A Guide to the Macro Implementation of SNOBOL#Y4

R. E. Griswold

Bell Telephone Laboratories, Incorporated

s4psd

o % 3k o e ek 3 e o e o e e afe o o o ok

This manual corresponds to Version 3 of SNOBOLY4.

30 3 30 e o o o e ok ke e 2k ok e gk e ok

<

1, Introduction « ¢ o ¢ « o « o

2. Environmental ConsiderationsS « « « o o« ¢ o o & o o o =
A Input and OUtput <« ¢ « ¢ ¢ ¢ o « ¢ o o o s o o o o
B. Storage Requirements . « « ¢ « o = o o o o o ¢ o o
C. Other ConsideratiOnNsS o« « « ¢ ¢ o o ¢ o o ¢ o ¢ o o

3. Representation of Data « « « « ¢ o o o ¢ o o s o o o o
A. DeSCriptOrsS o o o o o o ¢ e @« o o o ¢ o o o s s o «
B' Spec if iers - L] - - - L] L ® ° L] . L L] * L] - - L 2 L3 -
C. Character Strings « « « o « « o« « o ¢« s o« o o o o @
D. Syntax Table EntriesS . « ¢ o « ¢ ¢« ¢ ¢ ¢ o = « o o

4. Syntax Tables and Character GraphiCs =« « ¢ o « « o »
A. Characters - L] ® L] L - L - - L - - < L] - L] L3 < < -
B Syntax Tables « « « ¢ ¢ ¢ o o« ¢ o« o o o o o o « = o

5- The SNOBOL“ r{acros . - - - L L L] L - L L L J L] L. - - - '0
A. Diagrammatic Representation of Data . « « ¢ ¢ « o «
B. . Branch POints . L - - e - L] L] L] - L3 L Ll * - L 3 -« ‘ L3 L]
C- Abbreviations - L] e L] L] .' L4 - - * * - L] * < ' A . L 3 L 3
D. Data Type COAES « s « o o o s o s s ¢ o o a o o ¢ o

" E. Programming NOtES « « ¢ « o o o o o o o ¢ o o = o =

Appendix 1 - Inrplementation Notes . <« ¢ ¢ o o ¢ = & « o «
bAQ Optional MaCIoS L] L L] - L d . .‘ L4 [] - - L] L] . L - l -
B. Machine Dependent Dat@ =« « « o c o o o o o o o o« o
C. Error Exit for Debugging .« « ¢ e « e ¢ o o « o « o

by D. Subroutines versus In-Line Code « ¢« o o o ¢« ¢ o o o
“appendix 2 -~ Classification of Macro Operations
Appendix 3 ~ Format of the SNOBOLY4 Source File . « « « «

Appendix 4 - Differences between Version 2 and Version 3
References - L] . - - L] L d L] - - - - L] - L] ® .o L] - L] * o L]
Acknowledgement . « « ¢ =« o o ¢ s o ¢ o © o & s a s s o o

¢ & o

e o & & & % o * & .'D ® & 6 & 5 A 8 & 06 & 8 35 8

.0.00"‘..‘00.90..!5@0'0.!’0.0

oonno-ca.cto..nneatnaao&ClOQ

Table of

Contents

e 8 @ 5 5 8 A 9 0 9 3 98 »

e & & » 8 5 o B 0 * o & 0 O s 0

lll.000.006".0".0!@.0‘00000

® 8 5 & & 0 & A& & .6 o & & 5 2 & 0 s

e o 0 ¢ &6 & & 8 &

e 8 & & 8 A A4 & A S 8 6 9 O A & * & & 0 A & 8 & & 8 8 3

VOO~V EEEW

e » & 5 8 4 & & 6 & % & ¢ & % & & 0

® 6 4 & & ® 3 8 & & 8 8 e & 3 8% 8 & 3 o o o & A a & B & 9

e 6 4 & & & 5 5 & % 2 % 8 0 H v 4 0 s ¢ e 8 & & 0o 8 8

e

1.
2.
3.
a‘
5.
6.
70

¥ Be

10.
11'
12.
13.
14.
15.
16.
17.
18.
19.
20.
21,
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41,
uz.
u3.
44,
45.
46.
47,
48.
49,
50.
51.
52.

ACOMP
ACOMPC
ADDLG
ADDSIRB
ADDSON
ADJUST
ADREAL
AEQL
AEQLC
AEQLIC
APDSP
ARRAY

BKSIZE

BXSPCE
BRANCH
BRANIC
BUFFER
CEXVAL
CLERTB
COPY
CPYPAT
DATE
DECRA
DEQL
DESCR
DIVIDE
DVREAL
END
ENDEX
ENFILE
EQU
EXPINT
EXREAL
FORMAT
FSHRTN
GETAC
GETBAL
GETD
GETDC
GETLG
GETLTH
GETSI1Z
GETSPC
INCRA
INCRV
INIT
INSERT
INTRL
INTSPC
ISTACK
LCOMP
LEQLC

(address COmMPArisSoOn) « « o « « o «
(address comparison with constant})

(add

- (add

{add

(compute adjusted address)

(add

(addresses equal test) . . -
{(address equal to constant test) .
(address equal to constant
_(append specifier) . . . « ¢« . o . .
(assemble array pf descriptors) . .

(get

(backspace record) <« ¢ o « o « o
(branch to program location) « « « «

to specifier length)
sibling to tree node) o .
son to tree node) . . c o

real numbers) . « <«

¢ 0 @ & 6 5 o 5

bloCck SiZ€} . o o e o o ¢ o «

e
-
L2

-

(branch indirect with offset constant)
(assemble buffer of blank characters)

(Check va lue) ®© o ® © @& o e o
(clear syntax table) . . .
(copy file into assembly)
(copy pattern) . « . . o

(get

(decrement address) . .
(descriptor equal test)

{(assemble descriptor) .
(divide integers) . . .
(divide real numbers) .

(end
(end

(write end of file)
(define symbol. equivalence)
(exponentiate integers) . .
(exponentiate real numbers)
(assemble format string) . .
(foreshorten specifier)

{get
{(get
(get
{(get
(get
(get
(get
(get

(increment address) . « « o o o o o
(increment value field) . « « « »
{initialize SNOBOLU4 run) . « « « &
{insert node in tree) . ¢ ¢ ¢ ¢ =
(convert integer to real number) .
(convert integer to specifier) . .
(initialize sStack) e « o o « o o o
{length comparison) e« « « ¢ ¢ o &«
(length equal to constant test) .

date) . * - - . . -

¢ o & & & o ¢ o ¢ 9

assembly) o ¢ o o
execution of SNOBOL4 run

e 8 8 & 8 Y s o & & 0 8 8 o 8
S o & 8 ¢ & & o & 5 O ¢ 0 & s 0+
¢ 9 6 8 & 0 8 0 o s 0 0 s 0 2 9 e

address with offset constant)
parenthesis balanced string)

desCriptor) « o« ¢ o o o o o «
descriptor with offset constant
length of specifier)
length for string structure) .
Size) e 6 o ® ® ® o o o ® e o o
specifier with constant offset)

e 8 0 8 P 5 0 & % 0 8 » % & 0 » & s ¢ o

® e ¢ 0 9 0 9 & st a2 4 2

s 4 0 8 0o 0 o

s o 86 o 5 o 8

indirect tes

® 6 0 5 0 8 P 0 0 8 8 0 8 % 5 0 8 4 s 0
S 6 0 8 8 8 8 8 4 8 8 8 & 8 8 4 8 & 8 € 8 8 6 6 5 4 S 8 5 8 P A % a8 8 a8 a s b by s s s s s s

e & o 0 0o P2 a2 o @

.41..-..0..00‘000OIOOl.l'c.....ﬂ’..'!.aﬂll!O

0..‘...'.'.00000...l’..lO...‘Q.IOIQQbDOlQQ.o!‘BO.’Q.'

List of

Operations

S 6 8 2 8 5 & 6 9 86 0 % 4 8 6 ¢ 0 2 5 8 0 2 0 2 8 s 0 0 0 B 0 4 P 2 8 0 6 8 0 0 8 0 % g 0 s 0 2t s 0o

l'..‘.lllll‘d...l..ll.lI‘ll.‘.‘.l.‘.lc.‘h'ﬁc....ﬂ‘00
® 6 © & & 6 8 6 @ & 9 8 4 8 6 6 6 5 4 6 0 & 6 O 0 . s 0 6 & s & S g 0 AN s e P 4 s a2 0t a3 s P oo s s s 0

o & & & o 00‘.. ® 8 ¢ 6 6 6 ° 9 0 & 8 6 6 5 0 & S 0 *P 8 B & & 4 0 & & & s s D & s & A 5 & & 0 5 » 8

® 9 0 6 0 % 5 6 & B B 2 g & ¢ * 8 2 3 % B 8 6 &8 8 5 0 ¢ 6 o5 4 & 5 a5 s 8 5 0 o 0o o o 8 © 8 0 & 8 8

» 8 & 8 o
N
oy

¢ 0 5 ® & 9 4 O 0 % & P o 8 S 8 8 A B S 0 s 0 & 0 6 8 s s 9 b 0 8 s H s A P & 8 06 & & s & & e« & 5 @
e & 9 6 8 O 4 B 4 % 4 & 8 6 A & & & K A 0 % 0 8 & 3 b+ ° 0 a8 6 s . ®» & 5 8 2 e 5 & & 3 O & & & 9 9 LI)

S 0 5 8 0 0 4 0 & % 8 A A 8 9 8 s 8 6 & 4 4 0 s 2 & 6 8 s 0 8 s s 5 8 9 38 3 2 s b g ¢ s)
w
o

-53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
4.
75.

- 76.

7.

78.

79.

80.

81.

82.

83.

84,

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95-

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

LEXCMP
LHERE
LINK
LINKOR
LOAD
LOCAPT
LOCAPV
LOCSP
LVALUE
MAKNCD
MNREAL
MNSINT
MOVA

: MOVBLK

MOVD
MOVDIC
MOVV
MPREAL
MSTIME
MULT
MULTC
ORDVST
OUTPUT
PLUGTB
POP
PROC
PSTACK
PUSH
PUTAC

‘PUTD

PUTDC
PUTLG

PUTSPC

PUTVC
RCALL
RCOMP

REALST

REMSP

RESETF
REWIND
RLINT

RPLACE
RRTURN
RSETFI
SBREAL

SELBRA -

SETAC
SETAV
SETF

SETFI
SETLC

SETSIZ"

SETSP
SETVA
SETVC
SHORTN
SPCINT
SPEC

(lexical comparison of strings)

(define location here)
(link to external function) . .

(link "or" fields of pattern nodes)

(load external function)
(locate attribute pair by type)
{(locate attribute pair by value)
(locate specifier to string) .
(get least length value) . .
(make pattern node)
(minus real number) .« « « «
(minus integer) . < « « . .
(move address) « o« « o « o« o
(move block of descriptors)
(move descriptor) <« « « « o
(move descriptor indirect wit
(move value field)
(mulitply real numbers) .
(get millisecond time) . .
(multiply integers) < . .
{(multiply address ky constant
(oxrder variable storage) . .
(output record) . ¢ o« o o
(plug syntax table) . . . o
(pop descriptors from stack)
(procedure entry) e« « « o« «
(post stack position) . . .
(push descriptors onto stack) .

S 0 0 9 8 8 ™ s s ¢ T & 8 & 0 s
s 8 0 o 6 85 o 8 o 80 e s s 0 s 0 0

0._..0‘00.“0500‘00.0'0900

.

{put address with offset constant)

(put descriptor) . « o« « « « «

(put descriptor with constant offset)

(put specifier length)

(put specifier with offset constant)

(recursive call) . « . ¢ « « « &
(real comparison) e« « ¢ ¢ « o «
(convert real number to string)

(specify remaining string) « . .
(reset flag) . < « « « o o« o - &
(rewind file) e o o s s = o @ o
{(convert real number to integer)
(replace characters) « « « o « =«
(recursive return)
(reset flag indirect) .. .
(subtract real numkers) .
(select branch point) . .
(set address to constant)

{set address from value fi
(set £1lag) « « ¢ o o o o @
(set flag indirect) . . .

e 6 o 2 0+ 5

v}
s 6 e & o 0 o
Q0

{(set length of specifier to const

(set S12€) v o ¢ « o o o o o + =
(set specifier) .« . . ¢ o . &
(set value field from address)
(set value to constant) . . .
{shorten specifier)
(convert specifier to integer)
(assemble specifier)

e & 8 8 3 0 6 QNS s e 4 e s s st s s e s v 02

n

e o 8 8 o 8 o (t S 5 ¢ o O s & s o 4 0 s o 2

¢ 6 0 e o 0 s 8 s 0 g e o TP o 00 0 8 s 0 0 e

€ 6 9 8 8 0 & 8 % 5 s s 6 0 M e s 9 s 0 0 b 0 9 b s s 0

-

" {(put value field with offset constant)

® o 6 o 9 2 8 8 0 » 2 & o

® & & & 2 o o

[] L[] L] L] [] [] L[] [] L[] [[* . [[

@ 0 6 0 & 8 8 9 % e 8 @ 0 & 8 8 O 5 % 4 0 8 6 8 0 B 2 0 o b 2 0 s b g e N s b

e o 8 B & 8 6 8 8 8 6 8 0 8 8 6 0 & 6 4 86 e 8 3 8 5 8 8 s 8 % s s v N 8 s e s s 0 s FhO & s s 0 e s s et s b o0

.‘CUOCOOCOOOQIOO‘l'CPl...040.0l‘....'.l.."m.i.....OOOQ‘.'.

(]
~

¢ ® 8 0 6 & @ 6 % 0 8 8 0 8 8 4 6 s 0 4 D 4 0 8. 6 ° & 8 2 s % 8 % ¢ e b o 6 6 2 8 s (te a2 s e s 2 s 0 s s s 0.0 s

e & & 6 & » 5 & 8 & & 8 0 & 0 o 2 a2 0 0+ b s b o

L) L)] . » [] .] . [} [} L] » L[] . [] . .

O & 8 6 % 8 ¢ 6 0 6 & & & 3 8 8 5 3 & 8 ° s P 0 ° 0 0 b 2 6 b 9 0 v & & s 2 oo $ o & 9 9 8 0 & s 0 s & s t o 4 o e

!0!..0...-o.bq.nt.il‘o.0lO.l'IOQOQQDCOOQOOODOOO00!000000.'

® 6 8 6 6 8 & 8 8 8 6 0 B 8 8 6 5. 8 8 4 8 & s 0 0 8 e 8 8 b e e % g 5 0 0 8 0 e s e B s s s s s s 000 g

w.o.nl‘ooooooouoto.ooouoctogoo‘coao‘c'toooocruloono~otoooo'c

S 5 5 6 9 & B o 6 O 8 & e & 8 4 8 % o b e s 0+ 9

® 9 & & 5 4 8 B 8 08 8 0 & B 0 8 & 8 4 P e & s+ 20 2 s 0 0

74
15
76
77
78
79
81
83
84
85
87
88
89
90
91
92
93
94
95

® 8 6 6 0 @ o % ® 9 & o 9 s B 0 e ¢ v o

97
98
. 100
.101
103
. 104
. 105
. 106
. 107
-108
. 109
« 110
- 111
- 112
<113
. 116
117
<119
-120
-121
.122
.123
« 125
<127
. 128
. 129
- 130
‘131
.132
- 133
- 134
-135
<136
. 137
. 138
-139
. 140
. 141

96 -

0

QD

111,
112,
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.

123.
£ 12“.
125.
126.
127.
128.
129.
130.
131.

SPOP
SPREAL
SPUSH
STPRNT
STREAD
STREAM
STRING
SUBSP
SUBTRT
SUM
TESTF
TESTFI
TITLE
TOP
TRIMSP
UNLOAD
VARID
VCMPIC
VEQL
VEQLC
ZERBLK

- (sum addresses) <« o o o

(pop specifier from stack} .
(convert specified string to
(push specifiers onto stack)
(string print) « « ¢ ¢ o o e
{string read) . « o « ¢ ¢ o
(stream for token) . . . « =
{(assemble specified string)
(substring specification)

{subtract addresses) . .

(test flag indirect) . .
(title assembly listing)
(get to top of block) . .
(trim blanks from specifier)
(unload external function) .

(test flag) .« ¢ o « « &« ;

e & & & o » & & ¥ s ¢ » 2

°

L

real numb

2 8 & 4 8 A A4 5 8 & & 8 o

{(compute variable identification

(value field compare indirect with offset con

(value fields equal test) .

- e @

» 0 & 8 0 & o 8 s 2 8 0
a 0 & & 9 ¢ % » & s 0o 0o
e & o & o 0 & & 5 o & o @
a & & € ¢ & 0 % & N b o

- [3 - [3

numbers)

[3 ® - L2

(value field equal to constant test) . .
(zero b10Ck) . - - *® L 3 L] - - L] - L. - - L2 L 3 -

er)

[] L]] L]) [)] [) L] L) [] . L ~

2 o 6 & 6 o 6 0 0 & ¢ » 92 2 &

® & % o 8 2 8 o

o o 6 [} 8 5 & & o * & s 0

.,l.g...“..‘l.l...‘!.

=]

e s 8 e s 2 8 e 8 2 0 0 8 4 s

s ® & & o 8 8 8 3 b s P a A D> &

L]

a & @ & o 8 Ao A 8 & » & 0 & a2 > s s 8 s 9
2 6 06 % 5 & 6 9 3 0 a s 5 & a2 s 2 8 s &

e A » 6 s & » 0 o 83 & 8 o & 9 8 & 8 A o+ 2

. 143
.1un
.45
.46
. 147
. 149
. 150
. 151
. 152
.153
<154
. 155
.156
.157
.158
.159
.161
.162
-163
. 164

oy

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figqure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figqure

1.

2.

3.

“.

5.

6.

7.

8.

9.

10.
11,
12.
13.
14.
15.
16.
17.
18.
19.
20.
21,
22.
23.
24,
25.
26,
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
“0.
41.
42,
43.
44,
45.
u6.
47.
48,
49.
50.
51.
52.

Representation of a Descriptor .

Representation of a Specifier . « « ¢ « ¢ o o « o &
Short Representation of a String . « « « ¢ « « 5 &
Long Representation of a String « « « o & o « & & &
Representation of a Syntax Table Entry . . « « « .
An Altered DeSCriptoOr « « « o o o« o o o o o o o o =
Data Input tO ACOMP « « o « o ¢ o o o o o o o o o =
Data Input to ACOMPC o+ « o ¢ o o o e.0 o o o o o =
Data Input tO ADDLG « « o e o o ¢ ¢ o o o o o o o =
Data Altered by ADDLG <« « « o o o © o o o © o o =
Data Input to ADDSIEB . « « o ¢ o o o o @ o o o o =
Data Altered by ADDSIP ¢ « o o o o ¢ o o o o o o @
Data Input tO ADDSON . « ¢ o o ¢ o o o o o o o o @
Data Altered by ADDSON « o o o o o o o o o o o o o
Data Input to ADJUST « o o ¢ o o o o = o o o o o o
bata Altered by ADJUST o o o o © . ¢ o o o o o o o o
Data Input to ADREAL ¢« « o « « o o o s o o o o o o
Data Altered by ADREAL ® @& © @ @ e ® © & ©® s & &
Data Input tO AZQL . « ¢ o s o = ¢ o v o o o o ¢ o
Data Input to AEQLC =« o o o o o o o o o o o o o @
Data Input to AEQLIC ¢ « « o o o o s o o o o = o o
Data Input tO APDEP 4« o o ¢ o o o o o o ¢ o o & =
Data Altered by APDSP o o o o o o o o o o o o o =
Data Assembled by ARFAY « o o o o o o o o o o o &
Data INput tO BKSIZE « o« o o o o « o o o o o o o o
Data Altered by BKSIZE « « « « o o o s o o o o o o
Data Input to BKSPCE . &« & & o ¢ o ¢ o o o o o o o
Data Input to BRANIC e« o o s o e e s s s = o s o
Data Assembled by BUFFER o « o o o o o o o « o o o
Data Input tO CHKVAL « o e o o ¢ o a o o o o o o o
Data Altered by CLERTB for ERROR, STOP, or STOPSH
Data Altered by CLERTB for CONTIN . « « « ¢ o &«
Initial Data Input to CPYPRT « ¢ o« ¢ o o o « o o

Data Input to CPYPAT for Successive Vaues cf R .
Data Altered by CPYPAT for Successive Values of =1

Additional Data Input for Successive Values of R2 if
Additional Data Altered for Successive Values of k1 i

Data Altered when Copying is Complete . . .
Data Altered by DATE . . .
Data Input to DECRA . . =
Data Altered by DECRA . .
Data Input to DEQL « « « &
Data Assembled by DESCR .
Pata Input to DIVIDE . . .
Data Altered by DIVIDE . .
Data Input to DVREAL . . .«

s & & o s O
s o o & o O
s & o & o s

Data Altered by DVREAL .
Data Input to ENDEX . .
Data Input to ENFILE . .
Data Input to EXPINT . .
Data Altered by EXPINT

Data Input to EXREAL . .

[]
. [] [] [] . . L] [] L] L[] L] . L] [] L[]

e ®» & o 8 ¢ © & o 8 8 ¢ o O

2 & o 8 6 8 o & » o & s+ 0

e o & & 6 o 6 & 3 o 0 o+ ¢

L)

o o © 8 ® o O s 0 & 0 o ¢

o 6 8 o o 6 85 8 & b o o

o & 5 ¢ 8 & % & 8 o 8 o 0 3

s @ © o & o 5 0 & 3 o 3 0+

o o & o 6 8 & 8 & 0 5 s ¢ & o

s o ¢ s ¢ ¢ 0o
L] [] L] [] L] [] L[]

*® & 5 o

.
A J
.
L]
L]
-
-
L
-
L]
L]
.
-
.
°
3
L]
.
.
-
-
L]
-
-
-
L]
L]
.
.
-
-
3
L]
L}
-

® ¢ ® @ © 5 6 8 ® ¢ 6 s € & 8 0 & o e

.
l.‘.....l.....‘.l
....I.l...l..'."“‘.’.

L] L] L[] [] ® L]
[] [] [] [] . [[]] .] L] . . L] * L]] L . L] . L] . . .

* []] » [] L[] L) [] L] L] . * [] . . . - L] L[] . . [] L] [] . . . [] [] 1] * [] L] .

] e . . .] L[] [] L] . e L]
L] L]] . . []]] [] [)] L]

.] ® * [[] s * [[

~

oW

<
=
w

0.'...."0.1"0}-“<.'|.l'.‘...0.'.
5 s 0 & o s @

[] L[] [] L] .] L) . * L[] [L) . L] .
e & & o & & 0 o B 0 3 a2 s 0 b
. * [] L[] . L[] . L] L] L] e [] [] [] []

15
15
15
16
16
16
19
20
21
21

AN~

22
27
23

21

-~

L4
25
Sc
26
27
Al
’)-.’j
24
3¢
31
31
32
34
35
36
37
27
41
41
n1
41
4?2
u2
43
44
uy
4s
46
47
u7
us8
48
50
51
53
53
54

vii

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Fiqure
Figure
Figure
Figure

_Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figqure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Fiqure
Figure
Figure
Figure
Figure
Figure
Fiqure
Figure
Figure
Figure

53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
4.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
S0.
91.
92.
93.
Su.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106,
107.
108.
109.
110.

Data Altered by EXRERAL

Data Assembled by FORMAT
Data Input to FSHRTN . .
Data Altered by FSHRTN
Data Input to GETAC .
Data Altered by GETAC

Data Input to GETBAL .
Data Altered by GETBAL
Data Input to GETD . .
Data Altered by GETD .
Data Input to GETDC .
Data Altered by GETDC
Data Input to GETLG .
Data Altered by GETLG
Data Input to GETLTH .
Data Altered by GETLTH
Data Input to GETSIZ .
Data Altered by GETSIZ
Data Input to GETSPC .
Data Altered by GETSPC
Data Input to INCRA .
Data Altered by INCRA

Data Input to INCRV .
Data Altereld by INCRV

Data Input to INSERT .
Data Altered by INSERT
Data Input toc INTrL .
Data Altered by INTRL

Data Input to INTSPC .
Data Altered by INTSEC
Data Altered by ISTACK
Data Input to LCOMP .
Data Input to LEQLC .
Data Input to LEXCMP .
Data Input to LINK . .
Data Altered by LINK .
Data Input to LINKOR . .
Data Altered by LINKOR
Data Input to LOAD ...,
Data Altered by LGAD .
Data Input to LOCAPT .
Data Altered by LOCAPT
Data Input to LOCAPV .
Data Altered by LOCAPV
Data Input to LOCSP . .
Data Altered by LOCSP if
Data Altered by LOCSP it
Data Input to LVALUE .
Data Altered by LVALU® .
Data Input to MAKNOD . .

¢ 8 o % o & & 0 & o & &

e s e s 0

JTrare a8 & 4 0 0 6 0 0 0 0 8 s 0 o0

.

Additional Data Input if D

Data Altered by MAKNOD .
Addtional Data Altered if
Data Input to MNREAL . .
Data Altered by MNREAL .
Data Input to MNSINT , .
‘Data Altered by MNSINT .
Data Input to MOVA . . .

L] [L[] . . * . . [} .] . []] [] . [] []] L] [] L) * .

S 8 8 & 2 8 & 5 4 6 8 8 A S 6 6 8 O & P 4 6 8 & 8 0 e @

e 6 4 & 8 9 e P o 4 8 & 4 6 & 8 2 2 ¢ 9 s 2
S 8 9 & 8 & % B 5 8 & 0 0 0 8 & B 5 % 0 8 8 B 8 2 8 2
L N O L I Y B D D D I DO T I D I D D D A L

[[] [] [] . [Y) . L[] L] . [] L[] . . . [[] L] L] . [] [] L] L[] . [] []

O - - L]
=0 . . .
ESCR6 is G
DESCR6 is

[] L] [] L] . L[] [] .] 1]] . .] [] . [)] . . . L] . L] . . .]

oilQOH'oOoooconlu.ocoaclolooou

» s ¢ ¢ 0

PR T T S S S PR

a % 8 & 4 6 ¢ 8 a2 % g 8 2 6 8 0 s 0 0 0 2 b+
[

¢ & ¢ & 5 & & 0 B 6 8 0* & 5 ¢ & 2
T 6 e 0 & 0 & v 0

[] [] []
[] * [)

ven

-
<
®
o]

* & 8 % 3 % & 5 8 & 9 + 2 0 0 6 8 % 8 0 4 0 8 % s 0 ¢

* & s o 8 ¢ o 0 9o B ¢

¢ 0 o

e 6 & 8 o 0 o

e & 8 8 o 8 8 & 8 & ¢ B s 0 & 6 5 0 s 0 0 % g b 2 0 o

4 % & 6 2 & 9 3 5§ 0 4 2 0 b 9 P 9 % s B 3 s 0 0 ¢ " 0 s 0

s & 8 8 o & s 0 & * s

8 6 4 8 o 0 o 0 s & s 8 g 0o o 2

e & & 3 & ¢ o & & ¢ 8 o

® & 6 8 % 6 0 o 0 0 5 0 s 8 B 8 0 0 o 6 0 " 0 0 b s o

e 0 & g e O o * 3 s e

. L] .] L[] L] . . [] Ld] . . [

S o 6 ¢ 0 a2 5 & & s 6 o P o b 0 & b o

. [} [] L]] L[] [] L) L]

.] [L] .] . . [.] *] L]

e 2 & ¢ P.e o 9

¢ o & & 9 & o 0 o

¢ @ o 0 0 & o 0

L] L [] [] L [] . 1) .] . L]

L]] [] . [

o & o 5 & & ¢ ¢ s ¢ s o

[] . L] L] [] L] L] [] L I)]

¢« ¢ b ¢

¢ 6 0 s & & 6 0 ¢ o & » » 0 3

[)

$ & 4 85 8 & B 8 6 N 6 4 & a4 * o+ F 8 B & ¥ 0 o

. L] . » [[3 - L[] [] L[] [] . [[L[] L] . * L] L)

s & & 4 ¢ 2 ¢ 5 0 9 0

55

57 - E

60

€8

viii

Figure
Figure
Figure
Figure
Figure
Figure
Figure
 Figure
Figure
Figure
Figure
Figqure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figqure
Figure
Figure
Figure
Fiqure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Fiqure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.

122,

123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142,
143.
144,
1“5.
1“6‘
147.
1“8'
149,
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.

Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data

Organization of Variable Sto

Data
Data
Data
Data
Data
Data
Jata
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data

Return Code at LCC .

Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data

Return Code at I10OC. . .

Data

Input to MPREAL .

Altered by MOVA . .
Input to MOVBLK . .
Altered by MOVELK .
Input to MOVD . . .
Altered by MOVD . .
Input to MOVDIC . .
Altered by MOVDIC .
Input to MCVV . . .
Altered by MCVV . .

Altered by MPREAL
Altered by MSTIME
Input to MULT . .
Altered by MULT .
Input to MULTC . .
Altered by MULTC .

L [] » .] . . [) L] » L] L] L] . . ¢

t

a

0

¢ M a s o a2 0 o & 2 ¢ s 2 2 8 s o 0
¢« N s e 0 s & & s 2 e * 8 o s 0 @

Input to OUTPUT
Input to PLUGTE « « « o «
Altered by PLUGTB for ERROR,
Altered by PLUGTB for CONTIN
Input tO POP o « o « o « o &
Altered by POP . .
Input to PSTACK .
Altered by PSTACK
Input to PUSH . .
Altered by PUSH .
Input to PUTAC . .
Altered by PUTAC .
Input to PUTD . .
Altered by PUTD .
Input to PUIDC . .
Altered by PUTDC .
Input to PUTLG . .
Altered by PUTLG .
Input to PUTSPC .
Altered by PUTSPC
Input to PUTVC .

Altered by PUTVC

Input to RCALL .

Altered by RCALL

Input to RCOMP .

Input to REALST

Altered by REALST
Input to REMSP . .
Altered by REMSP .
Input to RESETF .
Altered by RESETF
Input to REWIND .
Input to RLINT . .
Altered by RLINT .
Input to RPLACE .
Altered by RPLACE
Input to RRTURN .
Altered by RRTURN

-
°
L3
-
L J
-
-
.
-
]
-
-
-
-
[
L]
®
-
-
.
.
-
L3
[
-
-
-
-
[
.
.
.
[3
L]
-
-

® 8 o © 5 6 6 8 6 6 8 6 % 8 & 0 0 8 0 6 0 5 a % 0 0 8 8 s 0 s s 4 s o
6 8 8 5 8 8 0 8 & 0 6 6 4 8 & 8 &6 0 5 6 6 0 4 8 2 B 8B L 2 0 s s 0 o0
e & o o s * o .- e 0 4 8 ¢ 8 o o o ® 6 0 4 8 o 8 6 8 s 8 8 0 e 8 s 0 g 0
6 88 & 8 6 6 8 & 8 8 8 4 8 &6 6 8 6 8 6 6 6 4 8 ® 0 s s s 0 0 e 0 0+ 0 0»

Input to RSETFI .

LI
[] L] L] L] L) . L} . . L] .

« 5 6 8 & s 8 0 8 8 s 8 0 s a0
e & 0 9 9 8 2 P 9 B 9 F 0 2 9 2 @
0 8 8 ¢ 8 & & 8 0 o & 8 5 4 & s o 2

ru..o.oll.a'o..lo!lot

0

o & 6 6 o 0 2 & o 0 o o o 5 a 0 5 o '3
OOl'nt0000000'0000oooc90.0000000o!ooni:[:010000.000.00!000'.

Qe o
= .
a8 s 6 a8 O s s 2 0 8 0 s 0 4 s s 83 0 e
N
.
o

(%]

a & 0 % O 8 6 6 & o & 3 8 o % 2 B & B s s o 8 & 0+ o

oioooooooono.oooolancotuo.oo.oooocaoaooooaonoo'QOooooooouo
La |
..'..‘00000.0.l00.!'...O0.0.0Q!.O...IC'O"

‘..‘.l“l.“l..".0"’000........l...lID.....!.O.COO.:\QOO.
O.l.l‘0.00."'0.0GQO...O0.Il.‘t'l’..'.ll...h.....Q.Q'!OOO‘O

© 8 0 @ 9 6 8 6 9 0 & 6 & ® 4 B s 8 2 B B " & * s * o b s 0 4 0 e - @ & © o & g 6 & e o o 5 &6 & ¢ & o » o & o @

2 8 ¢ 6 8 8 6 8 % 6 & 0 8 8 0 P8 S 8 8 8 8 s B 8 0 9 s 9t 0 e o 0 0
¢ 0 8 6 & 0 8 6 4 9 5 v & 8 & 8 4 8 2 0 b % s 8 s % et 800 s 0o .
e 5 6 5 6 8 8 6 8 6 o 4 6 8 % 4 8 e % 0 8 & 0 s * 0 B 4 b s 0 0 0 0 0 g
s % 0 % o 0 85 0 35 6 8 6 8 U 5 5 4 8 0 % s 0 0 0 0o 0 b 06 0 86 o 0 o s s 0 o o
¢ & 6 & & 0 % 0 & ¢ 0 6 5 8 o ¥ 4 ° s F 8 % 4 0 ¢ 0 0o ° 9 ®* ¢ 0 . 8 o ®» o

6 6 & 0 9 % &4 0 a4 & & 8 ¢ % & 8 4 & s 6 0 b s 0 s 0 3 s 0 oo
S 0 6 6 & & 5 6 % 8 ¢ 8 8 8 8 & 4 P 9 s 0 8 2 B 0o 3 o % s s ¢

89
90
90
91
91
92
92
93
93
94
94
95
96
96
97
97 -

4 8 & & 9 s

. 100
- 101
. 101
101
103
<103
. 105
. 105
. 106
-« 1C6
. 107
. 107
. 108
.108
.109
«109
- 110
.110
- 111
<111
<112
<112
<113
- 114
. 114
-116
- 117
- 117
.119
. 119
.120
<120
- 121
<122
. 122
.123
. 123
« 125
. 125
.126
- 127

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
- Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Fiqure
Figure
Figure
Figure
Figure
Fiqure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Fiqure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
" Figure

169.
170.
171.
172.
173.
174,
175.
176.
177.
178.
179.
180,
181.
182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
159.
200.
201.
202.
203.
204.
205.
206.

2070

208.
209.
210.
211.
212,
213.
214,
215.
216.
217.
218.
219.
220.
221,
222.
223.
224,
225.
226.

Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data

Data.

Data

Data.

Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data

Data.

Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data

-Input to SETSP . .

Altered by RSETFI
Input to SBREAL .
Altered by SBREAL
Input to SELBRA
Altered by SETAC
Input to SETAV .
Altered by SETAV
Input to SETF .
Altered by SETF
Input to SETFI .
Altered by SETFI
Altered by SETLC
Input to SETSIZ
Altered by SETSIZ

[] L] (] L] . L] [] L] []]

Altered by SETSP

Input to SETVA . .
Altered by SETVA .
Altered by SETVC .
Input to SHORTN .
Altered by SHORTN
Input to SPCINT .
Altered by SPCINT
Assembled by SPEC
Input to SPOP . .
Altered by SPOP. .
Input to SPREAL .
Altered by SPREAL
Input to SPUSH . .
Altered by SPUSH .
Input to STPRNT .
Altered by STPRNT.
Input to STREAD .
Altered by STREAD
Input to STREAM . .
Altered by STRFEAM if
Altered Lty STKEAHM if
Altered by STREAM if
Altered by STREAM if
Assembled by STRING
Input to SURPSP . . .

Altered by SUBSP if L3

Input to SUBTKT .
Altered by SUPTRT
Input to sUM . . .
Altered by SUM . .
Input to TESTF .
Input to TESTFI
Input to TOP . .
Altered by TOP .
Input to TRIMSP
Altered by TRIMSP
Input to UNLOAD
Input to VARID .
Altered by VARID
Input to VCMPIC
Input to VEQL .
Input to VEQLC .

[] . * [] L[] []

S o 5 o 8 & " 8 0 8 " 8 0 & 0 0 0 3 0 8 6 o B 4 O 0+ 0 0 ® & 8 & & @
S 0 5 4 & & 0 2 0 82 B 0 0 8 8 5 & & 6 ¥ B S 2 8 S LK SO e s N s
S 6 6 0 % 2 0 o & 0 8 P 0 s & 8 . a 9 @ l PR e & 8 o 8 s 0 3 & @
¢ &2 0 s 8 8 o & a 9w o (-I ¢« 8 8 s e 2 90 a4 @ .‘o ¢ 0 o 0 5 o & o ¢

o 9. 8 o % 4 A & 8 e 8 @ o [T S Y L L I T B R S B I B AN
L[] L] [} [L] L] . .] L[] L[] L] » L] * E .. [] * . L] . L[] L] L L] [» [[]

Termination
Termination
Termination
Termination

?_ L2 - -
- - - - [] L]
- - - - - -
[]] - - - L]
- - L J - - *®
- - L] L] - []
- - - - L])
- - - - - -
- - -* . - []
e © o o e o
-* -* - - .‘ -

® & 0 ¢ & a2 & & 0 & ¢ 4 4 @

4« & 9 & & 3 + & s & 2 A2 ¢ 0 s 8 0

. ,
S & 5 8 5 & 6 5 0 0 s s b 6 D 9 % 4 6 0 b 2 P 4P o B e % s 0 a8 »

e ¢ s & a4 & s ¢ &+ B s 4 & % 5 0 8 % 4 B B 4 2 6 B S g % ¢ b 5 s B s o
.!.l..l'.l‘l..'&'.).

o & 4 0 ¢ ¢ 4 6 s 0 08 0 b 2 0 4 ¥ e 8 ¢ b s 0 9 b s & & b & 8 8 4 @

4 0 ¢ 6 a4 s 4 & 4 B 8 4 8 & 9 s s @

is sToOP .
is STOPSH
is ERROR

is RUNOUT

[. [] L] L[] [) [] []
s ¢ 0 8 2 9 8 » o

[I N N T T I)

6 0 o 8 o 0 s 0 s 0 8 0 0 s 0 s v 9
LI T Y)

® 6 0 o 9 4 * & b s 0 s b 4 s 0 a4
o s s 0

o & 0 o
2 o 0 o ¢
L] [] L[] [] [)

oOaaco.n..00000-0000o00!O‘.0‘000.'Oﬂcoooo‘¢o.ou

® 8 6 & 4 4 8 4 0 0 0 6 5 2 6 4 6 & 0 8 8 8 8 s e 8 s o

® 6 0 6 % 0 5 0 6 & 0 0 % 4 & o B O % 9 5 ¢ P % P o 6 8 8

¢ 0 8 5 4 & 3 s s & 0 ¢t 6 * o 0 2 s & v ,

¢ & 8 & o ¢ 5 ¢ 3 & 9 0

$ o & 0 0 ¢ b s 2 s P 4 b 0 0 g s s 2 e

. . . L] [}] (] »] L[] f] . L] L] [L] . L] * L] [

® & .5 5 5 0 0 0 & 3 8 8 & 0 0 4 2 K P S W0 6 b 0 0 &5 0 4 8 o 0 ¢ e 8

¢ & & 5 2 % 2 0

® 8 6 ¢ 6 & 9+ 8 0 e ¢ s

e 8 2 ¢ 6 0 5 0 ¢ 9 & & b @ & 0 b e 4 e 0 o

e 8 & 6 5 & B o a4 s+ & 9

* 6 6 ¥ ¥ % e 8 0 4 a8 s e

. . . []

L D I T I D D R TR S Y N R R R T TR TR R S R }

¢« 8 9 ¢ 9 &

<127
.128
.126
.129
. 130
REae
. 131
.132
.132
.133
.133
.13
.135

. 135
.136
.136
.137
.137
.138
.139

. 139
140

. 140

L 141
142
L1462

. 143
.143
RTTR
‘1““

. 145
.1u50
.146 ™
. 146
L1487
.148

. 148

. 148

. 148

. 149
.150
.150
.151
.151
<152

. 152
.153
.154
.156
.156
.157
<157

. 158
.159

. 159
.161
.162

. 163

c

Figure 227. Data Input tO ZERBLK =« « « « « o o o o s © o o o o o « = = <164
Figure 228. Data Altered by ZERBLK .+ « o ¢ &« « o « o « o o« « o =« « » ¢« «164

A GUIDE_TQ_THE_MACRO IMPLEMENTATION OF SNOBOLY

" 3: _Introduction

©

The SNOBOLY4 programming language [1] is implemented in macro-assembly
language [2,3]. This macro 1language is largely machine-independent and is

designed so that it can be implemented on a variety of computers. Thus, an

implementation of the SNOBOLY4 programming language can be obtained by implement-
ing the much simpler macro lanquage. By implementing the macro language, and
using the SNOBOL4 implementation already written in the macro language, one
obtains a version of SNOBOLY4 which is largely source-language compatible with
other versions implemented in the same way. Nearly all the logic of the SNOBOLY4
langauge resides in the program written in the macro language. Thus if one
implements the macro language properly, the resulting implementation of SNOBOL4
will be essentially the same as other such implementations.

This paper describes the macro language and contains information necessary
for its implementation. Section 2 describes environmental considerations.
Section 3 describes the representation of data. Syntax tables and character
graphics are described in Section 4. Section 5 is a 1list of all macro
operations with a description of how to implement each. Supplementary informa-
tion is included in appendices.

2. _Environmental Considerations.
A. __Input _and Output

SNOBOLU4 1is designed to perform all input and output through FORTRAN IV
routines. A SNOBOLY4 object program has much the same 1I/0 facilities as a
FORTRAN IV object program. Specification of 1I/0 is thus largely machine-
independent both at the source-language level and at the implementation level.

Files are referred .to by their FORTRAN unit reference numbers. In SNOBOL4
this is handled as an integer which appears in the address fields of descriptors
which are arguments to the I/0 macros. Unit reference numbers are referred to
symbolically in the SNOBOLY4 assembly. See the PARMS file in the dicussion of
the COPY macro. ' ' -

Input, performed by STREAD, uses only A conversion, with lengths being
specified. Output is controlled by formats. Output is performed by OUTPUT and
STPRNT. - The output done by the SNOBOLY4 system specifies H-type litverals, A, I,
and, in one case, F conversion. Programmer formats should include only
literals, X, T, and A conversion. Generally speaking, formats occur in
"undigested” form. Formats used by OUTPUT are assembled by the FORMAT and are
intended to be simply character strings representing undigested formats. FORMAT
may, however, assemble any convenient representation of the format. Formats
used by STPRNT are strings which may be formed during program execution and
hence must be accepted in their undigested form. ' '

There are three other I/0 related operations which correspond to their
FORTRAN counterparts. These are BKSPCE, ENFILE, and REWIND.

Where possible, the easiest way to implement SNOBOL4 I/O is to use FORTRAN
calling sequences for corresponding operations and link the FORTRAN I/O library
with the SNOBOLY4 system. The main difficulties will probably occur in handling
undigested formats. When questions arise as to what an operation should do,
FORTRAN conventions should be applied. A programmer. should expect the same
results from SNOBOL4 as from FORTRAN if, for example, he requests a string 200
characters from a file containing 80-character records.

B.__Storage Reguirements

The SNOBOL4 system itself is very large and SNOBOL4 programs typically
require large amounts of dynamically allocated storage. The magnitude of these
requirements may be determined from the implementation for the IBM System/360.
This system requires a user partition of about 200K bytes (characters) to run
large programs. A partition of about 170K bytes will permit execution of small
programse. Of the space required, the SNOBOLY4 system and its internal data
consume about 99K bytes, the FORTRAN I/0O routines consume about 14K bytes, and
the remainder is devoted to dynamically allocated storage. Allocated storage i
handled in machine-independent data units (see the next section) calle
descriptors which occupy 8 bytes eaci on the 360. A production system should be

[y

-

-

able to provide about 10,000 descriptors of dynamically allocated storage.

Because of the 1large amount of space required for dynamic storage, overlay

techniques for the program itself can only partially reduce the requirements for
physical storage. - '

C. _Othex consjderations

SNOBOL4 makes few other demands on its operating system environment.
Facilities should be provided so that the SNOBOL4 system can be called and can
return to the operating system under which it operates. SNOBOLY4 will use dump
facilities to provide core dumps requested by the keyword &ABEND if such

facilities are available. Time and date are used by SNOBOL#4, but they are not
essential. '

3.__Representation of Data o . : = s

Ut

There are a few basic types of data used in the SNOBOL4 system, and a
nurber of aggregates of the basic types. The basic types of data are '

1. Descriptors. o I (
2. Specifiers.
3. Character Strings.

4. Syntax Table Entries.

Descriptors are used to represent all pointers, integers, and real numbers.
A descriptor may be thought of as the basic "word® of SNOBOL4. Descriptors
consist of three fixed-length fields: '

1« Address.

2. Flag.

3. Value. _ ' _ | o

The size and position of these fields is determined from data they must
represent and the way they are used in the various operations. The following
paragraphs describe some specific requirements.

i. The Address Field

The address field of a descriptor is 1large enough to address any
dascriptor, specifier or program instruction with the SNOBOL4 system. (Descrip-
tors do not have to address individual characters of strings. See Specifiers.)
Tne address field must also be large enough to contain any integer or real
number (including sign) which is to be represented by the SNOBOL4 system. The
address field is the most often used field of a descriptor and is used
frequently for addressing and integer arithmetic (less frequently for real
arithmetic) and it is should be positioned so that these operations can be
parformed efficiently.

ii. The Flag Field

The flag field is used to represent the state of a number of disjoint
conditions and is treated as a set of bits which are individually tested, turne
on and turned off. There are five flag bits currently used in SNOBOL4, but}
space is left for several more. N

O

iii. The Value Field

The value field is used to represent a number of internal quantities which
are represented as unsigned integers (magnitudes). These quantities include. the
encoded representation of source—language data types, the length of strings, and
the size (in address units) of various data aggregates. The value field need.
not be as big as the address field, but must be large enough to represent the
size of the largest data aggregate whlch .can be formed.

On the IBM System/360, a descriptor is two words (8 bytes). The first word
is the address field. The second word consists of 1 byte for the flag field and
3 bytes for the value field. The 3 bytes (24 bits) for the value field permits
representation of data objects as large as 22¢-1 bytes. On the other hand, 2
bytes would 1limit objects to 216-1 bytes. Since on the 360 there are 8 bytes
per descriptor, 21%-1 bytes 1limits objects to 8191 descriptors which is
restrictive. For machines with fewer address units per descriptor, the value
field need not be as many bits.

B, _Specifiers

Specifiers are used to refer to character‘strings. Almost all operations
performed on character strings are handled through operations on specifiers.
All specifiers are the same size and have five fields:

1. Address.

2, Flag.

3. Value.

u.' Offset.

5- Length- - . » PO

Specifiers and descriptors may be stored in the same area indiscriminately,

and are indistinguishable to many processes in the SNOBOLY4 system. As a result,
specifiers are composed of two descriptors. One descriptor is used in the
standard way to provide the address, flag, and value fields. The other
descriptor is used in a nonstandard way. Its address field is used to represent

the offset of an individual character from the address given in the specifier's
address field. The value field of this other descriptor is used for the length.

C.__Character Strings

Character strings are representated in packed format, as many characters
per descriptor as possible. Storage of character strings in SNOBOL4 dynamic
storage is always in storage units which are multiples of descriptors.

/
ol

D, _Synt able Entries
Syntax tables are necessarily somewhat machine dependent. Consequently,

implementation of these tables is done individually for each machine. A
description of the table requirements is given in the next section.

4, -Syntax Tables and Character Graphics

A. Characters

The SNOBOL4 language permits the use of any character thas can be
represented on a particular machine. There are certain characters ‘that have
syntactic significance in the source language. The card codes, graphics, and
internal representations vary from machine to machine. For each -machine,
representations are chosen for each of the syntactically significant characters.
Such characters and sets of characters are given descriptive names to avoid
dependence on a particular machine. 1In the list that follows, the graphics used

-~on the IBM System/360 are used as a point of reference.

name lanquage_ function 360 _graphics
ALPHANUMERIC digit and letter ABCDEFGHIJKLMNOPQORSTUVWXYZ
abcdefghi jklmnopyrstuvwxyz
0123456789
AT operator _)]
BL.ANK separator and operator (blanx and tab)
BREAK dot and underscore o
CMT comment card *| et
CNT continue card +,
COLON goto designator and :
dimension separator
COMMA argument separator ’
CTL control card -
DOLLAR operator $
DOT operator -
DQUOTE literal delimiter "
EOS statement terminator :
EQUAL assignment =
FGOSYM failure goto designator F
KEYSYM operator €9
LEFTBR reference and = _ <f
goto delimiter
LEFTPAREN expression delimiter {
LETTER letter ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopgrstuvwxyz
. MINUS operator -
NOTSYM operator -
NUMBER digit 0123456789
ORSYM operator i :
PERCENT operator %
PLUS operator +
POUND operator #
QUESYM operator ?
RAISE operator ¢!
RIGHTBR reference and >]
goto delimiter
RIGHTPAREN expression delimiter)
SGOSYM success goto designator S
SLASH operator /
SQUOTE literal delimiter '
STAR operator *
TERMINATOR expression terminator i)>,] (includes blank and tab)

B. _Syntax Tables

The micro-syntax (or "fine structure®) of the SNOBOL4 language is analyzed
using the operation STREAM (q.v.) which is driven from syntax tables. 1In a
syntax table there is an entry for each character at a position corresponding to
the numerical value of the internal encoding of that character. The syntax
table entry specifies the action to be taken if that character is encountered.
The actlons are- : S

1. CONTIN, 1nd1cat1ng that the current syntax table is to be used for
the next character.

2. GOTO(TABLE). indicating that TABLE is to be used for the next
character. : :) ‘

"3 ~STOP} indicating that STREAM should terminate with the last charact-
- er examined to be included in the accepted string.

4. STOPSH, indicating the STREAM should terminate with the last
character examined not to be included in the string accepted.

5. ERROR, indicating that STREAM should terminate with an error
indication. : _ 4

6. PUT(ADDRESS), indicating that ADDRESS is to be placed in the address
field of the descriptor STYPE.

The classes of characters for which actions are to be taken are given in
the FOR designations. CONTIN and GOTO (TABLE) provide information about the next
table to use, and are typically represented by addresses in syntax table
entries. STOP, STOPSH, and ERROR are type indicators used to stop the streaming
process. S

The syntax tables for the IBM 360 implementation are generated from such
descriptions using a (SNOBOL4) program in which the character classes and the
order of the internal character codes are parameters, The complete 1list of
syntax table descriptions follows: ‘

BEGIN BIOPTB

FOR(PLUS) PUT(ADDFN) GOTO (TBLKTB)
FOR (MINUS) PUT (SUBFN) GOTO (TBLKTB)
FOR(DOT) PUT (NAMFN) GOTO (TBLKTB)
FOR (DOLLAR) PUT (DOLFN) GOTO (TBLKTB)
FOR(STAR) PUT (MPYFN) GOTO (STARTB)
FOR (SLASH) PUT (DIVFN) GOTO (TBLKTB)
FOR(AT) PUT(BIATFN) GOTO (TBLKTB)
FOR (POUND) PUT (BIPDFN) GOTO (TBLKTB)
FOR(PERCENT) PUT(BIPRFN) GOTO (TBLKTE)
FOR(RAISE) PUT (EXPFN) GOTO (TBLKTB)

ol

o

FOR(ORSYM) PUT (ORFN) GOTO (TBLKTB)
(-

FOR(KEYSYM) PUT (BIAMFN) GOTO (TBLKTB)
FOR (NOTSYM) :PUT (BINGFN) GOTO (TBLKTB)

10

FOR(QUESYM) PUT (BIQSFN) GOTO(TBLKTB)
ELSE ERROR
o~ END BIOPTB
v BEGIN CARDTB
FOR(CMT) PUT (CMTTYP) STOPSH
FOR {(CTL) PUT (CTLTYP) STOPSH
FOR(CNT) PUT(CNTTYP) STOPSH
ELSE PUT (NEWTYP) STOPSH
END CARDTB :

v BEGIN DQLITB
FOR(DQUOTE) STOP
ELSE CONTIN
-END DQLITB

YBEGIN ELEMTB

FOR(NUMBER) PUT(ILITYP) GOTO (INTGTB)
FOR(LETTER) PUT (VARTYP) GOTO(VARTB)
FOR(SQUOTE) PUT (QLITYP) GOTO(SQLITB)
FOR(DQUOTE) PUT (QLITYP) GOTO (DQLITBE)
FOR(LEFTPAREN) PUT(NSTTYP) STOP
ELSE ERROR

‘END ELEMTB

- BEGIN EOSTB
FOR(EOS) STOP
ELSE CONTIN
END EOSTB

! o ~BEGIN FLITB
FOR(NUMBER) CONTIN

FOR (TERMINATOR) STOPSH
ELSE ERROR

END FLITE

_BEGIN FRWDTB
FOR (BLANK) CONTIN

FOR(EQUAL) PUT(EQTYP) STOP L

FOR (RIGHTPAREN) PUT (RPTYP) STOP
FOR(RIGHTBR) PUT(RBTYP) STOP
FOR(COMMA) PUT (CMATYP) STOP
FOR{COLON) PUT(CLNTYP) STOP

FOR (EOS) PUT (EOSTYP) STOP

ELSE PUT(NBTYP) STOPSH

END FRWDTB

« BEGIN GOTFTB
FOR (LEFTPAREN) PUT (FGOTYP) STOP
FOR(LEFTBR) PUT(FTOTYP) STOP
ELSE ERROR
END GOTFTB

v BEGIN GOTOTB
FOR(SGOSYM) GOTO (GOTSTB)
FOR (FGOSYM) GOTO (GOTFTB)

c:: FOR(LEFTPAREN) PUT (UGOTYP) STOP
FOR (LEFTBR) PUT (UTOTYP) STOP

1

ELSE ERROR
END GOTOTB

/BEGIN GOTSTB .
FOR (LEFTPAREN) PUT(SGOTYP) STOP
FOR(LEFTBR) PUT (STOTYP) STOP
ELSE ERROR
END GOTSTB

Y BEGIN IBLKTB
FOR(BLANK) GOTO (FRWDTB)
FOR(EOS) PUT(EOSTYP) STOP
ELSE ERROR
END IBLKTB

< BEGIN INTGTB
FOR(NUMBER) CONTIN

FOR (TERMINATOR) PUT (ILITYP) STOPSH

FOR{DOT) PUT(FLITYP) GOTO(FLITB)
ELSE ERROR
END INTGTB

“BEGIN LBLTB

FOR (ALPHANUMERIC) GOTO (LBLXTB)
FOR (BLANK, EOS) STOPSH

ELSE ERROR

END LBLTB

v/ BEGIN LBLYTB
FOR (BLANK, EOS) STOPSH
ELSE CONTIN
END LBLXTB

” BEGIN NBLKTB
FOR(TERMINATOR) ERROR
ELSE STOPSH
END NBLKTB

/BEGIN NUMBTB

FOR{NUMBER) GOTO (NUMCTB)
FOR(PLUS,MINUS) GOTO (NUMCTB)
FOR(COMMA) PUT (CMATYP) STOPSH
FOR (COLON) PUT (DIMTYP) STOPSH
ELSE ERROR
END NUMBTB

/BEGIN NUMCTB

FOR (NUMBFR) CONTIN

FOR (COMMA) PUT (CMATYP) STOPSH
FOR (COLON) PUT (DIMTYP) STOPSH
ELSE ERROR
11D NUMCTB

vBEGIN SNABTB
FOR(FGOSYM) STOP

FOR (SGOSYM) STOPSH Con
ELSE ERROR

END SNABTB

12

be mc}cl ;Q\Gci .\s

il

“ /BEGIN SQLITB
FOR(SQUOTE) STOP
{:: ELSE CONTIN
END SQLITB

JBEGIN STARIB
FOR (BLANK) STOP
FOR(STAR) PUT (EXPFN) GOTO (TBLKTB)
ELSE ERROR :
END STARTB

“BEGIN TBLKTB
FOR(BLANK) STOP
"ELSE ERROR
END TBLKTB

BEGIN UNOPTB
FOR(PLUS) PUT (PLSFN) GOTO (NBLKTB)
FOR {MINUS) PUT {MNSFN) GOTO (NBLKTB)
FOR{DOT) PUT (DOTFN) GOTO (NBLKTB)
FOR (DOLLAR) PUT (INDFN) GOTO (NBLKTB;
FOR({STAR) PUT (STRFN) GOTO (NBLKTB)
FOR (SLASH) PUT (SLHFN} GOTO (NBLKTE)
FOR(PERCENT) PUT (PRFN) GOTO (NBLKTB)
FOR(AT) PUT (ATFN) GOTO (NBLKTB)
FOR(POUND) PUT (PDFN) GOTO (NBLKTB)
FOR(KEYSYM) PUT (KEYFN) GOTO {NBLKTB)
FOR(NOTSYM) PUT (NEGFN) GOTO (NBLKTB)
‘:3 FOR(ORSYM) PUT (BARFN) GOTO (NBLKTB)
FOR(QUESYM) PUT (QUESFN) GOTC (NBLKTB)
FOR(RAISE) PUT (AROWFN) GOTO (NBLKTB)
ELSE ERROR
END UNOPTB

' BEGIN VARATB
FOR({LETTFR) GOTO (VARBTB) -
FOR(COMMA) PUT (CMATYP) STOPSH
FOR(RIGHTPAREN) PUT (RPTYP) STOPSH
ELSE ERROR
END VARATB

_BEGIN VARBTB
FOR (ALPHANUMERIC,BREAK) CONTIN
FOR(LEFTPAREN) PUT (LPTYP) STOPSH
FOR (COMMA) PUT (CMATYP) STOPSH
FOR(RIGHTPAREN) PUT (RPTYP) STOPSH
ELSE ERROR
END VARBTB

“BEGIN VARTB
FOR (ALPEANUMERIC, BREAK) CONTIN
FOR (TERMINATOR) PUT (VARTYP) STOPSH
FOR{LEFTPAREN) PUT (FNCTYP) STOP
FOR(LEFTBR) PUT (ARYTYP) STOP
ELSE ERROR
(:: END VARTB

AN

SNABTB
SPAN (CS) .

is used in pattern matching for ANY(CS), BREAK(CS), NOTANY(CS), and
SNABTB is modified during execution by the macros CLERTB and PLUGTB

(gq.v.) . The other syntax tables are not modified.

14

5. __The §EOBOLQ Macros

This section contains implementation instructions for each of the macros.
The instructions for an operation usually consist of a description of the
operation's function, figures indicating data relating to the operation, and
programming notes which contain details, and references to other relevant
information. The figures consist of stylized represenations of the various data
objects and the fields within them.

A, _Diaagrammatjc Representatjon of Data

Figure 1 is the representation of a descriptor at LOCt. A, F, and V
indicate the values of the address, flag, and value fields.

aJ §]
Lcc] A { F { v |
[N

L. ' |

Figure 1. Representation of a Descriptor

Figure 2 is the representation of a specifier at LOC2. A, F, V, O, and L
indicate the values of the address, flag, value, offset, and length flelds.

L L 1 L}

L) L]
LoC2 | a i F | \' | o | L |

. 1 i A 1

Figure 2. Representation of a Specifier

Character strings have two representations depending on how many characters
are relevant to the description. .

Figure 3 is the short representation of a string of L characters at LOC3.
C1 and CL are the first and last characters respectively. In this representa-
tion, the intermediate characters are not indicated.

L R A
LoC3 | C1 | ese i CL |
A A

Figure 3. sShort Representation of a String

15

Figure 4 is the long representatibn~of a string of L characters at LOCH4.
CJ and CJ+1 are relevant characters in the interior of the string. The long
representation is used when interior characters must be referred to.

L 3

. L 2 L L
Loch I ok B | cee | CT |CJ+1 | cee
[8 A

i,

"
CL |

> ot

Figqure 4. Long Representation of a String

Figure 5 is the representation of a syntax table entry. A, T, and P
indicate the values of the next table address, type indicator, and put field.

-~ T T : 1
A T P |

A 3

LoCcs5

P

Figure 5. Representation of a Syntax Table Entry

various values and expressions may occur in the fields of data objects.
Fields are 1left blank when their value is not used in an operation. Fields
which are changed have their new value underlined to make such fields easier to
locate. Only changed fields are underlined. For example Figure 6 shows a
descriptor whose address field is changed. The new value of the address field
~is A2, and no other fields are changed.

v L 4 " ¥ B
VA | | i
[|

A A ']

Figure 6. 'An Altered Descriptor

Letters are used as abbreviations to differentiate the values which may
appear in a field. The six basic fields are indicated by the letters A, F, V,
o, L, and C. Numerical suffixes {which may be thought of as subscripts) are
used as necessary to distinguish between values of the same type. Thus, for
example, A1, A32, and AN might be used to refer to addresses, F1 and F2 to flags
and so on. To make further distinctions where appropriate, I and R are.used to
indicate integers and real numbers, respectively. -

The reader should glance through the descriptions which follow to fami-
liarize himself with the ways in which the figures and field notation are used.

B. _Branch Points

Program labels are included in the argument lists of many macros. These
addresses are points to which control may be transferred, depending on data
supplied to the macros. In the macro descriptions which follow, such branch

16 |

@

C

0

‘points are wunderlined in the prctotype of the macro call. See ACOMP which

follows.

In general, some or all of such branch points may be omitted in a macro
call. An omitted branch point signifies that control is to pass to the next
macro in line if the condition corresponding to the omitted branch point is
satisfied. For example ACOMP is called in the following forms:

ACOMP DESCR1,DESCR2,GT,EQ,LT
ACOMP DESCR1,DESCR2,GT,EQ
ACOMP DESCR1,DESCR2,GT
ACOMP DESCR1,DESCR2,GT,,LT
ACOMP DESCR1,DESCR2,,EQ,LT
ACOMP DESCR1,DESCR2,,EQ
ACOMP DESCR1,DESCR2,,,LT

ACOMP is not called with all three branch points omitted since that is not a
meaningful operation. Other macros such as SUM (qg.v.) are often called with
all branch points omitted. :

Implementation of +the macros must take omission of branch points into

consideration. Alternate expansions, conditioned by the omission of branch
points, may be used to generate more efficient code.

C.__Abbreviations

Several abbreviations are used in the descriptions that follow. These are:

D is used for the addressing width of a descriptor. On the IBM
System/360, the machine addressing unit is 1 byte, and D is 8.

S is used for the addressing width of a specifier. S = 2D.
CPD is used for the number of characters stored per descriptor.
is used for (signed) integers.

is used for real numbers.

is used for indicator entries in syntax tables

M 13 W H

is used for the address width of a syntax table entry.

7 is used to indicate the number of the 1last character in collating
sequence. Characters are numbered from 0 to Z.

D, __Data Type Codes

The SNOBOL4 system has data type codes assigned for integers and real
numbers, among others. These codes are indicated in the macro . descriptions by
IC and RC respectively. The actual global symbols for these codes in the
SNOBOLY4 system are I and R respectively. The actual symbols are not used in the

17

descriptions to avoid confusion with the abbreviations given apove. However in _
the implementation of the macros, IC should be replaced by I and RC by R. . :;ﬁ

Ea Programm Notes

Programming notes are provided for some macro operations. The notes are
intended to point out special cases, indicate implementation pitfalls, and to
provide information about conditions that can be used to improve the efficiency
of the implementation.

18

TS T

c

C

N\,

1. ACOMP {(address_comparison)

po w—

A
ACOMP DESCR1,DESCR2,GT,EQ,LT |
I 3

ACOMP is used to compare the address fields of two descriptors.

7. The comparison is arithmetic with A1 and A2 being considered

integers: : -
If A1 > A2 transfer is to GT.

If A1l

A2 transfer is to EQ.

If A1 < A2 transfer is to LT.

r T L 1}
DESCR1 1 A | | !
t 1 L I

' r L) T]
DESCR2 | A2 | | |
t M L 3

Figure 7. Data Input to ACOMP
Programming Notes
1. A1 and A2 may be relocatable addresses.

2. See also LCOMP,. ACOMPC, AEQL, AEQIC, and AEQLIC.

See figure

as

signed

19

22 ACOMPC _ (address comparjson with constant)

N L]
| * ACOMPC DESCR,N,GT,EQ,LT |
.]

ACOMPC is used to compare the address field of a descriptor to a constant.

See figure 8. The comparison is arithmetic with A being considered as a signed

integer.
If A > N transfer is to GT.

If A N transfer is to EQ.

If A < N transfer is to LT.

Ll L] L

DESCR | A |

[4. 1) N |

Figure 8. Data Input to ACOMPC

Programming Notes
1. A may be a relocatable address.

2« N is never negative.
3. N is often 07

L, See also ACOMP, AEQL, AEQLC, and AEQLIC.

20

3. ADDLG (add to specifier length)

m-m ‘l’ = 1]
!‘&mw ! . ADDLG SPEC,D.JSCRJ
ADDLG is used to add an integer to the length of a specifier. See figures
9 and 10.
| 8 i] L] 4 R 1
SPEC l | i | | L |
L 1 A 1 A J]
L L] 1] AL
‘DESCR | I | | i
[i [N 3
Figure 9. Data Input to ADDLG
r N T T k| T v
SPEC i | | | | L¢I I
. g 1 2 L i 3

Figure 10. Data Altered by ADDLG

Programming Notes
‘:; 1. I is always positive.

21

ua' ADDSIB__(add sibling to tree nodeg)

¥ - L]
i ADDSIB DESCR1,DESCR2 |
L J

i]
Wu»im}

ADDSIB is used to add a tree node as a sibling to another node. See
figures 11 and 12. :

A F V.

L g L | L § L}
DESCR1 | A1 { | H
i L i J
P L g " L 4 : T L]
DESCR?2 { A2 | F2] v2 |
['y | 1

r | e Y] 4
A1+FATHER | A3 { F3 i V3 i
[1 . 1 : 3
1 8 1] L] B L
A1+RSIB i A4 j F4 | vy |
e L 1 3
L g j L] Bl L]
A3+CODE ! l | I |
. t 1 'S ']

Figure 11. Data Input to ADDSIB

L 8 L] v | ’ 1 ‘

A2+RSIB | Ab4 i F& 1 ¥& | - Q
['} X A]

¥) L} | /
A2+FATHER | A3 | E3 i v3 i
1 L 1 |
s 4 T] o

A1+RSIB { A2 ! F2. | v2 [
[| AL |
-7 T 1
A3+4CODE | i I It |
[A 1 3

Figure 12. Data Altered by ADDSIB

Programming Notes

1. ADDSIB is only used by compilation procedures.

2. See also ADDSON and INSERT.

22

O

(@

S ADDSON {add son to_txee node)

9

L
ADDSON DESCR1,DESCR2 |
]

ADDSON is used o add a tree node as a son to another node. See figures 13
ard 4. ' ' ' ;

§]])
DESCR1 i A1l i F1 { v1 |
[A 1]
L Ll L] i
DESCR2 i A2 | F2) V2 |
.8 1 A]
g L] I A
\§1*LSON | A3 i F3 { vy
[1 A I
| 20 1]] L] l‘
A1+CODE | | o I i
['\ L. 3
Figure 13. Data Input to ADDSON
¥ v ~
A2+FATHER | Al i F1 i vi 4
t A I 3
s
| L] | 1
A2+RSIB | A3 { F3 1 V3 v
. I L.
\l L 3 LS L] i /
A1+LSON | A2 | E2 1 vz l
L A L |
v ~ ¥ T 1
A14CODE | I 1 Is —
1 A A ——d

Figure 14. Data Altered by ADDSON

Programming Notes

1. ADDSON is only used by compilation procedures.

2. See also ADDSIB and INSERT.

23

6. ADJUST _ (compute adjusted address)

.A .]
[ADJUST DESCR1,DESCR2,DESCR3 | , . -~
4 i kil

ADJUST is used to adjust the address field of a descriptor. See figures 15
and 16.

T T 3

DESCR2 { A2 | | |
1 P . 2 3

T T L] 1
DESCR3 A3 i | {
Py L I 3

4 Y 1

A2 | A4] | I
L 1 L 3

L e Ll Ll L
DESCR1 i | 1
J |

L 1

1
L)
+
[z

Figure 16. Data Altered by ADJUST

Programming Notes , L L o

1. A3 is always an address integer.

24

7,__ ADREAL _ (add_real numbers)

ADREAI, DESCR1,DESCR2,DESCR3,FAILURE,SUCCESS

fs e o

‘ADRFAL is used to add two real numbers. See figuxes 17 and 18.

"If the . result is out of the range available for ‘real numbers, transfer
is to FAILURE.

otherwise transfer is to SUCCESS.

L] .
DESCR2 | R2 | F2

<
N

L3
DESCR3 { R3 |

Figure 17. Data Input to ADREAL

et

v

<

-
DESCR1 | R2#R3

N

L 3
FE2 | ¥2
L

|
|
——

Figure 18. Data Altered by ADREAL
Programming Notes |
1. See also DVREAL, EXREAL, MNREAL, MPREAL, and SBREAL.

25

8, . _AEQL (addresses _egual test)

T = " ")] . . .))
| AFEQL DESCR1, DESCR2,NE,EQ 1 : o
- F » 1

L ”W#'

AEQL is used to compare the address fields of two descriptors. See . figure
19. The comparison is arithmetic with A1 and A2 being considered as signed
integers: : : - - . : -
If A1 = A2 transfer is to EQ.

If A1 +# A2 transfer is to NE.

[o LE b v

DESCR1 1 A1 i I |
1 i ' . 3
L L]]

DESCR?2 { A2 | i { -
[l A]

Figure 19. Data Input to AEQL
Programming Notes |
1. A1 and A2 may be relocatable addresses. .

2. See also VEQL, AEQLC, LEQLC, AEQLIC, ACOMP and ACOMPC.

('

26

.

DESCR { A A

9, __AEQILC (address egual to_constant test)

r

L
| AEQLC DESCR,N,NE,EQ |
[1 f 3

AEQLC is used to compare the address field of a descriptor to a constant.
See figure 20. The comparison is arithmetic with A being considered as a signed
integer. .o A
If A = N transfer is to EQ.

1f A # N transfer is to NE.

Figure 20. Data Input to AEQLC

Programming Notes

1. A may be a relocatable address.
2. N is never negative.
3. 'N is often 0.

4., See also LEQLC, AEQL, AEQLIC, ACOMP, and ACOMPC.

27

10. _AFQLIC (address equal to constant indirect test)

- - L} . .
! AEQLIC DESCR,N1,N2,NE,EQ | , ,ﬁ».

. '
. , "

‘AEQLIC is used to compare an indirectly specified address field of a
descriptor to a constant. See figure 21. The comparison is arithmetic with A1
being considered as a signed integer: :

If A2 = N2 transfer is to EQ.

If A2 # N2 transfer is to NE.

DESCR i a1

po

L 8 L]
A1+N1 | A2 | | |

Figure 21. Data Input to AEQLIC
Programming Notes | |
1. A2 may be a relocatable address.
2. N2 is never negative.

3. See also AEQL, AEQLC, LEQLC,)ACOMP, and ACOMPC. . : 5:,

28

11, APDSP __(append_specifier) oA PV

LR 5{2«

r

i APDSP

[N

SPEC1,SPEC2 |

et

‘APDSP is ' used to append one

See figures 22 and 23.

SPEC1 | -»

SPEC2 5 _.,

A1+01

A2+02

SPEC1

A1+01

g Rl R | A) L
i Al i [f o1 | L1 |
[# 1 L L 1 3
r L] R B L] RJ
I A2 i | I o2 { L2 |
L i A F L 3
L 3 R L] :
i C11 | eee (c1Lt |
r L - ¥ 1
} C21 | ese jC2L2 |
[A L]
Figure 22. Data Input to APDSP
4
f 1 L . L] 1 8 1 2 1
A o] L1+L)
! 1 ! H | A
 { v k4 RJ L L L]
{ c11 | cee jC1L1 | C21 | sse 1C2L2 |
t A (] 1 L A J

zrog;amﬁing Notes
1. If L1 = 0, C21 is placed at O1 + A1l.

2. The storage following C1L1 is always adequate for C21...C2L2.

i

—b

Figure 23. Data Altered by APDSP

specified string to another specified string.

29

12s___ARRAY {ass semble array of descriptors)

L
{ L ARRAY N
[1 .

o cune o
¥
—~— .

ARRAY is used to assemble an array of descriptors. See figure 24.

& LB A 4 L |
L l 0 1 0 H 0 |
L L L 2
[y \ 3 — 1
L* (N~-1) *D | 0 | 0 I 0 |

Figure 24. Data Assembled by ARRAY
Programmi tes

1. All fields of all descrlptors assembled by ARRAY must be zero when program
execution begins.

-

30

)

13, BKSIZE__(get block size)

. 1
t BXSIZE DESCR1,DESCR2 |

BKSIZE is wused to determine the amount of storage occupiéd by a block or
string structure. See figures 25 and 26. The flag field of the descriptor at A
distinguishes between string structures and blocks.

If F contains the flag STTL, then

>
F(V) =D * (4« ((V-1 /7CPD+ 1))

where [X] is the integer part of X and CPD is the numbers of characters stored
per descriptor. The constant 4 occurs because of the 4 descriptors (including
the title) in a string structure in addition to the string itself. The
expression in brackets represents the number’ of descriptors required for a
string of V characters. '

Otherwise

F(V) =V + D

DESCR2 | A N

A | { F { v |

Tigure 25. Data Input to BKSIZE

r Y - .] 1
DESCR1 | F{V) 0 | 0 |

L L 1 ¥}

Figure 26. Data Altered by BKSIZE
Programming Notes '

1. See also GETLTH.

31

14, BKSEQE_ {backspace_ record)

R 3
i BKSPCE DESCR |
[§

1

BKSPCE is used to back space one record on the file
reference number I. See figure 27. ‘

DESCR | I

SN
Sg—

Figure 27. Data Input to BKSPCE
Programming Notes -
1. See also ENFILE and REWIND.

~

associated with unit

2. Refer to the section on input ard output for a discussion of unit reference

numbers.

32

15, BRANCH _(branch_to_program location)

Al
BRANCH LOC [,PROC] |
J

BERANCH is used to alter the flow of program control by branching to the
operation at LOC. PROC, if given, is the procedure in which LOC occurs.

Programming Notes

1. Refer to the section on program organization and procedure entry points,

33

16. BRANIC _{brapch jindirect with offset constant)

T

. T
i BRANIC DESCR,N | ' o~
] .

mwi,

BRANIC is used to alter the flow of program control by branching indirectly
to the operation at LOC. See figure 28. '

s R v ’

DESCR i A | | |
L N L ']

] R J L
A+N | 1.0C | I |
[& 2 | ']

Figure 28. Data Input to BRANIC

4"

34

Pl

S

17. BUFFER ({assemble buffer of blank charaqtersL

T L
{ LCC BUFFER N |
[&) |

BUFFER is used to assemble a string of N blank characters.

Figure 29. Data Assembled by BUFFER

- Programming Notes

See figure 29.

1. All characters of the string assembled by BUFFER must be blank (not zero)

when program execution begins.

35

18. CHKVAL _ (check value)

< L]
1 CHKVAL DESCR1, DESCR2, SPEC,GT,EQ,LT | /mﬂ
L ']

CHKVAL 1is used to compare an integer to the length of a specifier plus
another lnteger. See figure 30.

If L + 12 > I1 transfer is to GT.

If L + I2 I1 transfer is to EQ.

If L + I2 < I1 transfer is to LT.

L 3 R 1 L k] Rl
SPEC i I | | l L |

1 1 A s i 3

L Ll L L]
DESCR1 I I | | |

[IR ' y |

L R 1 Rl
DESCR2 | 12 i | |

I's A . i | 1

Figure 30. Data Input to CHKVAL
Programmj otes |
| ' (=]

1. I1, I2, and L are always positive integers.

2. CHKVAL is used only in pattern matching.

@

36

19. CLERTB__ (clear syntax _table)

E
} CLERTBE TABLE,KEY |

\
1]

o
W ;

, CLERTB is used to set the indicator fields of all entries of a syntax table
to a constant, KEY may be one of four values:

CONTIN ,¢
ERROR ©
STOP 16
STOPSH 24

The indicator field of each entry of TABLE is set to T where T 1is the
indicator which corresponds to the value of KEY. See figures 31 and 32.

TABLE |

-3
o o o

i L 3]
.s:: TABLE+Z*E | T |
. !

Figure 31. Data Altered by CLERTB for ERROR, STOP, or STOPSH

| & T L L}
TABLE | TABLE | 0 1. |
t L » I - aed
L 3) P)]
TABLE+Z*E { TABLE | 0 (!
[1 '] |

Figure 32. Data Altered by CLERTB for CONTIN

Programming_Notes

1. See the section which discusses the structure of syntax tables.

2. See also PLUGTB.

37

- 20.__COPY _ (co £ into_assembly)

-]
{ COPY FILE | o : P \
L -] :

COPY is used to copy a file of machine-dependent data into the SNOBOLH4
program. COPY occurs three times in the assembly: :

copryY . MDATA
CcCoPY MLINK
COoPY PARMS

MLINK and PARMS are copied at the beginning of the SNOROLY assembly. MDATR is
copied in the data region after the program.

MDATA 1is a file of machine-dependent data. It contains data used in
implementation of the macros and for strings which depend on the character set
of an individual machine or present other problems which prevent a machine-
independent representation. These are:

1. ALPHA, a string that consists of all characters arranged in the
order of their internal numerical representation (collating sequence).

2. AMPST, a string consisting of a single ampersand, or whatever
character is used to represent the keyword operator in the source
language. ‘

3. COLSTR, a string of two characters consisting of a colon followed bﬁs’
a blank.

4. QTSTR, a string consisting of a single quotation mark, or whatever

character is used to represent a quotation mark in the source language.

These strings of characters are pointed to by the specifiers ALPHSP, AMPSP,
COLSP, and QTSP respectively.

MLINK is a file of entry points and external symbol names which describes
linkages used to access machine-language subroutines and I/0 packages.

PARMS is a file of machine-dependent constants (equivalences). It contains
constants used in the implementation of the macro and definitions of nine
symbols. These are:

1. ALPHSZ, the number of characters in <the character set for the
machine. (ALPHSZ is 256 for the IBM System 360.)

2. CPA, the number of characters per machine addressing unit. (CPA is
1 for the IBM System/360, i.e. 1 character per byte.)
(\. J

3. DESCR, the address width of a descriptor.

38

C

4, FNC, a flag used to identify function descriptors.
5. MARK, a flag used to identify descriptors which are marked titles.

6. PTR, a flag used to identify descriptors pointing into SNOBOLY4.
dynamic storage. ' : :

7. SIZLIM, the value of the largest integer that can be stored in the
value field of a descriptor.

8. SPEC, the address width of a specifier.

9. STTL, a flag used to identify descriptors which are titles of string
structures.

10. TTL, a flag used to identify descriptors which are titles of
blocks.)

11. UNITI, the number of the standard input unit. UNITI is 5 for the
IBM System 360 implementation.

12. UNITO, the number of the standard print output unit. UNITO is 6
for the IBM System 360 implementation.

13. UNITP, the number of the standard punch output unit. UNITP is 7
for the IBM System 360 implementation. .

CSTACK and OSTACK, the current and old stack pointers, respectively, should
be defined in one of the COPY files. These pointers may either be in registers,
or in the address fields of descriptors, depending on how the stack management
macros are implemented (see PUSH, e.g.). If these pointers are implemented as
registers, they should be defined in PARMS. If they are implemented in storage
locations, they should be defined in MDATA.

Programming Notes

1. COPY may be implemented in a variety of ways. COPY may, for example, simply
expand into the data required, depending on the value of its argument as given
above.. :

2. Any of the COPY segments can be used to incorporate other machine-~dependent
data. . .

39

21, _CPYPAT _ (copy pattern)

: . A J
CPYPAT DESCR1,DESCR2,DESCR3,DESCRY4,DESCR5,DESCRS | - —
[]

CPYPAT is used to copy a pattern. See figures 33, 34, 35, 36, 37, and 38.
First set :

Al

R1 =
R2 = A2
R3 = A6
where R1, R2, and R3 are temporary variables. Sections of the pattern are

copied for successive values of R1 and R2. After copying each section, set

R3

R3 -~ (1 +V7) =D

Then set

R1

R1 + (1 # V7)) *0D

R2 = R2 + (1 +V7) *D

If R3 > 0, continue, copying the next section. Otherwise the operation i‘:’
complete. The final value of R1 in inserted in the address field of DESCRI1.

The functions F1 and F2 are defined as follows:

F1(X) 0if X =20

F1(X) = X + A4 otherwise _

F2 (X) AS if X = 0

F2({X) X + A4 otherwise

40

0

T L) L) R
DESCR1 i a1l | i i
L A [} J
B v L u
DESCR2 i A2 { i I~
1 1 1 |
& § B] L
DESCR3 { A3 | i l
1 '} A J 3
| ¢ L § R | 1
_DESCRY4 i A4 | i |
1 1 1 J 1
. I'm - £ R J R J
DESCRS i A5 | I |
b 1 1 ']
g L A) B
DESCR6 | - a6 | | |
i i L ']
Figure 33. Initial Data Input to CPYPAT
~— 7 * T 1]
R2+D { A7 i F7 R R
i M s ']
g/ L 8 L) A L]
~ R2+2D i A8 i 0 | v8 '
' - L |]
8 R L R |
R2+3D | A9 1 0 { v9 { v
i 4 1 . | .

Figure 34. Data Input to CPYPAT for Successive Vaues of R2

L3 V L B L
R1+D i a7 | K1 1 vz 1
[A i J
R1+2D "F1a8) | 0 1| E2qv8) ‘1 7
4 § L L] 1
R1+3D ¢ A9+A3 | 0 1 v9+a3 | v
[& A 1 I
Figure 35. ' Data Altered by CPYPAT for Successive Values of R1
s v l‘ 1
R2+¢4D { A10 | F10 i v10 | v
L L . 1. $

L 3
g;: Figure 36. Additional Data Input for Successive Values of R2 if vl? = 3

R B
' v
$

F10 = | 10

h — o

R144D | A10
(o~

'
Lo

Figure 37. Additional Data Altered for Successive Values of R1 if V7 = 3

Ll L RJ

[3
DESCR1 i R | | : I

L A 1 ']

Figure 38. Data Altered when Copying is Complete

@

42

2

DATE (get date)

W T

W |

L
DATE SPEC |
) |

DATE is used to obtain the current date. See
representation of the current date is placed in BUFFER.

figure

39. B -character

~) > 1z
¥] R | A 3]
SPEC | BUFFER | o | o0 1 9o '+ L |
- L 1 1 e 1 5
’ f 1] -
BUFFER 1¢l 1 a2 L EL |
i i 5 |
Figure 39. Data Altered by DATE

Programming Notes

1. The choice of
source language is concerned.

Thus
April 1, 1968

04s01/68

4:1:68

68.092

are all acceptable.

2. BUFFER is local to DATE and- its old contents may be
subsequent use of DATE.

3. DATE is used only in the DATE function.

4., Implementation of DATE, as such, is not essential.
should set the length of SPEC to zero and do nothing else.

representation for the date is not important so far as the

overwritten by a

In this case, DATE

43

23, DECRA___ {decrement address)

.
DECRA DESCR,N ' :
’ | .

%

DECRA is used to decrement the address field of a descriptor. See figures
40 and 41. A is considered as a signed integer.. -

r L T " 1
DESCR | A l | |
. L A ' ‘ 2
Figure 40. Data Input to DECRA
g L L]
DESCR | AN | | !
L . 1 1

Figure 41. Data Altgred by DECRA
Programming Notes '
"1« A ﬁay be a relocatable address.
2. N is'always positive.
3. N is often 1 or D. | : - @
4. A - N may be negative. |

5. ©See also INCRA

44

24, DEQL (descriptor_equal test)

r

el DEQL DESCR1, DESCR2, NE,EQ
o ! .

- o ol

DEQL is used to compare two descriptors. See figure 42.
If A1 = A2, F1 = F2, and V1 = V2, transfer is to EQ.

Otherwise transfer is to NE.

'DESCR1 | A1l F1 Al

jo mum o

o oo o

L
DESCR2 i A2 I F2 v2

Figure 42. Data Input to DEQL
Programming Notes

1. All fields of the two descriptors must be identical for transfer to EQ.

45

25.__DESCR (assemble descriptor)

T

—
LoC DESCR A,F,V : E , ,
! FV ;,)

~ DESCR assembles a descriptor with specified address, flag, and value
fields. See figure 43. v

r T T 8l
LOC { A P | v |
3

~ L i .

Figure 43. Data Assembled by DESCR

Programming Notes

1. Any or all of A, F, and V may be omitted. A zero field must be assembled
when the corresponding argument is omitted.

‘0

46

2 DIV divijde tegers

=2

L

i DIVIDE DESCR1,DESCR2,DESCR3,FAILURE,SUCCESS

DIVIDE is used to divide one integer by another. Any remainder is ignored.
That is, the result is truncated, not rounded. See fiqures 44 and 45.

If I = 0 transfer is to FAILURE.

Otherwise transfer is to. SUCCESS.

~

v L 3

DESCR2 { A | F | \Y |
. L ; 1]

L B E] h

DESCR3 i I | { |
[.8 2

Figure 44. Data Input to DIVIDE

L h] L 3 1]

DESCR1 | A/I | F i v i
L L i ']

‘Figure 45. Data Altered by DIVIDE
Programming Notes

1. A may be a relocatable address.

47

21, DVREAL _fdivide real numbers)

i DVREAL DESCR1, DESCR2,DESCR3,FAILURE, SUCCESS | =y
f [il
DVREAL is wused to divide one real number by another. See figures 46 and
&7. : ' '
If R3 = 0 or the result is out of the range available for real numbers,
transfer is to FAILURE.
-Otherwise transfer is to SUCCESS.
r T T ")
DESCR2 { R2] F2 | v2 i
& A i 3
1) E L] L)
DESCR3 i R3 i i |
1 'l A]
"Figure 46. Data Input to DVREAL
R v R
DESCR1 ! R2/R3 | F2 1 v2 |
| & L "
Figure 47. Data Altered by DVREAL @

Programming Notes

1. In addition to use in
computation of statistics published at the end of a SNOBOL#4 run.

2. See also ADREAL,.EXREAL,‘MNREAL,_MPREAL, and SBREAL,

48

~.

source-language arithmetic, DVREAL is used in the

()

28, _END {end assembly)

L)
END |

F]

END is used to terminate assembly of the SNOBOLY4 system.
once and is the last card of the assembly. '

It occurs

only

49

29, _ENDEX {end_execution of SNQOBOL4 run) -

'
H ENDEX DESCR !} , -

it

ENDEX is used to terminate execution of a SNOBOLY run. ENDEX is the last
instruction executed and is responsible for returning properly to the environ-
ment which initiated the SNOBOL4 run. See figure 48.

If I is nonzero, a post-mortem dump of user core should be given.

T™

N

1]
DESCR | I

o o= o

o e ol

Figure 48. Data Input to ENDEX
Programming Notes

1. If a dump is not given, the keyword &ABEND will not have its specified
effect. Nothing else will be affected.

2. On the IBM 360, if I is nonzero, an abend dump is given with a user code of
I. - '

3. see also INIT.

S

50

C

30, ENFILE (write end of file)

v
i ENFILE DESCR |
:

ENFILE is used to write an end-of-file on (close) the file assoc1ated with
unit reference number I. See figure 49.

DESCR | I

Figure 49. Data Input to ENFILE
Programming Notes .
1. See also BKSPCE and REWIND.

2. Refer to the section on input and output for a d;scu331on of unlt reference
numbers,

51

31, _EQU (define symbol equjvalence)

vr -
§{ SYMBOL EQU N
[

[.

EQU is used to assign, at assembly time, the value of N to SYMBOL.

52

32. EXPINT _{(exponentiate_integers) 3

. L
{ EXPINT DESCR1,DESCR2,DESCR3,FAILURE,SUCCESS i
t

¥]

51.
If I1 =0 and I2 is not positive, or if the result is out of the range
available for integers, transfer is to FAILURE. '
Otherwise transfer is to SUCCESS.
2 N}) i
DESCR2 [I1 i F | \Y |
[N A i !]
[§ L] R 4
DESCR3 | 12 | I |
[[& i]
Figure 50. Data Input to EXPINT
o | L A J
DESCR1 | Iix%x12 | F i v l
t i i L. " |

Figure 51. Data Altered by EXPINT

EXPINT is used to raise an integer to an integer power. See figures 50 and

53

33, _EXREAL __(exponentigte real numbers)

¥

. . |
H EXREAL DESCR1,DESCR2,DESCR3,FAILURE,SUCCESS | - oy,
. ,

L i
. it

EXREAL is used to raise a real number to a real power. See figures 52 and

53.
If the result is out of the range available for real numbers, transfer
is to fajlure.
Otherwise transfer is to success.
L £l ¥ hJ
DESCR2 i R1 i F | A" |
'l A A 5]
¥ L L}]
DESCR3 { R2 { i |
1 L L ']
Figure 52. Data Input to EXREAL
r L LA L 4
DESCR1 | Ri**R2 | E 4 |
[. | ']
Figure 53. Data Altered by EXREAL .,

9

54

~ r]
C | LOC FORMAT ‘Ci...CN? |
1

34, _FORMAT _fassemble fozmal string)

3

FORMAT is used to assemble the characters of a format. See figure 54.

L) RJ
Loc ‘ C‘i ‘ ese i CN '
L.)]

Figure 54. Data Assembled by FORMAT

Programming Notes

1. The characters assembled by FORMAT are treated as an "undigested" format by
FORTRAN IV routines.

55

35, _FSHRTN (foxreshorten specifier)

- &

‘ . ‘ o
FSHRTN SPEC,N |) ¥
;] WQW ’

FSHRTN is wused to exclude initial characters from a string specification.
See figures 55 and 56.

L : | | Ll R]
SPEC | | i ' i (o) L
Ao

1 [A '

~ Figure 55. Data Input to FSHRTN

Ll] L Ll L

{ | O¢N | L=N

———
[L i 1 L

SPEC

- ave of

Figure 56. Data Altered by FSHRTN
Progqramming Notes
1. L - N is never negative,

2. See also REMSP.

®

56

36. _GETAC (get_address_with offset constant)

L r 1
T i GETAC DESCR1,DESCR2,N |
L 5

GETAC is used to.get an address field with an offset constant. See figures

57 and 58,
LI L 3 R J |
DESCR2 I A2 H | {
t k. L. ——— 5
' r Y T v
A2+N | A (. | l
[[R —l
Figure 57. Data Input to GETAC
L) L]
DESCR1 | A | | |
B . A 1 3
Figure 58. Data Altered by GETAC
o] tes

i
i

c 1. See also PUTAC, GETDC, and PUTDC.

N HMey be meoou}{vc!

(%)
2

37. GETBAL _(get parenthesis balanced string)

L 3 |
i GETBAL SPEC,DESCR,FAILURE,SUCCESS | B . : dh»}
1 3 [

GETBAL is used to get the :specification of a balanced substring. See
figures 59 and 60. The string starting at CL+1 and ending at CL+N is examined
to determine the shortest balanced substring CL+1,...,CL+J. J is determined
according to the following rules:

If CL+1 is not a parenthesis, J = 1.
If CL+1 is a 1left parenthesis, J is the least integer such that CL+

1...CL+J is balanced with respect to parentheses in the usual algebraic
sense.

If CL#1 is a right parenthesis, or if no such balanced string exists,
transfer is to FAILURE.

Otherwise SPEC is modified as irdicated and transfer is to SUCCESS.

| B LB L I B
SPEC i A 1 { I 0 | L !
[P 1 A N A J 1
[* Y] 1 '
DESCR N -~
ooy ! ! o
r Y * T | T T 2}
A+0 1 C1 | eee |1 CL |CL#1 | <.. |CL#N |
i [} 4. [l 2 4 ']
Figure 59. Data Input to GETBAL
4 L L | L B L 3 | §
SPEC i A i i 1 o) . i
i 2 J 1 IR - I

Figure 60. Data Altered by GETBAL

58

38, _GETD (aget descriptor)

1
] GEID DESCR1,DESCR2,DESCR3 |
. I]

GETD is used to get a descriptor. See figures 61 and 62.

DESCR2 1 a2 |

e
-

-
- ol

. .
DESCR3 | A3 A

L A A Il

[v LA L

A2+A3 i A I F | \' i
L 4 3 I}

Figure 61. Data Input to GETD

M 1] R |
DESCR1 i E | ¥ |

[1 i L.

>

Figure 62. Data‘Altered by GETD

Programming Notes
1. See also GETDC, PUTD, and PUTDC.

59

39, _GETDC {get_descriptor with offset constant)

- L]
GETDC DESCR1,DESCR2,N | °
H

GETDC is used to get a descriptor with an offset constant.
and 64,

DESCR2 i A2 | | |
L 4 i ']

N (g i ¥ A
A2+N | A | F | v |
L " s : 'y

Figure 63. Data Input to GETDC

LB L § | i]

DESCRT | A | E I ¥ |
N [A i ' J

Figure 64. Data Altered by GETDC .

Programming Notes
i. See also GETD, PUTDC, and PUTD.

60

See figures

i

63

3

i

()

—

40. GETLG {get length of specifjer)

Ly L]
| GETLG DESCR, SPEC {
[J
GETIG is used to get the length of a specifier. See figures 65 and 66.
T L} L] ¥ 8) |
SPEC { | (| - l L]
[A A i 1 I
Figure 65. Data Input to GETLG
L} L § Ll
DESCR | L | g | 9 I
L A i F

Figure 66. Data .Altered by GETLG
Programming Notes '

1. See also PUTLG.

61

43, GETLTH__(get length for string structure)

T

R . o
! GELLTH DESCR1,DESCR2 | ' o ::m
! |

L

GETLTH is used to détermine the amount of storage required for .a string
structure. See figures 67 and 68. The amount of storage is given ‘by the
formula . ' :

F{L) =YD*(3+t(L-1)/CPD+1])

where ([X] is the integer part of X and CPD is the numbers of characters stored
per descriptor. The constant 3 accounts for the three descriptors in a string
structure in addition to the string itself. The expression in brackets
represents the number of descriptors required for a sting of L characters.

| L) L . L
DESCR2 | L | , | I
[1 4 A '}
Figure 67. Data Input to GETLTH
r T v L]
DESCR1 I F(L) | 0 { 0 |
[} i] A I]
Figure 68. Data Altered by GETLTH Q

Programming Notes
1. See also RBKSIZE.

62

.42, _GETSIZ__(get size)

GETSIZ DESCR1,DESCR2 |

J—

0

GETSIZ is used to get the size from the value field of a title
See figures 69 and 70. '

. ¥ L] L] }
DESCR2 i A | | {
L i A]
g T hJ 1]
A | | | v |
[\ i A —d
Figure 69. Data Input to GETSIZ
| 2 L J K L 1
DESCR1 | v | Q 19 !
[A 1 —d

Figure 70. Data Altered by GETSIZ

Programming Notes
‘:: 1. See also SETSIZ.

descriptor.

63

43, GETSPC -1ge£ specifiex with constapt offset)

g ‘ 3
i GETSPC SPEC,DESCR,N |
s 3

GETSPC is used to get a specifier. -See-figures 71 and

72.

L Ll |]
DESCR . | | |
P L L J
| L3 v Ll - v L]
AN { A | - F i v 1 o] L |
[2 i . - A A]
Figure 71. Data Inpuﬁ to GETSPC
[) R L A L3 L]
SPEC [A | E | vy + @ I L |
('S 4 N A ']
Figure 72. Data Altered by GETSPC

1. See also PUTSPC.

64

()

-

iy

N

O

44, INCRA {increment_addres

T

INCRA DESCR,N |
"

INCRA is used to increment the address field of a descriptor. See figures

Data Input to INCRA

73 and 74.
| 3 ¥ L] |
DESCR | - A | | |
[1 L ']

Figure 73.
) [8 L I . L J
DESCR | A+N | { l
1 1. i B
Figure 74.

Programming Notes

1.

2.

3.

4.

5.

A mayibe a relocatable address.
A is never negative.

N is always positive.

N is often 1 or D.

See also DECRA and INCRV.

Data Altered by INCRA

65

45 C ement value fie

. 2
INCRV DESCR,N |
: ’

> o

INCRV is used to increment the value field of a descriptor.
and 76. I is considered as an unsigned (nonnegative) integer.

L LS R L
DESCR I | { I |
['s L i - 3
Figure 75. Data Input to INCRV
L 8 L L] L
DESCR } I | I+N |
& L N I
Figure 76. Data Altered by INCRV
Progcamming Notes

1. N is always positive.
2. N is often 1.

3. See also INCRA.

66

‘m»)‘lﬂ'& '

See figqures 75

&

h)
i

fm
-

46, _INIT (initialize SNOBOLH4_ xun)

INIT |

i —

-—

INIT is used to initialize a SNOBOL4 run. INIT is the first instruction
executed and is responsible for performing any initialization necessary. The
function of this operation is machine and system dependent. Typically, INIT
sets program masks and the values of -certain registers.

In addition to any initialization required for a particular system and
machine, INIT also performs the follwing initialzation for the SNOBOL4 system:

. Dynamic storage is initialized. The address fields of FRSGPT and HDSGPT
are set to point to the first descriptor in dynamic storage. TLSGP1 is set to
the first descriptor past the end of dynamic storage. Space for dynamic storage
may be preallocated or seized from the operating system by INIT.

The timer is initialized for subsequent use by the MSTIME macrc (g.V.).

Programming Notes
1. See also ENDEX.

67

47, _INSERT _{insert node in tree)

-

: . L]
INSERT DESCR1,DESCR2 |

INSERT is used to insett a tree node above another node. See

and 78.
| v Ll)
DESCR1 i ‘A1 F1 | v1i B
[& -1 4 '] .
4 ™ L] 3
DESCR?2 [A2 i F2 [} v2 |
L AL 1 ']
) e T 1. I’
A1+FATHER | A3 | F3 i v3 i
. .. - 2 L ; —d
. [B - L B) hJ
A3+LSON | A4 i Fi | vy i
) & 2 L 3
S (4 T) § 1]
A2+CODE | I i I i
L I3 1) |
Figure 77. Data Input to INSERT

/. r L § T -t /
A1¢FATHER | A2 | F2 I v2 |
L 1 [] .]

r T 4 v /

Jauerszs | A2 | F2 1 w2 Y
) ', 1 ']
/ § . v L
B2+FATHER | A3 | r3 B v3 -
L - '8 I '}
/ g L L § Ll

A2+4LSON | A1l i R Al | Y
: L [} 1. f]
g Al L R
A2+CODE 1 i t - It |
[3 .8 L]

Figure 78. Data Altered by INSERT

Proqramming Notes

1. See also ADDSIB and ADDSON.

2. INSERT is only used by compilation procedures.

- 68

figures

77

§8, INTRL {(convert integer to real number)

N o]
&wf i INTRL DESCR1,DESCR2 |
1 3

INTRL is used to convert a (signed) integer to a real number. See figures
79 and 80. R(I) is the real number corresponding to I.

Ll k]
| ' |

k.]

DESCR2

[]
S

Figure 79. Data Input to INTRL

) J
g I RC i
L

L 3
DESCRT . | R(I)

Figure 80. Data Altered by INTRL
Programming Notes

1. RC stands for the code for the real data type.

' C

69

49, _INTSPC_ _{convert jnteger to_specifier)

/‘/-

" (
INTSPC SPEC,DESCR | R ' -
.] .

it i

- ==

INTSPC is used to convert a (signed) integer to a specified string. See
figures 81 and 82.

1} L] L} L
DESCR ! A | | |

L L 1 I]

_Figure 81. Data Input to INTSPC
vV / /

¥ v L L) Ly 1
SPEC { BUFFER | 1] { 9 | o | L |

[A A A | - [

[] L 3 L i
BUFFER¥O | C1 | e=s | CL |

L Y i -l

Figure 82. Data Altered by INTSPC

Programming Notes

1. C1...CL should be a "normalized" string corresponding to the integer I.
That is, it should contain no leading zeroes and begin with a minus sign if I
negative.

2. BUFFER is local to INTSPC and its contents may be overwritten by a
subsequent use of INTSPC. :

3. See also SPCINT.

- 70

50, ISTACK (initjalize stack)

£]
‘~C- ! ISTACK |
3

ISTACK is used to initialize the system stack. See figure 83.

OSTACK

o won =
]

CSTACK

-—q
tn
-3
>
)
]

Figure 83. Data Altered by ISTACK

Programming Notes

"4. STACK is a global symbol whose value is the address of the first descriptor
of the system stack.

2. See also PSTACK, RCALL, and RRTURN.

71

i.__LCO a .ength_comparison)

-
LCOMP SPEC1,SPEC2,GT,EQ,LT |
|

o

ICOMP is used to compare the lengths of two specifiers. See figure 84.
If L1 > L2 transfer is to GT.

If L1 = L2 transfer is to EQ.

If L1 < L2 transfer is to LT.

SPEC1 L1 I

r LI '
SPEC2 i { | - | | L2
. | - N 1‘
Figure 84. Data Input to LCOMP

Programming Notes
i« See also ACOMP, RCOMP and LEQIC.

72

s

(@]

) LEQLC ength_equal to_constant test)

LEQLC SPEC,N,NE,EQ |
—

LEQIC is used to compare the length of a specifier
figure 85. The magnitudes are compared.

If L = N transfer is to EQ.

If L # N transfer is to NE.

to a constant.

LS) 4 v
SPEC - | l L
A A ']

o s
-—

o onn of

Figure 85. Data Input to LEQLC
Pro otes '
1. L and N are never negative.

2. See also LCOMP, AEQLC, and AEQLIC.

See

53. LEXCMP _ (lexjcal comparison of strings) t

-

)]
LEYCMP SPEC1,SPEC2,GT,EQ,LT |
L i |

)

LEXCMP 1is used to compare two strings lexicographically (i. e. according
to their alphabetical ordering). See figure 86. E
If C11...CIN1 > C21...C2M transfer is to GT.

If ¢c11...C1IN1

C21...C2M transfer is to EQ.

If C11...CINT < C21...C2M transfer is to LT.

§ |] k| L | Ly R
SPEC1 i a1l i | i o1 | N i
| 8 i 1 L L J |
[3 v i 3 L J v
SPEC2 I A2 i | | 02 | M l
[N i L. i A N . 2
[4 T e |
A1+01 | C11 | .o | CIN |
[4 A . /']
[- ¥ —
A2+02 i c21 | .o | C2M |
gt L L. l‘
Figure 86. Data Input to LEXCMP ' <='!

Programming Notes

1. The lexicographical ordering is machine dependent and is determined by the
numerical order of the internal representation of the characters for a
particular machine. ’

2. A string which is an initial substrlng of another string is 1ex1cograph1cal-
ly less than that string. That is

YABC? is less than 'ABCA!

3. The null (zero length) string is 1lexicographically 1less than any other
string (except the null string).

4. 1Two strings are equal only if they are of the same length and identical
character by character.

5. By far the most frequent use of LEXCMP is to determine whether two strings
are the same or different. In these cases GT and LT will specify the same
location or both be omitted. Because of the frequency of such use, it is
desireable to handle this case specially if a test for equality can be performed
more efficiently than the general case.

]

74

S

-

W | g L}
W | LOC LHERE |
i

sy, LHERE _(define location here)

S}

LHERE is used to establish the equivalence of LOC as the location of the

next program instruction.

Programming Notes
1. LHERE is equivalent to the familiar EQU *. Similarly

LOC LHERE
OP

is equivalent to

LoC 10) 3

55, _LINK {link to external function)

) ' i) i
LINK DESCR1, DESCR2,DESCR3, DESCRY4 ,FAILURE, SUCCESS | ' :::: :

—-—

LINK is used to link to an external function. See figures 87 and 88. A2
is a pointer to an argument list of N descriptors. A4 is the address of the
external function to be called. V1 is the data type expected for the resulting
value. The returned value is placed in DESCR1.

If the external function signals failure, transfer is to FAILURE.

Otherwise the transfer is to SUCCESS.

4 | v B
DESCR1 I I | VA l
'S [1.]
| | 1 § B)
DESCR2 { A2 { { |
| . L L ']
r]] -
DESCR3 | N 1 i |
L L [l |
4 T) T 2]
DESCRY | AL i |
['s 4 . AL ']
‘Figure 87. Data Input to LINK 6
B o T 8 |
DESCR1 l A | F 1 v |
[L iy ']

Figure 88. - Data Altered by LINK

Programming Notes

1. LINK is a system-dependent operation.

2. LINK need not be implemented if LOAD is not. 1In this case, LINK should
branch to INTR10.

3. See also LOAD and UNLOAD.

Q

76

£e

56, _LINKOR _ (link "or™ fjields of pattern nodes)

L]
i LIMKOR DESCR1,DESCR2 |
el

LINKCR links éhrough wor® fields of pattern nodes until the end, indicated
by a zero field, is reached. This zero field is replaced by I. See figures 89
and 90. :

L A J LS]

DESCR1 i A | | {
L L K | —]

L L L]

DESCR2 { I i { |
L L A (]

L L} L] i |

A+2D | I1 { | |
t 1. A e

. r \J B ¢
A+2D+I1 | X2 | I {
[l [1 A v]

L g Ly] |]

A+2D+IN | 0 | l 1
L A L 3

Figure 89. Data Input to LINKOR

3 i L] i § L

A+2D+IN { I | | {
1 i L /]

Figure 90. Data Altered by LINKOR

77

57. __LOAD {load_external function)

q
——
0

| LOAD DESCR, SPEC1, SPEC2 ,FALLURE, SUCCESS

N

LOAD is used to load an external function. See figures 91 and 92.
C11...C1L1 is the name of the external function to be loaded from a library.
C21...C2L2 is the name of the library. A3 is the address of the entry point

| If the external function is loaded, transfer is to sugcess.'

) Otherwise transfer is to failure.

T L 3 ¥ | R 3 R S
SPEC1 i A1l | | i o1 i L1 {
L L [l i i 3
& v 1 § L) . Ll 3
SPEC2 i A2 | . | | 02 |} - L2 |
1 F 1 1 L 1 ¥}
L L) L 4]
A1+01 | C11 | cse {C1L1 |
| L L]
g T T 3
A2+02 I C21 1 ... jc2L2 |
| - | 3 ' q
Figure 91. Data Input to LOAﬁ _ :
L i L} R
DESCR I A3 ! |]

L - L 1 1) |

Figure 92. Data Altered by LOAD

Programming_Notes : -

1. LOAD is a system-dependent operation.

2. LOAD need not be implemented as such. If it is not, the primitive function
LOAD will not be available, and an error comment should be generated by
branching to UNDF.

3. On the IBW 360, LOAD uses the 0S macro LOAD to bring an external function
from the library whose DDNAME is specified by C21...C2L2.

4. See also LINK and UNLOAD.

@

78

.

-~

oo

P

58, LOCAPT _{locate attribute pair by type)

L I
| LOCAPT DESCR1,DESCR2,DESCR3,FAILURE,SUCCESS |
[

LOCAPT is used to locate the "type" descriptor of a descriptor pair on an
attribute list. Descriptors on an attribute list are in "type-value" pairs.
odd numbered descriptors are "type" descriptors. See figures 93 and 94. The
list starting at A + D is searched, comparing descriptors at A + D, A + 3Dy e
for the first descriptor whose value is equal to the value of DESCR3.

If a descriptor equal to DESCR3 is not found, transfer is to EAILURE.

Otherwise transfer is to SUCCESSe.

& A | L}
DESCR2 ! A | F | v |
[1. i]
1 k) 'l' |]
DESCR3 { A3 .| F3 | V3 |
L. 'R . L e
L Ll L J
A I | | 2K*D |
[B [} 1 ot
| L |] . L
A+D | A1 F11) VIt
L L . N J
v) L) 1 .
AgD2I*D | A3 | F3 { V3 i
[i A .

A+2K*D |

Figure 93. Data Input to LOCAPT

Ll] .

| e
DESCR1 | A+2I*D | F v |

pu
-
o

Figure 94. Data Altered by LOCAPT

79

Programming Notes , _

7. Note that the address of DESCR1

descriptor which is located.

)/-. '

is set to one descriptor less than thews

2. See 2lso LOCAPV.

[N

=¥

- 80

»
fﬂ,mw«»
i

L

O

59, LOCAPV__(locate attribute pair_ by value)

-

.
LOCAPV DESCR1,DESCR2,DESCR3,FAILURE,SUCCESS |
—

LOCAPV is used to locate the "value" descriptor of a descriptor pair on an
attribute 1list. Descriptors on an attribute list are in "type-value" pairs.
Even numbered descriptors are "value" descriptors. See figures 95 and 96. The
list starting at A + D is searched, comparing descriptors at A + 2D, A + 4D, ...
for the first descriptor whose value is equal to the value of DESCR3.

Tf a descriptor equal to DESCR3 is not found, transfer is to FAILURE.

Otherwise transfer is to SUCCESS.

8 L] L h J
DESCR2 | A | F | v i
g L | R 3 R]
DESCR3 | A3 | F3 | v3 i
[N 1 i 5
¥ k § L | i |
A i \ | 2K*D i
) [N - ' 'y 3
¢ L L § L] }]
A+2D | A12 { F12 { V12 i
'l i : A .
J‘ |] K) } |
*

A%39+?I D ! A3 ! F3 ! v3 !
r . \

A+2K*D | | | | v

Figure 95. Data Input to LOCAPV

L]
v i

! s
DESCR1 | A+21*D

E

b omee wf

Figure 96. Data Altered by LOCAPV

81

Programming Notes

1. Note that the address
descriptor which is located.

2. See also LOCAPT.

82

of DESCR1 is set to two descriptors less than th.,,

-
i

R

()

" DESCR i A

60, LOGCSP {locate_specifier to string}

LOCSP SPEC,DESCR |
']

1OCSP is used to obtain a specifier to a string given in a string
structure. CPD is the number of characters per descriptor. See figures 97, 98
and 99. :

o]
<

Figure 97. Data Input to LOCSP

¥ ¥ R q | § V’ |]

SPEC | A { E | v | A4*CPD | 1 |
[A 1 1 A '

Figure 98. Data Altered by LOCSP if A # 0

g v ’ k2 B i}

SPEC I | | (l [
[1 : B L. i) |

Figure 99. Data Altered by LOCSP if A = 0

Programming Notes
1. If A = 0, the value of DESCR represents the null (zero length) string and is

handled as a special case as indicated. The remainder of SPEC is unchanged in
this case.

83

6i. LVALUE f(get least length value)

&

L
| LVALUE DESCR1,DESCR2 | ‘ 5*,:
.)

[&

¢
ok

) LVALUE is used to get the least value of address fields in a chain of
pattern nodes. See figures 100 and 101. The address field of DESCR1 is set to
I where .

I = minimum(I1,...,IK)

8 v B

DESCR2 [A | | {
L . L ']

| 3 Ll] L

~ A+2D i N1 1 { |
[j 1 i]

§ L | L) B |

A+3D] I1 I { |
:) L 2 i ¥ |
: 3 A 3 v B
A+N1+2D i N2 | | |
, R A Il ']

g L | L | R]

AsN1+3D | I1

: . : °
. O A -

§ 1 § | i]
A+NK+2D | 0 i 1 |
(s 4 'l ']
g L 4 q 8
A+NK+3D { IK { | |
[= . [A '] .
Figure 100. " Data Input to LVALUE
| 3 L R | L 4
DESCRT | I | Q0 | 0 |

1 L A ']

Figure 101. Data Altered by LVALUE

Programming Notes

1. I1,...,IK are all nonnegative.

2. A is never zero, but N1 may be.

84

62. MAKNOD _(make pattern node)

—
- | MARNOD DESCRA, DESCR2,DESCR3 ,DESCRY ,DESCR5 [,DESCR61] |
t ¥ |
MAKNOD is used to make a node for a pattern. See figures 102 and 103.
Ll L] L R
DESCR2 } A2 { F2 i v2 'P
[} 1 i J 1
L v L] A
DESCR3 | A3 | | | ¢
L L i []
| LB L) Al
DESCRY4 } A4 | | t 7
[1 i]
' Ar K | R J
DESCRS | AS | F5 { V5 | 7
L L [& '
Figure 102. Data Input to MAKNOD
r - — 2|
DESCR6 i A6 | F6 { V6 i P
t 1 1 —
C Figure 103. Additional Data Input if DESCR6 is Given
1/' [4 T 1
DESCR1 | A2 | E2 | vz | ot
[y i i |]
| LS L] i
7 A2+D | A5 i F5 | V5 iy
[| L '
L 3 L] 1 R
v A2+2D | Al | | | /
L L L !]
| L] L |) |
“A243D | A3 | | | v
L i X]
Figure 104. Data Altered by MAKNOD
L h § L
v A2+4D | AS | E6 | vé 1 v
L

Figure 105. Addtional Data Altered if DESCR6 is Given

C

Programming Notes

. . v
1. As indicated, there are two forms of MAKNOD. If DESCR6 is given, an'::m
additional descriptor is modified, but otherwise the two forms are the same.

2. DESCR1 must be changed last since DESCR6 may be the same descriptor as
DESCR1.

3. MAKNOD is used only for constructing patterns.

86

~ 63. _MNREAL _(minus real number)

$
r;"" !n: MNREAL DESCR1,DESCR2 |
| g
MNREAL is used to change the sign of a real number. See figures 106 and
107. ’ ' :
L L) L] L}
DESCR2 | R { F | v .
4 1 A J
Figure 106. Data Input to MNREAL
(= ~ ¥ ¥ L}
DESCR1 I =R | E | v |
[L i 3

Figure 107. Data Altered by MNREAL

Programming Notes

1. R may be negative.

2. See alsc MNSINT, ADREAL, DVREAL, EXREAL, MPREAL, and SBREAL.

el

87

64. _MNSINT _(minus integer)

‘ - .) ,)
MNSINT DESCR1,DESCR2,FAILURE,SUCCESS | v , h :

o o oy

- MNSINT is used to change the sign of an integer.
If -I exceeds the maximum integer, transfer is to FAJLURE.

Otherwise transfer is to SUCCESS. See figures 108 and 109.

. r R 3 T :]
DESCR2 i I I F i v !

L A A ']

Figure 108. Data Input to MNSINT

| R g L | }]
DESCRT | =I | E | ¥ |
; 3

L P) "

Figure 109. Data Altered by MNSINT

Programming Notes

1. I may be negative.

2. See also MNREAL. Q

88

65. MOVA {move address) : ' 4

—]
| MOVA DESCR1,DESCR2 |
[p—— |
MOVA is used to move an address field from one descriptor to another. See

figures 110 and 111. ‘ ' C

r A T 1
DESCR2 | A i { |

i A L }

Figure 110. Data Input to MOVA

| A 1 J L §

DESCR1 | A i | {
L

Figure 111. Data Altered by MOVA

Programming Notes
1. See also MOVD and MOVV.

89

56, MOVELK _{(move block of descriptors)

¥y A N] .
§ MOVBLK DESCR1,DESCRZ2,DESCR3 | : ﬂﬂw»
3 -

)
¢ Syt

MOVBLK is used to move (copy) a block of descriptors. See figures 112 and

113.
L g ,‘ L] L
DESCR1 I atl | | 1
L i L . 3
o T T 2 3 e |
DESCR2 | A2 | | |
L s 4 []
| B R B LD L |
DESCR3 i D*N i { |
1 . ' 1.]
L L B L] 8 R
A2+D I A21 | F21 | v21 |
L [y 1 | |
r : 3 T -]
A2+ (D*N) | A2N { F2N | V2N |
1 L A 2

Figure 112, Data Input to MOVBLK

//’0

r T T y 2]
A14D i A21 I F21 | 21 |
L A L 3
A1+ (D*N)} | A2N | F2N | V2N |

Figure 113, Data Altered by MOVBLK
Programming Notes
1. Note that the descriptor at A1 is not altered.
2. The area into which the move is made may overlap the area from whiéh the
move is made. This only occurs when A1 is less than A2. Consequently,

descriptors must be moved one at a time starting at the first descriptor in the
diagram.

J

90

67. _MOVD {(move descriptor)

-
3 g, L

e | MOVD DESCR1,DESCR2 |

[—d

MOVD is used to move a descriptor from one location to another. See
figures 114 and 115.

§ L
F { v |

i y]

DESCR2 { A

b ene «f

Figure 114. Data Input to MOVD

| g L) L L J
DESCR1 | F v i

L (] A ']

>

Figure 115. Data‘Altered by MOVD

Programming Notes
1. See also MOVA and MOVV.

©

91

68.___MOVDIC _(move desc;igto: indiyect with constant offsét)

e

i

L

1
MOVDIC DESCR1,N1,DESCR2,N2 |
I]

MOVDIC is used to move a descr1ptor which is lndlrectly specified with

offset constant. See figures 116 and 117.

& Ll R A

DESCR1 | A1l (| | |
i L [] []

— T Y 2l
DESCR2 i a2 { { |
L A 1 '}

r— n : 8 L]

A2+N2 i A { F | v i
L i i |]

Figure 116. Data Input to MOVDIC
[} B § B
AT+N1 l A { F | v I

t A A . J

Figure 117, Data Altered by MOVDIC

- Pxroaramming Notes

1.

92

See also MOVD, GETIDC, and PUTDC.

Wyt

an

69. MOVV (move value field)

@Iir T
(S MOVV DESCR1,DESCR2 |
[J
MOVV is used to move a value field from one descriptor to another. See _
figures 118 and 119.
L 3 L L) L}
DESCR2 | ! o v l
L A A §
Figure 118. Data Input to MOVV
L Ll Rl 3
DESCR1 | | | v |
L 1 1 o

Figure 119. Data Altered by MOVV
Proqramming Notes

1. See also MOVA and MOVD.

C

93

70. _MPREAL (mulitply real numbers)

-—

fj .

MPREAL DESCR1,DESCR2,DESCR3,FAILURE,SUCCESS

i

MPREAL is used to multiply two real numbers. See figures 120 and 121.

If the result is out of the range available for real numbers, transfer
is to FAILURE. '

Otherwise transfer is to SUCCESS.

4 T - T]
DESCR2 | R2 ! F2 l V2 |
N A l 3
| Ry) |]
DESCR3 { R3 |] |
t 1 L]
Figure 120. Data Input to MPREAL
L 3 Ly
DESCR1 | R2*R3 | F2 w2 I
[L A ¥ §
Figure 121. Data Altered by MPREAL
Programming Notes ‘ _ . ;:

1. See also AbREAL, CVREAL, EXREAL, MNREAL, and SBREAL.

94

O

C

1r}

71, _MSTIME _(get millisecond time)

r

)
| " MSTIME DESCR |
I {

MSTIME is used to get the millisecond time. See figure 122.

i g L R 3 R |
DESCR I ZIIME | 0 | 0 I

Figure 122. Data Altered by MSTIME
Programming Notes

1. The origin with respect to which the time is obtained is not important. The
SNOBOLY4 system deals only with differences in times.

2. The time units should be millisecords, but accuracy is not critical.

3. MSTIME is used in program tracing, the TIME function, and in statistics
printed upon termination of a SNOBOLY4 run. '

4, It is not critically important that MSTIME be implemented as such. If it is
not, the address field of DESCR should be set to zero also.

5. See also INIT.

95

125 MULT (multiply integers)

. : .
MULT DESCR1, DESCR2,DESCR3 ,FAILURE, SUCCESS |

MULT is used to multiply two integers. See figures 123 and 124.
In the event of overflow, transfer is to FAILURE.

Otherwise, transfer is to SICCESS.

r T Y 1
DESCR2 | 12 | F2 | v2 I
1 j A]
L | L) }
DESCR3 i I3 1 i i
— P " 3 .
Figure 123. Data Input to MULT

T S | "

DESCR1 | I2*I3 | F2 | 2 |
4 i 1 '}

Figure 124. Data Altered by MULT

Programming Notes

1. The test for success and failure is used in only two calls of this

Hence the code to make the check is not needed in most cases.
2. DESCR1 and DESCR2 are often the same.

3. See also MULTC and DIVIDE. -

96

¥,

macro.

Q

73. _MULTC (multiply address by constant)

7

MULTC DESCR1,DESCR2,N

!

MULTC is used to multiply an integer by a conétant. See figures 125 and
126.

L e R J L] 3
DESCR2 { I i I i

[l A i) |

Figure 125. Data Input to MULTC

3 L) |
DESCR1 \ I*N i Q i [V} {

[| 4 -

Figure 126. Data Altered bg MULTC
Programming Notes |
1. I * N never exceeds the range available for integers.
2. DESCR1 and DESCR2 are often the same. |

3. N is often D, which typically may be implemented by a shift, or éimply by no
operation if D is 1 for a particular machine.

4., See also MULT.

97

74. ORDVST _(order variable storage)

¥ L) : ‘ '
| ORDVST | : ‘ s
; |

ORDVST is used to alphabetically order variables in SNOROL4 dynamic
storage. Figure 127 shows the organizational structure of SNOBOL4 variable
storage consisting of OBSIZ linked chains. The links should be rearranged to
put the strings in alghabetical order.

bin address offset
from OBSTRT

in bin

. , .
last \\\y \\\\\
variable
o

|strlng§. | string| string o 0
similar chain-e—-—----=1 D
self string , for bin 1
pointé;i &length i :
% | STTL+TTL(n title . - i -
value | T . Q
- M link :
space for similar chain <«—-— OBSIZ-1 ~ (OBSIZ-1)*D
string as . for bin 0BSIZ-1
needed
!/ S
to next ascension o .
variable number
(0 for last (orders
on chain) variables
on chain)
VARIABLE

Figure 127. Organization of Variable Storage

98

Programming Notes

1. ORDVST is used only in ordering variables for a programmer-requested
post-mortem dump of variable storage. ORDVST need not be implemented as such,
but - may simply perform no operation. In this case, the post-mortem dump will
not be alphabetized, but will be otherwise correct.

2. If ORDVST is implemented, it is easiest to put all variables in one long
chain starting at OBSTRT. The address fields of the descriptors

OBSTRT + Dy «.«.,0OBSTRT + (OBSIZ -1) * D
should then be set to zero.

3. since dynamic storage may contain many variables, some care must be taken to
assure that the sorting procedure is not excessively slow. Variables whose
values are null strings (zero address fields and value fields containing the
global symbol §S) may be omitted from the sort. 1In fact they should be omitted
if a sort with factorial properties (such as an exchange sort) is used. A sort
with 1linear properties such as a radix sort is more desirable but more

- complicated.

4., The ascension number, M} is computed by VARID (g.V.).

99 .

75. _OUTPUT__ {output record)

| L) .
. OUTPUT DESCR, FORMAT, (DESCR1,...,DESCRN) | :) ™.

st
L]

OUTPUT is used to output a list of items according to FORMAT. See figure
128. The output is put on the file associated with unit reference number I.
The format C1...CL may specify literals and the conversion of integers and real
numbers given in the address fields Al,...,AN.

-3 g L] L4 §
DESCR i I | | |
i [1 J
g L] Ly
FORMAT I c1 | cee | CL |
4 A A '}
L g Rk 4 ¥ k]
DESCR1 i Al [| {
: B [1 [']
L B Ll L] '.))
DESCRN i AN i { ' |
i A i ']
Figure 128. Data Input to OUTPUT - o
, : A\

Programming Notes
1. See also STPRNT.

100

)

16,

PLUGTE _ (plug _syntax table)

L
PLUGTB TABLE,KEY,SPEC |
- 3

PLUGTB

' table to a constant.

CONTIN

ERROR

STOP

STOPSH

The indicator fields of entries corresponding to Cl,...,CL

is
130 and 131.

where T
129,

the indicator which corresponds to the value of KEY.

is used to set selected indicator fields in the entries of a syntax
KEY may be one of four values:

set to T
See figures

are

SPEC { A {

o
t

A+0O

by
0
-b
.

Figure 129. Data Input to PLUGTB

r
TABLE+E*C1| |
L

13
o e g

L SN
TAELE+E*CL|
[N

T L)
|

A ']

Figure 130.

Data Altered by PLUGTB for ERROR, STOP, or STOPSH

1 §
TABLE+E*C1] TABLE | 0 | i
[1 A 3
r T T - L]
TABLE+EXCL| TABLE | 0 | i
[L L |

Figure 131.

Data Altered by PLUGTB for CONTIN

101

érgg;amming Notes

1. See ‘the section which discusses the structure of syntax tables. . . B e/

2. See also CLERTB.

102

17, _POP {pop_descriptors_from stack)

1
| - POP (DESCR1,... ,DESCRN) |

POP is used to pop a list of descriptors off the system stack. See figures
132 and 133. '

~ s v L | R
CSTACK | A | i |
L A i I

L 3 v L

A | Al l F1 i V1)
(3 A L ']

¥ | § LY

A-D*(N-1) | AN | FN | VN |
| —— i L ']

Figure 132. Data Input to POP

L 2
CSTACK | A-(N*D) | o !

e e o

' T T —T amn |

DESCRT | A1l | E1 | vi |
'S L i I]

L2 | 1

DESCRN | AN | EN |- VN |
L L L J

Figure 133. Data Altered by POP

Programming Notes

1. If A - (N * D) < STACK, stack underflow occurs. This condition indicates a
programming error in the implementation of the macro language. An appropriate
diagnostic message indicating an error may be obtained by tr ansferring to the
global location INTR10 when the condition is detected.

103

8. PRQC {procedure entry)

L 1
| LoC1 PROC {roc2] |
L]

PROC is used to identify a procedure entry point. If LOC2 is omitted, LOC1
is the primary procedure entry point. If LOC2 is present, LOC1 is a secondary
entry point in the procedure with primary entry point LOC2. s

Programming Notes

1. -‘Procedure entry points may be referred to by RCALL, BRANIC, or BRANCH (in
its two argument form).

2. In most implementations, PROC will have no functional use and may ke
implemented as LHERE. For machines which have a severely limited program basing
range (such as the IBM System/360), PROC may be used to perform required basing
operations. g

104

i [’
deel el

79._ _PSTACK _ (post stack position)

Py

AT

\
PSTACK DESCR |
| 1

PSTACK is wused to post the current stack position. See figures 134 and

135.
L Ll R RJ
CSTACK | A | | |
[l L J
Figure 134. Data Input to PSTACK
Ly { L
DESCR I A-D i 0 { 4] |
[= l A ']

Figuré 135. Data Altered by PSTACK

Programming Notes
1. See also 1ISTACK.

- C

105

80, _PUSH {push_descriptors onto stack)

PUSH (DESCR1, ... oDESCRN) | ,

-1 e

-—

PUSH is used to push a list of descriptors onto the system stack. See
- figures 136 and 137. :

L 3 R3 L] L]
CSTACK | A | ! i
: [L A J
T " T 1
DESCR1 S N | F1 A i
[s 8 A '
L | L] .
DESCRN { AN { FN I VN i
1 1 1 —
Figure 136. Data Input to PUSH
. L J 1] L
CSTACK { A+ (D*N) | | | <:,
- . I 2
t ; - '] \
& | . . R
A+D i Al { F1 { Vi i :
t A L ']
(= Y) S -
A+ (D*N) | AN | EN l YN T |
I 4. I]
Figure 137. Data Altered by PUSH
Programming Notes

. If A + (D * N) > STACK + STSIZE, stack overflow occurs. Transfer should be
made to the global location OVER which will result in an appropriate error
termination.

2. See also SPUSH, POP, and SPOP.

166

81. _PUTAC (put_address _with offset_constant)

>

L]
PUTAC DESCR1, N,DESCR2 |

eed

PUTAC is used to put an address field into a descriptor with a constant
offset. See figures 138 and 139.

¥ LS w L
DESCR1 i A1l 1 i {
4 : [3
| ; Y R -
DESCR2 { A2 | | |
[] [} 1]
Figure 138. Data Input to PUTAC
L g] A] 1
A1+N | A2 | | |

[! A L -

Figure 139. Data Altered by PUTAC

Programming Notes
{ ‘ >
1. See also GETAC, PUTVC, PUTD, and PUTDC.

107

82. _PUTD

(put descriptor)

e

PUTD

] N .
DESCR1, DESCR2,DESCR3 | —
. 5 .

PUTD is used to put a descriptor. See figures 140 and 141.

DESCR1
DESCR2

DESCR3

AT+A2

- Programming Notes
1. See also PUTDC, PUTAC, PUTVC, and GETD.

108

| g L § ki | J
| Al | | i
i L 1 J
| g L | A |
1 A2 [| |
L A i]
¥ |) 1 i]
| A { F | v
L 1 L 1
Figure 140. Data Input to PUTD
| |] 1
| A | E | v 1

Figure 141. Data Altered by PUTD

)

83. _PUTDC (put descriptor with constant offsetf

L 3 L]
| PUTDC DESCR1,N,DESCR2 |
[]

PUTDC is used to put a descriptor with an offset constant.
and 143,

L b L] 3

DESCR1 | Al | i |
[I 1. s

g L | L J i

DESCR2 | A (| F | v |
i 4 J 1 3

Figure 142. Data Input to PUTDC

i ¥ L] Lo Rl
AT+N | A | E | v !
L 1 . J

Figure 143. Data Altered by PUTDC

Programming Notes
1. See also PUTD, PUTAC, PUTVC, and GETD.

See figures 142

109

. DESCR }- I

84, _PUTLG (put_ specifier length)

PUTLG SPEC,DESCR |
|

PUTLG is used to put a‘length into a specifier. See figures 144 and 145.

Figure 144. Data Input to PUTLG

L] L] R LN Ll] |
SPEC { | | I §

[A i A & n 3

Figure 145, Data Altered by PUTLG

Programming Notes
1. I is always nonnegative.

2. See also GETLG.

110

85, _PUTSPC__(put specifier with offset constant)

.r ¥
H PUTSPC DESCR,N,SPEC |

! 3

PUTSPC is used to put a specificvr. See figures 7146 and &7.

— 2 § 3 2]
DESCR { - At i | i
[A L §
1] | L L] L
SPEC | A | F | v i o 1 L {
[1 i i A 3
Figure 146. Data Input to PUTSPC
[] Bl . 1) L] L]
AT+N | A | E i v | . | L i
. . i 4 L L. A)

Figure 147. Data Altered by PUTSPC

Programming Notes
i C 1. See also GETSPC,

111

86. PUTVC __{put value field with offset constant)

»J

Rt

. L
PUTVC DESCR1,N,DESCR2 |
d

PUTVC is used to put a value field into a descriptor with an offset
constant. See figures 148 and 149.

) g R | & E

DESCR1 | A | | |
t L L]

L4 i R L 3 e |

DESCR2 i SR S \Y |
L i y . |

Figure 148. Data Input to PUTVC

8 N | L
A+N | I ¥

L] i |

L—d

Figure 149. Data Altered by PUTVC

Programming Notes
1. See also PUTAC, PUTDC, and PUTD. - @

12

o

87, _RCALL (recursive call)

r L]
| RCALL DESCR, PROC, (DESCR1,... ,DESCRN), (LOC1,-..,LOCM) |

[J

RCALL 1is wused to perform a recursive call. DESCR is the descriptor which
receives value upon return. PROC is the procedure being called. DESCR1,ce.,
DESCRN are descriptors whose values are passed to PROC. LOCt1,...,LOCM are
locations to transfer to upon return according to the return exit signalled.
See figures 150, 151 and 152. The old stack pointer (A0) is saved on the stack,
the current stack pointer becomes the old stack pointer, and a new current stack
pointer is generated as indicated. The return location LOC is saved on the
stack so that the return can be properly made. The values of the arguments
DESCR1,...,DESCRN are placed on the stack. Note that their order is the
opposite of the order that would be obtained by using PUSH.

At the return 1location LOC fprogram similar to that shown should be
assembled. OP is intended to represent an instruction which stores the value
returned by PROC in DESCR.

g R L J
CSTACK (A | , i |
i A AL 3
| | L) .
OSTACK i A0 i { |
L L i
g R U LB AL
DESCR1 i a1 i F1 A I
[} L L - }
[Y . 2 | = |
DESCRN | AN I FN | VN I
L 'R ' ; 1

Figure 150. Data Input to RCALL

113

| 3B L i R J il
A+D o AQ 4 Q9 i 0 |
[L N [)
L v] R J
A+2D l LOC | Q | Q |
i)} L J
> v '
A+3D | AN { EN l VN |
[A 1 r)
| 3 L] - . v i
A#D*(2+N) | Al | E 0 ¥v1 |
[s . '] 3
L 8 R R A]
CSTACK ‘JA+ (2+N) *D| | |
i - 1 ' |
r] (" 2])
OSTACK i A | { 1
[} L L]
Figure 151. Data Altered by RCALL
LoC oP DESCR1 : ’ '
: BRANCH LOC1 : (@

BRANCH LOCM

Figufe 152. Return Code at LOC

~.

Programming Notes R

1. RCALL and RRTURN are used in comblnatlon, and thelr relation to each other
must be thoroughly understood.

2. ordinarily OP is a store instruction to obtain the value returned by RRTURN.

3. DESCR may be omitted. In this case, any value returned by RRTURN is ignored
and OP should perform no operation.

4. (DESCR1,...,DESCRN) may be entirely omitted. In this case N should be taken
to be zero in interpreting the figures. :

5. Any of the 1locations LOC1,...,LOCM may be omitted. As in the case of’
operations with omitted conditional branches, control then passes to the
operation following RCALL.

6. The return indicated by RRTURN may be M + 1 in which case control is passed
to the operation following RCALL. °
\

7. The return indicated by RRTURN is never greater than M + 1. -

114

&n\,e. RCALL typically must save program state information. On the IBM 360 this
ww consists of the 1location LOC and a base register for the procedure containing

the RCALL. This information is pushed onto the stack. In pushing information
on the stack, care must be taken to observe the rules concerning the use of
descriptors. The rest of the SNOBOL4 system treats the stack as descriptors,
and the_ _flag fields of descriptors used to_save program state information must
be_set_to_zexo.

9, See also SELBRA.

115

" 83, __RCOMP (real comparison)

|
| RCOMP .DESCR1,DESCR2,GT,EQ,LT |
. . 3

RCOMP is used to compare two real numbers. See figure 153,
If R1 > R2 transfer is to GT.

If R1

R2 transfer is to EQ.

If R1 < R2 transfer is to LT.

r | J— T - 2]
DESCR1 | R1 | | |
‘l . [3 L J]
L L 3 1] R
DESCR2 | R2 i | |
1 1 . & '}

Figure 153. Data Input to RCOMP

Programming Notes
1. See also ACOMP and LCOMP.

116

AN

@

e

.

89, REALST__(convert real number to string)

—
|
t

L4
REALST SPEC,DESCR |
I |

REALST is used to convert a real number into a specified
figures 154 and 155.

L] R L §
DESCR | R | | {
[i L]
Figure 154. Data Input to REALST
bIﬁ k § L)) 4 L] R
SPEC | BUEFER |] I [i Q | L |
L 1 [) | 1 ']
. r T L L}
BUFFER 1 c1 i 222 | CL |
[1 J

Figure 155. Data Altered by REALST

string.

See

117

Programming Notes

1. Cl...CL should represent the real number R as a "normalized" string
containing a decimal point and having at least one digit before the decimal
point, =zeroes being added as necessary. If R is negative, the string should
begin with a minus sign. For compatability with real 1literals and data type
conversions, the real number should not be represented with an exponent,
although very large or small numbers may require a large number of characters
for their representation.

2. The number of digits (and hence the size of BUFFER) required is machine
dependent and depends on the range available for real numbers.

3. BUFFER is local to . REALST and its contents may be overwritten by a
subsequent use of REALST. o

4, See also INTSPC and. SPREAL.. .

118

90, _REMSP__ (specify remaining string)

r

L]
SPEC1,SPEC2,SPEC3 |

REMSP

of a given length.

r n] — B | * T 1
SPEC2 i A2 | F2 | v2 { 02 i L2 i
L s '} A A ']
v, L k) Ll L]) |
SPEC3 { | | { | L3 |
L 1 i I A 'y
Figure 156. Data Input to REMSP
. ‘ | B T L] ¥) J L]
SPEC1 1 a2 | Fz | V2 { 02+¢L3 | L2-L3 |
) L i . 1 A 'l v}
- Figure 157. Data Altered by REMSP
Programming Notes
1. SPECY1 and SPEC3 may be the same.
2. L2 - L3 is never negative.
3. See also FSHRTN.

REMSP is used to obtain a remainder specifier
See figures 156 and 157.

resulting from the deletion

119

91, RESFETF _(reset flaq)

v . 3 . .
' RESETF DESCR . FLAG ') . g
' .

RESETF is used to reset (delete) a flag from a descriptor. See figdres 158
and 159.

¥ LI L] 1]
DESCR i | F | |
"] A 'l ']
Figure 158. Data Input to RESETF
o L 3 1 4
DESCR { { F-FLAG | i
i

| 8 I |

Figure 159. Data Altered by RESETF

Programming Notes

1. Only FLAG is removed from the flagé -in F. Any other flags are left
untouched. :

2. If F does not contain FLAG, no data is altered. ‘ c:,

3. See also RSETFI and SETFI.

120

PN 92. _REWIND _(rewind file)
e

r

R}
{ REWIND DESCR |
]

REWIND is used to rewind the file associated with the unit reference number
I. See figure 160. :

¥
DESCR I I { | |

Figure 160. Data Input to REWIND
Programming Notes

1. Refer to the section on input and output for a discussion of unit reference
numbers.

2. See also BKSPCE and ENFILE.

121

53. INT (convert real number to integer)

-~

L) ‘ .
RLINT DESCR1,DESCR2,FAILURE, SUCCESS | , e
' |

P emas oy

RLINT is used to convert a real number to an integer. See figures 161 and

162.
If the magnitude of R exceeds the magnitude of the largest integer,
trandfer is to FAILURE. ,
Otherwise transfer is to SUCCESS.
’ r T) T]
DESCR1 i R | { {

L A A _—)

Figure 161. Data Input to RLINT

L}
DESCR2 i I(R)

o -

0 | IC |

Figure 162. Data Altered by RLINT
Programming Notes ’ ' (Q
i. I(R) is the integer equivalent of the real number R. \
.2. The fraction part.of R is discarded.

3. IC stands for the integeﬁdata type code.

~_
B — -

122

94. _RPLACE_ _ (replace characters).

[o N i
| RPLACE SPEC1,SPEC2,SPEC3 |

L J

RPLACE is used to replace characters in a string. See figures 163 and 164.
SPEC2 specifies a set of characters to be replaced. SPEC3 specifies the
replacement to be made for the characters specified by SPEC2. The replacement
is described by the following rules. For I = 1,...,L

F(CI) = CI if CI # C2J for any J (1 =-J £ L2)
F(CI) = C3J if CI = C2J for some J (1€ J £ L2)

8 kR J A L] Ly R]
SPEC1 | a1 | | | o1] L {

[L AL 4 L) 3

¥ Ll ¥ § 1] A
SPEC2 | A2 | | i 02 | L2 I

L [i L i 1

 J L 3 ¥ L L3]
- SPEC3 | a3 | | | o3 [L2 |

L 1 ' L 1 3
A1+01 i c1 | cee | CL
A2+02 | c21 | cee {c2L2 |

4 L 1 '

o S ¥ L)
A3+03 | €31 | coe |C3L2 |

[i 1 1

Figure 163. ~Data Input to RPLACE

L) L]) §
A1+01 IF(C) | oo |F(CL) |

L L A, ']

Figure 164. Data Altered by RPLACE

Programming Notes
1. L may be zero.

2. If there are duplicate characters in C21...C2L2, replacement should be made
corresponding to the last instance of the character. That is, if
C2K

C2I = C2T = eee = (I < J < K)

then
F(CI) = C3K

3. RPLACE is used only in the REPLACE function. It is not essential that

123

RPLACE be implemented as such. If it is not, RPLACE should transfer to UNDF to
provide an appropriate error comment. : ' Py
“ﬁ-ml‘;

124

95. RRTURN _(recursive return)

i
i RRTURN DESCR,N |
]

RRTURN is wused to return from a recursive call. DESCR is the descriptor
whose value is returned. See figures 165, 166 and 167. The stack 1is
repositioned as shown.

At the location LOC program similar to that shown has been assembled by
RCALL. OP represents an instruction which is used by RRTURN to return the value
of DESCR.

r T L 3 \
OSTACK | A i | I

L i) &)]

L 8 ¥ k
A+D | AQ | l }

[& 1 A]

L L] L} 1
A+2D | LoC | [i

i i /]

[§ k| L] i}
DESCR i A1l i F1 | v1 i

[1 A]

Figure 165. Data Input to RRTURN

r. | | : §) J
CSTACK { A 1 { |

[} 1 L I]

v ¥ 1) - | J
OSTACK | AQ | | I

1 'y 1 [|

L) R hJ
DESCR1 1 Al ! E1 Vi i

[i L ——d

Figure 166. Data Altered by RRTURN

125

LeC op DESCR1 ‘ . I
BRANCH LOC1

BRANCH LOCM
A Figure 167. Return Code at LOC.
Programming Notes

1. ‘RCALL and RRTURN are used in combination, and their relation to each other
must be thoroughly understood.

2. DESCR may be omitted. In this case, OP should not be executed.

126

Frew
g

:

96, _RSETFI _ (reset_flag_indirect)

]

1]
RSETFI DESCR,FIAG |
]

RSETFI is used
specified indirectly.

to ,reset (delete) a flag from a descriptor which is

See figures 168 and 169.

L Ll L 8
DESCR | A | | 1

[t 1 ' []

| S A L) L]
A | | F | {

[L i . |

Figure 168. Data Input to RSETFI

L R | Al L}
A | | E-FLAG | |

L i L. . |

Figure 169. Data Altered by RSETFI

Programming Notes

1. Only FLAG is removed from the flags in F. Any other

untouched.

2. If F does not contain FLAG, no data is altered.

3. See also RESETF and SETFI.

flags are

left

127

97, _SBREAL _(subtract real numbers)

, . T~
1 i
i SBREAL DESCR1,DESCR2,DESCR3,FAILURE,SUCCESS | o sl
[¥]
SBREAL is used to subtract one real number from another. See figures 170
and 171. ; :
If the result is out of the range available for real numbers, transfer
is to FAILURE.
Otherwise transfer is to success.
L 8 LS L] 1
DESCR2 i R2 { F2 { V2 i
L A | & I]
r T Y]
DESCR3 | R3 | | |
[L 'Y I {
Figure 170. Data Input to SEREAL
r 2 § Y |
DESCR1 { R2-R3 | E2 i v2 [
1 A 'l - y |
|
Figure 171. Data Altered by SBREAL ‘ e

Programming Notes
1. See also ADREAL, CVREAL, EXREAL, MNREAL, and MPREAL.

128

0O

0

98, SELBRA __(select branch point)

g L
SELBRA DESCR, (LOC1,+.-,LOCN) |

SELBRA is used to alter the flow of program control by selecting a location

from a list and branching to it. See figure 172, Transfer is to LOCI
corresponding to I.

5 ¥ Ll]
DESCR | I l |

1 ; L. J

Figure 172. Data Input to SELBRA
Programming Notes

1. BAny of the locations may be omitted. As in the case of operations - with

omitted conditional branches, control then passes to the operation following
SELBRA. . .-

2. If I =N+ 1, control is passed to the operation follbwing SELBRA.

3. I is always in the range 1 £ I < N + 1. For debugging purposes, it may be
useful to yerify that I is within this range. '

129

99. _SETAC (set_address to constant)

£

3 - : '
SETAC DESCR,N | : ,::@
. J

—a

SETAC is used to set the address field of a descriptor to a constant. See
fiqure 173.

r T - T 1
DESCR i - |

[L 1 y |

12

Figure 173. Daté Altered by SETAC .
Programming Notes
1. N may be a relocatable address.
2. N is often 0, 1, or D.
3. N is never negétive.

4. See also SETVC, SETLC, and SETAV.

130

L
' Nﬁwﬁw‘

100, SETAV {set address from value fieldf

3 L]
} SETAV DESCR1,DESCR2 |
]

SETAV sets the address field of one descriptor from the value field of
another. See figure 174. : : «

Ly Ll L) L

DESCR2 | | | v |

. A X ¥)

Figure 174. Data Input to SETAV

LB § L] | }
DESCRT |- ¥ I o I o i

i A '

Figure 175. Data Altered by SETAV

Programming Notes
1. See also SETAC.

131

101, SETF (set_flaq)

g L)
i SETF DESCR, FLAG |
|

SETF is used to set (add) a flag in the flag field of DESCR. See figures
176 and 177.

3 L]
DESCR ! " F ' '
- [2 o 2
Figure 176. Data Input to SETF
b 1 L g] B
DESCR | { F¢FLAG | P e
. L g .

Figure 177. Data Altered by SETF
Programming Notes |

1. FLAG is added to the flags already present in F. The other flags are left
untouched. ' ‘ ,

2. If F already contains FLAG, no data is altered. cz'

3; See also SETFI.

132

'\\.
1)

102. SETFI {set_flaqg indjirect)

Ll L
{ SETFI DESCR, FLAG |
|

SETFI is used to set (add) a flag in the flag field of a descriptor

specified indirectly. See figures 178 and 179.

L 3 Ll & L
DESCR | A | | |
[l L A)]
3 L] 1
A | { F | |
[1 e A]
Figure 178. Data Input to SETFI
— T ; ¥ - -
A | | F+FLAG | l

L 1 !)

Figure 179. Data Altered by SETFI
Programming Notes '

1. FLAG is added to the flags already present in F. The other flags
untouched. ’

2. If F already contains FLAG, no data is altered.

3. See also SETF and RSETFI.

are

left

133

103. SETIC___(set length of specifier to constant)

8 L]
| SETLC SPEC,N | : , sl
. |

L

SETIC is used. to set the length of a specifier to a constant. See figure
180. -

L g Ll L v L] L

SPEC 1 i A N

[= A A L 1 '

Figure 180. Data Aliered by SETLC
Programming Notes
1. N is never negative.
2. N is often 0.

3. See also SETAC.

134

#~ 104, SETSIZ _ (set size)

e

0

|

L
SETSIZ DESCR1,DESCR2 |
—

SETSIZ is used to set the size into the value field of a title
see figures 181 and 182.

T Y v
DESCR1 i A | i |
L 1 1 3
| ; | RJ A‘
DESCR2 | I 1 | 1
i 1 " 3

Figure 181. Data Input to SETSIZ

L | R

{ 1 |

’

Programming Notes

Figure 182. Data Altered by SETSIZ

descriptor.

1. I is always positive and small enough to fit into the value field.

2.

See also GETSIZ.

135

105, SETSP {set specifier)

L]
SETSP SPEC1,SPEC2 |
]

SETSP is used to set one specifier equal to another.

184.
L o) L § L 4 R Ll 1]
SPEC2 l A | F { v | o I L |
T [l i [L 'S L]

Figure 183. Data Input to SETSP

L T k| B LS . vl - L
SPEC1 | A | E | v ! o - L |
L A L A i I

Figuie 184. Data Altered by SETS?

136

o

—

See figures 183 and

- 106, SETVA {set_value field from address)

Yl

L]
SETVA DESCR1,DESCR2 |
]

SETVA is used to set the valie field of one descriptor from the address
field of another. . See figures 185 and 186.

DESCR2 | 1 { | |
' L L ¥}

Figure 185. Data Input to SETVA
| Rl L] - A j
DESCR1 i | { pe {
L L L) 3

Figure 186. Data Altered by SETVA

Programming Notes

1. I is always positive and small enough to fit into the value field.

G:; 2. See also SETAV and SETVC.

137

107, SETVC (set value to constant)

r ;] _ ﬂ }
| SETVC DESCR,N | ' . _ e
3 :] - :

3

SETVC is used ' to set the value field of a descriptor to a constant. See
figure 187. . ' : :

Aj . L

| N l

1 J

-

DESCR l.

X

Figure 187. Data Altered by SETVC

Programming Notes

1. N is always positive and small enough to fit into the value field.

2. See also SETVA and SETAC.

138

C

C

R X

108, SHORTN _ (shorten specifier)

r

1]
| SHORTN SPEC,N |
]

>

SHORTN is used -to shorten the specification of a string.
and 189. '

L))
SPEC | | | i I L |
[i A L L) |
Figure 188. Data Input to SHORTN
¥ L} L] 1 L R
SPEC] | | (S I L=N |
[& A ' 1, L.]
Figure 189. Data Altered by SHORTN
Programmjing Notes

’

1. L - N is never negative.

See figures

188

139

109, SPCINT _{(convert séec;figr to integer)

“‘-ﬁi:lﬂ‘y

SPCINT DESCR,SPEC,FAILURE,SUCCESS

g

SPCINT is used to convert a specified string to an integer. See figures
190 and 191. I is a signed integer resulting from the conversion of the string
C1...CL‘ .

If C1...CL does not represent an integer or if the integer it represents
is too large to fit the. address field, transfer is to FAILURE.

otherwise transfer is to SUCCESS.

L e N) 4 L} L) L) L
SPEC | A - { | o - | L {

) L. | L A ']

L 3 L] ¥ L
A0 | C1 i e] CL |

[A i 3

Figure 19C. Data Input to SPCINT

L 3 Ll 0 ¥ k]
DESCR I | 4] I IC |

! A | N - J] 0

Figure 191. C[Cata Altered by SPCINT

Programming Notes

1. IC stands for the code for the integer data type.

2. Cl1...CL may begin with Aéwgigﬁ'(plus or minus) and may contain indefinite
number of leading zeros. Consequently the value of L itself does not determine
whether the integer represented is too large to fit into an address field.

3. If L =0, I should be the integer 0.

4. See also INTSPC and SPREAL.

140

. 110s SPEC {(assemble specifier)

"“'imw ‘

r ' »]
{ LOC SPEC A,F,V,0,L |
[4 J

SPEC is used to assemble a specifier. See figure 192.

R} R R B3 1
Loc ' l A | F | v | o] { L |
L [} L ']) ; |

Figure 192. Data Assembled by SPEC

w1

111, SPOP {pop_specifier from stack)

L}

I SPOP (SPEC1,...,SPECN) |
4 J

SPOP is used to pop a list of specifiers from the system stack. See
figures 193 and 194. ; ,

. L LN § R}
CSTACK i A | | l
[A 3

g RS k J LB L] A |

A+D~S { Al 1 F1 | v i o1 | L1 i

i L J 1 L L J]

l o Ly 1 3 L3 L § | J

A+D- (N*S) | AN | FN | VN I ON i LN i

L 1 — L s 2 ']

Figure 193. Data Input to SPOP

) g 1
CSTACK | A-(N%*S) | | |
t L i . |
: r T y T) | T 2 |
spECt | A F | v | o I L1
i 1 i IS L]
. t g v ' A | L L R J
SPECN | AN | EN I~ ¥yN _ 1 on | LN !
i L A A L ' 3

Figure 194. Data Altered by SPOP

Programming Notes

1. If A - (N * S) < STACK, stack underflow occurs. This condition indicates a
programming error in the implementation of the macro language. An appropriate
error termination for this error may be obtained by transferring to the global
location INTR10 when the condition is detected.

2, see also POP, SPUSH, and PUSH.

w2

e

Kagar

0

112. SPREAL__ (convert specified string to real number)

-

L L]
| SPREAL DESCR,SPEC,FAILURE,SUCCESS |
[]

SPREAL is used to convert a specified string into a real number. - See
figures 195 and 196. R is a signed real number resulting from the conversion of
the string C1...CL.

If C1...CL does not represent a real number, or‘ if the real number
represents is out of the range available for real numbers, transfer is
to FAILURE. .

Otherwise transfer is to SUCCESS.

L 8 L R R J v | §
SPEC { A { t l o i L i
[8 A 1 A 1 ¥
f—“ T T)
A+0 | C1 | evs | CL |
(s A L]
Figure 195. Data Input to SPREAL
LB Ll 1] 1
DESCR l R | 0 | RC |
L A A I]

Figure 196. Data Altered by SPREAL

Programming Notes

1. RC stands for the code for the real data type.

2. C1,...,CL may begin with a sign (plus or minus) and may contain an
indefinite number of leading zeros. C1,...,CL will contain a decimal point if
it represents a real number, and have at least -one digit before the decimal
point.

3.. If L = 0, R should be the real numbexr 0.

4., See also SPCINT and INTRL.

143

113, SPUSH us sgecigiefs onto stack)

L A
| SPUSH (SPEC1,...,SPECN) |

onto the system stack.

SPUSH is used to push a list of specifiers
figures 197 and 198.

° L 3 L] Al 1
CSTACK i A | | |
he [& A.. '

. R L] L] L] L]

SPEC1 | Al | F1 | \"A| } o1 [L1 {

L 1 1 1 i ']

r ~ ¥ - R § . - 1

SPECN { AN~ ! FN | VN } ON { LN {

[& L L 1 A ']

Figure‘197. Data

A L 2 L -
+ CSTACK | At (S*N) | | |
.]

Input to SPUSH

L L 1
' r T 2 s T T 2]
A+D I Al I E1 (A I ol ! L1
t . 1 ' 3
. r L] L T - T 2}
A+D+S*N-S | AN | EN | VN - | o | LN |

Figure 198. Data Altered by SPUSH

Programming Notes

1. If A ¢+ (S * N) > STACK + STSIZE, stack overflow occurs.

See

Transfer should be

made to the global 1location OVER which will result in an appropriate error

termination.

2. See also PUSH, POP, and SPOP.

44

114, STPRNT (string print)

 F
Ao r 1
I STPRNT DESCR1,DESCR2,SPEC |
L '

STPRNT is used to print a string. See figures 199 and 200. The string
C11...C1L is printed on the file associated with unit reference number I.
C21...C2M is the output format. J 1is an integer specifying a condition
signalled by the output routine.

| h 3 L L
DESCR2 4 A i I |
[' [1 I]
L 1] s L
A+D i I | i e
[1 L ']
L : k3 1§ L]
A+2D I A2 } | |
1 - i A -
R Rl]
a2 | | |
A A (]
hJ L] L}
A2+4D c21 | cse | C2M |
. L L | i
' 3 L) L3 v L) v
C SPEC A1 i § i 01 { L |
L L A A J
L R | ¥ L
A1+01 cl11 | cee | CIL |
A A ']
Figure 199. Data Input to STPRNT
g T L]]
DESCR1 \ J | | i |
L L L. |

C

Figure 200. Data Altered by STPRNT

Programming Notes

1« The
FORMAT.

format C21...C2M is a FORTRAN IV format in "undigested" form. See-

2. Both C11...C1L and C21...C2M begin at descriptor boundaries.
3. The condition J set in the address field of DESCR1 is not used at present.
It is intended for eventual use in indicating interrupts from a console on which
output is being written. DESCR1 can be ignored for the present.

i, See also OUTPUT and STREAD.

145

115, STREAL _(string readLA

T . - .
| STREAD SPEC,DESCR, EQF,ERROR, SUCCESS | it
" 3

STREAD is used to read a string. See figures 201 and 202. The string
Cle..CL is read from the file associated with unit reference number I.

If a reading error occurs, transfer is to ERROK.
If an end of file is encountered, transfer is to EQF.

otherwise transfer is to SUCCESS.

L 3 Ll . L] L]
DESCR | I | | I
' i |
r ~ Y T) T Y]
SPEC | A | l - 0 I L i
['l A [A '}
Figure 201. Data Input to STREAD ' .
r T r— 1 ’
[1 i

B - A 3 ' @I’
Figure 202. Data Altered by STREAD

Programming Notes

1. Note that the length of the string to be read is specified by the data input

+to STREAD. If the record read is not of 1length L, FORTRAN IV conventions

regarding truncation or reading of additional records should be followed.

2. See also STPRNT.

146

S 4

116, STREAM _(stream for_ token)

3
STREAM SPEC1,SPEC2,TABLE,ERROR,RUNOUT,SUCCESS |
. i 5

STREAM is wused to locate a syntactic token at the beginning of the string
specified by SPEC2. See figures 203, 204, 205, 206, and 207.

If there is an I (1 £ I € 1) such that TI is ERROR, STOP, or STOPSH, and
J is the least such I, then .

If TJ is ERROR, transfer is to ERROR.
If TJ is STOP or STOPSH, transfer is to SUCCESS.
Otherwise transfer is to RUNOUT.

In the figures that follow, J is the least value of I for which TI is STCP
or STOPSH.

P is the last value of P (1 £ I £ J) which is nonzero (i.e. for which a
put is specified in the syntax table description for the tables given). '

1 L hJ s L] 1
SPEC2 { A { F I V 1 o | L 1|
[1 A AL A. A 3
§ Ll Ll Ll | 4 v]
A+0 { c1 | sea { CTJ |CJ+1 | cee [CL |}
[A i i I ' & ¥ 3
r 4 hJ L
TABLE+E*C1| a2 P T1 | P1 |
L A ' }]
r Rl L | - L}
A2+EX*C2 | A3 { T2 | P2 |
L A A 3
L 4 | 1 J B]
AL+E*CL }] TL | PL |
[' A]

Figure 203.. Data Input to STREAM

147

STYPE
SPEC1

SPEC2

STYPE

SPEC1

SPEC2

STYPE

SPEC1

STYPE

SPEC1

SPEC2

!

el

t) 4 L L

| P | - |

t A L. J |

B L] B A J k 4 v | J
{ A | E i v | (] | J i
L I W 1 1 i

[~) § — T Y]
\ A | F | v | o+J [L=J {
L 'y 2 i |)

Figure 204. Data Altered by STREAM if Termination is STOP

r T T 1

| P | | |

i i [\ ¥ |
L L3 J § A] J
P a | E | v | o | J-1 |
L i 1 L 1 y . 3
r ¥ T T 4 i |
{ A | F | v | 0o+J-1 | L=J+1 |
[L ']

Figure 205.

g

E

4

o

1

L

Figure 206.

Data Altered by STREAM if Termination is ERROR

r T T]
i B | | |
['} A 3
r] T ; Y L]
| A | E ! A | o 1 L |
i 2 1] 1 3
r Y) Rl L)
| A | F i v | .0 | 9 |
1 4 1 ' L 2

Figure 207.

zggg;agming Notes

1. Termination with STOP or STOPSH may occur on the last - character, CL.

2, If L

Data Altered by STREAM if Termination is RUNOUT

= 0 (i.e. if SPECR2 specifies the null

string),

this case the address field of STYPE should be set to 0.

148

RUNOUT oOcCcurse. In

N

e

0

117, _STRING (assemglg_sgecified string)

L 3} 1
| LoC STRING 'C1...CL' |
[& J
STRING is used to assemble a string and a specifier to it. See figure 208.
r R 2 § T N i n |
LoC | A | 0 | 0 | 0 | L |
L A '] A A]
| o L)]
A | ok I ece i CL |
A

Figure 208. Data Assembled by STRING

Programming Notes

1. Note that LOC is the location of the specifier, not the string. The string
may immediately follow the specifier, or it may be assembled at a remote
location. '

149

118, SUBSP (substring sgeéifiga;ion)

SUBSP SPEC1,SPEC2,SPEC3,FAILURE,SUCCESS -

—

= e o

SUBSP is wused to specify an initial substring of a specifieé string. See
figures 209 and 210. ‘

If L3 2 L2 transfer is to SUCCESS.

Otherwise transfer is to FAILURE and SPEC1 is not altered.

i 8 R L} k| L 3 L 2N
SPEC2 i | | | | L2 i

B k3 L L §]
SPEC3 l A3 i F3 i V3 { 03 | L3 |

Figure 209. Data Input to SUBSP .

. | e LJ - ']] | § L 4 L}
SPEC1 i A | F3 1 ¥3 { 93 | L2 |
L i | i A J

Figure 210. Data Altered by SUBSP if L3 2 L2 O

150

0

119. SUBTRT _ (subtract_addresses)

SUBTRT DESCR1,DESCR2,DESCR3,FAILURE,SUCCESS

L

SUBTRT is used to subtract one address field from another. See figures
and 212. A2 and A3 are considered as signed integers.

If a2 - A3 is out of the range available for 1ntegers, transfer is
FAILURE. .

Otherwise transfer is to SUCCESS.

Ll Ll L RJ

DESCR2 | A2 | F2 | v2 |
[A L y]

'A Ll ¥) |

DESCR3 | A3 | i {
4 1 L []

Figure 211. Data Input to SUBTRT
2 | T : |
DESCR1 | A2-A3 | E2 | ¥2 |

D — -
[A A J

Figure 212. Data Altered by SUBTRT

Programming Notes
1. A2 and A3 may be relocatable addresses.

211

to

2. The test for success and failure is used in only one’'call of this macro.

Hence the code to make the check is- not needed in most cases.
3. DESCR1 and DESCR2 are often the same.

4, See also SUM.

151

120, suM ' {sum addggssggi

P

— — o ;-
| sm DESCR1, DESCR2, DESCR3, FAILURE, SUCCESS | ' bt

SUM is used to add two address fields. See figures 213 and 214. A and I
are considered as signed integers. :

If A+ I is out of the range available for integers, transfer is to
FAILURE.

Otherwise transfer is to SUCCESS.

DESCR2 | A | F I \Y |
[& A i § F |

L] T RJ i)

DESCR3 l I | | |
) Ce A 2 ¥]

Figure 213. Data Input to SUM

L k) 1 J 1

DESCR1 i AsI | E | v |
L A 1]

-)

Figure 214. Data Altered by SUM
Programming Notes
1. A may be a relocatable address.

2. The test for success and failure is used in only one call -of this macro.
Hence the code to make the check is not needed in most cases.

3. DESCR1 and DESCR2 are often the same.

4. See also SUBTRT.

152

121. TESTF (test flaq)

\ T —
| . - TESTF DESCR, FLAG, FAILURE,SUCCESS |
L ']

.

TESTF is used to test a flag field for the presence of a flag. See figure

215.
If F contains FLAG, transfer is to SUCCESS.
Otherwise transfer is to FAILURE.
LI Bl Ll L}
DESCR-: | i F | |
L i A 3

Figure 215. Data Input to TESTF

Programming WNotes
1. See also TESTFI.

153

122, TESTFI _(test flag ;ndi;ecgl

L e y ” N |) £]
I TESTFI DESCR,FLAG,FAILURE,SUCCESS | ::’)
——— N .

TESTFI is used to test an indirectly specified flag field for the presence
of a flag. See figure 216.)

If F contains FLAG, transfer is to SUCCESS.

Otherwise transfer is to FAILURE.

r ,
DESCR- | A | | o
L

Figure 216. Data Inpaut to TESIFI

Programming Notes
1. See also TESTF.

154

w;
S

0

O

123, TITLE __ (title assembly listing)

L 3 L]

l TITLE *Cl...CN' |

L . I]

TITLE is used at assembly time to title the assembly listing of the SNOBOLY
program. TITLE should cause a page eject and title subsequent pages with
C100.CN. : .

1]

Programming Notes

1. TITLE need not be implemented as such. It may simply perform no operation.

155

124, TOP (get_to _top of block)

: | - Q9
TOP DESCR1, DESCR2,DESCR3. | ,
;|

ob emen

TOP is . used to get to the top of a block of descriptors. See figures 217
and 218. Descriptors at A, A - D,...,A - (N * D) are examined successively for
the first descriptor whose flag field contains the flag TTL. Data .is altered as
indicated, where F3N is the first field to contain TTL.

[o - . T L R
DESCR3 i A | F | A {
L 1 i |]

L L 3 ¥ L}

A~ (N*D) i | F3N | |
. L 1 Il
L3]

A-D | | F31 | |
L L J 2

r T - ‘| 1

A | | F30 | |
[3 L i J §

Figure 217. Data Input to TOP ' @

B) B ¥ 1

DESCR1 { A=(N*D) | F i v |
[N L ']

¥ L |] B

DESCR?2 i N*D | [i 0 |
| . 1 4 - 3

Figure 218. Data Altered by TOP

Programming Notes

1. N may be 0. That is, F30 may contain TTL.

156

" e 125, TRIMSP _(trim blanks from specifier)

i
‘t&w e

L L
| TRIMSP SPEC1,SPEC2 |{
L

. |

TRIMSP is used to obtain a specifier to the part of a specified string up
to a trailing string of blanks. See figures 219 and 220.

L R R L] ¥ 3
SPEC2 | A } F i v i o i L {
L [3 A A 2 ’ §
L 3 v L L] Ll L) A
A+0 i c1 | cos | CT JCJ+1 | cee | CL
(s 4 A F 3 . L. 4
Figure 219. Data Input to TRIMSP
.l L) K R Ll]
SPEC1 | A | E | v | o I J |
1 1. A L A]

Figure 220. Data Altered by TRIMSP

Programming Notes
e

“" 4. If CL is not blank, J = L.

10

157

126, UNLOAD _(unload_external function)

an | ' k 5
UNLOAD SPEC | . v ,) 3

[; -

UNLOAD is used to unload an external function. See figure 221. C1l...CL
represents the name of the function that is to be unloaded.

r T Y L | L] T
SPEC | A | | | o l L |
. L 4 L L 1)]

1 | L) 1

i [- 'l ']

Figure‘221. Data Input‘to UNLOAD
ggogramminé Notes - | '
1. UNLOAD is a system-dependent operatlon.

2. UNLCAD' need not be implemented as such. If it is nbt, it should perform no

operation, since UNLOAD has a valid. use in undefining existing, but non-
external, functions.

3. UNLOAD should do nothing if the function C1...CL is not a LOADed function.

°

4, See also LOAD and LINK.

158

127, VARID __{compute variable identification numbers)

r 1
| VARID DESCR,SPEC |
. J |

VARID is wused to compute +two variable identification numbers from a
specified string. See figures 222 and 223. K and M are computed by

K = F1{C1...CL)

M

F2{C1...CL)
where F1 and F2 are +two (different) functions which compute pseudo-random
numbers from the characters C1...CL. The numbers computed should be in the
ranges '

0 £K < (OBSIZ - 1) * D

0 £ M S SIZLIM
where OBSIZ is a global Symbol defining the number of chains in variable storage

and SIZLIM is a global symbol defining the largest integer that can be stored in
the value field of a descriptor. '

4 \J ¥ k) L
SPEC § A | | | (o) I L I
[- I A 3 A J §
| 4 Ly Ll L
A+O I C1 | cee | CL |
L X A]
Figure 222. Data Input to VARID
4 L] ‘7 - L
DESCR | K | | M |

[A 1]

Figure 223. Data Altered by VARID

Programming Notes

1. K is used to selected one of a number of chains in variable storage. The K
are address offsets which must fall on descriptor boundaries.)

2. M is wused to order variables (string structures) within a chain. See
ORDVST.

3. The values of K and M should have as little correlation as possible with the
characters C1...CL, since the ‘"randomness" of the results determines the
efficiency of variable access.

4. One simple algorithm consists of multiplying the first part of C1...CL by

the last part, and separating the central portion of the result into K and M.

159

5. L is always greater than zero.

@

’ ¥
DESCR1 {

128. _VCMPIC _(value_field compare_indirect with offset constant)

r
P - VCMPIC DESCR1,N,DESCR2,GT,EQ,LT
t

VCMPIC is used to compare a value field, indirectly

offset constant,

considered as unsigned integers.

If v1
If V1

If Vi

>

<

V2 transfer is to gzl

V2 transfer is to EQ.

V2 transfer is to 17T.

Al

e o

DESCR2 |

I V2 |

AT+N |

A |

Figure 224. Data Input to VCMPIC

specified with

an

with another value field. See figure 224. V1 and V2 are

161

29. VEQL (value_ fields equal test) . ' .

; t

. 3 i

i VEQL DESCR1,DESCR2,NE,EQ | ' - m
. N .

VEQL is used to compare the value fields of two descriptors. See figure
225. V1 and V2 are considered as unsigned integers.

1f V1 = V2 transfer is to EQ.

If V1 # V2 transfer is to NE.

L)
DESCR1 | | | V1 |
[A K. |
‘ | k] L] L}
DESCR2 | | |

v2 |

Figure 225. Data Inpuk to VEQL

grogramMing Notes
1. See also AEQL and VEQIC.

162

130, VEQLC (value_fjield egual to_constant test)

| B
VEQLC DESCR,N,NE,EQ |
J

VEQIC is used to compare the value field of a descriptor to a constant.
see figure 226. V is considered as an unsigned integer.

If V = N transfer is to EQ.

If V # N transfer is to NE.

L

A]
DESCR | | v |

i A ; |

Figure 226. Data Input to VEQLC

Prugramming liotes
1. N is never negative.

2. . See also AEQLC and VEQL.

163

131, _ZERBLK_ _ (zexro block)

. 4
i ZERBLK DESCR1,DESCR2 |
. ¥ 3

ZERBLK is used to zero a block

of I+1 descriptors.

Programming Notes

1. I is always positive.

166

228.
g Ly L 1
DESCR1 | A | | |
-z L L. A |
L 8 k| Ll 1
DESCR2 | D*I | i |
‘ L el 1 |
Figure 227. Data Input to ZERBLK
i’ L) Ry L J
A i 9 1 a i 9 |
L 'l 1]
L) L L}
© A+ (D*I) | 9 1 9 i 0 i
) . L L 1 I
Figure 228. Data Altered by ZERBLK

See

figures

227

and

o

(=

4

o

G:}

¥

ppendix_1 - Irplementation Notes

A, Optional Macros

There are several operations which are used in noncritical parts of the
SNOBOL4 language. Some operations are used only to implement certain primitive
functions. others are required only for minor executive functions. The
following list includes operations for which implementation may be considered
optional. For these operations, simple alternative implementations are sug-
gested and the language features disabled are indicated. In selecting opera-
tions for inclusion in this list, a judgement was made concerning what features
could be disabled and still leave SNOBOL4 a useful language.

Operation Alternative Implementation Features Disabled

ADREAL? Branch to INTR10. Real arithmetic

-BKSPCE Branch to UNDF. The function BACKSPACE
CLERTB2 _ Branch to UNDF. The functions ANY, NOTANY, SPAN, and
BRERK
DATE Set length of SPEC to 0. The function DATE
DVREAL? set address of DESCR2 to 0. Real arithmetic and post-run statistics
ENFILE Branch to UNDF. The function ENDFILE
EXPINT Branch to UNDF. B | Exponentiation of integers
EXREAL? Branch to INTR10. Real arithmetic
GETBAL Branch to UNDF. The primitive pattern BAL
INTRLY rPerform no operation. Real arithmetic
LEXCMP3 If GT # LTI, branch to The function LGT
UNDF .
LINK* Branch to INTR10. External functions
LOAD® Branch to UNDF. External fﬁnctions

- - - D T - —— - - -

1Al11 operations relating to real arithmetic should be implemented or not
imrlemented as a group.

2CLERTB and PLUGTB should be implemented or not implemented as a pair.

SLEXCMP must be properly implemented for LT = GT. ‘

sLINK, LOAD, and UNLOAD should be implemented or not implemented as a group.

165

MNREAL?

Branch to INTR10.

Real arithmetic

MPREALY Branch to INTR10. Real arithmetic ::}?

MS@IME Set address of DESCR to 0; The function TIME, trace timing,
- post—-run statistics

ORDVST Perform no operation. Alphabetization of post-run dump

PLUGTB?2 Branch to INTR10. The fuhctions ANY, NOTANY,-SPAN,

A R and BREAK -

kcom,gt Branch to INTR10. Real arithmetic

REALST! Branch to UNDF. | Reai arithmetic

REWIND Branch to INTRiO. The funcﬁion REWIND

RLINT! Branch to INTR10. Real arithmetic

RPLACE ~ Branch to INTR10.. The function REPLACE

SBREAL1 Branch to INTR10. Real arithmetic

SPREALY Take the FAILURE exit. Real arithmetic B

TRIMSP Braﬁch to IﬁTR10. i The function TRIM

UNLOAD* Perform no operation. External fupctiéns

B. Machine Dependent_Data

In addition to the data given in the CopPY files (g.v.) there are several
format strings that generally have to be changed to suit a particular machine.
The strings defined by FORMAT (which occur at the end of the source file) are in
this category. The two strings CRDFSP and OUTPSP defined by STRING are also
machine dependent.

C._ _Error Exit for Debugging

During the debugging phases, it is good programming practice to test for
certain conditions that should not occur, but typically do if there is an error
in the implementation. Stack underflow is- typical. Transfer to the 1label
INTR10 upon recognition of such an error causes the SNOBOL4 run to terminate
with the message "ERROR IN SNOBOLY4 SYSTEM". Following this message the
statement number in which the error occurred is printed, as well as requestedp:
dumps and termination statistics that may be helpful in debugging.)

166

e sy a—————

h g

D, __Subroutines_versus In-Line_Code

' The choice between implementing macro operations by subroutine call or
in-line code depends on a number of factors, including the machine and its
environment. The size of the SNOBOL4 system usually encourages subroutine
implementations of the more complicated operations. The following information
may be helpful in making these decisions. Column 1 lists the macro operations
in alphabetical order, including non-executable macros. Column 2 gives the
number of times each each macro operation occurs in the SNOBOLY4 program. Column
3 gives the percentage of time spent in each (executable) macro during execution
of a typical set of programs on the IBM 360 implementation. Time spent in I/0
and system subroutines is not included. A * marks those macros implementated by
subroutines in the IBM 360 implementation (including macros that call I/0O and
system subroutines).

Maczo Count Time
.ACOMP 65 2.952
ACOMPC 57 1.450
ADDLG 7 - 0.000
ADDSIB - 6 0.000
ADDSON 12 0.017
ADJUST 2 0.000
ADREAL 1 0.000
AEQL 17 0.397
AEQLC 173 v 3.574
AEQLIC 9 0.086
APDSP* - 93 0.897
ARRAY 5 @ e~
BKSIZE 5 1.329
BKSPCE* 1 0.000
BRANCH 348 0.638
BRANIC 5 2.054
BUFFER 5 0 eee—-
CHKVAL 3 0.604
CLERTB) 0.000
COoPY 3 ee———- -
CPYPAT* 14 3.021
DATE* 1 0.000
DECRA 60 1.588
DEQL 73 1.346
DESCR 921 = mme—-
DIVIDE 4 0.000
DVREAL 2 0.000
END 1 eeeea-
ENDEX* 1 0.000
ENFILE* 1 0.000
EQU 69 eeeea
EXPINT 1 0.000
EXREAL* 1 0.000
FORMAT 25 000 eeeaa
FSHRTN 12 0.000
GETAC 10 0.638
GETBAL* 1 0.172
GETD 47 7.408
GETDC 118 5.025
GETLG 59 0.759

167

GETLTH
GETSIZ
GETSPC
INCRA
INCRV
INIT*
INSERT
INTRL
INTSPC*
ISTACK
ILCOMP
LEQLC
LEXCMP*
LHERE
LINK*
LINKOR
LOAD*
LOCAPT
LOCAPV
10CsP
LVALUE*
MAKXNOD
MNREAL
MNSINT
MOVA
MOVBLK*
MOVD
MOVDIC
MOVV
MPREAL
MSTIME*
MULT
MULTC
ORDVST*
OUTPUT*
PLUGTB
POP
PROC
PSTACK
PUSH
PUTAC
PUTD
PUTDC
PUTLG
PUTSPC
PUTVC
RCALL
RCOMP -
REALST*
REMSP
RESETF
REWIND*
RLINT
RPLACE*
RRTURN
RSETFI
SBREAL
SELBRA

168

147

114
172

120
1
29
132

343

- O\
(]

-t NN =N oW
-t

0.172

0.397
0.017
5.577

- 0.000

0.138
0.000
0.000
0.552
0.000
0.000
0.103

22.62“

0.000
0.000
0.000
1.467

5.197°

1.605
0.207
0.172
0.000
0.034
0.397
0.103
1.985
0.017
0.811
0.000
0.000
0.120
0.207

0.000

0.034
0.000
4.282
2.365
0.034
3.091
0.448
0,069
3.056
0.189
0.138
0.034
8.927
0.000
0.000
0.448
0.000
0.000
0.000
0.000
6.182
0.000
0.000
0.017

®

[

O .

SETAC
SETAV
SETF
SETFI
SETLC
SETSIZ
SETSP
SETVA
SETVC
SHORTN
SPCINT*
SPEC
SPOP
SPREAL*
SPUSH
STPRNT*
STREAD*
STREAM*

‘STRING

SUBSP
SUBTRT
SUNM
TESTF
TESTFI
TITLE
TOP
TRIMSP
UNLOAD*
VARID
VCMPIC
VEQL
VEQLC
ZERBLK

166

169

Aggegdix 2 - Classification of Macro Operations (

In the following sections, the macro operatxons are classified according to
the way they are used.

Assembly Control Macros.

corY END EQU LHERE TITLE

Maczos_which Assemble Data.

ARRAY BUFFER DESCR " FORMAT - SPEC
STRING

- Branch Macros.

BRANCH BRANIC SELBRA

Comparjison Macros.

ACOMP ACOMPC AEQL AEQIC AEQLIC
CHKVAL DEQL LCOMP LEQLC LEXCMP
RCOMP TESTF TESTFI VCMPIC VEQL
VEQLC

170

Macros_which Relate to Recursive Procedures_and Stack Management.

ISTACK POP PROC PSTACK PUSH
RCALL RRTURN SPOP SPUSH

Macros which_Move and_Set Degg;igtots.

GETD GETDC MOVBLK MOVD MOVDIC

POP PUSH PUTD PUTDC ZERBLK

Macros_which_Modify Address Fields of Descriptors.

ADJUST BKSIZE GETAC GETIG GETLTH
GETSI1Z MOVA PUTAC SETAC SETAV

Macros_whijch Modify Value_ Fields of Descriptors.

INCRV Movv PUTVC SETSIZ SETVA
SETVC

Macros _which Modify Flag Fields of Descriptors.

C RESETF RSETFI SETF SETFI
N

171

Macros_which_Perform Intege: Arithmetic_on Address Fields.

DECRA DIVIDE EXPINT INCRA = MNSINT
MULT MULTC SUBTRT SUM

Macros _which _Deal with Real Numbers,

"ADREAL DVREAL EXREAL INTRL ., MNRZAL
MPREAL RCOMP REALST RLINT . - SBREAL
SPREAL ' '

Macros_which Move Specifiers.

GETSPC PUTSPC SETSP SPOP SPUSH

Macros which Operate_on Specifierss” -

ADDLG APDSP FSHRTN GETBAL INTSPC
Locsp PUTLG REMSP SETLC SHORTN
STREAM SUBSP TRIMSP

Macros which Operate on Syntax Tables.

CLERTB PLUGTB

172

fzy

Macros which Construct_Pattern Nodes.

CPYPAT MAKNOD

Macros_which Operate_on_Tree_Nodes.

ADDSIB ADDSON INSERT

Input_and Qutput Macros.

BKSPCE ENFILE FORMAT ouUTPUT REWIND
STPRNT STREAD

Macros which Depend_on Operating System Facilities.

DATE ENDEX INIT LINK LOAD
MSTIME UNLOAD

Miscellanpeous_Macros.

LINKOR LOCAPT LOCAPV LVALUE ORDVST
RPLACE SPCINT TOP VARID

173

Aopendix 3 - Format of the SNOBOLY Source File

5

One problem in implementing SNOBOL4 for a particulér machine involves
putting the macro-language program into a form suitable for the assembler for
that machine. This typically involves making a number of format changes and

correcting a few special cases by hand. It is desireable to perform as many

changes as possible by some systematic, mechanical means’ (preferrably with a
program) so that new versions of the macro-language program can be converted
into the required form easily, thus facilitating the incorporation of updates in
the SNOBOLY4 language. A systematic, mechanical technique also minimizes random
errors inevitably introduced by human interference. Such random errors are
particularly dangerous in such an implementation. since most of the logic of the
system is at a level divorced from the implementation of the macro language.
This section describes the format of the macro-language program in order to make
the necessary format changes easier to determine. .

The SNOBOLU4 assembly source file consists of about 6500 80-character card
images. All cards are blank in column 72 and contain sequence numbering in
colurns 73 through 80. There are two kinds of cards: program cards and comment
cards. Comment cards have an asterisk (*) ir column % and descriptive text of
various types in columns 2 through 71. All other cards (about 4800 out of the
total of 6500) are program cards. Program cards have a field format as follows:

1. Columns 1 through 6: 1label field. A érogram label, if present,
begins in column 1. All labels begin with a letter, followed by letters
or digits. Labels are from two through six characters in length. If a

program card has no label, the label field is blank. ‘ c:,

2. Column 7: blank.

3. Columns 8 through 13: operation field. ' All program cards have
operations which begin in column 8. Operations consist of from three to
six letters.)

4. Columns 14 and 15: blank.

5. Columns 16 through 71: variable field. A list of operands appears
in the variable field starting in column 16. The list consists of items
separated by commas. The last item in the list is followed by a blank.
If there are no operands, there is a comma in column 16 and a blank in
column 17. Items in the operand list may take several forms:

a. ITdentifiers, which satisfy the requirements of program labels.

b. Integer constants.

C. Arithmetic expressions containing identifiers and constants.

d. Lists of items enclosed in parentheses. List are not nested,
i.e. 1lists do not occur as items within lists. i
€. Character 1literals, consisting of characters enclosed in single
quotation marks. Quotation marks do not occur within literals, but
commas, parentheses, and blanks may. This fact must be taken into
account in analyzing the variable field.

174

Q

A,

Ve

@ * * #*

CM

‘GCMA 1

GCMA2

GCMAUY

GCMA9

f.

Nulls, or items of

zZero ienéth. Nulls

omitted arguments to macro operations.

BLOCK MARKING

PROC
POP
PUSH
GETSIZ
GETD
TESTF
AEQLC
TOP
TESTFI
DECRA
AEQIC
pPOP
AFEQLC
SETAV
BRANCH

DECRA
AEQLC
SETVA
PUSH
MOVD
SETFI
TESTFI
MOVD
BRANCH

BK1CL

ZEROCL

BKDX, EK1CL
DESCL, BK1CL, BKDX
DESCL, PTR,GCMA3
DESCL,0,,.GCMA3
TOPCL,OFSET, DESCL
TOPCL ,MARK,GCMAY
BKDX, DESCR . '
BKDX,0,GCMA 2
BK1CL

BK1CL,0,, RTN1
BKDX, BK1CL

GCMA?2

BKDX,DESCR
BKDX, 0, ,GCMA9
BK1CL ,BKDX
BK1CL
BK1CL,TOPCL
BK1CL,MARK

BK1CL , STTL, GCMA1

BKDX, TWOCL
GCMA?2

The following portion of program is typical.

PROCEDURE TO MARK BLOCKS

represent

RESTORE BLOCK TO MARK FROM -

SAVE END MARKER

GET SIZE OF BLOCK
ET DESCRIPTOR

IS IT A POINTER?
IS ADDRESS ZERO?

GET TO TITLE OF BLOCK POINTED TO

IS BLOCK MARKED?
DECREMENT OFFSET

CHECK FOR END OF 'BLOCK
RESTORE BLOCK PUSEED
CHECK FOR END

GET SIZE XEMAINING
CONTINUE PROCESSING

DECREMENT OFFSET

CHECK FOR END

INSERT OFFSET

SAVE CURKENT BLOCK

SET POINER TO NEW BLOCK
MARK BLOCK

IS IT A STRING?

SET SIZE OF STRING TO 2
JOIN PROCESSING ‘

explicitly

Comments may occur following the blank which terminates the variable field.
Such comments begin in column 36.

00000809
00000810
00000811
00000812
00000813
00000814
00000815
00000816
00060817
00000818
00000819
00000820
€0000821
00000822
00000823
00000824
00000825
00000826
00000827
00000828
00000829
00000830
00000831
00000832
00000833
00000834
00000835
00000836
00000837

175

Aopendix_4 - Differences between Version_ 2_and_Version 3

There are three new macro operations included in Version 3 that were not
used in Version 2. One macro has been deleted. A number of Version 2 macros
have been changed slightly. Corrections and improved descriptions have been
supplied for a number a macros. The character classes used to define syntax
tables have been extended and revised. The following lists are provided to
assist in converting Version 2 implementations to Version 3.

1. Macro Operations_New_to Version 3 '

EXREAL, RCOMP, RLINT
2. changed Macro Operations
COPY, CPYPAT, ENDEX, INIT, LOAh: LOCAPT, LOCAPV, MNSINT, STREAM
3. c¢changed Macro Fgggggg | | o
AEQLIC, VCMPIC ' o o S o

4. Deleted Macro

DUMP

5. Corrected or Improved Macro_ Descriptions

ACOMPC, AEQLC, BKSIZE, CLERTB, DECRA, DIVIDE, EXPINT, GETBAL,
GETLTH, INCRA, INCRV, INSERT, INTRL, LINK, LVALUE, MULTC, ORDVST,
PLUGTB, POP, RCALL, RPLACE, SELBRA, SETAC, SPCINT, SPOP, SPREAL,
STREAM, SUBTRT, SUM, VARID : : :

176

0

References

1. Griswold, R. E., J. F. Poage, and I. P. Polonsky. The _SNOBOLY Programming
Lanquage. Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 1969. C

2. McIlroy, M. D. "Macro Instruction Extensions of Compiler Languages. Comm.
ACM 3 (April, 1960), 214.

3. Strachey, C. "A General Purpose Macro Generator". Comput. J. 8 (Oct.
1965), 255.

177

Acknowledgement ' . A {

The SNOBOL4 system was implemented jointly by the author and Messrs. J. F. f:’f

Poage and I. P. Polonsky. The author is indebted to Messrs. Poage and Polonsky
who have made significant contributions to the development of the macro language
and designed many of the individual macros described in this report. The author
would also 1like to thank Messrs. R. S. Gaines, Mr. J. F. Gimpel, and W. M.
Waite who have provided numerous criticisms and suggestions which were particu-
larly helpful during the evolution of the macro language. Miss P. A. Hamilton,
Messrs. L. Osterweil, M. D. Shapiro, L. Wade, and Miss R. A.- Weiss have
provided many helpful criticisms and corrections to the manuscript.

178

