 
so successive calls may be used to search the entire tile. 

A call to setgrent has the effect of rewinding the group tile to allow repeated searches. Endgrent 
may be called to close the group tile when processing is complete. 

letclgroup 

SEE ALSO 
getlogin (3), getpwent (3), group(S) 

DIAGNOSTICS 
A null pointer (0) is returned on EOF or error. 

BUGS 
All information is contained in a static area so it must be copied if it is to be saved. 

7th Edition 1 



GETLOGIN ( 3 ) 

NAME 
getlogin - get login name 

SYNOPSIS 
char *getloain 0; 

DESCRIPTION 

GETLOGIN (3) 

Get/og;n returns a pointer to the login name as found in letdutmp. It may be used in conjunc
tion with getpwnam to locatelhe correct password file entry when the same userid is shared by 
several login names: 

If get/ogin is called within a process that is not attached to a typewriter, it returns NULL. The 
correct procedure for determining the login name is to first call getlogin and if it fails, to caU 
getpwuid. 

FILES 
letc/utmp 

SEE ALSO 
getpwent(3), getgrent(3), utmp(S) 

DIAGNOSTICS 
Returns NULL (0) if name not found. 

BUGS 
The return values point to static data whose content is overwritten by each call. 

7th Edition 1 



GETPASS(3 ) 

NAME 
getpass - read a password 

SYNOPSIS 
char *getpass(prompt> 
char *prompt; 

DESCRIPTION 

GETPASS (3) 

Getpass reads a password from the file Idewlty, or if that can dOl be opened, from the standard 
input, after prompting with the null-terminated string prompt and disabling echoing. A pointer 
is returned to a null-terminated string of at most 8 characters. 

FILES 
/dev/tty 

SEE ALSO 
crypt (3) 

BUGS 
The return value points to static data whose content is overwritten by each call. 

7th Edition 



GETPW (3) 

NAME 
getpw - get name from UID 

SYNOPSIS 
getpw(uid. buf) 
char *buf; 

DESCRIPTION 

GETPW(3) 

Gerpw searches the password file for the (numerical) uid. and fills in bujwilh the corresponding 
line~ it returns non-zero if uid could not be found. The line is null-terminated. 

FILES 
/etc/passwd 

SEE ALSO 
getpwent(J), passwd(S) 

DIAGNOSTICS 
Non-zero return on error. 

7th Edition 1 



G ETPWENT ( 3 ) GETPWENT ( 3 ) 

NAME 
getpwent, getpwuid, getpwnam, setpwent, endpwent - get password file entry 

SYNOPSIS 
#include < pwd. h > 
struct passwd "'getpwentO; 

struct passwd "'getpwuid(uid) int uid; 

struct passwd "'getpwnam(name) char "'name; 

int setpwentO; 

int endpwent 0; 

DESCRIPTION 

FILES 

Getpwent, getpwuid and getpwnam each return a pointer to an object with the following structure 
containing the broken-out fields of a line in the password file. 

struct passwd I r see getpwent(3) ./ 
char ·pw _name~ 
char ·pw...,PaSswd; 
int pw _uid; . 
int pWJid; 
int pw _Quota; 
char ·pw _comment; 
char • pw...secos; 
char ·pw _dir; 
char ·pw _shell; 

I: 
The fields pw_quolo and pw_comment are unused; the others have meanings described in 
passwd(S). 

Getpwent reads the next line (opening the file if necessary); setpwent rewinds the file; endpwent 
closes it. 

Getpwuid and getpwnam search from the beginning until a matching uid or name is found (or un
til EOF is encountered). 

/etc/passwd 

SEE ALSO 
getlogin(3), gelgrent(3), passwd(S) 

DIAGNOSTICS 
Null pointer (0) returned on EOF or error. 

BUGS 
All information is contained in a static area so it must be copied if it is to be saved. 

7th Edition 



GETS (3S) 

NAME 
gets. fgets - get a string from a stream 

SYNOPSIS 
#include < stdio. h > 
char *Iets(s) 
char *5. 

char *flets(s. n. stream) 
char *s; 
FILE *stream; 

DESCRIPTION 

GETS (JS) 

Gets reads a string into s from the standard input stream stdln. The string is terminated by a 
newline character. which is replaced in s by a null character. Gets returns its argument. 

Fgets reads n-l characters. or up to a newline character. whichever comes first. from the 
stream into the string s. The last character read into s is followed by a nun character. Fgets re
turns its first argument. 

SEE ALSO 
puts(3). getc(3). scanf(3). freadU). ferror(3) 

DIAGNOSTICS 
Gets and fgets return the constant pointer NULL upon end of file or error. 

BUGS 
Gets deletes a newline. /gets keeps it. all in the name of backward compalibililY. 

7th Edition 



" HYPOT (3M) 

NAME 
hypot. cabs - euclidean distance 

SYNOPSIS 
#include <math.h> 

double hypot(x. y) 
double x. y; 

double cabs{z) 
struct ( double x. y;) z; 

DESCRIPTION 
Hypor and cabs return 

sqrt(x·x + y.y), 

taking precautions against unwarranted overflows. 

SEE ALSO 
exp(3) for sqrt 

7th Edition 

HYPOT(3M) 

1 



JO (3M) 

NAME 
jO, j I, jn. yO, y I, yn - bessel functions 

SYNOPSIS 
#include < math.h> 

double jtH x) 
double x~ 

double jt (x) 
double x: 

double jn(n. x); 
double x: 

double yO(x) 
double x; 

double yl (x) 
double x: 

double yn(n. x) 
double x: 

DESCRIPTION 

JU \ JM J 

These functions calculate Bessel functions of the first and 5ei:ond kinds for real arguments and 
integer orders. . 

DIAGNOSTICS 
Negative arguments cause yO. yJ, and yn to return a huge negative value and set errno to 
EDOM. 

7th Edition 1 



LjTOL (3) 

NAME 
13tol, 11013 - convert between 3-byte integers and long integers 

SYNOPSIS 
13tolOp, cp, n) 
long *Ip; 
char *cp; 

lto13(cp, Ip, n) 
char *cp; 
long *Ip; 

DESCRIPTION 

L3TOL (3) 

L3rol converts a list of n three-byte integers packed into a character string pointed to by cp into 
a list of long integers pointed to by /p. 

L,013 performs the reverse conversion from long integers (Ip) to three-byte integers (cp). 

These f~nctions are useful for file-system maintenance; disk addr~es are three bytes long. 

SEE ALSO 
filsys(S) 

7th Edition PDP}} 



MALLOC(3) MALLUL \ j J 

NAME 
malloc, free, realloc, calloc - main memory allocator 

SYNOPSIS 
char *malloC<size) 
unsigned size; 

free (ptr) 
char *'Pu; 

char *realloc(ptr, size) 
char *ptr; 
unsigned size; 

char *calloC<nelem, elsize) 
unsigned nelem. elsize; 

DESCRIPTION 
MaJJoe and free provide a simple general-purpose memory allocation package. Mal/oc returns a 
pointer to a block of at least size bytes beginning on a word boundary. 

The argument to free is a pointer to a block previously allocated by mal/oe; this space is made 
available for further allocation, but its'contents are left undisturbed. 

Needless to say, grave disorder will result if the space assigned by mal/oe is overrun or if some 
random number is handed to free. 

Mal/oe allocates the first big enough contiguous reach of free space found in a circular search 
from the last block allocated or freed, coalescing adjacent free blocks as it searches. It calls sbrk 
(see break(2» to get more memory from the system when there is no suitable space already 
free. 

Real/oe changes the size of the block pointed to by ptr to size byt~s and returns a pointer to the 
(possibly moved) block. The contents will be unchanged up to the lesser of the new and old 
sizes. 

Real/oc also works if ptr points to a block freed since the last call of ma/Ioe. realloc or cal/oc; 
thus sequences of free. mal/oe and realloe can exploit the search strategy of malloc to do storage 
compaction. 

Co/Joe allocates space for an array of ne/em elements of size elsize. The space is initialized to 
zeros. 

Each of the allocation routines returns a pointer to space suitably aligned (after possible pointer 
coercion) for storage of any type of object. 

DIAGNOSTICS 

BUGS 

Ma/Joe. rea/Joe and ealJoe return a null pointer (0) if there is no available memory or if the 
arena has been detectably corrupted by storing outside the bounds of a block. Malloc may be 
recompiled to check the arena very stringently on every transaction; see the source code. 

When realJoe returns 0, the block pointed to by ptr may be destroyed. 

7th Edition 



MKTEMP(3) 

NAME 
mktemp - make a unique file name 

SYNOPSIS 
char *mktemp<template) 
char -template; 

DESCRIPTION . 

MKTEMP(3) 

Mktemp replaces template by a unique file name, and returns the address of the template. The 
template should look like a file name with six trailing X's, which will be replaced with the 
current process id and a unique letter. 

SEE ALSO 
getpid(2) 

7th Edition 1 



MONITOR (3) MONITOR (3) 

NAME 
monitor - prepare execution profile 

SYNOPSIS 
monitor(Jowpc, highpc, buffer, bufsize, nfund 
int (*Iowpc) ( ), (*highpc) ( ); 
short bufferf I; 

DESCRIPTION 

FILES 

An executable program created by 'cc - p' automatically includes calls for monitor with default 
parameters; monitor needn't be called explicitly except to gain fine control over profiling. 

Monitor is an interface to prQ/i/(2}. Lowpc and highpc are the addresses of two functions; b,qJer 
is the address of a (user supplied) array of bujsize short integers. Monitor arranges to record a 
histogram of periodically sampled values of the program counter, and of counts of calls of cer
tain functions. in the buffer. The lowest address sampled is that of lowpc and the highest is just 
below highpc. At most n.func call counts can be kept; only calls of functions compiled with the 
profiling option -p of ccO) are recorded. For the results to be significant. especially where 
there ·are small. heavily used routines. it is suggested that the buffer be no more than a few 
times smaller than the range of locations sampled. 

To profile the entire program. it is sufficient to use 

extern etext 0; 

monitor( (int) 2. etext, buf. bufsize. nfunc}; 

Etext lies just above all the program text. see end(3). 

To stop execution monitoring and write the results on the file- mon. out. use 

monitor(O) ; 

then pro.f( 1) can be used to examine the results. 

mon.out 

SEE ALSO 
prof( I). profiH2), ccO) 

7th Edition 1 



MP OX) MP OX) 

NAME 
ilom, madd, msub, mull, mdiv, min, moul, pow, gcd, rpow - multiple precision integer arith
metic 

SYNOPSIS 
typedef struct ( lnt I~n; short ·val; ) mint; 

madd (a, b. c> 
msub(a, b. c> 
muU(a. b. c> 
mdiv (a, b, q, r> 
min(a) 
molit(a) 
pow (a, b, m, c> 
ged(a, b, c> 
rpow (a. b. c) 
msqrt(a. b. r) 
mint ·a, ·b. ·c. *m •• q. ·r; 

sdiv(a. n. q. r> 
mint *a, *q; 
short *r; 

mint *itom(n) 

DESCRIPTION 
These routines perform arithmetic on integers of arbitrary length. The integers are stored using 
the defined type mint. Pointers to a minI should be initialized using the function itom, which 
sets the initial value to n. After that space is managed automatically by the routines. 

madd, msub, mull, assign to their third arguments the sum, difference, and product, respec
tively, of their first t~o arguments. mdivassigns the quotient and remainder, respectively, to its 
third and fourth arguments. sdiv is like mdiv except that the divisor is an ordinary integer. 
msqrt produces the square root and remainder of its first argument. rpow calculates a raised to 
the power b, while pow calculates this reduced modulo m. min andmout do decimal input and 
output. 

The functions are obtained with the loader option -Imp. 

DIAGNOSTICS 
Illegal operations and running out of memory produce messages and core images. 

7th Edition 



NLIST (3) 

NAME 
nlist - get entries from name list 

SYNOPSIS 
#include < a.out. h > 
nlist (filename. nn 
char -tilename; 
struct nlist nil I; 

DESCRIPTION 

NLIST (3) 

Nlisl examines the name list in the given executable output file and selectively ex.tracts a list of 
values. The name list consists of an array of structures containing names, types and values. 
The list is terminated with a null name. Each name is looked up in the name list of the file. If 
the name is found. the type and value of the name are inserted in the next two fields. If the 
name is not found. both entries are set to O. See a.ow(S) for the structure declaration. 

This subroutine is useful for examining the system name list kept in the file lunix. In this way 
programs can obtain system addresses that are up to date. 

SEE ALSO 
a.out(S) 

DIAGNOSTICS 
All type entries are set to 0 if the file cannot be found or if it is nOl a valid name list. 

7th Edition 1 



PERROR (3) PERROR (3) 

NAME 
perror, sys_errlist, sys_nerr - system error messages 

SYNOPSIS 
perror(s) 
char ·5. 
int sys_nerr; 
char "'sys_errlistll; 

DESCRIPTION 
Perror produces a short error message on the standard error file describing the last error en
countered during a call to the system from a C program. First the argument string s is printed, 
then a colon, then the message and a new·line. Most usefully, the argument string is the name 
of the program which incurred the error. The error number is laken from the external variable 
errno (see intro(2)}, which is set when errors occur but not cleared when non·erroneous calls 
are made. 

To simplify variant formatting of messages, the vector of message strings sys_errJisf is provided; 
ermo can be used as an index in this table to get the message string without the newline. 
Sys_nerr is the number of messages provided for in the table; it should.be checked because new 
error codes may be added to the system before they are added to the table. 

SEE ALSO 
intro(2) 

7th Edition 



PKOPEN (3) PKOPEN (3) 

NAME 
pkopen, pkclose, pkread, pkwrite, pkfail - packet driver simulator 

SYNOPSIS 
char "'pkopen(fd) 

pkclose(ptr) 
char *ptr; 

pkread(ptr, buffer, count> 
char "'ptr, *buffer; 

pkwrite(ptr, buffer, count> 
char *ptr. *buffer; 

pkfailO 

DESCRIPTION 
These routines are a user-level implementation of the full-duplex end-to-end communication 
protocol described in pk(4). If fd is a file descriptor open for readil18 and writing. pkopen carries 
out the initial synchronization and returns an identifying pointer. The pointer is used as the 
first parameter to pkread. pkwrite, and pkclose. 

Pkread. pkwrite and pkclose behave analogously to read, write and c/ose(2). However, a write of 
zero bytes is meaningful and will produce a correspondil18 read of zero bytes. 

SEE ALSO 
pk(4), pkon(2) 

DIAGNOSTICS 

BUGS 

Pkfail is called upon persistent breakdown of communication. Pkj'ail must be. supplied by the 
user. 

Pkopen returns a null (0) pointer if packet protocol can not be established. 

Pkread returns -1 on end of file, 0 in correspondence with a O-lel18th write. 

This simulation of pk(4) leaves something to be desired in needing special read and write rou
tines, and in not being inheritable across calls of exec(2). Its prime use is on systems that lack 
pk. 
These functions use alarm(2); simultaneous use of alarm for other puposes may cause trouble. 

7th Edition 1 



PLOT (3X) PLOT (3X) 

NAME 
plot: openpl et a!. - graphics interface 

SYNOPSIS 
openpl( ) 

erase( ) 

labeHs) char 511; 

line{x!., yI, xl, yZ) 

circle(x, y, r) 

arc(x, y, xO, yO, xl, yt) 

move<X, y) 

cont(x, y) 

point(x, y) 

linemod(s) char sl 1; 
space(xO, yO, xl, yt) 

ciosepH) 

DESCRIPTION 
These subroutines generate graphic output in a relatively device-independent manner. See 
plot(S) for a description of their effect. Openpi must be used before any of the others to open 
the device for writing. C/oseplfiushes the output. 

String arguments to label and linemod are null-terminated, and do not contain newlines. 

Various flavors of these functions exist for different output devices. They are obtained by the 
following IdO) options: 

-Iplol device-independent graphics stream on standard output for plotO) filters 
-1300 OSI 300 terminal 
-1300s OSl 300S terminal 
-1450 DASI 4S0 terminal 
-14014 Tektronix 4014 terminal 

SEE ALSO 
plot (5), plot (}), graph (l) 

7th Edition 



POPEN (3S) PO PEN ( 3S) 

NAME 
popen, pclose - initiate 110 to/from a process 

SYNOPSIS 
#include < stdio. h > 
FILE ·popen(command, type) 
char ·command, .type; 

pclose(stream) 
FILE ·stream; 

DESCRIPTION 
The arguments to popen are pointers to null-terminated strings containing respectively a shell 
command line and an 110 mode, either "r" for reading or "w" for writing. It creates a pipe 
between the calling process and the command to be executed. The value returned is a stream 
pointer that can be used (as appropriate) to write to the standard input of the command or read 
from its standard output. 

A stream opened by popen should be closed by pclose. which waits for the associated process to 
terminate and returns the exit status of the command. 

Because open files are shared, a type "r· command may be used as an input filter, and a type 
"w· as an output filter. 

SEE ALSO 
pipe(2), fopen(J), fclose(J), system(J), wait(2) 

DIAGNOSTICS 

BUGS 

Pope" returns a null pointer if files or processes cannot be created, or the Shell cannot be ac
cessed. 

Pc/ose returns - 1 if stream is not associated with a 'popened' command. 

Buffered reading before opening an input filter may leave the standard input of that filter 
mispositioned. Similar problems with an output filter may be forestalled by careful buffer flush
ing, e.g. with .6fush. see jclose(3). 

7th Edition 



PRINTF(3S) PRINTF (3S) 

NAME 
printf, fprintf, sprintf - formatted output conversion 

SYNOPSIS 
#include <stdio.h> 

printf(format [, arg ) ... ) 
char *format; 

fprintf(stream, format [, arg ) ... ) 
FILE ·stream; 
char ·format; 

sprintf(s, format [, arg ] ... ) 
char *5, format; 

DESCRIPTION 
Prinifplaces output on the standard output stream sldout. Fprinifplaces output on the named 
output stream. Sprinifplaces 'output' in the string s. followed by the character '\0'. 

Each of these functions converts, formats, and prints its arguments after the first under control 
of the first argument. The first argument is a character string which contains two types of o\). 
jects: plain characters, which are simply copied to the output stream, and conversion 
specifications, each of which causes conversion and printing of the next successive arg print/. 

Each conversion specification is introduced by the character %. Following the '10, there may be 

an optional minus sign '-' which specifies left at!iustment of the converted value in the 
indicated field~ 

an optional digit string specifying a field width; if the converted value has fewer charac
ters than the field width it will be blank-padded on the left (or right, if the left
adjustment indicator has been given) to make up the field width~ if the field width be
gins with a zero, zero-padding will be done instead of blank-padding; 

an optional period '.' which serves to separate the field width from the next digit string; 

an optional digit string specifying a precision which specifies the number of digits to ap
pear after the decimal point, for e- and f-conversion, or the maximum number of char
acters to be printed from a string; 

the character I specifying that a following d, 0, x, or u corresponds to a long integer 
arg. (A capitalized conversion code accomplishes the same thing.) 

a character which indicates the type of conversion to be applied. 

A field width or precision may be ... ' instead of a digit string. In this case an integer arg sup
plies the field width or precision. 

The conversion characters and their meanings are 

dox The integer arg is converted to decimal, octal, or hexadecimal notation respectively. 

f The float or double arg is converted to decimal notation in the style • [ -Jddd.ddd' 
where the number of d's after the decimal point is equal to the precision specification 
for the argument. If the precision is missing, 6 digits are given~ if the precision is ex
plicitly 0, no digits and no decimal point are printed. 

e The float or double arg is converted in the style '(-Jd.ddde±dd' where there is one di
git before the decimal point and the number after is equal to the precision specification 
for the argument; when the precision is missing, 6 digits are produced. 

g The float or double arg is printed in style d, in style f, or in style e, whichever gives full 
precision in minimum space. 

7th Edition 



PRINTF ( 3S ) PRJNTF ( 3S ) 

c The character arg is printed. Null characters are ignored. 

s Arg is taken to be a string (character pointer) and characters from the string are printed 
until a null character or until the number of characters indicated by the precision 
specification is reached; however if the precision is 0 or missing all characters up to a 
null are printed. 

u The unsigned integer arg is converted to decimal and printed (the result will be in the 
range 0 to 65535). 

o/a Print a '%'; no argument is converted. 

In no case does a non-existent or small field width cause truncation of a field; padding takes 
place only if the specified field width exceeds the actual width. Characters generated by pint! 
are printed by putc(3). 

Examples 
To print a dale and time in the form 'Sunday, July 3, 10:02', where w«kdtlyand month are 
pointers to null-terminated strings: 

printf<-%s, %s %d. %02d:%02d", weekday, month. day, hour, min); 

To print 1T to 5 decimals: 

printf("pi - %.5f", 4-atan(I.0»; 

SEE ALSO 
putc(3), seanf(3), ecvt(3) 

BUGS 
Very wide fields (> 128 characters) fail. 

7th Edition 2 



PUTC (3S) PUTC (3S) 

NAME 
pute, putchar, fputc, putw - put character or word on a strea~ 

SYNOPSIS 
#include < stdio. h > 
int putC<c. stream) 
char c; 
FILE ·stream; 

putchar(c) 

fputC<c. stream) 
FILE ·stream; 

putw h,. stream) 
FILE ·stream; 

DESCRIPTION 
PlilC appends the character c to the named output stream. It returns the character written. 

PlllchadC) is defined as pmdc, Sldoll1). 

Fplllc behaves like plllC, but is a genuine function rather than a macro. It may be used to save 
on object text. 

PIIIM' appends word (j.e. int> w to the output stream. It returns the word written. PlItM' neither 
assumes nor causes special alignment in the file. 

The standard stream stdolll is normally buffered if and only if the output does not refer to a 
terminal; this default may be changed by st'lbl(f{3). The standard stream slderr is by default 
unbuffered unconditionally, but use of frl'o~n (see fo~n(3» will cause it to become buffered; 
st'lbl({. 8gain, will set the state to whatever is desired. When an output stream. is unbuffered 
information appears on the destination file or terminal as soon as written; when it is buffered 
many characters ar~ saved up and written as a block. F.llllsh (see fclost'(3» may be used to 
force the block out early. 

SEE AI.SO 
fopen(3), fdose(3), getd3), puts(3), prinlf(3), fread(3) 

DIAGNOSTICS 

BUGS 

These functions return the constant EOF upon error. Since this is a good integer, /l'rror(3) 
should be used to detect PIltM' errors. 

Because it is implemented as a macro, pmC" treats a Slrl'am argument with side effects 
improperly. In particular 'putde, *f+ + );' doesn't work sensibly. 

7th Edition 



PUTS (3S) 

NAME 
puts, fputs - put a string on a stream 

SYNOPSIS 
#include <stdio.h> 

puts(s) 
char ·s; 

fputs(s, stream) 
char ·s; 
FILE ·stream; 

DESCRIPTION 

PUTS (3S) 

Purs copies the null-terminated string s to the standard output stream stdout and appends a new
line character. 

Fpuls copies the null-terminated string s to the named output stream. 

Neither routine copies the terminal null character. 

SEE ALSO 

BUGS 

fopen(3), gets(3), putc(3), printf(3), ferror(3) 
fread(3) for fwrite 

Puts appends a newline. /PUIS does not, aU in the name of backward compatibility. 

7th Edition 



RAND (3) RAND (3) 

NA.ME 
rand, srand - random number generator 

SYNOPSIS 
srand (seed) 
int seed; 

rand( ) 

DESCRIPTION 
Rand uses a multiplicative congruential random number generator with period 232 to return suc-
cessive pseudo-random numbers in the range from 0 to 2Is -1. '" 

The generator ·is reinitialized by calling STand with 1 as argument. It can be set to a random 
starling point by calling STand with whatever you like as argument. 

7th Edition 



QSORT(3) 

NAME 
qsort - quicker sort 

SYNOPSIS 
qsort(base. nel. width, compar) 
char *base; 
int ("'compar) ( ); 

DESCRIPTION 

QSORT (3) 

Qsorf is an implementation of the quicker-sort algorithm. The first argument is a pointer to the 
base of the data~ the second is the number of elements~ the third is the width of an element in 
bytes~ the last is the name of the comparison routine to be called with two arguments which are 
pointers to the elements being compared. The routine must return an integer less than. equal 
to, or greater than 0 according as the first argument is to be considered less than, equal to. or 
greater than the second. 

SEE ALSO 
sartO) 

7th Edition 1 



SCANF(3S) SCANF (3S) 

NAME 
scanf, fseanf, sscanf - formatted input conversion 

SYNOPSIS 
#include < stdio.h > 
scanf(format [ , pointer] ... 
char "'format; . 

fscanf(stream, format [ , pointer] . .. ) 
FILE "'stream; 
char "'format; 

sscanf(s. format [ , pointer 1 . . . ) 
char "'5. "'format; 

DESCRIPTION 
Scal?freads from the standard input stream sidin. Fscaltfreads from the named input stream. 
Sscanf reads from the character string s. Each function reads characters, interprets them ac
cording to a format, and stores the results in its arguments. Each expects as arguments a con
trol string format. described below, and a set of pointer arguments indicating where the convert
ed input should be stored. 

The control string usually contains conversion specifications, which are used to direct interpre
tation of input sequences. The control string may contain: 

1. Blanks. tabs or newlines, which match optional white space in the input. 

2. An ordinary character (not %) which must match the next character of the input stream. 

3. Conversion specifications, consisting of the character 'Ie, an optional assignment suppress-
ing character"', an optional numerical maximum field width, and a conversion character. 

A conversion specification directs the conversion of the next input field~ the result is placed in 
the variable pointed to by the corresponding argument, unless assignment suppression was indi
cated by"'. An input field is defined as a string of non-space characters; it extends to the next 
inappropriate character or until the field width, if specified, is exhausted. 

The conversion character indicates the interpretation of the input field~ the corresponding 
pointer argument must usually be of a restricted type. The following conversion characters are 
legal: 

'Ycl a single '%' is expected in the input at this point~ no assignment is done. 

d a decimal integer is expected: the corresponding argument should be an integer pointer. 

o an octal integer is expected~ the corresponding argument should be a integer pointer. 

x a hexadecimal integer is expected; the corresponding argument should be an integer 
pointer. 

s a character string is expected: the corresponding argument should be a character pointer 
pointing to an array of characters large enough to accept the string and a terminating '\0" 
which will be added. The input field is terminated by a space character or a newline. 

c a character is expected: the corresponding argument should be a character pointer. The 
normal skip over space characters is suppressed in this case: to read the next non-space 
character, try '%1s'. If a field width is given. the corresponding argument should refer to a 
character array, and the indicated number of characters is read. 

e a floating point number is expected; the next field is converted accordingly and stored 
f through the corresponding argument, which should be a pointer 10 a /Ioat. The input for

mat for floating point numbers is an optionally signed string of digits possibly containing a 
decimal point, followed by an optional exponent field consisting of an E or e followed by 

7th Edition 



SCANF (3S) SCANF (3S) 

an optionally signed integer. 

indicates a string not to be delimited by space characters. The left bracket is followed by a 
set of characters and a right bracket: the characters between the brackets define a set of 
characters making up the string. If the first character is not circumflex ('), the input field 
is all characters until the first character not in the set between the brackets: if the first char
acter after the left bracket is " the input field is all characters until the first character which 
is in the remaining set of characters between the brackets. The corresponding argument 
must point to a character array. 

The conversion characters d, 0 and x may be capitalized or preceeded by I to indicate that a 
pointer to long rather than to int is in the argument list. Similarly, the conversion characters e 
or f may be capitalized or preceded by I to indicate a pointer to double rather than to float. The 
conversion characters d, 0 and x may be preceeded by h to indicate a pointer to short rather 
than to int. 

The scan/functions return the number of successfully matched and assigned input items. This 
can be used to decide how many input items were found. The constant EOF is returned upon 
end of input: note that this is different from 0, which means that no conversion was done; if 
conversion was intended. it was frustrated by an inappropriate character in the input. 

For example. the call 

int i; float x; char name{50]; 
scanf( "%d%f%s", &i. &x. name)~ 

with the input line 

25 54.32E-I thompson 

will assign to i the value 25. x the value 5.432. and name will contain 'thompson\ 0 '. Or, 

int i: floal x: char name{50): 
scanf("%2d%f%*d%[I234567890]", &i. &x. name): 

with input 

56789 0123 56a72 

will assign 56 to i. 789.0 to x. skip '0123', and place the string '56\0' in name. The next call to 
getchar will return 'a'. 

SEE ALSO 
atof(3), getc(3), printf(3) 

DIAGNOSTICS 

BUGS 

The scan! functions return EOF on end of input, and a short count for missing or illegal data 
items. 

The success of literal matches and suppressed assignments is not directly determinable. 

7th Edition 2 



SETBUF (3S) SETBUF(3S) 

NAME 
setbuf - assign buffering to a stream 

SYNOPSIS 
#include < stdio. h > 
setbuf(stream, bur) 
FILE ·stream; 
char -buf; 

DESCRIPTION 
SeTbl.{[ is used after a stream has been opened but before it is read or written. It causes the 
character array bl.{fto be used instead of an automatically allocated buffer. If bufis the constant 
pointer NULL, input/output will be completely unbuffered. 

A manifest constant BUFSll tells how big an array is needed: 

char buf(BUFSIZ) ~ 

A buffer is normally obtained from mal/ocO) upon the first geTc or puTd3) on the file, except 
that output streams directed to terminals, and the standard error stream Side" are normally not 
buffered. 

SEE ALSO 
fopenO), getd3), putcO), malloc(3) 

7th Edition 1 



SETJMP (3) SETJMP (3) 

NAME 
setjmp, \ongjmp - non-local go to 

SYNOPSIS 
#include <setjmp.h> 

setjmp(enT) 
jmp_buf enT; 

longjmp(env, vaD 
jmp_buf enT; 

DESCRIPTION 
These routines are useful for dealing with errors and interrupts encountered in a low-level sub
routine of a program. 

Setjmp saves its stack environment in env for later use by /ongjmp. It returns value O. 

Longjmp restores the environment saved by the last call of setjmp. It then returns in such a way 
that execution continues as if the call of setjmp had just returned the value val to the function 
that invoked setjmp. which must not itself have returned in the interim. All accessible data 
have values as of the time /ongjmp was called. 

SEE ALSO 
5ignal(2) 

7th Edition 1 



SIN (3M) 

NAME 
sin, cos, tan, asin, acos, atan, atan2 - trigonometric functions 

SYNOPSIS 
#include < math.h > 
double sin (x) 
double x; 

double cos (x) 
double x; 

double asin (x) 
double x; 

double acos (x) 
double x; 

double atan(x) 
double x; 

double atan2(x, y) 
double x, y; 

DESCRIPTION 

SIN (3M) 

Sin, cos and Ian return trigonometric functions of radian arguments. The magnitude of the ar
gument should be checked by the caller to make sure the result is meaningful. 

Asin returns the arc sin in the range -1T/2 to 1T12. 

Acos returns the arc cosine in the range 0 to 1T. 

Alan returns the arc tangent of xin the range -1T/2 to 1T12. 

Alan2 returns the arc tangent of xiy in the range -1T to 1T. 

DIAGNOSTICS 

BUGS 

Arguments of magnitude greater than 1 cause asin and acos to return value 0; errno is set to 
EDOM. The value of tan at its singular points is a huge number, and errno is set to ERANGE. 

The value of Ian for arguments greater than about 2**31 is garbage. 

7th Edition 



SINH(3M) 

NAME 
sinh. cosh. tanh - hyperbolic functions 

SYNOPSIS 
#include <math.h> 

double sinh (x) 
double x; 

double cosh (x> 
double x; 

double tanh (x) 
double x; 

DESCRIPTION 
These functions compute the designated hyperbolic functions for real arguments. 

DIAGNOSTICS 

SINH (3M) 

Sinh and cosh return a huge value of appropriate sign when the correct value would overflow. 

7th Edition 1 



SLEEP (3) SLEEP(3) 

NAME 
sleep - suspend execution for interval 

SYNOPSIS 
sleep (seconds) 
unsigned seconds; 

DESCRIPTION 
The current process is suspended from execution for the number of seconds specified by the ar· 
gument. The actual suspension time may be up to 1 second less than that requested, because 
scheduled wakeups occur at fixed l·second intervals, and an arbitrary amount longer because of 
other activity in the system. 

The routine is implemented by setting an alarm clock signal and pausing until it occurs. The 
previous state of this signal is saved and restored. If the sleep time exceeds the time to the 
alarm signal, the process sleeps only until the signal would have occurred, and the signal is sent 
1 second later. 

SEE ALSO 
alarm (2), pause(2) 

7th Edition 1 



STD10 {~J :s 1 UIU \ J:S } 

NAME 
stdio - standard buffered input/output package 

SYNOPSIS 
#include <stdlo.h> 

FILE ·stdln; 
FILE • stdout; 
FILE ·stderr; 

DESCRIPTION 
The functions described in Sections 35 constitute an efficient user-level buffering scheme. The 
in-line macros getc and putc(J) handle characters quickly. The higher level routines gets. /gets. 
scan/. jscanf, fread. puts. jputs. print/. /print/. /write all use getc and pule; they can be freely inter
mixed 

A file with associated buffering is called a stream. and is declared to btS a pointer to a defined 
type FILE. Fopen(J) creates certain descriptive data for a stream and returns a pointer to desig
nate the stream in all further transactions. There are three normally open streams with con
stant pointers declared in the include file and associated with the standard open tiles: 

stdln standard input file 
stdout standard output tile 
stderr standard error file 

A constant 'pointer' NULL (0) designates no stream at all. 

An integer constant EOF (-1) is returned upon end of file or ~ by integer functions that 
deal with stt:eams. 

Any routine that uses the standard input/ output paclcqe must include the header file 
<stdio.h> of pertinent macro definitions. The functions and constants mentioned in sections 
labeled 35 are declared in the include file and need no further declaration. The constants. and 
the following 'functions' are implemented as macros; redeclaration of these ruarnes is periloUS: 
getc. getchar. pule. put char. /eo/. jemJr. fileno. 

SEE ALSO 
open(2). close(2). read(2). write(2) 

DIAGNOSTICS 
The value EOF is returned uniformly to indicate that a nL! pointer has not been initialized 
with jopen. input (output) has been attempted on an output (input) stream. or a nLI pointer 
designates corrupt or otherwise unintelligible nL! data. 

7th Edition 1 



STRING (3) STRING (3) 

NAME 
strcat, str:ncat, strcmp, strncmp, strcpy, strncpy, strlen, index, rindex - string operations 

SYNOPSIS 
char *strcat(sl, 52) 
char ·sl, *52; 

char ·strDeat(sl, 52, n> 
char *sl, ·52; 

strcmp(sl, 52) 
char *sl, *52; 

strncmp(sl, 52, n) 
char ·sl, *52; 

char ·strcpy(sl, 52) 
char ·51, ·52; 

char ·strncpy(sl, 52, n> 
char ·sl, *52; 

strlen(s) 
char *5; 

char ·iodeds, c) 
char ·5, c; 

char *rindeds, c> 
char *s; 

DESCRIPTION 

BUGS 

These functions operate oQ null-terminated strings. They do not cbeck for overflow of any 
receiving string. 

Stcot appends a copy of string s2 to the end of string sl. Strncat copies at most n characters. 
Botb return a pointer to tbe nuD-terminated result 

Strcmp compares its arguments and returns an inteler &reater tban, equal to, or less than 0, 
according as sl is lexicolraphically &reater than, equal to, or less than s2. Strncmp makes the 
same comparison but looks at at most n characters. 

Strcpy copies string s2 to sl, stopping after the null character bas been moved. Strncpy copies 
exactly n characters, truncating or null-padding s2: tbe target may not be null-terminated if the 
lengtb of s2 is n or more. Botb return sl. 

Strlen returns the number of non-null characters in s. 

Index (rintiex) returns a pointer to tbe first (last) occurrence of cbaracter c in string s, or zero if 
c does not occur in the string. 

Strcmp uses native character comparison, whicb is siped on PDPll's, unsigned on otber 
macbines. 

7th Edition 1 



SWAB (3) 

NAME 
swab - swap bytes 

SYNOPSIS 
sw.b(fro .... to, nbytes) 
char ·fro .... ·to; 

DESCRIPTION 

SWAB(3) 

Swab copies nbytes bytes pointed to by from to the position pointed to by to. exchanaing adja
cent even and odd bytes. It is useful for carrying binary data between PDPl! 's and other 
machines. Nbytes should be even. 

7th Edition 1 



SYSTEM (3) 

NAME 
system - issue a shell command 

SYNOPSIS 
system (string) 
char ·string; 

DESCRIPTION 

SYSTEM (3) 

System causes the string to be given to sh(I) as input as if the string had been typed as a com
mand at a terminal. The current process waits until the shell has completed, then returns the 
exit status of the shell. 

SEE ALSO 
popen(3), exec(2), wait(2) 

DIAGNOSTICS 
Exit status 127 indicates the shell couldn't be executed. 

7th Edition 1 



ITYNAME(3) ITYNAME(3) 

NAME 
ttyname, isatty, ttyslot - find name of a terminal 

SYNOPSIS 
char *ttyname(fUdes) 

isatty (ftldes) 

tty slot 0 
DESCRIPTION 

FILES 

Tryname returns a pointer to the null-terminated path name of the terminal device associated 
with file descriptor ./ildes. 

[sarry returns 1 if ./ildes is associated with a terminal device. 0 otherwise. 

Tryslot returns the number of the entry in the nys(S) file for the control terminal of the current 
process. 

Jdevr 
JetcJttys 

SEE ALSO 
ioctI(2), ttys(S) 

DIAGNOSTICS 

BUGS 

Tryname returns a null pointer (0) if ./ildes does not describe a terminal device in directory 
'Jdev'. 

Tryslot returns 0 if • Jete/ttys' is inaccessible or if it cannot determine the control terminal. 

The return value points to static data whose content is overwritten by each call. 

7th Edition 1 



UNGETC (3S) 

NAME 
ungetc - push character back into input stream 

SYNOPSIS 
#include < stdio.b > 
ungetc(c, stream) 
FILE ·stream; 

DESCRIPTION 

UNGETC(3S) 

Ungetc pushes the character c back on an input stream. That character will be returned by the 
next getc call on that stream. Ungetc returns c. 

One character of pushback is guaranteed provided something has been read from the stream 
and the stream is actually buffered. Attempts to push EOF are rejected. 

Fseek(3) erases all memory of pushed back characters. 

SEE ALSO 
getc(3), setbuf(3), fseek(3) 

DIAGNOSTICS 
Ungelc returns EOF if it can't push a character back. 



CAT(4) CAT (4) 

NAME 
cat - phototypesetter interface 

DESCIUPTION 
Cal provides the interface to a Graphic Systems CI AIT phototypesetter. Bytes written on the 
file specify font, size, and other control information as well as the characters to be flashed. The 
coding will not be described here. 

Only one process may have this file open at a time. It is write-only. 

FILES 
Idevlcat 

SEE ALSO 
trotr(I) 
Phototypesetter interface specification 

7th Edition 1 



ON (4) 

NAME 
dn - ON-II ACU interface 

DESCRIPTION 
The dn? files are write-only. The permissible codes are: 

0-9 dial 0-9 
dial • 
dial # 
4 second delay for second dial tone 

< end-of-number 

The entire telephone number must be presented in a single write system call. 

ON(4) 

It is recommended that an end-of-number .code be given even though not all ACU's actually 
require it. 

FILES 
/dev/dnO 
/dev/dnl 
/dev/dn2 

SEE ALSO 
dp(4) 

7th Edition 

connected to 801 with dpO 
not currently connected 
not currently connected 

1 



DU (4) DU (4) 

NAME 
du, dp - DU-ll 201 data-phone interface 

DESCRIPTION 

FILES 

The dpO file is a 201 data-phone interface. Read and write calls to dpO are limited to a max
imum of 512 bytes. Each write call is sent as a single record .. Seven bits from each byte are 
written along with an eighth odd parity bit. The sync must be user supplied. Each read call re
turns characters received from a single record. Seven bits are returned unaltered~ the eighth bit 
is set if the byte was not received in odd parity. A 10 second time out is set and a zero-byte 
record is returned if nothing is received in that time. 

/dev/dpO 

SEE ALSO 
dn(4) 

BUGS 
The name dpO is a historical dre&. 

7th Edition 1 



HP (4) HP(4) 

NAME 
hp - RH-Il1RP04, RP05, RP06 moving-head disk 

DESCRIPTION 

FILES 

The octal representation of the minor device number is encoded idp, where i is an interleave 
flag, d is a physical drive number, and p is a pseudodrive (subsection) within a physical unit. If 
i is 0, the origins and sizes of the pseudodisks on each drive, counted in cylinders of 418 512· 
byte blocks, are: 

disk start 
o 0 
1 23 
2 0 
3 0 
4 44 
5 430 
6 44 
7 44 

length 
23 
21 
o 
o 
386 
385 
367 
771 

If i is 1, the minor device consists of the specified pseudodisk on drives numbered 0 through 
the designated drive number. Successively numbered blocks are distributed across the drives in 
rotation. 

Systems distributed for these devices use disk 0 for the root, disk 1 for swapping, and disk 4 
(RP04/5) or disk 7 (RP06) for a mounted user file system. 

The block files access the disk via the system's normal buffering mechanism and may be read 
and written without regard to physical disk records. 

A 'raw' interface provides for direct transmission between the disk and the user's read or write 
buffer. A single read or write call results in exactly one I/O operation and therefore raw I/O is 
considerably more efficient when many words are transmitted. The names of the raw files 
conventionally begin with an extra 'r.' In raw I/O the buffer must begin on a word boundary, 
and raw I/O to an interleaved device is likely to have disappointing results. 

/dev/rp?, /dev/rrp? 

SEE ALSO 
rp(4) 

BUGS 
In raw I/O read and wrile(2) truncate file offsets to 512-byte block boundaries, and write 
scribbles on the tail of incomplete blocks. Thus, in programs that are likely to access raw 
devices, read. wriTe and Iseel(2) should always deal in 512-byte multiples. 

Raw device drivers don't work on interleaved devices. 

7th Edition 



HS(4) 

NAME 
hs - RH 11 /RS03-RS04 fixed-head disk file 

DESCRIPTION 

FILES 

The files hsO ..• hs7 refer to RJS03 disk drives 0 through 7. The files hs8 ... hs15 refer to 
RJS04 disk drives 0 through 7. The RJS03 drives are each 1024 blocks long and the RJS04 
drives are 2048 blocks long. 

The hs files access the disk via the system's normal buffering mechanism and may be read and 
written without regard to physical disk recorclS. There is also a 'raw' inteface which provides 
for direct transmission between the disk and the user's read or write buffer. A single read or 
write call results in exactly one I/O operation and therefore raw 1/0 is considerably more 
efficient when many words are transmitted. The names of the raw HS files begin with rhs. The 
same minor device considerations hold for the raw interface as for the normal interface. 

In raw I/O the buffer must begin on a word boundary, and counts should be a multiple of 512 
bytes (a disk block). Likewise /seek calls should specify a multiple of 512 bytes. 

Idev/hs?,/dev/rhs? 

7th Edition 



HT (4) HT(4) 

NAME 
ht - RH-II/TU-16 magtape interface 

DESCRIPTION 

FILES 

The files mtO, mtl, '" refer to the DEC RH/TMITU16 magtape. When opened for reading or 
writing, the tape is not rewound. When closed, it is rewound (unless the 0200 bit is on, see 
below). If the tape was open for writing, a double end-of-file is written. If the tape is not to be 
rewound the tape is backspaced to just between the two tape marks. 

A standard tape consists of a series of 512 byte records terminated by a double end-of-file. To 
the extent possible, the system makes it possible, if inefficient, to treat the tape like any other 
file. Seeks have their usual meaning and it is possible to read or write a byte at a time. Writing 
in very small units is inadvisable, however, because it tends to create monstrous record gaps. 

The last octal digit of the minor device number selects the drive. The middle digit selects a 
controller. The initial digit is even to select 800 BPI, odd to select 1600 BPI. If the 0200 bit is 
on Gnitial digit 2 or 3), the tape is not rewound on close. Note that the minor device number 
has no necessary connection with the file name, and in fact tpO) turns the short name x into 
'/dev/mtx'. 

The mt files discussed above are useful when it is desired to access the tape in a way compatible 
with ordinary files. When foreign tapes are to be dealt with, and especially when long records 
are to be read or written, the 'raw' interface is appropriate. The associated files may be named 
rmtO, ... , rmt7, but the same minor-device considerations as for the regular files still apply. 

Each read or write call reads or writes the next record on the tape. In the write case the record 
has the same length as the buffer given. During a read, the record size is passed back as the 
number of bytes read, provided it is no greater than the buffer size; if the record is long, an 
error is indicated. In raw tape 110, the buffer must begin on a word boundary and the count 
must be even. Seeks are ignored. A zero count is returned when a tape mark is read; another 
read will fetch the first record of the next tape file. 

Idev/mt?,/dev/rmt? 

SEE ALSO 
tpO) 

BUGS 
The magtape system is supposed to be able to take 64 drives. Such addressing has never been 
tried. 

Taking a drive off line, or running off the end of tape, while writing have been known to hang 
the system. 

If any non-data error is encountered, it refuses to do anything more until closed. In raw I/O, 
there should be a way to perform forward and backward record and file spacing and to write an 
EOF mark explicitly. 

7th Edition 



MEM(4) MEM (4) 

NAME 
mem, kmem - core memory 

DESCRIPTION 

FILES 

-BUGS 

Mem is a special file that is an. image of the core memory of the computer. It may be used, for 
example, to examine, and even to patch the system. Kmem is the same as mem except that 
kernel virtual memory rather than physical memory is accessed. 

Byte addresses are interpreted as memory addresses. References to non-exis!.~nt locations re
turn errors. 

Examining and patching device registers is likely to lead to unexpected results when read-only 
or write-only bits are present. 

On PDPI1's, the I/O page begins at location 0160000 of kmem and per-process data for the 
current process begins at 0140000. 

/dev/mem, /dev/kmem 

On PDPll's, memory files are accessed one byte at a time, an inapproriate method for some 
device registers. 

7th Edition 1 



NULL (4) NULL (4) 

NAME 
null - data sink. 

DESCRIPTION 
Data written on a null special file is discarded. 

Reads from a null special file always return 0 bytes. 

FILES 
/dev/null 

7th Edition 1 



PK (4) PK (4) 

NAME 
pk - packet driver 

DESCRIPTION 
The packet driver implements a full-duplex end-to-end flow control strategy for machine-to
machine communication. Packet driver protocol is established by cailing pkon(2) with a charac
ter device file descriptor and a desired packet size in bytes. The packet size must be a power of 
2, 32 ~ size~ 4096. The file descriptor must represent an 8-bit data path. This is normally 
obtained by setting the device in raw mode (see ioct/(2». 

The actual packet size, which may be smaller than the desired packet size, is arrived at by nego-
tiation with the packet driver at the remote end of the data link. j 

The packet driver maintains two data areas for incoming and outgoing packets. The output area 
is needed to implement retransmission on errors, and arriving packetS are queued in the input 
area. Data arriving for a file not open for reading is discarded. Initially the size of both areas is 
set to two packets. 

It is not necessary that reads and writes be multiples of the packet size although there is less 
system overhead if they are. Read operations return the maximum amount of data available 
from the input area up to the number of bytes speCified in the system call. The buffer sizes in 
write operations are not normally transmitted across the link. However, writes of zero length 
are treated specially and are reflected at the remote end as a zero-length read. This facilitates 
marking tbe serial byte stream, usually for delimiting files. 

When one side of a packet driver link is sbut down by c/ose(2) or pkoff (see pkon(2», read(2) 
on the other side will return 0, and write on the otber side will raise a SIGPIPE signal. 

SEE ALSO 
pkon(2), pkopen(3) 

7th Edition 



RF(4) RF(4) 

NAME 
rf - RFll/RSll fixed-head disk file 

DESCRIPTION 

FILES 

BUGS 

This file refers to the concatenation of all RS-ll disks. 

Each disk contains 1024 256-word blocks. The length of the combined RF file is 
1024x(minor+I) blocks. That is minor device zero is taken to be 1024 blocks long~ minor 
device one is 2048, etc. 

The rj() file accesses the disk via the system's normal buffering mechanism and may be read 
and written without regard to physical disk records. There is also a 'raw' interface which pro
vides for direct transmission between the disk and the user's read or write buffer. A single read 
or write call results in exactly one I/O o~ration and therefore raw I/O is considerably more 
efficient when many words are transmitted. The name of the raw RF file is Frj(). The same 
minor device considerations hold for the raw interface as for the normal interface. 

In raw I/O the buffer must begin on a word boundary, and counts should be a multiple of 512 
bytes (a disk block). Likewise seek calls should specify a multiple of 512 bytes. 

/dev/rfO, /dev/rrfO 

The 512-byte restrictions on the raw device are not physically necessary. but are still imposed. 

7th Edition 



RK(4) RK (4) 

NAME 
rk - RK-IllRK03 or RKOS disk 

DESCRIPTION 

FILES 

BUGS 

Rk? refers to an entire disk as a single sequentially-addressed file. Its 256-word blocks are 
numbered 0 to 487l. Minor device numbers are drive numbers on one controller. 

The rk files discussed above access the disk via the system's normal buffering mechanism and 
may be read and written without regard to physical disk records. There is also a 'raw' interface 
which provides for direct transmission between the disk and the user's read or write buffer. A 
single read or write call results in exactly one 110 operation and therefore raw 110 is consider
ably more efficient when many words are transmitted. The names of the raw RK files begin 
with rrk and end with a number which selects the same disk as the corresponding rk file. 

In raw 110 the buffer must begin on a word boundary, and counts should be a multiple of 512 
bytes (a disk block). Likewise seek calls should specify a multiple of 512 bytes. 

/dev/rk?, /dev/rrk? 

In raw I/O read and write(2) truncate file offsets to S12-byte block boundaries, and write scrib
bles on the tail of incomplete blocks. Thus, in programs that are likely to access raw devices, 
read. write and Iseek(2) should always deal in S12-byte multiples. 

7th Edition 1 



RP(4) RP(4) 

NAME 
rp - RP-Il1RP03 moving-head disk 

DESCRIPTION 

FILES 

The files rpO ... rp7 refer to sections of RP disk drive O. The files rp8 ... rpl5 refer to drive 1 
etc. This allows a large disk to be broken up into more manageable pieces. 

The origin and size of the pseudo-disks on each drive are as follows: 

disk start length 
o 0 81000 
1 0 5000 
2 5000 2000 
3 7000 74000 
4-7 unassigned 

Thus rpO covers the whole drive, while rpl, rp2, rp3 can serve usefully as a root, swap, and 
mounted user file system respectively. 

The rp files access the disk via the system's normal buffering mechanism and may be read and 
written without regard to physical disk records. There is also a 'raw' interface which provides 
for direct transmission between the disk and the user's read or write buffer. A single read or 
write call results in exactly one 110 operation and therefore raw 110 is considerably more 
efficient when many words are transmitted. The names of the raw RP files begin with rrp and 
end with a number which selects the same disk section as the corresponding rp file. 

In raw I/O the buffer must begin on a word boundary. 

/dev/rp? /dev/rrp? 

SEE ALSO 
hp(4) 

BUGS 
I n raw I/O read and wrile(2) truncate file offsets to 512-byte block boundaries. and write 
scribbles on the tail of incomplete blocks. Thus. in programs that are likely to access raw 
devices. read, write and !seek(2) should always deal in 512-byte multiples. 

7th Edition 1 



TC(4) 

NAME 
tc - TC-ll1TU56 DECtape 

DESCRIPTION 
The files lapO ... tap7 refer to the TC-IllTU56 DECtape drives 0 to 7. 

The 2S6-word blocks on a standard DECtape are numbered 0 to 577. 

FILES 
/dev/tap? 

SEE ALSO 
tp(1) 

7th Edition 

TC (4) 

1 



TM (4) TM(4) 

NAME 
tm - TM-ll/TU-IO magtape interface 

DESCRIPTION 

FILES 

The files mtO, ... , mt7 refer to the DEC TUIO/TMll magtape. When closed it can be rewound 
or not, see below. If it was open for writing, .two end-of-files are written. If tbe tape is not to 
be rewound it is positioned witb the bead between the two tapemarks. 

If the 0200 bit is on in the minor device number tbe tape is not rewound when closed. 

A standard tape consists of a series of 512 byte records terminated by an end-of-file. To tbe 
extent possible, the system makes it possible, if inefficient, to treat the tape like any other file. 
Seeks have their usual meaning and it is possible to read or write a byte at a time. Writing in 
very small units is inadvisable, however, because it tends to create monstrous record gaps. 

The mt files discussed above are useful when it is desired to access the tape in a way compatible 
with ordinary files. When foreign tapes are to be dealt with, and especially when long records 
are to be read or written, the 'raw' interface is appropriate. The associated files are named 
rmtO, ... , rml7. Each read or write call reads or writes the next record on the tape. In the write 
case the record has the same length as the buffer given. During a read, the record size is 
passed back as the number of bytes read, provided it is no greater than the buffer size; if the 
record is long, an error is indicated. In raw tape I/O, the buffer must begin on a word boun
dary and the count must be even. Seeks are ignored. A zero byte count is returned when a 
tape mark is read, but another read will fetch the first record of the new tape file. 

/dev/mt?, /dev/rmt? 

SEE ALSO 
tp(l) 

BUGS 
If any non-data error is encountered, it refuses to do anything more until closed. In raw I/O, 
there should be a way to perform forward and backward record and file spacing and to write an 
EOF mark. 

7th Edition 1 



TTY (4) UNIX Programmer's Manual ITY (4) 

NAME 
tty - general terminal interface 

DESClUPTION 
This section describes both a particular special file, and the general nature of the terminal inter
face. 

The file !devltty is, in each process, a synonym for the control terminal associated with that pro
cess. It is useful for programs that wish to be sure of writing messages on the terminal no 
matter how output has been redirected. It can also be used for programs that demand a file 
name for output, when typed output is desired and it is tiresome to find out which terminal is 
currently in use. 

As for terminals in general: all of the low-speed asynchronous communications ports use the 
same general interface, no matter 'what hardware is involved. The remainder of this section 
discusses the common features of the interface. 

When a terminal file is opened, it causes the process to wait until a connection is established. 
In practice user's programs seldom open these files~ they are opened by init and become a 
user's input and output file. The very first terminal file open in a process becomes the control 
terminal for that process. The control terminal plays a special role in handling quit or interrupt 
signals, as discussed below. The control terminal is inherited by a child process during a fork, 
even if the control terminal is closed. The set of processes that thus share a control terminal is 
called a process group~ all members of a process group receive certain signals together, see DEL 
below and kil/(2). 

A terminal associated with one of these files ordinarily operates in full-duplex mode. Charac
ters may be typed at any time, even while output is occurring, and are only lost when the 
system's character input buffers become completely choked, which is rare, or when the user has 
accumulated the maximum allowed number of input characters that have not yet been read by 
some program. Currently this limit is 256 characters. When the input limit is reached all the 
saved characters are thrown away without notice. 

Normally, terminal input is processed in units of lines. This means that a program attempting 
to read will be suspended until an entire line has been typed. Also, no matter how many char
acters are requested in the read call, at most one line will be returned. It is not however neces
sary to read a whole line at once; any number of characters may be requested in a read, even 
one, without losing information. There are special modes. discussed below, that permit the 
program to read each character as typed without waiting for a full line. 

During input, erase and kill processing is normally done. By default, the character '#' erases 
the last character typed, except that it will not erase beyond the beginning of a line or an EOT. , 
By default, the character '@' kills the entire line up to the point where it was typed, but not 
beyond an EOT. Both these characters operate on a keystroke basis independently of any back
spacing or tabbing that may have been done. Either '@' or '#' may be entered literally by 
preceding it by '\'; the erase or kill character remains. but the '\' disappears. These two charac
ters may be changed to others. 

When desired, all upper-case letters are mapped into the corresponding lower-case letter. The 
upper-case letter may be generated by preceding it by '\'. In addition, the following escape 
sequences can be generated on output and accepted on input: 

for use 

7th Edition 

\' 
\! 
\A 
\( 
\) 

revised 5179 



TIY(4) , UNIX Programmer's Manual TIY (4) 

Certain ASCII control characters have special meaning. These characters are not passed to a 
reading program except in raw mode where they lose-their special character. Also. it is possible 
to change these character'} from the default; see below. 

EOT (Control-D) may be used to generate an end of file from a terminal. When an EOT is 
received, all the characters waiting to be read are immediately passed to the program. 
without waiting for a new-line. and the EOT is discarded. Thus if there are no charac
ters waiting, which is to say the EOT occurred at the beginning of a line. zero charac
ters will be passed back, and this is the standard end-of-file indication. 

DEL (Rubout) is not passed to a program but generates an interrupt signal which is sent to all 
processes with the associated control terminal. Normally each such process is forced to 
terminate, but arrangements may be made either to ignore the signal or to receive a 
trap to an agreed-upon location. See signaJ(2). 

FS (Control-\ or control-shift-U generates the quit signal. Its treatment is identical to the 
interrupt signal except that unless a receiving process has made other arrangements it 
will not only be terminated but a core image file will be generated. 

DC) (Control-S) delays all printing on the terminal .unlil something is typed in. 

DCl (Control-Q) restarts printing after DC) without generating any input to a program. 

When the carrier signal from the dataset drops (usually because the user has hung up his termi
naJ) a hangup signal is sent to all processes with the terminal as control terminal. Unless other 
arrangements have been made. this signal causes the processes to terminate. If the hangup sig
nal is ignored, any read returns with an end-of-file indication. Thus programs that read a termi
nal and test for end-of-file on their input can terminate appropriately when hung up on. 

When one or more characters are written, they are actually transmitted to the terminal as soon 
as previously-written characters have finished typing. Input characters are echoed by putting 
them in the output queue as they arrive. When a process prodllces characters more rapidly 
than they can be typed, it will be suspended when its output queue exceeds some limit. When 
the queue has drained down to some threshold the program is resumed. Even parity is always 
generated on output. The EOT character is not transmitted (except in raw mode) to prevent 
terminals that respond to it from hanging up. 

Several ioct/(2) calls apply to terminals. Most of them use the following structure. defined in 
<sgtty.h> : 

struct slttyb { 

}; 

char sl_ispeed; 
char sl_ospeed; 
char 
char 
lnt 

SI_erase; 
SI_kill; 
slJlags; 

The sg_ispeed and sg_ospeed fields describe the input and output speeds of the device according 
to the following table, which corresponds to the DEC DH-l1 interface. If other hardware is 
used, impossible speed changes are ignored. Symbolic values in the table are as defined in 
<sgtty.h> . 

80 0 
850 1 
875 2 
8110 3 
8134 4 
8150 5 

7th Edition 

(hang up dataphone) 
50 baud -
75 baud 
110 baud 
134.5 baud 
150 baud 

revised 5179 2 



TIY(4) 

B200 6 
B300 7 
B600 8 
B1200 9 
B1800 10 
B2400 11 
84800 12 
B9600 13 
EXTA 14 
EXTB IS 

200 baud 
300 baud 
600 baud 
1200 baud 
1800 baud 
2400 baud 
4800 baud 
9600 baud 
External A 
External B 

UNIX Programmer's Manual TTY (4) 

In the current configuration, only 110, ISO, 300 and 1200 baud are really supported on dial-up 
lines. Code conversion and line control required for IBM 2741's (134.5 baud) must be imple
mented by the user's program. The half-duplex line discipline required for the 202 dataset 
(1200 baud) is not supplied~ full-duplex 212 datasets work fine. 

The sg_erase and sg_kill fields of the argument structure specify the erase and kill characters 
respectively. (Defaults are # and @J 

The :sr.Jiags field of the argument structure contains several bilS that determine the system's 
treatment of the terminal: 

ALLDELA Y 0117400 Delay algorithm selection 
BSDELAY 0100000 Select backspace delays (not implemented): 
BSO 0 
BSI 0100000 
VTDELA Y 0040000 Select form-feed and vertical-tab delays: 
FFO 0 
FFI 0100000 
CRDELA Y 0030000 Select carriage-return delays: 
CRO 0 
CRI 0010000 
CR2 0020000 
CR3 0030000 
TBDELA Y 0006000 Select tab delays: 
TABO 0 
TABI 0001000 
TAB2 000400O 
XT ABS 0006000 
NLDELAY 0001400 Select new-line delays: 
NLO 0 
NLI 0000400 
NL2 0001000 
NL3 0001400 
EVENP 0000200 Even parity allowed on input (most terminals) 
ODDP 0000100 Odd parity allowed on input 
RA W 0000040 Raw mode: wake up on all characters. 8-bit interface 
CRMOD 0000020 Map CR into LF~ echo LF or CR as CR-LF 
ECHO 0000010 Echo (full duplex) 
LCASE 0000004 Map upper case to lower on input 
CBREAK 0000002 Return each character as soon as typed 
TANDEM 0000001 Automatic flow control 

The delay bilS specify how long transmission stops to allow for mechanical or other movement 
when certain characters are sent to the terminal. In all cases a value of 0 indicates no delay. 

7th Edition revised 5179 3 



TTY (4) UNIX Programmer's Manual 

Backspace delays are currently ignored but might be used for Terminet 300's. 

If a form-feed/vertical tab delay is specified, it lasts for about 2 seconds. 

TrY (4) 

Carriage-return delay type 1 lasts about .08 seconds and is suitable for the Terminet 300. Delay 
type 2 lasts about .16 seconds and is suitable for the VT05 and the TI 700. Delay type 3 is 
unimplemented and is O. 

New-line delay type 1 is dependent on the current column and is tuned for Teletype model 
37's. Type 2 is useful for the VT05 and is about .10 seconds. Type 3 is unimplemented and is 
O. 
Tab delay type 1 is dependent on the amount of movement and is tuned to the Teletype model 
37. Type 3, called XT ABS, is not a delay at all but causes tabs to be replaced by the appropri
ate number of spaces on output. 

<..1taracters with the wrong parity, as determined by bits 200 and 100. are ignored. 

In raw mode, every character is passed immediately to the program without waiting until a full 
line has been typed. No erase or kill processing is done; the end-of-file indicator (EOT). the 
interrupt character (DEL) and the quit character (FS) are not treated specially. There are no 
delays and no echoing. and no replacement of one character for another: characters are a full 8 
bits for both input and output (parity is up to the program). 

Mode 020 causes input carriage returns to be turned into new-lines; input of either CR or LF 
causes LF-CR both to be echoed (for terminals with a new-line function). 

CBREAK is a sort of half-cooked (rare?) mode. Programs can read each character as soon as 
typed, instead of waiting for a full line, but quit and interrupt work, and output delays, case
translation, CRMOD, XTABS, ECHO, and parity work normally. On the other hand there is 
no erase or kill, and no special treatment of \ or EOT. 

TANDEM mode causes the system to produce a stop character (default DC3) whenever the 
input queue is in danger of overflowing, and a start character (default DCI) when the input 
queue has drained suffiCiently. It is useful for flow control when the 'terminal' is actually 
another machine that obeys the conventions. 

Several ioctl caJis have the form: 

#include < Slttr. h > 
ioctl (fildes, code, all) 
stnlct Slttyb *_1'1; 

The applicable codes are: 

TIOCGETP 
Fetch the parameters associated with the terminal, and store in the pointed-to structure. 

TIOCSETP 
Set the parameters according to the pointed-to structure. The interface delays until out
put is quiescent, then throws away any unread characters. before changing the modes. 

TIOCSETN 
Set the parameters but do not delay or flush input. Switching out of RAW or CBREAK 
mode may cause some garbage input. 

With the following codes the arg is ignored. 

TIOCEXCL 
Set "exclusive-use" mode: no further opens are permitted until the file has been 
closed. 

TIOCNXCL 

7th Edition revisert t:.I7Q 4 



TrY (4) UNIX Programmer's Manual TIY(4) 

FILES 

Tum off "exclusive-use" mode. 

TIOCHPCL 
When the file is closed for the last time, hang up the terminal. This is useful when the 
line is associated with an ACU used to place outloinl calls. 

TlOCFLUSH 
All characters waiting in input or output queues are flushed. 

The following codes affect characters that are speciaJ to the terminal interface. 
a pointer to the followinl structure, defined in <sgny.h>: 

struct tchan { 
char 
char 
char 
char 
char 
char 

}; 

'_lntrc; 
t_quitc; 
t_stutc; 

. t_stopc; 
t_eolc; 
t_brkc; 

'* interrupt *' 
,. quit *' 
,. start output *' '* stop output *' '* end-ol-ftle *' . 
,. input delimiter <Uke nJ) *' 

The argument is 

The default values for these characters are DEL, FS, DCt, DCJ, EOT, and -1. A character 
vaJue of -1 eliminates the effect of that character. The t_brkc character, by default -1, acts 
like a new-line in that it terminates a 'line,' is echoed. and is passed to the program. The 'stop' 
and 'start' characters may be the same, to produce a tOllle effect. It is probably counterproduc
tive to make other special characters (includinl erase and kill) identical. 

The caJls are: 

TlOCSETC 
Change the various speciaJ characters to those liven in the structure. 

TlOCSETP 
Set the speciaJ characters to those given in the structure. 

/dev/tty 
/dev/tty· 
/dev/console 

SEE ALSO 

BUGS 
getty(S), stty (1). signaJ(2). ioctH2) 

Half-duplex terminals are not supported. 

The terminaJ handler has clearly entered the race for ever-greater complexity and lenerality. 
It's still not complex and leneral enoulh for TENEX fans. 

7th Edition revised 5179 5 



VP(4) UNIX Programmer's Manual VP(4) 

NAME 
VI' - Versatec printer-plotter 

DESCRIPTION 

FILES 

VpO is the interface to a Versatec D1200A printer-plotter with a Versatec C-PDPII (OMA) con
troiler. Ordinarily bytes written on it are interpreted as ASCII characters and printed. As a 
printer, it writes 64 lines of 132 characters each on 11 by 8.5 inch paper. Only some of the 
ASCII control characters are interpreted. 

Nt performs the usual new-line function. i.e. spaces up the paper and resets to the left 
margin. It is ignored however following a CR which ends a non-empty line .. 

CR is ignored if the current line is empty but is otherwise like NL. 

FF resets to the left margin and then to the top of the next page. 

EOT resets to the left margin. advances 8 inches. and then performs a FF. 
The ioctJ(2) system call may be used to change the mode of the device. Only the first word of 
the 3-word argument structure is used. The bits mean: 

0400 Enter simultaneous print/plot mode. 
0200 Enter plot mode. 
0100 Enter print mode (default on open). 
040 Send remote terminate. 
020 Send remote form-feed. 
010 Send remote EOT. 
04 Send remote clear. 
02 Send remote reset 

On open a reset. clear, and form-feed are performed automatically. Notice that the mode bits 
are not .encoded, so that it is required that exactly one be set 

In plot mode each byte is interpreted as 8 bits of which the hiah-order is plotted to the left~ a 
'1' leaves a visible dot A full line of dots is produced by 264 bytes; lines are terminated only 
by count or by a remote terminate function. There are 200 dots per inch both verticaJly and 
horizontally. 

When simultaneous print-plot mode is entered exactly one line of characters, terminated by 
NL, CR. or the remote terminate function. should be written. Then the device enters plot 
mode and at least 20 lines of plotting bytes should be sent. As the line of characters (which is 
20 dots hiah) is printed, the plotting bytes overlay the characters. Notice that it is impossible to 
print characters on baselines that differ by fewer than 20 dot-tines. 

In print mode lines may be terminated either with an appropriate ASCII character or by using 
the remote terminate function. 

/dev/vpO 

SEE ALSO 
o1'r(l) 

7th Edition 1 



ACCT(S) 

NAME 
acct - execution accounting file 

SYNOPSIS 
#lnclude <sys/.cet.h> 

DESCRIPTION 

ACCT (5) 

Acct(2) causes entries to be made into an accounting file for each process that terminates. The 
accounting file is a sequence of entries whose layout, as defined by the include file is: 

typedef unsigned short comp _t~ 
r "floating pt": 3 bits base 8 exp, 13 bits fraction * / 

struct acct 
{ 

char ac_comm[IO]~ /* command name */ 
comp_t ac_utime~ r user time */ 
comp_t ac_stime~ r system time */ 
comp_t ac_etime~ r elapsed time */ 
time_t ac_btime~ r beginning time */ 
short ac_uid~ /* user 10 * / 
short aCJid~ /* group 10 * / 
short ac_mem~ /* average memory usage */ 
comp_t acJo; /* number of disk 10 blocks */ 
dev_t ac_tty~ /* control typewriter */ 
char ac_flag~ /* accounting flag */ 

r flag bits * / 
#defineAFORK 01 r has executed fork, but no exec */ 
#define ASU 02 /* used super-user privileges * / 

If the process does an exec(2), the first 10 characters of the filename appear in ac_comm. The 
accounting flag contains bits indicating whether exec(2) was ever accomplished, and whether 
the process ever had super-user privileges. 

SEE ALSO 
acct(2), sa(1) 

7th Edition 1 





A.OUT(S) A.OUT (5) 

NAME 
a.out - assembler and link editor output 

SYNOPSIS 
#include <a.out.h> 

DESCRIPTION 
A.our is the output file of the assembler as(I) and the link editor 1d(1). Both programs make 
a.our executable if there were no errors and no unresolved external references. Layout infor
mation as given in the include file for the PDP}} is: 

struct 

}~ 

exec { /* a.out header */ 
int a_magic~ r magic number */ 
unsigned a_text~ r size of text segment */ 
unsigned a_data~ r size of initialized data */ 
unsigned a_bss~ r size of unitialized data * / 
unsigned a_syms~ /* size of symbol table */ 
unsigned a_entry~ /* entry point * / 
unsigned a_unused~ r not used */ 
unsigned aJlag~ /* relocation info stripped * / 

#define A_MAGIC} 
#define A_MAGIC2 
#define A_MAGIC3 
#define A_MAGIC4 

0407 
0410 
0411 
0405 

r normal *' 
/* read-only text *'1 '* separated I&D *' '* overlay *' 

struct nlist { r symbol table entry ./ 
char n_name(81~ r symbol name */ 
int n_type~ r type flag * / 
unsigned n_ value~ r value */ 

r values for type flag *' 
#define N_UNDFO 
#define N _ABS 01 
#define N _TEXT 02 
#define N_DATA03 
#define N _BSS 04 
#define N_TYPE 037 

'* undefined */ 
r absolute *' 
r text symbol *' 
r data symbol */ 
/* bss symbol */ 

#define N_REG 024 r register name *' 
#define N_FN 037 /* file name symbol */ 
#define N_EXT 040 r external bit, or'ed in *' 
#define FORMAT "%060" r to print a value *' 
The file has four sections: a header, the program and data text, relocation information, and a 
symbol table (in that order). The last two may be empty if the program was loaded with the 
• - s' option of Id or if the symbols and relocation have been removed by strip( 1) . 

In the header the sizes of each section are given in bytes, but are even. The size of the header 
is not included in any of the other sizes. 

When an a.our file is loaded into core for execution, three logical segments are set up: the text 
segment, the data segment (with uninitialized data, which starts off as all 0, following initial
ized), and a stack. The text segment begins at 0 in the core image~ the header is not loaded. If 
the magic number in the header is 0407(8), it indicates that the text segment is not to be 

7th Edition } 



A.OUT (5) A.OUT (5) 

write-protected and shared, so the data segment is immediately contiguous with the text seg
menlo If the magic number is 0410, the data segment begins at the first 0 mod 8K byte boun
dary following the text segment, and the text segment is not writable by the program; if other 
processes are executing the same file, they will share the text segment. If the magic number is 
411, the text segment is again pure, write-protected, and shared, and moreover instruction and 
data space are separated; the text and data segment both begin at location O. If the magic 
number is 0405, the text segment is overlaid on an existing (0411 or 0405) text segment and 
the existing data segment is preserved. 

The stack will occupy the highest possible locations in the core image: from 0177776(8) and 
growing downwards. The stack is automatically extended as required The data segment is only 
extended as requested by brk(2). 

The start of the text segment in the file is 020(8); the start of the data segment is 020+S, (the 
size of the text) the start of the relocation information is 020+S, +Sd: the start of the symbol 
table is 020+2(S, +Sd) if the relocation information is present, 020+S, +Sd if not. 

The layout of a symbol table entry and the principal flag values that distinguish symbol types 
are given in the include file. Other flag values may occur if an assembly language program 
defines machine instructions. 

If a symbol's type is undefined external, and the value field is non-zero, the symbol is inter
preted by the loader Id as the name of a common region whose size is indicated by the value of 
the symbol. .. 

The value of a word in the text or data portions which is not a reference to an undefined exter
nal symbol is exactly that value which will appear in core when the file is executed. If a word 
in the text or data portion involves a reference to an undefined external symbol, as indicated by 
the relocation information for that word, then the value of the word as stored in the file is an 
offset from the associated external symbol. When the file is processed by the link editor and 
the external symbol becomes defined, the value of the symbol will be added into the word in 
the file. 

If relocation information is present, it amounts to one word per word of program text or initial
ized data. There is no relocation information if the 'relocation info stripped' flag in the header 
is on. 

Bits 3-1 of a relocation word indicate the segment referred to by the text or data word associat
ed with the relocation word: 

000- absolute number 
002 reference to text segment 
004 reference to initialized data 
006 reference to uninitialized data (bss) 
010 reference to undefined external symbol 

Bit 0 of the relocation word indicates, if I, that the reference is relative to the pc (e.g. 'clr x'); 
if 0, that the reference is to the actual symbol (e.g., 'elr ·Sx'). 

The remainder of the relocation word (bits 15-4) contains a symbol number in the case of 
external references, and is unused otherwise. The first symbol is numbered 0, the second 1, 
etc. 

SEE ALSO 
asO), IdO), nmO) 

7th Edition 2 



AR (5) AR (5) 

NAME 
ar - archive (library) file format 

SYNOPSIS 
#inclucle <ar.h> 

DESCRIPTION 
The archive command or is used to combine several files into one. Archives are used mainly as 
libraries to be searched by the link-editor Id. 

A file produced by or has a magic number at the start, followed by the constituent files, each 
preceded by a file header. The magic number and header layout as described in the. include file 
are: 

#define ARMAG 0177545 
struct ar _ hdr { 

char 
long 
char 
char 

}~ 

int 
long' 

ar_nameU41~ 
ar_date~ 
ar_uid; 
arJid~ 
ar_mode~ 

. The name is a null-terminated string~ the date is in the form of time(2) ~ the user ID and group 
ID are numbers~ the mode is a bit pattern per chmod(2)~ the size is counted in bytes. 

Each file begins on a word boundary~ a null byte is insened between files if necessary. 
Nevertheless the size given reflects the actual size of the file exclusive of padding. 

Notice there is no provision for empty areas in an archive file. • 
SEE ALSO 

arO), IdO), nm(1) 

BUGS 
Coding user and group IDs as characters is a botch. 

7th Edition 



CORE(S) CORE (5) 

NAME 
core - format of core image file 

DESCRIPTION 
UNIX writes out a core image of a terminated process when any of various errors occur. See 
signa/(2) for the list of reasons~ the most common are memory violations, illegal instructions, 
bus errors, and user-generated quit signals. The core image is called 'core' and is written in the 
process's working directory (provided it can be~ normal access controls apply). 

The first 1024 bytes of the core image are a copy of the system's per-user data for the process, 
including the registers as they were at the time of the fault; see the system listings for the for
mat of this area. The remainder represents the actual contents of the user's core area when the 
core image was written. If the text segment is write-protected and shared, it is not dumped; 
otherwise the entire address space is dumped. 

In general the debugger adbO) is sufficient to deal with core images. 

SEE ALSO 
adbO), signaI(2) 

7th Edition 



DIR (5) DIR (5) 

NAME 
dir - format of directories 

SYNOPSIS 
#include <sys/dir.b> 

DESCRIPTION 
A directory behaves exactly like an ordinary file, save that no user may write int\i a directory. 
The fact that a file is a directory is indicated by a bit in the flag word of its i-node entry see, 
jilsys(5). The structure of a directory entry as given in the include file is: 

#ifndef DIRSIZ 
#define DIRSIZ14 
#endif 
struct direct 
( 

ino_t d ino~ 
ehar d=name(DIRSIZ]~ 

By convention, the first two entries in each directory are for '.' and '.o'. The first is an entry 
for the directory itself. The second is for the parent directory. The meaning of '.o' is modified 
for the root directory of the master file system and for the root directories of removable file 
systems. In the first case, there is no parent, and in the second, the system does not permit 
off-device references. Therefore in both cases·' •• ' has the same meaning as '.'. 

SEE ALSO 
filsys(5) 

7th Edition 1 





DUMP (S) DUMP(S) 

NAME 
dump, ddate - incremental dump format 

SYNOPSIS 
#include <sys/types.h> 
#include <sys/ino.h> 
# include < du~prestor. h > 

DESCRIPTION 
Tapes used by dump and restor(1) contain: 

a header record 
two groups of bit map records 
a group of records describing directories 
a group of records describing files 

The format of the header record and of the first record of each description as given in the in
clude file < dumprestor.h> is: 

#define NTREC 20 
#define MLEN 16 
#define MSIZ 4096 

#define TS _TAPE 1 
#define TS INODE 2 
#define TS:BITS 3 
#define TS_ADDR 4 
#define TS_END 5 
#define TS CLRI 6 
#define MAGIC (int)60011 
#define CHECKSUM (jnt) 84446 
struct spcl 
( 

/ 

} spcl~ 

struct 
{ 

}~ 

int 
time_t 
time_t 
int 
daddr_t 
ino_t 
int 
int 
struct 
int 
char 

idates 

char 
char 
time_t 

c_type~ 

c_date~ 

c_ddate~ 
c_volume~ 
c_tapea; 
cJnumber. 
c_magic~ 
c_checksum~ 

dinodec_dinode~ 
c count~ 
c :addr[BSIZEl ~ 

id_nameU6k 
idJncno~ 
id_ddate~ 

NTREC is the number of S12 byte records in a physical tape block. MLEN is the number of 
bits in a bit map word. MSIZ is the number of bit map words. 

7th Edition 



DUMP (5) DUMP (5) 

FILES 

The TS_ entries are used in the c_type field to indicate what sort of header this is. The types 
and their meanings are as follows: 

TS_TAPE Tape volume label 
TSJNODE A file or directory follows. The c_dinode field is a copy of the disk inode and con

TS_BITS 
TS_ADDR 
TS_END 
TS_CLRI 

tains bits telling what sort of file this is. 
A bit map follows. This bit map has a one bit for each inode that was dumped. 
A subrecord of a file description. See c_addr below. 
End of tape record. 
A bit map follows. This bit map contains a zero bit for all inodes that were empty 
on the file system when dumped. 

MAGIC All header records have this number in c_magic. 
CHECKSUM 

Header records checksum to this value. 

The fields of the header structure are as follows: 

c_type The type of the header. 
c_date The date the dump was taken. 
c_ddate The date the file system was dumped from. 
c_ volume The current volume number of the dump. 
c_tapea The current number of this (512-byte) record. 
c inumber The number of the inode being dumped if this is of type TSjNODE. 
c_magic This contains the value MAGIC above, truncated as needed. 
c checksum 
- This contains whatever value is needed to make the record sum to CHECKSUM. 

c_dinode This isa copy of the inode as it appears on the file system~ see jilsys(5). 
c_count The count of characters in c_addr. 
c _addr An array of characters describing the blocks of the dumped file. A character is zero 

if the block associated with that character was not present on the file system, other
wise the character is non-zero. If the block was not present on the file system, no 
block was dumped; the block will be restored as a hole in the file. If there is not 
sufficient space in this record to describe all of the blocks in a file, TS_ADDR 
records will be scattered through the file, each one picking up where the last left 
off. 

Each volume except the last ends with a tapemark (read as an end of file). The last volume 
ends with a TS_END record and then the tapemark. 

The structure idates describes an entry of the file leldddale where dump history is kept. The 
fields of the structure are: 

id_name The dumped filesystem is '/devlid_nam'. 
idjncno The level number of the dump tape; see dump(D. 
id _ ddate . The date of the incremental dump in system format see types(5). 

letc/ddate 

SEE ALSO 
dump(l), dumpdir(l), restor(l), filsys(5), types(5) 

7th Edition 2 



ENVIRON (S) ENVIRON (5) 

NAME 
environ - user environment 

SYNOPSIS 
extern char --environ; 

DESCRIPTION 
An array of strings called the 'environment' is made available by exec(2) when a process be
gins. By convention these strings have the form 'name-value'. The following names are used 
by various commands: 

PATH The sequence of directory prefixes that sh, time, nice(I), etc., apply in searching for a 
file known by an incomplete path name. The prefixes are separated by':'. Login(1) 
sets PATH-:/bin:/usr/bin. 

HOME A user's login directory, set by login(I) from the password file passwd(S). 

TERM The kind of terminal for which output is to be prepared. This information is used by 
commands, such as nroJfor plot(1), which may exploit special terminal capabilities. See 
term(7) for a list of terminal types. 

Further names may be placed in the environment by the export command and 'name-value' 
arguments in sh(I), or by exec(2). It is unwise to conflict with certain Shell variables that are 
frequently exported by '.profile' files: MAIL, PSl, PS2, IFS. 

SEE ALSO 
exec(2), sh(I), term(7), 10gin(I) 

7th Edition 





FILSYS (5) FILSYS (5) 

NAME 
filsys, flblk, ino - format of file system volume 

SYNOPSIS 
#lnclude <sys/types.h> 
#include < sys/flbk.h > 
#include < sys/81sys. h > 
#inc1ude <sys/ino.h> 

DESCRIPTION 
Every file system storage volume (e.g. RF disk, RK disk, RP disk, DECtape reel) has a com
mon format for certain vital information. Every such volume is divided into a certain number 
of 512-byte blocks. Block 0 is unused and is available to contain a bootstrap program, pack la
bel, or other information. 

Block 1 is the super block. The layout of the super block as defined by the include file 
< syslfilsys.h> is: 

r Structure of the super-block *' 
struct filsys { 

unsigned short s jsize; r first block not in i-list *' 
daddr_t sjsize; r size in blocks of entire volume *' 
short s nfree; r number of addresses in sjree *' 
daddr_t s)ree(NICFREEl; r free block list *' 
short s ninode; r number of i-nodes in s inode *' 
ino_t s)node(NICINOD}; r free i-node list *' -
char s Jlock; r lock during free list manipulation *' 
char sjlock; r lock during i-list manipulation *' 
char sjmod; r super block modified flag *' 
char sJonly; r mounted read-only flag *' 
time_t s_time; r last super block update *' 
r remainder not maintained by this version of the system *' 
daddr_t s_tfree; r total free blocks*' 
ino_t s_tinode; r total free inodes *' 
short s_m; r interleave factor *' 
short s_n; r .... */ 
char s fname[6]; r file system name */ 
char s)pack(6l; r file system pack name *' . 

}; 

S_isize is the address of the first block after the i-list, which starts just after the super-block, in 
block 2. Thus is i-list is s_isize-2 blocks long. SJsize is the address of the first block not p0-

tentially available for allocation to a file. These numbers are used by the system to check for 
bad block addresses; if an 'impossible' block address is allocated from the free list or is freed, a 
diagnostic is written on the on-line console. Moreover, the free array is cleared, so as to 
prevent further allocation from a presumably corrupted free list. 

The free list for each volume is maintained as follows. The sJree array contains, in sJree{J}, 
.... sJreels_njree-: 1l. up to NICFREE free block numbers. NICFREE is a configuration con
stant. SJreelO] is the block address of the head of a chain of blocks constituting the free list. 
The layout of each block of the free chain as defined in the include file < sysljblk.h> is: 

struct fblk 
{ 

int df nfree; 
daddr t df)ree(NICFREE]; 

7th Edition 



FILSYS (5) FILSYS (5) 

The fields dLnfree and dfJree in a free block are used exactly like s_nfree and sJree in the 
super block. To allocate a block: decrement s nfree, and the new block number is 
sJreefs_nfreel. If the new block address is 0, there-are no blocks left, so give an error. If 
s_nfree became 0, read the new block into s_nfree and sJree. To free a block, check if s_nfree is 
NICFREE; if so, copy s_nfree and the sJree array into it, write it out, and set s_nfree to O. In 
any event set sJreefs_nfreel to the freed block's address and increment s_nfree. 

S ninode is the number of free i-numbers in the s inode array. To allocate an i-node: if s ninode 
is-greater than 0, decrement it and return s_inode{s_ninodel. If it was 0, read the i-list and place 
the numbers of all free inodes (up to NICINOO) into the s inode array, then try again. To free 
an i-node, provided s_ninode is less than NICINOOE, place its number into s_inodefs_ninodel 
and increment s_ninode. If s_ninode is already NICINOOE, don't bother to enter the freed i
node into any table. This list of i-nodes is only to speed up the allocation process~ the informa
tion as to whether the inode is really free or not is maintained in the inode itself. 

S..flock and s_ilock are flags maintained in the core copy of the file system while it is mounted 
and their values on disk are immaterial. The value of sJmod on disk is likewise immaterial; it 
is used as a flag to indicate that the super-block has changed and should be copied to the disk 
during the next periodic update of file system information. SJon/y is a write-protection indica
tor; its disk value is also immaterial. 

S_time is the last time the super-block of the file system was changed. During a reboot, s_time 
of the super-block for the root file system is used to set the system's idea of the time. 

The fields s_tfree. s_tinode. sJnome and sJpack are not currently maintained. 

I-numbers begin at 1, and the storage for i-nodes begins in block 2. I-nodes are 64 bytes long, 
so 8 of them fit into a block. I-node 2 is reserved for the root directory of the file system, but 
no other i-number has a built-in meaning. Each i-node represents one file. The format of an 
i-node as given in the include file <sysiino.h> is: 

r Inode structure as it appears on a disk block. */ 
struct dinode 
( 

unsigned short di_mode~r mode and type of file */ 
short 
short 
short 
otf_t 
char 
time_t 
time_t 
time_t 

di_nlink; r number of links to file */ 
di_uid~ r owner's user id */ 
diJid; r owner's group id */ 
di size; r number of bytes in file */ 
d(addr[40); r disk block addresses */ 
di atime; r time last accessed */ 
d(mtime; r time last modified */ 
di_ctime; r time created */ 

J; 
#define INOPS 8 r 8 inodes per block */ 
r 
* the 40 address bytes: 
* 39 used; 13 addresses 
* of 3 bytes each. 
*/ 

Di mode tells the kind of file; it is encoded identically to the 51 mode field of 51a/(2). Di nlink is 
the number of directory entries Oinks) 'that refer to this i-;ode. Dtuid 'and di_gid -are the 
owner's user and group IDs. Size is the number of bytes in the file. Di atime and di mlime are 
the times of last access and modification of the file contents (read,- write or create) (see 
times(2»; Di_ctime records the time of last modification to the inode or to the file, and is used 
to determine whether it should be dumped. 

7th Edition 2 



FILSYS (5) FlLSYS (5) 

Special files are recognized by their modes and not by i-number. A block-type special file is 
one which can potentially be mounted as a file system; a character-type special file cannot, 
though it is not necessarily character-oriented. For special files, the dtaddr field is occupied by 
the device code (see ~pes(5». The device codes of block and character special files overlap. 

Disk addresses of plain files and directories are kept in the aiTay dtaddr packed into 3 bytes 
each. The first 10 addresses specify device blocks directly. The last 3 addresses are singly, 
doubly, and triply indirect and point to blocks of 128 block pointers. Pointers in indirect blocks 
have the type do.ddr_, (see (ypes(S». 

For block b in a file to exist, it is not necessary that all blocks less than b exist. A zero block 
number either in the address words of the i-node or in an indirect block indicates that the 
corresponding block has never been allocated. Such a missing block reads as if it contained all 
zero words. 

SEE ALSO 
icheck(1), dcheckO), dir(5), mount(I), stat(2), types(S) 

7th Edition 3 



GROUP(S) GROUP (S) 

NAME 
group - group file 

DESCRIPTION 
Group contains for each group the following information: 

group name 
encrypted password 
numerical group 10 
a comma separated list of all users allowed in the group 

This is an ASCII file. The fields are separated by colons; Each group is separated from the next 
by a new-line. If the password field is nUll, no password is demanded. 

FILES 

This file resides in directory letc. Because of the encrypted passwords, it can and does have 
general read permission and can be used, for example, to map numerical group ID's to names. 

letclgroup 

SEE ALSO 
newgrp(l), crypt(3), passwd(l), passwd(S) 

7th Edition 



MPXIO(S) MPXJO(S) 

NAME 
mpxio - multiplexed i/o 

SYNOPSIS 
#include <sys/mx.h> 

#'nelude < Bltty.h > 
DESCRImON 

Data transfers on mpx files (see mpx(2» are multiplexed by imposing a record structure on 
the io stream. Each record represents data fromlto a particular channel or a control or status 
message associated with a panicular channel. 

The prototypical data record read from an mpx file is as follows 

struct input_record { 
shon index; 
shon count; 
short ccount; 
char data[]; 

}; 

where index identifies the channel, and count specifies the number of characters in dtltIl. If count 
is zero, ccount gives the size of tklUl. and the record is a control or status messqe. Although 
count or ccount might be odd, the operating system aligns resords on short (i.e. 16-bit) boun
daries by skipping bytes when necessary. 

Data written to an mpx file must be formatted as an array of record structures defined as fol
lows 

struct output_record { 

}; 

• short index; 
short count; 
shon ccount; 
char -data; 

where the data portion of the record is referred to indirectly and the other cells have the same 
interpretation as in inputJecord. 
The control messages listed below may be read from a multiplexed file descriptor. They are 
presented as two 16-bit integers: the first number is the message code (defined in 
<sysimx.h», the second is an optional parameter meaningful only with M_WATCH and 
M_BLK. 

7th Edition 

M _ WATCH - a process ·wants to attach' on this channel. The second parameter is 
the 16-bit user-id of the process that executed the open. 

M CLOSE - the channel is closed. This message is generated when the last file 
- descriptor referencing a channel is closed. The detllch command (see mpx(2) 

should be used in response to this message. 
M EOT - indicates logical end of file on a channel. If the channel is joined to a type-

- writer, EOT (control-d) will. cause the M_EOT message under the conditions 
specified in t(Y(4) for end of file. If the channel is attached to a process, 
M_EOT will be generated whenever the process writes zero bytes on the chan
nel. 

M BLK - if non-blocking mode has been enabled on an mpx file descriptor Xli by exe-
- cuting ioct/(xt/, MXNBLK. 0), write operations on the file are truncated in ttie 

kernel when internal queues become full. This is done on a per-channel basis: 
the parameter is a count of the number of characters not transferred to the 

1 



MPXIO (5) MPXIO (5) 

channel on which M_BLK is received. 
M_UBLK - is generated for a channel after M_BLK when the internal queues have 

drained below a threshold. 

Two other messages may be generated by the kernel. As with other messages, the first 16-bit 
quantity is the message code. 

M_OPEN - is generated in conjunction with 'listener' mode (see mpx(2». The uid of 
the calling process follows the message code as with M_WATCH. This is fol
lowed by a null-terminated string which is the name of the file being opened. 

MJOCTL - is generated for a channel connected to a process when that process exe
cutes the ioctJ(jd, cmd. &:vecJ call on the channel file descriptor. The M IOCTL 
code is followed by the cmd argument given to ioctl followed by the contents of 
the structure vec. It is assumed, not needing a better compromise at this time, 
that the length of vee is determined by sizeo! (struct sgttyb) as declared in 
<sgtty.h> . 

Two control messages are understood by the operating system. M_EOT may be sent through 
an mpx file to a channel. It is equivalent to propagating a zero-length record through the chan
nel~ i.e. the channel is allowed to drain and the process or device at the other end receives a 
zero-length transfer before data starts flowing through the channel again. MJOCTL can also 
be sent through a channel. The format is identical to that described above. 

7th Edition 2 



MTAB(S) MTAB(S) 

NAME 
mtab- mounted file system table 

DESCRIPTION 
Mlab resides in directory lele and contains a table of devices mounted by the mount command. 
Umount removes entries. 

Each entry is 64 bytes long; the first 32 are the null-padded name of the place where the special 
file is mounted; the second 32 are the null-padded name of the special file. The special file has 
all its directories stripped away; that is, everything through the last'/' is thrown away. 

This table is present only so people can look at it. It does not matter to mount if there are du
plicated entries nor to umount if a name cannot be found. 

FILES 
letc/mtab 

SEE ALSO 
mount(I) 

7th Edition 1 



PASSWO (5) PASSWO (5) 

NAME 
passwd - password file 

DESCRIPTION 

FILES 

Passwd contains for each user the following information: 

name (togin name, contains no upper case) 
encrypted password 
numerical user 10 
numerical group 10 
GCOS job number, box number, optional GCOS user-id 
initial working directory 
program to use as Shell 

This is an ASCII file. Each field within each user's entry is separated from the next by a colon. 
The GCOS field is used only when communicating with that system, and in other installations 
can contain any desired information. Each user is separated from the next by a new-line. If 
the password field is null, no password is demanded; if the Shell field is null, the Shell itself is 
used. 

This file resides in directory fetc. Because of the encrypted passwords, it can and does have 
general read permission and can be used, for example, to map numerical user IO's to names. 

f etcf passwd 

SEE ALSO 
getpwent(3), 10gin(I), crypt(3), passwd(I), group(5) 

7th Edition 



PLOT(5) PLOT (5) 

NAME 
plot - graphics interface 

DESCRIPTION 
Files of this format are produced by routines described in plot(3), and are interpreted for vari
ous devices by commands described in plot( 1 ) . A graphics file is a stream of plotting instruc
tions. Each instruction consists of an ASCII letter usually followed by bytes of binary informa
tion. The instructions are executed in order. A point is designated by four bytes representing 
the x and y values; each value is a signed integer. The last designated point in an 1. m, n. or p 
instruction becomes the 'current point' for the next instruction. 

Each of the following descriptions begins with the name of the corresponding routine in plot(3). 

m move: The next four bytes give a new current point. 

n cont: Draw a line from the current point to the point given by the next four bytes. See 
plotO) . 

p point: Plot the point given by the next four bytes. 

1 line: Draw a line from the point given by the next four bytes to the point given by the fol
lowing four bytes. 

t label: Place the following ASCII string so that its first character falls on the current point. 
The string is terminated by a newline. 

a arc: The first four bytes give the center, the next four give the starting point, and the last 
four give the end point of a circular arc. The least significant coordinate of the end point is 
used only to determine the quadrant. The arc is drawn counter-clockwise. 

c circle: The first four bytes give the center of the circle, the next two the radius. 

e erase: Start another frame of output. 

f linemod: Take the following string, up to a newline. as the style for drawing further lines. 
The styles are 'dotted,' 'solid,' 'longdashed,' 'shortdashed,' and 'dotdashed.' Effective only 
in plot 4014 and plOT ver. 

s space: The next four bytes give the lower left corner of the plotting area; the following four 
give the upper right corner. The plot will be magnified or reduced to fit the device as close
ly as possible. 

SEE ALSO 

Space settings that exactly fill the plotting area with unity scaling appear below for devices 
supported by the filters of plotO). The upper limit is just outside the plotting area. In 
every case the plotting area is laken to be square; points outside may be displayable on dev
ices whose face isn't square. 

4014 space(O, 0, 3120, 3120); 
ver space(O, 0, 2048, 2048); 
300, 300s spaceW, 0, 4096, 4096); 
450 space(O, 0, 4096, 4096); 

plot (l), plot (3), graph (1) 

7th Edition 1 



TP (S) TP(S) 

NAME 
tp - DEC/mag tape formats 

DESCRIPTION 
The command tp dumps files to and extracts files from DECtape and magtape. The formats of 
these tapes are the same except that mag tapes have larger directories. 

Block zero contains a copy of a stand-alone bootstrap program. See bproc(S) .. 

Blocks 1 through 24 for DECtape (1 through 62 for magtape) contain a directory of the tape. 
There are 192 (resp. 496) entries in the directory; S entries per block; 64 bytes per entry. Each 
entry has the following format: 

struct· ( 

}; 

char pathname[32]; 
int 
char 
char 
char 
char 
long 
int 
char 
int 

mode; 
uid; 
gid; 
unusedl; 
size[3]; 
modtime; 
tapeaddr; 
unused2 {16]; 
checksum; 

The path name entry is the path name of the file when put on the tape. If the pathname starts 
, with a zero word. the entry is empty. It is at most 32 bytes long and ends in a null byte. 

Mode, uid, gid, size and time modified are the same as described under i-nodes (see file system 
jilsys(S». The tape address is the tape block number of the start of the contents of the file. 
Every file starts on a block boundary. The file occupies (size+Sll)/S12 blocks of continuous 
tape. The checksum entry has a value such that the sum of the 32 words of the directory entry 
is zero. 

Blocks above 25 (resp. 63) are available for file storage. 

A fake entry has a size of zero. 

SEE ALSO 
filsys(S), tpO) 

BUGS 
The palhname, uid, gid, and size fields are too small. 

7th Edition 



ITYS(S) ITYS(S) 

NAME 
ttys - terminal initialization data 

DESCRIPTION 

FILES 

The (1)'S file is read by the ini' program and specifies which terminal special files are to have a 
process created for them which will allow people to log in. It contains one line per special file. 

The first character of a line is either '0' or 'I '; the former C8"seS the line to be ignored, the 
latter causes it to be effective. The second character is used as an argument to getty(S), which 
performs such tasks as baud-rate recognition, reading the login name, and calling login. For nor
mal lines, the character is '0'; other characters can be used, for example, with bard-wired ter
minals where speeo recognition is unnecessary or which have special characteristics. (Getty will 
have to be fixed ·in such cases.) The remainder of the line is the terminal's entry in the device 
directory, / dev. 

/etc/ttys 

SEE ALSO 
init(S), getty(S), login(1) 

7th Edition 1 



TYPES (5) UNIX Programmer's Manual TYPES (5) 

NAME 
types - primitive system data types 

SYNOPSIS 
#inc:lude <sys/types.h> 

DESCRIPTION 
The data types defined in the include file are used in UNIX system code; some data of these 
types are accessible to user code: 

typedef long daddr_t; /. disk address • / 
typed.ef char • caddr_t; 1* core address" / 
typedef unsigned int ina _ t; 1* i-node number • / 
typedef long time t; 1* a time • / 
typedef int labeCt[61; 1* program status • / 
typed.ef int dev _t; 1* device code" / 
typedef long otf_t; 1* offset in file • / 

1* selectors and constructor for device code" / 
#definemajodx) Ont) « (unsigned) x > > 8» 
#defineminor(x) (int) (x8t0377) 
#definemakedev(x,y) (dev _t) «x) < <8/(y» 
The form dadd,_t is used for disk addresses except in an i-node on disk, see flisys(S). Times 
are encoded in seconds since 00:00:00 GMT. January 1, 1970. The major and minor partS of a 
device code specify kind and unit number of a device and are installation-dependent. Offsets 
are measured in bytes from the beginning of a file. The labeL! variables are used to save the 
processor state while another process is running. 

SEE ALSO 
filsys(S), time(2). lseek(2), adb(l) 

7th Edition 



UTMP (5) UTMP (5) 

NAME 
utmp, wtmp - login records 

SYNOPSIS 
#include <utmp.h> 

DESCRIPTION 

FILES 

The ulmp file allows one to discover information about who is currently using UNIX. The file 
is a sequence of entries with the following structure declared in the include file: 

struct utmp I 
char ut line[S] ~ 1* tty name *1 
char ut=name[S]~ 1* user id *1 
long ut_time~ 1* time on *1 

This structure gives the name of the special file associated with the user's terminal, the user's 
login name. and the time of the login in the form of fime(2). 

The wtmp file records all logins and logouts. Its format is ex.actly like utmp ex.cept that a null 
user name indicates a logout on the associated terminal. Furthermore, the terminal name ,-, 
indicates that the system was rebooted at the indicated time~ the adjacent pair of entries with 
terminal names 'I' and .}, indicate the system-maintained time just before and just after a dafe 
command has changed the system's idea of the time. 

Wtmp is maintained by login (1 ) and init(S). Neither of these programs creates the file, so if it 
is removed record-keeping is turned off. It is summarized by ac( 1). 

letc/utmp 
lusr/adm/wtmp 

SEE ALSO 
10gin(1), init(S), who(I), adD 



ARITHMETIC ( 6 ) ARITHMETIC ( 6 ) 

NAME 
arithmetic - provide drill in number facts 

SYNOPSIS 
lusr/games/arithmetic [+-x/] [range] 

DESCRIPTION 
Arithmetic types out simple arithmetic problems, and waits for an answer to be typed in. If the 
answer is correct, it types back "Right!", and a new problem. If the answer is wrong. it replies 
"What?", and waits for another answer. Every twenty problems, it publishes statistics on 
correctness and the time required to answer. 

To quit the program, type an interrupt (delete). 

The first optional argument determines the kind of problem to be generated; + - xl respective o 

ly cause addition, subtraction, multiplication, and division problems to be generated. One or 
more characters can be given; if more than one is given, the different types of problems will be 
mixed in random order; default is +-
Range is a decimal number; all addends, subtrahends, differences, multiplicands. divisors, and 
quotients will be less than or equal to the value of range. Default range is 10. 

At the start. all numbers less than or equal to range are equally likely to appear. If the respon
dent makes a mistake. the numbers in the problem which was missed become more likely to 
reappear. 

As a matter of educational philosophy, the program will not give correct answers, since the 
learner should. in principle, be able to calculate them. Thus the program is intended to provide 
drill for someone just past the first learning stage. not to teach number facts de novo. For al o 

# 

most all users. the relevant statistic should be time per problem, not percent correct. 

7th Edition 1 



BACKGAMMON (6) 

NAME 
backgammon - the game 

SYNOPSIS 
/usr/games/backgammon 

DESCRIPTION 

BACKGAMMON (6) 

This program does what you expect. It will ask whether you need instructions. 

7th Edition 



BANNER (6) 

NAME 
banner - make long posters 

SYNOPSIS 
I usr Ilameslbanner 

DESCRIPTION 

BANNER (6) 

Banner reads the standard input and prints it sideways in huge built-up letters on the standard 
output. 

7th Edition 1 



BCD (6) 

NAME 
bcd, ppt - convert to antique media 

SYNOPSIS 
lusr/games/bcd text 

/usr/games/ppt 

DESCRIPTION 
Bcd converts the literal texT into a form familiar to old-timers. 

PpT converts the standard input into yet another form. 

SEE ALSO 
ddO) 

7th Edition 

BCD (6) 



BJ (6) BJ(6) 

NAME 
bj - the game of black jack 

SYNOPSIS 
lusr/games/bj 

DESCRIPTION 
Bj is a serious attempt at simulating the dealer in the game of black jack (or twenty·one) as 
might be found in Reno. The following rules apply: 

The bet is $2 every hand. 

A player 'natural' (black jack) pays $3. A dealer natural loses $2. Both dealer and player 
naturals is a 'push' (no money exchange). 

If the dealer bas an ace up, the player is allowed to make an 'insurance' bet against the 
chance of a dealer natural. If this bet is not taken, play resumes as normal. If the bet is 
taken, it is a side bet where the player wins $2 if the dealer bas a natural and loses $1 if 
the dealer does not. 

If the player is dealt two cards of the same value, he is allowed to 'double'. He is allowed 
to play two hands, each with one of these cards. (The bet is doubled also~ $2 on each 
hand.) 

If a dealt hand has a total of ten or eleven, the player may 'double down'. He may dou
ble the bet ($2 to $4) and receive exactly one more card' on that hand. 

Under normal play, the player may 'hit' (draw a card) as long as his total is nOl over 
twenty-one. If the player 'busts' (goes over twenty-one), the dealer wins the bet. 

When the player 'stands' (decides not to hit), the dealer hits until he attains a total of 
seventeen or more. If the dealer busts, the player wins the bet. 

If both player and dealer stand, the one with the largest total wins. A tie is a push. 

The machine deals and keeps score. The following questions will be asked at appropriate times. 
Each question is answered by y followed by a new line for 'yes'. or just new line for 'no', 

? (means, 'do you want a hit?') 
Insurance? 
Double down? 

Every time the deck is shuffled, the dealer so states and the 'action' {total bet> and 'standing' 
(total won or lost) is printed. To exit, hit the interrupt key (DEL) and the action and standing 
will be printed. 

7th Edition 1 



CHECKERS ( 6 ) 

NAME 
checkers - game 

SYNOPSIS 
lusr/l.mmes/c~ers 

DESCRIPTION 
Checkers uses standard notation for the board: 

BLACK 
/1// 1 /1// 2 1/1/ 
1/1/ 1/1/ 1/1/ 

5 1/1/ 6 1/1/ 7 
1/// 1/1/ 

1/1/ 9 1/// 10 1/1/ 
/11/ /1// 1/1/ 

13 1/1/ 14 1/// 15 
/11/ /11/ 

1/1/ 17 1/1/ . 18 1/1/ 
1/1/ 1/1/ 1/1/ 

21 1/1/ 22 1/1/ 23 
/1// 1/1/ 

1/1/ 25 1/1/ 26 1/1/ 
/1// 1/1/ 1/1/ 

29 1/1/ 30 1/1/ 31 
1/1/ 1/1/ 

WHITE 

CHECKERS ( 6 ) 

3 1/1/ 4 
1/1/ 

1/1/ 8 1/1/ 
1/1/ /1// 

11 1/1/ 12 
1/1/ 

1/1/ 16 1//1 
/1// 1/1/ 

19 1/1/ 20 
1/1/ 

/1// 24 /11/ 
1/1/ 1/1/ 

27 1/1/ 28 
1/1/ 

1/1/ 32 1/1/ 
//1/ /1// 

Black plays first. The program normally plays white. To specify a move, name the square 
moved from and the square moved to. For multiple jumps name all the squares touched. 

Certain commands may be given instead of moves: 

reverse Reverse roles~ the program takes over your pieces. 

backup Undo the last move for each player. 

list Print the record of the game. 

move Let the program select a move for y~u. 

print Print a map of the present position. 

7th Edition 



CHESS (6) 

NAME 
chess - the game of chess 

SYNOPSIS 
/usr/gaDles/chess 

DESCRIPTION 

CHESS (6) 

Chess is a computer program that plays class 0 chess. Moves may be given either in standard 
(descriptive) notation or in algebraic notation. The symbol' +' is used to specify check~ '0-0' 
and '0-0-0' specify castling. To play black, type 'first'; to print the board, type an empty line. 

Each move is echoed in the appropriate notation followed by the program's reply. 

FILES 
/ usr /lib/book 

DIAGNOSTICS 

opening 'book' 

The most cryptic diagnostic is 'eh?' which means that the input was syntactically incorrect. 

WARNING 
Over-use of this program will cause it to go away. 

BUGS 
Pawns may be promoted only to queens. 

7th Edition 1 



CHING (6) CHING (6) 

NAME 
ching, fortune - the book of changes and other cookies 

SYNOPSIS 
lusr/cames/ching [ hexagram] 

lusr/.ames/fortune 

DESCRIPTION 
The I Ching or Book of Changes is an ancient Chinese oracle that has been in use for centuries 
as a source of wisdom and advice. 

The text of the oracle (as it is sometimes known) consists of sixty-four hexagrams, each sym
bolized by a particular arrangement of six straight (- - -) and broken (- -) lines. These 
lines have values ranging from six through nine. with the even values indicating the broken 
lines. 

Each hexagram consists of two major sections. The Judgement relates specifically to the matter 
at hand (E.g .• "It furthers one to have somewhere to go. ") while the Imaae describes the gen
eral attributes of the hexagram and how they apply to one's own life ("Thus the superior man 
makes himself strong and untiring. ") . 

. When any of the lines have the values six or nine, they are moving lines~ for each there is an. 
appended judgement which becomes significant. Furthermore, the moving lines are inherently 
unstable and change into their opposites~ a second hexagram (and thus an additional judge
ment) is formed. 

Normally, one consults the oracle by fixing the desired question firmly in mind and then casting 
a set of changes (Hnes) using yarrow-stalks or tossed coins. The resulting hexagram will be 
the answer to the question. 

Using an algorithm suggested by S. C. Johnson. the Unix oracle simply reads a question from 
the standard input (up to an EOF) and hashes the individual characters in combination with the 
time of day. process id and any other magic numbers which happen to be lying around the sys
tem. The resulting value is used as the seed of a random number generator which drives a 
simulated coin - toss divination. The answer is then piped through nrofl' for formatting and will 
appear on the standard output. 

For those who wish to remain steadfast in the old traditions. the oracle will also accept the 
results of a personal divination using. for example, coins. To do this, cast the change and then 
type the resulting line values as an argument. 

The impatient modern may prefer to settle for Chinese cookies~ try fortune. 

SEE ALSO 
It furthers one to see t~e great man. 

DIAGNOSTICS 

BUGS 

The great prince issues commands. 
Founds states. vests families with fiefs. 
Inferior people should not be employed. 

Waiting in the mud 
Brings about the arrival of the enemy. 

If one is not extremely careful. 
Somebody may come up from behind and strike him. 
Misfortune. 

7th Edition 



MAZE (6) 

NAME 
maze - generate a maze problem 

SYNOPSIS 
/usr/gsnBes/nBsze/ 

DESCRIPTION 
Maze asks a few questions and then prints a maze. 

BUGS 
Some mazes (especially small ones) have no solutions. 

7th Edition 

MAZE(6) 

1 



MOO (6) 

NAME 
moo - guessing game 

SYNOPSIS 
lusr/games/moo 

DESCRIPTION 

MOO (6) 

Moo is a guessing game imported from England. The computer picks a number consisting of 
four distinct decimal digits. The player guesses four distinct digits being scored on each guess. 
A 'cow' is a correct digit in an incorrect position. A 'bull' is a correct digit in a correct position. 
The game continues until the player guesses the number (a score of four bulls). 

7th Edition 



QUIZ (6) QUIZ (6) 

NAME 
quiz - test your knowledge 

SYNOPSIS 
/usr/games/quiz [ -i file] [ ";'t] [categoryl category2 ] 

DESCRIPTION 

FILES 

BUGS 

QUiz gives associative knowledge tests on v::\rious subjects. It asks items chosen from category] 
and expects answers from category2, If no categories are specified, quiz gives instructions and 
lists the available categories. 

QUiz tells a correct answer whenever you type a bare newline. At the end of input, upon inter
rupt, or when questions run out, quiz reports a score and terminates. 

The - t flag specifies 'tutorial' mode, where missed questions are repeated later, and material is 
gradually introduced as you learn. 

The -i flag causes the named file to be substituted for the default index file. The lines of 
these files have the syntax: 

line - category newline I category ':' line 
category - alternate I category i' alternate 
alternate - empty I alternate primary 
primary - character I '[' category']' I option 
option -' (' category' I' 

The first category on each line of an index file names an information file. The remaining 
categories specify the order and contents of the data in each line of the information file. Infor
m~tion files have the same syntax. Backslash '\' is used as with sh(l) to quote syntactically 
significant characters or to insert transparent new lines into a line. When either a question or its 
answer is empty, quiz will refrain from asking it. 

/usr/games/quiz.kl* 

The construct 'alab' doesn't work in an information file. Use 'a{b}'. 

7th Edition 



REVERSI (6) REVERSI (6) 

NAME 
reversi - a game of dramatic reversals 

SYNOPSIS 
/usr/lames/reversi [ ( -r ] .file ] 

DESCRIPTION 
Revers; (also known as 'friends'. 'Chinese friends' and 'Othello') is played on an 8x8 board us
ing two-sided tokens. Each player takes his turn by placing a token with his side up in an emp
ty square. During the first four turns, players may only place tokens in the four central squares 
of the board. Subsequently, with each turn, a player must capture one or more of his 
opponent's tokens. He does this by placing one of his tokens such that it and another of his to
kens embrace a solid line of his opponent's horizontally, vertically or diagonally. Captured to
kens are flipped over and thus can be re-captured. If a player cannot outflank his opponent he 
forfeits his turn. The play continues until the board is filled or until no more outflanking is 
possible. 

In this game, your tokens are asterisks and the machine's are at-signs. You move by typing in 
the row and column at which you want to place your token as two digits (I -8), optionally 
separated by blanks or tabs. You can also type 

c to continue the game after hilling break (this is only necessary if you interrupt the 
machine while it is deliberating). 

I n to start revers; playing against itself for the next n moves (or until the break key is hit)" 

n to stop printing the board after each move. 

o to start it up again. 

p to print the board regardless. 

q to quit (without dishonor). 

s to print the score. 

Revers; also recognizes several commands which are valid only at the start of the game, before 
any moves have been made. They are 

f to let the machine go first. 

h n to ask for a handicap of from one to four corner squares. If you're good, you can give 
the machine a handicap by typing a negative number. 

I n· to set the amount of lookahead used by the machine in searching for moves. Zero 
means none at all. Four is the default. Greater than six means you may fall asleep 
waiting for the machine to move. 

t n to tell revers; that you will only need n seconds to consider each move. If you fail to 
respond in the alloted time, you forfeit your turn. 

If revers; is given a file name as an argument, it will checkpoint the game, move by move, by 
dumping the board onto .file. The -r option will cause revers; to restart the game from file and 
continue logging. 

7th Edition 1 



TIT(6) 

NAME 
ttl. cubic - tic-tac-toe 

SYNOPSIS 
lusr/aames/ttt 

luar laames/cubic: 

DESCRIPTION 

TIT (6) 

Ttt is the X and 0 game popular in the first grade. This is a learnina program that never makes 
the same mistake twice. 

FILES 

Althouah it learns, it learns slowly. It must lose nearly 80 pmes to completely know the pme. 

Cubic plays three-dimensional tic-tac-toe on a 4x4x4 board. Moves are specified ~ a sequence 
of three coordinate numbers in the ranae 1-4. 

lusr/games/ttLk learnina file 

7th Edition 1 



WORDS (6) WORDS (6) 

NAME 
hangman, words - word games 

SYNOPSIS 
lusr/games/hangman [ diet] 

I usr I games/words 

DESCRIPTION 

FILES 

Hangman chooses a word at least seven letters long from a word list. The user is to guess 
letters one at a time .. 

The optional argument names an alternate word list. The special name '-a' gets a particular 
very large word list. 

Words prints all the uncapitalized words in the word list that can be made from letters in string. 

/usr/diet/words 
/ crp/ diet/ web2 

the regular word list 
the the -a word list 

DIAGNOSTICS 

BUGS 

After each round, 
of rounds. 

hangman reports the average number of guesses per round and the number 

Hyphenated compounds are run together. 

UNIX software is distributed without the -8 word list. 



WUMP(6) WUMP (6) 

NAME 
wump - the game of hunt-the-wumpus 

SYNOPSIS 
/usr/games/wump 

DESCRIPTION 

BUGS 

Wump plays the game of 'Hunt the Wumpus.' A Wumpus is a creature that lives in a cave with 
several rooms connected by tunnels. You wander among the rooms, trying to shoot the 
Wumpus with an arrow, meanwhile avoiding being eaten by the Wumpus and falling into Bot
tomless Pits. There are also Super Bats which are likely to pick you up and drop you in some 
random room. 

The program asks various questions which you answer one per line~ it will give a more detailed 
description if you want. . 

This program is based on one described in People's Computer Company, 2, 2 (November 1973). 

It will never replace Space War. 

7th Edition 



ASCII (7) 

NAME 
ascii - map of ASCII character set 

SYNOPSIS 
cat /au/pub/ascii 

DESCRlmON 

nLES 

A.scii is a map of the ASCII character set, to be printed as needed. It contains: 

1000 nul 1001 soh I 002 stxl003 etxl004 eotl005 enql006 ackl007 bell 
1010 bs 1011 ht 1012 nl 1013 vt 1014 np 1015 cr 1016 so 1017 si I 
1020 dlel021 dcl1022 dc21023 dcJI024 dc41025 nakl026 synl027 etbl 
1030 canlOJI ~ 1032 subl033 escl034 fs 1035 IS 1036 rs 1037 us I 
1040 sp 1041 ! 1042 " 1043 # t044 S 1045 % 1046 &: 1047 • I 
1050 (1051 ) 1052 • 1053 + 1054 • lOSs - 1056 . 1057 I I 
1060 0 1061 1 1062 2 1063 3 1064 4 1065 5 1066 6 1067 7 I 
1070 8 1071 9 1072 : 1073 ; 1074 < 1075 - 1076 > 1077 ? I 
1100 @ 1101 A 1102 B 1103 C 1104 D 1105 E 1106 F 1107 G 
1110 H 1111 I 1112 J 1113 K 1114 L 1115 M 1116 N 1117 0 I 
1120 P 1121 Q 1122 R 1123 S 1124 T 1125 U 1126 V 1127 wi 
1130 X 1131 Y 1132 Z 1133 [1134 \ 1135 ] 1136 A 1137 _ I 
1140 ' 1141 a 1142 b 1143 c 1144 d 1145 e 1146 f 1147 I I 
1150 h 1151 i 1152 j 1153 k 1154 1 1155 m 1156 n 1157 0 I 
1160 p 1161 q 1162 r 1163 5 1164 t 1165 u 1166 v 1167 w I 
1170 x 1171 y 1172 z 1173 (1174 I 1175 ) 1176 - 1177 dell 

lusr/pub/ascii 

7th Edition 

ASCII (7) 

• 

1 



EQNCHAR (7) EQNCHAR (7) 

NAME 
eqnchar - special character definitions for eqn 

SYNOPSIS 
eqn /usr/pub/eqncbar [ files] I troff [ options 1 
neqn /usr/pub/eqncbar [ files] I nroB' [ options ] 

DESCRIPTION 

FILES 

Eqnchar contains troff and nrqff character definitions for constructing characters that are not 
available on the Graphic Systems typesetter. These definitions are primarily intended for use 
with eqn and neqn. It contains definitions for the following characters 

ciplus ED II II square Cl 
citimes ~ Jangle ( Circle 0 
wig rangle I blot. 
-wig - hbar 7f bullet • 
> wig ~ ppd 1. prop cr: 

< wig ~ < .> - empty " . 
-wig iiiii <-> ... member e 

nomem ~ 
cup U 

star * I> < 
bigstar • )-

-dot .. ang L cap n 
orsign V rang L incl t: 
andsign 1\ 3dot subset c 

supser ::J -del £ tJtf . . . 
oppA Y quarter 1/4 !subset !;; 

!supset :2 oppE iI 3quarter 34 
angstrom A degree 0 

lusr/pub/eqnchar 

SEE ALSO 
troffO), eqn (1 ) 

7th Edition 



GREEK (7) 

NAME 
greek - graphics for extended TTY-37 type-box 

SYNOPSIS 
cat /usr/pub/greek [ I greek -Tterminal ] 

DESCRIPTION 

GREEK (7) 

Greek gives the mapping from ascii to the 'shift out' graphics in effect between SO and SIan 
model 37 Teletypes with a 128-character type-box. These are thl: default greek characters pro
duced by nroff. The filters of greek( 1) attempt to print them on various other terminals. The 
file contains: 

alpha ex A beta 13 B gamma y \ 
GAMMA r G delta a D DELTA A W 
epsilon E S zeta , Q eta 1) N 
THETA 9 T theta H 0 lambda ,\ L 
LAMBDA A E mu II- M nu II @ 

xi e X pi 1f' J PI n P 
rho p K sigma Cf' Y SIGMA t R 
tau T I phi t/J U PHI <l> F 
psi 1# V PSI 'I' H omega w C 
OMEGA n Z nabla \l [ not .., 

partial a 1 integral f 
SEE ALSO 

greek(I) 
troff(l) 

7th Edition 



HIER (7) 

NAME 
hier - file system hierarchy 

DESCR.IPTION 
The following outline gives a quick tour through a representative directory hierarchy. 

I root 
Idevl devices (4) 

console 
main console, lO'(4) 

tty- terminals, lO'(4) 
cat phototypesetter cat(4) 
rp- disks, rp, hp(4) 
rrp- raw disks, rp, hp(4) 

Ibinl utility programs, cf lusr/binl (1) 
as assembler first pass, cf lusr/lib/as2 
ccC compiler executive, cf lusr/lib/c(012] 

lJibl object libraries and other stuff, cf lusr/libl 
Jibe.a system calls, standard I/O. etc. (2,3,3S) 
libm.a math routines (3M) 
libplota 

plotting routines. plot(3) 
libF77.a 

Fortran runtime support 
Ubl77.a 

Fortran I/O 

as2 second pass of as(1) 
c(012] passes of cc(1) 

letcl essential data and dangerous maintenance utilities 
passwd password file. passwd(S) 
group group file. group(S) 
motd message of the day, Iogin(l) 
mtab mounted file table, mtob(S) 
ddate dump history, dump(1) 
ttys properties of terminals, lO's(S) 
getty part of login, gelO'(8) 
init the father of all processes, init(S) 
rc shell program to bring the system up 
cron the clock daemon, cron(8) 
mount mount( 1) 
wall wa I/O) 

Itmpl temporary files, usually on a fast device, cf lusr/tmpl 
e- used by edO) 
ctm- used by cc(1) 

lusrl general-pupose directory, usually a mounted file system 
adml administrative information 

wtmp login history. utmp(S) 
messages 

7tb Edition 

HIER (7) 

1 



HIER (7) 

hardware error messages 
tracct phototypesetter accounting, froff( 1) 
vpacct line printer accounting {prO) 

lusr Ibin 

7th Edition 

utility programs, to keep fbin/ small 
tmpl temporaries, to keep Itmp/ small 

stm· used by sort( 1 ) 
raster used by plotO) 

dict/ word lists, etc. 

games/ 

words principal word list, used by look. (1 ) 
spe 11 hist 

history file for spel/O) 

bj blackjack 
hangman 
quiz.k/ what quiz(6) knows 

index category index 
africa countries and capitals 

include/ 
standard #include files 
a.out.h object file layout, a.oU(S) 
stdio.h standard I/O, stdio(3) 
math.h OM) 

sys/ system-defined layouts, cf lusrlsys/h 
acct.h process accounts, acct(S) 
buf.h internal system buffers 

Iibl object libraries and stuff, to keep llib/ small 
lint [1 2] 

subprocesses for IintO) 
llib-Ic dummy declarations for llib/Ubc.a.. used by !intO) 
!lib-1m dummy declarations for llib/libc.m 
atrun scheduler for ar(1) 
structl passes of strUct(I) 

tmac/ macros for troff(l) 
tmac.an 

macros for man(7) 
tmac.S macros for ms(7) 

fontl fonts for troff(l) 
R Times Roman 
B Times Bold 

uucpl programs and data for uucp(I) 
L.sys remote system names and numbers 
uucico the real copy program 

suftab table of suffixes for hyphenation, used by trojf(l) 

HIER (7) 

2 



HIER (7) 

units 
eign 

HIER (7) 

conversion tables for units(1) 
list of English words to be ignored by ptt(1) 

lusrl manl 
volume 1 of this manual, manO) 

manOI general 
intro introduction to volume 1, ms(7) format 
xx template for manual page 

manl! chapter 1 
as.l 
mounllm 

catl I preprinted pages for manl! 
as.l 
mounllm 

spooll delayed execution files 
at! used by arO) 
lpdl used by /prO) 

lock present when line printer is active 
ce- copy of file to be printed, if necessary 
de- daemon control file, Ipd(S) , 
tr- transient control file, while Ipr is working 

uucpl work files and staging area for uucpO) 
LOG FILE 

summary log 
LOG.- log file for one transaction 

maiV mailboxes for mallO) 
uid mail file for user uid 
uid.lock 

lock file while uid is receiving mail 
'MId initial working directory of a user, typically 'MId is the user's login name 

.profile set environment for shU), environ(S) 
calendar 

user's datebook for calendar(1) 
docl papers, mostly in volume 2 of this manual, typically in ms(7) format 

asl assembler manual 
c C manual 

sysl system source 
dey I device drivers 

bio.c common code 
cat.c cat(4) 
dh.c DHll, 1(Y(4) 
tty 10'(4) 

conrl hardware-dependent code 
mch.s assembly language portion 
conr configuration generator 

hI header <include) files 
acct.h acct(S) 

. stat.h stat(2) 

7th Edition 3 



HIER (7) 

sysl source for system proper 
main.c 
pipe.c 
sysent.c 

system entry points 

HIER (7) 

lusrl srcl 

7th Edition 

source programs for utilities, etc. 
cmd! source of commands 

asl assembler 
makefile 

recipe for rebuilding the assembler 
asl ?s source of passl 

ar.c source for arO) 

troffl source for nroffand troff(l) 
nmake makefile for nroff 
tmake makefile for troff 
font! source for font tables, lusr/lib/fontl 

ftR.c Roman 

terml terminal characteristics tables, lusr/lib/terml 
tab300.c 

DASI300 

libel source for functions in Ilib/libe.a 
crt! C runtime support 

Idiv.s division into a long 
tmu!.s multiplication to produce long 

csul startup and wrapup routines needed with every C program 
crtO.s regular startup 
mcrtO.s modified startup for cc - p 

sysl system calls (2) 
access.s 
alarm.s 

stdiol standard I/O functions (3S) 
fgets.c 
fopen.c 

genl other functions in (3) 
abs.c 
atof.c 

compaU 
shell procedure to compile libe 

mklib shell procedure to make llib/libe.a 
libI77 I source for llib/libI77 
libF77 I 

4 



HIER (7) HIER (7) 

gamest source for /usr/games 
SEE ALSO 

Is(1), ncheck(I), findO), grep(1) 
BUGS 

The position of files is subject to change without notice. 

7th Edition 5 





MAN (7) MAN (7) 

NAME 
man - macros to typeset manual 

SYNOPSIS 
nroff - man file .. . 

troff - man file .. . 

DESCRIPTION 

FILES 

These macros are used to layout pages of this manual. A skeleton page may be found in the 
file lusr/man/manO/xx. 

Any. text argument t may be zero to six words. Quotes may be used to include blanks in a 
'word'. If text is empty, the special treatment is applied to the next input line with text to be 
printed. In this way .I may be used to italicize a whole line, or .SM followed by .B to make 
small bold letters. 

A prevailing indent distance is remembered between successive indented paragraphs, and is 
reset to default value upon reaching a non-indented paragraph. Default units for indents i are 
ens. 

Type font and size are reset to default values before each paragraph, and after processing font 
and size setting macros. 

These strings are predefined by - man: 

\. R '$', '(Reg)' in nroff. 

\·S Change to default type size. 

lusr/lib/tmac/tmac.an 
lusr/manimanO/xx 

SEE ALSO 
trotrO), man (1) 

BUGS 
Relative indents don't nest. 

REQUESTS 
Request Cause If no Explanation 

. B t 

. BI t 

. BR t 

. DT 

.HP i 

.I t 

.IB t 

.IP xi 

.IR t 

.LP 

. PD d 

.PP 

. RE 

. RB t 

. RI t 

.RS i 

. SH t 

Break Argument 
no r-n.t.1.* Text t is bold . 
no r- n.ll. Join words of /alternating bold and italic . 
no r- n.t.1. Join words of t alternating bold and Roman . 
no .5i 1 i... Restore default tabs . 
yes i-p.i.· Set prevailing indent to i. Begin paragraph with hanging indent. 
no r-n.t.l. Text t is italic . 
no r-n.t.1. Join words of t alternating italic and bold. 
yes x-"" Same as .TP with tag x . 
no r- n.t.l. Join words of t alternating italic and Roman . 
yes Same as .PP. . 
no d-.4v Interparagraph distance is d . 
yes Begin paragraph. Set prevailing indent to .51. 
yes End of relative indent. Set prevailing indent to amount of starting .RS . 
no r- n. t.l. Join words of t alternating Roman and bold . 
no r- n. t.1. Join words of t alternating Roman and italic . 
yes ;- p.i. Start relative indent, move left margin in distance i. Set prevailing indent to 

.5i for nested indents. 
yes r- n. t.1. Subhead . 

7th Edition 



MAN (7) 

.SM t no r-n.t.l. 

.TH n c x yes 

.TP i yes i-p.i. 

MAN (7) 

Text t is small. 
Begin page named 'n of chapter c; x is extra commentary, e.g. 'local', for 

page foot. Set prevailing indent and tabs to .5i. 
Set prevailing indent to i. Begin indented paragraph with hanging tag given 
by next text line. If tag doesn't fit, place it on separate line . 

.. n. t.!. - next text line; p.i. - prevailing indent 

7th Edition 2 



MS(7) 

NAME 
ms - macros for formatting manuscripts 

SYNOPSIS 
nroW - ms [ options ] file .. . 
troW - ms [ options 1 file .. . 

DESCRIPTION 

MS(7) 

This package of nroff and troff macro definitions provides a canned formatting facility for tech
nical papers in various formats. When producing 2-column output on a terminal, filter the out-
put through colO). . 

FILES 

The macro requests are defined below. Many nroffand l1'Offrequests are unsafe in conjunction 
with this package, however these requests may be used with impunity after the first .PP: 

. bp begin new page 

. br break output line here 

.sp n insert n spacing lines 

.Is n (line spacing) n -1 single, n - 2 double space 

.na no alignment of right margin 

Output of the eqn, neqn, refer, and tb/(l) preprocessors for equations and tables is acceptable as 
input. 

/usr/lib/tmac/tmac.s 

SEE ALSO 
eqn(I), troffO), referO), tbt(I) 

REQUESTS 
Request Initial Cause Explanation 

Value Break 
.IC yes yes One column format on a new page . 
. 2C no yes Two column format. 
.AB no yes Begin abstract. 
.AE yes End abstract. 
.AI no yes Author's institution follows. Suppressed in TM . 
. AT no yes Print' Attached' and tum off line filling . 
. AU xi no yes Author's name follows. x is location and y is extension, ignored except in TM . 
. B x no no Print x in boldface; if no argument switch to boldface . 
. Bl no yes Begin text to be enclosed in a box . 
. B2 no yes End text to be boxed. print it. 
.BT date no Bottom title, automatically invoked at foot of page. May be redefined. 
. BX x 
.CS x. .. 

. cr 

.DAx 

. DE 

.DS x 

. EO 

. EN 

.EQxy 

no no Print x in a box . 
yes Cover sheet info if TM format, suppressed otherwise. Arguments are number 

of text pages, other pages, total pages, figures, tables, references. 
no yes Print 'Copies to' and enter no-fill mode . 
nroff no 

yes 
'Date Hne' at bottom of page is x. Default is today. 
End displayed text. Implies .KE . 

no 

no 

yes Start of displayed text, to appear verbatim line-by-Iine. x- I for indented 
display (default), x-L for left-justified on the page, x-C for centered, x-B 
for make left-justified block, then center whole block. Implies .KS. 
Print document in BTL format for 'Engineer's Notes.' Must be first . 

yes Space after equation produced by eqn or neqn . 
yes Precede equation; break out and add space. Equation number is y. The option

al argument x may be I to indent equation (default), L to left-adjust the equa~ 

7th Edition 



MS(7) 

. FE 

.FS no 

.HO 

.Ix no 

.IH no 

.1M no 

.IP xy no 

.KE 

.KF no 

. KS no 

.LG no 

.LP yes 

.MF 

. MH 

.MR 

. ND dote trolf 

. NH n 

. NL yes 

.OK 

. PP no 

.PT pg # 

.py 

. QE 

. QP 

.QS 

. R yes 

.RE 

. RP no 

.RS 

.SG x no 

. SH 

.SM no 

. TA x .. 5 ... 

.TE 

. TH 

.TL no 

.TM x .. no 

. TRx 

.TS x 

. ULx 

.UX 

. WH 

7th Edition 

yes 
no 
no 
no 
no 
no 
yes 
yes 
yes 

yes 
no 
yes 

no 

no 

yes 

no 
yes 
yes 
-
no 
yes 
yes 
yes 
no 
yes 

yes 

yes 

yes 
no 
no 
yes 
yes 
yes 

yes 
no 
no 

no 

MS(7) 

tion, or C to center the equation . 
End footnote. 
Start footnote. The note will be moved to the bottom of the page. 
'Bell Laboratories, Holmdel, New Jersey 07733'. 
Italicize x, if x missing, italic text follows. 
'Bell Laboratories, Naperville, Illinois 60540' 
Print document in BTL format for an internal memorandum. Must be first. 
Start indented paragraph, with hanging tag x. Indentation is y ens (default 5). 
End keep. Put kept text on next page jf not enough room. 
Start floating keep. If the kept text must be moved to the next page, float later 
text back to this page . 
Start keeping following text. 
Make letters larger. 
Start left-blocked paragraph. 
Print document in BTL format for 'Memorandum for File.' Must be first . 
'Bell Laboratories, Murray Hill, New Jersey 07974'. 
Print document in BTL format for 'Memorandum for Record.' Must be first . 
Use date supplied (if any) only in special BTL format positions; omit from page 
footer . 
Same as .SH, with section number supplied automatically. Numbers are mul
tilevel, like 1.2.3, where n tells what level is wanted (default is 1) . 
Make letters normal size. 
'Other keywords' for TM cover sheet follow. 
Begin paragraph. First line indented . 
Page title, automatically invoked at top of page. May be redefined. 
'Bell Laboratories. Piscataway, New Jersey 08854' 
End quoted (indented and shorter) material . 
Begin single paragraph which is indented and shorter . 
Begin quoted (indented and shorter) material. 
Roman text follows . 
End relative indent level. 
Cover sheet and first page for released paper. Must precede other requests . 
Start level of relative indentation. Following .IP's are measured from current 
indentation. 
Insert signature(s) of author(s), ignored except in TM. x is the reference line 
(initials of author and typist). 
Section head follows, font automatically bold . 
Make letters smaller. 
Set tabs in ens. Default is 5 10 15 ... 
End table. 
End heading section of table . 
Title follows. 
Print document in BTL technical memorandum format. Arguments are TM 
number, (quoted list 00 case number{s), and file number. Must precede other 
requests. 
Print in BTL technical report format; report number is x Must be first . 
Begin table; if x is H table has repeated heading. 
Underline argument (even in troft') . 
'UNIX'; first time used. add footnote 'UNIX is a trademark of Bell Labora
tories. ' 
'Bell Laboratories, Whippany, New Jersey 07981' . 

2 



TERM (7) TERM (7) 

NAME 
terminais- conventional names 

DESCRIPTION 
These names are used by certain commands and are maintained as part of the shell environ
ment (see sh( 1), environ(5». 

1620 DIABLO 1620 (and others using HyType II) 
1620-12 same, in 12~pitch mode 
300 DASI/DTC/GSI 300 (and others using HyType I) 
300-12 same, in 12-pitch mode 
3005 DASIIDTC 300/5 
3005-12 same, in 12-pitch mode 
33 TELETYPEs Model 33 
37 TELETYPE Model 37 
40 - 2 TELETYPE Model 40/2 
43 TELETYPE Model 43 
450 DASI 450 (same as Diablo 1620) 
450-12 same, in 12-pitch mode 
450-12-8 same, in 12-pitch, 8 lines/inch mode 
735 Texas Instruments TI735 (and TI725) 
745 Texas Instruments TI745 
dumb terminals with no special features 
hp Hewlett-Packard HP264? series terminals 
40 14 Tektronix 4014 
tn1200 General Electric TermiNet 1200 
tn300 General Electric TermiNet 300 
vt05 Digital Equipment Corp. VT05 

Commands whose behavior may depend on the terminal accept arguments of the form 
-Tterm, where term is one of the names given above. If no such argument is present, a com
mand may consult the shell environment for the terminal type. 

SEE ALSO 

BUGS 

stty(1), tabs(l), plotO), sh(D, environ(5) 
trotf(l) for nroff 

The programs that ought to adhere to this nomenclature do so only fitfully. 

7th Edition 






