

©1986, 1985 AT&T
All Rights Reserved
Printed in USA

NOTICE
The information in this document is subject to change without
notice. AT&T assumes no responsibility for any errors that may
appear in this document.

CENTRONICS is a registered trademark of Centronics Data
Computer Corp.

GSS-DRIVERS and GSS.:rOOLKIT are trademarks of Graphics
Software Systems, Inc.

IBM is a trademark of International Business Machines, Inc.

MS-DOS is a registered trademark of Microsoft Corpor~tion

Important Informat~on for Users of
the UNIX PC Interface Specif~cat~on

This update package contains additional guidelines for
writing UNIX PC applications. Please review this
information and keep it with your Interface
Specification.

1 Page 1-2. For remote users, a full function
keyboard is now available with the AT&T
Personal Terminal 610.

2 Page 1-5. The Printers Office object is used
to configure a printer, restart it, and to
view and delete files from the printer queue
(Pr~nters) .

3 Page 1-65. Two new Preference settings are
available with Version 3.5. Mult-user Items
determines whether Other Users and other
features that support a multiuser environment
are displayed in the Office. Turn screen off
after _____ minutes provides automatic screen
dimming. It can be set for 1-59 minutes
after the last keystroke or mouse movement.
With the default value of 0, the screen never
dims.

4 Page 1-67. A full border less window can be
created as follows:

Under the login directory, /u/userid/, create
a file named Office with the following
contents:

Name = Borderless UNIX w~ndow (or any
other choice)

Default = Run

Run = EXEC -d Jbin/sh (or pathname for
other shell)

After logging out and logging back in,
Borderless UNIX window appears in the Office
of that user only. More than one borderless
window can be opened; each will be listed in

1

the Window Manager with the label unknown
contents. See ua(4) .

5 Page 2-14. Version 3.5's printer subsystem
configuration supports one additional remote
printer and six additional serial printers.

6 Page 2-47. The new C compiler supports
flexnames. Programs that have symbol names
longer than eight characters are not
truncated automatically as was done with the
pre-flexname compiler.

7 Page 2-48. A new option, -T, is provided to
truncate long symbol names to eight
characters. This is useful so that new
object files can be linked with older (pre­
flex name) files and then run under either
old or new systems.

8 Page 2-48. The Link Editor, ld, provides a
new option, -G, that resolves symbol
referencing errors between new flexnames,
generated files containing long symbol names,
and the older (pre-flexnames) object files.
Under Version 3.5, this option assures
backwards compatibility with old files.

9 Page 2-61, 2-66. When removing a line from a
file, you should look for an ~ match.
For example, if you grep just for EDIT, other
application-created variables, such as
MAILEDIT, would be removed as well.

10 Page 2-63. To abort an installation, Install
must exit with a return code of 64. This
suppresses addition of entries.

CONTENTS
Section 1. UNIX PC USER INTERFACE

.1. INTRODUCTION

2. DISPLAY

3. INPUT

4. DEFINITION OF KEYS AND ACTIONS

5. THE WINDOW MANAGER

6. ACCESSING APPLICATIONS

7. MENUS AND FORMS

8. CUSTOMIZATION

9. ACCESSING THE UNIX SYSTEM:
EXPERT AND STANDARD MODES

10. CONTROL OF PERIPHERAL DEVICES

11. HELP SYSTEM

12. FEEDBACK, PROMPTS, AND MESSAGES

Section 2. DETAILED INTERFACE SPECIFICATION

1. INTRODUCTION

2. PROGRAMMING THE TELEPHONE PORT

3. THE TERMINAL ACCESS METHOD

4. PROGRAMMING THE UNIX PC

5. SOFTWARE INSTALLATION

APPENDICES

A. UPLOADING AND DOWNLOADING
FILES

B. PROGRAMMING EXAMPLES

UNIX* PC USER INTERFACE SPECIFICATION

PREFACE

The AT&T UNIX* PC Interface Specification is intended for
software vendors and developers as a guideline for writing
UNIX PC applications. This document contains specific
UNIX PC programming information. It supplements the
general UNIX System V information in the AT&T UNIX* PC
UNIX System V Programmer's Guide and the AT&T
UNIX* PC UNIX System V User's Manual with information
that is essential for applications to be installed and used with
the UNIX PC's graphics, keyboard, mouse, printer system,
windows, menus, and remote terminals. References in the form
of a UNIX System V command name followed by a number in
parentheses, such as tam(3T), can be found in the AT&T UNIX
System V User's Manual.

Information in this document is organized into two sections:

• UNIX PC USER INTERF ACE- contains a user-level
description of the software and definitions for all aspects of
the interface. It provides the framework for an applications
designer, developer, or programmer to understand the user
interface of the UNIX PC .

• DETAILED INTERFACE SPECIFICATION- contains
descriptions of hardware and software features, the Terminal
Access Method (TAM) interface support routines, and the
software installation/removal procedures. It provides specific
guidelines for an applications programmer to write software
that uses UNIX PC capabilities.

* Trademark of AT&T

Section 1

UNIX PC INTERFACE SPECIFICATION

PAGE

INTRODUCTION. 1-1

Basic Design Concepts. 1-2

DISPLAy... 1-9

Screen Layout. 1-9

Windows. .. 1-12

Status Line Icons 1-19

INPUT.. 1-20

Command Entry: Keyboard And Mouse. 1-21

DEFINITIONS OF KEYS AND ACTIONS 1-33

Keyboard Commands. .. 1-33

Other Commands. .. 1-42

Process Control Commands: Conventions.............. 1-45

Dedicated Keys. .. 1-49

THE WINDOW MANAGER. .. 1-50

Controlling Windows. .. 1-51

Navigating Between Windows Using The

Mouse... 1-51

ACCESSING APPLICATIONS. .. 1-52

Opening Files And Their Applications 1-52

Exiting From an Application. .. 1-53

Data Transfer Between Applications. 1-53

MENUS AND FORMS 1-57
Menus ,. .. 1-57

Forms... 1-60

CUSTOMIZATION 1-64

ACCESSING THE UNIX SYSTEM: EXPERT AND

STANDARD MODES. .. 1-66

CONTROL OF PERIPHERAL DEVICES. 1-69

Printers ... 1-69

Floppy Disk .. 1-70

HELP SYSTEM. .. 1-72

Context-Sensitive and General Help. 1-72

Help Display. 1-74

Navigation and Exit From Help.. 1-74

FEEDBACK, PROMPTS, AND MESSAGES. 1-75

Command Echo 1-75

Prompts ... 1-75

Informational Feedback 1-76

Error Handling. 1-76

Asynchronous Messages .. 1-79

Section 1

UNIX PC INTERFACE
SPECIFICATION

Chapter 1

INTRODUCTION

Section 1 describes the UNIX PC user interface, which
presents the multitasking power of the UNIX System V
operating system in a form usable in the mass marketplace.
The primary interface is the User Agent, which provides users
with a window- and menu-based access to the UNIX System V
file system, to applications, and to communications.

The tools used to build the User Agent are available for use by
any application. Applications developers for the UNIX PC are
encouraged to use these tools because consistency is a maj or
component of "user friendliness" in any system.

The user interface design guidelines used for the development
of the User Agent are based on the way a person works. We
believe that work is usually approached by getting what is to be
worked on, an "object," and then applying tools to the object to
do a task. For example, when someone wants to edit a
document, he or she first gets the document and then finds the
red pencil to mark it up.

1-1

USER INTERFACE

We designed the User Agent to allow the user to locate the
object to be worked on and open it up; the User Agent "finds"
the tools needed for the worker to do the job; for example, by
automatically invoking the application used to create the object.

Rarely in an office can a worker complete work without
interruption. The UNIX PC lets the user have several tasks, in
various stages of completion, displayed on the screen at once.
A user does not have to close a task at an inconvenient point to
handle an interruption; the task can be set aside and resumed
when convenient. Switching between tasks and managing
displayed tasks are easily accomplished using the window
management facilities of the UNIX PC.

As users begin relying on the UNIX PC for their office work,
they might want to access it from a remote location to retrieve
data, read electronic mail, and perform other tasks. We
developed methods of displaying the data and entering
commands that are compatible with remote access. Remote
users do not have to learn an 'entirely new way of interacting
with the UNIX PC even though many of the features that
make the UNIX PC easy to work with-a mouse, a bit-mapped
display, simultaneous running of multiple applications, and the
full-function keyboard-are not available now from remote
terminals.

Remote users, like all users, also can interact with the
UNIX PC by using the System V shell if they choose.

Basic Design Concepts

The basic concepts underlying the User Agent follow.

1-2

USER INTERFACE

Office Metaphor

The User Agent uses familiar office terms instead of jargon
when office metaphors are reasonable.

The first screen the user sees after logging in is shown in
Figure 1-1. It contains a single window called the Office that
lists the names of various office objects. The user can access an
object by opening it as described in Point and Act Method in
Chapter a-INPUT.

1
2

25

Phone status

/ \

26 ne
27 Command line

Message

;Time & date\ I area

Ilillllll~llll~i~~~~~ .
nstalled

ap~)lic~:ltions

Window

j'working"
icon

!!!!!!!!!I

~~--- -- --
,'--------- Screen keys -------~/

Figure 1-1. Screen Layout

1-3

USER INTERFACE

The Office software includes easy-to-use tools for managing the
file system, which has several elements (as presented to the
user).

• The Filecabinet contains all user-created files that are stored
on the hard disk. With it comes a friendly access to the
UNIX System V directory hierarchy. The Filecabinet
contains File folders and Files.

A File folder is an interface to a UNIX System V
directory.
A File is the basic unit of work, labeled according to the
application which created it, and is a UNIX System V
file.

• The Floppydisk allows users to access user-created files that
are stored on floppy disks. Floppydisk contains a menu that
allows the user to display the contents of a mountable file
system on a floppy; format, copy and repair floppies
containing UNIX System V file systems; and format, read,
and write floppies containing MS-DOS* file systems.

• The Wastebasket holds Files and Folders that have been
deleted from the Filecabinet, a Folder, or the Floppydisk.
Users can retrieve these items from the Wastebasket. The
Wastebasket can be set to empty automatically, at user­
specified intervals. This is done in the Office Preference
menu.

• The Clipboard can be used, where provided for in the
applications software, to transfer data between applications.
The Clipboard file format is described in adf(4).

* Trademark of Microsoft Corporation

1-4

USER INTERFACE

Users access the contents of the Filecabinet, Floppydisk,
Wastebasket, Folders, and Files by opening them. A new
window is created and the contents of the object are listed in
menu form. When the user opens a File, the application needed
for the user to edit or manipulate the File is automatically
loaded. The user does not have to load the application before
selecting the file. File type specification is done via a suffix on
the File name that is not normally displayed to the user.
Suffixes are defined on installation of software in the file
usr/lib/ua/Suffixes. See ua(4).

Voice and data communications are accessed from the
Telephone. Other object functions accessible from the Office
include:

• Setting user preferences (Preferences).

• Performing system administration and maintenance
(Administration).

• Viewing and deleting files from the printer queue (Printers).

• Opening a window on the Bourne shell (UNIX System, which
is shown in the Office only when the user is set up in Expert
mode by the "install" login).

Other items or utilities can appear in the Office, depending on
the applications software that the user installs. In Figure 1-1,
Electronic Mail and Calendar are two objects not included in
the Office software that might have been installed separately
by the user. See Chapter 5-S0FTWARE INSTALLATION
in Section 2 for a description of how an application install
script places entries in the Office and in other menus.

1-5

USER INTERFACE

Task Segregation By Windows

The user can view different parts of the file system, including
files for different applications, simultaneously in different
windows. The user can have several windows open on different
applications, and switch between applications by changing
windows.

The user changes the status of windows (opens, suspends,
resumes, and closes them) through the window management
facilities of TAM and the Window Manager. Only one window
is active at a time; the others are suspended. Opening a new or
suspended window suspends the presently active window.
However, any action initiated by the user in a window
continues until the next user input is required. The window
management facilities of TAM and the Window Manager are
described in tam(3) and window(7).

User-Modifiable Windows

Users can change the size, shape, and location of some windows
to suit their needs. Windows can be modified using the mouse,
by clicking on the move and shape icons, or using the keyboard
via the Window Manager Commands menu. T AM does not
support resizing for all window types, particularly forms. If a
window cannot be resized, resize icons should not be enabled.
See wcreateO in tam(3) and window(7).

Screen Regions

Information is presented consistently on the screen in a
standard location according to type (see Screen Layout in
Chapter 2-DISPLA V). Status information, command echo,
and prompts and feedback each have standard locations. The
command entry, prompt/feedback, and screen labeled key
regions are owned by the application running in the active
window.

1-6

USER INTERFACE

Core Commands

The same commands are used to perform analogous actions on
different types of objects across different contexts. These core
commands are on fixed (hard-labeled) function keys on the
keyboard. Context-specific commands are on screen-labeled
keys or in menus. See Keyboard Commands in Chapter 4-
DEFINITIONS OF KEYS AND ACTIONS.

Command Construction Using Menus And Forms

The primary means by which the user instructs the system is
through menus and forms. Thus, users do not need to learn a
complex list of command names and options or a complex
command syntax. Instructions for users to find out what they
can or should do next are readily available on menus or forms.
Commands are constructed by combining names of actions and
objects where appropriate. See Chapter 3-INPUT.

Choice Of Methods Of Command Entry

Three general methods are available for users to specify actions
and objects: select an item from a menu, press the appropriate
function key, or type the name. Menus inform users about
available actions and objects, and so serve as a form of tutorial.
As a user gains experience, he or she may find bypassing menus
convenient. The multiple methods of command entry give all
users a choice and can be of particular benefit to remote
terminal users. Typed equivalents of many commands are
echoed on the screen, regardless of the method of command
entry, to provide the user with feedback.

Use Of Defaults

To minimize the number of decisions and specifications users
must make, a default action and a set of attributes are defined
for each object. Default options are defined for actions, when
options are available, and these defaults are shown in options
forms.

1-7

USER INTERFACE

Default actions are specified for each object type in
usr/lib/ua/Suffixes.

Protection For Naive Users

Two forms of protection are available at the user's option:
access to the UNIX System V shell can be prevented and
functions that potentially can cause problems, for example,
result in loss of data, require confirmation. On line help is
provided from any point. When requested, On line help
pertains to the current environment. Users may also examine
any screen in the Help system. .

Layered Complexity

Only a few, simple actions are necessary to use the User Agent.
Common actions are easily performed, most with a single
keystroke. More complex actions are available, and these are
built by combining simple actions. Shortcuts to combine some
simple actions are provided for the more experienced user.

Remote Access Compatibility

Users can access the Office and many applications from a
remote, character-oriented terminal with little change in
available functionality. Functions that require a mouse or bit­
mapped graphics cannot, of course, be accessed. Only one
application can be present on the remote terminal screen at a
time. Status line functions are not available remotely. The
user interface on the remote terminal is compatible with the
user interface on the UNIX. PC.

Detailed descriptions of the functions and capabilities of the
UNIX PC are presented in Chapter 2-DISPLAY.

1-8

USER INTERFACE

Chapter 2

DISPLAY

This is a description of the layout of the display and its parts,
including windows, status areas, and command entry areas.

Screen Layout

The UNIX PC screen is an area 720 pixels wide and 348 pixels
high, corresponding to an 80-column by 29-line character
display. Characters in the system font are defined within a 9
by 12 pixel matrix-a row is 12 pixels high and a column is 9
pixels wide.

An example of the UNIX PC screen is shown in Figure 1-1. It
consists of 29 lines divided into the five areas described below.

Status Line: Line 1

The Status line displays telephone status information and icons
signalling the arrival of messages. An icon allows the user to
access a list of active windows. The line is subdivided into
functionally different areas. The user can point with the mouse
to an area or an icon to activate these different functions.
(Keyboard users can access these functions from equivalent
keys that are also described.) These areas are:

• Telephone line status for up to two lines and voice/data
status (columns 1 through 32): Pointing anywhere in this area
with the mouse and pressing <B1> displays the Call Screen.
(Keyboard access: <Shift>-<to F2»

• Date and time (always displayed)

1-9

USER INTERFACE

• Message arrival: An application can turn on an icon in this
area and sound the beep to signal arrival of an asynchronous
message. The user accesses the message by pointing to the
icon with the mouse and pressing <Bl>. See
Asynchronous Messages in Chapter 12-FEEDBACK,
PROMPTS, AND MESSAGES. (Keyboard access:
<Msg»

• Window Manager: Pointing at this icon and pressing <Bl>
displays a list of currently open windows. (Keyboard access:
<Suspd»

Applications can write to the Message Arrival area only
through the Status Manager. See Asynchronous Messages
in Chapter 12-FEEDBACK, PROMPTS, AND
MESSAGES for a description of how the user accesses the
functions contained on this line.

Work area: Lines 2-25

Contains the work area, including all user-controlled windows.

Messages/Prompts: Line 26

Contains synchronous feedback from user-issued commands and
contains prompts. A maximum of 70 characters can be
displayed. See Prompts in Chapter 12-FEEDBACK,
PROMPTS, AND MESSAGES.

Command Entry/Echo: Line 27

Commands are displayed as they are typed or entered via
function keys and menus. A maximum of 70 characters can be
displayed. See Command Echo in Chapter 12-FEEDBACK,
PROMPTS, AND MESSAGES.

1-10

USER INTERFACE

System Busy: Lines 26,27

A "working" icon is displayed on the right. See Figure 1-1.

Screen Keys: Lines 28-29

Contains the legends for the eight Function Keys «F1>
through <F8». The pads for the labels are always shown as 2
by 8-character inverse video regions, whether or not any labels
are present in a particular pad. All sixteen characters in each
pad can be used for a legend. The pads are grouped in a 3-2-3
arrangement, to match the grouping of keys <F1> through
<F8> on the keyboard. There is one dark space between pads
in each group and five dark spaces between groups. Screen
keys contain commands that refer to the current active window
or current popup window. Users activate the function behind
the screen key by pressing the corresponding function key
<F1> through' <F8>, or by pointing with the mouse to the
screen key and pressing <B1>. Labels for screen keys are
changed via the tam(3) call wslkO.

Recoinmendations for Screen Keys

• Use mixed upper and lowercase characters on screen keys to
improve readability.

• Center both top and bottom lines.

• If a legend takes only one line, use the top line.

• Functions that appear in several contexts or windows should
appear on the same screen key, when possible.

• Display only functions that are available in the current
context or environment.

• Display all eight screen key labels. Screen keys assigned a
function by an application should display a label. Screen keys
not assigned a function should be blank.

1-11

USER INTERFACE

Note: Shifted <F1> through <F8> are reserved for use
by the UNIX PC Telephone Manager. They are not
available for use by applications.

Windows

A user views each task through a window. A window has one
or more lines of data entry/display area surrounded on all four
sides by a border. A borderless window can also be defined, for
applications that require the use of the full screen, 24 rows by
80 columns.* At the other size extreme, a window can be just
large enough to display scrolling controls, if present, with at
least one blank row (12 pixels) inside the border. See Window
Appearance-Application Windows in this chapter for
definition of window creation and size definition.

The default window size is set by each application. Some
applications require a full 24 by 80 display (for example, 3270
emulation and asynchronous terminal emulation) and the
borders are not shown.

Each application is run in a window. Menus of commands,
menus of object names, and forms are all displayed within
windows. Several windows can be open simultaneously on the
display. Only one window at a time, the active window,
receives input from the keyboard and has information shown on
the command entry line and synchronous message line. The
labels on the screen keys refer to the active window, and it is
"on top" -fully displayed. It can cover all or parts of other
windows on the display.

* An application can define a window to cover the status line, e.g., as 25 rows
by 80 columns. However, a better procedure is to load a font that is 11 pixels
high in Slot 0; this allows writing 26 lines of characters in the work area.

1-12

USER INTERFACE

The border of the active window is highlighted, with dark text
and dark icons. The borders of inactive windows are dark, with
bright text and icons.

When a window is opened, its initial position is determined by a
location algorithm designed to minimize overlap among
windows. Users can change the shape and position of most
open windows as they desire.

Windows are not explicit Office objects; they do not exist
independent of their contents. A window is a special object
that is synonymous with an open object. A window is created
whenever a user issues a command to "open" an object. A
window is removed when the user exits from the application,
menu, or form, or cancels the command that generated the
window.

Window Border Areas

The top line of a window contains an identifier for the window
contents, where the form of the identifier depends on the
window contents. The window border contains icons that allow
the user to access frequently used window control functions and
to access "help" with the mouse. The icons are shown in Figure
1-2. To access the functions, the user points to the appropriate
icon with the mouse and presses <B1>. (For the arrow icons,
<B2> and <B3> also activate functions.) Each of the functions
listed below maps onto a function available from the keyboard.
See Chapter 4-DEFINITIONS OF KEYS AND ACTIONS
for definitions of the commands. See tam(3) for a description
of how to create a window and turn on border items. Note that
the application must handle the following codes returned by
selecting one of the icons:

[1] Pressing <B1> provides context-sensitive help.
Same as <Help>.

1-13

USER INTERFACE

[X]

arrows

Pressing <B1> (cancel/exit) cancels a selection or a
partially specified command. If nothing is selected,
exits from the application and closes window.
Functions as <Cancl> or <Exit>, depending on
context; maps onto <Shift>-<Cancl> key.

Pressing <B1> (scroll text up, down, left or right)
reveals text in the direction the arrow points. Maps
onto <Shift>-<arrow key>.

Pressing <B2> (page text up or down one
"windowful") reveals text in the direction the arrow
points. Maps onto <Page> (down), <Shift>-<Page>
(up).

Pressing <B3> (move all the way up or down) moves
to a beginning or end. Maps onto <Beg> (up),
<End> (down).

The following border icons are used to control the window.
These functions are handled in TAM window management.

[move]

1-14

Pressing <B1> (in the upper left corner) moves the
active window without changing its shape. The user

1) presses <B1>,

2) waits until a dithered outline appears,

3) drags the outline to the next position, and

4) releases <B1>.

Then the window moves immediately to the
new position to match the outline. The
shape of the window does not change, and
the user cannot move any portion of the
window off the display.

USER INTERFACE

[shape] Pressing <Bl> (in the lower right corner) shapes the
active window without changing the position of the
upper left corner. The user

Conventions

1) presses <Bl>,

2) waits until a dithered outline appears,

3) drags the outline to the new shape, and

4) releases <Bl>.

Then the window changes its shape
immediately to match the outline. The
upper left corner of the window remains
anchored.

• When an icon is not available, it is not displayed. For
example, if window contents cannot be scrolled horizontally,
the left and right arrows are not displayed. If no help is
available for the window, the help icon is not displayed. See
tam(3) were ate .

• The title of the window is in mixed upper and lower case
letters and reflects the name of the menu item or command
used to open the window. See tam(3) wi abel.

Window Appearance-Application Windows

An application window lets the user view an application
program or process. The format of the internal display depends
on the application.

Applications are not required to know the size of the window in
which they appear, although applications can be written to
make use of the Window Manager routines to react intelligently

1-15

USER INTERFACE

Window move
Window label Help icon

Using FOe Folders

A FUe folder is a container for work. You use folders
to organize and store your files, just as you would with
paper files. Folders can reside in one of the
file-related 0 ffice obj ects (Filecabinet, Floppydisk,
Wastebasket, Clipboard), or in another folder.

To create a File Folder you:

1. Open the file-related Office object or File
folder where you want to place the new folder.

Scroll
icons

Cancel/close icon Window shape icon

Figure 1-2. Window Icons

to changes in window size and shape. Applications that do not
interface with Window Manager routines still run in windows,
but do not react to window changes. Window wrap and
truncation is consistent with the ANSI X3.64 standard.

Application Window Border Areas

The top line of a window on in integrated application (one
designed or modified to run with the Window Manager)
contains an identifier for the application that is currently
running in the window and the name of the object that is
currently open in the window. If the application owning the
window allows switching between "overtype" and "insert" text

1-16

USER INTERFACE

editing modes, the indicators "OT" and "IN", respectively,
should be displayed to the right of the window identification
information. Border icons function as previously described in
Window Border Areas in this chapter.

Window Appearance-Menu Windows

A menu window is a window listing the contents of a menu or a
UNIX System V directory. Office Filecabinet, Floppydisk,
folders, and Wastebasket windows are examples. The content
of a file system window is displayed as a menu, where the first
word in each line is the name of a folder or file and the
remainder consists of a description. (The description is
displayed at the user's option, as set in .Office Preferences.)
The description is the name provided in the Suffixes file. When
both name and description are displayed, they are left-justified,
separated by a dash. Uppercase names appear before lowercase
names. See Figure 1-3.

- File folder
-CURRENU40RK - File folder

AGEHT

HEHOS
Hotes
PRACTICE
Profiles
TRS
boss
conference

- File folder
- F He folder
- F He folder
- F He folder
- File folder
- Phone Hu.ber
- Standard file

Figure 1-3. Filecabinet Menu

1-17

USER INTERFACE

Menu Window Border Areas

The label area of a file system window contains the name of the
open object and the name of the folder that contains the file, if
it is in a folder; that is, the last two elements of the path name
ar.e displayed. For example, Filecabinet/practice is the window
label for a folder named "practice" which is stored in the
Filecabinet. See ua(4). Other icons are as previously described
in Window Border Areas in this chapter. The label of a
menu window contains the string defined when the menu is
called. See menu(3T).

Default Window Properties

Windows on menus are sized according to their contents instead
of being a standard size. A window is no larger than needed to
display its contents, up to a default maximum size (that can be
less than maximum window siz~). When the number of items is
more than can be shown in the maximum size, items that are
not displayed can be viewed by scrolling or paging.

Menu windows must be wide enough to display one column of
their contents. They cannot be resized to a narrower format.

Menus may exist until the user explicitly closes them (e.g.,
Office Administration, Filecabinet) or they may disappear as
soon as the user makes a selection (e.g., Commands, Create).
See menu(3T).

Mouse Pointer

The mouse pointer is a symbol that follows the motion of the
mouse and moves anywhere on the display. In the User Agent
the symbol is an arrow. The mouse pointer location is
independent of the active window or selected items. Items are
selected and windows activated only when the user presses a
mouse button or issues a command.

1-18

USER INTERFACE

The tip of the arrow is the "hot zone." (The "hot zone" of other
selection pointers should be intuitive, for example, the center of
an "X" or "+".)

More than one mouse pointer can be defined to signal different
states. The mouse pointer can be changed within application­
defined rectangles on the display.

Working Icon

A "working" icon, under kernel control, is displayed on the
righ t end of lines 26 and 27 as a "system busy" indica tor. See
Figure 1-1.

Sta tus Line Icons

Four icons signal arrival of asynchronous messages: an
"envelope" that signals arrival of mail, a "calendar" that
signals an appointment (optional software), a [!!] icon to signal
arrival of a message from the system, and a [!] for other
messages. See Figure 1-1. The electronic mail envelope icon is
turned on when mail arrives in /usr/mail/userid, regardless of
the mail application installed. Other icons can be defined for
other applications.

Window Border Icons

Icons used in window borders are as previously described in
Window Border Areas in this chapter.

1-19

USER INTERFACE

Chapter 3

INPUT

This Chapter describes the syntax and methods used to enter
commands and display file system windows in the Office. More
than one method of command entry is provided to match the
diverse needs of remote users, users with different skills and
preferences, and situations that make one method more
efficient to use than another.

In most cases, commands are formed by combining the name of
an object with the name of an action. Actions can be specified
by pressing a function key on the keyboard, typing the name of
the action, or pointing at and selecting the name of the action
in a menu of objects. Objects can be specified by typing the
name of the object or pointing at and selecting the name of the
object in a menu. More than one object can be selected for each
action. The user controls the selection (highlighting) using the
keyboard or the mouse. A mixture of keyboard and mouse
modes of command entry is possible, even within a single
command.

For each object type shown in the Filecabinet or Folder, a
default action is defined that is executed if no other action is
specified. The default action and specific action-object pairing
are defined in the /usr/lib/ua/Suffixes file. For each action
that takes an object, the default object is the object under the
highlight or cursor, even if the object has not been explicitly
selected.

1-20

USER INTERFACE

Command Entry: Keyboard And Mouse

Following is a description of the devices by which the user can
enter commands and the available methods. Two input devices
are available, the UNIX PC 103-key keyboard and the
UNIX PC three-button mouse. All commands can be entered
with either device, but it is not necessary to have a mouse to
perform any User Agent Functions. This ability to essentially
perform all User Agent functions from the keyboard allows
remote access to the User Agent.

UNIX PC Keyboard

The UNIX PC keyboard is shown in Figure 1-4. The keyboard
is divided into five functional regions:

1. Standard typewriter, QWERTY, area

2. Action keys (left cluster)-hard function keys

3. Function keys (top row)-keys <F1> through <F8>, whose
functions are defined by the application controlling the
active window; these functions are shown on the eight
screen keys.

4. Process control keys (nine keys on the top right)-hard
function keys.

5. Display control/numeric pad (twelve keys on the lower
right).

Generic definitions of all keys on the keyboard are provided in
Chapter 4-DEFINITIONS OF KEYS AND ACTIONS.
Applications should use these keys in a manner that is
semantically consistent with these definitions.

Each state of each key on the keyboard is mapped onto a
mnemonic escape sequence. For example, typing <Esc> <c>
<m> is equivalent to pressing the <Cmd> key. This provides

1-21

USER INTERFACE

remote users with access to the keyboard keys, particularly
those that do not appear in menus. All of these escape
sequences may be found in lusr/lib/ua/keymap. Application
developers should not use the <Esc> key within the application
since these escape sequences are recognized from the console
and remote terminals.

It is possible to customize terminals for use with the UNIX PC
by defining function keys on the remote keyboard as equivalent
to the UNIX PC keyboard. This is done by creating a
terminal.kmap file in lusr/lib/ua and inserting a pointer to
that file in the termcap entry for that terminal. See abd(7) and
termcap(5). Also see lusr/lib/ua keynames.

UNIX PC Mouse

The UNIX PC mouse controls the position of a pointer and
selects items (actions, objects, icons, and fields). The mouse has
three buttons with generic definitions equivalent to three
keyboard keys. The definitions can be modified if the mouse is
pointing at an icon.

The buttons are defined as follows:

<Bl> The left mouse button, equivalent to <Enter>, is the
"do it" button. It selects and initiates action on the
item pointed to by the mouse pointer.

1-22

• If the item is an object, selection executes the
default command on that object.

• If the item is an action, selection executes the action.

• If the item is an icon, selection executes the action or
selection represented by the icon.

• If the item is a portion of an inactive window,
selection activates that window.

~ _FI_F2~F3~ lB[EJ] lEJ1EJJJ£1J l~il 1 ~Sg] 1F1
SUSP~I Rsunj Opts

~~JI[rJI fJl ~ Jm JlJO'I~ JII~ JI[~ JII~ JI[6]1 ~ 11[: JII~We J ~
Close

Break Cmd Open Canef

\V \J/ W \J/ -II \J/ \V UI \V \J/ \V 'J/-

rb~J 1Q] Iw]1 IE] lR J T Iy] Iu J I'] Io] r l€ I II JI1] t ~'inr CleaJ leage
] ~ .-\

Rf,sh

\L \I \I \J \V 8 9

rC~·~I[S 1[° ~F IlG IIHIP ,lL ff I[If' .Iteturn J Enter
LBeg I Hom:! [End]

~ J/ \V \V \J/ \V \V \V UI 4 5 6 \

thift ~lU PllfJltll B] I N J I[M]II~]II>] P Shift - I e~/] S "I Prev
.-\ ~ - \J/ \J/ \V \V \V \1/ 1 2

~[)~ ~ ~] [Ri] 8 Lock
·0

Figure 1-4. UNIX PC Keyboard

USER INTERFACE

• If the item is the dotted "work area" (outside of any
window), selection suspends the current window and
activates the window manager.

• For window border arrow icons, selection scrolls the
contents of the window in the direction of the arrow.

• If the item is [OK] in a form, selection executes the
form.

• If the item is a message, pointing anywhere inside
the window and pressing <Bl> closes the window
and is equivalent to pressing <Enter> [see
message(3T)].

<B2> The middle mouse button, equivalent to <Cmd>, is the
"show me what I can do" button.

• It displays a menu of commands that are currently
available for the object under the highlight or
current context.

• It displays a menu of entries that are allowed in a
constrained field in a form.

• For window border arrow icons, it pages window
contents in the direction of the arrow.

<B3> The right mouse button, is usually equivalent to
<Mark>. It allows the user to mark more than one
item as an object for subsequent action.

1-24

• In a menu, it selects the unselected item pointed at
by the mouse pointer.

• In a menu, it unselects the selected item pointed at
by the mouse pointer.

USER INTERFACE

• It steps through the allowed entries in a constrained
field on a form .

• For window border arrow icons, it displays the top
or bottom of the object in the window.

Command Entry Methods

Selection by Pointing

Objects and actions can be selected from menus by pointing and
selecting. There are four ways to point to an item.

1. Move the mouse pointer to the item in a menu, so that it
becomes highlighted.

2. Move the highlight to the item in a menu using the arrow
keys.

3. Move the highlight to the item in a menu by typing the
first few characters of the name of the item. Only as many
characters as are needed to uniquely identify the item in
the current menu need to be typed, but the user can type
the entire name of the item. Capital and lowercase
characters are treated equivalently.

4. Move the highlight to the next item by pressing <Return>.
This works only if no characters have been typed.

The user can point to the name of an object in an inactive
window by typing the path name of the object. For example,
the user could open the sample file, "edit," by typing
Filecabinet/practice/edit and pressing <Return> from the
Office or any file system window.

Note: Filecabinet is an alias for
lu/userid/Filecabinet (see Typed Command Line
Entry later in this chapter).

1-25

USER INTERFACE

Point and Act Method

With the point-and-act method, the user points to the item
(object name, action name, or icon) and then presses a function
key or mouse button. The item is automatically selected and
the specified or default action on that item is initiated.

The simplest command, select and open, is issued by:

1. Pointing at the object name, using

• the keyboard to type the first letter(s) of the name,

• the keyboard cursor movement keys, or

• the mouse to position the pointer, and

2. Selecting the name, by

• pressing the <Enter> key on the keyboard, or

• pressing the left button, <Bl>, on the mouse.

This opens the object in a window and gives the user access to
its capabilities. Open is the default action on almost all
objects. The default action is defined for each object type in
/usr/lib/ua/Suffixes. Other commands can be issued from the
Commands menu or via function keys or hard keys.

To issue a command using the Commands menu, the user points
to the object and then presses <Cmd> on the keyboard or
<B2> on the mouse. This selects the item implicitly and
displays a menu of available commands. Then the user points
in the Commands menu to the desired action and presses
<Enter> or <Bl> to initiate the action. To specify an action
using the hard keys or function keys on the keyboard, the user
points to the object and presses the desired key.

1-26

USER INTERFACE

At the next level of complexity, the user can select several
objects for a single action. The user points at each object and
presses <Mark> on the keyboard or <B3> on the mouse. The
user can also select a group of contiguous objects by 1) pointing
with the mouse pointer to the first, 2) holding down <B3>, 3)
dragging the mouse pointer through the adjacent items, and 4)
releasing <B3>. Then the user presses an action key or
<Cmd> to select an action for all selected objects.

Typed Command Line Entry

Typed command entry using the command language of the User
Agent (as opposed to UNIX System V shell commands) is
needed to support the expert User Agent user, who can become
very adept in using the User Agent while knowing nothing of
UNIX System V commands. Users might not use the typed
method much at first, but as they become familiar with the
system and learn the names of the commands, many users
choose to type because it can be a faster method of interacting
with the system. Typed command entry is also important for
supporting remote users, who may find working with menus
slow and cumbersome. The User Agent provides a method for
turning off command menus; other applications could follow.

Typed Command Syntax A simple command syntax is used
for typed commands.

<Cmd> (key)
action name (one or more characters required)
<SPACE> (blank)
object name(s) (typed or previously selected)
<Enter> or <Return> (key)

I

I

V
Action taken

The syntax is extended to allow for "operator first" entry when
typing the entire command, as well as "operand first" entry to

1-27

USER INTERFACE

allow for selection of an object from a menu). The syntax for
"operator first" is:

<Cmd>
action name
<SPACE>
object name(s)
<Enter> or <Return>

I

I
V

Action taken

When the <SPACE> is typed, any objects that were selected
before <Cmd> was pressed are unselected. The syntax for
"operand first" entry is:

select object(s) from menu
<Cmd>
action name
<Enter>-<Return>

I

I

V
Action taken

1. All typed User Agent commands are preceded by pressing
the <Cmd> key to display a menu of available commands,
clear the command echo line and enable input on this line.
(Through the Office window's Preferences, users are able to
turn off display of the command menu if the application
supports it.)

1-28

USER INTERFACE

2. Tokens (words or their abbreviated representations) are
separated by spaces.

3. When <Cmd> is pressed, one action name must be
specified for each command-an object name alone is not
accepted. (The default action assumed if <Cmd> is pressed
is the first one in the Commands menu. Hence, no
ambiguity exists about whether a token is an action or an
object.)

4. For multipart commands (for example, Move and Copy) the
user enters the terminator after listing the first set of
arguments. Then the User Agent prompts the user to enter
further information as needed.

5. Any valid action name can be typed, including actions on
hard and soft function keys, whether or not the command
menu is currently displayed.

Specifying Actions in Typed Commands Action names can
be truncated; the user only needs as many letters of the action
name as needed to identify it uniquely.

Specifying Objects in Typed Commands

1. An object name can be typed whether or not its name is
currently displayed in the active window.

An object can be specified in one of the following ways:

• If an object name is shown in the current active window,
it may be specified by typing the full path name.

As with actions, object names can be truncated to the
shortest string that uniquely specifies the object. The
wildcard character "*,, can be substituted for one or
more characters, and it allows specification of one or
more objects.

1-29

USER INTERFACE

• If an object name is not shown in the current active
window, supply an abbreviated term for certain path
names. Six special aliases for path names are recognized:

1-30

System root (I)

Filecabinet lui userid/Filecabinet

Floppydisk Imnt

VVastebasket luluserid/VVastebasket

Clipboard

Parent

luluserid/Clipboard

the object that contains the current
folder-equivalent to UNIX System V".".

Following are some examples.

If the user wants to delete "filea," which is stored in
"folderb" in the Filecabinet, and Filecabinet is not
open, typing:

<Cmd> delete Filecabinet/folderb/filea <RETURN>

places filea in the VV astebasket.

If the user wants to execute the default command on
filec (open it), but the Filecabinet is not open, typing:

Filecabinet/folderb/filec <RETURN>

selects the object and executes the default command,
Open, on it. The user does not have to type the full
UNIX System V path name.

USER INTERFACE

Applications must also recognize these abbreviated
path names and should not block user's attempts to use
them to identify user-created folders or files .

• Type the full path name of the object from root, for
example:

lu/tutor/Filecabinet/foldername/filename

2. A typed object name overrides any object(s) that are
currently selected, allowing the user to take actions on
objects that are not in the current menu.

Editing <Back Space>, <Clear Line>, and <Dlete Char> can
be used to edit uncompleted commands. <Cancl> clears the
command line of any partially entered items and returns the
cursor/marker to its position prior to beginning the command.

Regular Expressions UNIX System V regular expressions,
including ? []!, are not recognized in typed User Agent
commands. The wildcard character * is recognized and
interpreted.

Specifying Options

• The Security command sets access and execution permission
on the selected object.

If options are available on a command, they are displayed in a
menu or a form when the command is invoked by menu,
function key, or typing the command name. The user selects
the options from the menu or fills in the form. Menus and
forms have defaults, so that the user only needs to press
<Enter> to continue.

1-31

USER INTERFACE

Command Echo

The user must be given feedback. When commands are issued
on function keys or selected from menus, an opportunity exists
for erroneous selection. The user must be given feedback as to
what was done to have the opportunity to take corrective
action.

• All object-control commands [action name and object
name(s)] are echoed, whether selected from a command
menu, screen key, hard function key, or typed. If objects are
selected from a menu (not typed), the names of the objects
are not echoed until the action is specified. This is true
whether the action is selected from a screen menu or from
the keyboard.

• The syntax of the command echo is the typed command
syntax, for example, action-object, as just described.

• For default actions, echo the name of the action as if it were
specified (for example, "open objectname").

Type-Ahead and Autorepeat

Type-ahead is supported within windows. However, if the user
initiates creation of a new window and begins typing
immediately, a few keystrokes can be lost.

Certain keys, such as space bar and backspace, autorepeat. See
kbd(7). Mouse buttons autorepeat when they are held down.
Keystrokes that should be generated by autorepeat are flushed
as soon as the key or button is lifted, so that the repeated
function does not continue, and the user has more control over
the display.

1-32

USER INTERFACE

Chapter 4

DEFINITIONS OF KEYS AND ACTIONS

This is a description of the generic definitions of core
commands, both those on hard keys and others available
through the User Agent.

Core actions are actions used to perform analogous functions
for different types of objects across different contexts. The
User Agent selects the appropriate function for the specified
action. The same action name can be used for functionally
similar actions in different contexts and on different object
types.

The high level semantics (meaning) of each command should
remain constant, but responsive to context. For example, the
Copy command always involves duplicating data from one
location to another, without deletion of the original data. (It
should not be used, for example, to specify the number of copies
of a document to be printed.) The same command name should
be applied to a file, a folder or a piece of a graph. A different
command name should not be invented for each different type
of object.

Keyboard Commands

The keyboard on the UNIX PC is the AT&T Product Family
keyboard. The command definitions that follow are consistent
with AT&T product family usage.

The commands listed, in alphabetical order, are found on the
keyboard. Not all of the commands are used in the User Agent.

1·33

USER INTERFACE

Further discussion about using process control commands
(Enter, Cancl, etc.) is in Process Control Commands:
Conventions later in this chapter.

<Arrows>

<Back Space>

<Beg>

<Call>

1-34

Each keystroke moves the highlight or
cursor one unit in the indicated direction.
When a border is reached, a keystroke
moves text under the cursor or highlight one
unit to reveal text in the direction of the
arrow (scroll); the cursor or highlight
remains stationary on the display. "Unit" is
defined by the application in the window,
for example, one or more lines, one or more
characters, or columns, etc. Both horizontal
and vertical cursor or highlight movement
can be supported. It is an auto repeating
key.

Each shifted keystroke (scroll) moves the
text under the cursor or highlight one unit
to reveal hidden text in the direction of the
arrow; the cursor or hlghligh t remains
stationary on the display. It is an
autorepeating key.

Deletes the character to the left of the
cursor and closes the gap. The cursor moves
one character position to the left. I t is an
autorepeating key.

Moves the cursor or highlight to the first
character or field in the current window.
<Shift>-<Beg> moves the cursor or
highlight to the first character or field in
the current object (top).

This <Shift>-<F2> combination invokes the
Call screen from any context or application.

<Cancl>

<Caps Lock>

<Clear>

<Clear Line>

<Close>

<Cmd>

<Copy>

USER INTERFACE

It is a dedicated key and can only be used by
the UNIX PC Telephone Manager.

Cancels any partially specified command
and unselects any selected objects. If given
from a form, it cancels any changes to the
form window, cancels the command that
displayed the form, and closes the window.
See Process Control Commands:
Conventions later in this chapter.

Modifies the meaning of alphabetic keys.
When the light is on, alphabetic keystrokes
are echoed as capital letters. Other keys are
not affected.

This <Shifted>-<Rfrsh> combination clears
a region as determined by the application. It
is not used by the User Agent.

Clears the current line or field in a form; it
clears the command line.

This <Shift>-<Open> combination closes
the current window. It is synonymous with
Exit. See Process Control Commands:
Conventions later in this chapter.

Opens the command line and displays a
menu of all commands available in the
current context. The menu can be turned
off at the option of the user via Preferences.
It displays a menu of options in a
constrained field in a form and maps onto
<B2> on the mouse.

Copies the selected object(s) or area(s) from
one location to another without deleting the
original. After the area is specified and the
Copy command is given, the user is

1-35

USER INTERFACE

<Creat>

<Ctrl>

<Dlete>

1-36

prompted to point to the destination
location and give the PASTE command. See
Other Commands following this section.
After the user gives the PASTE command,
the destination window is updated
immediately. Copy cannot be used to
overwrite an existing file, like the UNIX
System V shell "cp." If a file with the same
name already exists in the target location,
the user is prompted to give a new name to
the copy. When applied to a Folder
(directory), the command copies both the
Folder and its contents.

Allows the user to create an object. In the
User Agent, it displays a menu that allows
the user to select an object type, then it
displays a form that prompts the user to
assign a name to the new object, and finally
it opens the object in the application
responsible for that type of object. See
Opening Files and Their Applications
in Chapter 6-ACCESSING
APPLICATIONS.

When pressed simultaneously with another
key, this modifies the sequence sent by that
key. It is not used in the User Agent.

Interrupts ongoing operations. This is not
used in the User Agent.

ASCII 'del' - Deletes the selected object(s)
or text. Deleting a file moves it to the
Wastebasket, from which it can be retrieved
until deleted from the Wastebasket.
Deleting a folder moves both the folder and
its contents to the Wastebasket, from which
the folder or any part of its contents can be
retrieved. Objects that are deleted from the

<Dlete Char>

<End>

<Enter>

<Esc>

<Exit>

<Fl> - <F8>

USER INTERFACE

Wastebasket cannot be retrieved; they are
permanen tly removed. Delete cannot be
used on an open file (unless it is a word
processor); the user is prompted to close the
file first.

Deletes the character under the cursor and
closes the gap in text. It is an
autorepeating key.

Moves the cursor or highlight to the last
character or field on the current line (text)
or in the current window. <Shift>-<End>
moves the cursor or highlight to the last
character or field in the current 0 bj ect.

This general terminator for all typed
commands executes a form. It maps onto
<Bl> of the mouse. See Process Control
Commands: Conventions later in this
chapter.

"Escapes" the meaning of the following
keystroke. All hard· keys on the UNIX PC
keyboard are mapped onto escape sequences,
as listed in the file lusr/lib/ua/keymap, so
that users can simulate the use of hard keys
as used by the User Agent and applications.
This is needed for remote terminals that
have different keyboards.

Exits from the current application or
window, closing the window. It is
synonymous with close. See Process
Control Commands: Conventions later
in this chapter.

These function keys have functions that can
be assigned by each application. The names
of the functions are displayed on the eight

1-37

USER INTERFACE

<Find>

<Help>

<Home>

<Input Mode>

<Mark/Slect>

1-38

corresponding screen keys, using a TAM
call.

When shifted, these are dedicated keys used
by the UNIX PC Telephone Manager.

Finds an object that matches user-supplied
search criteria, and points to it or displays a
list of objects meeting the search criteria.
The user is prompted to supply the search
criteria in a form. The User Agent Find
command displays the matching objects in a
menu. The user can select objects from the
menu and issue commands on them.
Pressing the <F6> key executes this
command.

Gives context-specific help on the selected
object, action, or the current message, and
gives the user access to the help system. If
context-specific help is not available, it gives
the user access to the help system.

This is the same as unshifted <Beg>.
<Shift>-<Home> is the same as unshifted
<End>.

Toggles between insert mode and overtype
mode, in editing. The top border of the
window should display IN for insert mode
and OT for overtype mode, where these
modes are supported.

Selects one or more objects from a list or
menu; it begins selection of an area in text.
I t steps through the options in a constrained
field and is equivalent to pressing <B3> on
the mouse.

<Move>

<Msg>

<Next>

<Num Lock>

USER INTERFACE

Moves the selected object or region of text
to another location, and deletes the original.
After specifying the object and Move, the
user is prompted to point to the destination
location and give the PASTE command (see
Other Commands following this section).
The destination window is updated
immediately; the source window is updated
the next time it is made active.

Move cannot be used to overwri te an
existing file, like mv in the UNIX System
V shell. If a file with the same name exists
in the target location, the user is prompted
to supply a new name for the file to be
moved. When applied to a folder, both the
folder and its contents are moved to the new
location.

Gives the user access to any asynchronous
messages that have arrived. If only one
type is queued, it invokes the utility or
application needed to display the messages.
If more than one type is queued (for
example, system messages and electronic
mail), it displays a menu to allow the user
to choose the type of message to be viewed.
It is a dedicated key and cannot be used by
applications. This command is not available
on remote terminals.

Each keystroke moves the highlight or
cursor to the next unit. In the User Agent,
it moves the highlight to the next item in a
list or the next field in a form. It is an
autorepeating key.

Switches keys in the numeric pad on the
lower right of the keyboard between
numeric pad and cursor control functions.

1-39

USER INTERFACE

<Open>

. <Opts>

<Page>

<Prev>

<Print>

Keys are translated as numbers when the
light in Num Lock is on; keys are translated
as cursor commands when the light is off.
See kbd(7).

Opens the marked or named application that
owns the object for editing or viewing in a
new window. It is the default command for
most objects in the User Agent. Open is the
only command that can be used on objects
in the Office window.

Displays the available options on a
command or in a field on a form. I t might
display a menu or a form, to allow the user
to specify choices. In User Agent, it is used
only in forms to allow users to see the
options that are available in fields whose
contents are restricted.

Displays the next windowful of the text or
the menu that is contained in a window.
<Shift>-<Page> displays the previous
windowful of text or menu.

Moves the highlight or cursor to the
previous unit. In the User Agent, it moves
the highlight to the previous item in a menu
or the previous field in a form. It is an
autorepeating key.

Sends the selected item to a printer. It
displays a form tha t allows the user to
select the printer, and allows the user to
specify other options such as number of
copies. In the User Agent, the print
command is executed directly for certain file
types, such as standard files and phone
directories; for other file types, the
application must be invoked. The User

<Redo>

<Ref>

<Reset>

<Return>

<Rfrsh>

<Rplac>

<Rstrt>

<Rsume>

USER INTERFACE

Agent will invoke the application to perform
printing if print is defined for the object in
the Suffixes file. See Printers in Chapter
10-CONTROL OF PERIPHERAL
DEVICES.

<Shift>-<Print> prints a bit-by-bit
snapshot of the screen, if a dot matrix
printer is available. It is a dedicated key
and cannot be used by applications.

Re-executes the previous command, allowing
the user to respecify arguments or edit the
command line. It is used in the User Agent.

Gives access to an on-line reference facility.
It is not used in the User Agent.

Performs a soft reset. It is not used on the
UNIX PC.

General terminator for all typed commands
; moves the highlight to the next field in a
form.

Refreshes the screen.

Replaces an old object or piece of text with
a new one. It is not used in the User Agent.

Takes the user to the entry level of the
current task. It is not used in the User
Agent.

(1) Suspends the current window or
application and displays the window
manager menu. (2) Within the window
manager menu, it resumes the window that
is under the highlight. It is the default
command within the window manager menu

1-41

USER INTERFACE

<Save>

<Suspd>

<Tab>

<Undo>

and is a dedicated key not available for use
by applications. This command is not
available on remote terminals.

Saves changes to current file, with the
option of saving under a new name. An
application must verify that no existing file
in the current directory has the new name
to prevent accidental overwriting of an
existing file. I t is not used in the User
Agent.

Suspends the current window or application
and displays the window manager menu. It
is a dedicated key not available for use by
applications. This command is not available
on remote terminals.

Moves the highlight to the next field or tab
stop. In text creation, it inserts a tab
character.

Shifted, it moves the highlight to the
previous field or tab stop.

Undoes the result of the last executed
command. It is not used in the User Agent.

Other Commands

Other commands used in the User Agent for File management,
window management, and system control are listed below.
These commands are available on the command menu and some
are also available on screen keys. Many of the commands found
on the screen keys are also found on the file system commands
menu (displayed by pressing <Bl> or <Cmd».

Cleanup

1-42

A vail able in the Office and file system
commands menus. It closes all open

Logout

Move

NEXT WINDOW

ORGANIZE

PASTE

USER INTERFACE

windows owned by the User Agent except
the Office.

This is in the Office Commands menu. It
logs the user out. Users must close all
open files before logging out.

This command appears in the Window
Commands menu. It activates the
highlighted window and allows the user to
move the window without the mouse by
using the arrows on the keyboard.

This is on screen key <F5>. It activates
the next (algorithmically determined)
window. It only activates Office, file
system, Administration, Floppydisk,
Clipboard and Wastebasket windows. It
does not activate application windows, or
any windows that do not display the
NEXT WINDOW and PREVIOUS
WINDOW screen keys.

This is on screen key <Fl> in User Agent
windows. It allows the user to specify the
display format for the current file system
window, to control the amount of
information about each file or folder that
is displayed, and to control the format in
which it is displayed. It takes no object.

This is in the file system commands menu
and on screen key <F8> in User Agent
windows. I t completes a Copy or Move
command. When the user has selected a
file or folder and given the Copy/Move
command, the user then opens the folder
in which the object is to be placed and
presses <F8> or types "<Cmd> paste."

1-43

USER INTERFACE

PREV WINDOW

RENAME

Run

SECURITY

Shape

SHOW LAYOUT

1-44

This is on screen key <F4>. It activates
the previous window and is subject to the
same restrictions as <Next Window>.

This is on screen key <F3> in File System
windows and in the Commands menu. It
displays a form that allows the user to
type in a new name for the selected
object~ The user does not need to supply a
suffix; it is automatically appended to the
name. Rename cannot be used to
overwrite an existing file, like mv in
UNIX System V. If an object with the
new name already exists, the user is
prompted to specify a different name.

This is in file system command menus. It
executes the program contained in the
specified object and is the default
command for executable files.

This is in file system command menus and
on screen key <F2>. It is a User Agent
command that allows the user to set
access permissions and ownership on the
specified object.

This is in in the Window Command menu.
It activates the window under the
highlight and allows the user to change
its shape by using the arrow keys on the
keyboard.

This is in the file system command menu
and on screen key <F7>. It displays the
hierarchical organization of the user's file
system pictorially from the current
window down.

Shutdown

System info

USER INTERFACE

This is in the Office and file system
command menus. I t checks to determine
if any remote users are logged in and if
mail is being sent or received. It asks for
confirmation before proceeding, then it
synchronizes (syncs) the system, logs the
user out, and prepares the system to be
turned off or rebooted.

This is in the Window Manager Command
menu. It displays information about the
current active window and is provided as
a utility for software developers.

Process Control Commands: Conventions

This is a detailed description of the consequences of pressing
the keys that control execution, cancellation, and termination of
functions and applications, for each active window type. These
functions should be used consistently in all applications.

Figure 1-5 shows the results of pressing the <Exit>, <Close>,
<Cancl>, <Enter>, and <Return> keys, and of pressing <B1>
on the [X] icon in the window border, on the [OK] patch in a
form, or when not pointing to an icon, for different active
window types.

1-45

USER INTERFACE

ACTIVE WINDOW

KEY/PATCH popup "Must select" "May select" FOI'm Application
output only menu (persistent) menu window

EXIT key close popup cancel cmd/ cancel cmd! cancel initiating cancel cmd!
window; query selection (no selection (no command; no selections query

change); close change); close change to form; to save changes
close form ---+ close
window; from application
calling window, window
exit to node

CLOSE ke~' save changes---+ menu window; window; exit
exit to node query to save to node

changes---+
exit to node

CANCL key close popup cancel cmd/ cancel cmd! cancel initiating cancel cmd!
window; selection (no selection (no command; no selections;
return change); close change); leave change to form; leave window
to calling menu window; window open close form open
window return to window; from

calling calling window,
exit to node

ENTER key close popup take action or take action or take action, send defined by
window; select item select item form and close application
return under high- under high- form window;
to calling light; close light; leave return to
window menu window window open calling

return to or specified
calling window
or specified
window

RETURN key close popup take action or move highlight defined by
window; select item to next field application
return under high-
to calling light; leave
window window open

HI or mI close popup (no change); selections; cancel initiating (1) cancel cmd/
window; close menu leave window command no selections;
return window; open change to form; leave window
to calling return (2) if no cmd! close form open;
window to calling selection in window; return to (2) of no cmds/

window effect, close calling window selections in
window, exit effect, query
to node to save changes

---+close
application
window

Figure 1-5. Definitions of Execution, Cancellation, and
Exiting Functions, by Window Type (1 of 2)

1-46

KEY/PATCH popup
output only

Bl 01' ~ close popup
window;
return

Bl not on
an icon

to calling
window (patch
not needed)

close popup
window;
return
to calling
window

USER INTERFACE

ACTIVE WINDOW

"Must select" "May select" Form Application
menu (persistent) m('nll windm.1'

not availahle not availabl<> take action, defined by
send form, application
and close
form window;
return to
calling or
speeified window

item under item under select field defined by
highligbt; highlight; leave and cursor application
close menu window open position within
window field
return
to calling
or specified
window

Figure 1-5. Definitions of Execution, Cancellation, and
Exiting Function, by Window Type (2 of 2)

Notes On Usage

• The <Cancl> key cancels a partially specified command and
un selects any selected objects. A popup window contains a
form or menu that results from issuing a command, such as
an options sheet for a printer, and can be considered to be a
part of the command. Thus, cancelling the form should
result in 1) leaving the initial settings in the form unchanged,
2) closing the window containing the form, and 3) returning
to the environment from which the command was issued .

• Generally speaking, the <Exit> key is used to terminate an
application, even if another window owned by that
application, such as a command menu, is open at the time.
The Exit command should result in a query as to whether the
user wants to save any unsaved data. Following response to
the query, the application and its associated windows are
closed, and the "previous" window is made active.

1-47

USER INTERFACE

It is not always desirable to exit from an application
completely. For example, when the user gives the Exit
command from the Phone Manager's "Edi t directory"
function, the intent of the command is usually to return to
the main Directory screen, not to exit from the application
completely. Rather than applying a rule about the use of the
Exit command, exit should be used as a "do what I mean"
command. This means that developers should assign its
consequences on a case-by-case basis to avoid taking too large
a jump through the menu hierarchy when the command is
issued.

The following rough guidelines can be used:

• If the Exit command is issued from a "sub-application"
within an application, exit back only as far as the menu or
environment from which the sub-application was generated.

• If the Exit command is issued from a simple menu that is not
a part of a sub-application, then exit from the application as
described above.

In Figure 1-5, the notation, "exit to node" is used to convey
the above use of the Exit command.

• The [X] patch in the window border is mapped onto the
<Shift>-<Cancl> key on the keyboard.

• A function to allow an [OK] patch to be turned on and read
is provided within the body of a window containing a form.
See Form(3T). The user points at the [OK] patch with the
mouse and presses <Bl> to execute the form. This is
equivalent to pressing <Enter> on the keyboard. Pressing
<Bl> elsewhere in the form will select a field as the current
field.

1 .. 48

USER INTERFACE

• In a popup menu, once a selection is made, there is generally
no reason for the window to remain open, so it is closed as
soon as the user makes a selection or cancels the menu.

In persistent menus, which remain displayed after selections
are made, the user must explicitly close «Exit> or [X]) the
window. Examples of persistent menus are all windows
listing the file system contents and also the Administration
menu.

Dedicated Keys

The following keys are not passed to application programs, but
instead are passed directly to the kernel. Therefore, they are
not available for use by applications.

<Msg> Used to access asynchronous messages (see
Asynchronous Messages, Access Via Keyboard
in Chapter 12-FEEDBACK, PROMPTS, AND
MESSAGES).

<Suspd>, <Rsume>
Used to suspend the current window and invoke the
Window Manager menu (see Chapter 5-THE
WINDOW MANAGER).

<Shift>-<Print>
Prin ts the screen. I t allows the user to direct a bi t­
by-bit snapshot of the screen to a dot-matrix printer
(see Printers, Printing the Screen).

<Shift>-<Fl>
These shifted function keys are reserved for use by
the Telephone Manager to give immediate access to
telephony functions from any environment. (See the
AT&T UNIX PC Telephone Manager User's Guide.)

1-49

USER INTERFACE

Chapter 5

THE WINDOW MANAGER

The Window Manager allows the user to manipulate all open
windows. It displays a popup menu of windows to which the
user can point and issue window shaping and movement
commands. The Window Manager window is displayed when
the user 1) presses <Suspd> to suspend the active window, or
2) points to the dotted background in the work area and presses
<Bl>, or 3) points to the [W] icon on the Status line and
presses <B1>.

The Window Manager lists the following information about
each window:

• Object name: the name of the object whose contents are
shown in the window .

• Application name.

The list of windows is a menu. When the user displays the
Window Manager window, the menu item corresponding to the
just-suspended window will be highlighted. The user selects a
window by pointing to an entry in the menu.

Pointing at an entry in this menu and pressing <B1> or
pressing <Enter> resumes the window at which the mouse
pointer is pointing. Pressing <B2> displays a menu of
commands to act on the selected window.

The commands available are: resume, shape, move, and system
info. Resume is the default command. Pointing at [X] and
pressing <B1>, or pressing <Exit>, resumes the previously
active window.

1-50

USER INTERFACE

Controlling Windows

The user can control the location and shape of a window with
the mouse as described in Window Border Areas and
Default Window Properties in Chapter 2-DISPLA Y.

Navigating Between Windows Using The Mouse

The current window is implicitly suspended by moving the
mouse pointer outside the current window and pressing a
button. The process that becomes current depends on the
location to which the mouse is pointing when the button is
pressed:

• If the mouse points to any visible part of another window and
any button is pressed, the current window is suspended, and
the window pointed to is resumed.

• If the mouse points to the telephone region of the status line
and any button is pressed, then the current window is
suspended, the Telephone Manager is invoked, and the Call
Screen is opened and made active.

• If the mouse points to an icon in the message region on the
status line and <Bl> is pressed, the current window is
suspended and the first notice is displayed in a popup window
or the corresponding service is invoked, depending on the
region. The interaction of the mouse with the message region
is described in Asynchronous Messages, Access Via
Mouse in Chapter 12-FEEDBACK, PROMPTS, AND
MESSAGES.

• If the mouse points to the dotted background in the work
area or to the [W] icon on the Status line and any button is
pressed, the Window Manager is displayed in a popup
window.

1-51

USER INTERFACE

Chapter 6

ACCESSING APPLICATIONS

This Chapter describes how files are opened in applications and
how data is transferred between them. From the user's point
of view, these operations are performed through the User
Agent. Applications are not explicitly invoked. Instead, the
object they operate on is opened or created, and the application
is automatically loaded to operate on the object. Applications
that cannot be invoked in this way should install themselves in
the Services menu in the Office (and install a Services menu if
none exists). Users then invoke the application from the
Services menu.

Opening Files And Their Applications

The user chooses a file on which to work, and then opens it
using one of the methods described in Chapter 2-DISPLAY.

Opening a file invokes the appropriate application to edit or
display the object, and passes the name of the object to the
application. The application opens a window and displays the
file in the window.

The application that is invoked depends on the hidden suffix on
the filename. The effects of Open and all other commands on
the objects with this suffix are defined in /usr/lib/ua/Suffixes
[see ua(4)]. An entry is placed in this file for each object type
owned by the application. This is done as a part of the
installation procedure. See Chapter 5-S0FTW ARE
INSTALLATION in Section 2.

The user can create a new object, such as a spreadsheet, by
using the Create command. The user opens the window in
which the object will be stored, and issues the Create command.

1-52

USER INTERFACE

(If the object cannot be stored in the current window, for
example, the Office, it is created in the Filecabinet and the user
is so informed.)

Create presents a menu of types of objects that can be created,
which is taken from the /usr/lib/ua/Suffixes file. The user
selects an object from the menu and presses <Enter>. The
user is then prompted to enter the object's name in a form.
When the form is executed, the appropriate application is
invoked on the newly created file.

Exiting From an Application

An application window is closed when the application is exited.
The exit can be by the application's standard command or by
the user pressing the <Bl> mouse button on the [X] in the
window border. (Clicking on the cancellation region, [X],
should close the window only when there is no current selection
in the application. If an object in the window is selected,
clicking on the cancellation region should cancel the selection.)
See tam(3T).

When the command to close the window is issued, the
application should prompt the user to make certain that no
work is lost (for example, prompt to save document changes).

The window is closed and removed from the display. Windows
or portions of windows that were under the window are
refreshed.

Data Transfer Between Applications

Two methods are available for transferring data between files
of the same or different type. (The applications involved must
support a common intermediate file format.) The first method
allows the user to move or copy a block of data between
windows without explicitly moving the data to an intermediate
buffer. The second method uses a set of special files on the

1-53

USER INTERFACE

Clipboard in the Office. These files are created by copying or
moving data from a file, which is currently running under an
application. In both cases, conversion of the data to a common
format is performed. The structure of the data (for example,
spacing and tabs) should be preserved, so that the user is not
required to reformat the data in the new file. See dif(4).

Method 1: The Invisible Clipboard

Moving or copying data from one file to another is very similar
to moving or copying data within a file. The user gives the
application's move or copy command, and specifies the object or
region to be moved or copied. The item to be moved or copied
is highlighted. A region is highlighted using the commands
that normally specify regions in the current application.

To specify the destination of the material, the user moves the
cursor to the target window, by opening or resuming the target
file, points to the position where the material is to be placed,
and gives the Paste command (or the application's version of
this command.) The unnamed buffer is not flushed when the
user pastes its contents in a new location. This allows the user
to make multiple copies of the same material. The buffer
contents are replaced when the user issues a new Move or Copy
command.

When the Move or Copy is completed, the target file is updated
to reflect the result of the Move or Copy.

Method 2: The Clipboard

The Clipboard in the Office can contain an unlimited number of
files which are used as repositories of data being transferred
between files. The availability of more than one Clipboard file
allows the user to move or copy several objects or regions from
the source file before opening the target. Clipboard files can be
retained indefinitely.

1-54

USER INTERFACE

They are useful for storing frequently used data or text, such as
headers for internal memoranda.

When transferring data to a Clipboard file, the user highlights
the region or object to be moved or copied and issues the Move
or Copy command. To specify the target, the user opens the
"Clipboard" from the Office window and gives the Paste
command. The user is then prompted to type a name for the
data to be stored on the Clipboard, and it is stored under that
name.

When moving or copying data from the Clipboard, the
Clipboard file is the object of the command. The object is
specified by opening the Clipboard and pointing to the desired
file, and pressing Copy or Move. The user then opens or
resumes the target file, puts the cursor in the target location
and gives the Paste command.

Clipboard files can be copied, moved to a file, or deleted but not
opened. To view a Clipboard file, the user must copy or move a
Clipboard file to an open file in a window and paste it in that
file.

Interaction With the File System-Bringing in Files

To copy the contents of a file into an application window, when
an application allows it, the user does the following:

• Suspends the application

• Moves to a file system window

• Highlights the file name

• Issues the Copy command

• Resumes the application and moves the cursor/pointer to the
target point within it

1-55

USER INTERFACE

• Gives the Paste command.

The file is then read into the current file.

1-56

USER INTERFACE

Chapter 7

MENUS AND FORMS

This Chapter describes menus and forms. Menus and forms
display available commands and objects to the user. The use
and design of menus and forms used in the User Agent is
described.

Menus

A menu gives the user a way to view a list of available items
and allows the user to select:

• an item from the list for execution (action)
• one or more objects for an action
• an option on a command, or
• an entry in a restricted field in a form.

See Command Entry Methods in Chapter 3-INPUT for a
complete description of how items are selected from menus.
Also, see menu(3T).

The menu system supports the following functions:

• Selecting and highlighting the name of the object under the
cursor, described below.

• Highlighting the names of all selected items.

• Allowing the user to move the highlight from item to item
using the cursor control keys or mouse.

• Scrolling and paging the menu in the window vertically, if
the menu is too long to be displayed in the window.

1-57

USER INTERFACE

• Canceling selected items via the <Cancl> key or a region in
the window border .

• Multiple selection or single selection. Some menus allow
simultaneous selection of several items (for example, the
Filecabinet menu). Others allow only one item at a time to
be selected (for example, a command menu). The choice of
the type of menu depends on the context.

Selection Indicators

Selection indicators are used to indicate the menu items(s) that
will be selected or affected by an action. Selection indicators
cover the entire name of the object.

Movable Highlight

The movable highlight is an inverse video bar with a "-" to the
right of the menu item that indicates the "current item." The
highlight covers the entire item. If the user issues a command,
the "current item" under the highlight becomes the item on
which action is taken.

As described in Selection by Pointing, the highlight is
moved in menus one of three ways: using the mouse pointer,
using the keyboard arrow keys, or by typing. The highlight
follows the mouse pointer when the tip of the arrow is in a
menu and pointing to an item (or within a "capture region"-a
l-character-position region to the right and left of the item).

The highlight only moves in the active window. When the user
has selected an item by pressing <Mark> or <Cmd>, that item
will remain highlighted while the highlight continues to follow
the mouse pointer. This is described in more detail next.

1-58

USER INTERFACE

Stationary Highlight The stationary highlight is an inverse
video bar that covers the entire item name and does not move
with cursor arrow or mousetrack. It is a "sticky marker" that
is turned on when the user selects an item for future action by
pressing <Mark> or <Cmd>. More than one item can be
selected. If the user specifies an action, all explicitly selected
items are passed as arguments to the action. If any item has
been explicitly selected, the item under the moving highlight is
not passed as an argument unless it also has been explicitly
selected. See Selection by Pointing in Chapter 3-INPUT.

The highlight is turned on/off when an item is under the
pointer marker and the user presses <Mark> or the <B3> on
the mouse. The user will not recognize that the highlight has
been turned off until the mouse is moved away from the item.

Stylistic Considerations for Menus

Menus are normally alphabetized. If a menu contains two or
more columns, the contents are alphabetized by column, not by
row. This makes a big difference in the ease with which the
user locates an item in a menu. See menu(3T).

Items in menus should be all lowercase, or mixed upper and
lowercase, for readability. All uppercase characters should not
be used.

The label area of the menu window may contain an identifier
for the menu. This label identifies the contents and should
reflect the command or situation that invoked the menu.

The first line in the menu window may display more
information about the contents of the menu. A single prompt
can accompany the menu, and it is displayed on line 26.

1-59

USER INTERFACE

Context-sensitive help can be attached to each item in a menu.
That is, a different help screen can be displayed, depending on
the item highlighted.

Forms

Forms are used for command entry when a command contains
user-specifiable options. A form will be presented for the user
to specify options for running the command. Forms are also
used to display and allow the user to set user preferences and
the properties of objects. They are used in many
administrative functions. Forms may be created within a C
program [see form(3)] or from the UNIX System V shell [see
shform(l)].

Navigation in a Form

The user selects and highlights an unprotected field:

• by moving the mouse pointer over the field and pressing
<Bl>

• by pressing <Return> or <Tab> or <N ext> to select and
highlight the next field

• by pressing <Shift>-<Tab> or <Prev> to select and
highlight the previous field, or

• by using the up and down arrow keys to move between fields.

The right and left arrow keys are used to position the cursor
within a field.

1-60

USER INTERFACE

Field Types

Forms contain two kinds of unprotected fields, free-entry fields
and constrained fields.

Free Entry Fields

When the user positions the highlight on a free-entry field and
begins to type, the previous or default entry is cleared from the
field and the new entry is echoed as it is typed. If the first
keystroke is an arrow key or an edit key, the field is not cleared
when a character is typed. In this latter case, it is assumed
that the user wants to edit the field contents, so the character
is inserted in the text instead of the text being cleared.

Other editing functions include:

• BACKSPACE-deletes characters to the left of the cursor
and closes the resulting gap

• DELETE CHARACTER-deletes the character under the
cursor and closes the gap

• CLEAR LINE-clears the field containing the cursor

• INSERT MODE-characters are inserted at the left side of
the cursor as they are typed, pushing characters that are
under and on the right of the cursor further to the right

• OVERTYPE MODE-the character under the cursor is
replaced with a typed character.

Insert and overtype modes are toggled by pressing
<Input Mode>. "IN" and "OT" should be echoed on the top
window border of the form to reflect these modes.

1-61

USER INTERFACE

Constrained Fields

Only certain system-defined entries can be placed in a
constrained field. These are defined in the calling program. The
user can view the selections by pointing at the field and:

• Pressing <Cmd> or <Opts> or <B2>. This displays a menu
of available selections for the field. When the user points at
a selection in this menu and presses <Bl> or <Enter>, the
menu is closed and the item is displayed in the field on the
form.

• Pressing <B3> or <Mark>. Each time the key is pressed,
the next item in the options list will be displayed in the field.
This list is circular, that is, the user cycles through all the
items in the list, continuing with the first after the last.

• Beginning to type. The menu of available selections is
displayed, as above.

Help In Forms

The calling program can attach a single-line (70 character)
prompt to each field in the form. The prompt is displayed on
line 26 whenever its field is active.

General help can be defined on a form. Help on a form is
obtained by pressing <Help> or pressing <Bl> on the [?] icon
in the window border.

Exiting From Forms

To execute (save) the contents of a form, the user presses
<Enter> or points to [OK] and presses <Bl>. This executes
the underlying command or saves the contents of the form, and
closes the window on the form.

1-62

USER INTERFACE

To cancel without changing any values and close the form
windows, the user points to [X] and presses <Bl>, or presses
<Exit> or <Cancl>.

Layout of Forms

The top border of the form window displays the name of the
menu item or command used to invoke the form. The top line
of the form can display either more information or a single­
line, form-specific prompt. It should reflect the name of the
function used to call the form.

Forms should be laid out neatly, with field boundaries lining up
where possible. Field names should be right-justified, and
input fields should be left-justified. See the Office Preferences
form for an example.

Mixed upper and lowercase characters should be used in field
names, for readability.

If a field entry is constrained in length, the highlight should
span the maximum number of characters and no more.

Error messages for invalid entries in fields should be specific
about the nature of the problem; for example,

File name: abc def

Should return:
A file name cannot contain a space.

On return from an error, the field in which the error occurred
should be highlighted.

1-63

USER INTERFACE

Chapter 8

CUSTOMIZATION
This chapter describes the features of the User Agent that can
be customized by the user. The access to customization
functions is via the Preferences menu in the Office. Opening
Preferences results in a menu of areas that can be customized.
In the Foundation software, these areas are Office and Phone
Manager. Applications can install their entry points for
customization here, as well as in the lusr/lib/ua/Preferences
file. Selecting an area to be customized results in display of a
form, which the user fills in. The form contains defaults or
current values for each item that can be customized.

The following items are available for customization of the
user's interaction with the UNIX PC and Office:

• Standard window size

These values apply to standard files. Applications could also
provide a choice.

• Display of a command menu

Users can turn off the display of the command menu when
<Cmd> is pressed. Applications can also provide this choice.

• Display of Filecabinet and Folders

Users can select the default amount of information displayed
about each object (name only, name and object type, or name,
type, modification date, and size). They can select the order
in which the objects are displayed (alphabetical, largest or
smallest first, oldest or newest first, or alphabetical by object
type).

1-64

USER INTERFACE

For each folder, this display can be modified with the
Organize command .

• Access permissions of files and folders

Users can specify default access permissions for their own
files and folders. These permissions can be modified for
individual files and folders with the Security command .

• Emptying Wastebasket

The user may elect to have the Wastebasket emptied
automatically daily, weekly, monthly, or never.

1 .. 65

USER INTERFACE

Chapter 9

ACCESSING THE UNIX SYSTEM: EXPERT
AND STANDARD MODES

This chapter describes the two modes with which users can
access the UNIX System V: Standard mode and Expert mode.
These modes differ in the user's ability to directly access the
UNIX System V shell. This chapter describes the specific
features of each mode of access.

Two modes are provided, Standard mode and Expert mode.
These modes are set via Administration in User logins, under
the "install" login only (install is the system administrator).
These modes govern whether or not the user is allowed to break
out of the User Agent environment and gain access to the
UNIX System V shell or another UNIX shell. This is done
primarily to prevent the user from accidentally "falling into the
UNIX System V shell and getting lost or inadvertently
modifying the file system.

In the Standard mode, the user is fully protected from "falling"
into the UNIX System V shell and inadvertently issuing
UNIX System V commands. From Standard mode, the user
can type User Agent commands (Typed Command Line Entry)
and commands that are recognized in programs or applications
called by the User Agent. The user cannot use full regular
expressions in typed commands or searches, but can use the
wild card character "*." UNIX System V is not listed in the
Office of the Standard User.

In Expert mode, the user has access to the same User Agent
commands and applications provided in Standard mode, and
can also run the UNIX System V shell (or any other installed
shell) in a window and can issue shell commands in that
window.

1-66

USER INTERFACE

The Expert can run the shell by selecting UNIX System from
the Office or by typing Ish <Return> from the Office,
Administration, Wastebasket, or any file system window. A
window will then be created, and the shell will run in that
window. The user can create more than one UNIX System
window. The working directory is the directory from which the
shell command is given, or fufuseridfFilecabinet, if the
command is given from the Office window. The user will be
informed to Press Ctrl d to exit on the message line. The
user returns to the User Agent by suspending the window or
using the shell exit command.

The Expert user can also run single shell commands by typing
!command <Return>, for example, !Is -I <Return>, from
the same windows just mentioned. A window will be created to
display the output of the command, if any, but no further input
will be accepted into the window unless the command expects
input. The user is prompted to Press ENTER to continue
on the message line when the command has finished.

The Expert user can use some of the file management
capabilities and commands of the User Agent on any UNIX
System V directory. Any UNIX System V directory can be
displayed in a window as a menu. A window will be opened on
the parent directory of the current directory if the user types ..
<Return>p. This method can be used to navigate the user's
Filecabinet as well as other parts of the UNIX System Vfile
system. The user can also open any directory in menu form in
a window by typing its path name, for example,
fetc <Return>.

When a directory is displayed as a menu in a window, any User
Agent file manipulation command, such as Copy, Move, Delete,
Rename, and so on, can be used. These commands provide a
protection against accidental deletion and overwriting that is
not available in standard shell commands. The user can also
Open directories in their own windows and Open standard files
in the default editor if permissions allow it. The user can
execute a command (Run an executable file) by pointing at the

1-67

USER INTERFACE

filename and pressing <Enter> or <Bl> if the command
requires no arguments and permissions allow it.

1-68

USER INTERFACE

Chapter 10

CONTROL OF PERIPHERAL DEVICES

This chapter describes how the User Agent controls two
peripherals: Printers and Floppy Disks.

Printers

Users can print an object by selecting the Print command (or
<Print» and print the screen by pressing <Shift>-<Print>. A
form containing options, including defaults, is displayed.

Printing an Object

From the User Agent, the object of the Print command is
specified by pointing to the object name on a menu or typing
the name.

ASCII files and certain other objects, such as saved phone
directories, can be printed directly from the User Agent. When
selected for printing, the User Agent displays a form allowing
the user to specify the printer and number of copies.

Printer Queue Control

The Printer Queue in the Office Printers menu allows the user
to display a list of jobs queued for each printer, and to point to
those to delete from the queue.

1-69

USER INTERFACE

Printing the Screen

The screen can be printed by pressing <Shift>-<Print>. This
command sends a pixel-by-pixel snapshot of the video display to
a dot-matrix printer. This can be done with the sprint(l)
command. The user cannot print the screen of a remote
display.

Floppy Disk

From the Office users can access UNIX System V files and
folders on a floppy disk, and copy and move them between the
hard disk and the floppy disk; with the same user interface as
copying and moving objects between the Filecabinet and other
file system windows. * The floppy disk must be formatted, and
it must contain a mountable file system.

A floppy disk must be mounted before it is accessed. The user
does not need to mount a floppy disk explicitly, however.
Instead, the user issues the command to Open the Floppydisk
object in the Office. A menu of procedures then appears. Once
the user makes a selection, he or she is prompted to insert the
floppy disk and close the latch. Mounting the floppy disk is
done transparently.

When a floppy disk is mounted, its contents (top level) are
displayed as a menu in a file system window called Floppydisk.
The menu looks identical to the Filecabinet menu. When a
floppy disk is currently mounted, the red light on the disk drive
is on.

* Other UNIX System V operations involving floppy disks are formatting,
duplicating, repairing a damaged File system, installing applications,
backing up and restoring. MS-DOS operations available from this menu
include initialization, reading from and writing to an MS-DOS diskette.
These functions are described in the AT&T UNIX PC Owner's Manual.

1-70

USER INTERFACE

To unmount the floppy disk, the user must Close the Floppydisk
window and all windows opened from the Floppydisk window.
This syncs and dismounts the floppy disk. All synchronization
and dismounting is done transparently.

If the user flips the latch on the disk drive without first closing
the Floppydisk window, a popup window appears. The user is
prompted to close the latch, then close the Floppydisk window
before removing the floppy disk.

1-71

USER INTERFACE

Chapter 11

HELP SYSTEM

This chapter describes the User Agent's Help system. The
structure of the Help system should be followed by applications.
Two types of help are available to the user:

1. Context-specific information (which gives access to the
following)

2. A general Help service providing access to various types of
information.

Context-Sensitive and General Help

Context-sensitive help and general help are accessed through
the Help command or by pointing the mouse pointer at the [?]
icon in each window border and pressing <Bl>. The following
example illustrates levels in the Help system.

1-72

<Help>

V
CONTEXT-SENSITIVE HELP

+
screen keys to choose type of general help

V
GENERAL HELP DISPLAY OR MENU

+
screen keys to choose type of general help

USER INTERFACE

Context-Sensitive Help

When help is requested, the first help information that is
displayed consists of a window containing a brief message
which may be scrolled. The content of the message depends on
the application, the environment, and the position of the cursor.

• If the user is filling out a form, the message should provide a
definition of form and gives information about what is
required in each field.

• If a menu item in a file system window is highlighted, the
message should provide information about objects of this
type.

• If a menu item in a command menu is highlighted, the
message provides information about the function and syntax
of the command.

• From an error window, the message should provide more
information about the error and how to correct or avoid the
error.

The window remains until the user explicitly closes it.

General Help

From the context-sensitive help window, the user can access the
general Help service. The screen keys displayed while the
initial Help window is active provide the user with several
entry points to this service. These screen keys are displayed
continuously while any help window is active; they help the
user navigate through the Help system. Each screen key takes
the user to a display of information or to a menu.

1-73

USER INTERFACE

The first two screen keys should be:

Table of Contents <Fl> Displays in menu form a listing of all
help screens. The user can select and
display screens of choice from this
menu.

Using Help <F2> Gives a brief description of how to
use the help system.

The other six screen keys should be related major topics for
which the user can request more information. When the user
displays one of these screens, other screen keys related to that
screen can be displayed. See uahelp(4) for more information.

The Help messages should be self-explanatory and should not
assume that the user has read other Help messages.

Help Display

When the user specifies the type of help desired, the label line
of the window indicates the nature of the help provided. At the
bottom of each windowful of information is an indication of
whether more information can be seen by scrolling. Users can
scroll or page forward and backward in each help display.

Navigation and Exit From Help

The user can move to different parts of the Help service using
the screen keys. The user can close the Help window and
return to the previous context by pressing <Cancl> or <Exit>.

1-74

USER INTERFACE

Chapter 12

FEEDBACK, PROMPTS, AND MESSAGES

This chapter describes the types of feedback given to the user.
The following information does not apply when the user issues
a UNIX System V command or exits into the UNIX System V
shell.

Command Echo

Many commands and the name of any currently selected object
are echoed when entered, so the user knows with certainty what
was requested. If the user typed a wild card character in a
command, the wild card should be expanded when the user
completes the command. If several objects are selected, their
names should be echoed when the action is specified. Echoed
commands should be displayed long enough to be read (at least
2 seconds), but should be cleared when no longer in effect. See
window(7).

Prompts

Prompts provide information to aid the user in performing
certain actions. (For example, when the Move command is
given, the system provides a prompt to the user that it is now
necessary to point to a destination for the object to be moved.)
These prompts should be provided whenever invoking an action
requires more than just pressing a function key. Prompts are
displayed on line 26. They should be cleared when they are no
longer applicable to the current context. See window(7).

1-75

USER INTERFACE

Informational Feedback

A message should be given to the user confirming that his/her
action has had its expected effect, or that the system is
processing the request. These messages are needed when there
is no other indication to the user that an action has had an
effect. These messages appear on line 26 if they refer to a
foreground process. If they refer to a background process, they
are displayed as asynchronous messages, as described below.
Messages should be cleared when the user changes the current
context.

Error Handling

The following means are available to signal to the user that a
keystroke is invalid, a system error or failure occurred, or that
a dangerous condition exists. See message(3T) and message(l).

• Do nothing
• Beep
• Display a status manager icon [!!]
• Display an error message in a popup window
• Display an error message on the message line.

In general, use of the beep should be minimized; the beep
should not be used to signal every possible error condition.

Use the following guidelines for each type of error message:

• Do nothing for minor errors, such as navigation errors.
Examples:

Cursor / scroll/ page up when at the top of the
list/form/ document

Cursor / scroll/ page down when at the end of the
list/form/ document

1-76

USER INTERFACE

Next/Prev window when the only User Agent window is
Office.

• Beep alone, for some invalid keystrokes or commands:

Invalid keystroke-use only for keystrokes that are never
used, such as Rstrt; do not use for functions tha tare
sometimes available.

Pressing an unlabeled function key.

• Beep plus display a status manager icon:

Nonserious asynchronous error conditions, such as printer
out of paper or not connected.

• Display a popup window alone, no beep or blink:

Use for commands that are sometimes available but not in
present context, for example, Move Administration
(Message: can't use Move on Administration), or Dlete
Telephone

Use for commands that are not yet implemented (for
example, Print foldername-gives message that the
function is not yet implemented)

Nonfatal system errors (for example, an error occurred in
dialing)

No help available

Nonserious user errors (Rename-file name already exists)

• Pop-up window plus three beeps (serious error with potential
for damage and loss of data):

1-77

USER INTERFACE

Floppy disk latch opened while disk mounted

Attempted write to incorrect floppy disk

• Display error message on the message line plus three beeps
to signal a serious error where it is not possible to create a
popup window:

Out of window resources-prompt to close some windows

Panic-prompt to record message and press reset button at
the back of the UNIX PC.

Contents of Error Messages

Error messages shown in popup windows should be brief, but
they should identify the problem and, where appropriate, point
the user towards making a correct entry or correcting a
problem situation. For example, Printer unavailable is not a
useful message. Instead, the message or a help screen
associated with the message, should instruct the user to check
for the printer being connected, properly configured, plugged in,
turned on, ready, and supplied with paper and ribbon.

Error messages should avoid the use of UNIX System V
jargon, such as full path names and suffixes that are appended
to file names.

At the end of popup error messages, the user should be told
how to close the window, for example, Press ENTER to
continue.

If help is available for the error message, the [?] icon should be
displayed; otherwise it should be off.

Error messages should be small enough to fit into a window; no
scrolling should be necessary.

1-78

Asynchronous Messages

Asynchronous messages include:

USER INTERFACE

• messages sent by processes running in the background
• notification of incoming mail
• notification that the message center has a message for the

user, and
• timed reminders.

An asynchronous message is stored when it arrives, and the
user is notified that a new message has arrived. The notice
that a message has arrived is displayed in the message region
of the status line (line 1). Separate regions of the status line
are defined for system messages, mail, and other notices. Each
region remains blank until a notice corresponding to that
region arrives. When a notice arrives, a beep sounds, and an
icon is displayed. The icon is displayed until the user accesses
the corresponding service or notice display.

Access Via Mouse

With the mouse, the user accesses asynchronous messages by
pointing to the icon on the status line and pressing <B1>. The
result depends on the region:

• Mail

The mail service is invoked, if one is installed. Otherwise,
the user is informed "you have mail" and must use Ibinlmail
to read it.

• Notices

All other notices, including timed reminders and system
messages from background processes, are displayed in a
popup window, one at a time. Notices are displayed in last­
in-first-out order.

1-79

USER INTERFACE

Access Via Keyboard

All messages are accessed by pressing the <Msg> key. If only
one type of message is present, the messages are displayed in a
popup window, or the appropriate service is invoked. If more
than one type of message has arrived, a menu of available
message types is displayed, allowing the user to select the type
desired. The messages are then displayed in a popup window or
via the appropriate service.

1-80

Section 2

DETAILED INTERFACE SPECIFICATION

PAGE

INTRODUCTION. 2-1

UNIX PC Hardware Description. 2-1

Software Environment. 2-2

Output To The Screen 2-4

Input From the Keyboard And Mouse. 2-9
Remote Console Support. 2-17

Software Development Environment 2-17

User Agent. 2-18

Software Installation And Shell Interface To

Applications. .. 2-19
Remote Screen And Printer Option Settings 2-20

File System Integrity. .. 2-20

PROGRAMMING THE TELEPHONE PORT 2-22

Accessing the Telephone Port 2-22

Necessary System Calls 2-23

THE TERMINAL ACCESS METH<;>D 2-26

General TAM Functionality. 2-26

TAM Limitations... 2-27

Special TAM Features.... 2-27

TAM Subroutine Calls.. 2-32

curses-Compatible Calls 2-38

PROGRAMMING THE UNIX PC .. 2-47

Calling the C Compiler. .. 2-47

Libraries and Shared Libraries. .. 2-48

The Make Program 2-49

Loadable Drivers 2-50

Improving Application Performance on the UNIX
PC .. 2-51

SOFTW ARE INSTALLATION 2-53

The Approach 2-54

An Outline of the Installation Procedure 2-55

Creation of the Floppy Set 2-57

What the Install Program Should Contain. 2-59

Removal of Installed Software. .. 2-65

What the Remove Program Should Contain. 2-66

Section 2

DETAILED INTERFACE
SPECIFICATION

Chapter 1

INTRODUCTION

You should follow the guidelines described in this section
(Section 2) for compatibility of your programs with the present
release and future hardware and software enhancements of the
UNIX PC.

UNIX PC Hardware Description

The UNIX PC is a desktop intelligent workstation using the
Motorola 68010 microprocessor with the UNIX System V
operating system. Virtual memory operation is provided.
Minimum real memory is 512K (including memory for the
operating system) and maximum process size for a virtual
memory program is 2.5 megabytes. Note that the maximum is
limited by swap space on the hard disk; for example, on a
system with a 10MB hard disk the 3MB swap space is taken up
when the system is booted. This leaves 1.5MB for all processes
together. Much of the swap space is taken up by background
processes, leaving little space for other processes.

Other hardware features include:

• 720 by 348 bit-map graphics screen

• DTE RS232-C serial port

2-1

DETAILED INTERFACE SPECIFICATION

• 36-pin, CENTRONICS®-compatible parallel printer port

.103-keykeyboard

• 3-button mouse

• AT&T PC 6300- and IBM* PC-compatible 48-TPI floppy
disk drive

• Winchester disk drive (at least 10 megabytes)

• AT&T 212-compatible modem with auto-dial and auto­
answer capabilities

• Two ports for connection to phone lines

• One port for connection to a telephone handset

• Three expansion ports.

Software Environment

The basic system software of the UNIX PC is the UNIX
System V operating system. The User Agent, a user-friendly
interface, is described in THE UNIX PC USER
INTERF ACE section of this guide. For applications to be
fully compatible with the UNIX PC, they should work under
UNIX System V and should conform to the specifications of
this document and interface correctly with the User Agent.
Programs that are UNIX System V -compatible and use only
standard input/output (but are not necessarily integrated with
the User Agent) can still run on the UNIX PC. They should be
installed using the installation procedure described in Chapter
5-S0FTWARE INSTALLATION.

* Trademark of International Business Machines, Inc.

2-2

DETAILED INTERFACE SPECIFICATION

The UNIX PC supports a wide variety of industry standard
printers, plotters, and other hardcopy output peripherals. For a
complete list of output peripherals supported by the UNIX PC,
consult your authorized distributor, AT&T representative, or
your AT&T UNIX PC Owner's Manual.

UNIX System V Enhancements on the UNIX PC

The UNIX System V implementation found on the UNIX PC
is certified to conform to AT&T Bell Laboratories specification
published for UNIX System V. This implementation provides
excellent source level portability from other UNIX System V
implementations.

The implementation of UNIX System V found on the UNIX
PC provides a number of features that allow software vendors
to take advantage of the unique features of the UNIX PC.
These features include record locking, shared libraries, bit­
mapped screen with kernel support for multiple,
asynchronously active, overlapping windows, a mouse, and an
integrated modem. For further information on these features,
see locking(2), shlib(4), window(7), and phone(7) in the UNIX
System V User's Manual.

Software Development System

The UNIX PC software development system includes two
different terminal virtualization packages, Terminal Access
Method (TAM) and curses. Each provides device-independent
terminal 1/0.

The TAM package is recommended for programming on the
UNIX PC because it is integrated with the operating system to
make optimal use of the hardware. T AM has the following
features that are not available in curses:

• The shared library feature of the UNIX PC is used, so
programs written with TAM can be significantly smaller

2-3

DETAILED INTERFACE SPECIFICATION

than those written with curses. Programs written with
T AM will take up less disk space and will load faster than
programs written with curses.

• Real, overlapping windows are supported.

• Context-sensitive help messages are supported.

• Device-independent input is supported. (curses only
supports device independence on output.)

• Menus, forms, and messages are supported.

• Both high- and low-level mouse support routines are
provided.

• The most frequently used curses calls are emulated by
T AM to allow easy porting of code already written using
curses.

Programs previously written with curses can be ported using
the UNIX PC curses package. The subset of curses
supported on the UNIX PC is documented in curses(3X) (see
the UNIX System V User's Manual). The remainder of this
document describes the TAM package.

Output To The Screen

All access to the UNIX PC screen, windows, and remote
terminals by application programs is via calls to the TAM
package supplied by AT&T. TAM provides the hardware
independence between application software and terminal
screens and keyboards that is similar to what is provided by
the UNIX System V curses package. T AM has the following
features that are not in curses:

• Terminal-independent, low-level window primitives

2-4

DETAILED INTERFACE SPECIFICATION

• Loadable font control, including character graphics

• Support for bit-mapped graphics

• Low-level mouse control (reading and scaling)

• High-level window functions: creation, deletion,
sizing/ shaping, positioning.

• Menu/forms display and formatting, plus entry selection
via keyboard or mouse

• High-level mouse control: auto-mouse tracking, cursor
control, scaling, and button handling.

The T AM package is described in Chapter 3-THE
TERMINAL ACCESS METHOD and includes facilities to:

• Position the cursor on the screen

• W ri te characters and strings to the screen

• Perform formatted output (printf functionality)

• Clear the screen or sections of the screen

• Insert and delete characters from the screen.

All applications should perform screen I/O through TAM. No
direct calls to the hardware should be used. This allows future
hardware enhancements to be transparent to application
programs. Only TAM has to be modified to take the hardware
enhancements into account.

When programming for the UNIX PC, you should refer to
Chapter 3-THE TERMINAL ACCESS METHOD in this
section and to tam(3T) in the UNIX System V User's Manual.

2-5

DETAILED INTERFACE SPECIFICATION

Alternate Character Sets and Character Graphics

Up to eight different character fonts per window can be used on
the UNIX PC at the same time. For a program to use any
character set other then the normal set, it must first define the
alternate set on disk (or select one of the alternate font sets
supplied), then it must load the desired set(s) into memory
before using them.

If you want to define your own custom font, build a file as
described in the font(4) in the UNIX System V User's Manual.
The contents of a font file can be reviewed on the screen by
using the cfont(l) command. The font file is then specified at
font load time.

The procedure for loading the character set is described in
window(7) in the UNIX System V User's Manual, and the
loading is accomplished via an ioctl call with the WIOCLFONT
option set.

Although each window can have up to eight fonts loaded at a
given time, the font memory is limited to 64K. This means that
if eight large fonts are defined, they cannot all fit in the font
memory at the same time. You are responsible for insuring
that the fonts to be loaded fit within the 64K memory limit.

Once the selected fonts are loaded, you have two different
methods for switching from one font to another:

1. If only two fonts are to be used (system font in slot 0, and
alternate font in slot 1), an ASCII "shift out" character
(hex "Oe" or octal "16") sent to the window will shift to the
alternate font. An ASCII "shift in" character (hex "Of" or
octal "17") sent to the window will cause a shift back to the
system font.

2. If more then two fonts are to be used, the font you want to
be the active font at a given point is explicitly selected by

2-6

DETAILED INTERFACE SPECIFICATION

sending a 5-character escape sequence to the window. This
sequence is composed of an ASCII "escape", an ASCII "[",
an ASCII "I", the ASCII number representing the font slot
to be used (0 to 7), and an ASCII "m".

These escape sequences, as well as the entire range of escape
sequences that can be used on a window, are shown in escape(7)
in the UNIX System V User's Manual.

Note: Use of these escape sequences instead of curses
or TAM calls can make the resulting code incompatible
with remote alphanumeric terminals.

See Appendix B for a sample program that shows how to use
both methods described above for loading and using fonts.

At the conclusion of use of any font other then the system­
supplied font in slot 0, you should unload the font slots 1
through 7 (0 is reserved for the system font and should never
be disturbed) to free up the system resources. Fonts are
automatically unloaded when a process terminates. However, if
the fonts are not unloaded until a process dies, memory is tied
up unnecessarily.

The fonts shipped with the UNIX PC include the following
fonts:

• PLAIN.I.E.12.A

• monitor.8.ft

• mosaic.8.ft

• special.8.ft

2-7

DETAILED INTERFACE SPECIFICATION

• system.8.ft

• system.r .8.ft

These font files are found in the directory lusr/lib/wlont and
can be viewed by executing the clont command with the path
name of the font file as an argument.

Bit-Mapped Graphics

For applications to write bit-mapped graphics on the screen,
use the wrastop calls. These are the TAM system calls that
allow you to access the display memory. The memory
management unit in the UNIX PC does not allow direct access
to the display memory. It can only be accessed in the
supervisor mode of the 68010 chip and only theUNIX system
kernel can access supervisor mode. All other programs run in
user modes. A description of the wrastop call can be found in
the wrastop(3T) in the UNIX System V User's Manual.

High-level Graphics

Two graphics libraries are bundled with each UNIX PC: GSS­
DRIVERS* virtual device interface (GSS VDI) and GSS­
TOOLKIT* kernel system (GSS GKS). These libraries allow
the programmer to create graphics routines which are device­
independent. No licensing fee is required for the use of these
libraries.

The GSS VDI library is a C language subroutine package which
provides device-independent graphics input and output on the
UNIX PC and its peripherals, including several popular
printers, plotters, display devices, the mouse, and the console.

* GSS-DRIVERS and GSS-TOOLKIT are trademarks of Graphic Software
Systems, Inc.

2-8

DETAILED INTERFACE SPECIFICATION

It implements the published ANSI specification of the Virtual
Device Interface and enhances the portability of applications
software.

The GSS GKS library is a C language subroutine package
which provides device-independent graphics input and output
on the UNIX PC. It implements the published ANSI
specification for the Graphics Kernel System. It provides
functionality beyond the GSS VDI library.

Note: The use of the GSS VDI library may
significantly increase the run-time of an application.

Input From the Keyboard And Mouse

You should learn the keyboard usage conventions on the UNIX
PC before mapping the keys to your application needs. The
philosophy of UNIX PC key use is given in Chapter 4-
DEFINITIONS OF KEYS AND ACTIONS in Section 1 of
this guide.

As with the screen output, all keyboard and mouse input should
be via calls to the TAM package. The TAM routine wgetcO
is normally used by application programs to obtain input from
the keyboard. The value returned by wgetcO depends on the
mode set by the last keypadO call. The default mode of the
system has the keypadO flag at O. In the default mode,
wgetcO returns 7-bit' codes, input keys return a 7-bit character
for the normal QWERTY keys, and functions keys are mapped
into escape sequences which result in a string being returned.

If you set the keypadO flag to 1, the wgetcO call will return
8-bit characters for any key pressed. You should use the labels
shown in the following table for the values of the returned
codes. A table of lusr/include/kcodes.h is provided to assign
the actual values to the labels shown in the following table.

2-9

DETAILED INTERFACE SPECIFICATION

See tam(3T) in the UNIX System V User's Manual for more
information on keypadO and wgetcO

Mouse input is through the track TAM calls which are
described in the track(3T) in the UNIX System V User's
Manual or WIOCSETMOUSE and WIOCGETMOUSE calls
which are described in window(7) in the UNIX System V User's
Manual.

2-10

DETAILED INTERFACE SPECIFICATION

FUNCTION RETURNED FOR EACH KEYSTROKE

LEGEND UNSHIFTED SHIFTED CONTROL
PRESSED

CLR LINE ClearLine s-ClearLine s-clearline

RSTRT REF Ref Rstrt Rstrt

CREAT Creat s-Creat s-Creat

SAVE Save s-save s-save

UNDO Undo s-Und s-Und

REDO Redo s-Redo s-Redo

FIND Find s-Find s-Find

RPLAC Rplae s-Rplae s-Rplae

MOVE Move s-Move s-Move

COPY Copy s-Copy s-Copy

DLETE Dlete s-Dlete s-Delete

DLETE CHAR DleteChar s-DleteChar s-DleteChar

SELECT MARK Mark Sleet Sleet

INPUT MODE InputMode s-InputMode s-InputMode

Fl Fl s-Fl

F2 F2 s-F2

F3 F3 s-F3

F4 F4 s-F4

F5 F5 s-F5

F6 F6 s-F6

F7 F7 s-F7

F8 F8 s-F8

EXIT Exit s-Exit s-Exit

MSG Msg s-Msg s-Msg

HELP Help s-Help s-Help

SUSPD Suspd s-Suspd s-Suspd

RSUME Rsume s-Rsume s-Rsume

OPTS Opts s-Opts s-Opts

CMD Cmd s-Cmd s-Cmd
CLOSE OPEN Open Close Close

CANCL Cancl s-Cancl s-Cancl

PRINT Print s-Print s-Print

CLEAR RFRSH Rfrsh Clear Clear
PAGE Page s-Page s-Page

2-11

DETAILED INTERFACE SPECIFICATION

FUNCTION RETURNED FOR EACH KEYSTROKE

LEG END UNSHIFTED SHIFTED CONTROL
PRESSED

BEG Beg s-Beg s-Beg

HOME Home s-Home s-Home

END End s-End s-End

PREY Prey s-Prev s-Prev

ROLL Up RollUp RollUp

NEXT Next s-Next s-next
RIGHT (» forward s-Forward s-Forward

DOWN down s-down s-down

LEFT left s-left s-left

DEL ESC Esc Del

TAB * BACKTAB BACKTAB

BACK SPACE Backspace Backspace Backspace
RESET BREAK Break Reset Reset
ENTER Enter Enter Enter

* Defined by C Language

Eight function keys are on the keyboard, and room is provided
on the screen for eight labels. The keys are referred to as
"screen keys" or "screen labeled keys (SLKs)." The TAM
curses package provides routines for applications to use in
displaying labels on the screen key area of the screen and in
reading the screen keys when they have been pressed by the
user.

Note: All shifted screen keys are reserved for use with
the system software. Shifted screen keys are owned by
the Telephone Manager at all times and are used for
speed dialing from any environment. Applications must
not use shifted screen keys.

2-12

DETAILED INTERFACE SPECIFICATION

You should review the UNIX PC conventions for screen keys
before deciding on functions to assign to them in your
application. See Conventions for Screen Keys in Section
l-THE UNIX PC USER INTERFACE, of this guide.

Each screen key can contain sixteen characters, arranged in
two rows of eight. See Dedicated Keys in Chapter 4-
DEFINITIONS OF KEY AND ACTIONS in Section 1 of
this guide for a list of keys not available for use by
applications.

Printer System

Because of the multitasking nature of the UNIX PC and its
UNIX operating system, application programs normally send
all printer output through the AT&T-supplied printer spooler
(lp). Details on the operation of the spooler can be found in
lp(l) in the UNIX System V User's Manual. It is strongly
recommended that all software be written to use the spooler.

The only case where an application program interfaces directly
to the printer device is when an application, such as word
processor and business graphics applications, requires real time
control of the printer. This direct interface is restricted to
foreground printing only. (Foreground printing means the
application has direct control of the printer device, as is done in
single-tasking microcomputers.) When foreground printing is
invoked, printing by the spooler is disabled.

To avoid a conflict between this foreground printing capability
of an application and the spooler, any applications using this
foreground printing feature are required to:

• Be the only process on the machine using foreground printing
mode. This is enforced by only allowing an application to
perform foreground printing if it is running from the host
UNIX PC. (Remote terminal applications cannot print in
foreground mode.) The iswindO subroutine can be used to

2-13

DETAILED INTERFACE SPECIFICATION

determine if the program is running on the system's bit­
mapped screen.

• Determine that the printer is not presently in use by the
spooler. If it is, the application must not attempt to continue
the foreground printing operation.

• Disable and lock out the spooler before printing.

• Reset, at the conclusion of foreground printing, the spooler
enable/disable flag to the state it was in when the foreground
printing operation was started.

The UNIX PC is configured to have a printer subsystem with
two printers. One printer can be connected to the RS232-C port
and another to the parallel port. See the AT&T UNIX PC
Owner's Manual for a list of printers currently supported on
the UNIX PC.

The first step in spooled printing is to determine on which
printer you wish to print. If the application has simple, flat
ASCII data to be printed, it can use the default printer and
bypass this step [see lp(l) in the UNIX System V User's
Manual]. Where the application cares about printer type, the
getpent subroutine allows a program to get a list of all the
configured, installed printers [see the getpent(3) in the UNIX
System V User's Manual]. By making calls to getpent, you can
tell which printers are available. When more than one
acceptable printer exists, your program should ask the user
which one to use.

The names returned by getpent are the same as the names in
the Printer Setup menu in Administration, except that they are
optionally suffixed by _R (for example, ATT455_R). Printers
so suffixed are capable of accepting straight binary data with
no interpretation by the driver or the spooler. Thus, if you are
planning to print data with embedded printer control
sequences, or others (such as graphics on a 470-class printer),
you want the "raw" (_R) version of the printer. The nonraw

2-14

DETAILED INTERFACE SPECIFICATION

printers are subject to new-line conversion, for example. In any
case, the printer type is obvious from the name, so you can
customize the output for that particular printer.

Foreground Printing

In the foreground print mode, applications can bypass the
spooler. This would be needed, for example, by a word
processor printing on a single sheet of paper. In this mode, the
word processor must know when printing has been completed
and can prompt the user to change the paper. To be sure that
no contention occurs between an application and the spooler,
the application must first issue a disable command to the
spooler.

Before disabling the printer, you must first make sure that no
jobs are currently printing. The getpent subroutine will
return this information. If a job is printing, you should not
attempt to operate the printer in foreground mode and should
issue an appropriate error message to the user.

Only if the printer is not in operation should foreground
printing be done; then if you disable the printer, the spooler
will not interrupt your printout until you are finished and have
reenabled the printer.

The disable command is given by forking a process to execute
the disable command [see enable(l) in the UNIX System V
User's Manual]. This will stop the spooler if it is already
running, and will prevent it from printing any other jobs while
the application has use of the printer device.

To prevent a condition where multiple users on a single UNIX
PC try foreground printing at the same time, foreground
printing is only allowed for a user at the host UNIX PC. This
restriction must be enforced by the application program. The
program must issue an iswindO TAM call when the user
wants to perform foreground printing. This iswindO call will
return TRUE if the user is using the system's bit-mapped

2-15

DETAILED INTERFACE SPECIFICATION

console [see tam(3T) in the UNIX System V User's Manual for
more details]. If the current user is not on the host UNIX PC,
the application program must not allow the foreground printing
opera tion to proceed.

Once all this is done, you must open the printer directly.
CENTRONICS® interface printers can be· opened as Idev/lp
for "cooked mode" or Idev/rawlp for "raw mode". In cooked
mode, various character mappings (for example, new-line
mapping) are done for you-see Ip(7) in the UNIX System V
User's Manual. In raw mode, every bit goes out as is. This
mode must be used when outputting graphics information or
where the appplication does not want any character remapped
by the operating system.

Serial printers are attached to the RS232-C port which is
known as Idev/ttyOOO. Serial printers can be opened as
Idev/ttyOOO. See termio(7) in the UNIX System V User's
Manual for more information.

In many cases, the device to which the printer is attached can
be inferred. In other cases, such as the AT&T 455 printer, this
is not possible. When it is unclear what device the printer is
attached to, applications should inspect the files
lusrlspool/lp/class/Serial and
lusrlspool/lp/class/Parallel.

The Spooler lp Command

The interface to the print spooler subsystem is through the lp
command. The lp command can be issued by a user at the
keyboard, or it can be exec'ed or popen'ed by a program that
has data to print. File arguments or an input stream are
expected; an optional argument naming the printer that should
be used will be accepted. If no printer is specified, the default
printer is used. Use the UNIX PC specific \-a option to give
the request a name. That way, the user can identify the
request later. This must be compiled to allow the User Agent

2-16

DETAILED INTERFACE SPECIFICATION

to identify the proper file when the user examines the printer
queue.

Remote Console Support

In addition to a user on the host UNIX PC (with its bit­
mapped screen and the integral keyboard and mouse), the
UNIX PC can support remote terminals. For a list of
terminals supported by the UNIX PC, see the AT&T UNIX
PC Remote Access User's Guide located in the Communications
Management binder.

All vendor-supplied applications must run on the UNIX PC's
screen and keyboard. In addition, applications also should be
capable of running on remote terminals. Application writers
should thoroughly read the discussion of differences between
T AM support for local and remote environments found in
tam(3T) in the UNIX System V User's Manual.

Software Development Environment

The UNIX PC contains a complete C language development
system, so software can be developed directly on the UNIX PC.
While the C language is the "standard" language on the UNIX
PC and is preferred for all uses, other languages, including
those of several vendors, are supported. Among these are
Assembler and versions of BASIC, COBOL, FORTRAN, and
Pascal.

The UNIX PC Development Set, which is contained in the
optional Utilities package, supplements the System Software
Set to provide full UNIX System V for application
development. A complete listing of the commands and
application programs in the UNIX Utilities set is in Appendix
C of the AT&T UNIX PC Owner's Manual. The development
environment includes:

2-17

DETAILED INTERFACE SPECIFICATION

• UNIX System V with utilities

• eu, uuep, and epio (part of the system software set)

• vi (and ed in system software)

• ee, as, and ld

• make

• ar

• the sdb debugger

• the lp print spooler (part of the foundation set)

• a full set of I/O libraries (stdio, TAM)

• lint

• SCCS

The UNIX PC supplies a global environment variable, $HOME,
to point to the home directory for the current user. Application
programs use this variable to locate any initialization files to
be used for the current user.

User Agent

The standard UNIX PC user interface is the User Agent. The
User Agent provides a window- and menu-based interface to
the UNIX System V file system and to UNIX PC services. It
allows the user to invoke, suspend, and resume applications in
simultaneously present windows, and it provides access to
peripheral devices. See Section 1 of this document for a
description of the User Agent and the tools used to build it.
The tools are available for use by any application; you are
encouraged to use them.

2-18

DETAILED INTERFACE SPECIFICATION

One of the important features of the User Agent is the ability
to "cut" and "paste" data from one application to another. The
User Agent handles data transfer between applications on the
Clipboard. Your application should support this feature.

While the User Agent is the standard interface, the standard
UNIX System V shell is provided on the UNIX PC for use by
"expert" UNIX system users as the job control interface to the
operating system. Users who are interested in using the shell
should see Chapter 9-ACCESSING THE UNIX SYSTEM:
EXPERT AND STANDARD MODES in Section 1 of this
guide.

Software Installation And Shell Interface To
Applications

Any application program can be called in one of two ways:

1. From the UNIX System V shell, that is, "ordinary" UNIX
operating system.

2. From the UNIX PC User Agent.

In either case, the application sees the same interface; on being
started, it is passed any relevant parameters through the
normal UNIX argv and argc calling arguments as defined in
the C language. All applications must be able to utilize
parameters passed in this way to provide for a clean interface
to the User Agent.

Since the User Agent is the standard interface to the UNIX
PC, all software must interface to it in a uniform way. The
Administration features on the UNIX PC contain software to
control the installation of software. By handling all
installations through Administration, the user is presented
with the same interface when installing new software,
regardless of which vendor wrote the application being
installed.

2-19

DETAILED INTERFACE SPECIFICATION

All vendors must use the supplied installation software.

The installation procedures for vendor software are detailed in
Chapter 5-S0FTWARE INSTALLATION.

Remote Screen And Printer Option Settings

The UNIX PC system software has been written to make use
of a variety of printers and terminals. To use the add-on
peripherals, the user must have the option switches on the
peripheral set to the values assumed by the UNIX PC
software. The option settings required by the UNIX PC for
proper operation of printers can be found in the AT&T UNIX
PC Owner's Manual. The option settings required for proper
operation of terminals can be found in the AT&T UNIX PC
Remote Access User's Guide located in the Communications
Management binder. You must insure that your code works
with these option settings.

File System Integrity

Application programmers who have not worked previously with
the UNIX operating system should be aware of a major
difference between UNIX and single-tasking systems such as
MS-DOS.

Part of the power of the UNIX system is derived from its disk
caching scheme. UNIX maintains memory buffers of blocks
going to the disk; actual writes to the disk are done only when
the buffers are full. This means that even though an
application has performed a disk write, the data can still be in
memory and not yet on the disk.

2-20

DETAILED INTERFACE SPECIFICATION

To be sure that data is not lost, applications should follow these
rules:

• Users should never be encouraged to turn the UNIX PC off
without first going through the Shutdown procedure available
in the Office and file system command menus .

• When an application wants to be sure a file is actually saved
onto the disk, it should close the file and then issue a syncO
call. The sync call will ensure that all memory buffers are
flushed. Since a syncO takes time, the application should
only use it when it is necessary to ensure that the data has
indeed been written to disk.

2-21

DETAILED INTERFACE SPECIFICATION

Chapter 2

PROGRAMMING THE TELEPHONE PORT

This chapter describes how to access the UNIX PC's telephone
port from a C language program. A general procedure for
accessing the telephone port is outlined. Necessary system calls
are briefly described for each step in the outlined telephone
port access procedure.

Accessing the Telephone Port

The telephone port is typically accessed in the following order:

1. Open the telephone port's UNix device.

2. Initialize the telephone port (includes storing the telephone
port's original line and modem settings).

3. Manipulate the telephone port.

4. Return the telephone port to its original state.

5. Close the telephone port's UNIX device.

C programs that access the telephone port should follow the
above sequence. A sample C program based on the above
sequence can be found in Appendix B - PROGRAMMING
EXAMPLES.

2-22

DETAILED INTERFACE SPECIFICATION

Necessary System Calls

Two sets of UNIX System V calls can be used to access the
telephone port: dial and undial; and ioctl. U sing dial and
undial is the easiest way to access the telephone port.
However, standard ioctl calls with phone port specific options
provide more control over the telephone port than dial and
undial.

The dial and undial system calls are preferred over ioctl calls
for accessing the telephone port. While ioctl system calls
provide more control over the telephone port, dial and undial
make use of a lock file which helps manage access to the
telephone port by competing, independent processes. The
multitasking capabilities of the UNIX PC make the process
management features of dial and undial very useful.

The following list describes the UNIX System V calls needed to
program the UNIX PC's telephone port.

1. Open the telephone port.

• file_descr = open(ldev/phl, options) where the options
are described in open(2) in the UNIX System V User's
Manual.

2. Initalize the telephone port.

• Save the original device setting.

ioctl(file_descr, TCG ET A, &orig_settings) where
orig_settings is a termio data structure containing the
original line settings [see termio(7) in the UNIX
System V User's Manual].

• Save the modem parameters.

ioctl(file_descr, PIOCGETP, &orig_param) where

2-23

DETAILED INTERFACE SPECIFICATION

orig_param is an updata data structure containing the
original modem parameter values.

• Assign the various input, output, line, and control flags.

ioct1(file_descr, TCSETA, &new_settings) where
new_settings is a termio data structure containing new
line settings.

• Change the modem parameters to the desired values.

ioct1(file_descr, PIOCSETP, &new_param) where
new_param is a updata data structure containing the
new modem parameter values.

3. Manipulate the telephone line.

2-24

• ioct1(file_descr, pioc_option, &new_param)
pioc_option is one of the following:

PIOCOFFHOOK-take the line off-hook

PIOCDISC-disconnect the line

PIOFLASH-flash the line

PIOCHOLD-put the line on hold

PIOCUNHOLD-reconnect the line

PIOCLINESEL-select which line for offhook

PIOCRECONN-reconnect line for more dialing

where

• ioctl(file_descr, PIOCDIAL, &uudata) where
uudata is a uudata data structure which holds the
phone number. This call dials a single digit from the
phone number. The last character dialed should be a
"$".

DETAILED INTERFACE SPECIFICATION

4. Restore the original state of the phone port.

• Restore the original phone port parameters.

ioctl(file_descr, PIOCSETA, &orig_param)

• Restore the original line settings.

ioctl(file_descr, TCSETA, &ori~settings)

5. Close the UNIX device.

close(file_descr)

For more information on programming the telephone port, see
dial(3C) and ioctl(2) in the UNIX System V User's Manual.

2-25

DETAILED INTERFACE SPECIFICATION

Chapter 3

THE TERMINAL ACCESS METHOD

This chapter describes the Terminal Access Method (TAM)
terminal interface support routines, which are provided with
the optional UNIX Utilities of the UNIX PC, and reside in the
TAM library. The TAM libraries must be linked to any
applications that use the routines.

The routines provide an interface to the UNIX PC kernel
windowing capabilities. While reading this section,
programmers should have copies of tam(3T), window(7),
form(3T), menu(3T), message(3T), paste(3T), and track(3T) in
the UNIX System V User's Manual and the AT&T UNIX PC
UNIX System V Programmer's Manual. These manual pages
give detailed information about using the T AM facilities
described below.

General TAM Functionality

T AM provides an access method for terminals. I t allows access
a variety of different terminals with a single consistent
programming interface. When used to access the UNIX PC
screen, keyboard, and mouse, T AM calls generally translate
directly to system calls, so that processing overhead is
minimized in this case.

When TAM is used to access a remote terminal, it simulates
the UNIX PC kernel functionality, where possible. The
interface model that the UNIX PC uses for terminal access is
that of an ANSI X3.64 compatible terminal. When sending to a
remote terminal, T AM translates the ANSI 3.64 escape
sequences to the appropriate escape sequences for the
particular terminal.

2-26

DETAILED INTERFACE SPECIFICATION

TAM uses the termcap data base to determine the
capabilities of the remote terminal, and how they are accessed.
In the remote terminal case, T AM simulates the kernel
windowing capabilities for a particular application by
maintaining a screen image, as well as those portions of
windows that are overlayed.

In the remote terminal case, TAM optimizes screen access by
using its knowledge of what is already on the screen. Note that
this optimization is not available in the case of the screen on
the UNIX PC itself because these calls are passed directly to
the kernel. In either case, unnecessary screen I/O calls should
be avoided. In particular, applications should try to avoid doing
screen I/O one character at a time, and should instead, send
complete lines or strings of text to the screen.

TAM Limitations

In the remote terminal case, only a single application owns the
screen at anyone time. This implies that multiple applications
are not allowed to simultaneously access the screen of remote
terminals.

Other differences for the remote terminal are: the mouse is not
supported for the remote terminal (mouse-related subroutine
calls are ignored), some sequences supported for the UNIX PC
cannot be supported for remote terminals (the terminal can
lack the capability), and fonts/graphics are not supported.

Special TAM Features

The UNIX PC supports multiple overlapping windows
displaying simultaneously on the screen, and it supports the
mouse. Detailed descriptions of these features are located in
TAM subroutine Calls later in this chapter.

2-27

DETAILED INTERFACE SPECIFICATION

Windowing

Multiple overlapping windows can reside simultaneously on the
UNIX PC screen. These windows can be owned by the same
process (application) or by distinct processes. The covered
portions of any windows are remembered on a pixel basis by
the UNIX PC kernel.

The UNIX PC kernel maintains an ordering of the windows
based on which window overlaps which other windows. The
topmost window, in this ordering, is always completely visible.
When a window is selected, it is brought to the top and can
potentially overlap other windows or completely overlay them.

A window owned by a particular application can be
manipulated without the consent of the application (e.g., if a
user resizes the window from the User Agent). The
characteristics of the window that can be changed are size,
shape, position, depth, and other miscellaneous parameters. The
application is notified of the change via a signal (SIGWIND).
This signal is sent to the process group associated with the
window.

For an application to respond intelligently to changes in its
window, it must catch the signal (the default is that SIGWIND
is ignored) and issue a wgetstatO call to determine how the
window has changed. The wgetstatO call is described shortly.

An application also can change the characteristics of its own
window. In this case, no signal is sent to the application. In
fact, when any process in the process group associated with the
window changes the characteristics of the window, no signal is
sent.

Care should be taken when an application changes its own
window, as this might be defeating the wishes of the user. For
example, a very annoying process could be written that makes
its window as large as the screen, and every time it receives the

2-28

DETAILED INTERFACE SPECIFICATION

SIGWIND signal, it resets its window to be on top and as large
as the screen. Then the user is effectively blocked from
running any other applications.

A single process can create multiple windows. In this case, it
receives the SIGWIND signal when any of its windows are
changed. The wgetstatO call can be used to determine which
window was affected.

Windows have borders with optional icons to let the user
manipulate what is displayed inside a window. Window borders
come with the following border icons:

Icon

Help
Cancel
Scroll up
Scroll down
Scroll right
Scroll left
Move
Resize

Key

HELP
CANCL
Shift-up arrow, Page up, Beg
Shift-down arrow, Page down, End
Shift-right arrow
Shift-left arrow

The pressing of a mouse button while the Mouse pointer is on
any of the border icons except Move and Resize is translated by
the kernel into the corresponding keystroke. It is up to the
application to respond to the keystroke. Move and Resize
functions are handled by the kernel, not the application. Note
that for the scroll up and scroll down icons, the key code
returned depends on the mouse button pressed.

Each window is a separate device, and can have its tty modes
set independently of the other windows. Window 1/0 is
performed via file descriptors, so any open windows of a
process are inherited by a child process. All of the usual
UNIX system calls apply, so, for example, an application can
set the "close on exec" bit via fentl() to prevent access to

2-29

DETAILED INTERFACE SPECIFICATION

particular windows by a child process. See window(7) and
termio(7) in the UNIX System V User's Manual for more
information on the capabilities of the windows.

Note: On a remote terminal, window id's are not file
descriptors, and the tty modes of separate windows are
not independently settable.

A process can also set up a child process to make its standard
input and output point to a particular window. The usual
technique is used, that is, close file descriptors 0, 1, and 2
(stdin, stdout, and stderr) and duplicate the window's file
descri ptor.

Window-changed signals are sent to the process group
associated with the particular window. Thus, a parent process
receives, by default, signals concerning windows created by its
children. The setpgrpO and wiocpgrpO system calls can be
used to prevent this. {For more details, see window(7) in the
UNIX System V User's Manual.]

Windowing on a Remote Terminal

The major difference between the remote terminal and the
integral UNIX PC screen and keyboard, from the application
point of view, is the lack of kernel level window support. TAM
supports windows transparently within a given process, but
knows nothing about windows created by other processes.

In the remote terminal case, windows are accessed through
TAM-provided window ID's (rather than through file
descriptors), and child processes cannot inherit windows as
previously described.

2-30

DETAILED INTERFACE SPECIFICATION

Each process has control over the entire screen, and windows
created by other processes are erased when the new process
issues a winit() call.

The iswindO call is used to determine if the terminal is
remote or local.

Mouse Interface

Support of the mouse on the UNIX PC is provided by both
high-level and low-level TAM routines. The low-level routines
are documented in tam(3T) in the UNIX System V User's
Manual, and provide for setting mouse parameters, getting
mouse reports from the keyboard interface, parsing the mouse
reports, and other functions. The high-level routines are
documented in track(3T) in the UNIX System V User's Manual.

Of the two kinds of routines, trackO routines provide the
simpler interface to the mouse. The trackO routines, in turn,
use the low-level TAM mouse routines to achieve their purpose.
The operation of the mouse and a detailed description of the
reports returned by the mouse are given in the window(7) in
the UNIX System V User's Manual.

Initially, mouse reports are disabled, so applications that do not
use the mouse do not need to worry about them. When mouse
reports are turned on by the application, they are returned to
the application as a special 8-bit input code [or 7-bit input
escape sequence, depending on the setting of the keypad(3) call]
in the input stream.

In the default-enabled state, a mouse report is inserted in the
input stream on each change of the button state (that is, each
time any of the three buttons is pressed or released). Thus,
these reports are buffered and are in sequence with any
keyboard input. The UNIX PC does not recognize double-clicks
or multibutton depressions.

2-31

DETAILED INTERFACE SPECIFICATION

The mouse report contains the mouse button state and the
mouse cursor coordinates. This mouse report can be read and
parsed by the application, or the application can use the
wreadmouseO call, which reads the information from the
input stream and returns it in a structure.

The programmer can enable the mouse to send a report when
any of the following conditions occur:

• Any of the three mouse buttons change state

• The mouse cursor enters a predefined rectangle

• The mouse cursor leaves a predefined rectangle.

Any number of rectangles can be defined for mouse report
purposes. You can also request any combination of the above
three cases for the generation of mouse reports.

In the case of a remote terminal, mouse reports are never
received, and the mouse-related subroutine calls are ignored.

Note: Applications that desire to follow the mouse
movement across the screen (for example, a graphics
drawing package) should always use the track(3T) mouse
motion routines to determine when the mouse has
moved. This latter procedure will bog down the CPU
and severely degrade performance for other users.

T AM Subroutine Calls

TAM is divided into high-level and low-level functions. Low­
level T AM provides basic access to all terminal capabilities,
while high-level TAM provides menu, forms, and mouse
tracking capabilities. Except where noted, the TAM routines
function on remote terminals as well as on the integral UNIX
PC screen and keyboard.

2-32

DETAILED INTERFACE SPECIFICATION

T AM also includes a collection of subroutines that are
compatible with the curses interface routines, so applications
that currently use curses can be ported to the UNIX PC.

A description of all the TAM entry points follows.

Low-Level TAM

The following routines allow the application to create, modify
and delete windows, and perform output to, and obtain
keyboard and mouse input from, windows. The routines are
grouped into four categories: setup, display interface, keyboard
interface, and mouse interface. See tam(3T) in the UNIX
System V User's Manual for more detail on these routines.

Setup

winitO Sets up the process for window access. It must be
called before using, any other window calls.

wexitO Should be called in place of exitO.

iswindO Boolean-Tells the user if he or she is in a
hardware window environment, that is, the bit­
mapped screen.

Display Interface

wcreateO

wdelete

wselectO

Create a window.

Delete a window.

Makes the specified window the current
window. If it is overlapped by any other
window, it moves on top. A window is
implicitly selected when it is created
(wcreate) or modified (wsetstat).

2-33

DETAILED INTERFACE SPECIFICATION

wgetstat

wsetstat

wputcO

wputsO

wprintfO

wslkO

wcmdO

wpromt()

wlabelO

wrefresh()

2-34

Gets the status of the window. The
information returned includes the position and
dimensions of the window, and whether it is
the current window or not.

Sets the status of the window. It can be used
to change the size or shape of a window, and it
selects the window implicitly. It also allows
the application to turn the display of the
window border on or off, and turn the display
of border icons on or off.

The side-border and bottom-border icon
displays are separately controllable. Border
icons only display on the integral UNIX PC
screen; they are used for accessing scrolling and
paging functions using the mouse.

Outputs character to the window.

Outputs null-terminated string to the window.

Does a printf to the window.

Outputs a null-terminated string to a single
screen key, or optionally, outputs an entire 80-
column line to write all screen keys at once.

Outputs a null-terminated string to the
command line.

Outputs a null-terminated string to the prompt
line.

Outputs a null-terminated string to the window
label line.

Flushes all output to the window. Output is
normally buffered until input is read from the
window. A special version of the wrefreshO

wgotoO

wgetposO

wprexec()

DETAILED INTERFACE SPECIFICATION

call is used in the remote terminal case to
redisplay all windows known to the application.

Moves the window's cursor to a specified row
and column.

Gets the current position of the cursor in the
specified window.

On a remote terminal, Clears the screen and
restores tty modes. On the UNIX PC, it
creates a dimensionless window and duplicates
the file descriptor to standard in, standard out,
and standard error. It is used before exec of
child process.

wpostwaitO On a remote terminal, Restores tty modes and
restores the process's windows. On the UNIX
PC it is a no-op. It is used after a wait for
child process to complete.

wgetselO Returns the currently selected window. It is
used after a window signal is received.

Keyboard Interface

wgetcO Gets a single character from stdin. It is the
window equivalent of getcharO. The input
stream from any keyboard is translated into
UNIX PC keyboard equivalents (if keypadO is
TRUE).

Mouse reports are also returned in the input
stream. In the event of a mouse report, wgetc()
first returns a unique code to indicate that a
mouse report follows, then the report itself can be
read character by character using wgetcO; or the
wreadmouseO call can be used.

2-35

DETAILED INTERFACE SPECIFICATION

keypadO Determines how function keys are returned in a
wgetcO call. (Function keys are in the left-hand
and right-hand clusters on the UNIX PC
keyboard.)

If flag=O, then this sets 7-bit mode-function keys
return escape sequences for a wgetcO call. If
flag=l, then this sets 8-bit mode-function keys
return a single 8-bit character. If flag=2, then
this sets nonmapped mode-function keys return
the code generated by the terminal used.

Mouse Interface

wsetmouse Sets up parameters associated with the
mouse. wsetmouseO also takes a pointer to
a umdata structure which determines the
report conditions for mouse motion and/or
button state changes [see window(7) in the
UNIX System V User's Manual for a
discussion of the WIOCSETMOUSE and the
undata structure for specific usage].

If no mouse is present or if the terminal is a
remote terminal, wsetmouseO returns an
error code.

wreadmouseO Gets the mouse state. The information
returned consists of the mouse cursor
coordinates and the mouse button state
(whether each of the three buttons is up or
down). Because the information is read from
the input stream, wreadmouseO should be
called only after a mouse code· is returned by
wgetcO.

2-36

DETAILED INTERFACE SPECIFICATION

High-Level TAM

menuO

formO

Creates a window large enough to hold the menu;
it displays the menu, prompts the user to select
menu item(s), and returns when a function key is
pressed.

It displays single or multiple selection menus. The
shape of the menu (number of rows and columns)
can be set by the caller or determined
automatically. A title should always be assigned
to a menu to ensure proper window identification
if the user accesses the Window Manager. A
prompt can optionally be displayed with the menu.

The menu specification includes an array of named
menu items. Each menu item can have an
associated int value which is returned to the caller
when that item is selected.

If the operator types in a string on the command
line, that is matched against the menu items, and
also returned to the caller.

Creates a window large enough to hold the form,
displays the form, prompts the user to fill in the
form, and returns when a function key is pressed.
A title should always be assigned to a form to
ensure proper form identification if the user
accesses the Window Manager.

The form specification includes an array of named
fields. Each field is defined to reside at a
particular location (relative to the form), with a
specified length.

2-37

DETAILED INTERFACE SPECIFICATION

An initial value for the field is passed in, and is
returned with a modified value if the user has
edited the field.

Optionally, a prompt can be displayed for each
field and a menu of choices for the field can be
specified. If specified, the menu is displayed only
at user command.

curses-Compatible Calls

This is a description of the routines supported for curses
compatibility. Combining these routines with native TAM
calls is generally safe on output, but should be avoided on
input.

The list is arranged by function, and each item includes a brief
description of what the routine does. In describing the
arguments, three special names are used.

1. The name dumsc represents a dummy screen variable that
must be included. Technically, its name does not matter,
but the name stdscr is suggested for compatibility with
"standard" curses.

2. The name dumflag represents a dummy flag variable that
should be included. Technically, its name does not matter,
but the name TRUE is suggested for compatibility with
"standard" curses.

3. The name booflag represents a Boolean flag with value
TRUE or FALSE, indicating whether to enable or disable
the option.

2-38

DETAILED INTERFACE SPECIFICATION

Initialization

These functions are called when initializing a program.

initscr()

endwin

This initializes the curses data structures.

This restores tty modes, moves the cursor to the
lower left corner of the screen, resets the terminal
to the proper nonvisual mode, and tears down all
appropriate data structures.

Option Setting

These functions set options within curses. Initially, all of
these options are disabled. It is not necessary to disable these
options before calling endwin.

clearok(dumscr,dumflag) This is a dummy routine that is
present for curses
compatibility. No action is
taken.

keypad(dumscr,booflag) This option enables the keypad
of the user's terminal and sets
the mode of translation of keys.
See the description in Keyboard
Interface.

leaveok(dumscr,booflag) Normally, the hardware cursor
is left at the location of the
virtual screen cursor. This
option allows the cursor to be
left wherever the update
happens to leave it. It is useful
for applications where the
cursor is not used, since it
reduces the need for cursor
motions.

2-39

DETAILED INTERFACE SPECIFICATION

If possible, the cursor is made
invisible when this option is
enabled.

nodelay(dumscr,boofiag) This option causes getch to be a
nonblocking call. If no input is
ready, getch returns cmil. If
disabled, getch hangs until a
key is pressed.

Terminal Mode Setting

These functions are used to set modes in a TAM emulation of
the tty driver. The modes affect other curses-compatible
calls, but not native T AM calls. The initial mode usually
depends on the setting when the program was called. The
initial modes documented here represent the normal situation.

cbreakO

nocbreakO These two functions put the terminal into and
out of CBREAK mode. In this mode,
characters typed by the user are immediately
available to the program. When out of this
mode, the tty driver buffers characters typed
until new-line is typed. Interrupt and flow
control characters are unaffected by this mode.
Initially, the terminal is not in CBREAK mode.
Most interactive programs using curses set
this mode.

echoO

noecho()

2-40

These functions control whether characters
typed by the user are echoed as typed.
Initially, characters are echoed as they are
typed.

nIO

nonI()

resettyO

savettyO

fixterm()

DETAILED INTERFACE SPECIFICATION

Authors of many interactive programs prefer to
do their own echoing in a controlled area of the
screen; or not to echo at all, so they disable
echoing.

These functions control whether new-line is
translated into carriage return and linefeed on
output, and whether return is translated into
new-line on input. Initially, the translations do
occur. By disabling these translations, curses
is able to make better use of the linefeed
capability, resulting in faster cursor motion.

These functions save and restore the state of
the tty mode~. savetty saves the current
state in a buffer; resetty restores the state to
what it was at the last call to savetty.

resettermO These are two low-level curses routines used to
change the tty modes between the two states:
normal (the mode they were in before the
program was started) and program (the mode
needed by the program). fixterm puts the
terminal into program mode, and resetterm
puts the terminal into normal mode. These
functions are useful for shell escapes and
<Ctrl>-<z> suspensions.

2-41

DETAILED INTERFACE SPECIFICATION

Writing Text on the Virtual Screen

These routines are used to write text on the virtual screen. The
upper left corner is always (0,0) not (1,1). The functions with
the prefix mv imply a call to move before the call to the
output function. Note that these routines do not necessarily
cause characters to be output to the physical screen. For
descriptions on how this occurs, refer to the section Sending
Output to the Terminal.

Moving the Cursor

move(row,col) The cursor is moved to the given location.
This moves the virtual cursor, not the
physical cursor of the terminal.

Writing One Character

addch(ch)

mvaddch(row,col ch) The character ch is put on the
virtual screen at the current cursor
position. If ch is a tab, new-line, or
backspace, the cursor is moved
appropriately. If ch is a different
control character, it is drawn in the
~X notation. The position of the
cursor is advanced. A t the right
margin, an automatic new-line is
performed. A t the bottom of the
scrolling region, if scrollok is
enabled, the scrolling region will be
scrolled up one line.

2-42

DETAILED INTERFACE SPECIFICATION

Writing a String

addstr(str)

mvaddstr(row,col,str) These functions write all the
characters of the null-terminated
character string str on the virtual
screen. They are identical to a series
of calls to addch.

Formatted Output

printw(fmt,args)This function corresponds to the standard
1/0 library function printf. The characters
which would be output by printf are instead
output on the virtual screen.

Clearing Areas of the Screen

clearO This function copies blanks to every position on
the virtual screen and then calls clearok,
arranging that the screen will actually be cleared
on the next call to refresh.

clrtobotO All lines below the cursor are erased. Also, the
current line to the right of the cursor is erased.

clrtoeolO The current line to the right of the cursor is
erased.

erase() This function is equivalent to clearO.

Inserting and Deleting Text

delchO This function deletes the character at the current
cursor position. All characters to the right on the
same line are moved one position to the left.

2-43

DETAILED INTERFACE SPECIFICATION

deletelnO This function deletes the line that the cursor is
currently on. All lines below are moved up one
line, and the bottom line is cleared. The function
returns the number of the deleted line.

insch(c) This function inserts the character c before the
character at the current cursor position. The
current character and all characters to the right
on the same line are moved one position to the
right.

insertlnO This function inserts a blank line at the line that
the cursor is currently on. The current line and all
lines below are moved down one line, and the
bottom line is lost. The function returns the
number of the line deleted.

Sending Output to the Terminal

refreshO This function copies the contents of the virtual
screen to the physical screen.

Input From the Terminal

getchO

2-44

A character is read from the terminal. In
nodelay mode, if there is no input waiting, the
value -1 is returned. In delay mode, the
program hangs until the system passes text
through to the program. Depending on the setting
of cbreak, this will be after one character, or
after the first new-line.

If keypad mode is enabled and a function key is
pressed, the code for the function key is returned
instead of the raw characters. If a character is
received that could be the beginning of a function
key (such as <Esc», curses sets a one-second

DETAILED INTERFACE SPECIFICATION

timer. If the remainder of the sequence does not
come in within one second, the character is passed
through; otherwise, the function key value is
returned. For this reason, there is a one-second
delay after a user presses <Esc>, for example.
(Use by a programmer of the escape key, <Esc>,
for a single character function is discouraged.)

Reading Contents of the Screen

Reading characters from the screen is not supported.

getyx(dumscr,row,col) The current cursor position is placed
in the integer variables row and
col.

Video Attributes

attroff(at)

attron(at) These functions set the current attributes of the
screen. The attributes can be any combination of
A_STANDOUT, A_REVERSE, A_BOLD, A_DIM,
A_UNDERLINE, A_STRIKE. These constants are
defined in TAM.h and can be combined with the C
I (or) operator.

The current attributes of the screen are applied to
all characters that are written on the screen with
addch. Attributes are a property of the
character, and move with the character through
any scrolling and insert/ delete line/ character
operations.

attroff(at) _ This turns off the named attributes without
affecting any other attributes.

2-45

DETAILED INTERFACE SPECIFICATION

attron(at) This turns on the named attributes without
affecting any others.

Bells and Flashing Lights

beep() . This sounds the audible alarm on the terminal.

flashO This calls the beepO routine.

Portability Functions

These functions have nothing to do with terminal-dependent
character output, but can be needed by programs that use
curses. Unfortunately, their implementation varies from one
version of UNIX to another. They have been included here to
enhance the portability of programs using curses.

baudrateO

baudrate These return the output speed of the terminal.

flushinpO

The number returned is the integer baud rate (for
example, 9600) rather than a table index such as
B9600.

flushinp These throwaway any typeahead that has been
typed by the user and has not yet been read by the
program.

2-46

DETAILED INTERFACE SPECIFICATION

Chapter 4

PROGRAMMING THE UNIX PC

This chapter describes several UNIX System V program
development tools. These tools are useful to programmers
developing applications for the UNIX PC. The UNIX System
V tools described in this chapter are (1) the C compiler, (2)
libraries and shared libraries, (3) the Make program, and (4)
loadable drivers. This chapter also lists a number of ways for
improving application performance on the UNIX PC.

Calling the C Compiler

The UNIX PC C compiler is included with the optional UNIX
utilities package. The cc command is the UNIX System V C
compiler. The cc command is invoked by typing

cc [option] file_name

where file_name is a UNIX file containing a C language
program. The file name should end with .c. By default, cc
outputs the compiled program to the executable file a.out.

Example: To compile a C language program contained in the
file example.c, type

cc example.c

The C compiler compiles example.c and outputs the object
code file a.out.

Several options can be used with cc. Two frequently used
options are -c and -0. The option -c causes cc to produce a
linkable object file. For example, cc -c example.c produces
the file example.o.

2-47

DETAILED INTERFACE SPECIFICATION

The option -0 invokes an object code optimizer. The object
code optimizer attempts to reduce the size of the object code.

For more information on calling the C compiler, see the cc(l)
and ld(l) manual pages.

Libraries and Shared Libraries

A library is an executable file of C functions (e.g., printf).
Frequently used functions can be stored in a library and then
used by C programs that require the functions. Library
routines called by a C program become part of the object code
file produced when a C program is linked. For example, if a
compiled C program is 10 K in size and the library functions
called by the program are 25 K in size, the object code file
produced by the link editor (ld) is 35 K in size.

The UNIX PC provides programmers with a shared library. A
shared library is identical to a library except for the
compilation of C programs using functions in a shared library.
When a C program using shared library functions is compiled, a
pointer to the shared library function, rather than a copy of the
functions' object code, is included in the object code file.

The use of shared libraries in C language programs has the
following advantages:

1. Memory demands on a system are reduced. Only one copy
of a shared library function is needed regardless of the
number of active processes using the function.

2. Disk usage is reduced. Programs using a shared library
function do not carry the function's object code in their
object code file.

3. Programs load faster since programs' object code files are
smaller.

2-48

DETAILED INTERFACE SPECIFICATION

4. Programs run faster since programs' object code files are
smaller.

5. Programs require less overlay swapping since the size of
the program's object code files are reduced.

For more information on using shared libraries, see the shlib(4)
manual pages.

The Make Program

Programs with only one or two modules can be compiled
directly with cc. When systems grow to contain many modules
or programs with many interdependencies, updating a module,
finding dependent modules, and recompiling the affected
modules is a significant task. The make command is a UNIX
System V tool that maintains, updates, and regenerates groups
of modules and programs.

The make program provides a method for maintaining up-to­
date versions of programs that result from many operations on
a number of files. The make program keeps track of the
sequence of commands that create certain files and the list of
files that require other files to be current before the operations
can be done. Whenever a change is made in any part of a
program, the make command creates the proper files simply,
correctly, and with a minimum amount of effort. The make
program also provides a simple macro substitution facility and
the ability to encapsulate commands in a single file for
convenient administration.

The basic operation of make is to update a target file by
ensuring that all of the files on which the target file depends
exist and are up-to-date. The target file is created if it has not
been modified since the dependents were modified. The make
program does a depth-first search of the graph of dependencies.
The operation of the command depends on the ability to find
the date and time that a file was last modified.

2-49

DETAILED INTERFACE SPECIFICATION

The make program operates using the following three sources
of information:

• A user-supplied description file

• File names and "last-modified" times from the file system

• Built-in rules to bridge some of the gaps.

The make program is most useful for medium-sized
programming projects. The make program does not solve the
problems of maintaining multiple source versions of, or of
describing, huge problems.

For more information on make, see Chapter 13-A
PROGRAM FOR MAINTAINING COMPUTER
PROGRAMS-"make" in the AT&T UNIX PC UNIX System
V Programmer's Guide.

Loadable Drivers

Device drivers are required for any UNIX PC program that
uses a device (e.g., terminal, keyboard, telephone port). UNIX
System V allows hardware to be easily integrated because the
UNIX System V architecture provides a uniform interface to
every device. The role of a device driver is to translate the
actions of the general interface provided by UNIX System V
into actions understood by a particular device; Once a device
driver is loaded, it has access to all kernel subroutines and
global data. A loaded device driver is a part of the running
kernel.

Loaded device drivers consume some main memory. Loadable
device drivers can be loaded when their device is needed and
removed after their device is no longer needed. This process
frees some main memory for user processes. Loadable drivers
should be used in applications software for devices that are not
required frequently.

2-50

DETAILED INTERFACE SPECIFICATION

For more information on loadable drivers, see driver(7) and
Iddrv(l) in the UNIX System V User's Manual. For more
information on how to write a loadable device driver for the
UNIX PC you can write to:

AT&T Information Systems
Product Manager-UNIX PC Enhancements
Attn: Device Driver Information (Rm 6A45)
1776 On the Green
Morristown, NJ 07960

Improving Application Performance on the UNIX PC

The UNIX PC has exceptionally good benchmark performance.
However, like any computer system, poor programming can
result in slow performance. Programmers should strive for
optimum performance when writing code. Application
performance on the UNIX PC may be improved by the
following steps:

1. Use short integer arithmetic operations whenever possible.
Long integer and floating-point operations are considerably
slower than short integer operations. For example, long
integer multiplication is 10 times slower; floating point
multiplication is 100 times slower.

2. Use the optimizer supplied with the compiler you are using.
On the standard C compiler supplied with the UNIX
System V utilities package, the "-0" option invokes the
optimizer.

3. Profile the source code and identify those modules with
long run-times. The program logic of these modules can be
altered to avoid using the modules any more than possible.
The modules can also be recoded into assembly language.
Profiling facilities are available to program developers for
the UNIX PC.

2-51

DETAILED INTERFACE SPECIFICATION

4. Use the TAM library for screen access.

5. Take advantage of the 2.5 Mb virtual memory of the UNIX
PC. Application software ported from MS-DOS originals
may not fully use the large virtual memory of the UNIX
PC. Programs should be rewritten to take the best
advantage of the UNIX PC's facilities.

6. Avoid extensive use of unique keys on the UNIX PC
keyboard. Remote terminals may not be able to access
features of an application if UNIX PC-specific keys are
extensively used.

2-52

DETAILED INTERFACE SPECIFICATION

Chapter 5

SOFTWARE INSTALLATION
The UNIX PC offers an administration tool that allows users
to install application software packages from within the menu
structure of the Office. Provided here is an outline for the
applications programmer of the installation procedure, and a
detailed set of instructions for the creation of floppy disk sets
that can be installed using the UNIX PC administration tools.

The applications programmer is assumed to have knowledge of
UNIX, shell programming, and the structure of the
lusr/lib/ua directory that enables the window manager to
function.

To install software on the UNIX PC, the user is instructed to
enter the Administration menu from the Office window, select
Software Setup, and then select Install Software From
Floppy. The User Agent prompts the user to insert the first
floppy disk for the application software and then any others
until all have been read.

At this point, the contents of the floppy disk have been read
into a temporary area. An executable program supplied on the
floppy disk is executed to move the software from the
temporary area into the final locations, and to modify the
system files so the software can be used by the customer.

Following is an outline of the procedure executed at installation
time (lnstall.sh). The applications programmer is provided
with enough details about the structure of the several required
files to actually create an install able floppy set for the UNIX
PC.

2-53

DETAILED INTERFACE SPECIFICATION

Also, some broad guidelines for the installation and removal
programs are provided along with actual examples of the
installation script that handles the installation of the AT&T
UNIX PC Word Processor package.

The Approach

The transfer mechanism is cpio. The floppy disk will be
created with a cpio -ocB call and read in with a cpio -icBdua
call.

The key for the scheme to be user-friendly and to allow some
error protection is to include several special files created by
you, the applications programmer. These files MUST appear on
the cpio list. The special files are:

• The Size file contains information that allows the Install.sh
program to determine the total size of the floppy set. The
precise format of this file is shown later. This file should be
the first file on the floppy disk.

• The Install file is executable-it is executed AFTER the files
are cpio'ed in from the floppy set and BEFORE they are
moved from the temporary installation directory. The
content of Install is entirely under your control. Much of
what follows deals with the rules and tools you need to be
aware of to set up the Install file.

• The Name file contains descriptive information regarding the
application which can be made available to the user at
installation time. The Name file format and content are
described later.

• The Remove file is an executable file that is executed if the
customer chooses to remove the software package. The
simplest removal tool now is removal of all path names
contained in the Files file.

2-54

DETAILED INTERFACE SPECIFICATION

This is a poor default case since it does not take into account
any files used by more than a single application or which are
part of the base system itself-work in this area will be
required to ensure that your Remove script is safe and leaves
the system in the same state it was in BEFORE your tool
was installed. A later section deals with the specification of
the Remove executable file .

• The Files file contains a list of relative path names that can
be used by the Remove program if desired. It is required for
reference even if not used by the Remove program. I t should
list each file contained on the floppy set separately with no
wildcarding.

An Outline of the Installation Procedure

The shell script Install.sh, called by the Administration
software, creates the floppy disk set containing the application
tool. Its function is to read in the floppy set and execute the
Install program supplied on the floppy set.

The installation procedure is available to all users by selecting
the Administration object in the Office, selecting the Software
Setup object, and then selecting the Install Software From
Floppy object. On selection of this menu item, the executable
shell script Install.sh in /usr/bin is run. The following steps
outline this program from a user's point of view (this is
documented in the AT&T UNIX PC Installation Guide):

1. The user is presented with an introductory window and
asked to insert the first floppy disk and press the Return
key.

2. The first operation is to determine if there is sufficient
space on the file system to read in the entire floppy set.
The procedure will read the Size file from the first floppy
disk and make decisions based upon its' content before
proceeding. If there is insufficient space, the procedure is
aborted. If no Size file exists, this takes the form of simply

2-55

DETAILED INTERFACE SPECIFICATION

asking the user how many floppy disks are in the
application package and checking the maximum possible
content against available space.

3. The entire floppy set is read in with a epio -ieBdu call
after creating and moving to directory Itmp/installed.
Note that this directory is created exclusively for the
installation and is removed following completion of the
operation. Note also that the path names on the epio
floppy MUST be relative (not begin with a I) so that other
file systems are not affected at this stage.

4. If some specific files cannot be found, the user is advised
tha t the floppy set cannot be installed using this procedure.
The files required are .IInstall, .IN arne, .IRemove, and
.ISize which are described in the following section,
Creation of the Floppy Set.

5. The vendor-supplied program in .lInstall is now executed.
It must do whatever is necessary to move the application
out of Itmp/installed and into a more permanent file.

6. The Install.sh script now updates a few key files in
lusr/lib/ua so that the menus needed for listing or
removing installed software are kept up-to-date. The
CONTENTS file in lusr/installed is also updated and
the Remove script is renamed and located there. All this
allows users to find out what applications they have
installed and remove them if desired.

7. The directory Itmp/installed and whatever remains of its
contents ~re now removed.

8. The user is told that the installation is complete.

2-56

DETAILED INTERFACE SPECIFICATION

Creation of the Floppy Set

The Format of the Floppy Disk

The output of your operations will be a floppy disk(s) which is
created via the epio -oeB command [see the cpio(l) manual
page for specific meanings of the oeB options]. This is
mandatory since the program that reads the floppy
(lusr/bin/Install.sh) assumes this form.

The list of path names which drives the cpio has three
restrictions:

• All path names MUST be relative (NOT begin with a I). This
is because the files will first be epio'ed into the Itmp/install
directory before they are moved into their permanent
locations by your Install procedure.

• The first entry on the list must be Size.

• The entries immediately following Size must be Name,
Remove, and Install.

Following these special files should be the path names (without
leading I) for all files to be placed on the floppy.

The floppy set should be clearly labeled with the name of the
product (as it appears in the Name file), the version of the
product (which can include the date), and the floppy number
(for example, number 2 of 5) showing the total number in the
package.

2-57

DETAILED INTERFACE SPECIFICATION

The Name File

The Name file is simply a file containing the name of the
product as it is to appear during the installation and removal
stages of the UNIX PC operation. It is a single line that can
contain the product name as well as version information. Note
that only the first 65 characters are displayed in the menus
which are kept by the Install.sh and Uninstall.sh programs.
The content of this file does not affect the Suffixes file or
anything outside of the installation procedure, although
consistency tends to be less confusing than random naming
conventions.

The Size File

The contents of the Size file should be the number of blocks
required by the application program package once it is installed
in a one-line flat file. A block is defined as 512 bytes-the total
size can be derived using the du command, if the files are
situated correctly, or by calculating an approximate value based
on the Is -I listings of the individual files which comprise the
package.

Install.sh makes use of this file as follows:

• The file is extracted from the FIRST position on the floppy.

• The amount of free space in the system is computed (using df
or the equivalent).

• If the number in the Size file is greater than the number of
available blocks, the user is NOT allowed to install the
package.

Until a possible future enhancement, the user is asked to
provide a floppy count; total size is estimated based on 300,000
bytes per floppy.

2-58

DETAILED INTERFACE SPECIFICATION

When calculating the number to put in the Size file, it is
generally a good idea to round up and to include any work area
that can be needed during the Install procedure (for example,
you delivered source code which is compiled during your Install
execution-you would want to ensure space is sufficient to hold
the a.out file). If you have a disk-size intensive application
(for example, a data base or spreadsheet) you might want to
require that more space be free to accommodate potential user
files.

The actual number is up to you, but be sure not to let user's run
their file system out of space while installing your tool. There
is no protection beyond the Size file that prevents this.

What the Install Program Should Contain

The Install program contained on your floppy should do
everything necessary to get the files that were read into
Itmp/install fixed up and ready to use in the permanent file
system. You can do anything that a shell script can do in the
Install program. Look at the Install program for the Word
Processor set (shown in Example 1). It is important to test
your installation on a UNIX PC without your application to
make sure it works the way you intended it to.

EXAMPLE 1: SAMPLE INSTALLATION SCRIPT

The Word Processor Install program

first move all relevant files to their destination

echo' 'Installing Word Processing files"

LISTI="wp wp_merge wp_print wp_rvw wpp_band wpp_diablo
wpp_prtsh wpp_qume"

LIST2="wp.hip prtconfigfile"
LIST3=" edi t:W format" W' ,

2-59

DETAILED INTERFACE SPECIFICATION

for i in $LISTl
do
->mv $i /usr/bin
->chown bin /usr/bin/$i
->chgrp bin /usr/bin/$i
->chmod 755 /usr/bin/$i
done

for i in $LIST2
do
->mv $i /usr/lib/ua
->chown bin /usr/lib/ua/$i
->chgrp bin /usr/lib/ua/$i
->chmod 644 /usr/lib/ua/$i
done

for i in $LIST3
do
->mv $i /u/tutor/Filecabinet/practice
->chown tutor /u/tutor/Filecabinet/practice/$i
->chgrp users /u/tutor/Filecabinet/practice/$i
->chmod 644 /u/tutor/Filecabinet/practice/$i
done

Now update the user agent special files

echo' 'Updating special Office Manager files"

echo' 'Name=Records" > /tmp/t
echo' 'Suffix=:R" » /tmp/t
echo "Description=*Records" » /tmp/t
echo' 'Default=Open" » /tmp/t
echo "Open = EXEC -d /usr/bin/wp -n %n %0" » /tmp/t
echo' 'Create = EXEC -d /usr/bin/wp -c -b -n %n %0" »

/tmp/t
echo' 'Help = EXEC -d /usr/bin/uahelp -h /usr/lib/ua/wp.hlp

-t Records" » /tmp/t
echo' 'Print = ERROR To print a Records file, open it & select

Pr i nt" » / tmp / t

uaupd -r Records -a /tmp/t Suffixes

echo "Name=Glossary" > /tmp/t
echo' 'Suffix=:G" » /tmp/t
echo "Description=*Glossary" » /tmp/t
echo "Default=Open" » /tmp/t
echo "Open = EXEC -d /usr/bin/wp -n %n %0" » /tmp/t
echo "Help= EXEC -d /usr/bin/uahelp -h /usr/lib/ua/wp.hip

2-60

DETAILED INTERFACE SPECIFICATION

- t Glossary" »/tmp/t
echo' 'Print=ERROR To print Glossary, open it & select Print"

» /tmp/t

uaupd -r Glossary -a /tmp/t Suffixes

echo "Name=Document" > /tmp/t
echo' 'Suffix=:W" » /tmp/t
echo' 'Description=*Document" » /tmp/t
echo "Default=Open" »/tmp/t
echo "Open = EXEC -d /usr/bin/wp -n %n %0" » /tmp/t
echo "Create = EXEC -d /usr/bin/wp -c -n %n %0" » /tmp/t
echo' 'Help= EXEC -d /usr/bin/uahelp -h /usr/lib/ua/wp.hlp

-t Document" » /tmp/t
echo "Print=ERROR To print Document, open it & select the

Print" » /tmp/t

uaupd -r Document -a /tmp/t Suffixes

Check if the user wants wp as his or her default editor

echo "Do you want the word processor to be the default
edi tor for"

echo' 'normal text files? (Type y or n)"
ANSWER = , line'

if [$ANSWER = "y"]
then
->grep -v "AEDIT" /usr/lib/ua/Environment > /tmp/t
- >echo "EDIT= /usr /bin/wp" » /tmp/t
->cp /tmp/t /usr/lib/ua/Environment
fi

rm -f /tmp/t

echo "Word Processor installation complete"

What the User Should See

The Install program runs as a shell program from within the
Install window created when you choose the Install Software
from Floppy choice in the Software Setup menu. Be aware
of the window size you have to work with.

2-61

DETAILED INTERFACE SPECIFICATION

Your output goes to this window and you get input from this
window (unless you make additional changes from within
Install-like running C programs which you bring in off the
floppy disk).

Getting the Programs Out of /tmp

When the Install program begins, you can assume that all the
programs and other files on the floppy have been cpio'ed into
Itmp/install. After modifying them as you wish (if at all) you
are ready to move them into the permanent file system. Some
issues to watch out for follow:

• Permissions: your best bet is to be sure they were correct
when you created the cpio, and then use In instead of cp or
my. Make sure the "executables" are executable and that
read-write permissions are such that the normal user can use
them as appropriate. Do not forget the setuid bit if
appropriate.

• Ownership: do not supply files owned by local users on the
machine which created them-be sure they are owned by
root or bin in general.

• Moving them: do not use the cp command (you will double
the space requirements needed during the install phase). The
Itmp/install directory is eventually trashed by Install.sh
after you are done with it, but the recommended procedure is
In.

If any intermediate files are created, use the /tmp or
Itmp/install directory for them to ensure remnants are not
left.

2-62

DETAILED INTERFACE SPECIFICATION

Where to Install the Application

Installation of applications directly in the Office is strongly
discouraged. This clutters the Office and defeats the purpose
for which the Office was intended. Normally, primary access to
an application is through the Run, Open, and Create commands
which is implemented by modifying the file
lusr/lib/ua/Suffixes.

This method should not be used when an application does not
create and operate upon special files. In these cases,
applications should be installed in Services. Services is a
special entry in the Office which provides access to services
obtainable in no other way. To use Services, the application's
Install script should first check to see if a Services entry
already exists in the Office. If an entry does not exist,
lusr/lib/ua/Office must be modified to create a Services entry
and the file lusr/lib/ua/Services must be created. Services
must then be modified appropriately. The application's Remove
script should undo the above modifications, only removing
Services from the Office if Services is now empty.

Modifying the Suffixes File

The lusr/lib/ua/Suffixes file should be updated if your
application ever references or creates files unique to itself. The
mechanism provides the ability to define a file suffix (like .c,
:W, or .bits) and a set of rules which are to be applied if the
file is ever used from within the Office and Filecabinet
environment.

The ua(4) manual page provides a write-up on the Suffixes file
as well as some other special files in lusr/lib/ua.

To modify these special files, a simple tool called uaupd is
provided. It takes input from a provided file and appends it to
these special files as appropriate. Documentation on uaupd
has been provided in the uaupd(l) manual pages. The simplest

2-63

DETAILED INTERFACE SPECIFICATION

way to see how it works is to examine its use in the Word
Processor Install (see Example 1).

Any suffixes you define should be limited to some non­
alphanumeric character followed by a small number of
alphanumeric characters. Check the lusr/lib/ua/Suffixes file
you have on your machine for form, and to see some of the
suffixes that have already been taken. You may wish to consult
AT&T to reserve a suffix for your application.

Note: Do not use a suffix reserved for another
application. This will cause the application which
originally reserved the suffix to not load properly.

Modifying the Menus

You have the ability to modify the contents of the window
menus if appropriate. Check the ua(4) manual page on how to
change them, and look at the Install script for the Word
Processor (Example 1) to see how to use uaupd to change the
Office menu.

Modifying the User Environment

The environment of your user is controlled through the use of
Environment files in assorted directories. The global
environment for the Office is controlled through
lusr/lib/ua/Environment and the login specific environment
is controlled by lu/logname/Environment where lu/logname
is the standard home directory for a user called logname.

The needed environment variables can be set here; do not
attempt to reset any system environment variables, but deal
exclusively with environment variables unique to your
application. Name the variables such that the likelihood of
overlap with other applications is small.

2-64

DETAILED INTERFACE SPECIFICATION

Installing Libraries, Include Files, etc.

The biggest issue is DO NOT OVERWRITE ANYTHING THAT
IS ALREADY THERE. Do NOT redefine any libraries or
include files for the user.

Do NOT redefine any standard UNIX System V file or
executable. In your procedures, you can supplement what is
there now, but do not replace anything.

Notification to User

If any input is required from the user during the Install, use
stdin and stdout (echo and read) to communicate. Do not use
UNIX System V j argon and keep the user informed when
activities take a while. Ask the user for verification along the
way if necessary (use message if you want). Inform the user
of any problems and offer solutions or allow for choices to be
made. And, tell the user when it is all done.

Removal of Installed Software

Choosing the Remove Installed Software menu item from
the Software Setup object within Administration starts the
U ninstall.sh program. The U ninstall.sh program offers
user's a list of the installed software and asks them to pick the
one they want to remove. Once a valid choice is made, the
Remove script that was originally supplied on the floppy disk in
lusr/installed is used.

After finding it and executing it, the Installed software menus
are adjusted to reflect the deletion. Note that the Remove
script is run AS IS-how good it is and how safe it is depends
on its author.

2-65

DETAILED INTERFACE SPECIFICATION

What the Remove Program Should Contain

Your Remove program, once executed, should leave the system
in the same state it would have been in had your application
never been installed. This is not easy; the install program
should contain explicit path names of all files on the system
which need to be removed (full path names). Recall that the
Files file is not available when Remove is executed, and it
might have contained different information anyway.

Any suffixes and menu items you put in must be removed. The
situation might warrant your asking if the user wants to
remove files in the system with your suffix on them. BE SURE
NOT TO DO THIS UNLESS THE USER SAYS TO; the files
belong to the user. Err on the side of safety when removing
files, but do your best to be complete and be sure you delete
files the user would see.

The user interface to the removal process is provided through
the lusr/bin/Uninstall.sh program. A sample remove
program as supplied on a floppy for the Word Processor set,
and is shown in Example 2.

2-66

DETAILED INTERFACE SPECIFICATION

EXAMPLE 2: SAMPLE REMOVE SCRIPT

Word Processor Remove program

echo' 'Removing Word Processing files"

LISTl="wp wp_merge wp_print wp_rvw wpp_band wpp_diablo
wpp_prtsh wpp_qume' ,

LIST2="wp.hlp prtconfigfile"
LIST3="edit:W format:W"

for i in $LIST!
do
->rm -f /usr/bin/$i
done

for i in $LIST2
do
->rm -f /usr/lib/ua/$i
done

for i in $LIST3
do
->rm -f /u/tutor/Filecabinet/practice/$i
done

$ Now update the user agent special files

echo' 'Updating special Office Manager files"

uaupd -r Records Suffixes
uaupd -r Glossary Suffixes
uaupd -r Document Suffixes

Check if wp was the default editor

ED='grep ""EDIT" /usr/lib/ua/Environment'
if [$ED = "EDIT=/usr/bin/wp"]
then
->grep -v ""EDIT" /usr/lib/ua/Environment > /tmp/t
->echo "EDIT=/bin/ed" » /tmp/t
->cp /tmp/t /usr/lib/ua/Environment
->rm -f /tmp/t
fi
echo "Word Processor removal complete"

2-67

APPENDIX A

UPLOADING AND DOWNLOADING FILES

PAGE

System Requirements. A-I

Connecting to the Host UNIX System.. A-I

Uploading Files. A-2

Downloading Files A-3

APPENDIX A

UPLOADING AND DOWNLOADING
FILES

This appendix describes how files can be uploaded and
downloaded between a UNIX PC and a host (mainframe or
minicomputer) UNIX system.

System Requirements

To upload and download files, you will need the following:

• UNIX PC (with modem)

• Voice / Data Line (connected to the UNIX PC)

• Host UNIX system (with telephone ports)

• Host UNIX system account (login, password)

Connecting to the Host UNIX System

You must connect the UNIX PC to the host UNIX system in
order to upload or download data. The easiest way to connect a
UNIX PC to the host system is to use the eu command. eu
calls up a UNIX system and manages an interactive
conversation between two UNIX systems.

Before you use eu, check the UNIX PC's screen for the status
of the Voice / Data lines. The status of the Voice / Data lines
appears in the upper left corner of the UNIX PC's screen. At
least one Voice / Data line must be set to Data. To change the
status of a Voice / Data line, move the User Agent's highlight
to Telephone in the Office .. Press <Enter> or <Bl> on the

A-I

APPENDIX A

mouse. N ext, press <F3> (Line Select) to change a Voice I
Data line. If you have two Voice I Data lines, you may need to
press <F3> twice to change a line to Data. Line 1 or Line 2
should now be set to Data. Press <Exit>. See the AT&T
UNIX PC Telephone Manager User's Guide for more
information on the setup and selection of Voice I Data lines.

To use ell, you must first enter the UNIX System from the
Office of the UNIX PC. You can do this by moving the User
Agent's highlight to UNIX System in the Office and pressing
<Enter>, or <B1> on the mouse. Once you have entered the
UNIX PC's UNIX System, type:

ell -1 Idev/"telephone port" "Host system's telephone number"

where telephone port can be phO (if your data line is the UNIX
PC's Line 1) or ph1 (if your data line is the UNIX PC's Line 2).
The ell command dials the host UNIX system's telephone
number and connects the UNIX PC to the host system. The
host system's login message should then appear. After you
have correctly entered a login and password, you can upload
and download files.

Uploading Files

Uploading a file transfers a copy of a file on a remote terminal
(in this case, a UNIX PC) to a host system (in this case, a
minicomputer or mainframe running UNIX). To upload a file
from a UNIX PC to a host UNIX system:

1. Connect the UNIX PC to the the host UNIX system (see
the above section).

2. Type -% put "file name (UNIX PC)" "file name (host
UNIX system)".

A-2

APPENDIX A

3. Wait until the shell prompt, $, appears.

The transferred file can now be accessed by the host UNIX
system. The transferred file will appear under the second file
name in the -%put command.

Downloading Files

Downloading a file transfers a copy of a file on a host system
(in this case, a UNIX system) to a remote terminal (in this
case, a UNIX PC). To download a file from a host UNIX
system to a UNIX PC:

1. Connect the UNIX PC to the host UNIX system (see
Connecting to the Host UNIX System).

2. Type -% take "file name (host UNIX system)" "file name
(UNIX PC)".

3. Wait until the shell prompt, $, appears.

The transferred file can now be directly accessed through the
UNIX PC's UNIX system or indirectly accessed through the
Filecabinet. The transferred file appears on the UNIX PC
under the second file name in the -%take command.

For more information on transferring data between the UNIX
PC and host UNIX systems, see the cu(lC) and phone(7)
manual pages.

A-3

APPENDIX B

PROGRAMMING EXAMPLES

PAGE

Program Example 1: Using TAM to Create and Manipulate

Windows-Using Makefiles. B-1

Program Example 2: Using TAM to Print and Alternate
Character Fonts . B-4

Program Example 3: Using TAM to Manipulate the Mouse
and Windows. B-9

Program Example 4: Manipulating the Telephone
Port.. B-15

APPENDIX B

PROGRAMMING EXAMPLES
This appendix contains several UNIX PC programming
examples. The programs demonstrate how to use the TAM
libraries to create windows, alternate character fonts, and use
the mouse. An example of programming the UNIX PC
telephone port is also included.

Program Example 1: Using TAM to Create
and Manipulate Windows-Using Makefiles

, .. ,
'* *' '* Name: wind.c *'
'* Compiler:

cc *'
'* Machine: AT&T UNIX PC *'
'* Description: To demonstrate how to use the tam libraries and windowing *'
'* software on the UNIX PC. *'
'* Author: Elliot Rappaport. *'
'* *' I··· •.•........••..••••.... ,

#include <tam.h>

#include <kcodes.h>

#include <message.h>

#include <stdio.h>

short wn:

struct wstat curstat:

main()

register int c;

'*

'* Used to change current window. *'

Before any window operations can be performed several routines

must be called. The winit() call sets up the process for window

access. The keypad() routine indicates that we want function

keys to return a single 8-bit character for each key stroke. And

the wcreate() routine creates the window based on the supplied

arguments. Since TAM reconfigures the existing window for the first

wcreate() call, we use clear() to make sure the window is empty.

This feature is more apparent when applications are executed from

B-1

APPENDIXB

B-2

the shell directly.

wini t ();

keypad(O,l);

w.n = wcreate(l, 0, 16, 50, (BORDVSCROLL I BORDHELP I BORDCANCEL»;

clear();

wprintf(wn, "This is window number = %d\n\n", wn);

wprintf (wn, "Use the mouse to cl ick on one of the icons or\n");

wprintf(~n, "the keyboard to enter data. Hit EXIT or the\n");

wprintf(wn, "Cancel Patch to exit.\n\n");

wprintf(wn, "I know about the following keys:\n");

wprintf(wn, "UP, OOIrlN, ENTER, HELP, CANCEL, and EXIT\nn);

for (;;) (

c = wgetc(wn);

switch(c) (

case Up:

case RollUp:

case Down:

case RollDn:

case Enter:

case Help:

case Cancl:

case s Cancl:

Exit:

case s Exit:

default:

domessage(" UP KEY");

break;

domessage(n OOIriN KEY");

break;

domessage(n ENTER KEY");

break;

domessage(n HELP KEY");

break;

domessage(n EXIT or CANCEL KEY");

goto bailout;

break;

domessage(n Unknown KEY");

break;

*'

APPENDIX B

bailout:

,.
Restore to 24 X 80 borderless 1IIindo1ll before 1IIe leave.

The clear() routine makes sure 1IIe have an empty windo1ll and

1IIexit() must be called to reset the parameters set by 1IIinit()

(e.g., tty modes).

clear() ;

curstat.begy .. 1;

curstat.begx • 0;

cursta t. height • 24;

curstat.1IIidth • 80;

curstat.uflags .. NBORDER;

1IIsetstat(1IIn, &curstat);

1IIexit(O);

domessage(s)

char ·s;

message(MT_INFO, NULL, NULL, s);

.,

B .. 3

APPENDIX B

Program Example 2: Using TAM to Print and
Alternate Character Fonts

,•••••...............•................•.•••....... ······~····I

'* '* chartest a program to print the character fonts on

'* the PC-7300

'* '* Author: Kevin Redden

*' *' *' *' *' '* AT&T-IS *'
'* *' '* Last Modified: 11'29'84 *'
'* *' '* This program "'ill load several alternate character fonts *' '* and "'ill then use the t",o different methods available *' '* to s",itch bet",een them. If only t",o fonts are to be *' '* used, the ascii "shift out" and "shift in" characters *' '* can be used to alternate bet",een the sets. If more fonts *' '* are to be used (up to 8 fonts per ",indo",), then the fonts *' '* must be explicitly selected. *'
'* '* *' *' , .. ,

'* load the include files needed by this program *'
#include <tam.h>

#include <sys,,,,indo,,,.h>

#include <sys'font.h>

main()

B-4

short "'nl;

short i;

short er;

'* ",indo", file descriptor

'* error return *'
* ,

'* set up the structure for the character fonts *'
struct ufdata ufd;

"'init() ; '* init the ",indo", system '* create a borderless ",indo",

",nl E ",create(I,O,24,80,NBORDER);

'* clear the screen *'
clear();

* ,

*'

, .. ,

APPENDIX B

/ .. , ,. .,
,. The first test will load two fonts, then .,

,. switch between the two with the ascii .,

,. shift in'out characters. This only works .,

,. for a maximum of two fonts ., ,. ., , .. ,
/ .. ,
,. write with the standard font .,

wputs(wnl, "This is the standard Font.\n");

,. print the character set .,

for (i~Ox20; i<llO; i++)

wprintf(wnl,"%c" ,i);

wprintf(wnl, "\n\n");

, .. , ,. tbe fonts are stored in 'usr'lib'wfont ., ,. some of the fonts supported are: ., ,. moni tor. 8. ft mosaic.8.ft ., ,. special. 8. ft system.8.ft ., ,. system.r.8.ft ., , .. ,
, .. ,
,. now load the 2nd font slot (slot 0 is reserved) ., ,. .,
ufd.uf_slot • 1; ,. specify the slot number

strcpy(ufd. uf _name, "'usr 'lib'wfont' special. 8. ft") ;

er ~l; ,. set no error .,

er ~ ioct1(wnl,WIOCLFONT, &ufd);

if (er ! m 0)

printf(" 1st ioctl error %d\n" ,er);

wputs(wnl, "This is the alternate font. \n");

,. an ascii 'shift out' (016) will shift to 1

,. alternate font

wputc(wnl. '\016');

,. print the character set .,

for (i=Ox20; i<110; i++)

wprintf(wnl,"%c" ,i);

wprintf(wnl, "\n");

.,

., .,

B-5

APPENDIX B

B-6

,* '* now shift back to the system font ,*. '* an ascii 'shift in' (017) will shift to the '* main font
wputc (wn1, '\017');

wputs (wn1, "We are now back in the main font. \n");

*' *' *' *' *'

, ...•....... ,' ,•.. ,
'* *' '* Now we will manipulate multiple fonts, switching *' '* explicitly between them (as opposed to using *' '* the shift in'out method). *'
'* *' '* The fonts used will be: '* slot 0 = system font '* slot 1 = special.8.ft '* slot 2 & mosaic.8.ft '* slot 3 • monitor.8.ft

'*

*' *' *' *' *' *' , .. , , .. ,

wputs(wnl, "\n\n\nNow run the multiple font test.\n");

, ... ,'
'* load the 3rd font slot ,*
ufd.uf_slot • 2;

strcpy(ufd.uf_name, "'usr'lib'wfont'mosaic.8.ft");

er =1; '* set no error *'
er .. ioctI (wnl, WIOCLFONT,. &ufd);

if (er ! .. 0)

printf(" 2nd ioctl error %d\n" ,er);

*' *'

, ... ,' '* load the 4th font slot ,*
ufd.uf_slot .. 3;

strcpy(ufd.uf_name, "'usr'lib'wfont'monitor.8.ft");

er =1; '* set no error *'
er = ioctl(wnl,WIOCLFONT, &ufd);

if (er != 0)

*' *'

APPENDIX B

printf("3rd ioctl error %d\n" ,er);

,. print this in the system font .,

1IIputS (1IInl, "This is the slot 1 font\n");

, .. ,
,. shift to slot one specifically·'

1IIputS(1IInl, "\033[ll~');

,. print the character set .,

for (i=Ox20; i<110; i++)

1IIprintf(wnl,"%c" ,i);

,. line feed and print message .,

1IIri te (1IInl, "\033 [10m", 5); ,. s1lli tch to sys font .,

1IIprintf(1IInl, "\n\n");

1IIputs(1IInl, "this is the slot t1ll0 font\n");

, .. ,
,. shift to slot t1ll0 specifically·'

1IIputS(1IInl, "\033[12m");

,. print the character set *'
for (i=Ox20; i<lOO; i++)

1IIprintf(1IInl,"%c" ,i);

1IIrite (1IInl, "\033(10m", 5); ,. s1llitch to sys font .,

1IIprintf(1IInl, "\n\n");

1IIputs(1IInl, "this is the slot three font\n");

, .. ,
,. shift to slot three specifically·'

1IIputs(1IInl, "\033[13~');

'" print the character set "'
for (i=Ox20; i<lOO; i++)

1IIprintf(1IInl,"%c" ,i);

1IIprint f (1IInl, "\n\n");

, .. ,
'" shift back to the system font "'

1IIputs(1IInl, "\033[10m");

wputs(1IInl, "We are n01ll back in the main font.\n\n");

, ,

B-7

APPENDIXB

,. unload the fonts .,
ioctl(wnl, lJIOCUFONT, &ufd) ; ,. unload slot *' ufd.uf slot = 2; -
ioctl(wnl, lJIOCUFONT, &ufd) ; ,. unload slot 3 *' ufd.uf_slot = I;

ioctl(wnl, lJIOCUFONT, &ufd) ; ,. unload slot 2 .,
wdelete(wnl);

wexit() ;

B-8

APPENDIX B

Program Example 3: Using TAM to
Manipulate the Mouse and Windows

,. bounce

coffin 4/6'S5

This is the" pong" game ,
#include <stdio.h>

#include <fcntl.h>

#include <tam.h>

#include <termio.h>

#include <menu.h>

#include <sys/font.h>

#define WINX 50

#define WINY 18

#define SPEED 10

#define MX (WINX·9)-32

#define MY (WINY·12)-lS

,. this structure holds the current mouse state.... .,

struct curmouse

int xp, yp, but, reason;

} XX;

struct umdata mouse;

short IIIn, illS;

struct icon myicon;

int fin();

double drand48();

char ·name, ·getenv();

void setup();

unsigned short ball[32];

short myscore, youscore;

int beepflag, xinc, yinc, xball, yball, diff=3;

main ()

struct termio ttt;

setup() ;

start();

,. this is the main loop• /

for(;;)

domouse();

IIIrastop(IIIn, ball, 4,0,0,0,0, (unsigned short)xball,

(unsigned short)yball,32,16,SRCSRC,DSTCAM,O);

B-9

APPENDIXB

fin()

B-I0

xball +5 xinc;

yball += yinc;

'* if ball is at top, make increment positive *'

if(yball <- 4)

if(beepflag) beep();

yinc .. abs(yinc);

'* if ball is at bottom, make increment negative *'

else if(yball > .. MY) {

if(beepflag) beep();

yinc • -abs(yinc);

'* if ball is at left side, player may have a point *'

if(xball <= 5) {

if(beepflag) beep();

if(yball > WINY*6-(diff*12)-12 &&
yball < WINY*6+(diff*12)-6) {

++youscore;

score() ;

else xinc .. abs(xinc);

'* if ball is at right side, you lose *'

else if (xball > MX)

if(beepflag beep();

++myscore;

score();

'* if ball is near the paddle *'

else if(xball >- (xx.xp-abs(xinc)-IO) &&
xball <- (xx.xp-IO) &&
yball>-(xx.yp-18) &&
yball<-(xx.yp+8» {

if(beepflag) beep();

yinc .. (yball-(xx.yp)+8)'2;

xinc • -xinc;

wrastop(wn, ball,4,O,O,O,O,(unsigned short)xball,

(unsigned short)yball, 32 ,l6,SRCSRC,DSTOR, 0);

flushinp() ;

clear();

wprintf(wn, " \033[-OC");

wprintf(ws, "\033[.OC");

wdelete(wn);

wdelete(ws);

wexit(0);

APPENDIX B

I. this one will parse the mouse report ·1
int domouse()!

int key, i;

wsetmouse(wn, &mouse);

key.wgetc (wn);

swi tch(key) {

case '\177':

case Exit:

case Cancl:

case s_Cancl:

finO;

break;

case Mouse:

wreadmouse(wn, &xx.xp, &xx.yp, &xx.but, &xx.reason);

break;

default:

return((-1));

break;

if(xx.but&4 && xX.reason&MSDOWN) beepflag .. (beepflag·.O)?l:O;

if(xx.but&I && xX.reason&MSDOWN)

if(diff <= 1) diff - 3;

else --diff;

for(i.WINY/2-3; i<WINY/2+3; ++i) mvaddch(i,I,' ');

for(i-WINY/2-diff; i<WINY/2+diff; ++i) mvaddch(i,I, '\177');

return(0);

I· this one keeps score, and does setup between points .,

score()

int i;

wprintf(ws, "\n\n PC7300: %d\n %s: %d", myscore, name, youscore);

if(myscore >- 15) {

newgame(0);

return(0);

else if(youscore >- 15

newgame(1);

return(0);

else if(youscore > 7 && youscore < 12) xinc - SPEED + SPEED/2;

else if(youscore > 11) xinc - SPEED • 2;

else xinc - SPEED;

xball • 24;

yball .. (int)(drand48()·(double)(WINY-3)*12.0)+18;

B-ll

APPENDIX B

for(i=WINY'2-diff; i<WINY'2+diff; ++i) mvaddch(i,l, '\177');

refresh();

sleep(2);

'* this one does the initialization for a new game *'

start()

int i;

static int games .. 0;

myscore .. youscore = 0;

xinc .. SPEED;

yinc • 3;

xball 24;

ybal1 = (int)(drand48()*(double)(WINY-3)*12.0)+18;

wselect (wn);

wprintf(ws, "\n\n");

sleep(3);

'* this one displays a menu for a new game *'

int newgame(who

int who;

menu t mnu;

static mitem_t ccl) ..

};

"Yes", 0, 0,

"No", 0, 1,

fI Don't Know", 0, 2,

0, 0, 0

if(who) mnu.m_title,." Good game! Another? " ;

else mnu.m title .. "You lose! Try again?";

mnu.m_Iabel .. "Bounce by S.Coffin" ;

mnu.m_flags • M_SINGLE

mou.m_curi = CC;

mnu.m_cols .. 1;

mnu.m_items = cc;

if(mnu.m_selcnt != 1 I I cc(l).mi_flags •• M_MARKED) finO;

start();

return(1);

'* this is used on first initialization *'

void setup():

int i, w_id;

B-12

APPENDIX B

,. start wi th a clean window

close();

close();

close(2);

w id - . open(" 'dev/window" ,

dup(0);

dup(0);

winit();

if(!iswindO):

fprintf(stderr,"\nSorry, you must use bit-mapped display!\n\n");

wexit((-I));

beepflag .. 1;

name .. getenv("LOGNAME");

,. set up the ball ./

ball[4] • ball[6] .. ball[24] .. ball[26] • OxfOOO;

ba11[5] • ba11[7] • ba11[25] .. ba11[27] .. OxOOOf;

ball[8] .. ba11[10] .. ba11[20] .. ball[22] .. OxfeOO;

ba11[9] .. ba11[l1] .. ba11[21] .. ball[23] .. Ox007f;

ba11[12] • ba11[14] .. ba11[16] .. ba11[18] .. OxffOO;

ball[13] .. ba11[15] .. ba11[l7] .. ba11[19] .. OxOOff;

,. set up my paddle (mouse icon) ./

myicon.ic_fc.fc_hs .. 32;

myicon.ic_fc.fc_vs .. 20;

myicon.ic_fc.fc_ha .. -32;

myicon.ic_fc.fc_va .. -10;

myicon.ic_fc.fc_hi .. 0;

myicon.ic_fc.fc_vi .. 0;

for(i=l; i<64; i+ .. 2) myicon.ic_raster[i] .. OxfOOO;

,. ok, open a window now .•..• ,

.. wcreate (6, 56, 2, 18, 0);

clear() ;

wlabel(ws, "Scoreboard");

wuser(ws, "Scoreboard");

wn .. wcreate (2, 2, \JINY, \JINX, BORDCANCEL);

clear() ;

wlabel(wn, "Bounce.... vl.4");

wprompt(wn, "Click left button to toggle sound,\

right button to change difficulty.");

wcmd(wn, "For best performance, close all other\

applications and windows.");

wuser(wn, "Bounce");

keypad (0, I);

,. turn off cursor ./

wprintf(ws, "\033[=IC");

wprintf(wn, "\033[=IC");

B-13

APPENDIXB

B-14

f.or(i-WINY/2-diff; i<WINY/2+diff; ++i) mvaddch(i, I, '\177');

1* establish mouse control *1
mouse.um_flags - MSOUT I MSDOWN I MSUP;

mouse.um x • 0;

mouse.um_y • 0;

mouse.um_1oI • 1;

mouse.um_h • 1;

mouse.um_icon • &myicon;

IoIsetmouse(loin, &mouse);

APPENDIX B

Program Example 4: Manipulating the
Telephone Port

/. call. c

J. A. Kutsch & S. Coffin

July 17. 1985

AT&T-IS

This is a simple program to make voice calls from the

shell on the AT&T UNIX PC 7300

#define LINE " / dey / phO"

#include <sys/types.h>

#include <signal.h>

#include <fcntl. h>

#include <sys/phone.h>

#include <stdio.h>

struct updata mydata:

struct uddata dialdata:

int fd;

main(argc.argv

int argc;

char ·argv[]:

char in[80]. ·s;

void giveup();

/. get number ·f

/. use /dev/phl if you want to. but it ./

/. should be configured for voice ./

if(argc > 1) s • argv[l];

else (

printf("Give number to dial: ");

gets(in);

s ;;: in;

f· open phone device • f
fd • open(LINE. O_RDONLY);

if(fd <a 0) (

fprintf(stderr. "%s: Can't open %s\n". argv[O]. LINE);

exit(1):

f· set signal catchers ·f
signal(SIGQUIT. giveup);

signal(SIGINT. giveup):

signal(SIGHUP. giveup);

B-15

APPENDIXB

'" set phone parms "'
mydata.c_lineparam = VOICE I DTMF;

mydata.c_waitdialtone = 5;

mydata.c_waitflash = 500;

myda ta. c _ feedback = SPEAKERON NORMSPK;

'" go off hook to make call "'
ioct1(fd, PIOCOFFHOOK, &mydata);

'" wait for dial tone "'
for(;;)

ioctl(fd, PIOCGETP, &mydata);

if(mydata.c_Iinestatus & DIALTONE) break;

'" dial the number *'

while(*s) {

dialdata.dd_digit = *s++;

ioctl(fd, PIOCDIAL, &dialdata);

dialda'ta.dd_digit = '$';

ioct1('fd, PIOCDIAL, &dialdata);

'" wait for set to go off hook "'

for(;;)

ioct1(fd, PIOCGETP, &mydata);

if(mydata.c_linestatus & SETOFFHOOK) break;

'" connect phone *'

ioctl(fd, PIOCGETP, &mydata);

mydata.c_feedback &= -(SPEAKERON);

ioctl(fd, PIOCSETP, &mydata);

close(fd);

exit(0);

'* catch signals and exit *'

void gi veup() {

B-16

ioctl(fd, PIOCDISC, &mydata);

close(fd);

exit(I);

