Permuted Index

PMvOget read a pixel from buffer
PMvOput write a pixel to buffer
PMvlget read a pixel from buffer
PMvlput write a pixel to buffer
PMcopy_f fast but dangerous
increments PMcopy_v

PMcopy _s safe

PMnorm normalize a

manipulate page registers used to
fload a page register and retumn an
PMgetzdesc, PMzdesc_valid

DRAM and page registers for dynamic
DEVswap_pipe switch primary and
to compute the cosine of an
PMapply

PMlong_dsp convert an

: d3as DSP32
/DEVopen_system make a Pixel machine
) pixel nodes DEVrun

into specified pipe/ DEVpipe run
into specified pixel/ DEVpixel run
PMcopy_f fast but dangerous 32
PMzdesc_valid allocate a DRAM
interleave or deinterleave a

register DEVpipe put write a
register DEVpixel put send a

pipe feedback/ DEVfifo_read read a
FIFO DEVfifo_write write a
DEVpipe_read reads a

DEVpixel _read read a
DEVpixel_id_write write a node id
PMcopyvtov copy

resets all FIFOs on a pipe

color tables from video controller
color tables from video controller

DEVfifo_parallel configure a pipe
DEVfifo_serial configure a pipe
wait until control of the

read a pixel from the frame

one or more scan lines from a frame
write pixels into the frame

read a pixel from the current

read a float value from the Z

output a pixel to the current

write a float value to the Z

read of a pixel from the current
write of a pixel to the current
PMswapback swap meaning of back
PMzget read a float from the z
PMvOget read a pixel from
PMvOput write a pixel to

Permuted Index

0 PMvOget(3X)
0 PMvOput(3X)
1 PMv(3X)
1 PMv(3X)
32 bit D/VRAM copy PMcopy_£{(3X)

32-bit copy with variable
32-bit DRAM or VRAM copy

PMcopy_v(3X)
PMcopy_s(3X)

3D vector and retum its length PMnorm(3M)
access video and Z memory /to PMpagereg(3X)
address to a section of DRAM PMgetzaddr(3X)
allocate a DRAM block PMgetzdesc(3X)
allocation /PMset_hireg reserve PMzbrk(3X)
alternate pipes of a dual pipe/ DEVswap_pipe(3H)
angle PMcos trigonometric function PMcos(3M)
apply a function to all subscreens PMapply(3X)
array of longs to float PMlong_dsp(3M)
assembler d3as(1)
available to a user program DEVopen(3S)
begin execution of all pipe and DEVrun(3H)

begin execution of programs loaded
begin execution of programs loaded
bit D/VRAM copy

DEVpipe_run(3S)
DEVpixel run(3S)
PMcopy_£(3X)

block PMgetzdesc,

PMgetzdesc(3X)

block PMinterleave

block of data to a pipe DSP’s PDR
block of data to a pixel DSP’s PDR

PMinterleave(3X)
DEVpipe_put(3S)

DEVpixel put(3S)

block of four byte values from a
block of four byte values to a pipe

DEVfifo_read(3S)
DEVfifo_write(3S)

block of memory from a pipe DSP

block of memory from a pixel DSP
block to a reserved location in a/
blocks of VRAM

DEVpipe_read(3S)
DEVpixel_read(3S)
DEVpixel_id_write(3S)

board DEVfifo_reset

PMcopyvtov(3X)
DEVfifo_reset(3S)

board and return the value /update

board and returns value /read the ...

DEVput_color_map(3S)
... DEVget_color_map(3S)

board mode register DEVpixel mode_init(3S)
board to operate in parallel modecovcveniriieercrenerennes DEVfifo_parallel(3S)
board to operate in serial mode DEVfifo_serial(3S)
broadcast bus is granted PMswap_pipe(3H)
buffer DEVget pixel, DEVget piXelsccoveverieeeinrenes DEVget_pixel(3S)
buffer DEVget scan_line readccoeveuvereerevernrvennnnns DEVget_scan_line(3H)
buffer DEVput_pixel, DEVput_pixelsccocvurerrervereens DEVput_pixel(3S)
buffer PMgetpix PMgetpix(3X)
buffer PMgetzbufcccooveervivencrenninences PMgetzbuf(3X)
buffer PMputpix ... PMputpix(3X)
buffer PMputzbuf PMputzbuf(3X)
buffer PMqget quick PMqget(3X)
buffer PMqput quick PMgput(3X)
buffer PMswapback(3)
buffer PMzget(3X)
buffer 0 PMvOget(3X)
buffer 0 PMvOput(3X)

Permuted Index

PMvlget read a pixel from
PMvlput write a pixel to

of a pixel node DEVread_z read a
of a pixel/ DEVwrite_z writes a
DEVpipe_write write a

DEVpixel write write a

DEVpixel buffer selects the frame
PMdblbuff enable double
PMsnglbuff disable double

swap front and back pixel

wait until control of the broadcast
DEVfifo_read read a block of four
DEVfifo_write write a block of four
DEVpixel get read a stream of
DEVpipe_get read a stream of

node DEVread_z read a buffer of
node DEVwrite_z writes a buffer of
programs using DEVtools devce

_ d3cc DSP32
lookup tables /reads file of gamma
nodes to signal completion, then
code and specify functions to be
DEVpipe_id_check

DEVpixel id_check

PMwaitsem wait for semaphore to
memory/ /DEVrelease_pixel semaphore
DEVexit halts processors,

DEVclose

DEVuser_msg_enable define a message
/server program for Pixel Machine
gamma calibration values and sets
DEVshadow_off tums off updating of
DEVshadow_on tums on updating of
board and/ DEVput_color map update
board/ DEVget color_map read the
floating point value to internal
converts an integer to an internal
/macro that converts internal

/macro that converts internal
generate a ZRAM pointer to a
PMgetcmd load

data structure used for FIFO

data structure used for FIFO
processing of selected system

/Pixel Machines pipelines and read
PMfb_on direct output

d3cc DSP32 C language

using DEVtools devce C

Jto the host that signals the

[wait for pixel nodes to signal
PMcos trigonometric function to

in parallel mode DEVfifo_parallel

BUffer 1 . cerereserensasessesssennens. PMV(3X)
buffer 1 ..o . R PMv(3X)
buffer of bytes from the Z memorycccceeevvevnrevenirinecnessanns DEVread_z(3S)
buffer of bytes into the Z memory DEVwrite_z(3S)
buffer to a pipe DSP DEVpipe_write(3S)
buffer to a pixel DSP DEVpixel write(3S)
buffer to be displayed ... DEVpixel_buffer(3S)
buffering mode reeerestereeras et seratereser et sheserasaenasssrasas PMdblbuff(3X)
buffering mode s PMsnglbuff(3X)
buffers PMswapbuffcccoovemniiiiniiiinicenetiencennns PMswapbuff(3X)

bus is granted PMswap pipe
byte values from a pipe feedback/

... PMswap_pipe(3H)
..... DEVfifo_read(3S)

_ byte values to a pipe FIFO ... DEVfifo_write(3S)
bytes from a pixel DSP’s PIR/ccoovrriviviniinncrcnnieninens DEVpixel get(3S)
bytes from the PIR of a pipe DSP .. DEVpipe_get(3S)
bytes from the Z memory of a piXelccccovuvevereinveeriininenne DEVread_z(3S)
bytes into the Z memory of a pixel .. DEVwrite_z(3S)
C compiler for Pixel Machinecoivenivninneneninciecreissnessenes devec(l)
C language compiler d3cc(1)
calibration values and sets color «..... DEVload_color_tables(3S)
call DEVexit /wait for pixel e e ses s DEVwait_exit(3H)
called /define a g DEVuser_msg_enable(3H)
check status of node’s ID DEVpipe_id_check(3S)
check status of node’s ID ... DEVpixel id_check(3S)
CLEAT ouveineeriieeere et stassees s sesens st ereserens e seseansssssssnsssnseassssnns PMwaitsem(3N)
clear the software semaphore in the DEVrelease_pipe_semaphore(3H)
closes Pixel Machine device DEVexit(3H)
closes the Pixel Machingccvecveiinincsenncriinesnecsnssinsinnns DEVclose(3S)
code and specify functions 10 be/ccoeuverireuninee DEVuser_msg_enable(3H)
code that uses the Print TOULINESccceuveveircasinesirensieesemesesensens devprint(1)
color lookup tables /reads file of ... DEVload_color_tables(3S)
color lookup tables from shadow/ ccceeeeveeeeuiuecunnccnnne DEVshadow_off(3S)
color lookup tables from shadow/ DEVshadow_on(3S)
color tables from video controllercvvciincrenrennns DEVput_color_map(3S)
color tables from video controller .. DEVget_color_map(3S)
color value /macro that CONVESceeererevererrernsessnesenens PMfloat_color(3N)
color value PMint_color macro thatceiinecninennenes PMint_color(3N)

color value to an integer
color value to floating point/ccceveeevcrvercernenes PMcolor_float(3N)
column PMzaddrcolcoccevemevenereenesercesnnensesssensesensneneesse PMzaddrcol(3X)
command from a pixel node FIFOcccovmivinenennnevescnenee PMgetcmd(3X)

<eeeeeenes. PMcolor_int(3N)

commands PMcommandceveeeeieecerennnneeseseenereneeenns PMcommand(4N)
commands PMcommand ... PMcommand(4N)
commands PMenable enableccovverereereeirriennenennns R PMenable(3N)
commands back from the feedback/ DEVwrite(3H)
commands to the regular output FIFOcccovvvvrvvrrieviinninnnns PMfb_on(3P)
compiler e d3cc(1)
compiler for Pixel Machine programscceeceeueeremeesrnesessosensusesnsenes devec(1)

completion of a Pixel Machine/
completion, then call DEVexit DEVwait_exit(3H)
compute the cosine of an angle ... wereerenen. PMcos(3M)
configure a pipe board to OPErateecvuemvererersecesenens DEVfifo_parallel(3S)

.. PMhost_exit(3N)

DEVtools Reference Manual

Permuted Index

in serial mode DEVfifo_serial
granted PMswap_pipe wait until
fupdate color tables from video

/read the color tables from video
printf formatted output

PMlong_dsp

and host long integer DEVbswapl
and host long integer DEVsswapl
and host short integer DEVbswaps
host long integers DEVswap_long
to host short/ DEVswap_short
floating—point format/ DEVdsp_ieee
floating—point format/ DEVieee_dsp
PMieee_dsp

color value PMint_color macro that
internal/ PMfloat_color macro that
integer PMcolor_int macro that
floating/ PMcolor_float macro that
PMmyx test if a given screen space
PMmyy test if a given screen space
PMxat map subscreen

PMyat map subscreen

fast but dangerous 32 bit D/VRAM
PMcopy_s safe 32— bit DRAM or VRAM

PMcopyvtov

another PMcopyztoz

another PMqcopyztoz

PMcopyftob

data from input to/ PMcopycmd
PMcopyvtoz

PMcopy_v 32-bit

function to compute the
PMcopycmd copy opcode, parameter
PMputcmd write opcode, parameter
PMgetop get opcode and parameter
PMputop write opcode and parameter
PMgetpix read a pixel from the
PMputpix output a pixel to the
quick read of a pixel from the

quick write of a pixel to the

PMcopy _f fast but

PMgetdata get

fcopy opcode, parameter count, and
PMmsg_exchange send and receive
commands PMcommand
commands PMcommand
DEVpipe_put write a block of

Permuted Index

configure a pipe board to operatecveeunee

control of the broadcast bus is

................... DEVfifo_serial(3S)

PMswap_pipe(3H)

controller board and return the/ ...
controller board and returns value
conversion on host

.. DEVput_color_map(3S)
DEVget_color_map(3S)

convert an array of longs to float

printf(3N)
PMilong_dsp(3M)

convert between DSP32 long integer

convert between DSP32 long integer
convert between DSP32 short integer
convert from DSP32 long integers to

....................... DEVbswapl(3S)
........................ DEVsswapl(3S)

DEVbswaps(3S)

DEVswap_long(3S)

convert from DSP32 short Integersevevnuerescrnierennes DEVswap_short(3S)

convert from the DSP32

DEVdsp_ieee(3S)

convert from the host’s

convert IEEE float to DSP float

DEVieee_dsp(3S)
PMieee_dsp(3M)

converts an integer to an internal

PMint_color(3N)

converts floating point value to
converts intemal color value to an

PMfloat_color(3N)
PMcolor_int(3N)

converts internal color value to

coordinate is in processor space

. PMcolor_float(3N)
PMmyx(3X)

coordinate is in processor space

PMmyy(3X)

coordinates to screen space
coordinates to screen space

.. PMxat(3X)
PMyat(3X)

copy PMcopy_f

PMcopy_£(3X)

copy PMcopy_s(3X)
copy blocks of VRAM PMcopyvtov(3X)
copy DRAM to video RAM 3X)
copy from one section of DRAM to PMcopyztoz(3X)
copy from one section of DRAM 0couvvuverirensnneniscanuneee PMqcopyztoz(3X)
copy front to back PMcopyftob(3X)
copy opcode, parameter count, and PMcopycmd(3P)
copy video RAM to DRAM PMcopyvtoz(3X)
copy with variable increments PMcopy_v(3X)
cosine of an angle frigonometric PMcos(3M)
count, and data from input to/ PMcopycmd(3P)
count, and parameters to the output/ PMputcmd(3P)
count from input FIFO of a pipe/ PMgetop(3P)
count to the output FIFO of a pipe/ PMputop(3P)
current buffer PMgetpix(3X)
current buffer PMputpix(3X)
current buffer PMqget PMgget(3X)
current buffer PMgput PMgput(3X)
d3as DSP32 assembler d3as(1)
d3cc DSP32 C language compiler d3cc(1)
d31d DSP32 link editor d31d(1)
d3sim DSP32 link editor d3sim(1)
dangerous 32 bit D/VRAM copy PMcopy_f(3X)
data from a pipe node FIFO PMgetdata(3P)
data from input to output FIFO of a/ PMcopycmd(3P)
data packet over serial links PMmsg_exchange(3X)
data structure used for FIFO PMcommand(4N)
data structure used for FIFO . PMcommand(4N)
data to a pipe DSP’s PDR register DEVpipe_put(3S)

Permuted Index

DEVpixel_put send a block of

register PMfreezaddr

functions to be/ DEVuser_msg_enable
PMinterleave interleave or

long integer and host long integer
short integer and host short/

programs using DEVtools

macros/ /DEVcwriten, DEVwrite_alt,
DEVwrite_alt, DEVcread,/, DEVwrite,
DEVwrite, DEVcwrite, DEVwriten,
file to a Pixel Machine
floating—point format to the IEEE/
on standard error

to signal completion, then call
Pixel Machine device

board to operate in parallel mode
byte values from a pipe feedback/
pipe board

board to operate in serial mode
byte values to a pipe FIFO

tables from video controller board/
Machine image header from a file
pixel from the frame buffer

frame buffer DEVget_pixel,

scan lines from a frame buffer
processors, closes Pixel Machine
opens and initializes Pixel Machine
floating—point format to the/
DEVtools image file

DEVtools image file

Machine device

DEVpixel_system DEVpipe nodes,
/DEVlast_pipe, DEVpixel_nodes,
gamma calibration values and sets/

/DEVx_screen, DEVy_screen,
Pixel machine available to a user/
available to a user/ DEVopen,
executable into specified set of/
from the PIR of a pipe DSP

the PIR of a pipe DSP

register of a pipe DSP

processor

node’s ID

node ID of a processor
DEVpixel_nodes,/ DEVpixel_system
to a pipe DSP’s PDR register
memory from a pipe DSP
programs loaded into specified/
pipe DSP

executable into specified set of/

data to a pixel DSP’s PDR regiSterc.cerimineriineninerens DEVpixel_put(3S)
decrement references t0 a8 Pagecoeviinieiieinininenniininnnns PMfreezaddr(3X)
define a message code and specifycccovevirenennes DEVuser_msg_enable(3H)
deinterleave a block ..cuviiveeiiiinecnicninin i PMinterleave(3X)

DEVbswapl convert between DSP32 DEVbswapl(3S)

DEVbswaps convert between DSP32eiiivenniiinrennnennns DEVbswaps(3S)
devce C compiler for Pixel Machinecceiiveneninnes . devee(l)
DEVclose closes the Pixel Machingcc.cccoceveerseevescsesssnessesenns DEVclose(3S)

DEVcread, DEVreadn, DEVreadn_alt, DEVwrite(3H)
DEVcwrite, DEVwriten, DEVcwriten, DEVwrite(3H)
DEVcwriten, DEVwrite_alt, DEVcread,/ooeneereveererennnns DEVwrite(3H)

devdisp download an image from a_........... . devdisp(1)
DEVdsp_ieee convert from the DSP32 DEVdsp_ieee(3S)
DEVerror generate an error MESSAZEcoceuuersseseresersesisssesssessnes DEVerror(3S)
DEVexit /wait for pixel nodes DEVwait_exit(3H)
DEVexit halts processors, closes DEVexit(3H)
DEVfifo_parallel configure a pipe DEVfifo_parallel(3S)
DEVfifo_read read a block of fourccceevenvivervnrennievennnns DEVfifo_read(3S)
DEVfifo_reset resets all FIFOs 0n 28 .cooeovuernneervcrseinnsinnsnnnns DEVfifo_reset(3S)

DEVfifo_serial configure a pipe
DEVfifo_write write a block of four ...

DEVfifo_serial(3S)
....... DEVfifo_write(3S)

DEVget_color_map read the colorcveeereurirennenne DEVget_color_map(3S)
DEVget_image header read the Pixel DEVget_image_header(3S)
DEVget_pixel, DEVget pixels read acceevreeeerennsrerenns DEVget_pixel(3S)

DEVget_pixels read a pixel from the .. DEVget_pixel(3S)

DEVget_scan_line read one or morec.eveeuesessenns DEVget_scan_line(3H)
device DEVeXit haltsccuecevnicenresnnnncnresnonsnnenssisssesnsessesssesessnnes DEVexit(3H)
device DEVinit DEVinit(3H)

............... DEVieee_dsp(3S)
DEVimage_header(4)
DEVimage_header(4)
DEVinit(3H)

DEVieee_dsp convert from the host’s
DEVimage header format of a
DEVimage_header format of a
DEVinit opens and initializes Pixel
DEVlast_pipe, DEVpixel nodes,/ ... DEVpixel_system(3S)
DEVlast_pixel, DEVxX_nodes,/cccoeverreemercerrresnnns DEVpixel_system(3S)
DEVload_color_tables reads file ofcccecvvueiuene DEVload_color_tables(3S)

DEVlock manage Pixel Machine 10cKSccceeerererenvirnuereescsssnns DEVlock(3S)
DEVmodel _code, DEVvideo_code, DEVpixel_system(3S)
DEVopen, DEVopen_system make @cccuvevecreeeenensssessensossenne DEVopen(3S)
DEVopen_system make a Pixel machinecooecevevvcivuriirennnnne DEVopen(3S)

DEVpipe_boot load a Pixel Machine DEVpipe_boot(3S)
DEVpipe_get read a stream of bytesccovciesnsnvcrncensensenee DEVpipe_get(3S)
DEVpipe_get msg read a message fromccoouueeee. DEVpipe_get_msg(3S)
DEVpipe_get pir read the PIRcoovevcvcnnirirnncnncnninae DEVpipe_get_pir(3S)
DEVpipe_halt halt a pipe node ... DEVpipe_halt(3S)
DEVpipe_id_check check status ofcoeeeverriiensane DEVpipe_id_check(3S)
DEVpipe_id_print read and print theccccvveuirnrunes DEVpipe_id_print(3S)
DEVpipe_nodes, DEVlast_pipe, .. DEVpixel system(3S)
DEVpipe_put write a block of dataccusmeeeememsereeesonen DEVpipe_put(3S)
DEVpipe_read reads a block of DEVpipe_read(3S)
DEVpipe_run begin execution ofc..ocueevevceerrirnrecrernnnnns DEVpipe_run(3S)
DEVpipe _write write 2 buffer to acoceueeveccrcrcrnuseenens DEVpipe_write(3S)
DEVpixel_boot load a Pixel Machinecoeceeerevenrennenes DEVpixel_boot(3S)

DEVtools Reference Manual

Permuted Index

buffer to be displayed

from a pixel DSP’s PIR register
from a pixel DSP’s PIR register
register of a pixel DSP

processor

node’s ID

the node ID of a processor

block to a reserved location in a/
board mode register

mode in the pixel mode register
/DEVpipe_nodes, DEVlast_pipe,
mode in all pixel processor’s flag/
to a pixel DSP’s PDR register
memory from a pixel DSP
programs loaded into specified/
DEVlast_pipe, DEVpixel_nodes,/
pixel DSP

for messages

Pixel Machine code that uses the/
tables from video controller board/
Machine image header to a file
pixels into the frame buffer

frame buffer DEVput_pixel,

or a portion of an image to a/
/DEVcwriten, DEVwrite_alt, DEVcread,
/DEVwrite_alt, DEVcread, DEVreadn,
from the Z memory of a pixel node
DEVrelease_pixel_semaphore clear/
the/ DEVrelease_pipe_semaphore,
and pixel nodes

Pixel Machine to a file

serial J/O link direction

color lookup tables from shadow/
color lookup tables from shadow/
long integer and host long integer
long integers to host long/

alternate pipes of a dual pipe/

short integers to host short/

for Pixel Machine programs using
DEVimage_header format of a
DEVimage_header format of a

code and specify functions to be/
DEVy_screen, DEVmodel_code,

to signal completion, then call/
DEVcwriten, DEVwrite_alt,/
/DEVcwrite, DEVwriten, DEVcwriten,
DEVwrite_alt/ DEVwrite, DEVcwrite,
into the Z memory of a pixel node
/DEVpixel_nodes, DEVlast_pixel,
/DEVx_nodes, DEVy_nodes,
/DEVy_nodes, DEVx_scale, DEVy_scale,
/DEVlast_pixel, DEVx_nodes,

Permuted Index

DEVpixel buffer selects the frameccccoevevveuciriennees DEVpixel buffer(3S)
DEVpixel_get read a stream of bytesccccovcveereneiceecnnee DEVpixel_get(3S)
DEVpixel get msg read a MESSAZE ...covveeeererensencscusnene DEVpixel_get_msg(3S)

.... DEVpixel_get pir(3S)
... DEVpixel_halt(3S)
DEVpixel _id_check check status ofccccvveevrveenncnees DEVpixel id_check(3S)
DEVpixel_id_print read and print DEVpixel_id_print(3S)
DEVpixel_id_write write a node idccoveveeereneruenns DEVpixel_id_write(3S)
DEVpixel_mode_init initialize pixel DEVpixel_mode_init(3S)
DEVpixel mode_overlay set overlay DEVpixel_mode_overlay(3S)
DEVpixel_nodes, DEVlast_pixel,/ccoveveinireesinenes DEVpixel_system(3S)
DEVpixel_overlay update overlay DEVpixel overlay(3S)
DEVpixel put send a block of dataccoeuermenernnencnnes DEVpixel_put(3S)
DEVpixel_read read a block of DEVpixel_read(3S)
DEVpixel _run begin execution ofcceeceeeervneneesnnnens DE Vpixel_run(3S)

DEVpixel_get pir read the PIR
DEVpixel_halt halt a pixel node

DEVpixel_system DEVpipe_nodes,cccoceunucereennnne DEVpixel_system(3S)
DEVpixel_write write a buffertoa DEVpixel_write(3S)
DEVpoll_nodes poll DSP processors.c.ceeveververersennns DEVpoll_nodes(3H)
devprint a host server program for ... devprint(1)

DEVput_color_map update color
DEVput_image_header write a Pixel ...

.... DEVput_color_map(3S)
.. DEVput_image_header(3S)

DEVput_pixel, DEVput_piXxels Writeccoovemververesransnnne DEVput_pixel(3S)
DEVput_pixels write pixels into theccevrerniucneennens DEVput_pixel(3S)
DEVput_scan_line download an imagec.oveveuvenene DEVput_scan_line(3H)
DEVreadn, DEVreadn_alt, macros to/ DEVwrite(3H)
DEVreadn_alt, macros t0 WIIte t0/cccvemvererensenenecsssesssesnnns DEVwrite(3H)

DEVread_z read a buffer of bytes DEVread_z(3S)
DEVrelease_pipe semaphore,ccoue.... DEVrelease_pipe_semaphore(3H)
DEVrelease_pixel semaphore clear DEVrelease_pipe_semaphore(3H)
DEVrun begin execution of all pipe DEVnun(3H)
devsave upload an image from @c.ceneiiicnecinen devsave(l)
DEVserial_direction updates thecoovcrveernnunne DEVserial_direction(3S)
DEVshadow_off tums off updating of DEVshadow_off(3S)
DEVshadow_on tumns on updating of DEVshadow_on(3S)

DEVsswapl convert between DSP32ccocveninevecnnennnn DEVsswapl(3S)
DEVswap_long convert from DSP32 DEVswap_long(3S)
DEVswap_pipe switch primary and DEVswap_pipe(3H)
DEVswap_short convert from DSP32 DEVswap_short(3S)
DEVtools devee C COmMPILETcucueiuierinicrinicrcsccecsssiaesensesenenes devee(1)

DEV1ools image filecoocueeveruecneinenerienrcneeeensnnesennnes DEVimage_header(4)
DEVtools image fileccoeviurrnencnnenennenesesessensesnnees DEVimage_header(4)
DEVuser_msg_enable define a message DEVuser_msg_enable(3H)
DEVvideo_code, /DEVX_screen,ceveecvennens DEVpixel_system(3S)
DEVwait_exit wait for pixel nodes DEVwait_exit(3H)
DEVwrite, DEVcwrite, DEVwriten, DEVwrite(3H)
DEVwrite_alt, DEVcread, DEVreadn,/ .. DEVwrite(3H)
DEVwriten, DEVCWIILEN, .cc.ccvvvviiieeececeeeeierensese e sresneesnsseseseens DEVwrite(3H)
DEVwrite_z writes a buffer of bytescccocovuevvvcnnnncnnnnns DEVwrite_z(3S)
DEVx_nodes, DEVy_nodes, DEVx_scale,/ . DEVpixel_system(3S)
DEVx_scale, DEVy_scale,/couune. DEVpixel_system(3S)
DEVx_screen, DEVy_screen,/ DEVpixel_system(3S)
DEVy_nodes, DEVx_scale, DEVy_scale,/cccccoeuenne DEVpixel_system(3S)

Permuted Index

/DEVx_nodes, DEVy_nodes, DEVx_scale,
- /DEVy_scale, DEVx_screen,
regular output FIFO PMfb_on

updates the serial I/O link

PMsiodir set serial I/O link
PMsnglbuff

selects the frame buffer to be

PMfdiv perform floating point
PMmsg_setup set serial

PMldot specialized

PMdblbuff enable

PMsnglbuff disable

Pixel Machine devdisp

an image to a/ DEVput_scan_line
PMcopyvtoz copy video RAM to
return an address to a section of
/PMset_lowreg, PMset_hireg reserve
PMzdesc_valid allocate a

PMcopy_s safe 32-bit

PMcopyztoz copy from one section of
copy from one section of

copy

of bytes from the PIR of a pipe

a message from the PIR of a pipe
read the PIR register of a pipe

reads a block of memory from a pipe
write a buffer to a pipe

read the PIR register of a pixel

read a block of memory from a pixel
write a buffer to a pixel

PMieee_dsp convert IEEE float to

in the memory of one of the
DEVpoll_nodes poll

d3as

d3cc

floating—point format to the

IEEE/ DEVdsp_ieee convert from the
d3id

d3sim

integer DEVbswapl convert between
integer DEVsswapl convert between
integers DEVswap_long convert from
integer DEVbswaps convert between
DEVswap_short convert from

a reserved location in a pixel node
write a block of data to a pipe

send a block of data to a pixel

read a stream of bytes from a pixel
/read a message from a pixel
primary and altemate pipes of a
PMcopy_f fast but dangerous 32 bit
reserve DRAM and page registers for

DEVy_scale, DEVX_SCreen,/ccceoeiesessersessuniinnsenene DEVpixel system(3S)
DEVy_screen, DEVmodel _code,/ ... DEVpixel_system(3S)

direct output commands t0 theccceviiineririisinrsnnennnnssensnns PMfb_on(3P)
direction DEVserial directioncccoeveeveeieeserinnnnne DEVserial_direction(3S)
QITECHON .veveereeenrerenserecenrensssesssesssesnssssssnssssensssssssssnssssensassassssssns PMsiodir(3X)
disable double buffering mode PMsnglbuff(3X)
displayed DEVpixel_buffer ..o, DEVpixel buffer(3S)
QIVISION covvreireinicisisesensenirsiieisise s sssess s sssssss s sssessssssssssasssnsnns PMfdiv(3M)
DMA INPUL POINLET cuverrenrirrnserrersnrensessesiessasssssssssssssssssssssssss PMmsg_setup(3X)
dot product for light sources .. PMldot(3M)
double buffering mode PMdblbuff(3X)
double buffering mode PMsnglbuff(3X)
download an image from a file to a devdisp(1)
download an image or a portion ofccceceeeveririennne DEVput_scan_line(3H)
DRAM PMcopyvtoz(3X)
DRAM /load a page register andcooceeviveresrenrenesensnensenes PMgetzaddr(3X)
DRAM and page registers for dynamic/cocceeeerreneersnesenne PMzbrk(3X)
DRAM block PMgetzdesc, PMgetzdesc(3X)
DRAM or VRAM COPY wecvecrernnnensmsesnsnsesssssennsssencnne PMcopy_s(3X)
DRAM to another e PMcopyztoz(3X)
DRAM to another PMQCOPYZIOZc.ccvuvererrurensunisirererencssane PMqcopyztoz(3X)
DRAM t0 video RAMucverveenerrcnneenisesneaeenens (3X)

DSP DEVpipe_get read a stream
DSP DEVpipe_get msg read .
DSP DEVpipe_get pir
DSP DEVpipe_read
DSP DEVpipe_write
DSP DEVpixel get pir
DSP DEVpixel_read
DSP DEVpixel_write

DEVpipe_get(3S)
DEVpipe_get msg(3S)
............. DEVpipe_get_pir(3S)
....... DEVpipe_read(3S)
DEVpipe_write(3S)
DEVpixel_get_pir(3S)
DEVpixel_read(3S)
.. DEVpixel_write(3S)

DSP flOAL ...cvivurirereccrrinineisesssersssssnssssesesssssesessssssssassssssssnses PMieee_dsp(3M)
DSP processors /software semaphore DEVrelease_pipe_semaphore(3H)
DSP processors for MeSSagescveiriesireisesesssensieneas DEVpoll_nodes(3H)
DSP32 assembler . d3as(1)
DSP32 C language compilerc.ceeueuee .. d3cc(1)

DSP32 floating point format /host’s
DSP32 floating—point format to the

.................................... DEVieee_dsp(3S)
DEVdsp_ieee(3S)

DSP32 link editor rerera ettt r s st ae s seashe e sens e et aen d31d(1)
DSP32 link editorcovcereeseccnsncnenee d3sim(1)
DSP32 long integer and host 10ngccocvveriecnunesiecenecennensons DEVbswapl(3S)
DSP32 long integer and host long DEVsswapl(3S)
DSP32 long integers to host long DEVswap_long(3S)
DSP32 short integer and host shortcccceveeeenercrernenee DEVbswaps(3S)

DSP32 short integers to host short/
DSP’s memory /a node id block to
DSP’s PDR register DEVpipe_put
DSP’s PDR register DEVpixel put
DSP’s PIR register DEVpixel get ...
DSP’s PIR register

.................................. DEVswap_short(3S)
.. DEVpixel id_write(3S)
DEVpipe_put(3S)

.......... DEVpixel_put(3S)
«..e.. DEVpixel_get(3S)
. DEVplxel get_msg(3S)

dual pipe system [SWIlChcoevvunivcrcninecrseessirsesinssnaenns DEVswap_pipe(3H)
D/VRAM COPY coueerrecrrenniensenesssssesessussssssessessesssssssssansssssesssssses PMcopy_f(3X)
dynamic allocation /PMset hireg PMzbrk(3X)

DEViools Reference Manual

Permuted Index

d31d DSP32 link

d3sim DSP32 link

PMdblbuff

system commands PMenable

an error message on standard
DEVerror generate an

DEVpipe_boot load a Pixel Machine
DEVpixel_boot load a Pixel Machine
nodes DEVrun begin

specified pipe/ DEVpipe_run begin
specified pixel/ DEVpixel run begin
copy PMcopy f

of four byte values from a pipe

and read commands back from the
PMflagled turn the

PMrdyled turn the

byte values from a pipe feedback
block of four byte values to a pipe
commands back from the feedback
commands to the regular output
load command from a pixel node
PMgetdata get data from a pipe node
PMcommand data structure used for
PMcommand data structure used for
and data from input to output

and parameter count from input
count, and parameters to the output
write parameters to the output

and parameter count to the output
DEVfifo_reset resets all

Pixel Machine image header from a
format of a DEVtools image

format of a DEVtools image

a Pixel Machine image header to a
an image from a Pixel Machine to a
and/ DEVioad color_tables reads
devdisp download an image from a
screen PMclear

mode in all pixel processor's
convert |IEEE float to DSP

convert an array of longs to

PMzget read a

PMieee_dsp convert IEEE

PMzput write a

PMgetzbuf read a

PMputzbuf write a

PMfdiv perform

floating—point format to the DSP32
converts internal color value to
PMtloat_color macro that converts
floating—point format to the IEEE
DEVieee_dsp convert from the host's

Permuted Index

BAILOT 1vuirrererncsstsisese e seniss s sisib bbb e bsse b bt sebsrs st sessnmars s srasasbens d31d(1)
editor d3sim(1)
enable double buffering modecocccevureinirinecniinennrinesnnnens PMdblbuff(3X)
enable processing of selectedcocoeerunneen ... PMenable(3N)
error DEVError generate ... DEVerror(3S)
error message on Standard EITOTccevuveciniiresnnrissssseesssaesens DEVerror(3S)
executable into specified set of/ ... DEVpipe_boot(3S)
executable into specified set Of/ccceviivriveieiinininnnnn DEVpixel_boot(3S)
execution of all pipe and pixel DEVmun(3H)
execution of programs loaded intocecrvervenereieiiennens DEVpipe_run(3S)

execution of programs loaded into
fast but dangerous 32 bit D/VRAM
feedback FIFO /read a blockcccccevrverrveruernennenne
feedback FIFO /Machines pipelines
PM_FLAG LED on or off
PM_RDY LED on oroff

FIFO /read a block of four

FIFO DEViifo_write write a

DEVpixel run(3S)
PMcopy_f(3X)
DEVfifo_read(3S)
.................... DEVwrite(3H)

.. PMflagled(3X)
PMrdyled(3X)
.... DEVfifo_read(3S)
. DEVfifo_write(3S)

FIFO /Machines pipelines and readcccccceveverennnene DEVwrite(3H)
FIFO PMfb_on direct outputcoccevriiiiiiiiie, PMfb_on(3P)
FIFO PMgetemd ... PMgetcmd(3X)
FIFO oottt e st s s e PMgetdata(3P)
FIFO commands PMcommand(4N)
FIFO commandsccccccenene. .. PMcommand(4N)
FIFO of a pipe node /count,cccoeeiveeieicenrennne PMcopycmd(3P)
FIFO of a pipe node /get opcodeccecevevreivecineinene PMgetop(3P)
FIFO of a pipe node /parameterccccooorvririeennns PMputemd(3P)
FIFO of a pipe node PMputdatacccceveveernerceninnne PMputdata(3P)
FIFO of a pipe node /write opcodeccccccevenrirninecnene PMputop(3P)

FIFOs on a pipe boardcccovvviirieiciee e, DEVfifo_reset(3S)
fle DEVget_image_header read the DEVget image_header(3S)
file DEVimage_headerccccovuninnncnnnes DEVimage_header(4)
file DEVimage headerccccoviviencnnns DEVimage_header(4)
file DEVput_image_header write DEVput_image_header(3S)
file devsave upload devsave(1)
file of gamma calibration values DEVload_color_tables(3S)
file to a Pixel Machineccoccooviviiiecececeeecteee e devdisp(1)
fill a rectangular region of the PMclear(3X)
flag registers /update overlay DEVpixel_overiay(3S)
float PMieee dsp PMieee_dgp(3M)
float PMiong dspccooiniiiciiiiice e PMiong_dsp(3M)

float from the z buffer ... PMzget(3X)
float to DSP floatcccoceviveniriinireeecc e PMieee_dsp(3M)
float to the Z-buffer ... PMzput(3X)
float value from the Z bufferccccoovvvveviceecevnn, PMgetzbuf(3X)
float value to the Z buffercccocvririveinccriens PMputzbuf(3X)
floating point diViSioncccocoiiiniiiencceee e PMfdiv(3M)

floating point format /the host's DEVieee_dsp(3S)
floating point number /macro that PMcolor_float(3N)
floating point value to internal/cccccoveveuennene PMfloat_color(3N)
floating—point format /the DSP32cccceveueneen. DEVdsp_ieee(3S)
floating—point format to the DSP32/c....cu.ee. DEVieee_dsp(3S)

Permuted Index

DEVdsp_ieee convert from the DSP32
format to the IEEE floating—point
format to the DSP32 floating point
DEVimage_header
DEVimage_header

/from the host's floating—point

/from the DSP32 floating—point
printf

DEVfifo_read read a block of
DEVfifo_write write a block of
DEVget_pixels read a pixel from the
read one or more scan lines from a
DEVput_pixels write pixels into the
DEVpixel_buffer selects the
PMswapbuff swap

PMcopyftob copy

PMpow power

PMsin trigonometric

PMsqrt sqare root

PMx_exp_n integer power

space to/ PMfxytoij map a linear
processor/ PMfxtoi map a linear
processor/ PMfytoj map a linear
PMapply apply a

an angle PMcos trigonometric
/define a message code and specify
DEVload_color_tables reads file of
pixel PMpixaddr

PMzaddrcol

PMzaddr

standard error DEVerror
processor space PMmyx test if a
processor space PMmyy test if a
control of the broadcast bus is
DEVpipe_halt

DEVpixel_halt

Machine device DEVexit

/read the Pixel Machine image
hwrite a Pixel Machine image

send a user message to the
formatted output conversion on
between DSP32 long integer and
between DSP32 long integer and
convert from DSP32 long integers to
Machine code that uses/ devprint a
between DSP32 short integer and
from DSP32 short integers to
PMhost_exit send a message to the
the/ DEVieee_dsp convert from the
check status of node’s

check status of node’s

a/ DEVpixel_id_write write a node

floating-point format to the IEEE/ ... DEVdsp_ieee(3S)
format /the DSP32 floating—pointccccoceeninnnne DEVdsp_ieee(3S)
format /the host's floating—pointccccceoecerninenene DEVieee_dsp(3S)
format of a DEVtools image file DEVimage_header(4)
format of a DEVtools image file DEVimage_header(4)
format to the DSP32 floating point/ DEVieee_dsp(3S)
format to the IEEE floating—point/ccccccoveeeennne. DEVdsp_ieee(3S)
formatted output conversion on host ... printf(3N)

four byte values from a pipe/ DEVfifo_read(3S)

four byte values to a pipe FIFOc.c.cevvviinnnnne DEVfifo_write(3S)
frame buffer DEVget pixel,cccccoovvrniinnnnnn DEVget_pixel(3S)
frame buffer DEVget_scan_line DEVget_scan_line(3H)
frame buffer DEVput_pixel,cccvvvviniiininnns DEVput_pixel(3S)
frame buffer to be displayedcocccoiinies DEVpixel_buffer(3S)
front and back pixel buffers ... PMswapbuff(3X)
front to back PMcopyftob(3X)
FUNCHION ..ot e PMpow(3M)
FUNCHION ...ttt ane PMsin(3M)
FUNCHION oooveceeere ettt et s se s e s e r e en e saees PMsqrt(3M)
function PMx_exp_n(3M)
function of x and y from screencccceveeeeieenicennn, PMfxytoij(3X)
function of x from screen space t0c.ccccoeuccirrrcernnenene PMfxtoi(3X)
function of y. from screen space toc.ccevcvrinnnnnnene PMfytoj(3X)
function to all subscreens PMapply(3X)
function to compute the cosine ofccccceeevvecinnrencnee PMcos(3M)
functions to be calledccccecvvvinen. DEVuser_msg_enable(3H)
gamma calibration values and sets/ DEVlioad color_tables(3S)
generate a pointer to a Specificcccoeevereevniienens PMpixaddr(3X)
generate a ZRAM pointer to a column ... PMzaddrcol(3X)
generate a ZRAM pointer to a rowcccccceevvvrccreennenns PMzaddr(3X)
generate an error MesSage ONce.eveevvvcreneresuneessisene DEVerror(3S)
given screen space coordinate is inc..ccccceecnenenrienenne PMmyx(3X)
given screen space coordinate is inc..cccccvveiniiiinenenne PMmyy(3X)

granted PMswap_pipe wait until
halt a pipe node processor
halt a pixel node processor

... PMswap_pipe(3H)
... DEVpipe_halt(3S)
.. DEVpixel_halt(3S)

halts processors, closes Pixel ... DEVexit(3H)
header from a filecccccevvvrrciviencnen DEVget_image_header(3S)
headerto afilec..cccoeevvevvcnirnencrinnnne DEVput_image_header(3S)
host PMUSEIMSYcc.coevirieeieeninieniireene e PMusermsg(3N)
host PriNtf ... e printf(3N)
host long integer /convertcccoocoevieeieinneniniinnene DEVbswapl(3S)
host long integer /convertcccocoevveveeieiiiineeiiens DEVsswapl(3S)

host long integers DEVswap long DEVswap_long(3S)
host server program for Pixelcccovivnneininninenee devprint(1)
host short integer /convertcccoooeeecinieveeneennns DEVbswaps(3S)
host short integers /convert DEVswap_short(3S)
host that signals the completion of/ccccceeuennnne PMhost_exit(3N)

host's floating—point formattoccocvevvevennnne. DEVieee_dsp(3S)
ID DEVpipe_id_checkccccovvrmvirecrnncnncan DEVpipe_id_check(3S)
ID DEVpixel_id_checkcconrnivneiiennes DEVpixel_id_check(3S)
id block to a reserved location inccccncuee. DEVpixel_id_write(3S)

DEVtools Reference Manual

Permuted Index

read and print the node

/read and print the node
PMieee_dsp convert

DSP32 floating—point format to the
space (xmax) to processor space
space (xmin) to processor space
format of a DEVtools

format of a DEVtools

Machine devdisp download an
file devsave upload an

/read the Pixel Machine

Awrite a Pixel Machine

Pixel/ DEVput_scan_line download an
an image or a portion of an
PMcopy_v 32-bit copy with variable
register DEVpixel_mode_init
PMsioinit

DEVinit opens and

get opcode and parameter count from
PMmsg_setup set serial DMA
/parameter count, and data from
DSP32 long integer and host long
DSP32 short integer and host short
DSP32 long integer and host long
converts internal color value to an
/convert between DSP32 long
/convert between DSP32 long
/convert between DSP32 short
PMx_exp_n

PMint_color macro that converts an
DSP32 long integers to host long
DSP32 short integers to host short
/convert from DSP32 long

/convert from DSP32 short
PMinterleave

converts floating point value to
that converts an integer to an
PMcolor_int macro that converts
PMcolor_float macro that converts
/updates the serial

PMsiodir set serial

space to processor space i and
screen space to processor space
space (ymax) to processor space
space (ymin) to processor space
d3cc DSP32 C

PMflagled turn the PM_FLAG
PMrdyled turn the PM_RDY

a 3D vector and return its

PMidot specialized dot product for
screen space to/ PMfxytoij map a

Permuted Index

ID of a processor DEVpipe_id_print DEVpipe_id_print(3S)
ID of @ Processorcccceveevernieiiniecne e DEVpixel_id_print(3S)
|IEEE float to DSP floatccccviiiiniciciiieicins PMieee_dsp(3M)

IEEE floating—point format /the
(ihi) PMihi map from screen

... DEVdsp_ieee(3S)
............. PMihi(3X)

(ilo) PMilo map from screen PMilo(3X)
image file DEVimage_headercccoeuvnnnnee DEVimage_header(4)
image file DEVimage headercccccco... DEVimage_header(4)
image from a file to @ Pixelccoccooeviviiriicer e devdisp(1)
image from a Pixel Machine t0 @cccccocveivveiericeenc e, devsave(1)

image header from a file
image header to a file
image or a portion of an image toa
image to a Pixel Machine /download
INCTEMENtScooviveiricree e

... DEVget_image_header(3S)
. DEVput_image_header(3S)
... DEVput_scan_line(3H)
... DEVput_scan_line(3H)
................ PMcopy_v(3X)

initialize pixel board modecocooiciiniinnnne DEVpixel_mode_init(3S)
initialize serial IOc.cooiviviiicc e PMsioinit(3X)
initializes Pixel Machine devicecccccnvvviineininenneene, DEVinit(3H)
input FIFO of a pipe node PMgetopccccccovvvveevenennnnn. PMgetop(3P)
iNPUt POINtET ..o PMmsg_setup(3X)
input to output FIFO of a pipe nodeccccoevvvuivenne PMcopycmd(3P)
integer DEVbswap! convert between DEVbswapl(3S)
integer DEVbswaps convert betweenc........ DEVbswaps(3S)
integer DEVsswapl convert betweenccoeveeneene. DEVsswapl(3S)
integer PMcolor_int macro that . PMcolor_int(3N)

integer and host long integerccccovvviiiiniiiccininne DEVbswapl(3S)
integer and host long integercccococvvvvvvvernienene. DEVsswapl(3S)
integer and host short integer DEVbswaps(3S)
integer power function PMx_exp_n(3M)
integer to an internal color value PMint_color(3N)
integers DEVswap_long convert from DEVswap_long(3S)
integers /convert fromcccoeevieee DEVswap_short(3S)
integers to host long integerscccoccoevienniennnne. DEVswap_long(3S)
integers to host short integersc.cccceeeevvenennenne DEVswap_short(3S)
interleave or deinterleave a blockcccceevevriennen. PMinterleave(3X)
internal color value /macro that ..o PMfloat_color(3N)
internal color value /macro PMint_color(3N)
internal color value to an integercccocveevircnen. PMcolor_int(3N)

internal color value to floating/ccccccoveevirrnnnrnen. PMcolor_float(3N)
/O e PMsioinit(3X)
/O link directioncccoeevennicnincnieine e, DEVserial_direction(3S)
/0 linK direCtioncc.cccviveierneeercircre s PMsiodir(3X)
j /function of x and y from screenccocoevviiieeenns PMfxytoij(3X)

j /map a linear function of y from ... PMfytoj(3X)
(jhi) PMjhi map from SCreenccocveiceevcevcecceeceeeeeene e PMjhi(3X)
(jlo) PMjlo map from screen PMjlo(3X)
language compiler e d3cc(1)
LED on or off PMflagled(3X)
LED onoroffccovrneneeee. PMrdyled(3X)
length PMnorm normalizeccccoeveeeecvciieceeeeecenan, PMnorm(3M)
light SOUICEScoviiiiceice e PMIdot(3M)
linear function of x and y fromcccceevvniiveniivenennne PMfxytoij(3X)

Permuted Index

space to processor/ PMfxtoi map a
space to processor/ PMfytoj map a
/read one or more scan

updates the serial I/O

PMsiodir set serial /O

d3id DSP32

d3sim DSP32

and receive data packet over serial
address to a section of/ PMgetzaddr
into specified set of/ DEVpipe_boot
into specified set/ DEVpixel_boot
PMgetemd

/begin execution of programs
/begin execution of programs

Awrite a node id block to a reserved
DEVlock manage Pixel Machine
PMiong_dsp convert an array of
calibration values and sets color
/turns off updating of color

/turns on updating of color
DEVclose closes the Pixel

an image from a file to a Pixel

or a portion of an image to a Pixel
/DEVopen_system make a Pixel

/a host server program for Pixel
halts processors, closes Pixel
DEVinit opens and initializes Pixel
set of/ DEVpipe_boot load a Pixel
set of/ DEVpixel_boot load a Pixel
DEVget_image_header read the Pixel
DEVput_image_header write a Pixel
DEVlock manage Pixel

signals the completion of a Pixel
devce C compiler for Pixel

upload an image from a Pixel
/macros to write to the Pixel

an internal color/ PMint_color

value to internal/ PMfloat_color
value to an integer PMcolor_int
value to floating/ PMcolor_float
used to/ PMpagereg, PMdesc, PMxlate
/DEVcread, DEVreadn, DEVreadn_alt,
DEVlock

access/ /PMdesc, PMxlate macros to
from screen space to/ PMfxytoij
screen space to processor/ PMfxtoi
screen space to processor/ PMfytoj
processor space (ihi) PMihi
processor space (ilo) PMilo
processor space (jhi) PMjhi
processor space (jlo) PMjlo

space PMxat

10

linear function of x from screen ..o PMfxtoi(3X)
linear function of y from screencccoevvcniciiciinciienne, PMfytoj(3X)
lines from a frame buffercccoovennien DEVget_scan_line(3H)
link direction DEVserial_direction DEVserial_direction(3S)
linK direCtionooeeeiieicee e e PMsiodir(3X)

link editor BSOSO dald(1)
NK @dItOr ...t d3sim(1)
links PMmsg_exchange send PMmsg_exchange(3X)
load a page register and return ancc.cceeenenne. PMgetzaddr(3X)

load a Pixel Machine executablec.cccceeeinnne DEVpipe_boot(3S)
load a Pixel Machine executablecccccceuevee. DEVpixel_boot(3S)
load command from a pixel node FIFOc.cccoeeee. PMgetcmd(3X)
loaded into specified pipe nodes DEVpipe_run(3S)
loaded into specified pixel nodesccceceviriienine DEVpixel_run(3S)
location in a pixel node DSP’s/ DEVpixel_id_write(3S)
JOCKS vovir ettt e e DEViock(3S)
longs 1o floatcccevevieiiie s PMiong_dsp(3M)
lookup tables /reads file of gamma DEVload_color_tables(3S)
lookup tables from shadow tablesc..c.......... DEVshadow_off(3S)
lookup tables from shadow tables DEVshadow_on(3S)

MACHIN ...oceeerses oo B DEVoiose(3S)
Machine devdisp downloadcccoovniiniiiiiniiiince devdisp(1)
Machine /download an imagecccccvnineee. DEVput_scan_line(3H)

machine available to a user program . DEVopen(3S)

Machine code that uses the print/ devprint(1)
Machine device DEVexit DEVexit(3H)
Maching devicecccovervieiverciee e et DEVinit(3H)

Machine executable into specifiedcccceeevnene. DEVpipe_boot(3S)
Machine executable into specifiedc.ccceeeee DEVpixel_boot(3S)
Machine image header from a file DEVget_image_header(3S)
Machine image header to a file DEVput_image_header(3S)
Maching 10cksccccoiriiiriii e DEViock(3S)
Machine program /to the host that PMhost_exit(3N)

Machine programs using DEVI0OISccoevevneinccnnennenn devee(1)
Machine to a file devsaveccccovvivviierininiisenncis devsave(1)
Machines pipelines and read/c.cocveriiiiniiicncnne DEVwrite(3H)

macro that converts an integer to
macro that converts floating point
macro that converts internal colorcccvveviivenneee, PMcolor_int(3N)
macro- that converts internal color PMcolor_float(3N)
macros to manipulate page registerscooceenes PMpagereg(3X)
macros to write to the Pixel/ccocecvev v, DEVwrite(3H)

....... PMint_color(3N)
.. PMfloat_color(3N)

manage Pixel Machine lockscccccovvieiveccn v, DEVlock(3S)
manipulate page registers used to PMpagereg(3X)
map a linear function of x andy PMfxytoij(3X)

map a linear function of x from
map a linear function of y from
map from screen space (xmax) to
map from screen space (xmin) to
map from screen space (ymax) to
map from screen space (ymin) to
map subscreen coordinates to screen

....... PMfxtoi(3X)

... PMfytoj(3X)
PMihi(3X)
PMilo(3X)
. PMjhi(3X)
PMjlo(3X)
.................................. PMxat(3X)

DEVtools Reference Manual

Permuted Index

space PMyat

PMswapback swap

location in a pixel node DSP’s

used to access video and Z
DEVpipe_read reads a block of
DEVpixel_read read a block of

read a buffer of bytes from the Z
writes a buffer of bytes into the Z
/clear the software semaphore in the

a scanline or scancolumn from pixel
to be/ DEVuser_msg_enable define a
register DEVpixel_get msg read a
DEVpipe_get msg read a

DEVerror generate an error
PMusermsg send a user

the completion/ PMhost_exit send a
poll DSP processors for

a pipe board to operate in parallel
a pipe board to operate in serial
PMdblbuff enable double buffering
PMsnglbuff disable double buffering
DEVpixel_overlay update overlay
DEVpixel_mode_overlay set overlay
initialize pixel board

/set overlay mode in the pixel

bytes from the Z memory of a pixel
bytes into the Z memory of a pixel
from input to output FIFO of a pipe
count from input FIFO of a pipe

to the output FIFO of a pipe

to the output FIFO of a pipe

count to the output FIFO of a pipe
to a reserved location in a pixel
PMgetemd load command from a pixel
PMgetdata get data from a pipe
location/ DEVpixel_id_write write a
DEVpipe_id_print read and print the
/read and print the

DEVpipe_halt halt a pipe
DEVpixel_halt halt a pixel

into specified set of pipe

programs loaded into specified pipe
into specified set of pixel

loaded into specified pixel
execution of all pipe and pixel
DEVpipe_id_check check status of
DEVpixel_id_check check status of
calll DEVwait_exit wait for pixel

its length PMnorm

PMdelay do

color value to floating point

Permuted Index

map subscreen coordinates to SCreenccccovceeviiiininns PMyat(3X)
meaning of back buffer ... PMswapback(3)
memory /node id block to a reserved DEVpixel_id_write(3S)
memory /manipulate page registerscocoeernenne PMpagereg(3X)

memory from a pipe DSP DEVpipe_read(3S)
memory from a pixel DSPcccccocvivevniniiniene DEVpixel_read(3S)
memory of a pixel node DEVread z ... DEVread_z(3S)
memory of a pixel node DEVwrite z ... DEVwrite_z(3S)
memory of one of the DSP processors

.. DEVrelease_pipe_semaphore(3H)
memory without subscreens /or writecccocceeeneen. PMgetrow(3X)
message code and specify functions DEVuser_msg_enable(3H)
message from a pixel DSP's PIRc..cccceee DEVpixel_get_msg(3S)

message from the PIR of a pipe DSP DEVpipe_get_msg(3S)
message on standard errorcccovvvueiicienieens e DEVerror(3S)
message to the host ..., PMusermsg(3N)
message to the host that signalsc.cccceervininnne PMhost_exit(3N)
messages DEVpoll_nodes ..o DEVpoll_nodes(3H)
mode DEVfifo_parallel configurecc.ccoeeevees DEVfifo_parallel(3S)
mode DEVfifo_serial configure DEVfifo_serial(3S)
MO ..ottt et sttt et ettt en b e PMdbibuff(3X)
MO .ttt e e e e PMsnglbuff(3X)
mode in all pixel processor's flag/cccceuene.e. DEVpixel_overlay(3S)
mode in the pixel mode register DEVpixel_mode_overlay(3S)
mode register DEVpixel_mode_init DEVpixel_mode_init(3S)
mMode registerccovvevvveeeieeeveriee e DEVpixel_mode_overlay(3S)
node DEVread zread a bufferof ... DEVread_z(3S)
node DEVwrite_z writes a buffer of DEVwrite_z(3S)
node /parameter count, and data PMcopyemd(3P)
node /get opcode and parametercccoceeevriieniinnen PMgetop(3P)
node /count, and parameters PMputcmd(3P)
node PMputdata write parameters PMputdata(3P)
node Awrite opcode and parametercccevviieciieninn, PMputop(3P)
node DSP’'s memory /a node id block DEVpixel_id_write(3S)
Node FIFO ..ot PMgetcmd(3X)
NOAE FIFO ..ot PMgetdata(3P)

node id block to a reserved ..
node ID of a processor
node ID of a processor DEVpixel_id_print(3S)
NOTE PrOCESSONovvcveiieieiereieeeeeree st s evere s eresaas DEVpipe_halt(3S)
NOAE PrOCESSOTc.ociiririirririerieintieiesieeierceteetseanraereene DEVpixel_halt(3S)
nodes /a Pixel Machine executable DEVpipe_boot(3S)
nodes /begin execution of DEVpipe_run(3S)
nodes /a Pixel Machine executable DEVpixel_boot(3S)
nodes /begin execution of programsc.c....... DEVpixel_run(3S)
nodes DEVrun beginccccoviviniiiiiiiecne s DEVrun(3H)
NOAE’S ID .o DEVpipe_id_check(3S)
node’s ID DEVpixel_id_check(3S)
nodes to signal completion, thencccccoevevvnie, DEVwait_exit(3H)

.. DEVpixel_id_write(3S)
.... DEVpipe_id_print(3S)

normalize a 3D vector and returnc.cccoceveieree e PMnorm(3M)
nothing for a specified timecccccocv v PMdelay(3N)
number /that converts internal ... PMcolor_float(3N)

11

Permuted Index

input FIFO of a pipe/ PMgetop get
output FIFO of &/ PMputop write
from input to/ PMcopycmd copy
parameters to the/ PMputcmd write
device DEVinit

/configure a pipe board to
/configure a pipe board to

buffer PMputpix

PMoutpir

output FIFO PMfb_on direct

printf formatted

output commands to the regular
/count, and data from input to
/count, and parameters to the
PMputdata write parameters to the
opcode and parameter count to the
DEVpixel_overlay update

register DEVpixel_mode_overlay set
PMoverlay turn

/send and receive data

decrement references to a

to a section of/ PMgetzaddr load a
/PMset_hireg reserve DRAM and
and 2/ /PMxlate macros to manipulate
a pipe board to operate in

input to/ PMcopycmd copy opcode,
the output/ PMputcmd write opcode,
a pipe node PMgetop get opcode and
of a pipe/ PMputop write opcode and
/write opcode, parameter count, and
pipe node PMputdata write

a block of data to a pipe DSP’s

a block of data to a pixel DSP's
PMfdiv

DEVrun begin execution of all
DEVfifo_reset resets all FIFOs on a
mode DEVfifo_parallel configure a
mode DEVfifo_serial configure a

a stream of bytes from the PIR of a
read a message from the PIR of a
read the PIR register of a

reads a block of memory from a
DEVpipe_write write a buffer to a
Awrite a block of data to a

a block of four byte values from a

a block of four byte values to a

data from input to output FIFO of a
count from input FIFO of a
parameters to the output FIFO of a
parameters to the output FIFO of a
count to the output FIFO of a
PMgetdata get data from a

12

opcode and parameter count fromccceeerreiinieninn PMgetop(3P)
opcode and parameter count to theccocociiiiens PMputop(3P)
opcode, parameter count, and data .. . PMcopyemd(3P)
opcode, parameter count, and PMputecmd(3P)
opens and initializes Pixel Machineccccovievinennne DEVinit(3H)

operate in parallel mode DEVfifo_parallel(3S)
operate in serial Modecocceerveniinine s DEVfifo_serial(3S)
output a pixel to the currentcoocoevveeeivvinenricecees PMputpix(3X)
output a value to the PIR register PMoutpir(3N)

output commands to the regular PMfb_on(3P)
output conversion on hostccevvveicniciince e printf(3N)
output FIFO PMfb_on direct ... PMtb_on(3P)
output FIFO of a pipe node PMcopycmd(3P)
output FIFO of a pipe nodecccoeeveeiivninnnnnnineeene PMputemd(3P)
output FIFO of a pipe nodecccccoeevnciiniccncenee PMputdata(3P)
output FIFO of a pipe node /writeccccvveriiinininnene PMputop(3P)

overlay mode in all pixel/
overlay mode in the pixel mode
overlay on or off ..o PMoverlay(3P)
packet over serial links PMmsg_exchange(3X)
page register PMfreezaddrccccooviviniivennnnenne PMfreezaddr(3X)
page register and return an addressc...ccoceieenens PMgetzaddr(3X)

.............. DEVpixel_overlay(3S)
. DEVpixel_mode_overlay(3S)

page registers for dynamic/cocccovinininnineee PMzbrk(3X)
page registers used to access videoc.cceeueeen. PMpagereg(3X)
parallel mode /configure DEVfifo_parallel(3S)
parameter count, and data fromccccoeeviiiiniiinn PMcopycmd(3P)
parameter count, and parameters {0c.ccceevereiennnn. PMputcmd(3P)
parameter count from input FIFO ofcccocvivviniriecinnn. PMgetop(3P)
parameter count to the output FIFOc.cceeeininiennee. PMputop(3P)
parameters to the output FIFO of @/ccccoeevvereninnns PMputecmd(3P)
parameters to the output FIFO of accccoceiiicinnen, PMputdata(3P)
PDR register DEVpipe_put write DEVpipe_put(3S)
PDR register DEVpixel_put send DEVpixel_put(3S)
perform floating point division crevereenney, PMIdiv(3M)
pipe and pixel Nodesccceieecriiveiesise e DEVrun(3H)
pipe board ... DEVfifo_reset(3S)

pipe board to operate in parallel
pipe board to operate in serial
pipe DSP DEVpipe getread
pipe DSP DEVpipe_get msg DEVpipe_get_msg(3S)
pipe DSP DEVpipe_get pircccccoeveivrnennenenens DEVpipe_get _pir(3S)
pipe DSP DEVpipe _readcccovernrinnineninennens DEVpipe_read(3S)
PIPE DSP ..o DEVpipe_write(3S)
pipe DSP's PDR register DEVpipe_put(3S)
pipe feedback FIFO /read DEVfifo_read(3S)
pipe FIFO DEVfifo_write write ceereenennne. DEVAifo_write(3S)
pipe node /parameter count, andcccccccueueee. PMcopycmd(3P)

... DEVfifo_parallel(3S)
...... DEVfifo_serial(3S)
........... DEVpipe_get(3S)

pipe node /get opcode and parameterccoeeenen. PMgetop(3P)
pipe node /parameter count, andc...ccoovveriene PMputemd(3P)
pipe node PMputdata writeccooeeeivvevvcvirrieeninne PMputdata(3P)
pipe node /opcode and parametercccccceeueeenennnn PMputop(3P)
pipe N0de FIFOc.oooivcecivce e PMgetdata(3P)

DEVtools Reference Manual

Permuted Index

DEVpipe_halt halt a

executable into specified set of -

of programs loaded into specified
and alternate pipes of a dual

/to write to the Pixel Machines
/switch primary and alternate

read a stream of bytes from the
read a message from the

stream of bytes from a pixel DSP’s
read a message from a pixel DSP’s
PMoutpir output a value to the
DEVpipe_get_pir read the
DEVpixel_get pir read the

generate a pointer to a specific
DEVpixel_mode_init initialize
PMswapbuff swap front and back
read the PIR register of a

read a block of memory from a
DEVpixel_write write a buffer to a
/send a block of data to a

/read a stream of bytes from a
/read a message from a

PMvOget read a

PMviget read a

PMgetpix read a

PMqget quick read of a

DEVget _pixel, DEVget_pixels read a
DEVclose closes the

download an image from a file to a
image or a portion of an image to a
DEVopen, DEVopen_system make a
devprint a host server program for
DEVexit halts processors, closes
DEVinit opens and initializes
specified set/ DEVpipe_boot load a
specified set/ DEVpixel_boot load a
fle DEVget image_header read the
fle DEVput image_header write a
DEViock manage

that signals the completion of a
DEVtools devcc C compiler for
devsave upload an image from a
commands/ /macros to write to the
write a scanline or scancolumn from
/set overlay mode in the

of bytes from the Z memory of a

of bytes into the Z memory of a
block to a reserved location in a
PMgetcmd load command from a
DEVpixel_halt halt a

executable into specified set of

of programs loaded into specified

Permuted Index

Pipe NOde ProCeSSOrcoviererniiiiiiiniinicciie s scnenaens DEVpipe_halt(3S)
pipe nodes /load a Pixel Machinec..ccccccee DEVpipe_boot(3S)
pipe nodes /begin executioncccciiiiiininnns DEVpipe_run(3S)
pipe system /switch primary ... DEVswap_pipe(3H)
pipelines and read commands back/cccceeeiiiien DEVwrite(3H)
pipes of a dual pipe system DEVswap_pipe(3H)
PIR of a pipe DSP DEVpipe_get ..o DEVpipe_get(3S)
PIR of a pipe DSP DEVpipe_get msg DEVpipe_get_msg(3S)
PIR register DEVpixel_getreadacceeeveennis DEVpixel_get(3S)

PIR register DEVpixel_get msgcccoeeunnee DEVpixel_get_msg(3S)
PIR registerccoeiiiveiir et PMoutpir(3N)
PIR register of a pipe DSPcccccceverinenriicnn DEVpipe_get_pir(3S)

PIR register of a pixel DSP DEVpixel_get pir(3S)

pixel PMpixaddrcccoviininiiiieiie e PMpixaddr(3X)
pixel board mode register DEVpixel_mode_init(3S)
pixel BUfErscccoiiiieie e PMswapbuff(3X)

pixel DSP DEVpixel_get pir
pixel DSP DEVpixel_read
pixel DSPccoocvvereceie
pixel DSP’s PDR registerccccceovvevenvenesvenenenns DEVpixel_put(3S)
pixel DSP’s PIR registercccccvenveevvnivenenerinenenns DEVpixel_get(3S)
pixel DSP’s PIR registercccccevervnnivcvnnnnen. DEVpixel_get_msg(3S)
pixel from buffer 0ccovvini e PMvOget(3X)

.... DEVpixel_get pir(3S)
.... DEVpixel_read(3S)
.... DEVpixel_write(3S)

pixel from buffer 1 ..o PMv(3X)
pixel from the current buffer PMgetpix(3X)
pixel from the current bufferc.ccococvevninini i PMqget(3X)
pixel from the frame buffer DEVget_pixel(3S)
Pixel Maching ..o e DEVclose(3S)
Pixel Machine devdispccccceveeninirnneiecininine e devdisp(1)

Pixel Machine /download ancccocvvenennene. DEVput_scan_line(3H)
Pixel machine available to a user/cccccoeveeveveennnnen. DEVopen(3S)
Pixel Machine code that uses the/cccoevviceriirvecrennennn. devprint(1)
Pixel Machine deviceccocees ceereececnicieieceecere s DEVexit(3H)
Pixel Machine devicec.ccocoveeviienecinninie e DEVinit(3H)
Pixel Machine executable intoccccocvvrvnrnrnnnnee DEVpipe_boot(3S)
Pixel Machine executable intocccccceeveveinienns DEVpixel_boot(3S)
Pixel Machine image header from a DEVget_image_header(3S)
Pixel Machine image headerto a DEVput_image_header(3S)

Pixel Machine 10CKSccccoovireicieieiisreeeeeerc e DEVlock(3S)
Pixel Machine program /to the host PMhost_exit(3N)
Pixel Machine programs usingc.cccocevvuivennrieneierecene e, devee(1)
Pixel Machine to afilecccccceevnvinniieeiecs e, devsave(1)
Pixel Machines pipelines and read DEVwrite(3H)
pixel memory without subscreens /or PMgetrow(3X)

pixel mode registerccoovveriricinene DEVpixel_mode_overlay(3S)
pixel node DEVread z read a buffer DEVread_2z(3S)
pixel node Awrites a buffer DEVwrite_z(3S)
pixel node DSP’s memory /a node id DEVpixel_id_write(3S)
pixel node FIFO ..o e PMgetecmd(3X)
pixel node Processorcccvveveeeeverenieceeeennens DEVpixel_halt(3S)
pixel nodes /load a Pixel Machinec.......... DEVpixel_boot(3S)
pixel nodes /begin executioncc.cccoeerveeeirennnnn, DEVpixel_run(3S)

13

Permuted Index

begin execution of all pipe and

then call/ DEVwait_exit wait for
Jupdate overlay mode in all
PMpsync wait for all

PMvOput write a

PMv1put write a

PMputpix output a

PMgput quick write of a
DEVput_pixel, DEVput_pixels write
subscreens

PMset_hireg/ PMzbrk, PMblock_reg,
PMset_lowreg, PMset_hireg/ PMzbrk,
of the screen

internal color value to floating/

internal color value to an integer
FIFO commands

FIFO commands

count, and data from input to/
D/VRAM copy

copy
increments

DRAM to another

compute the cosine of an angle
mode

time

manipulate page/ PMpagereg,
selected system commands

the regular output FIFO

division

on or off

floating point value to internal/

a page register

from screen space to processor/
x and y from screen space to/
from screen space to processor/
node FIFO

or write a scanline or/ PMgetrow,
FIFO

count from input FIFO of a pipe/
current buffer

PMputcol read or write a scanline/
subscreen

return an address to a section of/
the Z buffer

a DRAM block

host that signals the completion/
DSP float

to processor space (ihi)

to processor space (ilo)

14

pixel nodes DEVIUNcccoceiiiviniiini s DEVrun(3H)
pixel nodes to signal completion,ccocceveieiinins DEVwait_exit(3H)
pixel processor's flag registers DEVpixel_overlay(3S)

pixel processors to synchronizecccccevcevivninnennnnne PMpsync(3X)
pixel to buffer 0ccoirie e PMvOput(3X)
pixel to buffer 1 cereeneeee. PMV(3X)
pixel to the current buffer PMputpix(3X)
pixel to the current bufferccovevieriinireeees PMgput(3X)
pixels into the frame buffercccooov e DEVput_pixel(3S)
PMapply apply a function to allocceevinevcniiirens PMapply(3X)
PMavail_reg, PMset_lowreg,cccccccvvivnivnnns e PMzbrk(3X)
PMblock_reg, PMavail_reg,ccccoomiiiniinnnicnricinnene PMzbrk(3X)
PMclear fill a rectangular regioncccoccovnecircinriirininnn, PMclear(3X)
PMcolor_float macro that converts PMcolor_float(3N)
PMcolor_int macro that convertsc.coooevniinenen, PMcolor_int(3N)
PMcommand data structure used forcoevenneeee. PMcommand(4N)
PMcommand data structure used forcoceunes PMcommand(4N)
PMcopycmd copy opcode, parameter PMcopycmd(3P)
PMcopy_f fast but dangerous 32 bitc.cccoeniiiniinns PMcopy_f(3X)
PMcopyftob copy front to backcccccoeveeiiinnicinnne PMcopyftob(3X)
PMcopy_s safe 32-bit DRAM or VRAMc.cccveines PMcopy_s(3X)
PMcopy_v 32-bit copy with variableccevieinnne PMcopy_v(3X)
PMcopyvtov copy blocks of VRAM ..o PMcopyvtov(3X)
PMcopyvtoz copy video RAM to DRAMcceceees PMcopyvtoz(3X)
PMcopyztoz copy from one section ofc.ccceeeeuene PMcopyztoz(3X)
PMcos trigonometric function tocccceoveeoeiincniccneneeenes PMcos(3M)
PMdblbuff enable double buffering PMdblbuff(3X)
PMdelay do nothing for a specified PMdelay(3N)
PMdesc, PMxlate macros to PMpagereg(3X)
PMenable enable processing ofccccceeveiniciiinnnnene PMenable(3N)

PMfb_on direct output commands tocccoeecreernenneee PMfb_on(3P)
PMfdiv perform floating pointcccceoeeiiviiinniiinie i, PMfdiv(3M)
PMflagled turn the PM_FLAG LEDcccoovevmnicenincrenene PMflagled(3X)
PMfloat_color macro that converts PMfloat_color(3N)

PMfreezaddr decrement references to PMfreezaddr(3X)
PMfxtoi map a linear function of Xccccoovrvvirencicenne PMfxtoi(3X)
PMfxytoij map a linear function ofc..ccccooeveenienns PMfxytoij(3X)
PMfytoj map a linear function of ycccoeevieiecvciiee, PMfytoj(3X)
PMgetemd load command from a pixel PMgetcmd(3X)
PMgetcol, PMputrow, PMputcol readccccevvvrnennes PMgetrow(3X)
PMgetdata get data from a pipe nodecccccoeeeennee PMgetdata(3P)
PMgetop get opcode and parameter <eeeene.. PMgetop(3P)
PMgetpix read a pixel from the PMgetpix(3X)
PMgetrow, PMgetcol, PMputrow,cccccovevviiveveennnns PMgetrow(3X)

PMgetscan read a scanline from acccccevvevvievereenne PMgetscan(3X)
PMgetzaddr load a page register and PMgetzaddr(3X)
PMgetzbuf read a float value from PMgetzbuf(3X)
PMgetzdesc, PMzdesc_valid allocate PMgetzdesc(3X)
PMhost_exit send a message to the PMhost_exit(3N)
PMieee_dsp convert IEEE floatto PMieee_dsp(3M)
PMihi map from screen space (Xmax)cccceeveevevrveerecnninens PMihi(3X)

PMilo map from screen space (Xmin)ccoooverneireneniennne PMilo(3X)

DEVtools Reference Manual

Permuted Index

integer to an internal color value
deinterleave a block

to processor space (jhi)

to processor space (jlo)

light sources

longs to float

data packet over serial links
pointer

coordinate is in processor space
coordinate is in processor space
return its length

register

to manipulate page registers used/
specific pixel

processors to synchronize

count, and parameters to the/

or/ PMgetrow, PMgetcol, PMputrow,
output FIFO of a pipe node

count to the output FIFO of a pipe/
current buffer

scanline or/ PMgetrow, PMgetcol,
subscreen

the Z buffer

of DRAM to another

the current buffer

the current buffer

or off

/PMavail_reg, PMset_lowreg,
PMzbrk, PMblock_reg, PMavail_reg,

direction
mode

buffer

pixel buffers

the broadcast bus is granted
the host

vertical retrace
clear
screen space

registers used/ PMpagereg, PMdesc,
screen space

Permuted Index

PMint_color macro that converts anccccccceveveee. PMint_color(3N)
PMinterleave interleave orcccccoceeeveeeceiveceeiee PMinterleave(3X)
PMjhi map from screen space (ymax)cccoccvveveeeenreereans PMjhi(3X)
PMijlo map from screen space (ymin)ccccceevvveceecveeecnenne. PMijlo(3X)
PMidot specialized dot product forccccocerivniieenenrinnne PMidot(3M)

PMlong_dsp convert an array of
PMmsg_exchange send and receive ...
PMmsg_setup set serial DMA input

............ PMiong_dsp(3M)
... PMmsg_exchange(3X)
.......... PMmsg_setup(3X)

PMmyx test if a given screen spaceccccovevevennnennnn. PMmyx(3X)
PMmyy test if a given screen spacec.ccccceeeeveeeenennnn. PMmyy(3X)
PMnorm normalize a 3D vector and PMnorm(3M)
PMoutpir output a value to the PIR PMoutpir(3N)
PMoverlay turn overlay on or offcccceeveviieiieecnns PMoverlay(3P)
PMpagereg, PMdesc, PMxlate macros PMpagereg(3X)
PMpixaddr generate a pointer to acccccecevcenceennne PMpixaddr(3X)
PMpow power funCtionccccceveirenniinese s PMpow(3M)
PMpsync wait for all pixelccccocoerinnicinnieces PMpsync(3X)
PMputemd write opcode, parameter PMputcmd(3P)
PMputcol read or write a scanlinec.ccoeeeeeieeireenns PMgetrow(3X)
PMputdata write parameters to thec.cccceevieeeeene PMputdata(3P)
PMputop write opcode and parameter ... PMputop(3P)
PMputpix output a pixel to the PMputpix(3X)
PMputrow, PMputcol read or write @cccoccenieinennne PMgetrow(3X)
PMputscan write a scanline to ac.ccecevevvneeieeennen. PMputscan(3X)
PMputzbuf write a float value toccccoveeinieiennns PMputzbuf(3X)
PMqcopyztoz copy from one section PMqcopyztoz(3X)

PMaqget quick read of a pixel from ...
PMgput quick write of a pixel to

.... PMqget(3X)
....... PMgput(3X)

PMrdyled turn the PM_RDY LED on PMrdyled(3X)
PMrdyoff turn the ready signal offccccceeevreiivinnnen. PMrdyoff(3X)
PMset_hireg reserve DRAM and page/ccccccccovvvcunnnn. PMzbrk(3X)
PMset lowreg, PMset_hireg reserve/ PMzbrk(3X)
PMsetsem set the semaphorecccccocevvieeceieecnen, PMsetsem(3N)
PMsin trigonometric functionccccceevevveeiceieveiee e PMsin(3M)
PMsiodir set serial I/O link PMsiodir(3X)
PMsioinit initialize serial 1/0 PMsioinit(3X)
PMsnglbuff disable double bufferingc..cccoevveneeee. PMsnglbuff(3X)
PMsqrt sqare root functionccceeureccnieenecesineine e PMsqrt(3M)
PMswapback swap meaning of back PMswapback(3)
PMswapbuff swap front and backccccecvevveennenen. PMswapbuff(3X)
PMswap_pipe wait until control of PMswap_pipe(3H)
PMusermsg send a user message toccceevveenene. PMusermsg(3N)
PMvOget read a pixel from buffer Occcoeereverinennn. PMv0get(3X)
PMvOput write a pixel to buffer 0ccooeveeiiveineeene PMvOput(3X)
PMv1iget read a pixel from buffer 1ccocveeririreee. PMv(3X)
PMv1put write a pixel to buffer 1 PMv(3X)
PMvsync synchronize and wait forccocccooveveeeennn, PMvsync(3X)
PMwaitsem wait for semaphore tocccccoevervrreeennen. PMwaitsem(3N)
PMxat map subscreen coordinates tocccccceerienennnnen. PMxat(3X)

PMx_exp_n integer power function PMx_exp_n(3M)
PMxlate macros to manipulate pageccccecueenenee. PMpagereg(3X)
PMyat map subscreen coordinates toccccceevrviunnnee. PMyat(3X)

15

Permuted Index

arow
to a column

PMset_lowreg, PMset_hireg reserve/
PMgetzdesc,

buffer

Z-buffer

PMfdiv perform floating

format to the DSP32 floating
internal color value to floating
/macro that converts floating
PMmsg_setup set serial DMA input
PMzaddrcol generate a ZRAM
PMzaddr generate a ZRAM
PMpixaddr generate a
DEVpoll_nodes

Machine /download an image or a
PMpow

PMx_exp_n integer

dual pipe/ DEVswap_pipe switch
Pixel Machine code that uses the
DEVpipe_id_print read and
DEVpixel_id_print read and

on host

commands PMenable enable
DEVpipe_halt halt a pipe node
read and print the node ID of a
DEVpixel_halt halt a pixel node
read and print the node ID of a
given screen space coordinate is in
given screen space coordinate is in
function of x from screen space to
of x and y from screen space to
map from screen space (xmax) to
map from screen space (xmin) to
function of y from screen space to
map from screen space (ymax) to
map from screen space (ymin) to
in the memory of one of the DSP

device DEVexit halts

/update overlay mode in all pixel
DEVpoll_nodes poll DSP

PMpsync wait for all pixel

PMidot specialized dot

a Pixel machine available to a user
the completion of a Pixel Machine
uses the/ devprint a host server
DEVpipe_run begin execution of
DEVpixel_run begin execution of
devee C compiler for Pixel Machine
current buffer PMqgget

current buffer PMgput

16

PMzaddr generate a ZRAM pointer tocccoceeveininne PMzaddr(3X)
PMzaddrcol generate a ZRAM pointerccccccovveeeen. PMzaddrcol(3X)
PMzbrk, PMblock_reg, PMavail_reg,cccovviiinninnnn. PMzbrk(3X)
PMzdesc_valid allocate a DRAM block PMgetzdesc(3X)
PMzget read a float from the z ..o, PMzget(3X)
PMzput write a float to theccccceveviiinciiiccs PMzput(3X)
POINt IVISIONivverieiieieiiec e PMfdiv(3M)

point format /floating—point
point number /macro that converts ...
point value to internal color value

DEVieee_dsp(3S)
PMcolor_float(3N)
PMfloat_color(3N)

POINIET ..ottt et e PMmsg_setup(3X)
pointer to a column PMzaddrcol(3X)
POINET 10 @ FOW ..ot e PMzaddr(3X)
pointer to a specific Pixelcccveeiiivinein e PMpixaddr(3X)

poll DSP processors for messages
portion of an image to a Pixel

........................ DEVpoll_nodes(3H)
DEVput_scan_line(3H)

PoWer fUNCHONccoeviiiiiiirie e PMpow(3M)
POWET fUNCLIONocviiiiii e PMx_exp_n(3M)
primary and alternate pipes of @ccccoeeveninnnn. DEVswap_pipe(3H)
print routines /server program forcccoocevienviiniinenn devprint(1)

print the node ID of a processor DEVpipe_id_print(3S)

print the node ID of a processorc.ccccoueenne DEVpixel_id_print(3S)
printf formatted output conNversionccccccveeeineneeneniennns printf(3N)
processing of selected systemccccoivvncincicinnns PMenable(3N)
PrOCESSONcoeeuerereireiriereeeniesre e DEVpipe_halt(3S)
processor DEVpipe_id_printcccceeniniicnne DEVpipe_id_print(3S)
PrOCESSOT ..vviviuiiuenteiietenieniere et ees et sestenieseesreneenens DEVpixel_halt(3S)

processor DEVpixel_id_print DEVpixel_id_print(3S)
processor space PMmyxtestifac.ccccooevinevviiienenns PMmyx(3X)
processor space PMmyy testifaccccovevvevvcienenienen, PMmyy(3X)

processor space i /map a linear PMfxtoi(3X)
processor space i and j /function ... PMfxytoij(3X)
processor space (ihi) PMihi ..o, PMihi(3X)
processor space (ilo) PMilo ..., PMilo(3X)
processor space j /map alinearc.ccoceeevvevereieniinnenns PMfytoj(3X)
processor space (jhi) PMjhi PMjhi(3X)
processor space (jlo) PMjlo PMjlo(3X)

processors /the software semaphore
.. DEVrelease_pipe_semaphore(3H)

processors, closes Pixel Machinecccoveeinenene. DEVexit(3H)
processor's flag registers ... DEVpixel_overlay(3S)
processors for messagesc.ccccoeerveeeveveieennnn DEVpoll_nodes(3H)
processors to SYNChronizec.cccocecevvvnievvivsinnneennns PMpsync(3X)
product for light SOUICESc.ccvevvvveeiiinicieerece e PMidot(3M)
program /DEVopen_system make ... DEVopen(3S)
program /to the host that signalsccccceevvvvennenn. PMhost_exit(3N)
program for Pixel Machine code thatc.cccovverinnnn. devprint(1)
programs loaded into specified pipe/cccovvvrnnne. DEVpipe_run(3S)
programs loaded into specified/ DEVpixel_run(3S)
programs using DEVIOOIScccovvivieiiiie i devee(1)
quick read of a pixel from thec..ccceevvivivniinecineieeenns PMqget(3X)
quick write of a pixel to thecccccoveeviiivieccc e, PMgput(3X)

DEVtools Reference Manual

Permuted Index

copy DRAM to video

PMcopyvtoz copy video

from a pipe feedback/ DEVfifo_read
DSP DEVpixel_read

memory of a pixel node DEVread z
PMzget

buffer PMgetzbuf

PIR register DEVpixel_get_msg
pipe DSP DEVpipe_get msg
PMvOget

PMv1iget

buffer PMgetpix

DEVget_pixel, DEVget _pixels
PMgetscan

DSP’s PIR register DEVpixel_get

of a pipe DSP DEVpipe_get
processor DEVpipe_id_print
processor DEVpixel_id print

to the Pixel Machines pipelines and
buffer PMqget quick

frame buffer DEVget_scan_line
/PMgetcol, PMputrow, PMputcol
controller board/ DEVget_color_map
DEVpipe_get_pir

DSP DEVpixel_get_pir

from a file DEVget_image_header

DSP DEVpipe_read

values and/ DEVload_color_tables
PMrdyoff turn the

links PMmsg_exchange send and
PMclear fill a

PMfreezaddr decrement

PMclear fill a rectangular

a block of data to a pipe DSP’s PDR
of bytes from a pixel DSP’s PIR

a message from a pixel DSP's PIR
initialize pixel board mode

set overlay mode in the pixel mode
block of data to a pixel DSP's PDR
decrement references to a page
PMoutpir output a value to the PIR
section of/ PMgetzaddr load a page
DEVpipe_get_pir read the PIR
DEVpixel_get_pir read the PIR
mode in all pixel processor's flag
/PMset_hireg reserve DRAM and page
/PMxlate macros to manipulate page
direct output commands to the
dynamic/ /PMset_lowreg, PMset_hireg
DSP’s/ /write a node id block to a
DEVfifo_reset

Permuted Index

RAM et (3X)
RAM 10 DRAM ..ot e e PMcopyvtoz(3X)
read a block of four byte valuesccccceeinininn. DEVfifo_read(3S)

read a block of memory from a pixel
read a buffer of bytes fromthe Z
read a float from the z buffer
read a float value from the Z ..., PMgetzbuf(3X)
read a message from a pixel DSP’s DEVpixel_get msg(3S)
read a message from the PIRofa DEVpipe_get_msg(3S)

....... DEVpixel_read(3S)
......... DEVread 2z(3S)
........... PMzget(3X)

read a pixel from buffer 0c.cccorinieinic e PMvOget(3X)
read a pixel from buffer 1 ..o PMv(3X)
read a pixel from the currentccccceviiiniiiniinin PMgetpix(3X)
read a pixel from the frame buffer ... DEVget_pixel(3S)
read a scanline from a subscreencc..ceeeeeviiinnns PMgetscan(3X)
read a stream of bytes from a pixelcccceennn. DEVpixel_get(3S)

read a stream of bytes from the PIR
read and print the node ID of a
read and print the node ID of a

.......... DEVpipe_get(3S)
... DEVpipe_id_print(3S)
. DEVpixel_id_print(3S)

read commands back from the/ /writeccociiieenn DEVwrite(3H)
read of a pixel from the currentccccovveievieievvecin PMqget(3X)
read one or more scan lines from a .. . DEVget_scan_line(3H)
read or write @ scanline or/cc.ccocevnrvninn s PMgetrow(3X)
read the color tables from video DEVget_color_map(3S)
read the PIR register of a pipe DSP DEVpipe_get_pir(3S)
read the PIR register of a pixelccceevieenne DEVpixel_get_pir(3S)

read the Pixel Machine image header
... DEVget_image_header(3S)

reads a block of memory from a pipeccccceeneene DEVpipe_read(3S)
reads file of gamma calibration DEVioad_color_tables(3S)
ready signal off ..o e PMrdyoff(3X)
receive data packet over serialcccoeevnnn. PMmsg_exchange(3X)
rectangular region of the screenccocovevevrininennne PMclear(3X)
references to a page register PMfreezaddr(3X)
region of the screen wecereneee. PMclear(3X)

register DEVpipe_put writecccooiceincennen DEVpipe_put(3S)
register /read a streamcccooeevreineciec s DEVpixel_get(3S)
register DEVpixel_get msg read DEVpixel_get_msg(3S)

register DEVpixel_mode_initc.c.ccocvnne. DEVpixel_mode_init(3S)
register DEVpixel_mode_overlay DEVpixel_mode_overlay(3S)
register DEVpixel_put send @ccocovvverrirvenncenne DEVpixel_put(3S)
register PMfreezaddr PMfreezaddr(3X)
TEGISTET .ottt ettt ettt eeas PMoutpir(3N)
register and return an address to ac.ccccvvrrrnen PMgetzaddr(3X)

register of a pipe DSP
register of a pixel DSP
registers /update overlay DEVpixel_overlay(3S)
registers for dynamic allocationccccceveievecrieeveenrennn, PMzbrk(3X)
registers used to access video and/c.cccceeveenenn, PMpagereg(3X)
regular output FIFO PMfb_oncccoovvieinniicinn, PMfb_on(3P)
reserve DRAM and page registers forccoeveeeeneennn. PMzbrk(3X)
reserved location in a pixel node DEVpixel_id_write(3S)
resets all FIFOs on a pipe boardc.cccccoeiivenn. DEVfifo_reset(3S)

.... DEVpipe_get pir(3S)
. DEVpixel_get _pir(3S)

17

Permuted Index

synchronize and wait for vertical
PMgetzaddr load a page register and
PMnorm normalize a 3D vector and
from video controller board and

from video controller board and
PMsqrt sqare

Machine code that uses the print
generate a ZRAM pointer to a
PMcopy_s

DEVget_scan_line read one or more
/read or write a scanline or
PMgetscan read a

/PMputrow, PMputcol read or write a
PMputscan write a

fill a rectangular region of the

PMxat map subscreen coordinates to
PMyat map subscreen coordinates to
processor/ PMmyx test if a given
processor/ PMmyy test if a given
/map a linear function of x from

/a linear function of x and y from
/map a linear function of y from
space (ihi) PMihi map from

space (ilo) PMilo map from

space (jhi) PMjhi map from

space (jlo) PMjlo map from

register and return an address to a
PMcopyztoz copy from one
PMgqcopyztoz copy from one
PMenable enable processing of
displayed DEVpixel_buffer
PMsetsem set the

the DSP/ /clear the software

PMwaitsem wait for

DSP's PDR register DEVpixel_put
signals the completion/ PMhost_exit
PMusermsg

serial links PMmsg_exchange
PMmsg_setup set

PMsioinit initialize
DEVserial_direction updates the
PMsiodir set

send and receive data packet over
a pipe board to operate in

code that uses the/ devprint a host
Machine executable into specified
Machine executable into specified
register DEVpixel_mode_overlay

PMmsg_setup
PMsiodir

18

retrace PMVSYNCccooooviieiiiiiiinenc i PMvsync(3X)
return an address to a section of/ccceiiis PMgetzaddr(3X)
retumn its length ..o PMnorm(3M)
return the value /color tables DEVput_color_map(3S)
returns value /the color tables DEVget_color_map(3S)
10Ot fUNCHON ..o PMsqrt(3M)
routines /server program for Pixel .. devprint(1)
row PMzaddr ..o PMzaddr(3X)
safe 32-bit DRAM or VRAM copyccccccuvviviiiniiniinnns PMcopy_s(3X)
scan lines from a frame buffer DEVget_scan_line(3H)
scancolumn from pixel memory/ccccccviivinieinennn. PMgetrow(3X)
scanline from a subscreen PMgetscan(3X)
scanline or scancolumn from pixel/c.ccovvvvvecnnnne PMgetrow(3X)
scanline to a subscreen PMputscan(3X)
screen PMCIearccocoovvieniieveinciie e e PMclear(3X)
SCTEEN SPACEeeoveriereriiniiniesinteeessesiteseareseeneeneestbenseeneasensesaone PMxat(3X)
SCTEEN SPACEcoevrrreerrerreneenneneens PMyat(3X)
screen space coordinate is in PMmyx(3X)
screen space coordinate is in PMmyy(3X)
screen space to ProcesSOr SPACE ioocvevveereereeuriierenenne PMixtoi(3X)
screen space to processor space i/ PMfxytoij(3X)
screen Space t0 ProCesSOr SPACE j ..c...cccevveererverireemerveereenes PMfytoj(3X)
screen space (XmMax) t0 ProCESSOrcocevvevrreerieriereeeninnnens PMihi(3X)
screen space (Xmin) t0 ProCESSONcccoeevvevvereeevrvininnanes PMilo(3X)
screen space (ymax) to Processorceeeerieniruernene PMjhi(3X)
screen space (Ymin) t0 ProCESSOrcccccevverereerieiveeseveinene PMijlo(3X)
section of DRAM /load a page PMgetzaddr(3X)
section of DRAM to anothercccocoovivniiinnineennn PMcopyztoz(3X)
section of DRAM to anothercccccecveveiiivcine PMaqcopyztoz(3X)
selected system commandscccceeeverniiieeceniinineene PMenable(3N)
selects the frame buffer to be .. . DEVpixel_buffer(3S)

SEMAPNOTEciveeiiiieieie ettt e ev s PMsetsem(3N)
semaphore in the memory of one of

.. DEVrelease_pipe_semaphore(3H)
semaphore to Clearccccoocerivvernine e e PMwaitsem(3N)
send a block of data to a pixel DEVpixel_put(3S)

send a message to the host thatcccoceeverennnnen, PMhost_exit(3N)
send a user message to the hostcoceevieennne. PMusermsg(3N)
send and receive data packet over PMmsg_exchange(3X)
serial DMA input pointercccoveveiiieceinnnennenns PMmsg_setup(3X)
SENAl 1O ... PMsioinit(3X)
serial 1/0O link direction DEVserial_direction(3S)
serial /O link directionccccevvveieinnncine e PMsiodir(3X)

serial links PMmsg_exchange ...
serial mode /configure

... PMmsg_exchange(3X)
.......... DEVfifo_serial(3S)

server program for Pixel Machinecccccceeviieiiicinns devprint(1)
set of pipe nodes /load a Pixelcccooevrvrvnnns DEVpipe_boot(3S)
set of pixel nodes /load a Pixelccccocennes ... DEVpixel_boot(3S)

set overlay mode in the pixel mode
set serial DMA input pointer ...
set serial I/O link direction

DEVpixel_mode_overlay(3S)
.................... PMmsg_setup(3X)
... PMsiodir(3X)

DEVtools Reference Manual

-~

Permuted Index

PMsetsem

of gamma calibration values and

of color lookup tables from

of color lookup tables from

DSP32 short integer and host
DEVbswaps convert between DSP32
from DSP32 short integers to host
DEVswap_short convert from DSP32
DEVexit /wait for pixel nodes to
PMrdyoff turn the ready

/send a message to the host that
one of the DSP/ /clear the

specialized dot product for light
space coordinate is in processor
space coordinate is in processor
map subscreen coordinates to screen
map subscreen coordinates to screen
space PMmyx test if a given screen
space PMmyy test if a given screen
of x from screen space to processor
y from screen space to processor
screen space (xmax) to processor
screen space (xmin) to processor

of y from screen space to processor
screen space (ymax) to processor
screen space (ymin) to processor

a linear function of x from screen
/ffunction of x and y from screen

a linear function of y from screen
(ihi) PMihi map from screen

(ilo) PMilo map from screen

(jhi) PMjhi map from screen

(jlo) PMjlo map from screen
sources PMidot

PMpixaddr generate a pointer to a
execution of programs loaded into
execution of programs loaded into

a Pixel Machine executable into

a Pixel Machine executable into
PMdelay do nothing for a

/define a message code and

PMsqrt

generate an error message on
DEVpipe_id_check check
DEVpixel_id_check check

PIR register DEVpixel_get read a
pipe DSP DEVpipe getread a
PMcommand data

PMcommand data

PMgetscan read a scanline from a
PMputscan write a scanline to a

Permuted Index

set the semaphoreccovviiiiiiii PMsetsem(3N)
sets color lookup tables ffile DEVload_color_tables(3S)
shadow tables /turns off updatingccceeene DEVshadow_off(3S)
shadow tables /turns on updating e DEVshadow_on(3S)

short integer /convert between ... DEVbswaps(3S)
short integer and host short/cccviiiniiinnn DEVbswaps(3S)
short integers /convertccccvvviiniiiiiii DEVswap_short(3S)
short integers to host short/cocoiiiinin DEVswap_short(3S)

signal completion, then callccccoooenvniinnniene DEVwait_exit(3H)
SIGNAl Off .o PMrdyoff(3X)
signals the completion of a Pixel/cccccocvevinninnns PMhost_exit(3N)
software semaphore in the memory of

.. DEVrelease_pipe_semaphore(3H)
soUrces PMIdOtccooiiiiiiiii e PMidot(3M)

space PMmyx test if a given screen PMmyx(3X)
space PMmyy test if a given screen ... PMmyy(3X)
SPace PMXat ... PMxat(3X)
space PMyat ... PMyat(3X)
space coordinate is in processor ... s PMmyx(3X)
space coordinate is in processor ... <. PMmyy(3X)
space i /map a linear function e PMfxtoi(3X)
space i and j /function of x and PMfxytoij(3X)
space (ihi) PMihi map from ..o PMihi(3X)
space (ilo) PMilo map fromcccccoovviiiiinnniineee PMilo(3X)
space j /map a linear functioncccoeeiieiiriniciee e, PMfytoj(3X)
space (jhi) PMjhi map from ... PMjhi(3X)
space (jlo) PMjlo map from ... PMijlo(3X)
space to processor space i /map PMfxtoi(3X)
space to processor space i and j . PMfxytoij(3X)
space to processor space j /map PMfytoj(3X)
space (Xxmax) to Processor SPACEcccvveevvereererreesensennnnas PMihi(3X)
space (Xmin) to ProCesSOr SPACEccvccvvereereeieereriseeernens PMilo(3X)
space (ymax) to ProCesSOr SPACEc.coccovecveriervrivesrensesnnns PMjhi(3X)
space (ymin) to Processor SPACEc..cccovveerueerrreeeereeneens PMijlo(3X)
specialized dot product for lightc.cccooeviieiiiiiiiecnn, PMIdot(3M)
SPECIfIC PIXEI ...oiviiriice e PMpixaddr(3X)

specified pipe nodes /begin
specified pixel nodes /begin ...

... DEVpipe_run(3S)
. DEVpixel_run(3S)

specified set of pipe nodes /loadcccceenenn. DEVpipe_boot(3S)
specified set of pixel nodes /load DEVpixel_boot(3S)
specified ime ..o PMdelay(3N)
specify functions to be called DEVuser_msg_enable(3H)
sqgare root funCtionc.cccceevveveiiiiiiiiciee e PMsqrt(3M)
standard error DEVerrorccccocovivivinnecs e, DEVerror(3S)
status of node’s IDcocoeeviiiici DEVpipe_id_check(3S)

status of node's IDcccceeviiiniinnnn
stream of bytes from a pixel DSP's

.... DEVpixel_id_check(3S)
......... DEVpixel_get(3S)

stream of bytes fromthe PIRof ac.cccoeviiiinin, DEVpipe_get(3S)
structure used for FIFO commandsc.cccccon. PMcommand(4N)
structure used for FIFO commands ... PMcommand(4N)
SUDSCIEEN ...ttt e PMgetscan(3X)
SUDSCIEENoviiiii e PMputscan(3X)

19

Permuted Index

space PMxat map

space PMyat map

PMapply apply a function to all

from pixel memory without
PMswapbuff

PMswapback

of a dual pipe system DEVswap_pipe
wait for all pixel processors to
retrace PMvsync

and alternate pipes of a dual pipe
enable processing of selected
values and sets color lookup

of color lookup tables from shadow
of color lookup tables from shadow
/turns off updating of color lookup
/turns on updating of color lookup
and/ DEVput_color_map update color
DEVget_color_map read the color
coordinate is in processor/ PMmyx
coordinate is in processor/ PMmyy
PMsin

the cosine of an angle PMcos
PMoverlay

PMflagled

PMrdyled

PMrdyoff

tables from shadow/ DEVshadow_off
tables from shadow/ DEVshadow_on
is granted PMswap_pipe wait
controller board/ DEVput_color_map
processor's flag/ DEVpixel_overlay
direction DEVserial_direction

from/ DEVshadow_off turns off

from shadow/ DEVshadow_on turns on
Machine to a file devsave
PMusermsg send a

make a Pixel machine available to a
program for Pixel Machine code that
compiler for Pixel Machine programs
video controller board and returns
controller board and return the

point value to internal color

an integer to an internal color
PMgetzbuf read a float

macro that converts internal color
/macro that converts internal color
/macro that converts floating point
PMoutpir output a

PMputzbuf write a float

/reads file of gamma calibration
/read a block of four byte

Mwrite a block of four byte

20

subscreen coordinates to SCreenccccceeierieieniniiinins PMxat(3X)
subscreen coordinates to SCreenccccceveveeveceenenennen. PMyat(3X)
SUDSCreenscccevevecncrciininnne PMapply(3X)
subscreens /scanline or scancolumn ... PMgetrow(3X)
swap front and back pixel buffers ... PMswapbuff(3X)
swap meaning of back bufferccccceiiinni PMswapback(3)
switch primary and alternate pipesccocevniens DEVswap_pipe(3H)
synchronize PMpsynccccceeonee PMpsync(3X)
synchronize and wait for vertical PMvsync(3X)

system DEVswap_pipe switch primary DEVswap_pipe(3H)
system commands PMenablecccooonviiiniiiiiniens PMenable(3N)
tables /file of gamma calibration .. . DEVload color_tables(3S)
tables /turns off updating DEVshadow_off(3S)
tables /turns on updating DEVshadow_on(3S)
tables from shadow tables DEVshadow_off(3S)
tables from shadow tables DEVshadow_on(3S)
tables from video controller board DEVput_color_map(3S)
tables from video controller board/ DEVget color_map(38)

test if a given screen Spaceccevvvveniinine e PMmyx(3X)
test if a given SCreen Spacec.ocvveienenee e PMmyy(3X)
trigonometric function ... PMsin(3M)
trigonometric function to computecccceeiirnininc e PMcos(3M)
turn overlay on or offccoe.... ... PMoverlay(3P)
turn the PM_FLAG LED on or off PMflagled(3X)
turn the PM_RDY LED on or offcccocciviiiiiiiii PMrdyled(3X)
turn the ready signal off ... PMrdyoff(3X)

turns off updating of color lookupcccceevvurenen DEVshadow_off(3S)
turns on updating of color lookupcccceevirvinene DEVshadow_on(3S)
until control of the broadcast buscccccceveineens PMswap_pipe(3H)
update color tables from video ... DEVput_color_map(3S)
update overlay mode in all pixelcccccounene DEVpixel_overlay(3S)
updates the serial /O link DEVserial_direction(3S)
updating of color lookup tables DEVshadow_off(3S)

updating of color lookup tablesccccocererenncnne. DEVshadow_on(3S)
upload an image from a Pixelcccovvveevnecencncccnienen, devsave(1)
user message to the host PMusermsg(3N)
user program /DEVopen_systemcccooveevcnncnnenns DEVopen(3S)

uses the print routines /server
using DEVtools devee C ... devee(1)
value /read the color tables from DEVget_color_map(3S)
value /color tables from videoc.cccecennen. DEVput_color_map(3S)
value /macro that converts floatingcccccoeeeeenenne PMfloat_color(3N)
value /macro that converts PMint_color(3N)
value from the Z buffercccceeevveeveieeiciicececieee. PMgetzbuf(3X)
value to an integer PMcolor_intccccoevevveinirrnnne PMcolor_int(3N)
value to floating point number PMcolor_float(3N)
value to internal color value PMfloat_color(3N)
value to the PIR registercccoeceivvevnevniceeneieinenens PMoutpir(3N)
value to the Z buffercccccvevivevccceeeeeee e PMputzbuf(3X)
values and sets color lookup tables DEVload color_tables(3S)
values from a pipe feedback FIFOc.cccccceerunnee. DEVfifo_read(3S)
values to a pipe FIFOcoceocviiveirrieceeeree e DEVfifo_write(3S)

.. devprint(1)

DEVtools Reference Manual

Permuted Index

PMcopy_v 32-bit copy with
PMnorm normalize a 3D

PMvsync synchronize and wait for
page registers used to access

the value /update color tables from
value /read the color tables from
copy DRAM to

PMcopyvtoz copy

PMcopyvtov copy blocks of
PMcopy_s safe 32-bit DRAM or
synchronize PMpsync

completion, then call/ DEVwait_exit
PMwaitsem

PMvsync synchronize and

bus is granted PMswap_pipe

or scancolumn from pixel memory
DSP’s PDR register DEVpipe_put
to a pipe FIFO DEVfifo_write
DEVpipe_write

DEVpixel_write

PMzput

PMputzbuf

location in a/ DEVpixel_id_write

to a file DEVput_image_header
PMvOput

PMv1put

pixel/ /PMputrow, PMputcol read or
PMputscan

buffer PMgput quick

the output FIFO of a pipe/ PMputop
parameters to the output/ PMputcmd
of a pipe node PMputdata
DEVput_pixel, DEVput_pixels
/DEVreadn, DEVreadn_alt, macros to
memory of a pixel node DEVwrite_z
PMfxytoij map a linear function of
PMfxtoi map a linear function of
PMihi map from screen space

PMilo map from screen space

/map a linear function of x and
PMfytoj map a linear function of
PMijhi map from screen space

PMijlo map from screen space

read a float value from the

write a float value to the

PMzget read a float from the
registers used to access video and
read a buffer of bytes from the
/writes a buffer of bytes into the
PMzput write a float to the
PMzaddrcol generate a

PMzaddr generate a

Permuted Index

variable inCrementsccoccceeeeievnniiinnie, PMcopy_v(3X)
vector and return its length ..o PMnorm(3M)
VErtCAl TEITACEocvivieeieeeee et e ebe e s PMvsync(3X)

video and Z memory /to manipulatecccccviveenenne PMpagereg(3X)
video controller board and returnccccccee. DEVput_color_map(3S)

video controller board and returns DEVget_color_map(3S)
VIdEO RAM ..o e s (3X)
video RAM to DRAM PMcopyvtoz(3X)
VRAM PMcopyvtov(3X)
VRAM COPY ...ocvereriiiriininieesesese e eieraets e siesasinene e PMcopy_s(3X)
wait for all pixel processors occccocecvnninniniennne, PMpsync(3X)
wait for pixel nodes to signalcccoceeveiieiiinininenne DEVwait_exit(3H)
wait for semaphore to clearcccoocoeiviiiiniinicniinns PMwaitsem(3N)
wait for vertical retraceccocooeoveviineini e PMvsync(3X)
wait until control of the broadcast PMswap_pipe(3H)
without subscreens /a scanlineccccoviveeecniciccnnne PMgetrow(3X)

write a block of data to @ pipecccoeveviiiiiininicne DEVpipe_put(3S)
write a block of four byte valuesccccccovevininnn. DEVfifo_write(3S)
write a buffer to a pipe DSPccccovviveiiiriiennene DEVpipe_write(3S)
write a buffer to a pixel DSPccccocevvvninnniniene DEVpixel_write(3S)
write a float to the Z-buffercccoceeviinivinieii PMzput(3X)
write a float value to the Z buffercccoeevvevvviivienen. PMputzbuf(3X)
write a node id block to areserved DEVpixel_id_write(3S)
write a Pixel Machine image header DEVput_image_header(3S)

write a pixel to buffer 0 ..o PMvOput(3X)
write a pixel to buffer 1 ... PMv(3X)
write a scanline or scancolumn fromcccccovvevereenen. PMgetrow(3X)
write a scanline to a subscreen .. PMputscan(3X)
write of a pixel to the currentcccooveiivnncnecnee PMaput(3X)
write opcode and parameter count ococceciverininnne PMputop(3P)
write opcode, parameter count, and PMputecmd(3P)
write parameters to the output FIFOc.ccecvvivnennenee PMputdata(3P)
write pixels into the frame bufferccoccecvvinene DEVput_pixel(3S)
write to the Pixel Machines/ <o, DEVWrite(3H)

writes a buffer of bytes into the Z . . DEVwrite_z(3S)

x and y from screen space to/c.ccoceeveveieinieeieniennenea PMfxytoij(3X)
x from screen space to processor/ccceeveieiiiencnenn. PMfxtoi(3X)
(xmax) to processor space (ihi) PMihi(3X)
(xmin) to processor space (il0)cccevevereererenieeene e PMilo(3X)
y from screen space 10 processor/cccccevvveeeeienenn PMfxytoij(3X)
y from screen space to processor/ PMfytoj(3X)
(ymax) to processor space (jhi) PMijhi(3X)
(ymin) to processor space (jl0)ccccovereirrniniincnes ... PMjlo(3X)

Z buffer PMgetzbufcoooeini i PMgetzbuf(3X)
Z buffer PMputzbuf PMputzbuf(3X)
ZDUFFBE e PMzget(3X)
Z memory /macros to manipulate pagec........ PMpagereg(3X)
Z memory of a pixel node DEVread z DEVread_z(3S)
Z memory of a pixel nodecccoveveiicince s DEVwrite_z(3S)

Z-DUFFBT ..ot v PMzput(3X)
ZRAM pointer to a column PMzaddreol(3X)
ZRAM pointer t0 @ rOWc.ceceeveevee v PMzaddr(3X)

21

d3as(1)

NAME

d3as — DSP32 assembler

SYNOPSIS

d3as [options] source_files...

DESCRIPTION

DSP Tools d3as(1)

Filenames ending with .s or .i are assumed to be DSP32 assembly source files. Each specified source
file is assembled, and a corresponding object file is created with a .o suffix. The valid options are:

-Un
—1dir

-0 file
DIRECTIVE

Print the version number and exit.

Produce DSP32 object code. (Default mode)

Produce DSP32C object code.

Retain comments through preprocessor (useful only with —P).

Preprocess the named files and store them in corresponding files with the
.1 suffix.

Define n to the preprocessor with value 1.

Define n, an identifier, to the preprocessor as if by #define and give it
value v.

Undefine n by removing any initial definition of n.

The #include files whose names do not begin with / (\ on MS-DOS)
should be searched for in dir, before looking in the directories on the
standard list. Thus, #include files whose names are enclosed in " " are
searched for first in the directory of the filename argument, then in direc-
tories named in —I options, and last in directories on a standard list. For
#include files whose names are ¢nclosed in <>, the directory of the
filename argument is not searched.

(Lower-case L). Produce listing of assembly file. The n, if specified is
the page length (default is 66 lines).

(Lower-case L). Produce listing of assembly file and store in file.l. If file
is not specified, the source file names are used (with a .1 extension).

Generate parity bits for the DSP32 device. Note: This option has the
opposite effect that it had in previous versions of the assembler.

Tum off warning messages.

Treat certain programming violations as warnings, rather than fatal errors.
See section 3.4 of the DSP32 and DSP32C Support Software Library
DSP32 and DSP32C C Language Compiler

Do not invoke the C preprocessor.

Whenever possible, translate each goto statement to a pc relative goto
statement (pcgoto). Note that is option does not translate call statements
to pc relative call statements (pccall).

Place output object file in file.

The assembler supports the following directives:

Pixel Machines

Last change: Version 1.3.2 (DRAFT) 1

d3as(1)

DSP Tools d3as(1)

Jrsect section_name

.align

.global

.extern

ist
.nolist

.page
EXAMPLES

This assembler directive allows the user to set up a relocatable program section. The one argu-
ment to .rsect is a legal identifier enclosed in quotes which is the name of the section.

The .= directive is followed by a constant expression. It sets the current section’s location
counter to the constant value that is on the right of the equal sign. The expression cannot be
external.

This directive is used to assure that an instruction or data occurs on a legal boundary. It is usu-
ally used when data space is allocated. The directive has one argument, and integer constant
that is used to determine that correct alignment.

Once an identifier is used, it is known from that point on in the file. Therefore, every
identifier in a file must be unique. The identifiers are not known across file boundaries. The
.global directive is followed by a list of identifiers, separated by commas, that are to be made
known across file boundaries. The identifiers on the directive line must be defined in that file,
but are then available to other files that are linked with it.

If an identifier is listed as external, it is defined and listed as global in another file, but is
known throughout the local file. The .extern directive is followed by a list of identifiers,
separated by commas.

Tumn on listing. For use with the -I flag.
Turn off listing. For use with the -1 flag.
Skip to the top of a new page. For use with the -1 flag.

The command

d3as test.s

will produce a file test.o which contains the relocatable object code produced by assembling test.s .

The com

mand
d3as -1 test.s

will produce an assembly listing written to the file test.l. This command also produces a relocatable
object file, test.o. :

NEW FEATURES

A new form for an unconditional branch instruction is supported for both the DSP32 and the DSP32C.
This instruction is:

pcgoto label

The assembler will produce a pe-relative goto which can be dynamically relocated without affecting the
branch. Presently, there is a restriction that the label must be within the same section as the pegoto
instruction using it and within the same file. These restrictions may be lifted at a later time.

SEE ALSO

DSP32 C Support Software Library User Manual
DSP32 and DSP32C Support Software Library DSP32 and DSP32C C Language Compiler

d3sim(1)
d3ce(l)
d31ld(1)

Pixcl Machines

Last change: Version 1.3.2 (DRAFT) 2

d3cc (1)

NAME

DSP Tools d3cc (1)

d3cc - DSP32 C language compiler

SYNOPSIS
d3cc options source_files

DESCRIPTION
The valid options are:

—i

-1
—t textseg
—d dataseg

—m mapfile

—s startfile

—0 outfile
—bxx

-Wc,argl larg2 ..]]

—-Dn

—Dn=v

-Un
—1dir

Pixel Machines

Produce DSP32 object code. (Default mode)
Produce DSP32C object code.

Invoke the C preprocessor only. For each file.c, this generates a file.p
containing the preprocessed C source code.

Invoke the preprocessor and compiler only. This generates assembly
source files (s extension) from C source files.

Invoke the compiler and optimizer only. This generates optimized assem-
bly files (.i extension) from C or assembly source files (.c or s extension,
respectively).

Invoke the compiler, optimizer, and assembler only. This generates object
files (.0 extension) from C or assembly source files (.c or .s extension,
respectively).

Generate a listing file (.1 extension) of assembled files. The listing is use-
ful for assembly-level debugging.

Causes the compiler to load all the program text in the compiled files in a
section called fextseg instead of the default section .text.

Causes the compiler to load all the global and static data in the compiled
files in a section called dataseg instead of the default section .data.

Specifies an alternate memory configuration file (ifile) for use by the
linker. The default ifiles are mem32.map (for the DSP32) and
mem32c.map (for the DSP32C) in the directory $DSP32SL/lib.

Specifies an alternate start-up file for use by the linker. The default start-
up files are crt0_32.0 (for the DSP32) and crt0_32c.o (for the DSP32C)
in the directory $DSP32SL/lib.

Specifies the name of the output file. The default output file is a.out.

Includes the library libxx32.a or libxx32c.a, depending on whether DSP32
or DSP32C code is being generated.

Passes the specified argument(s) (argl ...) to pass c, where ¢ is one of
{p, ¢, 0, a, or 1} indicating the preprocessor, compiler, optimizer, assem-
bler, or linker, respectively.

Define n to the preprocessor with value 1.

Define n, an identifier, to the preprocessor as if by #define and give it
value v.

Undefine n by removing any initial definition of ».

The #include files whose names do not begin with / (\ on MS-DOS)
should be searched for in dir, before looking in the directories on the
standard list. Thus, #include files whose names are enclosed in " " are
searched for first in the directory of the filename argument, then in

Last change: Version 1.3.2 (DRAFT) 1

d3ec(1) DSP Tools d3cc(1)

directories named in -1 options, and last in directories on a standard list.
For #include files whose names are enclosed in <>, the directory of the
filename argument is not searched.

-n Generate parity bits for the DSP32 device. Note: This option has the
opposite effect that it had in previous versions of the assembler.

-T Trace program execution. d3cc prints command lines used to invoke the
preprocessor, compiler, optimizer, assembler, and linker. Useful for
debugging problems with d3cc.command strings.

SEE ALSO
DSP32 C Language Compiler User Manual d3as(1)
d3sim(1)
d3id(1)

Pixel Machines Last change: Version 1.3.2 (DRAFT) 2

d31d(1)

NAME

d3ld - DSP32 link editor

SYNOPSIS

DSP Tools d3ld(1)

d3ld [options] [ifile] obj files...

DESCRIPTION

The d31d command links the named obj_files object files, produced by d3as or d3cc, and puts the result-
ing object file into a.out unless otherwise specified. The ifile is an ASCII file containing directives.

The valid options are:

—a

~f fill

-L dir

Pixel Machincs

Produces an absolute, executable file; gives warnings for undefined refer-
ences. Relocation information is stripped from the output file unless the
—r1 option is given. The —r option is needed only when an absolute file
should retain its relocation information (not the normal case). If neither
—anor —r is given, —a is assumed.

Sets the default fill pattern for "holes” within an output section as well as
initialized bss sections. The argument fill is a two-byte constant.

Searches a library libx.a, where x is up to nine characters. A library is
searched when its name is encountered, so the placement of a -1 is
significant. By default, libraries are located in the directory lib within the
directory specified by the environment variable DSP32SL.

Produces a map or listing of the input/output sections (including holes) on
the standard output.

Produces an output object file by the name outfile. The default name of
the object file is a.out.

Retains relocation entries in the output object file. Relocation entries
must be saved if the output file is to become an input file in a subsequent
Id run. The link editor does not complain about unresolved references,
and the output file is not executed.

Strips line number entries and symbol table information from the output
object file. This function can also be performed using the utility d3strip.

Enters symname as an undefined symbol in the symbol table. This is use-
ful for loading entirely from a library, since initially the symbol table is
empty and an unresolved reference is needed to force the loading of the
first routine.

Does not preserve local (non-.global) symbols in the output symbol table;
enters external and static symbols only. This option saves some space in
the output file.

Changes the algorithm of searching for libx.a to look in dir before look-
ing in DSP32SL/lib. This option is effective only if it precedes the -1
option on the command line.

Outputs a message for each multiply-defined external definition. How-
ever, if the objects loaded include debugging information, extraneous out-
put is produced.

- Puts the data section immediately following the text in the output file.

Outputs a message giving information about the version of d3ld being
used.

Generate parity bits for DSP32 device. Note: This option has the

Last change: Version 1.3.2 (DRAFT) 1

d31d(1) DSP Tools d3ld(1)

opposite effect that it had in previous versions of the linker.

Flags can be combined with file names on both the command line and in an ifile. The ordering of flags
is insignificant with the exception of the -1 flag for specifying libraries. Libraries are searched as they
are encountered for any undefined external references. ' N

SEE ALSO .
DSP32 C Support Software Library User Manual
d3as(1)
d3sim(1)
d3cc(1)

Pixel Machines Last change: Version 1.3.2 (DRAFT) 2

DSP Tools d3sim (1)

The file is the DSP32 executable program file that is being simulated. The valid options are:

d3sim (1)
NAME
d3sim - DSP32 link editor
SYNOPSIS
d3sim [options] file
DESCRIPTION
-c
-T
-e
-mn
-1
-b
—d#
~D/dev/alt_port
—C filecfg
-Z

Pixel Machineg

The —c option must be used with programs that were compiled by the
DSP32/DSP32C C compiler. This option allows breakpoints to operate
correctly, allows the printf function to be used in the program, and also
allows registers r14, r18, and r19 to be referred to as sp (stack pointer),
rp (return pointer), and ir (increment register), respectively. The ftrace
command (trace function calls) is also available.

Time run. The time taken to run the simulation on the host computer is
displayed (in seconds) at the end of a simulation run. (This is not the
time that the physical device takes to run the same program).

Exec file. This option causes a text file of commands to be executed. The
name of the file is assumed to be file.ex, where file is the name of the
program file. It is useful to produce such a file and put into it definitions
of any functions that would be useful in debugging that particular pro-
gram,

Memory Mode Specification. This option specifies the memory mode.
The value of n can be 0 through 3 for DSP32 programs or 0 through 7 for
DSP32C programs. If it is not specified, the mode defaults to 2 for the
DSP32 or 6 for the DSP32C. If no mode flag is present, d3sim allows
writes to ROM with no complaint.

Log Commands. This option causes "command logging" to be turned on.
If input is from a terminal, it gets written to a file called log.cmd. If
input is from a file, then as it is read, it gets written to standard output.
Thus, each line of output is preceded by the command line that caused it,
which can be useful in identifying unexpected results.

Tumn off ‘breakpoint verbose mode. No message is printed when a break-
point occurs. Note: This option has the opposite effect that it had in pre-
vious versions of the simulator.

Development system specifier. Sets the simulator in development system
mode. The # specifies the number of the DSP32 development system that
is being controlled (see the WE®DSP32-DS Development System User
Manual for details).

Device Driver Select. UNIX SYSTEM ONLY

The /dev/alt-port is used if the DSP32 development system is connected
to a port other than the user’s tty port. The /dev/alt port is the UNIX
System device driver of the port to which the development system is con-
nected (see the WE®DSP32-DS Digital Signal Processor Development
System User Manual for details).

DSP32C Development System in use. Refer to the WE®DSP32C
Development System User Manual for complete details.

Disables "dirty-zero" checking in the DAU. By default, a dirty-zero error
occurs when a number has a nonzero exponent and a mantissa of zero.

T act chanoe: Vercion 122 (DRAFT) 1

d3sim (1)

-S#

DSP Tools d3sim (1)

Tum on profiling. The profiling feature requires a large amount of
memory, which may cause problems on some systems. Therefore, it is
not active by default.

DSP32C mode only. Run DSP32C as a ROM device.
Set default pcw value to 0. Normal default is 0x3f.

DSP32C mode only. Set number of wait states for external memory bank
A to n.

DSP32C mode only. Set number of wait states for external memory bank
Bton.

Sets the number of conflict wait states to remember to n. This determines
the number of conflict wait states that are displayed when the waits com-
mand is issued.

Enable stack range checking. The argument # is an upper bound the stack
pointer should not exceed.

Prior to accepting user command input, d3sim loads memory from the given file and initializes as if a

chip reset has occured.

SEE ALSO
DSP32 C Support Software Library User Manual

d3as(1)
d3cc(1)
d31d(1)

Pixel Machines

Last change: Version 1.3.2 (DRAFT) 2

devee (1) DEVtools devce (1)

NAME

devee — C compiler for Pixel Machine programs using DEVtools
SYNOPSIS

devce <d3cc options> [—pixel | —pipe] <source files>
DESCRIPTION

devce is the DSP32 compiler used with DEVtools programs. It is the same as d3cc but it knows about
Pixel Machine specific files. In addition to the directories searched by d3cc for include files, devce also
searches SHYPER_PATH/devtools/include. devee also passes the correct startup file and loader direc-
tive file (ifile) to d31d as well as the SHYPER_PATH/devtools/lib/libpm.a library.

devce takes all the options that d3cc does plus —pixel (default) and —pipe options.
The —pipe option is used to link pipe programs and causes crt0_pipe.o and pipe_ifile to be used.

The —pixel option is for pixel programs and causes crt0_pixel.o and pixel_ifile to be used.
NOTES

If users want to use printf with d3sim, they should include $DSP32SL/include/printf.c on the devee
command line to prevent loading the printf that is included in libpm.a.

SEE ALSO
DSP32 C Language Compiler User Manual
DSP32 Support Software Library and DSP32 C Language Compiler Version 1.3.1 Addendum

Pixel Machines Last change: Version 1.1 1

devdisp(1) SYSTEM COMMANDS devdisp (1)

NAME

devdisp — download an image from a file to a Pixel Machine.
SYNOPSIS

devdisp [—p initx inity] [~s npixels nlines] [-o0 xoffset yoffset] [-b buffer] [-d] [-v] [-u] file
DESCRIPTION

devdisp is used to download an image from a file to a Pixel Machine. The file specified must be in
DEVtools image format as specified in DEVimage header(4).

The following options are supported:

—P initx inity the image download will begin at pixel (initx, inity). Default is (0,0)
(upper left hand corner of the screen).

—s npixels nlines a rectangular section of pixels specified by (npixels, nlines) will be down-
loaded. Default is the size of the image as specified in the file.

-0 xoffset yoffset if specified, xoffset pixels and yoffset lines are skipped in the image file
before downloading. This is used to download only a portion of the
image file. Default is 0, 0.

-d the image download will begin at the pixel specified in the image file.
This option is useful when an image was saved from a specific location
on the screen and the user wishes to display it at the same location. This
option overrides the —p option.

—b buffer the image will be downloaded to the specified portion of the frame buffer.
Valid values for buffer are:

front — pixels are downloaded to the front (currently displayed) buffer
(default).

back — pixels are downloaded to the back (currently non—displayed)
buffer.

vram0 — pixels are downloaded to VRAMO.
vraml — pixels are downloaded to VRAM1.
zram — pixels are downloaded to ZRAM.

-v verbose output will be written to the standard output.
-u print usage information.
RETURNS
The exit code will be O upon success, non—zero on failure.
NOTES

devdisp downloads code into the pipe and pixel nodes to perform the image download, consequently
any programs that had been downloaded will be overwritten.
SEE ALSO

DEVimage header(4)
DEVput_scan_line(3H)

devsave(1)

picdisp(1) in the PICIlib Reference Manual
raydisp(1) in the RAYlib Reference Manual

Pixel Machines Last change: Version 1.1 1

devprint(1) DEVtools devprint (1)

NAME
devprint — a host server program for Pixel Machine code that uses the print routines

SYNOPSIS
devprint [-d node all] [-g node all] [-u] [-i] [-n]

DESCRIPTION
devprint is a program that runs on the host system that polls a selected set of pipe and/or pixel nodes
and performs the host processing required by any system messages sent from the nodes, usually the mes-
sages for PMhost_exit, PMsiodir and printf.

The following options may be used:

—d node poll pixel node node for print messages
—dall poll all pixel nodes for print messages

—g node
poll pipe node rode for print messages

—gall poll all pipe nodes for print messsages
-i print node identification information for node printf commands

-n causes devprint to poll all nodes specified, but discards all the messages except from the
first pipe and pixel node specified on the command line. This is used for debugging
when it is not necessary to see the output of all of the nodes, but they must be polled so
they do not hang waiting for the host to read a message. Care must be taken when using
this option because commands executed on the other nodes will not function properly if
they expect a response from the host.

-u print command usage format

If no node specification is provided, all pipe and pixel nodes are polled for print messages.

EXAMPLES
devprint — poll and print for all nodes
devprint —n — only prints output for Pipe and Pixel node 0
devprint —gall —dall —n — only prints output for Pipe and Pixel node 0
devprint —n —g8 —d5 — prints for pipe #8 and Pixel #5
SEE ALSO

DEVpoll_nodes(3S)
PMhost_exit(3N)
PMsiodir(3X)
printf(3N)

Pixel Machines Last change: Version 1.1 1

devsave (1)

NAME

SYSTEM COMMANDS devsave (1)

devsave — upload an image from a Pixel Machine to a file

SYNOPSIS

devsave [—p initx inity] [-s npixels nlines] [-b buffer] [-m mode] [-v] [-u] file
DESCRIPTION
devsave is used to upload an image that exists in the frame buffer of a Pixel Machine into a file on the
host computer. The image is stored in file in the format specified by mode. The uploaded file will con-
tain an initial DEVtools header. See the DEVimage header(4) manual page for a description of the

Pixel Machines image header. Each pixel component (red, green, blue and alpha) consumes 8 bits and
is byte aligned. file will be overwritten if it exists. .

The following options are supported:

—P initx inity

—s npixels nlines

~b buffer

—m mode

Pixel Machines

the image upload will begin at pixel (initx, inity). Default is (0,0) (upper
left hand corner of the screen).

a rectangular section of pixels specified by (npixels, nlines) will be
uploaded. Default is the size of the screen.

the image will be uploaded from the specified portion of the frame buffer.
Valid values for buffer are:

front — pixels are uploaded from the front (currently displayed) buffer
(default).

back — pixels are uploaded from the back (currently non-displayed)
buffer.

vram0 — pixels are uploaded from VRAMO.
vraml — pixels are uploaded from VRAMI.
zram — pixels are uploaded from ZRAM.

the image will be uploaded according to the format specified in mode.
Valid values for mode are:

rgba — pixels are stored in red, green, blue, alpha format (default).
rgb — pixels are stored in red, green, blue format.

a — only the alpha component of the pixel is stored.

b — only the blue component of the pixel is stored.

g — only the green component of the pixel is stored.

r — only the red component of the pixel is stored.

a_mono — the alpha component of the pixel is stored, and the image
header is set to mono (for later monochrome display).

b_mono — the blue component of the pixel is stored, and the image
header is set to mono (for later monochrome display).

g_mono — the green component of the pixel is stored, and the image
header is set to mono (for later monochrome display).

r_mono — the red component of the pixel is stored, and the image
header is set to mono (for later monochrome display).

mono — pixels will be read 8 bits at a time from ZRAM only.

Last change: Version 1.1 1

devsave (1) SYSTEM COMMANDS devsave (1)

16 — pixels will be read 16 bits at a time from ZRAM only.
dsp — pixels will be read 32 bits at a time from ZRAM only.

iece — DSP floats will be converted to IEEE floats in ZRAM and
uploaded. After the floats are uploaded, the values in ZRAM are con-

verted back to DSP floats.
-v verbose output will be written to the standard output.
-u print usage information.
RETURNS
The exit code will be 0 upon success, non-zero on failure.
NOTES

devsave downloads code into the pipe and pixel nodes to perform the image upload, consequently any
programs that had been downloaded will be overwritten.
SEE ALSO
DEVimage header(4)
DEVget scan_line(3H)
devdisp(1)
picsave(1) in the PICIlib Reference Manual
raysave(l) in the RAYIlib Reference Manual

Pixel Machines Last change: Version 1.1 2

DEVbswapl (3S) DEVtools DEVbswapl (3S)

NAME
DEVbswapl — convert between DSP32 long integer and host long integer

SYNOPSIS
#include <host/devtools.h>

long DEVbswapl(number)
long number;

DESCRIPTION
DEVbswapl (byte swap long) converts a long integer in DSP32 format to a long integer in the host for-
mat, and vice—versa. DEVbswapl is implemented as a macro which returns the value of number with
the bytes in reverse order.

SEE ALSO
DEVswap_long(3S)
DEVbswapl(3S)

Pixel Machines Last change: Version 1.1 1

DEVbswaps (3S) DEVtools DEVbswaps (35)

NAME
DEVbswaps — convert between DSP32 short integer and host short integer

SYNOPSIS
#include <host/devtools.h>

short DEVbswaps(number)
short number;
DESCRIPTION
DEVbswaps (byte swap short) converts a short integer in DSP32 format to short integers in the host
format and vice—versa. DEVbswaps is implemented as a macro which returns the value of number with
the high and low bytes swapped.
SEE ALSO
DEVswap_short(3S)
DEVbswaps(3S)

Pixel Machines Last change: Version 1.1 1

DEVclose (3S) DEVtools ' DEVclose (3S)

NAME

DEVclose — closes the Pixel Machine
SYNOPSIS

void DEVclose()
DESCRIPTION

DEVclose closes the Pixel Machine designated by the environment variable HYPER_UNIT. Closing
the device consists of closing the file associated with the VME device, releasing the memory blocks that
were mapped to the device, and removing the lock file.

The system status file is updated to reflect any changes that may have occurred during the execution of
the program since the device was opened.

NOTES
DEVexit rather than DEVclose is usually used. DEVopen and DEVclose are provided for users that
require lower level control of the system.

SEE ALSO
DEVexit(3H)
DEVopen(3S)

Pixel Machines Last change: Version 1.1 1

DEVdsp_ieee (3S) DEViools DEVdsp ieee (3S)

NAME -

DEVdsp_ieee — convert from the DSP32 floating—point format to the IEEE floating—point format
SYNOPSIS

#include <host/devtools.h>

float DEVdsp_ieee(n)

long n;
DESCRIPTION

The host and the DSP32 use different formats for floating point numbers. DEVdsp_ieee converts a sin-
gle 32 bit floating point number in DSP32 format to the IEEE floating point format used by the host.
The number to be converted is stored in the 32 bit long n. The contents of n must be in the correct host
byte order. A value read from the Pixel Machine must be converted using DEVbswapl() or
DEVswap_long() before calling DEVdsp_ieee().

RETURNS
DEVdsp _ieee returns a floating point number with the same value as the DSP32 floating point number.

SEE ALSO
DEVieee_dsp(3S)
DEVbswapl(3S)
DEVswap_short(3S)
DEVswap_long(3S)

Pixel Machines Last change: Version 1.1 1

DEVerror (3S) DEVtools DEVerror (3S)

NAME
DEVerror — generate an error message on standard error
SYNOPSIS

#include <host/devtools.h>
#include <host/deverror.h>

void DEVerror(msg)
char *msg;

char DEVerror_msg[];
int DEVerrno;

DESCRIPTION
DEVerror is the DEVtools equivalent of the UNIX system perror() function. It is used to generate an
error message on standard error describing the last error that occurred during a call to a DEVtools host
function.

A message of the form:
msg. error message

is generated.

Error messages can also be formatted by user programs by accessing the global variable
DEVerror msg. User programs can check for specific errors by comparing the global variable
DEVerrno with the symbolic names defined in the deverror.h include file.

NOTES
It is possible for some DEVtools routines to fail because of errors returned from system calls. When
this occurs, DEVerrno contains the value DEV_ERR_SYSTEMERR, and the contents of
DEVerror msg is undefined. Therefore, user error message handlers should not display
DEVerror_msg for system errors.

SEE ALSO
perror on host system

Pixel Machines Last change: Version 1.1 1

DEVexit (3H) DEVtools DEVexit(3H)

NAME

DEVexit — halts processors, closes Pixel Machine device
SYNOPSIS

void DEVexit()
DESCRIPTION

DEVexit halts the processors, closes the device associated with the Pixel Machine, and restores the
default handling of signals intercepted by DEVinit. DEVexit should always be called before exiting
any host program that uses DEVinit.

NOTES
DEVexit does not wait for the Pixel Machine to finish any outstanding commands. Use DEVwait_exit
to guarantee that the pixel nodes are done.
SEE ALSO
DEVclose(3S)
DEVinit(3H)
DEVwait_exit(3H)

Pixel Machines Last change: Version 1.1 1

DEVfifo_parallel (35) DEVtools DEVfifo_parallel (3S)

NAME

DEVfifo_parallel — configure a pipe board to operate in parallel mode
SYNOPSIS

#include <host/devtools.h>

void DEVfifo_parallel(system, fifo)
DEVpixel system #*system;
int fifo;

DESCRIPTION

DEVfifo_parallel configures a pipe board to operate in parallel mode. This mode can only be used in
systems with two pipe boards. A call to this function must be made for each pipe card in the system.
fifo is the number of the pipe board whose FIFO is to be configured in parallel.

NOTES

DEVfifo_parallel is automatically called by DEVinit and DEVopen on dual parallel pipe systems as
specified by the HYPER_MODEL and HYPER_PIPE environment variables.
SEE ALSO
DEVfifo_serial(3S)
DEVinit(3H)
DEVopen(35)

Pixel Machines Last change: Version 1.1 1

DEVfifo_read (3S) DEVtools DEVfifo_read (3S)

NAME
DEVfifo_read — read a block of four byte values from a pipe feedback FIFO

SYNOPSIS
#include <host/devtools.h>

int DEVfifo read(input, input_flags, buffer, nwords)
DEVulong *input;
DEVbyte *input_flags;
DEVulong *buffer;
int nwords;
DESCRIPTION

DEVfifo_read reads a block of four byte values from a pipe node feedback FIFO. This is done by
copying the data from the memory mapped address of the feedback FIFO.

input is a pointer to the memory mapped area that the data is to be read from. input flags is a pointer
to the memory mapped location of the input flags of the pipe board.

buffer is a pointer to the location into which the data is to be read. nwords is the number of four byte
values to be read.

NOTES
THE DEVcread macros should be used for most applications.

DEVfifo_read always returns zero.

DEYVfifo_read cannot be used on a system without pipe boards.

SEE ALSO
DEVfifo_write(3S)
DEVwrite(3H)

Pixel Machines Last change: Version 1.1 1

DEVfifo _reset(3S) DEVtools DEVfifo reset(3S)

NAME
DEYVfifo_reset — resets all FIFOs on a pipe board

SYNOPSIS
#include <host/devtools.h>

void DEVfifo_reset(pixel_system,fifo)
DEVpixel_system *pixel_system;
int fifo;

DESCRIPTION
DEVfifo_reset resets all the FIFOs on a pipe board. fifo is the number of the pipe board to be reset.

NOTES
Resetting a pipe board empties all of its FIFOs.

DEVfifo_reset is automatically called by DEVinit and DEVopen.

Pixel Machines Last change: Version 1.1 1

DEVfifo_serial (3S) DEVtools DEVfifo_serial (3S)

NAME
DEVfifo_serial — configure a pipe board to operate in serial mode

SYNOPSIS
#include <host/devtools.h>

void DEVfifo_serial(pixel_system,fifo)
DEVpixel system *pixel system;
int fifo;

DESCRIPTION

DEVfifo_serial configures a pipe board to operate in serial mode. This mode can be used in systems

with two pipe boards. A call must be made for each pipe card in the system. fifo is the number of the
pipe card.

NOTES

DEVfifo_serial is automatically called by DEVinit and DEVopen on dual serial pipe systems as
specified by the HYPER_MODEL and HYPER_PIPE environment variables.

SEE ALSO
DEVfifo_parallel(3S)

Pixel Machines Last change: Version 1.1 1

DEVfifo_write (3S) DEVtools DEVfifo_write (3S)

NAME
DEVfifo_write — write a block of four byte values to a pipe FIFO

SYNOPSIS
#include <host/devtools.h>

int DEVfifo_write(output, output_flags, buffer, nwords)
DEVulong *output;
DEVbyte *output_flags;
DEVulong *buffer;
int nwords;
DESCRIPTION

DEVfifo_write writes a block of four byte values to a pipe FIFO. This is done by copying the data to
the memory mapped address of the FIFO.

output is a pointer to the memory mapped area that the data is to be written to. output flags is a pointer
to the memory mapped location of the output flags of the pipe board.

buffer is a pointer to the data to be written. nwords is the number of four byte values to be written.

NOTES
DEYVfifo_write always returns zero.

DEVfifo_write cannot be used to write directly to the broadcast bus FIFO.

The DEVwrite macros provide a more efficient mechanism to write to a pipe FIFO.

SEE ALSO
DEVfifo_read(3S)
DEVwrite(3H)

Pixel Machines Last change: Version 1.1 1

DEVget_color_map (3S) DEVtools DEVget_color_map(3S)

NAME
DEVget_color_map — read the color tables from video controller board and returns value

SYNOPSIS
#include <host/devtools.h>

void DEVget_color_map(pixel_system, r, g, b)

DEVpixel_system *pixel_system;

int r[DEV_VIDEO_TABLE];

int g[DEV_VIDEO_TABLE];

int b[DEV_VIDEO _TABLE];
DESCRIPTION

DEVget_color_map reads the color tables from the video controller board and returns the values to the
caller. Each color table contains 256 entries; each entry is a 10—bit value (0—1023).

SEE ALSO
DEVput_color_map(3S)

Pixel Machines Last change: Version 1.1 1

DEVget_image header(3S) DEVtools DEVget_image_header (3S)

NAME
DEVget image header — read the Pixel Machine image header from a file

SYNOPSIS
#include <stdio.h>
#include <host/devtools.h>
#include <host/devimage.h>
#include <host/deverror.h>

int DEVget_image_header(file, image_header, optional_header)

FILE *file;

DEVimage_header *image_header;

DEVbyte ++optional header;
DESCRIPTION

DEVget_image_header reads the DEVimage_header and the optional header (if one exists) from the
specified file and returns them to the caller.

file is a file descriptor obtained from a previous call to fopen(3). The file must have been successfully
opened for reading and the file pointer should be pointing to the beginning of the file (i.e., no previous
reads have been issued). Upon return from DEVget image header, the file pointer will be set to the
beginning of the pixel data (i.e., past the image and optional headers).

DEVget_image header will read in the first DEV_IMAGE_HEADER_SIZE bytes from the file, con-
vert them from ASCII into unsigned longs and place them into the correct locations in the structure
pointed to by image_header. Except for the magic and optional_header_size fields, none of the infor-
mation in the header is checked for validity.

If an optional header is present (image_header—>optional_header_size is not 0), memory will be allo-
cated (via malloc(3)) and image_header—>optional_header_size bytes will be read. A pointer to the
allocated memory will be returned in *optional header. If no optional header is present,
*optional_header will be set to NULL.

RETURNS
DEVget image header returns 0 upon success and —1 on failure. DEVget image header will set

DEVerrno to indicate the reason for failure:

DEV_ERR_BAD_MAGIC: the magic number is not DEV_IMAGE_MAGIC.

DEV_ERR_READ_ERR: an error was returned by the fread(3) system call while reading either the
image header or the optional header.

SEE ALSO
DEVimage header(4)
DEVput_image_header(3S)

Pixcl Machines Last change: Version 1.1 1

DEVget pixel (3S) DEViools DEVget pixel (3S)

NAME
DEVget_pixel, DEVget_pixels — read a pixel from the frame buffer

SYNOPSIS
#include <host/devtools.h>

void DEVget_pixel(system, buffer, x, y, r, g, b, 0)
DEVpixel_system *system;

int buffer, x, y;

short *r, *g, *b, *o0;

void DEVget_pixels(system, buffer, x, y, r, g, b, 0, npixl)
DEVpixel_system *system;
int buffer, x, y;
short *r, *g, *b, *0;
int npixl;
DESCRIPTION
DEVget pixel reads a pixel from the frame buffer. By using this routine, a program can read the Pixel

Machine frame buffer without having to deal with the details of how the frame memory is organized on
different models of the system.

system is a pointer to the system description information returned by DEVinit. buffer indicates which
frame buffer is to be updated (must be the value O or 1). x is the x coordinate, y is the y coordinate. 7,
g, b, and o are pointers to the locations into which the values of the red, green, blue, and overlay values
from the frame buffer are to be stored.

DEVget_pixels reads a sequence of pixels for a single scan line. npix! is the number of pixels to be

read. r, g, b, and o point to the locations into which the values of red, green, blue, and overlay values
to be stored.

NOTES
DEVget scan_line provides a more efficient and versatile way to upload images.

SEE ALSO
DEVpixel read(3S)
DEVget_scan_line(3H)
DEVinit(3H)

Pixel Machines Last change: Version 1.1 1

DEVget_scan_line (3H) DEVtools DEVget scan_line (3H)

NAME
DEVget_scan_line — read one or more scan lines from a frame buffer

SYNOPSIS
#include <host/devtools.h>
#include <host/devimage.h>

int DEVget_scan_line(system, X, y, npixl, nlines, mode, pixels)
DEVpixel system *system;

unsigned int x, y;

unsigned int npixl, nlines, mode;

DEVbyte *pixels;

DESCRIPTION
DEVget scan_line reads one or more scan lines from the frame buffer and packs the pixels into pixels
according to the mode specified by mode. By using this routine, a program can read scan lines from a
Pixel Machine frame buffer without having to deal with the details of how the frame memory is organ-
ized on different models of the system.

system is a pointer to the system description information returned by DEVinit. x is the starting x screen
coordinate, y is the starting y screen coordinate.

DEVget scan_line reads a sequence of pixels for one or more scan lines. npix! is the number of pixels
to be read from each scan line, nlines scan lines will be read. pixels points to the location into which
the pixel values will be stored.

The buffer pointed to by pixels must be large enough to store (npixl * nlines * pixel size) bytes, where
the pixel size is determined by the mode argument as described below. In all cases, pixels will be stored
in pixels in the following order: (x,y), (x+1,y), ..., (x+npixi—1,y), {x,y+1), ..., (x+npixl-1,y+nlines—1).

The mode argument is used to specify two independent pieces of information: how the pixels will be
stored in the array pointed to by pixels, and which portion of Pixel Machine memory the data should be
copied from. These two values are or’ed into the mode argument. Valid values for mode and their
results are:

DEV_RGBA_PACKED_PIXELS: pixels will be stored in pixels, 4 bytes to a pixel, in the fol-
lowing order: red, green, blue, alpha.

DEV_RGB_PACKED_PIXELS: pixels will be stored in pixels, 3 bytes to a pixel, in the fol-
lowing order: red, green, blue.

DEV_MONO_R_PIXELS: pixels will be stored in pixels, 1 byte to a pixel, with the red com-
ponent of the pixel actually being stored.

DEV_MONO_G_PIXELS: pixels will be stored in pixels, 1 byte to a pixel, with the green
component of the pixel actually being stored.

DEV_MONO_B_PIXELS: pixels will be stored in pixels, 1 byte to a pixel, with the blue com-
ponent of the pixel actually being stored.

DEV_MONO_A_PIXELS: pixels will be stored in pixels, 1 byte to a pixel, with the alpha
(overlay) component of the pixel actually being stored.

DEV_MONO_PIXELS: pixels will be stored in pixels, 1 byte to a pixel. This option is only
available when reading from DEV_ZRAM_BUFFER.

DEV_MONO _16_PIXELS: pixels will be stored in pixels, 2 bytes to a.pixel. This option is
only available when reading from DEV_ZRAM_BUFFER.

Pixel Machines Last change: Version 1.1 1

DEVget_scan_line (3H) DEVtools DEVget scan_line (3H)

DEV_DSP_FLOAT_PIXELS: pixels will be stored in pixels, 4 bytes to a pixel. This option is
only available when reading from DEV_ZRAM_BUFFER.

DEV_IEEE_FLOAT_PIXELS: DSP floating point values in ZRAM will be converted to IEEE
floating point pixels in ZRAM, then uploaded 4 bytes to a pixel. When the upload operation is
finished, the IEEE floats in ZRAM will be converted back to DSP floats. This double conver-
sion can result in rounding errors. This option is only available when reading from
DEV_ZRAM_BUFFER.

The following values are or’ed into the mode argument to specify which portion of Pixel Machine
memory to upload from:
DEV_FRONT_BUFFER: Upload pixels from the front (currently displayed) portion of VRAM.

DEV_BACK_BUFFER: Upload pixels from the back (currently non—displayed) portion of
VRAM.

DEV_VRAMO_BUFFER: Upload pixels from the VRAMO portion of VRAM.
DEV_VRAM1_BUFFER: Upload pixels from the VRAM1 portion of VRAM.
DEV_ZRAM_BUFFER: Upload pixels from ZRAM.

The sizes of the above buffers vary depending on the type of Pixel Machine being used as defined in the
following table:

Model FRONT BACK VRAMO VRAM1 ZRAM
916 1024x1024 | 1024x1024 - - 1024x1024
920 1280x1024 | 1280x1024 - - 1280x1024
932 1024x1024 | 1024x1024 | 1024x2048 | 1024x2048 | 1024x2048
940 1280x1024 | 1280x1024 | 1280x2048 | 1280x2048 | 1280x2048
964 2048x1024 | 2048x1024 | 2048x2048 | 2048x2048 | 2048x2048
964X | 2048x1024 | 2048x1024 | 2048x2048 | 2048x2048 | 2048x2048

Note that when uploading from ZRAM, the number of ‘‘pixels’” per scan line varies with the size of a
pixel. For example, on a 964, a scan line of DEV_MONO PIXELS is 8192 (4*2048) pixels wide, a
scan line of DEV_MONO_16_PIXELS is 4096 (2+2048) pixels wide.

RETURNS
DEVget scan_line returns O upon success and —1 on failure. DEVget scan_line also sets DEVerrno
and DEVerr_msg upon failure. If DEVget scan_line fails, DEVerrno will be set to one of the follow-
ing values:

DEV_ERR_INVPARAMETER: one or more of the parameters passed to DEVget scan line is
invalid.

DEV_ERR_NORESPONSE: DEVget scan_line sent a system command to the Pixel Machine to
begin uploading but received no response from the pixel nodes. Typically this means that the pixel
node programs did not call PMenable() to allow processing of the system command or the system
command was not passed through the pipe nodes.

NOTES
DEVget scan_line sends a system command to all pixel nodes to initiate uploading of the scan line.
Pixel node programs must be prepared to receive this command or DEVget scan_line will fail. The
pixel node program should call PMenable with the PM_ENABLE_GET _SCAN LINE,

Pixcl Machines Last change: Version 1.1 2

DEVget_scan_line (3H) DEVtools DEVget scan_line (3H)

PM_ENABLE_GET _VRAM or PM_ENABLE_GET_ZRAM argument during its initialization and
should call PMgetemd in its main processing loop. PMgetemd will recognize the system command and
call the appropriate routine to upload the scan line(s). In addition, the pipe node programs must make
sure the system command is forwarded through each of the pipe nodes. The PMgetop function will
transparently pass these system commands through to the pixel nodes.

DEVget _scan_line is an optimized version of DEVget pixels for operations like image upload and
image processing.

DEVget_scan_line will be slightly faster if the scan line starts and ends on a subscreen boundary (i.e.,
((x % DEVx_scale(system)) == 0) and ((x+npix] % DEVx_scale(system)) == 0)).

SEE ALSO
DEVget pixels(3S)
DEVinit(3H)
PMenable(3N)
PMgetcmd(3X)

Pixel Machines Last change: Version 1.1 3

DEVinit(3H) DEVtools DEVinit(3H)

NAME
DEVinit - opens and initializes Pixel Machine device

SYNOPSIS
#include <host/devtools.h>

DEVpixel_system *DEVinit()

DESCRIPTION
DEVinit opens and initializes the device associated with the Pixel Machine. It should always be
included at the start of any DEVtools host program.

DEVinit performs the following operations: opens the device, sets global variables that can be used to
access the system configuration information, halts the processors, resets the processors and configures
the pipes, and sets the pixel mode register.

DEYVinit handles the signals SIGHUP, SIGINT, and SIGTERM. If any of these signals are received,
the processors are stopped, the FIFOs are reset, and the pipe is restored to its original configuration.

DEVinit returns a pointer to the system descriptor if all of the operations complete successfully. If the
operation fails, it returns NULL.

SEE ALSO
DEVopen(3S)

Pixel Machines Last change: Version 1.1 1

DEVload_color_tables (3S) DEVtools DEVload_color_tables (3S)

NAME
DEVload_color_tables — reads file of gamma calibration values and sets color lookup tables

SYNOPSIS
#include <host/devtools.h>

void DEVload_color_tables(pixel_system, filename)

DEVpixel_system *pixel_system;
char *filename;
DESCRIPTION

DEVload_color_tables reads a file of gamma calibration values and sets the color lookup tables
appropriately. The gamma file consists of a series of lines of the format:

xx Yy

Where:
x.x is a calibration level
y.y is the measured video output

DEVload_color_tables computes color table values by interpolating the input values.
NOTES

DEVload_color_tables is automatically called by DEVinit and DEVopen when the HYPER_GAMMA
environment variable is set.

SEE ALSO
DEVinit(3S)
DEVopen(3S)

Pixel Machines Last change: Version 1.1 1

DEVlock (3S) DEVtools DEVlock (35)

NAME
DEVlock - manage Pixel Machine locks

SYNOPSIS
#include <host/devtools.h>

int DEVlock(key,device)

int key;

DEVpixel_device *device;
DESCRIPTION

DEVlock is used to manage the locks for the Pixel Machine to prevent more than one user from access-
ing the machine at the same time. key designates the action desired; it must have one of the following

values:
DEV_KEYLOCK_ASSIGN: assigns the device to a user
DEV_KEYLOCK_UNASSIGN: clears a previous assignment
DEV_KEYLOCK_LOCK: locks the device for a user
DEV_KEYLOCK_UNLOCK: unlocks the device

Locking and assigning are similar processes, differing only in that locking has higher precedence. Lock-
ing is used by the hyplock and hypfree commands, while assigning is used by the DEVopen and DEV-
close functions. The difference in precedence levels allows a user to lock a system using the hyplock
command, run one or more programs that use DEVopen and DEVclose and still have the system locked
upon completion of the programs. This may be useful to avoid having the contents of the screen cor-
rupted, even after the program that created the image has completed.

Pixel Machines Last change: Version 1.1 1

DEVopen(3S)

NAME

SYNOPSIS

DEVtools DEVopen(3S)

DEVopen, DEVopen_system — make a Pixel machine available to a user program

#include <host/devtools.h>

DEVpixel system *DEVopen()

DEVpixel_system *DEVopen_system(options)
int options;

DESCRIPTION

DEVopen makes a Pixel Machine available to a user program. The environment variables
HYPER_UNIT, HYPER_ADDRESS, HYPER_MODEL, HYPER_PIPE HYPER_GAMMA, and
HYPER_VIDEOQ are used to determine which machine is to be used and the configuration of the sys-

tem.

If the device is already open, it is closed before DEVopen attempts to reopen it. DEVopen looks for a
lock file for the device being requested. If the device is already locked, DEVopen returns NULL. Oth-
erwise, a lock file is created to prevent the device from being accessed by another user.

If the open operation is successful, DEVopen returns a pointer to a system description block, otherwise
NULL is returned.

The actual process of opening the device consists of:

creating a lock file for the desired device

opening the VME bus device associated with the Pixel Machine designated by the environment
variable HYPER_UNIT

allocating a memory area that is mapped to the device that has been opened

initializing a system description block that contains the memory map addresses for each of the
boards and each of the processors in the Pixel Machine

configuring the pipes based on the contents of the HYPER_PIPE environment variable
initializing the pixel mode registers on the pixel boards

configuring the video controller based on the contents of the HYPER_MODEL,
HYPER_GAMMA and HYPER_VIDEO environment variables.

The following system status information is updated by DEVopen:

Pixel Machines

— The color tables are updated based on the HYPER_GAMMA environment variable. If
HYPER_GAMMA s set and is not null, it is used as the the name of a file that contains a
gamma correction table. If HYPER_GAMMA is not set or is null, a linear ramp is loaded into
the color tables. If HYPER_GAMMA does not contain an absolute pathname, it is used as a
filename in the SHYPER _PATH/crts directory. Relative pathnames are not supported.

— The video control parameters are set based on the HYPER_MODEL and HYPER_VIDEO
environment variables. The HYPER_VIDEO variable contains a string that is parsed to pro-
duce a value that is passed to DEVset_video_options(). The string in HYPER_VIDEO must
be of the format:

sync_source={int,ext}

Last change: Version 1.1 1

DEVopen(3S) DEVitools DEVopen (3S)

sync_on_green={on, off} (

The value after the equal sign must be one of the values listed in braces. The first value is the default;
spaces in the string are ignored.

EXAMPLES
HYPER_VIDEO="sync_source=ext sync_on_green=off"
HYPER_VIDEO="“sync_source = int”

NOTES

DEVinit is ordinarily used instead of DEVopen. DEVopen is provided for users who require lower
level control of the Pixel Machine.

DEVopen_system is identical to DEVopen, with the exception that an option parameétér is provided to
override certain default actions described above.

options must be zero or the value DEV_OPEN_NOCONFIG. Setting the noconfig option causes
DEVopen_system to suppress the steps that set the configuration of the machine. The steps omitted

are:
— configuring the pipes
~ initializing the pixel mode tegistets
— loading the color tables ‘
— setting the video options
The noconfig option is used by commands like devprint and hypstat that need to access the Pixel (

Machine without altering the mode that the machine is running.

This function should only be used for applications that require lower level access to the machine.

SEE ALSO
DEVload_color_tables(3S)

Pixel Machines Last change: Version 1.1 2

DEVpipe_boot(3S) DEViools DEVpipce_boot(3S)

NAME
DEVpipe_boot — load a Pixel Machine executable into specificd sct of pipc nodes

SYNOPSIS
#include <host/devtools.h>

int DEVpipe boot(pixel_system, filename, first_node, last_node,
load_table, options)

DEVpixel _system *pixel system;

char *filename;

int first_node;

int last_node;

int load_table[];

int options;
DESCRIPTION

DEVpipe boot determines whether the specified Pixel Machine executable file has been loaded into the
Pixel Machine. If the file has not been loadcd, DEVpipe_boot loads it into the specified set of nodes.

pixel_system is a pointer to the system structure of the system to be loaded. first_node and last_node
specify the range of nodes to be loaded. Setting first_node to DEV_ALL causes all of the pipe nodes to
be loaded. load_table is a pointer to an array of boolean values that indicate for each node whether or
not the node should be loaded. If first node <= node <= last_node and load_table[node] is true, then
the node is loaded. The load table feature is supplied to make it possible to load the same program into
an arbitrary group of nodes while only reading the executable file once. If the load table feature is not
needed, a null pointer can be used as the argument.

options is used to specify certain optional processing. This value must be zero or a bitwise or of one or
more of the following values:
DEV_BOOT_VERBOSE: causes a description of the actions being performed to be displayed

DEV_BOOT_FORCE: causes the file to always be loaded regardless of the contents of the
system status file

DEV_BOOT_CHECK_TIME: causes the modification time of the file to be compared with the
modification time of the file currently loaded into the node (if the filenames are the same). If
the times are not the same, the file is reloaded.

RETURNS

DEVpipe_boot returns zero if the operation was successful, —1 if an error occurred. The following
error codes can be generated by DEVpipe_boot:

DEV_ERR_LDFILEOPEN: the specified file could not be opened
DEV_ERR_LDFILERR: the specified file is not a valid object file
DEV_ERR_OTHER: miscellaneous error while loading the program

Pixel Machines Last change: Version 1.1 1

DEVpipe_get(3S) DEVtools DEVpipe_get(3S)

NAME

DEVpipe get — rcad a strcam of bytes from the PIR of a pipe DSP

SYNOPSIS

#include <host/devtools.h>

int DEVpipe_get(pixel_system, node, buffer, nbytes, timeout)
DEVpixel_system *pixel_system;

int node;

DEVbyte *buffer;

int nbytes;

int timeout;

DESCRIPTION

NOTES

DEVpipe_get reads a stream of bytes from the PIR of a pipe DSP. This function differs from
DEVpipe read in that it requires a program running on the DSP to load data into the PIR register. The
implementation differs in that:

it does not use DMA
the address from which the data is to be read cannot be supplied

a timeout parameter must be supplied

pixel_system is a pointer to the system descriptor, node is the number of the pipe node from which the
data is to be read. buffer points to the location into which the data is to be read. nbytes is the number
of bytes of data to be read. nbytes should always be an even number. If nbytes is odd, nbytes+1 bytes
of data will be read. timeout contains the number of times, for each two bytes transferred, that the PCR
register is to be tested to see if the data has been sent successfully.

No byte order translation is performed. The data read will be in the same byte order as it is in the DSP
memory.

As a result of this operation, the parallel communications modes are altered to set the interrupt vector to
16~bit mode.

DEVpipe_get returns the number of characters read.

The timeout parameter contains the number of loop iterations to be attempted before giving up. Because
the execution rate depends on the system load, this could yield different results under different system
load conditions. Also, because there is no sleep involved, the host process could consume a great deal
of CPU time if the delay for each character is significant.

Pixel Machines Last change: Version 1.1 1

DEVpipe_get msg(3S) DEVtools DEVpipe_get msg(3S)

NAME

DEVpipe get msg — read a message from the PIR of a pipe DSP

SYNOPSIS

#include <host/devtools.h>

int DEVpipe_get msg(pixel_system, node, buffer, nbytes, swap)
DEVpixel system *pixel system;

int node;

DEVbyte *buffer;

int nbytes;

int swap;

DESCRIPTION

NOTES

DEVpipe_get msg rcads a message from the PIR of a pipe DSP. This function is similar to
DEVpipe_get with the following exceptions:

a timeout parameter is not supplied

a byte swapping parameter is provided to allow mapping of DSP values into host values

Like DEVpipe_get, DEVpipe get msg does not use DMA and requires that a program running on the
DSP load the data into the PIR.

pixel_system is a pointer to the system descriptor, node is the number of the pipe node from which the
data is to be read. buffer points to the location into which the data is to be read. nbytes is the number
of bytes of data to be read. nbytes should always be an even number. If nbytes is odd, nbytes+1 bytes
of data will be read. swap must be one of the following values:

DEV_SWAP_NONE - no byte order conversion

DEV_SWAP_SHORT - the buffer is treated as a collection of 2-byte values and the
bytes are ordered as required

DEV_SWAP_LONG - the buffer is treated as a collection of 4-byte values and the bytes
are ordered as required.

If swap is DEV_SWAP_LONG, nbytes should be a multiple of 4, because a multiple of 4 bytes will
always be read.

As a result of this operation, the parallel communications modes are altered to set the interrupt vector to
16—bit mode.

DEVpipe_get msg retums the number of characters read.

This routine will hang and use a lot of CPU time if the process on the DSP does not load the expected
data into the PIR.

Pixel Machines Last change: Version 1.1 1

DEVpipe_get pir(3S) DEVtools DEVpipe_get_pir(3S)

NAME

DEVpipe get pir - read the PIR register of a pipe DSP
SYNOPSIS

#include <host/devtools.h>

DEVushort DEVpipe_get pir(pixel_system,node)
DEVpixel system *pixel system
int node;
DESCRIPTION
DEVpipe_get pir reads the PIR register of a pipe DSP. This function is a special version of
DEVpipe_get msg that always fetches two bytes without adjusting the byte order.

Like DEVpipe_get msg, DEVpipe_get pir does not use DMA and it requires that a program running
on the DSP load the PIR.

pixel_system is a pointer to the system descriptor, node is the number of the pipe node from which the
data is to be read.

As a result of this operation, the parallel communications modes are altered to set the interrupt vector to
16-bit mode.

DEVpipe_get pir returns the contents of the DSP’s PIR register as an unsigned short integer.

NOTES

This routine will hang and use a lot of CPU time if the process on the DSP does not load the expected
data into the PIR.

Pixel Machines Last change: Version 1.1 1

DEVpixel halt(3S) DEVtools DEVpixel halt(3S)

NAME
DEVpixel halt — halt a pixel node processor

SYNOPSIS
#include <host/devtools.h>

int DEVpixel halt(pixel_system,node)
DEVpixel system *pixel system;
int node;

DESCRIPTION

DEVpixel halt halts a pixel node processor. After the processor has halted, the parallel communica-
tions modes are altered to:

enable interrupts
enable DMA
set PAR to be autoincremented on DMA

set the interrupt vector to 16-bit mode

RETURNS
DEVpixel_halt returns DEV_ERR_OK if the operations succeeds, DEV_ERR_FAIL otherwise.

Pixel Machines Last change: Version 1.1 1

DEVpixel id check (3S) DEVtools DEVpixel_id _check (3S)

NAME
DEVpixel id check — check status of node’s ID
SYNOPSIS

#include <host/devtools.h>
#include <host/crt0.h>

int DEVpixel_id_check(system,node,id)
DEVpixel system *system;
int node;
DEVcrt0_id *id;
DESCRIPTION
DEVpixel _id_check is used to check whether a node’s ID has been corrupted.

system is a pointer to the system description information returned by DEVopen. node is the number of
the node to which the ID is to be written, and is also used as a node identification number.

DEVpixel_id_check uses the parameter id to return the node ID information to the caller. id is a

pointer to a node identification block.

RETURNS

This function returns DEV_ERR_OK if the operation is successful, otherwise an error value is returned.
The possible error values are:

DEVERR_ID: Node ID information is invalid
DEVERR_NODE: Node number is invalid
SEE ALSO

DEVpixel read(3S)
DEVpixel_write(3S)

Pixel Machines Last change: Version 1.1 1

DEVpixel _id_print (3S)

NAME

DEVpixel_id_print — read and print the node ID of a processor

SYNOPSIS
#include <host/devtools.h>
#include <host/crt0.h>

int DEVpixel_id_print(system,node,id)
DEVpixel system *system;

int node;

DEVecrt0_id *id;

DESCRIPTION

DEVtools

DEVpixel_id_print(3S)

DEVpixel_id_print reads and prints the node ID of a processor’s memory, and the node status informa-
tion from the system status file and displays the information on standard output. DEVpixel id print
reads the node ID from a processor and displays the information on standard output.

system is a pointer to the system descriptor. node is the number of the node to which the ID is to be

written and is also used as a node identification number.

The checksum information in the node is compared with the value stored in the system status file on the
host. If the checksum values do not match the message Node checksum does not match is printed

beneath the program name.

This function returns DEV_ERR_OK if the operation is successful, otherwise an error value is returned.

The possible error values are:

DEV_ERR_ID: Node ID information is invalid

DEV_ERR_NODE: Node number is invalid

EXAMPLE
Pixel node 0 identification data:

node id: 0

crt0 format: DEVtools

x nodes: 5

y nodes: 4

x offset: 0

y offset: 0

program: /usr/xyz/prog.dsp
semaphore: 0

SEE ALSO
DEVpixel write(3S)
DEVpixel _read(3S)

Pixel Machines Last changce: Version 1.1

DEVpipe put(3S) DEVtools DEVpipe_put(3S)

NAME
DEVpipe_put — write a block of data to a pipe DSP’s PDR register

SYNOPSIS
#include <host/devtools.h>

int DEVpipe put(pixel_system, node, buffer, nbytes, timeout)
DEVpixel system *pixel system;
int node;
DEVbyte *buffer;
int nbytes;
int timeout;
DESCRIPTION
DEVpipe put writes a block of data to a pipe DSP’s PDR register. This function differs from

DEVpipe_write in that it requires a program running on the DSP to read data from the PDR register
and store it in the appropriate memory location. The implementation differs in that:

it does not use DMA

the address to which data is to be sent is not supplied

a timeout parameter must be supplied
pixel_system is a pointer to the system descriptor, node is the number of the pipe node from which the
data is to be written. buffer points to the data to be sent. nbytes is the number of bytes of data to be
written. nbytes should always be an even number. If nbytes is odd, nbytes+1 bytes of data will be writ-

ten. timeout contains the number of times, for each two bytes transferred, that the PCR register is to be
tested to see if the data has been sent successfully.

No byte order translation is performed. The data sent will be in the same byte order as it is in buffer.

As a result of this operation, the parallel communications modes are altered to:

disable DMA
set PAR to not be autoincremented on DMA
set the interrupt vector to 16-bit mode.

DEVpipe_put returns the number of characters written.
NOTES

The timeout parameter contains the number of loop iterations to be attempted before giving up. Because
the execution rate depends on the system load, this could yield different results under different system
load conditions. Also, because there is no sleep involved, the host process could consume a great deal
of CPU time if the delay for each character is significant.

Pixel Machines Last change: Version 1.1 1

DEVpipe_run(3S) DEVtools DEVpipe run(3S)

NAME

DEVpipe_run — begin execution of programs loaded into specified pipe nodes
SYNOPSIS

#include <host/devtools.h>

void DEVpipe_run(pixel_system, first_node, last_node, options)

DEVpixel system *pixel_system;

int first node;

int last_node;

int options;
DESCRIPTION

DEVpipe_run begins execution of the programs loaded into the specified pipe nodes.

pixel_system is a pointer to the system structure of the system whose node is to be started. first_node
and last_node specify the range of nodes.

options is used to specify certain optional processing. This value should be zero or the value
DEV_RUN_VERBOSE, which causes DEVpipe_run to provide additional information.

RETURNS

DEVpipe_run returns zero if execution was started successfully, —1 if an error occurred. The following
error code can be generated by DEVpipe run:

‘DEV_ERR_STARTERR: the program loaded in the node could not be started
NOTES
DEVrun can be used to begin execution on all pipe and pixel nodss.

SEE ALSO
DEVrun(3H)

Pixel Machines Last change: Version 1.1 1

DEVpipe_write (3S) DEVtools DEVpipe_write (3S)

NAME

DEVpipe_write — write a buffer to a pipe DSP
SYNOPSIS

#include <host/devtools.h>

int DEVpipe_write(pixel_system, node, addr, buffer, nbytes)
DEVpixel_system *pixel_system;
int node;
DEVushort addr;
DEVbyte *buffer;
int nbytes;
DESCRIPTION
DEVpipe_write writes a buffer to a pipe DSP. The data is transferred using parallel DMA.

pixel_system is a pointer to the system descriptor, node is the number of the pipe node from which the
data is to be written. addr is the location in the DSP address space to which the data is to be sent.
buffer points to the data to be sent. nbytes is the number of bytes of data to be written. nbytes should
always be an even number. If nbytes is odd, nbytes+1 bytes of data will be written.

The data sent will be in the same byte order as it is in buffer. No byte order translation is performed.

DEVpipe_write uses parallel DMA I/O to transfer the data. As a result, the parallel control register is
updated by this routine. The parallel communications modes are altered to:

enable DMA
set PAR to be autoincremented on DMA

set the interrupt vector to 16 bit mode
RETURNS
DEVpipe_write should always return zero.

If nbytes is odd, DEVpipe_write will write nbytes+1 bytes of data and return -1 as its return value. The
return value should probably be the number of bytes written, not zero.

Pixel Machines Last change: Version 1.1 1

DEVpixel boot(3S) DEVtools DEVpixel_boot (3S)

NAME

DEVpixel _boot — load a Pixel Machine executable into specified set of pixel nodes

SYNOPSIS

#include <host/devtools.h>

int DEVpixel boot(pixel_system, filename, first_node, last_node,
load_table, options)

DEVpixel_system *pixel_system;

char *filename;

int first_node;

int last_node;

int load_table(];

int options;
DESCRIPTION

DEVpixel_boot determines whether the specified Pixel Machine executable file has been loaded into the
Pixel Machine. If the file has not been loaded, DEVplxel boot loads it into the specified set of nodes.

pixel_system is a pointer to the system structure of the system to be loaded. first_node and last_node
specify the range of nodes to be loaded. If first_node is set to DEV_ALL, all pixel nodes will be
loaded. load_table is a pointer to an array of boolean values that indicate for each node whether or not
the node should be loaded. If first_node <= node <= last_node and load_table[node] is true, then the
node is loaded. The load table feature is supplied to make it possible to load the same program into an
arbitrary group of nodes, while only reading the executable file once. If the load table feature is not
needed, a null pointer can be used as the argument.

options is used to specify certain optional processing. This value must be zero or a bitwise or of one or
more of the following values:

DEV_BOOT_VERBOSE: causes a description of the actions being performed to be displayed

DEV_BOOT_FORCE: causes the file to always be loaded regardless of the contents of the
system status file

DEV_BOOT _CHECK_TIME: causes the modification time of the file to be compared with the
modification time of the file currently loaded into the node (if the filenames are the same). If
the times are not the same, the file is reloaded.

RETURNS

DEVpixel_boot returns zero if the operation was successful, —1 if an error occurred. The following
error codes can be generated by DEVpixel_boot:

DEV_ERR_LDFILEOPEN: the specified file could not be opened
DEV_ERR_LDFILERR: the specified file is not a valid object file
DEV_ERR_OTHER: miscellaneous error while loading the program

Pixel Machines Last change: Version 1.1 1

DEVpixel buffer (3S) DEVtools DEVpixel_buffer (3S)

NAME
DEVpixel buffer - selects the frame buffer to be displayed
SYNOPSIS

#include <host/devtools.h>
#include <host/pixel.h>

void DEVpixel buffer(system,buffer)
DEVpixel_system *system;
DEVushort buffer;
DESCRIPTION
DEVpixel buffer selects the frame buffer to be displayed.

system is a pointer to the system description information returned by DEVopen. buffer indicates which
frame buffer is to be displayed, and must be one of the following values:

DEV_VBUFO: Display frame buffer 0
DEV_VBUF1: Display frame buffer 1

NOTES

Because this function updates the pixel node flag registers, it should only be used when the Pixel
Machine is halted.

Pixel Machines Last change: Version 1.1 1

DEVpixel_get(3S) DEVtools DEVpixel get(3S)

NAME

DEVpixel get — read a stream of bytes from a pixel DSP’s PIR register

SYNOPSIS

#include <host/devtools.h>

int DEVpixel_get(pixel_system, node, buffer, nbytes, timeout)
DEVpixel system *pixel system;

int node;

DEVbyte *buffer;

int nbytes;

int timeout;

DESCRIPTION

DEVpixel get reads a stream of bytes frém a pixel DSP’s PIR register. This function differs from
DEVpixel_read in that it requires a program running on the DSP to load data into the PIR register.
The implementation differs in that:

it does not use DMA
the address from which the data is to be read cannot be supplied
a timeout parameter must be supplied

Dpixel_system is a pointer to the system descriptor, node is the number of the pixel node from which the
data is to be read. buffer points to the location into which the data is to be read. nbytes is the number

~ of bytes of data to be read. nbytes should always be an even number. If nbytes is odd, nbytes+1 bytes

of data will be read. fimeout contains the number of times, for each two bytes transferred, that the PCR
register is to be tested to see if the data has been sent successfully.

No byte order translation is performed. The data read will be in the same byte order as it is in the DSP
memory.

As a result of this operation the parallel communications modes are altered to set the interrupt vector to
16-bit mode.

RETURNS

NOTES

DEVpixel get returns the number of characters read.

The timeout parameter contains the number of loop iterations to be attempted before giving up. Because
the execution rate depends on the system load, this could yield different results under different system
load conditions. Also, because there is no sleep involved, the host process could consume a great deal
of CPU time if the delay for each character is significant.

Pixel Machines Last change: Version 1.1 1

DEVpixel get msg(3S) DEVtools DEVpixel_get msg(3S)

NAME

DEVpixel get msg — read a message from a pixel DSP’s PIR register
SYNOPSIS

#include <host/devtools.h>

int DEVpixel get msg(pixel system, node, buffer, nbytes, swap)
DEVpixel_system *pixel_system;
int node;
DEVbyte *buffer;
int nbytes;
int swap;
DESCRIPTION

DEVpixel get msg reads a message from a pixel DSP’s PIR register. This function is similar to
DEVpixel get with the following exceptions:

a timeout parameter is not supplied

a byte swapping parameter is provided to allow mapping of DSP values into host values

Like DEVpixel get, DEVpixel get msg does not use DMA and requires that a program running on the
DSP load the data into the PIR.

pixel_system is a pointer to the system descriptor, node is the number of the pixel node from which the
data is to be read. buffer points to the location into which the data is to be read. nbytes is the number
of bytes of data to be read, and it should always be an even number. If nbytes is odd, nbytes+1 bytes of
data will be read. swap must be one of the following values:

DEV_SWAP_NONE:

no byte order conversion
DEV_SWAP_SHORT:

the buffer is treated as a collection of 2-byte values and the bytes are ordered as required
DEV_SWAP_LONG:

the buffer is treated as a collection of 4-byte values and the bytes are ordered as required.

If swap is DEV_SWAP_LONG, nbytes should be a multiple of 4 because a multiple of 4 bytes will
always be read.

As a result of this operation, the parallel communications modes are altered to set the interrupt vector to
16-bit mode.

RETURNS

DEVpixel get msg returns the number of characters read.
NOTES

This routine will hang and use a lot of CPU time if the process on the DSP does not load the expected
data into the PIR.

Pixel Machines Last change: Version 1.1 1

DEVpixel get pir(3S) DEVtools DEVpixel get pir(3S)

NAME
DEVpixel_get pir - read the PIR register of a pixel DSP

SYNOPSIS
#include <host/devtools.h>

DEVushort DEVpixel get pir(pixel_system,node)
DEVpixel system *pixel_system;
int node;
DESCRIPTION
DEVpixel get pir reads the PIR register of a pixel DSP. This function is a special version of
DEVpixel_get msg, and it always fetches two bytes without adjusting the byte order.

Like DEVpixel_get msg, DEVpixel_get pir does not use DMA and it requires that a program running
on the DSP load the PIR.

pixel_system is a pointer to the system descriptor, node is the number of the pixel node from which the
data is to be read.

As a result of this operation, the parallel communications modes are altered to set the interrupt vector to
16-bit mode.

DEVpixel_get pir returns the contents of the DSP’s PIR register as an unsigned short integer.

NOTES

This routine will hang and use a lot of CPU time if the process on the DSP does not load the expected
data into the PIR.

Pixel Machines Last change: Version 1.1 1

DEVpipe_halt(3S) DEVtools DEVpipe halt(3S)

NAME
DEVpipe_halt — halt a pipe node processor
SYNOPSIS '

#include <host/devtools.h>

int DEVpipe_halt(pixel system,node)
DEVpixel system *pixel_system;
int node;

DESCRIPTION

DEVpipe_halt halts a pipe node processor. After the processor has halted, the parallel communications
modes are altered to:

enable interrupts

enable DMA

set PAR to be autoincremented on DMA
set the interrupt vector to 16-bit mode

NOTES
DEVpipe_halt returns DEV_ERR_OK if the operations succeeds, DEV_ERR_FAIL otherwise.

Pixel Machines Last change: Version 1.1 1

DEVpipe_id_check(3S) DEVtools DEVpipe_id_check (3S)

NAME
DEVpipe_id_check — check status of node’s ID

SYNOPSIS
#include <host/devtools.h>
#include <host/crt0.h>

int DEVpipe_id check(system,node,id)
DEVpixel_system *system;

int node;

DEVert0_id *id;

DESCRIPTION
DEVpipe_id_check is used to check whether a node’s ID has been corrupted.

system is a pointer to the system description information retumed by DEVopen. node is the number of
the node to which the ID is to be written and is also used as a node identification number.

DEVpipe_id_check uses the parameter id to return the node ID information to the caller. id is a pointer
to a node identification block.

This function returns DEV_ERR_OK if the operation is successful, otherwise an error value is returned.
The possible error values are:

DEVERR_ID: Node ID information is invalid
DEVERR_NODE: Node number is invalid
SEE ALSO

DEVpipe_write(3S)
DEVpipe_read(3S)

Pixel Machines Last change: Version 1.1 1

DEVpipe_id_print(3S) DEVtools DEVpipe id print(3S)

NAME
DEVpipe_id_print — read and print the node ID of a processor
SYNOPSIS

#include <host/devtools.h>
#include <host/crt0.h>

int DEVpipe_id_print(system,node,id)
DEVpixel system *system;
int node;
DEVert0_id *id;
DESCRIPTION
DEVpipe_id_print reads the node ID from the processor’s memory and the node status information
from the system status file, and displays the information on standard output. DEVpipe id_print reads
the node ID from a processor and displays the information on standard output.

system is a pointer to the system descriptor. node is the number of the node to which the ID is to be
written and is also used as a node identification number.

The checksum information in the node is compared with the value stored in the system status file on the
host. If the checksum values do not match, the message Node checksum does not match is printed
beneath the program name.

This function return DEV_ERR_OK if the operation is successful, otherwise an error value is returned.
The possible error values are:

DEV_ERR_ID: Node ID information is invalid
DEV_ERR_NODE: Node number is invalid

EXAMPLE
Pipe node 0 identification data:

node id: 0

crt0 format: DEVtools

x nodes: 5

y nodes: 4

x offset: 0

y offset: 0

program: /usr/xyz/prog.dsp
semaphore: 0

SEE ALSO
DEVpipe_write(3S)
DEVpipe read(3S)

Pixel Machines Last change: Version 1.1 1

DEVpixel_id_write (3S) DEVtools DEVpixel_id_write (3)

NAME
DEVpixel id_write — write a node id block to a reserved location in a pixel node DSP’s memory

SYNOPSIS
#include <host/devtools.h>
#include <host/crt0.h>

int DEVpixel id_write(system,node,name)
DEVpixel system *system;
int node;
char *name;
DESCRIPTION
DEVpixel id_write writes a node identification block to a reserved location in pixel node memory. The
memory used to hold the node ID is allocated by the routine crt0, therefore pixel_crt0.0 must be linked
as part of the executable code running on the processor in order to use DEVpixel id_write.

system is a pointer to the system description information returned by DEVopen. node is the number of
the node to which the ID is to be written, and is also used as a node identification number. name is a
pointer to the name that is to be assigned to the node.

RETURNS

This function returns DEV_ERR_OK if the operation is successful, otherwise an error value is returned.
The possible error values are:

DEVERR_ID: Node ID information is invalid
DEVERR_NODE: Node number is invalid

SEE ALSO
DEVpixel_write(3S)

Pixel Machines Last change: Version 1.1 1

DEVpixel_mode_init (3S) DEVtools DEVpixel mode_init(3S)

NAME

DEVpixel mode_init - initialize pixel board mode register
SYNOPSIS

#include <host/devtools.h>

void DEVpixel_mode_init(system,omode)

DEVpixel_system *system;

DEVpixel modereg omode;

DESCRIPTION

DEVpixel mode_init sets overlay mode and initializes the gate bits, video shift rate, and the serial 1/O
connector selection fields in the pixel mode register on each pixel node board. A copy of the pixel
mode register is maintained on the host because the board’s pixel mode register cannot be read. As a
result, DEVpixel mode_init must be called during the initialization process, otherwise when a call is

made that updates the pixel mode register (DEVserial direction for example), it will load the register
with an uninitialized value.

system is a pointer to the system description information returned by DEVopen. omode must contain
one of the following values:

DEV_OVERLAY_OFF: Uses the values in rgb
DEV_OVERLAY_ON: If any overlay bit is on, the overlay value is used for the

red, green, and blue values. If all of the overlay bits are on, the inverse of rgb is used.
DEV_OVERLAY_FORCE: The overlay value is always used.

DEV_OVERLAY_MASK: If overlay bit 7 is on, the overlay value
is used for red, green, and blue; otherwise rgb is used.

DEVpixel_mode_init initializes the other components of the pixel mode register to default values. The
defaults are:

Mode Bits - DEV_GATES_SYNC | DEV_GATES_FIFO
Video shift rate - Appropriate value based on the system type
Serial I/O - Serial I/O connector/direction zero selected

NOTES

In order for overlaying to be performed, the overlay flags must be set in both pixel node boards’ pixel
mode registers and in the individual processor’s flag registers.
SEE ALSO

DEVpixel_overlay(3S)
PMoverlay(3X)

Pixel Machines Last change: Version 1.1 1

DEVpixel_mode_overlay (3S) DEVtools DEVpixel_mode_overlay (3S)

NAME
DEVpixel mode overlay - set overlay mode in the pixel mode register

SYNOPSIS
#include <host/devtools.h>

void DEVpixel mode_overlay(system,omode)
DEVpixel _system *system;
DEVpixel modereg omode;

DESCRIPTION

DEVpixel mode_overlay sets the overlay mode in the pixel mode register of each pixel node board.
Other fields of the pixel mode register are not affected.

system is a pointer to the system description information returned by DEVopen. omode must contain
one of the following values:

DEV_OVERLAY_OFF: Uses the values in rgb

DEV_OVERLAY_ON: If any overlay bit is on, the overlay value
is used for the red, green, and blue values. If all of the overlay bits are on, the inverse of
rgb is used. '

DEV_OVERLAY_FORCE: The overlay value is always used.

DEV_OVERLAY_MASK: If overlay bit 7 is on, the overlay value
is used for red, green, and blue; otherwise rgb is used.

NOTES

In order for overlaying to be performed, the overlay flags must be set in both the pixel node boards’
pixel mode register and in the individual processor’s flag registers.
SEE ALSO
DEVpixel overlay(3S)
PMoverlay(3X)

Pixel Machines Last change: Version 1.1 1

DEVpixel overlay (3S) DEViools DEVpixel overlay (3S)

NAME
DEVpixel _overlay — update overlay mode in all pixel processor’s flag registers
SYNOPSIS

#include <host/devtools.h>
#include <host/pixel.h>

void DEVpixel overlay(system,mode)
DEVpixel _system *system;
DEVushort mode;

DESCRIPTION

DEVpixel_overlay updates the overlay mode associated with each of the individual pixel processor’s
flag registers. The overlay mode must be set both in the pixel node board’s pixel mode register and for
the individual processors.

system is a pointer to the system description information returned by DEVopen. mode contains the new
contents of the overlay flag and must be one of the following values:

DEV_OVERLAY: Set the overlay flag

0 (zero): Clear the overlay flag
NOTES

Because this function updates the pixel node flag registers, it should only be used when the Pixel
Machine is halted.

The PMoverlay function should be used to set the overlay mode during execution.
SEE ALSO

PMoverlay(3X)

Pixel Machines Last change: Version 1.1 1

DEVpixel put(3S) DEVtools DEVpixel put(3S)

NAME

DEVpixel put — send a block of data to a pixel DSP’s PDR register
SYNOPSIS

#include <host/devtools.h>

int DEVpixel put(pixel_system, node, buffer, nbytes, timeout)
DEVpixel_system *pixel system;
int node;
DEVbyte *buffer;
int nbytes;
int timeout;
DESCRIPTION

DEVpixel put sends a block of data to a pixel DSP’s PDR register. This function differs from
DEVpixel write in that it requires that a program running on the DSP read data from the PDR register
and store it in the appropriate memory location. The implementation differs in that:

it does not use DMA

the address to which data is to be sent is not supplied

a timeout parameter must be supplied
pixel_system is a pointer to the system descriptor, node is the number of the pixel node from which the
data is to be written. buffer points to the data to be sent. nbytes is the number of bytes of data to be
written. nbytes should always be an even number. If nbytes is odd, nbytes+1 bytes of data will be writ-

ten. timeout contains the number of times, for each two bytes transferred, that the PCR register is to be
tested to see if the data has been sent successfully.

No byte order translation is performed. The data sent will be in the same byte order as it is in buffer.
As a result of this operation, the parallel communication modes are altered to:

disable DMA
set PAR to not be autoincremented on DMA
set the interrupt vector to 16-bit mode

RETURNS
DEVpixel_put returns the number of characters written.
NOTES

The timeout parameter contains the number of loop iterations to be attempted before giving up. Because
the execution rate depends on the system load, this could yield different results under different system
loadconditions. Also, because there is no sleep involved, the host process could consume a great deal of
CPU time if the delay for each character is significant.

Pixel Machines Last change: Version 1.1 1

DEVpixel read(3S) DEVtools DEVpixel read (3S)

NAME

DEVpixel read — read a block of memory from a pixel DSP
SYNOPSIS

#include <host/devtools.h>

int DEVpixel read(pixel_system, node, addr, buffer, nbytes)
DEVpixel_system *pixel system;
int node;
DEVushort addr;
DEVbyte *buffer;
int nbytes;
DESCRIPTION

DEVpixel read reads a block of memory from a pixel DSP. The data is retrieved from DSP memory
using parallel DMA.

pixel_system points to the system descriptor, node is the number of the pixel node from which the data
is to be read. addr is the location in the DSP address space that contains the data to be read. addr must
be an even memory location, aligned on a 16-bit word boundary. buffer points to the location into
which the data is to be read. nbytes is the number of bytes of data to be read. nbytes should always be
an even number. If nbytes is odd, nbytes+1 bytes of data will be read.

No byte order translation is performed. The data read will be in the same byte order as it is in the DSP
memory.

DEVpixel read uses parallel DMA I/O to transfer the data. As a result, the parallel control register is
updated by this routine. The parallel communications modes are altered to:

enable DMA
set PAR to be autoincremented on DMA
set the interrupt vector to 16-bit mode

RETURNS
DEVpixel_read should always return zero.

If nbytes is odd, DEVpixel read reads nbyfes+1 bytes of data and returns —1 as its return value. The
return value should be the number of bytes written, not zero.

SEE ALSO
DEVpixel_get(3S)

Pixcl Machines Last change: Version 1.1 1

DEVpixel run(3S) DEVtools DEVpixel run(3S)

NAME

DEVpixel run - begin execution of programs loaded into specified pixel nodes
SYNOPSIS

#include <host/devtools.h>

void DEVpixel _run(pixel_system, first_node, last_node, options)

DEVpixel_system *pixel_system;

int first_node;

int last_node;

int options;
DESCRIPTION

DEVpixel_run begins execution of the programs loaded into the specified pixel nodes.

pixel_system is a pointer to the system structure of the system whose node is to be started. first_node
and last_node specify the range of nodes.

options is used to specify certain optional processing. This value should be zero or the value
DEV_RUN_VERBOSE, which will cause DEVpixel_run to provide additional information.

RETURNS

DEVpixel run returns zero if execution started successfully, —1 if an error occurred. The following
error code can be generated by DEVpixel run:

DEV_ERR_STARTERR: the program loaded in the node could not be started
NOTES

DEVrun can be used to begin execution on all pipe and pixel nodes.

Pixel Machines Last change: Version 1.1 1

DEVpixel_system (3S) DEVtools DEVpixel system (3S)

NAME
DEVpixel_system DEVpipe_nodes, DEVlast_pipe, DEVpixel nodes, DEVlast_pixel, DEVx_nodes,
DEVy nodes, DEVx scale, DEVy scale, DEVx screen, DEVy screen, DEVmodel code,
DEVvideo_code, DEVpipe_code — macros used to fetch system description information from the sys-
tem descriptor

SYNOPSIS
#include <host/devtools.h>

int DEVpipe_nodes(pixel_system)
DEVpixel_system *pixel_system;

int DEVlast_pipe(pixel_system)
DEVpixel_system *pixel system;

int DEVpixel nodes(pixel_system)
DEVpixel_system *pixel_system;

int DEVlast_pixel(pixel_system)
DEVpixel_system *pixel system;

int DEVx_nodes(pixel_system)
DEVpixel_system *pixel system;

int DEVy_nodes(pixel_system)
DEVpixel_system *pixel system;

int DEVx_scale(pixel_system)
DEVpixel system *pixel system;

int DEVy scale(pixel system)
DEVpixel system *pixel system;

int DEVx_screen(pixel_system)
DEVpixel _system *pixel system;

int DEVy_screen(pixel_system)
DEVpixel system *pixel system;

DEVushort DEVmodel code(pixel system)
DEVpixel _system *pixel system;

DEVushort DEVvideo_code(pixel system)
DEVpixel_system *pixel system;

DEVushort DEVpipe_code(pixel system)
DEVpixel_system *pixel system;

DESCRIPTION

These macros are used to fetch system description information from the system descriptor. These mac-
ros should always be used to access this information. Direct use of the fields of the system structure is
unsupported.

Pixel Machines Last change: Version 1.1 1

DEVpixel_system (3S) DEVtools DEVpixel_system (3S)

The following describes the value returned by each macro:

DEVpipe_nodes: the number of pipe node processors (0, 9, or 18).

DEViast_pipe: the number of the last pipe node. Useful for calling routines such as DEVpoll_nodes.
DEVpixel_nodes: the number of pixel node processors (16, 20, 32, 40, or 64).

DEVlast_pixel: the number of the last pixel node. Useful for calling routines such as DEVpoll_nodes.
DEVx_nodes: the number of nodes in the X dimension (4, 5, 8, or 10)

DEVy_nodes: the number of nodes in the Y dimension (4 or 8)

DEVx_scale: the number of virtual nodes in the X dimension (8, or 10)

DEVy_scale: the number of virtual nodes in the Y dimension (8)

DEVx_screen: the screen width in pixels

DEVy_screen: the screen hight in pixels

DEVmodel_code: the system model
DEV_MODEL_916
DEV_MODEL 920
DEV_MODEL_932
DEV_MODEL_940
DEV_MODEL_964
DEV_MODEL 964X

DEVvideo_code - the video mode in use
DEV_MODEL_VIDEO_HIRES
DEV_MODEL VIDEO_NTSC
DEV_MODEL VIDEO PAL

DEVpipe_code - the pipe mode in use
DEV_MODEL_PIPE_SINGLE
DEV_MODEL_PIPE_PARALLEL
DEV_MODEL_PIPE_SERIAL
DEV_MODEL_PIPE_NONE

Pixel Machines Last change: Version 1.1 2

DEVpixel write(3S) DEViools DEVpixel write (3S)

NAME

DEVpixel _write — write a buffer to a pixel DSP
SYNOPSIS

#include <host/devtools.h>

int DEVpixel_write(pixel_system, node, addr, buffer, nbytes)
DEVpixel _system *pixel system;
int node;
DEVushort addr;
DEVbyte *buffer;
int nbytes;
DESCRIPTION
DEVpixel write writes a buffer to a pixel DSP. The data is transferred using parallel DMA.

pixel_system is a pointer to the system descriptor, node is the number of the pixel node from which the
data is to be written. addr is the location in the DSP address space to which the data is to be sent. addr
must be an even memory location, aligned on a 16-bit word boundary. buffer points to the data to be
sent. nbytes is the number of bytes of data to be written. nbytes should always be an even number. If
nbytes is odd, nbytes+1 bytes of data will be written.

No byte order translation is performed. The data sent will be in the same byte order as it is in buffer.

DEVpixel write uses parallel DMA /O to transfer the data. As a result, the parallel control register is
updated by this routine. The parallel communications modes are altered to:

enable DMA
set PAR to be autoincremented on DMA

set the interrupt vector to 16-bit mode

RETURNS
DEVpixel write should always return zero.

If nbytes is odd, DEVpixel write writes nbytes+1 bytes of data and returns —1 as its return value. The
return value should be the number of bytes written, not zero.

Pixel Machines Last change: Version 1.1 1

DEVpoll_nodes (3H) DEVtools DEVpoll_nodes (3H)

NAME

DEVpoll_nodes — poll DSP processors for messages

SYNOPSIS

#include <host/devtools.h>

int DEVpoll_nodes(pixel_system, firstpipe, lastpipe, firstpixel, lastpixel, iter_cnt, sleep)
DEVpixel _system *pixel_system;

int firstpipe, lastpipe;

int firstpixel, lastpixel;

int iter_cnt;

int sleep;

DESCRIPTION

DEVpoll_nodes is used to poll one, several, or all of the DSP processors to see if they have a user or
system message to be served. DEVpoll nodes must be called if the user has calls to printf,
PMusermsg, PMsiodir or PMhost_exit, in a pipe or pixel node program.

firstpipe and lastpipe are the node numbers of the lowest and highest pipe node processors to be polled.
firstpixel and lastpixel are the node numbers of the lowest and highest pixel node processors to be
polled. The lowest node on a system is always zero; the highest number is the number of nodes minus
one. If either the pipe or pixel nodes are not to be polled, DEV_NONE should be supplied for both the
first and last values.

iter_cnt is the number of times the designated processors are to be polled. If iter_cnt is
DEV_FOREVER, the polling process continues until an exit message is sent from one of the polled
processors or until the host program is interrupted. An exit message can be sent from a processor by
calling the PMhost_exit function.

sleep is the amount of time to sleep between each time the processors are polled. All of the processors
are polled before the system sleeps. If sleep is DEV_NONE, no sleep call is made. The sleep value is
passed to the usleep system call. DEV_NONE should only be used for applications that require very
fast response to Pixel Machine message requests because it causes the host to consume a large amount
of CPU time.

RETURNS

DEVpoll_nodes returns after all of the specified processors have been polled iter_cnt times, or when an
exit message is received from any of the polled nodes. The return value is 1 if an exit message was
received, O if the specified number of iterations have been completed.

EXAMPLE

#include <host/devtools.h>

main ()
{
if ((DEVinit () == NULL)) {
exit (1);
}
DEVrun (DEVsystem) ;

DEVpoll nodes (DEVsystem, 0, DEVlast_pipe (DEVsystem),

0, DEVlast_pixel (DEVsystem), DEV_FOREVER, DEV_NONE) ;
DEVexit () ;

Pixcl Machines Last change: Version 1.1 1

DEVpoll _nodes (3H) DEVtools DEVpoll_nodes (3H)

SEE ALSO
DEVexit(3H)
DEVinit(3H)
PMhost_exit(3N)
printf(3N)
PMusermsg(3N)
PMsiodir(3X)
usleep(2) on the host system

Pixel Machines Last change: Version 1.1 2

DEVput_color_map(3S) DEVtools DEVput_color_map (3S)

NAME

DEVput_color_map - update color tables from video controller board and return the value
SYNOPSIS

#include <host/devtools.h>

void DEVput_color_map(pixel_system, r, g, b)

DEVpixel _system *pixel_system;

int r[DEV_VIDEO_TABLE];

int g[DEV_VIDEO TABLE];

int b[DEV_VIDEO _TABLE];
DESCRIPTION

DEVput_color_map updates the color tables from the video controller board and returns the values to
the caller. Each color table contains 256 entries; each entry is a 10-bit value (0-1023).

SEE ALSO
DEVget_color_map(3S)

Pixel Machines Last change: Version 1.1 1

DEVput_image_header (3S) DEVtools DEVput_image_header (38)

NAME

DEVput_image_header — write a Pixel Machine image header to a file
SYNOPSIS

#include <stdio.h>

#include <host/devtools.h>

#include <host/devimage.h>

#include <host/deverror.h>

int DEVput_image_header(file, image_header, optional_header)

FILE file;
DEVimage header *image_header;
DEVbyte +optional_header;
DESCRIPTION
DEVput_image header writes the DEVimage_header and the optional user header (if one exists) to
the specified file.

file is a file descriptor obtained from a previous call to fopen(3). The file must have been successfully
opened for writing and the file pointer should be pointing to the beginning of the file (i.e., no previous
writes have been issued). Upon return from DEVput image header, the file pointer will be set to
where the pixel data should start (i.e., past the image and optional headers).

DEVput_image header will convert the DEVimage_header structure pointed to by image_header into
a string of decimal ASCII characters and write it to the file pointed to by file. If the magic structure

member is 0, it will be set to DEV_IMAGE_MAGIC before being written. If magic is non—zero, it will
be written as is.

If opticnal_header is non—zero, the characters pointed to it will be written to file immediately after the
image header. image_header—>optional_header_size bytes will be written.

RETURNS

DEVput_image_header returns 0 upon success and —1 on failure. DEVput image header will set
DEVerrno to indicate the reason for failure:

DEV_ERR_BAD_MAGIC: The magic number is not DEV_IMAGE_MAGIC.

DEV_ERR_WRITE_ERR: An error was returned by the fwrite(3) system call while writing either
the image header or the optional header.

NOTES

No value in the DEVimage_header should be greater than 100,000,000.
SEE ALSO

DEVimage header(4)

DEVget_image_header(3S)

Pixel Machines Last change: Version 1.1 1

DEVput pixel (3S) DEVools DEVput_pixel (3S)

NAME
DEVput pixel, DEVput pixels — writc pixels into the frame buffer

SYNOPSIS
#include <host/devtools.h>

void DEVput_pixel(system,buffer,x,y,r,g,b,0)
DEVpixel _system *system;

int buffer, x, y;

shortr, g, b, 0;

void DEVput_pixels(system,buffer,x,y,r,g,b,0,npixl)
DEVpixel _system *system;

int buffer, x, y;

short *r, *g, *b, *0;

int npixl;

DESCRIPTION

DEVput_pixel writes pixels into a frame buffer. Through this routine, a program can update the Pixel
Machine frame buffer without having to deal with the details of how the frame memory is organized on
different models of the system.

system is a pointer to the system description information returned by DEVinit. buffer indicates which
frame buffer is to be updated (must be the value O or 1). x is the x coordinate, y is the y coordinate. r,
g, b, and o are the values to be stored in the red, green, blue, and overlay values in the frame buffer.

DEVput_pixels writes a sequence of pixels for a single scan line. npix! is the number of pixels to be
written. 7, g, b, and o point to a sequence of red, green, blue, and overlay values to be written.

NOTES

DEVput_scan_line provides a more efficient and flexible facility for dowloading image data.
SEE ALSO

DEVpixel_write(3S)

DEVput_scan_line(3H)

Pixel Machines Last change: Version 1.1 1

DEVput_scan_line (3H) DEVtools DEVput_scan_line (3H)

NAME

DEVput_scan_line - download an image or a portion of an image to a Pixel Machine

SYNOPSIS

#include <host/devtools.h>
#include <host/devimage.h>

int DEVput_scan_line(system, X, y, npixels, nlines, mode, pixel_buffer)
DEVpixel_system *system;

unsigned int x, y;

unsigned int npixels, nlines, mode;

DEVpixel *pixel buffer;

DESCRIPTION

DEVput_scan_line transfers an image or a portion of an image from the host to a Pixel Machine. The
data is transferred from the host memory area specified by pixel_buffer according to the mode specified
by mode.

system is a pointer to the system description information returned by DEVinit. x is the starting x screen
coordinate, y is the starting y screen coordinate.

The buffer pointed to by pixel_buffer must contain (npixels * nlines * pixel size) bytes, where the pixel
size is determined by the mode argument as described below. In all cases, pixels will be accessed in,
pixel_buffer in the following order: (x,y), (x+1.y), ..., (x+npixels-1,y), (x,y+1), ..., (x+npixels-1,y+nlines-
1).

The mode argument is used to specify two pieces of information: how the pixels are stored in the array
pointed to by pixel_buffer, and which portion of Pixel Machine memory the data should be copied to.
These values are or’ed into the mode argument. Valid pixel format values for mode are:

DEV_RGBA_PACKED_PIXELS: pixels are stored in pixel_buffer, 4 bytes to a pixel, in the
following order: red, green, blue, alpha.

DEV_RGB_PACKED_PIXELS: pixels are stored in pixel_buffer, 3 bytes to a pixel, in the fol-
lowing order: red, green, blue.

DEV_MONO_R_PIXELS: pixels are stored in pixel_buffer, 1 byte to a pixel, with the red
component of the pixel actually being stored. This option is not available when downloading to
DEV_ZRAM BUFFER.

DEV_MONO_G_PIXELS: pixels are stored in pixel_buffer, 1 byte to a pixel, with the green
component of the pixel actually being siored. This option is not available when downloading to
DEV_ZRAM BUFFER.

DEV_MONO_B_PIXELS: pixels are stored in pixel_buffer, 1 byte to a pixel, with the blue
component of the pixel actually being stored. This option is not available when downloading to
DEV_ZRAM BUFFER.

DEV_MONO_A_PIXELS: pixels are stored in pixel_buffer, 1 byte to a pixel, with the alpha
(overlay) component of the pixel actually being stored. This option is not available when
downloading to DEV_ZRAM_BUFFER.

DEV_MONO_PIXELS: pixels are stored in pixel_buffer, 1 byte to a pixel. When downloading
to VRAM, the 1 byte pixel is written to the red, green, and blue component of a pixel.

DEV_MONO 16 PIXELS: pixels are stored in pixel_buffer, 2 bytes to a pixel. This option is
only available when downloading to DEV_ZRAM_BUFFER.

DEV_DSP_FLOAT _PIXELS: pixels are stored in pixel_buffer, 4 bytes to a pixel. This option

Pixel Machineg T .act chanoe* Vercion 11 1

DEVput_scan_line (3H) DEVtools DEVput_scan_line (3H)

is only available when downloading to DEV_ZRAM_BUFFER. B

DEV_IEEE_FLOAT_PIXELS: pixels are stored in pixel_buffer, 4 bytes to a pixel. During the
download operation, the pixels are converted from IEEE format floating point to DSP floating
point. This option is only available when downloading to DEV_ZRAM_BUFFER.

The following values are or’ed into the mode argument to specify which portion of Pixel Machine
memory to download to:

DEV_FRONT _BUFFER: Download pixels to the front (currently displayed) portion of
VRAM.

DEV_BACK_BUFFER: Download pixels to the back (currently non-displayed) portion of
VRAM. '

DEV_VRAMO_BUFFER: Download pixels to the VRAMO portion of VRAM.
DEV_VRAM1_BUFFER: Download pixels to the VRAMI portion of VRAM.
DEV_ZRAM_BUFFER: Download pixels to ZRAM.

The sizes of the above buffers vary depending on the type of Pixel Machine being used as defined in the
following table:

Model FRONT BACK VRAMO VRAM1 ZRAM
916 1024x1024 | 1024x1024 - - 1024x1024
920 1280x1024 | 1280x1024 - - 1280x1024
932 1024x1024 | 1024x1024 | 1024x2048 | 1024x2048 | 1024x2048 (
940 1280x1024 | 1280x1024 | 1280x2048 | 1280x2048 | 1280x2048
964 2048x1024 | 2048x1024 | 2048x2048 | 2048x2048 | 2048x2048
964X | 2048x1024 | 2048x1024 | 2048x2048 | 2048x2048 | 2048x2048

Note that subscreens are not used when downloading to ZRAM.

RETURNS

DEVput_scan_line returns 0 upon success and -1 on failure. DEVput_scan_line also sets DEVerrno
and DEVerr_msg upon failure.

NOTES

DEVput_scan_line sends a series of system commands to the pipe and pixel nodes to perform the
download operation. Pixel node programs must be prepared to receive this command or
DEVput_scan_line will fail. The pipe node programs must use PMgetop to read command opcodes.
The download commands are implicitly copied through the pipe by PMgetop. The pixel node program
should call PMenable during its initialization and should call PMgetcmd in its main processing loop.
PMgetcmd will recognize the system command and call the appropriate routine to display the scan
line(s).

DEVput_scan_line is an optimized version of DEVput pixels for operations like image upload and
image processing.
SEE ALSO
DEVput_pixels(3S)
DEVinit(3H)
PMenable(3N) c
PMgetcmd(3X) (I
PMgetop(3P)

Pixcl Machines Last change: Version 1.1 2

DEVread z(3S) DEVtools DEVread z(3S)

NAME

DEVread_z — read a buffer of bytes from the Z memory of a pixel node
SYNOPSIS

#include <host/devtools.h>

void DEVread_z(pixel_system, node, x, y, buffer, n)
DEVpixel_system *pixel system;
int node;
int x, y;
DEVbyte *buffer;
int n;
DESCRIPTION
DEVread_z reads a buffer of bytes from the Z memory of a pixel node. pixel_system is a pointer to the
memory mapped control block of the processor whose memory is to be read. x and y are the coordi-

nates in the Z memory where the read operation starts. buffer is a pointer to the area into which the
data is to be read. n is the number of bytes to be read.

The Z memory is organized as 256 rows of 256 32-bit words. ‘‘x’’ is the row from which the data is to
be read, ‘‘y”’ is the word offset of the data to be read. An even number of bytes is always read.

Transfers must not attempt to wrap past the end of a row, or, in other words, the offset in bytes (y * 4)
plus the number of bytes read (n) must not exceed the number of bytes per row (1024).

NOTES

This routine does not perform any byte order changes.
SEE ALSO

DEVpixel_read(3S)

DEVget scan_line(3H)

Version 1.1 Last change: Version 1.1 1

DEVrelease pipe_semaphore (3H) DEVtools DEVrelease pipe_semaphore (3H)

NAME
DEVrelease_pipe_semaphore, DEVrelease_pixel semaphore - clear the software semaphore in the
memory of one of the DSP processors

SYNOPSIS
#include <host/devtools.h>

void DEVrelease pipe_semaphore(pixel_system,node)
DEVpixel system #*pixel system;
int node;

void DEVrelease pixel semaphore(pixel _system,node)
DEVpixel system #*pixel system;
int node;

DESCRIPTION

These routines are used to clear the software semaphore in the memory of one of the DSP processors.

pixel_system is a pointer to the system descriptor, node is the number of the pipe or pixel node whose
semaphore is to be reset.

The semaphore can be set by a program running on one of the nodes by calling the PMsetsem routine.

These routines are used by the message serving system, but may also be used by user applications that
do not make use of the message serving routines. They should never be called by routines that serve

message requests from the Pixel Machine, as this would effect the synchronization between the Pixel
Machine and host system.

Pixel Machines Last change: Pixcl Machines 1

DEVrun(3H) ' DEViools DEVrun(3H)

NAME
DEVrun — begin execution of all pipe and pixel nodes

SYNOPSIS

void DEVrun(pixel system)

DEVpixel system *pixel system;
DESCRIPTION

DEVrun is used to begin execution of the programs loaded into all pipe and pixel node processors.
pixel_system is the system pointer returned by DEVinit. DEVinit must be called before calling DEV-
run. If DEVpipe boot and DEVpixel boot are used, they must be called before calling DEVrun.

SEE ALSO
DEVinit(3H)
DEVpipe boot(3H)
DEVpixel_boot(3H)

Pixel Machines Last change: Version 1.1 1

DEVserial direction (3S) DEVtools DEVserial_direction (3S)

NAME

DEVserial_direction - updates the serial I/O link direction
SYNOPSIS

#include <host/devtools.h>

int DEVserial_direction(system, direction)
DEVpixel _system *system;
int direction;
DESCRIPTION
DEVserial direction updates the serial I/O link direction.

system is a pointer to the system description information returned by DEVopen. direction indicates the
direction in which data is to be transferred, and must be one of:

DEV_NORTH
DEV_EAST
DEV_SOUTH
DEV_WEST

Based on the system type, the appropriate calls to DEVpixel mode_serial are executed to configure the
system for the desired serial I/O direction.

RETURNS
Returns O on success.
SEE ALSO
devprint(1)
DEVpoll_nodes(3M)
PMsiodir(3X)

Pixel Machines Last change: Version 1.1 1

DEVshadow_off (3S) DEV1ools DEVshadow_off (3S)

NAME
DEVshadow_off - tumns off updating of color lookup tables from shadow tables

SYNOPSIS
#include <host/devtools.h>

void DEVshadow_off(pixel system)
DEVpixel_system *pixel_system;

DESCRIPTION

DEVshadow_off turns off updating of the color lookup tables from the shadow tables. To avoid flicker-

ing caused by partially updated color tables, this function should be called before updating the lookup
tables.

SEE ALSO
DEVshadow_on(3S)

Pixel Machines Last change: Version 1.1 1

DEVswap long (3S) DEViools DEVswap_long (3S)

NAME
DEVswap _long — convert from DSP32 long integers to host long integers

SYNOPSIS
#include <host /devtools.h>

void
DEVswap_long(buffer, nbyte)
DEVbyte *buffer;
int nbyte;
DESCRIPTION
DEVswap_long converts an array of long integers in DSP32 format to long integers in the host
format(and vice—versa). The pointer to the array is passed in the argument buffer. The size of the array
in bytes is passed in the argument nbyte. nbyte is not the number of elements in the array.

The conversion is done in place.

SEE ALSO
DEVswap_short(3S)
DEVdsp_ieee(3S)
DEVieee_dsp(3S)
DEVsswapl(3S)

Pixel Machines Last change: Version 1.1 1

DEVswap_pipe (3H) DEVtools DEVswap_pipe (3H)

NAME

DEVswap pipe — switch primary and alternate pipes of a dual pipe system
SYNOPSIS

#include <host/devtools.h>

void DEVswap_pipe()

DESCRIPTION
On a dual pipe system, with the pipes operating in parallel mode, one pipe is the primary pipe and the
other is the alternate pipe. DEVswap_pipe reverses the functions of the two pipes. This is used to bal-
ance the load between the two pipes.

DEVswap pipe sends a system command to the primary pipe to perform the broadcast bus arbitration.
The command is passed through each of the pipe nodes until it reaches the last pipe node. When the
last pipe node processes the swap—pipe command, it releases the broadcast bus to the alternate pipe. It
then requests the bus and waits for bus access to be granted.

NOTES
Programs in pipe nodes 8 and 17 must have called PMenable(PM_ENABLE_SWAP_PIPE) in order to
correctly respond to the system command that DEVswap_pipe() sends.

Pipe node programs must use PMgetop to read command opcodes. The swap—pipe commands are
implicitly copied through the pipe by PMgetop.

Pipe node programs can control the broadcast bus independently using the PMswap_pipe function.

SEE ALSO
PMenable(3N)
PMgetop(3P)
PMbus_wait(3P)
PMswap_pipe(3P)

Pixel Machines Last change: Version 1.1.1 1

DEVswap_short(3S) DEVtools DEVswap_short(3S)

NAME

DEVswap_short — convert from DSP32 short integers to host short integers
SYNOPSIS

#include <host/devtools.h>

void

DEVswap_short(buffer, nbyte)
DEVbyte *buffer;

int nbyte;

DESCRIPTION

DEVswap_short converts an array of short integers in DSP32 format to short integers in the host format
(and vice—versa). The pointer to the array is passed in the argument buffer. The size of the array in
bytes is passed in the argument nbyte. nbyte is not the number of elements in the array.

The conversion is done in place.

SEE ALSO
DEVswap long(3S)
DEVdsp_ieee(3S)
DEVieee_dsp(3S)

Pixel Machines Last change: Version 1.1 1

DEVuser_msg_enable (3H) DEVitools DEVuser_msg_enable (3H)

NAME
DEVuser_msg_enable — define a message code and specify functions to be called

SYNOPSIS
#include <host/devtools.h>
#include <host/msgserve.h>

int DEVuser_msg_enable(code, pipefunction, pixelfunction)
int code;
int (*pipefunction)(),

(*pixelfunction)();

DESCRIPTION

DEVuser_msg_enable allows a program to define a message code that is to be recognized by the pol-
ling routine, and to specify the functions that are to be called to service the message.

code is the user message code. It must be greater than zero, but must be less than the value
DEV_HIGHEST _USER_MESSAGE (defined in host/msgserve.h).

When a user message with the value code is received from a DSP, the polling routine will call
pipefunction if the message is from a pipe node, or pixelfunction if the message is from a pixel node.

pipefunction must be defined as:

int pipefunction(opcode, pixel system, node)
int opcode;

DEVpixel system *pixel system;

int node; .

pixelfunction must be defined as:

int pixelfunction(opcode, pixel system, node)
int opcode;

DEVpixel system, *pixel system;

int node;

opcode is the value of code; this allows one function to service several codes. pixel system is the sys-
tem descriptor. node is the node number of the processor that sent the message.
SEE ALSO
DEVpoll nodes(3H)
PMusermsg(3N)

Pixel Machines Last change: Version 1.1 1

DEVwait_exit(3H) DEVtools DEVwait_exit(3H)

NAME

DEVwait_exit — wait for pixel nodes to signal completion, then call DEVexit
SYNOPSIS

void DEVwait_exit()
DESCRIPTION

DEVwait_exit sends a system command to all pixel nodes informing them that the host wishes to exit.
The pixel node programs must have called PMenable with the PM_ENABLE_WAIT_EXIT argument at
initialization in order to process the system command correctly.

Upon receipt of the system command, the pixel nodes perform a PMpsync operation to ensure all nodes
have finished, then sends a message to the host. When the host sees this message, it automatically calls
DEVexit before returning to the user.
SEE ALSO
DEVclose(3S)
DEVinit(3H)
DEVexit(3H)
PMenable(3N)

Pixel Machines Last change: Version 1.1 1

DEVwrite (3H) DEVtools

NAME

DEVwrite, DEVcwrite, DEVwriten, DEVcwriten,

DEVwrite _alt,

DEVwrite (3H)

DEVcread,

DEVreadn,

DEVreadn_alt, — macros to write to the Pixel Machines pipelines and read commands back from the

feedback FIFO

SYNOPSIS

#include <host/devtools.h>
#include <host/devcommand.h>

DEVulong DEVcommand(opcode,length)
short opcode;
short length;

short DEVcommand_opcode(command)
long command;

short DEVcommand_length(command)
long command;

void DEVcwrite0(command)
long command;

void DEVcwrite0_alt(command)
long command;

void DEVcwritel(command,type,x)

long command;

/* type is the type name of the remaining arguments */
type X;

void DEVcwritel _alt(command,type,x)

long command;

/* type is the type name of the remaining arguments */
type x;

void DEVwritel(type,x)
/* type is the type name of the remammg arguments */
type x;

void DEVwritel alt(type,x)
/* type is the type name of the remaining arguments */
type x;

void DEVcwrite2(command,type,x,y)

long command;

/* type is the type name of the remaining arguments */
type X, y;

void DEVcwrite2 alt(command,type,x,y)

long command;

/* type is the type name of the remaining arguments */
type x,y;

Pixel Machines Last change: Version 1.1

DEVwrite (3H) DEVtools DEVwrite (3H)

void DEVwrite2(type,x,y)
/* type is the type name of the remaining arguments */
type X ;

void DEVwrite2_alt(type,x,y)
/* type is the type name of the remaining arguments */
type X, y;

void DEVcwrite3(command,type,x,y,z)

long command;

/* type is the type name of the remaining arguments */
type Xx,Y, Z;

void DEVcwrite3_alt(command,type,x,y,z)

long command;

/* type is the type name of the remaining arguments */
type X, ¥ Z3

void DEVwrite3(type,x,y,z)
/* type is the type name of the remaining arguments */
type X, ¥, Z3

void DEVwrite3_alt(type,x,y,z)
/* type is the type name of the remaining arguments */
type X, ¥, Z5

void DEVcwrited(command,type,x,y,z,w)

long command;

/* type is the type name of the remaining arguments */
type X, ¥y 2, W35

void DEVcwrited4_alt(command,type,x,y,z,w)

long command;

/* type is the type name of the remaining arguments */
type X, Ys Z, W3

void DEVwrited(type,x,y,z,w)
/* type is the type name of the remaining arguments */
type X, ¥ Z, W5

void DEVwrite4_alt(type,x,y,z,w)
/* type is the type name of the remaining arguments */
type X, ¥y Z, W3

void DEVcwrite5(command,type,a,b,c,d,e)

long command;

/* type is the type name of the remaining arguments */
type a,b,cd,e;

void DEVcwrite5_alt(command,type,a,b,c,d,e)

long command;

/* type is the type name of the remaining arguments */
type a, b, c, d,e;

Pixel Machines Last change: Version 1.1 2

DEVwrite (3H) DEVitools DEVwrite (3H)

void DEVwrite5(type,a,b,c,d,e)
[+ type is the type name of the remaining arguments */
type a,b,cd,e;

void DEVwrite5_alt(type,a,b,c,d,e)
/* type is the type name of the remaining arguments */
type a, b, cd,e;

void DEVcwrite6(command,type,a,b,c,d,e,f)

long command;

/* type is the type name of the remaining arguments */
type a,b,c,d, e, f;

void DEVcwrite6_alt(command,type,a,b,c,d,e,f)

long command;

/* type is the type name of the remaining arguments */
type ab,cdef;

void DEVwrite6(type,a,b,c,d,e,f)
/* type is the type name of the remaining arguments */
type a,b,c,d, e f;

void DEVwrite6_alt(type,a,b,c,d,e,f)
/* type is the type name of the remaining arguments */
type a,b,c,d,e,f;

void DEVcwrite7(command,type,a,b,c,d,e,f,g)

long command;

/* type is the type name of the remaining arguments */
type a,b,cdef g;

void DEVcwrite7_alt(command,type,a,b,c,d,e,f,g)

long command;

/* type is the type name of the remaining arguments */
type a,b,c,d, e f,g;

void DEVcwrite8(command,type,a,b,c,d,e,f,g,h)

long command;

/* type is the type name of the remaining arguments */
type a,b,c,d,ef, g h;

void DEVcwrite8_alt(command,type,a,b,c,d,e,f,g,h)
long command;

/* type is the type name of the remaining arguments */
type a,b,c,d,ef,g h;

void DEVcwrite9(command,type,a,b,c,d,e,f,g,h,i)

long command;

/* type is the type name of the remaining arguments */
type a,b,cdef,gh,i

void DEVcwrite9_alt(command,type,a,b,c,d,e,f,g,h,i)
long command;

Pixel Machines Last change: Version 1.1 3

DEVwrite (3H)

Pixel Machines

DEVtools

/* type is the type name of the remaining arguments */
type a,b,c,d,ef, g h,i;

void DEVwrite9(type,a,b,c,d,e,f,g,h,i)

long command;

/* type is the type name of the remaining arguments */
type a,b,c,d, e f,gh,i;

void DEVwrite9_alt(type,a,b,c,d,e,f,g,h,i)

long command;

/* type is the type name of the remaining arguments */
type a,b,c,d,ef,gh,i;

void DEVcwriten(command,type,block,length)
long command;

/* type is the type name of block */

type block[];

int length;

void DEVcwriten_alt(command,type,block,length)
long command;

/* type is the type name of block */

type blockl];

int length;

void DEVwriten(type,block,length)
/+ type is the type name of block */
type block[];
int length;

void DEVwrite_alt(type,block,length)
/* type is the type name of block */
type block[];

int length;

void DEVcread0(command)
long command;

void DEVcread0_alt(command)
long command;

void DEVreadn(type,block,length)
/* type is the type name of block */
type block[];

int length;

void DEVreadn_alt(type,block,length)
/* type is the type name of block */
type block[];

int length;

Last change: Version 1.1

DEVwrite (3H)
(_
(
(

4

DEVwrite (3H) DEVtools DEVwrite (3H)

DESCRIPTION

These macros are used to write commands to the Pixel Machine pipelines and to read commands back
from the feedback FIFO.

Each command consists of a command code, an operand count, and a list of 32-bit operands. The
operands can be integers, host floating point numbers, or Pixel Machine floating point numbers. The
interpretation of the contents of the operands is the responsibility of the user written code on the Pixel
Machine that interprets the commands.

Macros that end with the string _alt write to the alternate pipe of a multi-pipe system, the routines
without _alt write to the primary pipe. _alt macros must not be used on single pipe systems or on
multi-pipe systems whose pipes are configured in parallel.

DEVcommand is used to encode an opcode and parameter count into a 32-bit command code. The
command argument of the DEVcwrite macros is usually a call to DEVcommand.

DEVcommand_opcode and DEVcommand_length are used with the DEVreadn macros to extract the
opcode and length from the encoded value.

The DEVcwrite0 through DEVewrite9 macros are used to write commands and a number of operands
that maich the last character of the macro name. DEVwrite) through DEVwrite9 macros write only
operands, they do not output a command code.

The read and write macros contain a type argument. This indicates the type of the arguments being read
or written. The storage class of the type argument must be such that sizeof(type) == 4 bytes and rype is
word aligned. All of the argument types in a given macro invocation must be the same. To create a
command with four arguments, the first two of which are floats and the last two of which are ints, the
following sequence of commands must be used:

DEVcwrite2(DEVcommand(opcode, 4), float, x, y);
DEVwrite2(int, i, j);

The DEV_writen and DEV_readn macros are used to write and read a block of operands. block is an

array of values to be used as operands. length is the number of elements of block to be used. length
must be less then or equal to 64.

NOTES

In a pipeless Pixel Machine, the DEVwrite macros write directly to the broadcast bus FIFOs. The
DEVread and _alt macros should not be used in a pipeless Pixel Machine.

Pixel Machines Last change: Version 1.1 5

DEVwrite z(3S) DEViools DEVwrite z(3S)

NAME
DEVwrite_z - writes a buffer of bytes into the Z memory of a pixel node

SYNOPSIS
#include <host/devtools.h>

void DEVwrite_z(pixel system,node, x, y, buffer, n)
DEVpixel_system *pixel_system;
int node;
int x, y;
DEVbyte *buffer;
int n;
DESCRIPTION
DEVwrite_z writes a buffer of bytes into the Z memory of a pixel node. pixel_system is a pointer to
the system description information returned by DEVopen(). x and y are the coordinates in the Z
memory where the write operation starts. buffer is a pointer to the data to be written. n is the number
of bytes to be written.

The Z memory is organized as 256 rows of 256 32-bit words. ‘‘x’’ is the row to which the data is to be
written, ‘‘y’’ is the word offset of the data to be written. An even number of bytes is always written.

Transfers must not attempt to wrap past the end of a row, or, in other words, the offset in bytes (y * 4)
plus the number of bytes written (n) must not exceed the number of bytes per row (1024).
NOTES
This routine does not perform any byte order changes.
SEE ALSO
DEVput_scan_line(3H)
DEVopen(3S)
DEVpixel write(3S)

Pixel Machines Last change: Version 1.1 1

PMapply (3X) DEVtools PMapply (3X)

NAME
PMapply — apply a function to all subscreens

SYNOPSIS
#include <pxm.h>

void PMapply(function [,arg] ...)
void (*function)(PMsubscrn *scrn ...);
DESCRIPTION

PMapply provides a convenient method of calling a rendering function once for each subscreen,
independent of the Pixel Machine model the code is being run on. function must take a pointer to a
subscreen structure as its first argument, which is inserted by PMapply; the other args given to PMap-
ply are passed on unchanged in each call to function made by PMapply.

EXAMPLES

To set a pixel node’s image memory to a specified color using the DEVtools routine PMclear:

PMpixeltype color;

PMapply (PMclear, 0, 0, PMimax, PMjmax, &color);
Without PMapply the above call would have to be written:

PMclear (PMscrns[0],0,0,PMimax, PMjmax, &color) ;
if (PMmx)
{
PMclear (PMscrns([1],0,0,PMimax, PMjmax, &color) ;
if (PMmy)
{
PMclear (PMscrns[2],0,0,PMimax, PMjmax, &color) ;
PMclear (PMscrns[3],0,0,PMimax, PMjmax, &color) ;

}

Of course, if the user is not concerned with portability across different models of the Pixel Machine, nei-
ther PMapply nor the if statements are needed. In this case, specify 1, 2 or 4 calls to the required func-

tion (in this example PMclear) with the corresponding subscreen argument, depending on the number of
subscreens in the model.

NOTES

PMapply is only useful in calling routines that do not modify their arguments and whose return value is,
not needed.

Pixel Machines Last change: Version 1.1 1

PMclear (3X) DEVtools PMclear (3X)

NAME
PMclear - fill a rectangular region of the screen

SYNOPSIS
#include <pxm.h>

void PMclear(scrn, imin, jmin, imax, jmax, color)
PMsubscrn *scrn;
short imin, jmin;
short imax, jmax;
PMpixeltype *color;
DESCRIPTION

PMclear fills a retangular section of a pixel node’s subscreen memory with color. scrn is a pointer to
an initialized PMsubscrn structure.

imin, jmin, imax and jmax are subscreen coordinates with the legal ranges:

i [0, PMimax]
J [0, PMjmax]

PMimax and PMjmax are automatically initialized to the appropriate value for the current model (see
the DEVtools User’'s Guide for more information on subscreen ranges).

Values beyond these ranges will generate unpredictable results.

color is a pointer to a PMpixeltype structure containing the red, green, blue and overlay components to

PMclear the region to. Each pixel within the region bounded by imin, imax, jmin, and jmax will be set
to these values.

NOTES
Refer to PMzbrk(3X) for page register use.

Pixel Machines Last change: Version 1.1 1

PMcolor_float (3N) DEVtools PMcolor_float(3N)

NAME
PMcolor_float - macro that converts internal color value to floating point number

SYNOPSIS
#include <pxm.h>

float PMcolor_float(color)
int color;

DESCRIPTION

PMcolor_float is a macro that converts an internal color value to a floating point number in the range
0.0 - 1.0.

SEE ALSO
PMint_color(3N)
PMcolor_int(3N)
PMfloat_color(3N)

Pixel Machines Last change: Version 1.1 1

PMcolor_int (3N) DEV1ools PMcolor_int(3N)

NAME
PMcolor_int - macro that converts internal color value to an integer

SYNOPSIS
#include <pxm.h>

int PMcolor_int(color)
int color;

DESCRIPTION
PMcolor_int is a macro that converts an internal color value to an integer in the range 0 - 255.

SEE ALSO
PMcolor_float(3N)
PMfloat_color(3N)
PMint_color(3N)

Pixel Machines Last change: Version 1.1 1

PMcopy_f(3X) DEVtools PMcopy_f(3X)

NAME
PMcopy_f — fast but dangerous 32 bit D/VRAM copy

SYNOPSIS
void PMcopy_f(to, from, count)
register float *to, *from;
register int count;

DESCRIPTION
PMcopy _f copies count words (4 bytes each) using a sequence of the longword-copy instruction:

a0 = (r3++ =rd++) * a0;

to reduce loop overhead.
to and from are any kind of pointer as long as they are 4 byte aligned. They can be pointers that use
page registers. They will work properly as long as the appropriate page registers were correctly initial-
ized.
For copying VRAM, it is necessary to call PMcopy_f twice, once with RG pointers and once with BO
pointers.
This is the most efficient copy available. PMcopy_f calls mover which can copy up to 64 words with no
overhead. mover resides in BANK 1 to eliminate conflict wait states in most cases.
For VRAM or DRAM to VRAM or DRAM copy, each 32—bit copy takes 550ns including clock stretch-
ing. For VRAM or DRAM to SRAM (and vice—versa) each copy is 375ns. For SRAM it takes 200ns
plus any possible conflict wait states. If both pointers point to BANK 0 (.text section or automatic data),
there are no wait states. If one pointer is in BANK 1, there is one 50ns conflict wait state, two if both
pointers point to BANK 1. All global and static data generated by the C compiler reside in BANK 1 by
default. Loop overhead is only encountered every 64 words.

NOTES
This copy is so blindingly fast that it may interfere with the video shift register load temporarily mess-
ing up the display. This problem only occurs in VRAM,; it is perfectly safe in SRAM.

RETURNS .
Results are undefined if the to and from pointers overlap.
If count < 1 it will be treated as a 1.

SEE ALSO

PMcopy s(3X)
PMcopy_v(3X)

Pixel Machines Last change: Version 1.1 1

PMcopy_s(3X) DEVitools PMcopy_s(3X)

NAME
PMcopy_s — safe 32—bit DRAM or VRAM copy

SYNOPSIS
void PMcopy_s(to, from, count)
register float *to, *from;
register int count;

DESCRIPTION
PMcopy_s copies count words (4 bytes each) using a 2 instruction loop.

to and from are any kind of pointer, but they must be 4 byte aligned. They can be pointers that use
page registers. They will work properly as long as the appropriate page registers were correctly initial-
ized.

For copying VRAM, it is necessary to call PMcopy_s twice, once with RG pointers and once with BO
pointers.

This copy is a little slower than PMcopy _f, but is guaranteed not to cause any video flashing problems.
It also resides in BANK 1 to eliminate conflict wait states in most cases.

For VRAM or DRAM to VRAM or DRAM copy, each 32-bit copy takes 550ns including clock stretch-
ing. For VRAM or DRAM to SRAM (and vice-versa) each copy is 375ns. For SRAM it takes 200ns
plus any possible conflict wait states. If both pointers point to video bank O (.text section or automatic
data), there are no wait states. If one pointer is in video bank 1, there is one 50ns conflict wait state,
two if both pointers point to video bank 1. All global and static data generated by the C compiler reside
in video bank 1 by default. Add to these times 200ns for loop overhead per word.

NOTES
Results are undefined if the to and from pointers overlap or are not 4 byte aligned.

If count < 1 PMcopy_s will return immediately.

SEE ALSO
PMcopy_f(3X)
PMcopy_v(3X)

Pixel Machines Last change: Version 1.1 1

PMcopy_v (3X) DEViools PMcopy_v(3X)

NAME
PMcopy_v — 32-bit copy with variable increments
SYNOPSIS

void PMcopy_v(to, from, to_inc, from_inc, count)
register float *to, *from;

register int to_inc, from_inc;

register int count;

DESCRIPTION

PMcopy v is similar to PMcopy_s but it allows the user to specify the increments for both the fo and

from pointers. The 32-bit copy and both increments are all accomplished in one DSP32 instruction,
plus one more instruction for loop control.

to and from can be any kind of pointer, but must be 4 byte aligned. to_inc and from_inc are the incre-
ments to be added to the pointers after each 32-bit copy.

count is the number of 4 byte words to copy.
NOTES
Results are undefined if the to and from pointers overlap, or are not 4 byte aligned.

RETURNS
If count < 1 PMcopy_v returns immediately.

SEE ALSO
PMcopy_s(3X)

Pixel Machines Last change: Version 1.1

PMcopycmd (3P) DEVtools PMcopycmd (3P)

NAME
PMcopycemd - copy opcode, parameter count, and data from input to output FIFO of a pipe node

SYNOPSIS
#include <pxm.h>

void PMcopycmd()

DESCRIPTION
PMcopycmd copies the opcode, count, and parameters of a pipe command to the output FIFO. The

parameters are copied directly from the input FIFO, but the opcode and count are copied from the
PMcommand structure (which is initialized by a previous call to PMgetop).

NOTES
PMcopycmd can only be called from a pipe node program.

SEE ALSO
PMcommand(4N)
PMgetop(3P)
PMgetcmd(3X)
PMgetdata(3P)
PMputop(3P)
PMputdata(3P)

Pixel Machines Last change: Version 1.1 1

PMcopyftob (3X) DEVtools PMcopyftob (3X)

NAME
PMcopyftob - copy front to back

SYNOPSIS
#include <pxm.h>

void PMcopyftob(scrn, i, j, npix, nline)

PMsubscrn *$Crn;

int i, j;

int npix, nline;
DESCRIPTION

PMcopyftob copies a block of video memory from the front buffer to the back buffer.

scrn is a pointer to an initialized PMsubscrn structure. i and j are the starting location of the block to
be copied. npix is the number of pixels and nline is the number of scan lines to be copied.

i and j are in the range of [0-PMimax] and [0-PMjmax], respectively. npix and nlines are in the range
of [1-PMimax+1] and [1-PMjmax+1], respectively.

This function also works in single buffer mode.

NOTES
Values outside these ranges will generate unpredictable results.

To copy from the back to front buffer call PMswapback before and after the call to PMcopyftob.

PMcopyftob saves and restores page registers.

SEE ALSO
PMswapback(3X)
PMcopyvtov(3X)

Pixel Machines Last change: Version 1.1 1

PMcopyvtov (3X) DEVtools PMcopyvtov (3X)

NAME
PMcopyvtov — copy blocks of VRAM

SYNOPSIS
#include <pxm.h>

void PMcopyvtov(bank_from, bank _to, i, j, ni, nj, di, dj)

int bank_from, bank_to;
int i, j;
int ni, nj;

int didj;
DESCRIPTION

PMcopyvtov copies a block of video memory from the specified video bank bank_from to bank_to.

The banks can be PM_VRAMO_BUFFER or PM_VRAM1_BUFFER. You can copy from either bank
to itself, or to the other bank.

i and j are the starting location of the block to be moved.
ni and nj are the number of pixels in the i and j directions, respectively, to be copied.

di and dj are the destination coordinates of the block.

i, j, di and dj are all in the range [0-255]; ni and nj are in the range [1-256].
NOTES
A value of less than 1 is treated as 1. Values outside these ranges will generate unpredictable results.

SEE ALSO
PMcopy_s(3N)

Pixel Machines Last change: Version 1.1 (DRFAT) 1

PMcopyvtoz (3X) DEVtools PMcopyvtoz (3X)

NAME

PMcopyvtoz — copy video RAM to DRAM

SYNOPSIS

#include <pxm.h>

void PMcopyvtoz(scrn, start_i, start_j, len_i, len_j, dest_i, dest_j, mode)
PMsubscrn *scrn;

int start_i;

int start_j;

int len_i;

int len_j;

int dest_i;

int dest_j;

int mode;

DESCRIPTION

NOTES

PMcopyvtoz copies a rectangular section of the VRAM buffer, len_i pixels by len_j pixels, from the
processor space coordinates, start i and start_j, to the Z (DRAM) buffer. dest_i and dest_j are the des-
tination coordinates in DRAM, and correspond to start_i and start_j, respectively. The section that is
copied depends on the value of mode. If the value is the defined constant PM_FRONT_BUFFER, the
image will be copied from the front, or visible, buffer. If the value is the defined constant
PM_BACK_BUFFER, the image will be copied from the back, or invisible, buffer. Images in VRAM
1 can be copied by or’ing in the value PM_VRAM1_BUFFER.

The pixel data is organized in ZRAM so that the color data is placed into four adjacent bytes, in the
order red, green, blue, overlay. Pixels with the same value of y are stored in the same row of memory;
those with the same value of x and same color, are stored in the same column. Each pixel that is owned
by a processor is adjacent to the next pixel owned by that processor, regardless of subscreen. For exam-
ple, ZRAM for a 964 will contain data for every eighth pixel in both x and y, while ZRAM for a 916
will contain the data for every fourth pixel in both x and y. Each pixel is copied to a different, well
defined, location. Pixels do not overwrite each other.

It does not make sense to use PM_VRAM1_BUFFER on models 916 or 920 because screen pixels are
already stored in both sections of VRAM.

This function can be called using PMapply(), which will call the function for all subscreens for each of
the processor coordinates chosen. However, if the data to be copied does not align so that the upper left
hand pixel falls on node 0 and subscreen 0, and the lower right hand pixel falls on the highest processor
and highest subscreen, the function will need to be called more selectively. In that case the processor
coordinates for each subscreen and the processors involved will need to be calculated from screen space,
and this function called within each pixel node for each subscreen structure, with the appropriate argu-
ments.

SEE ALSO

PMcopyztov(3X)
PMcopyztoz(3X)
PMqcopyztoz(3X)

Pixel Machines Last change: Version 1.1 1

PMcopyztov (3X) DEVtools PMcopyztov (3X)

NAME
PMcopyztov — copy DRAM to video RAM

SYNOPSIS
#include <pxm.h>

void PMcopyztov(scrn, start_i, start_j, len_i, len_j, dest_i, dest_j, mode)
PMsubscrn *scrn;

int start_i;

int start_j;

int len_i;

int len_j;

int dest_i;

int dest_j;

int mode;

DESCRIPTION

PMcopyztov copies a rectangular section of DRAM, len_i pixels wide by len_j pixels high, starting at
coordinates start_i and start_j, to the VRAM buffer. dest i and dest_j are the destination coordinates in
VRAM, and correspond to start_i and start_j, respectively. The section of VRAM which is copied to
depends on the value of mode. If the value is the defined constant PM_FRONT_BUFFER, the image
will be copied to the front, or visible, buffer. If the value is the defined constant PM_BACK_BUFFER,
the image will be copied to the back, or invisible, buffer. These values may be or’ed with
PM_VRAM1 BUFFER to copy to VRAMI.

This function is the inverse of PMcopyvtoz(), and assumes that the data in DRAM has the structure that
PMcopyvtoz would impose.
NOTES

It does not make sense to use PM_VRAM1_BUFFER on models 916 or 920 because screen pixels are
already stored in both sections of VRAM.
SEE ALSO
PMcopyvtoz(3X)
PMcopyztoz(3X)
PMqcopyztoz(3X)

Pixel Machines Last change: Version 1.1 1

PMcopyztoz (3X) DEVtools PMcopyztoz (3X)

NAME
PMcopyztoz — copy from one section of DRAM to another

SYNOPSIS
#include <pxm.h>

void PMcopyztoz(start i, start_j, len_i, len_j, dest_i, dest_j)
int start_i;

int start_j;

int len_i;

int len_j;

int dest_i;

int dest_j;

DESCRIPTION
PMcopyztoz copies a rectangular section of DRAM, with dimensions len_i long words (4 byte units) by

len_j long words, starting at coordinates start_i from start_j to another section of DRAM buffer. dest_i
and dest_j are the destination coordinates, and correspond to start_i and start_j, respectively.

The _i arguments are in units of 4 bytes, e.g., 1 byte for each of red, green, blue and overlay, or the
space for one float. Thus, if start i is set to 1, and len_i is set to 2, 8 bytes will be copied on each row,

starting at an offset of 4 bytes from the beginning of the row. In the _j direction, one row is copied to
one row.

NOTES

This function provides a copy from one address to another, arbitrary, address. If there is no chance of
overlapping copies, the function PMqcopyztoz() should be used, because it is faster and uses less code
space.

SEE ALSO
PMqcopyztoz(3X)
PMcopyvtoz(3X)
PMcopyztov(3X)

Pixel Machines Last change: Version 1.1 1

PMcos (3M) DEVtools PMcos (3M)

NAME
PMcos - trigonometric function to compute the cosine of an angle

SYNOPSIS
#include <libmath.h>

float PMcos(theta)
float theta;

DESCRIPTION
PMcos returns the cosine of theta.

theta must be in radians and be between -Pi/2 and +Pi/2.

Pixel Machines Last change: Version 1.1 1

PMdblbuff (3X) DEViools PMdblbuff (3X)

NAME
PMdblbuff — enable double buffering mode

SYNOPSIS
#include <pxm.h>

void PMdblbuff()

DESCRIPTION
PMdblbuff enables double buffering. Double buffering implies a distinction between a visible buffer

that is displayed by the video controller and a pixel buffer in which pixels are modified. PMswapbuff
exchanges these two buffers.

PMsnglbuff disables double buffering.

SEE ALSO
PMswapbuff(3X)
PMsnglbuff(3X)

Pixel Machines Last change: Version 1.1 1

PMdelay (3N) DEVtools PMdelay (3N)

NAME
PMdelay - do nothing for a specified time

SYNOPSIS
#include <pxm.h>

void PMdelay(time)
int time;

DESCRIPTION
PMdelay executes a delay loop for (time / 250) seconds.

Pixel Machines Last change: Version 1.1 1

PMenable (3N) DEVtools PMenable (3N)

NAME

PMenable — enable processing of selected system commands

SYNOPSIS

#include <pxm.h>
#include <syscmd.h>

void PMenable(function)

DESCRIPTION
PMenable enables reception of certain system commands that are sent by host programs. After calling
PMenable, any system commands that are generated by the host will be correctly processed when the
pixel node receives them using PMgetcmd.

PMenable should be called as part of the program’s initialization and must be called with one of the
following #defines:

PM_ENABLE_GET_SCAN_LINE: Enables processing of all system commands sent by the
DEVget scan_line host routine. This option allows upload of pixels from both VRAM and ZRAM.
This option only applies to pixel nodes.

PM_ENABLE_GET_VRAM: Enables processing of system commands sent by the
DEVget scan_line host routine to upload pixels from VRAM only. This option saves space if
ZRAM pixel upload is not needed. This option only applies to pixel nodes.

PM_ENABLE_GET_ZRAM: Enables processing of system commands sent by the
DEVget scan_line host routine to upload pixels from ZRAM only. This option saves space if
VRAM pixel upload is not needed. This option only applies to pixel nodes.

PM_ENABLE_PUT_SCAN_LINE: Enables processing of all system commands sent by the
DEVput_scan_line host routine. This option allows download of pixels to both VRAM and
ZRAM. This option only applies to pixel nodes.

PM_ENABLE_PUT _VRAM: Enables processing of system commands sent by the
DEVput_scan_line host routine to download pixels to any portion of VRAM. This option saves
space if ZRAM pixel upload is not needed. This option only applies to pixel nodes.

PM_ENABLE_PUT_ZRAM: Enables processing of system commands sent by the
DEVput_scan_line host routine to download pixels to any portion of ZRAM. This option saves
space if VRAM pixel upload is not needed. This option only applies to pixel nodes.

PM_ENABLE_SWAP_PIPE: Enables processing of system commands sent by the DEVswap_pipe
host routine. This option only applies to pipe nodes, and should only be used by the last node of
each parallel pipe (nodes 8 and 17).

PM_ENABLE_WAIT_EXIT: This option allows processing of system commands sent by the
DEVwait_exit host function. This option applies only to pixel nodes.

If PMenable is not called before the host sends the system command, the system command will not be
processed correctly.

NOTES

PMenable is implemented as a macro.

It is important to enable only those functions that will actually be used, because each one takes up addi-
tional code space.

Pixel Machines Last change: Version 1.1 1

PMenable (3N) DEVtools

SEE ALSO

DEVget_scan_line(3H)
DEVput_scan_line(3H)
DEVswap_pipe(3S)
DEVwait_exit(3H)
PMgetcmd(3X)

Pixel Machines Last change: Version 1.1

PMenable (3N)

PMfb on(3P) DEVtools PMib on(3P)

NAME

PMfb_on - direct output commands to the feedback FIFO
PMfb_off - direct output commands to the regular output FIFO

SYNOPSIS
#include <pxm.h>

void PMfb_on()
void Pbfb_off()

DESCRIPTION
PMfb_on directs the output of subsequent PMputop, PMputdata, and PMcpyemd calls to the feedback

FIFO instead of the output FIFO.
PMfb_off redirects the output to the output FIFO instead of the feedback FIFO.

NOTES
These functions must only be called from the last pipe node of each pipe board (nodes 8 and 17).

Pixel Machines Last change: Version 1.1.1 1

PMfdiv (3M) DEVtools PMfdiv (3M)

NAME
PMfdiv - perform floating point division
SYNOPSIS
#include <libmath.h>
float PMfdiv(a, b)
float a, b;
DESCRIPTION
PMfdiv computes the floating point value a * (1.0 / b). If b is equal to zero, PMfdiv returns a large
value of the same sign as a.
NOTES
PMIfdiv is intended to be called by assembly language routines.

Pixel Machines Last change: Version 1.1 1

PMfreezaddr (3X) DEVtools PMfreezaddr (3X)

NAME
PMfreezaddr - decrement references to a page register

SYNOPSIS
#include <pxm.h>

void PMfreezaddr(ptr)
char *ptr;

DESCRIPTION
PMfreezaddr is called to decrement the number of references to a page register. ptr is the pointer

returned by a previous call to PMgetzaddr. The pointer may have been incremented and still work with
PMfreezaddr as long as it did not get incremented past the end of the block.

Neither the contents of the page register nor the contents of the memory are changed in any way. The
purpose of PMfreezaddr is to make the page register available for use when it is no longer needed to
access this particular address, so that it may be used by a call to PMgetzaddr with a different PMzdesc
descriptor.

NOTES

If PMfreezaddr() is called with the PMzdesc returned by PMgetzaddr(), and PMgetzaddr() is called
again with the same PMzdesc, the value of the returned pointer may change, but the contents of the
memory pointed to will not be changed.

SEE ALSO
PMgetzaddr(3X)
PMgetzdesc(3X)
PMzbrk(3X)
PMblock_reg(3X)
PMavail_reg(3X)
PMset_lowreg(3X)
PMset_hireg(3X)

Pixel Machines Last change: Version 1.1 1

PMfxtoi (3X) DEVitools PMfxtoi (3X)

NAME
PMfxtoi - map a linear function of x from screen space to processor space i

SYNOPSIS
#include <pxm.h>

PMfxtoi(scrn, a, b)
PMsubscrn *scrn;
float a, b;

DESCRIPTION

PMfxtoi converts an expression of the form f(x)=Ay x+Bx to an expression of the form
f @)¥Aij i+Bi;. The macro actually modifies the values of A and B.

In the above expressions, the subscripts xy and ij are used to denote a constant in (x,y) space and a
constant in (ij) space, respectively.
NOTES
PMfxtoi is implemented as a macro.
SEE ALSO
DEVtools User’s Guide
PMfxytoij(3X)
PMfytoj(3X)

Pixel Machines Last change: Version 1.1 1

PMfxytoij (3X) DEVtools PMfxytoij (3X)

NAME
PMfxytoij - map a linear function of x and y from screen space to processor space i and j

SYNOPSIS
#include <pxm.h>

PMfxytoij(scrn, a, b, ¢)
PMsubscrn *scrn;
float a, b, c;

DESCRIPTION

PMfxyoij converts an expression of the form f (x,y)=Arp x+By y+Cy to an expression of the form
f G .j)=Aij i+Bij j+Cij. The macro actually modifies the values of A, B and C.

In the above expressions, the subscripts xy and ij are used to denote a constant in (x,y) space and a
constant in (ij) space, respectively.

NOTES

PMfxytoij is implemented as a macro.
SEE ALSO

DEVtools User’s Guide

PMfxt0i(3X)

PMfytoj(3X)

Pixel Machines Last change: Version 1.1 1

PMfytoj (3X) DEVtools PMfytoj (3X)

NAME
PMfytoj - map a linear function of y from screen space to processor space j

SYNOPSIS
#include <pxm.h>

PMfytoj(scrn, a, b)
PMsubscrn *scrn;
float a, b;

DESCRIPTION

PMfytoj converts an expression of the form f(y)=Ay y+By to an expression of the form
f ()=Aij j+Bij. The macro actually modifies the values of A and B.

In the above expressions, the subscripts xy and ij are used to denote a constant in (x,y) space and a
constant in (ij) space, respectively.
NOTES
PMfytoj is implemented as a macro.
SEE ALSO
DEVtools User’'s Guide
PMfxtoi(3X)
PMfxytoij(3X)

Pixel Machines Last change: Version 1.1 1

PMgetcmd (3X) DEVtools PMgetcmd (3X)

NAME
PMgetcmd — load command from a pixel node FIFO

SYNOPSIS
#include <pxm.h>

short PMgetcmd()

DESCRIPTION

PMgetcmd reads an opcode, parameter count, and parameters from the input FIFO and stores them in
the global PMcommand structure. The parameters are placed in the array pointed to by
PMcommand.data_ptr. The opcode is returned.

If the received command contains a negative opcode, the command is treated as a system command and
the appropriate system function is invoked. If the appropriate system command has not been previously
initialized by a call to PMenable, the command is ignored. In any case, PMgetcmd will consume all
system commands until a user (positive opcode) command is read from the input FIFO.

NOTES
PMgetcmd can only be called from a pixel node.

Unlike pipe nodes, pixel nodes may only receive commands from the FIFO.

PMgetcmd is implemented as a macro.

SEE ALSO

PMcommand(4N)
PMenable(3N)

Pixel Machines Last change: Version 1.1 1

PMgetdata (3P) DEV!tools PMgetdata (3P)

NAME
PMgetdata - get data from a pipe node FIFO

SYNOPSIS
#include <pxm.h>

void PMgetdata()

DESCRIPTION
PMgetdata reads parameters of a command from the input FIFO. The parameters are placed in the
array pointed to by PMcommand.data_ptr.

NOTES
PMgetdata can only be called from a pipe node.

PMgetdata must be preceded by a call to PMgetop.

SEE ALSO
PMcommand(4N)
PMgetop(3P)
PMputdata(3P)

Pixel Machines Last change: Version 1.1 1

PMgetop (3P) DEVtools PMgetop (3P)

NAME
PMgetop — get opcode and parameter count from input FIFO of a pipe node

SYNOPSIS
#include <pxm.h>

short PMgetop()
DESCRIPTION

PMgetop loads an opcode and parameter count from the input FIFO and stores them in the global
PMcommand structure. It returns the opcode.

If the received command contains a negative opcode, the command is treated as a system command and
the appropriate system function is invoked. If the appropriate system command has not been previously
initialized by a call to PMenable, the command is passed on to the output FIFO of this pipe node. In
any case, PMgetop will consume all system commands until a user (positive opcode) command is read
from the input FIFO.

NOTES

PMgetop can only be called from a pipe node.

PMgetop must be followed by a call to PMgetdata if PMcommand.count is non-zero.

PMgetop is implemented as a macro.

SEE ALSO
PMcommand(4N)
PMenable(3N)
PMgetdata(3P) -
PMputop(3P)

Pixel Machines Last change: Version 1.1 1

PMgetpix (3X) DEViools PMgetpix (3X)

NAME
PMgetpix — read a pixel from the current buffer

SYNOPSIS
#include <pxm.h>

short *PMgetpix(scrn, i, j, color)

PMsubscrn *scrn;

short i, j;

PMpixeltype *color;
DESCRIPTION

PMgetpix reads a single pixel from the frame buffer. scrn is a pointer to an initialized PMsubscrn
structure corresponding to the subscreen from which the pixel is read.

i and j are subscreen coordinates with the following legal ranges:

i [0, PMimax]
j [0, PMjmax]

PMimax and PMjmax are set to the appropriate value for the current model by system initialization.
(see the DEViools User’'s Guide for more information on subscreen ranges).

Values beyond these ranges will generate unpredictable results.

color is a pointer to a PMpixeltype structure whose red, green, blue and overlay components will be
loaded with the pixel data contained at (i,j) in scrn.

PMgetpix returns a pointer to the next pixel on the given row (i+1,/). This pointer can be used by
PMgqget for more efficient frame buffer access.

NOTES

Refer to PMzbrk(3X) for page register use.
SEE ALSO

PMputpix(3X)

PMgqget(3X)

Pixel Machines Last change: Version 1.1 1

PMgetrow (3X) : DEVtools PMgetrow (3X)

NAME

PMgetrow, PMgetcol, PMputrow, PMputcol — read or write a scanline or scancolumn from pixel
memory without subscreens

SYNOPSIS

#include <pxm.h>

void PMgetrow(buf, row, col, npix)
PMpixeltype *buf;
int row, col, npix;

void PMgetcol(buf, row, col, npix)
PMpixeltype *buf;
int row, col, npix;

void PMputrow(buf, row, col, npix)
PMpixeltype *buf;
int row, col, npix;

void PMputcol(buf, row, col, npix)
PMpixeltype *buf;
int row, col, npix;

DESCRIPTION

These four functions implement reading and writing pixels in subscreen—independent space. That is,
these routines treat pixel memory as a single block of pixels and alternate access to subscreens as
needed to preserve this illusion. Thus, in a 916, for example, instead of using PMgetscan and calling it
four times with each of the four 128 by 128 subscreens, PMgetrow can be called once on a 256 by 256
buffer of pixels without the use of subscreens. This abstraction is useful for working in deinterleaved
pixel space (e.g., filtering code). Either rows or columns can be accessed with these four functions.

For a full screen image, the size of subscreen-independent pixel memory is:

model cols rows
964X 160 128
964 128 128

940932 | 128 | 256
920916 | 256 | 256

PMgetrow and PMputrow read or write a row of pixels at a time, while PMgetcol and PMputcol read
or write columns.

buf is a buffer of pixels to write to pixel memory (PMputrow, PMputcol) or read from pixel memory
(PMgetrow, PMgetcol). The buf array must be large enough to store the requested pixels.

col and row are coordinates in subscreen—independent space. The number of pixels is specified in npix.
Note that each pixel will take up 8 bytes (sizeof (PMpixeltype)) so buf must be 8 times npix.

To map from screen space to subscreen—independent processor space the coordinate conversion macros
(PMilo, PMihi, PMjlo, PMjhi), etc. should be used with the global PMrealscrn subscreen pointer.

Pixel Machines Last change: Version 1.1 1

PMgetrow (3X) DEVtools PMgetrow (3X)

NOTES
Subscreen—independent space is only an abstraction on top of subscreens. Although these routines do
not use PMsubscrn pointers, they read and write pixels using subscreens, alternating between sub-

screens when needed. In most cases using the subscreen oriented routines will be faster because pixels
are accessed linearly.

Refer to PMzbrk(3X) for page registers used.

SEE ALSO
PMgetscan(3X)
PMputscan(3X)

Pixel Machines Last change: Version 1.1 2

PMgetscan (3X) DEVtools PMgetscan (3X)

NAME
PMgetscan — read a scanline from a subscreen

SYNOPSIS
#include <pxm.h>

void PMgetscan(scrn, buf, row, col, npix)
PMsubscrn *scrn;
PMpixeltype *buf;
short row, col, npix;
DESCRIPTION

PMgetscan reads a row of npix pixels starting at (col,row) in subscreen scrn into the buffer buf, which
must be large enough to hold the pixels.

scrn is a pointer to an initialized subscreen pointer. col and row are subscreen coordinates in the fol-
lowing legal ranges:

col [0,PMimax]

row [0,PMjmax]

PMimax and PMjmax are set to the appropriate value for the current model by system initialization (see
the DEVtools User’'s Guide for more information on subscreen ranges).

Values beyond these ranges can generate unpredictable results.
SEE ALSO

PMgetcol(3X)

PMgetrow(3X)

PMputscan(3X)

Pixel Machines Last change: Version 1.1 1

PMgetzaddr (3X) DEVtools PMgetzaddr (3X)

NAME

PMgetzaddr - load a page register and return an address to a section of DRAM

SYNOPSIS

#include <pxm.h>

char *PMgetzaddr(desc)
PMazdesc desc;

DESCRIPTION

PMgetzaddr() is called to gain access to the portion of DRAM memory allocated by PMgetzdesc via a
pointer and page register. desc is the Z memory descriptor returned from a previous call to
PMgetzdesc.

A table of available page registers is maintained by PMgetzaddr. Page registers O through 13 are avail-
able by default. Registers may be blocked by calls to the macros PMblock_reg(), PMavail reg(),
PMset_lowreg() and PMset_hireg(). The table is searched to see if the 1K row containing the memory
to be accessed has been loaded into a page register. If the row has already been loaded, the number of
accesses using that page register is incremented and the address is returned. If the row is not already
loaded, an unaccessed page register is searched for and loaded with the page descriptor, if such a page
register is found. The number of accesses to the page register is then incremented.

If no page registers are available, it will be necessary to call PMfreezaddr to free one up and tem-
porarily restrict access to that block. By careful use of PMfreezaddr and PMgetzaddr and knowing
how many page registers are available, it should be possible to never run out of page registers.

RETURNS

NOTES

PMgetzaddr() returns a pointer to the valid memory address, if a page register can be found. NULL is
returned on failure.

If PMfreezaddr() is called with the PMzdesc returned by PMgetzaddr(), and PMgetzaddr() is called
again with the same PMzdesc, the value of the returned pointer may change, but the contents of the
memory pointed to will not be changed.

Unpredictable results can occur if the memory past the end of the allocated block is accessed.

SEE ALSO

PMfreezaddr(3X)
PMgetzdesc(3X)
PMzbrk(3X)
PMblock_reg(3X)
PMavail reg(3X)
PMset_lowreg(3X)
PMset_hireg(3X)

Pixel Machines Last change: Version 1.1 1

PMgetzbuf (3X) DEVtools PMgetzbuf (3X)

NAME

PMgetzbuf - read a float value from the Z buffer

SYNOPSIS

#include <pxm.h>

float *PMgetzbuf(scrn, i, j, zptr)
PMsubscrn *scrn;

short i, j;

float *zptr;

DESCRIPTION

NOTES

PMgetzbuf reads a single value from Z buffer memory. scrn is a pointer to an initialized PMsubscrn
structure corresponding to the subscreen from which the value is to be read.

i and j are subscreen coordinates with the following legal ranges:

i [0, PMimax]
Jj [0, PMjmax]

PMimax and PMjmax are set to the appropriate value for the current model by system initialization
(see the DEVtools User’s Guide for more information on subscreen ranges).

Values beyond these ranges will generate unpredictable results.
zptr is a pointer to a floating point number to be written with the Z value contained at (i,/) in scrn.

PMgetzbuf returns a pointer to the next Z value on the given row (i+1,). This pointer can be used by
PMgqzget for more efficient Z buffer access.

For even faster access, the pointer returned can be used directly (unlike the pointer returned from
PMgetpix) because Z buffer memory is fully mapped.

Refer to PMzbrk(3X) for page register use.

The pointer returned can be cast to other types to allow the Z memory to be used for char, int and other
data types.

EXAMPLE

PTR=PMgetzbuf (scrn, i, j, zval
z2=ptr++
z3=ptr++

SEE ALSO

PMgetpix(3X)
PMputzbuf(3X)
PMqzget(3X)
PMzget(3X)

Pixel Machines Last change: Version 1.1 1

PMgetzdesc (3X) DEVtools PMgetzdesc (3X)

NAME
PMgetzdesc, PMzdesc_valid - allocate a DRAM block

SYNOPSIS
#include <pxm.h>

PMzdesc PMgetzdesc(numbytes)
int numbytes;

PMzdesc_valid(desc)
PMzdesc desc;

DESCRIPTION

PMgetzdesc() is called after PMzbrk() has reserved the DRAM memory resources to allocate memory
in blocks up to 1024 bytes. numbytes is the requested number of bytes, which must be less than or
equal to 1024. The allocated memory is aligned on 4 byte boundaries.

PMgetzdesc returns a memory descriptor, of type PMzdesc, that contains two elements of addressing
information. One element contains the number of the 1K block that holds the first available memory,
and the other contains the offset of that memory from the beginning of that block. The offset is given
in units of 4 bytes.

Memory is allocated from the beginning of the section reserved by PMzbrk() until the end of DRAM.
No block may wrap over a 1K boundary, therefore, PMgetzdesk may have to skip over memory to
guarantee this. Because of this, it is advisable to allocate memory in chunks that divide into 1024
evenly. Once a block of memory is allocated with PMgetzdesc it cannot be freed, except by reinitializ-
ing with a call to PMzbrk, which then starts the allocation process from the beginning.

In order to actually gain access to the memory being allocated, the descriptor must be used in a subse-
quent call to PMgetzaddr().

RETURNS

If successful, PMgetzdesc returns a descriptor of type PMzdesc, as described above. If there is no
more reserved DRAM left or if the portion left is smaller than the numbytes requested, both elements of
the returned descriptor are zero. Validity of a descriptor can be tested with the macro
PMzdesc_valid(desc), where desc is the descriptor being tested. The value is non-zero if the result is
valid.

NOTES
Requesting more than 1024 bytes can produce unpredictable results.

SEE ALSO
PMgetzaddr(3X)
PMfreezaddr(3X)
PMzbrk(3X)

Pixel Machines Last change: Version 1.1 1

PMhost_exit(3N) DEVtools PMhost_exit (3N)

NAME
PMhost_exit — send a message to the host that signals the completion of a Pixel Machine program

SYNOPSIS
void PMhost_exit()

DESCRIPTION
PMhost_exit sends a message to the host that causes the DEVpoll nodes function to return to the
caller. This is usually used to signal the completion of a Pixel Machine program, but may also be used
in other applications where the Pixel Machine may want to request that DEVpoll nodes return to the
caller.

NOTES

If devprint is running on the host, PMhost_exit will cause it to terminate.
SEE ALSO

devprint(1)

DEVpoll_nodes(3H)

DEVwait_exit(3H)

Pixel Machines Last change: Version 1.1 1

PMieee dsp (3M) DEVtools PMieee_dsp (3M)

NAME

PMieee_dsp - convert IEEE float to DSP float
SYNOPSIS

#include <libmath.h>

float *PMieee_dsp(len, ptr)
int len;
float *ptr;

DESCRIPTION

The len floating point numbers in IEEE format stored at ptr are converted to DSP32 format. A pointer
immediately following the end of the array (ptr+len) is returned.

SEE ALSO
PMlong_dsp(3M)

Pixel Machines Last change: Version 1.1 1

PMihi (3X) DEVtools PMihi (3X)

NAME
PMihi - map from screen space (xmax) to processor space (ihi)

SYNOPSIS
#include <pxm.h>

int PMihi(scrn, x)
PMsubscrn *scrn;
float x;

DESCRIPTION

PMihi performs the mapping from screen space to processor space. The domain transformation that
maps from Cartesian (x,y) screen space to (i,j) processor space is as follows:

i=pb (x - Ox)
i =7y 0 -0y
Ny Y

where Nx and Ny are the numbers of processors in the x and y directions, respectively, and Ox and Oy
are the x and y offsets into the processor array, respectively. PMihi converts a screen space coordinate
x to a processor space coordinate i that will guarantee satisfying the condition :

i Nx +0x <x

This ensures that all i values generated will map to screen coordinates less than or equal to x. The i
value is always used as the last valid pixel to be rendered by a processor.

NOTES
PMihi is implemented as a macro.

SEE ALSO
DEVtools User's Guide
PMilo(3X)
PMjle(3X)
PMjhi(3X)

Pixel Machines Last change: Version 1.1 1

PMilo (3X) DEVtools PMilo (3X)

NAME

PMilo - map from screen space (xmin) to processor space (ilo)
SYNOPSIS

#include <pxm.h>

int PMilo(scrn, x)
PMsubscrn *scrn;
float x;

DESCRIPTION

This macro performs the mapping from screen space to processor space. The domain transformation
that maps from Cartesian (x,y) screen space to (i ,j) processor space is as follows:

i =z (x - Ox)
i=%y 0 -0y

where Nx and Ny are the numbers of processors in the x and y directions, respectively, and Ox and Oy
are the x and y offsets into the processor array, respectively.

PMilo converts a screen space coordinate x to a processor space coordinate i that guarantees satisfying
the condition :

i Nx +0Ox 2>x

This ensures that all { values generated will map to screen coordinates greater than or equal to x. The i
value is always used as the first valid pixel to be rendered by a processor.

NOTES
PMilo is implemented as a macro.

SEE ALSO
DEViools User's Guide
PMihi(3X)
PMjlo(3X)
PMjhi(3X)

Pixel Machines Last change: Version 1.1 1

PMint_color (3N) DEVtools PMint_color (3N)

NAME
PMint_color - macro that converts an integer to an internal color value

SYNOPSIS
#include <pxm.h>

int PMint_color (i)
int i;

DESCRIPTION

PMint_color is a macro that converts an integer in the range 0 - 255 to an internal color value. Results
for input values outside of the supported range are undefined.

SEE ALSO
PMcolor_int(3N)
PMcolor_float(3N)
PMfloat_color(3N)

Pixel Machines Last change: Version 1.1 1

PMinterleave (3X) DEVtools PMinterleave (3X)

NAME

PMinterleave — interleave or deinterleave a block

SYNOPSIS

#include <pxm.h>
#include <sysmsg.h>

void PMinterleave(mode, dir, x, y, nx, ny, ram)

int mode;
int dir;
int X, V5
int nx, ny;
int ram;
DESCRIPTION

NOTES

PMinterleave() deinterleaves or interleaves a rectangular region of the screen starting at (x,y) in screen
space, for a size of nx pixels by ny scanlines in one dimension. The values of x and y are restricted to
multiples of the number of processors in the x and y directions (PMnx, PMny), respectively.

nx and ny must be multiples of PMnx squared and PMny squared, respectively.

mode is either PM_INTERLEAVE or PM_DEINTERLEAVE, and specifies if this is an interleave or
deinterleave operation.

dir is the dimension, either PM_ROW_INT or PM_COL_INT for horizontal or vertical.

x and y are the upper left hand coordinate of the block in screen space and are in the range [0-
(PMxmax-1)] and [0-(PMymax-1)].

nx and ny are the number of pixels in the x and y direction, respectively, and are in the range [0-
PMxmax)] and [0-PMxmax)].

The ram parameter is one of:
PM_VRAM1_BUFFER: uses VRAMI instead of VRAMO on a 932 and higher.

If in double buffer mode, (i,j) must be within the correct limits, otherwise they can be
larger as with PM_FRONT_BUFFER.

PM_BACK_BUFFER: the currently non—displayed buffer.

PM_FRONT_BUFFER: the currently displayed buffer. Note, however, that in an

appropriately large model in single buffer mode, you can specify i,j out of bounds, e.g.,
on a 964 (512,512) will work.

PM_ZRAM_BUFFER: uses ZRAM without subscreens.

To interleave (deinterleave) in two dimensions call PMinterleave() twice with the same parameters
except change dir from PM_ROW to PM_COL (or vice-versa).

For PMinterleave() to work, the Pixel Machine must be equipped with the necessary SIO hardware.

This function changes the SIO direction. The host must be polling via a call to DEVpoll nodes() or
running the devprint(1) utility. PMpsync() is called internally.

PMinterleave() needs 4200 bytes available on the stack.

Pixel Machines Last change: Version 1.1 1

PMinterleave (3X) DEV1tools

Saves and restores any page registers that it uses.
SEE ALSO

PMpsync(3X)

PMsiodir(3X)

PMmsg_exchange(3X)

PMmsg_setup(3X)

PMsioinit(3X)

DEVpoll_nodes(3S)

devprint(1)

Pixel Machines Last change: Version 1.1

PMinterleave (3X)
(
(

2

PMjhi (3X) DEVtools PMjhi (3X)

NAME
PMjhi — map from screen space (ymax) to processor space (jhi)

SYNOPSIS
#include <pxm.h>

int PMjhi(scrn, y)

PMsubscrn *scrn;

float y;
DESCRIPTION

PMjhi performs the mapping from screen space to processor space. The domain transformation that
maps from Cartesian (x,y) screen space to (i ,j) processor space is as follows:

i= b (x - Ox)
i=Ay -0y

where Nx and Ny are the numbers of processors in the x and y directions, respectively, and Ox and Oy
are the x and y offsets into the processor array, respectively.

PMjhi converts a screen space coordinate y to a processor space coordinate j that will guarantee satis-
fying the condition :

J Ny +0y <y

This ensures that all j values generated will map to screen coordinates less than or equal to y. The j
value is always used as the last valid pixel to be rendered by a processor.

NOTES
PMjhi is implemented as a macro.
SEE ALSO
DEVtools User’'s Guide
PMilo(3X)
PMihi(3X)
PMjlo(3X)

Pixel Machines Last change: Version 1.1 1

PMijlo (3X) DEViools" PMjlo (3X)

NAME

PMjlo - map from screen space (ymin) to processor space (jlo)
SYNOPSIS

#include <pxm.h>

int PMjlo(scrn, y)
PMsubscrn scrn;
float y;

DESCRIPTION

PMjlo performs the mapping from screen space to processor space. The domain transformation that
maps from cartesian (x,y) screen space to (i,j) processor space is as follows:

i=7;}f(x—0x)
ji=qy 6 -0y

where Nx and Ny are the numbers of processors in the x and y directions, respectively, and Ox and Oy
are the x and y offsets into the processor array, respectively.

PMjlo converts a screen space coordinate y to a processor space coordinate j that will guarantee satisfy-
ing the condition :

J Ny +0yz2y

This ensures that all j values generated will map to screen coordinates greater than or equal to y. The j
value is always used as the first valid pixel to be rendered by a processor.

NOTES
PMjlo is implemented as a macro.
SEE ALSO

DEVtools User’s Guide
PMilo(3X)
PMihi(3X)
PMjhi(3X)

Pixel Machines Last change: Version 1.1 1

PMldot (3M) DEVtools PMldot (3M)

NAME
PMildot - specialized dot product for light sources

SYNOPSIS
#include <libmath.h>

float PMIdot(v0, v1)
float vO[3], v1[3];

DESCRIPTION

PMldot calculates the dot product of vectors v0 and vI. If the result is negative, PMldot returns zero,
otherwise it returns the value of the dot product.

Pixel Machines Last change: Version 1.1 1

PMlong_dsp(3M) DEVtools PMlong_dsp(3M)

NAME
PMlong_dsp - convert an array of longs to float

SYNOPSIS
#include <libmath.h>

long *PMlong_dsp(len, ptr)
int len;
float *ptr;

DESCRIPTION

The len long numbers stored at ptr are converted to float. A pointer immediately following the end of
the array (ptr+len) is returned.

SEE ALSO
PMieee_dsp(3M)

Pixel Machines Last change: Version 1.1 1

PMmsg_exchange (3X) DEVtools PMmsg_exchange (3X)

NAME
PMmsg_exchange - send and receive data packet over serial links

SYNOPSIS
#include <pxm.h>

void PMmsg_exchange(inbuf, outbuf, length)
float *inbuf, *outbuf;
int length;

DESCRIPTION
PMmsg_exchange sends length floats from outbuf out the serial link, then waits to receive length floats
into inbuf on the link. Because of restrictions imposed by hardware, all nodes must exchange the same
amount of data at the same time; the correct procedure to do this uses the PMmsg_setup and PMpsync
routines as follows:

float inbuf[SIZE], outbuf[SIZE];

PMmsg_setup (inbuf) ;
PMpsync () ;
PMmsg_exchange (inbuf, outbuf, SIZE);

Any data type may be exchanged over the link, but the packet size must be a multiple of 4 bytes
(sizeof(float)).

NOTES

The inbuf pointers passed to PMmsg setup and PMmsg_exchange must be the same or
PMmsg_exchange may never return.

PMsioinit must be called before any other use of the serial links is made.

SEE ALSO
PMmsg_setup(3X)
PMpsync(3X)
PMsioinit(3X)

Pixel Machines Last change: Version 1.1 1

PMmsg_setup (3X) DEVtools PMmsg_setup (3X)

NAME
PMmsg_setup - set serial DMA input pointer

SYNOPSIS
#include <pxm.h>

void PMmsg_setup(buffer)
float *buffer;
DESCRIPTION
PMmsg_setup sets the serial DMA input pointer to the supplied buffer. The pointer must be set and all
processors synchronized using PMpsync before PMmsg_exchange functions correctly.
SEE ALSO
PMmsg_exchange(3X)
PMpsync(3X)
PMsioinit(3X)

Pixel Machines Last change: Version 1.1 , 1

PMmyx (3X) DEViools PMmyx (3X)

NAME
PMmyx - test if a given screen space coordinate is in processor space

SYNOPSIS
#include <pxm.h>

int PMmyx(scrn, x)
PMsubscrn *scrn;
float x;

DESCRIPTION

PMmyx tests if the screen space coordinate x is in the processor subscreen scrn and returns TRUE or
FALSE accordingly.

NOTES

PMmyx is implemented as a macro.
SEE ALSO

PMmyy(3X)

PMxat(3X)

PMyat(3X)

Pixel Machines Last change: Version 1.1 1

PMmyy (3X) DEVools PMmyy (3X)

NAME
PMmyy - test if a given screen space coordinate is in processor space

SYNOPSIS
#include <pxm.h>

int PMmyy(scrn, y)
PMsubscrn *scrn;
float y;
DESCRIPTION
PMmyy tests if the screen space coordinate y is in the processor subscreen scrn and returns TRUE or
FALSE accordingly.
NOTES
PMmyy is implemented as a macro.
SEE ALSO
PMmyx(3X)
PMxat(3X)
PMyat(3X)

Pixel Machines Last change: Version 1.1 1

PMnorm (3M) DEVtools PMnorm (3M)

NAME
PMnorm - normalize a 3D vector and return its length

SYNOPSIS
#include <libmath.h>

float PMnorm(v)
float v[3];

DESCRIPTION

PMnorm normalizes the vector v, and overwrites v with this new value. It returns the inverse of the
length of vector v prior to normalization.

Pixel Machines Last change: Version 1.1 1

PMoutpir (3N) DEVtools PMoutpir (3N)

NAME

PMoutpir — output a value to the PIR register
SYNOPSIS

void PMoutpir(val)

short val;
DESCRIPTION

PMoutpir waits until the PIR is empty and then writes val to it. The wait ensures that the host has read
all values written with previous calls to PMoutpir.

This function is a low level I/O routine; most applications should use PMusermsg() instead.

SEE ALSO
PMusermsg(3N)

Pixel Machines Last change: Version 1.1 1

PMoverlay (3P) DEVtools PMoverlay (3P)

NAME

PMoverlay — turn overlay on or off
SYNOPSIS

void PMoverlay(flag)

int flag;
DESCRIPTION

PMoverlay sets the overlay bit in the pixel node flag register to turn the overlay capability on or off.

If flag is zero, overlay is disabled (the default). A nonzero value for flag turns overlay on.
NOTES

In addition to calling PMoverlay, DEVpixel mode_overlay must also be called on the host to set the
desired overlay mode.

SEE ALSO
DEVpixel_mode_overlay(3S)

Pixel Machines Last change: Version 1.1 1

PMpagereg (3X) DEVtools PMpagereg (3X)

NAME

PMpagereg, PMdesc, PMxlate — macros to manipulate page registers used to access video and Z
memory

SYNOPSIS

#include <pxm.h>
#include <pixel.h>

int PMpagereg(reg number)
int reg_number;

int PMdesc(bank, mode)
int bank;
int mode;

int PMxlate(reg_number)
int reg_number;

DESCRIPTION

These macros are used to manipulate the page registers used to access the video memory and Z memory.

The page registers are located in a reserved memory area. The PMpagereg macro is used to generate
the address of a specified page register. reg_number is the number of the register whose address is to
be supplied and is in the range [0-15].

The PMdesc macro is used to generate the value to be stored into a page register in order to access a
given bank of memory. bank designates the bank of memory to be accessed and must be one of:

PM_ZMEM — Z memory

PM_RGO - red/green bank of VRAMO
PM_BOO - blue/overlay bank of VRAMO
PM_RG1 - red/green bank of VRAM1
PM_BO1 — blue/overlay bank of VRAM1

mode must be either PM_FIX_ROW or PM_FIX_COL; PM_FIX_ROW is used to access the pixels of
a given scan line. PM_FIX COL is used to access the pixels of a given column. The row number (in
fixed row mode) or column number (in fixed column mode) is added to the value returned by PMdesc
to create the descriptor needed to access the desired memory row or column.

PMxlate generates a pointer than can be used to access the contents of the row or column specified by
the PMdesc macro. Once a page register has been established, the next 1024 bytes can be accessed
using the pointer generated by the PMxlate macro.

EXAMPLE

The following is an example of these macros. This programs turns on all of the red pixels in VRAMO
and the blue pixels in VRAMI, and turns off the green pixels in VRAMO and the overlay pixels in
VRAML1. '

#include <pxm.h>
#include <pixel.h>

#define RGREG 6
#define BOREG 7

Pixel Machines Last change: Version 1.1 1

PMpagereg (3X) DEV1tools PMpagereg (3X)

main ()

register int i;

register int bk
register int *rgptr;
register int *boptr;
register int *rgpagereg;
register int *bopagereqg;

(int *)PMpagereg (RGREG) ;
(int *)PMpagereg (BOREG) ;

rgpagereg
bopagereg

for (3 = 0; J < 255; ++3) {

*rgpagereg = PMdesc(PM_RGO, PM _FIX ROW) + j;

*bopagereg = PMdesc (PM_BOl, PM FIX ROW) + j;

rgptr = (int *)PMxlate (RGREG) ;

boptr = (int *)PMxlate (BOREG) ;

for (i = 0; i < 255; ++1i) {
rgptr++ = PMint color(255); / Set red */
rgptr++ = PMint color(0); / Clear green */
pboptr++ = PMint_color(255); / Set blue */
boptr++ = PMint_color(0); / Clear alpha */

NOTES

The pixel.h include file can be used with both C and assembler source files. As a result, the macro
return values are not cast as pointers. For this reason, you must cast the return value of the macros to
the appropriate pointer type.

PMpagereg should always be cast as a pointer to an int. PMdesc really does return an integer.
PMxlate should be cast to an appropriate type based on the application. When dealing with VRAM (as
opposed to Z memory), the pointer returned by PMxlate is usually a pointer to an int.

Some of the DEVtools pixel node functions set page registers automatically, and other functions rely on
them. See PMzbrk for the list of page registers used.

Page registers 14 and 15 are reserved for use by the host for DMA.

SEE ALSO
PMzbrk(3X)

Pixel Machines Last change: Version 1.1 2

PMpixaddr (3X) DEViools PMpixaddr (3X)

NAME
PMpixaddr — generate a pointer to a specific pixel

SYNOPSIS
#include <pxm.h>

short *PMpixaddr(scrn, i, j)
PMsubscrn *scrn;
short i, j;

DESCRIPTION

PMpixaddr generates addresses of pixels in the frame buffer. scrn is a pointer to an initialized
PMsubscrn structure corresponding to the subscreen in which the desired pixel lies.

i and j are subscreen coordinates with the following legal ranges:

i [0, PMimax]
j [0, PMjmax]

PMimax and PMjmax are set to the appropriate value for the current model by system initialization
(see the DEVtools User's Guide for more information on subscreen ranges).

Values beyond these ranges will generate unpredictable results.

PMpixaddr returns a pointer to the pixel at coordinates (i,) in subscreen scrn. This pointer can be used
by PMqget and PMqput for more efficient frame buffer access.

NOTES
Refer to PMzbrk(3X) for page register use.

SEE ALSO
PMgetpix(3X)
PMputpix(3X)
PMqget(3X)
PMqput(3X)

Pixel Machines Last change: Version 1.1 1

PMpow (3M) DEVtools PMpow (3M)

NAME
PMpow — power function

SYNOPSIS
#include <libmath.h>

float PMpow(x, y)
float x, y;

DESCRIPTION

PMpow returns the quantity x * y, where both x and y are floating point values. x should be of positive
magnitude.

SEE ALSO
PMx_exp n(3M)

Pixel Machines Last change: Version 1.1 1

PMpsync (3X) DEVtools PMpsync (3X)

NAME

PMpsync — wait for all pixel processors to synchronize
SYNOPSIS

void PMpsync()
DESCRIPTION

PMpsync is a processor synchronization primitive. Once called, it will not return until all pixel nodes
have called PMpsync.

NOTES
PMpsync uses the PM_FLAG hardware signal; thus PMflagled and PMpsync should not be used in the
same program.

SEE ALSO
PMyvsync(3X)

Pixel Machines Last change: Version 1.1 1

PMputcmd (3P) DEVtools (libpipe) PMputcmd (3P)

NAME
PMputcemd - write opcode, parameter count, and parameters to the output FIFO of a pipe node

SYNOPSIS
#include <pxm.h>

void PMputcmd()
DESCRIPTION

PMputcmd copies the opcode, count, and parameters from the global PMcommand structure to the
output FIFO.

NOTES
PMputcmd can only be called from a pipe node program.

SEE ALSO
PMcommand(4N)
PMgetdata(3P)
PMgetop(3P)
PMputdata(3P)
PMputop(3P)

Pixel Machines Last change: Version 1.1 1

PMputdata (3P) DEV1ools PMputdata (3P)

NAME
PMputdata - write parameters to the output FIFO of a pipe node

SYNOPSIS
#include <pxm.h>

void PMputdata()
DESCRIPTION
PMputdata copies the parameters from the global PMcommand structure to the output FIFO.

NOTES
PMputdata can only be called from a pipe node program.

PMputdata must be preceded by a call to PMputop.

SEE ALSO
PMcommand(4N)
PMgetdata(3P)
PMgetop(3P)
PMputcmd(3P)
PMputop(3P)

Pixel Machines Last change: Version 1.1 1

PMputop (3P) DEVtools PMputop (3P)

NAME
PMputop - write opcode and parameter count to the output FIFO of a pipe node

SYNOPSIS
#include <pxm.h>

void PMputop()
DESCRIPTION

PMputop copies the opcode and parameter count from the global PMcommand structure to the output
FIFO.

NOTES
PMputop can only be called from a pipe node program.

PMputop must be followed by a call to PMputdata if PMcommand.count is non-zero.
SEE ALSO

PMcommand(4N)

PMgetdata(3P)

PMgetop(3P)

PMputecmd(3P)

PMputdata(3P)

Pixel Machines Last change: Version 1.1 1

PMputpix (3X) DEVtools PMputpix (3X)

NAME
PMputpix — output a pixel to the current buffer

SYNOPSIS
#include <pxm.h>

short *PMputpix(scrn, i, j, color)

PMsubscrn *scrng

short i, j;

PMpixeltype *color;
DESCRIPTION

PMputpix writes a single pixel to the frame buffer. scrn is a pointer to an initialized PMsubscrn
structure corresponding to the subscreen to which the pixel is written.

i and j are subscreen coordinates with the following legal ranges:

i [0, PMimax]
J [0, PMjmax]

PMimax and PMjmax are set to the appropriate value for the current model by system initialization
(see the DEVtools User’s Guide for more information on subscreen ranges).

Values beyond these ranges will generate unpredictable results.

color is a pointer to a PMpixeltype structure whose red, green, blue and overlay components are written
at (i,)) in scrn.

PMputpix returns a pointer to the next pixel on the given row {(i+1,j). This pointer may be used by
PMgqput for more efficient frame buffer access.

NOTES

Refer to PMzbrk(3X) for page register use.
SEE ALSO

PMgetpix(3X)

PMqput(3X)

Pixel Machines Last change: Version 1.1 1

PMputscan (3X) DEVtools PMputscan (3X)

NAME
PMputscan — write a scanline to a subscreen

SYNOPSIS
#include <pxm.h>

void PMputscan(scrn, buf, row, col, npix)
PMsubscrn *scrn;
PMpixeltype *buf;
short row, col, npix;
DESCRIPTION
PMputscan writes a row of npix pixels starting at (col,row) in subscreen scrn from the buffer buf.

scrn is a pointer to an initialized subscreen pointer. col and row are subscreen coordinates in the fol-
lowing legal ranges:

col [0,PMimax]
row [0,PMjmax)

PMimax and PMjmax are set to the appropriate value for the current model by system initializa-
tion (see the DEVtools User's Guide for more information on subscreen ranges).

Values beyond these ranges can generate unpredictable results.
SEE ALSO
PMgetscan(3X)

Pixcl Machines Last change: Version 1.1 1

PMputzbuf (3X) DEVtools PMputzbuf (3X)

NAME

PMputzbuf — write a float value to the Z buffer

SYNOPSIS

#include <pxm.h>

float *PMputzbuf(scrn, i, j, zval)
PMsubscrn *scrn;

short i, j;

float zval;

DESCRIPTION

NOTES

PMputzbuf writes a single value to Z buffer memory. scrn is a pointer to an initialized PMsubscrn
structure corresponding to the subscreen from which the value is to be read.

i and j are subscreen coordinates with the following legal ranges:

i [0, PMimax]
j [0, PMjmax]

PMimax and PMjmax are set to the appropriate value for the current model by system initialization
(see the DEVtools User's Guide for more information on subscreen ranges.

Values beyond these ranges will generate unpredictable results.
zval is a floating point value to be written at (i, j) in scra.
PMputzbuf returns a pointer to the next Z value on the given row (i+1,).

The pointer returned can be used directly (unlike the pointer returned from PMputpix), because Z buffer
memory is fully mapped.

Refer to PMzbrk(3X) for page register use.

The pointer returned can be cast to other types to allow Z memory to be used for char, int, and other
data types.

EXAMPLE

ptr=PMputzbuf (scrn, 1i,j, zval);
*ptr++=zval;
*ptr++=zval;

SEE ALSO

PMgetzbuf(3X)
PMputpix(3X)
PMzput(3X)

Pixel Machines Last change: Version 1.1 1

PMqcopyztoz (3X) DEVtools PMgqcopyztoz (3X)

NAME
PMqcopyztoz — copy from one section of DRAM to another

SYNOPSIS
#include <pxm.h>

void PMqcopyztoz(start_i, start_j, len_i, len_j, dest_i, dest_j)
int start_i;

int start_j;

int len_i;

int len_j;

int dest _i;

int dest_j;

DESCRIPTION
PMqcopyztoz copies a rectangular section of DRAM, len_i long words by len_j rows, from coordinates
start_i and start_j to another section of DRAM buffer. dest i and dest_j are the destination coordinates,
and correspond to start i and start_j, respectively. PMgqcopyztoz is faster and takes less code space
than PMcopyztoz(3), but cannot handle overlapping copies. While some overlapping copies may
succeed, care should be taken so that the source area and destination areas of ZRAM are disjoint.

The _i arguments are in units of 4 byte long words, e.g., 1 byte for each of red, green, blue and overlay,
or the size of one float. Thus, if start_i is set to 1, and len_i is set to 1, 4 bytes will be copied on each
row, starting at an offset of 4 bytes from the beginning of the row. In the j direction, one row
corresponds to one row, with no multiplicative factors.
SEE ALSO

PMcopyztoz(3X)

PMcopyztov(3X)

PMcopyvtoz(3X)

Pixel Machines Last change: Version 1.1 1

PMqget (3X) DEVtools PMgget (3X)

NAME
PMqget — quick read of a pixel from the current buffer

SYNOPSIS
#include <pxm.h>

short *PMgqget(color, ptr)
PMpixeltype *color;
short *ptr;
DESCRIPTION
PMgqget reads a single pixel from the frame buffer. ptr is a pointer to the pixel location from which the

pixel is to be read; color is a pointer to a PMpixeltype structure which is written with the pixel located
at ptr.

PMgqget returns a pointer to the next pixel on the given row. This value may be used in subsequent
calls to PMqget.
NOTES

PMqget uses a pointer created by PMgetpix, PMv0get and other routines. PMqget uses the same page
registers as the routine that generated the pointer. The user must ensure that the page registers are not
corrupted while PMqget is in use.

Refer to PMzbrk(3X) for page register use.
SEE ALSO

PMgetpix(3X)

PMpixaddr(3X)

PMqput(3X)

Pixel Machines Last change: Version 1.1 1

PMgput (3X) DEVtools PMgput (3X)

NAME
PMqput - quick write of a pixel to the current buffer

SYNOPSIS
#include <pxm.h>

short *PMqput(color, ptr)
PMpixeltype *color;
short *ptr;

DESCRIPTION
PMqput writes a single pixel from the frame buffer. ptr is a pointer to the pixel location to which the
pixel is to be written; color is a pointer to a PMpixeltype structure containing the pixel to be written at
ptr.

PMqput returns a pointer to the next pixel on the given row. This value may be used in subsequent
calls to PMqput.
NOTES

PMqput uses a pointer created by PMputpix, PMvOput and other routines. PMqput uses the same
page registers as the routine that generated the pointer. The user must ensure that the page registers are
not corrupted while PMqput is in use.

Refer to PMzbrk(3X) for page register use.

SEE ALSO
PMpixaddr(3X)
PMputpix(3X)
PMqget(3X)

Pixel Machines Last change: Version 1.1 1

PMrdyled (3X) DEVtools PMrdyled (3X)

NAME
PMrdyled - turn the PM_RDY LED on or off

SYNOPSIS
#include <pxm.h>

void PMrdyled(flag)
short flag;
DESCRIPTION
PMrdyled clears (if flag == 0) or sets (if flag != 0) the PM_RDY LED for this node.
NOTES
PMrdyled uses the PM_RDY hardware signal; thus PMrdyled and PMvsync should not be used in the
same program.
SEE ALSO

PMflagled(3X)
PMyvsync(3X)

Pixel Machines Last change: Version 1.1 1

PMrdyoff (3X) DEViools PMrdyoff (3X)

NAME
PMrdyoff - turn the ready signal off

SYNOPSIS
void PMrdyoff()
DESCRIPTION

PMrdyoff turns off the DEV_FLAG signal used by PMvsync. It must be called some time after calling
PMyvsync and before another PMvsync is done.

NOTES

The purpose of separating PMvsync and PMrdyoff is to allow as much time as possible for user code
after vertical retrace begins.

SEE ALSO
PMvsync(3X)

Pixel Machines Last change: Version 1.1 1

PMsetsem (3N) DEVtools PMsetsem (3N)

NAME
PMsetsem - sct the semaphore

SYNOPSIS
void PMsetsem(value)
short value;
DESCRIPTION
PMsetsem waits for the software semaphore to be cleared by the host, then sets it to the passed value.

SEE ALSO
PMwaitsem(3N)

Pixel Machines Last change: Version 1.1 1

PMsin (3M) DEVtools PMsin (3M)

NAME
PMsin - trigonometric function

SYNOPSIS
#include <libmath.h>

float PMsin(theta)
float theta;

DESCRIPTION
PMsin returns the sine of theta.

theta must be in radians and be between -Pi/2 and +Pi/2.

Pixel Machines Last change: Version 1.1 1

PMsiodir (3X) DEVtools PMsiodir (3X)

NAME
PMsiodir — set serial I/O link direction

SYNOPSIS
#include <sysmsg.h>

void PMsiodir(dir)
short dir;
DESCRIPTION

PMsiodir sends a message to the host monitor process to set the serial I/O (SIO) link direction. dir
must be one of:

PM_MSG_SERIAL_NORTH
PM_MSG_SERIAL_SOUTH
PM_MSG_SERIAL_EAST
PM_MSG_SERIAL_WEST

These constants are defined in sysmsg.h.

For it to work correctly, all the pixel nodes must call PMsiodir. PMsiodir calls PMpsync internally to
synchronize before the host changes the link direction for all the pixel nodes.

NOTES
As with all other SIO functions, PMsiodir must only be called from pixel nodes.

SEE ALSO
PMmsg_exchange(3X)
PMmsg_setup(3X)
PMpsync(3X)
PMsioinit(3X)

Pixel Machines Last change: Version 1.1 1

PMsioinit (3X) DEVtools PMsioinit (3X)

NAME

PMsioinit - initialize serial 1/O
SYNOPSIS

#include <pxm.h>

void PMsioinit()
DESCRIPTION
PMsioinit configures the serial I/O link for DMA input and polled output. It must be called only once
before attempting to send messages over the serial links using PMmsg_setup() and PMmsg_exchange().
SEE ALSO
PMmsg_setup(3X)

PMmsg_exchange(3X)
PMpsync(3X)

Pixel Machines Last change: Version 1.1 1

PMsnglbuff (3X) DEVtools PMsnglbuff (3X)

NAME
PMsnglbuff - disable double buffering mode

SYNOPSIS
#include <pxm.h>

void PMsnglbuff()

DESCRIPTION
PMsnglbuff disables double buffering and returns to single buffer mode. This means that all future

updates using subscreen oriented functions (e.g., PMputpix()) will occur in the same buffer that is
displayed.

PMsnglbuff only needs to be called after a call to PMdblbuff because it is the default mode at start up.

SEE ALSO
PMswapbuff(3X)
PMswapback(3X)
PMdblbuff(3X)

Pixel Machines Last change: Version 1.1 1

PMsqrt (3M) DEVitools PMsqrt (3M)

NAME
PMsqrt - sqare root function

SYNOPSIS
#include <libmath.h>

float PMsqrt(x)
float x;

DESCRIPTION
PMsgrt returns the square root of x. x must be >=0. This function is accurate to 6 significant digits.

Pixel Machines Last change: Version 1.1 1

PMswap_pipe (3H) DEVtools PMswap_pipe (3H)

NAME
PMswap_pipe — switch primary and alternate pipes of a dual pipe system
PMbus_wait — wait until control of the broadcast bus is granted

SYNOPSIS
#include <pxm.h>

void PMswap_pipe()
void PMbus_wait()
DESCRIPTION

On a dual pipe system, with the pipes operating in parallel mode, one pipe is the primary pipe and the
other is the alternate pipe. PMswap_pipe reverses the functions of the two pipes. This is used to bal-
ance the load between the two pipes.

PMswap_pipe can only be called by the last node of a pipe board (node 8 or 17). When called,
PMswap_pipe releases the broadcast bus to the alternate pipe It then requests the bus and waits for bus
access to be granted.

PMbus_wait loops until control of the bus is granted. This is typically called during the initialization
phase by the second pipe board, because initial control of the pipe is granted to the first pipe board.

SEE ALSO
DEVswap_pipe(3P)

Pixel Machines Last change: Version 1.1 1

PMswapback (3) DEVtools PMswapback (3)

NAME
PMswapback - swap meaning of back buffer

SYNOPSIS
#include <pxm.h>

void PMswapback()

DESCRIPTION

PMswapback swaps the back and front buffer with respect to update, but does not change the visible
buffer. In double buffer mode this means that the front buffer is also the update the buffer. In single
buffer mode this means that the back buffer is updated. This functions will change the behavior of all
functions that use a PMsubscrn argument to update the current buffer.

NOTES
PMswapback is implemented as a macro.

Pixel Machines Last change: Version 1.1 1

PMswapbuff (3X) DEVtools PMswapbuff (3X)

NAME
PMswapbuff — swap front and back pixel buffers

SYNOPSIS
void PMswapbuff()

DESCRIPTION
PMswapbuff exchanges the front (visible) and back pixel buffers; it should be called when a frame has
been generated in the pixel buffer and must be displayed. PMswapbuff waits for vertical retrace by cal-
ling PMvsync before swapping and then calling PMrdyoff.

NOTES
Double buffering mode must be enabled with PMdblbuff before calling PMswapbuff.

SEE ALSO
PMdblbuff(3X)
PMswapback(3X)
PMsnglbuff(3X)
PMvsync(3X)
PMrdyoff(3X)

Pixel Machines Last change: Version 1.1 1

PMusermsg (3N) DEVtools PMusermsg (3N)

NAME

PMusermsg — send a user message to the host
SYNOPSIS

void PMusermsg(msg)

short msg;
DESCRIPTION

PMusermsg() sends a user defined opcode (a user message) to the host monitor process. msg must be a
positive short int.

PMusermsg() checks the software semaphore to see if there was a previous PMusermsg() pending and,
if necessary, waits. Otherwise, PMusermsg() returns immediately. If the message operation must com-
plete before execution continues, PMwaitsem() should be called.

SEE ALSO

PMwaitsem(3N)
DEVtoolsUser's Guide (section on user messages)

Pixel Machines Last change: Version 1.1 1

PMvOget (3X) DEV1tools PMvO0get (3X)

NAME
PMv0get — read a pixel from buffer 0

SYNOPSIS
#include <pxm.h>

short *PMv0get(i, j, color)

short i, j;

PMpixeltype *color;
DESCRIPTION

PMv0get() reads a single pixel from the frame buffer. Unlike PMgetpix(), the coordinate system used
allows full access to frame buffer memory.

i and j are coordinates in the range [0, 255]. Values outside this range will generate unpredictable
results.

color is a pointer to a PMpixeltype structure whose red, green, blue and overlay components are loaded
with the pixel data contained at (4,j) in page O of pixel memory.

PMv0get() returns a pointer to the next pixel on the given row (i+1,7). This pointer can be used by
PMgget() for more efficient frame buffer access.

NOTES
Refer to PMzbrk(3X) for page register use.

PMv0get() does not take into account subscreens or front and back buffers.

SEE ALSO
PMgetpix(3X)
PMqget(3X)
PMv0put(3X)
PMvlget(3X)

Pixel Machines Last change: Version 1.1 1

PMvOput (3X) DEV'tools PMvOput (3X)

NAME
PMv0put — write a pixel to buffer 0

SYNOPSIS
#include <pxm.h>

short *PMvOput(j, j, color)

short i, j;

PMpixeltype *color;
DESCRIPTION

PMv0put() writes a single pixel to the frame buffer. Unlike PMputpix(), the coordinate system used
allows full access to frame buffer memory.

i and j are coordinates in the range [0, 255]. Values outside this range will generate unpredictable
results.

color is a pointer to a PMpixeltype structure which contains the red, green, blue and overlay com-
ponents to be written at (,j) in page 0 of pixel memory.

PMvOput() returns a pointer to the next pixel on the given row (i+1,7). This pointer can be used by
PMqput() for more efficient frame buffer access.

NOTES
Refer to PMzbrk(3X) for page register use.

PMv0put() does not take into account subscreens or front and back buffers.

SEE ALSO
PMputpix(3X)
PMqput(3X)
PMvlget(3X)
PMvlput(3X)

Pixel Machines Last change: Version 1.1 1

PMvlget (3X) DEVtools PMvlget(3X)

NAME
PMvlget — read a pixel from buffer 1

SYNOPSIS
#include <pxm.h>

short *PMvlget(i, j, color)

short i, j;

PMpixeltype *color;
DESCRIPTION

PMvlget() reads a single pixel from the frame buffer. Unlike PMgetpix(), the coordinate system used
allows full access to frame buffer memory.

i and j are coordinates in the range [0, 255]. Values outside this range will generate unpredictable
results.

color is a pointer to a PMpixeltype structure whose red, green, blue and overlay components will be
loaded with the pixel data contained at (i,j) in page 1 of pixel memory.

PMvlget() returns a pointer to the next pixel on the given row (i+1,5). This pointer can be used by
PMqget() for more efficient frame buffer access.

NOTES
Refer to PMzbrk(3X) for page register use.

PMvlget() does not take into account subscreens or front and back buffers.

SEE ALSO
PMgetpix(3X)
PMgget(3X)
PMvl1put(3X)
PMv0get(3X)

Pixel Machines Last change: Version 1.1 1

PMvlput(3X) DEVtools PMvl1put(3X)

NAME
PMvlput - write a pixel to buffer 1

SYNOPSIS
#include <pxm.h>

short *PMv1put(i, j, color)

short i, j;

PMpixeltype *color;
DESCRIPTION

PMvlput() writes a single pixel to the frame buffer. Unlike PMputpix(), the coordinate system used
allows full access to frame buffer memory.

i and j are coordinates in the range [0, 255]. Values outside this range will generate unpredictable
results. -

color is a pointer to a PMpixeltype structure which contains the red, green, blue and overlay com-
ponents to be written at (i,/) in page 1 of pixel memory.

PMvlput() returns a pointer to the next pixel on the given row (i+1,/). This pointer can be used by
PMgput() for more efficient frame buffer access.

NOTES
Refer to PMzbrk(3X) for page register use.

PMvlput() does not take into account subscreens or front and back buffers.

SEE ALSO
PMputpix(3X)
PMqput(3X)
PMvlget(3X)
PMv0put(3X)

Pixel Machines Last change: Version 1.1 1

PMvsync (3X) DEVtools PMvsync (3X)

NAME

PMyvsync — synchronize and wait for vertical retrace
SYNOPSIS

void PMvsync()
DESCRIPTION

PMysync is a video synchronization primitive. Once called, it will not return until both of the follow-
ing conditions are true:

all pixel nodes have called PMvsync.

the vertical retrace period has begun.

NOTES

PMvsync uses the PM_RDY hardware signal; thus PMrdyled and PMvsync should not be used in the
same program.

PMrdyoff must be called after calling PMvsync and before further calls to PMvsync are made. The

purpose of separating PMvsync and PMrdyoff is to allow as much time as possible for user code after
vertical retrace begins.

PMswapbuff uses PMvsync and PMrdyoff internally.
SEE ALSO

PMpsync(3X)

PMrdyoff(3X)

PMswapbuff(3X)

Pixel Machines Last change: Version 1.1 : 1

PMwaitsem (3N) DEVtools PMwaitsem (3N)

NAME

PMwaitsem — wait for semaphore to clear
SYNOPSIS

void PMwaitsem()

DESCRIPTION

PMwaitsem polls the software semaphore until it is cleared by the host. It can be used to synchronize
with the host after calling PMsetsem, or to wait for the host to complete a user message or system mes-
sage such as printf.
SEE ALSO
PMsetsem(3N)
PMusermsg(3N)
printf(3N)
DEVtoolsUser’s Guide (section on messages)

Pixel Machines Last change: Version 1.1 1

PMx_exp n(3M) DEVtools

NAME
PMx_exp_n — integer power function

SYNOPSIS
#include <libmath.h>

float PMx_exp_n(x, n)
float x;
short n;

DESCRIPTION

PMx_exp_n returns the quantity x * n, where n is a positive integer between 1 and 20.

SEE ALSO
PMpow(3M)

Pixel Machines Last change: Version 1.1

PMx_exp_n(3M)

PMxat (3X) DEVtools PMxat (3X)

NAME
PMxat - map subscreen coordinates to screen space

SYNOPSIS
#include <pxm.h>

float PMxat(scrn, i)
PMsubscrn *scrn;
short i;

DESCRIPTION
PMxat maps the subscreen coordinate i to the corresponding screen space x.

The mappings are:
x =10 Ny + Oy
y=jNy+0y

where N, and N, are the numbers of processors in the x and y directions, respectively, and O, and O,
are the x and y offsets into the processor array, respectively.

NOTES

PMxat is implemented as a macro.
SEE ALSO

PMmyx(3X)

PMmyy(3X)

PMyat(3X)

Pixel Machines Last change: Version 1.1 1

PMyat (3X) DEVtools PMyat (3X)

NAME
PMyat - map subscreen coordinates to screen space

SYNOPSIS
#include <pxm.h>

float PMyat(scrn, j)
PMsubscrn *scrn;
short j;

DESCRIPTION
PMyat maps the subscreen coordinate j to the corresponding screen space y.

The mappings are:
x =i Ny +0x
y=JjNy+0,

where N, and Ny are the numbers of processors in the x and y directions, respectively, and O, and Oy
are the x and y offsets into the processor array, respectively.
NOTES
PMyat is implemented as a macro.
SEE ALSO
PMmyx(3X)
PMmyy(3X)
PMxat(3X)

Pixel Machines Last change: Version 1.1 1

PMzaddr (3X) DEVtools PMzaddr (3X)

NAME
PMzaddr — generate a ZRAM pointer to a row

SYNOPSIS
#include <pxm.h>

float *PMzaddr(, j)
int i, j;
DESCRIPTION

PMzaddr() loads a page register with an appropriate descriptor, and then constructs a valid pointer that
references that page register.

PMzaddr returns a pointer to the z value on the given row (i,j). Because the page register is loaded in
fixed row addressing mode, the pointer can be used directly up to the end of the given row. To generate
a column mode address use PMzaddrcol().

i and j are coordinates in the range [0, 255]. Values outside this range will generate unpredictable
results.

NOTES
Refer to PMzbrk(3X) for page register use.

PMzaddr() does not consider the PMsubscrn structure.

The pointer returned by this function can be cast to allow access to char, int, or other types of data
stored in Z memory.

SEE ALSO
PMgetzbuf(3X)
PMzaddrcol(3X)
PMqzput(3X)
PMgzget(3X)
PMv0get(3X)

Pixel Machines Last change: Version 1.1 1

PMzaddrcol (3X) DEVtools PMzaddrcol (3X)

NAME
PMzaddrcol — generate a ZRAM pointer to a column

SYNOPSIS
#include <pxm.h>

float *PMzaddrcol(i, j)
int i, j;
DESCRIPTION

PMzaddrcol() loads a page register with an appropriate descriptor, and then constructs a valid pointer
that references that page register.

PMzaddrcel() returns a pointer to the z value on the given row (i,j). Because the page register is
loaded in fixed column addressing mode, the pointer can be used directly up to the end of the given
column. To generate a row mode address use PMzaddr().

i and j are coordinates in the range [0, 255]. Values outside this range will generate unpredictable
results.

NOTES
Refer to PMzbrk(3X) for page register use.

PMzaddrcol() does not consider the PMsubscrn structure.

The pointer returned by this function can be cast to allow access to char, int, or other types of data
stored in Z memory.

SEE ALSO
PMgetzbuf(3X)
PMzaddr(3X)
PMqzput(3X)
PMgqzget(3X)
PMv(get(3X)

Pixel Machines Last change: Version 1.1 1

PMzbrk (3X) DEVtools PMzbrk (3X)

NAME

PMzbrk, PMblock reg, PMavail reg, PMset_lowreg, PMset_hireg - reserve DRAM and page regis-
ters for dynamic allocation

SYNOPSIS

#include <pxm.h>

PMzdesc PMzbrk(numblocks)
int numblocks;

#include <pageregs.h>

PMblock_reg(n)
int n;

PMavail_reg(n)
int n;

PMset_lowreg(n)
int n;

PMset_hireg(n)
int n;

DESCRIPTION

PMzbrk is the initialization call to create a list of memory resources for DRAM (also called ZRAM)
that are used in subsequent calls to PMgetzaddr(), PMgetzdesc() and PMfreezaddr(). numblocks is the
number of kilobytes (or rows) of DRAM to reserve and is in the range of 1 to 256 inclusive. The
memory is reserved from the end of DRAM. For example, PMzbrk(2) reserves the last 2 rows of
DRAM, rows 254 and 255.

The macros PMblock reg(), PMavail reg(), PMset lowreg() and PMset hireg(), defined in
pageregs.h, are provided as a way of manipulating the list of page registers that are made available to
access DRAM through calls to PMgetzaddr(). By default PMzbrk makes the page registers in the
range 0 to 13 inclusive, available. These macros only have an affect when called after PMzbrk.

PMblock _reg() and PMavail reg() are used to specify individual page registers to be excluded or
included, respectively, from use by PMgetzaddr.

Another way to specify the page registers is to provide a range with calls to PMset lowreg() and
PMset_hireg(). The range is inclusive. For example, the calls

PMset_lowreg(10)
PMset_hireg(13)

indicate that the page registers 10, 11, 12 and 13 can be used by PMgetzaddr(). The low and high
registers can be set in the range from O to 13, inclusive. Page registers 14 and 15 are reserved for use
by the host.

It is necessary to block certain page registers to avoid conflicts when using other DEVtools functions
such as PMgetpix, that use page registers internally. If a page register is no longer needed by a specific
routine later on, it could be made available to PMgetzaddr with a call to PMavail reg().

Pixel Machines Last change: Version 1.1 1

PMzbrk (3X) DEVitools PMzbrk (3X)

Register assignments are given in the following table.

Page Register Assignments
Page Register Function
0 PMgetscan(), PMputscan(), PMclear(), PMgetcol(), PMputcol(),
PMgetrow(), PMputrow()
1 PMgetscan(), PMputscan(), PMclear(), PMgetcol(), PMputcol(),
PMgetrow(), PMputrow()
2 PMv0get(), PMgetpix(), PMgetcol(), PMputcol(), PMgetrow(), PMputrow()
3 PMv0get(), PMgetpix(), PMgetcol(), PMputcol(), PMgetrow(), PMputrow()
4 PMvOput(), PMputpix()
5 PMv0put(), PMputpix()
6 PMvlget()
7 PMvlget()
8 PMvlput()
9 PMvlput()
10 PMpixaddr()
11 PMpixaddr()
12 PMzget(), PMgetzbuf(), PMzaddr()
13 PMzput(), PMputzbuf(), PMzaddrcol()
14 Reserved for host use
15 Reserved for host use

NOTES
Requesting a number of blocks greater than 256 can cause PMgetzdesc() to fail in unpredictable ways.

SEE ALSO
PMgetzaddr(3X)
PMgetzdesc(3X)
PMfreezaddr(3X)

Pixel Machines Last change: Version 1.1 2

PMzget (3X) DEVtools PMzget (3X)

NAME
PMzget — read a float from the z buffer

SYNOPSIS
#include <pxm.h>

float *PMzget(i, j, zptr)

short i, j;

float *zptr;
DESCRIPTION

PMzget() reads a single z value from the Z buffer. Unlike PMgetzbuf(), the coordinate system used
allows full access to z buffer memory.

i and j are coordinates in the range [0, 255]. Values outside this range will generate unpredictable
results.

zptr is a pointer to a floating point variable that will be written with the z value contained at (i,j) in the
z buffer.

PMzget() returns a pointer to the next z value on the given row (i+1,5). This pointer can be used by

PMqzget() for more efficient frame buffer access. For even faster access, the pointer returned can be

used directly (unlike the pointer returned from PMv0get()) because z buffer memory is fully mapped.
NOTES

Refer to PMzbrk(3X) for page register use.

PMzget() does not consider subscreens.

The pointer returned by this function can be cast to allow access to char, int, or other types of data
stored in Z memory.
SEE ALSO
PMgetzbuf(3X)
PMgqzget(3X)
PMv0get(3X)

Pixel Machines Last change: Version 1.1 1

PMzput (3X) DEVtools PMzput (3X)

NAME
PMzput — write a float to the Z-buffer

SYNOPSIS
#include <pxm.h>

float *PMzput(i, j, zval)
~ short i, j;
float zval;
DESCRIPTION

PMzput writes a single Z value to the Z buffer. Unlike PMputzbuf, the coordinate system used allows
full access to Z buffer memory.

i and j are coordinates in the range [0, 255]. Values outside this range will generate unpredictable
results.

zval is the floating point value to be written at (i,/) in the Z buffer.

PMzput returns a pointer to the next pixel on the given row (i+1,j). This pointer may be used by
PMgqzput for more efficient frame buffer access.

For even faster access the pomtcr returned can be used directly (unlike the pointer returned from
PMv0put), since Z buffer memory is fully mapped.

NOTES
Refer to PMzbrk(3X) for page register use.

PMzput does not consider subscreens.

The pointer returned by this function can be cast to allow access to char, int, or other types of data
stored in Z memory.

SEE ALSO
PMputpix(3X)
PMqzput(3X)
PMv0put(3X)

Pixel Machines Last changc: Version 1.1 1

printf (3N) DEViools printf (3N)

NAME
printf — formatted output conversion on host

SYNOPSIS
void printf(format [, arg] ...)
char *format;

DESCRIPTION
printf does formatted output in the same way as the UNIX system library printf. The full range of
flags, widths, precisions, and format specifiers of the UNIX system printf is allowed. The actual print-

ing is done by a host program calling DEVpoll_nodes, for example devprint, and is displayed on what-
ever device that process was invoked on.

‘It is possible to print a floating point number stored in host (IEEE) format with the new modifier, i, that
is used in the same way as the / modifier of the UNIX system printf. However, because the DSP C
compiler generates DSP DA move instructions that can destroy bits when passing an IEEE float to
printf, the compiler must be fooled into thinking the float is a different data type of the appropriate size
that will be passed with a bitwise copy. For example, to print a single host float:

printf("%if", *(long *)&host_float);

This technique must also be used whenever a float variable that is going to be passed to a function con-
tains data that is not in DSP float format.

A new format specifier %b is also allowed. It formats the argument as an unsigned binary short
integer. If %Ib is specified, a 32-bit argument is assumed.

printf sends a system message and its arguments to the host and then returns. Some time later the host
processes the format string and reads any pointer data from the nodes via DMA. The node program
must therefore be careful not to modify any of the data or page registers associated with pointers in the
printf argument list. To accomplish this PMwaitsem can be called right after printf to cause the node
to wait until after the host has completely finished its printf processing.

NOTES

Up to 10 arguments of any scalar type may be given to printf. Using more than 10 arguments causes
undefined behavior.

Because ints are 16-bits on the DSP32 and 32-bits on the host, the I modifier must be used when a 32-
bit integer quantity is to be printed; for example, to print a float in hex format: .

printf("%#IX", f):

SEE ALSO
devprint(1)
PMwaitsem(3N)
DEVpoll_nodes(3H)
printf() on host system

Pixel Machines Last change: Version 1.1 1

DEVimage header(4) " DEVtools DEVimage header(4)

NAME
DEVimage header - format of a DEVtools image file.

SYNOPSIS
#include <devimage.h>

typedef struct

{
unsigned long magic; /+* magic number to indicate format */
unsigned long optional_header_size; /* size of optional header */
unsigned long image format; /* how the pixels are stored */
unsigned long pixel size; /* number of bytes per pixel */
unsigned long storage mode; /* order of pixels in the file */
unsigned long pixels per_line; /* number of pixels per scan line */
unsigned long number_of lines; /* number of scan lines */
unsigned long x_offset; /* initial X value */
unsigned long y offset; /* initial Y value */

} DEVimage_header;

DESCRIPTION
The DEVimage header structure precedes all data in an image file and specifies information necessary
to correctly display the image. DEVimage header contains only a minimum amount of information
about the image. It is assumed that the optional header that follows DEVimage header will contain
more specific information on the file’s contents if necessary.

For portability reasons, each member of the structure is stored in the image file as an array of 8 decimal
ACSII characters. The two routines DEVget image header and DEVput_image_header should be
used to read/write and convert the image header from/to ASCII. Each of the members of the structure
are explained in detail below.

The magic member of the structure contains a ‘‘magic number’’ indicating whether this file is in
DEVtools image format or not. A value of DEV_IMAGE_MAGIC indicates that the file is in DEVtools
image format, other values indicate that the format is not DEVtools image format.

The optional_header size member gives‘ the size of the optional header in bytes. The optional header is
placed directly after the image header in the file. If the optional header is not present, this field is 0.

The image_format field tells how the pixel information is stored in the image file. Valid formats are:

#define DEV_USER_DEFINED /* user defined image type */

#define DEV_RGBA_PACKED_PIXELS /* RGBA order, 4 bytes per pixel */
#define DEV_RGB_PACKED_PIXELS /* RGB order, 3 bytes per pixel */
#define DEV_MONO _ PIXELS /* one byte per pixel */

#define DEV_MONO_R_PIXELS /* one red byte per pixel */

#define DEV_MONO_G_PIXELS /* one green byte per pixel */

#define DEV_MONO B _PIXELS /* one blue byte per pixel */

#define DEV_MONO_A_PIXELS /* one alpha byte per pixel */

#define DEV_MONO_16_PIXELS /* 16 bit pixels */

#define DEV_DSP_FLOAT_PIXELS /* 32 bit DSP floating point pixels */

#define DEV_IEEE_FLOAT_PIXELS /* 32 bit IEEE floating point pixels */

#define DEV_RGB_PACKED_PIXELS /* unpacked (16 bit components) RGB pixels */
#define DEV_RGBA_PACKED_PIXELS /* unpacked (16 bit components) RGBA pixels */
#define DEV_RGB_PACKED_ENCODED_PIXELS /* run-length encoded RBG pixels */
#define DEV_ABGR_PACKED_PIXELS /* packed ABGR pixels */

Pixel Machines T act chanoe: Vercion 11 1

DEVimage header (4) DEVtools DEVimage header(4)

#define DEV_RGB_ENCODED_PIXELS /* unpacked, run-length encoded RGB pixels */
The pixel_size field contains the number of bytes that make up a single pixel.

The storage_mode indicates the order in which the pixels are stored in the image. Valid values for
storage_mode are:

DEV_ROW_MAJOR - pixels are stored by rows, that is in the order (0,0), (1,0), (2,0),...,(0,1), (1,1),

DEV_COLUMN_MAJOR - pixels are stored by columns, that is in the order (0,0), (0,1),
0.2),...,(1,0), (1,1), ...

The pixels_per_line member indicates the number of pixels per scan line (width) for this image.
The number_of lines field indicates how many scan lines (height) are contained in this image.
The x_offset field stores the X value of the initial pixel.

- The y_offset field stores the Y value of the initial pixel.

SEE ALSO

DEVget_image header(3S)
DEVput_image_header(3S)
devsave(1)

devdisp(1)

picsave(1)

picdisp(1)

raydisp(1)

raysave(1)

Pixel Machines Last change: Version 1.1 2

PMcommand (4N) DEVitools PMcommand (4N)

NAME
PMcommand - data structure used for FIFO commands

SYNOPSIS
#include <pxm.h>

typedef struct {
short opcode;
short count;
float *data_ptr;
} PMcmdtype;

extern PMcmdtype PMcommand;

DESCRIPTION

Host programs usually operate on the Pixel Machine by sending data packets to the pipe nodes through
the FIFOs. The pipe nodes may modify, delete, or pass on the command packets unmodified, or they
may also generate new packets. The format of these data packets (called commands) is:

OPCODE COUNT PARAM, ... PARAM

count

where OPCODE and COUNT are 16-bit values, and each of the parameters in
PARAM g PARAM

is a 32—bit value.

count

The global data structure, PMcommand, defined in both the pipe and pixel nodes, reflects this packet
structure. The members of this structure contain the following:

PMcommand.opcode: contains the opcode
PMcommand.count: contains the negated count of the number of bytes in the parameter list
PMcommand.data_ptr: points to a static buffer containing the parameters. It may be changed

to point to a user-defined buffer.

Pipe node programs read a command from the input FIFO in two steps:

call PMgetop to load an opcode and count from the input FIFO

if parameter count is nonzero, call PMgetdata to load parameters from the input FIFO.

Pixel nodes read a command by calling PMgetemd, which loads all three components of the command.

Pipe node programs may write a command to the output FIFO in two ways. First, by calling PMputop
followed (if count is nonzero) by a call to PMputdata. Secondly, by calling PMputcmd, which com-
bines the functionality of PMputop and PMputdata.

By changing members of the PMcommand structure, a pipe node program may modify the command
stream as needed.

Pixel node programs read commands from the last pipe node but cannot write commands.

SEE ALSO
DEVwrite(3H)
PMgetcmd (3X)
PMgetdata(3P)

Pixel Machines Last change: Version 1.1 1

PMcommand (4N) DEVtools PMcommand (4N)

PMgetop(3P)
PMputcmd(3P)
PMputdata(3P)
PMputop(3P)

Pixel Machines Last change: Version 1.1 2

DEVpipe_read (3S) DEVtools DEVpipe read (35)

NAME
DEVpipe_read — reads a block of memory from a pipe DSP

SYNOPSIS
#include <host/devtools.h>

int DEVpipe_read(pixel_system, node, addr, buffer, nbytes)
DEVpixel_system *pixel_system;
int node;
DEVushort addr;
DEVbyte *buffer;
int nbytes;
DESCRIPTION

DEVpipe _read reads a block of memory from a pipe DSP. The data is retrieved from DSP memory
using parallel DMA.

pixel_system is a pointer to the system descriptor, node is the number of the pipe node from which the
data is to be read. addr is the location in the DSP address space that contains the data is be read.
buffer points to the location into which the data is to be read. nbyfes is the number of bytes of data to
be read. nbytes should always be an even number. If nbytes is odd, nbytes+1 bytes of data will be read.

No byte order translation is performed. The data read will be in the same byte order as it is in the DSP
memory.

DEVpipe_read uses parallel DMA I/O to transfer the data. As a result, the parallel control register is
updated by this routine. The parallel communications modes are altered to:

enable DMA

set PAR to be autoincremented on DMA

set the interrupt vector to 16-bit mode
DEVpipe_read should always return zero.

NOTES

If nbytes is odd, DEVpipe_read will read nbytes+1 bytes of data and return -1 as its return value. The
return value should be the number of bytes written, not zero.

Pixel Machines Last change: Version 1.1 1

DEVieee dsp(3S) DEVtools DEVieee_dsp(3S)

NAME

DEVieee_dsp — convert from the host’s floating—point format to the DSP32 floating point format
SYNOPSIS

#include <host/devtools.h>

DEVulong
DEVieee_dsp(f)
double f;

DESCRIPTION

The host and the DSP32 use different formats for floating point numbers. DEVieee_dsp converts a sin-

gle floating point number in the IEEE format used by the host to a 32 bit floating point number in
DSP32 format. The number to be converted is stored in f.

The value returned by DEVieee_dsp must be converted to the correct Pixel Machine byte order. This is
done implicitly when the value is written to the pipe, but it must de done explicitly using DEVbswapl()
or DEVswap_long() if the value is sent to the Pixel Machine in some other way (e.g., via DMA).
RETURNS
DEVieee_dsp returns a 32 bit number in the DSP32 floating point format.
NOTES

DSP floating point values should always be treated as unsigned long values on the host to prevent the
compiler from performing undesired type—casting; for example, promotion to double when used as a
function argument.
SEE ALSO
DEVdsp_ieee(3S)
DEVbswapl(3S)
DEVswap_long(3S)
DEVswap_short(3S)

Pixel Machines Last change: Version 1.1 1

