
(/
.· ./

~
.. ~

. ,---
J

I

A Guide to the Macro Implementation of SNOBOL4

...
F. E. Griswold

Bell Telephone Laboratories, Incorp0rate~

(
July 16, 1971

S4D8d

I , .

~ / , /

/

This manual corresponds to Version 3 of SNOBOL4 •

•••••••••••••••••••

f

1. Introduction •
2. Environmental Considerations •

A. Input and Output
B. Storage Requirements
c. Other Considerations

3. Representation of Data
A. Descriptors •.•
B• Specifiers
c. Character Strings •
D. Syntax Table Entries

•
•

•
•

•
•
•

•
•

•
•

• •
4. Syntax Tables and Character Graphics

A. Characters • • • • •
B. Syntax Tables •

5. The SNOBOL4 Macros • • • • •

•
• •

•

• •

•
•
•

A. Diagrammatic Representation of Data •
B. Branch Points • • •
c. Abbreviations • •
D. Data Type Codes • . -•

• • E. Programming Notes •
Appendix 1 - Irrplementation Notes

A. Optional Macros •

• •
•
• •

•
•

B. Machine Dependent Data • •

•
• • •
• • •
• • • •

• • • •
• • • • •
• •
• • •

• •
•

• • •
• • • • •
• • •

• • •
• •
• • • • •

• •
• • • • •

•
•

• •

C c. Error Exit for Debugging • • ••
D. Subroutines versus In-Line Code • • •

'<.'\.ppendix 2 Classification of Macro Operations •
Appendix 3 Format of the SNOBOL4 Source File •
Appendix q Differences between Version 2 and Version 3
References •
Acknowledgement • • • • • • • •

• • • •
• ..

• • • •
• • •

·- • • • •·
·- • • •

• • •
• • •·

• •
• • • •
• .. • • •

• • •
• • • •

• • c

• • • • • •
• •

C- • •
• • •
• • • 0

•
• • • •
• • • •
• • • •

• • • •
• • • •

• •
• • •

• • • • • •

• •

•
• •

•
•

•
•
•
• •

•

• • •
• •

• • •
• •
• •

• •
• • •
• •
• • •

• •
• •

• •
•

• • •

•

•

•

•
•

..
•

•
•

•

•
•
•

•

• ..
•

•
•
•

3
4
4
(1

5
6
6
7
1
8
9
9

10
• 15
• 15
• 16

17
• 17

18
.165
.165
.166
• ?66
• 16-7
.170
.174
.176
.177
.178

;f >) , ,,.
-l~ ..

c

1.
2.
3.
4.
5.
6.
7 ..
a.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
so.
51.
52.

A COMP
ACOMPC
ADD LG
ADDSIB
ADDS ON
ADJUST
ADREAL
AEQL
AEQLC
AEQLIC
APDSP
ARRAY
BKSIZE
BKSPCE
BRl\.NCH
BP~NIC

EU FF ER
CHKVAL
CLER TB
COPY
CPYPAT
DATE
DECRA
DEQL
DESCR
DIVIDE
DVREAL
END
END EX
ENFILE
EQU
EXP INT
EXREAL
FORMAT
FSHRTN
GET AC
GET BAL
GETD
GEI'DC
GET LG
GETLTH
GETSIZ
GETSPC
INC RA
INCRV
INIT
INSERT
INI'RL
INI'SPC
I STACK
LCOMP
LEQLC

(address comparison) • • • • • • • • • • • • • • • • 19
(address comparison with constant) •••••••••••• e 20
(add to specifier length) • • • • • • • • •••• 21
(add sibling to tree node) • • • • • • • e • • ~ • • • > • • • 22
(add son to tree node) • • • • • • • • • • • • • • • • ~ 23
(compute adjusted address) • • • .. • • • • • • • • .. • • • • 24
(add real numbers} • • • • • • • • • • • • • 25
(addresses equal test) • • • • • • • • • • • • • • • • • • • 26
(address equal to constant test) • • • • • • • • • • • • • • 27
(address equal to constant indirect test) • • • • • • • • • 28
(append specifier) • • • • • • • • • • • • • • • 29
(assemble array pf descriptors) • • • • • «' • • • • -· • .. • 30
(get block size) • • • • • • .. • • ~, • .. • • • • • • • • • • ·31
(backspace record) • • • • • • • • • • • • • • • .. • .. • 3 2
(branch to program location) • • • • • • • • • e • • • • • .. 33
{branch indirect with offset constant) • • • • • • • • • It • 34
(assemble buff er of blank characters) • • • • • • • 35
(check value) • • • • • • • • • • • • • ... • • • c •••• ~ 36
(clear syntax table) • • • • • • • • • • • • • • • • • • 37
(copy file into assembly) • • • • • • • • • • • • • • • 38
(copy pattern) • • • • • • • • • • • ., • • • • • • • • • 40
(get date) • • • • • • • • • • • • • •. • • • • • • • • • 43
(decrement address) • • • • • • • • • • • • g • • • • • 44
(descriptor equal test) • • • • • • • • • • • • • • • • 45 ·
(assemble descriptor) • • • • • • • • • • • • • • • • • • • 46
(divide integers) • • • • • • • • • • • • • • • • • • • 47
(divide real numbers) • • • • • • • • • • • • • -• • 4 8
(end assembly) • 49
(end execution of SNOBOL4 run) • • • • • • • • • • • • • 50
(write end of file) • • • • • • •••••••••• 51
(define sym.boL_equivalence) • • • • • • • • • • • • • • 52
(exponentiate integers) • • • • • • • • • • • • • • • • 53
(exponentiate real numbers) • • • • • • • • • • • • • • • • 54
(assemble format string) • • • • • • • • • • • • • • 55
(foreshorten specifier) • • • • • • • • • • • 56
(get address with off set constant) • • • • • • • • • 57
(get parenthesis balanced string) • • • • • • • • • 58
(get descriptor) • 59
(get descriptor with offset constant) ••••••••• 60
(get length of specifier) • • • • • •••••••••• 61
(get length for string structure) • • • • • • • • • • • • • 62
(get size) • -. • 63
(get specifier with constant offset) •••••••••• 64
(increment address) • • • • • • • • • • • • • • • • • • 65
(increment value field) • • • • • • • • • • • • • • • • • • 66
(initialize SNOBOL4 run) • • • • • • • • • • • • • • 6 7
(insert node in tree) • • • • • • • • • • • • • • • • • • • 68
(convert integer to real number) • • • • • • • • • • • • 69
(convert integer to specifier) • • • • • • • • • • • • • • • 70
(initialize stack) • 71
(length comparison) • • • • • • • • • • • • • • • • • • 72
(length equal to constant test) •••••••••••••• 73

iii

53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.

LEXCMP
LHERE
LINK
LIN KOR
LOAD
LOCAPT
LOCAPV
LOCSP
LVALUE
MAKNCD
MNREAL
MNSINT
MOVA
MOVBLK
MOVD
MOVDIC
MOVV
MPREAL
MSTIME
MULT
MULTC
ORDVST
OUTPUT
PLUG TB
POP
PROC
PSTACK
PUSH
PUT AC

·PUTD
PUT DC
PUT LG
PUTSPC
PtJTVC
RCALL
RCOMP
REALST
REMSP
RESETF
REWIND
RLINT
RPLACE
RRTURN
RS ET FI
SBREAL
SELBRA.
SETAC
SET AV
SET.F
SEI'FI
SET LC
SETSIZ.
SET SP
SEI'VA
SETVC
SHORTN
SPCINT
SPEC

74 (lexical compari~on of strings) •••
(define location here) • • • • • • • • • •
(link to external function) • • •

• • • • • • 7 5

(link "or" fields of pattern nodes}
(load external function) • • • • . • • • • • •
(locate attribute pair by type) • • • • • • • • • • •
(locate attribute pair by value) • • • •
(locate specifier to string) • • •
(get least length value) • • • • ,. • • • • • • •
(make pattern node) • • • • • • • • • •
(minus real number) • • • • • • • • • •
(minus integer) • • • • • • • • • • • •
(move address) • • • • • • • • • • •
(move block of descriptors) • • • • • • • •
(move descriptor) • • • • • • • • • • • • •
(move descriptor indirect with constant off set)
(move value field) • • • • • • • ••
(rnulitply real numbers) • • • • • • • • • • • • •
(get millisecond time) • • • • •
(multiply integers) • • • • • • •
(multiply address by constant) • •
(order variable storage) • • • • • •
(output record) • • • • • • • • • • • • • • • •

• 7 6
• 77 /
• 78 0
• 19
• 81
• 83
• 84

••• 85
• 87
• 88

• • • 89
• 90
• 91
• 92
• 93
• 94
• 95
• 96

• • • 97
• 98

••• 100
(pl'lg Gyntax table) • • .. • • • •
(pop descriptors from stack) • ·• • • • •

• • • . • • • 101
• • .·.103

(procedure entry) • • • • • • • • • • • • • • •
(post stack position) • • • •

.104
••• 105

(push descriptors onto stack) . .
(put address with offset constant)
(put descriptor) • • • • • • • • ~ • •
(put descriptor with constant offset)
(put specifier length) • • • • • • • •

••••••• 106
••• 107

.108 . . .
. . • . . :~~~ \Q

(put specifier with off set constant) •
(put value field with offset constant)
(recursive call) • • • • • • • • • • •
(real comparison) • • • • • • • • • • • • •
(convert rea~ number to string) • • •
(specify remaining string) • • • • • • •
(reset flag) • • • • • • • • • • •
(rewind file) • • • • • • • • • •
(convert real number to integer) • • •
(replace characters) • • • • • • ~ • • •
(recursive return) • • •
(reset flag indirect) • • • • • • • • • •
(subtract real numbers) • • • • • • • • •
(select branch point) • • • • • •
(set address to constant) • • • • • •
(set address from value field) • • ••
(set flag) • • • • • • • • • • • • • • •

.111

.112

.113

.116
.117
.119
.120
.. 121
.122
.123
.125
.127
.128

••• 129
• •• 130

.131

(set flag indirect) • • • • • • • • • . •••
.132
.133
.134
.135
.136

(set length of specifier to constant) • • • • •
(set size) •
(set specifier) • • • • • • • • • • • • • • • • •
(set value field f rorn address) • • • • • • • • • •
(set value to constant) • • • • • • • • • • • • • • •
(shorten specifier} • • • • • • • • • • • • •
(convert specifier to integer) • • • • ••
(assemble specifier) • • • • • • • • • • • • • • •

.137
e I• e 138
••• 139
• •• 140
... 14\0

iv

'I 111. SPOP (pop specifier from stack) • 1 LJ2
c 112. SP HEAL (convert specified string to real number)143

113. SPtJSH (push specifiers onto stack) (!! • • . • • <. • °' .144
114. STl'RNT (string print) II> . • . . • • • • . . •145
115. ST READ (string read) • • . . . • . . .146
116. STREAM (stream for token) • . . . • . . • . • 147
117. STRING (assemble specified string) •149
1·1 s. SUBSP (substring specif ica ti on) • • . • . • • • . . . • • • • . • 15()
119. SUBTRT (subtract addresses) • • • . . . • • • . • .151
120. SUM (sum addresses) . • . . . 0 . • . . • . . • • • . . • • . c152
121. TESTF (test flag) . . • . . • • . . . • . . . • • • . • • . ., • .153
122. TEST FI (test flag indirect) . . • . • . • . • • . • • • • •154
123. TITLE (title assembly listing) . . • . . . • • • • • . . • . • . .155
124. TOP (get to top of block) e • . • • • • • • • • . . • . • • . • 156
125. 'l'RIMSP (trim blanks from specifier) • • • • . • • • • • . • • .157
126. UNLOAD (unload external function) . • • . • . . • • • . . • . • . .. 158
127. VAR ID (compute variable identification numbers) • • . . • . . • .159
128. VCMPIC (value field compare indirect with offset constant) . • • .161
129. VEQL (value fields equal test) . • • • • • • • • . • •162
130. VEQLC (value field equal to constant test) . • c • . . . • • • • .163
131. ZERBLK (zero block) e . ffJ 0 • . . . • • c . . • 164

0

Figure 1. Representation of a Descriptor . 15

Figure 2. Representation of a Specifier . . • • 15·

Figure 3. Short Representation of a String . . . ~ 15

Figure 4. Long Representation of a String . . . • . . • . • 16

Figure 5. Representation of a Syntax Table Entry . . 16

Figure 6. An Altered Descriptor . • . • • . . . • . . . • 16

Figure 7. Data Input to 1\COMP • • 19

Figure a. Data Input to ACOMPC • ... • . • . . • . . • . . . 2f\

Figure 9. Data Input to ADD LG . . • • . . • 21

Figure 1 o. Data Altered by ADDLG . • . . • . • . . ., • . . • . • • . . 21

Figure 11. Data Input to ADDSIB • . 22

Figure 12. Data Altered by ADDSIB . • • • . • • . • . . . • . /'1

Figure 13. Data Input to ADDSON . . • . • . . . 23

Fiqure 14. Data Altered by ADDSON . . • . . • . • • • . • • . . . • . . . 2 ·i

Figure 15. Data Input to ADJUST • . Q . . • . ;>t.&

Figure 16. Data Altered by ADJUSI' . • . .. • . . . • <a 2 ...

Figure 17. Data Input to ADREAL • • . . . ?'l

F·igure 18. Data Altered by A DR.EAL• . . •
"r . . L -·

Figu.re 19. Data Input to A:CQL . . • . . • • . . • ? f-,

Figure 20. Data Input to l\EQLC • . • . . 27

Figure 21. Data Input to AEQLIC • . . 2 t~

Figure 22. Data Input to APDSP • • ~9

Figure 23. Data Altered by APDSP 2<.:4

Q Figure 24. Data Assembled by ARFAY • • . . . • . . . 30

Figure 25. Data Input to BKSIZE • • . . 31

Figure 26. Data Altered by BKSIZE • 31

Figure 27. Data Input to BKSPCE • 32

Figure 28. Data Input to BRAN IC • • • 34

Figure 29. Data Assembled by BUFFER . . 35

Figure 30. Data Input to CH1'VAL 3f.

Figure 31. Data Altered by CLERTB for ERROR, STOP, or STOP SH "J7

Pigure 32. Data Altered by CLERTB for CONT IN • 17

Figure 33. Initial Data Input to CPYPAT • • . U1

.?iyure 34. Data Input to CPYPAT for successive Vaues cf R2 . 41

Figure 35. Data Altered by CPYPAT for Successive Values of '.=:1 . . • . fl 1

;"igure 36. Additional Data Input for successive Values of R2 if V7 =] . 41

Figure 37. Additional Data Altered for successive Values of 'R.1 if V7 = 3 qi

Figure 38. Data Altered when Copying is Complete • U2

Figure 39. Data Altered by DATE 43

Figure 40. Data Input to DECRA 44

Figure 41. Data Altered by DECRA 44

Figure 42. Data Input to DEQL • . •· . . 45

FigurP 43. Data Assembled by DESCR . • 46

Figure 44. Data Input to DIVIDE • . . . • . . • . . . 47

Figure 45. Data Altered by DIVIDE • • • . • . 47

Figure 46. Data Input to DVREAL . . • • • . • . • 48

Figure 4 7. Data Altered by DVREAL 48

Figure 48. Data Input to END EX • . • • • • . • . . . • • • . 50

Figure 49. Data Input to ENFILE . . . • • . . • 51

Figure 50. Data Input to EX PINT • • • • • • . . 53

c Figure 51. Data Altered by EXP INT . . . • . . . • 53

Figure 52. Data Input to EX REAL • . . • . . . • . • . 54

vi i

Figure 53. Data Altered by EX REAL su
Figure 54. Data Assembled by FORMAT ·- 55 ,,

l
Figure 55. Data Input to FSHRTN 56
Figure 56. Data Altered by FSHRTN 56 :~ Figure 57. Data Input to GET AC 57 ~J~~11~W

Figure 58. Data Altered by GET AC . . . 51
Figure 59. Data Input to GET BAL ')8

Figure 60. Data Altered by GET BAL . . . • 58
Figure 61. Data Input to GETD C.?
Figure 62. Data Altered by GETD . . • 59
Figure 63. Data Input to GET DC 6C•
Figure 64. Data Altered by GET DC 60
Figure 65. Data Input to GETLG 61
Figure 66. Data Altered by GET LG 61

,;figure 67. Data Ir: put to GETLTH 62
Figure 68. Data Altered by GETLTH 62
Figure 69. Data Input to GETSIZ 63
Figure 7 o. Data Altered by GETSIZ 63
Figure 71. Data Input to GETS PC 64
Figure 72. Data Altered by GE7SPC 64
Figure 7 3. Data Input to IN CR A 65
Figure 74. Data Altered by IN CR A 65
Figure 75. Data Input to INCFV 66
Figure 76. Data Alterec by INC RV . ;. . . • 66
Figure 77. Data Input to INSERT • . . 68
Figdre 78. vata .1\1 tered by IKSERT 68
Figure 79. Data Input to INT.t-L 69'
Figure 80. Data Altered by I N'I'RI.. . . . f 9
Figq.~e 81. Data Input to I~~TSPC 10
Figure 82. Data Altered by INTSPC 70
Figure 83. Data Altered by ISTACK 71 0
Figure 84. Data Input to LCOMP 72 ~-
Figure 85. Data Input to LEQLC . 73
Figure 86. Data Input to LEXCMP 74
Figure 87. Data Input to LINK 76
Figure 88. Data Altered by LINK 76
Figure 89. Data Input to LINKOR 77
Figure 90. Data Altered by LINK OR . • . • . • . • 77
Figure 91. Data Input to LOAD ·--·---. ·-- 76
Figure 92. Data Altered by LOAD 78
Figure 93. Data Input to LOCAPT -· 79 . . . • - .
Figure 94. Data Altered by LOCAPT 79
Figure 95. Data Input to LOCAPV 81
Figure 96. Data Altered by LOCAPV . . . '. 81
Figure 97. Data Input to LOCSP • . . e3
Figure 98. Data Altered by LOCSP if A I 0 . • 83
Figure 99. Data Altered by LOCSP it A = 0 . . . 83
Figure 100. Data Input to LVALUE 84
Figure 101. Data Altered by LVALU? 84
Figure 102. Data Input to r·1AKN0D • • . . . 85
Figure 103. Additional Data Input if DESCR6 is Given . . • 85
Figure 104. Data Altered by MAKt~QD 85
Figure 105. Addtional Data Altered if DESCR6 is Given . • . . . 85
Figure 106. Data Input to MNREAL 87
Figure 107. Data Altered by MNREAL 87
Figure 108. Data Input to MNSIN'I 88
Figure 109. ·Data Altered by MNSI:-JT 88
F'igure 110. Data Input to MOVA 89.

~~

vi i i

Figure 111. Data Altered by MOVA 89

Figure 112. Data Input to MOVBLK 90

t
Figure 113. Data Altered by MOVBLK . e . . . 90
Figure 114. Data Input to MOVD "' 91
Figure 115. Data Altered by MOVD • • "' . . 91
Figure 116. Data Input to :.10VDIC C> e . . . 92

Figure 117. Data Altered by MOVDIC 92
. Figure 118 • Data Input to MCVV . • 93
Figure 119. Data Altered by MCVV • 93
Figure 120. Data Input to .MPREAL . . . • • 94
Figure 121. Data Altered by MP REAL . . • • • . . . 94
Figure 122. Data Altered by MSTI!"1E . . . • . . • . . e . . . • . 95
Figure 123. Data Input to MULT . . . • 96
Figure 124. Data Altered by MULT • • . . . 96
Figure 125. Data Input to MULTC • . • 97
Figure 126. Data Altered by MULTC . . • • . . Q • . • . • . 97
Figure 127. Organization of Variable storage 98
Figure 128. Data Input to OUTPUT • • • .100
Figure 129. Data Input to PLUGTE • . . . • •101
Figure '.30. Data Altered by PLUGTB for ERROR, STOP, or STOPSH101
Figure 131. Data Altered by PLUGTB for CONTIN . • • . . . • • 101 '
Figure 132. Data Inpu~ to POP • . "' . . . • .103
Figure 133. Data Altered by POP • • .1C'3
Figure 134. ~ata Input to PS TACK . • • . • . .105
Figure 135. Data Altered by PST ACK . • . • . • . . . • . . • • .105
Figure 136. Data Input to PUSH106
Figure 137. Data Altered by PUSH . • • . • . . . • . . .1C6
Figure 138. Data Input to PUT AC •107
Figure 139. Data Altered by PUTAC . . . • •107

0
Figure 140. Data Input to PUTD •108
Figure 141. Data Altered by PUTD • • . . • • . . .108
Figure 142. Data Input to PUT DC109
Figure 143. Data Altered by PUT DC • . . •109
Figure 144. Data Input to PUT LG •110
Figure 145. Data Altered by PUTLG • • • . • . . . • .110
Figure 146. Data Input to PU'!'SPC •111
Figure 147. Data Altered by PUTS PC • • .111
Figure 148. Data Input to PlJfVC • • . . .112
Figure 149. Data Altered by PUTVC • . . • . . . • . . . •112
Figure 150. Data Input to RC ALL • . .113

Figure 151. Data Altered by RCALL • . • . • • • . • . • • . • . . . • . .114
Figure 152. Return Code at LOC114
Figure 153. Data Input to RCOMP . . • • .116
Figure 154. Data Input to REP.LST117
Figure 155. Data Altered.by REALST • . • . . .117
Figure 156. Data Input to REMSP •119

Figure 157. Data Altered by REMSP • . .119
Figure 158. Data Input to RESETF120
Figure 159. Data Altered by RESETF120
Figure 160. Data Input to REWIND • .121
Figure 161. Data Input to RLINT • • • . . . • • . .122
Figure 162. Data Altered by RLINT . •122
Figure 163. Data Input to RPLACE • •123
Figure 164. Data Altered by RPLACE • . . .123
Figure 165. Data Input to FRTURN • . • . . • • • . .125
Figure 166. Data Altered by RRTURN • .125

9 Figure 167. Return Code at 1.oc. •126
Figure 168. Data Input to RS ET FI • • • •127

ix

Figure 169. Data Altered by RSETFI127
Figure 170. Data Input to SBREAL128
Figure 171. Data Altered by SBREAL; • 128
Figure 172. Data Input to SELBRA129
Figure 173. Data Altered by SET AC130 __ 0
Figure 174. Data Input to SET AV • . .. • . . . • . . .131
Figure 175. Dat:a Altered by SETAV • • 131
Figure 176. Data Input to SETF132
Figure 177. Data Altered by SETF •132
'Figure 178. Data Input to SETFI . . . • • .133
Figure 179. Data Altered by SETFI133
Figure 180. Data Altered by SETLC 0 • 13 ll
Figure 181. Data Input to SETSIZ135
Figure 182. Data Altered by SETSIZ135
Figure 183. Data Input to SET SP . . • . . . "136

. ,,Figure 184 • Data Altered by SET SP
'

.136
Figure 185. Data Input to SET VA •137
Figure 186. Data. Altered by SETVA137
Figure 187. Data Altered by SETVC • 138
Figure 188. Data Input to SHORTN139
Figure I 89. Data Altered by SHORTN139
Figure 190. Data Inpu~ to SPCIN'I • 1 lfO
Figure 191 .. Data Altered by SPCINT • . . • 140
Figure 192. Data Assembled by SPEC • ·• • . . .141
Figure 193. Data Input to SI>uP142
Figure 194. Data Altered by SPOP142
Figure 195. Data Input to SPREAL143
Figure 196. Data Altered by SPREAL143
Figure 197. Data Input to SPUSH • 144 l

Fi~re 198. Data Altered by SPUSH . •144
Figure 199. Data Input to ST PR NT145 0 Figure 200. Data Altered by STP1'NT.1LJ5·
Figure 201. Data Input to STREAD • 146 ~.

Figure 202. Data. Altered by ST READ1~6
Figure 203. Data Input to S'rREAM147
Figure 204. Data Altered by STREA!1 if Termination is STOP148
Figure 205. Data Altered by STREAN if Termination is STOPSH148
Figure 206. Data Altered by STREAM if Termination is ERROR148
Figure 207.· Data Altered by STRE~~ if Termination is RUNOU'I148
Figure 208. Data Assernbl2d by STRING • 149
Figure 209. Data Input to SUP.SP 9! .150
Figure 210. Data Alt~red by SUBSP if L3 ~ L2150
Figure 211. Data Input to SUBTR'I • • 151
Figure 212. Data Altered by SUPTRT151
Figure 213. Data Input to SUM152
Figure 214. Data Altered by SUM • • 152
Figure 215. Data Input to TESTF153
Figure 216. Data Input to TESTFI • 154
:Figure 217. Data Input to TOP • • . .156
Figure 218. Data Altered by TOP156
Figure 219. Data Input to TRIMSP •157
Figure 220. Data Altered by TRIMSP . . . •157
Figure 221. Data Input to UNLOAD .158
Figure 222. Data Input to VARIO • • 159
Figure 223. Data Altered by VAR ID159
Figure 224. Data Input to VCMPIC • •161
Figure 225. Data Input to VEQL162
Figure 226. Data Input to VEQLC •163~

x

c

c

Figure 227. Data Input to ZERBLK •••
Figure 228. Data Altered by ZERBLK

.164

.164

xi

0

0

1 , :tntrqd uct.j.on

The SNOBOL4 programming language [1 } is implemented in macro-assembly
~anguage [2.3]. This macro language J.S largely machine-independent and is
-designed so that it can be implemented on a variety of computers. Thus, an
implementation of the SNOBOL4 programming language can be obtained by implement­
ing the much simpler macro language. By implementing tQe macro language, and
using the SNOBOL4 implementation already written in the macro language, one
obtains a version of SNOBOL4 which is largely source-language compatible with
other versions implemented in the same way. Nearly all t~e logic ~f the SNOBOL4
langauge resides in the program written in the macro language. Thus if one
implements the ~cro language properly, the resulting implementation of SNOBOL4
will be essentially the same as other such implementations.

This paper desc+ibes the macro language and contains information necessary
for its implementation. Section 2 describes environmental considerations.
Section 3 describes the representation of data. syntax tables and character
graphics are described in Section 4.. section 5 is a list of all macro
operations with a description of how to implement each. supplementary informa­
tion is included in appendices.

3

.,, Envit:qnmentaA:.consideratj;ons.

A. Input and outpu5

SNOBOL4 is designed to perform all input and output through FORTRAN IV
routines. A SNOBOL4 object program has much the same I/O facilities as a
FORTRAN IV object program. Specif i·cation of I/O is thus largely ma.chine­
independerit both at the source-language level-and at the ·implementation level.

Files are referred.to by their FORTRAN unit reference numbers. In SNOBOL4
this is handled as an integer which appears in the address fields of descriptors
which· are arguments to the I/O macros. Unit reference numbers are referred to
symbolica1ly in the SNOBOL4 assembly. see the PARMS file in the dicussion of
the COPY macro. · ·

Input, performed by STREAD, uses only A conversion, with lengths being
specified. Output is controlled by formats. output is performed by OUTPUT and
STPHNT. 1he output done by the SNOBOL~ sys't.em specifies H-type literals, Ar I,
and, in one case, F conversion.. Programmer formats should . include only
literals, X, T, apd A conversion. Generally speaking, formats occur in
"undigested" form. Formats used by OUTPUT are assembled by the FORMAT and are
intended to be simply character strings representing undigested formats. FORMAT
may, however, assemble any convenien~ representation of the format. Formats
used by STPRNT are strings which may be formed during · program execution and
hence must be accepted iri their undigested form. ·:)

There are three
FORTRAN counterparts.

other I/O related operations which correspond to their
These are BKSPCE, ENFILE, and REWIND.

Where possible, the easiest way to implement SNOBOL4 I/O is to use FORTRAN
calling sequences for cor~esponding operations and link the FORTRAN I/O iibrary
with the SNOBOL4 system. The main difficulties will probably occur in handling
undigested formats. When questions arise as to what an operation should do,
FORTRAN conventions should be applied. A programmer. should expect the same
results from SNOBOL4 as from FORTR~N if, for example, he requests a string 200
characters from a file containing SO-character records.

B. Storage Reguiremen~

The SNOBOL4 system itself is very large and SNOBOL4 programs typically
rt:!quire large amounts of dynamically allocated storage. The magnitude of these
requirements may be detennined from the implementation for the IBM system/360.
This system requires a user partition of about 200K bytes (characters) to run
large programs. A partition of alx>ut 170K bytes will permit execution of small
programs. Of the space required, the SNOBOL4 system and its internal data
consume about 99K bytes, the FORTRAN I/O routines consume about 14K bytes, and
the remainder is devoted to dynamically allocated storage. Allocated storage i~
handled in machine-independent data units (see the next section) callee_.,
descriptors which occupy 8 bytes eaL.n on the 360. A production system should be

4

~ able to provide about 10,000 descriptors of dynamically allocated storage.
~ Because of the large amount of space required for dynamic storage, overlay

techniques-for the program itself can only partially reduce the requirements for
physical storage.

c

c. Qthe(considerations

SNOBOL4 makes few other demands on its operating system environment.
Facilities should be provided so that the SNOBOL4 system can be called and can
return to the operating system under which it operates. SNOBOL4 will use dump
facilities to provide core dumps requested by the keyword &ABEND if such
facilities are available. Tirre and date are used by SNOBOL4, but they are not
essential.

5

3. . Representation of Data

There are a few basic types · of data used in the SNOBOL4 system, and a
murher of aggregates of the basic types.. The basic types of data are

1. Descriptors.

2. Specifiers.

3. Character Strings.

4. Syntax Table Entries.

A, Desgriptors

Descri?tors are used to repreoent all i;;ointers, i!:'.t~gers, and rea! number.:; ..
A desc.z;iptor may be thought of as the basic "word" of SNOBOL4. Descriptors
consist of three fixf?d-length fields:

1. Address.

2. Flag.

3. Value. 0
The size and position of these fields is determined from data they must

represent and the way they are used in the various operations. The following
paragraphs describe some specific requirements.

i. The Address Field

The address field of a descriptor is large enough to address . any
d~scriptor, specifier or program instruction with the SNOBOL4 system. (Descrip­
tors do not have to address individual characters of strings. see Specifiers.)
The address field must also be large enough to contain any integer or real
number (including sign) which is to be represented by the SNOBOL4 system. The
address field is the most often used field of a descriptor and is used
frequently for addressing and integer arithmetic (less frequently for real
arithmetic) and it is should be positioned so that these operations can be
performed efficiently.

ii. The Flag Field

The flag field is used to represent the state of a number of disjoint
conditions and is treated as a set of bits which are individually tested, turne~
on and turned off. There are five flag bits currently used in SNOBOL4, but..._ ..
space is left for several more.

6

0

0

iii. The Value Field

The value field is used to represent a number of internal quantities which
are represented as unsigned integers (-magnitudes). These quantities include.the
encoded representation of source-language data types, the length of strings, and
the size (in address units) Qf various data aggregates. The value field need·
not be as.big qS the addr~SS fieid, but ~ust be large. enough to repr~sent the
size of th.e lar.gest .. datia .~.ggregate w~ich can be formed.

On the IBM System/360, a descriptor is two words (8 bytes). The first word
is the address field. The second word consists of 1 byte for the flag field and
3 bytes for the value field. The 3 bytes (24 bits) for the value field permits
representation of data objects as large as 22•-1 bytes. on the other hand, 2
bytes would limit objects to 216-1 bytes. Since on the 360 there are 8 bytes
per descriptor, 21a-1 bytes limits objects to 8191 descriptors which is
restrictive. For machines with fE?Wer address Wlits per descriptor, the value
field need not be as many bits.

Specifiers are used to refer to character strings. Almost all operations
performed on character strings are handled through operations on specifiers.
All specifiers are the same size and hav~ five fields:

1. Address.

2. Flag.

3. Value.

4. Offset.

5. Length.

Specifiers and descriptors may be stored in the same area indiscriminately,
and are indistinguishable to many processes in the SNOBOL4 system. As a result.
specifiers are composed of two descriptors. One descriptor is used in the
standard way to provide the address, flag, and value fields. The other
descriptor is used in a nonstandard way. Its address field is used to represent
the offset of an individual character from the address given in the specifier's
address field. The value field of this other descriptor is used for the length.

c, ~haracter §!;ring§.

character strings are representated in packed format, as many characters
per descriptor as possible. Storage of character strings in SNOBOL4 dynamic
storage is always in storage units which are multiples of descriptors.

7

o. syntax Table Entri~

Syntax tables are necessarily somewhat machine dependent.
implementation of these tables is done individually for each
descriptio~ of the table requirements is given in the next section.

8

consequently,
machine.. A

co

"(,.,,.... ;. 4. syntax rables and c~~~~~~
~0$111'

·c

.as,_ Characters

The SNOBOL4 language permits the use of any character tha~ can be
represented on a particular machine. There are certain characters ·that have
syntactic significance in the source language. The card codes, graphics, and
internal representations vary from machine to machine. For each machine,
representations are chosen for each of the syntactically significant characters.
such characters and sets of characters are given descriptive names to avoid
dependence on a particular machine. In the list that follows, the graphics used

.,. on the IBM System/360 are used as a point of reference.

ALPHANUMERIC

AT
BJ .• ANK
BREAK
CMT
CNT
COLON

COMMA
CTL
DOLLAR
DOT
DQOOTE
EOS
EQUAL
FGOSYM
KEYSYM
LEFTBR

LEFTPAREN
LETTER

MINUS
NOTSYM
NUMBER
ORSYM
PERCENT
PLUS
POUND
QUESYM
RAISE
RIGHTER

RIGHTPAREN
SGOSYM
SLASH
SQOOTE
STAR
TERMINATOR

language function

digit and letter

operator
separator and opei~ator
dot and underscor(!
comment card
continue card
goto designator arid
dimension separator
argument separator
control card
operator
operator
literal delimiter
statement terminator
assignment
failure goto designator
operator
reference· and
goto delimiter
expression delimiter
letter

operator
operator
digit
operator
operator
operator
operator
operator
operator
reference and
goto delimiter
expression delimiter
success goto designator
operator
literal delimiter
operator _
expression terminator

360 grS&Ehi9!!

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
0123456789
ii)

·-
+. . .
,
$

•
" .
' =-
F
&O
<[

(

(bl~nic and tab)

ABCDEFGHIJKLMNOPQRSTOVWXYZ
abcdefqhijklmnopqrstuvwxyz

0123456789
I
I
+

• ?
t!
>]

)
s
/
•
* i) >,) (includes blank and tab)

9

~.§Ylltax Ta~

The micro-syntax (or "fine structure") of the SNOBOL4 language is (lnalyzed
using the operation STREAM ·(q.v.) which is driven from syntax tables. In a
syntax- table there is an entry for each characte·r at a position corresponding to
the numerical value of the internal encoding of that character. The syntax
table entry specifies the action to. be taken if that character is encountered.
The actions are:

·~ .

1. CONTIN, -indicating that the current syntax table is to be used for
the next character.

2. GOTO(TABLE), indicating that TABLE is to be used for the next
character.

·3. STOP~~ i·ndicating that STREAM should· terminate with the last charact­
er e~amined to·be.included in the accepted string.

4. STOPSH, indicating the STREAM should terminate with the last
character examined !lQ~ ~o be it1cluded in the string accepted.

5. ERROR, . indicating that STREAM should terminate wlth an error
indication.

6. PUT(ADDRESS), indicating tha~ ADDRESS is to be placed in the address
field of the descriptor STYPE.

The classes of characters· for which actions are to be taken are given in
the FOR designations •. CONTIN and GOTO(TABLE) provide information about the next
table· to use, and ·are typically represented by addresses in syntax table
entries. STOP,. STOPSH, and ERROR are type indicators used to stop the streaming
process.

The syntax tables for the IBM- 360-- implementation are generated from such
descriptions using a (SNOBOL4) program in which. the character c·lasses and the
order of the interna1 character codes are parameters! The complete list of
syntax table de~criptions follows:

1 BEGIN BIOPTB
FOR(PLUS) PUT(ADDFN) GOTO(TBLKTB)
FOR (MINUS) PUT (SUBFN) GOTO (TBLKTB)
FOR(DOT) PUT(NAMFN) GOTO(TBLKTB)
FOR(DOLLAR) PUT(DOLFN) GOTO(TBLKTB)
~OR (STAR) PUT (MPYFN) GOTO (STARTB)
FOR(SIASH) PUT(DIVFN) GOTO(TBLKTB)
FOR{AT) PUT (BIATFN) GOTO (TBLKTB)
FOR(POUND) PUT(BIPDFN) GOTO(TBLKTB)
FOR(PERCENT) PUT(BIPRFN) GOTO(TBLKTB)
FOR(RAISE) PUT(EXPFN) GOTO(TBLKTB)
FOR(ORSYM) PUT(ORFN) GOTO(TBLKTB)
FOR(KEYSYM) PUT(BIAMFN) GOTO(TBLKTB)
FOR (NOTSYM)· .~PUT (BINGFN) GOTO (TBLKTB) • ~-

10

~,.-...

FOR(QUESYM) PUT(BIQSFN) GOTO(TBLKTB)
ELSE ERROR
END BIOPTB

~ ~BEGIN CARDTB
FOR(CMT) PUT (CMTTYP) STOPSH
FOR(CTL} PUT(CTLTYP) STOPSH
FOR (CNT) PUT (CNTTYP) STOPSH
ELSE PUT(NEWTYP) STOPSH
END CARDTB

v BEGIN DQLITB
FOR(DQUOTE) STOP
ELSE CONTIN
END DQLITB

v"BEGIN ELEMTB
FOR(N{Jv!BER) PUT(ILITYP) GOTO(INTGTB)
FOR{LETTER) PUT(VARTYP) GOTO{VARTB)
FOR(SQtX>TE) PUT(QLITYP) GOTO{SQLITB)
FOR(DQUOTE) PUT(QLITYP) GOTO(DQLITB)
FOR(LEFTPAREN) PUT(NSTTYP) STOP
ELSE ERROR
·END ELEMTB

" BEGIN EOSTB
FOR(EOS) STOP
ELSE CONTIN
END EOSTB

Q /BEGIN FLITB
FOR(NUMBER) CONTIN
FOR(TERMINATOR) STOPSH
ELSE ERROR
END FLITE

./BEGIN FRwDTB
FOR(ELANK) CONTIN
FOR(EQUAL) PUT(EQTYP) STOP .- ·
FOR(RIGHTPAREN) PUT(RPTYP) STOP
FOR(RIGH~BR) PUT(RBTYP) STOP
FOR(COMMA) PUT(CMATYP) STOP
FOR{COLON) PUT(CLNTYP) STOP
FOR(EOS) PUT(EOSTYP) STOP
ELSE PUT(NBTYP) S!OPSH
END FRWDTB

/BEGIN GOTFTB
FOR(LEFTPAREN) PUT(FGOTYP) STOP
FOR(LEFTBR) PUT(FTOTYP) STOP
ELSE ERROR
END GOTFTB

V' BEGIN GOTOTB
FOR(SGOSYM) GOTO(GOTSTB)
FOR(FGOSYM) GOTO(GOTFTB) c FOR(LEFTPAREN) PUT(UGOTYP) STOP

__ FOR (LEFTBR) PUT (UTOTYP) STOP

11

ELSE ERROR
END GOTO'IB

./BEGIN GOTSTB
FOR(LEFTPAREN) PUT(SGOTYP) STOP
FOR(LEFTBR) PUT(STOTYP) STOP
ELSE ERROR
END GOTSTB

-1 BEGIN IBLKTB
FOR(BLANK) GOTO(FRWDTB}
FOR(EOS) PUT(EOSTYP) STOP
ELSE ERROR
END "IBLKTB

,/ BEGIN INTGTB
FOR(NUMBER) CONTIN
FOR(TERMINATOR) PUT{ILITYP) STOPSH
FOR{DOT) PUT(FLITYP) GOTO(FLITB)
ELSE ERROR
END INTGTB

/BEGIN LBLTB
FOR(ALPHANUMERIC) GOTO(LBLXTB)
FOR(BLANK,EOS) STOPSH
ELSE ERROR
END LBLTB

./ BEGIN LBLXTB
FOR(BLANK,EOS) STOPSH
ELSE CONTIN
END LBLXTB

./ BEGIN NBLKTB
FOR(TERMINATOR) ERROR
ELSE STOPSH
END NBLKTB

hEGIN NUMBTB
FOR(NUMBER) GOTO(NUMCTB)
FOR{PLUS,MINUS) GOTO(NUMCTB)
FOR(COMMA) PUT(CMATYP) STOPSH
FOR(COLON) PUT{DIMTYP) STO-PSH
ELDE ERROR
END NUMBTB

/BEGIN NUMCTB
F0R(NUMBER) CONTIN
FOR(COMMA) PUT(CMATYP) STOPSH
FOR(COLON) PUT(DIMTYP) STOPSH
ELSE ERROR
EilD NUMCTB

t.tBEGIN SNABTB J
FOR(FGOSYM} STOP
FOR(SGOSYM) STOPSH
ELSE ERROR
END SNABTB

12

(~

i. ,I BEGIN SQLITB
.{"'-··. FOR(SQUOTE) STOP
~· ELSE CONTIN

END SQLITB·

c ... , .

JBEGIN STAR'lB
FOR(BLANK) STOP
FOR (STAR) PUT (EXPFN) GOTO (TBLKTB)
ELSE ERROR
END STARTB

vBEGIN TBLKTB
FOR(BLANK) STOP
ELSE ERROR
END TBLKTB

4EGIN UNOPTB
FOR(PLUS) PUT(PLSFN) GOTO(NBLKTB)
FOR(MINUS) PUT(MNSFN) GOTO(NBLKTB)
FOR(DOT) PUT(DOTFN) GOTO(NBLKTB)
FOR(DOLLAR) PUT{INDFN) GOTO{NBLKTBj
FOR(STAR) PUT(STRFN) GOTO(NBLKTB)
FOR(SLASH) PUT(SLHFN} GOTO(NBLKTE)
FOR(PERCENT) PUT (PRFN) GOTO (NBLKTB)
FOR(AT) PUT(ATFN) GOTO(NBLKTB)
FOR{POUND) PUT(PDFN) GOTO(NBLKTB)
FOR(KEYSYM) PUT(KEYFN) GOTO!NBLKTB)
FOR(NOTSYM) PUT(NEGFN) GOTO(NELKTB)
F9R(ORSYM) PUT(BARFN) GOTO(NBLKTB)
FOR(QUESYM) PUT(QUESFN) GOTO(NBLKTB)
FOR(RAISE) PUT(AROWFN) GOTO(NBLKTB)
ELSE ERROR
END UNOPTB

/BEGIN VARATB
FOR(LETTER) GOTO(VARBTB)
FOR(COMMA) PUT(CMATYP) STOPSH

. FOR (RIGHTPAREN) PUT (RPTYP) STOPSH -­
ELSE ERROR

~
~ ,_ END V ARATB

vSEGIN VARBTB
FOR(ALPHANUMERIC.BREAK) CONTIN
FOR(LEFTPAREN) PUT(LPTYP) STOPSH
FOR(COMMA) PUT(CMATYP) STOPSH
FOR(RIGHTPAREN) PUT(RPTYP) STOPSH
ELSE ERROR
END V&~BTB

../BEGIN V~RTB
FOR(ALPHANUMERIC,BREAK) CONTIN
FOR(TERMINATOR) PUT(VARTYP) STOPSH
FOR(LEFTPAREN) PUTtFNC"fYP) STOP
FOR(LEFTBR) PUT{ARYTYP) STOP
ELSE ERROR
END VARTB

13

SNABTB is used in pattern matching for ANY(CS), BREAK(CS), NOTANY(CS), and
SPAN(CS). SNABTB is modified during execution by the macros CLERTB and PLUGTB
(q.v.). The other syntax tables are not modified.

14

~'!
"~•t~I

0

c 5. The SNOBOL4 Macros

This section contains implementation instructions for each of the macros.
The instructions for an operation usually consist of a description of the
operation's function, figures indicating data relating to the operation, and
progranuning notes which contain details, and references to other relevant
information. '!he figures consist of stylized represenations of the various data
objects and the -fields within them.

A~iagramm9tic Representation of Data

Figure 1 is the representation of a descriptor at LOC1. A, F, and v
indicate the values of the address, flag, and value fields.

r -----.
LCC1 I A F v I

'----------------------------------
Figure 1. Representation of a Descriptor

Figure 2 is the representation of a specifier at LOC2. A, F, v, o, and L
indicate the values of the address, flag, value, offset, and length flelds.

LOC2 A F v 0 L

Figure 2. Representation of a Specifier

Character strings have two representations depending on how many characters
are relevant to the description.

Figure 3 is the short representation of a string of L characters at LOC3.
C1 and CL are the first and last characters respectively. In this representa­
tion, the intermediate characters are not ind~cated.

LOC3 C1 ... CL

Figure 3. Short Representation of a String

15

Figure 4 is the long representation of a string of L characters at LOC4. ~.~-.
CJ and CJ+1 are relevant characters in the interior of the string. The long ~
representation is used when interior characters must be referred to.

LOC4 I C1 ... I CJ ICJ+1 · I CL

Figure 4. Long Representation of a String

Figure 5 is the representation of a syntax table entry. A, T, and P
indicate the values of the next table address, type indicator, and put field.

LOC5 A T p

Figure 5. Representation of a syntax Table Entry

Various values and expressions may occur in the fields of data objects.
Fields are left blank when their value is not used in an operation. Fields
which qre changed have their new value underlined to make such fields easier to
locate. Only changed fields are underlined. For example Figure 6 shows a
descriptor whose address field is changed. The new value of the address field
is A2, and no other fields are changed. Q

Figure 6. An Altered Descriptor

Letters are used as abbreviations to differentiate the values which may
appear in a field. The six basic fields are indicated. by the letters A, F, v,
o# L, and c. Numerical suffixes (which may be thought of as subscripts) are
used as necessary to distinguish between.values of the same type. Thus, for
example, A1, A32, and AN might be used to refer to addresses, Fl and F2 to flags
and so on. To make further distinctions where ·appropriate, I and Rare.used to
indicate integers and real numbers, respectively. ·

The reader should glance through the descriptions which follow to fami­
liarize himself with the ways in which the figures and field notation are used.

E. Branch.Points

Program labels are included in the argument lists of many macros. These •
addresses are points to which control may be transferred, depending on dataC_
supplied to the macros. In the macro descriptions which follow, such branch

16

r points are under1ined in the prcitotype of the macro call. See ACOMP which
,......, fol1ows.

In general, some or all of such branch points may be omitted in a macro
call. An omitted branch point signifies that control is to pass to the next
macro in line if the condition· corresponding to the omitted· branch point is
satisfied. For example ACOMP is called in the following forms:

A COMP
A COMP
A COMP
A COMP
ACOMP
A COMP
A COMP

DESCR1,DESCR2,§!,~,1!
DESCR1,DESCR2,2!,~
DESCR1,DESCR2 1 5il
DESCR1,DESCR2,§I,,b!
DESCR1,DESCR2,,~,l,I
DESCR1,DESCR2,,~
DESCR1,DE?CR2,,,1!

ACOMP is not called with all three branch points omitted since that is not a
meaningful operation. other macros such as SUM (q.v.) are often called with
all branch points omitted.

Implementation of the macros must take omission of branch points into
consideration. Alternate expansions, conditioned by the omission of branch
points, may be used to generate more efficient code.

~ Abbrevigtions

several abbreviations are used in the descriptions that follow. These are:

D is used for the addressing width of a descriptor. On the IBM
System/360, the machine addressing unit is 1 byte, and D is 8.

sis used for the.addressing width.of a specifier. s = 2D.

CPD is used for the number-of characters stored per descriptor.

I is used for (signed) integers.

R is used for real numbers.

T is used for indicator entries in syntax tables

E is used for the ad.dress width of a syntax table entry.

z is used to indicate the number of the last character in collating
sequence. Characters are numbered from O to z.

D. D.ata I:me Code~

The SNOBOL4 system has data type codes assigned for integers and real
nwnbers, among others. These codes are indicated in the mac~o descriptions by
IC and RC respectively. The actual global symbols for these codes in the
SNOBOL4 system are I and R-respectively. The·actual. symbols are not used in the

17

description·s to avoid confusion with the abbreviations given a•X>ve. However
the implementation of the macros, IC should be replaced by I and RC by R.

E. Programming Ngtes

Programming notes are provided for some macro operations. The notes are
intended to point out special cases, indicate implementation pitfalls, and to
provide information about conditions that can be used to improve the efficiency
of the implementation.

18

o.

i 1 • A COMP

i ,
A COMP DESCR1,DESCR2,~,g,Q,~I I

ACOMP is used to compare the address fields of two descriptors. see figure
7. The comparison is arithmetic with A1 and A2 being considered as signed
integers:

' If A1 > A2 transfer is to fil·

If A1 = A2 transfer is to fil2·

If A1 < A2 transfer is to ~I·

DESCR1 A1

DESCR2 A2

Figure 7. Data Input to ACOMP

P~ogramming Not~s

Q .. 1. A1 and A2 may be relocatable addresses.

'·.. 2~ See also LCOMP, ACOMPC, AEQL, AEQI.C I and AEQLIC.

19

~ ACOMPC {ad~ss compariso~th constant)

· ACOMPC DESCR,N,.f?I,~Q,1! I

ACOMPC is used to compare the address field of a descriptor to a constant.
see figure a. The comparison is arithmetic with A being considered as a signed
integer.

If A > N transfer is to QI·

If A = N transfer is to ~2·

If A < N transfer is to 1!·

DESCR A
L~~--~----------~--~~~---

Figure 8. Data Input to ACOMPC

Programming Not~s

1. A may be a relocatable address.

2. N is never negative.

3. N is often O~ 0
'· 4. see also ACOMP, AEQL, AEQLC, and AEQLIC.

20

3 •. ~_....A~D~D~LG------<~a~dd tQ_specif ier lengthl

ADDLG SP EC, DESCR I

ADDLG is used to add an integer to the l~ngth of a specifier. See figures

9 and 10.

SPEC L

·DESCR I

Figure 9. Data Input to ADDLG

SPEC l!.!!

Figure 10. Data Altered by ADDLG

Programming Notes

Q 1. I is always positive.

21

'~ 2 ADDS!B <add sibl;ing to tree nod~l.

ADDSIB DESCR1,DESCR2 I ~t
'""11111

1

ADDSIB is used to add a tree ncxie as a sibling to another node. See
figures 11 and 12.

A f v

DESCR1 A1

DE.SCR2 A2 F2 V2

,
A1+FATHER A3 F3 V3

A1+RSIB A4 F4 V4

A3+CODE I

Figure 11. Data Input to ADDSIB

A2+RSIB M !! Yi,....,.

A2+FATHER A3 Il V3 /

A1+RSIB A2 ri V2
....,....,,

A3+CODE ll1

Figure 12. Data Altered by AODSIB

~ogramming ~otes

1. ADDSIB is only used by compilation procedures.

2. See also ADDSON and INSERT.

22

Q

5, ADDSON (add son to~~ode}

ADDSON DESCR1,DESCR2 I

·ADDSON is used \:.o .add a tree nooe _as a son to another node. see figures 13

ar.d 14.

DESCR1 A1 F1 V1

DESCR2 A2 F2 V2

[\. 1+LSON A3 F3 V3

A1+CODE I

Figure 13. Data Input to ADDSON

v
A2+FATHER al .n Y.1 I/

'

f
A2+RSIB l!1 Xl y~ 1.1

.J
A1+LSON ~ Ei Yl I

y

A1+CODE ll1 --,,;-'

Figure 14. Data Altered by ADDSON

frogramming Notes

1o ADDSON is only used by compilation procedures.

2. See also ADDSIB and INSERT.

23

6. ADJUST <compute:, adiusted addresn

ADJUST DESCR1,DESCR2,DESCR3 I
L-.~------~~----------------~------_...

ADJUST is used to adjust the address field of a descriptor. see figures 15
an~ 16.

DESCR2 A2 . I

DESCR3 A3

A2 A4

Figure 15. Data Input to ADJUST

DESCR1

Figure 16. Data Altered by ADJUST

?,rggrarnming Notes ~·

1. A3 is always an address integer.

•• \. '

I

/'

-~ I ADREAL DESCR1,DESCR2,DESCR3,~ILQRE,~~

Q

c

L----------------~--------~~------------------------'

·ADRFAL is used to add two real numbers. see figures 17 and 18.

If the. result is out of the range available for'real numbers, transfer
is to FAILURE;.

oth•.?rwise transfer is to ~~.§.

DESCR2 R2 F2 V2

DESCR3 R3

Figure 17. Data Input to AD REAL

r '.

./ ..,
• I

DESCR1 I R2+B3 n Y1 I

F.i~ure 18. Data Altered by ADREAL

frggramming Notes

1. See also DVREAL, EXRFAL, MNREAL, MPREAL, and SBREAL.

25

~8~,----A~E-O~L.__ ___ <~a~d-dresses ~gygl tes~l

I . AEQL DESCR1, DESCR2,!m,fil2 ·I

AEQL is used to compare the address fields of
19. The comparison is arithmetic with A1 and
integers:

If A1 = A2 transfer is to~·

If A1 #. A2 tr an sf er is to :m.

DESCR1 A1

DESCR2 A2

~'
1. ii. lH!1P"~f)

two descriptors. See '. figure
A2 being considered as' signed

Figure 19. Data Input to AEQr.

Programming Notes

1. A1 and A2 may be relocatable addresses.-·

2. See also VEQL, AEQLC, LEQLC, AEQLIC, ACOMP and ACOMPC.

26

.... 9 _ _.....A_E_<J_LC...._ __ (s.Qdress equal tQ._£Qnstant testl

AEQLC DESCR,N,l:m•fil2

AEQLC is used to compare the address field of a descriptor to a .constant.
see figure 20. · The compa~ison is arithmetic with A being considered as a signed
integer.

If A = N transfer is to ~2·

If A # N transfer is to ,tm.

DESCR A . I

Figure 20. Data Input to AEQLC

Progiamming Notes

1. A may be a relocatable address.

2. N is never negative.

3. N is often o.

0 4. See also LEQLC, AEQL, AEQLIC, ACOMP, and ACOMPC.

c
27

11h_ AEQLJ;~ (address equal to constcwt .indirect test)

AEQLIC OESCR,N1.·N2,~,~ I

'AEQLIC is used to compare an indirectly specified address field of a
descriptor to a constant. see figure 21. The comparison is arithmetic with A1
being considered as a signed integer:

DESCR

A1+N1

If A2 = N2 transfer is to ~·

If A2 # N2 transfer is to ~~-

A1 . I

A2

Figure 21. oa~a Input to AEQLIC

frogramrning Notes

1. A2 may be a relocatable address.

2. N2 is never negative.

3. See also AEQL, AEQLC, LEQLC, ACOMP, and ACOMPC.

28

0

11. APDSP <append specif ie~ L C ,..i f V

C> ~"" f.(2--

.<r-·
·~, .. ,,.

APDSP SPEC1,SPEC2 I

'APDSP is · used to append one specified string to another specified string.
See figures 22 and 23.

SPEC1 1. _,7 I A1 01 L1

SPEC2 2 -::~ I A2 02 L2

I I

A1+01 I C11 ... IC1L1

I ' A2+o2 C21 ••• IC2L2 I

Figure 22. Data Input to APDSP

v

SPEC1 A1 01 L1+L2 v!--·

A1+o1 C11 ••• IC1L1 I £il I s..:..::. I~ I

I 1
Figure 23: Data Altered by APDSP

f~ogramming ~ot~s

1. If L1 = O, C21 is placed at 01 -~ A1.

2. The storage following C1L1 is always adequate for C21 ••• C2L2.

29

(assemble a,;ay of descriptors)

f L ARRAY N I

ARRAY is used to assemble an array of descriptors. see figure 24.

L 0 0 0

•
• •

L+(N-1)*D 0 0 0

Figure 24. Data Assembled by.ARRAY

Prograrnming Notes

1. All fields of all descriptors assembled by ,ARRAY ~ be zero when program
execution begins.

0

30

13, BKSIZE {get block sizel

BKSIZE DESCR1,DESCR2

BKSIZE is used to determine the amount of storage occupied by a block or

string structure. See figures 25 and 26. The f'lag field of the descriptor at A

distinguishes between string structures and blocks.

If F contains the flag STTL, then

7
F(V) = D * (4 + ((V - 1) /CPD+ 1])

where (X] is· the integer part of X and CPD is·· the numbers of characters stored

per descriptor. The constant 4 occurs because· of the 4 descriptors (including

the title) in a string structure in addition to the string itself. The

expression in brackets represents the number' of descriptors required for a

string of V characters.

Otherwise

F(V) = V + D

DESCR2 A . I

A F v

!O'igur.e 25. Data Input to EKSlZE

DESCRl Q Q . I

Figure 26. Data Altered by BKSIZE

1. See also GETLTHa

31

1~, BKSpeE (backspace record}

BKSPCE DESCR I

BKSPCE is used to back space one record on the file associated with unit
reference number I. See figure_27.

DESCR I

Figure 27. Data Input to BKSPCE

E&Qgramm!ng Notes

1. See also ENFILE and REWIND.

2. Refer to the section on input a~d output for a discussion of unit reference
nu..'llhers.

32

c

15, BRANCH (branch to prQgram locatio&

BRANCH LOC [,PROC) I

BRANCH is used to alter the flow of program control. by branching to the
operation at LOC. PROC, if given, is the procedure in which LOC occurs.

frogramminq Notes

1. Refer to the section on program organization and procedure entry points,

33

16. BBANIC (branch indi;egt witb offs~t £onstaotl

BRANIC DF.sCR,N I

BRANIC is used to alter the flow of program control by branching indirectly
to the operation at LOC. see figure 28.

DESCR A·

A+N LOC I

Figure 28. Data Input to BRANIC

0

•• ~-'

34

"17. BUFFER (assemble buffer of blank charac_tersl

I LOC BUFFER N

BUFFER is used to assemble a string of N blank characters. See figure 29.

LOC •••

Figure 29. Data Assembled by BUFFER

Progranuninq Notes

1. All characters of the string assembled by BUFFER ~·be blank (not zero)
when program execution begins.

35

18. CHKVAL (check valu~}

I CHKVAL DESCR1,DESCR2,SPEC,2I,~,!.I

CHKVAL is used to compare an integer to the length of a specifier plus
another integer. see figure 30.

If L + I2 > I1 transfer is to gI.

If L + I2 = I1 transfer is to ~2·

If L + I2 < ·I1 transfer is to !tI·

SPEC L

DESCR1 I1

DESCR2 12

Figure 30. Data Input to CHKVAL

Programming Notes

1. I1., I2, and L are always positive integers.

2. CHKVAL is used only in pattern matching.

36

19. CLER.TB (cleaLsyntax tabl&

CLERTE TABLE,KEY

CLERTB is used to set the indicator fields of all entries of a syntax. table
to a constant. KEY may be one of four values:

CONTIN f>

ERROR ~

STOP]G

STOPSH Z.Y

The indicator field of each entry of TABLE is set to T where T is the
indicator which corresponds to the value of KEY. see figures 31 and 32.

TABLE

•

•

p TABLE+Z*E

Figure 31. Data Altered by CLERTB for ERROR, STOP, or STOPSH

TABLE Q. I ,

• •

TABLE+Z*E TABLE

Figure 32. Data Altered by CLERTB for CONTIN

Programming Notes

1. See the section which discusses the structure of syntax tables.

2. See also PLUGTB.

37

20 •• COPY Ccopy file intg assembly>

COPY FILE I -~',,,.

COPY is used to copy a file of machine-dependent data into the S~OBOL4
program. COPY occurs three times in the assembly:

COPY
COPY
COPY

MDATA
MLINK
PARMS

MLINK and PARMS are copied at the beginning of the SNOBOL4 assembly.
copied in the data region after the program.

MDATA is

MDATA is a file of machine-dependent data. It contains data used in
implementation of the macros and for strings which depend on the character set
of an individual machine -or present other problems which prevent a machine­
independent representation. These are:

1. ALPHA, a string that consists of all characters arranged in the
order of their internal numerical representation (collating sequence).

2. AMPST, a string consisting of a single ampersand, or whatever
·character is used to represent the keyword .operator. in the source
language.

3. COLSTR, a string of two characters consisting Of a colon followed b~
a blank.

4. QTSTR, a string' consisting of a single quotation mark, or whatever
character is used to_represent a quotation mark in the source language.

These string.s of charact-.ers are pointed to by the specifiers ALPHSP, AMPSP,
COLSP, and QTSP respectively.

MLINK is a file of entry points and external symbol names which describes
linkages used to access machine-language subroutines and I/O packages.

PARMS is a file of machine-dependent constants (equivalences). It contains
constants used in the implementation of the macro and definitions .of nine
symbols. These are:

38

1. ALPHSZ, the number of characters in the character set for the
machine. (ALPHSZ is 256 for the IBM System 360.)

2. CPA, the number of characters per machine addressing unit. (CPA is
1 for the IBM system/360, i~e. 1 character per byte.)

3. DESCR, the address width of a descriptor.

0

4. FNC, a flag used to identify function descriptors.

5. MARK, a flag used to identify descriptors which are marked titles.

6. PTR, a flag used to identify descriptors pointing into SNOBOL4
dynamic storage.

7. SIZLIM, the value of the largest integer that can be stored in the
value field of a descriptor.

a. SPEC, the address width of a specifier.

9. STTL, a flag used to identify descriptors which are titles of string
structures.

10. TTL, a flag used to identify descriptors which are titles of
blocks.

11. UNIT!, the number of the standard input unit. UNITI is 5 for the
IBM System 360 implementation.

12. UNITO, the number of the standard print output unit.
for the IBM System 360 implementation.

UNITO is 6

13. UNITP, the number of the standard punch output unit. UNITP is 1

for the IBM system 360 implementation.

CSTACK and OSTACK, the current and old stack pointers, respectively, should
be defined in one of the COPY files. These pointers may either be in registers,
or in the address fields of descriptors, depending on how the stack management
macros are implemented (see PUSH, e.g.). If these pointers are implemented as
registers, they should be defined in PARMS. If they are implemented in storage
locations, they should be defined in I"1DATA.

Programming Notes

1. COPY may be implemented in a variety of ways. COPY may, for example, simply
expand into the data required,- depending on the value of its argument as given
above.

2. Any of the COPY segments can be used to incorporate other machine-dependent
data.

39

1.1.s._~XPAT Ccopy pattern>

CPYPAT DESCR1,DESCR2,DESCR3,DESCR4,DESCR5,DESCR6

CPYPAT is used to copy a pattern. See figures 33, 34, 35, 36, 37, and 38.
First set

R1 = A1

R2 = A2

R3 = A6

where R1, R2, and R3 are temporary variables. Sections of the pattern are
copied for successive values of R1 and R2. After copying each section, set

Then set

R3 = R3 - (1 + V7) * D

R1 = R1 + (1 + V7) * D

R2 = R2 + (1 + V7) * D

If R3 >
complete.

o, continue, copying the next section. Otherwise the operation iO
The final value of R1 in inserted in the address field of DESCR 1. . .

The functions F1 and F2 are defined as· follows:

F1(X) = 0 if X = 0

F 1 (X) = X + A4 otherwise

F2(X) =AS if X = 0

F2(X) = x + A4 otherwise

40

f1""""'
~

DESCR1 A1

DESCR2 A2 , -
DESCR3 A3

._DESCR4 A4

DESCRS AS

DESCR6 A6

Figure 33. Initial Data Input to CPYPAT

R2+D A7 F7 V7 \ /

~/ R2+2D AS 0 vs Iv

R2+3D A9 0 V9 I~/

Figure 34. Data Input to CPYPA.T for successive Vaues of R2

R1+D ~ :n xi ~

R1+2D i7
£:1 'AS) Q. F2 lVS}

?•
I

v'

R1+3D t-/ ~ Q V9+A3 v

Figure 35. ~ Data Altered by CPYPAT for successive Values of R1

R2+4D A10 F10 V10

•
Figure 36. Additional Data Input for successive Values of R2 if V7 = 3

41

R1+4D I v

~;
l·tl--~,I'

Figure 37. Additional Data Altered for Successive Values of·R1 if V7 = 3

DESCR1 Bl

Figure 38. Data Altered when Copying is Complete

"; .·

42

22. DATE Cget dat~l

(f"'"'
~ DATE SPEC I

c \

DATE is used to obtain the cur-rent date. See figure 39.
representation of the current date.is placed in BUFFER.

I L.

SPEC BUFF EB Q. Q. Q

BUFFER

Figure 39. Data Aitered.by DATE

Pr2gramming Notes

A ·character

1. The choice of repre_sentation, for the date is not important so far as the
so~rce language is concerned.. Thus

April 1, 1968

04/01/68

4:1:68

68.092

are all acceptable.

2. BUFFER is local to DATE and - its old contents may be overwritten by a
subsequent use of DATE.

3. DATE is used only in the DATE £unction.

4. Implementation of DATE, as such, is not essential. In this case, DATE
should set the length of SPEC to zero and do nothing else.

43

(decrement address>

DECRA DESCR,N I

DECRA is used to decrement the address field of a descriptor. see figures
40 and 41. A is considered as a signe~ integer •.

DE OCR A

Figure 40. Data Input to DECRA

DESCR

Figure 41. Data Altered by DECRA.

Programming Notes

1. A may be a relocatable address.

2. N is always positive.

3. N is often 1 or o. • 4. A - N may be negative.

5. See also INCRA

44

24. DEQL (descriptor ~~l testl

c DEQL DESCR1,DESCR2,~,~2

DEQL is used to. compare two .descriptors. see .. figure 42.

DESCR1

DESCR2

If A 1 . = ·A2, F1 = F2, and V1 = V2, transfer is to -~. ·

Otherwise transfer is to lm·

A1 F1. V1.

A2 F2 V2

Figure 42. Data Input to DEQL

Programming Note§

1. All fields of the two descriptors must be identical for.transfer to ~Q.

45

~ DESCR Ca~semple descriptor>

I LOC DESCR A,F,V

DESCR assembles a descriptor with specified address, _ flag; and value
fields. see figure 43.

LOC A F I . v

Figure 43. Data Assembled by DESCR

froqramming Notes

1. Any or all of A, F, and V may be omitted. - A zero field must be assembled
when the corresponding argument is omitted •

•

46

0 ~-

16, DIVIDE (divide integers}

c DIVIDE DESCR1,0ESCR2,DESCR3,FAILURE,§~~E§§

DIVIDE is used to divide one integer by ~mother.. Any remainder is ignored.
That is, the result is truncated,·not rounded. see "figures 44 and 45.

If I ~.O transfer is to FAILURE.

Otherwise transfer is to.SUCCESS.

DESCR2 A F v

DESCR3 I L------------------_. ________ __
Figure 44. Data Input to DIVIDE

DESCR1

Figure 45. Data Altered by DIVIDE

Progrcu-nming Notes

1. A may be a relocatable address.

47

11,, DYREAL tdivide real numbers)

DVREAL DESCR1,DESCR2,DESCR3,lAILURE,SUC~

DVREAL is used to divide one real number by another. see figures 46 and
47.

DESCR2

DESCR3

DESCR1

If R3 = 0 or the result is out of the range available for real numbers,
transfer is to fAbLURE.

,otherwise transfer is to §uc;cE§~.

R2 F2 V2

R3

- ·Figure 46. Data Input to DVREAL

R2/R3

Figure 47. Data Altered by DVREAL •• Erogramming Note~

1. · In addition to use in source-language arithmetic, DVREAL is used in the
computation of statistics published at the end of a SNOBOL4 run.

2. See also ADREAL, .EXREAL, MNREAL, MPREAL, and SBREAL.

48

2~s END (end assembly)

,;;.-.
END \

'~

END is used to terminate assembly of the SNQBOL'4 system. ~t occurs only

once and is the last 'c;a~d of the assembly.

c
'

49

].9, ENDEX <end ·execution o.Lfil!QBOL4 run)

END EX DESCR I.

ENDEX is used to terminate execution of a SNOBOL4 run. ENDEX is the last
instruction executed and is responsible for returning properly to the ~nviron­
ment which initiated the SNOBOL4 run. see figure 48.

If I is nonzero, a post-mortem dump of user core should be given.

DESCR I

Figure 48. Data Input to ENDEX

frogramming Notes

1. If a dump is not given, the keyword &ABEND will not have its specified
effect. Nothing else will be affected.

2. On the IBM 360, if I is nonzero, an abend dump is given with a user code of
I•

3. See also !NIT.
·

so

c
JQ, ENFILE (write end_Qf file)

ENFILE DESCR I

ENFILE is used. to write an end-of-file on (close) the file associated with
unit reference number I. see figure 49.

DESCR I

Figure 49. Data Input to ENFILE

Programming Notes ,

1. See also EKSPCE and REWIND.

2. Refer to the section on input and output for a discussion of unit reference
numbers.

51

31 1 EQU

SYMBOL EQU N I
L-------------------

EQO is used to assign 1 at assembly time, the value of N to SYMBOL.

0
'··

52

c _.

1~ EXPINI (expo!l.entiate integers)

EXPINT DESCR1,DESCR2,DESGR3,fAILUB~,SUCCESS I

EXPINT is used to raise an integer to an integer power. See figures 50 and

51.

OESCR2

OESCR3

DESCR1

If 11 = 0 and 12 is not positive, or if the result is out of the range
available for integers, transfer is to ~ILUBE.

otherwise transfer is to §!!~§§.

11 F v

12

Figure 50. Data Input to EXPIN'~

I !l!!ll

Figure 51. Data Altered by EXPINT

53

3J, EXBE&L <expgnentiate real number~l

EXREAL DESCR1,0ESCR2,DESCRJ,r~ILUR~,SUCCESS

EXREAL is used to raise a real number to a real power. see figures 52 and
53.

DESCR2

DESCR3

DESCR1

SLJ

If the result is out of the range available for real numbers~ transfer
is to failure.

Otherwise transfer is to §.!!Ccess.

R1 F v

R2

Figure 52. Data Input to EXREAL .

R1**Ri

Figure 53 •. Data Altered by EXREAL

c
34, FORMAT \aSSemQle_f0;1!5!C string)

LOC
G

FORMAT ~ci~·~CN~ I

FORMAT is us~d to assemble the characters· of a format. see figure 54.

! I

I C"i ••• i CN

Figure 54. Data Assembled by FORMAT

Eroq~ing_Notes

1. The characters assembled by FORMAT are treated as an "undigested" format by

FORTRAN IV routines.

55

352 fSHB'fti (foreshorten specifier)

FSBRTN SPEC,N I

FSHRTN is used to exclude initial characters from a string specification.
see figures 55 and 56.

SPEC 0 L

Figure 55. Data Input to FSHRTN

SPEX! kli . I

Figure 56. Data Altered by FSHRTN

frogramminq Note.s

1. L - N is never negative.

2. See also REMSP.

56

c

.... 3....,6....,. __ G_E_T_A_c __ <_g_e_t_a.Qd!;~Ss with offset cons·t9ntl

GET AC DESCR1,DESCR2,N I

GETAC is used to.get an address field with an offset constant. see figures
57 and sa.

DESCR2 A2

----------i-..-------~----------J

A2+N A

Figure 57. Data Input to GETAC

DESCR1 . ._____ ____________ _
Figure 58. Data Altered by GETAC

1. See also PUTAC, GETDC, and PUTDC.

/\/ ~a-o- b~ Vl'2~~+;vc.i

~7. GE'l'BAL (get parenthesis bal~nced stringl

GETBAL SPEC,DESCR,FAILURE,SUCCESS I

GETBAL is used to get the 'specification of a balanced substring. See
figures 59 and 60. The string starting at CL+1 and ending at CL+N is examined
to determine the shortest balanced substring CL+1, ••• ,CL+J. J is determined
according to the following rules:

SP.EC

DESCR

A+O

SPEC

58

If CL+1 is not a parenthesis, J = 1.

If CL+1 is a left parenthesis, J is the least integer such that CL+
1 ••• CL+J is balanced with respect to parentheses in the usual algebraic
sense.

If CL+1 is a right parenthesis, or if no such balanced string exists,
transfer is to FAILURE.

Otherwine SPEC is modified as :.r .. dicated and transfer is to §!!£~·

A -I 0 L

N Q·
I C1 I CL ICL+1 I ICL+N I

Figure 59. Data Input to GETBAL

A 0

Figure 60. Data Altered by GETBAL

38, GEID <get descriptorl

c, GETO DESCR1,DESCR2,DESCR3

GETD is used to get a descriptor. see figures 61 and 62.

DESCR2 A2

DESCR3 A3

A2+A3 A F v

Figure 61. Data Input to GETD

DESCR1 1

Figure 62. Data Altered by GETD

0 Programming Notes

1. See also GETDC, PUTD, and PUTDC.

c ~._

59

~ GETDC Cget descriptor with offset constant}

GETDC DESCR1.DESCR2.N I
4----------------------------~-------

GETDC is used to get a descriptor with an offset constant. See figures 63
and 64.

DESCR.2 A2

:

A2+N A. F v

Figure 63. Data Input to GETDC
-..·--

-"''

DESCR1 ~ E y

Figure 64. Data Altered by GET DC

Programming Notes

·1. see also GETD, PUTDC, and PUTD.

60

40. GE'fLG

GETLG DESCR,SPEC

GETI.G is used to get the length of a specifier. see figures 65 and 66.

SPEC L

DESCR

~ogramming Notes

1. see also PUTLG.

Figure 65. Data Input to GETLG

Figure 66. Data.Altered by GETLG

61

41., GETLTH <get 1~~-for string ~;tructu~&

G~rLTH DESCR1,DESCR2 I

GETLTH is used to determine the amount of storage required for :a string
structure. see figures 67 and 68. The amount of storage is given· by the
formula

F{L) = D * (3 + ((L - 1) / CPD + 1])

wh_ere [X] is the integer part of X and CPD is the numbers of characters stored per descriptor. The constant 3 accounts for the three descriptors in a string
structure in addition to the string itself. The expression in brackets
represents the number of descriptors required for a sting of L characters.

DESCR2 L

Figure 67~ Data Input to GETLTH

r
DESCR1 I F(L}_ Q

Figure 68. Data Altered by GETLTH

f!:ogra.rnming N~

1. See also EKSIZE.

62

.!2. GETSIZ (get si~ .'.. ~

~--~--------------------~--~--
-~. GETSIZ DESCR1,DESCR2

GETSIZ is used to get the size from the value field of a title descriptor.

see figures 69 and 7'0.

DESCR2 A

A

DESCRl y

£.[ogramming Notes

c 1. See also SETSIZ.

v

Figure 69. Data Input to GETSIZ

I . .Q

Figure 70. Data Altered by GETSIZ

63

!f 3, · GEISPC -<get specitier with cotu}t§.nt off set}

GETSPC SPEC.DESCR,N I

GETSPC is used to get a specifier. see figures 71 and 72.

DESCR A1

A1+N A . F V . I 0 L

Figure 71. Data Input to GETSPC

SPEC . I .Q

Figure 72. Data Altered by GETSPC

P{gqram;ping Notes

1. see also PUTSPC.

64 '

c

c

!h INCRA f inc;ement_gddress}

INCRA DESCR,N I

INCRA is used to increment the address field of a descriptor. See fl.gures

73 and 74.

DESCR A

Figure 73. Data Input to INCRA

Figure 74. Data Altered by INCRA

Programming Notes

1. A may be a relocatable address.

2. A is never negative.

·3. N is always positive.

4. N is often 1 or D.

5. See also DECRA and INCRV.

65

·
45, ItJCRV <increment value· f ielgl

INC RV DESCR,N

INCRV is used.to increment the value field of a ~escriptor. see figures 75
and 76. I is conside~ed as an unsigned (nonnegative) integer.

DESCR I

Figure 75. Data Input to INCRV

DESCR lt~

F~gure 76. Data Altered by INCRV

f~og&ammin9 Notes

1. N is always positive.

2. N is o~en 1.

3. see also INCRA.

66

!!§., INIT <initialize SNOBOL4 ;uvt

--------,
INIT I

INIT is use4 to initialize a SNOBOL4 run. !NIT is the first instruction
executed and is re~ponsible for performing any initialization necessary. The
function of this- operation is machine and system dependent. Typically, INIT

sets program masks and the values of ·certain registers.

·1n addition to any initialization required for a particular system and
machine, INIT also performs the follwing initialzation for the SNOBOL4 system:

Dynamic storage is initialized. The address fields of FRSGPT and HDSGPT

are set to point to the first descriptor in dynamic storage. TLSGP1 is set to
the first descriptor past the end of dynamic storage. Space for dynamic storage
may be preallocated or seized from the operating system by INIT.

The timer is initialized for subsequeut use by the MSTIME ma~~c (q.v.) •

Programming Notes

1. See also ENDEX.

O·

c
67

!la... INSERT <insert node in tree>

INSERT DESCR1,DESCR2 I

I?~SER'! is used to insert a tree node· above another node.
ancl 78.

DESCR1 .A1 F1 V1

DESCR2 A2 F2 V2

A1+FATHER I ·A3 F3 VJ
I!·

A3+LSON ALJ F4 V4

A2+CODE I

--------------------------~---'
Figure 77. Data Input to INSERT

./A 1+FATHER

j A4+RSIB .n
1A2+FATHER I· Y1 I .,

/A2+LSON J

A2+CODE I±.1

Figure 78. Data Altered by INSERT

Programming Notes

1. See also ADDSIB and ADDSON.

2. INSERT is only used by compilation procedures.

68

see figures 77

O·

cl

{convert integer to real number>

INTRL DESCR1,DESCR2 I

INTRL is used to convert a (signed) integer to a·real number. see figures
79 and 80. R(I) is tpe real number corresponding to I.

DESCR2 I

Figure 79. Data Input to INTRL

DESCR 1 . I filll

Figure 80. Data Altered by INTRL

PrograunniJlg Notes

1. RC stands for the code for the real data type.

69

1~9 a INTSfC <convert integer to seecifier)

~ INTSPC SPEC,DESCR
L------~~---------------------

INTSPC is used to convert a (signed) integer to a specified strinq. see
f:i.gures 81 and 82.

DESCR A

Figure 82. Data Altered by.INTSPC

Progra.rnming Notes

1. C1 ••• CL should be a "normalized" string correSponding to the integer ~--.··
That is. it should contain no leading zeroes and begin with a minus sign if I
negative.

2. BUFFER is local to INTSPC and its contents may be overwritten by a
subsequent use of INTSPC.

3. See also SPCINT.

70

, ~Q. ISTACK <initialize stackl

·~c.· '-.::. ISTACK I

ISTACK is used to initialize tl'e system stack. see figure 83.

OS TACK

CSTACK STACK

Figure 83. Data Altered by !STACK

Programming liOtes

1. STACK is a global symbol whose value is the address of the first descriptor

of the sy~tem stack.

2. See also PSTACK, RCALL6 and RRTURN.

,

71

~1.. LCOMP. <length comparison>

LCOMP SPEC1,SPEC2,fil,~•J:I

LCOMP is used to compare the lengths of two specifiers. See figure 64.

SPEC1

If L1 > L2 transfer is to ~·

If L1 = L2 transfer is to EQ.

If L1 < L2 transfer is to 1I·

I . I . L1

SPEC2 L2

Figure 84. Data Input to LCOMP

~oqramming liotes

1. See also ACOMP, RCOMP and LEQLC.

72

! ~\ 0
..

c

LEQLC SPEC,N,~,~ I

LEQLC is used to compare the length of a- specifier to a constant. See

figure 85. The magnitudes are compared.

If L = N transfer is to ~­

If L # N transfer is to ~·

SPEC L

Figure 85. Data Input to LEQLC

Programming Notes

1. L and N are never negative.

2. See also LCOMP, AEQLC, and AEQLIC.

53. LEXCMP U,exical c~rison of stringsl

.LE>':CMP SPEC1 , SPEC2, Sil• fil2 • !J:

LEXCMP is used to com'f.'2re two strings lexicographically
to thgir alphabetical ordering). See figure 86.

(i. e. a~cording

If C11 ••• C1N1 > C21 •• · .C2M transfer is to !il·

If C11 ••• C1N1 = C21 ••• C2M transfer is to ~-

If C11 ••• C1N1 < C21 ••• C2M transfer is to ~-

SPEC1 A1 01 N

SPEC2 A2 02 M

·---,
A1+01 C11 ... C1N I

A2+02 I C21 I ... I C2M I

Figure 86. Data Input to LEXCMP ctl
Progra.~ming Notes

1. The lexicographical ordering is machine dependent and is determined by the
numerical order of the internal representation of the characters for a
particular machine.

2. A string which is an i~itia1 substring of another string is lexicographical­
ly less than that string.. That is

'ABC' is less.than 'ABCA'

3. The null (zero length) string is lexicographically less than any other
string (except the null string).

4. Two strings are equal only if they are of the same length and identical
character by character.

5. By far the most frequent use of LEXCMP is to determine whether two strings
are the same or different. In these cases ~ and LI will specify the same
location or both be omitted. Because of the frequency of such use, it is
desireable to handle this case specially if a test for equality can be performed
more efficiently than the general case.

74

_54, LHERE (define loc~tion here>

LOC LHE.RE_ __________ ____.

LHERE is used to establish the equivalence of LOC as the location of the

next program instruction.

Programming Notes

1. LHERE is equivalent to the familiar EQU *· Similarly

LOC LB ERE
OP

is equivalent to

LOC OP

22:z.._ LINK _ Clink to external functionl

r-
1 LINK DESCR1,DESCR2,DESCRJ,DESC~4,FAILURE,SUCCESS

LINK is used to link to an external function. see figures 87 and BB. A2
is a pointer to an argument list of N descriptors. A4 is the address of the
external function to be called. V1 is the data type expected for the resulting
value. The returned value is placed in DESCR1.

DESCR1

DESCR2

DESCR3

DESCR4

DESCR1

If the external function signals failure, transfer is to t~!&E~·

otherwise the transfer is to SUCCESS.

V1

A2

.,
N I

A4

Figure 87. Data Input to LINK

F'igure -~8. Data Altered by LINK

Programming Notes

1 • LINK is a system-dependent operation.

•

2. LINK need not be implemented if LOAD is not. In this case, LINK should
branch to INTR10.

3. See also LOAD and UNLOAD.

- 76

'

~·

c,
\

LIMKOR DESCR1,DESCR2

f

LINKOR links through "or" fields of pattern nodes until the end, indicated

by a zero field, is reached.· This zero field is replaced by I. see figures 89

and 90.

DESCR1 A

DESCR2 I

A+2D I1

A+2D+I1 :C2

•
• •
• •

A+2D+IN 0

Figure 89. Data Input to LINKOR

A+2D+IN

Figure 90. Data Altered by LINKOR

77

27. LOAD Cload external functio!!}_

LOAD DESCR,SPEC1, SPEC2 ,·mm~, SUCCES.§

LOAD is used to load an external function. See figures 91 and 92.
C11 ••• C1L1 is the name- of the external function to be loaded from a library.
C21 ••• C2L2 is the name of the library. A3 is the address of the entry point

If the external function is loaded, transfer is to success.

otherwise transfer is to .{gil~~·

SPEC1 A1 01 L1

SPEC2 A2 02 L2

I • A 1+01 I C11 IC1L1

r-
A2+02 I C21 ... IC2L2

Figure 91. Data Input to LOAD
~
\...

DESCR

Figure 92. Data Altered by LOAD

~~Qgramming Notes

1. LOAD is a system-dependent operation.

2. LOAD need not be implemented as such.
LOAD will not be available, and an
branching to UNDF.

If it is not, the primitive function
error comment shou1d be generated by

3. On the IBM/360, LOAD uses the OS macro LOAD to bring an external function
from the library whose DDNAME is specified by C21 ••• C2L2.

4. See also LINK and UNLOAD.

78

, fil! 1 LOCAPT (locate attrj,bute pair by type)

~
·~

c

LOCAPT DESCR1.DESCR2,DESCR3,~!nm•SUCCE.§.§

LOCAPT is used to locate the "type" descriptor of a descriptor pair on an
attribute list. Descriptors on an attribute list are in "type-value" pairs.
Odd numbered descriptors are ''type" descriptors. see figures 93 and 94. The
list starting at A+ D is searched, comparing descriptors at A+ D, A + 30, •••
for the first descriptor whose value is equal to the value of DESCR3.

DESCR2

DESCR3

A

A+D

•
•
•

If a descriptor equal to DESCR3 is not fOWld, transfer is to ~lLURE.

Otherwise transfer is to SUCCESS.

A . I F v

·A3 F3 V3

.-
I 2K*D
L-

r-
~ A11 F11 . I V11

~t!31'2I*D A3 F3 V3

•

•

A+2K*D

Figure 93. Data· Input to LO CAPT

DESCR1 I A+2J:!Q

Figure 94. Data Altered by LOCAPT

79

froqramrning Notes

1. Note that the address of· DESCR1
descriptor which is located.

2. . See also LOCAPV.

. 80

-- ·~
is set to one descriptor less than thf_:"'l•i·w.•w

•

,...... ..._.,

LOCAPV DESCR1,DESCR2,DESCR3,[AILUB~.succE§_§

LOCAPV is used to locate the "value" descriptor of a descriptor pair on an

attribute list. Descriptors on an attribute -list are in "type..;.value" pairs.

EVen numbered descriptors are "value" descriptors. see figures 95 and 96. The

list starting at A+ Dis searched, comparing descriptors at A+ 2D, A+ 4D ••••

for the first descriptor whose value is equal to the value of DESCR3.

If a descriptor equal to DESCR3 is not fowid, transfer is to ~YE~·

Otherwise transfer is to SUCCE§.§.

DESCR2 A F v

DESCR3 A3 F3 V3
.--I

A 2K*D

~
A+2D A12 F12 V12

•
•
•

J
A+~+~I*D A3 F3 V3 I

•
•
•
• •

A+2K*D __.

Figure 95. Data Input to LOCAPV

DESCR1 A+2I*Q

Figure 96. Data Altered by LOCAPV

81

f,:ogramming Notes

1. Note that the address of
descriptor which is located.

2. see also LOCAPT.

82

~·' DESCR 1 is set to two descriptors less than tht..,,,. 11

LOCSP SPEC,DESCR I

LCX:SP is used to obtain a specifier to a string given in a string
structure. CPD is the number of characters per descriptor. see figures 97, 98
and 99 •

. DESCR A F v

A I

Figure 97. Data Input to LOCSP

SPEC 4*CPD v
!

"----------------~-----~--~~_. __________ ._ ______ __.

Figure 98. Data Altered by LOCSP if A # O

c SPEC

Figure 99. Data Altered by LOCSP if A = 0

E;ogranuning Notes

1. If A = O, the value of DESCR represents the null (zero length) string and is
handled as a special case as· indicated. The remainder of SPEC is unchanged in

this case.

83

.§.1, LVALUE (get le9st length valuet

LV.i~UE DESCR 1, DESCR2

LVALUE is
pattern nodes.
I where

used to get the least value of address fields in a chain of
see figures 100 and 101. The address field of DESCR1 is set to

DESCR2

A+2D

A+3D
)

A+N1+2D

A"'N1+3D

•

A+NK+2D

A+NK+3D

DESCR1

I = minimum(I1, ••• ,IK)

A

N1

I1

N2

!1

0

IK

T =

. . I

•

.1

Figure 100. -·- Data Input

Q Q

to LVALUE

Figure 101. Data Altered by LVALUE

Prog;:amrnj.ng Notes

1. I1, ••• ,IK are all nonnegative.

2. A is never zero, but N1 may be.

84

Ct

.§2. MAISNOD (mak~~J;:!Lnod~l

MAI<NOD DESCR1, DESCR2,DESC·R3 ,DESCR4 ,DESCRS (,DESCR6] I

MAKNOD is used to make a node for a pattern. See figures 102 and 103.

DESCR2 A2 F2 V2 I f'

DESCR3 A3 If

DESCR4 A4 I ?

DESCRS AS F5 vs I f

Figure 102. Data Input to MAKNOD

DESCR6 A6 F6 V6 p

c Figure· 103·. Additional Data Input if DESCR6 is Given

/ DESCR1 ~ n ~l I I <:i"}l .,.,,.

/ A2+D ~ Ia Y2 I v-

./ A2+2D A4 /

./A2+3D bl I V'

Figure 104. Data Altered by MAKNOD

./ A2+4D I v

Figure 105. Addtional Data Altered if DESCR6 is Given

85

~~ggrawming Notes

1. As indicated, there are two forms of MAKNOD. If DESCR6 is given,
additional descriptor is modified, but otherwise the two forms are the same.

2. DESCR1 must be·changed l~ since DESCR6 may be the same descripto~ as
DESCR1 ..

3. MAKNOD is used only for constructing patterns.

86

63. MNREA.,t,_ (minus real number!

~·-I l!I
~,,,11 ..

4' _______________ _ MN~EAL DESCR1,DESCR2 I

MNREAL is used to change the sign of a real number. see figures 106 and

107.

.-----------------------------,
DESCR2 I R F V I ._ ____________________________ ____.

Figure 106. Data Input to MNREAL

,-----------------~-----------.
DESCR1 I =B L-__________________ ..._ ________ _

Figure 107. Data Altered by MNREAL

Programming Notes

1. R may be negative.

2. see alsc MNSINT, ADREAL, DVREAL, EXREAL, MPREAL, and SBREAL.

0
87

~ MNSINT lminus integer>

MNSINT DESCR1,0ESCR2,~~URE,SUCCESS .. ·~·

· MNSINT is used to change the sign·of an integer.

If -I exceeds the maximum integer, transfer is to FAILQRE.

otherwise transfer is to §YCCESS. see figures 108 and 109.

DEScR2 I F v

Figure 108. Data Input to MNSINT

DESCR1 . E l .
I

Figure 109. Data Altered by MNSINT

Proqramming_Note§

1. I may be negative.

2. see also MNREAL.

88

f-·
~~"'

Q_)

C.

I

MOVA DESCR1,DESCR2

MOVA is used to move an address field from one descriptor to another. See

figures 11 0 and 1-11 •

DESCR2 A

Figure 110. Data Input to MOVA

DESCR1

Figure 111. Data Altered by MOVA

;programming .HQ~

1. See also MOVD and MOVV.

89

56. MOVELK <move block of d~crip~fil.

MOVBLK DESCR1,DESCR2,DESCR3 I

MOVBLK is used to move (copy) a block of descriptors. See figures ~12 and
113.

DESCR1 A1

. ~..;.

DESCR2 A2

DESCR3 D*N

i
A2+D A21 F21 V21

•

A 1+ {D*N>

Figure 113. Data Altered by MOVBLK

f~ogramrning Notes

1. Note that the descriptor at A1 is not altered.

2. The area into which the move is made may overlap the area from which the
move is made. This only occurs when A1 is less than A2. Consequently,
descriptors must be moved one at a time starting at the first descriptor in the
diagram.

90

fil. MOVD <move a~u2to;.t

~' '--·"*"' I MOVD DESCR1,DESCR2

0

0

MOVD is used to move a descriptor from one location to another. see

figures 114 and 115.

DESCR2 A F v

Figure 114. Data Input to MOVD

DESCR1

Figure 115. Data Altered by MOVD

froqramming ,.H~

1. See also MOVA and MOVV.

91

68 2 MOVDIC <move descriptor ind~t with constant offsetl

,,
MOVDIC DESCR1,N1,DESCR2,N2 I

MOVDIC ie used to move a descriptor which is indirectly specified with an
offset constant. see figures 116 and 117.

DESCR1 A1

DESCR2 A2

A2+N2 A F v

Figure 116. Data Input to MOVDIC

~--~~-----------------~~----,
A1+N1 ~ I

Figure 117. Data Altered by MOVDIC

Pi;oarammina ijote~ 0
'-,,_

1. See also MOVD, GETDC, and PUTDC.

92

~.·

·~11 MOVV DESCR1,DESCR2 I

MOVV is used to move a value field from one descriptor to another. See

figures 118 and 119.

DESCR2 V

Figure 118. Data Input to MOVV

--------------~~------~-----.
DESCR1 Y I

Figure 119. Data Altered by MOVV

Programming Notes

1. See also MOVA and MOVD.

93

70.. MPREAL <muli,tply real numbersl

MPREAL DESCR1,DESCR2,DESCR3,r~l!!~,SUCCE.§§

MPREAL is used to multiply two real numbers. see figures 120 and 121.

DESCR2

DESCR3

DESCR1

If the result is out of the range available for real numbers, transfer·
is to FAILURE.

Otherwise transfer is to §...~§.

R2 F2 V2

R3

Figure 120. Data Input to MPREAL

Figure 121. Data Altered by MPREAL

Programming Notes

1. See also ADREAL, DVREAL, EXREAL, MNREAL, and SBREAL.

94

. MSTIME DESCR I

MSTIME is used.to get the millisecond time. See figure 122 •

DESCR .Q

Figure 122. ·Data Altered by MSTIME

f!:oqramming Notes

1. The origin with respect to which the time is obtained is not important. The
SNOBOL4 system deals only with differences in times.

2. The time units should be milliseconds, but accuracy is not critical.

3. MSTIME is used in program tracing, the TIME function, and in st~tistics
printed upon termination of a SNOBOL4 run.

4. It is not critically important that MSTIME be implemented as such. If it is
not, the address field of DESCR should be set to zero also.

cs. see also INIT.

95

12.a_ MULT (multiply intes~~

MULT DESCR1,DESCR2,DESCR3,FAILURE,SUCCES§

MUL'I is used to multiply two integers. See figures 123 and 124.

DESCR2

DESCR3

DESCR1

In the event of overflow, transfer is to ~I~·

Otherwise, transfer is to SU::CESS.

I2 F2 V2

13

:

Fig~e 123. Data Input to MULT

• !' ..

12*13 I f 1 Yl I .

Figure 124. ·. Data Altered by MULT

~Qgramming Notes

.-...1
"4HNI~~~

f "<

1. The test for success and failure is used in only two calls of this macro.
Hence the code to make the check is not needed in most cases.

2. DESCR1 and DESCR2 are often the same.

3. See also MULTC and DIVIDE. --

96

0

c

13, MULTC <multiply adgress Q~ constant}

MULTC DESCR1,DESCR2,N I

MULTC is used to multiply an integer by a constant. see figures 125 and.

126.

DESCR2 I

Figure 125. Data Input to MULTC

DESCR1 Q Q

Figure 126. Data Altered by MULTC

Programming Notes

1. I * N never exceeds the range available for integers.

2. DESCR1 and DESCR2 are often the same.

3. N is often o, which typically may be implemented by a shift, or simply by no

operation if D is 1 for a particular machine.

4. See also MOLT.

97

74 •. ORDVST {order varig,J2.l~oraq~

~-
'l!f:1fll~~} ORDVST

ORDVST is used to alphabetically order variables in S~lOBOL4 dynamic
storage. Figure 127 shows the organizational structure of SNOBOL4 variable
storage consisting of OBSIZ linked chains. The links should be rearranged t.o
put the strings in alphabetical order.

last
variable
in bin EEB~"--a· ·-W±l . --···

~ strinp.:; . . string

1-:~~~e~.--:------.~-i_~~~~h 1
-!: ST.TL+TTL n title

space for
strinp.; as
needed

value
label

M ~link

----- J
to next
variable
(0 for last
on chain)

VARIABLE

ascension
number
(orders
variables
on chain)

bin

strinp; 0

similar chain~---·-----1
for bin 1

similar chain --E-·--- OBSIZ-1
for bin OBSIZ-1

Figure 127. Organization of Variable Storage

98

address off set
from OBSTRT

0

D

COBSIZ-1)i:D

Programming Note~

1. ORDVST is used only in ordering variables for a progra:mmer-requested
post-mortem dump of variable storage. O.RDVST.need not be implemented as such,
but may simply perform no operation. In this case, the post-mortem dump will
not be-alphabetized,, but will be otherwise correct.

2. If ORDVST i.§ implement.ed, it is easiest to put all variables in one long
chain starting at OBSTRT. The address fields of the descriptors

OBSTRT + D, ••• ,OBSTRT + (OBSIZ -1) * D

should then be set to zero.

3. since dynamic storage may contain many variables, some care must be taken to
assure that the sorting procedure is not excessively slow. Variables whose
values are null strings (zero address fields and value fields containing the
global symbol S) may be omitted from the sort. In fact they shoB!,g be omitted
if a sort with factorial properties (such as an exchange sort) is used. A sort
with linear properties such as a radix sort is more desirable but more
comp~icated.

4. The ascension number, M, is computed by VARIO (q.v.).

99.

22.:t-. OUTPUT (output record>

OUTPUT DESCR,FORMAT,(DESCR1, ••• ,0ESCRN)

OUTPUT is used to output a list' of items according to FORM.~T. see figure
128. The output is put on the file associated with unit reference number I.
The format c1 ••• CL may specify literals and the conversion of integers and real
n~rnbers given in the address fields A1, ••• ,AN.

DESCR I

FORMAT C1 ... I CL

DESCR1 A1 I

•

• •

DE SC RN AN

Figure 128. Data Input to OUTPUT

Frogramming Notes

1. See also STPRNT.

100

76 1 PLU~ (plug syntax tablel

PLUGTB TABLE,KEY,SPEC

PLUGTB is used to set selected indicator fields in the entries of a syntax
table to a constant •. ~EY may be one of four values:

CONT IN

ERROR

STOP

STOP SH

The indicator fields of entries corresponding to c1, ••• ,CL are
where T is the indicator which corresponds to the value of KEY.
129, 130 and 131.

SPEC A o· L

4 0 A+O I C1 ... CL

Figure 129. Data Input to PLUGTB

TABLE+E*C1 I I I

•

•

TABLE+E*CLI I

set to T
See figures

Figure 130. Data Altered by PLUGTB for ERROR, STOP, or STOPSH

TABLE+E*C11 TABLE Q

•
• •
• •

TABLE+E*CLI ~~ ~

Figure 131. Data Altered by PLUGTB for CONTIN

101

frog;amming Notes

1. see ·the section which discusses·the structure of syntax tables.

2. See also CLERTB.

. .

102

POP (DESCR1, ••• ,DESCRN) I

POP is used to pop a list of descriptors off the system stack. see figures
132 and 133.

CSTACK A

A Al F1 V1

•

A-D* (N-1) AN FN VN

Figure 132. Data Input to _POP

0
CSTACI<

DESCR1

A-{N*Ql

r1

c

•
•

•

DESCRN

Figure 133. Data A1tered by POP

Programming Notes

1. If A - (N * D) < STACK, stack underflow occurs. This condition indicates a
programming error in the implementation of the macro language. An appropriate
diagnostic message indicating an error may be obtained by tr ansferring to the
global location INTR10 when the condition is detected.

103

..... 1 s _ P--R o ... c--. __ .Ll2 ... ~dure entrv).

I LOC1 PROC [LOC2] I

PROC is .us.ed; to identify a proced.ure entry ·point. If LOC2 is omitted, LOC1

is the primary procedure entry point.· If LOC2 is present, LOC1 is a secondary

entry point in the procedure with primary entry point LOC2.

~Qgramming.Notes

1. , :Procedure entry points may be referred to by RCALL, BRANIC, or BRA~·lCH (in

its two argument form).

2. In most ireplementations, PROC will ·have no functional use and may be

implemented as LHERE. For machines which have a severely limited program basing

range (such as the IBM System/360), PROC may be used to perform required basing

operations.

. .

104

79. PS~~- {post s!.2£~ositi2Dl.

I PSTACK DESCR I

PSTACK is used to post the current stack position. See figures 134 and
135.

CSTACK A

Figure 134. Data Input to PSTACK

DESCR Q. Q

Figure 135. Data Altered by PSTACK

f~ogramming Notes

1. See also IS~ACK.

0

105

80, PUSH <push descriptqrs onto stack)

PUSH (DESCR1, ••• ,DESCRN) I

PUSH is used to push a list of descriptors onto the system stack, See

figures 136 and 137.

A

DESCR1 A1 F1 V1

DESCR!il AN FN VN

Figure 136. Data Input to PUSH

CSTACK A+ (D*N)

A+D

..

A+ (D*N)

Figure 137. Data Altered by PUSH

~Qgramroing Notes

1. If A + (D * N) > STACK + STSIZE, ·stack overflow occurs.
made to the global location OVER which will result in an

termination.

2. See also SPUSH, POP, and SPOP.

106

Transfer should be
appropriate error

~·· ..
~;

81., PUTAC (pu~dress wi~!L2ff set constant)

PUT AC DESCR1,N.DESCR2

PUTAC is used to put an address field into a descriptor with a constant

offset. See figures 138 and 139.

DESCR1 A1

DESCR2 A2

Figure 138. Data Input to PUTAC

A1+N

Figure 139. Data Altered by PUTAC

~ ~ramming Notes

~ 1. See also GETAC, PUTVC, PUTD, and PUTDC.

c
107

§1.. PUTD (put d~scriptorl

PUTD DESCR1, DESCR2,DESCR3
~'\

jt)

PUTD is used to put a descriptor. See figures 140 and 141.

DESCR 1 A1

DESCR2 A2

DESCR3 A F V · I

Figure 140. Data Input to PUTD

A1+A2 . I . I

Figure 141. Data Altered by PUTD

Proqrarnming Notes •

1. See also PUTDC, PUTAC, PUTVC, and GETD.

108

c: ~3, PUTDC. Cpu~~2£,!:illl;Q!:_with constant offsetl

Ptrl'DC DESCR1,N,DESCR2 I

PUTDC is used to put a descriptor with an offset constant.. see figures 142
and 143.

DESCR1 A1

DESCR2 A F v

Figure 1q2. Data Input to PUTDC

A1+N

Figure 143. Data Altered by PUTDC

f{ogramming Notes

1. See also PUTD, PU'IAC, PUTVC, and GETD.

109

8 4 _ P_.TJ..,T.-L..,G __ <..,.p...,..U~Recifier le ngt hl

PUTLG SP EC, DESCR I

PUTLG is used to put a length into a specifier •. see figures 144 and 145.

DESCR I . I

Figure 144. Data Input to PUTLG

SPEC I

Figure 145. Data Altered by PUI'LG

.f!:ogramming Notes

1. I is always nonnegative.

2. see also GETLG.

•

110

·c
PUTSPC DESCR,N,SPEC I

PUTSPC is ustd to put a specifi~r. bt:~ figures "l!+6 ~• .. C.: ·-·.;,,.-;.

DESCR A1

SPEC A F v 0 L

Figure 146. Data Input to PUTSPC

A~+N Q . I

Figure 147. Data Altered by PUTSPC

frogramming N~

c 1. See also GETSPC.

111

. .

_a_6~---~P~trr v_c.___..<~o~u~t~~alue field with_~~t constan~

PUTVC DES CR 1, N, DESCR2

PUTVC is used to put a value field into a descriptor with an offset

constant. See figures 148 and 149.

DESCR1 A

DESCR2 v

Figure 148. Data luput to PUTVC

A+N . I

Figure 149. Data Altered by PUTVC

Programming Note§

1. See also PUTAC, PUTDC, and PUTD.

~.

112

RCA.LL DESCR,PROC, (DESCR1, ••• ,DESCRN),(!&£1, ••• ,I&_Q:!)

RCALL is used to perform a recursive call. DESCR is the descriptor which
receives value upon return. PROC is the procedure being called. DESCR1, ••• ,
DESCRN are descriptors whose values are passed to PROC. LOC1, ••• ,LOCM are
locations to transfer to upon return according to the return exit signalled.
see figures 150, 151 and 152. The old stack pointer (AO) is sa·ved on the stack,
the current stack pointer becomes the old stack pointer, and a new current stack
pointer is generated as indicated. The return location LOC is saved on the
stack so that the return can be properly made. The values of the arguments
DESCR1, ••• ,DESCRN are placed on the stack. Note that their order is the
gpposite of the order that would be obtained by using PUSH.

At the return location LOC prCXJram similar to that shown should be
assembled. OP is intended to represent an instruction which stores the value
returned by PROC in DESCR.

CSTACK A

0 OSTACK AO

DESCR1 A1 F1 V1

•

DESCRN AN FN VN

Figure 150. Data Input·to RCALL

c

113

r~~

A+D ,a.Q . I Q I' Q

A+2D ~ Q I

A+3D ~ lli Yl!

• •
• •
• •

A+D* (2+N) al n Yl

CSTACK ·1A+ f2+N) *DI

OSTACK b

Figure 151. Data Altered by RCALL

LOC OP DESCR1
BRANCH LOC1 0

•
BRANCH LOCM

Figure 152. Return code at LOC

Programming Notes

1. RCALL and RRTURN are used in combination, and their relation to each other
must be thoroughly understood.

2. Ordinarily OP is a store instruction to obtain the value returned by RRTURN.

3. DESCR may be omitted. In this case, any value returned by RRTURN is ignored
and OP should perform no operation.

4. (DESCR1, ••• ,DESCRN) may be entirely omitted.
to be zero in interpreting the figures.

5. Any of the locations LOC1,.· •• ,LOCM may
operations with omitted conditional branches,.
operation following RCA.LL.

In this case N should be taken

be omitted. As in the case of·
control then passes to the

6. The return indicated by RRTURN may be M + 1 in which case control is passed
to the operation following RCALL.

7. The return indicated by RRTURN is never greater than M + 1.

114

~ 1 a. RCALL typically must save program state information. On the IBM 360 this
;~ consists of the location LOC and a base register for the procedure containing

the RCALL. This information is pushed onto the stack. In pushing information
on the ~tack, care must be taken to observe the rules concerning the use of
descriptors. The rest of the SNOBOL4 system treats the stack as descriptors,
and the flag fields of_~~i12SQJ;:2-!!§~d ~~~~~.QSl.I2.!!L§tate !nformstion mu2!
~e set to zero.

9. See also SELBRA.

c

115

<real comparison>.

RCOMP .DESCR1,DESCR2,~,E.Q,!a

RCOMP is used to compare two real numbers. see figure 153.

If R1 > .R2 transfer is to ~· ·,, ..

If R1 = R2 transfer is to ~·

If R1 < R2 transfer is to 11·

DESCR1 R1

DESCR2 R2

Figure 153. Data Input to RCOMP

Programming_Notes

1. See also ACOMP and LCOMP.

116

89. B.EaLST_.(conve~ea! number to stringl

REALST SPEC,DESCR I

REALST is used to convert a real number into a specified string. see
figures 154 and 155.

DESCR R

Figure 154. Data Input to REALST

SPEC BUFFER I · Q. Q

I I

BUFFER I £! I~

Figure 155. Data Altered by REALST

117

~ggrsmuning Notes

1. c1 ••• CL should represent the real number R as a "normalized" string

containing a decimal ~oint and having at least one digit before the decimal

point, zeroes being added as necessary. If R is negative, the string _should

begin with a minus sign. For compatability with real literals and data type

conversions, the real number should not be represented with an exponent,

although very large or small numbers may require a large number of characters

for their representation.

2. The number of digits (and hence the size of BUFFER) required is machine

dependent and depends on the range available for real numbers.

3. BUFFER is local to . REALST and its contents may be overwritten by a

subsequent use of REALST.

4. See also INTSPC and .. SPREAL •..

•• ·'

118

REMSP is used to obtain a remainder specifier resulting from the deletion
of a given length. see figures 156 and 157.

SPEC2 A2 F2 V2 02 L2

SPEC3 L3

Figure 156. Data Input to REMSP

SPEC1 I 02+L3 L2-L3

Figure 157. Data Altered by REMSP

~ogi;:ammin·g Notil

0 1. SPEC1 and SPEC3 may be the same.

2. L2 - L3 is never negative.

3. See also FSHRTN.

c
119

91, RESFI'F <reset flag)

""''i
RESETF DESCR,FLAG I

''IHU,;J'

RESETF is used to reset (delete) a flag from a descriptor. See figures 158
and 159.

DESCR F

Figure 158. Data Input to RESETF

DESCR £:-FLAG

Figure 159. Data Al.tered by RESE'l'F

f~gramming Notes

1. Only FLAG is removed from the flags in F.
untouched.

Any other flags are left

2. If F does not contain FLAG, no data is altered. 0
3. See also RSETFI and SETFI.

~-

120

,-... 2,, REWIND (rewind fi,l~l

~

REWIND DESCR I

REWIND is used to rewind the file associated with the unit reference number
I. See figure 160.

DESCR I

Figure 160. Data Input to REWIND

}!Ioqramminq Notes

1. Refer to the section on input and output for a discussion of unit reference
numbers.

2. See also BKSP.CE and ENFILE.

121

RLINT DESCR1,DESCR2,FAIL~,SUCCESS I

RLINT is used to convert a real number to an integer. See figures 161 and
162 ..

DESCR1

DESCR2

If the magnitude of R exceeds the magnitude of the largest integer,
trandfer is to FAILURE.

Otherwise transfer is to .§_UCCES§.

R

Figure 161. Data Input to RLINT

I (R) Q.

Figure.162. Data Altered by RLINT

~ramming Notes ~

1. I(R) is the integer equivalent of.the real number R.

2. The fraction part of R is discarded.

3. IC stands for the integer data type code.

122

p

~·

RPLACE SPEC1,SPEC2,SPEC3

RPLACE is used to replace characters in a string. see figures 163 and 164.
SPF.C2 specifies a set of characters to be replaced. SPEC3 specifies the
replacement to be made for the characters $pecified by SPEC2. The replacement
is described by the following rules. For I = 1, ••• ,L

F(CI) = CI if CI ~ C2J for any J (1 ~J .(L2)

F (CI) = C3J if CI = C2J for some J (1 ~- J ~ L2)

SPEC1 A1 I. 01 L

SPEC2 A2 02 L2

SPEC3 A3 03 I L2

A1+o1 C1 CL

A2+o2 C21 IC2L2

A3+03 I C31 I ... IC3L2 I

Figure 163. Data Input to RPLACE

I I I I

A1+01 1FlC1ll ~ IF 'CL) I

Figure 164. Data Altered by RPLACE

Programming Notes

1. L may be zero.

2. If there are duplicate characters in C21 ••• C2L2, replacement should be made
corresponding to the last instance of the character. That is, if

C2I = -C2J = ••• = C2K {I < J < K)
then

F(CI) = C3K

3. RPLACE is used only in the REPLACE function. It is not essential that

123
.....

RPLACE be implemented as such. If it is not, RPLACE should transfer to UNDF
provide an appropriate error comment.

124

to ·

~
''<~~,,Ji

0

c

95.~---~R~R~T .• u_R~N.___c~r~e~q~~return}

RRTURN DESCR,N

RR~URN is used to return from a recursive call. DESCR is the descriptor

whose value is returned. See figures 165. 166 and 167. The stack is

repositioned as shown.

At the location LOC program similar to that shown has been assembled by

RCALL. OP represents an instruction which is used by RRTURN to return the value

of DESCR.

\
OS TACK A

A+D aQ

A+2D ~

DESCR Al F1 V1

Figure 165. Data Input to RRTURN

CS TACK

OSTACK

DESCR1 Il Yl

Figure 166. Data Altered by RRTURN

125

LCC OP DESCR1
BR~NCH LOC1

•
ERANCH LOCM

Figure 167. Return Code at LOC.

1. RCALL and RRTURN are used in combination, ·and their relation to each other
must be thoroughly understood.

2. DESCR may be omitted. In this case, OP should not be executed.

126

..., \
ilh.p#

0

c

c

RSETFI DESCR,FIAG I

RSETFI is used
specified indirectly.

DESCR A

A

to ,reset (delete) a flag
See figures 168 and 169.

F

from

Figure 168. Data Input to RSETFI

A F-FJ,AG

Figure 169. Data Altered by RSETFI

~ogramming Notes

1. Only FLAG is removed from
untouched.

the flags in F.

2. If F does not contain FLAG, no data is altered.

3. See also RESETF and SETFI.

Any

a descriptor which is

other flags are left

127

97, SBREAL Csubyact real numbersl

SBREAL DESCR1.DESCR2,DESCR3,rAILUR§,§!!£~§§ I

SBREAL is· used to subtract one real number from another. See figures 170
and 171.

DESCR2

DESCR3

DESCR1

If the result is out of the range available for real numbers, transfer

is to FAILtJB~.

otherwise transfer is to success.

R2 F2 V2

R3

Figure 170. Data Input to SBREAL

R2-R3 F2 Yl

Figure 171. Data Altered by SBREAL

~rogramming Notes

1. See also ADREAL, DVREAL, EXREAL, MNREAL, and MPREAL,

128

~

~.
'-.., ·'

~

~

0

-..9.-..8 _.-,S,..E.X,BRA (select br~h Eointl

----------------~--~--------------------. SELBRA DESCR,(!&£1,, ••• ,~0C...,li)

SELBRA is used to alter the f iow of program control by selecting a location
from a list and branching to it. See figure 172. Transfer is to LOCI

corresponding to I.

DESCR I

Figure 172. Data Input to SELBRA

f~ogramming ~otes

1. Any of the locations may be omitted.
omitted conditional branche3, control
SELBRA.

As in the case of operations with
then.paEses to the operatio~ following

2. If I = N + 1, control is passed to the operation following SELBRA.

3. I is always in the range 1 S I S N + 1. For debugging purposes, it
useful to verify that I is within this range.

may be

129

22· SETAC <set address to constant)

SET AC DESCR,N I

SETAC is used.to set the address field of a descriptor to a constant. See

figure 173.

DESCR

Figure 173. Data Altered by SETAC .

groarm&~ing Notes

1. N may be a relocatable address.

2. N is often o. 1, or. D.

3. N is never negative.

4. See also SETVC, SETLC, and SETAV.

130

c

c

~l~Q~o_. __ s_E_T~A_v ____ <~s_e_t_~~ss from value fi~ldl

SET AV DES CR 1 , DESCR2

SETAV sets the address field of one descriptor from the value field of
another. see figure 174.

DESCR2 V

Figure 174. Data Input to SETAV

DESCR1 I . Q Q

Figure 175. Data Altered by SETAV

f!:ogramming Not~s

1. See also SETAC.

131

101, SEIF (set flag)

SETF DESCR,FLAG

SETF is used to set (add) a flag in the flag field of DESCR.
176 and 177.

DESCR F

Figure 176. Data Input to SETF

DESCR - I .. '

Figure 177. Data Altered by SETF

Programming Notes

See figures

1.. FLAG is added to the flags already present in F. The other flags are. left
untouched.

2. If F already contains FLAG, no data is altered.

3. see also SETFI.

132

1.Qh._S?IFI

SET FI D~SCR,FLAG

SETFI is used· to set (add) a flag in the flag field of a descriptor
specified indirectly. See figures 178 and 179.

DESCR A

A F

Figure 178. Data Input to SETFI

r-· ---,
A I .f+FLAG I

Figure 179. Data Altered by SETFI

~ogramming Note~

1. FLAG is added to the flags already present in F.
untouched.

2. If F already contains FLAG, no data is altered.

3. See also SETF and RSETFI.

The other flags are left

133

..

103. SET~ <set length of §pecifi~ to C2!l~tl

SErLC SPEC,N I
r~

"'"+.M'I

SETLC is used.to set the length of a specifier to a constant. see figure

180.

SPEC . I

Figure 180. Data Altered by SETLC

Programming Not~§

1. N is never negative.

2. N is often o.

3. See also SETAC.

•

134

c 104, SE'TSIZ (set siz.fil.

SETSIZ DESCR1,DESCR2

SETSIZ is used to set the siie into the value field of a title descriptor.

See figures 181 and 182.

DESCR1 A

DESCR2 I .I

Figure 181. Data Input to SETSIZ

A I. I

Figure 182. Data Altered by SETSIZ

1. I is always positive and small enough to fit into the value field~

2. See also GETSIZ.

135

105, SETSP <set seeci·f iei;L

SETSP SPEC1,SPEC2 I

SETSP is used-to set one specifier equal to another. see figures 183 and

184.

SPEC2 A F v 0 L

Figure 183. Data Input· to SETSP

SPEC1 Q _·.

Figure 184. Data ·Altered by SETS?

•

136

+fi-, 1.Q.§...._.._S ... E.,T v ... A ___ c._s_,e t~alue f~eld from ~essl

SETVA DESCR1,DESCR2 I

SETVA is used to set the value field of one descriptor from the address
field of another •. see figures 185 and 186.

DESCR2 I

Figure 185. Data Input to SETVA

DESCR1 !

Figure 186. Data Altered by SETVA

Programming Note§

1. I is always positive and small enough to fit into the value field.

c 2. see also SETAV and SETVC.

'

137

107 2 SETVC <set va\ue tg constant)

SE'TVC DESCR,N

SETVC is used· to set the value field of a descriptor to a constant. See
figure 187.

DESCR I .

Figure 187. Data Altered by SETVC

frogramrning Note§

1. N is always positive and small enough to fit into the value field.

2. See also SE'TVA and SETAC •

. 138

c)08, SHORT~ (shorten sgecifier}

SHORTN SPEC.N I

SHORTN is used.to shorten the specification of a string. see figures 188
and 189.

SPEC L

Figure 188. Data Input to SHORTN

SPEC I

Figure 189. Data Altered by SHORTN

fr.o_gramming Notes

1. L - N is never negative.

139

109, SPCINT {convert specifier to integer> ..

~)
..........

SPCINT DESCR,SPEC,FAI~,SUCCESS I

SPCINT
190 and 191.
C1 ••• CL.

is used to convert a specified string to an integer. See figures
I is a signed integer resulting from the conversion of the string

If c1 ••• CL does not represent an integer or if the integer it represents
is too large to fit the-address field, transfer is to I~YB~·

Otherwise transfer is to §1!~2·

SPEC A O·. L

A+O C1 ... I CL

Figure 190. Data Input to SPCINT

DESCR I Q 0
Figure 191. Lata Altered by SPCINT

1. IC stands for the code for the integer data type.

2. C1 ••• CL may begin with a sigri. (plus or minus) and may contain indefinite
n~1lber of leading zeros. Consequently the value of L itself does not determine
whether the integer represented is too large to fit into an address field.

3. If L = O, I should be the integer O.

4. See also INTSPC and SPREAL.

140

110, SPEC Cass~mble specif i~~

I LOC SPEC A.F.v,o,L 1

SPEC is used to assemble a specifier. see figure 192.

LOC A F v 0 L

Figure 192. Data Assembled by SPEC

c

141

111, SPOP <pop specifier from stac}Sl

SPOP (SPEC1, ••• , SPECN) I

SPOP is used to pop a list of specifiers from the system stack. See
figures 193 and 194.

CST ACK A

A+D-S A1 F1 V1 01 L1

•

A+D- (N*S) FN VN ON LN

Figure 193. Data Input to SPOP

CS TACK A- CN*Sl

SPEC1 : I

SPECN

Figure 194. Data Altered by SPOP

grogramming Notes

1. If A - (N * S) < STACK, stack underflow occurs. This condition indicates a
programming error in the implementation of the macro language. An appropriate
error termination for this error may be obtained by transferring to the global
location INTR10 when the condition is detected.

2. See also POP, SPUSH, and PUSH.

142

112. SPREAL (convert s2~cified string to real num.Q~~

SPREAL is used
figures 195 and 196.
the string c1 ••• cL.

to convert a specified string into a real number. See
R is a signed real number resulting from the conversion of

SPEC

A+O

If c1 ••• CL does not represent a real number, or if the real number
represents is out of the range available for real numbers, transfer is
to .f~.ll!Yll·

Otherwise transfer is to SUCCE§§.

A 0 L

,--- ------.,
I C1 ... I CL I

Figure 195. Data Input to SP REAL

o· DESCR B Q. B£

c ' .

Figure 196. Data Altered by SPREAL

Programming Not~s

. 1. RC stands for the code for the _real data type.

2. C1, ••• ,CL may begin with a sign (plus or minus) and may contain an
indefinite nwnber of leading zeros. C1, •••• cL will contain a decimal point if
it represents a real number, and have at least ·one digit before the decimal
point.

3 •. If L = O, R should be the real number O.

4. See also SPCINT and INTRL.

143

SPUSH (SPEC1, ••• ,SPEX:=N)

SPUSH is used to push a list of specifiers onto the system stack. see
figures 197 and 198.

CSTACK A

SPEC1 A1 F1 V1 01 L1

•
• . ·~-

~

SPECN AN- FN VN ON LN

Figure 197. Data Input to SPUSH

CSTACK A+CS*fil.

A+D .f 1 Yl

• •

A+D+S•N-S

Figure_. 198. Data Altered by SPUSH

programming Note~

1. If A + (S • N) > STACK + STSIZE, stack overflow occurs. Transfer should be
made to the global location OVER which will result in an appropriate error
termination.

2. See also PUSH, POP, and SPOP.

144

••
1.11!• STPRNT (string prinil_

STPRNT DESCR1,DESCR2,SPEC I

STPRN~ is used to print a string.
C11 ••• C1L is printed on the file
C21 ••• C2M is the output format. J
signalled by the output routine.

DESCR1

see figures 199 and 200. The string
associated with unit reference number I.
is an integer specifying a condition

Figure 200. Data Altered by STPRNT

f~oqramroing N~

1. The format C21 ••• C2M is a FORTRAN IV format in "undigested" form. see­
FORMAT.

2. Both C11 ••• C1L and C21 ••• C2M begin at descriptor boundaries.

3. The condition J set in the address field of DESCR1 is not used at present.
It is intended for eventual use in indicating interrupts from a console on which
output is being written. DESCR1 can be ignored for the present.

·~C u. See also OUTPUT and STREAD.

145

t15. SIR EA& (string reafil_

STREAD SPEC,DESCR,~QI,~_EBQB,SUCCES§ I

STREAD is used to· read' a string. see figures 201 and 202. The string
C1 ••• CL is read from the file associated with unit reference number I.

If a reading error occurs, transfer is to ~BQB.

If an end of file is encountered, transfer is to ~-

Ot-herwise transfer is to fillC~.§.

DESCR I

SPEC A . I 0 I . L

Figure 201. Data Input to STREAD

A+O

Figure 202. Data Altered by STREAD

frogramming Notes

1. Note that the length of the string to be read is specified by the data input
.to STREAD. If the record read is not of length L, FORTRAN IV conventions
regarding truncation or reading of-additional records should be followed.

2. See also STPRNT.

146

11h2I.E];fil:L_J.§tream for token)

STREAM SPEC1,SPEC2,TABLE,ERSQS,RUNOUT,SUCCESS

STREAM is used to locate a syntactic token at the beginning of the· string
specified by SPEC2. see figures 203, 204, 205, 206, and 207. '

If there is an I (1 S I S L) such that TI is ERROR, STOP, or STOPSH, and
J is the least such I, then

If TJ is ERROR, transfer is to LRBQB•

If TJ is STOP or STOPSH, transfer is to SUCCE§.§..

Otherwise transfer is to RUNOUI.

In the figures that follow, J is the least value of I for which TI is STOP
or STOPSH.

P is the last value of P (1 s I s J) which is nonzero (i.e. for which a
put is specified in the syntax table description for the tables given).

c SPEC2 A F v 0 L

A+O C1 ... I CJ ICJ+1 I CL

TABLE+E*C1 I A2 T1 P1

A2+E*C2 A3 T2 P2

•

•

AL+E*CL I TL PL

Figure 203 •. Data Input to STREAM

147

STWE f

SPEC1 a I y Q ~

SPEC2 A F v 0+'2: bl

Figure 204. Data Altered by STREAM if Termination is STOP

STYPE f

SPEC1 I' a r y Q ~

-,

SPEC2 A F v O+J-1 L-J+1 I

Figure 205. Data Altered by STREAM if Termination is STOP SH

STYPE .Q

SPEC1 b ~ y Q ~

Figure 206. Data Altered by STREAM if Termination is ERROR

STYPE

SPEC1 Q

SPEC2 A F v 0

Figure 207. Data Alter~d by STREAM if Termination is RUNOUT

P;-091:a.:r.ming tfotes

1. Termination with STOP or STOPSH may occur on the last-character, CL.

2. If L = 0 (i.e. if SPECR2 specifies the null string), RUNOUT occurs.

this case the address field of STYPE should be set to o.

148

~· ,,,.j...,

0

In .\

· 1.11.a_~ING CasseinQ~specified stringl

c "-.

LOC STRING 1 C1 ••• CL 1 I

STRING is used to assemble a string and a specifier to it. see figure 208.

LOC A 0 0 0 L

A I Cl ... CL

Figure 208. Data Assembled by STRING

Programming Notes

1. Note that LOC is the location of the specifier, not the string.
may immediately follow the specifier, or it may be assembled at
location.

The string
a remote

149

., '

11§3 SUBSP (substring_specif ica.ti,onl

SUB SP SPEC1,SPEC2,SPEC3,fAILURE,§UCCE§§

.
SUBSP is used to specify an initial substring of a specified string. See

figures 209 and 210.

If L3 ~ L2 transfer is to §UCC~§.§.

Otherwise transfer is to ~ILUB~ and SPEC1- is not altered.

SPEC2 L2

SPEC3 A3 F3 V3 03 L3

Figure ~09. Data Input to SUBSP

SPF.c 1

Figure 210. Data Altered by SUBSP if L3 ~ L2 •

150

c
'

119. SUBTRT Csubtrsct gggresse~

l SUBTRT DESCR1,DESCR2,DESCR3,r~~,.§!!£~

SUBTR~ is used to subtract one address field from another. See figures 211
and 212. A2 and A3 are considered as signed integers.

If A2 - A3 is out of the range available for integers, transfer is to
FA&LURE.

Otherwise transfer is to SUCCES§.

DESCR2 A2 F2 V2

DESCR3 A3

Figure 211. Data Input to SUBTRT

DESCR1 A2-A3 ---
Figure 212. Data Altered by SUBTRT

f~oqramming Notes

1. A2 and A3 may be relocatable addresses.

2. The test for success and failure is used in only one'call of this macro.
Hence the code to make the check is-not needed in most cases.

3. DESCR1 and DESCR2 are often the same.

4. see also SUM.

151

120, SUM <sum addr~sses)

I .. StM DESCR1,DESCR2,DESCR3,FAILy~.succESS I

SUM is used to add two address fields. See figures 213 and 214. A and I
are considered as signed integers,

DESCR2

DESCR3

DESCR1

If A + I is out of the range available for integers, transfer is to
FAILURE.

Otherwise transfer is to .fill~§§.

A F v

I

Figure 213. Data Input to SUM

~!!

Figure 214. Data Altered by SUM

Prggramming Notes

1. A may be a relocatable address.

2, The test for success and failure .is used in only one call · of this macro.
Hence the code to make the check is· not·needed in most cases.

3. DESCR1 and DESCR.2 are often the same.

4. See also SUBTRT.

152

o.

121. 'IESTF (test flag>

I . TESTF DESCR,FLAG,FAILURE,fil!£~~

TESTF is used to test a flag .field for the presence of a flag. See figure
215.

DESCR·

If F contains FLAG, transfer is to SUCCE§§.

otherwise transfer is to ~~!IB~·

F

Figure 215. Data Input to TESTF

fiogramming ti2_~

1. See also TESTFI.

153

122, TES'IFI Ctest flag indirecll

TESTFI DESCR,FLAG,fAILUR~,SUCCESS
OJ

~ESTFI is used to test an indirectly specified flag field for the pr~sence

of a flag. See figure 216.

If F contains FLAG, transfer is to §~~§·

Otherwise transfer is to f~ILtJEE.

DESCR- A - I

A F . I

Figure 216. D::ita Inp·-4t to TES·l'FI

~oqramming.Notes

1. See also TESTF.

154

TITLE 'C1 ••• CN I I

TITLE is used at assembly time to title the assembly listing of the SNOBOL4
program. TITLE should cause a page eject and title subsequent pages with
C1 ••• CN.

frogramming Notes

1. TITLE need not be implemented as such. It may simply perform no operation.

155

124, TOP <get to top of block)

'IOP DESCR1,DESCR2,DESCR3. I

~OP is used to get to the top of a block of descriptors. see figures 217
and 218. Descriptors at A; A - D, ••• ,A - (N * D) are examined successively for
the first descriptor whose flag field contains the flag TTL. Data .is altered as
indicated, where F3N is the first field to contain TTL.

DESCR3 A F v

A- (N*D) F3N

•

•

A-D F31

A F30

Figure 217. Data Input to TOP

DESCR1 A-(N*Dl. y

DESCR2 Q Q

Figure 218. Data Altered by TOP

~rog~amming Notes

1. N may be O. That is, F30 may contain TTL.

156

125. TRIMSP (trim blanks from specifie~

TRIMSP SPEC1,SPEC2 I

TRIMSP is used to obtain a specifier to the part of a specified string up
to a trailing string of blanks. see figures 219 and 220.

SPEC2 A F v 0 L

A+O C1 I CJ ICJ+1 CL

Figure 219. Data Input to TRIMSP

SPEC1 Q

Figure 220. Data Altered by TRIMSP

0 ~ogramming ~otes

\ 1, If CL is not blank, J = L.

157

12 6. UN:r,,,OAD <unload external function)

i UNLOAD SPEC I

Ul."4'"LOAD is used to unload an external function. see figure 221.
represents the name of the function that is to be unloaded.

SPEC A 0 L

A+O I C1 ... I CL · I

Figure 221. Data Input to UNLOAD

.f.t:ogramming Notes

1. UNLOAD is a aystem-dependent operat:on.

C1 ••• CL

2. UNLOAD need not be implemented as such. If it is not, it should perform no
operation, since UNLOAD has a valid. use in undetining existing, but non­
external, functions.

3. UNLOAD should do nothing if the function C1 ••• CL is· not a LOADed function.

4. See also LOAD and LINK.

158

127, VARIO -1£.gmpute vari,able identification numbers}

----------~----------~~~~,
VAR ID DESCR,SPEC I

VARIO is used to compute two variab~e identification numbers from a
specified string. see figures 222 and 223. K and M are computed by

K

M

where F1
numbers
ranges

0

0

= F1 (C1 ••• CL)

= F2 (C1 ••• CL)

and F2 are two (different)
from the characters C1 ••• CL.

~ K s (OBSIZ - 1) * D

s M s SIZLIM

functions which compute pseudo-random
The numbers computed should be in the

where OBSIZ is a glooar-syrnbol defining- the number of chains in variable storage
and SIZLIM is a global symbol defining the largest integer that can be stored in
the value field of a descriptor.

SPEC A 0 L

A+O I C1 ... CL

Figure 222. Data Input to VARIO

DESCR

Figure 223. Data Altered by VARIO

frog~2:!!!!!!ing Notes

1. K is used to selected one of a number of chains in variable storage. The K
are address offsets which must fall on descriptor boundaries.

2. M is used to order variables (string structures) within a chain. see
ORDVST.

3. ~he values of K and M should have as little correlation as possible with the
characters C1 ••• CL, since the "randomness" of the results determines the
efficiency of variable access.

C. 4. One simple algorithm consists of multiplying the first part of c1 ••• CL by
the last part, and separating the central portion of the result into K and M. \ .

159

5. L is always greater than zero.

0
,

r1

160

128. VCMPIC <value field compare indirect with offset_constan!J.

VCMPIC DESCR1,N,DESCR2,~,~,!U I

VCMPIC is used to compare a value field, indirectly specified with an
offset constant. with another value field. see figure 224. V1 and V2 are
considered as un·signed integers.

.
If V1 > V2 transfer is to fil:·

If V1 = V2 transfer is to ~-

If V1 < V2 transfer is to 11·

DESCR1 A1

DESCR2 V2

A1+N V1

Figure 224. Data Input to VCMPIC

161

129. VEQL <value fields equal test)

I . VEQL DESCR1,DESCR2,tm,E.Q

VEQL is used to compare the value fields of two descriptors.
225. V1 and V2 are considered as unsigned .integers.

If V1 = V2 transfer is to ~Q.
I

If V1 # V2 transfer is to ~g.

DESCR1 V1

DESCR2 V2

Figure 225. Data Input to VEQL

Progranuning Notes

1. see also AEQL and VEQLC.

162

See figure

,rJ

130. VEQLC <value field egual to constant test}

VEQLC DESCR,N,NE,fil2 I

VEQLC is used to compare the· value field of a descriptor to a constant.
see figure 226. Vis considered as an unsigned integer.

If v = N transfer is to ~2·

If v # N-transfer is to Im·

DESCR v

Figure 226. Data Input to VEQLC

1. N is never negative.

2. . See also AEQLC and VEQL.

163.

j 31, ZERBLK <zero block>

ZERBL.K DF.5CR1,DESCR2 I

ZERBLK is used to zero a block of !+1 descriptors. See figures 227 and
228.

DESCR1 A

DESCR2 D*I

Figure 227. Data Input to ZERBLK

A Q Q

A+ (D*I) .Q Q Q

Figure 228. Data Altered by ZERBLK

Programming Note§

1. I is always positive.

~.·

164

' .
Aoeendix 1 - I.!!H!ementation Notes

A, OQtional~.IQ§

There are several operations which are used in noncritical parts of the

SNOBOL4 language. some operations are used only to implement certa~n primitive

functions. Others are required only for minor executive functions. The

following list includes operations fdr which implementation may be considered

optional. For these operations, simple alternative implementations are sug­

gested and the language features disabled are indicated. In selecting opera­

tions for inclusion in this list, a judgement was made concerning what features

could be disabled and still leave SNOBOL4 a useful language.

~ation Alternative ImQlementation ~eatures Disableg

ADREALl Branch to INTR10. Real arithmetic

·BKS-PCE Branch to UNDF. The function BACKSPACE

~
CLERTB2 Branch to UNDF.

DATE Set length of SPEC to o.

The functions ANY, NOTANY, SPAN, and
BREAK

The function DATE

DVREAL' Set address of DESCR2 to o. Real arithmetic and post-run statistics

ENFILE Branch to UNDF. The function ENDFILE

EX PINT Branch to UNDF. Exponentiation of integers

EXREAL1 Branch to INTR10. Real arithmetic

GE TB AL Branch to UNDF. The primitive pattern BAL

INTRLl Perform no operation. Real arithmetic

LEXCMF3 If QI # m, branch to The function LGT
UNDF.

LINK• Branch to INTR10. External functions

LOAD• Branch to UNDF. External functions

'All operations relating to real arithmetic should be implemented or

implemented as a group.
~CLERTB and PLU3TB should be implemented or not implemented as a pair.

~LEXCMP must be properly implemented for !!I = ~·
~LINK, LOAD, and UNLOAD should be implemented or not implemented as a group.

not

165

M.NREALl

MPREALt

MS TIME

ORDVST

PLUGTB2

RCOM_~1

REALSTt·.

REWIND

RLINTt

RPLACE

SBREALl

SPREALl ·

TRIMSP

UNLOAD~

Branch to INTR10.

Branch to INTR10.

Set address of DESCR to O.

Perform no operation.

Branch to INTR10.

~-

Branch to INTR10.

·Branch to UNDF.

Branch to INTR10.

Branch to INTR10.

Branch to INTR10 •.

Branch to INTR10.

Take the FAILU~E exit.

Branch to INTR10.

Perform no operation.

B1 Machine Dependent Data

Real arithmetic

Real arithmetic

The function TIME, trace timing,
post-run statistics

Alphabetization of post-run dump

The functions ANY, NOTANY,-SPAN,
and BREAK

Real arithmetic

Real arithmetic

The function REWIND

Real arithmetic

The function REPLACE

Real arithmetic

Real arithmetic

The function TRIM

External functions

In addition to the data given in the COPY files (q.v.) there are several
forrrat strings that generally have to be changed to suit a particular machine.
The strings defined by FO&"-!AT (which occur at the end of the source file) are in
this category. The two strings CRDFSP and OUTPSP defined by STRING are also
machine dependent.

£..,_Ez.:ror Exit for Debu9ginq

During the debugging phases, it is good programming practice to test for
certain conditions that should not occur, but typically do if there is an error
in the implementation. Stack underflow is· typical. Transfer to the label
INTR10 upon recognition of such an error causes the SNOBOL4 run to terminate
with the message "ERROR IN SNOBOL4 SYSTEM". Following this message the,A
statement number in which the.error occurred is printed, as well as requested~/
dumps ·and termination statistics that·may--be helpful in debugging.

166

\

0

n..__subroutines versys In-Lin~~~

. The choice between implementing macro operations by subroutine call or
in-line code depends on a number of factors, including the machine and its
environment. The size of the SNOBOL4 system usually encourages subroutine
implementations of the more complicated operations. The following information
may be helpful in making these decisions. Column 1 lists the macro operations
in alphabetical order, including non-executable macros. Column 2 gives the
number of times each each macro operation occurs in the SNOBOL4 program. Column
3 gives the percentage of time spent in each (executable) macro during execution
of a typical set of programs on the tBM 360 implementation. Time spent in I/O
and system subroutines is not included. A • marks those macros implementated by
subroutines in the IBM 360 implementation. (including macros that call I/O and
system subroutines).

Macro count Time

.ACOMP 65 2. 952
ACOM PC 57 1.450
ADDLG 7 o.ooo
ADDSIB 6 o.ooo
ADDSON 12 0.017
ADJUST 2 o.ooo
AD REAL 1 o.ooo
AEQL 17 0.397
AEQLC 173 3.574
AEQLIC 9 0.086
APDSP* 93 0.897
ARRAY 5

___ .._ ___

BKSIZE 5 1.329
BKSPCE* 1 o.ooo
BRANCH 348 0.638
BRAN IC 5 2.054
BUFFER 5_ ...
CHKVAL 3 0.604
CLER TB 4 o.ooo
COPY 3 ~--.--

CPYPAT* 14 3.021
DATE* 1 o.ooo
DEC RA 60 1.588
DEQL 73 1.346
DESCR 921

______ ._,

DIVIDE 4 o.ooo
DVREAL 2 o.ooo
END 1 _ _
ENDEX* 1 o.ooo
ENFILE* 1 o.ooo
EQU 69 ----..--
EXP INT 1 o.ooo
EX REAL* 1 o.ooo
FORMAT 25 ~-----

FSHRTN 12 o.ooo
GET AC 10 0.638
GETBAL* 1 0.172
GETD 47 7.408
GETDC 118 5.025
GETLG 59 o. 7 59

i67

GETLTH 2 0.172
GETSIZ 27 0.397
GETS PC 10 0.017 0\
INC RA 136 5.577
INC RV , . o. 000
!NIT* 1 0.138
INSERT 1 o.ooo
INTRL 7 0.000
INTSPC* 25 0.552
I STACK 2 0.000
LCOMP 5 0.000
LEQLC 17 0.103
LEXCMP* 12 ~;2.624

LHERE 14
~_ __

LINK* 1 o.ooo
LINROR 1 o.ooo
LOAD* 1 o.ooo
LOCAPT 21 1.467
LOCAPV 33 5. 197 .
LQCSP 79 1.605
LVALUE* 6 0.207
.M.'2\i<NOD 13 0.172
MNREAL 1 0.000
MNS!NT 1 0.034
MOVA 6 0.397
MOVBLK* 14 0.103
MOVD 147 1.985
MO VD IC 1 0.017
MOVV 16 o. 811 Q' MP REAL 1 o.ooo
MSTIME* 8 o.ooo
MULT 5 0.120
MULTC 18 0.207
ORDVST* 1 o. ooo.
OUTPUT* 27 0.034
PLUGTB 4 0.000
POP 114 4.282
PROC 172 2.365
PSTACK 5 0.034
PUSH 120 3.091
PUTAC 11 0.448
PUTD 29 0.069
PUT DC 132 3.056
PUTLG 9 0.189
PUTSPC 1 0.138
PUTVC 1 0.034
RC ALL 343 8.-927
RCOMP 6 0.000
REALST* 10 o.ooo
REMSP 7 0.448
RESETF 3 o.ooo
REWIND* 1 o.ooo
RLINT 2 o.ooo
RPLACE* 1 0.000
RR TURN 21 6.182
RS ET FI 2 o.ooo ,,
SB REAL 1 o.ooo
SELBRA 18 0.017

168

SETAC 166 0.673 ,.....,.
SETAV 32 1.830

~ SETF 1 o.ooo
SETFI 5 0.086
SET LC 28 0.034
SETSIZ 7 0.155
SET SP 18 0.155
SETVA 14 0.051
SETVC 30 0.207
SHORTN 4 o.ooo
SPCINT* 23 0.069
SPEC 30a. -.

SPOP 4 o.ooo
SPREAL* 13 0.000
SPUSH 4 o.ooo
STPRNT* 15 0.051
STREAD* 4 0.051
STREAM* 35 0.656

'STRING 152 ------
SUBSP 3 0.362
SUBTRT 22 0.189
su~: 67 1.709
TESTF 24 1.899
TESTFI 9 0.707
TITLE 24 -------
TOP 4 0.241
TRIM SP 2 0.069
UNLOAD* 1 0.000

0 VARIO 1 0.897
VCMPIC 1 0.535
VEQL 3 2.158
VEQLC 105 0.759
ZERBLK 3 0.128

169

In the following sections, the macro operations are classified according to
the way they are used.

~sembly control Macros.

COPY END EQU

.Maci:os which Assemble D~S..:.

ARRAY
STRING

BUFFER

Branch M~§.:.

BRANCH BRANIC

~mparison Macros.

A COMP
CHKVAL
RCOMP
VEQLC

170

ACOMPC
DEQL
TESTF

DES CR

SELBRA

AEQL
LCOMP
TEST FI

LHERE

FORMA.T

AEQLC
LEQLC
VCMPIC

TITLE

SPEC

AEQLIC
LEXCMP
VEQL

~)

0

Macros whi£!! Relate to Recursive ~ocedures and Stack Mangg~ment.

I STACK
RCALL

POP
RR'IURN

PROC
SPOP

PSTACK
SPUSH

PUSH

Hs!cros which Move and set Desc;iptors.

GETD
POP

~cros

ADJUST
GETSIZ

INCRV
SETVC

GE TDC
PUSH

which Modi(Y

BKSIZE
MOVA

MOW

MOVBLK
PUTD

~ress

GETAC
PUTAC

PUTVC

MOVD
PUTDC

MOVDIC
ZERBLK

Fiel~~escriqtors~

GETLG GETLTH
SET AC SETAV

SETSIZ SE TVA

Macros which Modify Flag Field~-2!._~scriptors.

c RESETF

'
RSETFI SETF SETFI

171

~cros which Per~ Integer Arithmetic. on Address Fields.

DECRA
MULT

DIVIDE
MULTC

EXP INT
SUBTRT

INC RA
SUM

Hacros which Deal with Real Numbers~

'ADREAL
MP REAL
SP REAL

DVREAL
RCOMP

EXREAL
REAL ST

M~os which Move SR~f iers,

GETS PC PUTSPC SETSP

INTRL
RLINT

SPOP

!,:1acros which Operate on S~£if iers.--

ADDLG
LOCSP
STREAM

APDSP
PUT LG
SUB SP

FSHRTN
REM SP
TRIMSP

GET BAL
SETLC

Macros which Operate on qyntax rabl~

CLER TB PLUG TB

172

MNSINT

MNREAL
SBREAL

SPUSH

INTSPC
SHORTN

·~ ·' ;

C·
\

CPYPAT MAKNOD

Ma~~hich Operat~-2!} Tree Nodes.

ADDSIB ADDSON INSERT

luput and Qutput Macros~

BKSPCE
STPRNT

EN FILE
STREAD

FORMAT OUTPUT REWIND

r:tacros l~·:1ich pepend on Ogerati:qg s~stem ~lities •

DATE
MSTIME

LINKOR
RPLACE

END EX
UNLOAD

LO CAPT
SPCINT

INIT

LOCAPV
TOP

LINK

LVALUE
VAR ID

. LOAD

ORDVST

173

One problem in implementing SNOBOL4 for a particular machine involves
putting the macro-language program into a form suitable for the assembler for
that machine. This typically involves making a number of format changes and
correcting a few special cases by hand. It is _desireable to perform as many
changes as possible by some systematic, mechanical means· (preferrably with a
program) so that new versions of the macro-language program ca~ be converted
into the required form easily, thus facilitating the incorporation of updates in
the SNOBOL4 language. A systematic,· mechanical technique also minimizes random
errors inevitably introduced by human interference. such random errors are
particularly dangerous in such an implementation .. since most of the logic of the
system is at a level divorced from the implementation of the macro language.
This section describes the format of the macro-language program in order to make
the necessary format changes easier to determine.

The SNOBOL4 assembly source file consists of about 6500 80-character card
images. All cards are blank in column 72 and contain sequence numbering in
columns 73 through 80. There are t~ kinds of cards: program cards and comment
cards. Comment caras have an asterisk (*) i.r~ column ~ and descriptive text of
various types in columns 2 through 71. All other cards (about 4800 out of the
total of 6500) are program cards. Program cards have a field format as follows:

174

1. Columns 1 through 6: label field. A program label, if present,
begins in column 1. All labels begin with a letter, followed by letters
or digits. Labels are from two through six characters in length. If a

0 program card has no label, the label ·field is blank.

2. Column 7: blank.

3. Columns 8 through 13: operation
operations which begin in column 8.
six letters.

4. Columns 14 and 15: blank~ __ .

field. All program cards have
Operations consist of from three to

5. Columns 16 through 71: variable field. A list of operands appears
in the variable field starting in column 16. .The list consists of items
separated by commas. The last item in the list is followed by a blank.
If there are no operands, there_ is a comma in column 16 and a blank in
column 17. Items in the operand list may take several forms:

a. Identifiers, which satisfy the requirements of program labels.

b. Integer constants.·

c. Arithmetic expressions containing identifiers and constants.

d. Lists of items enclosed in parentheses. List are not nested,
i.e. lists do not occur as items within lists.

e. Character literals, consisting of characters enclosed in single
quotation marks. Quotation marks do not occur within literals~ but'
commas, parentheses, and blanks ~ay. This fact must be taken into
account in analyzing the variable field. -

f. Nulls, or items of zero length. Nulls represent explicitly
omitted arguments to macro operations.

Comments may occur following the blank which terminates the variable field.
such comments begin in column 36.

• • •
GCM

·GCMA 1
GCMA2

GCMA3

GCMA9

•

The following portion of program is typical.

BLOCK MARKING

PROC
POP
PUSH
GETSIZ
GETD
TESTF
AEQLC
TOP
TESTFI
DEC RA
AEQLC
POP
AEQLC
SETAV
BRANCH

DEC RA
AEQLC
SE TVA
PUSH
MOVD
SET FI
TESTFI
MOVD
BRANCH

•
BK1CL
ZEROCL
BKDX,EK1CL
DESCL,BK1CL,BKDX
DESCL,PTR,GCMA3
DESCL,0,"GCMA.3
TOPCL,OFSET,DESCL
TOPCL,MARK,GCMA4
BKDX,DESCR
BKDX,0,GCMA2
BK1CL
BK1CL,0,, RTN1
BKDX,BK1CL
GCMA2

BKDX,DESCR
BKDX,0,,GCMA9
BK1CL,BKDX
BK1CL
BK1 CL, TOPCL
BK1CL,MARK
BK1CL,STTL,GCMA1
BKDX,TWOCL
GCMA2

PROCEDURE TO MARK BLOCKS
RESTORE BLOCK TO MARK FROM ·
SAVE END MARKER
GET SIZE OF BLOCK
GET DESCRIPTOR
IS IT A POINTER?
IS .~D:>?1ESS ZERO?
GET TO TITLE OF BLOCK POINTED TO
IS BLOCK MARKED?
DECREMENT OFFSET
CHECK FOR END OF ·BLOCK
RESTORE BLOCK PUSHED
CHECK FOR END
GET SIZE ~EMAINING
CONTINUE PROCESSING

DECREMENT OFFSET
CHECK FOR END
INSERT OFFSET
SAVE CURRENT BLOCK
SET POINER TO NEW BLOCK
MARK BLOCK
IS IT A STRING?
SET SIZE OF STRING TO 2
JOIN PROCESSING

00000809
00000810
00000811
00000812
00000813
00000814
00000815
00000816
00000817
00000818
00000819
00000820
00000821
00000822
00000823
00000824
00000825
00000826
00000827
00000828
0000082 9
00000830
00000831
00000832
00000833
00000834
00000835
00000836
00000837

175

Aooendix 4 - Diff erence.§_Q~tween Ve~!Li-2n.2. Version 3

There are three new macro operations included in Version 3 that were not
used in Version 2. One macro has been deleted. A number of Version 2 macros
have been changed slightly. Corrections and improved descriptions have been
supplied for a number a macros. The character classes used to define syntax
tables have been extended and revised. The following lists are provided to
assist in converting Version 2 implementations to Version 3.

1. ~2._Qperatigns New tg_y~~sion 1

EXR~~L, RCOMP, FLINT

2. £han~~~ Opera~i9!l§

COPY, CPYPAT, ENDEX, !NIT, LOAD, LOCAPT, LOCAPV, MNSINT, STREAM

3. Changed Macro Forro~~

AEQLIC, VCMPIC

4. Deleted Macro

DUMP

ACOMPC, AEQLC. BKSIZE, CLERTB, DECRA, DIVIDE, EXPINT, GETBAL,
GETLTH, INCRA, INCRV, INSERT, INTRL, LINK, LVALUE, MULTC, ORDVST,
PLUGTB, POP, RCALL, RPLACE, SELBRA, SETAC, SPCINT, SPOP, SPREAL,
STREAM, SUBTR'I, SUM, VARIO

176

I,

o.

Ref erenc~ .,,.,,.,...

1. Griswold, R. E., J. F. Poage, and.I. P. Polonsky. ThL-fil!~QL4 PrQ.m:amfiling
Language. Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 1969.

2. Mcilroy, M. D. "Macro Instruction Extensions of Compiler Languages. Comm.
ACM 3 (April, 1960), 214.

3. Strachey, c. "A General Purpose Macro Generator".
1965), 255.

Comput. J. 8 (Oct.

177

~~knowledgemem;

The SNOBOL4 system was implemented jointly by the author and Messrs. J. F. o·:i
Poage and I. P. Polonsky~ The author- is indebted to.Messrs. Poage and Polansky
who have made significant contributions to the develqpment of the macro language
and designed many of the individual macros described in this report. The author
would also like to thank Messrs. R. s. Gaines, Mr. J. F. Gimpel, and w. M.
Waite who have provided numerous criticisms and suggestions which were particu­
larly helpful during the evolution of the macro language. Miss P. A. Hamilton,
Messrs. L. Osterweil, M. D. Shapiro, · L. Wade, and Miss R. A.· Weiss have
provided many helpful criticisms and, corrections to the manuscript.

178

O··

