— T ey = T W

Snobolt

o - w— - 2y
b coms e e o

A Computer Programming Language

for the Humanities

Rotert Gaskins, Jr.

Laura Gould

niversity of California

Spring, 1972

Coovright 1972 by Fobert Gaskins, Jr., and Laura Gould
‘ All Rights Reserved

Nothing amuses more harmlessly than
conputation, and nothing is oftener
applicable to real bhusiness or
spectilative inquiries, A thousand
stories which the ignorant tell, and
believe, die away at once when the
conputist takes them in his grip.

Samuel Johnson,

TLetter to Sophia Thrale

(at Bathy, July 24, 1783

CONTFENTS

[Note: the starred sections are not yet available 4/1/72)
Preface .Q.O.'...QQ'..‘.‘..........0....0..'.‘......Qvii

1A. Computer Programming in Snobol (eceeececcascscaens 1
Devising a Program 1
Writing a Snobol Program Text U
Tnput and Output 5
Execution of a Snobol Program 6

_ *1B. Computer Applications 1Using Snohol seecececcecscses

2h. ASSLiONMENY ceeeccoenasscsassncossosvsecrnscnnnsans e B
Literal values 8
Variabhles 9
Assignment Rules 10
The Null Value 11
The Special variable OUTPU™ 12
The Special Vvariable TINPUT 13
Other Forms of Input and Output 14
Procedures 14
The TRTM() Procedure 15
The SIZ® () Procedurc 164
Operators 16
The Concatenation Operator 17
The Arithmetic Operators 19
A Complete Snobol Program Text 20

*¥2B., Fxamples and ApplicationNsS ceeccescescccscnsnccccace

3A. The Flow Of CONtrol ceceeercecccenccscscocncccccecnll
L.abels 21
Go-to's 22
The Special Transfer ©=ND 23
Failure of the Pule 24
Failure of INPUT 2n
Fvaluation Rules 25
Test Procedures 26 »
The Test Procedures IDENT() and DIFF"R() 26
The Test Procedure LGT () 27
Arithretic Test Procedures 28
Test Procedures within Assignment Rules 28
Loops 29 '
Loops Controlled by Data Conditions 30
Loops Controlled by Counts 31

*3B' ExampleS and Ar)plicationsQ‘.'...,."‘... LR J

GA. Pattern Matching ceicecceacccecccessceccsccacaanceas3l
' ‘The Pattern Matching Rule 33
The Replacement Rule 134
The Alternation Operator 35
The Pattern Procedures ANY () and NOTANY () 36
The Conditional Assignment Operator 38 .
Concatenation of Patterns 39 =
The Immediate Assignment Operator 40
The Pattern Procedures SPAN() and BREAK() 41
The Pattern Procedure LEN({) 42
The ANCHOR() Procedure 43
The Pattern Procedures TAB() and RTAB () a4y
The Pattern Procedures POS() and RPOS () U6
The Fattern Procedure ARBNO(Y 46
Assigning Patterns to Variables 49
The Deferred Evaluation Operator 50
The Special Pattern Variables ARB and REM S?
A Program to Tllustrate Pattern-Matching 53

*4 B, Pxamples and ApPplicationsS ceeeeceeccscecccsccncecs

5A. Tndirect Referoncing ccecccececcsscenccccsacasceeadb
The Tndirect Peferencing Operator 55
The Operand of the Indirect Referencing
Operator 57
A Program to Produce a Character Count 5O
Concatenation within the Operand 60
A Program to Produce a Freguency Table 63
A Program to Produce a Word Count 65
Indirect Referencing within the Go-to 67

*5B. Fxamples and Applications cceececececscncccscacas

6A. Programmer-defined Procedires .eeeencecccsscncsceeall
Defining a Procedure 70
The DEFINR{) Procedure 72
Procedure Bodies 74 ‘ , :
The Returns RETURN, NPETURN, and FRETURN 75
Procedure Calls 76 :

. The Passing of Arquments 77

Additional Internal Variables 78
References to ¥xternal Variables 80
Side~effects of Procedures B8Y§
Levels of Tnternal Vvariables 87
The Use of NRETURN to Return a Variable 90
The APPLY() Procedure 92
Ising a Library of Procedures 94

*6B. Examples and Applicdtibns cecsecsvssacenesesses e

7A. Arrays ...'....’....‘..'.......A..-.......,.‘.......100
Creating an Array 100
Array Items and Ttem References 101
Compariscen with Indirect Referencing 102
Multi-dimensional Arrays 103
The ARRAY() Procedure 104
Selectors 106
Failure of an Item Reference 106
Special Problems Concerning Item References 107
The ITFM() Procedure 108
The PROTOTYPF () Procedure 110
The TYPE() Procedure 111
Procedure to Return a Selector 113
Procedure to Tnterchange Two Arrays 114
The Name Operator 116
Forming all Selectors of an Array 118
Procedure to Return the '"Next" Selector 120
Procedure to Return a Copy of any Array 122

*7B. Exapples and ApplicationsS ceceeccescsccconcovcese
*8A., Programmer-defined Data Structures (ecsceecececceeees

*8B. Fxamples and Applications;g..;;.............

Appendixes

‘A. Summary of Predefined ProCedUresS ...ciecescsascsess 123
T. Progvram Procedures 127
A. Test Procedures 127
B. Result Procedures 12R
C. NData Procedures 130
TI. System Procedures 135
A. Declarations 135 4
B. Access to System Tnformation 136
C. Regqguests for System Actions 143
D. ‘Input/Output Procedures 146

B. Summary of pPredefined Pattern VariablesS e.eeceeae..150
ARB and REM 150
BAL - 150
FAIL 150
ABORT 151
FENCE 151

C. SumMmAary Of OpPETaAtOrS ececevcesncsccscascscscsscscacacse 153
D. Summary of Procedure FXeCution ..eecececcccecsasscsoa 1Dl

*R. Th(—? Paffprn"MatChinq Alqorithm e e s 0sevacsr0erc s v

*F. Summary of Snobol Arithmetic .ceeeieccscecsesncacss
*G. Sumnary of Tnput/Output ProCEdAULES eeeeeeceaosonos

H. Program Text Representation
Statement Format 155
Continuation Cards 155
Comment Cards 156
Listing Control Cards 156 ,
Extended Syntax of Snobol Statements 156

Q.o..o...o.o....l.'c'o“sr’

I. Character Set Representations R 17

J. Syntax of'Prodram Texts,...}.0.........161

K. Summary of Compile-time ELFOr MESSAGeS eecescesess.166

L. Summary of Fxecution-time Error MesSsSaqgesS .eeeeves. 167

M. Non-standard Features of Rerkeley Snobol R k)

Index

I. Features which are Handled Differently 173

Procedures 173

NDperators 174

Keywords 175

Datatypes 175

System Transfers 175
NDutput 175

Proqram Representation 176
The Program Tisting 177

IT. Features Absent from the Rerkeley Version-

Procedures 177
Operators 179
Keywords 179

Pattern Variables 181
Datatypes 181

Pattern Matching 181
Arithmetic 181

Dutput 181

Peatures not Present in the Bell Version

. Procedures 182

177

182

.IO‘.........................O..I‘.'l.0.‘...‘0'0183

PREFACE

Edmund Fuller has described hearing an interview 1in
wvhich Edward R. Murrow asked Mickey Spillane how he could
bring himself to pander to the public taste by writing the
kind of books he did; Spillane's luminous reply, according
to Fuller, vas: "I write the kind of books T want to read
and can't find." '

Ve, with much the same motivation, have written ¢this
description of Snobholld, a computer programming languaqge for
the humanities. Our own training and interest is in the
study of language and literature, and so the examples and
exercises are directed particularly toward the wmachine
manipulation of linguistic data and literary teuts. ®ven so,
the descrivtion should be useful to students of wany
disciplines, since the first part of each chapter presents
features of the language in a generalized way, and the
particular examples in the second part of each chapter have
been chosen to exhibit principles and techniques which can
easily be applied to verbal or symbolic data in a wide range
of humanistic and social science applications.

This presentation of Snobol#h is particularly designed
for members of the iiniversity of California community who
have no previous knowledge of conmnputers or computer
progranming, It describes a dialzct of the lanyunage for
Control Data Corporation 6000 series machines, implemented
at the Berkeley Computer Center hy Paul McJiones and Charles
Simonyi; Mr. McJones has reviewed our work as it has
progressed, and has made many helpful suggestions.

It is intended that this manual will be expanded to
provide a conplete description of the Snoboll lantuage and
of various related facilities available at the PRerkeley
Cecmpunter Center which are of interest to Snobol users. We
would naturally be pleased to vreceive sugqgestions for
improvements and additions from readers. We hope that few
mistakes remain, even in this preliminary version, but each
of us blames the other for any that may be found.

1A. COMPUTER PROGRAMMING IN SNOBOL

Snobol is a programming 1language, one of many such
artificial lanquages which may be used to convey
instructions toc a computer. "ost computers may be instructed
in a wide variety of programming lanquages; these languages
differ fcrom one another, as do natural languages, by having
different vocabnlaries and syntactic structures. More
importantly, however, they differ in the range of concepts
which they are capable of expressing.

Pifferent programming languages have been developed for
different kinds of problems or problem areas. Some have heen
devised primarily for describing goneral numeric or
algebraic problems, others for describing the structure of
business records and files, still others for highly specific
puritoses such as controlling wachine tools, simulating
econcnic systems, or making computer-generated movies.
Snobol is distinguished by very powerful and genural
capabilities for manipulating strinas of characters, makinqg
it rarticularly convenient for working with data from areas
such as linquistics, Jiterature, verbal behkavior, and the
huwanities in generati, it is also very useful for expressiuaq
sophisticated non-numeric problems in the field of «compater
science.

Devising _a Program, A description of how a comvuter is
to qgo about solving a problenm consists of a list of tasks or
acticns to be performed. A specification in sonre programwing
language vwhich describes such a series of tasks coapletely
is called a "program text." Before a program text can bhe
written, the task which it is to describe must he clearly
understood. If, for example, a task has been expressed in
English as "find all vowels in a word," the fellowing
queostions must te resoclved before the programming of the
- task in some programmring lanquaqge can be undertaken:

1 vhat is a vowel?

{2) vhat is a word?

{(3) wvhat should ke done vith the vowels which are
fourd?

The answers might be as followus:

n one of the characters A,E,7,0, or U

(2) a string of characters to be provided as data to
the prcgranm

(3) count them and then print the total

1A. Coﬁputer Programming in Snobol 2

Given these clarifications, one can then translate the
unrigorcus English sentence "find all vowels in a word" into
a rigorous step-by-step description of what must be done;
this step-by-step description can then bhe translated again
into a series of statements in an appropriate programming
language. The intermediate translation may exist only in the
nind of the programmer, as is often the case if the task is
a simple one, or may be recorded in some fashion so that it
nay be considered for correctness. : :

One of the hest ways of recording a step-by-step
description is to write down a series of numbered statements
specifying exactly what is to be done. These statements are
still 4in ¥Fnglish, but a much more detailed and careful
English than that of the original problem, The statements
differ from the sentences of a natural language paraqraph in
that they are nct intended to be processed onPy once or in
the order in which they are presented; hence, the statements
are numbered so that the order in which they are to be
processed, often ' repeatedly, may be specified. A set of
numkered statements describing how to count all the vowels
in a series of words and to print the counts might look as
folloxs: :

START

(1) Get the next word; if no more words, STOP.

{2y ©Print that word. ' '

{3} Set the tally to zero.

{4) Get the next character of this word; if no more
characters remain, go to (7); otherwise go to the rext
statement.

(5) Determine whether or not this character is an
A,¥,I,0, or U3 if it is not, go back to (4); othervwise gqo to
the next statement. ‘ :

{6y Add one to the tally which is keeping track of the
numkter cf vowels in this word; go back to (#).

{7) Print the value of the tally, vwhich now represents
the total number of vowels in the word. Go back to (1) and
attempt to get another word.

Note that this program description has been augmented
to count the vowels in any number of words, one after
another, and to print the counts separately. It would not he
useful to write a program to count the vowels in a single
word only, as the counting could "be accomplished by hand
much faster than the program could he written., (However, for
- more corplicated tasks, a program can often bhe written much
more «<¢asily than the task can be performed even once by
hand; that such a program could then be used again might
well be of seccndary importance.}) o

1A. Computer Programming in Snobol 3

Another method of recording a step-by-step description
is to use what is called a "flow chart.® In a flow chart the
specification of what is to be done next, or the *"flow of
control, is indicated hy means of lines and arrows rather
than by phrases of the form "go back to (1)." A flow cuart
equivalent to the numbered statements just provided might
look as follows:

A
}

A}
| get next]Fail

{ word |—————> STOP

[3
| Succeed
]

<2) v

1 4 1

! grint the |

! vord |

Lt 2
i
1

3) v

g e ey

| set tally |

{ to zero {
1)

!

b e S s D e AME e . MmO i ED A S ame i oo S —— AR s W e ANA e D Al Wt s~ wme S=s od

1< i
1< 1 ; i

Ce) v (s> |Fail : (6) i

- B | [g 7]

] get next |[Succeed | test fo]Succeed { add one |

{ character |—————-->| A,E,I,O,U !- >} to tally |

} 3 [| d | N ;]
{Fail
|

«?7) v

T hj

1 print i

] value of | -

{ tally i

— '

1A. Computer Programming inr Saobol . = =~ | "

‘¥riting a_Snobol Program _Text. Now that a detailead
method for solving the problem is clearly understood, it may
be translated into a set of statements in the Snobol
language. Seven Snobol statements are provided below, one:
for each of the numbered English sentences, or,
equivalently, c¢ne for each box of the flow chart: These
statements are provided here +to 1illustrate the ' close
correspondence between the Snobol statements and the step-
by-step description, to give scme indication of the
aprearance of a programming language, and to point out sone
features of the Snobol language in particular; a ccmplete
discussion of the nmeaning of these statements must be
deferred to later chapters of the text. (Comments, beginning
with asterisks, have ,been inserted for spacing and to
explain the purrose of the statements.) '

% STEP 1: REAT IN THE NEXT WORD - IF NO MORE WORDS, STOP
-

X R K KO K XK ¥

*

READ WORD = TRIM(INPUT) . + F(END)
: STEP 2: PRINT THE WORD JUST READ IN
: OUTPUT = WORD
‘: STEP 3: SET THE TALLY TO ZERO
' TALLY = O
STEP 4: GET THE NEXT CHARACTER CF THIS WORD - TF NO 4ORE
CHARACTERS, PRINT THE VOWEL COUNT FOR THIS WORD
ETCHAR WORD LEN(1) . CHAR = NOULL : F(PRINT)
STEP 5: SEE IF THIS CHARACTER IS A VOWEL - IF NOT,
GO BACK AND GET NEXT CHARACTER -
CHAR ANY ('AEIOD) o -8 F(GETCHAR)
. STEP 6: CHARACTER IS A VOWEL - ADD ONE TO THE TALLY
: TALLY = TALLY + 1 ' : (GETCHAR)
* STEP 7: PRINT NUMBER OF VOWELS AND RETURN TO
* REAL IN THE NEXT WOED
gRINT OUTPUT = TALLY : (READ)

END

1A. Computer Programming in Snobecl - , S

Each Snobol statement consists of three basic parts,
any of which may be absent. These parts are called the
label, the rule, and the go-to. The label is the first part
and serves to identify the statement (as did the numbers in
the English description above); the rule is the middle part
and sgecifies some action to be performed; the go-to is the
last part and indicates which statement is to be <considered
next by providing its label in parenthesis. (The F within
the first three go-to's ahove indicates that the go-to is to
be taken only if the action specified by the rule preceding
it fails; otherwise control is sent to the next statement of
the series.)

Input_and Cutput. Before the statements of a program
text can be used to instruct a computer, they must first be
put in what is called "machine-readable form." For instance,
they must be punched on cards to be read into the computer's
memory via a card reader, or typed in on a teletype
connected to the computer. The data to be manipulated, such
as the words whose vowels are to te counted, are seldom
explicitly provided within a program text, but are prepared
separately and must also be put in machine-readable form
before they can be accessed.

The Snobol language provides facilities for reading in
units of data, called *"records," and for writing out the
restlts of manipulating this data. These are called '"input"”
and "output" facilities., The first statement of the program
text above 1indicates that some input |is needed; in
particular, it specifies that an indefinite number of wordis,
one at a time, are to be read from a "file"®™ of data which
nust be supplied with the program. The second statement
specifies that some output is to be produced; in particular,
that the word just read in is to be printed at the beginning
of a new line of printer paper. The last statement specifies
that the number of vowels fcund within that word is to be
printed on the following line. ‘

If the file of data to be used as input for the progranm
text above were the following list of words

HIPEOPCTAMUS
HIPFOS
HIPFOSTDEROS
HIFECSEONGIA
HIEFCTIGRINE
HIPEOTCMY
HIFEQTRAGINE
HYIEECTRAGUS

1A. Computer Programming in Snobol - ' e L N 6

then the output produced by“theﬁprcgram would be the 1list

HIPPOPOTAMUS
<

HIFECS

2)
HIPECSIDEROS
5 .
HIPFOSEONGIER
5 .
HIFECTIGRINE
5

HIPEOTCNY

3
BIPEOTRAGINE
5

HIPECTRAGUS
Results from executing a program may be printed on
paper for ©personal perusal, written on magnetic storage
media, or punched on cards. Since the last two are nmachine-
readable as wvell as mwmachine-vwriteahle, the output may be
used again, without modification, as input data to be
further processed by still another progran.

Execution_of a_Snobol Program. It is not enough for a
computer to have available to it both a program text and
scne data in machine-readable form; it must also have
available tc it a "™translator®™ or "system"™ to process the
language in which the ©fprogram text has been written. A
comtuter may have ~ available ‘any number of lanquage
processors and hence may be able to "understand" any - number
of 1languages. A processor itself consists of a progranm,
written in some programming language (often in a 1language
that is basic and unique to a particular computer, but
- possitly in Snotol). The data which such a system will use
is a program text in the language for which it is the
processor. ‘

The Snobcl system described here consists of two
separate parts called the "compiler™ and the "interpreter.”
The compiler uses a Snotol program text as its data, reading
in the statements one at a time in the sequential order in
which they appear. It prints and numbers each statement to
be insgected later by the programmer and tests the statement
to determine whether or not it is syntactically 'correct,
that 1is, whether or not it conforms to all the rules
governing the prover structure of a Snobol statement. (This-
Frocess 1is analogous to parsing a natural lanqguage sentence
for grammatical correctness.)

1A. Ccmputer Programming in Snobol 7

If a statewent is well-formed, it is converted by the
compiler into a representation ("Code") suitable for later
processing by the interrreter; if it is not well-formed, it
is flagged as beinrg syntactically incorrect. All statements
of the program text are processcd, even if incorrect ones
cccer, so that all syntactic errors are found. The
programmer can locate the incorrect statements hy inspecting
the pregram listing; he can then correct them and once again
submit his program text as data for the compiler to process.

ITf no compile-~time errors occur, the message SUCCESSFUL
COMEILATION is written at the end of the proqram listing.
The interpreter then starts processing, using the converted
statenents of the program text as its data; the entire set
of converted 'statements representing a program text is
called a ¥"program." The interpreter executes the proqgqranm,
causing the computer to perform whatever task has been
described. It starts by executing the first statement of the
program ané then proceeds to process the converted
statements in the order specified by the go-to's, reading
inpat from a data file and producing output whenever
reqguested. Execution continues until the task is finishe?
{(as signified here by ¢the END scatement) or until an
execution-time error (such as a request to multiply 'CAT' by
'CATALOG®) cccurs. If +this thappens, the programmer can
inspect the error message printed by the interpreter and can
attempt to determine his mistake. He <can then modify the
program text and submit it cnce again to the joint processes
cf ccmpilation and execution,

‘2A. ~ ASSIGNMENT

A Snobol program text consists. of a sequence of
statements in the Snobol ‘language. These statements are
conriled to precduce 'a series of instructions to the
computer, causing it to store data in its memory, to perform
operaticns on this data, and to preserve the results for
human inspection and/or for further processing by machine,.
The data to be manipulated is usually stored externally to
- the program and is read in by the program as it is needed. A
few data values, however, are often written directly in the
program text itself. These values may be of several
different types, but are most often simply strings of
characters. ’

Literal Values. Strings are sequences of characters
which may be of any 1length and may be composed of any
characters in the computer's character set (see Appendix I).
Strings whose characters are written directly in the progranm
text are called string literals and are designated by being
delimited by either single or double quotes; a string
consisting of the five English vowels may be written in a
Snotol program text as either

TAEIOU! or WAEIOU"™

with exactly the same effect, This permits a string 1literal
to contain whichever quote mark is not being used as the
deliriter without confusion. For example,

YLADYnCHATTERLIEY ' SoLOVER"
is a string of 23 characters, while
CUAY!Y"gHEgSAIDzBRIEFLY. "

is a string of 22 characters. Notice that spaces
(rerresented here by the symbol o) are treated like any
other characters in string literals.

Strings consisting of nothing but digits with perhaps
an initial plus sign or minus sign are called numeric
strings and are of datatype Integer; all other strings are
of datatype String. Those strings which are of datatype
Integer, and which do not have an initial sign, may be
represented 1in the program text with or without surrounding
quotes. If quotes are nct used, as in

669 7449 0 23

24, kssignment 9

then these numeric strings are called integer literals. When
an integer 1literal is stored 1in the memory, any leading
zerces it may have had are removed; that is, the integer is
stored in a “canonical" form. (The canonical form of zero is
the single character 0.) Thus 00023 and 23 and *23' all have
identical representations in the menory. Leading 2zeroes may
be preserved fcr non-nureric applications by representing
integers in the program text as string literals containing
leading zeroes., For example, '00023' would be stored as a
. five-character string, while *23*' would be stored as a two-
character string. String literals are always stored within
the ccmputerts memory exactly as they are represented in the
procram, while integer 1literals are always stored in
cancnical form. In what follows, the term string will be
used to include objects of datatype Tnteger as wvwell as
cbjects of datatype String.

Variables., Once a value of any datatype 1is stored
within the <computer's memory, some method must be provided
fcr referring to it so that it may be used repeatedly
thrcughout the program. FTach value is stored by being
assigned to a variable, which serves as a reference, or
poirter, to the value. Fvery variable has a name, and any
non-null string of characters may be used as the name of a
variablie. That 1is, the name of a variable way be of any
length and wmay be ccmposed of any characters of the
character set. Those names which begin with a letter and
consist of an arbitrarily long sequence of letters, digits,
and periods are said to be in "identifier form" and may bec
written directly in the program text. Thus

RHYMFEA1 VOWELS UNSUCCESSFULL.COGNATES P.V.C

are all valid representations of variables in program texts
since they are all identifiers, while

TRHYME «« VOWELS TEST/3 p~-v-C

are not, since the first %wo don't begin with a letter, and
the last two contain impermissible characters.

String literals, integer literals, and variables thus
have representations 1in a program text which allow them to
be easily differentiated from one another: string literals
begin with a quote (and must end with a quote as well),
integer literals begin with a diqgit, and names of variables
begin with a letter. (Other ways of representing variables,
and particularly variables whose names are not in the form
of identifiers, are discussed in Chapter 5 and Chapter 7.)

2A. Assignment . | - 10

Assignment_Rules. The most fundamental kind of rule in
the Snobol lanquage is the assignment rule which is used to
assign a value to a variable. The variable is usually
represented by an identifier and the value can be a String
or an Integer or may be of any other datatype (Real,
Pattern, Array, etc.). For example, the assignment rule

VOWELS = fAETIOU'

specifies that the five-character string AEIOU is to bhe
stored in the nmemory as the value of the variable named
VOWELS. Similarly - ‘ -

COUNT = 47

specifies that the integer 47 is to be stored as the value
cf the variable named COUNT., v :

, In general, an assignment rule has the meaning: let the
variable represented o¢n the 1left side of the equals siqgn
refer to the value specified on the right side of the equals.
sign. (It is obvious that the equals sign does not have its
usual arithmetic meaning in an assigament rule; it is being
used as an "assignment sign."m) :

An assignment rule may have a variable name on 1its
right side, rather than a literal. %When a variable occurs on
the right, it is used to refer to its value. Thus the
sequence of rules

ALEPH = YABCDEFGHIJKLMNOPQRSTUVWXYZ!
ALPHA1 = ALEPH
LETTERS = ALEPH

specifies that the variable ALEPH is to have as its value
the 26~-character string of the alphabet, that the variable
ALPHEA1 is to have as its value the curcrent value of ALEPH,
and 8o forth, In an assignment rule, when the name of a
variable occurs on the left of the assignment sign it stands
for the variable; when the name of a variable occurs on the
right, it stands for the value of that variable.

The relation between a variable and its value need not
be a permanent one. Usually a variable is assigned a variety
of different values in the course of executing a single
prcgram {(hence the term "variable"). A variable named WORD,
for exanmple, might be assigned as its successive values each
new wcrd encountered in a group of data, thus changing its
value 10,000 times for a text 10,000 words in 1length, FEach
time a value is assigned to a variable, the previous value

2A. Assignment 11

of the variable is lost; thus the value of a variable is
alvays the one most recently assigned.

The Null Value. All variables, befcre they have been
assigncd any cther value, start out with the "empty" or null
value. After a variable has been assigned a non-null value,
it may be given the null value acain by executing an
assignment rule with a null value cn the right side, such as

VOWFLS =

The null value may also LLe represented by an "empty"
literal, one with no characters in it, as in

VOWELS
or
' "n

VOWELS

or by a variable which has a null value, such as

VOWELS NULL

]

or

VOWELS ANYTIAING

if the variables NULYL and ANYTHTHG have null values when the
rules are execnuted. (In all examples which follow, wherever
the variable NULL occurs it is assumed by convention to have
a null value.)

The null value is a special entity in Snobol, distinct
from all other values, and has a variety of important uses
in the lanquage. Notice particularly that it is
distinquished from the strings space and zero. Thus

VOWELS = nt

VORELS = e
and

VOWELS = 0

are each assignments which give the variable named VOWELS a
non-null value; the first value is of datatype String, while
the last two are of datatype 1Integar. Although the null
value 1is a distinct value, it 1is not aqgiven a special
datatype; by convention the null value 1is of datatype
Inteqger. Thns the general terr string, which includes
objects of datatype String as well as of datatype Integer,
includes also the null value unless specified othervise.

2A. Assignment : SRR 12

The Special VYariable _OUTPUT. Once values have heen’
stored within the computer's memory, they may be printed out
by assigning them to the special variabie OUTPUT. This
variable differs from others in having the following special
prorerty: whenever the variable OUTPUT is assigned a string
as 1its value, that value 'is transmitted to a file to be
printed on a line printer which is attached to the computer.
Each execution of a rule in which OUTPUT is assigned such a
value results in the printing of a new line of inforration
(a record). For example, execution of either

OUTPUT

fAEIOU? -
or o

OUTPUT VOWELS

(if the current value of the variable VOWELS is the string

AEICU) would cause the five letters AEIOU to be printed at

the left margin of the next available 1line of the output

paper. : :
If OUTPUT is assigned a null value, as in

OUTPUT

i

or
OUTPUT

RULL

the result is a null record, which aprears as a blank 1line
¢n the output paper. '

OUTPUT may be assigned a string cf any 1length as 1its
value, but only the first 132 characters, the number of
characters available per line on a printer, will be printed.
The entire string, however, remains the value of OUTPUT.and
may thus be assigned as the value of other variables as
vell, The variable 0OoUTPUT, like any cther variable, may he
.used on either side of an assignment rule, as in the
sequence ‘

OUTPUT = VOWELS
ouTPUOT = CUTEUT

COPY ’=l OUTPUT
vhose execution would result in the two lines of output

ATICU
AFICH

Note that although the special variable OUTPUT is
inveclved in all three rules, no printing is produced by the
third because it does not specify that OUTPUT is to be

2A. Assignment _ 13

assigned a value; rather, the value of 0OUTPUT, which at the
time the rule is executed is the string AFRIOU, is assiqgned
to the variable COPY.

The_Special Vvariable INPUT. Data may be read into the
computer's memory by the use of the special variable INPUT,
which differs from other variables in that it has the
fcllcwing property: whenever the value of the variahle INPUT
is needed for the execution of a statement, INPU™ acquires
for its value the next record of the input file. For
example, in the assignment rule

LINE = INPUT

the value of INPUT is needed, so it can be assigned as the
valae of LINE; T1INE receives. as its value the string of
characters in the next input record.

It is important to recognize that the value of TNPUT
cannot be saved or wused without assigning it to another
variable in the same rule in which it is read. The next use
of INEUNT will refer, not to its present value, but to the
next record of the data. Thus the sequence

LINE1 = TNPUT
LINE2Z = INPUT

assigns two successive records to the two variables LINT1
and LTNE2.

This exawmple illustrates an important difference
between the variables INPUT and OUTPHNT: INPUT displays its
special property (to acqguire the next record of an input
file as value) every time its value is needed, but not when
it is assigned a value; OUTPUT displays its special property
(to write a record on an output file) every time it is
assigned a value, but not when its value is needed. Thus the
last value assigned to OUTPUT is always available for
assignment to another variable.

The special variables INPUT and OUTPUT may both be used
in a single rule, as in

OUTPUT = TINPUT

Execution of this rule will cause the characters of the next
data record to be printed by the line printer. Repeated
execution of such a rule could be used to make a printed
listing of an entire group of data (as will he shown in
Chapter 3).

2A. Assignment ' ’ 14

The value of INPUT is always 80 characters long, a
convention adopted sxnce that is the width of a card and of
lines sent from many remote terminals. If the record being
read actually has more than 80 characters, the excess is
ignored; if it has fewer than 80 characters, spaces are
added at the end to fill out the full length., Executing the
rule '

VO¥ELS = INPUT

vhere the next data record has the five vowel c¢haracters
starting in the first position, causes the variable VOWELS
to be assigned a string consisting of the S5 characters AEIOU
followed by 75 spaces.

Other_ Forms of Input _and Output. The input to a Snobol
program may exist in the form of punched cards or it may be
stored on a disk file or on magnetic tape. The output fron a
program may be printed on paper, punched on cards, or
written on a disk file or on magnetic tape. Sncbol provides
the special variable INPUT for reading cards and the special
variable OUTPUT for producing printed paper, but provides no
other special variables for dealing with the other input and
output devices listed above. If the progranmmer wishes to use
these other media, he must cause a variable to be associated
with a file for input or output, and then use that variable
much as INPUT and OUTPUT are used within his program.
Methods of associating program variables with input and
output files are described in Appendix A, section IT.D,

Procedures. The small amount of Snobol so far presented
allows one to enter data into the computer's memory (either
by writing it directly in the ptoqram text in the form of
string and integer literals or by using the spec1al variable
INPUT) and then to print it out (using the special variable
OUTPUT). However, it is seldorm the case that the output is
to be the same as the input; that is, some manipulation of
the data is usually necessary before the desired results can
be obtained. One way of manipulating the data is to invoke
what 1is termed a procedure. Many procedures to perfornm
common tasks are already predefined in the Snobol 1lanquage;
a summary of all the predefined procedures which are
available may be found in Appendix A. Besides using these
predefined procedures, programmers may define their own
procedures and add them to the 1language within their own
proqrams (see Chapter 5/).

A procedure is invoked, or «called, by writing a
procedure reference consisting of the name of the procedure
followed directly by its arqument 1list enclosed within

2A. Assiqgnment 15

parentheses. This means that the Snobol system is to perform
the action of the procedure, using its one or more arguments
as data, and 1s to return the result of carrying out the
action as the value of the procedure call.

The _TRIM() Procedure, The use of the special variable
INPUT almost always results in strings which have spaces at
the end of them. Since these spaces are often not wanted, a
TRIMN{) procedure 1is provided by Snobol which accepts any
- expression whose value is a string as its single arqument;
the procedure returns as its value the same string but with
all trailing spaces removed. Thus those 75 unwanted spaces
which occur in the value of VOWELS when the rule

VOWELS = INEUT
is executed may be trimmed off by using the rule
VOKELS = TRIM(INPUT)

instead. This would give VOWELS the five-character value
AEICU.

#hen the riule
VOWELS = TRIN(INPUT)

is executed, the eighty-character value of INPUT (the next
record) is obtained, the trailing spaces are removed from it
by the TRIM() procedure, and the shortened string is
returned as the value to be assigned to the variable VOWFLS,

Although the TRIM() procedure is most often used to
trim the value of INPUT, it may be used to return the
triosmed value of any string given as its argument. For
example, in the rule

TEXT1 = TRIM(TEXT?)

the call to the. TRIM () procedure returns the trimmed version

of the string which is the value of TEXT2, to be assigned to
the variable TEXT1. The value of TFEXT2 remains unchanged;
that 1is, it still contains any trailing spaces it had when
the rule vas executed. To trim TEXT2 one could use the rule

~ TEXT2 = TRIM(TEXT2)
Note that although variabhles and procedures may have

the same names there 1is no confusion in their use in
(4
program texts, since prccedure names are always followed

28, Assignment : 16

immediately by an open parenthesxs precedlng the argument
list. Thus on9~maypwnnﬁxr*- C— :

TRIN = TRIM(TEXT)
to assign to the variable TRIM the trimmed value of TEXT.

The SIZE() Procedunre. The length of any string may be
determined by a SIZE() procedure, which accepts. any
- expression vhose value is a string as its arqgument; the
procedure returns as its value an dinteger which is the
number of characters in that string. That is, executing

LENGTH1 = STIZE(VOWELS)
would assign to LENGTH1 the integer value 5, while executing
LENGTH2 = SIZE(INPUT)

would assign to LENGTH2 the integer value 80. When the
argument of SIZE() 4is a null wvalue, the result is the
integer value zero. ’ ‘

The length of the trimmed value of INPUT may be
determined by using the procedures TRIN() and SIZE()
together. This may be done by using the two procedures in
tvo different assignment rules, such as

SAVE = TRIMN(INPUT)
LENGTH = SIZE(SAVE)

or, if the value of INPUT were not to be saved but only its
length, by corbining both procedures in a single assignnment
rule, such as ,

LENGTH = SIZE(TRIM(INPUT))

Here the arqument of a procedure reference is still another
procedure reference; clearly, these nested procedure calls
nust be processed from the inside out, since the arqument of
SIZE() 1is not known until TRIM() has returned the result of
its work. As this example shows, an argument of a procedure
reference may be any expre551on vhlch produces a value the
procedure is able to accept.

Operators. Data may also be manipulated by means of a
. number of different operators ¢fprovided within the Snobol
lanquage. Fach operator specifies that some = sort of
operation 1is to be performed on its operand(s). Operators
having a 'single operand are termed unary operators;

2A. MAssignment , 17

operators having two operands are termed binary operators.
Often the same symbol is used in program texts to indicate
both a unary operator and a binary operator with different,
perhaps completely unrelated, meanings. The meanings are
easily differcntiated, however, since a unary operator nust
always directly precede its operand with no intervening
blank; a binary operator must always be bounded by blanks. A
summary of all the orerators available in Snobol may be
found in Appendix C.

The _Concatenation_QOperator. One of the most frequently
used operators 1is the concatenation operator. When the
operands of this binary operator are strings, it specifies
that the two strings are to be concatenated together, i.e.,
that the second string is to be appended directly to the
first., The symbol for this binary operator, since it occurs
s0 often,. 1is simply a single blank (which requires,
therefore, no further blanks to separate it from 1its
operands). For example, the assignment rule

ALPHA = VOWELS CONSONANTS 'YW?

contains two concatenation operators and specifies that the
variable ALPHA is to be assiqgned a string built up hy taking
the value of VOWELS, followed by the value of CONSOMANTS,
fcllowed by the two characters YW. If the variables VOWEILS
and CONSONANTS have previously been assigned the expected
values, then the variable ALPHA will be assigned the value
of all the characters of ¢the alphabet, in the 1indicated
order., The values of VOWELS and CONSONANTS are in no way
changed by the execution of this rule; likewise, subsequent
changes 1in their values can in no way affect the value of
ALPHA, which will change only when another rule specifying
an assignment to ALPHA is executed.

The variable appearing to the left of the assignment
sign may be used within a concatenation on the right as
well, as in the rule

VOWELS = VOWELS ‘YW*

This rule appends the characters YW to the string which 1is
the current value of VOWELS and then assigns this resultina
string as the new value of the variable VOWFELS. The old
value of VOWELS is therebhy lost. '

Rules of this form are often used to collect successive
characters in an increasingly long string. Fxecution of the
rule '

2h. Assignment’ i8

- LIST = LIST NEWCHAR

would cause whatever new character is the value of NEWCHAR
to be appended to those already referred to by the variable
LIST, and the re-assignment to the wvariable LIST of this
longer string. If LIST had a null value, as it easily might
the first time the rule was executed, then it would simply
be assigned the same value as that of NEWCHAR: the
concatenation would indeed take place as spocified but there
would be no evidence that it had occurred since the null
value contrlbutes no characters to the string.

Note that no spaces are generated by the concatenation
process itself. That is, the new characters are appended to
the list in the example above in a contiguous fashion with
no intervening spaces. If spaces are desired in the result
of a concatenation, they must themselves be concatenated
into the string, as in the sequence

QUTPUT
ouTPUT

* AnROSE!? ‘
OUTPUT ‘'uISm' OUTPOUT *nISu' OUTPUT

L]

- whose execution will produce the following outputs:

kK RCSE)
A RCSE IS A ROSE IS A ROSE

More complicated Snobol expressions haf be operands of
the concatenation operator; for example, <the TRINM()
procedure may be used to produce a heading, as in

OUTPUT = t®kakxkkpt TRIM (INPOUT) *okkkkkk?
ot . .
HEAD = TRIM(INEUT) *n' TRIM(INPUT) 'o' TRINM (INPUT)

This last rule specifies that the next three data records
are to be read, their: trailing spaces (if any) trimmed off,
and a single space placed between the trimmed <content of
successive records., The resulting string is then assigned to
the variable HEAD by which it may be referenced in other
statements of the progranm.

If an integer literal is: involvhd in 'a concatenation,
it contributes the string of digits reprpsentlnq ite numeric
value. Thus :

" SUBST

VOWELS 0046
and '

SUBST VOWELS 'ueé?

L

2Ah. Aséignment , 19

produce the same string as the new value of SUBST, namely
AFRICUUSG,

The_Arithmetic _Operators. Four binary operators are
provided witihin Snobecl for doing the four basic arithmetic
operations of addition, subtraction, multiplication, anid
division. The symbols used to represent these operators in
the program text are as follows:

addition +
subtraction -
multiplication *
division /

Since these are binary operators, they mnmnust always be
bourded by blanks. '

The assignment rules

ANSWER = 669 + 527
ANSHER = ((A + B) = (C * (-D))) / E
ANSWIR = (SUN1 / SUM2) + 3

would all assign an integer value to the variable ANSWER,
provided the variables to the right of the assignment siqgns
all refer to values of datatype Integer when the rules are
executed, '

Repeated executions of rules of the form
COUNT = COUNT + 1

are often used to count the number of times a given event
occurs. These rules are in some ways analogous to ones of
the fornm

LIST =. LIST NEWCHAR

which cause a new character to be aprended to the value of
LIST; here a new integer, one larger than its predecessor,
beccmes the value of COUNT. If COUNT had a null value when
the rule was executed, it would acquire the value 1 since
the null value is considered equal to zero when it is an
operand of an arithmetic operator.

The operands of arithmetic operators must always be
numeric; that is, they must be any expressions whose values
are integers, real numbers (numbers containing decimal
points), or aull. Real numbers and integers, however, may
not cccur together within the same arithmetic expression

'2A. Assignuent 20

(i.e., mixed mode arithmetic is not allowed). Further
infcrmation on Snobol arithmetic, including facts about real
numters, conversion of integers into real numbers and real
nunbers into strings, truncation on division, etc., may be
found in Appendix *F, : : : ’

A_Complete Snohol _Program__Text. Given below is a

complete program text which makes use of only a few of the
features of the Snobol 1language already described: it
-employs only assignment, concatenation, and the special
variable OUTPUT; since all data 1is provided within the
program text, the special wvariable INPUT is not needed.
Comments have been inserted in the program text before some
statenents to indicate their ©purpose; a comment is
distinguished by having an asterisk (*) as its first
character. Instructions for representing program texts on

punched cards may be found in Appendix H.

* PROGRAM TG PRINT A PARTICULAR DESIGN INVOLVING FISH

* SET UP THE BASIC COMPONENTS
LT = e
GT = 1>°v
BLU = ‘nogon?
BL10 = BL4 BLU *an!
*
* BOUTILD FISH WHICH SWIM LEFT, SWIM RIGHT, AND MATE
LFISH = LT GT LT
RFPISH = GT LT GT
MPISH = LFISH GT
* :
* BUILD LONGER STRINGS COMPOSED OF DIFFERENT KINDS OF FISH
LSWITM = LFISH BLO4 LFISH BL4 LFISH BLH4 LFISH BLU
RSWIM = RFISH BL4 RFISH BL4 RFISH BLU4 RFISH BLY
MSWIM = MFISH BL10 MFISH BL10 MFISH BL10 MFPISH
SCHOOL = RSWIM LSWIM '
* ,
* PRODUCE FOUR LINES OF OUTPUT
" QUTPUT = RSWIM RSWINM
OUTPUT = LSWIM LSWINM
OUTPUT = SCHOQL
OUTPUT = MSWTH
END "
Output from this program is the design shown below.
><> ><> > ><> ><> ><> ><> OO
< <>< <><K - €< <>< <>< <>< <><
><> ><> >0 ><> <>< <>< - <O>KL <<
O ' OO OO ' <D

21

3A. THE FLOW OF CCNTROL

The statements which make wup a Snobol program are
seldom designed to be executed in the order in which they
are written in the program text. Instead, certain scgments
of +the program, consisting of one or more statements each,
are intended to Dhe executed repeatedly until some
terminating condition is encountered. This condition may be
that a certain pattern of characters has occurred in the
data, that the data group is exhausted, that the segment has
been executed a certain number of times, etc. Once the
terrinating condition has been met, then repeated execution
of another such segnment, or "loop," may begin. The choice of
the particular seguent to be executed can be made dependent
on certain features of the data being processed, so the use
of the same program with different data will often result in
the execution of a different set of statements from within
the program. The actual order in which the statements of a
program are executed is called the "flow of control."

The flow of control is specified by means of labels
which are given to staterents for purposes of reference, and
ky reans of go-to's which indicate the statement to bhe
executed next hy making reference to its label. The label of
a statement is written to the left of its rule, and the go-
to is written to the right, as in

ASSIGN VOWELS = 'AEIOU?® ¢ (NEXT)

Here the 1label of the statement 1is ASSIGN, the rulae
specifies an assignment, and the go-to specifies that the
next statement to be executed after this assignment takes
place is the one labtelled NEXT. TIf the go-to part of a
statement is absent, it is understood that control flows by
default to the following statement of the progran.

Labels. Any statement may be given a label so that it
may be referred to by other statements of the proqram, or
simply by the programmer for his own convenience. A lahel
must always be an identifier and should be chosen so as to
be mnemonically usefil, Care nmust be taken when givina
statements labels to see that the same label does not occur
twice within a single program, or a compile-time error will
occur.

Labels are distinguished from the names of variables in
a Snobol statement by their position. A label, if present,
must always start in the first character ©position of a
statement and nmust be separated frem the rule, if present,

3A. The Flow of Control ‘ ‘ 22

by cne or more blanks; if a statement is not ‘labelled, the
rule must begin with a blank. Because they are distinguished
by position, labels and variable names of the same form may
be used freely togethker without ccenfusion, as in

VOWEFLS VOWELS = VOWELS ‘'YW'

which is a statement labelled VOWELS, whose rule Specifies
that the variable named VOWELS is to have the characters YW
concatenated to its value,

It is sometimes convenient to write a statement which
consists solely of a label, as in

READ

since this makes subsections of the program text easy ¢to
locate and makes modifications simpler.

Go~to's. The presence of a go~to within a statement is
signalled by the occurrence of a colon which serves as an
explicit separator between the go-to and any. other part of
the statement which mray have preceded it. Following the
colon (which may optionally be bounded by one or mnore
blanks) the information as to which statement is to be
executed next is provided by writing the 1label of that
statement within parentheses., For instance, the statement

: (TEST)

consists of a go-to only (it has nc label and no rule) and
specifies that the next statement to be executed is the one
labelled TEST.

Usually a go-to'folldws a tule, as in the statement
VOWELS = TRIM(INPUT) ¢ (TEST)

which specifies that after the assiqgnment is performed, the
next statement to be executed is the one labelled TFST.

The form of the go-to's Jjust shown is called:
unccnditional, because execution of the statement in which
they occur will always cause a transfer of control to the
statement labelled TEST. More commonly, go-to's are
conditional upon the possible failure of the rule which
precedes them 1in the same statement. This causes a choice,
or branch, to occnr in the flow of control and allows the
data to determine which path through the program will be

3h. The Flow of Control

[\S
w

followed next. (Ways 1in which rules may fail will be
indicated presently.)

Conditional go-to's are written like unconditional gqgo-
to's, with the addition of a prefixcd P (for failure) or S
(for success). The statement

TEST LINE = INPUT : F(WRITE)

specifies that control be transferred to the statement
lakelled WRITE only 1if the rule LINE = INPUT fails.
Similarly, the statement

TEST LINE = TINPUT - ¢ S(READ)

'specifies a transfer to the statement labelled READ unigss
the rule fails (i.e., if it succeeds). In either statement,
if the condition for transfer is not met, control will pass
by default to the next statement of the program. Thus a
conditional go-to alwavs enbodies both a success and a
failure transfer, even though one of “hem may be expressocd
implicitly rather than explicitly. Foth a success and a
failure transfer may be written explicitly 1in a singie
statement as in

TEST LINE = INPUT : F(WRITF) S {READ)

Since both cases are provided for explicitly, control will
rever pass to the following statement by default, The order
of the success and failure transfers is immaterial and the
space betwean them is optionaly the only important
requirement is that no blank may intervene between an F or
an S and its following open parenthesis.

The_Special Transfer END. A go-to specifying a transfer
to END is used to terminate execution of a program. This
transfer has a special system definition, and constitutes a
request to the Snobol system to stop executing. Apy number
cf statements in a program may contain go-to's specifying
transfers to FND, and the first such transfer to be taken
ends execution of the proqgram.

An alternative way of terminating execution 1is to
execute the statement which stands last in the program text,
without taking a transfer from it back to some other
statemnent of the program,

There is no restriction aqainst using FND as the label
of any statcement of the program text, but if this is done
its special system definition is 1lost. The convention

3A. The Flow of Control , : 24

adopted here is to terminate every ‘program text with a
statement consisting solely of the label ‘

END

A transfer to END causes this last statement to be ‘executed
and the flow of control continues on to the next statement;
since there is no next statement, the program terminates and
the effect 1is the same as if the system definition of END
had not been overridden, :

Failure of the Rule. Failure of the rule 1is not an
error and does not cause execution of the program to cease.
Rather, it is used to direct the flow of control and to
prevent the rule which has failed from continuing execution.
When a rule fails, control is sent immediately to the go-to
part of the statement so no further processing of the rule
is undertaken; in particular, the assignment specified by an
ascignment rule does not occur. If the statement in which
the failure occurs has no go-to, ccntrol passes by default:
to the next statement of the program; if the go-to is
conditional (as would wusually be the case) the failure
transfer, expressed explicitly or-implicitly, is taken; if
the go~to is unconditional, this unconditional +transfer is
used.

Failure of INPUT. There are a variety of ways in which
a rule can fail. Of the rules presented so far, however,
only those which call for the reading of data -—— those 1in
which the value of INPUT is needed —- have any possibility
of failing. Such a rule will fail when an end-of-group
reccrd is read, i.e., when there are no more data records in
the group to become the new value cf INPUT. The ability to
test for an end-of-group mark, and to direct the flow of
control if it is encountered, makes it possible to specify
that scme process is to be performed on all the records of a
data group without having to specify how many records that
might be. For example, all the records of a data group, no
matter how many there are, may be printed by executing the
fcllowing very simple complete program text. '

REAT OUTPUT = INPUT : S (READ)
END

Every time the statement 1labelled READ 1is executed,
INPOT acquires the value of the next data record. If that
value is not an end-of-group mark, it 1is assiqned to the
variable OUTPUT and hence printed. Since the rule has not
failed, control is sent back to READ and the process is
performed again. This single statement, a one-statement

34. The Flow of Control 25

loop, will be executed repeatedly until the end-of-group
mark 1is encountered, causing the rule to fail. In this case
the assignrment will not take place and the value of OUTPOUT
will remain unchanged. Control will then flow by default to
the statement labelled END, terminating the program.

More than one data group may be processed by a single
pregram since the readinqg of an end-of-qroup mark does not
prevent fur+her reading of data. The following program text
prints two data groups, the first in single-spaced format
(as above) and the second in double-spaced format (with a
blank 1line following each record). It prints a message at
the end of the first group.:

READ 1 OUTPUT = TINPUT : S(READY)
~ OUTPUT = *ENDnOFuGRCUPnONE,?
REAL? OUTPUT = TINDPUT -+ F(END)
OUTPUT = NULL : (READ2)

END

The one-statement loop labelled READ1 fails when INPUT
acquires the value of the first end-of-group mark, but the
next use of INPUT (in the two-statement 1loop stavriing at
READ2 causes it to acquire the value of the first data
record in tihue second group. Fventually a failure of TNPUT
will occur in this statement as vell, when a second end-of-
group mark 1is read, sending control to END and thus
ternrinating the program.

Fvaluation_ Rules. A rule in a program text consisting
of a single expression only is called an evaluation rnle.
The statement

INPUT : F (DONE)

consists of an evaluation rule and a go-to. When such a
statement 1is executed, the single expression of the rule is
evaluated, often causing success or failure of the rule ¢to
be determined; then the go-to part of the statement, if any,
is rrocessed. The staterent above indicates that a record is
to ke read from the input file, and a transfer taken to DONT
if that record is an end-of-group mark. No provision is made
for preserving the data which is read, but there are some
aprlications in which the data is not needed. The two
complete program texts bhelow provide examples of such
aprlications: the first is a program to count the number of
records in a group and to print the result; the second
prints every other data record in a qroup, starting with the
seccnd record.

3A. The Flow of Control S 26

* PROGRAM TO COUNT THE NUMBER OF RECORDS IN A GROOUP

READ INPUT - | ~: F(DONE)
‘COUNT = COUNT + 1 : (READ)
DONE OUTPUT = CCUNT 'nRECORDS®
END -
* PROGRAM TO PRINT EVERY OTHER RECORD STARTING WITH THE 2ND
REAT INPUT : F(END)
OUTPUT = INPUT 't S(READ)
END ~ ' ' '

Evaluation rules are commonly used to direct the flow
of control through failure of the rule; they can also be
used to cause a variable to have a special input or output
asscciation attached to it, to define a new procedure, etc.,
'in ways to be described later; in these cases failure of the
rule is not invoived.

Test_Procedures. Failure of the rule may also be caused
by the failure of a procedure call which occurs within the
rule. Snobol provides nine predefined procedures, called
test procedures, which are used primarily to direct the flow
of control. Each test procedure accepts twe arguments and
tests to see whether or not some specified relation, such as
equaliity, holds between them. If the test succeeds, the test
prccedure returns the null value and execution of the rule
continues, If the test fails, the rule of which it is a part
fails as well and control is sent immediately to the qo-~to
part of the statement where the failure transfer will be
taken.

The_Test Procedures_ IDENT() and DIFFER(). IDENT() and
DIFFFR() may have arguments cf any datatype; they are used
to determine whether or not the values of their arguments
are identical. In order to he identical, two values nust Le
- 0f the same datatype; if both arguments are of datatype
String or both of datatype Integer, theéen they are tested for
character for character identity. Note that the null value
is not identical to <zero, since zero is represented by a
single character, even though the null value 1is considered
equal to =zero vwhen used in arithmetic operations. IDENT ()
and DIFFER() perform exactly ¢the same test but return
opposite results: IDENT() fails if its two argquments are not
identical, while DIFFER() fails if its two arquments are
identical. Thus the following statements are equivalent:

IDENT (STRING1, STRING2)
DIFFER(STRING1,STRING?2)

S (SAME)
F (SAME)

.3A. The Flow of Control 27

Spaces, of course, nmust be considered as any other
character in the data, so if the rules

STRING1

*KINGoLEAR!
and
STRING?2

YKINGoLEARO!

had just been executed, the rule with IDENT() above would
fail while the rule with DIFFER({) would not.

It is often important, for reasons which will be
indicated presently, to know whether or not a given variable
has a null value. This can be determined by the execution of

IDENT (STRING, ') ' : S(EMPTY)
or .
DIFFER {STRING, NULL) : F(EMPTY)

or something similar. Since any missing arqument of a
procedure reference is assumed to be null, the simplest (if
not perhaps the clearest) vay to write the above statenent
is in the form

IDENT (STRTNG) : S (EMPTY)

The_Test_Procedure LGT(). LGT() compares two strings to
determine whether or not the first is "Lexicographically
Grecater Than" the second -—-— that is, whether the first
follows the second in alphabetical order. For example, the

— s o <o

sequence

STR1 = 'ABB!
STR2 = 'ABC! : ‘
LGT{STR2,STR1) : S (WRITE)

will send control to WRITE since ABC alphabetizes after ABB.

The string values being compared may be of any 1length
and may be composed of any characters; the "alphabetic
order" of non-alphabetic characters is determined by the
order of the computerts character set {(see Appendix I).
Although the character "space" has special significance in
most written lanquages, it is treated as any other character
by the computer, so its relative position within the
character set nust be taken into account when alphabetizing
material containing spaces.

If either of the values being compared by LGT() is not
a string, an execution-time error will result.

38, The Flow of Control o 28

Arithmetic _ Test _ Procedures. The remaining 'six
predefined test procedures compare two numeric values for
the following arithmetic relationships: '

procedure relat;ggggﬁg

EQ (X, Y) X equal to Y

NE (X, Y) X not equal to Y

LT(X,Y) X less than Y

LE (X,Y) X less than or equal to Y

GT (X, Y) X greater than Y -

GE(X,Y) x‘greater than or equal to Y

*

All these procedures fail if the 1ndlcated relatlonshlp does
not hcld. : :

EQ() and NE{) are very similar to IDENT() and DIFFER(),
except that here arithmetic identity, rather than character
for character identity, is required. Thus EQ(23,'+00023")
will not fail since both arguments have the numreric value of
23, while IDENT(23,'+00023*) -will fail since character for
character identity <cannot be found between two strings of
different lengths. The expression EQ(NULL,0) succeeds since
the null value and zero are arithmetically identical.

If either argument of an arithmetic test procedure has
a non-numeric value, an execution-time error results.

Test _Procedures within Assignment Rules. Any number of
references to test procedures may be embedded within the
right-hand side of an assignment rule where they are used
not only to direct the flow of control but also to determine
vhether or not ¢the assignment is to be executed. For
example, the statement

STRINGY = IDENT(STRING1,NULL) STRING2 : ¥ (SKIP)

specifies that STRING1 is to be given the value of STRING2
only if STRING1 has a null value when the rule is executed.
If it is non-null, then the IDENT() procedure will =<signal
failure, sending control to SKIP before the assignment takes .
rlace, so the value of STRING1 will remain unchanqed.

Qeveral arithmetic test procedures may be used in
conjunction with one another to specify a vange of
acceptable values. The following rule for example, allows
the printing of a record having from 2 to 10 characters
only.) '

3A. The Flow of Control . 29

OUTPCT GE(SIZE(REC) ,2) LE(SIZF (REC),10) REC

If either of the test procedures signals failure, no output
is produced.

The following single statement employs two . references
to test procedures to specify that a transfer is to be taken
to LOOP2 if the value of N is either 0 or 1; if 'N has
neither value, then whatever value it has is increased by 1
and control flows by default to the next statement.

N = DIFFER(N,0) DIFFER(N,1) N + 1 : F(LOOP2)

The desired condition here is that the value of N be
either 0 or 1, so there is no need to differentiate the two
cases. However, it is often necessary to know which part of
the rule has signalled failure and to take different
transfers accordingly. Consider, for instance, the problem
of giving STRING, if it is null, the value of the next data
record. The statement

STRING = TIDENT(STRING} TRIM(INPUT) : F (SKID)

will send contrcl to the statement lahelled SKIP if STRTING
is non-null but also if an end-of-group record is
enccuntered, making nc differentiation between the tvwo
cases., Different transfers will usuvally be needed for these
two situations, so in this case it will be necessary to
exfpress the process in two statements, each having a failure
transfer, such as the following:

NEXT = TRIM(INPUT) : F (DONF)
STRING = IDENT (STRING) NEXT : F(SKIP)

The placement of a reference to a test procedure within
the right side of an assiqgnment rule implies that the value
which the procedure returns is to be concatenated with any
other right-side values before assignment occurs., All test
procedures return null values, so the result of such
concatenation is never visible; the null value concatenated
with any other value leaves that value unchanged.

Lcops. Any useful proqram will contain at least one
(and usuvally many) loops which are to bhe executed repeatedly
until some terminating condition is encountered. These loops
may consist of any number of statements (they are typically
- lcnger than the one and two-statement loops which have been
the only exanmples presented so far), and may overlap or bhe
nested within one another. The terminating condition may bhe
that an end-of-group record is read (as in the earlier

3A. The Flow of Coﬁtrol . o 30

examples), that some other feature of = the data is
encountered, or that the 1loop has been entered a certain
nusker of times., Every time a loop 1is .entered it is
necessary to perform some test, often with the use of a. test
procedure, to determine whether or not the terminating
condition has been met; if it has, control is sent out of
the loop to some other part of the program. If the test is
accidentally onitted, or set up wrongly, then there may be
no way to leave the loop and the set of statements of which
it is composed will be executed rereatedly until the program
is terminated by the computer's operating system. When this
happens, the program is said to be in an "infinite" loop.

Loops _Controiled by Data__Conditions. The terminating
condition for a loop may be that a record of a certain form
is encountered in the data. If this record 1is an end-of-
group nark, then the test for its existence can be made by
simply providing a failure transfer on a statement in which
the value of INPUT is needed. However, it is often useful to
‘divide the data into "subgroups," each of which is
terminated by a record having a special pattern of
characters, such as one consisting of asterisks as the first
sizx characters, followed by spaces., If each subgroup is to
be processed separately, then a test must be made for this
special signal each time a record is read, and a transfer
taken accordingly. '

IDENT () or DIFFER() can be used to make this kind of
test. For example, the following program segment reads ani
prints all data records until one with asterisks as the
first six characters and no other non-space characters is
encocuntered; when that record is read, -control 1is sent to
STARS which may be the initial statement of another loop.

READ RECORD = = TRIM(INPUT) ¢ F{(ERROR)
IDENT (RECORD, " ®kkkkxt) : S{STARS)
OUTPUT = RECORD : (READ)

Note that provision is made for the possibility that a
record consisting of six initial asterisks will not be found
in the group, i.e., that the program is processing the wrong
data. This condition may be treated by transferring to a
statement labelled ERROR when an end-of-group mark is read.
Here an appropriate error message may be written and control
sent either to END or to some other part of the program,
depending on the sort of tasks which still remain to be
done. If such an error exit were nct provided there might be
no indication from the program that anything was wrong, and
it might attempt the processing of many qroups of erroneous
data. In any event, the program has entered an infinite loop

3A. The Flow of Control : 31

since it is persistently seeking a terminating condition
vhich will never be found.

loops_Controlled by Counts. Arithmetic test procedures
are often used to control the number of times that a loop is
to ke entered before control is sent to some other part of a
program; that is, the terminating condition for such a loop
will be that it has been executed a given numher of times.
Using the FQ() procedure, for example, one may write a loop
to print 5 data records, and then go on to the rest of the
program. (If +there are 1less than 5 records to be read,
centrel is sent to ERROF where an appropriate error nmessage
can te printed.)

LOOP OUTPUT = TINPUT : F(ERROR)
COUNT = COUNT + 1 :
FQ (COUNT, 5)

..

F (LOOP)

A similar loop may be written by wusing the LT()
procedure and emhedding it within the second assiqgnment
rule, as follows:

LOOF OUTPUT = INEUT : F(ERROR)
COUNT = LT(COUNT,U4) COUNT + 1 : S (LOOP)

In this segment it has been necessary to use 4 as the
test value rather than 5 since the procedure call is
executed before the value of CCUNT is incremented, ratherv
than after as in the wearlier example. In both segments,
COUNT is assumed to have the null value when the segment 1is

executed for the first tinme,

Information as to the number c¢f times that something is
to be done may be found on a data record or computed during
the course of execution, rather than being written directly
into the program text. For examrle, the following segment
would cause the LOCP to be entered as many times as there
were characters in each data record that it was processing.

READ RFCORD = TRIM(INPUT) : F{(ENDDATRH)
' N = SIZE(KECORD)
Loop N = NE(N,0) N -1 : P (READ)
[series of statements to process record)
: (Loovr)

Here the test has been placed at the bheginning of the
loop instead of at the end, and the counting has heen done
by suttraction rather than by addition. It might seen
clearer and more intuitive to perform the prccess first and
to test for the terminating condition afterwards (as in the

3h. The Flow of Control | : o : 32

two previous exampleé). For instance, the program text

REAL - RECORD = TRIM(INPUT) -t F(ENDDATA) .
N = SIZE(RECORD) R - ’
LOOP [series of statements to process record) ' N
N = NE(N,1) N - 1 't S(LOOP) F (READ)

might seem to be eguivalent to the one given above, in the
sense cf always producing the same result. An examination of
the case of a one-character record shows that the program
aprears to work properly. In this case it would perform the
prdfcess once, find that N was equal to 1 and then leave the
loop correctly by transferring to READ and reading in the
next record. : .

, The difference between the two prograns becomes
apparent when one attempts to process a record consistinag
solely of spaces which when trimmed becomes null. The
program which tests before processing will handle records of
size zero appropriately by failing the first time the 1loop
is entered and returning immediately to read the next
record. The program which processes first and then tests
will pertorm the process once (erroneously) and then will
test to see whether the value of ¥ is equal to 1. Since it
is zerc, the value of N will be decreased by 1 to become -1,
and control will be sent back into the loop so the process
will te performed again., Henceforth the value of N will
never equal 1, but a series of constantly decreasing
negative numbers., The terminating condition will thus never
be met and the program has entered an infinite loop.

33

4a. PATTERN MATCHING

The process of searching a string of characters to
determine whether or not it contains one of a specified set
of strings is called pattern matching. The pattern heinag
sought may be something very particular, such as a certain
character or a certain number of characters, or it may be
scmething .much more general , such as one of a choice of
characters or all characters preceding one of a choice of
characters. Like calls to test procedures, pattern matches
either succeed or fail, causing the rules in which they
occur to succeed or fail as well. Thus pattern matching may
be used to direct the flow of control.

. The Pattern-Matching BRule. The pattern-matching rule

consists of two main parts: .the string reference, whose
value is to be searched, and the pattern. These two parts
must be separated in the program text by one or more blanks.
The very simple pattern-matching statement

VOWELS 'E! : S(YES)

specifies that the current value of VOWELS is to be searched
for an 1instance of the character F, and that a transfer is
to be taken to the statement labelled YES if the search is
successful. TIf the search fails, then control will flow by
default to the next statement of the program. Whether the
search succeeds or fails, the value of VOWELS is in no vay
affected. ‘

The pattern part may be in the form of a variable,
rather than a 1literal, and may have a value consisting of
more than one character. For example, the sequence

paT = 'IO0U
VOWELS PAT T S (YES)

specifies a search through the value of VOWELS for the
three-character string IOU. This pattern match will succeed
(if VOWELS has the value ARIOU) with the third, fourth, and
fifth characters of the string reference being matched, and
control will be sent to YES.

The search for the pattern always begins with the first
character of the string reference and continues through the
rest of the string from left to riqght until either a match
is found or all characters have heen tested. Note that if
the first statement akove had read

.4A. Pattern MatChinq ' 34

PAT = 'QUI*

the search would have failed. The characters OUI are indeed
present within the string reference, but not in the
indicated order. ’ h ‘ :

The string reference part of a pattern-matching rule
may be any expression which gives a string when evaluated.
Thus executing the statement - ‘

TRIM(TEXT) ‘'aTHEn? t S(YES)

will cause the expression TRIM(TEXT) to be evaluated, and
its value to be searched for an instance of the word THE,
surrounded by spaces. Similarly, the use of the variable
INPUT within the string reference 4ill cause it to acquire
the value of the next data Trecord, since this value will be
needed for the execution of the statement. B statement of
the form

TRIM(INPUT) ‘'uTHEn? ¢ S(YES)

however, is not likely to be useful since (1) the value of
INPUOT has not been assigned to another variable and hence
will be lost, and (2) no distinction is made between failure
of INPUT and failure of the pattern match.

The _Replacement Rule. The replacement rule specifies a
pattern which is to be sought in the string reference, and
alsc a replacement for that part of the string which is
matched by the pattern if the search is successful. For
example, the replacement statement '

WORD *AY = vy : S(FOUNDA)

specifies that the character A is to be sought within the
value of WORD and that the first A which is found, if any,
is to be replaced by a Y. This new string, with Y in place
of A, 1is. stored within the memory and assigned to the
variable WORD: the o0ld value ¢f WORD is lost.

Note that the search succeeds, replacement occurs, and
control is sent to the go~to part of the statement as soon
as the first (leftmost) instance of the pattern is found, so
successive instances of the pattern remain unfound and
unaltered. In order to change, for example, all A's within a
string reference to Y's, one would write a loop of the form

SELF WORD YAy = 'Y ' ¢ E(SELF)

.4A. Pattern Matching .35

When this rule failed, any A's which had been within the
original value of WORD would all have heen changed to Y's.
If WORD referred to the value SASSAFRAS when the 1loop was
first entered, its new value would be the string SYSSYFRYS.

The replacement for a matched substring may be shorter
or longer than the string it replaces. Thus one nay write a
rule to replace a double vowel by a single one, as in

WORD 'EE* = g
or a single vowel by a double one, as in
WORD 'EY = 'EE

While it is perfectly safe to write the first of these
replacemrent statements in a loop, so that all double (or
trirle, etc.) E's are reduced to a single %, execution of
the statement

SELF WORD 'E' = ‘YEE? t S(SELF)

to make all single E's into double ones wili send the
program into an infinite loop if the value of WORD contains
an E., Care nust always ke taken wvhen writing replacenont
statements in a 1lcop to insure that the pattern is not
contained within its replacement, unless some terminating
condition other than pattern match failure is used.

Deletion of a matched pattern may be accomplished hy
providing a null value to the right of the assignment sign.
Thus one may delete all ©E's from a string reference hy
executing a statement of the form

DELETE WORD *E* = NULL s+ S(DELETE)

which will fail only when no E's remain within the value of
WORD.

The replacement rule, which is syntactically a
conbination of a pattern-matching and an assignment rule, is
the last of the four types of rules in the Snobol 1language.
If the rule part of a statement is non-null, it nmust call
for either an assignment, an evaluation, a pattern match, or
a regrlacenent.

The Alternation_Operator. The alternation operator, a
binary operator designated by the symbol | , is used to
specify alternatives within a pattern. The pattern-matching
statement

4UA. Pattern Matching S o 36

WORD *a* | ‘Bt : S(YES)

specifies that the value of WORD is to be searched for
either an A or an E, and if either is found a transfer is to-
be taken to YES. '

More than cne alternation operator may be used within a
pattern, as in the statement

WORD *A' | *E' | *'I' | *O' | 'U°" : S(YES)

which will succeed if the value of WORD contains any of the
five vowels. The search for a match proceeds as follows: the
first character of WORD is checked successively for being A,
B, I, 0, or U; if it is none of these the second character
is checked beginning with the A alternative, and so on. As
soon as any one of the alternatives is found, transfer is
made to YES, The pattern matching fails only wvhen all
characters of WORD have been examined and no alternative of
the pattern has been found.

The alternatives may consist of any nunber of
characters, not just a single character as in the example
above, One may search a line to determine whether or not it
contains one of a number of words, where a word is defined
as a sequence of characters surrounded by .spaces, by
employing a statement of the form

N LINE 'pAn® | *o' WORDT1 *m* | *n' WORDZ 'n! :‘S(YES)

The values of WCRD1 and WORD2 may be strings of any 1length,
An alternative way of writing this pattern is used in the
statement ‘ ’

LINE ‘o {(*A' | WORD1 | WORD2) ‘o : S(YES)

Here, parentheses are necessary since the concatenation
operator takes precedence over the alternation operator; if
the prarentheses were nmissing, the statement would be
equivalent to ' : '

LINE taa’ | WORD1 | WORL2 'm? » : S(YES)
whlch is not what was intended. |

The_Pattern Procedures_ANY () and NOTANY(). Snobol has a
number of predefined procedures for use solely in
contructing patterns. The pattern procedures ANY() and
NOTANY () provide an efficient way of expressing alternation,
where the alternatives are single characters only. The

-4A, Pattern Matching ‘ 37

pattern-matching statement
WORD 'A® | 'E* § *I' | '0Q' | 'U' : S(YES)'

which employs four instances of the alternation operator may
be written instead as

WORD ANY ('AEIOUY) : S(YES)
or

WORD . ANY (VOWELS) : S(YES)
or

WORD ANY (TRIM(INPUT)) : S(YES)

(1f both VOWELS and TRIM(INPUT) have the value AFRIOU). ANY ()
accepts for its single arqument any expression whose value
is a string, and returns as its value a pattern which will
match any single character of that string. The pattern
returned by ANY() contains only a single test for each
character of the argument string, no matter how mnany
instances of that character the string contains. That 1is,
the pattern returned. by ANY('SAGAS') is equivalent to that
of 'S* | 'aAv | G

The companion procedure to ANY() 1is NOTANY() vwhich
returns a pattern to match any single character not
represented in its arguwent. Thus

WORD NOTANY('RAEIOU®) : S{YES)

will match the first character within the value of WORD
which 1is not a vowel. This match will succeed if any
character of the complete character set, except A, E, I, O,
or U, is found.

It is always better to use ANY() or EKOTANY() where
single character alternatives are involved, but it will bhe
necessary to use the alternation operator for alternatives
of more than one <character. Both methods of expressing
alternation may be used together as in the statement

WORD *YW' | *YI' | ANY('ARIOU'} : S(GOOD)
The alternation operator and pattern procedures may bhe
used within replacement rules as well as within pattern-
matching rules., For example, the replacement rule

WORD ANY('AETOU') = X

specifics that the first vowel within the value of WORD is
to be replaced by an X; the rule

4A. Pattern Matching : oWt o 38

WORD NOTANY ('0123456789') = NULL

specifies that the first non-digit is to be deleted. Fither
rule may be written in a 1oop to speclfy that all vowels are
to te replaced by Y's. o i : :

LOOE1 WORD ANY (*AEICU') = vY? : S(LOOPM)
or that all non-digits are to be deleted
LOOE2 WORD NOTANY ('0123456789*') = NULL = S (LOo0P2)

The _Conditional__Assignment _Operator. It is cften
important when using a pattern which will match any one of a
number of strings to preserve the information as to - exactly
‘what has been matched 1in the.search. This may be done hy
assigning the matched substring as the value of a variable
with the conditional assignment operator, a binary operator
vhose symbol is a period. The pattern-matching statement.

WORD (*AW®' { *AY' | ANY ('RAEIOU')) . SAVE : F(NO)

specifies that the value of WORD is to be searched for ‘the
alternatives, and that the part of the string reference
which satisfies the pattern is to be assiqned to the
variable SAVE. If the value of WORD does not contain any of
these alternatives, then the match fails and no assignment
takes rlace, i.e., the value of SAVE remains unchanged.

{(Note that these particular two-character alternatives
must he expressed before the one-character alternatives:
once an A is found the rule succeeds, so a search for RY or
AW would never be undertaken if they were not the first
alternatives to be tried.)

. ‘More than one conditional assignment operator may be
used to assign the same: value to -more than one variable. The
statement : . R , .

WORD ANY('AEIOU') . SAVE1 . SAVE2 . SAVE3 : F(NO)

assigns the first vowel within the value of WORD to the
variables SAVE?1, SAVE2, and SAVE3. : : :

If the variable OUTPUT is used, as in
LINE (WORD1 { WORD2: | WORD3) . OUTPUT

the successful match will be printed. The use of parentheses
"is’ necessary here since the conditional .assignment operator

UA, Pattern Matching 39

asscciates itself with the single pattern element
immediately to 1its 1left; if the parentheses were missing,
QUTPUT would be assigned a value only if the value of WORD3
vas the pattern alternative wvwhich caused the rule to
succeed., (If that is what is intended, of course, then the
parentheses should be omitted.)

The conditional assignment operator is useful within
replacement rules in which the ratched pattern is to fornm
- part of the replacement. If the first vowel found is to be
reduplicated, one may use a statement of the form

WOPD ANY('AEIOU*') . SAVE = SAVE SAVE : F(NOVOWEL)

since the value assigned to SAVE is immediately available
for use on the right side of the rule., If the pattern fails,
control is sent directly to the go~to part of the statement,
so no assignment can occur, either to SAVE or to WORD.

Concatenation of Patterns, The concatenation operator
can be wused with operands which are patterns, as vell as
with strings. For example, in the statement

WORD ANY (*AEIOU") 'yt = 'y' : TF(NOVOWELY)

the coperands of the concatenation operator are the pattern
values returned by a call to the ANY() procedure and the
string Y. The result is a pattern which will match any vowel
which 1is followed by a Y; if this pattern is found it is to
be replaced by a ¥ alone (i.e., the vowel is to be deleted).
If instead the Y vere to he deleted, a statement of the form

WORD ANY(*AETIQU') . SAVE 'Y' = SAVE : F(VOWELY)

could be used. Here only a part of the matched pattern (the
first vowel directly preceding a Y) is to be assigned to the
variable named SAVE. Note, however, that the entire pattern
must be found before such assignment can occur.

It is often useful ¢to assign the different wmatched -
parts of a string reference to different variables. Tor
example, a pattern to search for clusters of three
consonants, and to assign each «consonant to a different
variable, is employed in the rule

WORD ANY (Cy . C1 ANY(C) . C2 ANY(C) . C3
(Ii is assumed here that the value of C is a string of

conscnants.) The pattern in this rule is the concatenation
of three pattern elements, each of vhich consists of a

4p. Pattern Hatcﬂing ‘ 40

reference to ANY() and a conditional assignment. The three-
consonant string may be assigned to the variable CCC as
well, Dby placing the entire pattern within parentheses and
usirg one more conditional assignment operator, as follows:

WORD (ANY (C) . C1 ANY(C) ..C2 ANY(C) . C3) . CCcC

None of the variables will acquire a new value 'unless the
entire pattern is successfully matchead. '

The Tmmediate _Assignment Operator. The™ immediate
assignment operator 1is a binary operator whose symbecl is a
dcllar sign ($). Tt 1is very similar to the conditional
assignwent operator except that it causes the immediate
assignment of any matched substring to a variable, whether
the remaining elements of the pattern are matched
successfully or not Thus if the rule above wvere rewritten
as

WORD (ARY(C) $ C1 ANY(C) $ C2 ANY(C) . C3) . CCC

"then C1 and C2 wonld acquire new values each time partial
matches occurred, but C3 and CCC would acquire new values
only vhen a substring of three <contigquous consonants was
found. For example, if WORD had the value ADIEU then CH1
would acquire the value D when the match was attempted,
while the rest of the variables remained unchanged; if WORD
had the value CHATEAY then C1 would acquire the successive
valwes C, H, and T, and C2 would acquire the value H, as
repecated (but unsuccessful) attempts were made to find the
pattern. Thus the 1immediate assignment operator may bhe
useful in determining how much of a pattern was succpv sfully
matched before failure occurred.

Both the conditional and immediate assignment operators
may be applied to the same pattern element, as in the rule

WORD ANY (VOWELS) $ SAVE1 . SAVE2 'T¢

which specifies a search for any vowel which 1is followed
directly by a T. (The order 1in which the immediate and
conditional assignment operators occur is immaterial.) 1IFf
the pattern match succeeds, then both SAVE1 and SAVE2 will
refer to the same value, that cf the first vowel encountered
wvhich occurred directly before a T. If WORD contained one or
more vowels, bhut not one occurring before a T, +then the
match will fail and the value of SAVE? will be unchanged,
but SAVE1 would acquire as :.successive values all vowels
vwithin the value of WORD which were encountered in the
attenmpts to find the pattern. : : :

4n. Pattern Matching ‘ ' 41

The variable OUTPUT may be used in conjunction with the
immediate .assignment ogperator to produce a printed trace of
the progress of the pattern-matching operation. For example,
if the variable OUTPDT were written in place of SAVE?1 above,
producing the rule ‘

WORD ANY (VOWELS) $ OUTPUT . SAVE2 *T¢

and the value of WORDS was the string FEFCCLESIASTICAL, then
the following output would be produced:

= e ¥ T

When a transfer was taken to the next statement, the value
of oUTPUT wonuld be A and the value of SAVE2 would not have
been changed, since the pattern match did not succeed.

The_Pattern Procedures SDPAN() _and BRFAK(}. SPAN() and
BREAK() are procedures which match not just a single
character but a string of characters of indefinite 1length.
SPAN(} returns a pattern which matches a string composed
solely of the characters specified within its argument. Tor
example, a string consisting of one or more vowels nay bhe
specified by the pattern

SPAN('AEIOU")

BREAK() returns a pattern which matches a string composed of
any characters except those specified in its argument. Thus

a string consisting of anything bhut vowels may be specificd
by the pattern

BREAK (*AEIOUY)

Both SPAN() and BREAK() must find a character fron
their argument strings in order to succeed. SPAN() will
match that character along with any other acceptable
characters which are contiqucus; BREAK() will match
everything up to such a character, 1leaving the '"break
character" itself unmatched.

Note that the pattern returned by BREAK() may match the
null value, as in : :

4R. Pattern Matching | ‘ S 42

WORD = 'IDLE! ‘ =
'WORD ~EREAK ('AEIOU') . SAVE

Here SAVE will be assigned the null value 'since BREAK()
matches all characters preceding the first vowel, or in this
case no characters. SPAN() can never match the null value
since it nust match at least one of the characters of its
argument.

SPAN() and BREAK() are often used together to break
data into significant wunits, such as words. If a word is
defined as a string of characters terminated by any number
of spaces, periods, or commas, then the following progranm
segment can be used to assign to the variable WORD each new
word cf the data,

READ LINE = TRIM(INPUT) ‘'mof : F({DONF)

LOOP LINE BREAK('m.,') « WORD SPAN('m.,') = NULL
+ : » : F(READ)
' [sequence of statements to process WORD]
3 (LOOP)
In the replacenent statement labelled LooP,

BREAK('n., ') matches all characters until a space, period,
or ccmra is encountered. The sequence of characters vwhich
have been matched 1is assigned +to the variable WORD,
SPAN({('n.,'} will then match the character "which caused
BREAK('m.,') to succeed, and any other spaces, periods, or
ccuras which may be contiguous. This entire pattern is then
replaced by the null value (removed from LINE), the value of
WORL is processed in some way, and control sent back into
the lcop again. The replacement rule fails only when no more
words remain to be processed and a new value for LINE |is
read in. Note that a space has been concatenated to the
trirmed - value of each data record. to insure that
BREAK{'n.,') will be able to find a "break character" at the
end of the last word, and SPAN('m.,') will have at least one
character to match. ‘

The Pattern_ Procedure_ LEN(). The pattern procedure
LEN({) accepts any non-negative integer arqument, and returns
a pattern to match as many characters as 1its arqument
specifies. Thus LEN() matches strings of predictable length
but unpre-dictable content, while BREAK{) and -SPAN() match
strings of predictable content but unpredictable length.

LEN () is useful between two pattern elements to specify
the exact number of characters which must lie between them
for the match %to succced. Thus the search for four-character
strings within parentheses might be specified by the

4A. Pattern Matching _ 43

statement
LINE *(' LEN(4) . INSIDE *)' : F({(OUT)

Note that the strings matched by the three <concatenated
pattern elements must be contiguous for the match to
succeed. Thus the abtove rule does not mean "at least four
characters between parentheses" but "exactly four." If this
rule is successful, the first string of four characters
found between parentheses will be assigned to the variable
INSIDE.

LEN() is often used at the beginning of patterns ¢to
match an initial field of the data, such as an
identification number. The statement

LINE LEN(10}) . IDNUMBER LEN(40) . DATA : F(SHORT)

assigns the first 10 characters of LINE ¢to the variable
IDNUMBER, and the next 40 characters to the variable DATH.
The rule will fail only if LINE contains 1less than 50
characters. -

Statements of the form
LINE LEN(10) . IDNUMBER 'A? : S(ALINE)

are often erroneously used to specify a search for lines
with A as the eleventh character. While it is true that all
such lines will be found by the above rule, many other lines
may be found as well. The rule will succeed if a string of
10 characters preceding an A can be found anywhere within
the value of LINF, not necessarily in initial position.

The ANCHOR(} Procedure. Thc ANCHOR() procedure may bhe
~used to ‘“anchor" all searches so that they succeed only in
initial position. In anchored mode, if 'a pattern does not
match beginning with the first character of the string
reference, failure is recorded immediately and no further
pattern searching occurs.

The normal, unanchored, mode of pattern matching can he
changed to anchored mode by executing an evaluation rule of
the form

ANCHOR('ON')
or

ANCHOR (*XXX)
or

ANCHOR (VOWELS)

4p. Pattern Matching : . 4n

or any other rule in which the ANCHOR{) procedure is called
with a non-null argument. Executing the sequence

ANCHOR (*ANCHORITE')
LINE LEN{10) . IDRUMBER 'A' : S(ALINE)

would cause a transfer to ALINE only when the eleventh
character of LINE was indeed an A.

The anchored mode remains in effect until another rule
is executed in vhich the ANCHOR({) procedure is called with
an argument having a null value, such as

ANCHOR ()
or
ANCHOR (NULL)

The original unanchored mode of pattern-matching 1is then
restered. ’

Tte_Pattern Procedures TAB() and RTAB(). The pattern
procedures TAB() and RTAB() specify pattern matching not in
terms of character ccntent or of length, but 1in terms of
position within the string reference. Both TAB() and RTAB ()
accept a single argument which must be a non-neqgative
integer and return a pattern to match all the characters up
to that position within the string reference, matching as
alwvays from the 1left, The difference between TAB{) and
RTAB() is tlat they use opposite conventions for nuabering
the string positions (and thus for interpreting their
arguments) s TAB() works in terms of numbers counted from the
left, RTAB(} in terms of numbers counted from the right, as
shown in the following chartss:

For'TAB();
character: 13 67
| | |
string_position: 0i1 13 1617
ey 1 t1i
CAMYTLOT
For RTAB(),
charactex: 76 3I N
i1 i {
string_position: 7161 3t 110
‘ BRR IR NN
CAMYLOT

4r. Pattern Matching . 45

Notice that although there 1is no zero-th character,
there 1is a zero-th string position —— just before the first
character or just after the last one, depending on vwhether
TAB{) or RTAB() is heing used. This prevents confusion when
thinking about characters in terms of their string
positions: TAB(2), ‘"everything up to string position 2,"
matches the first two characters; RTAB(1), "everything up to
string position 1 counting from the right," matches all the
characters but one, Although the argument of RTAB() is an
integer to he used in counting from the right, this does not
“imply that pattern-matching is done from the riqht; pattern-
matching alvays proceeds from the left.

TAB() and RTAB() may be used for breaking wup strings
intc fixed fields; the rule

LINE TAB(15) . ID TAB(70) . TEXT

assigns the first 15 characters of LINE to IND, and the next
55 characters (those remaining up to string position 70) to
TEXT. This is exactly equivalent to the rule

LINE LEN(15) . ID LEN(55) . TEXT

If the first field were of varying 1length, terminated
by a srace, then

LINE BREAK('n') . ID *o' TAB(70) . TEXT

would assign everything up to the first space to ID, and all
characters after the space tut before string position 70 to
TEXT. Note that this is not equivalent to

LINE BREAK('m‘) . ID 'm' LEN(70) . TEXT

in which all characters up tc the first space are assigned
to the wvariable ID (as bhefore) but a full 70 characters
following the space are assigned tc the variable TRXT, TAB()
may match strings of varying length ending at a definite
string position, while LEN({) will always match a definite
numher of characters ending at varying string positions..

RTAB() can be used like TAB() for patterns in which the
string position terminating the match is better expressed as
a count from the right rather than from the left. RTAB ({0} is
particularly useful; it will always match everything fron
the current position in a pattern search up to the end of
the string — the %“remainder" of the string after any other
pattern elements have been matched.

4A. Pattern Matching _ : ' u6

Both TAB{) and RTAB() can match the null value; but if
either attempts to match up to a string position to the left
of one which has already been matched by a preceding pattern
element, or a string position which dces not exist (because
‘the string is too short), the pattern match will fail.

The_Pattern Procedures POS{) and _RPOS{). The ~pattern
procedures POS{) and RPDS() return patterns which match no
characters at all (the null value); they match only the
-single string positions specified by their sirngle non-
negative integer arquments. POS() uses the numbering systen
of TAB{(), RPOS{) of RTAB(). Their use 1is to restrict
successful matches by other pattern elements to certain
rositicns in string references; this provides a more
flexible form of "anchoring."

A pattern which begins with POS(0) is anchored in the
usual way. The rule

LINE POS (0) *Hkkkkk?
will succeed only if the value of LINE contains asterisks as
its first six characters. {(The advantage over turning on the
ANCHOR () procedure is that the restriction applies to this
single rule only.) Similarly, the rule

LINE EBOS(7) "*%kkdkkkt

will succeed only if the value of LINF contains asterisks as
characters 8 through 13.

RPOS() permits the same kind of anchoring, counting
from the right; the rule

LINE v¥kkdokkt RPOS (0)

will match only if the value of LINE ends with six
asterisks, and : :

LINE POS (0) "#k*x%x%x¢ RPCS (0)
will succeed only if the value of LINE is precisely a six~
character string of asterisks. That is, the above pattern-
matching rule is equivalent to the evaluation rule
IDENT (LINE, "*%kkuk)
The_Pattern Procedure__ ARBNO(). ARBNO() is the only -

pattern procedure which accepts a pattern as its argument.
It returns a pattern which will match zero or more

4. Pattern Matching I ‘ : u?

occurrences 'of the pattern given in its single argument.
Note that matching zero occurrences is the same as -matching
the null value; since this is always the first choice for
the ARBNO() procedure, a call to it always succeeds. ARBNO ()
will @w@atch as many occurrences of the specified pattern as
will cause the remainder of the pattern to succeed.

A string is a simple form of a pattern, so the arqument
of ARBNO() may be a single <character or characters., A
pattern to match zero or more A's may be specified as

ARBNO (*A")

This diffe:s from

v

SPAN ('AY)

in that the SPAN{) procedure,must<a1ways match at least one
character, so the pattern which is the value of SPAN('Ap!')
matches one or wore A's instead.

A pattern vhich will match any ‘number of characters,
inclvding nore, enclosed within parentheses (rather than
exactly 4, or scme other number) can he specified with the
use of ARBNO() as follows:

LINE v (¢ ARBNC (LEN (1)) . TINSIDE *')°? : F(NOPARER)
This pattern will match strings of the form

0

(M
(AB)
(XXX)

_ The null value or the characters within the parentheses will
be assigned to the variable INSIDE. ‘

A mone.compliéated‘illustration of the use of 'ARBNQ()
is provided by a consideration of the following set of
sentences: ' : : ‘ B

The dog ran. .

The 0l1d dog ran.

The old, gray dog ran. _

The o0ld, gray, barking dog ran.

The similarity among theseKSQntences may be characterized in
terms of some pattern vhich would succeed when applied to
any of them. Such a pattern may.be written with the use of

N

4A, Pattern Matching , By o 48

ARBNC () as follows:
Y THEm® ARBNO(BREAK('u.') LEN(1)) 'nocum.-

Yhen this pattern is applied to the first sentence, the
ARBNO{) procedure matches zero instances of its arqument, or
the null value, since the literal strings within the pattern
acccunt for the entife sentefice. In the second sentence,
ARBNC{) matches one instance of its pattern, the 'string
OLDn. In the third sentence, ARBNO() matches three instances
of 1its pattern, the string OLD,nGRAYn. This is three
instances since BREAK() first matches everything up to the
comma, then up to the space following the comma, then up to
the space following GRAY. In the last sentence, ARBNO()
matches five instances of its pattern, the string
OLD,uGRAY,aBARKINGnH. The pattern matching in the 1last
sentence occurs as follows:

(1) the opening 1literal matches to begin with and
ARBNO() matches no instances of its pattern (or the null
value) ; but then the closing literal cannot: be matched, so
an instance of the ARBNO() pattern is sought with

(2) BREAK () matching everything up to the comma (the
string OLD), and LEN{) matching the comma; when the final
literal cannot be matched, successive instances of the
ARBNO() pattern are tried with : '

{3) BREAK () matching everything up to the blank (the
null value) and LEN(} matching the blank, then

(4) BREAK() matching everything up to the next conmnma
(the string GRAY) and LEN() matching the comma, then

(5) BREAK{) matching everything up to the following
blank (again the null value) while LEN() matches the blank,
and finally

(6) BREAK () matching everything up to the next blank
{the string BARKING) and LEN() matching the blank. At this
point the final 1literal can be matched and the entire
pattern matching is completed.

These successive attempts by ARBNO() to match the
numher of instances of 1its arqument which will cause the
remainder of the pattern to succeed c¢ould be observed by
using the immediate assignment operator in con]unctlon with
the variable QUTPUT as deqcrlbed ‘earlier.

"4p. Pattern Matching : u9

Assigning _Patterns__to__Variables. Patterns nmay be
assigned as the values of variables just as strings ate
assigned as the values of variables. This may be done with
an assignment rule of the usual form, such as

PAT = 'IOU!
or
ID.PAT = LEN(1) . IDNUMEER LEN(40) . DATA
or
: DOG = *THEm' ARBNO(BREAK('m,') LEN(1)) 'DOGoRAN,®

The variable which refers to the pattern, rather than
the pattern itself, may then be used within the pattern part
of a rule as in

VOWELS PAT s S(YES)
or

LINE TID.PAT : F(SHORT)
or :

DOGLINE DOG : F(NODOG)

When these statements are executed, the current values
of PAT, ID.PAT, and DOG are ohtained; thus the pattern
matching and the conditional assignment are perforned
exactly as if the patterns themselves vere expressed.

The value of the variable PAT is of datatype String,
but it may be used as the pattern rart of a pattern-matching
rule, as indicated at the very beginning of this chapter,
since a string is a trivial form of a pattern. The values of
ID.IAT and DOG are of datatype Fattern, <since they are
concatenations of values of calls to procedures which return
patterns. Any expression containing a reference to a pattern
procedure, an alternation operator, a conditional or
immediate assignment orperator, or a deferred evaluation
operator (described below), has a value of datatype Pattern,
The values of such expressions cannot be assigned to the
special variable OUTPUT, since only strings can be printed.
(Ways of printing the value of an expression of datatype
Pattern are indicated 1in Arppendiz A, section II.B, s.v.
"PRCIOTYPE ()".) The variables ID.PAT and DOG are of course
in nec way restricted to having only Patterns as their
values, but may be assigned values of any datatype in other
rarts of the progranm.

~ If a pattern occurs within a rule which is to bhe
executed more than c¢nce, or if the same pattern occurs in
more than one rule, a considerabkle increase in program
efficiency can be obtained by assigning the-pattern as the
valne of a variable. The use of a variable witKin the rule

"4A., Pattern Matching) . .50

makes it unnecessary to construct the pattern every time the
rule is executed. ') ' R '

When a pattern is assigned to a variable, as in ‘the
rule ‘ ‘ - ' '

ALTPAT = X | Y

any variables occurring within the pattern (X and Y above)
.are evaluated when the assignment rule is executed. Thus if
X had as its value the string A and Y the string B, the
value of ALTPAT after the above rule had been executed would
be equivalent to *A' §{ 'B* .,

There are often applications, thowever, in which one
vants the variables of the pattern to be evaluated only when
the pattern is used in a pattern-matching rule, not when the
assignment occurs. For exanple, a loop to search the value
of WORD for one of two substrings, each to be read from the
input file, may be written as follows:

F (DONE)
F (ERROT
S (FOUND) F(LOOP1)

LOOP1 X = TRIM{INEUT)
= TRIM(INPUT)
WORD X | Y

8 60 &6

Since the efficiency of the program can be increased by
using a variable which refers to a pattern, rather than the
pattern itself, one would like to be able to write the 1loop
as

ALTPAT = X t Y

LOOP2 X = TRIM(INPUT) : F(DONE)
Y = TRIM(INPUT) : P (ERROR)

WORD ALTPAT S (FOUND) F(LOOP?2)
If this is done, hovwever, the loop will not have the same
meaning as before. The nev values of X and Y which are
acquired from the input file on each iteration of the 1loop
will not affect the value of ALTPAT; rather its value will
remain unchanged at *A' | *B* (if A and B were the values of
X and Y when the assignment occurred).

The__Deferred Evaluation_ __QOperator. The deferred
evaluation operator, a wunary operator whose symbol is an
asterisk (*), may be used within patterns to take <care of
the above situation. Tt may be written directly before the
name of a variable to indicate that its evaluation is to he
deferred until its value is needed during a pattern-matchinqg
operation. For instance, the assignment rule

4a. Pattern Matching) 51

ALTPAT = %X | *Y

may be used to indicate that both X and Y are variables
which are to be re-evaluated each time a pattern-matching
rule is executed in which ALTPAT is used within the pattern
part. Thus the sequence :

ALTPAT = %X | *Y
LOCE3 X = TRIM(INEUT) : F(DONE)
: Y = TRIM(INPUT) : F(ERROR)

WORD ALTPAT S (FOUND) F(LOOP3)
will produce the same results as the LOOP1 example above,
bvt more efficiently.

The unary * operator is also useful in patterns in
which the value of cne pattern element is dependent on the
successful match of an earlier element of the same pattern.
Consider, for example, the problem of searching a word to
determine whether or not it contains two identical
contiguous vowels, This pattern may be expressed using the *
operator as

VOW2PAT = ANY(VOWELS) $ V *vV
Yhen this pattern is used, as in the statement
WORD VOW2PAT : S(YES)

it specifies a search through the value of WORD for any of
the five vowels, immediate assignment of the vowel found to
the variable Vv, and then a search of the next character for
another instance of that same vowel.

A more general pattern in the same vein is one which
searches for two identical contiguous characters. This nay
be expressed as

CHARPAT = LEN(1) $ CHAR *CHAR

and works as described above. Without the use ' of deferred
evaluation, these patterns would be cumbersome to define.

The unary * operator may he nsed only bhefore names of
variahles, not bhefore references to pattern procedures. An
expression composed of a deferred evaluation operator and a
variable name is of datatype Pattern and so may be used only
where a pattern value 1is apprcpriate; hence such an
exyrression may not be used as the argyument of any of the
pattern procedures except ARBNO(). The loop

" 4h. Pattern Matching ' ' - : 52

ARBPAT = 'S' ARBNO({*X) . SAVE ‘'St
LOCEY X = TRIM(INEUT) -t TF(DOXNE)
WORD ARBPAT ~: S(FOUND) F(LOOPU)

specifics a scarch through WORD for zeroc or more instances
of whatever string is specified on the next data record,
bounded by an S cn either side, and the assiqgqnment of the
substring matched by ARBNO() to the variable SAVE. .Yf the
search fails, another data record 1is read, causing a
. different pattern to be sought,

The_Special Pattern Variables_ARB_and__REM. There are
six variables which have predefined patterns as their
values, assigned by the Snobol system; these are the only.
six variables in Snobol which do not have the null value
when execution of a program begins. The values of these
variables may be changed in a program by assigning them new
values in the usual way, but then of course the predefined
values are lost. The six special pattern variables are ARB,
REM, BAL, FAIL, FENCE, and ABORT. Only ARB and REM will be
discussed here, (The renaining foaur pattern variables are
described in Appendix B.)

The variable ARB has as its predefined value a pattern
equivalent to ARBNO(LEN(1)) -— that most arbitrary pattern
which will match the null value or any string of characters.
ARB, 1like ARBNO(LEN{(1)), matches the longest string of
characters left for it ty surrounding pattern elements; thus
the rpattern to match any parenthesized string could have
been written as ' '

LINE Y(* ARB . INSIDE *)?* : F(NOPAREN)

Execution of this statement would cause the variable INSIDE
to ke assigned the zero or more characters occurring between
a pair of parentheses, :

The variable REM has as its predefined value a pattern
which will match "all the rTemaining (none-or-more)
characters." Another pattern equivalent to this is RTAB{(O).
For example, a statement to match all characters after the
sixth may he written as / :

LTNE LEN(6) REM . A6 ¢ P (NOTSIX)

Execution of this statement will cause LEN{f) to match the
first six characters in LINE and will cause all remaining
characters to be assigned to the variable A6, If the value
of LINE 1is exactly six characters lcng, the pattern natch
will succeed and the variable A6 will be assigned the null

4UA, Pattern Matching : 53

value. If the value of LINE is less than six characters long
the pattern match will fail, A6 will not acquire a new value
and control will be sent to the statement labelled NOTSIX.

Since the predefined pattern values of both ARB and REM
are equivalent to patterns which may easily he written in
other ways, ARB and REM may be regarded merely as convenient
predefined abbreviations for longer pattern specifications.

A_Program_to Tllustrate Pattern-Matching. The program
text provided below reads an indefinitely long text which
has line numbers in the first six positions of each data
record, and words occurring in free form, but never hroken
acrcss records, in the remaining positions. A word is
defined as a string of characters followed by a swace or a
.punctuwation character. Any nunktesr of spaces and/or
punctuation characters may occur between words (and before
the first word on a «card). The program looks for words
within the text which begin and end with the same character
(one letter words excluded). If such words are found, they
are printed following the line number of the record in which
they occurred. Thus the two records

000001 EFFTCIENCY IS THPORTANT BUT
006002 ELEGANCE TS TO BE DESTIRECL

would produce the output

000002 ELEGANCE DESIRED

since the first line contains no words which begin and end
with the same character, but the second line contains tvo.

All patterns are assigned to variables for the sake of
efficiency.

* TFROGRAM TO FIND AND PRINT ALL WCRDS THAT
* BEGTIN AND END WITH THE SAME CHARACTERS
%
¥ SET UP THE PATTERNS NEEDED FOR THE PROGRAM
* _ ,
PUNC = ‘'p.,:3!
WORD.PAT = BREAK(PUNC) . WORD SPAN(PUNC)
ID.PAT = LEN(6) . ID (SPAN(PUNC) | NWLIL)
, SAME.PAT = POS(0) LEN(1) 5 CH RTAB(1) *CH
* . .
* READ THE NEXT RFECCRD OF THE DATA -~ APPEND A SPACE
GETLINE LINE = TRIM(INPUT) 'no° + F(END)
*

* REMOVE ID NUMBER - TGNORE RECORDS SHORTER THAN 6 CHARS
LINE ID.PAT = NULL . : F(GETLINF)

LA, Pattern Matching : 5y

* CET THE NEXT WORD - IF NO: MCRE WORDPS, CONSIDER PRINTIMNG

GETWORD LINE WORD.PAT = NULL .2 F(PRINT)
* SEE IF THIS WORD HAS SAME FIRST AND LAST CHARS - IF NOT,
* : THEN GET THE NEXT WORD o o '
WORD SAME.PAT - - - : - .: F(GETWORD)
*x . : : oL : ; ‘ ,
* . WORD TO BE PRINTED - APPEND IT TO THE OUTPUT LINE

QUT = OUT ‘oooo' WORD : (GETHWORD)

PRINT VALUE OF OUT IF IT CONTATES ANY WORDS B
PRECEDE THE WORDS BY THF APPROPRIATE LINE NUMBER
RINT OUTPUT = DIFFER(OUT,NULL} ID ©UT - : F(GETLINE)

% * g ¥ % ®

IF NECESSARY, ASSIGN OUT A NULL VALUE BEFORE PROCEEDING
, oUT = NULL : :- (GETLINF)
END . o . o

5A. INDIRECT REFERENCING

The fact that a single variable may be used to refer to
a number of .different values during the course of program
execution makes it possible to write a general rule vwhich
can have the effect of many specific ones. For example, the
single rule

OUTPUT = WORD

specifies in general that the current value of the variable
named WORD is to be printed, whatever that value may be. Tf
the above rule is part of a loop. in which WORD 1is being
assigned a new value every time the loop is entered, then
the rule sends different specific characters to the output
file every time it 1is executed. Without this ability to
express a process in general terms rather than in specific
cnes, no useful programs could be written.

The ability to generalize is further extended in Snobol
by the use of indirect referencing. This operation aliows
cne to specify a variable without writing its name into the
program text; rather, one specifies a variable by writing an
expression whose value is a variable, Just as WORD in the
rule above may refer to a numter cf different values during
the course of program execution, soO this expression
inveolving indirect referencing may refer to a number of
different variables during the course of the program, each
variable's value changing independently. In neither case do
the specific values need to be known when the program text
is written. Hence the use of indirect referencing allovs
ancther level of generality to be introduced.

The Indirect Referencing Operatcr. Indirect referencing
is accomplished by means of the indirect referencing
operator, a unary operator whose symbol is a dollar sign
{$Y. This operator takes a single string-valued operand (or
one of datatype Name as described in Chapter 7) and returns
as 1its value the variable named by that string. In the
simplest case, the operand is a literal as in the rule '

OUTPUT = $'HWORD'
which produces the same effect as
OUTPUT = WORD
Both will cause the current value cf the variable WORD to be

prirted since the variable returned by the § operator above
is the one whose name is WORD. There is no advantage to

5. Indirect Referencing. : 56

using the $ operator in this wvay, since it is simpler to
write WORD than to write $*'WORD'. ‘

However, there are many variables which cannot bhe
referred to by writing their names in program texts since
they consist c¢f strings o¢f characters which are not
identifiers. As indicated in Chapter 2,

TRHYME «« VOWELS TEXT/3 p-v-C

are all the names of variables, tut they are not valid
rerresentations of these variables within a program text.
These variables may be represented with the use of the §
operator, since they are, respectively, the values of the
expressions

$*1TRHYMNE? $'..VOWELS? $'TEXT/3? $rp-v-C?

Although these expressions are useful in a way that $'WORD?
is not, they introduce no generality into the program since
each specifies a single, fixed, variable.

Generality is introduced when the operand of the §
operator is some string-valued expression other then a
literal. Thus the rule

OUTPUT = $WORD
can cause the values of different variables to he printed
when it 1is executed at different times, since the variable

vhose value is to be printed depends on the current value of
WORL. If the rules '

WORD = *SASSAFRAS?
and

SASSAFRAS = 'TREE?
have been executed, then execution of the rule

OUTPUT = $WORD
will cause the characters TREE to te printed. First WORD is
evaluated to yield the string SASSAFRAS; then the $ operator
returns the variable named by that string. Thus the effect
is as though

OUTPUT = $*SASSAFRAS!

or, equivalently,

5A. Indirect Referencing. . 57

OUTPUT = SASSAFRAS
had been executed.
Similarly, the rule
SVOWEL = $VOWEL + 1

can cause the valve of many different variables to be
incremented by 1. If the value of VOWFIL is the string 3,
then the rule is equivalent to

$UAY = $UAY ¢ 1
or
A = A+ 1

but if the value of VOWREL is a different vowel, say E for
example, then the rule is equivalent to

E = E + 1

instead. Thus executing the same rule at different times 1in
the program may vresult in incrementing the value of
different variables. A single rule of this form could be
used to count how many of each vowel occurred in a text.

(Notice that a variable returned by "the indirect
referencing operator 1is treated in the execution of rules
exactly like a variable whose name is written in the progranm
text; variables occurring ¢to the right of an assignment
sign, or within a pattern or a string reference, wmust be
evaluated when the rule in which they occur is executed.)

The Operand of the Indirect Referencing__Operator. The
operand of an indirect referencing operator may be an
expression of any complexity; the only restriction 1is that
this expression yield a non-null string (or a Name) when it
is evaluated. Thus the operand of a $ operator may itself
contain one or more §$ operators (as 1in the expression
§$CURRENT), as long as the variable returned by each inner 3
operator refers to a value which is a string. These nested §
operators, like nested procedure calls, nust be evaluated
frcm the inside out since the variable returned by an inner
$ is needed to form the operand of an outer $. For example,
if the assignments

CURRENT = 'VOWEL?
and
VOWEL = 'A!

5A. Indirect Referencing.. : 58

have been executed, then the rule
$SCURRENT = “$$CURRENT + 1
is equivalent to
A = A+ 1

The evaluation of the rule involving double indirect
referencing proceeds as follows: first the value of CURRENT
is determined, rroviding the string VOWEL as the operand of
the ipner $ operator and making the expression FSCURBRFUT
equivalent to $$'VOWEL'; when the inner $ is applied to the
string VOWEL the variable VOWEL - is returned, making
$P'VOHEL' equivalent to $VOWEL; the cuter § is then applied,
.giving $'A', in turn equivalent to A, as above. Fxamples of
how multiple indirect referencing cap be useful are provided
by two progranm texts given at the end of this chapter,

Similariy, a reference to any procedure which returns a
string as its value may be used within the operand. As a
sirmgle exanmnple, the rule

$STIZE (WORD) = S$STZE(WORL) + 1
could te used in a lcop, analogously tc the rule
FVOWRL = $VOWEL + 1

above, to count how many words of each length occurred in a
text. Tf the current value of WORD at some point during
execution is the nine-character string SASSAFRAS, then the
above rule is equivalent to

$191 = $1or ¢ 1q

Thus the variable whose name is 1 would be assigned the
count of the one-character words, the variable named 2 the
count of the two-character words, etc. Although the names of
these variables may not be written in the program text, the
variables may be specified by means of indirect referencing,
since the $ operator may be applied to any string of
characters to return the variable named by that string.

~ The null value may not be used as the operand of the §
operator since the name of a variable must be at least one
character long. It is a common mistake, however, to use as
the operand of the $ operator a variable which at some time
during the course of execution will have a null value. Such
an error cannot occur in the example above, since there is

.5A. Indirect Referencing. - 59

no way for the operand to be null. If WORD has a null value,
then SIZE (WORD) returns the integer zero as its value. Hence
the count of all null values is referred to by the variable
whose name is 0. (If WORD has a value which is not a string,
then an execution-time error will result when the SIZF()
procedure is called, before an attempt to apply the §
operator can be made.)

A_Program_to_Prodnce_a_Character Count. As an example
-0of the power of indirect referencing, consider this simple
character-counting program, which prints out a table giving
the number of times cach letter occurred within a text.

* PREOGRAM TO MAKE A CHARACTER COUNT

* SET UP CHARACTER-FINDING PATTERN
CHAR.FAT = LEN(1) . CHAR
*
%* READ IN THE DATA
READ LINE = TRIM(INPUT) : F(OUT)
*) ‘
* FIND THE NEXT CHARACTER - ASSIGN IT TO THE VARIABLE CHAR
LOOP1 LINE CHAR.PAT = NULL : F(READ)
*
* ADD ONE TO THE COUNT FOR THAT CHARACTER
INC $CHAR = S$CHAR + 1 : (LOOPY)
*
* SPECIFY THE ALPHABFET FOR RECOVERTNG COUNTS
ouT ALPHA = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ®
*

* GET THE NEXT LETTER WHOSE COOUONT TS TO BE RECOVERED
*¥ ASSIGN IT TC THE VARIARBLE CHAR

LOOP?2 ALPHA CHAR.PAT = NULL + F(END)

*, . . -

* TIF LETTER DID NOT OCCUR, GIVE IT THE VALUE ZERO, NOT NULL
$CHAR = TIDENT(SCHAR,NULL) O

*

* PRINT LETTER AND ITS COUNT

_ OUTPUT = CHAR 'oonon' $CHAR @ (LOOP2)
END

ODutput from this program would be a list of the form

A 129
B S8
C 32

and so on.

This program uses the pattern which 1is the value of
CHAR.PAT to assign cach successive character of the text to

'5k. Indirect Referencing. | S | 60

the variable CHAR; indirect referencing is then used to
return the variable named by that character. Depending on
which character has been. found, the rule part of the

statement lahelled INC might be egquivalent to '

A = A+ 1
or

B B+ 1

H

or - .
$r,v = $r1,v &+ 1

or vhatever.

When all the text has been read, printing of the counts
begins. This 1is done with the use of the variable ALPH},
whose value is a string containing all the characters for
which counts are to be printed, given in the desired order.
(In this case, only 1letters have heen chosen.) These
letters, one by one, are again assigned to the variable CHAR
{(althcugh any other variable would have done as well) by
means of the CHAR.PAT pattern. Using indirect referencing,
the variable named by the character is tested +to deternmine
wvhether or not it has a null value; if it is nuil, then that
character was never encountered in the text and so the
variatle is given the value zerc for output purposes. The
output statement prints the valne of CHAR (the character 1A
the first time the output loop is entered) and the value of
$CHAR (in this case the value of the variable A, or 129).

This scheme for specifying the printing permits the
programmer to choose the order of the output —-— alphabetical
order, rather than text order — and to be selective; the
program causes counts to be’ stored for all characters
(nurbers, punctuation, spaces, etc.), but only the counts
for the letters are recovered for printing. :

. ES
Concatenation _within _the Operand. The concatenation
operatcr 1is needed within the operand of the indirect
referencing operator in applications 1in which. variables
having “successive" names are to be used. For example,
execution of a loop of the form ' ' :

NLCCP N = N+ 1
OUTPUT = TRIM(INPUT)
$(*LIST* N) = OUTPUT

F (ALLGONE)
{NLOOP)

s b

ALLGONF.

wiil cause an entire group of data to ke read, printed, and
stored, with successive records being 2ssigned as the values
of the variables named LIST1, LIST2,e+., $('LIST* N). When

*

SA. Indirect Referencing. 61

the loop terminates through failure of INPUT, the value of N
is an integer one greater than the number of lines of data
‘which have been read. Since these lines of data are now
stored in the memory they may be prccessed in some way, for
example subjected to pattern-matching and replacement, and
eventually printed out again in an altered form. The
following loop may be used to print out all the lines,
reversing their line numbers in the output, so that the last
reccrd read in is numbered 1, the next-to-last numbered 2,
etc., until the first record read in is numbered ¥-1,

M = N :
MLOOP M = GT(M,1) M - 1 : F(DONE)
OUTPUT = N - M 'nonao® $('LIST' M) =: (MLOOP)

CONE

In the above example, a single set of successively-
named variables were being assigned values (those whose
names all begin with the characters LIST). This process can
be made more general if several sets of successively-named
variables are assigned values by the same program segment.
If, for example, a file contained intermixed records of
various types, each type distinqguished by the first
character of the record, then the following segment of
program text would cause each record to be assigned to the
variabhle named by the concatenation of its first character
(the type-code) and the number of records of that type
enccuntered so far.

REATD RECORD = TRTIM(INPUT) : F(DONE)

R |

* TCETERMINE TYPF-CODE OF RECORD

' RECORD LEN(1) . CODE : P (READ)
*
ADD ONE TO CCUNT FOR THIS TYPE

$CODE = §CODE + 1

*

* STORE RECORD IN NEXT "SUCCESSTIVE® VARTABLE OF ITS TYPE
$ (CODE $CODE) = RECORD : (READ)

DONE

The first record found beginning with an E would beconme
the value of the variable named E1, for example, and the
twenty-fifth record found beginning with a c¢olon would
heccme the value of the variable naumed :25. If the distinct
type-codes are stored by the program as they are
enccuntered, then the records have effectively heen sorted
in terms of their first characters, since the records of
epach type can nov bhe found as the values of different sets
of successively-named variables. '

5&. Indirect Referencinge. - - 62

Variables having "successive" names are also useful in
printing data in tabular format, wherve a varying number of
spaces, or other characters such as dots or dashes, will be
needed to make the data line up properly. The variable named
1a, for example, could be assigned the value of a single
space, while the variable named 2o would have the value of
two spaces, etc. In general, variables can be given nanmes
which indicate their wvalues, where the first part of the
name indicates the number of instances of some character,
and the second part indicates the character in question.
Thus the variable named 52¥ would have as its value a string
of 82 X's,

The short segment of program text below causes such
variables to be assigned appropriate values. The value of
"MAX is the largest number to be used as the first part of
any name and 1is the maximum length of any string to be
assigned as value; the value of - CHAR is the particular
character to bhe used as the second part of each name and is
the character of which all string values are to be composed.

FORMLOOP N = LT(N,MAX) N + 1 : F(DONE)
$(N CEAR} = $(N - 1 CHAR) CHAR : (FORMLOOP)
DONE |

If MAX has the value 10 and CHAR has the value of a
single dash, then execution of the loop causes the set of
variables named 1-,2-,...,10- to be assigned the respective
values =,==,cee,~~~==—==== .

A program may begin by executing the FORMLOOP segment
repeatedly for each pair of values of CHAR and MAX needed to
generate the strings which may be required for formatting
within the remainder cf the program. Then whenever, say, a
string of 42 spaces is needed it may be represented by the
. exrression $(42 'n'), and whenever 10 periods are needed
they may be represented by the expression S$(10 '.%,
provided the FORMLOOP segment has been executed when the
value of MAX wvas at least 42 and the value of CHAR was a
space, and when the value of MAX was at least 10 and the
value c¢f CHAR was a period. If an expression of this form is
written in which the numeric part lies outside the range
specified (from 1 to the value of MAX) when the set of
variahles involved was given value, or in which the
character part is not a character which was the value of
CHAR when the FORMLCCP segment was executed, then the null
value is likely to —result; a variable will always bhe
returned - from an expression of this form, but not
necessarily one to which a value has been assigned.

5h. Indirect FReferencing. 63

Concatenation within the operand is also useful as a
safequard against «conflicts which occur when a variabloe
returned by the 3 operator turns out unexpectedly to be the
same as one written directly in the program text as an
identifier, and used for some unrelated purpose. In the
character-counting example above, the writing of any one-
character name withinp the program text would have produced a
conflict of usage if that character had occurred within the
text heing processed. In that particular case, only
variables with one-character names could he returned so the
restriction could he made that no one-character names bhe
written in the program text. Often, however, there is no way
of knowing which variables will Lte returned by indirect
referencing. Consider the case o0f counting words, rather
than characters, in a text; if the suame scheme is ecmployed,
then each word of the text will be used as the name of a
variable, and there is often no restriction on which words
may occur, so a conflict in the use of variables is likely.

Such conflicts may be avoided by using concatenation
within the operand of the 3 operater to produce a string
which is not an identifier; then the variable returned bhy
applying the § operator to this string will necessarily he
one whose name can never be written in the proqgram text.
This has been done in the formatting example above by alwvays
usitg a number as the first part of the name, so these nanmnes
are never 1in identifier form. Similarly, if the expression
$('#** CHAR) were used 1in place of $CHAR throughout the
character-counting program text above, the restriction
against the use of one-character names within the ‘progranm
text could be removed: the number of A's in the text would
then be referred to by the variable named *A, the number of
B's by *B, etc. The two complete program texts which follow
in this chapter both rely on concatenation of this form ¢to
insure against the possibility of error due to conflict.

A_Program_to _Produce_a_ Frequency Table, The usefulness
of aultiple indirect referencing 1is illustrated 1in the
fclleowing program, which 1is similar to the character-
counting program bhut produces instead a frequency table
specifying how many letters failed to occur in the text, how
many occurred once, how many tvwice, etc. The program begins
in the same way as the character-counting program, by using
a variable named hy a character to refer to the number of
times that character occurred within the text, When all the
text has been read in, the character counts themselves are
used as the operands of the $ operator to return variables
vhose names are 0,1,2,...,etc.; the values of these
variables are increased by one for each chdaracter which
occurred that many times within the text.

. 5A. Indirect Referencing. : . ‘ - 64

Concatenation is used in this example to prevent the
conflict of variatbtle usage which would occur if the text
contained any digits. If concatenation were not used and the
text contained, for example some 3's, then the variable
named 3 would be used in the first part of the program to
refer to the number of 3's occurring in the text; in the
seccnd part, when the frequency table was being formed, the
~variable named 3 vwould be used t+o refer to the number of
characters which occurred exactly three times in the text.
- Since the 'variable named 3 would then alrzady have a value
indicating the numher of 3's in the text, the frequency
table for 3 occurrences would bte incorrect. {The program
would appear to run correctly and the only indication of
error might be an abnormally high count.) Thus concatenation
is used to return a variable whose name is 3% for the first
part c¢f the program; the frequency table for characters
occurring 3 times can then safely be made with a variable
whose name is simply 3.

¥ TFROGRAM TO MAKE A FEEQUENCY TABLE

*
CHARLFAT = TLEN(1) . CHAR

READ LINE = TRINM(INPUT) + F (CHARS)
LOOP1 LINE CHAR.PAT = NULL s F(READ)

' $(CHAR ¥%') = $(CHAR **') + 1 : (LOOP1)
*
* SPECIFY THE CHARACTERS WHOSE FREQUFENCIES ARE TO BE FOUND
CHARS ALPHA = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ?
LOOP2 ALPHA CHAR.PAT = NULL : F(PRINT)
* ;

* GIVE MAX THE VALUE OF THE LARGEST COUNT SO FAR FOUND
MAX = GT($(CHAR v%7v) ,MAX) S (CHAR '*71)
. . | b
* CHANGE ANY NULL VALUFE TO ZERO o
$ (CHAR **') = IDENT($(CHAR '*7),NULL) O

*®
* USE DOUBLE INDIRECT REFERENCING TO MAKE A COUNT OF COUNTS
FREC " $F(CHAR "*%) = $$(CHAR **') ¢+ 1 : (LOOP2)
%* ' . : ,
* PRINT THE FREQUENCY TABLE
PRINT COUNT = 0
* : . . S
* IF NO LETTERS OCCURRED CQUNT TIMES, SKIP IT
LOOP3 IDENT ($COUNT, NULL) 't S({SKIP)
: OUTPUT = $COUNT 'pLETTERSnOCCURREDu' COUNT *aTIMES?
* INCREASE THE VALUE OF COUNT UNTIL THE MAYIMUM TS REACHED

SKIE © COUNT = LT(COUNT,MAX) COUNT + 1 .: S (LOOP3)
END _ ,

5A. Indirect Referencing. _ ‘ 65

Output from this program would te of the form

2 LETTERS OCCURRED 0 TIMES
4 LETTERS OCCURRED 1 TIMES
2 LETTERS OCCURRED U4 TIMES
7 LETTFRS OCCURRED 6 TIMES

and so on. Such a table would have at most 26 entries; all
26 would be present only if each letter had a different
character count associated with it.

The statement labelled FREQ uses double indirect
referencing to form variables from these character counts.
Tts rule represents assignments of the form

$10' = $'00 + 1
S = Fr1e o+ 1
$02' - $'2. + 1

The value assigned to each of these variables is increased
by one every time a character is found which occurred that
many times in the text.

{(Note that it is necessary to assign the value zero
rather than the null value to variables representing
characters which 4id not appear in the text., If this were
not done, the rule part of the statement lahelled FRFTQ would
attempt to represent a rule of the form

$|l = $!0".1

if the value of $(CHAR '*') was null, and an execution-tine
errcr would result,)

A_Program_to Produce _a ¥ord Count. As a further exanmple
of the use of both multiple indirect referencing and
concatenation, consider the following word-counting program
which works on the same principle as the character-counting
program; it uses each word as the name of a variable and
increases the valuve of that variable by one whenever the
word occurs within the text. The process of printing out the
words once the counts have been formed, however, 1is
necessarily more complicated than that of oprinting a
character count, While it 1is possible to specify all the
characters which may occur in a text, it is seldom possible
to =specify all the words. If counts are desired for only
certain words, then a list of those words can be supplicd as
data to the program; but if all words are to be counted, or
all words except those specified, then some record must be
kept by the program of all different vords encountered so

5&. Indirect Referencing. ‘ : ' o 66

they may be retrieved. In this program, concatenation is
used to assign each new word to a variable whose name is of
the form W/1, W/2, W/3, etc., so that all words of the text
may be recovered for printing with the use of these
"successive™ variables. / o

* PROGRAM TO MAKE A WORD COUNT
* SET UP WORD-FINDING FATTERN

%

* . ‘
PUNC = 'U.,::' . ‘ .
WORD.PAT = BREAK(PUNC) . WORD SPAN({PUNC)
* : L :
* READ TEXT AND FIND WCRDS
REAT LINE = TRIM(INPUT) 'm' : F(OUT)
LOOP1 LINE WCRD.PAT = VNULL :+ F(READ)
* CSE CONCATENATION TN FORMING THE wORD‘COUNT,
B (5%t WORD) = S$('*' WORD) + 1
*
* TEST TO SEE WHETHER THIS IS A NEW WORD
* IF NOT, RETURN TC 100P1 '
EQ($ (*** HWORD},1) ‘ : F(LOOPYT)
X
*# NEW WORD - ASSIGN IT TO A VARIABLE NAMED W/1, W/2, ETC.
N o= N+ . '
$('W/' N) = WORD : : (LOOP1)
*
* PLL DATA HAS BEEN BRFAD IN - PRINT WORD COUNT TABLE
ouT M = LT(M,N) M ¢ 1 ‘ : F(FEND)
OUTPUT = $(*'W/' M) 'onao' $('* $('W/* M)
: (ouT)
END

The words are printed in the order of their first
occurrence in the text. Output for a well-known six-word
- text would be ’ , :

T™C 2.
BE 2
. 0OR .1,
NOT 1

In the processing of this short text, the rule
$("*' WORD) = S$('*' WORD) + 1

at different times is equivalent tc rules of the form

5A. Indirect Referencing. 67

$1xT0Y = FIRTO' + 1
$'%BRE' = F'*RE' + 1
$1*0ORY = $*CR' + 1
$YANOT' = $TANOT' + 1

and the like, while the rule
$('W/" N) = WORD

is equivalent to

$1U/1r = tTOM
W/ /2% = YRE?
$'W/30 = 10R?
$'w/ur = 'NOT

%hen the first line of the output 1is ©printed, the
output statement

OUTPUT

$('W/' M) taono' $(*'** F('U/' M)

is equivalent to

OUTPUT = $'H/1Y 'pgoao' ${(*'*%% $'W/19)
or

oUTPUT = $rUs? ‘ooan' $YXTOY
or

QUTPUT = 'TOnnan?!

Indirect Referencing within _the Go-to. The indirect
referencing operator may he used within the go-to part of a
statement as well as within the rule. When the § operatnr is
used within the go-to, it takes the string which is its
operand and returns the label which is that string. Thus the
go-to's

($°READY)
and

(READ)

have the identical effect of causing a transfer to be taken
to the statement labelled READ.

(Note that the $ operator must appear inside the
parentheses rather than outside, since the only. characters
which may appear between the cclon and the open parenthesis
of the go-to are an S or an F. Thus the go-to : § (*READ')
is syntactically incorrect. TYnner rparentheses, such as
: ($('READ' N)) are permissible.) :

5A. -Indirect Referencing. ' 68

As before, the power of indirect referencing becomes
visitle only when the operand consists of something besides
a literal. The statement

LINE LEN(6) . CODE : S{3CODE)

illustrates the usefulness of the $ operator within the go-
to. It causes the first six characters in the value of LINE,
if there ar= that many, to be assigned to the variable CODF,
and then, on success, transfers to the label specified by
those six characters. {The value of COLE which was obtained
in the rule part of the statement is immediately available
for wuse within the go-to.) The single general go-to
: ($CODE) may thus represent a great many specific go-to's,
one for each possible value of CODE. These values which CODE
may acquire must all be in identifier form, since an
individual label must actually exist within the-program for
every possible transfer which is taken. (The 1indirect
referencing operator may not be used in the label field, =so
there is no way of using a label which is not an
identifier.,) If an attempt is made to transfer to a non-
existent label, an execution-time error will result.

If the special variable INPUT occurs within a go-to in
which an indirect referencing operator is used, as in

FO(X,Y) T S(S(TRIM(INPUT)))

it is assigned as value the next data record, since this
string value is needed as the operand of the § operator. If
the next data record had the characters NOUN as its first
four <characters, followed by spaces, the go-to shown ahove
would send control to the statement labelled NOUN if the
rule preceding the go-to succeeded. If INPUT fails, or any
other failure occurs in a go-to, then an execution-time
errcr results, since no informaticon will he available as to
which statement is to be executed next.

Concatenation is often used within the go-to to send
control to "successive" labels of the program. For example,
the statement

N = SIZE {(WORD) : (B('RULE* N))

assigns to N the integer length of the value of WORD, and
then transfers control to a label specified by concatenating
the characters RULE and this integers; if WORD has as its
value any one-character string, a transfer would be taken to
the statement labelled RULE1; if WCRD has as value a two-
character string, then control would be sent to RULF2, etc.

5A. Indirect Referencing. 69

(The statements starting at RULE!1 would presumably specify
some process to be performed on one-character words, which
would te different from the process at RULE2 for two-
character words, etc.) The same effect could be achieved by
vriting

: (S('RULE' SIZE(WORD)))

Ncte that some device such as the concatenation of an
alphabetic 1literal is necessary in the above example, since
one may not write sinmply

($N)
or

[X]

($SIZE (WORD))

These go-to's would send control to labels of the form 1, 2,
3, etc., and such labels do not exist since they may nct he
written in the program. Indirect referencing within the go-
to 1is often wuseful, but is more 1limited than indirect
referencing vwithin the rule: the string designating a label
must always be in identifier form and a corresponding label
nust exist in the program text in crder for the transfer to
be taken; on the other hand, the string designating the name
of a variable may be composed of any characters, since any
string names a variable, and there 1s no need for that
variable to have bheen used in any vprior statement of the
progranm.

70

6A. PRCGRAMMER-DEFINED PROCEDURES

In addition to supplying a nuwmber of useful predefined
procedures, Snobol provides a mechanism which allows a
programmer to define any procedure cof his own choosing. This
percits the task which a program is to perform to he
expressed as a series of serarate processes of varying
degrees of conplexity, each of which 1is defined as a
_procedure, The more complex procedures may consist mainly of
calls to siapler procedures which have been defined earlier;
many of these procedures, in turn, %ill make use of the
predefined procedures supplied by the Snobol system. Once
the necessary procedures have been wgitten, the writing of a
prograwg to perform some task is simplified since it can make
reference to the highest-level, most powerful procedures.
Program texts written 1in this. fashion are easier to write
{and incidentally easier to read) because their organization
reflects the structure of the process enbodied in the
program.

Cefining_a_Procedure. A definition of a new procedure
requires tvo parts: first, the name of the procedure bheing
defined and the form of future references to that procedure
must be declared to the Snobol systewm; second, a description
{in Snobol}) of what the procedure is to do must bhe provided,
which will be executed each time the procedure is called.

The declaration of a programmer-defined procedure is
accemplished by executing a predefined procedure, DFEFINR{},
which in its simplest form has a single argument consisting
of a string which is a sample reference to the procedure.
For instance

DEFINE (*REPEAT (N,OBJECT))

declares a new procedure, REPEAT(), which is defined to have
two arguments, represented by the names N and ORJECT. The
description of what the REPEAT() procedure is to do can be
anything expressible in Snobol. If its purpose 1is to
concatenate some object to itself n times, this might be
expressed as follows.

REPEAT N = GT(N,0) N - 1

: F (RETURN)
REPEAT = REPEAT OBJECT : (REPEAT)
This section of program ¢text, termed a ‘"procedure

body," is written in accordance with a number of conventions
which are the subject 0of the following sections of this
chapter., It is identified as the procedure body for the
REPEAT () procedure by the label REPEAT, which has +the same

-6A. Programmer~defined Procedures 71

form as the name of the procedure. The names & and OBJECT
are used both in the declaration and in the procedure body
to represent the two arguments with which the REPEAT ()
procedure will ke called. The value of ¥ indicates how many
times the value of OBJICT is to be concatenated to itseif to
form the value to be returned by the REPEAT() procedure.

The first statement of <the procelure body specifies
that the value of ¥ is to bte decremented by one if it is
- still greater than zero; the seccond statement specifies that
the value of OBJECT is to be concatenated to the value of
REPEAT, initially null, every time N 1is successfully
decremnented. When the value of N becomes zero, then the
desired number of concatenations have been performed and the
failure transfer to RETURN is taken:; this represents not any
fixed location in the program, but rather a request <to the
Snobecl system to return to whatever statement contained the
call to +the REPFATY{) vprocecdure. The REPEAT() procedure
returns as its value the current value of the variable named
REPFAT (again with the sane form as the name of the
procedure) when the transfer to RETURN is taken.,

Once the REPEAT () rprocedure has been declared and a
procedure body provided for it, then it may be invoked by a
precedure reference anywhere in the program text. For
instance, one might write the assignment rule

OUTPUT = REPEAT(10,°'X*)
to specify that a string of 10 X's is to be printed.

The REPEAT() procedure provides a simpler method of
producing the varying length Strings needed for formatting
than the scheme involving indirect referencing described 1iu
Chapter S. Here it is not necessary to store values with a
set of successively-named variables in advance of their use
in crder to insure that a string of the right length will bhe
available; rather the needed <string 1is generated by the
procedure call. TUsing REPEAT(), the alternate records of a
data group may be printed in a two-coluwn format, such that
the first reccrd of a pair 1is printed starting in columnn 1
and the second starting in a column which is the value of.N,
with a sufficient nunber of the formatting character which
is the value of CH printed in hetween. The following proqram
seqrent may be used for that purpose,

LONP REC1 TRIM (INEUT) « F(DONF)
REC? TRIM(INPUT) : PV (FRROR)
OUTPYT = RECT REDPEAT{{(N - 1) - SIAL(RECT) ,CH) REC2
+ : (LOOP)

B

6A., Programmer-defined Procedures 72

Since patterns may be concatenated to one another as
well as strings, the REPEAT() procedure may take a pattern
as its second arqument and will then return a pattern as its
value. For example, the pattern-matching rule

WORD REPEAT(3,ANTY (VOWELS)) $ S (YES3)

will succeed and send controi to YES3 if the value of WORD
contains at least three contiguous vowels.

procedure names may be defined more than once in a
prcgram and even the names of predzfined procedures may he
redefined (although there is seldom any reason for doing
so). In each case, it is the most recent definition which
establishes the current meaning of the procedure name, and
any precedinrg definition is lost.

The DEFINE () Procedure, The predefined procedure
DEFINE(} will accept two arguments, both strings. The basic
fcrm cf the first argument consists of the name of the
procedure being defined followed ty a parenthesized list of -
names of "formal variables" f(or "“dummy variables") which are
used in the procedure hody to represent the arguments with
which the procedure will be called; in the exanple above,
DEFINE (*REPEAT (N,08JECT) "), the nrocedure REPEAT () 1is
declared with the two formal varialkles N and OBJECT.

Procedure names and names of formal variables may bhe
freely invented by the proqgrammer, subject to the usual
restriction that they be identifiers. They may be the sane
as names used elsevhere in the program text for other
purroses, because all the names in the first argument of the
DEFINE() procedure are used "in a special way: wvhen a
procedure is called, these nawes are all made to refer to
new variables, 'internal" to the procedure call, which are
distinct from the variakles to which the names previously
referred; they will continue to refer to these internal
variables until a return from the rrocedure call 1is nmade.
(This mechanism will be descrilked in detail in following
sections of this chapter.) Tt turns out to bhe useful to have
other names which are made to refer to internal variakles
- for the duration of each procedure <call; these names of
additional internal variables, if used, are written
immediately following the closing parenthesis of the formal
variable 1list., A definition of a PRINT() procedure, which
has three additional internal variables, could bhe

DFPINE (*PRINT (N, NAME) N, %, P")

The internal variables #, ¥, and P could then he used within

6h. Programmer-defined Procedures 73

the procedure body where they might be assigned some values,
such as tallies, needed only during execution of the
procedure call. Notice that the list of additional internal
variables is an extensicn of the string which is the first
argument; no embadded blanks are permitted in this string.
There is no lirit to the number of formal variables and
additional internal variables with which a procedure may bhe
declared.

It is also possible to declare a procedure with no
formal variables, as in

DEFINE (*RECORDS () *)

if the process which the procedure is to perform is not
dependent on an argument list. The RECORDS () procedure, for
example, might be used to count all records in a group of
data read from the 1input file. ©X=ven though there is no
arqgument, the pair of empty parentheses must still appear,
both in the declaration and in every reference to the
procedure in a program text,

The second argument of the DEFINE() procedvere is a
string which 1is the label of a statement in the procedure
hody which is to be executed first whenever the procedure is
called; this label 1is termed the ‘tentry label." If the
seccnd argument is null or missing {and +thus null by
default), as it has been in all previous examples, the entry
label is taken to have the same form as the procedure name.
Thus the declaration

DEFINE (*RECORDS () ', * FECORDS ')

would have precisely the same effect as the preceding
exanple, of defining the entry label to be RECORDS.

More commonly, the second arqgument of DEFINE() is used
to 1insure that the entry 1label for a procedure body is
different from any 1label which may happen to appear
elsevhere 1in the program text, since all the labels of a
program must be unigue, Thus the convention may he adopted
of forming all entry labels by preceding the name of the
prccedure with the string PR.; the evaluation rule

DEFINE (*RECORDS ()} ', ' ER. RECORDS?)

declares that the entry label for RECORDS () is the label
PR.RECORDS, and the first statement to be executed in the
procedure body for the RECORDS () procedure must bear that
label. (The labels of the other statements of a procedure

6A. Programrer-defined Procedures \ T4

body should also be protected from conflicts by adopting
scme‘similar'conventions.)

The DEFYINE() procedure itself returns the null value
vhen it is executed. '

Procedure Bodies. A DEFINE{) procedure declares to the
Snobol. system the name of a programmer-defined procedure,
the names of its formal variables, additional internal
- variables, and its entry label, Ekut gives no indication of
its effect; that information is supplied by a procedure
body, which consists of a series of Snohol statements to bhe
executed whenever the procedure is invoked. A procedure hody
may consist of any number of Snobhol statements, one of which
{not necessarily the first) must have the label declared by
the DEFINE() as the entry label for this procedure. The
statenents of a procedure body may he of any kind; they may
include procedure’ declarations and references to other
procedures, or even to the procedure being defined. A
rrocedure vwhose hody contains a reference to itself is
termed a ‘'recursive procedure"; exanples of recursive
procedures may be found in Chapter 8.

The statements of a procedure body should be executed
only 1in response to a procedure call, so proccdure bodies
shculd be located within a Snobol program text in such a way
as to be outside the flow of control of the "pain program®;
the main program consists of all statements except those of
procedure bodies.

The specification of a procedure's action is nmade
general rather than specific by using the names of the
formal variabhles within the " procedure body. In the
definition of the COUNT() procedure shown below, the formal
variables PAT and LINE are wused to represent the many
different arquments with which this procedure may be called
on different occasions.

DEFINE('COUNT(PAT,LINE)',*PR.COUNT') : (END.COUNT)
PR.CCUNT LTYNE PAT = NULL : F(RETURN)
COUNT = COUNT + 1 (PR.COUNT)

END.CCUNT

The first statement of the rrocedure body specifies
~that the value of the second argument LINE is to be searched
for an instance of the first arqument PAT; the second
statement of the procedure body increnents the value of
COUNT each time a pattern is found and sends control back to
the first statement to institute anotheér search. COUNT() is
thus generally defined as a procedure which counts the

6A. Programmer-defined Procedures 75

number of occurrences of some pattern within some string;
infcrmation as to what pattern and what string are to be
used will be supplied to the procedure bodv by the arguments
each time the procedure is called. (Notice how the procedure
body has been removed from the flow of control of the main
program by the unconditional transfer following its DEFINE()
statement.}

The internal variaktle named COUNT, rather than any
other variable, 1is assigned +the result becauvse of a
convention which exists for the returning of values: when a
success return from a procedure is taken, the last value
assigned within the rprocedure body to the variable whose
name is the same as that of the precedure is returned as the
value ¢f the procedure call. If that variable, which 1is
termed the M"result variable," 1is assigned no valne during
the execution of the procedure body, the null value is
returned. A value of any datatype may be returned as the
value c¢f a procedure call.

The_Returns RETURN, NRETURN, and FRETUERN. The logical
end of » procedure body is signalled by a go-to specifying a
transfer to RETHRN (the standardl success return), to NRETURN
{ancther success return, for returning a variable rathec
than a value), or to FRETURN (the failure return). These
transfers have special syster definitions and constitute
requests to the Snohbol system to return control to the
statement from which the procedure was called. Any nunmbter of
statements in a procedure body may contain transfers to
RETURN, WRETURN, or FRETURN; the first such transfer to be
executed ends execution of the prccedure call. If either
success return (RETURN or NRETURK) is executed, the value of
the result variable 1is returned as the value of the
procedure call and execution of the calling statement
resumes at the point of the call; if the failure return
FRETURN 1is executed, no value is returned but control is
sent directly to the go-to of the «calling statement where
the failure transfer will be taken.

There is no restriction against using RETUPN, NRETURN,
or FRETURN as the label of any statement within the program
text, but if this is done the special system definition of
that return is lost. Hence RETURN, NRETURN, and FRETHRN must
not be used as labels within any proqgram which employs then
to return from a programmer-defined procedure, or else a
trarsfer to RETURN, for example, from a proccdure body will
send control not to the <calling statement but to the
statement labelled RETURN.

GA.'Pthrammer4defined Procedures - : 7€

The example below presents ancther way to vwrite the
COUNT{) procedure, in which the procedure body includes both
RETUEN and FRETURN transfers. (An example of a procedure
wvhich uses NRETURN may be found toward the enrnd of this.
chapter.) As before, the procedure is desigined to count the
number of occurrences of some pattern within scme string;
here, however, if no instances of the pattern are found, the
procedure does an FRETORN, causing failure of the rule from
which it was called, rather than returning the null value.

, DEFINE (*COUNT (PAT,LINE) ', "PR.COUNT?) : (FND.COUNT)
PR.CCUNT LINE PRT = NULL : T (OUT.COUNT)
COUNT = CCUNT + 1 H {PR.COUNT)
OUT.COUNT TDENT(COUNT,NULL) ¢+ S(FRETURNj} F(RETURN)
END.COUNT

As in the earlier definition of COUNT(), the counting
loop 1is executed until the pattern match fails. When this
harpens, however, control is sent to the statement labelled
O0T.COUNT which tests COUNT to see vhether or not it has
been incremented. If it has not -~ 1if the pattern match
failed on the first attempt —— then COUNT has a null value,
the test will succeed, and the procedurée will do an FREPUZN
causing faiiure of the procedure call; if COUNT is non-null,
then the procedure will do a RETURN, returning the value of
COUNT = as the value of the procedure call., Often, as here, a
success transfer may lead to an FRETURN, and a failure
transfer to a RETURN.

Procedure Calls. When an assignaent statement such as

NUMBERA = COUNT('A',RECORD) : F({NONE)

is executed, the procedure call must bhe processed before the
assignrent can take place; hence, execution of the caliing
statement is temporarily suspended while the Snobol systenm
executes the procedure call.

To carry out the call, the Snobol system Dbegins by
taking several automatic actions. TFirst the names in the
first arqument of the DEFINE() statement are made to refer
to new variables which are 1internal to this call of the
procedure, The procedure name now refers <t©o the internal
result variable, and the formal variable names refer to
internal formal variables. Next the internal variables to
which these nanes now refer are assigned the values needed
for the execution of this call: the result variable (COUNT
in this <case) 1is assigned the null value, the formal
variables are assigned the values of their corresponding
arguments (in this example, +the formal variable PAT i=s

6A. Prcgrammer-defined Procedures | 77

assigned the character A and the formal varjiable LINE 1is
assigned the value of the variable RECORD). Since there is
no way to make reference to a variable except by wusing 1its
name, this means that the variables formerly referred to by
the names COUNT, PAT, and LINE are inaccessible during the
execution of this procedure call,

After this preparation is comrpleted, control is sent to
the entry label and execution of the procedure body bhegins.
The action of the procedure is carried out using the values
of the arquments provided to the procedure call, since these
have Jjust been assigned as the values of the formal
variatles. The statements of the prccedure body are executed
in the usual way, until a request for the system to do a
return is encountered.

Any return automatically reverses the actions of the
preparation process; the names of the procedure and of the
forral variables are made to refer to the same variables
which they named Jjust before the procedure call vas
executed, and thus the internal variables, having served
their purpose, become 1in turn inaccessible, The flow of
control reverts to the calling statement -—— on a RETURN, to
the roint o¢f the procedure call; on an FRETURN, to the go-
to.

The _Passing of Argquments. When a procedure is invoked,
the values of the arqguments in the procedure reference are
said to be "passed" to become the values of the formal
variables., The values of the arguments are assigned to the
corresronding formal variables on a one-to-one, left-to-
riaght basis. Any procedure, predefined or progranmer-
defined, may be called with more or fewer arquments then its
definition provides for. Missing arguments are taken to have
the null value; extra arquments are evaluated before the
procedure call is executed, but are otherwise ignored.

Tn Snobol, all arguments are passed "by value"; that
is, the arguments are evaluated and the resulting values are
passed to the procedure hody. (In fact, the nmechanism for
passing arqguments has +the same effect as 1if a Snobol
assiqgnment rule were executed, with the formal variable on
the left side and the argqument on the right.) This method of
passing arquments assures that the values of variables in
the arquments are not affected hy execution of the procedure
call. For instance, in the call

NUMBERA = COUNT (*A', RECORD) : P (NONE)

it is the value of the variable RECORD which is passed as

6A. Programmer-defined Procedures . IR 78

the value of the seccend argument. The procedure will use,
not the variable RECORD, but only the internal formal
variable LINE which has been assigned the value of RECORD at
the time of the call., Thus the valoe of RECORD is always the
same before and after a call of the COUNT(} procedure is
executed. ' . '

The arqguments used in a procedure reference may be any
expressions having values which the procedure body will
handle properly. A call to COUNT() such as in the statement

NUMBERV = CCUNT(ANY('AEIOU') ,RECORD) s P (NONE)

would pass the pattern returned as the value of the
procedure call ANY {'AEFIOU') to be the value of the variable
PAT. Since PAT™ is used in the pattern part of a statement, a
pattern value is appropriate and the number of vowels within
the valve of RECORD will be returned as the value of this
call to the COUNT() procedure,

While +he first formal variable, PAT, may .acquire
either a string or a pattern 'value, the second formal
variable, LINF, may acquire only a string as value, since it
is used within the procedure body as a string reference.
EFxecution of a procedure call of the form

NUMBERY = COUNT (RECORD,ANY{'AEIOU')) : F (NONE)

{in which the programmer has presumably forgotten the
correct order of the arguments) will pass the formal
variable LINE a pattern value; when the procedure body is
entered an execution-time error will result, since the first
field in a replacement rule cannot he a pattern.

Additional_ Irnternal Variables. The names of variables
which are to be internal to a procedure call (in addition to
the result variable and any formal variables) are also made
to refer to "distinct internal variables at each procedure
call, thus making the variables previously referred -to by
those names temporarily inaccessible; the names are restoreAq
to. their former significance when a return fron the
procedure call 1is taken. The internal variables which they
name are initially null at every call of the procedure just
like the result variable, fThere are thus two possible
reasons for declaring additional internal variables: to
prevent their names from <conflicting with names used
elsewhere for other purposes, and to take advantage of the
autcematic null initialization at each call. Any number of
additicnal internal variables may be declared by writing
their names in the first arqument of a DEFINF({) procedure.

6A. Programmer-defined Procedures 79

As an example of the usefulness of additional 1internal
variables, consider the LONGER({) procedure which employs
four of them. This procedure compares the two strinas given
as the values of its first two arquments to deterwine which
contains the lcnger sequence of the characters specified by
the value of its third arqument; it returns as its value the
strirg containing the longer sequence. If the size of the
longest segquence in bhoth strings 1is the same, then hy
convention the first string is returned as th2 valune of the
prccedure call; if neither string contains a character given
by the third arqument, a trarsfer to FRETURN 1is taken
causing failure of the procedure call. Thus execution of the
assignment statement

OUTPUT = LONGER('HTLARIOUS!,'TREACHEROUS',? AEIOU')
+ : T (NOVOWEL)

would cause the string HILARIOUS to be printed since its
longest vowel sequence is longer than any vowel sequence in
the string TREACHEROUS,

DEFINE('LONGER (51,52, SEQ) T1,T2,SAVE,LONGEST*,
+ 'PR.LONGER ") : (END. LONGER)
% MAKE COPIES OF THF TWO STRINGS 1T0 BE COMPARED
PR.LONGER ™1 = S1 '

T2 = S2
* FIND THE LONGRST SEQUENCE IN THE FIRST STRING
* ASSIGN ITS SIZE TO THE INTERN2L VARIABLE NAMED LONGEST

T1.LCNGER 71 SPAN(SEQ) . SAVE = NULL =: F{T2.LONGRR)
LONGEST = GT(SIZE(SAVE) ,LONGREST) STIZE(SAVL)

+ : {(T1.LONGT R)

* SEE IF THERE IS A SEQUENCE IN THE SECOND STRING

* WHICH TS LCNGER THAN THE LONGEST SEQ TN THE 1ST STRING

* IF SO, ASSIGN THE SECOND STRING AS THE VALUE OF THE

* RESULT VARIABLE AND RETURN

T2.LCNGER T2 SPAN(SEQ) . SAVE = NULL : F{OUT.LONGER)
LONGER = GT(SIZE(SAVE) ,LONGFST) &2

+ : S(RETURN) F (T2.LONGFR)

IF NO SEQUENCE WAS FOUND IN EITHFER STRING, FAIL

* OTHERWISE RETURN THE FIRST STRING AS VALUE OF THE CALL
OUT.LONGER LONGER = DIFFER(SAVE,NULL) S1

+ : S (RETURN) F(FRETURN)
END.LONGER

This procedure uses four additional internal variables
named T1, T2, SAVE, and LONGEST. T1 and T2 are needed
because the method used for determining the 1longest vowel
sequence in S1 and $2?2 deletes each vowel sequence which is
found. Since the original strings must be prescrved to bhe
returned as the value of the procedure call, the replacement

.6A. Programmer-defined Procedures : S . 80

statements T1.1CONGER and T2.LONGER use the variables T1 and
T2 rather than S1 and S2, allowing the values of S1 and S?
to remain unchanged. The internal variable SAVE is assigned
each vowel sequence which is found. The fact that SAVE is
given the null value initially allows the test 'in the
statement labelled OUT.LONGER toc determine whether or not
any vowel sequences have been found; if SAVE still has its
null value, then neither string contains a vowel and an
FRETURN is taken. The internal variable LONGEST is used to
- keep track of the size of the currently longest vowel
sequence as each is successively found within the first
string. When the determination of the size of the longest
sequence has been completed, this number is then compared
with +®he size of each vowel sequence as it is found in the
seccnd string until either a longer sequence is found (in
vhichk case the second string is returned as the value of the
procedure call) or until all vowel sequences have been
considered (in which «case either the first string 1is
retuvrned or failure is signalled).

Since in this procedure body the internal variables T1
and T2 are assigned the values of the arguments as soon as
the procedure body is entered, the only reason for declaring
them to be internal is to prevent conflicts with other uses
of the names T1 and T2. The internal variables SAVE and
LONCEST are similarly protected, but also take advantage of
the fact that they are initialized to null each time the
LONGER () procedure is called.

Note that the usé of the additional internal variable
LONGEST is not really necessary since the result variable
LCNGER may be substituted for it wherever it occurs. Result
variahles have cxactly the propérties of additional internal
variables until a success transfer is taken, so they are
often assigned temporary values which are needed during the
processing of a procedure call. When the final value of a
call has been determined, it can then be assigned to the
result variable and a return made to the statement in which
the procedure call occurred.

References_to Lxternal Variables. The principle of a
programmer-defined rprccedure is that of a "sub-program,"
independent of the program with which it 1is wused; it
receives values through its arquments, performs some process
using those values, and.returns the result. If temporary
values are needed, the procedure assigns them to additional

internal variatles, so that it avoids changing the values of

any variables not internal to itself, i.e., those whose
names do not appear within the first argument of the
DEFINE() statement for the procedure.

6A. Prcgyrammer-defined FErocedures 81

Procedures written in such a way as to make reference
to no values other than thecse of their internal variables
{for to literals within their own bodies), and which assign
values only to their own internal variables, are desirable
for many reascns. They are easy tc¢ wmove from program to
rrcgram since they will operate correctly regardless of
their environment, and they are easy to use because they can
influence that environment only through the result which
they return (including, of course, the possible "result®" of
failing).

At the same time, there are sometimes qood reasons for
relaxing this discipline, in pursuit of the same goals for
which procedures are written in the first place: to make
programs easier to write and clearer to read. One exanmple of
such a motivation has already come up "in some of the
eramples; in the procedure body fcr the LONGER() procedure,
for example, the statement

T1.LCNGFR T1 SPAN('AETOU') . SAVE

NULL : F(T2.LONGER)

occurs. Here NULL 1is the name c¢f a variable which 1is
external to the «call of the LONGRR() procedure; since tho
name NULL is not included in its declaration, it receives no
special treatment when this preocedure 1is called; it
continuwes to refer to the same variable before, during, and
after a call ¢to 1LCNGER{). Thus, 1if LONGER() were to be
called from a program which had assianed some non-null value
to the varieble named NULL, it would not work as intended.

Tn this case there are several ways to restore the
independence of the LONGER{) procedure; the identifier NULL
can be replaced in its bhody by a literal null string (twvo
adjacent gquotation marks), or by nothinqg, or the name NILL
can rte declared ac naming an additional internal variable
for LONGER{), thus assuring that NULIL will refer to a
variable initialized ¢c¢ the null value each time LONGER{() is
called. For this procedure such precautions seem extrenme,
but they micht make sense if LONGER() were a much more
complicated procedure, and were intended for use by people
cther than its frogrammer.

As another motivation for making reference to extecrnal
variables, «consider a programmer-defined test procedure
which determines whether or not the string given as its
argqument is a palindrome, that is, whether it reads the sane
frcm left to right as from right to 1left., The complete
program presented below uses the PALIN() procedure to
perform this test. The program reads all trimmed reccrds of
a group of data hut prints only . those which are palindromes.

6A. Pregrammer-defined Procedures : 82

* PALINDROHE-FIKDING PROGRAM
* :
* SET UP PATTERN NEFDED BY THE PAIIN() PROCEDURE
* ASSIGN IT 70 A MAIN-PROGRAM VARIABLE ‘
PAL.PAT = POS(0) LEN({1) ©T CH RTAB(i) . CAND *CH
DEFINE (*PALIN(CANDYCH', *PR.PALIN') : (END. PALIN)
x . : ‘
* TF CANDIDATE NOW CONSISTS OF 1 OR 0 CHARACTERS, SUCCEED
* OTHERWISE APPLY THE PATTERN AGAIN
PR.PALIN LE (SIZE(CAND), 1) : S(RETURN)
CAND FAL.PAT ¢ S(PR.PALIN) F {(FRETURN)
END.PALIN : S
%k
READ RECORD = TRIM(INPUT) : F(END)
BRINT OUTPUT = PALIN(RECORD) RECORD : (READ)
CEND '
Output from this program could bhe strings of the form
HANRRH
T
RCTCR
NOON
SAGAS
*
103595301
YREKABAKERY

24> XS KO>(L

The PALIN() procedure uses virtually the same pattern
as that shown at the end of Chapter 4 for finding words with
identical first and last characters; the pattern is changed
only by the re-assignment of the substring matched by
RTAR{1) to the variable named CAND. Thus, on each iteration
- 0of the 1loop the string being searched is shortened by the
loss of its first and last characters; a new set of first
and last characters is then tested for identity. The loop is
executed until either (1) the end characters being tested
are found to be different, upon which an FRETURN is taken
signifying that the string is not a palindrome, or (2) the
size of the string is reduced to zero or one, in which case
a RETUEN is taken since this indicates that all characters
have reen tested and that the string is a palindrome. Note
that the rule in the statement 1labkelled PR.PALTN will
succeed immediately 'if the size of the argument is either
zero or one, meaning that strings of one or no characters
are pallndromes by deflnltlon. The PALIN() procedure returns
the null valne cn success, since the result variable PALIN
is not assigned a value within the procedure body.

6h. Programmer—~defined Procedures 813

Here the pattern on which PALIN{) relies is coustructed
once, in the statement Jjust above the DEFINF(), and assigned
to the variable DPAL.FAT, The reason for doing this is clear:
since 1internal variables are internal to a single call of a
procedure and their valucs naover persist batuyeen calls, if
PAL.PAT were Adeclared to be the name of an additional
internal variahle of PALIN(; *hen the pattern assignmnent
would have to ke moved into the prccedure bhody, and thus the
pattern would have to bhe ceonstructed anew at each call of
the PALIN() procedure —- a substantial amounft of unnecessary
effcrt. '

It is tree that PALTN() will ro% work properly 31f +the
program calling it inadvertantly aussigns a different value
to the variable PAL.PAT. It might seew that this kind of
error could te avoided by rewriting PALIN() to accept tihe
pattern as another arqgument, rTataer *“han nerely using the
value of an external variable; but that turns out not to he
truc. A call to such a re-written FALIN{} procedure would be
scrething like

PALIN (POS (0) LEN(1) $ CH RTAB(1) ‘. CAND *CH,RECNRYD;

Apart frem the bother of writing the invariant pettern in
every velovence to PALTN (), the nattern is once again heinqg
constructed at cach call of PALIN({) —— in the evalvation of
the argument, rather than within the procedure boldy. The
calling progran can avoid the rewneated eovaluation of the
pattern by executing the assiagnuwent statoument

PAL.PAT = POS{0) LEN(1) & CH RTAB(1} . CAND *CH

PALIN {PAL.PAT, RECORD} s F(NOPALIMW

But now, just as before, the calling program is responsible
for assuring that PAL.EAT has the correct vaiue at the time
of the call. So the original PALIN{) procedure cannot bhe
improved upon in this way, and has the additional mnerit of
requiring only one arquement instcad of two. The conclusion
tc be drawn is that a pattern used by a procedurc must
either he censtructed at each procedure call, or else nust
be assiqned as the value of an external variable so that it
will be availalle for use by repeated procedure calls,

Notice, however, how thoe pattern which 1s the value ot
the main-pcogvam variable FALLPAT can cause assignreents to
the interpal formal variahle named CAND and tn the
additional internal variahle named CH within the PALTN()

6A. Programmer-defined Procedures - , 84

procedure. The pattern PAL.PAT calls for immediate
assignment to wvhatever varlable is currently referred to hy
the name CH, and conditional assignment to whatever variable
is vcurrently referred@ to by the name CAND —— it specifies
nothing about which variables those nust be. If PAL.PAT is
used in a statement of the main program, then it will cause
assignments to the main-program variabhles named CH and CAND.
At a call of the PALIN{) procedure, though, those twoc names
are made to refer to different variables, internal ¢to the
procedure call; so if PAL,PAT is used (as above) in a
statement within the body of PALIK(, it will cause
assignments to the two variables internal to the call.

Side-effects of_Procedures, Just -as there are sometimes
reasons for making reference to the values of external
~variables, so are there reasons for altering their values as.
well. B procedure call which alters the value of a variable
not internal to the call is said to have a ‘f%side-effect.”
This terminology exists because of the presumption that the
main effect of a procedure is to return a value or to direct
the flow of control; in fact, hovever, procedures ars often
written solely for the purpose of producing side-effects.

One reason for defining a procedure vwhich produces a
side-effect 1is to keep some sort of record of occurrences
inside and outside of procedure calls. For instance, the
COUNT () procedure presented earlier could be changed so that
in addition to its former action of returning as its value
the number of instances cf some pattern within some strisq,
it also increments an external counter by that number. This
new version of COUNT(), TCOUNT{), could be written as
follcus., - ‘ ' - :

DFEFINE (*TCCUNT (PAT,LINE) ', ! PR.TCOUNT) : (END.TCOUNT)
PR.TCOUNT LINE PAT = NOLL : F({OUT.TCOUNT)
‘ TCOUNT = TCOUNT + 1 e (PR. TCOUNT)
OUT.TCCUNT TALLY = TALLY + TCOUNT : (RETURN)
END.TCCUNT '

*

Aside from the systematic replacement of COUNT by
TCOUNT, this procedure definition is the same as that of the
first version of COUNT{), except that before returning the
procedure increnents the wvalue of the external variable
TALTIY by the value of the result variable. Since TALLY is
not an internal variable, its value can be 1increased
thrcughout a-proqram over repeated calls to TCOUNT (), and
thus represent a total of the results of many invocations of
that procedure; for that matf@r, TALLY might Also bhe
incremented by other assignments in the main program or by
calls to other procedures as well.

6A. Prcgrammer-defined Frocedures B85

The inclusion of the side-effect involving TALLY
specializes the COUNT () procedure, and the same record could
be kept without recourse to side-effects Dby keeping the
tally entirely in the main program, as in the seqment

RESULT = COUKT({*A',RECORD)
TALLY = TALLY + RRESOLT

and so forth. But that requires that the tally~incrementing
statement bhe written once for every reference to the
prccedure; i1f there are many references to COUNT() in A
program, then the whole text can be shortened considerably
by writing the statement which increments TALLY once in the
TCCNONT () procedure body and permitting the side-effect to
occur.,

Another reason for changing the value of an exterunal
variable in a procedure .body 1is to take advantage of an
output association which that variable wray have. A SXIDPY{)
procedure ¢an te defined, for evarple, to "skip"” the number
of lines specifiet by its argument by assigning the null
value repeatedly to the main-proqgras variabhle named OUTPUT.

DEFTNT (YSKID (NUM) Y, ' PR, SKIDY)
PR. SKID KUM= GT(HUX,0) HnH - 1
OUTPUT = NULL

(FUD . SKTD)
F(RETURN
(PR, SKTP)

*e s o

END.SKIP

Tf SKIP() is called in the sequence

OQUTPUT = HEAD?
SKIP (3)
OUTPUT = HEAD2

then the first hkeading, the three eapty lines, and +the
secont heading Aare all written to the sane file, the one
with which the variable OHTIPUT is associated, since the
variable referred to by the name OQUTPIT is the same both
inside and outside the procedure call. Note that SXTIP{)
vould not work as intended if OUTIUT were declared to rofer
to a variable internal to the precedure call, since the
asscciation 1is with the main-progran variable, not with the
name OUTPUT.

Quite a different motivation for side-effects arises
when a procedure does not have a fixed name of an oxternal
variable in its procedure body, but rather can c¢hange the
values of diifferent variables when 1t is called with
different arqurents,

6A. Programmer-defined Procedures ’ 86

One way to do this is to define a procedure which has a
string as 1its argument and which uses indirect referencing
within its procedure body to refer to an external variable
named by that string, or by a string derived from it.
Consider the following STORE({) procedure, whose purpose is
to store the string which is its first arqument as the value
of cne of a set of successively-named variables; the name of
the variable which is to be used is formed by concatenating
the length of the string to be stored, thnn the value of the
- second arqument of STORE(), then the index number of the
next available successively-named variable of the set. 1If
the prccedure reference

STORE('CAT', 'LIST"')

is written, for instance, and CAT is the first three~letter
word to be stored, then it will become the value of the
variable named 3LIST1. If STORE(} were <called repeatedly
with the string LIST as its second argument, then it would
store one-character strings as the values of the variables
1LIST1, 1LIST2, «e., $(1 'LIST' N), two-character strings as
the valves of 2L.IST1, 2LIST2, es., ${2 *LIST* Ny, etc. The
STORE () procedure further keeps track of the last used ipdex
nunkter for each *'list* by storing these numbers as the
values of the variables 1LIST, 2LIST, ..., $(N 'LIST?!'). Note
that all names formed by the STORE(} procedure depend on the
value of its second argument, but all begin with a number
and €0 are necessarily distinct from any names which may be
written in the program text. :

The definition of the STORE() procedure could be

; DEFINE(*STORE (WORD,NAME)",*ER.STORE') : ({(END. STORF)
*

* ADD ONE TO THE INDEX NUMBER FOR THIS SIZZ WORD LIST

PK.STORE § (SIZF (WORD) NAME) = $(STZE(WORD) NAMF) ¢ 1

R

* STORE THE WORD AS THE VALUE OF THE "HEXT" VARIABLE
'$(STZE (WORD) NAME $(SIZE (WORD) NAME)) = WORD

v E (RETURN)

END.STORE ,

STORE() is thus a procedure which always succeeds,
returning the null value, Tts purfrose is alvays to have the
side-effect of changing the value cf one of the great many
external variables whose names are d@pendent on the various
values of its second arqument.

6. Prcgrammer-defined Procedures 87

levels of Internal Variables. When a procedure call is
to use variablies other than those interrnal to itself, either
to refer to their values or to assign new values to then,
then the particular relation hetween nares and variables at
any time beccmes important. In thz preceding sectiocns the

exanples have assumed that a procedure was called from a

main progrem, and thus Aall names either referred to
variables internal tc¢ the procedure call, or else *to
variabtles associated with the main program. Rut the

situation may be more complicated than this, because one
proc2dure mey be called and then it may call another
procedure: if the second procedure makes reference to
variahles o«ther than its own internal variables, the
posciblity exists that it may use a name which refers to wone
of the internal variables of the procedure which called 1it,
rather thar to a main-program variable external to bo*h of
then. Scmetimes this is what was intended and sometimes notg
care wmust bhe tasken to insure that the names used by
procedures vill always refer to the intended variables.

_ The nurber of sets of internal variables which have
beccre temporarily accessible at any point in time during
execution is termed the "level" of execution. When a progranm
Lhegins executing, 1t is at ievel zero aund the stateonents
pxccuted at level zero are the technical definition c¢f the
main program. Tfi a statement of the main program cails a
procedure, the statements of that procedure's body will bhe
executed at level one; if +that procedure calls a second
procedure before returning, then the statements of the
seccnd procedure's body will be execunted at level two. When
the second procedure does a return, the first proceiure will
resume execution at level one; when it returns, the main
proaqram will resume execution at level zero. It may then
call another procedure which %will execute at level one, and
so forth. Any number of levels may be attained; there is nc
level lower than =z2ero, however, so any attempt to do a
return from a statement of the main program (caused by
allcwing contrcl to flow into a procedure body by accident
rather than through a procedure call) will <cause an
execution-time error. Such an error can be caused by
neglecting to write an unconditional transfer following a
DEFINE () procedure in any of the albove examples,

At different tires a procedure may be executed at.
different levels, depending on the length of the chain of
calls by which 1t was reached. The only change in’ executing
at different 1levels 1is in the wvariables to which names
refer. A procedure executing at level three, for exanple,
vill be executing in an envircnment in vhich mest names
refer to main-program variables, but some names refer to

6A. Programmer-defined Procedures 88

variables internal to whatever procedure call is at level
one, some names refer to variables internal to whatever
procedure call is at level two, and some names refer to its
own internal variables at 1level three. If this sanme
procedure 1is later called directly from a statement of the
main program, +then all names "except those of its own
internal variables will refer to main-program variables.
This difference in environment must be considered to assure
that a procedure will refer to and assign values to the
intended external variables, no matter from what level it is
called and no matter which procedure (and thus what names of
internal variables) are at levels below it in any particular
chain of calls.

As an. illustration of +the same name referring in
different environments to variatles at +three different
levels, consider an improved version of the PALIN ()
procedure, PALIND(), which would delete all spaces anqd
punctuation characters from its arqument before testing it
for being a ralindrome, thus allowing strings of the fornm
- DOC, NCTE, T DISSENT. A PAST NEVER PREVENTS A PFATNESS. I
DIET CN COD to be accepted. In the complete program below
the name CAND is used to refer to the trimmed record read
frcm the input file, to the formal variable of the PALIND ()
procedure, and to a formal variable of the DELET® ()
procedure which is called by +the PALIND() procedure to
perform the deletion. Nevertheless, there is no possibility
of the name CAND referring to a variable at the wrong level;
within the PALIND{() procedure (in this example} it always
refers to an internal variable at level one, while within
the DELETE() procedure it always refers to an internal
variable at 1level +two. The level zero variable named CAND
can thus be referred to only by statements of the main
proqranm. :

DEFINE (*PALIND (CAND)CH®*, *PR.PALIND')
* .
* SET UP PATTERN NEEDED BY THE PALIND() PROCEDURE
*

ASSIGN IT TO A MAIN-PROGRAM VARIABLE
PAL.PAT = POS(0) LEN(1) $ CH RTAB(1) . CAND *CH

+ : s (E¥D.PALIND)
*
* CALL DELETE() TO REMOVE SPACES AND PUNCTUATION FROM ARG
PR.PALIND CAND = DELETE{(ANY('m.,:3'),CAND)
* o ,
* PROCEED AS IN THE PALIN() PROCEDURE
- LOOP.PALIND LE(SIZE(CAND), 1) :t S (RETURN)
' CAND PAL.PAT ¢ F(FRETURN) S (LOOP.PALIND)

ENC.PALIND
*

6A. Frcgrammer-defined Erocedures 89

DEFINF (*DELETE (PAT,CAND) *,'PR.DELETE")

+ + (END.DELETE)

we

* REMOVE ALL PATTERNS FROM THE CANDIDATE

PR.DELETE CAND PAT = NULL : S(PR.DELETE)
DELETE = CAND : (RETURN)

FND.DELETE

*

* MAIN PART OF PROGRAM

. X

* READ ALL RECCRDS PUT PRINT ONLY THE PALINDROMES
READ CAND = TRIM(INPOUT) s F(END)
PRINT OUTPUT = PALIND(CAND) CAND : (READ)
END '

In this progqram the two DEFINE() statements, the
assignment to PARL.PAT, the READ statement, the PRINT
statement, and the END statement constitute the complete
main program. These statements are executed in the order
specified by the go-to's until an attempt is made to perform
the assicnmert = in the PRINT statement; before this
assignment can cccur, the value of the call to the PALIND({()
procedure must be obtained. This call causes the variable
named CAWD, internal to level one, to be assigned the sane
value as the . mpain-program variable CAND, ¢that 1is, the
candidate to be tested, and a transfer to be taken to
PR.PALIND. Before the assignment specified in this statement
can ke performed, however, a call to the DELETE() procedurce
must te processed. This causes +*he variable named CAHND
internal to the level two call of TELETE() to be assigned
the same value as that of the level one variable CAND, the
string to he tested. This string is searched repeatedly for
spaces and punctuation charatters and when all have heen
deleted the resulting, possibly shortened, string is
returnazd to the statement PR.PALIND where it is assigned as
the new value of the level one variable CAND. The value of
this variable is then searched, perhaps repeatedly, for the
PAL.PAT pattern; each time the search is successful, the
value of the 1level one variable CAND is shortened by the
loss of its first and last characters. If the candidate is
indeed a palindrome, then the final value of the level one
variable CAND will be a string of one or zero characters,
the PALIND(}) procedure will take the success return and
transfer bhack to the statement labelled PRINT. Here the
value of. the 1level zero variable named CAND, the original
string as it was rvead from the dinput file, is printed
whenever PALIND () succeeds, ‘ ' :

6A. Prcgrammer-defined Procedures - T 90

Output from this program could he strings such as

CIVIC

SUMS ARE NOT SET AS A TEST ON ERASMUS.
ROTCR

DEIFIED

DENNIS AND EDNA SINNED.
Fkok Rk dolokdok Rokkk KRk kk K

There are two different ways of classifying variables,
which are useful in different descriptions of procejures. On
the one hand, there are main-program variables, at level
zerc, as opposed to the internal variables at higher levels:
it is the level zero, or main-program, variables which have
the lasting values associated with all names, while internal
variables at all higher 1levels become accessible only
temporarily during procedure calls and are initialized anew
at each call. On the <c¢ther hand, from the viewpoint of
discussing any particular procedure call, the distinction is
between names of internal variables which are always its
own, as opposed to external variables which may be different
variables when the procedure executes at different levels.

The important special case in which these tvo
descriptions -are equivalent is for procedures executing at
level one; at level one, the external variables are all
main-program variables. The fact that external variables
cannot be quaranteed to be main-prcgram variables at level
tvo and ahove without a painstaking check of the names of"
all internal variables through all possible chains of calls,
is one reason for avoiding unnecessary references to
external variables in procedure bodies.

‘The Use of NRETURN_to Return_a_vVariable. Any procedure
call vwhich returns a non-null string (or an object of
datatype Name) may occur to the left of an assignment sign
as the operand of an indirect referencing operator. This was
indicated in Chapter 5 with the rule :

$sxzv(ﬁoan) "= $SIZE(WORD) + .1
and may be further illustrated hy the rule
$COUNT(ANY(VOHELS),WORD) = $COUNT(ANY(VOHEL°) woao) + 1
which adds one to the value of the variable named by the

- number of vowels found within a word. As another example,
the statement

6h. Prcgrammer-defined Procedures 91

$TRIN (INPUT) = LINE1 : F(DONFE)

assigns the value of LINE1 to the variable named by the
characters of the next trimmed data record, or causes an
execution-time error if the trimmed record is null.

Programmer-defined procedures can he written specifi- .
cally for the purpese of returning a string which will be
used as the cperand of the § operater to return a variable.
Consider, for example, the prcblem of determining the first
null-valued variable of the set LIST1, LIST2, eeep, S$('LIST?
N), described in Chapter S5, and then assigring that variable
the value of the next data recerd. A procedure namned
NEXTNULL () m®might be written to deterwmine the first null-
valued variable as follows.

DEFINE (*NEXTNULL (NAMEY N? ,'PR, NEXTNULLY)

+ s (END.NEXTNGLL)
PR.NEXTNULL N = N + 1

NEXTNULL = IDENT (F (NAME N),NULL) NAME ¥
+ | : S(EETURN) F{PR.NEXTNULL)
END.NEXTHULL

The NEXTNULL() procedure cannct fail so it may be used
in a statement of the form

FNEXTNULL (*LIST*') = TRIM({INPUT) ~: F(NODATA)

The procedure is called with a string-valued argunrent
rerresenting that part of the name which is common to all
the variables. This string is concatenated to the value of
the wvariable N internal to the procedure call, and the §
operator is applied to the result cf this concatenation to
return a variable. If the value of this variable is null, a
string representing the name of the variable 1is formed by
concatenation and assigned as the vazlue of the result
variable; this string is returned as the value of the
procedure call where 1t is used as the operand of the %
operator which returns the variable needed to perform the
assignment.

Since N is declared as internal, it 1is assiqgned the
null value every time the NEXTNULL () procedure is called,
hence the scarch for the '"next" variable always begins fronm
one. If the search were to begin from the value given N tho
last time the procedure returned, i.e., from the last
variable located, then N should nct be declared as internal
so that it would retain its value from one procedure call to
the next. ‘

6A. Prcgrammer-~defined Procedurésb -) - 92

A procedure can be caused to return a variable, rather
than. a string which can be used by the $ operator to return

'~ a variable, with the use of the name return NRETURN. This

return may be used only if the value of the result variable
is a string {(or a Name); it effectively applies the §
operator to the value of the result variable, causing the
variable named by that value to be returned as the value of
the rprocedure call. Using NRETURN, the NEXTNULL() procedure
may te written as follows,

DEFINE('NEXTNULL(NAHE)N‘,'PR.NEXTNULL')

y) : (END.NEXTNULL)
PR.NEXTNULL N = N + 1 ;

NEXTNULL = IDENT ($ (NAME 'N),NULL) NAME N
+ : S(NRETURN) F(PR.NEXTNULL)
END.NEXTNULL : '

This version of NEXTNULL() is exactly the same as its
predecessor except that NRETURN has been written instead of
RETUEN in the last statement of the procedure body, causing
the variable named by the string formed by concatenating the
value of NAME and N to be returned, rather than that string.
A reference to this new NEXTNOULL() procedure would have the
form

NEXTNULL (*LIST') = VTRIM(INPUT) s "P(NODATA)
The § operator is now not vanted before the procedure
reference since NRETURN has effectively applied it already.

NRETURN is provided for convenience only:; its effect
may always be obtained by using RETURN within the procedure
body to return the name of a variable, and by placing a §
operator directly before the procedure reference. Further
examples of the use of NRETURN may be found in Chapters 7
- and 8. '

The APPLY() Procedure. A procedure reference in a
program text 1is composed of a procedure name folloved
directly by an arqument list enclosed within parentheses,
Although these arguments may be represented by arbitrarily
complex expressions, which when evaluated yield appropriate
values, the procedure name may not be so represented but
mnust be an identifier. o ' ‘

There are some applications, however, 1in wvhich the
programming would be much simplified if one could indicate
generally, rather than specifically, which procedure is to
be called. Consider, for example, a series of procedures
named FIX1, FIX2, FIX3, etc., each one designed to ®"fix" a

6A. Programrer-defined Procedures 93

word of the ‘indicated 1length. A procedure call somethirngqg
like $('FIX' SIZE{WORD)) (WORD} is what is needed in order to
call the appropriate procedure for any given word, bhut this
expression is syntactically incorrect.

Assigning an expression representing the procedure nanmec
to another variable, as in :

TEMP = YFIX' STIZE(WCRD)

and then applying the $ operator as in $TEMP(WORD) gives an
expression which is syntactically correct but does not
produce the desired result; in this case the procedure call
TEMP (WORD) is evaluated, and its value used as the operand
of the $ operator. (Of course, if no procedure TIMP (} were
defined — the most likely case -- an execution-time error
would result when it was called.)

A way of calling a procedure, in which the name of the
procedure to bhe called is determined at execution-time, is
provided by the predefined procedure APPLY () whose first
argument may ke any expression which yields a string naning
the procedure to he called, and whose remaining arquments
are any expressions representing the arquments to be
surglied to that procedure, APPLY() may be applied to
predefined procedures as well as to programmer-defined ones;
thus

WORD = APPLY('TRYM',INPUT)
is equivalent to

WORD = TRIM(INPUT)
and

OuUTPUT

it

APPLY (*LONGER',STRING1,STRING2,VOWELS)
is equivalent to

OUTPUT

[

LONGER (STRING1,STRING2,VOWELS)

More usefully, the designation of the appropriate
procedure from the set FIX1, FIX2, FIX3, etc., could be made
with the evaluation rule

APPLY (*FIX' STZE(WORD),WORD)

which is equivalent to the rule

6A. Prcgrammer-defined Frocedures -9

FIX3 (WORD)

if WCRD has a value three characters long. Similarly,
executing the statement ‘ ' ' :

APPL Y(TRIM(INPUT),ARG1 ARG?) : F(ERROR)

calls the procedure whose name is specified on the next data
record, giving it the two arguments ARG1 and ARG2.

The value returned by APPLY() is the value returned by
the procedure which it «calls, and APPLY() returns with
whatever return (PFTURN NRETURN, or FRETHRN) is used by
that procedure. v c ‘

Note that APPLY () is defined to have a varying rather
than a fixed number of arquments, always one more than that
of the procedure specified in its first argument. However,
the wusual rules about missing and extra arguments pertain:
if the number of arquments beginning with the second exceeds
the number of formal variables specified for the procedure
being called, the extra arquments are evaluated but
othervwise 1ignored; if there are fewer arguments than formal
variables, each remaining formal variable 1is assigned the
null value. 7 ’

Although the name of the procedure may be represented
by an expression of any complexity, that expression must
yield a string which is an identifier when evaluated. This
restriction comes about because all the names in the first
arqument of the DEFINE() procedure nust be identifiers; all
predefined procedures, of c¢ourse, have names which dre in
identifier form.

Using_a_Library of Procedures. Most tasks which a
program 1is to perform divide themselves naturally into a
series of smaller tasks, some of which are so basic as to be
repeated many times during the course of the program. If
each . tasic part is written as a procedure, then the
organization of the program can be clearly seen; the body of
each procedure need occur within the program text only once,
but it may bte referred to whenever it is needed. Once a
rrccedure has been thoroughly tested, it may form part of
the progranmer's "library® to be used, just as the
predefined procedures are used, as a part of many different
programs.

The complete program text below begins by providing the
library of procedures +to which it wvill refer; with the
exception of the PRINT() procedure, these procedures have

6h. Programmer—-defined Procednres 95

all occurred earlier in this chapter with the same
definitions. After the library comes the main program, which
consists largely of references +to these procedures. The
purpcse of the proqgram is to read data from the input file,
isclate the words, and store them in "lists®" according to
their size. When all the words have heen read in and stored,
the 1lists are printed, in crder of increasing word size,
with the words in each list in the order in which they were
encountered. In addition, each word of a list wvhich is a
palindrome is underlined by printing a row of hyphens
beneath it on the succeeding line. At the end of each list,
numbers are printed indicating the number of words in the
list and tlte number of palindromes:; when all the lists have
been printed, the total number of words and of palindrenes
is also provided.

The main program begins by determining the characters
which are to be considered as punctuation by reading them in
frcm the first record of the input data. It then proceeds to
read each subsequent data record, which consists of werds
serarated by spaces andi punctuvation and appearing in no
fixed format, except that no werd is broken acress a record.
As each word is found, the STORFR() procedure is invoked +to
store the word in the list appropriate to its size. Hhen all
the werds have been processed, the DPRINT() procedure is
called to print the lists, shortest words first, and to
vnderline each word which is a palindrome. The PRINT{()
procedure invokes the PALTN(} proceduvre to determine whetherv
or not the vword is a palindrome, the REPEAT() procedure to
forr an underline of the needed 1length, and the SKIP()
procedure to produce blank 1lines.. The PRINT{(}) procedureae
counts the words and palindromes cccurring in each list by
incrementing the values of the internal variables W . and P,
printing their values befcre it returns. It also adds to the
total count of words and palindromes by incrementing uhe
values of the main-program variahles WORDS and PALINS: these
values persist and 1increase through "successive calls to
PRINT ().

* EROCEDURFE TO CONCATENATE A STPING OR PATTERN N TIMES

*
DEFINE('REPEAT(N,OBJECT) *, *PR.REPFAT')

+ ‘ : : (END. REPEAT)

PR. FEPEAT N = GT(N,0) N - 1 : F{(RETORN)
REPEAT = REPEAT ORJFCT : (PR.REPFEAT)

END.REPEAT

*

* TTFEST PROCEDURE 70 FTND PALINDROMES (FAILS IF NOT A PALTN)
* ' .

DEFINE(*PALIN(CAND) CH', "PR.PALIN')

- %

6N, Frogrammer-defined Procedures ‘ | : 96°

* SFT UP PATTERN NFEDED BY THE PAIIN() PROCEDURE
* ASSIGN IT TO A MAIN-PROGRAM VARIABLE
PAL.PAT = POS(0) LEN(1) $ CH RTAB(1) . CAND *CH
: . ¢ . (END.PALIN)
* IF CANDIDATE NOW CONSISTS OF 1 CR 0O ChARA»TERo, SUCCEED

* OTHFERWISE APPLY THE PATTERN AGAIN
PR.PALIN LE(STZE(CAWD), 1) o ¢ S(RETURN)
CAED FAL,PAT : S(FR.PALIN) F(FRETURN)
FND.PALIN - ‘ SRR
* SIDF-EFFECT ERGCEDURE TO TO SKIE N LINES ON OUTPUT FTLE
.) - i
| DEFINE ("SKIP(KUM) *,'PR.SKIP') 't (END.SKIP)
PR.SKIP NUM = GT(NUM,0) NUM - 1 : F(RETURN)
oUTENT = NULL "~ 't (PR.SKIP)
END.SKIP : -
*

* SIDE-EFFECT PROCEDURE TO STORE‘WORDS IN LISTS BY SIZE
* v

DEFINE('STQRE(WORD,NAHE;','PR,STQRE')'f (END. STORE)

. |
* ATDD ONE TO THE INDEX NUMBER FOR THIS SIZE WORD LIST
PR.STORE $(SIZE{(WORD) NAME) = §(STZE(WORD) NAME) + 1
.

% STORE THE WORD AS THE VALUE OF THE "NEXT® VARIABLE

$(STZE (VORD) NAME $(STZF (WORD) NAMF)) = WORD
+ ‘ | : (RETURN)
END.STCRE | ~
*

* PROCEDURE TO PRINT WORDS, UNDFRLINE PALINS,‘KEEP'COUNTS
*

DEFINE{'PRINT (N,NAME)N,W,E','PR.PRINT?*)

v o . e (END.PRINT)

PR.PRINT OUTPUT = 'LISToOFn' N S-LETTERoWORDS!
SKIP(1) ' P \

N | o « “ ,

* TEST FOR END OF LIST - IF NOT END, PRINT NEXT WORD

UP.PRINT M = LT(N,$(N-NAME)) M + 1 : F(DONE.PRINT) .
OUTPUT = $(N NAME M)

3

* ADD ONE TO THE WORD COUNT FOR THIS SIZE
o= W+ 1

. AR . _ »

* UNDERLINF WORD IF IT'IS A PALINTCROME
OUTPUT = PALIN (OUTPUT) REEEAT (N,'=-t) : F(UP.PRINT)

* ADD ONE TO THE PALINDROME CCUNT FOR THIS SIZE

: P = P+ 1 : (UP.PRINT)
N o
* ALL WORDS HAVE BREN PRINTFD - PRINT THE COUNT%

6A.

Prcgrammer-defined Procedures

DONE.PRINT SKIP(1)

~ENT

OUTPUT = W *pno' N '-IETTERmWORDS!?

OUTPUT = TIDENT(P,NULL) 'Onmn* N *-LETTER!
+ ' '*DFALINDROMES? : S(W.PRINT)
OUTPUT = P ‘uan' K F-LETTERmPALINDROMES®
* -
* ADD THESFE TOTALS TO THE COUNTS FOR ALL SIZES
PALINS = PALINS + P
W.EFINT WORDS = WORDS + W
< SKIP(2) - : (RETURN)
END.PRINT
£ 3 .
* MAIN PART OF ,PROGRAM
* .
* INITIALTIZE BY DETERMINING THE PUNCUTATION CHARACTERS
* AND FORMING A WORD-FINDING PATTERN
PUNC = ‘o' TRIM(INPUT) : F(FRROR)
WOLD.PAT = BREAK(PUKC) . WORD SPAN(PINC)
% . - .
* . MAIN REAC LCOP - GET THE NEXT RECORD
REAT RECORD = TRIM(INPUT) ‘*n* : TF(LIST)
" ‘
* REMOVE ANY INTTIAL SPACES OR PUNCTURTION
RECORD - POS (0) SPAN(PUNC) = NULL
* - :
* GET THFT KEXT WORD
NEXTWORD RFCORD WORD.PAT = NULL = : F(READ)
*
* SAVFE LENGTH OF LONGEST WORD IN MAX
| MAX = GT(SIZE(WORD),MAX). SIZE(WORD)
%
* STORE THE WORD IN THE LIST FOR ITS SIZE
STORE (WORD) o : (NEXTWORD) °
* : ‘ :
* PRINT THE LISTS, SHORTEST ONFS FIRST -
LIST N = LT(N,MAX) N + 1 : F(FINAL)
* -
* IF THERE ARE WORDS OF LFNGTH N, PRINT THEM
» (DIFFER(F(N ‘LIST'),NULL) PRINT(N,'LIST"))
+ ' : (LIST)
* .
* PRTNT SOME FTNAL STATISTICS, PREPARFD BY PRINT()
FINAL OUTPUT = "TOTAINNUMBERaOFOWORNSm——n' WORDS
~ OUTPUT = 'TOTALaNUMBERoOFmPALINDROMESn——n' PALINS
+ : (END)
* .
FRROR QUTPUT = *NOnDATA'

6h. Prcgrammer-defined Frocedures

If the input to this program were the question
DID THE NAME ADA REFER TO A VARIARLE AT LEVEL 1 OR LEVEL 2
then the output would be as follows.:

LIST OF 1-LETTER WORDS

[S I O . 4

3 1-LETTER WCRDS
3

1-LETTEF PALINDROMES

LIST OF 2-LETTER WORDS

T0
AT
OR

3 2-1L.ETTER WORDS
0 2-LETTER PALINDROMES

LIST OF 3-LETTEER WORDS

DYD

-

THE
ALA

3 3-LETTER WORDS

2 3-1ETTER PALINDROMES
LIST OF 4-LETTER WORDS
NAME

1 4-LETTER WORDS
0 © 4-LETTER PALINDROMES

6A. Programmer-defined Procedures

LIST OF 5-LETTER WORDS

- — e e -

3 5-LETTER WORDS

3 S~-LETTER PALINDROMES
LIST OF B8-LETTER WORDS
VARTAELE

1 8-TETTFER WCRDS

0 8-1ETTER PALINDROMES

TOTAL NUMRER CF WORDS —— 14
TOTAL NUMBER OF PALINLCRUMES —- 8

99

100

7A. ARRAYS

The programming of some problems can be greatly

simplified with the use of sets of successively-named

variahles, such as thcse described in Chapters 5 and 6.
There, 1indirect referencing was used to refer to variables
with some set of names such as LIST1,LTIST2,...,$('LIST' N).
The variables could be thought of as forming a set because
their names were composed of two parts, where one part was
common to all names of the set and the other part varied;
the variables were said to be successively-named because the
varying part was an integer which differed by one far each
pmenter of the set. The notion that the variables with names
differing in this. way were 1logically associated was, of
course, simply a convention adopted by the programmer. But
the idea of a set of variables associated together, with the
selection of any one of them dependent on the value of an
arithmetic expression, is so useful that data structures of
this sort are predefined in Snotoi, under the name of
Arrays. An array is used very much like a set of variables
with successive names, except that the convention that the
variables constitute a set is nct the programmer's aloene,
but is shared by the Snobol system. Thus it is possible to
treat the set of variables as a single aggregate in some
cases, and to make reference to specific variables in the
set on other occasions. '

_ Creating an_Array. An array is created by executing a
call to the predefined procedure ARRAY(). The ARRAY{)
procedure has a single string-valued arqument, which in its
simplest form is used to specify the number of variables of
vhich the array is to be composed. For example, execution of
the rule)

LIST = ARRAY('1000°")

causes an array of 1000 variables to be created; this array
is returned as the value of the ARRAY() procedure and the
entire aggregate is assigned as the value of the variable
named LIST. - '

The variables forming an array are distinct from other
variables in that they do not have names which can be
written directly in program texts. Rather, they are usually
represented in a program text by expressions which are
ccmgosed of two parts: the first part consists of the name
of a variable whose value 1is the entire "family" of
variables that make up the array; the second part, called
the ‘'"selector," consists of at least one integer-valued
expression, called an index, enclosed within square brackets

7A. Arrays ' 101

and immediately following the family part of the name.
Consecutive integer selectors are assigned to each variable
of the array and serve to select a particular variable fron
the set. Thus variable number three of the 1000-variable
array which 1is tte value of 1IST may be referred to as
LISTI{3]. :

When the rule
LIST = ARRAY({'1000")

is executed, the 1000 variables LIST[1], LIST[2], ec.,
LIST{ 1000) become availabhle for use. Fach of these variables
initially has the null value, like any other variable, when
the array is created. These variables may acquire new values
‘by the usual means of assignment, as in the statements

"LIST[1] = TRIM(TNPUT) : F(DONF)

LIST{ 1] POS(0) SPAN('m') = NULL
and
RECORD ANY (VOWELS) . LIST[7] : F(NOVOWEL)

Although all variables of an array are often assiqgned
values of the same datatype, there is no requircment that
this be done: some may ke assigned Strings as values, and
some Patterns, for instance; such a variable may even have
an Array as its value, including the array of which it 1is
itself a menber. '

Array Ttems_and_Item _References. The variables fornmina
an array are called "array items"; references to thege
variables in program texts, exptessions of the form LIST[HN],
are called "item references." It is important to remember
that the variatles referred to by these item references do
not have names in the form of strings. That is, the string
LYSTI[1] is not the name of variable number one of the array
which is the value of LIST. For one thing, such a string
cannot be written in a program text to represent a name
since it 1is not in identifier form. Nevertheless, every
string is the name of a variahle, so the string LIST[{1] 1is
indeed the name of some variable, which may bhe represented
in a program text as $'LIST[1]'; however, this variable has
no intrinsic connection with any array.

The variables with strings as names are all available
to a programmer when execution of a program begins, and are
called "natural" variatles; in contrast, variables which are
array items must be explicitly created by a call to the
ARRAY () procedure, and in consequence are called ‘"created"

7A. Arrays ' . ' 102

variables. They have names which are not strings -—-
necessarily, since every possible string.is the name of a
natural variable. If the name of a variable which ‘is an
array item is needed (so that it may be passed as an
arqument ¢to a. procedure, for example), a special kind of
non-string Name nmust be generated bty the use of the name
operator described toward the end of this chapter.

The family part of an 1item reference, LIST in the
exarple above, nust always be an identifier and must refer
to a variable whose value 1is an array. However, natural
variables whose names are not in identifier form, such as
the one represented by $(CHAR **'), and created variables,
such as the «c¢ne represented by LIST(3], may be assigned
arrays as values. Special methods, described later in this
chapter, mnust then be used tc form references to the itenms
of these arrays. Note that references to all items of an
array are always formed with the use of a single name, that
of a variable whose value is the array to which they belong.

Comparison_ _with Indirect Referencing. A set of
successively-named variables formed with the use of indirect
referencirg constitutes a sort of simulated array. These
simulated arrays have some advantages over the predefined
array structures provided by Snobol.

When indirect referencing is used, it is not necessary
to specify in advance how many variables will belong to the
set. That is, in the loop ' :

NLOQGFE N = N+ 1
OUTPUT = TRINM(INPUT) : F(ALLGONF)
$('LIST* N) = OUTPUT b (¥LOOP)

the maximum value of N is determined only by the number of
data records read, which may vary with each use of the
progranm. :

There is also no restriction that N be incremented only
by 1 -—— any interval may be used, not necessarily the sanme
cne cn each iteration of the 1loop. Thus the statement
lakelled NLOOP above may read _

Y

NLOCP N = N+ 2
or.
NLOOP N =

N ¢+ SIZE($('LIST' N))

or whatever.

7A. Arrays 103

Further, there is no necessity to use numeric values at
all in forming the varying part of a name. Fcr example, the
“"successively-named" variables LISTA, LTYSTHB, ..., LISTZ
could be used by writing the lcop

ALPHA = 'ABCDEFGHIJKLMNOPQRSTUVHXYZ!
CHARPAT = LEN(1) . CHAR
Loor ALPHUA CHARPAT = NULL F (DONFE)

$(*LIST* CHARYy = TRIM(INPUT) =: S{LOOP)

For that matter, there is no need for the variables of a
simulated array to have names which are obviously
"successive." Thus, the varying part of each name could be
forred from a 1list of words which might have no ohvious
relation to one another., Using a word as a "selactor" of a
simulated array item provides nuch more information than the
use cf an often arbitrary number. Lastly, no difficulties
arise if the "family" part of the names is not in identifier
form.

On the other hand, there are some advantages to using
the rredefined array structure., The principal one is that
the array items are recognized as being related bhy the
Snotol system, so the whole aggregate can be assignod as the
value cf a variable, passed as an araunent to a procedure,
and so forth, Also, the variables which are array items are
distinct from all other variables since they do not have
names in the form of strings, sc inadvertant conflicts of
variable usage are easily avoided; and sometimes an 1itew
reference in a program text gives a more intuitive picture
of the process being proqrammed than does an expression
invelving indirect referencing.

An array is a particularly useful data structure to
erplcy when the numeric order of its iteuws is significant,
€.9., when the n-th item of sorme list is needed. For data
which does not lend itself well to being processed in *torms
of numeric ordering, other types of data structures are
prctably mwnore useful., Ways of creating data structures of
one's own choosing are indicated in the following chapter.

Multi-dimensional_ _Arrays. It is often intuitively
useful to think of the items of an array as being arranged
in rore than the single dimension of the LIST example ahbove,
One might " want, for example, to simulate the moves on a
chesshoard by using an Bx8 array which is the value of a
variahle named BOARD. Such a two-dimensional, 6#4-item array
could be creatred by executing the rule

~7A. Arrays 104

BOARD C = ARRAY('S 8¢%)

The flrft row ¢f the chessboard could then be represented by
giving values to the items referred to as BOARD[1,1],
BOARD[1,2), ..., BOARD[{1,8]. The ¢rrogrammer is of course
free to decide which dimension is to be thought of as
indicating the rows and which as indicating the columns. If
he prefers the opposite convention, then the first row would
be the items BOARD[1,1], BOARD[2,1], ..., BOARD{S8,1].

Similarly, a three-dimensional tic-tac-toe board having
a 5x5 square on each of its three planes could be simulated
by using the array created by executing the rule

TIC3 = ARRAY('S,5,3')

The central «cell of this structure is the array iten
TIC3[3,3,21. ' »

Although it is difficult to symbolize or conceptualize

arrays of moxe than three dimensions, they present no
programming prorlems. For each newv dimension, another number
within the argument of the ARRAY () procedure is needed for
the creation of the array; similarly, another index 1is
needed within the selector to form an appropriate reference
for any given array item, There are no 1limitations on the
number of dimensions which an array may have, or on the
numkter of items to be associated with each dimension.
Arrays of many dimensions can be used to arrange data
elerents which differ from one another along many numeric
scales. Each "dimension® is thought of as an "attribute,®
and a data element is assigned to a particular array item
according to the numeric value of all 1its attributes. The
data elements may then be access=d in an ordorly manner
along each "dimension® cf the arrangement.

The ARRAY () Procedure. The predefxned procedure ARRAY ()
requires a single string-valued argument which provides a
prototype of the array, specifying(implicitly or -
explicitly) the number of dimensions the array is to have
and the range of index numbers which may be used to select
items of +this array in -each dimension. Unless otherwise
specified, it is assumed that the indexing in each dimension
starts with 1, However, 1if the arrays described above as
being the values of LTIST, BOARD, and TIC3 were to be indexed
from zero instead of from one, but were still to have the
same number of items as before, thls could be specified by
executlng the rules . _

7A. Arrays 105

LIST = ARRAY('0:899¢)
BOARD = ARRAY('0:7,0:7"')
TIC3 = ARRAY('0:4,0:4,0:2¢)

The cclon within the arqument is used to separate the louest
index number from the highest index number for each
dimension; the comma. is used to separate the different
dimensions from one another; no embedded blanks are
perritted.

Negative numbers may be used within the prototype of an
array, and consequently within the selectors of its items.
Execution of the rule

NEGARR = ARRAY(-50:-5)

creates a U6-element array whose itens may he referred to as
NEGARR[-50), NEGARR[-49], ..., NEGARR[-5]. (Note that tbese
references aro arranged, as always, in ascending arithmetic
‘order.) :

Information about the range of index numbers in each
dimension may be provided in terms of any expressions which
give the desired numbers when evaluated. These indices may
he positive, negative, or zero, but the upper bound for any
dimension must always be greater than or egqual +to the
corresponding lower bound; consequently an array must always
be ccmposed of at least one item. Thus the rules

ARRAY1 = ARRAY (STZE (WORD1) *,' SIZE(WORD2))
ARRAY2 = ARRAY (M1 ':' N1 ', ' M2 t:t ND)
ARRAY3 = ARRAY (A ¢+ B ',' C + D)

may each specify the creation of a two-dimensional array, 1if
the expressions within the argument of each ARRAY{)
procedure have appropriate numeric values at the time the
rules are executed.

Note that the commas and colons are placed within
quotes to indicate that they are literal characters to he
concatenated into the . string being formed to provide the
single argument. If the commas were not placed within
quotes, each comma would indicate the presence of another
argument for the ARRAY () procedure; all arquments after the
first would ke evaluated but ctherwise ignored, =since
ARRAY () requires only one arqument. The array procedure
returns as its value an array created to the specifications
of its arqument. Thus the varialles named ARRAY1, ARRAY2,
and ARRAY3 in the above example would all be assigned valuen
of datatype Array.

7A. Arrays ' ‘ _ 106

Selectors. Selectors may also consist of any
expressions which yield the desired index (or indices) when
evaluated. Thus ‘ L '

LIST[1]

LIST[A + B]

LIST{ SIZE (TRIM (CARD))]
LIST[$LIST[2]] |
LIST{ LIST{ LIST[2]]]

are all item references which may be used to refer to
variable number one of the array which is the value of LIST
if the expressions A + B and SIZE(TRIM(CARD)) and $LIST(2)
and LIST[LIST[2]) all have the value 1 when the rules in
which the above expressions appear are executed.

Although the prototype of the array is expressed as a
string, note that the selector of an item reference is not;
rather the expressicns representing the indices are
'separated by conmas, much like the arguments of a procedure
reference. “hus BOARD[X,Y] is an appropriate item reference
for a two-dimensioral array, while BOARD[X ',* Y], which
specifies a non-integer index, 1is 'not. An execution-time
errcr will cccur if a non-integer results from the
evaluation of the index for any dimension, or if the number
of dirensions indicated by the selector is not the same as
the number specified by the prototype for that array.

Pailure of_an_JTtem Reference. An attempt to evaluate an
item reference may fail, causing failure of the rule in
which the evaluation occurs. An item reference fails when
its family part refers +o a variable whose value is an
array, but its selector vields an index for any dimension
which falls outside the range specified by the prototype of
that array. Thus the rule

OUTPUT = LIST[N] ' : F(DONE)

will fail and send control to DONE for values of N which are
less than 1 or greater than 1000 for the value of LIST
described at the beginning of this chapter. The simple two-
statement loop : g

1

LOCP N = W ‘ -
CLIST{ N} ~: S(LOOP) F(DONE)

oUTPUT

W+

- can therefore ke used to print the values of all items of
the array referred to by LIST (provided these values are all
strings). Here the fact that the item reference <can cause
failure of the rule eliminates the need for a statement of

7A. hrrays 107

the form

N LT (N, 1000) N + % : T (DONFE)

to terminate the loop and so somewhat simplifies the
programming. {Note that the values of all the items of an
array cannot be printed by a rule of the form OUTPUT = LTST,
since LIST has an array as its value, and only strings can
be printed.) _

Often reliance on the failure of an item reference
rather than on the failure of some test procedure does not
simglify the programming and may lead to logical errors. For
examprle, the loop

FILLY N o= N+ 1 :
LIST{N] = TRIM(INPUT) : F(FULL) S (FILLT)

will fail and send control to PULL (!} when the value of N
bheccres greater than 1000 or (2) when the data is exhausted,
without making the (often necessary) distinction between the
twvo cases. The fact that an item reference can cause failure
of the rule must always be kept in mind to prevent the
writing of rules vhich may fail for more than one reason.

Srecial Preblems__Concerning _Item References. It is
possible to assign an array as the value of a variabhle whose
name cannot be represented 1in 1identifier form, either
because it contains 1mperm1 5sible characters, as in

$*'A/1Y = ARRAY('1000")

or because it is a created.variable, as in
LIST[1] = ARRAY{'1000')

.or because it is unknowg, as in

$WORD = ARRAY{*1000")

Although each of the above rules creates an array of
1000 1items and assigns it as the value of some variable as.
in all previous examples, the items of these arrays may not
be referred to in the usual manner, since there is a
restricftion that the family part of an item reference must
be a name in identifier form. Thus if one attempts, for the
first two cases above, to write rules of the forn

$*A/1[1] = TRIM(TINEDT)
and .

7A. Arrays o 108

. LIST{11] = TRIM(INPUT)
then compile~time errors result.
Writing, for the third case, the rule
$WORD[1] = TRIN(INPUT)

dces not result in a compile-timé error, but does not give
" the desired result either, Here, the operand of the indirect
referencing operator 1is not the variable WORD, as is
desired, but rather the item reference WORD[1]. The
evaluation of WORD[1] should cause an execution-time error,
since the variable WORD was intended as the operand of the
indirect referencing operator, and thus its value should be
a string or a Name, not an array. ,

All of these cases may be taken care of by simply
assigning each array tc another variable, one whose name may
be represented by an identifier. Each of the erroneous rules
presented before can thus be replaced by a pair of rules,
such as the following: '

TEMPT = $'A/1
TEMP1[1] = TRIM(INPUT)
TEMP2 = LIST[?1)
TEMP2{ 1] = TRIM(INPOT)
TEMP3 = S$WORD
TEMP3[{ 1] = TRIM{INPUT)

Note that assigning an array to a second variable does
not cause a new array to be created, but merely allows two
(or more) variables to have the same array as their values.

The ITEM{() Procedure. The TITEM() procedure provides
another method of referring to the items of an array when
the array has been assigned to a variable whose name cannot
be written in 1identifier form. The ITEM() procedure, like
the APPLY() procedure descrited in Chapter 6, has a varying
number of arguments, usvally one more than the number of
dimensions of the array involved. The first argument must be
an expression whose value is an array; the remaining
arquments may be any integer-valued expressions, usually one
for each dimension cf the array, given in the appropriate
order. ITEM({) returns as its value (by NRETURN) the variable
specified by using its first argument to indicate a family
and its remaining arquments together to form a selector.
Thus the expression ITEM(LIST,1) is equivalent ¢to the

TA. Arrays 7 109

expression LIST{1], and ITEM(BOARE,B,B{ is equivalent to
BOARD[8,8]. More usefully, the rules

ITEM($'A/1',1) = TRIM(INPUT)

ITEM(LIST[1],1) = TRIM(INPUT)
and

ITEM ($WORD,1) = TRIM(INEUT)

could all be used in place of the rules involving TEMP1,
TEMF?2, and TEMP3, above.

A procedure reference to ITEM() may be written wherever
an item reference may appear. Thus the rule

OUTPUT = TIC3[X,Y,Z2)
may te written as
OUTPUT = ITEM(TIC3,X,Y,2)

with the same effect. ITEM() fails, in just the way that an
item reference fails, i{ the index for any dimension within
the =selector which 1is Zformed falls outside the range
specified by the prototype of the array involved.

Althouqgh the selector part of an 1item reference nust
consist of a 1list of 1indices separated by commas, ag in
TIC3{ X.Y,Z1, and may not be expressed as a concatenated
string, as in TIC3[X *,' Y *,' 2], the ITEM() procedure
allows the selector to be represented by either method and
even by combinations of the two. Furthermore, TTEM() does
not require that the proper number of index expressions bhe
present in its arquments. It uses only as many indices as
are appropriate for the array given as its £irst arqgument;
it assumes the value zero for missing indices, and evaluates
but ctherwise ignores the expressions for extra indices.
Thus the nunmber of arquments with which ITEM() may be called
can vary not only with the numbter of dimensions of the array
being indexed but also with the choice of representation for
each index. The four-arqument call

ITEM(TIC3,X,1,Z)
has the same effect ags either of the three-arqument calls
ITEM (TIC3,X *',' Y,7)

or
ITEM(TIC3,X,Y *,' 2)

7A. Arrays 110

or the two-argument call
ITER(IIC3, X ',' Y ', v 7)

Each returns the item TIC3[X,Y,7] as its value. The
importance of this feature is illustrated by an exanrple at
the end of this chapter. ' :

The_ PROTOTYPE(} Procedure. The PROTOTYPE() = procedure
can accept as its single argument any expression whose value
is cf datatype Array, and returns as 1its value a string
giving the ©prctotype of that array. This prototype will be
the same as the one specified in the call to the ARRBAY()
procedure which-caused the array to be created, except that
“he lower bound for each dimensicn 1is always explicitly
exrressed, and the integers specifying the bounds are in
canonical form {(a sign retained only for negative nunmbers,
leading <ceroes suppressed, and zero represented by the
single character 0). Thus if the rules : :

BOARD = ARRAY(*08,08")
TIC3 = ARRAY('5,5,3%)
LIST = MARRAY ('0:999")
NEGARR = ARRAY('-50:+5")

have been executed, then execution of the rules

OUTPOT = PROTOTYPE (ROART)
OUTPUT = PROTOTYPE(TIC3)
OUTPUT = PRCTOTYBE(LIST)
OUTPUT = PROTOTYPE (NEGARR)

will cause the strings

: 8
5

e 123

L I
Sl se oo 20
O =

N O > -

[e> 3V« JRS; Jo o]

-
.

to te printed.. Such strings may be investigated with a
pattern-matching rule to .determine the structure of the
array; this may be useful in cases where the dimensions have
not been given as literals within the ARRAY() procedure's
arqument, but have been specified by more complicated
expressions or supplied from the data. For example, an array
cculd be created by executing the rule =

BOXES = APRRAY(DIM1 ',' TTIM2)

Althcugh the value of BOXFS appears to-be a two-dimensional

7A. Rkrrays , 111

array, this is not necessarily the case since the values of
DIM1 and DIM2, perhaps acquired from the 1input file, may
contain any number of commas, each indicating another
dimension. The number of dimensions of this array may be
determined by the foliowing simple program segment which
searches the string returned by PROTOTYPE() to determine how
many commas it contains; the number of dimensions is always
one nore than the number of comnmnas.

STRING = PROTOTYPE (BOXES)

LOOP STRTNG BRFAK(',*) *',* BREM . STRING : F(DONE)
COMMA = COMMA + 1 : (LOOP)

DONE DIMENS = COMMA + 1

The PROTOTYPE() procedure may aisc take a pattern or a
Name or a structure of programmer-defined datatype as its
argumnent. A description of the use of PROTOTYPE(} with an
arqument of one of these datatypes may be found in Appendix
A, section YI.B.

The _TYPE() Procedure. The TYPE() procedure is one which
will accept any expression as its single arqgumept. If the
value ¢f its arqument 1is of a vpredetined datatype, the
procedure returns as its value a string specifying that
datatype; if the value is of a programmer-defined Jdatatype,
the <ctring DATA is returned. For example, execution of the
rule

oUTPUT = TIPE('SASSAFRASW
will print STRING while execution of the rule
OUTPUT = TYPE (ARB)

(if ARB still bhas its predefined value) will produce
PATTIERN; the rule ‘

OUTPUT = TYPE(LIST) 'nomn' TYPE(LIST[1) .
will print ARRAY followed by INTEGER.

TYPE() is often used to test vwhether or not sowe
variable has a value of the expected datatype before some
process is allowed to continue. Tt is particualarly useful
for testing whether values passed to the formal variables of
a procedure are of the correct datatype, and for insuring
that all values assigned to OUTPUT are of datatype String or
datatype Integer.

7A. Arrays 12

The short loop presented earlier to print the values of
all items belonging to a specified array may be amended with
the use of the TYPE() procedure to first test the datatype
of ' each value and then to print only those of datatype
String or TInteger, This amended program segment uses
indirect referencing within the go-to to transfer to a label
representing the type cf the value being processed. Tf the
valve is of datatype String or Integer then the value is
printed; if it is of any other datatype, a message reqgarding
. its type 1is printed. Tn either case, the value of the
selector is printed first so that the particular item whose
value 1is being printed or descrited may be identified. The
PROTOTYPE() procedure is used in the first statement to
insure that a one-dimensional array is being processed, and
to determine the lower bound of this array.

* TEST WHETHER ARRAY IS 1-DIMENSIONAL AND FIND LOWER BOUND
PROTOTYPE{(LIST} BREAK(':') . N ':¢

Lol BE R BE B B

SPAN(*-0123456789') RPOS(0) : F(ERROR)
. LCOP TO PRINT ALL VALUFS WHICH ARE STRINGS
IF LIST{N] EXISTS, GO TO THF STATZMENT LABELLED BY THE
TYPE OF ITS VALUE |
oOP LIST{ N] : T (DONE) S(STYPE(LIST{N)
STRING | ‘
INTEGER OUTPUT = N ‘oo LIST[N] : (INC)
REAL .
PATTERN
ARRAY
NAKE
CODE B - |
DATA OUTPUT = N 'nnTHISaITEMnISnOFaTYPEa' TYPE(LIST[N])
* .
* TINCREMENT INDEX TO GRT NEXT ITEN
INC N = N+ 1 ~: (LOOP)

The lahels provided in the program text (with the
exception of ICOP and INC) are exactly the strings returned
by the TYPF () procedure. All have been mentioned except
CODE, which 1is described briefly in Appendix A, section
IT.C. These latels provide an exhaustive list of the string
values which TYPE() can return.

The program text may appear strange because of the
numker of null rules. Since the statements labelled STRING
and INTEGER both need the same rule, it has been written
cnly once in the second of these statements, the one
latelled INTEGER. If control is sent to the statement

TA. Arrays 113

lakelled STRING, it is sent on immediately to the statement
latelled INTEGER where the rule which calls for printing is
executed, since the statement labelled STRING has no rule
and no go-to to be processed. Sinmilarly, since the
statements labelled REAL, PATTERN, ARRAY, NAME, CODE, and
CATA all need the same rule, it is written only once in the
last of these statements, the one labelled DATA. ‘

The evaluation rule LIST[N] is needed in order for
failure of the item reference to be detected. If this
evaluation rule were omitted and the statement consisted
solely of the go-to

: ($TYPE(LIST[Y]))

then there would be no way to terminate the loop gracefully,
and an execution-time error would result when the item
reference failed within the go-to because the value of N
became too large.

Procedure _to_Return_a_Selector. There are a numbher of
processes concerning arrays which it would be convenient to
express as programner-defined procedures since they are so
frequently needed. For example, one often wants to know the
selector associated with the first null-valued item of an
array so that +this item nmay be given another valune. The
following SELFCT() procedure fails if there are no nnll-
valued items, or succeeds and returns the selector of the
first null item as 1its value. Tt works for any one-
dimensional array, and uses PROTOTYPE() as before to test
that the array is one-dimensional and to find its lovwer
bound. The single arqument of SELECT() may be any expression
whcse value is an array.

DEFINE (*SELFCT (ARR1) N, *PR.SEL') : (END.SELECT)
* TFST WHETHER FIRST ARGUMENT HAS AN ARRAY AS ITS VALUE
PR.SEL IDENT (TYPE (ARR1), *ARRAY') : F(SEL.ER1)
*
* TEST WHETHER ARRAY IS 1-DIMENSICNAL AND FIND LOWER BOUND
PROTOTYPE (ARR1) BREAK(':?) . N '3

+ SPAN('-0123456789') RPOS(0) : F(SEL.ER2)
* :

* TFST WHETHER THIS ITFM HAS A NULIL VALUE

* RETURN ITS SFLECTCR TF IT DOES

OUT.SFL SELECT = IDENT(ARRI[N]) N : S(RETURN)

*

*

ELSE INCREMENT INDEX TO LOOK AT THE NEXT ITEM
N = N ¢ 1 |

*

TA. Arrays 14

* TEST WHETHER THIS SELECTOR IS OUTSIDE THE BOUNDS OF ARRAY

* IF SO, THIS ARRAY CONTAINS NO NULL-VALUED ITEMNS
ARRI{N] - ¢ F(FRETURN) S(OUT.SEL)

* ' ‘

* PRINT FRROR MESSAGES ARD STCP

SEL.ER1 OUTPUT = 'ARGUMENTnOFuSELECT()nNOTuANnARRAY'

+ ' v : (END)

SEL.ER2 OUTPUT = *ARRAYoPASSEDaISaNOTa1-DIMENSIONAL®

+ ‘ s (END)

END.SELECT ' ’

When this procedure is used, as in the statements

0 = SELECT(LIST) : F(FULL)
LIST[Q] WOED

or, equivalently,
LIST{ SELECT(LIST)] = VWORD s F{(FULL)

the procedure reference SELECT(LIST) causes the value of the
variakle LIST to be assigned as the value of the formal
variabie ARR1 internal to the procedure call. If the value
of LIST is an array, as is intended, this means that the two
variables L¥ST and ARR1 have the same array as their values.
The first statement of the procedure body tests the value of
ARR1 to insure that it is indeed of datatype 'Array before
proceeding; the second ' statement further tests that this
array 1is one-dimensional. If either test fails, an
appropriate error message is written and the procedure ends
execution of the program. If ARR1 has as value a one-
dimensional array, then the 1lower bound of this array is
assigned to the internal variable N. Then the evalunation
rule ARR1[N] is executed: this refers to the same array iten
as LISI[N] since ARR1 and LIST both have the same array as
value. This rule fails only when the value of N exceeds the
upper bound of the array, which occurs only when all items
of the array have already been considered. Hence if the rule
fails the array contains no null-valued items .and an FRETURN
is taken. If the rule ARR1I[N] does not fail then the value
of ARR1[N] is tested to see whether or not it is null; if it
is null then the result variable SELECT is assigned the
value of N so that this value is returned as the value of
the procedure call. L

Procedure_to _Interchange Two_ _Arrays. There are sone
. procedures which need to be passed the name of the variable
vhose value is an array, rather than the array which is the
value of that variable. Consider two variables named X and
Y; the value of X is a one-dimensicral array of 10 itenms,

TA. Arrays . 1

while the value of Y 1is a one-dimensional array of 100
items. The programmer wishes to cause the value of X to be
the 100-item array, and the value of Y to be the 10-iten
array. Before performing this swap he wants to bhe sure that
X and Y are bhoth one-dimensicnal arrays. This process may be
performed with the side-effect procedure SWAP() w«hich has
three arquments: the names of the twc variables whose values
are arrays, and the number of dimensions these arrays are
both to have. Fach name is presented as a string which will
be passed to the procedure body to be used as the operand of
the indirect referencing operator to return a variable; the
number of dimensions may be expressed as any numeric-valued
expression. The SWAP () procedure uses the REPEAT()
rrocedure, described at the beginning of Chapter 6, to bhuild
a pattern which can be used to determine vhether or not the
prototype of each array has the specified number of
dimensions.

DEFINF (*SWAP (A,B,N)DAT1,PAT2, TEMP?, *PR.SWAD *)
+ : (END. SWAP)
*

* TEST WHEYHER THE FIRST TWO ARGUMENTS ARE ARRAY-VALUED

PR.SWAP IDENT (TYPE ($A),¢ARRAY") : F(SWAP.ER1)
IDENT (TYPE ($B) , 'ARRAYY) : F(SWAP.ER2)

*

* TEST WHETHER BOTH ARRAYS AKE OF THE SPECIFIED DIMENSION

* BUILD A PATTERN USING REPFAT() TO LOOK FOR THE RIGHT

* NUMBER OF COLONS WITHIN THE PROTOTYPE
PAT1 = BREAK(':') '3
PAT2 = POS(0) REPEAT (PAT1,N)

+ SPAN (*=0123456789¢%) RPOS (0)
PROTOTYPE ($A) PAT2 : F(SWAP.ER3)
PROTOTYPE ($B) PAT2 : F(SWAP.ERY)

3

* FOTH ARE ARRAYS OF THE SPECIPIED DIMENSIOW

* SWAP THEM AND RETURN
TEMP = $A
¢ = $B
$B = TEMP : (RETURN)

*

* PRINT ERROR MESSAGES AND FAIL
SWAP.ER1 OUTPUT = 'FIRSTnARGUMENTnCFaSWAP({) oNOTnANMARRAY!

+ : (FRETURN)
SWAE.ER? OUTPUT = 'SECONDuARGUMENTROFuSWAP () nNOTHANGARRAY?®
+ : (FRETURN)
SWAP.ER3 OUTPUT = 'FIRSTuARRAYnNOTHOFaDTIMENSTIONn® N

+ : (FRETURN)
SWAP.ER4 OUTPUT = *SECONDaARRAYuNOTAOFuDIMENSIONn®' N

+ ’ : (FRETURN)

FND.SHWAP

7A. Arrays ' o . 116

A call on this procedure to do the swapping of the
values of X and Y as described above could have the form

SWAP('X','Y', 1) ¢ P (ERROR)

Since the formal variables A and B never appear within
the procedure body except preceded by a $ operator, it would
seenm at first that ~ the call SWAP(X,Y,1) .could be used
instead of the call SWAP(*X','Y',1) and all the indirect
referencing operators removed from the procedure body, since
the expression $'X' is indeed eguivalent to X in all cases.
If this were done, however, the value of X would be used
wherever the formal variable A occurred in the procedure
body. While the expressions TYPE (R) and PROTOTYPE(R), where
"A has as 1its value the same array that is the value of X,
will indeed work as desired, rules of the form A = B and
B = TEMP, will not produce the desired effect. Execution of
the rule A = B would cause the formal variable A to be
assigned the array which 1is the value of Y, and the rule
B = TEMP would cause the formal variable B to be assigned
the .array which is the value of X. Thus the values of A and
B, which are internal to the procedure call only, would be
swapped rather than the values of the external variables X
and Y. In order to change the value of X, the string vhich
is its name mwnust bte passed and a rule of the form $A = %8B
must be used, since the expression %A, in this - case, will
return the external variable X to which an assignment can
then be made. :

The_Name_ _Operator. Since array 1items do not have
strings as names, problems arise when one tries to pass the
name c¢f an array item to a procedure., Tf the 100-item array
described above had been assigned to the created variable
LIST{ 1) instead of to the natural variable Y, and its value
was to be swapped with that of the 10-item array whxch is
the value of X, then a call of the form

SWAP('X', 'LIST{ 1]',1

would not produce the desired effect since the string
LIST[1] 1is the name of a natural variable, and thus cannot
be the name of a created variable.

The probhlem of passing the name of a created variable
is solved with the use of the name operator, a unary
operator whose symbol is a period. This operator takes any
variakle as 1its operand and returns as its value a special
object of datatype Name which is a name for that variable.
Thus the name of the created variable LIST[1] ray be
represented as .LIST[1], so a procedure call of the form

7A. Arrays 117

SWAP('X',.LIST[1],1)
would produce the desired effect.

If the operand of the npame operator 1is a natural
variable, which +thus has a string name like X for example,
then the Name .X provides still a different name by which to
refer to that variable. The two names always refer to the
same variable, and can be used interchangeably. The
aprlication of the § operator to an operand of datatype Name
gives the same effect as its application to a string-valued
operand: the variable named by the operand is returned. Thus
the call

could be used as well. The only necessity for the use of the
name operator arises when names of created variables must he
passed to and from procedures. Note that objects of datatype
Name cannot ke printed.

As an example of an application in which a Name 1s to
be returned by a procedure, consider an amended version of
the SELECT() procedure, presented earlier in this chapnter,
which would return the Name of the first null-valved item of
an array rather than its selector. This amended procedure,
called STEP(), is presented below; the entire procedure hody
is the same as that of SELECT() except for the statenent
labelled OU7T.STEP in which the result variable is assigned a
value of datatype Nane.

* FEOCFEDURE TO RETURN NAME OF FIRST NULL-VALUED ITEHM
% v

DEFINE (*STEP (ARR1)N', 'PR. STEP') (END.STED)

*
 TEST WHETHER FIRST ARGUMENT HAS AN ARRAY AS ITS VALUFR
PE.STEP IDENT(TYPE (ARR1),'ARRAY"') : F(STEP.ER1)

* :

* TEST WHETHER ARRAY IS 1-DIMENSICNAL AND FIND LOWER BOUND
PROTOTYPE (ARR1) BREAK(*:') . N *':°¢

+ SPAN('-0123456789') RPOS(0) : F (STEP.TR2)
*

* TEST WHETHER THTYS ITFM HAS A NUIL VALUE

* RFTURN THE NAME OF THIS TTEM IF IT DOFES

OUT.STEP STFP = IDENT(ARRI[N],NULL) .ARRI[N] : S (RETURN)
*)

* ELSE INCREMENT INDEX TO LOOK AT NEXT ITEM

N = N+ 1

7A. Arrays \ 118

* TEST WHETHER THIS SELECTOR IS OUTSIDE THE BOUNDS OF ARRAY
* IF S0, THI5 ARRAY CONTAINS NO NULI-VALUED ITEWNS

ARRI[N] : P (FRETURN) S (OUT.STEP)
*

* PRINT FRROR MESSAGES AND STCP '
STEF.ER1 OUTPUT = 'ARGUHENTBOFDFIWD()UNOTHANUARRAY',: (END)
STEP.ER2 OUTPUT = 'ARRAYnPASSEDuISoNOTm1-DIMENSIONAL': (END)
END.STEP

The rule
$STEP (LIST) = WORD '+ F(FULL)

may be used to assign the value of WORD to the first null-
valued item of the array which is the value of LIST.
Execution will cease if the value of LIST 1is not a one-
dimensional array (in which case an error message 1is

printed). The procedure call will fail if there are no nuli-.
valued items remaining within the array. If the procedure
call succeeds it returns the Name of the first null-valued
iter; this VName 1is used as the operand of the $ operator
which returns the needed variable.

Alternatively, an NRETURN could be used to cause the
procedure to yeturn a variable rather than an object of
datatype Name, but the name operatcr wcould still be needed
within the procedure body. Tf the statement labelled
CUT.STFP were written as

OUT.STEP STEP = IDENT{(ARRI[N],NULL) .ARRI[N] : S (NRETURN)
then the procedure call would have the fornm
STEP(LIST) = WORD : F(FULL)

since the value returned by STEP() is the . variable needed
for assignment. ‘

Porming all Selectors_of_an Array. Whenever the' STEP ()
procedure 1is <called, it always starts by investigating the
"first" item of a one~-dimensional array, that 1is, the one
whose selector is formed by using the lower bound of the
array as its single index. The procedure continues to form
new selectors by adding one to the value of this index until
a null value is found, or until an attempt 1is made to
increase the index beyond the upper bound of the array; if
“this happens, then every selector of the array has been
used. Since the STEP() procedure has been written to process
one-dimensional arrays only, the method it uses for
determining all selectors of an array is very simple. The

7TA. Arrays , ’ : 1149

process of determining all selectors . becomes more
complicated when an array is multi-dimensional.

A general purpose nethod which would work for an array
of any number of dimensions could be described as followus.
Start with a selector formed by using the lower bound of
each dimension as 1its index; this information may bhe
obtained from the prototype of the array. (For exanmple, the
initial selector of . an array wvhose prototype 1is
0:2,1:10,1:10 is 0,1,1.) Subseguent selectors are formed by
adding one - to the index of the last (rightmost) dimension
until the upper bound for that dimensicon is reached (just as
for a one-dimensional array), while keeping all other
indices constant. When the upper bound of the last index is
reached, reset that index to its lower bcund and increment
the index of the penultimate dimension by one. ¥or this
value of the next-to-the~last index, run throuagh all values
of the last index again, resetting when the uvpper bhound is
reached. Repeat this process for all values of the
‘penultimate dimension, then reset the this index to its
lovwer bound and tegin incrementing the indevx of the
antipenultimate dimension, - repeating the previously
descrited processes for each of its values, etc. Proceed
until the index of the first dimension has reached its upper
bound; then, all selectors of the array have been formed,

If the process just described is applied to a three-
dimensional array whose prototype is 1:3,1:2,1:2, the
following selectors will be formed 1in the indicated
"pureric" order.

(t.) 1,11 (5.) - 2,1,1 C(9 3,1,1
(2.) 1,1,2 6.y 2,1,2 (10.y 3,1,2
(3.) 1,2,1 (7.y 2,2,1 (11.y 3, 2,1
(4.y 1,2,2 (8.y 2,2,2 (12.y 3,2,2

It is easily seen from this display that the rightnost
index does indeed vary most often, while the leftmost index
is never reset but goes through its range of values only
once. The process could be described just as easily with the
leftmost index varying most often, but the order in which
the . particular selectors are formed is immaterial since the
same process may be used whenever all items of an array are
to be considered. Thus if all items are assiqgned values hy
the method just described and later the same method is used
to print the wvalues, then the values will be printed in
whatever order they were assigned. Since there are mnmany
applications in which all items of an array must be
considered, it is convenient to express this process in
terms of a procedure. '

7A. Arrays ‘ 120

Procedure_to _Return__the_ _"WNext" Selector. Presented
below is a programmer~defined frocedure, NFXT() , which
requires two strings as arquments: the first represents a
current selector and the second the prototype of the array
vhose "next" selector is to be formed: this selector is
returned in the form of a string as the value of the NEXT{()
procedure, lere "next" is used to mean the selector which
follows in the order described in the preceding section. The
NEXT () procedure fails when there is no next selector, for
examrle, when the current selector passed as its arqument is
the last in the order described above.

* FROCEDURE TO RETURN THE "NEXT" SELECTOR
* i
DEFINE (*NEXT(SEL,PROTQ) INDEX,LB,UB?,*PR.NEXT')
oAt . ;
* PATTERN FOR TEARING SELECTOR APART INTO ITS INDICES
* ASSIGN THIS PATTERN TO THE MAIN-PROGRAM VARIABLE SEL.PAT
SEL.PAT = (',' | NULL) SPAN('-0123456789%) . INDEX
+ REOS (0) «
3
* PATIERN FOR TEARING PROTOTYPE APART TO FIND LOWER AND
* UPPER BOUNDS | ' \
* ASSIGN THIS PATTERN TO THE MAIN-PROGRAM VARIABLE PROT.PAT
: 'PROT.PAT = (',f | NULL) SPAN{'-0123456789') . LB
+ *:t SPAN(*-0123456789') . UB RPOS (0) : {END.NEXT)
* : .
* FIND RIGHTMCST INDEX OF THE SELECTOR STRING AND REMOVE
* FATL IF NO MORE INDICES TO BE FOUND
PR.NEXT SEL SEL.PAT = NULL : F(FRETURN)
*
* FIND LOWER & UPPER BCUNDS FOR THIS DIMENSTON
: 'PROTO PROT.PAT = NULL
*
* TINCREMENT INDEX IF IT IS LESS THAN THE UPPER BOUND
INDEX = LT (INDEX,UB) INDEX ¢+ 1 : F(RESET.NEXT)
»
% FCRM NEXT SELECTOR STRING BY CONCATENATION ~
NEXT = IDENT(SEL,NULL) INDEX.',' NEXT : S(RET.NEXT)
NEXT = SEL ', INDEX ',*' NEXT |
* .
* REMOVE SPURIOUS FINAL COMMA PROM SELECTOR STRING
RET.NEXT NEXT !,° RPOS(O) = NULL = 3 (RETURN)
* .
* RESET THIS INDEX 7T0. ITS LOWER BCUND, CONCATENATE IT TO
* THE SELECTOR STRING BEING FORMED AND PROCEED TO WORK
% ON THE NEXT INDEX

RESET: NEXT
NEXT = LB ', ' NEXT : (PR.NEXT)
END.NEXT . o : -

72. Arrays _ 121

Note that the NEXT () procedure returns a string as 1its
value. Thus the selector represented by that string cannot
be used within an item reference, where only a selector list
is appropriate, but may be used as the second argument of
the ITEM{) procedure, as in the rule

OUTPUT = ITEM(LIST,NEXT (SELECT,PROTOTYPE(LIST)))

where the value of SELECT is a string representing the last-
used selector. If the ITEM() procedure were not defined to
accept & string as its second argument, it would not bhe
possible to write a useful, general purpose NEXT() procedure
to work on an array with any number of dimensions.

NEXT() was devised for the purpose of returning all
successive selectors of an array, each call to NEXT()
returning the next selector until a failure transfer is
executed. The loop shown below uses the NEXT() procedure in
this way. The INIT() vprocedure which precedes the loop
provides a string to be used as the initial value of SELECT;
INTT() takes a prototype as its arqument and returns the
nfirst" selector of an array described by that prototyrpe.

DEFINE {*INIT (PROTO) LBPAT,LB', 'PR,INTT')
%

*

SET UP PATTERN TO FIND LOWER BOUND FOR EACH DIMENSION
* ASSIGN THTIS PATTERN TC THE MAIN-PROGRAM VARTABLE LB.PAT
LBPAT = BREAK(':*') . 1B *:% (BREAK(',") *,' | REM)

+ : (END.INIT)

*

* USE THIS PATTERN TC FIND NEXT LOWER BOUND

PR.INIT PROTO LB.PAT = NULL : F(RET,INIT)

b

% FORM INITIAL SELECTOR STRING BY CONCATENATION
INIT = INIT ',' LB : (PR.INIT)

* REMOVE SPURICUS INITIAL COMMA AND RETURN

RET.INIT INIT *,' = NULL : (RETURN)

END,INIT
*

* LOOP TO PRINT ALL SELECTORS OF IIST

SELECT = INIT(PROTOTYPE (LIST))
LOOP OUTPUT = TITEM(LIST,SELECT)

SELECT = NEXT(SELECT,PRCTOTYPE(LIST))
+ : S(LoOD)

Since NEXT() is meant to be used in this and similar
ways, it has no special provision for dealing with selector
strings passed as the first arqument which fall outside the
range of the array; such provisicns could be added to make
the procedure more generally useful.

7h. Arrays _ ‘ 122

Procedure_to Return a_ Copy 2f any Array. It is often
necessary to make. a copy of an array, rather than merely
assigning the same array as the value of more than one
variable, so that changes in the values of the copy can he
made without affecting the original. To make a copy of an
array means to create a new array with the same prototype as
that of the original, and to assign to each of its items the
same valuve as that of the corresponding item in the original
array. The following CCPY{) procedure returns as its value a
copy c¢f any array;. it requires only one argument, which may
be any expression whose value is the array to be copied -—-
this array may have any number of dimensions. The COPY ()
procedure invokes the INIT{) procedure to form the initial
selector string, and the NEXT() procedure to insure that all
items. are considered and hence <copied; both of these
.procedures are described in the preceding section. A call to
the COPY() procedure fails, causing an error message to be
prirted, only if its argument is not of datatype Array.

* PROCEDURE TO RETURN A COPY OF ANY ARRAY

x _ :
DEFINFE {(COPY (ARR1) SELECT, E', 'PR.COPY') : (END.COPY)
N :
* TEST WHETHER ARGUMENT IS AN ARKAY A
PR.COPY IDENT(TYPE(ARR1),*ARRAY?') : F(COPY.ER1)
] .
* CREATE A NEW ARRAY WITH PROTOTYEE OF ARGUMENT
* AND ASSIGN IT AS THF VALUE OF THE RESULT VARIABLE
P = PROTOTYPE(ARR1)
CCPY = ARRAY (P)
& : .
* CALL INIT() TO RETURN THE FIRST SELECTOR OF THIS ARRAY
‘ SELECT = INIT(P)
*

* CCPY VALUE OF NEXT ITEM OF ARRAY, USING ITEM()
- COPY.COPY S

+ ITEM(COPY,SELECT) = TITEM(ARR1,SELECT)
M , _
* CALL NEXT() TO RETURN THE NEXT SELECTOR OF THIS ARRAY
* TF NO NEXT SELECTCR, RETURN '

SELECT = NEXT(SELECT,P) : S(COPY.COPY)
+ ~ F(RETURN)
COPY.ER1 OUTPUT = 'ARGUMENTmOFaCOPYaNOToANmnARRAY'®
+ : (FRETURN)

END.COPY

Appendix A. SUMMARY OF PREDEFINED PROCEDUPRES

I. PRCGRAM PROCEDURES are used by the programmer as
opcrations in constructing programs.

AR. Test Procédurps

1.

General Comparison

IDENT ()
DIFFER ()

String Comparison
LGT ()
Arithmetic Comparison

EQ ()
NE {}
GT ()
GE ()
LT ()
LE{}

B. Result_Procedures

1.

"pPattern Ccnstruction

ANY ()
NCTANY ()
SPAN ()
BRFAK ()
LEN ()
TAB ()
RTAB()
PCS ()
RPOS ()
ARBNO ()

String Operation

TRIM()

123

basic

A. Summary of Predefined Procedures:

C. Data_Procedures. .

1.

2.

Structure Creation

ARRAY ()

Field Selection

PARAM ()
FIRST ()
REST()
LEFT()
RIGHT ()
FANILY ()
SELECTOR()

IT. SYSTEM PROCYEDURES are used to communicate
and requests to the Snotol systen.

A. Declarations

1.

Programmer-defined Prccedures
DEFINE ()
Programmer-defined Datatypes

DRATA ()

B. Access to System Informaticn

1.

Attributes of Okjects

STZE ()
DATATYPE ()
TYPE ()
PROTOTY PE ()

Execution Information

ALPHABET ()
DATE ()
CLOCK ()
TIME ()
STCOUNT ()
STLIMIT ()

instructions

A. Summary of Predefined Procedures

MAXLNGTH ()
FNCLEVEL ()
NEXTVAR ()

C. Requests for System_MActions

1.

Special Fxecution

ITEM ()
APPLY ()
IF ()

Set Mode of Pattern-Matching

ANCHOR ()
Datatype Conversion

CCNVERT ()
CODE()

D. Inpuvt/Cutput Procedures

1.

File Association

INPUT ()
OUTPUT ()
DETACH ()

Requests for File Actions
ENDGROUP ()

REWIND ()

REMARK ()

FRFEZE ()

Tests of File Position

EORLEVEL ()
EOI ()

125

A. Summary of Predefined Procedures) 126

The foregoing classification schene is introduced as an
aid to wunderstanding the purpose and use of the various
predefined procedures; the particular classes differentiated
play no part in the definition of Snobol, and other
classifications could be devised. Notice that most
programmer—~defined procedures declared by DEFINE()
constitute extensions of the classes of test procedures an4
result procedures, and that those declared by DATA{)
constitute extensions of the classes of structure creation
and field selection procedures.

In the descriptions which follow, each predefined
procedure is shcwn along with the kind of value required for
its argument(s) and the kind of value it returns. There are
no syntactic restrictions on the form of arguments; since
all arquments are passed "by value"™ in Snobol procedure
calls, actual arguments may be written as arbitrarily-
complicated exrressions, There are, however, semantic
restrictions on the values resulting from evaluation of
actual arguments, defined in terms of "datatypes.™ Every
data chject known to a Snobol program is of datatype String,
Integer, Pattern, keal, Array, dame, Code, Or a programmer-
defined datatype. Fach procedure is shown here with the
datatypes it will accept; a call of a procedure using an
argument with a wrong datatype will result in an execution-
time error. Some procedures are described as accepting the
non-datatype "structure"; these procedures ¥Will accept an
arqument of any programmer—-defined datatype. Some procedures
are described as accepting the non-datatype "any"; these
procedures impose no restricticns c¢cn their arquments. Sone
procedures are described with an empty argument list; these
procedures are defined to have no arguments.

There are two generalizations not specifically
mentioned in the descriptions: (1) a procedure which accepts
a Pattern will accept a String or an Integer; (2) a
procedure which accepts a String will accept an Integer.

Any predefined procedure may te called with nmore or
fewer arguments than are shcwn in its definition. Missing
arquments are assuned to be the null value; extra arguments
are evaluated but otherwise ignored. The evaluation of extra
arquments may have important consequences, however; if the
evaluation involves the invocation of procedures vhich
rroduce side effects, for example, it will cause those side-
effects to occur hefore the outer procedure call occurs, and
failure during any part of the evaluation of the arguments
will result in failure of the rule before the procedure call
cccurs, The extra arquments are ignored only in the sense
that they are not passed to the prccedure being called.

A. Summary of Predefined Procedures 127

I. PROGRAM PROCEDURES

I.A TJest_Procedures

IDENT (any,any) Returns: null value, or fails
DIFFER (any,any) Returns: null value, or fails

IDENT () and DIFFER() are used to ccmpare two arquments
of any datatype to see if they are indistinguishable to the
Snotkol system —— equivalent rattern structures, the <sanmne
array, equal integers, identical character strings, or
whatever. IDENT({} succeeds if its arquments are identical;
DIFFER() succeeds if its arguments are not identical.

IDENT (PRU.PAT, TEST.PAT) ; DIFFFER(WORD,NULL)

LGT (String,String) Returns: null value, or fails

LGT{) — a mnemonic for Lexiccgraphically Greater Than
-—- compares two strings to see if they are "alphabeZically"
ordered, using as an alphabet the computer's character set
in its standard <collating sequence. (Motice that +the
arguments must be given in the reverse of the desired ordcr;
the test 1is wvhether the first argumert follows the seccond
arqument.)

LGT (WORD, 'LEMUEL?') s LGT (WORD,TEST)

EQ (Integer,Integer) Returns: null value, or fails
EQ (Real,Real) ' Returns: null value, or fails
NE {Integer,Inteqer) Returns: null value, or fails
NE (Real, Real) Returns: null value, or fails
GT (Integer,Integer) Returns: null value, or fails
GT (Real, Real) _ Returns: null value, or fails
GE {Inteqger,Integer) Returns: null value, or fails
GE (Real,Real) Returns: null value, or fails
LT (Integer,Integer) Returns: null value, or fails
LT (Real, Real) Returns: null value, or fails
LE (Integer,Integer) Returns: null value, or fails
LE (Real,Real) Returns: null value, or fails

A. cummary of Predefined Procedures 128

These arithmetic test procedures are used to conmnpare
the first arqument to the second arqument to see if the
relationship symbolized by the procedure name is ¢trne. The
tvo arquments must be of the same datatype. ’

EQ (ACNT,BCNT) s+ LT(LINE,5)
X = LE(X,8 X + 1 : ' : F(OUT)

I.B Result Procedures

ANY (String) - Returns: Pattern

ANY () returns a pattern which will match any single
character from its arqument string.

ANY ("ALTODY) s ANY (VOWELS)

NOTBNY(String) _ Returns: Pattern

'NOTANY () returns a pattern which will match any - single
character not appearing insits argument string.

NOTANY (*AEIOD') i NOTANY (VOWELS)

SPAN{String) Returns: Pattern

SPAN() returns a pattern which will match ‘the longest
continuous string of one or more characters appearing in its
argument string.

SPAN(*AEICU') v SPAN(VOWELS) ; SPAN('MISSISSIPPT')

BREAK (String) Returns: Pattern

BREAK () returns a pattern which will match the longest
continuous string of none or more characters not appearing
in its arqumnent string; that is, everything up to but not
including any character in its argument.

BREAK (*AEIOQOU') ; DBREAK(VOWELS) ; BREAK('MISSISSIPPI')

A. Summary of Predefined Procedures 129

LEN {(Integer) ' Returns: Pattern

LFN() returns a pattern which will match any string of
characters of the length given by its arqument.

LEN (5) : LEN('22") : LEN(STZE(VOWELS))

TAB (Integer) Returns: Pattern

TAB{) returns a pattern wvwhich will match all the
characters up to the string pcsition specified by its
argument., (The convention for string numbering is that
string position 0 ©precedes the first character, string
position 't is after the first character, and string position
n is after the n-th character.)

TAB (5) s TAB('22') : TAB(COUNT)

RTAE ({Integer) v Returns: Pattern

RTAB() returns a pattern ‘vhich will match all ¢the
characters up to the string position specified hy its
arqgument, Its action is identical to TAB(), matching strinas
cf characters from left to right; the o¢nly difference
between them is the numbering convention used by the
argument. (RTAB()'s numbering convention 1is that string
position 0 is after the last character, string position 1 is
before the 1last character, and string position n is before
the n-th character from the end of the string.)

RTAB(5) H RTAB('22') " ; RTAB(0)

POS (Integer) . Returns: Pattern

PCS () returns a pattern which will match only the
string position specified by 1its arqument; it matches no
characters at all. (String positions follow the numbering
convention of TAB().) ' '

PCS(0) 3 POS(5) ; POS('22')

A. Summary of Predefined Procedures , 130
RPOS (Integer} - Returns: Pattern

"RPOS() returns a pattern which will match only ¢the
string position specified by its arqument; it matches no
characters at all. (String pcsitions fcllow the numbering
convention of RTAB().)

RPOS (5) : RPOS (*22?') : RPOS (COONT)

ARBNO (Pattern) Returns: Pattern

ARBNO{) returns a patterh which will match zero or more
occurrences of the pattern which is its argument. :

ERBNO (RREAK (*m. ,; %) LEN (1)) : ARBNO (ANY (*AEIOU'))

TRIM(String) Returns: String

TRIM() returns a string which 1is the same as 1its
argurent, but shorn of trailing blanks.

TRIN (WORD) 3 TRIM(INPUT) : TRIM(UNCLE.TOBY)

I.C Pata_ Procedures

ARRAY (String) Returns: Array

ARRAY () accepts as its single argqument a prototype
string specifying the number of dimensions wanted and the
upper and lower bounds for the index of each dimension.
ARRAY (*10,151") specifies a tvo-dimensional array with
indices fron one to tan and one to fifteen.
ARRAY('0:60,-5:45*) specifies a two-dimensional array with
indices from zero to sixty and fror minus five to plus five
({i.e., a sixty-one by eleven item array). All array items
are initialized to the null value. There is no limit on the
number of dimensions which may be specified for an array.

Since ARRAY() returns an object of datatype Array as
its value, it is used by writing something like

LIST = ARRAY('0:60°)

vhich has the effect of c¢reating a family of sixty-one

A. Sommary of Predefined Ptocedures 131

variables, which may then bhe referred to by the item
references LIST[0], LIST[1)ress,LIST[60].

PARAM (Pattern) Returns: Pattern, String, or Integer

PARAM () accepts as its arqument only a pattern returned
by c¢ne of the ten predefined pattern procedures; it returns
the arqument (rarameter) with which one of those was called
to construct the pattern. If the rattern is one constructed
by LEN(), POS(}, RPOS{), TAB(), or RTAB(), then PARAM()
returns an integer; if the pattern was constructed by ANY ()},
NOTANY (), SPAN(), or BREAK(), then PARAM{} returns a string
of characters in their standard collating sequence (the
sequence defined by ALPHABET()). If the pattern vas
constructed by ARBNO(}, then PARAM() returns the pattern
that was its arqument, which may of course be of datatype
String or Integer in simple cases. :

FIRST (Pattern) : - Returns: Pattern
FIRST () accepts as an argument a pattern constructed hy
an alternation or <concatenation operator. It returns the
first element of the pattern. Thus if
PAT = XY | 2
has teen executed, then
FIRST (PAT)

returns the pattern which is the value of the expression
X Y, a concatenation. On the cther hand, if

PAT = X (Y | 2)
has been executed, then
FIRST (DAT)

returns the pattern which is the value of X.

REST (Pattern) ' Returns: Pattern

REST() is the complement to VIRST(); it also accepts
alternated or concatenated patterns as' arquments, and
returns all but the first element. Thus, if

A. Sumrary of Predefined Procedures 132
PAT = XY | 2
has been eiecuted, then
REST(“AT)
returns the pattern which is the valuye of 7. If, however,
"PAT = X (Y | 2) |
has béen'éxecuted, then

REST (PAT)

returns the pattern which is the value of Y { Z, an
alternation. : e
LEFT (Pattern) Returns: Pattern

_ LEFT{) accepts as an arqument a Pattern constructed hy
an immediate assignment or conditional assignment operatoer;
it returns the pattern which lS the 1left-hand operand of
that operator. Thus if

PAT = ANY(VOWELS) . V
has teen executed, then

LEFT(PAT)
returns the pattern which is the value of the expression
ANY (VOWELS) . ‘
. RIGHT (Pattern) Returns: Name
RIGET (Name) Returns: String

RIGHT() may have a pattern constructed by an assignment

operatcr, in which case it 1s the complement to L“FT(). For
instance, if

PAT = ANY(VOWELS) $ V
has been executed, then

RIGHT (PAT)

returns the value of the expression .V, the Name of the
variable V. : '

A. Summary of Predefined Procedures 133

RIGHT () may also have as arqgument a deferred evaluation
pattern, in which case it returns the Name of the operand of
the deferred evaluation operator. If '

PAT = *V
has keen executed, then
RIGHT (PAT)

returns the value of the expression .V, the Name of the
variable V. : :

Finally, . RIGHT() may have as its. argumept the VWame
(datatype Name) of a mnatural variable, in which case it
returns the String which is the other name of that variable.
(RIGHT () will not accept the Name c¢f a created variable, nor
the String name of a natural variatle.) Thus, the wvalue of
RTIGHT (.V) is the String V; the statenents

PAT = ANY(VOWELS) §$ V -

~ OUTPUT = RIGHT(RTGHT(PAT))
will prlnt the character V. Slnce.ohjects of datatype‘ Name
cannot be printed, it is the RYGHT() procedure which,
converts Names of natural:variables into a form suitable for

assignment to OUTPUT. (To print Names of created variables,
see FAMILY () and SELFCTCR() below.) : :

FAMILY (Name) e Retutns: Array'or_structuré

FAMILY () accepts as arqument the ©Name of a <created
variable (array item, cr field of a programmer-defined data
structure). It returns the object which is the fanily of
variables to which the Named variable belongs. If LIST has
been assigned an array as value as in -

'LIST = ARRAY('0:10')

and the rule

ELEMFENT = LLIST[5)

has been executed (notice that the value of ELEMFNT is of
datatype Name), then

FAMILY (ELEMFENT)

returns the Array which is the value of LIST. Similarly,

A, Summary of Predefined Procedures 134

after the statements

CDATA(® NQDE(LLINK,DLINK INFO) ')
NEXT = NODE(,,15)
ELEMENT = (INFO(MFXT)

have becn executed, then
FAMILY (FLEMFNT)

returns the object of datatype Node which is the value of
NEXT.

Since TFAKILY() returns the Array or structure rather
than the Name o©of the variable whose value is the Array or
structure, the value of FAMILY () is suitable for use as the
flrst arqument of ITFV(), or a second arqument of APPLY (J -

SELFCTCR {(Name) - Returns: String

SELECTOR{) is the other half of FAMILY{(). It also
accepts as its argumen: the Name cf a created variable, and
returns a String which may be used to select that wvariable
in its family. For Arrays, SELECTOR() returns a string vhich
is a list of indices; for structures, SELECTOR() returns a
string paming a field selection procedure., The String
returned by SELECTOR() is appropriate for use as the first
argument of APPLY({), or a second arqument of ITEN(). (Note
that this last use takes advantage of the fact that TITEM{()
will accept such a String of indices; only in the case of
one-dimensional Arrays may the value of a call to SELECTOR{()
be used within square hrackets in an item reference.)

A. Summary of Predefined Procecdures 135

II. SYSTEX PROCEDURES

IT.A Declarations

DEFINE(String, String) Returns: null value

The first argument of DFFINE() is a string consisting
of the name of the procedure being defined, followed by a
pair of parentheses <ccntaining the names of the formal
variables (if any), which in turn are followed (vithout a
comma) by the names of internal variables (if &any). The
seccnd arqument is a string naming the "entry label®" for the
procedure; if the second argument is null, the entry label
is assumed to have the same form as the name of the
procedure being defined. '

DEFINE {(*PRINT (N, NAME) M, W, E')
DEFINE ('RECORDS(} ', 'PR.RECORDSY)

TRTA(String) Returns: null value

The DATRA{) declaration has as its argument a prototype
string consisting of the name of the datatype being defined,
followved by a parenthesized list of the names of the fields
which an object of that datatype is to comprise (if any).
The effect of the DATA() declaraticn is to define (without
any DEFINE{)'s) a structure creation procediure for the
datatype, along with a field selecticn procedure for each
field. Thus, after the declaration

DATA(*NODE (LLINK,RLINK,INFO)*)

has been executed, Node's may te created with statements of
the fcrnm

NEXT = NODE() ; CURRENT = NODE(NEXT,,TRIM(INPUT))

Fields of the created structure have values 1initialized
according to the values of the corresponding arquments of
the procedure call; null arquments produce null fields.

Tte variables which are fields of structures are
referred to by field references, ccnsisting of a reference
to a field selection procedure with an argument of the
proper datatype to specify the Ffamily; for the example
abcve, by statements of the forn

A. Summary of Predefined Procedures 136

LEFT = LLINK (CURRENT)
NAME = TINFO(NEXT)
RLINK (CURRENT) = NEXT

The saxze field name may be used in definitions of more than
one datatype, since 1its interpretation is governed by the

- datatype of the argument in any field reference., VNotice,
however, that the names of structure creation procedures and
field selection procedures are drawn from the same set ‘as
-all cther procedure names, so that (for instance) defining a
structure ' ' :

DATA ("ENTRY (TYPE,SIZE,INFC))

will re-define the predefined rrocedures TYPE() and SIZE()
as 'field selection procedures for cbjects of datatype Entry.

II.B Access_to_System_Information

SIZE(String) Returns: Integer

SIZE() returns the integer 1length (the number of
characters) of the string which is its argument,

SIZE(VOWELS) H SIZE(TRIM(INPUT))

DATATYPE (any) " Returns: String

DATATYPE() returns the string of <characters which |is
the name of the datatype of its argument (predefined or
programmer-defined). It is used for controlling branching,
and can bhe used with TIDENT{) to simulate other test
procedures. To test whether COUNT is an integer, write
IDENT(DATATYPE (COUNT) ,*INTEGERY). :

DATATYPE (COUNT) H :(3("L* DATATYPE(VAL)))

TYPE {any) ’ Returns: String

TYPE() returns the same result as DATATYPE() for
objects of predefined datatypes, and the string DATA for
objects of programmer-defined datatypes. Thus, an exhaustive
listing of the strings returned by TYPE() is: :

STRING INTEGER REAL PATTERN
ARRAY - NAME CODE . DATA

A. Summary of Predefired Procedures 137

PROTCTYPE (Array) Returns: String
PROTICTYPE (structure) Returns: String
PROTCTYPE(Pattern) Returns: String
PROTOTYPE (Name) Returns: String

PROTOTYPE (} returns as its value a String representing
the system definition of the object which is the value of
its argument. Tts operation is rather different according to
the datatype of 1its argument. In ecach case, the string
returned is intended to be convenient for investigation by
Snotol pattern-matching.

Wwhen the argument of PROTOTYPE({) is an obiject created
by a c¢all ¢tc the predefin@d structure creation procedure
ARR2Y (), the string returned is the list of upper and lower
bounds of indices for the dimensions —— essentially the sane
as the argument given to the ARRAY{) procedure, except that
lower bounds are always explicitly present, and each integer
is in canonical form (no signs fcr positive numbers, no
leading zeroes). Thus, if the rule

LIST = ARRAY('00:5,<1:43,05")
has teen executed, then
PROTOTYPE (LIST)
will return the 12-character string 0:5,-1:3,1:5.

When the argument of PROTOTYPE() is an obdject of a
programmer—-defined datatvpe — one created by a call to a
programmer-defined structure creation procedure —— then the
string returned is that defining the datatype of the ob-iect.
This is the same as the string which was the argument of the
call to the DATA() procedure which declared the datatype ——
not the arqument list of the structure creaticen procedure
which created the object (unlike the case for Arrayq) Thus,
if the two statements

DATA(*NODE (LLINK,RLINK,INFO))
CURRENT = NODE(LAST,, 'SCNNETa15")

have been executed, the value cf CURZENT is an obiject of.
datatype Node, with its LLINK() and INFO() fields
initialized as shown and its RLINK() field null. Then the
rule

PROTOTYPE (CURRENT)

would return the 22-character string NODE(LLINK,RLINK,INFO).

A. Summary of Predefined Procedures _ ’ 138

For both arrays and data structures, the arqument of
PROTCTYPE() 1is an object which is a family of variables, and
the result returned is a string which can be wused to
determine all the valid selectors for members of that family
- items or fields, as the case may be. (The difference is
that for arrays this information is provided in the argument
to the predefined structure creation procedure, for data
structures +this 1information is given in the declaration of
the datatype.) Tn the last example, for instance, one could
obtain the values of the fields of the object named by
CURRENT by obtaining its PROTOTYPE(), then searching with a
pattern between the parentheses to find the strings
delimited by commas, and using the strings located in this
way as the first arqument of APPLY() with CURRENT as the
seccnd arqument. '

This idea is extended to objects of datatype Pattern
and datatype VName, by observing that although objects of
these datatypes are not families of variables, nevertheless
they may have an internal structure which a Sncbol program.
may wish to investigate. A Pattern may be constructed of
many parts, for instance, and a Ramrme may indicate a family
plus a selector. For this reason, the different kinds of
Patterns and Names are provided with predefined systenm
prototypes, strings which contain substrings corresponding
to the names of the predefined field selection procedures
(see section T.C of this arpendix). Thus, the structure of
Patterns and Names may be investigated in the same way as
that of programmer-defined data structures. The twenty-one
predefined prototypes fcr patterns are given in the right-
hand cclumn of the following table.

predefined_pattern_variables

P = ARR PROTCTYPE (P) ~> ARB ()
P = REN PROTCTYPE (P) -> REM{()
P = BAL PROTOTYPE (P) —> BAL()
P = FENCE 3 , PROTCTYPE (P) —> FENCE ()
P = FAIL ; ' PROTCTYPE (P) —> FAIL()
P = ABORT ; o 'PROTOTYPE (P) => ABORT{)

A. Summary of Predefined Procedures 139

predefined_pattern grocedures'

P = LEN(6) PROTCTYPE (P) => LEN (PARAM)

P = ECS(6) PROTCTYPF (P) => POS (PARAM)

P = FEPCS(6) EROTCTYPE (P} —=> RPOS (PARAM)

P = TAB(6) g PROTOTYPE(P) —> TAB (PARAM)

P = RTAB(6) 3 PROTCTYPF (P) —=> RTAB(PARAM)

P = ANY('AEION') PROTOTYPE (P) —=> ANY (PARAM)

P = NOTANY (*AEIOU') PROTCTYPE (P) => NOTANY (PARAM)
P = SPAN('AEIOU') PROTOTYPE (P) —> SPAN (PARAM)

P = BREAK('AEIOU') PROTCTYPE (P)—> BREAK (PARAM)
P = ARRNO (ANY (TAEIOU')) PROTCTYPF {P) —=> ARBNO (EARAM)

alternation and _concatenation

P = 'A* { 'B* | 'C*' PROTCTYPE(P)—-> ALT(FIRST,REST)

p 'A' ANY('AEIOU') *'C*' PROTCTYPE (P} -> CAT{(FIRST,REST)

assignment_operators

p
p

SPAN (*AEIOU!') . VOWFLS
BEREAK (*AEIOD') $ VOWELS

PROTCTYPE (P) -~> PRD(LEFT,RIGHT)
PROTOTYPE (P) —> DOL(LEFT, RTGHT)

-8 w9y

deferred evaluation

P = *VOWEL PROTOTYPE (P) —> STAR(RIGIT)

Similarly, a Name may be the name of a natural variable
(one that 1is also named by a String), or one of the two
types of created variatles — an Array item, or a field of a
data structure. There is a predefined prototype for each of
these:

VAR = .VOWELS PROTOTYPF (VAR)~> INDIRECT (RIGHT)
VAR = .LIST[I,J] ; PROTOTYPE(VAR)-> ITEY (FAMILY,SELECTOR)
VAR = .RLINK(NODE) ; PROTOTYPE (VAR)—> APPLY (SELECTOR,FAMILY)

Notice that the Name of a natural variable, returncd by
the name operator, is a suitable aicqument for PROTOTYPE();
the String which names the same variable (in the exanmple
above, VOWELS) would cause an execution-time error as an
arqgument of PROTOTYPE().

A. summary of Predefined Procedures ‘ 140

ALPHABET () Returns: String

'ALPHABET() returns the 63-character string which is the
Snotol character set in standard collating sequence (see
Aprendix I). ‘ : ‘

ALPHABET()

DATE() ’ Returns: String

CATE() returns a nine-character string representinq the
current date, in the form 02n0JULn72. The abbreviations used
for the months are the first three letters of their names.

DATE ()

CLCCK () ‘ Returns: String

CLOCK () returns an eight-character string representing
the time of day at which the job is being run, in the form
19:03:57. Hours are counted from zero through twenty-three,
minutes and seconds from zero through fifty-nine.

CLOCK ()

TIME () : ‘ Returns: Integer

TIME() returns the elapsed central processor time for
the Jjob, expressed as an integer number of milliseconds. By
stbtracting the value of one call to TIME() from the value
of a 1later «call, a programmer 1is able to determine the
amount of central processor tire used by a particular part
of his program. '

TIME ()

STCCUNT () ' Returns: Integer

STCOUNT () returns the count kept by the Snobol systenm
of the number of statements on which execution is bequn. Its
initial value is, of course, zero +when a program starts
executing. :

STCOUNT ()

A. Summary of Predefined Procedures 141

STLIMIT(Integer) Returns: Integer

STLIMIT() is used to set the limit on the number of
statements executed {the value of STCOUNT()). Tts initial
valve is 1,000,000; 1lower liwmits may be set by the
programmer by <calling STLIMIT() with a non-null integer
argument. An execution-time error results if STLIMIT() is
exceeded. If called with a null argument, STLIMIT{) returns
its current value and remains unchanged.

3

STLIMIT (12007) : STLINMIT(5000) ; STLIMIT()

MAYLNGTH (Integer) Returns: Integer

MAXLNGTH() is used to set the limit on the 1length of
strings which wmay be formed, 1in characters. Tts initial
value is 131,070; lower limits may be set by a progranmer by
calling MAYLNGTH() 'with a non-null integer argument. Akn
execution-time error will result if an attempt 1is nmade +to
exceed this maximum length for strings. If called with a
null argument, MAXLNGTH () returns its current value and 1is
anchanged.,

MAXLNGTH (*200°) : MAXLNGTH (5000) . MAXLNGTH()

FNCLEVEL () Returns: Integer

FNCLEVEL () returns an integer value to 1indicate the
level of evaluation of nested or recursive procedure calls.
TIts use 1is to provide a trace of the wevaluation for:
debuogging of program logic, or to preserve a record of the
level ¢f evaluation causing a failure during execution. (At
an execution-time error, this information is displayed by
the system's error message.)

REMARK (TIMNME () Y~~' FNCLEVEL() 'oDEEP')

NEXTIVAR (Name) Returns: Name
NFXTVAR(String) Returns: Name

NEXTVAR() accepts as its arqument the Name of a created
variable, or ecither the Name or String naming a natural
variable.

For created variables —— array items or fields of data
structures —— NEXTVAR() returns the name of the Ynext"®
membter of the same family. For Arrays, names of items are

A. Summary of Predefined Procedures 142

returned in the order obtained by varying the rightmost
index most rapidly. For data structures, names of fields are
returned in 1left to right order of their appearance in the
CATA() declaration which defined the datatype. In both
cases, the order is cyclical, the name of the "first" member
of a family ({(under this definiticn) ‘being the value of
NEXTVAR() applied to the name of the "lasf" member. Thus, if
the rule

LIST = ARRAY('0:2,0:2")

has been executed, the value of NEXTVAR(.LIST{O0,0)) 1is the
name of +the array item referred to as LIST[O0,1), and the
value of NEXTVAR(.LIST[2,2]) is the name of the array iten
referred to as LIST[0,0). Similarly, if the rules

DATA (' NODE (LLINK, RLINK, INFO) *)
- CURRENT = NODE()

‘have- been executed, the value of NEXTVAR(.LLINK{(CURRENT)) is
the name of the field referred to as RLINK(CURRENT), and the
value of NEXTVAR(.INFO{CURRENT)) is the name of the field
referred to as LLINK (CURRENT). .

If a statement such as
NEXT = NEXTVAR({NEXT)

is written in a loop, then the names of all the members of
the family to which the value of ©NEXT belongs will be
returned in order; but unless the programmer checks to see
wvhen he 1is back to where he started, the loop will be
infinite. A suitable loop for going once through the fields
of a Nocde, then would be

SAVE '= L.LLINK(CURRENT)
NEXT = SAVE
LOOP [statcments to process a field]
NEXT = NEXTVAR(NEXT) : '
IDENT {NEXT, SAVE) : E ¢ F(LOOP)

NEXTVAR{) is convenient for referring in turn to all
the variables of an array or a data structure, but its
effect can be programmed in Snobol using PROTOTYPE(),
ITEM(), ~and APPLY (). (See an example of this in Chapter 7.)

The more iwmportant use of NEXTVAR() arises from the
fact that it also treats the set of all natural variables as
a "family," and thus when given a String or a Name which
names a natural variable, NEXTVAR() returns the name of

A. Summary of Predefined Procedures 143

another natural variable. Two important differences of
NEXTVAR() in this use should be noted. First, since there is
no defined order for the natural variables, their names are
returned in an order which 1is convenient for NEXTVAR().
Seccnd, NEXTVAR{) cannot cycle through the names of all the
natural variables, since there are an infinite number of
them, Hence, it returns the names of a subset of the family
of natural variables which is certain to include at least
the names of all variables with nocn-null values, and nmay
also include the names of some variables with null values.
What is important is that by the time a full cycle has bheen
completed and the starting place reached again, the name of
every variable with a non~-null value will have come up.
(When wused with families of created variables, by contrast,
NEXTVAR({) is guaranteed to cycle through the names of every
variable in the family in turn, regardless of their values.)
Observe that the names returned by NEXTVAR() are subject ¢to
the usual interpretation of names. Tn particular, if
NEXTVAR() is called repeatedly in a loop within the bhody of
a programmer~defined procedure, and some process 1is carried
out on the variables referenced by the names returned, then
the names of variables internal to procedure calls will
refer to those internal variables. The custorary
interpretation of what variable a name refers to at any
point in the execution ¢f a program 1is not affected by
NEXTVAR().

II.C Requests_for System_ Actions

ITEM(Array,String,...,String) Returns: variable, or fails

ITEM() provides a convenient way to write item
references for arrays chosen at execution-time, for arrays
which are the values of array items, or which involve
variable numbers of dimensions. The first arqument of ITREHM ()
is an array, and the following arguments are either integers
or else 1lists of integers separated by commas. TTEM()
constructs an item reference using the array which 1is its
first arqument for the family and the proper number of
indices gathered from the remaining arquments to form the
selector, 1ignocring extra indices and supplying null (zero)
for missing ones. ITEM() NRETHURNs the array itenm S0
referenced, or FRETURNs if any index of the selector exceeds
the bounds specified by the prctotype for the array. If TIC3
has been assigned the value

TIC3 = ARRAY(*'1:5,1:5,1:3")

A. Summary of Predefined Procedures 1y

then equivalent wvays of referring to its central item are

T1C3[3,3,2]
ITEM(TIC3,3,2,2)
ITEM(TIC3,*3,3,2")
ITEM(TIC3,3,'3,2")

APPLY (String,any,...,any) Returns: any or variable, or fails

APPLY () provides the only way to write procedure
references for procedures chosen ‘at execution-time. The
first argument of APPLY () must be a- string which names a
procedure; the Snobol system calls that proccedure, using as
its arqguments the remaining arquments of APPLY () and
~observing the usual conventions for extra or missing
arguments. APPLY() returns the value returned by the
procedure it calls, using the same return (RETURN, NRETURN,
or FRETURN) . :

‘ If APPLY({) is used to call a field selection procedure,
then 1its use 1is analogous to the use of ITEM(}) for itenm
references; the Snobol system forms a field reference using
the first argument as the selector and the second argument
for the family, and NRETURBRNs the field so selected,

FLD = 'RLINK'
APPLY(FLD,CURRENT) = TRIM(INPUT)
RLINK {CURRENT) = APPLY ('TRIM',INPUT)

IF () Returns: null value

IF() always succeeds. Since it is defined to have no
argurents, - any arqguments 1in a reference to IF{) are
. evalnated but otherwise ignored. Thus if any part of that
evaluation fails, that failure causes failure of the rule.
If a reference to a procedure returning a non-null value is
written as an argqument of an IF() rrocedure, the combination.
will work like a test procedure. The same principle applies
to cther expressions returning values which can 51m11arly be
converted 1nto test procedures. :

‘N = IF(ARRI[N+1)) N + 1 : - F(OUT)

A. Summary of Predefined Procedures 145

ANCEOR (any) ' Returns: null value

ANCHOR({) works like a switch, distinguishing between
null and non-null arquments. Calling ANCHOR () with a non-
null argument furns on the anchored mode of pattern-
matching; calling it again with a null arqument restores the
usual, unanchored mode. ‘

ANCHOR ("ON') : ANCIOR (OFF) s ANCHOR ()

CORVERT (Integer) Returns: Real
CCHNVERT (String) Returns: Real
CCNVERT (Real) Returns: String

CONVERT () is usefnl for creating and printing real
numbers. TYf its arqument is of datatype Integer, the value
returned 1is the corresponding real nunmber. The only
permissible String-valued argqument 1is a string of digits,
possibly including an initial sign and possibly including a
decimal point; the returned value is the corresponding real
nunber, If the argqument is of datatype Real, the value
returned by CONVERT () is the nurmeral string representing the
real number to twelve digits. CCNVERT() 1is defined for
integers and real numbers from abcut 10-300 to about 10300,

CONVERT (45) 3 CONVERT('=57.69°%) s CONVERT (*.751)
CONVERT (REALNUMB) s CONVERT (TRIM(INPUT})

CODE (String) Returns: Code

CODE() accepts as its argument a string which 1is a
Snobol program text; that is, a sequence of syntactically-
correct Snobol statements (see the definition of the
construct <program text> in the syntax, Appendix J), and
returns as its value the corresponding compiled Codes; its
use, then, is to permit a program to extend itself while it
is executing, All characters in the Snobol <character set,
including space, have their customary significance in the
argument to CODE(). Statement separators are semicolons, but
no final semicolon is required in the string.

NULP = CODE('IOOP BIWORL "Amn = A
L N = LT (N,X) N + 1 s S(LOOP) F($("L" X)) ")

A. Summary of Predefined Procedures 146

IID. Input/Output Procedures

INPUT (String,String, String) Returns: null value
INPUT (Name,String,String) Returns: null value

INPUT() is used to associate a variable in a = Snobol
program with an input file. The first argument is the nare
of a variable to be used in the program; the second argument
specifies a SCOPE fileset; the third argument specifies the
nurber of characters to be read from . each record on the
file. (Excess characters are lost; missing characters are
filled out with spaces.) If the variable is already
asscciated with a file, it loses its previous association.
It is through INPUT() —— and OUTPUT() — procedures that the
Snobcl program establishes contact with the files set up for
it by SCOPE. ‘

"INPUT ('READ®,'INPUT",*50°")

INPUT (* LNGREADER', *DISKSRT', 600)
INPUT {.LIST[12], 'TAPE1"', TRIN (INPUT))
INPUT (. LLINK (NEXT) , *INFILE', 80)

OUTPUT (String,String,String) Returns: null value
OUTPUT (Name,String,String) Returns: null value

OUTPUT() is used analogously to INPUT(), to associate
variables in Snobol programs with SCOPE filesets which are
to be used for output. The first argument is the name of a
variable to be wused in the Snobol program; the second
arqument specifies a SCOPE fileset; the third arqument 1is
the carriage control character which will be concatenated at
the head of every record written, (If omitted, none will be
concatenated.,) If the variable is already associated with a
file, it loses its previous association.

OUTPUT ("WRITE','OUTPUT','~")
OUTPUT (*PAGEY, 'DISKFIL', 1)
OUTPUT(.,LIST[13],'TAPE1!, ")
OUTPUT (*PUNCH', *PUNCH")

OUTPUT (.RLINK (NEXT) , *CUTFILE")

A. Summary of Predefined Procedures ‘ 1047

DETACH {String) Returns: null value
DETACH (Name) Returns: null value

DETACH() is used to break the association between the
variable named by its argqument and any fileset. There is no
need to DETACH{) an associated variable before giving it a
new ascociation. (A variable may be associated with only one
fileset at a time, but a fileset may have many variables
asscciated with it simultaneously.)

DETACH (*OUTPUT?*)
DETACH({'WRITE?')
DETACH{.LIST[12))
DETACH {.RLINK (NEXT))

'ENCGROUP (String,Integer) Returns: null value

ENDGROUP () writes a SCOPE end-of-group mark on the
SCOFE fileset which is specified by its first argument. The
"level" associated with the mark is specified by the second
argument, which must be an integer between 0 and 15
inclusive. Such a mark of any level will cause failure on
input if later read by a Snobol progranm,

ENDGROUP (*TAPE20"',9) H ENCGROUP('DISKFIL')

REWIND {Strinq) Returns: null value

REWIND() performs a standard SCOPE rewind on the SCOPFE
fileset specified by its argument. The fileset is positioned
at its beginning; if the last operation on this file was a
write, an end-of-group mark of level zero is written before
the file is rewound. '

REWIND ("TAPE20') : REWIND (*CISKFIL')

- REMARK {(String) Returns: null value

REMARK () is used to write the string which 1is 1its
arqument onto the special file which is the job log. Obvions
uses are to preserve messaqges about the course of execution
asscciated with timing information, and ¢to drcorate the
dayfiles.

RFMARK (*ENTFRING FREEZE TC TAEE20."Y)
RFMARK (*MOTHER TS DEAD.)

A. Summary of Predefined Procedures o 148

FREEZE (String) Returns: String

FREEZE() is a procedure which permits a programmer to
suspend execution of a compiled Snobol program, and then to
re-lcad 1t and re-commence execution. The argument to
FREEZE() 1is a string which is the name of a SCOPE fileset.
¥hen FREEZE() is encountered during execution, the Snobhol
system writes out a copy of the entire field length of the
job onto the fileset specified by the argument, and
execution 1is terminated. SCOPE then reads and carries out
the next control card. Wwhen SCOPE finally hits a control
. card asking that the Snobol program be reloaded, it does so
and execution continues from the point where it was frozen.

_ Cn a call in a program such. as FREEZE('TAPE20?'), the
program 1is "frozen" onto SCOPE fileset TAPE20. Execution
begins again when a SCCEE control card is encountered of the
form LGO,TERPE20. There is no requirement, naturally, that a
frozen program ke loaded and executed in the same Jjob in
which it was written ocut; it can perfectly well be saved on
a CCMMON file, or on tape, or even punched out on cards.

Tt is a peculiarity of FREEZE() that it returms for its
value the string which is its argument. This could be used
to rreserve a record of which of several FREEZE()'s had been
executed, hut FREEZE{) 'is 'custcmarily written where its
returned value is not preserved.

FREEZE (*DISKFIL')

EOI (String) : Retutns: null value, or fails

EOI () tests wvhether the SCOPE fileset specified by its
. argument 1is positioned at the end-of-information on the
file. If so, the procedure succeeds and returns the null
value. If there 1is more information on the file, the
prccedure fails.

EOI('TAPE20') .t s{oum)

EORIEVEL (String) Returns: Integer, or fails

ECRLFVEL () tests to see whether the SCOPE fileset named
by 1its argument 'is positioned at an end-of-group mark; if
so, the level associated with the mark is returned as the
value of the procedure call. (Such a mark is written by the
ENDGROUP () procedure; the value.returned by EORLEVEL() is

A. Summary of Predefined Procedures 149

the second parameter of the ENDGROUP() which wrote the mark,
0 tc 15 inclusive.) If the fileset is positioned at end-of-
infcrmation —~-~ if the EOT() procedure would succeed — the
value returned by EORLEVEL () is -1.

As a practical matter, a fileset will only be
positioned at an end-of-group mark if the last reference to
a variable associated with that fileset failed; customarily,
then, a «call to TFORIEVEL({() would only bhe made after a
- failure on input had occurred, to check the level o0f the
end-cf-group mark which caused the failure., If a call to
EORLEVEL () is erxecuted at any other time —— at any time when
the fileset 1is not at an end-of-group mark -- the call to
EORLEVFL{) will itself fail.

FC (EORLEVFL (" TAPE20') , 9) : S{NINE)
LVL = ECRLEVEL('DISKFIL?)

\ .
Appendix B. SOUMMARY OF PREDEFINED PATTERN VARTIABLES

There are precisely six variables ipitialized to a
value other than the null value when execution of a Snobol
program begins: the siz natural variables named ARB, REMNM,
BAL, FAIL, ABORT and FENCE. Each of these has a pattern as
its initial value, but except for this initialization
receives no special treatment. Each - may be assigned any
value by a program, upon which its initial value is lost.
This makes no great difference fcr ARB, REM, BAL, or PFAIL,

but the value of ABORT is a pattern which <cannot be

constructed in any other way bty a Snobol program, and FENCE
can be constructed only with the use of ABORT.

ARB_and REM. The patterns which are the initial values
of ARB and REM are equivalent in effect to two commonly used
patterns which may be constructed by pattern procedures, ARB
is equivalent to the value of the expression ARBNO(LEN(1)) ;
REM is equivalent to the value of the expression RTAB(0).
The Snobol system can and does distinguish between APB and
ARBNO(LEN{1)), or between REM and RTAR(0}; an TIDENT()
comfarison of such a pair will fail, and PROTOTYPE() will
return different prototype strings for them. But the
perfcrmance of either member of a pair in a pattern-matching
statement is exactly the sane.

BAL. BAL has as its initial value a pattern which
matches any non-null string of characters which is
"bhbalanced" with respect to parentheses —— that is, which has
the same number of 1left and right parentheses, including
none, where each left parenthesis occurs before its matching
right parenthesis. R pattern equivalent to the initial value
of BAL can be constructed in Snobol, thus providing a
precise definition of its action:

BALEXP = NOTANY(*()') | * (' ARBNO {*BALEXP) *)°¢
BAL = BALEXP ARENO (BALEXP)

Again, the system distinguishes between the predefined BAL
and the pattern constructed by the rules above, but the two
would perform in the same way in a pattern match.

FAIL. FATL has as its initial value a pattern which
matches no strirgs (not even the null value), and which thus
always fails. This makes it the "enmpty" pattern alternative
. — c¢ne which may be present in any pattern without altering
the set of strings matched. The expressions FAIL | LPAT and
LPAT will match the same set c¢f strings, no matter wvhat
pattern is the value of LPAT. A pattern which would have the

B. Summary of Predefined Pattern Variables 151

same effect could be constructed by the rule
FAIL = ANY(NULL)
One use for the empty pattern alternative is to
construct an alternated pattern from data. For instance,
with the statements

FAIL
IN.PAT | TRIM(INPUT) ¢ "S(PATLOOP)

IN.PAT
PATLOOP IN.PAT

Here the loop statement extends the alternatives of TIN.PAT

by one more each time it is successfully executed. If the
data read were the first three letters of the Greek alphabet
spelled out on cards, followed by failure of INPUT, then the
resulting pattern would be equivalent to

IN.PAT = FAIL | 'ALPHA' | 'BETA' | 'YGAMMA'
‘which matches the same set of strings as does
IN.PAT = 'ALPHA' | *BETA' | 'GAMMA!

Note that if IN.PAT had not been first assigned the 'value
FATI1, the resulting pattern would have been equivalent to

INJ.PAT = NULL | *ALPHA* | 'BETA' | 'GAMMA?

which is rather different — since it will match the null
value (as 1its first alternative, in fact), it will always
succeed.

AEFORT, ABCRT has as its initial value a pattern which
causes 1immediate failure of an entire pattern match when it
is encountered. The usefulness of ABORT is that it permits a
pattern match to fail if something is found. For instance,

SH.PAT = LEN(10) ABORT { ':!

is a pattern which will fail by ABORT if it is set to search
a string of ten or more characters; shorter strings it will
search for a colon. It will succeed, then, only on a string
of nine or fewer <characters containing a colon. More
generally, patterns which have characteristics p but not ¢
can often he written in the form q ABORT | p .

FENCE, The initial value of PENCE is a pattern which
has the following interesting property: when encountered in
a pattern match it matches the null value, and then if the

remainder of the pattern cannot be succesfully matched fronm

B. summary of Predefined Pattern Variables 152

that point, the match will fail. A pattern which would have
the same effect could be constructed by the rule

FENCE = NULL | ABORT

When FENCE is used as the first element of a pattern,
its effect is like writing POS(0); it "anchors" the pattern
so that it must match beginning with the first character.
¥hen FENCE 1is wused after other pattern elements, then its
- effect is that of a conditicnal "anchor" applying only to
the remainder of the pattern, and only if the elements to
the left of TFENCE within 1its alternative have been
successfully matched.

153

Appendix C. SUMMARY OF OPERATORS

Operator Cperation Precedence
unary * deferred evaluation 7 (highest)
unary . name 7
unary $ indirect reference 7

binary . conditional assignment 6

binary $ inmmediate assignment 6

binary * multiplication 5

binary / divisicn 5
unary + plus u
unary - minus 4

binary + addition 3

binary - subtraction 3

binary n concatenation 2

-

binary 1 alternaticn (lowest)

154

Appendix D. SUMMARY CF PFOCELURE EXECUTION

When a call is made to a programmer-defined procedure:
{1) the arguments arc evaluated; (2) the variable name which
is the same as the procedure name is made ¢to refer to an
internal *"result variable": (3) the formal variable nanes
are pade to refer to internal "formal variables"; {4y any
additional names in the first arqument of the DEFINE()
procedure are made to refer to additicnal internal’
variables; (5) the fcrmal variables are assigned the values
of their corresponding arquments; (6) the result variable
and all additional internal variables are assigned the null
value; (7) control passes to the statement of the procednre
body whose label is specified by the second argument of the

. DEFINE({) procedure (this may be exrressed by default); (8)

execution of the statements of the procedure body continues
until a return transfer is executed.

When return is made from a procedure using RETURN: ")
the 1last value assigned to the result variable is returned
as the value o0f the procedure call; (2) the variables
previously referred to by the formal variable names, the .
result variable name, and any additional internal variable
names, are restored; (3) execution of the calling statenment
continues from the point of the procedure call.

When return is made from a procedure using NRETURN: the
variable named by the 1last value assigned to the resuit
variable (which must be a string or a Name)} is returned as
the value of the procedure call; the remaining actions are
the same as for RETURN.

When return is made from a procedure using FRETURN: (1)
the variables previcusly referred to by the formal variable
. names, the result varialtle name, and any additional internal
variable names are restored; (2) the call fails, the rule
from which the call was made fails, and control is returned
to the go-to of the calling statement where the failure
transfer will be taken.

155

Appendix H. FROGRAM TEXT REPRESENTATION

Each statement of a Snobol prcgram is usually punched
on a separate 80 . column card. Only the first 72 columns,
however, may be used for the statement; the remaining
columns may be wused for purposes of identification. (For
example, sequence numbers may be punched there which would
allcw you to put the deck back in order, either by hand or
., with a mechanical sorter, if the cards should be
- disarranged.) All columns of the card appear in the printeqd
listing of the program when it is executed, but 10 spaces
are provided between columns 72 and 73 to separate any
identification from the statement.

Statement Format. If the label of a statement 1is
present it must be punched starting in colnmn 1. If the
iabel is absent and the rule is present, then column 1 must
be left empty and +the rule may be punched beginning in
column 2 or beyond. If the statement consists only of a go-
to, the colen introducing it may be punched in column 1.

Wherever a single blank occurs in a statement, any
numter of blanks would serve as well; wherever many blanks
cccur, a single blank would serve as well. Since all parts
of a statement may be absent, a totally blank card is
treated as a null statement.

The semicolon may be used as a delimiter between
statements, making it ©possikle to punch more than one
statement per card. The semicolon signals the end of a
statement, so the column directly after the semicolon is
trecated as "column 1" of the following statement. For
example, four assignment statements. may be punched on a
single card as follows:

ONE = 13 THC = 23 THREE = 3;LAST FOUR = 4

Note that the final statement of the sequence has a 1label,
while the others do not. A semicolon is assumed at the end
of a card which is not followed by a continuation card.

Continuaticn_Cards. More commcnly, a method 1is needeqd
for dealing with statements which are too long rather than
too short. Statements which are toc long to fit on a single
card may be continued onto as many cards as necessary. This
is done by means of continuation cards, each of which has
either a plus sign or a period punched in column 1,
indicating that its information 1is a continuation of
vhatever appeared on the foreqgoing card. Statements may be
broken anywhere; a blank is never assumed at the break.

"H. Program Text Representation v 156

Ccmment Cards. Comments may be introduced into the
program with - the use of ccmment cards, which are
distinquished by having an asterisk in column 1, and any
other information in the remaining columns. Comment cards
may appear anywhere within the program deck except directly
before a continruation card. Comments themselves may not be
continued by placing a plus sign or a period in colunmn 1.

Listing_Contro) Cards. A card with a wminus sign in
-column 1 is a 1listing contrcl card, used to specify the
format of the listing which is produced by the compiler. The
word appearing after the minus sign SpeleleS what is to be
done to the listing, as follows: :

-SPACE Leave a blank line in the listing.

-EJECT Print the next statement of the compiler
listing at the top of a new page.

-UNLIST Stop printing the statements of the progranm
text until a 1listing control card specifying LIST 1is
encountered.

-LIST Resume printing the program text.

Listing ccntrol cards, like comment cards, may appear
anywhere within the program deck except directly before a
continuation card.

Extended Syntax_ of Snobol Statements. In addition to
the forms used for them in example program texts, certain
language elements have alternative representations.

Array Prototypes. Instead of colons in the arqument of
the BRRAY () procedure, slashes may be used. The rules

]

LIST ARRAY ('0:2,0:3%)
and

LIST

]

ARRAY ('0/2,0/3")

would assign identically-dimensioned arrays as the value of
LIST. The PROTOTYPE() ©procedure returns colons 1in its
cancnical version of the prototype string, regardless of
which character was used in the argument of ARRAY().

Itenm References. Instead of 1left and right brackets
around the selector of an item reference, a combination of
parentheses and adjacent slashes may be used. For example,
LIST[2,3] and LIST(/2,3/) are alternative ways of writing
the same item reference. : '

H. Program Text Representation 157

Go-to Parts. Rather than a colon to introduce a go-to
part, a slash may be used; but a slash used for this purpose
must not be followed by a blank. Thus,

VOWELS = TRIM(INPUT) : TF{(ERROR)
and
VOWELS = TRIM(INPUT) /F (ERROR)

are equivalent statements.

Instead of left and right brackets in direct go-to's
{(used ¢cnly in connection with objects of datatype Code), the
rarentheses and adjacent slashes notation may be used, 1in
the same way as for 1item references. Thus, the two
statenents : :

1}

RESULT CCDE (TRIM (INPUT)) : [RESULT]

anad

L}

RESOULT CODE (TRIM (INPUT)) : (/RESULT/Y)

are equivalent, as is
RESULT = CODE(TRIM(INPUT)) /{(/RESULT /)

Pattern Alternations. The alternation operator may be
written as twé adjacent slashes, bounded by blanks, instead
of the usual single character. Thus, X | Y and - X // Y may bhe
written with the same effect.

String Literals. ¥Within string literals, all characters
other than the quotation mark (single or double) being used
as the delimiter of that literal may be used freely. The
delimiter <character may occur within the string only in
pairs, and each such pair will be taken to represent a
single instance of the character. For example, the rules
containing a single string literal each

mun AL‘L | SquLL"""

i

AWW
and
AWW = YURLILY*SOWELLW?

are equivalent to the rule containing a concatenation of
three string literals

AWH = SOpLLY wewm S GEELL"Y

Any cne of them would assign to AWW the 12-character string
“"ALL'S WELLY,

158

Appendix I. CHARACTER SET REPRESENTATIONS

The Snobcl character set consists of sixty-three
characters: the capital letters A-7, followed by the digits
0-9, followed by the remaining characters in the order

$ =%/ () S0, =S[12"+ A" $<I>C2;

This ordering of the sixty-three characters is called their
standard collating sequence, Fifty-four of these play a part
in the syntax of the lanquage (see Appendix J), and have
equivalents in the reference symbol set used to construct
program texts; the remaining nine characters may occur only
in string llterals or in data read frcm input files,

Program texts in examples are shown in symbols from the
reference set. For input each of these must be represented
by a punched card code produced on a keypunch (either model
026 or model 029); for output each will be represented by a.
‘character on a line printer. Fach symbol of the reference
set has a single card code, and a single printer
representation. Fach card code and printer representation
corresponds to a sirgle reference symbol, except for one
special case: the blank used to separate language elements
and the space character (n) used in literal data have the
same card code and printer representation, although they are
differentiated in the reference symbol set for clarity.

The reference symbol set consists of the twenty-six
capital letters, the ten digits, and nineteen special
characters. Codes for the letters and digits are produced by
the keys marked with them on both an 026 or an 029 keypunch,
and all have the expected representation on a line printer.

The special characters in the reference symbol set are
shcwn in the accompanying chart. On an 026 keypunch, codes
for the reference symbols are produced by keys marked with
the same symbols where they exist, but six symbols (:;"I[]
have no keys and so they must Lte multiple-punched. (In
. Sncbol expressions——not, ohviously, in literal data-—these
six symbols may be avoided by using the extended syntax
described in Appendix H.) On an 029 keypunch, codes for all
but cne of the reference symbols (|) are produced by sone
key, but most of the keys are marked with different symbols.
On a line printer, all but three of the reference symbols
(*"}) look like their counterparts in the reference set. The
final nine characters in the <chart are those without
equivalent reference symbols. : '

I. Character Set Representations

159

Snobol 026 card line printer Snohol 029
symbol ey code character usage key
= = 8-3 = assignment ¥
{equal) ‘
) . 12"8’3) ' Condito aSSiqﬂ., -
(period) name, real lit.
’ ’ 0-8"%] 1ist v
(comma) separator
: none 8-2 : : "go-to's, array :
(colon) prototypes
H none 12-8~7 H statement |
‘ (semicolon) terminator
' ' 8-u # string literal]
 {(not equal) delimiter
n none 11-8-~5 4 string literal)
(up arrow) delimiter
$ $ 11-8-3 $ indirect ref., $
(dollar) immed. assign.
| none 11-0 v ' alternation none
' {logical cr) :
({ 0-8-4 (arg. lists, %
(left paren) expr.'grOuping
)) 12-8-4) arg. lists, <
(right paren) expr. grouping
[none g-7 g iten ref., "
(left bracket) direct go-to's
] none 0-8-2] item ref., 0-8-2
(right bracket) direct go-to's
- - 11 - negative, -
(minus) subtraction
+ + 12 + positive, &

{plus)

addition

I. Character Set Representations

160

(Logical not)

Snokol 026 card line printer Snobol 029
synbol key code character usaqge key
* % 11-8-4 * | deferred eval., *
(asterisk) multiplication
/ / 0-1 / division B /
{slash)
blank space blank ‘ 'vconcatenation, space
‘bar (space) separator bar
o space blank ‘data only . space.
bar (space) bar
none 0-8-6 2 data only >
{identity)
none 0-8-5 > ‘ data only -
(right arrow)
none 0-8-7 A | data only . ?
(lcgical and) : ;
none 11-8-6 ¥ data only 3
" (down arrow) o
none 12-0 < ; data only none
’ (less than)
none 11-8-7 > data only -
(greater than) : -
noné 8-5 <) data only !
‘ {less or equal)
none 12-8-5 2 - . data only (
{greater cr egual) '
none 12-8-6 - | data only +

10.

1.

Appendix J. SYNTAX OF PROGRAM

<{string literald> ::=
' <string format 1> ' |
" <string format 2> "

<digit string> ::=
<digit> |
<digit string> <diqgit>

<integer literal> ::=
<digit string>

<real literal> ::=
<digit string> . |
. <digit string> |
<digit string> . <digit string>

<literal> ::=
<{string literal> |
. <integer literal> |
{real literal>

<identifier> :1=
{letter> |
<identifier> <letter> |
<identifier> <d1q1t>)
<identifier> . :
<simple variable> ::=
<identifier>
<subscript list> ::=
<expression> |
<subscript 1list> <,> <expression>

<array item reference> ::=

<simple variable> <[> <subscript list> <>

{procedure identifier> ::=
<identifier>

<arqument list> ::=
<optional expr031on> |

<arqument list> <,> <opt10nal expression>

TEXTS

16"

.J. Syntax of Program Texts ' 162

12, <procedure reference> ::= ,
- <procedure identifier> < (> <argqument list> <)>

13. <variable> ::=
<simple variable> |
$ <primary> | '
<array itenm reference> |
<procedure reference>

- 14, <Kprimary> ::=

<literal> |
<variable> |

. <variable> |

< (> <expression> <)>

15. <factor> ::=
<primary> |
<factor> <blank> **x <tlank> <primary>

16. <multiplying operator> ::=
<rklank> * <blank> |
<blank> / <blank>

=

17. <term> ::
. <{factor> |
<term> <multiplying operator> <factor>

18. <adding operator> ::=
<blank> + <blank> |
<blank> - <blank>

19. <sum> ::=
<term> |
+ <ternd> |
- <term> |
<sum> <adding operator> <term>

20. <concatenation> ::#‘
<sum> 1|} :
{concatenation> <blank> <sum>

21. <expression> ::=
<concatenation>
22. <deferred pattern> ::=
' * <variable>

J.

23.

24,

25.

26.

28,

29.

30.

31.

32.

Syntax of Program Texts h | ' 16°

<pattern assignment operator> ::=
<blank> $ <blank> |
<blank> . <blank>

<pattern assignment> ::=
<pattern pr1mary> <pattern a531gnmen+ operator)
<variable>

<pattern primary> ::=
<literal> |
<variable> |
. <variable> |
<deferred pattern> |
<pattern assignnent> |
<{> <pattern expressicn> <)>

<pattern factor> ::= :
<pattern primary> |
<pattern factor> <blank> ** <blank> <pattern primary>

<pattexn term> ::=
<pattern factor> |
<pattern term> <multiplying operator> <pattern factor:

<{pattern sum> ::=
<pattern termd> |
+ <pattern term> |
- <pattern ternmd> |
<pattern sum> <adding operator> <qutnrn term>

<pattern concatenation> ::=
<pattern sum> |
<pattern concatenation> <blank> <patfern sum>

<pattern alternation> ::=
{pattern concatenation> |
<pattern alternation> <blank> {{> <blank>
{pattern concatenation>

<pattern expression> ::=
<pattern alternation>

<optional expression> ::=
<null> |
<pattern expression>

<label> ::=
<identifier>

J. Syntax of Program Texts - 164

34, <label part> ;:=
<null> |}
. <label>

35. <right sided> ::=
<=> <opticnal expression>

36. <rule part> ::=
<null> |
<blank> <primary> | N ' ‘
<blank> <primary> <blank> <pattern expressxon> |
<blank> <variable> <right side> |
<blank> <variable> <blank> <patt9rn expression>
<right 51de> .

37. <Kloc> ::= <location expression> ::=
<{> <laktel> > |
<(> $ <primary> <)> |
<[> <expression> <>

38, <go=to part> ::=
. <null> |
<:> <loc> |
S <locd |
F <loc> |
S <loc> <optional blank> F <loc> |
F <loc> <opticnal blank> S <loc>

NANANANAN
a8 8 ss we
vV VVYV

39. <statement> ::= o
<label part> <rule part> <go-to partd>

40. <program text> ::=
<statement> |
<program text> <;> <{statementd>

41. <Kletter> ::= -
: AJBLC|IDY{E}YFIGIH}|IVJI] K] LY MY
N1 O PI QLRI S| T (¢ J C AN L R D G I A I/
42. <digit> ::= ')
01112 (3141516171819
43. <blank> ::=
o | <blank> n

U4, <optional blankd> ::=
o <null> |
<klank>

Je

45,

ue.

u7.

53.

54.

55.
56.
57.

58.

Syntax of Program Texts

{string format 1> ::=
<null> |
<string format 1> <class

€class 1 character> ::=

<any character except ‘>

<string format 2> ::=
<null> |
<string format 2> <class

<class 2 character> ::=
<any character except ">

(> ::= (<optional blank>
<)> ::= <optional blank>)

<[> ::= { <optional blank> |
(/ <optional blank>

<]> ::= <optional blank>] |
<optional blank> /)

<1> ::= <the character > | //

<:> 3:= <optional fklank>
<optional blank> /

*»0»

character>

character>

ne

<optional blank> |

<,> ::= <optional blank> , <optional blank>

<=> ::= <op£iona1 blank>

<3> :3:= <optional blank>

-0

<ortional blank>

16¢

166
Appendix K. SUMMARY OF CCMPIIF-TIME ERROR MESSAGES

Pach statement which is syntactically incorrect is
marked in the program 1listing by an up . arrow which is
printed benecath its statement number along with the messaqge
ERRCR. It is planned that in the future a specific message
for each particular type of syntactic error will | be
provided. P ‘ ‘

167

Appendix L. SUMMARY OF EXECUTION-TIME ERROR MESSAGES

When an error is detected during the execution of a
Snobol program, the Snobol intergreter writes a message on
the output file and ¢then ceases execution. The messaqe
ccnsists of three parts: (1) the identifying number of the
statement being executed when the error was detected (each
statement of the program text 1is given a number by the
compiler, and these numbers appear at the 1left of the
statements in the compiler listing of the program text); (2)
the level of procedure executicn at the time the error was
detected (the same information which would be returned hy
the predefined procedure FNCLEVEL()): (3) one of the error
messages from the list below, specifying which of the fifty-
tvo possible errors was detected.

Some of the messages in the fcllowing 1list are self-

extlanatory. Notes have been added ¢to many messages
amplifying them, or explaining terminology which differs
from that used in this description of Snobol, or

reccmmending page numbers and sections where further
information relevant to the interpretation of the message
can be found.

THE LEFT OPERAND FOR A PATTERN MATCH MUST BE A STRING,

TEE RIGHT OPERAND FOR A PATTERN MATCH MUST BE A
PATTERN.

PATTERN MATCH WITH REPLACEMENT REQUIRES STRING-VALUED
RIGHT HAND SIDE.

TRANSFER TO AN UNDEFINED LABEI. A go-to specifies a
transfer to a label which 1is not present in the program
text, and which is not RETURN, FRETURN, NRETURN, or END.

A FAILURE OCCURRED 1IN THE FEVALUATION OF THE GO~-TO
PART. Conditions which would cause failure in the rule
part of a statement cause an error in the go-to part (see
page 6R). '

TYPE FRROR TN GO-TO PART. Either the operani of an
indirect referencing operator in the qgo-to is not a string
or a Name (see page 67), or else the value of the expression
in a direct go-to is not an object of datatype Code.

FORBIDDEN OPERAND TYPE FOR ALTERNATION, Operands of
the alternation operator must be of datatype String,
Inteqger, or Pattern (see page 35). ' ‘

L. Summary of Execution-time Error Messages ' 168

TEE DATA TYPE USED MAY ONLY BE COCNCATENATED WITH THE
NULL STRING. ‘Strings, TIntegers, and Patterns may be
concatenated freely. An object of any other datatype may be
concatenated only with the null value.

TEE VALUE OF A VARIABLIE 1IN 1A DEFERRED?EVALUATION
PATTFRN (UNARY *) MUST. BE A PATTERN OR STRING. See the
description of the deferred evaluation operator, page %0.

LEFT OPERAND FOR BINARY § ANL . EUST BE A PATTERN.
See the descriptions of the immediate and conditional
assignrent cperators, rages 38 and u0.

TNDIRECT REFERENCE TO THE NULI STRING. The operand of
the indirect referencing operator may not be the null value
(see page 57). :

OPERAND FOR INDIRECTION MUST BE NAME OR STRING. The
operand of +the indirect referencing operator must be a
string or a Name {(see page 57). S

NCN-INTEGEF STRING USEL 1IN NUMERIC CONTEXT, Only
strings of datatype 3Integer -—-— thcse consisting of an
opticnal sign followed by an optional string of digits —-—
may ke used vhere Integers are expected.

v TYPE ERROR IN NUMERIC CONTEXT. An object of either
datatype Integer or Real was expected, but an object of some
other datatype occurred. ‘

DIVISTION BY ZERO WAS ATTEMPTED.

STRING ARITHMETIC NOT YET IMPLEMENTED. .Integers may
have values of magnitudes as 1large as 10130000, but the
arithmetic operations are defined only for integers of
magnitudes less than 1010, Tt . is intended that the
arithmetic operations should te. extended ¢to integers as
large as . can be represented, by performing "string
arithmetic" on the digit strings of which they are composed.

REAL ARITHMRTTC OVERFLOW. A real number - larger than
can ke represented has been produced {about 10300),

MIXED MODES (INTEGFR, REAL) FCR ARITHMETTC OPERATION.
The operands of arithmetic operators (and the argquments of
predefined arithmetic test procedures) must be of the same
datatype. If operands - of different datatypes are to be
operated upon, one must first be converted (see the
description of CONVERT{) in Apgendix A, section II.C).

L. Summary of Execution-time FError Messages 169

WRONG PARAMETFR TYPE FOR STANDARD PROCEDURE. An
arqument of a predefined procedure is of an incorrect
datatype. Permissible datatypes . of argquments for all
predefined procedures are given in Appendix A.

ARGUMENT FCR LEN, POS, RPCS, TAB, OR RTAB MUST BE 1IN

THE INTERVAL [0,2*%*17-1], The integer arguments to these

five predefined pattern procedures must be non-negative, and
nust be less than 131,072. '

SYNTAX ERROR IN STRING TO BE COMPILED, An arqument
string for the CODE() procedure 1is 1incorrect; see the
description of CODE() in Appendix A, section IT.C, and the
Syntax cf Program Texts in Appendix J.

INCORRECT SYNTAX FOR STRING TC BE CONVERTED TO REAL.
Seé the description of CONVERT{) in Appendix A, section
IT.C.

IMPROPFER ARGUMENT PFPOR PSEUDC-FIELD PFUNCTION (FIRST,
REST, LEFT, TRIGHT, PARAM, FAMILY, OR SELECTOR). The
arguments of the predefined field selection procedures
PARAM(), FIRST(), RREST(), LEFT(), RIGHT(), FAMTLY(), and
SELECTOR() are quite specialized; see the descriptions of
these procedures in Appendix A, section I.C.

CALL OF AN UNDEFINED PROCEDURE. The DEFINTE ()
declaration for a programmer-defined procedure must be
executed before it can te invoked (see page 72).

SYNTAX ERROR IN PBROCEDURE PROTOTYPE. There 1is an
errcr in the form of the string which is the first arqument
of the DEFINE() procedure (see page 72).

REFTURN FROM LEVEL ZERO. A transfer to RETURN,'
FRETURN, or NRETURN has bheen executed in a main program (see
page 87).

AN -NBEETURN- WAS EXPECTED FRO¥ THE PROCEDURE CALLED.
A procedure call occurs where a variable is required, but
the procedure does nct return by NRETURN see the
description of NRETURN, page 90.

A PROCFEDURF RETURNTING RY -NRETURN- MUST SUPPLY A NAMPE
AS ITS VALUE. When a procedure veturns by NRETURN, the
value of the result variable must be a string or an obiect
of datatype Name; see the description of NRETURN, page 90.

VARIABLE TO THE LEFT OF A [DOES NOT CONTAIN AN
ARRAY. The value of the family part of an item reference

L. Summary of Execution-time Error Messages _ 170

is not of datatype Array. See the description of item
references, page 101.

TO0 MANY SUBSCRIPTS IN AN ARRAY REFERENCE., There are
more index exrressicns in the selector of an item reference
than there are dimensions defined for the family being
indexed. See pages 106 and 109. :

TCO FEW SUBSCRIPTIS IN AN ARRAY REFERENCE. There are
fewer index exrressions in the selector of arn item reference
than there are dimensions defined for the family being
indexed. See pages 106 and 109.

ILLEGAL CHARACTER IN ARRAY PROTOTYPE. See the
description of the argument for the ARRAY() procedure, page
104, ¢ , ,

SYNTAX ERROR IN ARRAY PROTOTYPE. See page 104.

LOWER BOUND- GREATER THAN UPPER BOUND IN ARRAY
PROTOTYPE, See page 104,

AN ARRAY BOUND WAS TOO LARGE. An expression for an
upper or lower bound in an Array prototype was greater in
maguitude than 131,071. :

AN ARRAY DIMENSICN WAS TOO LARGE. ~ The difference
tetween any pair c¢f upper and lcwer bounds was greater in
magnitude than 131,071,

AN ARRAY MUST CCNTAIN FEWER THAN 2%%x17 ELEMENTS. A
prototype string for the ARRAY() rprocedure specifies an
array containing more than 131,071 itens. '

SYNTAX ERROR TN SELECTCR FOR ITEM(). See the
. description of the ITEM() procedure, page 108.

'SYNTAX ERROR IN DATA PROTOTYPE. See the description
of the arqument of the DATA() procedure in Appendix A,
section II.A. : : . ‘

DUPLICATE -NAMES .IN DATA PROTOTYPE. Two fields defined’
for cbjects of a single Aatatype may not have the same name,
nor may a field name be the same as the datatype —
otherwise all the necessary procedures could not exist
simultaneously. See the description of DATA() in Appendix 1,
section II.R. : ; .

DATA CONSTRUCTOR CANNOT SUPELY A NAME. Structure
creation procedures, predefined or programmer-defined, do

L. Summary of Execution-time Error Messages 171

not return Names, but rather okjects of datatype Array or of
a prcgrammer-defined datatype, respectively.

THE PARAMETER FOR A FIELD FUNCTION WAS NOT A DATA
REFFRENCE. The argument of a programmer-defined fielq
selection procedure was not an object of a programmer-
defined datatyrpe.

NO SUCH FIELD IN THE REFERENCED DATA STRUCTURE. The
structure which is the arqument of a programmer-defineAd
field selection procedure does not contain a field
identified by that procedure nanme.

FILE SPECIFIED TO TI/0 PROCEDURE MUST BE CURRENTLY
ATTACHED. =~ The filesets named by the arguments of
ENDGROUP(),. REWIND(), FEORLEVEL(), and EOT() must be
currently associated with some variable (see Appendix A,
section II.D).

TLLEGAL FILENAME GIVEN TO T/0 ASSOCIATION PROCFEDURE.
A legal SCOPE fileset name 1is a string of one to seven
letters and digits, beginning with a letter (see Appendix A,
secticn IT.D).

ATTEMPT TO READ PAST END-OF-INFORMATION,. See the
descriptions of FORLEVEL() and FOI() in Appendix A, section
II.D- :

- STRING TO BE DISPLAYED WAS LCNCER THAN 80 CHARACTERS.
The string which is the argument to the REMARK() procedure
must contain 80 or fewer characters.

: ONLY STRINGS MAY BE OUTPUT. A value of a datatype
other than String or Integer was assigned to a variable
vhich currently has an output association.

TH® MAXIMUM FIELD LENGTH. HAS BEEN EXCEEDED. The
program requires more storage to execute than was requested.

THE MAXIHUM STRING LENGTH HAS BREN EXCEEDED. See the
description of MAXLNGTH() in Appendix A, section II.B.

THE STATEMENT' LIMIT HAS BEFN EXCEEDED., See the
description of STLIMIT() in Appendix A, section IT.RB.

COMPILER STACK OVERPLOW, SIMPLIFY THE CONSTRUCTION. A
storage area for intermediate results in the Snobol conmpiler
has been exhausted. The statement should be rewritten as two
or more statements, since it contains too many levels of
nested parentheses.

'Appendix‘n. Non- standard Featurns of Borkeley Qnobol

The lnltlal de51gn and Jmplementdtlon of Snobold was
done at Bell Telephone Lahoratories for IRM System 360
machines. The latest versicn of. this implementation is
descrited in The__SNOBOL4_ Programming__.Lanquage by R. E.
Griswold, J. F. Poage, and I. P. Polonsky (second edition,
Prentice~-Hall, 1971). This book contains many interesting
examples and should be of use to all serious Snobol
programmers, even those who are working with non-standard
1mp1ementat10ns for different mach1n99. :

The 1mplementatlon descrlhed-here was produced - at - the
Computer Center of the University of .California at Berkeley
by Paul McJones and Charles Simonyi for CDC 6000 " series
machines., The language they implemented, which we shall call
the Berkeley version, is non-standard since it differs from
the Bell version in three basic ways: some features of the
lanquage are handled differently, some features are absent,
and scme new features not present in the Bell version are
provided, This appendix describes the differences between
the Bell version and the Berkeley version, presenting the
information in terms of these three types of dif{ferences. It
is prcvided to make this more comprehensible description of
the Snobol language useful to those writing programs in the
Bell version, and to specify which parts of the Bell
documentation are useful for those writing programs 4in the
Berkeley versicn of the language. ’

Cuite apart from differences letween the ¢two versions
of the Snobol 1language, there are some differences in
terminclogy between the documentation of Griswold, Poage,
and Polonsky, and the present description. The pairs of
terms -in the following table are éequivalent, and represent
differences in the descriptions only, not in the language
versicns described. ' S : R o

Bell descripticn this_description
priritive o -~ predefined

defined. . programmer-defined
functicn procedure

predicate o test procedure

value cf function name value of result variable
" forral argqument formal variable

local variable " internal variable
function procedure - procedure "hody

entry point ‘ entry label’

M. Non-standard Features 173

Rell Aescription this_description
explicit name string name

created name Name

implicit name Name

generated variable. indirect reference
aggregate family

referencing argument selector

array element array item

array reference - item reference
field function field selection procedure
source progranm program text
statement component statement part
subject (assignment) left side

subject (pattern match) string reference
object right side
comrpilation error compile-time error
program error execution-time error

I. Features_which_are Handled Differently

Procedures. In the Bell versicn, it 1is an- execution-
time error to call a predefined procedure with more
arquments than its definition prescribes; in the Berkeley
version, extra arguments to all prccedures are evaluated but
otherwise ignored.

Since the character sets of IEM System 360 machines and
CDC 6000 series machines are different, the ALPHARET()
procedure, which returns a string specifying the character
set 1in standard collating sequence, necessarily returns a
different string in the two versions. (This procedure exists
as a keyword in the Bell versicn.)

Since the Bell system uses FORTRAN IV I/O, and the
Berkeley system does its own I/0, the INPUT() and OUTPUT ()
prccedures require quite different sorts of arquments.

The ARRAY () procedure has two arguments in the Bell
version, the second specifying an initial value to be
assigned to all items of an array. In the Berkeley version,
the ARRAY() procedure has one arqument only; all items are
initialized to the null value. ’

Since numeric strings are of datatype TInteqer in the
Berkeley version, IDENT('1',1) succeads while in the Bell
version it fails. In the BRell version, patterns are
considered identical only if they are indeed the same

M. Ncn-standard Features . 174

rattern. Thus
X A| B
Y A} B
IDENT (X,Y)

o

fails since two different copies of the pattern are being
ccmpared. In the Berkeley version this comparison would
succeed, since patterns wvwith +the same structure are.
considered identical. IDENT (. VAR, 'VARY) fails in the
Berkeley version while it succeeds in Bell ovinag to the
different implerentations of the Name operator (described in
tte secticn on operators below). , ‘ :

The CODE() procedure in the Rerkeley version does not
allcw labels to be redefined; consequently the labels of the
statements vwhich are to be added to the program during
execution nust be different from any existing labels of the
program. : : «

The Bell version provides more datatypes than does the
Berkeley version and much more flexibility about converting
- from one datatype to ancther. In the Bell version, the
CONVERT() procedure which is used for this purpose has two
arguments; the second arqument specifies the datatype to
which the first arqument is to be converted. In the Berkeley
version the CONVERT() procedure has only one argument since
only a 1limited Xind of conversion ' is available. Tf the
single argument of CONVEERT{}) is a numeral string or an
integer, it 1is converted into a real number; if the single
argument is a real number, it is ccnverted into a string.

- Qperators. The interrogation operator (?) has been
implemented as the IF() procedure (see Appendix A, section
II.C)- ' ‘) o : ‘

The unary operator * is called in the Bell version the
unevaluated expressicn operator, and expressions introduced
by it are of datatype Expression. This operator is defined
more nparrowly in the Berkeley version. It is called the
deferred evalunation cperator, and ray be applied to simple
variables only; thus *EQ(X,Y) causes an execution-time
error. The datatype Fxpression is not defined in the
Berkeley versicn; expressions introduced by the deferred
evaluation operator are of datatype Pattern. Hence LEN(*V)
causes an execution-time error since the argument of LEN ()
cannot be a Pattern.

In the Bell version when the name operator 1is applied
to a npatural variable it returns an object of datatype

- M., Non-standard Features ‘ 175

String, but when applied to a created variable it returns an
object of datatype Name. In the Perkeley version, the nanme
operator always returns an object cf datatype Name.

In the Bell version the multiplication operator has
higher precedence than the division operator; in the
Berkeley version the precedence is the sane.

PN-Fhe g AP BB~

(and hence no keyword operator). Some of the Bell keywords
assume the form of procedures; these are listed in the table
belCW. : ‘

Bell version Berkeley version

GALEHABET ALPHABET ()
§ANCHOR ANCHOR ()
EFNCLEVEL FNCLEVEL ()
- EMAXLNGTH MAXTLNGTH ()
ESTCOUNT STCOUNT()
ESTLIMIT STLIMIT()

These procedures are described in Appendix A, section II.

Datatypes. In the Berkeley version, numeric strings are
of datatype 1Integer. Numeric strings may have an initial
sign and hence the single characters *+4' and ‘'-' in
isclation have the datatype Integer and have the value zero
wvhen used in arithmetic contexts. Correspondingly, the null
value 1is of datatype Tnteger. In the Bell version, the null
value is called the null strinq and is of datatype String.

System Transfers. In the BRerkeley version, PETURN,
FRETURN, NRETURH, and END are treated as system transfers,
having the same predefined meanings as in Bell., They may bhe
used as any other lakels in the program text, hovwever, in

which case the special system meaning is lost.

Output. Cbjects of datatype other than String or-
Integer cannot be printed in the Berkeley version, and an
attempt to print such a value results in an execution-time
error. In the Rell version an attempt to print such a value
results in the printing of a string designating the datatype
of the value. :

Assigning the variable OUTPUT a value of more than 132
characters in the Berkeley version results in only the first
132 being printed (a single line); in the Bell version, as
many lines as necessary are printed.

M. Non-standard Features 176

Program_Representation. There are a number of small
differences in the way that prcgrams may be represented;
most ccnsist of extra cptional features which “have ‘been
added to the Berkeley veéersion. ’

In the Berkeley version, the assignment sign (=) need
not Fe bounded by blanks; similarly, the colon introducing a
go-to need not be preceded by a blank.

In the Berkeley version, the quote sign used as a
literal delimiter may appear within that literal in pairs;
each pair is then treated as representing a single quote.
Thus 'CON''T' may be used to represent the string DON'T,

In the Berkeley version, statements continued over line
boundaries mwmay be broken anywhere; a blank is never assuneq
at the point of the break. Tn the Bell version, statemeuts
may be broken only where a blank is required.

In the Berkeley version, real literals need not beqgin
with digits (that is, they may begin with an initial dec1mal
Ecint) .

In the Berkeley version it is not - neces sary to
terminate a program text with a statement labelled END as it
is in the Bell version. The program may terminate by taking
a transfer to END, if no END label is present. END may bhe
used as a label in a program text in which <case it then
loses its system significance, and a program containing an
END label can terminate only by running out of program text;
this 1is not ‘an error as it is in Bell ({see Chapter 3). In
the Berkeley version it is not possible to specify by use of
an FEND statement which statement of the program is to he
executed first; execution always begins with the first
statement of the progranm text. -

Alternative characters may be used in the Berkeley
version to rerresent some of those which must otherwise be
multiple punched on an 026 keypunch. Thus the go-to may be
intrcduced by either a colon (:) or a slash (/). (If the.
slach is used it must not be followed by any blanks as it
might +then be indistinguishable from the binary division
operator.) The colon used as a delimiter between the upper
and lower bounds of an index in forming the prototype of an
array may also te represented by a slash. The alternation
operator ({) may be represented by two slashes {//j and the
square brackets of an item reference may be represanted by
(# for an open bracket and /) for a close bracket. The Bell
version does not provide any of these particular options,
but has a different extended syntax to take advantage of

’

M. Non-standard Features : 177

special characters available on the 1IBM 360; 1lower case
letters are also available.

The representation of latels is freer in the Bell
version than in the Berkeley version. In the Bell version a
label may consist of a letter or a digit followed by any
numker of other characters from the entire character set
except blank. In the Berkeley version a label must be an
identifier; that is, it must begin with a letter and consist
of nothing bhut letters, numbers, and periods.

The_ Program Listing, In the Berkeley version, colunns
72 and 73 of the program text are separated by ten spaces in
the output listing. The statement numbers always appear to
the left of the statements., ITn the Bell version the
statement numbers norwrally appear to the right of the
statements, but it is possible tc specify that they appear
to either the left or the right. This is done by writing the
terms LEFT or RIGHT following the listing directive LIST;
-the, default option is RIGHT. There is no way to specify that
the statements should be numbered to the right in the
Berkeley version.

In the Berkeley version the listing directive SPACE has
been added tc cause one blank line to appear in the listing.

II. Features_Absent from_the Berkeley Version

Procedures. The fcllowing procedures are available in

the Bel)l version but not in the Berkeley version. Unless
otherwise indicated, their actions cannot be simulated.

ARG () returns the name of the n-th argument in the
declaration of a programmer-defined procedure,

BACKSPACE () backspaces a- file one logical record.

CLEAR () causes all natural variables to be assigned the
null value, This procedure can be written in Berkeley Snobol
using NEXTVAR(). '

, CCLLFECT() forces a storage" reqeneration, (Not. needed
since storaqge regeneration occurs automatically.)

COPY() produces a copy of an array or a data structure.
Tt can bhe written in Perkeley Snobcl using ITEM() for arrays
(see Chapter 7), and AFPLY() for data structures.

M. Non-standard Features 178

DUMP () produces an unalphabetized list of all non-null
natural variabkles and ‘their values. It can be written in
Berkeley Snobol using KEXTVAR({).

DUPL() returns a string consisting cf n duplications of
one of its arguments. It is virtually the same as the
prcgrammer-defined procedure REPEAT() given in Chapter 6.

BVAL() returns the result of evaluating a_string vhich
is a sSnobol expressicn or an obhject of datatype FExpression.

FIELD () returns the name of the n-th field in the
declaration of a programmer-defined datatype. It can be
written in Berkeley Sncbol, because the Berkeley PROTOTYPE ()
procedure may be -applied -to structures (see Appendix &,
Section IX.R}. ' '

INTEGER ()} succeeds if its argument is an integer. It
can be easily vwritten as :

IDENT (DATATYPE (ARG) ,* INTEGER')

{In the same way, any other test procedure for testing
datatyres may be written.)

LOAD () causes an external functlon to be 1loaded fromn
the litrary during execution,

LOCAL () returns the name of the n-th local (internal)
variakle of a programmer-defined procedure. o

OPSYN () allows the programmer to specify synonyms for
procedures or operators. Thus the same procedure may bhe
referred to by more than one name and the same operator by
more ¢than one symbol. In addition, operators and procedures
may be made synonynous; thus this procedure makes possible
the definition of new operators. ‘

REMDR () returns the integer remainder of diviling its

first argument by its second. This can be written in Snobol .

as a proqgrammer~defined procedure erploying nothing but
arithmetic operators. ' ; :

REPLACE () returns a string in which every character of
one arqgument has been replaced by a corresponding character
of another arqument. It can be written as a programmer-
defined procedure in Snobol. :

'STOPTR() cancels the tracxro of the varlable named by
its arqunment.

M. Ncn-standard Features ‘179

TABLE () creates a family of variables, similar to a
one-dimensional array except that individual variables may
be selected in terms of any data object, not just integers.
This datatype is not defined in the Berkeley version, but
table~like structures can ke formed using indirect
referencing if the selector is a string,

TRACE() initiates tracing of the varlable named by its
argument.

UNLOAD () causes the unloading of an external 1library
functicn which is no longer needed. '

VALUE() has the same effect as the indirect referencing
operatcr when applied ¢to a String or a Name, but if VALUE
has been defined to be a field of a structure, then it nmay
have an argument of that datatype as well.

Operators. The following operators are not available:
negation (-)
cursor position (@)
exponentiation (*x%)

The negation operator fails if 1its operand succeeds,
and succeeds if its operand fails, (Its counterpart, the
interrogation operator (?), which always succeeds, has been
implemented as the IF() procedure.) '

The cursor position operator has a variable as its
operand and is used within the pattern part of a rule. The
variable is assigned, by immediate assignment, an integer
representing the position of the cursor when pattern
matching occurs. Thus

YABC® 'BY Q@FCINTER

causes POINTER to be assigned successively the values

Keywords. The Berkeley version of Snobol contains no
keywords. Some keyvords have been irplemented as predefined
rrocedures, as indicated in Section T of this appendix; the
remaining keywords, listed below, cannot be simulated,
although sometimes a similar effect may be achieved throuqgh
other means. Those wWhose values are protectod (L.e., cannot
te changed Adirectly by the programmor) are marked with an
asterisk. - «

M. Non-standard Features _ 180

EABEND is used to specify whnther or not a systpm cora
dump is to be prlnted at program termlnatlon.

- '&ABORT has the same value as that of the 'ptedéfinéa
pattern ABORT. (%) - S , REN

&ARB has the same ~value as that of the~ﬁprédéfinéd
pattetn ARB. (%)

EBAL has tho same value as that of the predefined
pattern BAL. (*)

£CODE can be assignedkan integer which will be returned
to the operating system as the user completion code at
progran termination. i : R :

£DUMP is used to specify whether or not a dump of the
natural variables is to be printed at program termination.

SERRLIMIT has a value which ccntrols the handling of
certain program errors.,

SERRTYPE acquires an integer code Jdcnflfylng the type
of any program error which may occur. ({*)

6FAIL has the same value as that of the predefined
patternvFAIL. (*) ' ' :

SFENCE has the same value as that of the predefined
pattern FENCE. (*)

E§FTRACE is5 used to specify whether or not diaghostic
tracing information 1is to be " provided on .calls to and
returns from all programmer-defined procedures. -

EFULLSCAN is used to specify whether or not the
fullscan mode of pattern matching (in which ‘no heuristics
are emrloyed) is to he used.

EINPUT is used to specify whether or not any input 1is
to cccur.

- ELASTNO acquires as its value'an integer specifyihq=the
statement number of the‘previous statement executed. (*)

TPUT is used to specify whether or not any output is

M. Ncn-standard Features ' . 181

§REM has the same value as that of the predefined
pattern REM, (*)

SRTNTYPE acquires as value the string RETURN, FRETURN,
or NRETURN, depending on the type cf return made by the last
programmer-defined procedure which returned. (%)

ESTFCOUNT acquires as value an integer specifying how
many statements have failed. (%)

&§STNO acquires as value an integer specifying the
statement number of the statement currently being executed.

&SUCCFED has the same value as that of the predefined
pattern SUCCF¥ED. (*) :

&TRACE is used to specify whether or not tracing is to.
occur.

ETRIN is used to specify vhether or not all trailing
blarks are to he trimmed on input.

Pattern__Vvariables, The predefined pattecn variable
SUCCFED, which always matches the null value {(and which has
very limited practical application) is not available.

Datatypes. The following datatypes do not exist in the
Berkeley version:

Table (seec the description of the TABLE({) procedure
above) :

Expression (see the. description of deferred
evaluation in section I of this appendix)

External, which refers to external library functions
{see the description of the LOAD () and UNLOAD({) procedures
abcve) .

Patterr _matching. There is no quickscan mode of .
pattern-matching (a mode which makes use of heuristics).
This is the norral mode in the Bell version, while fullscan
is the normal mode in the Berkeley version.

Arithmetic. Mixed mode arithmetic or comparisons

- o~ o o o~ o W

(involv1nq inteqgers and real numbers) are not paermitted.

Ontput. The variahle PUNCH has a predefined association

with the punch file in the Bell version; this is not true of
the Berkeley version, but the association can he made by

4. Non-standard Features 182

sinrly executing the rtule
OUTPUT (*PUNCH', ' PUNCH ")

The Berkeley version currently provides no compile-time
errcr messages and no program statistics. As is indicated by
the foregoing, it also provides no tracing facilities and no
dumg. ' - '

IIT. Features_not Present in the Bell Version.

Procedures. The fcllowing predefined procedures have

been added to the Berkeley version; all are described more
fully in Appendix A.

CLOCK {) returns the 24-honr tinme of day {e.q.
17:00:59). (See Appendix A, section ITI.B.)

TYPE () returns the same resuvlt as DATATYPE() for
objects of predefined datatypes, and the string DATA for all
objects of programmer—defined datatypes. (See Appendix A,
secticn IT.3.) ‘

ITEM() has been made more flexible and more useful in
the Berkelay wversicn than-it is in the Bell version. It is
described in detail in Chapter 7.

PFOTOTYPE ()} has been significantly extended =o that it
may be applied to structures, Patterns, and Names, as vell
as tc Arrays. {See Appendix A, section II.B.)

A number of field selecticn procedures have heen added
for use in conjunction with the systems-defined "prototypes"
of Patterns and Names which are returned by the PROTOTYPE ()
procedure. The procedures PARAM(), FIRST(), REST{(), LE®FT{(),
and RIGHT() may be used to decompose Patterns 1into the
objects from which they were constructed. 2 similar service
for Mames is provided by the procedures RIGHT(), FAMILY{),
and SELECTOR{(). {See Appendix 1A, section T.C.) '

NEXTVAR () teturns,the‘vnamés of all nmembers of any
farily cyclically, treating the set of all non-null natural
variables as a "family." (See Appendix 2, section II.B.,)

ABORT, 151
Addition, 19
ALPHABET () , 140
Alternation, 35
ANCHOR() , 43, 145

Anchored pattern
matching, 43, 46

ANY (), 36, 128
APPLY (), 92, 144
ARB, 52, 150
ARBNO(), 46, 130

Arithmetic operators, 153
addition, 19
division, 19
multiplication, 19
negative, 8
positive, 8
subtraction, 19

ARRAY (), 104, 130

Array
: creation, 100
dimension, 103
index, 105
item reference, 101,
106
prototype, 110

Assignment
assignment rule, 10
conditional assignment,
38
immediate assignment,
40

Assignment rule, 10

183

BAL, 150

Binary operators, 16, 153
addition, 19
alternation, 35
concatenation, 17
conditional assignment,
division, 19
immediate assignment, 40
multiplication, 19
subtraction, 19

BREAK (), 41, 128

Carriage control, 146

Character set representation,
158

CLOCK () , 140
CODE() , 145
Comment card, 156
Compilation
during execution, 145
of program text, 6

Compiler, 6

Compile-time error messages,
166

Concatenation, 17
with indirect referencing,
60 ‘
with null value, 29
within patterns, 39

Conditional assignment, 38

Conditional go-to, 23

" Continuation card, 155

Index

184

CONVERT() , 145
Created variable, 101
array item, 101

name of, 116
structure field, 135

DATA(), 135
DATATYPE() , 136
' Datatypes, 126
array, 100
code, 145
integer, 8
name, 116
pattern, 49
programmer-defined,
135
real, 19
string, 8
DATE (), 140
Declarations, 135
DATA() , 135
DEFINE() , 135
Deferred evaluation, 50
DEFINE() , 72, 135
DETACH () , 147
DIFFER() , 26,f127_

Division, 19

~EJECT, 156
END, 23
ENDGROUP () , 147

EOI(), 148

EORLEVEL() , 148

i Entry label, 73

EQ(), 28, 127

Error messages
compile-time, 166
execution-time, 167

Evaluation rule, 25

Execution of programs, 6

Execution-time error
messages, 167

Extended syntax,'156”

External variable, 80, 90

FAIL, 150
Failure
in pattern matching, 33
of input, 24
of item reference, 106
of procedure call, 26, 75
of the rule, 24
FAMILY (), 133"
Family, 100, 138, 141
FENCE, 151
Field, 135

Field selection prodedure,
135 ‘ o

FIRST(), 131
Flow of control, 21

FNCLEVEL() , 141

Index

Formal variable, 72
FREEZE() , 148

FRETURN, 75

GE(), 28, 127
Go-to
conditional, 23
unconditional, 22
with indirect
referencing, 67

GT(), 28, 127

IDENT(), 26, 127
Identifier form, 9
,I?(), 144

Immediate assignment, 40
Indirect referencing, 55

Infinite loop. See Loop,
infinite

INPUT, 13
failure of, 24

INPUT (), 146

Input/output procedures,
146 '

Integer, 8
Integer literal, 9

Internal variable, 72,
76, 78

Interpreter, 6

185

ITEM(), 108, 143
Item, 101

Item reference, 101

Label, 21
LE(), 28, 127
LEFT(), 132
LEN(), 42, 129
LGT() , 27, 127
-LIST, 156
Listing control card, 156
Loop, 29
infinite. See Infinite

loop
LT(), 28, 127

MAXLNGTH() , 141

Multiplication, 19

Name
of created variable, 101,
116
of natural variable, 9,
56, 101, 1lle6
Name operator, 116
NE(), 28, 127
Negative, 8

NEXTVAR() , 141

Index

186

NOTANY (), 36, 128
NRETURN, 75, 90, 118
Null value, 11 ‘

Numeric string, 8

Omitted argument, 77, 126

- Operators, 16
summary of, 153

cuTPUT, 12

OUTPUT() , 146

PARAM() , 131

Passing of arguments, 77
Pattern matching, 33
Pattern-matching rule, 33
POS (), 46, 129

Positive, 8

Precedence, 153

Predefined patternb
variables, 52, 150

Predefined procedures
summary of, 123
ALPHABET () , 140
ANCHOR() , 43, 145
ANY (), 36, 128
APPLY (), 92, 144
ARBNO() , 46, 130
ARRAY () , 104, 130
BREAK (), 41, 128
CLOCK (), 140
CODE() , 145

CONVERT() , 145
DATA(), 135 _
DATATYPE(), 136
DATE () , 140
DEFINE(), 72, 135
DETACH() , 147
DIFFER(), 26, 127
ENDGROUP () , 147
EOI(), 148
EORLEVEL() , 148
EQ(), 28, 127
FAMILY (), 133
FIRST(), 131
FNCLEVEL() , 141
FREEZE() , 148
GE(), 28, 127
GT(), 28, 127
IDENT() , 26, 127
IF(), 144

INPUT (), 146
ITEM(), 108, 143
LE(), 28, 127
LEFT(), 132
LEN(), 42, 129
LGT() , 27, 127
LT(), 28, 127
MAXLNGTH() , 141
NE(), 28, 127
NEXTVAR(), 141
NOTANY (), 36, 128
OUTPUT() , 146

~PARAM() , 131

POS(), 46, 129
PROTOTYPE(), 110,
REMARK () , 147
REST(), 131 .
REWIND() , 147
RIGHT(), 132
RPOS (), 46, 130
RTAB (), 44, 129
SELECTOR() , 134
SIZE(), 16, 136
SPAN(), 41, 128
STCOUNT () , 140
STLIMIT(), 141
TAB() , 44, 129
TIME() , 140
TRIM(), 15, 130
TYPE(), 111, 136

137

Index

Procedure call, 14, 76
argument of, 77
failure of, 26, 75
level of, 87
recursive, 74
side effect of, 84
summary of execution

of, 154

Procedure definition, 70
DEFINE() , 72
entry label, 73
formal variable, 72
internal variable,
72, 76, 78
procedure body, 74
procedure name, 72
result variable, 75

Procedure reference, 14

Procedures, 14, 70
predefined, summary
of, 123
" programmer~defined,
70

Program execution, 6

Program text
representation, 155

Programmer-defined
datatypes, 135

Programmer-defined
procedures, 70
DEFINE(), 72
entry label, 73
external variable,
80, 90
formal variable, 72
FRETURN, 75
internal variable,
72, 76, 78
NRETURN, 75, 90, 118
procedure body, 74
. procedure name, 72
recursive, 74

187

result variable, 75

RETURN, 75

returning a variable,
90

side-effect, 84

summary of execution
of, 154

PROTOTYPE() , 110, 137

Prototype
of array, 110
of name, 139
of pattern, 138
of structure, 137
predefined, 138

Quotation marks, 157

Real literal, 145
Real number, 19

Recursive procedure call,
74

REM, 52, 150
REMARK () , 147
Replacement rule, 34
REST () , 131

Result variable, 75
RETURN, 75

REWIND() , 147

RIGHT (), 132

RPOS (), 46, 130

RTAB() , 44, 129

Index

188

Rule
assignmernt, 10
evaluation, 25
pattern-matching, 33
replacement, 34

SELECTOR() , 134
Selector, 1C6
SIZE(), 16, 136
~SPACE, 156
SPAN(), 41, 128 ’
Statement terminator, 155
STCOUNT() , 140
STLIMIT(), 141
String, 8
String literal, 8
String reference, 33
Subtraction, 19
Syntax
extended, 156 ‘
of program texts, 161

System transfers
END, 23

FRETURN, 75
NRETURN, 75, 90, 118
RETURN, 75 o -

" TAB(), 44, 129

Test prbcedﬁres, 127
predefined, 26
programmer—-defined, 81

TIME() , 140

TRIM(), 15, 130

TYPE() , 111, 136

Unanchored pattern matching,

44, 145

Unary operators, 16, 153
deferred evaluation, 50
indirect referencing, 55
name, 116 o
negative, 8
positive, 8

-UNLIST, 156

Variable, S
created, 101, 116
external, 80, 90
internal, 72, 76, 78
natural, 9, 56, 101, 116

