
GEM

Programmer's Guide

Volume 1: VDI

1'1 c.{

(/
COPYRIGHT

Copyright 1985 Digital Research Inc. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into any
language or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual or
otherwise, without the prior written permission of Digital
Research Inc., 60 Garden Court, P.O. Box DRI, Monterey, Califor­
nia 93942.

DISCLAIMER

DIGITAL RESEARCH INC. MAKES NO REPRESENTATIONS OR WARRANTIES
WITH RESPECT TO THE CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY
PARTICULAR PURPOSE. Further, Digital Research Inc. reserves the
right to revise this publication and to make changes from time
to time in the content hereof without obligation of Digital
Research Inc. to notify any person of such revision or changes.

NOTICE TO USER

From time to time changes are made in the filenames and in the
files actually included on the distribution disk. This manual
should not be construed as a representation or warranty that
such files or facilities exist on the distribution disk or as
part of the materials and programs distributed. Most distribu­
tion disks include a "README.DOC" file. This file explains
variations from the manual which do constitute modification of
the manual and the items included therewith. Be sure to read
this file before using the software.

TRADEMARKS

Digital Research and its logo are registered trademarks of Digi­
tal Research Inc. Concurrent, GEM, GEM Desktop, GEM Draw,
Graphics Environment Manager, and GSX are trademarks of Digital
Research Inc. We Make Computers Work is a service mark of Digi­
tal Research Inc. IBM is a registered trademark of Interna­
tional Business Machines. Intel is a registered trademark of
Intel Corporation. Motorola is a registered trademark of
Motorola Inc. Polaroid is a registered trademark of Polaroid
Corporation.

The GEM .. Programmer'~ Guide, Volume 1: VDI was printed in the
United States of America.

* First Edition: March 1985 *

,..,s

FOREWORD

OBJECTIVE

AUDIENCE

ORGANIZATION

This guide describes the features and opera­
tion of the Graphics Environment
Manager .. (GEM ..) Virtual Device Interface
(VDI), the successor to the Digital
Research .. Graphics System Extension (GSX ..).
You can write graphics applications using GEM
VDI capabilities.

This guide is intended for microcomputer ap­
plication programmers with operating system
and graphics programming experience.

This guide contains nine sections, nine ap­
pendixes, a glossary, and an index. The
detachable reference card at the end of this
guide lists the GEM VDI functions by opcode
number and gives their respective C binding
procedure names. It also lists the section
of this guide in which each function is dis­
cussed.

Section 1 introduces GEM VDI. It describes
the GEM VDI architecture, including the
Graphics Device Operating System (GDOS) and
the device drivers.

Section 2 describes GEM VDI operating proce­
dures and how to integrate application
programs with GEM VDI.

Section 3 describes the control
which initialize the graphics
and set defaults for use with
tion.

functions,
workstation

the applica-

Section 4
which cause
played on a
or plotter,

describes the output functions,
graphics primitives to be dis­
graphics output device (a screen

for example).

Section 5 describes the attribute functions,
which determine qualities of all subsequent
output primitives, such as color and style.

Section 6 describes the raster functions,
which perform logic operations on raster
areas (rectangular blocks of bits in memory
or pixels on physical qevices).

iii

Section 7 describes the input functions,
which allow the user to interact with the ap­
plication program.

Section 8 describes the inquire functions,
which return the current settings for
device-specific attributes, such as the num­
ber of text styles supported.

Section 9 describes the escape functions,
which allow the application program to ac­
cess special device capabilities.

Appendix A lists and describes the GEM VOl
error messages.

Appendix B explains the ASSlGN.SYS file con­
tents, which include information the GOOS
uses to identify the output device.

Appendix C lists and describes the GEM VOl
metafile format.

Appendix 0 defines the GEM VOl standard
keyboard.

Appendix E describes the mapping of GEM VOl
to specific operating systems and the calling
procedures needed to perform that mapping.

Appendix F includes the system fonts.

Appendix G describes the font file format.

Appendix H describes the reserved metafile
sub-opcodes.

Appendix I describes the bit image file for­
mat.

iv
177

TABLE OF CONTENTS

1 Overview

Introduction 0

Features 0 0 0

Enhancements 0

Architecture 0

Graphics Device Operating System (GDOS) 0

Graphics Device Drivers 0 0 0 0 0 0 0 0

Device Types 0 0 0 0

Metafiles
Multiple Workstations 0 0 0 0 0 0 0 0 0 0 0

Device Handles 0 0 0 0 0 0 0 0 0 0 0 0

ASSIGN 0 SYS 0 0 0 0 0 0 • 0 0 0 0 0 0 0

Application Programs

Virtual Device Interface 0

Transforming Points

Transformation Mode 0 0 0 0 • 0

Normalized Device Coordinates 0

Raster Coordinates • 0 0 0 0 0

2 Writing a Graphics Application

Introduction 00 0 0

GEM VOl Distribution Files 0

Writing the Program

GEM VOl Functions • 0 0 0 0 0 0 0 0 • 0 0 0 • 0

Opcodes • • . . . • •. • . . . • • . . • .
Required Functions for Screens 0 0 0 0

Required Functions for Printers 0 0 0 0 0 0 0 0

Required Functions for Plotters 0 0 0 0 0 0 • 0

Required Functions for Metafiles • 0 0 0 0 0 0 0 0

Available Opcodes 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0

Format
Input Parameters 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Output Paramete:t:s 0 0 0 0 0 0 0 0 0 0 0

v

1-1

1-1

1-1

1-2

1-2
1-3

1-3

1-3
1-4
1-4
1-4

1-5

1-5

1-6

1-6
1-6
1-7

2-1

2-1

2-1

2-9
2-9
2-9

2-11
2-13
2-14
2-16
2-16
2-16
2-17

/71

TABLE OF CONTENTS (continued)

Calling Conventions . ~
Registers and Interrupts . . .

Running Graphics Applications Under GEM VDI

Enabling Graphics

Disabling Graphics •

Determining Memory Requirements . • . . • •

Debugging Graphics Applications under GEM VDI . . .

3 Control Functions

Introduction • •

Open Workstation •

Close Workstation

Open Virtual Screen Workstation

Close Virtual Screen Workstation • .

Clear Workstation • • • • .

Update Workstation • • • • . . •

Load Fonts .

Unload Fonts .••.••.••

Set Clipping Rectangle • • • • • .

4 Output Functions

Introduction •

Polyline .

Polymarker .

Text • . . •

vi

2-17·

2-18

2-18

2-19

2-20

2-20

2-20

3-1

3-1

3-9

3-10

3-12

3-13

3-14

3-15

3-16

3-18

4-1

4-1

4-4

4-6

17'1

~~------~-~-~~~ ---

TABLE OF CONTENTS (continued)

Filled Area

Cell Array •.

Contour Fill

Fill Rectangle .

Generalized Drawing Primitive (GDP)

Bar

Arc & Pie

Circle • .

Elliptical Arc and Pie • .

Ellipse

Rounded and Filled Rounded Rectangle •

Justified Graphics Text

5 Attribute Functions

Introduction • •

Set Writing Mode •

Replace • • .
Transparent . . • . • .
XOR • • • • •
Reverse Transparent •

Set Color Representation •

Set Polyline Line Type • •

Set User-defined Line Style Pattern

Set Polyline Line Width

Set Polyline Color Index

Set Polyline End Styles

Set Polymarker Type

vii

4-8

4-11

4-13

4-14

4-15

4-18

4-19

4-21

4-22

4-24

4-25

4-27

5-1

5-1

5-2
5-2
5-2
5-3

5-4

5-6

5-8

5-9

5-11

5-12

5-14

TABLE OF CONTENTS (continued)

set Polymarker Height

set Polymarker Color Index • .

Set Character Height, Absolute Mode

Set Character Cell Height, Points Mode .

Set Character Baseline vector

Set Text Face

Set Graphic Text Color Index •

Set Graphic Text Special Effects

Set Graphic Text Alignment .

Set Fill Interior Style

Set Fill Style Index •

Set Fill Color Index

Set Fill Perimeter Visibility

Set User-defined Fill Pattern

6 Raster Operations

Introduction • • •

Memory Form Definition Block

Raster Area Formats

Coordinate Systems •

Logic Operations • •

Copy Raster, Opaque

Copy Raster, Transparent

Replace Mode • • •
Transparent Mode
XOR Mode •. • . •
Reverse Transparent

. .
Mode

viii

e, • • •

5-16

5-17

5-18

5-20

5-22

5-24

5-26

5-27

5-30

5-32

5-33

5-35

5-36

5-37

6-1

6-1

6-2

6-4

6-6

6-7

6-9

6-9
6-9
6-9

6-10

/1/

/~""\

TABLE OF CONTENTS (continued)

Transform Form • .

Get Pixel

7 Input Functions

Introduction .

Set Input Mode

8

Input Locator, Request Mode

Input Locator, Sample Mode .

Input Valuator, Request Mode .

Input Valuator, Sample Mode

Input Choice, Request Mode .

Input Choice, Sample Mode

Input String, Request Mode

Input String, Sample Mode•.

Set Mouse Form • . • . • • . • .

Exchange Timer Interrupt Vector

Show Cursor

Hide Cursor •

Sample Mouse Button State

Exchange Button Change Vector

Exchange Mouse Movement Vector .

Exchange Cursor Change Vector

Sample Keyboard State Information

Inquire Functions

Introduction . .

Extended Inquire .

ix

6-12

6-13

7-1

7-1

7-3

7-6

7-9

7-11

7-13

7-14

7-15

7-17

7-19

7-21

7-23

7-25

7-26

7-27

7-29

7-31

7-33

8-1

8-1

TABLE OF CONTENTS (continued)

Inquire Color Representation · · · · · · · · · · 8-5

Inquire Current Polyline Attributes · · · · · · · · · · 8-7

Inquire Current Polymarker Attributes · · · · · · · · · 8-9

Inquire Current Fill Area Attributes · · · · · · 8-11

Inquire Current Graphic Text Attributes · · · · · · 8-13

Inquire Text Extent . · · · · · · · · · · · · · 8-15

Inquire Character Cell Width · · · · · · · · 8-17

Inquire Face Name and Index · · · · · · 8-19

Inquire Current Face Information · · · · · · · · 8-21

Inquire Cell Array . · · · · · · · · · · 8-23

Inquire Input Mode · · · · · · · · · · · · · · · 8-25

"

9 Escapes ",

Escape · · · · · · · · · · · · · · · 9-1

ESCAPE 1: Inquire Addressable Character Cells · 9-4

ESCAPE 2: Exit Alpha Mode · · · · · · · · · 9-5

ESCAPE 3: Enter Alpha Mode · · · · · · · · · · · · 9-6

ESCAPE 4: Alpha Cursor Up · · · · · · · · · · · · · 9-7

ESCAPE 5: Alpha Cursor Down · · · · · · · · · · · · · · 9-8

ESCAPE 6: Alph;3. Cursor Right · · · · · · · 9-9

ESCAPE 7: Alpha Cursor Left · · · · · · · · · · · · 9-10

ESCAPE 8: Home Alpha Cursor · · · · · · · · · · 9-11

ESCAPE 9: Brase to End of Alpha Screen · · · · 9-12

ESCAPE 10: Erase to End of Alpha Text Line · · · · 9-13

ESCAPE 11: Direct Alpha Cursor Address · · · · · · 9-14

ESCAPE 12: Output Cursor Addressable Alpha Text 9-15

ESCAPE 13: Reverse Video On · · · · · · · · · · · · · · 9-16

x

TABLE OF CONTENTS (continued)

ESCAPE 14: Reverse Video Off · · · · · · · · · 9-17

ESCAPE 15: Inquire Current Alpha Cursor Address 9-18

ESCAPE 16: Inquire Tablet Status · · · · · · · · · · · 9-19

ESCAPE 17: Hard Copy · · · · • · · · · 9-20

ESCAPE 18: Place Graphic Cursor at Location · · · · 9-21

ESCAPE 19: Remove Last Graphic Cursor · · · · · 9-22

ESCAPE 20: Form Advance · · · · · · · · · · 9-23

ESCAPE 21: Output Window · · · · · · · · · 9-24

ESCAPE 22: Clear Display List · · · · · · · 9-26

ESCAPE 23: Output Bit Image File · · · · · · · 9-27

ESCAPE 60: Select Palette · · · · · · · · · · · 9-30

(
Polaroid Palette . . · · · · · · · · · · · · · · · · · · 9-31

. '.

-- .,' ~ Palette Driver · · · · · · · · · · · · · · · · 9-31
Error Messages · · · · · · · · · · · · 9-31

ESCAPE 91: Inquire Palette Film Types · · · · · · · · · 9-32

ESCAPE 92: Inquire Palette Driver State · · · · 9-33

ESCAPE 93: Set Palette Driver State · · 9-35

ESCAPE 94: Save Palette Driver State · · · · · · · · · 9-37

ESCAPE 95: Suppress Palette Messages · · · · · · · 9-38

ESCAPE 96: Palette Error Inquire · · · · · · · 9-39

ESCAPE 98: Update Metafile Extents 9-41

ESCAPE 99: Write Metafile Item 9-43

ESCAPE 100: Change GEM VDI Filename · · · · 9-44

xi

TABLE OF CONTENTS (continued)

Appendixes

A GEM VDJ: Error Messages

B ASSJ:GN.SYS File

Requirements

Device Id Numbers . . •
Device Driver Filename .

Format

Sample ASSIGN.SYS

C GEM VDJ: Metafile Format

Introduction • •

Standard Metafile Item Format

Nonstandard Metafile Items • .

1 open workstation
2 close workstation

Special Metafile Escapes •

5, 98 update metafile extents • • • .
5, 99 wr.i te metafile item e.scape . . • • . . .
5, 100 change GEM VDI filename escape •

Inquiry Functions

D Standard Keyboard

E Processor-Specific Data

F

8086-Specific Data •

68000-Specific Data

Character Sets

xii

A-1

B-1

B-1
B-1

B-1

B-2

C-1

C-1

C-2

C-2
C-4

C-4

C-4
C-4
C-4

C-5

D-1

E-1

E-3

F-l

/,,~-

"-,

C\

TABLE OF CONTENTS (continued)

G Font Format

Introduction

Font Data

Font Header

Character Offset Table . .

Horizontal Offset Table

H Reserved Metafile Sub-opcodes

Metafile Sub-opcodes for Use with GEM Output .

Physical Page Size

Coordinate Window

Metafile Sub-opcodes for Use with GEM Draw .

Start Group

End Group

Set No Line Style

Set Attribute Shadow On

Set Attribute Shadow Off .

Start Draw Area Type Primitive .

End Draw Area Type Primitive •

I Bit Image File Format

Introduction . .

Header Format

Data Format

Run-length Encoding
Extended Run-length Encoding . • .
Raster Encoding ••
Raster-run Encoding • • • • • •

xiii

G-l

G-l

G-l

G-4

G-4

H-l

H-l

H-2

H-3

H-3

H-4

H-4

H-5

H-6

H-6

H-7

I-l.

I-l

I-l

I-2
I-2
I-3
I-3

TABLE OF CONTENTS (continued)

Glossary

Tables

1-1.

2-1.

3-1.
3-2.
3-3.
3-4.

5-1.
5-2.
5-3.

6-1.

6-2.

6-3.

Device Identification Numbers .

Parameter Block Contents

Monochrome Screens . . . • • • • .
Monochrome Printer/Plotters • .
Color Screens • • • • • • . • . • .
Default Values .••

Writing Modes • ..•......
Terms • • . •
Attribute Bit Mapping . • •.

Pixel Value to Color Index Mapping for
a-color Screens • • • • • • • • . • . . .
Pixel Value to Color Index Mapping for
l6-color Screens • . • . • • . •
Raster Operation Logic Operations . .

7-1. Sample Mode Status Returned

8-1. Face Names and Styles • . . •

9-1. Escape Function Indentifiers

B-1. Device id Numbers • • • •
I

D-1. GEM VDI Standard Keyboard Assignments

G-1. ~ont Header Format

xiv

1

1-5

2-18

3-6
3-6
3-6
3-7

5-1
5-2

5-27

6-3

6-4 / ~',

6-6
\.",.,~J7/

7-7

8-19

9-1

B-1

D-1

G-2

/37

('"
" ___ r/

TABLE OF CONTENTS (continued)

Figures

1-1.

2-1.

4-1.
4-2.

5-1.
5-2.
5-3.
5-4.
5-5.

6-1.
6-2.
6-3.

8-1.
8-2.
8-3.

B-1.

Transformation Modes

output from the Sample Program

First Point for Wide Lines
Angle Specification

Character Cell Definition ..
Angle Specification • • . • .
Graphic Text Special Effects
Graphic Text Alignment . . .
Fill Styles and Indices . . .

Memory Form Definition Block . . •
Standard Forms
Sample Single Plane Memory Form

Inquire Text Extent Function
Character Cell Definition ..
Right and Left Offset .

ASSIGN.SYS File Format

1-8

2-2

4-1
4-15

5-20
5-22
5-28
5-30
5-33

6-2
6-5
6-5

8-15
8-17
8-21

B-1

F-1.
F-2.

GEM VDI USASCII Character Set .•........ F-2
GEM VDI International Character Set Extension F-3

Listings

2-1.
2-2.

Sample Program • . . • • . • . • . . .
Sample Assembly Language Application . . .

xv

2-2
2-3

Section 1
OVERVIEW

INTRODUCTION

FEATURES

ENHANCEMENTS

The GEM VDI provides a device-independent en­
vironment in which you, can write graphics
applications. This section describes GEM VDI
and its architecture. Subsequent sections
describe writing an application and all the
GEM VDI functions.

The following features of GEM VDI make it
possible for you to write graphics ap­
plications that run under several microcom­
puter operating systems:

o GEM VDI provides a common graphics program­
ming interface that is compatible with the
most widely used operating systems, thus
making it easy to port many programs.

o GEM VDI provides a device-independent
software interface for your application
programs. You do not need to rewrite ap­
plications for use with different output
devices such as screens, printers, and
plotters. GEM VDI handles device dif­
ferences and makes it possible for you to
send information to the devices through
the application program as if the devices
were the same. GEM VDI handles graphics
requests and supplies the right driver to
run the specific device.

GEM VDI includes enhancements
functions and now includes the
capabilities:

to GSX
following

o raster functions--functions that
raster areas, which are rectangular
of pixels on physical devices or
gular blocks of bits in memory

affect
blocks

rectan-

o faces--Ietter styles stored in dynamically
loadable files

1-1

ARCHITECTURE

Graphics
Device Operating
System (GDOS)

GEM VOl provides graphics primitives for im­
plementing graphics applications with
reduced programming effort. Application
programs interface to GEM VOl through a
standard calling sequence. Orivers for
specific graphics devices translate the
standard GEM VOl calls to the unique charac­
teristics of each device. In this way, GEM
VOl provides device independence.

GEM VOl is composed of two components:

o Graphics Device Operating System (GOOS)
o device drivers and face files

The GOOS contains the device-independent
graphics functions, while the device drivers
and face files contain the device-dependent
code.

GEM VOl is designed in this way to make the
principal parts of the GOOS transportable to
different hardware configurations. This
design also allows applications to run in­
dependently of the specific devices con­
nected to the system.

The Graphics Oevice Operating System (GOOS)
contains the basic host and device­
independent graphics functions that can be
called by your application program. GOOS
provides a standard graphics interface that
is constant regardless of specific devices
or host hardware, just as the disk operating
system standardizes disk interfaces. Your
application program accesses the GOOS in
much the same way that it accesses. the
operating system.

The GOOS performs coordinate scaling so that
your application can specify points in a
normalized space. It uses device-specific
information to transform (map) the coor­
dinates into the corresponding values for a
particular graphics device.

An application can also specify points in
raster coordinate space, in which case no
transformation occurs.

1-2

/9~

--~\

GEM VDI Programmer's Guide Architecture

Graphics
Device Drivers

DEVICE TYPES

Metafiles

The graphics device drivers are similar to
any I/O system. They contain the device­
specific code required to interface your
particular graphics devices to the GDOS. The
device drivers communicate directly with the
graphics devices. GEM VDI requires a unique
device driver for each graphics device in a
system.

A single program can use several graphics
devices; the GDOS loads only the appropriate
device driver file into memory. By referring
to devices with a device identification num­
ber, an application program can send graphics
information to anyone of several memory­
resident device drivers.

The device driver outputs the GEM VDI
graphics primitives according to the in­
herent capabilities of a particular graphics
device. In some cases, a device driver
emulates standard capabilities not provided
by the graphics device hardware. For ex­
ample, some devices require that dashed lines
be simulated by a series of short vectors
generated in the device driver.

The GEM VDI package contains drivers for many
of the most popular microcomputer-related
graphics devices.

You can write a GEM VDI-based graphics ap­
plication for a variety of devices including
screens, plotters, printers, and special
cameras.

A metafile is the stored generic form of a
picture file. Any application can create a
GEM VDI metafile that can later be called
into another graphics application. The
metafile driver stores a description of a
picture in a data file. These files can
later be sent to any device or used to ex­
change a picture between two applications.

1-3

GEM VDl Programmer's Guide Device Types

Multiple
Workstations

Device Handles

ASSlGN.SYS

When GEM VDl creates a metafile, it provides
the ideal device. Raster Coordinate (RC)
and Normalized Device Coordinate (NDC) space
are the same (0 to 32767). No transform is
applied. Refer to "Transforming Points"
later in this section for more information on
the coordinate spaces.

Refer to Appendix C for information about the
file format for metafiles.

The application program specifies the
graphics function to be performed by a
device driver with an operation code (opcode)
in the control array. "Opcodes" in Section
2 describes the opcodes.

Because multiple workstations can Qe open at
the same time, each GEM VDl function must be
provided with a unique reference to the
desired device. This identification is
referred to as the device handle.

The GDOS assigns the device handle when the
Open Workstation function is called by the
application program. The Open Workstation
call returns the device handle in the array
element contrl(6). All subsequent GEM VDl
calls need to supply the device handle as an
input in element contrl(6).

The ASSlGN.SYS file is a text file, and can
be created or edited using any text editor.
The file lists the device driver filenames
and face filenames, their device numbers, and
device-specific information. The device num­
bers are assigned according to their type.
Refer to Table 1-1 for device numbers.

1-4

(/

GEM VOl Programmer's Guide Device Types

APPLICATION
PROGRAMS

VIRTUAL DEVICE
INTERFACE

Table 1-1. Device Identification Numbers

Device Type Device Number

Screen 1-10

Plotter 11-20

Printer 21-30

Metafile 31-40

Camera 41-50

Tablet 51-60

With appropriate calls to the GODS, you can
write application programs in assembly lan­
guage or in a high-level language that sup­
ports the GEM VDI calling conventions. You
can compile or assemble and link programs
containing GEM VDI calls in the normal man­
ner. Refer to Section 2 for more informa­
tion about writing graphics application
programs.

This guide contains the specification of the
GEM Virtual Device Interface (VOl) and
defines how applications interface to GEM
VOl. The GEM VOl specifies the calling se­
quence to access device driver functions as
well as the necessary calling parameters.
Refer to Appendix E for the main entry into
the VOl for your operating system.

The main entry point into the VOl is a single
subroutine with five arguments, in the form
of five arrays:

o control array
o array of input parameters
o array of input point coordinates
o array of output parameters
o array of output point coordinates

1-5

/93

GEM VDI Programmer's Guide Virtual Device Interface

TRANSFORMING
POINTS

Transformation
Mode

Normalized Device
Coordinates

All array elements are of type INTEGER (2 .~
bytes). All arrays are zero-based; that is,
the double-word address of the Parameter
Block (PB) pOints to the first element of
the control array, contrl(O). The content of
the input and output parameter arrays
depends on the opcode. Refer to Section 2
for more information about writing graphics
applications.

All computer graphics are displayed using a
coordinate system. GEM VDI makes sure the
coordinate system of one device matches the
coordinate system of another. For example,
with GEM VDI, the application program
produces the same graphics image on a printer
as on a screen. The linetypes and fill
styles are the same in Normalized Device
Coordinates (NDC), which are described below.
Character sizes are different. The same
number of characters are displayed per line,
but a printer's line length is generally
greater than a screen's.

The application program can address the
display surface using one of two coordinate
systems:

o Normalized Device Coordinates (NDC)
o Raster Coordinates (RC)

The transformation mode, specified at Open
Workstation, determines which coordinate sys­
tem is used.

Normalized Device Coordinates (NDC) address
the graphics display independent of the
device coordinate size. These units are then
mapped to Raster Coordinates by the GDOS.
The transformation mode set at Open Worksta­
tion determines whether the GDOS maps from
NDC units to the Raster Coordinates.

1-6

(

C"":
/

GEM VOl Programmer's Guide Transforming Points

Raster Coordinates

The full scale of NDC space (0-32767) is
mapped to the full dimensions of the device
on both axes. On a nonsquare display with
square pixels, a different scale factor is
applied to each axis with this transformation
mode.

NDC space has its origin at the lower left
corner, and its (xmax,ymax) point at the up­
per right corner. This space is in the first
quadrant of the Cartesian coordinate system.

When transforming from NDC to Raster Coor­
dinates (RC), the GOOS assumes a raster
coordinate at the bottom left edge of a
pixel. You should compensate for a boundary
condition created at the top edge of NOC
space.

This problem is best illustrated with an ex­
ample. Given the display of Figure 1-1 in
Transformation Mode 0, the NDC point
(32767,32767) maps to the point (0,200) in
RCs. But because pixels are addressed at
their lower left corner, the NDC point
(32766,32766) maps to the point (1,199) in
RCs. The application programmer should cor­
rect for this boundary error by adding half
of the NDC height and width into the coor­
dinate transform to ensure that any roundoff
error in the application-world-to-NDC trans­
form does not cause the wrong pixel to be
addressed.

Raster Coordinates (RC) are actual device
units (for example, rasters for screens or
steps for plotters and printers). Unlike
NOCs, RCs have their origin at the upper
left corner, and the (xmax,ymax) point at the
bottom right pixel of the space. Refer to
Figure 1-1 for an illustration of this con­
cept.

No transformation occurs when the RC system
is in effect. The application needs to ad­
just its transform based on the aspect ratio
of pixels on the screen. The raster coor­
dinate system saves the overhead of the GOOS
having to perform a transformation on every
point.

1-7

194'"

GEM VDl Programmer's Guide Transforming Points

Figure 1-1. Transformation Modes

End of Section 1

1-8

Section 2
WRITING A GRAPHICS APPLICATION

INTRODUCTION

GEM VDI
DISTRIBUTION
FILES

WRITING THE
PROGRAM

This section explains how to use GEM VDI in
your graphics applications.

When you receive your GEM VDI distribution
disks, first duplicate them and then store
them in a safe place. Then, using the dupli­
cate disks, transfer the GEM VDI files to
working system disks. Always use the dupli­
cate disks to generate any new copies of GEM
VDI. Do not use the distribution disks for
routine operations.

You can write your graphics application in
one of two ways:

o using assembly language

o using high-level language bindings (C lan­
guage bindings are provided.)

The first method addresses functions by their
opcode numbers, the second by procedure name.
The C Language bindings provided for each
function allow for portability across im­
plementations. In the C bindings, which ap­
pear with each function in sections 3 through
9, WORD declares a 16-bit integer type; BYTE
declares an a-bit integer type.

The following figure is produced by the
sample C language graphics application in
Listing 2-1 that follows the figure. Listing
2-2 is a sample assembly language graphics
program.

2-1

/f7

GEM VOl Programmer's Guide Writing the Program

Figure 2-1. Output from the Sample Program

Listing 2-1. Sample Program

2-2

II'I'

GEM VnI Programmer's Guide Writing the Program

(/ Listing 2-1. (continued)

Listing 2-2. Sample Assembly Language Application

2-3

GEM VDl Programmer's Guide Writing the Program

Listing 2-2. (continued)

2-4

GEM VDI Programmer's Guide Writing the Program

(-
Listing 2-2. (continued)

c' 2-5

GEM VDl Programmer's Guide Writing the Program

Listing 2-2. (continued)

2-6

GEM VDI Programmer's Guide Writing the Program

Listing 2-2. (continued)

(.~.

"' 2-7

GEM VDl Programmer's Guide Writing the Program

Listing 2-2. (continued)

2-8

(

GEM VDI Programmer's Guide Writing the Program

GEM VDi Functions

Opcodes

Listing 2-2. (continued)

The functions are grouped by type, output,
and so on. Each device type requires cer­
tain functions, lists of which follow.

Opcodes are numbers assigned to each GEM VDI
function. The device drivers recognize all
opcodes, whether or not they produce any
action. If an opcode is out of range, the
driver performs no action.

Required Functions Screens require the following functions and
for Screens subfunctions:

Opcode Definition

1 Open workstation
2 Close workstation
3 Clear workstation
4 Update workstation
5 Escape

id

1

2
3
4
5
6
7
8
9

10
11

Definition

Inquire addressable character
cells
Exit alpha mode
Enter alpha mode
Cursor up
Cursor down
Cursor right
Cursor left
Home cursor
Erase to end of screen
Erase to end of line
Direct cursor address

2-9

GEM VOl Programmer's Guide

12
15

18
19

Writing the Program

Output cursor addressable text
Inquire current alpha cursor
address
Place graphic cursor
Remove last graphic cursor

6 Polyline
7 Polymarker
8 Text
9 Filled area

11 Generalized Drawing Primitive (GOP)

12
14
15
17
18
20
21
22
23
24
25
26
28
31
32
33
35
36

37
38

39
100
101
102

id Definition

1 Bar
2 Arc
3 Pie
4 Circle
5 Ellipse
6 Elliptical Arc
7 Elliptical Pie
8 Rounded rectangle
9 Filled rounded rectangle

10 Justified graphics text

Set character height absolute mode
Set color representation
Set polyline linetype
Set polyline color index
Set polymarker type
Set polymarker color index
Set text face
Set text color index
Set fill interior style
Set fill style index
Set fill color index
Inquire color representation
Input locator
Input string
Set writing mode
Set input mode
Inquire current polyline attributes
Inquire current polymarker
attributes
Inquire current fill area attributes
Inquire current graphic text
attributes
Set graphic text alignment
Open virtual screen workstation
Close virtual screen workstation
Extended inquire function

2-10

,/r'~-'_"\,

"->/

(

GEM VDI Programmer's Guide Writing the Program

104
106
107

108
109
110
111
112
113
114
115
116
117
118
121
122
123
124
125
126
127
128
129
130
131

Set fill perimeter visibility
Set graphic text special effects
Set character cell height, points
mode
Set polyline and styles
Copy raster, opaque
Transform form
Set mouse form
Set user-defined fill pattern
Set user-defined linestyle
Fill rectangle
Inquire input mode
Inquire text extent
Inquire character cell width
Exchange timer interrupt vector
Copy raster, transparent
Show cursor
Hide cursor
Sample mouse button state
Exchange button change vector
Exchange mouse movement vector
Exchange cursor change vector
Sample keyboard state information
Set clipping rectangle
Inquire face name and index
Inquire current face information

Required Functions Printers require the following functions and
for Printers subfunctions:

Opcode Definition

1 Open workstation
2 Close workstation
3 Clear workstation
4 Update workstation
5 Escape

id

1

20
21
22
23

Definition

Inquire addressable character
cells
Form advance
Output window
Clear display list
Output bit image file

2-11

cfJ.o7

GEM VDI Programmer's Guide Writing the Program

6 Polyline
7 Polymarker
8 Text
9 Filled area

11 Generalized Drawing Primitive (GDP)

id Definition

l' Bar
2 Arc
3 Pie
4 Circle
5 Ellipse
6 Elliptical Arc
7 Elliptical Pie
8 Rounded rectangle
9 Filled rounded rectangle

10 Justified graphics text

12 Set character height absolute mode
15 Set polyline linetype
17 set polyline color index
18 Set polymarker type
20 Set polymarker color index
21 Set text face
22 Set text color index
23 Set fill interior style
24 Set fill style index
25 Set fill color index
26 Inquire color representation
32 Set writing mode
35 Inquire current polyline attributes
36 Inquire current polymarker

attributes
37 Inquire current fill area attributes
38 Inquire current graphic text

attributes
39 Set graphic text alignment
102 Extended inquire function
104 Set fill perimeter visibility
106 Set graphic text special effects
107 Set character height points mode
108 Set polyline end styles
112 Exchange fill pattern
116 Inquire text extent
117 Inquire character cell width
129 Set clipping
130 Inquire face name and index
131 Inquire current face information

2-12

(...

c·········•· /

c

GEM VDI Programmer's Guide Writing the Program

Required Functions Plotters require the following functions and
for Plotters subfunctions:

Opcode

1
2
3
4
5

Definition

Open workstation
Close workstation
Clear workstation
Update workstation
Escape

id Definition

1 Inquire addressable character
cells

6 Polyline
7 Po1ymarker
8 Text
9 Filled area

11 Generalized Drawing Primitive (GDP)

12
15
17
18
20
21
22
23
24
25
35
36

37
38

id

2
3
4
5
6
7
8
9

10

Definition
1 Bar
Arc·
Pie
Circle
Ellipse
Elliptical arc
Elliptical pie
Rounded rectangle
Filled rounded rectangle
Justified graphics text

Set character height absolute mode
Set polyline linetype
Set polyline color index
Set polymarker type
Set polymarker color index
Set text face
Set text color index
Set fill interior style
Set fill style index
Set fill color index
Inquire current polyline attributes
Inquire current polymarker
attributes
Inquire current fill area attributes
Inquire current graphic text
attributes

2-13

GEM VDI Programmer's Guide Writing the Program

39 Set graphic text alignment
102 Extended inquire function
104 Set fill perimeter visibility
107 Set character height points mode
108 Set polyline end styles
116 Inquire text extent
117 Inquire character cell width
124 Set clipping
130 Inquire face name and index
131 Inquire current face information

Required Functions Because metafiles are transportable to any
for Metafiles device, the required functions are all those

common to any device you may use. Metafiles
support some inquiries by returning the op­
code number. Refer to Appendix C for the
metafile format of those supported inquires.

Metafiles require the following functions and
subfunctions:

Opcode Definition

1 Open workstation
2 Close workstation
3 Clear workstation
4 update workstation
5 Escape

id Definition

1 Inquire addressable character
cells

2 Exit alpha mode
3 Enter alpha mode

20 Form advance
21 Output window
22 Clear display list
23 Output bit image file
98 Update metafile extents
99 Write metafile item

100 Change GEM VDI filename

6 Polyline
7 Polymarker
8 Text
9 Filled area

11 Generalized Drawing Primitive (GDP)

2-14

~/()

(~\

./

GEM VDl Programmer's Guide

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
32
35
36

37
38

39
102
103
104
106
107
108
112
113
114
117
129
131

Writing the Program

id Definition

1 Bar
2 Arc
3 Pie
4 Circle
5 Ellipse
6 Elliptical arc
7 Elliptical pie
8 Rounded rectangle
9 Filled rounded rectangle

10 Justified graphics text

Set character height absolute mode
Set character baseline vector
Set color representation
Set polyline linetype
Set polyline line width
Set polyline color index
Set polymarker type
Set polymarker height
Set polymarker color index
Set text face
Set text color index
Set fill interior style
Set fill style index
Set fill color index
Inquire color representation
Set writing mode
Inquire current polyline attributes
Inquire current polymarker
attributes
Inquire current fill area attributes
Inquire current graphic text
attributes
Set graphic text alignment
Extended inquire function
Contour fill
Set fill perimeter visibility
Set graphic text special effects
Set character height points mode
Set polyline end styles
Set fill pattern
Set user-defined line style pattern
Fill rectangle
Inquire character cell width
Set clipping rectangle
Inquire current face information

2-15

~II

GEM VDI Programmer's Guide Writing the Program

Available
Opcodes

Format

Input Parameters

You can determine if a function is available
in a specific driver in one of the following
ways:

o Check the information about available
features returned from the Open Worksta­
tion function or the Extended Inquire func­
tion.

o Check the selected value returned from an
opcode against the requested value. If the
two values are not the same, then either
the function is not available or the re­
quested value is not available, and GEM VDI
selected a best fit value.

The following is the format for
parameters for all GEM VDI functions.

the

contrl(O)

contrl(l)

contrl(3)

contrl(5)

contrl(6)
contrl(7-n)

intin

ptsin

2-16

Opcode number for the GEM
VDI function.
Number of vertices in the
ptsin array.

Each vertex consists of an
x,y coordinate pair, so the
length of the ptsin array
is twice the number of
specified vertices

Length of integer array in­
tin.
Sub function identification
number for a Generalized
Drawing Primitive (GDP) or
Escape.
Device handle.
Opcode-dependent informa-
tion.

Array of integer input
parameters.
Array of input point coor­
dinate data.

GEM VDI Programmer's Guide Writing the Program

Output Parameters

CALLING
CONVENTIONS

contrl(2)

contrl(4)

contrl(6)
contrl(7-n)

intout

ptsout

Refer to the Extended
Inquire function in Section
8 for information on how to
determine the maximum size
for the ptsin array.

Number of vertices in the
ptsout array.

Each vertex consists of an
x,y coordinate pair, so the
length of the ptsout array
is twice the number of
specified vertices.

Length of integer array in­
tout.
Device handle.
Opcode-dependent informa-
tion.

Array of integer output
point parameters.
Array of output point coor­
dinate data.

Because both input and output coordinates
may be converted by the GDOS, the calling
routine must ensure that the vertex count,
contrl(1), is set correctly. Contrl(1) must
be set to 0 if no x,y coordinates are being
passed to GEM VDI by the application program.
In addition, the input integer count, con­
trl(3), must always be set. The calling
routine must set contrl(3) to 0 if no in­
tegers are being passed to GEM VDI.
Similarly, contrl(2), the output vertex
count, and contrl(4), the output integer
count, are always set correctly by GEM VDI.
These values contain zeros if no information
is being passed back in ptsout and intout,
respectively.

The double-word addresses
parameter arrays are stored
data structure referred to
Block (PB).

2-17

of the five
in a ten-word

as a Parameter

GEM VOl Programmer's Guide Calling Conventions

Registers and
Interrupts

RUNNING GRAPHICS
APPLICATIONS
UNDER GEM VDI

Refer to Appendix E for the
registers and interrupts for
operating systems.

specific
various

Table 2-1. Parameter Block Contents

Address Contents

PB

PB + 4

PB + 8

PB + 12

PB + 16

control array (contrl)

input parameter array (intin)

input point coordinate
array (ptsin)

output parameter array (intout)

output point coordinate
array (ptsout)

To use the graphics features provided by
GEM VDI, you must ensure that the following
conditions are met:

1. Your application program must conform to
the GEM VOl calling convention to access
graphics primitives. This process invol­
ves the application making a call to the
GDOS and using the interrupt for your
operating system. Refer to Appendix E for
the specific interrupts.

The parameter list provides information
to GEM VOl and returns information to the
calling program. The details of
parameter passing are in the previous sec­
tion.

2. Enough stack space must be available for
GEM VOl operations. This space includes
a buffer area for transforming points
passed to GEM VOl and some fixed overhead
space. The formula to determine the re­
quired stack space is discussed under
"Determining Memory Requirements" later in
this section.

2-18

GEM VOl Programmer's Guide Running Graphics Applications

ENABLING GRAPHICS

3. When your program is executed, the re­
quired device drivers must be present on
the disk specified in the GEM VOl
graphics-mode command, or in the current
default drive if no drive is specified.
The ASSIGN.SYS file must contain the
names of your device drivers and a device
10 number for each device driver. Refer
to "ASSIGN.SYS" in Section 1 for informa­
tion about creating an ASSIGN.SYS file.

4. After successfully compiling or assembling
and linking your application program, you
can run it like any program, once GEM VOl
is active. You can enable GEM VOl
graphics with the GEMVOl graphics-mode
command, described under "Enabling
Graphics" below.

Special commands let you enable graphics
functions from the command level of the
operating system.

To load GEM VOl and start a non-GEM applica­
tion that uses the VOl (like a test program
or debugger), type the following command:

GEMVDI /FILENAME

To load GEM VOl and start a GEM application,
type the following command:

GEMVDI FILENAME

To load GEM VOl and start the GEM Desktop ..
application, type the following command:

GEMVDI

Each command loads
declared resident in
ASSIGN.SYS and the
located in one of
current search path.

2-19

GDOS and any drivers
the ASSIGN.SYS file.

driver files must be
the directories in the

GEM VOl Programmer's Guide Enabling Graphics

Any application to be invoked by a GEMVOI
command must also be located in the search
path.

DISABLING GRAPHICS When the application invoked by the GEMVOl
command terminates, GEM VOl relinquishes all
system memory space, leaving the maximum
memory for nongraphics programs.

DETERMINING MEMORY To determine the amount of stack space
REQUIREMENTS required to run a given application, make the

following calculation:

DEBUGGING GRAPHICS
APPLICATIONS
UNDER GEM VDI

Open workstation call = approximately 128
bytes

All other calls = ptsin size + 128 bytes +
the overhead requirements
of the operating system

Ptsin is the point array passed to the device
driver from the application program (two
words for each point).

The stack requirement is the larger of the
two resulting values. This stack space must
be available in the application program stack
area.

GEM VOl requires less than 30 kilobytes in
memory for a single open driver. This space
is allocated when you enter the GEM VOl
graphics-mode command.

Graphics programs can be debugged with a
debugging tool. The default device drivers
and GOOS are loaded after you enter the
GEMVDl command. Your graphics application

2-20

"" \

(
-~-'.

"

~_//

GEM VOl Programmer's Guide Determining Memory Requirements

program is loaded in the normal manner for
programs on your operating system.

End of Section 2

2-21

Section 3
CONTROL FUNCTIONS

INTRODUCTION

OPEN WORKSTATION

Input

The control functions initialize the graphics
workstation and set defaults for use with the
application.

The Open Workstation function loads a
graphics device driver for the application
program and returns a device handle. The
device is initialized with the parameters in
the input array. Information about the
device is returned; additional device­
specific information is returned in the
Extended Inquire function.

If the device is a screen, it is initialized
to graphics mode. GEM VDI clears the display
surface.

If the
returns
trl(6).
dicates

device cannot be opened, GEM VDI
a zero as the device handle in con­

Any nonzero value in contrl(6) in­
a successful operation.

contrl(O)
contrl(l)
contrl(3)

intin

intin(O)

intin(l)
intin(2)
intin(3)
intin(4)
intin(5)
intin(6) -­
intin(7)
intin(8)
intin(9)

3-1

Opcode = 1.
Number of input vertices = O.
Length of intin array = 11.

Initial defaults (for example,
linestyle, color, character
size) .
Device id number.

This value determines which
device driver to dynamically
load in memory.

Linetype.
Polyline color index.
Marker type.
Polymarker color index.
Text face.
Text color index.
Fill interior style.
Fill style index.
Fill color index.

GEM VOl Programmer's Guide

intin(10) --

Output contrl(2)
contr1(4)
contrl(6)

intout(O)

intout(l)

intout(2)

intout(3)

intout(4)

intout(5)

intout(6)
intout(7)

3-2

Open Workstation

NDC to RC transformation flag.

o = Map the full NDC space to
the full RC space.

1 = Reserved.
2 = Use the RC system.

Number of output vertices = 6.
Length of intout array = 45.
Device handle for this device.

Maximum addressable width of
screen or plotter in rasters
or steps, assuming a 0 start
point (for example, a resolu­
tion of 640 implies an ad­
dressable area of 0-639, so
intout(0)=639).
Maximum addressable height of
screen or plotter in rasters
or steps, assuming a 0 start
point (for example, a resolu­
tion of 480 implies an ad­
dressable area of 0-479, so
intout(1)=479).
Device Coordinate units flag.

o = Device capable of
producing precisely
scaled image (typically
a plotter or a printer).

1 = Device not capable of
producing precisely
scaled image (typically a
film recorder) .

Width of one pixel (plotter
step, or aspect ratio for
screen) in microns.
Height of one pixel (plotter
step, or aspect ratio for
screen) in microns.
Number of character heights.

o = Continuous scaling.

Number of linetypes.
Number of line widths.

o = Continuous scaling.

GEM VDl Programmer's Guide

intout(8)
intout(9)

intout(10)

intout(ll)
intout(12)
intout(13)

intout(14)

intout(15) to
intout(24)

intout(25) to

Open Workstation

Number of marker types.
Number of marker sizes.

o = Continuous scaling.

Number of faces supported
by device (not the highest
numbered face index).
Number of patterns.
Number of hatch styles.
Number of predefined colors (2
for monochrome devices).

This is the number of colors
that can be displayed on the
device simultaneously.

Number of Generalized Drawing
Primitives (GDPs).

Linear list of the
supported GDPs.

first ten

The number indicates which
GDP is supported. A -1 in­
dicates the end of the list of
supported GDPs. GEM VDl
defines ten GDPs.

1 Bar
2 Arc
3 Pie slice
4 Circle
5 Ellipse
6 Elliptical arc
7 Elliptical pie
8 Rounded rectangle
9 Filled rounded rectangle
10 Justified graphics text

intout(34) Linear list of attribute set
associated with each GDP.

o Polyline
1 Polymarker
2 Text
3 Fill area
4 None

intout(35) -- Color capability flag.

3-3

GEM VDI Programmer's Guide Open Workstation

0 -- No
1 -- Yes

intout(36) -- Text rotation capability flag.

0 -- No
1 -- Yes

intout(37) -- Fill area capability flag.

0 -- No
1 -- Yes

intout(38) -- Cell array operation

intout(39) --

capability flag.

o -- No
1 -- Yes

Number
(total
color

of available colors
number of colors in

palette).

o
2

>2

Continuous
(more than
Monochrome
white)
Number of
able

device
32767 colors)

(black and

colors avail-

intout(40) -- Number of locator
available.

devices

1 Keyboard only
2 -- Devices with keyboard and

other input

intout(4l) -- Number of
available.

valuator devices

1 -- Keyboard
2 -- If another
device is available

intout(42) -- Number of
available.

choice

valuator

devices

1 Function keys on keyboard
2 -- If another button pad is

available-,\

intout(43) -- Number of
available.

3-4

string devices

GEM VDI Programmer's Guide Open Workstation

1 -- Keyboard

intout(44) -- Workstation type.

ptsout(O)
ptsout(l)

ptsout(2)
ptsout(3)

ptsout(4)

ptsout(5)
ptsout(6)

ptsout(7)
ptsout(8)

ptsout(9)

3-5

o Output only
1 Input only
2 Input/output
3 Reserved
4 Metafile output

Minimum character width.
Minimum character height in
the y-axis in the current
coordinate system.

The minimum and maximum
character heights are the ac­
tual character body (baseline
to top line), not the charac­
ter extent box, which may in­
clude extra space used for in­
terline or intercharacter
spacing.

Maximum character width.
Maximum character height in
the y-axis in the current
coordinate system.
Minimum line width in the x­
axis in current coordinate
system.

The minimum line width is a
nominal device-dependent size.
If the minimum line width used
is 1 device unit, the line may
not be visible on some high­
resolution devices.

O.
Maximum line width in the x­
axis in the current coordinate
system.
O.
Minimum marker width in x-axis
in the current coordinate sys­
tem.
Minimum marker height in x­
axis in the current coordinate
system.

GEM VDI Programmer's Guide Open Workstation

Default Color
Tables

ptsout(10) Maximum marker width in x-axis
in the current coordinate sys­
tem.

ptsout(ll) -- Maximum marker height in x­
axis in the current coordinate
system.

The default color table is set up differently
for monochrome and color devices.

Table 3-1. Monochrome Screens

Index

o
1

Color

White
Black

Table 3-2. Monochrome Printer/Plotters

Index Color

o White
1 Black

Table 3-3. Color Screens

Index Color

o
1
2
3
4
5
6.
7
8
9

10
11
12
13
14
15

16-n

3-6

White
Black
Red
Green
Blue
Cyan
Yellow
Magenta
White
Black
Light Red
Light Green
Light Blue
Light Cyan
Light Yellow
Light Magenta
Device-dependent

GEM VDI Programmer's Guide Open Workstation

Other default values set by the driver during
initialization are listed in Table 3-4.

Table 3-4. Default Values

Attribute Default Value

Character height Nominal character
height

Character baseline
rotation a degrees rotation

Text alignment Left baseline

Text style Normal intensity

Line width Nominal line width

Marker height Nominal marker height

Polyline end styles Squared

Writing mode Replace

Input mode Request for all input
classes (locator,
valuator, choice,
string)

Fill area perimeter
visibility Visible

User-defined line
style Solid

User-defined fill
pattern Solid

Cursor Hidden

Clipping Disabled

3-7

GEM VDI Programmer's Guide Open Workstation

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

v_opnwk(work_in, &handle, work out)

WORD v opnwk ();
WORD work in[11];
WORD handle;
WORD work_out[57];

work in[O] = intin[O]
work=in[1] = intin[1]

· work_in[10] = intin[10]

handle = contrl[6]
work out[O] = intout[O]
work=out[1] = intout[1]

· work out[44] =
work_out [45] =

· work_out [56] =

3-8

intout[44]
ptsout[O]

ptsout[11]

Ir-' "'\

(-~

GEM VDI Programmer's Guide Close Workstation

CLOSE WORKSTATION

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

The Close Workstation function terminates the
graphics device properly (returning you to
alpha mode) and prevents any further output
to the device. If the device is a screen,
the alpha device is selected, and the
graphics device is deselected. If the
device is a printer, an update occurs if one
has not just taken place. For a metafile,
GEM VDI flushes the buffer and closes the
metafile.

Note: Close your open virtual workstations
before closing the workstation.

contrl(O) Opcode
contrl(l) Number
contrl(3) Length
contrl(6) Device

contrl(2) Length
contrl(4r Length

v_Clswk(handle)

WORD v clswk ();
WORD handle;

handle = contrl[6]

3-9

= 2.
of input
of intin
handle.

of output
of intout

vertices = O.
array = O.

vertices = O.
array = O.

GEM VDI Programmer's Guide Open Virtual Screen Workstation

OPEN VIRTUAL This function allows a single physical screen
SCREEN WORKSTATION to act as multiple workstations. Each

workstation has access to the entire screen.

Input

However, a.ttribute environments for each
workstation are maintained separately. For
example, the workstation may have different
transformation modes, clipping rectangles,
and so on.

Note: Not all input devices associated with
the virtual workstation will work.

The input to the Open Virtual Screen Worksta­
tion function is the device handle of a cur­
rently open phYSical screen workstation and
an environment initialization array (see
"Open Workstation"). If the virtual screen
workstation can be opened, a new device
handle is returned for the virtual worksta­
tion. The device capabilities arrays for the
phYSical screen workstations are returned as
they are for the Open Workstation function.
If the virtual screen workstation cannot be
opened, a zero is returned as the device
handle to indicate an unsuccessful request.

contrl(O)
contrl(l)
contrl(3)
contrl(6)

intin

Opcode = 100.
Number of input vertices = O.
Length of intin = 11.
Device handle of a previously
opened screen device.

For a description of the intin
parameters required in the in­
tin array see Open Worksta­
tion (Opcode 1).

3-10

GEM VDl Programmer's Guide Open Virtual Screen Workstation

Output

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

contrl(2)
contrl(4)
contrl(6)

Number of output vertices
Length of intout = 45.
The device handle for the
tual Screen Device
opened.

= 6.

Vir­
just

Warning: Contrl(6) is an input/output
parameter. The value is
changed to that of the Virtual
Screen Workstation device
handle.

Note: All output parameters are the
same as those of Open Worksta­
tion (Opcode 1).

v_opnvwk(work_in, &handle, work out)

WORD v opnvwk();
WORD handle;
WORD work in[ll];
WORD work=out[57];

handle = contr1[6]
work_in [0] = intin[O]

· work_in[10] = intin[10]

work_out [0] = intout[O]

· work out[44] = intout[44]
work-out [45] = ptsout[O]

· work_out[56] = ptsout[ll]

3-11

GEM VDl Programmer's Guide Close Virtual Screen Workstation

CLOSE VIRTUAL The Close Virtual Screen Workstation function
SCREEN WORKSTATION terminates the virtual device and prevents

any further output to it.

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

contrl(O)
contrl(l)
contrl(3)
contrl(6)

contrl(2)
contrl(4)

Opcode = 101.
Number of input vertices = O.
Length of intin = O.
Device handle.

Number of output vertices = O.
Length of intout = O.

v_Clsvwk(handle)

WORD v clsvwk();
WORD handle;

handle = contrl[6]

3-12

~ ..

(~:

GEM VDI Programmer's Guide Clear Workstation

CLEAR WORKSTATION

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

The Clear Workstation function erases the
screen. GEM VDI sets the screen to the cur­
rently selected background color, which is
defined as color index zero. If the device
is a plotter without paper advance, GEM VDI
prompts the operator to load a new page. If
the device is a printer, data in the buffer
is erased and a new page occurs. For a
metafile, GEM VDI outputs the opcode. No
output occurs for any device.

Note: With GEM VDI, you do not need to do a
Clear Workstation after an Open Workstation
because the display is cleared at Open
Workstation.

contrl(O) Opcode
contrl(l) Number
contrl(3) Length
contrl(6) Device

contrl(2) Number
contrl(4) Length

v_clrwk(handle)

WORD v clrwk ();
WORD handle;

handle = contrl[6]

3-13

= 3.
of input vertices = o.
of intin = O.
handle.

of output vertices = o.
of intout = o.

GEM VDI Programmer's Guide Update Workstation

UPDATE WORKSTATION The Update Workstation function causes all
pending graphics commands to be executed im­
mediately, in the order the commands were
stored in the buffer. For printer drivers,
you must use this function to start output to
the printer. This function has no effect on
screens. Plotters execute all the commands
in the buffer. When the plotter buffer is
empty, it returns from the Update Workstation
function. For a metafile, GEM VDI outputs
the opcode.

Input

Output

C BINDING

Procedure Name

Data.Types

Input Arguments

Note: The picture is drawn to the printer
but no new page occurs. A Clear Workstation
causes a new page.

contrl(O)
contrl(l)
contrl(3)
contr1(6)

contrl(2)
contrl(4)

Opcode = 4.
Number of input vertices = O.
Length of intin = O.
Device handle.

Number in output vertices = O.
Length of intout = O.

v_updwk(handle)

WORD v updwk ();
WORD handle;

handle = contrl[6]

3-14

GEM VDI Programmer's Guide Load Fonts

LOAD FONTS

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

This function loads the fonts associated with
a particular driver in the ASSIGN.SYS file.
It then makes them available to the ap­
propriate program.

GEM VDI returns the number of newly generated
font identifiers. If the fonts were already
available to the workstation, no action oc­
curs, and GEM VDI returns a zero for the
number of additional font identifiers.

Note: You do not need to invoke this func­
tion if the default system fonts for a par­
ticular driver are sufficient.

contrl(O)
contrl(l)
contrl(3)
contrl(6)

intin(O)

contrl(2)
contrl(4)

intout(O)

Opcode = 119.
Number of input vertices = O.
Length of intin array = 1.
Device handle.

Reserved for future use = o.

Number of output vertices = O.
Length of ovtput array = 1.

Number of additional font iden­
tifiers.

additional = vst_load_fonts(handle, select)

WORD vst load fonts();
WORD additional;
WORD handle;
WORD select;

handle = contrl[6]
select = intin[O]

additional = intout[O]

3-15

GEM VDI Programmer's Guide Load Fonts

UNLOAD FONTS

Input

Output

This function logically dissociates the ex­
ternal fonts loaded by the Load Fonts func­
tion from a device and unloads them from
memory, if possible. A device handle is
passed into the function identifying the
device whose external fonts are to be un­
loaded.

If the fonts are being shared by other vir­
tual workstations with the same root device
handle, the fonts are not unloaded from
memory until one of the following conditions
is met:

o all workstations that share the fonts are
closed

o all workstations that share the external
fonts request that the external fonts be
unloaded

The default system fonts for the workstation
remain loaded and available.

contrl(O)
contrl(1)
contrl(3)
contrl(6)

intin(O)

contrl(2)
contrl(4)

Opcode = 120.
Number of input vertices = O.
Length of intin array = 1.
Device handle.

Reserved for future use.

Number of output vertices = O.
Length of intout array = O.

3-16
:l.33

GEM VDI Programmer's Guide Unload Fonts

C BINDING

Procedure Name

Data Types

Input Arguments

vst_unload_fonts(handle, select)

WORD vst unload fonts();
WORD handle; -
WORD select;

handle = contrl[6]
select = intin[O]

3-17

GEM VDI Programmer's Guide Set Clipping Rectangle

SET CLIPPING
RECTANGLE

Input

This function enables or disables clipping of
all output primitives by GEM VDI. Intin(O)
is a flag, which if nonzero, enables clip­
ping. The ptsin array contains the rec­
tangle, specified in the current coordinate
system, to clip to. If intin(O) is zero,
clipping is turned off. The default at Open
Worksttion is for clipping to be disabled.

contrl(O) Opcode = 129.
contrl(l) Number of input vertices = 2.
cOntrl(3) Length of intin array = l.
contrl(6) Device handle.

intin(O) Clipping flag.

o = Turn clipping off.
non-zero = Turn clipping on.

ptsin(O) x-coordinate of corner of the
clipping rectangle in NDC/RC
units.

ptsin(l) y-coordinate of corner of the
clipping rectangle in NDC/RC
units.

ptsin(2) x-coordinate of corner diagon-
ally across from the corner
selected in ptsin(O) of the
clipping rectangle in NDC/RC
units.

ptsin(3) y-coordinate of corner diagon-
ally across from the corner
selected in ptsin(l) of the
clipping rectangle in NDC/RC
units.

3-18

--------- ... --.. ----.. ~-.... -.

GEM VDI Programmer's Guide Set Clipping Rectangle

C BINDING

Procedure Name
Data Types

Input Arguments

vs clip(handle, clip_flag, pxyarray)
WORD vs clip();
WORD handle;
WORD clip flag;
WORD pxyarray[4];

handle = contrl[6]
clip flag = intin[O]
pxyarray[O] = ptsin[O]
pxyarray[l] = ptsin[1]
pxyarray[2] = ptsin[2]
pxyarray[3] = ptsin[3]

End of Section 3

3-19

Section 4
OUTPUT FUNCTIONS

INTRODUCTION

POLYLINE

C:
---"

The output functions display
primitives (polyline or circle, for
on devices.

graphics
example)

This function displays a polyline on the
graphics device. The starting point for the
polyline is the first point in the input ar­
ray. Lines are drawn between subsequent
points in the array. GEM VDI displays a zero
length line (degenerate case) as a point.
GEM VDI will not display a single coordinate
pair. Lines are drawn using the following
current line attributes:

o color
o linetype
o line width
o end style
o current writing mode

For wide lines, the first point (ptsin(O),
ptsin(1» is drawn as shown in Figure 4-1.

Figure 4-1. First Point for Wide Lines

4-1

GEM VDI Programmer's Guide

Input

Output

contrl(O)
contrl(l)

contrl(3)
contrl(6)

ptsin

ptsin(O)

ptsin(l)

ptsin(2)

ptsin(3)

ptsin(2n-2)

ptsin(2n-l)

contrl(2)
contrl(4)

4-2

Polyline

Opcode = 6.
Number of vertices (x,y pairs)
in polyline = n.

(Maximum number is returned in
Extended Inquire.)

Length of intin array = O.
Device handle.

Array of coordinates
polyline in NDC/RC units.

of,

x-coordinate of first point in
NDC/RC units.
y-coordinate of first point in
NDC/RC units.
x-coordinate of second point

in NDC/RC units.
y-coordinate of second point

in NDC/RC units.

x-coordinate of last point in
NDC/RC units.
y-coordinate of last point in
NDC/RC units.

Number of output vertices = O.
Length of intout array = O.

(/

GEM VDI Programmer's Guide

C BINDING

Procedure Name

Data Types

Input Arguments

v_pline(handle, count, pxyarray)

WORD v pline ();
WORD handle;
WORD count;
WORD pxyarray[2 * count];

handle = contrl[6]
count = contrl[l]
pxyarray[O] = ptsin[O]
pxyarray[l] = ptsin[l]

.
pxyarray[2n-2] = ptsin[2n-2]
pxyarray[2n-l] = ptsin[2n-l]

4-3

Polyline

GEM VDI Programmer's Guide Polymarker

POLYMARKER

Input

Output

This function draws markers
specified in the input array.
plays the markers using the
attributes:

at the pOints
GEM VDI dis­

current marker

o color
o scale
o type
o writing mode

contrl(O) Opcode = 7.
contrl(l) Number of markers = n.

(Maximum number is returned in
Extended Inquire.)

contrl(3) Length of intin array = O.
contrl(6) Device handle.

ptsin Array of coordinates in NDC/RC
units.

ptsin(O) x-coordinate of first marker
in NDC/RC units.

ptsin(l) y-coordinate of first marker
in NDC/RC units.

ptsin(2) x-coordinate of second marker
in NDC/RC units.

ptsin(3) y-coordinate of second marker
in NDC/RC units .

.
ptsin(2n-2) x-coordinate of last marker in

. NDC/RC units.
ptsin(2n-l)

contrl(2)
contrl(4)

4-4

y-coordinate of last marker in
NDC/RC units.

Number of output vertices = O.
Length of intout array = O.

-,
/

(

GEM VDI Programmer's Guide Polymarker

C BINDING

Procedure Name

Data Types

Input Arguments

v_pmarker(handle, count, pxyarray)

WORD v pmarker () ;
WORD handle;
WORD count;
WORD pxyarray[2 * count];

handle = contrl[6]
count = contrl[l]
pxyarray[O] = ptsin[O]
pxyarray[l] = ptsin[l]

.
pxyarray[2n-2] = ptsin[2n-2]
pxyarray[2n-l] = ptsin[2n-l]

4-5

GEM VDI Programmer's Guide Text

TEXT

Input

Output

This function writes graphic text to the dis­
play surface. The (x,y) position specified
by the application program is the alignment
point of the text string. The Set Graphic
Text Alignment function establishes the
relationship between the starting point of
the string and the specified x,y position.
The default alignment is the left baseline
position of the text string. Refer to the
Set Graphic Text Alignment function in Sec­
tion 5 for an illustration of alignment
points.

Each word of the intin array
character in bits 0-7. Any
character is mapped to a symbol
defined character.

contains one
unsupported
for an un-

contrl(O)
contrl(l)
contrl(3)
contrl(6)

intin

ptsin(O)

ptsin(l)

contrl(2)
contrl(4)

4-6

Opcode = 8.
Number of input vertices = l.
Length of intin array = n.
Device handle.

Character string as ASCII
codes in 16-bit words.

The maximum number of charac-
ters equals the size of the
intin array. See Extended
Inquire.

x-coordinate of alignment
point of text in NDC/RC
units.
y-coordinate of alignment
point of text in NDC/RC units.

Number of output vertices = O.
Length of intout array = O.

" ,

GEM VOl Programmer's Guide Text

C BINDING

Procedure Name

Data Types

Input Arguments

v_gtext(handle, x, y, string)

WORD v gtext ();
WORD handle;
WORD x;
WORD y;
BYTE string[n];

handle = contrl[6]
x = ptsin[O]
y = ptsin[l]
string = intin

Note: Bytes for the string array are mapped
into the eight least significant bits of in­
tin. The string must be null-terminated.

4-7

GEM VnI Programmer's Guide Filled Area

FILLED AREA This function fills a complex (for example, ~j
self-intersecting) polygon specified by the
input array. The area is filled using the
following current attributes:

o fill area color

o interior style (hollow, solid, pattern,
hatch or user-defined)

o writing mode

o style index

The area is outlined with a solid line of the
current fill area color if the fill area
perimeter visibility is on, which is the
default at Open Workstation. See the Set
Fill Perimeter Visibility function in Section
5.

If a device does not have
capability, GEM VnI outlines
using the current fill area
device driver ensures that the
closed by connecting the first
last point.

area fill
the polygon
color. The
fill area is
point to the

GEM VDI displays a polygon with zero area as
a dot. If outline isn't turned on, the
degenerate case isn't displayed as a dot.
GEM VDI does not display a polygon with only
one endpoint. The maximum number of filled
area vertices may be determined with the
Extended Inquire function.

4-8

GEM VDI Programmer's Guide

Input

Output

contrl(O)
contrl(l)

contrl(3)
contrl(6)

ptsin

ptsin(O)

ptsin(l)

ptsin(2)

ptsin(3)

ptsin(2n-2)

ptsin(2n-l)

contrl(2)
contrl(4)

4-9

Filled Area

Opcode = 9.
Number of vertices in polygon
= n.

Maximum number returned in
Extended Inquire.

Length of intin array = O.
Device handle.

Array of coordinates of
polygon in NDC/RC units.
x-coordinate of first point in
NDC/RC units.
y-coordinate of first point in
NDC/RC units.
x-coordinate of second point
in NDC/RC units.
y-coordinate of second point
in NDC/RC units.

x-coordinate of last point in
NDC/RC units.
y-coordinate of last point in
NDC/RC units.

Number of output vertices = O.
Length of intout array = O.

GEM VDI Programmer's Guide Filled Area

C BINDING

Procedure Name

Data Types

Input Arguments

v_fillarea(handle, count, pxyarray)

WORD v fillarea ();
WORD handle;
WORD count;
WORD pxyarray[2 * count];

handle = contrl[6]
count = contrl[l]
pxyarray[O] = ptsin[O]
pxyarray[1] = ptsin[l]

.
pxyarray[2n-2] = ptsin[2n-2]
pxyarray[2n-1] = ptsin[2n-l]

4-10

GEM VDr Programmer's Guide Cell Array

CELL ARRAY

Input

With the Cell Array function, the device
draws a rectangular array defined by the in­
put parameter (x,y) coordinates and the color
index array. The lower left and upper right
coordinates define the extent of the rec­
tangle. GEM VDr divides the rectangle into
cells based on the number of rows and columns
specified as input parameters. The color in­
dex array specifies the color for each cell.

Each cell
pixels on
takes the
center.

of the rectangle is mapped to
the display surface. The pixel
color of the cell that covers its

If the device does not support cell arrays,
the device outlines the area with a solid
line in the current line color and line
width.

Note: This function is not required and may
not be available on all devices.

contrl(O)
contrl(1)
contrl(3)
contrl(6)
contrl(7)

contrl(8)

contrl(9)

Opcode = 10.
Number of input vertices = 2.
Length of color index array.
Device handle.
Length of each row in color index
array (size as declared in a
high-level language).
Number of elements used in each
row of color index array.
Number of rows in color index ar-
ray.

contrl(lO)-- Pixel operation to be performed.

intin(O)

ptsin(O)

ptsin(1)

ptsin(2)

ptsin(3)

(See Set Writing Mode function in
Section 5 for the description of
each mode.)

Color index array, stored by row.

x-coordinate of lower left corner
in NDC/RC units.

y-coordinate of lower left corner
in NDC/RC units.

x-coordinate of upper ri~ht corner
in NDC/RC units.

y-coordinate of upper right corner
in NDC/RC units.

4-11

GEM VDI Programmer's Guide Cell Array

Output

C BINDING

Procedure Name

Data Types

Input Arguments

contrl(2)
contrl(4)

Number of output vertices = O.
Length of intin array = O.

v cellarray(handle, pxyarray, row length,
- el_used, num_rows, wrt_mode, colarray)

WORD v cellarray();
WORD handle;
WORD pxyarray[4];
WORD row length;
WORD el_used;
WORD num rows;
WORD wrt-mode;
WORD cOlarray[num_rows*el_used];

handle = contrl[6]
pxyarray[O] = ptsine[O]
pxyarray[l] = ptsin[l]
pxyarray[2J = ptsin[2]
pxyarray[3] = ptsin[3]
row length = contrl[7]
el used = contrl[8]
num rows = contrl[9]
wrt-mode = contrl[lO]
colarray[O] = intin[O]

.
colarray[n] = intin[n]

4-12

GEM VDI Programmer's Guide Contour Fill

CONTOUR FILL

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

This function fills an area until it finds
either the edges of the display surface or
the color index stated in intin(O). This
function is sometimes called a seed fill or
flood fill. If intin(O) is negative, the al­
gorithm searches for any color other than the
color of the seed paint. GEM VDI fills the
area using the current fill area attributes.

Note: This function is not required and may
not be available on all devices.

contrl(O)
contrl(l)
contrl(3)
contrl(6)

intin(O)

ptsin(O)

ptsin(1)

contrl(2)
contrl(4)

Opcode = 103.
Number of input vertices = 1.
Length of intin array = 1.
Device handle.

Color index that defines the
contour.

x-coordinate of starting point
in NDC/RC units.
y-coordinate of starting point
in NDC/RC units.

Number of output vertices = O.
Length of intout array = O.

v_contourfill(handle, x, y, index)

WORD v contourfill(
WORD handle;
WORD x;
WORD y;
WORD index;

handle = contrl[6]
x = ptsin[O]
y = ptsin[l]
index = intin[O]

4-13

) ;

GEM VDI Programmer1s Guide Contour Fill

FILL RECTANGLE

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

This function fills a rectangular area with
the pattern defined by the current fill area
attributes. The rectangle is filled using
all fill area attributes except outline.

contrl(O)
contrl(l)
contrl(3)
contrl(6)

ptsin(O)

ptsin(1)

ptsin(2)

ptsin(3)

contrl(2)
contrl(4)

Opcode = 114.
Number of input vertices = 2.
Length of intin array = O.
Device handle.

x-coordinate of corner of des­
tination rectangle in RC/NDC.
y-coordinate of corner of des­
tination rectangle in RC/NDC.
x-coordinate of corner of des­
tination rectangle in RC/NDC
diagonally opposite corner
specified in ptsin(O).
y-coordinate of corner of des­
tination rectangle in RC/NDC
diagonally opposite corner
specified in ptsin(1).

Number of output vertices = O.
Length of intout array = O.

vr_recfl(handle, pxyarray)

WORD vr recfl ();
WORD handle;
WORD pxyarray[4];

handle = contrl[6]
pxyarray[O] = ptsin[O]

.
pxyarray[3] = ptsin[3]

4-14

(-

GEM VDI Programmer's Guide GDP

GENERALIZED
DRAWING PRIMITIVE
(GDP)

Input

The Generalized Drawing Primitive (GDP)
function allows you to use the predefined
primitives. The application can draw special
elements, such as arcs, circles, and ellipses
using this function.

The contents of the control and data arrays
are different for each GDP.

For the arc, pie, elliptical arc, and ellip­
tical pie, the information in the radius,
start, and end angle variables defines the
GDP.

All angle specifications are in tenths of de­
grees and assume that 0 degrees is 90 de­
grees to the right of vertical, with values
increasing in the counterclockwise direc­
tion. Arcs are drawn counterclockwise. All
radius specifications except for ellipse and
elliptical arc, assume an extent (distance)
in the x-axis. Ellipse and elliptical arc
use both x and y radius values. Refer to
Figure 4-2.

Figure 4-2. Angle Specification

contrl(O)
contrl(l)
contrl(3)
contrl(5)

I -- BAR:

4 -- CIRCLE:

4-15

Opcode = 11.
Number of vertices in ptsin.
Length of input array intin.
Primitive id.

Uses fill area attributes
(fill interior style, style
index, writing mode, color and
perimeter style).
Uses fill area attributes
(fill interior style, style
index, writing mode, fill
color and perimeter style).

GEM VDI Programmer's Guide

2 ARC:

3 -- PIE:

GDP

Uses line attributes (color,
linetype, writing mode,
width, and end styles).
Uses fill area attributes (in­
terior style, writing mode,
fill style, fill color, and
perimeter style).

5 -- ELLIPSE: Uses fill area attributes
(fill interior style, writing
mode, style index, color, and
perimeter style).

6 -- ELLIPTICAL
ARC: Uses line attributes

writing
end styles).

(color,
mode, linetype,

width, and
7 -- ELLIPTICAL

PIE: Uses fill area attributes
(fill interior style, writing
mode, style index, color and
perimeter style).

8 -- ROUNDED
RECTANGLE:

9 -- FILLED
ROUNDED
RECTANGLE:

10 - JUSTIFIED
GRAPHICS
TEXT:

contrl(6)

ptsin

ptsin(O)

ptsin(l)

Uses line
linetype,
width) .

attributes (color,
writing mode, and

Uses fill area attributes
(fill interior style, writing
mode, style index color, and
perimeter style, COlor, and
width) .

Uses text attributes (face,
character height, character
baseline vector, color index,
special effects, and align­
ment) •

Device handle.

Array of coordinates for GDPs
in NDC/RC units.

x-coordinate of first point in
NDC/RC units.
y-coordinate of first point in
NDC/RC units.

4-16

(/

GEM VDI Programmer's Guide

ptsin(2)

ptsin(3)

ptsin(2n-2)

ptsin(2n-l)

intin

GDP

x-coordinate of second point
in NDC/RC units.
y-coordinate of second pOint
in NDC/RC units.

x-coordinate of
NDC/RC units.
y-coordinate of
NDC/RC units.

Angle for arcs
characters for
graphics text.

4-17

last point in

last point in

and pies or
justified

":;S3

GEM VDI Programmer's Guide BAR

BAR

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

contrl(O)
contrl(l)
contrl(3)
contrl(5)
contrl(6)

ptsin(O)

ptsin(l)

ptsin(2)

ptsin(3)

contrl(2)
contrl(4)

Opcode = 11.
Number of input vertices = 2.
Length of intin array = O.
Primitive id = 1.
Device handle.

x-coordinate of corner of bar
in NDC/RC units.
y-coordinate of corner of bar
in NDC/RC units.
x-coordinate of corner
ally opposite the
selected in ptsin(O)
in NDC/RC units.
y-coordinate of corner
ally opposite the
selected in ptsin(l)
in NDC/RC units.

diagon­
corner
of bar

diagon­
corner
of bar

Number of output vertices = O.
Length of intout array = O.

v_bar (handle, pxyarray

WORD v bar ();
WORD handle;
WORD pxyarray[4];

handle = contrl[6]
pxyarray[O] = ptsin[O]
pxyarray[l] = ptsin[l]
pxyarray[2] = ptsin[2]
pxyarray[3] = ptsin[3]

4-18

(." •.
~.

GEM VDI Programmer's Guide ARC & PIE

ARC & PIE

Input

Output

These functions are not required and
be available on all devices. GEM
quires the specification of the arc
angle (intin(O),intin(l».

may not
VOl re­

by the

contrl(O)
contrl(l)
contrl(3)
contrl(5)

contrl(6)

intin(O)

intin(l)

ptsin(O)

ptsin(l)

ptsin(2)
ptsin(3)
ptsin(4)
ptsin(5)
ptsin(6)

ptsin(7)

contrl(2)
contrl(4)

Opcode = 11.
Number of input vertices = 4.
Length of intin array = 2.
Primitive id.

2 = ARC
3 = PIE

Device handle.

start angle (in tenths of de­
grees 0-3600), counterclock­
wise.

End angle (in tenths of de­
grees 0-3600).

x-coordinate of
of arc in NDC/RC
y-coordinate of

of arc in NDC/RC
O.
O.
O.
o.

center
units.
center

units.

point

point

Radius in x-coordinate NDC/RC
units.
O.

Number of output vertices = O.
Length of intout array = O.

4-19

GEM VDI Programmer's Guide ARC & PIE

C BINDING

Procedure Name

Data Types

Input Arguments

v arc(handle, x, y, radius, begang, endang)
v-pieslice(handle, x, y, radius, begang,
endang)

WORD v arc () ;
WORD handle;
WORD x, y;
WORD radius;

handle = contrl[6]
x = ptsin[O]
y = ptsin[l]
radius = ptsin[6]
begang = intin[O]
endang = intin[l]

4-20

{,

(~\

GEM VDI Programmer's Guide CIRCLE

CIRCLE

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

This function is not required and may not be
supported on all devices.

contrl(O)
contrl(l)
contrl(3)
contrl(5)
contrl(6)

ptsin(O)

ptsin(l)

ptsin(2)
ptsin(3)
ptsin(4)

ptsin(5)

contrl(2)
contrl(4)

Opcode = 11.
Number of input vertices = 3.
Length of intin array = O.
Primitive id = 4.
Device handle.

x-coordinate
of circle in
y-coordinate
of circle in
O.
O.

of center point
NDC/RC units.
of center point

NDC/RC units.

Radius in x-coordinate NDC/RC
units.
O.

Number of output vertices = O.
Length of intout array = O.

v_circle(handle, x, y, radius)

WORD v circle ();
WORD handle;
WORD x, y;
WORD radius;

handle = contrl[6]
x = ptsin[O]
y = ptsin[l]
radius = ptsin[4]

4-21

GEM VDI Programmer's Guide

ELLIPTICAL ARC
AND PIE

Input

Output

contrl(O)
contrl(l)
contrl(3)
contrl(5)

contrl(6)

intin(O)

intin(1)

ptsin(O)

ptsin(1)

ptsin(2)

ptsin(3)

contrl(2)
contrl(4)

4-22

ELLIPTICAL ARC and PIE

Opcode = 11.
Number of input vertices = 2.
Length of intin array = 2.
Primitive id.

6 = ELLIPTICAL ARC
7 ~ ELLIPTICAL PIE SLICE

Device handle.

Start angle (in tenths of de­
grees 0-3600), counterclock­
wise.
End angle (in tenths of de­
grees 0-3600).

x-coordinate of center point
of arc in NDC/RC units.
y-coordinate of center point
of arc in NDC/RC units.
Radius of X-axis in NDC/RC
units.
Radius of Y-axis in NDC/RC
units.

Number of output vertices = O.
Length of intout array = O.

(

GEM VDI Programmer's Guide ELLIPTICAL ARC and PIE

C BINDING

Procedure Name

Data Types

Input Arguments

v ellarc(handle, x, y, xradius, yradius,
-begang, endang)

v ellpie(handle, x, y, xradius, yradius,
-begang, endang)

WORD v ellarc () ;
WORD v=ellpie () ;
WORD handle;
WORD x, y;
WORD xradius;
WORD yradius;
WORD begang;
WORD endang;

handle = contrl[6]
x = ptsin[O]
y = ptsin[l]
xradius = ptsin[2]
yradius = ptsin[3]
begang = intin[O]
endang = intin[l]

4-23

GEM VnI Programmer's Guide ELLIPSE

ELLIPSE

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

contrl(O)
contrl(1)
contrl(3)
contrl(5)
contrl(6)

ptsin(O)

ptsin(1)

ptsin(2)

ptsin(3)

contrl(2)
contrl(4)

Opcode = 11.
Number of input vertices = 2.
Length of intin array = O.
Primitive id = 5.
Device handle.

x-coordinate of center point
of ellipse in NDC/RC units.
y-coordinate of center point
of ellipse in NDC/RC units.
Radius of X-axis in NDC/RC
units.
Radius of Y-axis in NDC/RC
units.

Number of output vertices = O.
Length of intout array = O.

v_ellipse(handle, x, y, xradius, yradius)

WORD v ellipse () ;
WORD handle;
WORD x, y;
WORD xradius;
WORD yradius;

handle = contrl[6]
x = ptsin[O]
y = ptsin[1]
xradius = ptsin[2]
yradius = ptsin[3]

4-24

(

GEM VOl Programmer's Guide Rounded and Filled Rounded Rectangle

ROUNDED AND FILLED A rectangle with rounded corners is output to
ROUNDED RECTANGLE the workstation. The rectangle is defined by

specifying· its lower left and upper right
corners.

Input

Output

The Rounded Rectangle GDP assumes the at­
tributes of a polyline primitive. The Filled
Rounded Rectangle GDP assumes the attributes
of a filled area primitive.

contrl(O)
contrl(l)
contr1(3)
contrl(5)

contrl(6)
ptsin(O)

ptsin(l)

ptsin(2)

ptsin(3)

contrl(2)
contrl(4)

Opcode = 11.
Number of input vertices = 2.
Length of intin array = O.
Primitive id.

8 = Rounded Rectangle
9 = Filled Rounded Rectangle

Device handle.
x-coordinate of corner of rec­
tangle in NDC/RC units.
y-coordinate of corner of rec­
tangle in NDC/RC units.
x-coordinate o£ corner diagon­
ally opposite corner selected
in ptsin(O) o£ rectangle in
NDC/RC units.
y-coordinate o£ corner diagon­
ally opposite corner selected
in ptsin(l) o£ rectangle in
NDC/RC units.

Number o£ output vertices = O.
Length o£ intout array = O.

4-25

GEM VDl Programmer's Guide Rounded and Filled Rounded Rectangle

C BINDING

Procedure Name

Data Types

Input Arguments

v rbox(handle, xyarray)
v-rfbox(handle, xyarray) - .

WORD (v rbox);
WORD (v-rfbox);
WORD handle;
WORD xyarray[4];

handle = contrl[6];
attributes = intin[O];
xyarray[O] = ptsin(O];
xyarray[l] = pts!n[l];
xyarray[2] = pts!n[2];
xyarray(3] = ptsin(3];

4-26

GEM VDI Programmer's Guide Justified Graphics Text

JUSTIFIED GRAPHICS This function outputs graphics text to the
TEXT workstation display surface and attempts to

perform both left and right justification.
The text string is aligned at the requested
string alignment points passed in, using the
current text alignment attributes.

Input

Extra spacing may be inserted or deleted by
the driver between words or characters (or
both) so that the string will have the re­
quested length. Either form of spacing
modification (inter-character or inter-word)
can be suppressed by so specifying in the
provided parameter.

contrl(O)
contrl(l)
contrl(3)

contrl(5)
contrl(6)

intin(O)

intin(l)

intin(2)

Opcode = 11.
Number of input vertices = 2.
Length of intin array = 2 + n
(characters in string).
Primitive id = 10.
Device handle.

Inter-word spacing flag.

a = Doesn't allow GEM VDI to
modify inter-word spacing.

nonzero = Allows GEM VDI to
modify inter-word spacing.

Inter-character spacing flag.

a = Doesn't allow GEM VDI to
modify inter-character
spacing.

nonzero = Allows GEM VDI to
modify inter-character
spacing.

First character
string.

of text

intin(n+l) -- Last character of text string.

4-27

GEM VDl Programmer's Guide

Output

ptsin(O)

ptsin(l)

ptsin(2)

ptsin(3)

contrl(2)
contrl(4)

Justified Graphics Text

x-coordinate of the text
alignment point, in NDC/RC
units.
y-coordinate of the text
alignment point, in NDC/RC
units.
Requested length of the
string, in x-axis NDC/RC
units.
O.

Number of output vertices = O.
Length of intout array = O.

4-28 .

c

GEM VDl Programmer's Guide Justified Graphics Text

C BINDING

Procedure Name

Data Types

Input Arguments

v justified(handle, x, y, string, length,
-word_space, char_space);

WORD v justified();
WORD handle;
WORD x, y;
WORD length;
WORD word space;
WORD char-space;
BYTE string[];

handle = contrl[6];
x = ptsin[O];
y = ptsin[l];
length = ptsin[2];
word space = intin[O];
char-space = intin[l];
string[j] = intin[j+2];

Note: Bytes for the string array are mapped
into the eight least significant bits of in­
tin words.

Note: The string array must be null-ter­
minated.

End of Section 4

4-29

(./
Section 5
ATTRIBUTE FUNCTIONS

INTRODUCTION

SET WRITING MODE

Attribute functions determine qualities of
all subsequent output primitives such as
color, type, style, and height.

This function selects the writing mode used
for subsequent drawing operations. The
writing mode specifies the operation per­
formed between the color indices of the cur­
rent pixel (source) and the existing pixel
(destination), thus affecting the way new
pixels from lines, markers, filled areas, and
text are placed on the display. Four modes
exist: replace, transparent, XOR, and
reverse transparent. If the requested
writing mode is out of range, GEM VDI
selects replace mode, 1.

Table 5-1 lists the writing modes and their
numerical assignments.

Table 5-1. Writing Modes

Number Mode

1 Replace
2 Transparent
3 XOR
4 Reverse Transparent

5-1

GEM VDl Programmer's Guide Set Writing Mode

Replace

Transparent

XOR

For the Boolean expressions of the modes
given below, the definitions in Table 5-2 ap­
ply.

Table 5-2. Terms

Term Definition

mask

fore

line style or fill pattern

selected color after mapping from
GEM VDl

back color 0 after mapping from GEM
VDl (white is default)

Old current color value

new replacement color value

Replace mode is insensitive to the currently
displayed image. Any information already
displayed is replaced. The following is the
Boolean expression for replace mode:

new = (fore AND mask) OR (back AND NOT mask)

Transparent mode only affects
where the mask is 1. These are
the fore value. The following is
expression for transparent mode:

the pixels
changed to

the Boolean

new = (fore AND mask) OR (old AND NOT mask)

XOR mode reverses the bits representing the
color. The following is the Boolean expres­
sion for XOR mode:

new = mask XOR old

5-2

(

c~\

GEM VDI Programmer's Guide Set Writing Mode

Reverse
Transparent

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

Reverse transparent mode only affects the
pixels where the mask is O. These are
changed to the fore value. The following is
the Boolean expression for reverse
transparent mode:

new = (old AND mask) OR (fore AND NOT mask)

contrl(O)
contrl(l)
contrl(3)
contrl(6)

intin(O)

contrl(2)
contrl(4)

intout(O)

Opcode = 32.
Number of input vertices = O.
Length of intin array = 1.
Device handle.

Writing mode requested.

Number of output vertices = O.
Length of intout array = 1.

Writing mode selected.

set mode = vswr_mode(handle, mode)

WORD set mode;
WORD vswr mode ();
WORD handle;
WORD mode;

handle = contrl[6]
mode = intin[O]

set mode = intout[O]

5-3

GEM VDI Programmer's Guide Set Color Representation

SET COLOR
REPRESENTATION

Input

Output

This function associates a color index with
the color specified in RGB (Red, Green, Blue)
units. On a monochrome device, GEM VDI maps
any percentage of color to white. GEM VDI
maps any color intensity of a value less
than 0 to 0 and greater than 1000 to 1000.
If the application requests a color index
that is out of range, GEM VDI performs no
operation. GEM VDI references the background
color as color index zero.

Note: If no color lookup table exists, GEM
VDI performs no operation with this func­
tion. The Extended Inquire function returns
the availability of the lookup table.

contrl(O)
contrl(l)
contrl(3)
contrl(6)

intin(O)
intin(l)

intin(2)
intin(3)

contrl(2)
contrl(4)

5-4

Opcode = 14.
Number of input vertices = O.
Length of intin array = 4.
Device handle.

Color index.
Red color intensity (in tenths
of percent, 0-1000).
Green color intensity.
Blue color intensity.

Number of output vertices = O.
Length of intout array = O.

(/

GEM VDI Programmer's Guide Set Color Representation

C BINDING

Procedure Name

Data Types

Input Arguments

vs_color(handle, index, rgb_in)

WORD vs color ();
WORD handle;
WORD index;
WORD rgb_in[3];

handle = contrl[6]
index = intin[O]
rgb in[O] = intin[l]
rgb-in[l] = intin[2]
rgb=in[2] = intin[3]

5-5

GEM VDI Programmer's Gu~de Set Polyline Line Type

SET POLYLINE
LINE TYPE

This function sets the line type for
subsequent polyline operations. The total
number of line styles available is device­
dependent, but all devices support at least
six. If the requested line style is out of
range, GEM VOl selects solid (1) line style.
The pixel value in the pattern word is 1 =
pixel on (active); 0 = pixel off.

Style

1
2
3
4
5
6
7

solid
long dash
dot
dash, dot
dash
dash, dot, dot
user-defined
style

8-n device­
dependent

16 Bits
MSB LSB

1111111111111111
1111111111110000
1110000011100000
1111111000111000
1111111100000000
1111000110011000
16 bits (1 word)
Most Significant
Bit = first pixel
displayed.

Line style seven, user-defined style, uses
the pattern the Set User-defined Line Style
Pattern function defines. This pattern
defaults to solid until the user defines it.

Note: If a nondefault line width is used,
the device may draw the thickened line using
a solid line style and may change the writing
mode.

5-6
~71

GEM VDl Programmer's Guide Set Polyline Line Type

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

contrl(O) Opcode = 15.
contrl(l) Number of input vertices = O.
contrl(3) Length of intin array = 1.
contrl(6) Device handle.

intin(O) Requested line style.

contrl(2)
contrl(4)

Number of output vertices = O.
Length of intout array = 1.

intout(O) Line style selected.

set_type = vsl_type(handle, style)

WORD set type
WORD vsl-type
WORD handle;
WORD style;

. ,
();

handle = contrl[6]
style = intin[O]

set_type = intout[O]

5-7

GEM VDI Programmer's Guide Set User-defined Line Style Pattern

SET USER-DEFINED This function sets the current user-defined
LINE STYLE PATTERN line style pattern word in the device driver

to the value in the specified 16-bit pattern
word.

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

The Most Significant Bit
word is the first pixel
line style is used for
operations when the
user-defined line style,

contrl(O) Opcode =

(MSB) of the pattern
in the line. This
subsequent polyline

application selects
index 7.

113.
contrl(l) Number of input vertices = O.
contrl(3) Length of intin array = 1.
contrl(6) Device handle.

intin(O) Line style pattern word, 16
bits.

contrl(2)
contr1(4)

Number of output vertices = O.
Length of intout array = O.

vS1_udsty(handle, pattern)

WORD vsl udsty ();
WORD handle;
WORD pattern;

handle = contrl[6]
pattern = intin[O]

5-8

(
GEM VDI Programmer's Guide Set Polyline Line Width

SET POLYLINE LINE
WIDTH

Input

Output

This function sets the width of lines for
subsequent polyline operations. The avail­
able line width closest to but not greater
than the requested line width is used. Line
widths are odd numbers that begin at three.
If you select two in Raster Coordinates, GEM
VDI returns one, which is a line one pixel
wide.

Note:
not be
lines
solid
type.

This function is not required and may
available on all devices. Thickened
may be rendered on the device using

line type, rather than a requested line

contrl(O)
contrl(1)
contrl(3)
contrl(6)

ptsin(O)

ptsin(1)

contrl(2)
contrl(4)

ptsout(O)

ptsout(1)

5-9

Opcode = 16.
Number of input vertices = 1.
Length of intin array = O.
Device handle.

Requested line width in x-axis
in NDC/RC units.
O.

Number of output vertices = 1.
Length of intout array = O.

Selected line width in x-axis
of the NDC/RC units.
O.

GEM VDI Programmer's Guide Set Polyline Line Width

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

set_width = vsl_width(handle, width)

WORD set width;
WORD vsl-width;
WORD handle;
WORD width;

handle = contrl[6]
width = ptsin[O]

set width = ptSQut[O]

5-10

GEM VOl Programmer's Guide Set Polyline Color Index

SET POLYLINE
COLOR INDEX

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

This function sets the color index for
subsequent polyline operations. The Set
Color Representation function determines the
color the index represents. At least two
color indices, 0 and 1, are supported
(monochrome). Color indices range from 0 to
a device-dependent maximum. If the applica­
tion requests an index that is out of range,
GEM VOl selects color index 1.

contrl(O) Opcode = 17.
contrl(l) Number of input vertices = o.
contrl(3) Length of intin array = 1.
contrl(6) Device handle.

intin(O) Requested color index.

contrl(2)
contrl(4)

Number of output vertices = O.
Length of intout array = 1.

intout(O) Color index selected.

set_color = vsl_color(handle, color index)

WORD set color;
WORD vs1-color ();
WORD handle;
WORD color_index;

handle = contrl[6]
color index = intin[O]

set color = intout[O]

5-11

GEM VDI Programmer's Guide Set Polyline End Styles

SET POLYLINE END
STYLES

Input

Output

This function sets the style for the ends of
a polyline. The style may be any of the
following: .

o squared (default)
1 arrow
2 rounded

The two ends of a polyline may have different
styles. If an invalid style is requested, a
squared end style (0) is used.

Both the squared style and the arrow style
end at the end of the polyline. The rounded
style is drawn such that the center of the
rounding is at the end of the polyline.

contr1(O)
contrl(l)
contr1(3)
contr1(6)

intin(O)

intin(l)

contrl(2)
contrl(4)

Opcode = 108.
Number of input vertices = O.
Length of intin array = 2.
Device handle.

End style for beginning point
of polyline.

0 squared (default)
1 arrow
2 rounded

End style for ending point of
polyline.

0 squared (default)
1 arrow
2 rounded

Number of output vertices = O.
Length of intout array = O.

5-12

,--_/

of??

GEM VDI Programmer's Guide

C BINDING

Procedure Name

Data Types

Input Arguments

WORD vsl ends();
WORD handle;
WORD beg style;
WORD end=style;

handle = contrl[6];
beg style = intin[O];
end=style = intin[l];

5-13

Set Polyline End Styles

GEM VDI Programmer's Guide Set Polymarker Type

SET POL YMARKER
TYPE

Input

Output

This function sets the marker type for
subsequent polymarker functions. The total
number of markers available is device-depen­
dent, but GEM VDI always defines at least six
marker types:

1 -
2 - +
3 - *
4 - 0
5 - X
6 - <>
7 ••• n

Dot
Plus
Asterisk
Square
Diagonal Cross
Diamond
Device-dependent

If the requested marker type is out of range,
GEM VOl uses an asterisk, type 3. Marker 1
is the smallest dot GEM VDI displays on the
device; it cannot be scaled.

contrl(O)
contrl(l)
contrl(3)
contrl(6)

intin(O)

contrl(2)
contrl(4)

intout(O)

5-14

Opcode = 18.
Numbers of input vertices = O.
Length of intin array = 1.
Device handle.

Requested polymarker type.

Number of output vertices = O.
Length of intout array = 1.

Polymarker type selected.

GEM VDr Programmer's Guide Set Polymarker Type

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

set_type = vsm_type(handle, symbol)

WORD set type;
WORD vsm-type ();
WORD handle;
WORD symbol;

handle = contrl[6]
symbol = intin[O]

set_type = intout[O]

5-15

GEM VDI Programmer's Guide Set Polymarker Height

SET POLYMARKER
HEIGHT

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

This function sets a polymarker height for
subsequent polymarker functions. If the
selected height does not exist, GEM VDl
selects the next smaller height. The driver
returns the actual height selected in the
ptsout array.

Opcode = 19. contrl(O)
contrl(1)
contrl(3)
contrl(6)

Number of input vertices = 1.
Length of intin array = O.
Device handle.

O. ptsin(O)
ptsin(1) Requested polymarker height in

y-axis in NDC/RC units.

contrl(2) Number of output vertices =
contrl(4) Length of intout array = O.

ptsout(O) Polymarker width selected
x-axis in NDC/RC units.

ptsout(1) Polymarker height selected
y-axis in NDC/RC units.

set_height = vsm_height(handle, height)

WORD set height;
WORD vsm-height ();
WORD handle;
WORD height;

handle = contrl[6]
height = ptsin[1]

set_height = ptsout[1]

5-16

1.

in

in

c:i81

~"',",_F/

GEM VDI Programmer's Guide Set Polymarker Color Index

SET POLYMARKER
COLOR INDEX

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

This function sets the color index for
subsequent polymarker functions. The Set
Color Representation function specifies the
value of the index. At least two color in­
dices are always supported (monochrome). If
the index is out of range, GEM VDI selects
color index 1.

contrl(O) Opcode = 20.
contrl(l) Number of input vertices = O.
contrl(3) Length of intin array = 1.
contrl(6) Device handle.

intin(O) Requested polymarker color in-
dex.

contrl(2)
contrl(4)

number of output vertices = O.
length of intout array = 1.

intout(O) Po1ymarker
seleqted.

color index

set_color = vsm_color(handle, color index)

WORD set color;
WORD vsm-color ();
WORD handle;
WORD color_index;

handle = contrl[6]
color index = intin[O]

set color = intout[O]

5-17

GEM VDI Programmer's Guide set Character Height, Absolute Mode

SET CHARACTER
HEIGHT,
ABSOLUTE MODE

Input

Output

ThiS function sets the current gr~phic text
character height in NDC/RC units. The
specified height is the distance from the
character baseline to the top of the charac­
ter cell, rather than the character cell
height.

GEM VDI returns the selected height and width
information to the application. GEM VDI
returns both the distance from the baseline
to top line selected and the size of a
character cell. (See Figure 5-1 under "Set
Character Height, Points Mode.") For fixed
(monospaced) faces GEM VDI returns the width
of a character and the width of a character
cell. For proportional faces, GEM VDI
returns the width of the widest character and
the width of the widest character cell in the
face.

If the desired character height does not map
exactly to a device size, GEM VDI selects the
closest character size that does not exceed
the requested size.

contrl(O)
contrl(l)
contrl(3)
contrl(6)

Opcode = 12.
Number of input vertices = 1.
Length of intin array = O.
Device handle •.

ptsin(O) O.

ptsin(l)

contrl(2)
contrl(4)

ptsout(O)

ptsout(l)

ptsout(2)

ptsout(3)

Requested character height in
NDC/RC units.

Number of output vertices = 2.
Length of intout array = O.

5-18

Character width selected in
NDC/RC units.
Character height selected in
NDC/RC units.
Character cell width in NDC/RC
units.
Character cell height in
NDC/RC units.

(
GEM VDl Programmer's Guide Set Character Height, Absolute Mode

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

vst height(handle, height, &char width,
&char_height, &cell_width, &cell_height)

WORD vst height ();
WORD handle;
WORD height;
WORD char width;
WORD char-height;
WORD cell-width;
WORD cell=height;

handle = contrl[6]
height = ptsin[l]

char width = ptsout[O]
char-height = ptsout[l]
cell-width = ptsout[2]
cell=height = ptsout[3]

5-19

GEM VOI Programmer's Guide set Character Height, Absolute Mode

SET CHARACTER CELL
HEIGHT, POINTS
MODE

Input

This function sets the current graphic text
character height in printer points. A point
is 1/72 of an inch. The specified height is
the distance between the baseline of one
line of text and the baseline of the next
line of text, which is the character cell
height.

The driver returns the selected point size of
the character. Height and width information
is returned in NDC/RC units. GEM VOI returns
the character height, character width, cell
height, and the cell width, as shown in
Figure 5-1. For proportional faces, GEM VDI
returns the width of the widest character and
the widest character cell in the face.

If the desired character height does not map
exactly to a device size, GEM VDI selects the
closest character size not exceeding the re­
quested size.

Figure 5-1. Character Cell Definition

contrl(O)
contrl(l)
contrl(3)
contrl(6)

intin(O)

5-20

Opcode = 107.
Number of input vertices = O.
Length of intin array = 1.
Device handle.

Cell height in points.

/ "

(

c\

GEM VDl Programmer's Guide Set Character Height, Points Mode

Output

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

contrl(2) Number of output vertices = 2.
contrl(4) Length of intout array = 1.

intout(O) Selected cell height in
points.

ptsout(O) Character width selected in
NDC/RC units.

ptsout(1) Character height selected in
NDC/RC units.

ptsout(2) Character cell width in NDC/RC
units.

ptsout(3) Character cell height
NDC/RC units.

set point = vst point(handle, point,
&char width,-&char height, &cell width,
&Cell=height) - -

WORD set point;
WORD vst-point();
WORD handle;
WORD point;
WORD char width;
WORD char-height;
WORD cell-width;
WORD cell_height;

handle = contrl[6]
point = intin[O]

set point() = intout[O]
char width = ptsout[O]
char-height = ptsQut[1]
cell-width = ptsQut[2]
cell=height = ptsout[3]

5-21

in

GEM VOl Programmer's Guide Set Character Height, Points Mode

SET CHARACTER
BASELINE VECTOR

Input

Output

This function requests an angle of rotation
specified in tenths of degrees for the
character baseline vector, which specifies
the baseline for subsequent graphic text.
The driver returns the selected baseline
vector to the application. The selected
baseline vector is a best-fit match to the
requested value.

See Figure 5-2 for a depiction of how angles
are specified to GEM VOl.

Figure 5-2. Angle Specification

Note: This function
not be supported
Extended Inquire
availability of this

is not required and
on all devices.
function returns
function.

may
The
the

contrl(O)
contrl(l)
contrl(3)
contrl(6)

intin(O)

contrl(2)
contrl(4)

intout(O)

Opcode = 13.
Number of input vert"ices = O.
Length of intin array = 1.
Device handle.

Requested angle of rotation of
character baseline (in tenths
of degrees, 0 - 3600).

5-22

Number of output vertices = O.
Length of intout array = 1.

Angle of rotation of character
baseline selected (in tenths
of degrees 0-3600).

-------~~~~

GEM VDI Programmer's Guide Set Character Baseline Vector

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

set baseline = vst_rotation(handle, angle)

WORD set baseline;
WORD vst-rotation ();
WORD handle;
WORD angle;

handle = contrl[6]
angle = intin[O]

set baseline = intout[O]

5-23

GEM VDI Programmer's Guide Set Text Face

SET TEXT FACE

Input

Output

This function selects a graphic character
face for subsequent graphic text operations.
Face 1 is a built-in face. . The other faces
are external and may be loaded with the Load
Face function. Some faces may not be sup­
ported on all devices. Face names and in­
dices may be determined by using Inquire
Face Name.

contrl(O)
contrl(l)
contrl(3)
contrl(6)
intin(O)

contrl(2)
contrl(4)

intout(O)

Opcode = 21.
Number of input vertices = O.
Length of intin array = 1.
Device handle.
Requested software text face
number.

1 - System face
2 - Swiss 721
3 - Swiss 721 Thin
4 - Swiss 721 Thin Italic
5 - Swiss 721 Light
6 - Swiss 721 Light Italic
7 - Swiss 721 Italic
8 - Swiss 721 Bold
9 - Swiss 721 Bold Italic
10 - Swiss 721 Heavy
11 - Swiss 721 Heavy Italic
12 - Swiss 721 Black
13 - Swiss 721 Black Italic
14 - Dutch 801 Roman
15 - Dutch 801 Italic
16 - Dutch 801 Bold
17 - Dutch 801 Bold Italic

Number of output vertices = O.
Length of intout array = 1.

Text face selected.

5-24

(

(' ...
/

GEM VDI Programmer's Guide Set Text Face

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

set font = vst_font(handle, font)

WORD set font;
WORD vst-font ();
WORD handle;
WORD font;

handle = contrl[6]
font = intin[O]

set font = intout[O]

5-25

" ___ fit

GEM VDI Programmer's Guide set Graphic Text Color Index

SET GRAPHIC TEXT
COLOR INDEX

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

This function sets the color index for
subsequent graphic text operations. The set
Color Representation function determines the
color represented by the color index. All
devices support at least two color indices,
o and 1 (monochrome). Color indices range
from 0 to a device-dependent maximum. If the
requested index is out of range, GEM VDl
selects color index 1.

contrl(O) Opcode = 22.
contrl(l) Number of input vertices = O.
contrl(3) Length of intin array = 1.
contrl(6) Device handle.

intin(O) Requested text color index.

contrl(2)
contrl(4)

Number of output vertices = O.
Length of intout array = 1.

intout(O) Text color index selected.

set_color = vst_color(handle, color index)

WORD set color;
WORD vst-color ();
WORD handle;
WORD color_index;

handle = contrl[6]
color index = intin[O]

set color = intout[O]

5-26

&'91

GEM VDI Programmer's Guide Set Graphic Text Special Effects

SET GRAPHIC TEXT
SPECIAL EFFECTS

This function sets text special effects for
subsequently displayed graphic text. The
following effects are available:

o thickened
o light intensity
o skewed
o underlined
o outlined
o shadowed
o any combination of the above

GEM VDI treats the integer in intin(O) as a
bit pattern. The attributes set correspond
to the setting in the six least significant
bits.

Table 5-3. Attribute Bit Mapping

Bit Value Description

0 Thickened

0 thickened not selected
1 set style to thickened

1 Intensity

0 normal intensity
1 light intensity

2 Skewed

0 skewed not selected
1 set style to skewed

3 Underlined

0 do not underline
1 text is underlined

4 Outline

0 no outline
1 outline

5 Shadow

0 no shadow
1 shadow

5-27

GEM VDl Programmer's Guide Set Graphic Text Special Effects

Input

Output

For example, if intin(O) = 9 (1001 binary),
the text style is set to thickened and un­
derlined.

For effects not supported on a device, GEM
VDl returns those bits set to O.

contrl(O)
contrl(l)
contrl(3)
contrl(6)

intin(O)

contrl(2)
contrl(4)

intout(O)

Opcode = 106.
Number of input vertices = O.
Length of intin array = 1.
Device handle.

Special effect word.

Number of output vertices = O.
Length of intout array = 1.

Styles actually
(style word with
propriate bits set).

selected
the ap-

Figure 5-3. Graphic Text Special Effects

5-28

<:
GEM VDl Programmer's Guide Set Graphic Text Special Effects

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

set_effect = vst_effects(handle, effect)

WORD set effect;
WORD vst-effects();
WORD handle;
WORD effect;

handle = contrl[6]
effect = intin[O]

set effect = intout[O]

5-29

GEM VOl Programmer's Guide Set Graphic Text Alignment

SET GRAPHIC TEXT
ALIGNMENT

This function sets horizontal and vertical
alignment for graphic text. Horizontal means
in the direction of the baseline; vertical is
perpendicular to the baseline. This function
controls the positioning of the text string
in relation to the graphic text position.
The default alignment places the left
baseline corner of the string at the graphic
text position.

If the application requests an invalid
horizontal alignment, GEM VOl selects the
default, left. If the application requests
an invalid vertical alignment, GEM VOl
selects the default, baseline.

Figure 5-4. Graphic Text Alignment

5-30

GEM VDl Programmer's Guide Set Graphic Text Alignment

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

contrl(O)
contrl(1)
contrl(3)
contrl(6)

Opcode = 39.

intin(O)

intin(1)

contrl(2)
contrl(4)

intout(O)
intout(1)

Number of input vertices = O.
Length of intin array = 2.
Device handle.

Horizontal alignment requested

o = left justified (default)
1 = center justified
2 = right justified

Vertical alignment requested

0 = baseline (default)
1 = half line
2 = ascent line
3 = bottom
4 = descent
5 = top

Number of output vertices = O.
Length of intout array = 2.

Horizontal alignment selected.
Vertical alignment selected.

vst alignment (handle, hor in, vert_in,
&hor_out, &vert_out) -

WORD vst alignment ();
WORD handle;
WORD hor in;
WORD vert in;
WORD hor out;
WORD vert_out;

handle = contrl[6]
hor in = intin[O]
vert in = intin[1]

hor out = intout[O]
vert out = intout[1]

5-31

GEM VDI Programmer's Guide Set Fill Interior Style

SET FILL INTERIOR
STYLE

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

This function sets the fill interior style
used in subsequent polygon fill operations.
If the application requests an unavailable
style, the area is hollow filled. GEM VDI
returns the selected style to the applica­
tion. Hollow style fills the interior with
the current background color(index 0). Solid
style fills the area with the currently
selected fill color.

contrl(O)
contrl(l)
contrl(3)
contrl(6)

intin(O)

contr1(2)
contr1(4)

intout(O)

Opcode = 23.
Number of input vertices = O.
Length of intin array = 1.
Device handle.

Requested fill interior style.

o - hollow
1 - solid
2 - pattern
3 - hatch
4 - user-defined style

Number of output vertices = O.
Length of intout array = 1.

Fill interior style selected.

set_interior = vsf_interior(handle, style)

WORD set interior;
WORD vsf-interior ();
WORD handle;
WORO style;

handle = contr1[6]
style = intin[O]

5-32

(
GEM VDI Programmer's Guide Set Fill Interior Style

Output Arguments

SET FILL STYLE
INDEX

set interior = intout[O]

This function selects a fill style based on
the fill interior style. This index has no
effect if the interior style is hollow,
solid, or user-defined. Indices range from 1
to a device-dependent maximum. If the re­
quested index is not available, GEM VDI uses
index style 1. The index references a hatch
style if the selected fill interior style is
hatch, or a pattern if the selected interior
fill style is pattern.

Figure 5-5 shows the available fill styles.
Under each rectangle in Figure 5-5 are two
numbers, separated by a comma. The number
to the left of the comma corresponds to the
style: Hollow, Pattern, or Hatch. The num­
ber to the right of the comma corresponds to
the index for the particular pattern or
hatch.

Figure 5-5. Fill Styles and Indices

5-33

~91

GEM VDI Programmer's Guide Set Fill Style Index

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

Note: l,n (i.e., Style I, followed by any
index) produces the same result as 2,8.

For patterns, index 1 maps to the lowest in­
tensity pattern on the device. The pattern
is always monochrome and uses the current
fill area color for foreground pixels.

contrl(O)
contrl{l)
contrl(3)
contrl(6)

Opcode = 24.
Number of input vertices = O.
Length of intin array = 1.
Device handle.

intin{O) Requested fill style index for
pattern or hatch fill.

contrl(2)
contrl(4)

Number of output vertices = O.
Length of intout array = 1.

intout(O) Fill style index selected for
pattern or hatch fill.

set_style = vsf_style(handle, style_index)

WORD set style;
WORD vsf-style ();
WORD handle;
WORD style_index;

handle = contrl[6]
style_index = intin[O]

set_style = intout[O]

5-34

J?99

C",
~'

GEM VOl Programmer's Guide Set Fill Color Index

SET FILL COLOR
INDEX

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

This function sets the color index for
subsequent polygon fill functions. The Set
Color Representation function determines the
color represented by the color index. All
devices support at least two color indices,
o and 1 (monochrome). Color indices range
from 0 to a device-dependent maximum. If the
requested index is out of range, GEM VDI
selects color index 1.

contrl(O) Opcode = 25.
contrl(l) Number of input vertices = O.
contrl(3) Length of intin array = 1.
contrl(6) Device handle.

intin(O) Requested fill color index.

contrl(2)
contrl(4)

Number of output vertices = O.
Length of intout array = 1.

intout(O) Fill color index selected.

set_color = vsf_color(handle, color index)

WORD set color;
WORD vsf-color ();
WORD handle;
WORD color_index;

handle = contrl[6]
color index = intin[O]

set color = intout[O]

5-35

3 s()

GEM VOl Programmer's Guide Set Fill Color Index

SET FILL PERIMETER This function turns the outline of a fill
VISIBILITY area on or off. When visibility is on (the

default at Open Workstation) the border of a
fill area is drawn in the current fill area
color with a solid line. When visibility is
off, no outline is drawn. Any nonzero value
of the visibility flag causes the perimeter
to be visible.

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

contrl(O)
contrl(l)
contrl(3)
contr1(6)

intin(O)

contrl(2)
contrl(4)

intout(O)

Opcode = 104.
Number of input vertices = O.
Length of intin array = 1.
Device handle.

Visibility flag.

zero - invisible
nonzero - visible

Number of output vertices = O.
Length of intout array = 1.

Visibility selected.

set_perimeter = vsf_perimeter(handle, per_vis)

WORD set perimeter;
WORD vsf-perimeter ();
WORD handle;
WORD per_vis;

handle = contrl[6]
per_vis = intin[O]

set_perimeter = intout[O]

5-36

'~./

3"1

GEM VDI Programmer's Guide' Set User-defined Fill Pattern

SET USER-DEFINED
FILL PATTERN

Input

Output

This function redefines the user-definable
fill pattern.

For the pattern data, bit 15 of word 1 is the
upper left bit of the pattern. Bit 0 of
word 16 is the lower right bit of the pat­
tern. Bit zero is the Least Significant Bit
of the word. Words are stored in the same
format as 16-bit integers

For a single plane pattern, a bit value of 1
indicates foreground color. A bit value of 0
indicates the background color. The color
used for the foreground is determined by the
current fill area color index.

For a multiple plane pattern, the number of
full 16-by-16 planes defined are used in the
fill operation: planes = contrl(3) / 16.
Any unspecified planes are zeroed. Note that
the writing mode must be set to replace (mode
1), when using a mu1tiplane fill pattern.

The defined pattern is referenced by the Set
Fill Interior Style function as style 4 and
by the Fill Rectangle function.

contrl(O) Opcode = 112.
contrl(l) Number of input vertices = O.
contrl(3) Length of intin array = 16 to

n.
contrl(6) Device handle.

intin(O) to
intin(15) First plane of fill pattern.
intin(16) to
intin(29) -- Second plane of fill pattern.

intin(n-15) to
intin(n) Last plane of fill pattern.

contrl(2)
contrl(4)

5-37

Number of output vertices = O.
Length of intout array = O.

GEM VDI Programmer's Guide Set User-defined Fill Pattern

C BINDING

Procedure Name

Data Types

Input Arguments

vsf_udpat(handle, pfill_pat, planes)

WORD vsf udpat;
WORD handle;
WORD pfill pat[16 x n where n > 0]
WORD planes;

handle = contrl[6]
pfill_

.
pfill pat
planes = contrl[3]/16

End of Section 5

5-38

(

(~"
. .

,

Section 6
RASTER OPERATIONS

INTRODUCTION

MEMORY FORM
DEFINITION BLOCK

Raster operations perform logic operations
on rectangular blocks of bits in memory and
on rectangular blocks of pixels on physical
devices.

A raster area is defined by a Memory Form
Definition Block (MFDB). An MFDB consists of
the following components:

o A 32-bit pOinter to the memory address of
the upper left corner of the first plane
of the raster area. This pointer cor­
responds to an offset-segment pointer for
8086-based microcomputers. If all 32 bits
of this pOinter are 0, the MFDB is for a
physical device, and the other parameters
are ignored.

0 The height and width of the raster area in
pixels.

0 The width of the raster area in words.
This value is equal to the width of the
raster area in pixels, divided by the word
size.

0 The number of planes in the raster area.

0 A flag indicating whether the format of the
raster area is standard or device-depen-
dent.

0 Some locations reserved for future use.

A raster area must start on a word boundary
and have a width that is an integral multiple
of the word size.

6-1

GEM VDl Programmer's Guide Memory Form Definition Block

RASTER AREA
FORMATS

Figure 6-1. Memory Form Definition Block

Two memory formats are associated with raster
areas:

o device-specific format
o well-defined standard format

GEM VDl provides a function to transform a
raster area from one format to another. You
must transform a form before using Copy
Raster.

The form format flag can have two values:

o - The form is in device-specific format.
1 - The form is in standard format.

The layout of a standard form format is as
follows (see also Figure 6-2):

6-2

/

GEM VDI Programmer's Guide Raster Area Formats

o Plane based - The planes are contiguous
blocks of memory, each having the same x,y
resolution. A monochrome implementation
has a single plane. A color index is
mapped to a pixel value with each plane
representing one bit in the value. Tables
6-1 and 6-2 define the pixel-value-to­
color-index mapping for eight-color and
sixteen-color screens, respectively.

o Most Significant Bit in a word (16-bit in­
teger) is the leftmost bit in the image.
Note that the data is stored in the same
format as l6-bit integers.

o Words are arranged sequentially along a row
with the first word being on the left edge
of the row.

Table 6-1. Pixel Value to Color Index
Mapping for 8-color Screens

Pixel Value

000
001
010
011
100
101
110
111

6-3

Color Index

o
2
3
6
4
7
5
1

Color

white
red
green
yellow
blue
magenta
cyan
black

GEM VOl Programmer's Guide Raster Area Formats

Table 6-2. Pixel Value to Color Index
Mapping for 16-co1or Screens

Pixel Value

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Color Index Color

o white
2 red
3 green
6 yellow
4 blue
7 magenta
5 cyan
8 low white
9 grey

10 light red
11 light green
14 light yellow
12 light blue
15 light magenta
13 light cyan

1 black

Note: A pixel value of 0 maps to the back­
ground color.

In addition to the MFDB, Copy Raster also
takes a rectangle as an argument. This
allows operations on a specified portion of
the raster area. A rectangle is specified
by the x,y coordinates of its upper left and
lower right vertices.

COORDINATE SYSTEMS A sample single-plane memory form with a form
width of 16 pixels, a form height of 8
pixels, and a highlighted rectangle with
corners of (3,1) and (6,5) is shown in Figure
6-3.

6-4

GEM VnI Programmer's Guide Coordinate Systems

Figure 6-2. Standard Forms

Figure 6-3. Sample Single Plane Memory Form

6-5

GEM VDI Programmer's Guide Coordinate Systems

LOGIC OPERATIONS To provide greatest flexibility, raster
operations subject to a logic operation take
the operation as an argument rather than
using the logic operation associated with
vector primitives. In addition, the
operations available are greatly expanded to
allow more flexibility. Table 6-3 lists the
available operations with the following con­
ventions:

o S = pixel value (0 or 1) of source pixel

o D = pixel value (0 or 1) of destination
pixel

o D'= destination pixel value after the logi­
cal operation

Table 6-3. Raster Operation
Logic Operations

Mode Definition

0 D'= 0
1 D'= S AND D
2 D'= S AND [NOT DJ
3 D'= S (Replace mode)
4 D'= [NOT S] AND D (Erase mode)
5 Df= D
6 Df= S XOR D (Xor mode)
7 Df= S OR D
8 D'= NOT [S OR DJ
9 D'= NOT [S XOR D]
10 D'= NOT D
11 Df= S OR [NOT D]
12 D'= NOT S
13 Df= [NOT S] OR D
14 Df= NOT [S AND D]
15 D'= 1

6-6

GEM VDI Programmer's Guide Logic Operations

COPY RASTER,
OPAQUE

Input

This function copies a rectangular raster
area from source form to destination form
using the logic operation the application
specifies. If the source and destination
forms are the same, and the rectangles over­
lap, GEM VDI copies so that the source rec­
tangle is not changed until GEM VDI processes
the corresponding area in the destination.
No rotation or transformation occurs as a
result of this function; the copy is pixel
for pixel.

If the source and destination rectangles are
not the same size, GEM VDI uses the destina­
tion as a pOinter and uses the source for the
size. The Extended Inquire function returns
scaling ability. The source and destination
forms must be in device-specific form; see
"Transform Form" later in this section.

contrl(O)
contrl(l)
contrl(3)
contrl(6)
contrl(7-8)--

contrl(9-l0)-

intin(O)

ptsin(O)

ptsin(l)

ptsin(2)

ptsin(3)

6-7

Opcode = 109.
Number of input vertices = 4.
Length of intin array = 1.
Device handle.
Double-word address of the
source Memory Form Definition
Block.
Double-word address of the
destination Memory Form
Definition Block.

Logic operat~on (refer to
"Introduction" in this sec­
tion) •

x-coordinate of corner of
source rectangle in RC/NDC.
y-coordinate of corner of
source rectangle in RC/NDC.
x-coordinate of corner diagon­
ally opposite corner selected
in ptsin(O) of source rec­
tangle in RC/NDC.
y-coordinate of corner diagon­
ally opposite corner selected
in ptsin(l) of source rec­
tangle in RC/NDC.

GEM VDr Programmer's Guide Copy Raster, Opaque

Output

C BINDING

Procedure Name

Data Types

Input Arguments

ptsin(4)

ptsin(5)

ptsin(6)

ptsin(7)

contrl(2)
contrl(4)

x-coordinate of corner of des­
tination rectangle in RC/NDC.
y-coordinate of corner of des­
tination rectangle in RC/NDC.
x-coordinate of corner of des­
tination rectangle in RC/NDC.
y-coordinate of corner of des­
tination rectangle in RC/NDC.

Number of output vertices = O.
Length of intout array = O.

vro cpyfm(handle, wr mode, pxyarray,
-psrcMFDB, pdesMFDB)

WORD vro cpyfm ();
WORD handle;
WORD wr mode;
WORD pxyarray[8];
WORD *psrcMFDB;
WORD *pdesMFDB;

handle = contrl[6]
wr mode = intin[O]
pxyarray[O] = ptsin[O]
pxyarray[l] = ptsin[l]

.
pxyarray[7] = ptsin[7]
psrcMFDB = contrl[7-8]
pdesMFDB = contrl[9-l0]

6-8

(

(~\

GEM VnI Programmer's Guide Copy Raster, Opaque

COpy RASTER,
TRANSPARENT

Replace Mode

Transparent Mode

XOR Mode

This function copies a monochrome rectangular
raster area from source form to a color area.
A writing mode and color indices for both D's
and l's are specified in the intin array.

If the source and destination rectangles are
not the same size, GEM VnI uses the source
rectangle for the size and the upper left
corner of the destination rectangle for the
initial destination location.

Transfer of information from the source to
the destination is controlled by the
specified writing mode as described below.
See Table 5-1 for a binding of the available
writing modes.

Replace mode will result in a replacement of
all pixels in the destination rectangle. The
foreground color index specified in intin(l)
will be output to all pixels associated with
source locations which are set to a one. The
background color index specified in intin(2)
will be output to all pixels associated with
source locations which are set to a zero.

Transparent mode only affects the pixels as­
sociated with a source value of one. Those
pixels are set to the foreground color whose
index is specified in intin(l). The color
index specified in intin(2) is not used.

In XOR mode, the monochrome raster source
area is logically XORed with each plane of
the destination. The color indices specified
in intin(l) and intin(2) are not used.

6-9

3//

GEM VDI Programmer's Guide Copy Raster, Transparent

Reverse
Transparent
Mode

Input

Reverse Transparent mode only affects the
pixels associated with a source value of
zero. Those pixels are set to the background
color whose index is specified in intin(2).
The color index specified in intin(l) is not
used.

contrl(O)
contrl.(l)
contrl(3)
contrl(6)
contrl(7-8)--

contr1(9-10)-

intin(O)
intin(l)
intin(2)

ptsin(O)

ptsin(l)

ptsin(2)

ptsin(3)

ptsin(4)

ptsin(5)

ptsin(6)

ptsin(7)

Opcode = 121.
Number of input vertices = 4.
Length of intin array = 3.
Device handle.

Double-word address of the
source Memory Form Definition
Block.

Double-word address of the
destination Memory Form
Definition Block.

Writing Mode.
Color index for 1s in data.
Color index for Os in data.

x-coordinate of corner of
source rectangle in RC/NDC.
y-coordinate of corner of
source rectangle in RC/NDC.
x-coordinate of corner diagon­
ally opposite corner selected
in ptsin(O) of source rec­
tangle in RC/NDC.
y-coordinate of corner diagon­
ally opposite corner selected
in ptsin(l) of source rec­
tangle in RC/NDC.

x-coordinate of corner of des­
tination rectangle in RC/NDC.
y-coordinate of corner of des­
tination rectangle in RC/NDC.
x-coordinate of corner of des­
tination rectangle in RC/NDC.
y-coordinate of corner of des­
tination rectangle in RC/NDC.

6-10

31;1.

(:

GEM VDI Programmer's Guide Copy Raster, Transparent

Output

C BINDING

Procedure Name

Data Types

Input Arguments

contrl(2)
contrl(4)

Number of output vertices = O.
Length of intout array = O.

vrt cpyfm(handle, wr mode, pxyarray,
-psrcMFDB, pdesMFDB, color index)

WORD vrt cpyfm ();
WORD handle;
WORD wr mode;
WORD pxyarray[8];
WORD *psrcMFDB;
WORD *pdesMFDB;
WORD color_index[2];

handle = contrl[6]
wr mode = intin[O]
pxyarray[O] = ptsin[O]
pxyarray[l] = ptsin[l]

pxyarray[7] = ptsin[7]
psrcMFDB = contrl[7-8]
pdesMFDB = contrl[9-10]
color index[O] = intin[l]
cOlor=index[l] = intin[2]

6-11

3/.3

GEM VDI Programmer's Guide Copy Raster, Transparent

TRANSFOltM FORM

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

This function transforms a raster area from
standard format to device-specific format or
from device-specific to standard format. The
operation is a toggle, changing the current
state.

The number of planes specified in the source
MFDB determines the number transformed. The
source format flag is toggled and placed in
the destination. The user is required to en­
sure that the other parameters in the des­
tination MFDB are correct.

contrl(O) Opcode = 110.
contrl(l) Number of input vertices = O.
contrl(3) Length of intin array = O.
contrl(6) Device handle.
contrl(7-8) -- Double-word address of the

source MFDB.
contrl(9-l0) - Double-word address of the

destination MFDB.

contrl(2)
contrl(4)

Number of output vertices = O.
Length of intout array = O.

vr_trnfm(handle, psrcMFDB, pdesMFDB)

WORD vr trnfm ();
WORD handle;
WORD *psrcMFDB;
WORD *pdesMFDB;

handle = contrl[6]
psrcMFDB = contrl[7-8]
pdesMFDB = contrl[9-l0]

6-12

GEM VDI Programmer's Guide Get Pixel

GET PIXEL

Input

Output

This function returns
color index for the
ptsin(O), ptsin(l).

a pixel
pixel

value and a
specified by

Note: Color index 0 is the background color.
It mayor may not map to pixel value 0 in
device-specific form. Refer to Tables 6-1
and 6-2 for the colors and values. Standard
form always maps color index 0 to pixel value
O.

contrl(O)
contrl(l)
contrl(3)
contrl(6)

ptsin(O)

ptsin(l)

contrl(2)
contrl(4)

intout(O)
intout(l)

Opcode = 105.
Number of input vertices = l.
Length of intin array = O.
Device handle.

x-coordinate of pixel in
RC/NDC units.
y-coordinate of pixel in
RC/NDC units.

Number of output vertices = O.
Length of intout array = 2.

Pixel value.
Color index.

6-13

GEM VOl Programmer's Guide Get Pixel

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

v_get_pixel(handle, x, y, pel, index)

WORD v get pixel();
WORD handle;
WORD x;
WORD y;
WORD *pel;
WORD *index;

handle = contrl[6]
x = ptsin[O]
y = ptsin[1]

pel = intout[O]
index = intout[1]

End of Section 6

6-14

Section 7
INPUT FUNCTIONS

INTRODUCTION

SET INPUT MODE

Input

The input functions allow user interactions
with the application program. Many of the
input functions support two modes: request
and sample. In request mode, the driver
waits until an input event occurs before
returning. In sample mode, the driver
returns the current status or location of the
input device without waiting.

This function sets the input mode for the
following specified logical input devices to
request or sample:

o locator
o valuator
o choice
o string

Select the input mode in intin(l).

contrl(O)

contrl(l)
contrl(3)
contrl(6)

intin(O)

intin(l)

7-1

Opcode = 33.

Number of input vertices = O.
Length of intin array = 2.
Device handle.

Logical input device.

1 = locator
2 = valuator
3 = choice
4 = string

Input mode.

1 = request
2 = sample

GEM VDI Programmer's Guide Set Input Mode

Output

C BINDING

Procedure Name

Data Types

Input Arguments

contr1(2)
contr1(4)

intout(O)

Number of output vertices = O.
-Length of intout array = 1.

Input mode selected.

vsin_mode(handle, dev_type, mode)

WORD vsin mode ();
WORD handle;
WORD dev type;
WORD mode;

handle = contr1[6]
dev type = intin[O]
mode = 1nt1n[1]

7-2

(-

GEM VDI Programmer's Guide Input Locator, Request Mode

INPUT LOCATOR,
REQUEST MODE

Input

This function returns the position of the
specified locator device. Upon entry to the
locator routine, the current cursor form is
displayed at the initial coordinate. The
graphic cursor is tracked with the input
device until a terminating event occurs,
which can result from the user pressing a key
or a button on a mouse. GEM VDI removes the
cursor when the terminating event occurs.
Typically, the arrow keys move the cursor in
large jumps when used without the Shift key
and in pixel increments when used with the
Shift key.

This function always displays a cursor on the
screen, even if the cursor is currently
obscured or hidden.

Note: If both a keyboard and another locator
device are available, the cursor is tracked
by input from either, giving the user maximum
flexibility.

contrl(O) Opcode = 28.
contrl(l) Number of input vertices = 1.
contrl(3) Length of intin array = O.
contrl(6) Device handle.

ptsin(O) Initial x-coordinate of
locator in NDC/RC units.

ptsin(l) Initial y-coordinate of
locator in NDC/RC units.

7-3

311

GEM VDI Programmer1s Guide

Output contrl(2)
contrl(4)

intout(O)

ptsout(O)

ptsout(1)

7-4

Input Locator, Request Mode

Number of output vertices = 1.
Length of intout array = 1.

Locator terminator.

The low byte contains a
character terminator. For
keyboard-terminated locator
input, this is the ASCII
character code of the key
struck to terminate input.
For nonkeyboard-terminated in­
put (tablet, mouse, and so
on), valid locator ter­
minators begin with 20 Hex
(space) and increase from
there. For instance, if the
puck on a tablet has 4 but­
tons, the first button must
generate a 20 Hex as a ter­
minator, the second a 21 Hex,
the third a 22 Hex, and the
fourth a 23 Hex.

Final x-coordinate of locator
in NDC/RC units. \'-.~/
Final y-coordinate of locator
in NDC/RC units.

(
GEM VDI Programmer's Guide Input Locator, Request Mode

C BINDING

Procedure Name

Data Types

Input Arguments

Output Functions

vrq locator(handle, x, y, &xout, &yout,
- &term)

WORD vrq locator ();
WORD handle;
WORD x, y;
WORD xout;
WORD yout;
WORD term;

handle = contrl[6]
x = ptsin[O]
y = ptsin[l]

xout = ptsout[O]
yout = ptsout[l]
term = intout[O]

7-5

GEM VDI Programmer's Guide Input Locator, Sample Mode

INPUT LOCATOR,
SAMPLE MODE

Input

Output

This function returns the position in NOCs
of the specified locator device. Upon entry
to the locator routine, no cursor is dis­
played. (Use Show Cursor to disp.lay the cur­
sor.) Input is sampled. If the cursor
position has changed, GEM VOl returns the
cursor position and contrl(2) is set to 1.
Contrl(4) is set to O. If a terminating
event occurred, GEM VOl returns a character
and contr1(4) is set to 1. Contrl(2) is set
to O.

Note: If both a keyboard and another locator
device are available, the input comes from
either, giving the user maximum flexibility.

contr1(O)
contrl(l)
contrl(3)
contrl(6)

ptsin(O)

ptsin(l)

contrl(2) --

contrl(4) --

7-6

Opcode = 28.
Number of input vertices =
Length of intin array = O.
Device handle.

Initial x-coordinate
locator in NOC/RC units.
Initial y-coordinate
locator in NOC/RC units.

Number of output vertices.

1 = coordinate changed
o = no coordinate changed

Length of intout array.

o = no keypress character
1 = keypress character

returned

1.

of

of

,/-.~ ~,

""'-~. ~" /

c -

(~--~

GEM VDI Programmer's Guide Input Locator, Sample Mode

Table 7-1. Sample Mode Status Returned

Event Control Array
(2) (4)

Coordinates change.

Key pressed; coordinates
not changed from what
was pressed.

NO input.

Key pressed; coordinates
changed.

1

o

o

1

intout(O) -- Locator keypress
occurs.

if

This information is

o
1

o

1

keypress

the same
as for Input Locator, Request
Mode function.

ptsout(O) New x-coordinate of locator in
NDC/RC units.

ptsout(l) New y-coordinate of locator in
NDC/RC units.

7-7

GEM VDl Programmer's Guide Input Locator, Sample Mode

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

status = vsm locator(handle, x, y, &xout,
&yout, &term)

WORD status;
WORD vsm locator ();
WORD hanch e ;
WORD x, y;
WORD xout;
WORD yout;
WORD term;

handle = contrl[6]
x = ptsin[O]
y = ptsin[l]

status = contrl[2] I (contrl[4] « 1)
xout = ptsout[O]
yout = ptsout[l]
term = intout[O]

7-8

(
GEM VDI Programmer's Guide Input Valuator, Request Mode

INPUT VALUATOR,
REQUEST MODE

Input

Output

This function returns the value of the
valuator device. The initial value of the
valuator is incremented or decremented until
a terminating character is struck. Valuator
keys are typically the up-arrow and down-ar­
row keys. Valuator numbers range from 1 to
100. Typical implementation of the up-arrow
and down-arrow keys is as follows:

o Pressing the up-arrow key adds ten to the
valuator.

o Pressing the down-arrow key subtracts ten
from the valuator.

o Pressing the up-arrow key with the Shift
key adds one to the valuator.

o Pressing the down-arrow key with the Shift
key subtracts one from the valuator.

Note: This function is not required and may
not be available on all devices.

contrl(O)
contrl(l)
contrl(3)
contrl(6)

intin(O)

contrl(2)
contrl(4)

intout(O)
intout(l)

7-9

Opcode = 29.
Number of input vertices = O.
Length of intin array = 1.
Device handle ..

Initial value.

Number of output vertices = O.
Length of intout array = 2.

Output value.
Terminator.

GEM VDI Programmer's Guide Input Valuator, Request Mode

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

vrq valuator(handle, valuator in,
-&valuator_out, &terminator-)

WORD vrq valuator ();
WORD handle;
WORD valuator in;
WORD valuator-out;
WORD terminator;

handle = contrl[6]
valuator in = intin[O]

valuator out = intout[O]
terminator = intout[l]

7-10

(-'

GEM VDI Programmer's Guide Input Valuator, Sample Mode

INPUT VALUATOR,
SAMPLE MODE

Input

Output

This function returns the current value of
the valuator device. The valuator device is
sampled. If the valuator has changed, GEM
VDI increments or decrements the valuator
value as required. If a terminating event
occurs, GEM VDI returns the value. If
nothing happens, GEM VDI returns no value.
Valuator numbers range from 1 to 100. The
suggested keys are the same as for Input
Valuator, Request Mode.

Note: This function is not required and may
not be available on all devices.

contrl(O) Opcode = 29.
contrl(l) Number of input vertices = O.
contrl(3) Length of intin array = 1.
contrl(6) Device handle.

intin(O) Initial value.

contrl(2) Number of output vertices = O.
contrl(4) Length of intout array.

0 = nothing happened
1 = valuator changed
2 = keypress character

intout(O) New valuator value.
intout(l) Keypress, if keypress event

occurred.

7-11

3:1.7

GEM VDI Programmer's Guide Input Valuator, Sample Mode

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

vsm valuator(handle, val_in, &val_out,
&'term, &status)

WORD vsm valuator ();
WORD handle;
WORD val in;
WORD val-out;
WORD term;
WORD status;

handle = contrl[6]
val in = intin[O]

val out = intout[O]
term = intout[l]
status = contrl[4]

7-12

(
GEM VDI Programmer's Guide Input Choice, Request Mode

INPUT CHOICE,
REQUEST MODE

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

This function returns the choice status of
the selected choice device. Input is sampled
until a key is pressed. If it is a valid
choice key, GEM VDI returns its value.
Otherwise, GEM VDI returns the initial
choice number. Choice numbers range from 1
to a device-dependent maximum value.

Note: This function is not required and may
not be available on all devices.

contrl(O) Opcode = 30.
contrl(l) Number of input vertices = O.
contrl(3) Length of intin array = l.
contrl(6) Device handle.

intin(O) Initial choice number.

contrl(2)
contrl(4)

Number of output vertices = O.
Length of intout array = 1.

intout(O) Choice number.

vrq_choice(handle, ch_in, &ch out)

WORD vrq choice ();
WORD handle;
WORD ch in;
WORD *ch_out;

handle = contrl[6]
ch in = intin[O]

*ch out = intout[O]

7-13

GEM VDI Programmer's Guide Input Choice, Sample Mode

INPUT CHOICE,
SAMPLE MODE

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

This function returns the choice status of
the selected choice device. Upon entry to
the routine, GEM VDI samples input. If input
is available and is a valid choice key, GEM
VDI returns it. Choice numbers range from 1
to a device-dependent maximum value.

Note: This function is not required and may
not be available on all devices.

contrl(O)
contrl(1)
contrl(3)
contrl(6)

contrl(2)
contrl(4)

intout(O) --

Opcode = 30.
Number of input vertices = O.
Length of intin array = O.
Device handle.

Number of output vertices = O.
Choice status.

o = nothing happened
1 = sample successful

Choice number if sample suc­
cessful, 0 if unsuccessful.

status = vsm_~hoice(handle, &choice)

WORD status;
WORD vsm choice ();
WORD handle;
WORD choice;

handle = contrl[6]

choice = intout[O]
status = contrl[4]

7-14

330

(

GEM VDI Programmer's Guide Input String, Request Mode

INPUT STRING,
REQUEST MODE

Input

Output

This func~ion returns a string from the
specified device. Input is accumulated until
GEM VDI encounters a carriage return or the
intout array is full. If the application
enables echo mode, text will be echoed to
the screen with the current text attributes

. using the vertex passed in the ptsin array as
the justification point.

If the number in intin(O) is negative, the
values in intout will conform to the standard
keyboard defined in Appendix D. In this
case, the absolute value of intin(O) is used
as the maximum intout size.

Note: Echoing of input is not required and
may not be available on all devices.

contrl(O)
contrl(l)
contrl(3)
contrl(6)

intin(O)
intin(l)

ptsin(O)

ptsin(l)

contrl(2)
contrl(4)

intout

7-15

Opcode = 31.
Number of input vertices = 1.
Length of intin array = 2.
Device handle.

Maximum string length.
Echo mode.

o = no echo
1 = echo input characters at

position specified

x-coordinate of echo area in
NDC/RC units.
y-coordinate of echo area in
NDC/RC units.

Number of output vertices = O.
Length of intout array.

Output string returned in ADE.

3~J

GEM VDI Programmer's Guide Input String, Request Mode

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

vrq string (handle, max length, echo_mode,
-echo_xy, &string) -

WORD vrq string ();
WORD handle;
WORD max length;
WORD echo mode;
WORD echo-xy[2];
BYTE string[max_length+l];

handle = contrl[6]
max length = intin[O]
echo mode = intin[l]
eCho=x,y = ptsin[O-l]

string = intout

Note: The BYTE array elements contain the
eight least significant bits o£ the intout
array elements. The array is terminated with (
a null byte. The length of the output vari- '.,j

able string includes an additional byte for
the terminating null.

7-16

(

GEM VDI Programmer's Guide Input String, Sample Mode

INPUT STRING,
SAMPLE MODE

Input

Output

This function returns a string from the
specified device. Upon entry to the routine,
GEM VDI samples input. If data is avail­
able, it is accumulated, and GEM VDI samples
the input again. Input is accumulated until
one of the following events occurs:

o Data is no longer available.
o A carriage return is encountered.
o The intout buffer is full.

Note: If the string will always be ter­
minated with RETURN, use Input String, Re­
quest Mode.

If the number in intin(O) is negative, the
values in intout will conform to the standard
keyboard defined in Appendix D. In this
case, the absolute value of intin(O) is used
as the maximum intout size.

contrl(O)
contrl(1)
contrl(3)
contr1(6)

intin(O)
intin(1)

ptsin(O)

ptsin(1)

contrl(2)
contrl(4)

intout

Opcode = 31.
Number of input vertices = 1.
Length of intin array = 2.
Device handle.

Maximum string length.
Echo mode.

o = no echo
1 = echo input characters

x-coordinate of echo area in
NDC/RC units.
y-coordinate of echo area in
NDC/RC units.

Number of output vertices = O.
Length of output string.

o = sample unsuccessful
(characters not available)

>0 = sample successful
(characters available)

Output string, if sample
successful.

7-17
33~

GEM VOl Programmer's Guide Input String, Sample Mode

C B:IND:ING

Procedure Name

Data Types

:Input Arguments

Output Arguments

status = vsm string(handle, max iength,
echo_mode, echo_xy, &string)

WORD vsm string ();
WORD handle;
WORD max length;
WORD echo mode;
WORD echo-xy[2];
BYTE string[max length+1];
WORD status; -

handle = device handle
max length = intin[O]
echo mode = intin[1]
echo:xy = ptsin[O-1]

string = intout
status = contrl[4]

Note: The BYTE array elements contain the
eight least significant bits of the intout
array elements. The array is terminated with
a null byte. The length of the output vari­
able. string includes an additional byte for
·the terminating nUll.

7-18

GEM VDl Programmer's Guide Set Mouse Form

SET MOUSE
FORM

Input

This function redefines the cursor pattern
displayed during locator input or at any time
the cursor is shown (see the discussion of
the Show Cursor function later in this sec­
tion) •

For the cursor mask and data, bit 15 of word
1 is the upper left bit of the pattern. Bit
o of word 16 is the lower right bit of the
pattern. Bit zero is the Least Significant
Bit of the word.

The hot spot is the location of the pixel
(relative to the upper left pixel of the
mouse form) that lies over the pixel whose
address is returned by the input locator
function.

The mouse form is drawn as follows:

1. The data under the mouse form is saved so
that it can be restored when the cursor
moves.

2. 1s in the mask· cause the corresponding
pixel to be set to the color index
defined in intin(3).

3. ls in the mouse form data cause the cor­
responding pixel to be set to the color
index defined in intin(4).

Contrl(O)
Contrl(l)
Contrl(3)
Contrl(6)

intin(O)
intin(l)
intin(2)

intin(3)
intin(4)
intin(5-20)­
intin(21-36)-

Opcode = 111.
Number of input vertices = O.
Length of intin array = 37.
Device Handle.

x-coordinate of hot spot.
y-coordinate of hot spot.

Reserved for future use, must
be 1.
Mask color index, normally O.
Data color index, normally 1.
16 words of 16 bit cursor mask.
16 words of 16 bit cursor data.

7-19

GEM VDl Programmer's Guide set Mouse Form

Output

C BINDING

Procedure Name

Data Types

Input Arguments

Contrl(2)
Contrl(4)

Number of output vertices = O.
Length of intout array = O.

WORD vsc form ();
WORD hanalei
WORD pcur_form[37];

handle = contrl[6]
pcur_form[O] = intin[O]

.
pcur_form[36] = intin[36]

7-20

(
GEM VDI Programmer's Guide Exchange Timer Interrupt Vector

EXCHANGE TIMER
INTERRUPT VECTOR

Input

Output

With this function, the application can
perform some action each time a timer tick
occurs.

The input to this function is a two-word
pOinter in contrl(7) and contrl(8). The
pointer indicates the starting address of the
code to receive control when a timer tick oc­
curs. The address of the old timer routine
is returned in contrl(9) and contrl(lO).

The application-dependent code is invoked
with a processor-dependent call instruction.
When this is complete, the application should
perform a processor-dependent return in­
struction.

It is the responsibility of the application­
dependent code to save and restore any
registers used.

When the application code is invoked, inter­
rupts are disabled. The application should
not enable interrupts.

See Appendix E for processor specific in­
structions and register names.

The number of milliseconds per timer tick is
returned in intout(O).

contrl(O)
contrl(l)
contrl(3)
contrl(6)
contrl(7-8) -

contrl(2)
contrl(4)
contrl(9-10)-

intout(O)

Opcode = 118.
Number of input vertices = O.
Length of intin array = O.
Device handle.
Address of application timer
routine.

Number of
Length of
Address
routine.

output vertices = O.
intout array = 1.
of the old timer

Milliseconds per tick.

7-21

GEM VDI programmer's Guide Exchange Timer Interrupt vector

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

vex timv(handle, tim_addr, otim_addr,
-&tim_conv)

WORD vex timv()i
WORD handlei
WORD *tim addri
WORD *otim addri
WORD tim_convi

handle = contrl[6]
tim addr = contrl[7-8]

otim addr = contrl[9-l0]
tim conv = intout[O]

7-22

GEM VOl Programmer's Guide Show Cursor

SHOW CURSOR

Input

Output

This function displays the current cursor.
The cursor moves on the display surface based
on information input from a mouse.

The Show Cursor function and the Hide Cursor
functions are closely related. Once the cur­
sor is visible, a single Hide Cursor causes
the cursor to disappear. GEM VOl keeps
track of the number of times the Hide Cursor
function is called. The Show Cursor func­
tion must be called the same number of times
for the cursor to reappear. For example,
if the Hide Cursor function is called four
times, the Show Cursor function must be
called four times for the cursor to appear.

The Show Cursor function does, however,
provide a reset flag in intin(O). If in­
tin(O) is zero, the cursor appears on the
screen, regardless of the number of Hide
Cursor calls. A nonzero value for intin(O)
affects the Show Cursor function as
described in the preceding paragraph.

contrl(O)
contrl(l)
contr1(3)
contrl(6)

intin(O)

contrl(2)
contr1(4)

7-23

Opcode = 122.
Number of input vertices = O.
Length of intin array = 1.
Device handle.

Reset flag.

o = ignore number of Hide
Cursor calls

nonzero = normal Show Cursor
functionality

Number of output vertices = O.
Length of intout array = O.

33'

GEM VOl Programmer's Guide

C BINDING

Procedure Name

Data Types

Input Arguments

WORD v show c ();
WORD handle;
WORD reset

handle = contrl[6]
reset = intin[O]

7-24

Show Cursor

(
GEM VDI Programmer's Guide Hide Cursor

HIDE CURSOR

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

This function removes the cursor from the
display surface. This state is the default
condition set at Open Workstation. The cur­
sor can appear in a new position when the
application calls the Show Cursor function
because GEM VDI updates the position based
on information input from a mouse.

Refer to the Show Cursor function for a
description of how the number of Hide Cursor
calls affects the Show Cursor function.

contrl(O)
contrl(l)
contrl(3)
contrl(6)

contrl(2)
contrl(4)

Opcode = 123.
Number of input vertices = O.
Length of intin array = O.
Device handle.

Number of output vertices = O.
Length of intout array = O.

WORD v hide c ();
WORD handle;

handle = contrl[6]

7-25

GEM VDI Programmer's Guide Sample Mouse Button State

SAMPLE MOUSE
BUTTON STATE

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

This function returns the current state of
the mouse buttons. The leftmost mouse but­
ton is returned in the Least Significant Bit
of the word. A bit value of 1 indicates the
key is currently depressed; a bit value of 0
indicates the key is up.

This function also returns the current (x,y)
position of the cursor.

Opcode = 124. contrl(O)
contrl(1)
contr1(3)
contrl(6)

Number of input vertices = O.
Length of intin array = O.
Device handle.

contrl(2) Number of output vertices = 1.
contrl(4) Length of intout array =
intout(O) Mouse button state.

ptsout(O) x position of cursor
units.

ptsout(l) y position of cursor
units.

vq_mouse(handle, &pstatus, &x, &y)

WORD vq mouse ();
WORD handle;
WORD pstatus;
WORD x, y;

handle = contrl[6]

pstatus = intout[O]
x = ptsout[O]
y = ptsout[1]

7-26

in

in

1.

NDC/RC

NDC/RC

GEM VDI Programmer's Guide Exchange Button Change vector

EXCHANGE BUTTON
CHANGE VECTOR

Input

This function allows the application to
perform some action each time the state of
the mouse buttons changes. The application
receives control after the button state is
decoded, but before the driver button state
changes.

The input to this function is a two-word
pOinter in contrl(7) and contrl(8), which
indicates the starting address of the code to
receive control when the mouse button state
changes. Contrl(9) and contrl(10) return a
two-word pOinter to the old mouse routine.

Control is passed to the specified address
whenever the mouse button state changes.
The application code is invoked via a proces­
sor-dependent call instruction with a proces­
sor-dependent register containing the mouse
button keys. Keys are encoded by the same
rules that apply to the Sample Mouse Button
State function. When complete, the ap­
plication-dependent code should do a proces­
sor-dependent return instruction with the
mouse button state the driver is to store in
the same register. This gives the application
the opportunity to alter the buttons before
they are used by the driver.

It is the responsibility of the application­
dependent code to save and restore any
registers used.

When the application code is invoked, inter­
rupts are disabled. The ~pplication should
not enable interrupts.

See Appendix E for processor-specific in­
structions and register names.

Contrl(O)
Contrl(l)
Contrl(3)
Contrl(6)
Contrl(7-8)-

7-27

Opcode = 125.
Number of input vertices = O.
Length of intin array = O.
Device handle.
Address of application mouse
button state change routine.

GEM VDI Programmer's Guide Exchange Button Change Vector

Output

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

Number of output vertices = O.
Length of intout array = O.

Contrl(2) -­
Contrl(4) -­
Contrl(9-l0) - Address of old mouse button

state change routine.

vex_butv(handle, pusrcode, psavcode)

WORD vex butv ();
WORD handle;
WORD *pusrcode;
WORD *psavcode;

hanqle = contrl[6]
pusrcode = contrl[7-8]

psavcode = contrl[9-l0]

7-28

c

GEM VDI Programmer's Guide Exchange Mouse Movement vector

EXCHANGE MOUSE
MOVEMENT VECTOR

This function allows the application to
perform some action each time the mouse moves
to a new location. The application receives
control after the x,y address is computed,
but before the current mouse position in the
driver is updated or the mouse form is actu­
ally redrawn on the screen.

The input to this function is a two-word
pOinter in contrl(7) and contrl(8), which
indicates the starting address of the code to
receive control when the mouse moves. A
two-word pOinter to the address of the old
mouse movement routine is returned in con­
trl(9) and contrl(10).

When the mouse moves, the application-depen­
dent code is invoked via a processor-depen­
dent call instruction. The new x and y
locations are contained in a pair of proces­
sor-dependent registers. Upon completion,
the application-dependent code should do a
processor-dependent return instruction with
the x,y mouse position the driver is to store
in the appropriate hardware registers. This
procedure gives the opportunity to alter the
x,y position before it is used by the driver.

It is the responsibility of the application­
dependent code to save and restore any
registers used.

When the application code is invoked, inter­
rupts are disabled. The application should
not enable interrupts.

See Appendix E for processor-specific in­
structions and register names.

7-29

GEM VDl Programmer's Guide Exchange Mouse Movement vector

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

Contrl(O)
Contrl(1)
Contrl(3)
Contrl(6)
Contrl(7-8)-

Opcode = 126.
Number of input vertices = O.
Length of intin array = O.
Device handle.
Address of application mouse
movement routine.

Number of output vertices = O.
Length of intout array = O.

Contrl(2) -­
Contrl(4) -­
Contrl(9-10) - Address of the old mouse

movement routine.

vex_motv(handle, pusrcode, psavcode)

WORD vex motv ();
WORD handle;
WORD *pusrcode;
WORD *psavcode;

handle = contrl[6]
pusrcode = contrl[7-8]

psavcode = contrl[9-10]

7-30

("'
~-

GEM VOl Programmer's Guide Exchange Cursor Change Vector

EXCHANGE CURSOR
CHANGE VECTOR

This function allows the application to
perform some action each time the cursor is
drawn. The application can completely take
over drawing the cursor or can perform some
action and have GEM VOl draw the cursor.
Control is passed to the application whenever
the cursor position should be updated.

The input to this function is a two-word
pointer in contrl(7) and contrl(8), which
indicates the starting address of the code to
receive control when a cursor is drawn.
The address of the old cursor draw routine is
returned in contrl(9) and contrl(lO).

The application-dependent code is invoked
with a processor-dependent call instruction.
The x,y position at which the cursor should
be drawn is contained in a pair of proces­
sor-dependent registers. If the application­
dependent code does not draw its own cursor,
a processor-dependent call should be per­
formed to the address returned in contrl(9)
and contrl(lO). This will cause GEM VOl to
draw a cursor. When it is done, the applica­
tion should perform a processor-dependent
return instruction.

It is the responsibility of the application­
dependent code to save and restore any
registers used. The GEM VOl cursor draw
routine preserves the contents of all
registers.

When the application code is invoked, inter­
rupts are disabled. The application should
not enable interrupts.

See Appendix E for processor-specific in­
structions and register names.

7-31

GEM VDl Programmer's Guide Exchange Cursor Change vector

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

contrl(O)
contrl(l)
contrl(3)
contrl(6)
contrl(7-8)-

Opcode = 127.
Number of input vertices = O.
Length of intin array = O.
Device handle.
Address of application cursor
draw routine.

contr1(2) -- Number of output vertices = 0
contrl(4) -- Length of intout array = 0
contrl(9-10) - Address of the old cursor draw

routine.

vex_curv(handle, pusrcode, psavcode)

WORD vex curv () ;
WORD handle;
WORD *pusrcode;
WORD *psavcode;

handle = contrl[6]
pusrcode = contrl[7-8]

psavcode = contrl[9-10]

7-32

(

('
",

GEM VDI Programmer's Guide Sample Keyboard state Information

SAMPLE KEYBOARD
STATE INFORMATION

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

This function returns the current state of
the keyboard's Control, Shift, and Alt keys.
These values are returned as a bit-encoded
value in intout(O). The keys are assigned to
bits as follows:

Bit 0 - right Shift Key
Bit 1 - left Shift Key
Bit 2 - Control Key
Bit 3 - Alt Key

Bit 0 is the Least Significant Bit of the
word. A bit value of zero indicates the key
is up, a bit value of 1 indicates the key is
depressed.

contrl(O) Opcode = 128.
contrl(l) Number of input
contrl(3) Length of intin
contrl(6) Device handle.

contrl(2) Number of output
contrl(4) Length of intout

intout(O) Keyboard state.

WORD vq key s ();
WORD handle;
WORD pstatus;

handle = contrl[6]

pstatus = intout[O]

End of Section 7

7-33

vertices = O.
array = O.

vertices = O.
array = 1.

c Section 8
INQUIRE FUNCTIONS

INTRODUCTION

EXTENDED INQUIRE

Input

Inquire functions return the current settings
for device-specific attributes.

This function returns additional device­
specific information not included in the
Open Workstation call. The value of intin(O)
determines if GEM VDI returns the values
returned at Open Workstation or an extended
set of device-specific information. Refer
to Section 3, "Control Functions," for more
information about intout values for the Open
Workstation function.

Note that 6 vertices and 45 intouts are al­
ways returned, although some values are un­
defined for the extended device information.

contr1(0)
contrl(l)
contr1(3)
contrl(6)

intin(O)

8-1

Opcode = 102.
Number of input vertices = O.
Length of intin array = 1.
Device handle.

Information type.

o = Open Workstation values
1 = Extended Inquire values

3~-O

GEM VDI Programmer's Guide

Output contrl(2)
contrl.(4)

intout(O)

intout(l) --

intout(2) --

intout(3) --

intout(4)
intout(5)

intout(6)

intout(7)
intout(8)

8-2

Extended Inquire

Number of output vertices = 6.
Length of intout array = 45.

Type of screen.

0 not screen
1 separate alpha and

graphic controllers and
separate video screens

2 separate alpha and
graphic controllers with
a common video screen

3 common alpha and graphic
controller with separate
image memory

4 -- common alpha and graphic
controller with common
image memory

Number of background colors
available in color palette.

On some devices this may be
different from the number of
colors returned from Open
Workstation, intout(39).

Text effects supported.

(See "Set Graphic Text Special
Effects" in Section 5 for
values.)

Scale rasters.

o = scaling not possible
1 = scaling possible

Number of planes.
Lookup table supported.

o = table supported
1 = table not supported

Performance factor, number of
16 x 16 pixel raster ops per
second.
contour fill capability.
Character rotation ability.

o = none
1 = 90-degree increments only
2 = arbitrary angles

GEM VDI Programmer's Guide

intout(9) --

intout(lO)--

intout(ll)--

intout(12)--

intout(13)--

intout(14)--

intout(lS)--

intout(16)-­

intout(17)--

Extended Inquire

Number of writing modes avail­
able.

Highest level of input mode
available.

o = none
1 = request
2 = sample

Text
flag.

o = no
1 = yes

alignment capability

Inking capability flag.

o = device cannot ink
1 = device can ink

Rubberbanding capability flag.

o = no
1 = capable of rubberband

lines
2 = capable of both rubberband

lines and rectangles

Maximum vertices for Polyline,
Polymarker, or Filled Area.

-1 = no maximum

Maximum intin.

-1 = no maximum

Number of keys available on
the mouse.
Styles for wide lines.

o = no
1 = yes

intout(18)-- writing modes for wide lines.
intout(19-44)- Reserved, contains zeros.

ptsout(O-ll) - Reserved, contains zeros.

8-3

GEM VDI Programmer's Guide Extended Inquire

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

vq_extnd(handle, owflag, work out

WORD vq extnd ();
WORD handle;
WORD owflag;
WORD work_out[57]

handle = contrl[6]
owflag = intin[O]

work_out [0] = intout[O]

.
work out[44] = intout[44]
work=out[45] = ptsout[O]

.
work_out [56] = ptsout[ll]

8-4

(--

GEM VDI Programmer's Guide Inquire Color Representation

INQUIRE COLOR
REPRESENTATION

Input

Output

This function returns either the requested or
the actual value of the specified color index
in RGB units. Both the set and realized
values are available. If the selected index
is out of range, GEM VOI returns -1 in in­
tout(0).

contrl(O) Opcode = 26.
contrl(l) Number of input vertices = O.
contrl(3) Length of intin array = 2.
contrl(6) Device handle.

intin(O) Requested color index.
intin(l) Set or realized flag.

0 = set (return color values
requested)

1 = realized (return color
values realized on device)

contrl(2) Number of output vertices = O.
contrl(4) Length of intout array = 4.

intout(O) Color index.
intout(l) Red intensity (in tenths of

percent 0-1000).
intout(2) Green intensity.
intout(3) Blue intensity.

8-5

GEM VDI Programmer's Guide Inquire Color Representation

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

vq_color(handle, color_index, set_flag, rgb)

WORD vq color ();
WORD handle;
WORD color index;
WORD set flag;
WORD rgb T3] ;

handle = contrl[6]
color index = intin[O]
set_flag = intin[l]

rgb[O] = intout[l]
rgb[l] = intout[2]
rgb[2] = intout[3]

8-6

/

(

c

GEM VDI Programmer's Guide Inquire Polyline Attributes

INQUIRE CURRENT
POLYLINE
ATTRIBUTES

Input

Output

This function reports the current setting of
all attributes that affect polylines, such as
line type, line color, line width, end
styles, and writing mode.

contrl(O)
contrl(l)
contrl(3)
contrl(6)

contrl(2)
contrl(4)

intout(O)

intout(l)

intout(2)

intout(3)

intout(4)

ptsout(O)

ptsout(l)

8-7

Opcode = 35.
Number of input vertices = O.
Length of intin array = O.
Device handle.

Number of output vertices = 1.
Length of intout array = 5.

Current polyline line type.

(Refer to Set Polyline Line
Type function.)

Current polyline line color
index.
Current writing mode.

(Refer to the Set Writing Mode
function.)

End style for beginning point
of polyline.
End style for ending point of
polyline.
Current line width, in current
coordinate system.
O.

GEM VDI Programmer's Guide Inquire POlyline Attributes

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

vql_attributes(handle, attrib)

WORD vql attributes ();
WORD handle;
WORD attrib[4];

handle = contrl[6]

attrib[O] = intout[O]
attrib[l] = intout[l]
attrib[2] = intout[2]
attrib[3] = ptsout[O]

8-8

3 S7

GEM VDI Programmer's Guide Inquire Polymarker Attributes

INQUIRE CURRENT
POLYMARKER
ATTRIBUTES

Input

Output

This function reports the current setting of
all attributes that affect polymarkers, such
as marker type, marker color, marker height,
and writing mode.

contrl(O)
contrl(l)
contrl(3)
contrl(6)

contrl(2)
contrl(4)

intout(O)

intout(l)

intout(2)

ptsout(O)

ptsout(l)

8-9

Opcode = 36.
Number of input vertices = O.
Length of intin array = O.
Device handle.

Number of output vertices = 1.
Length of intout array = 3.

Current
type.

polymarker marker

(Refer to Set Polymarker Type
function.)

Current polymarker marker
color index.
Current writing mode.

(Refer to the Set Writing Mode
function for description.)

Current
current
Current
current

polymarker width,
coordinate system.
polymarker height,
coordinate system.

in

in

3 st

GEM VDI Programmer's Guide Inquire Polymarker Attributes

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

vqm_attributes(handle, attrib

WORD vqm attributes ();
WORD handle;
WORD attrib[4];

handle = contrl[6]

attrib[O] = intout[O]
attrib[1] = intout[1]
attrib[2] = intout[2]
attrib[3] = ptsout[1]

8-10

(
GEM VDI Programmer's Guide Inquire Fill Area Attributes

INQUIRE CURRENT
FILL AREA
ATTRIBUTES

Input

Output

This function reports the current setting of
all attributes that affect fill areas, such
as interior style, fill color, fill style in­
dex, and writing mode.

contrl(O)
contrl(l)
contrl(3)
contrl(6)

contrl(4)
contrl(6)

intout(O)

intout(l)
intout(2)

Opcode = 37.
Number of input vertices = O.
Length of intin array = O.
Device handle.

Number of output vertices = O.
Length of intout array = 5.

Current
style.

fill area interior

(Refer to Set Fill Interior
Style function.)

Current fill area color index.
Current fill area style index.

(Refer to Set Fill Style Index
function.)

intout(3) -- Current writing mode.

(Refer to the Set Writing Mode
function.)

intout(4) -- Current fill perimeter status.

8-11

GEM VDl Programmer's Guide Inquire Fill Area Attributes

C BINDING
,
Procedure Name

Data Types

Input Arguments

Output Arguments

vqf_attributes(handle, attrib)

WORD vqf attributes();
WORD handle;
WORD attrib[4];

handle = contrl[6]

attrib[O] = intout[O]
attrib[l] = intout[l]
attrib[2] = intout[2]
attrib[3] = intout[3]

8-12

./

(

GEM VDI Programmer's Guide Inquire Fill Area Attributes

INQUIRE CURRENT
GRAPHIC TEXT
ATTRIBUTES

Input

Output

This function returns the current setting of
all attributes that affect graphic text, such
as text size, text color, text face align­
ment, baseline rotation, and writing mode.

contrl(O)
contrl(1)
contrl(3)
contrl(6)

contrl(2)
contrl(4)

intout(O)
intout(1)

intout(2)

intout(3) --

intout(4) --

intout(5) --

ptsout(O)

ptsout(1)

ptsout(2)

ptsout(3)

8-13

Opcode = 38.
Number of input vertices = O.
Length of intin array = O.
Device handle.

Number of output vertices = 2.
Length of intout = 6.

Current graphic text face.
Current graphic text color in­
dex.
Current angle of rotation of
text baseline (in tenths of
degrees 0-3600).
Current horizontal alignment.

(Refer to Set Graphic Text
Alignment function.)

Current vertical alignment.

(Refer to Set Graphic Text
Alignment function.)

Current writing mode.

(Refer to the Set Writing Mode
function.)

Current character width in
current coordinate-system.
Current character height in
current coordinate system.
Current character cell width
in current coordinate system.
Current character cell height
in current coordinate system.

GEM VDI Programmer's Guide Inquire Graphic Text Attributes

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

vqt_attributes(handle, attrib)

WORD vqt attributes ();
WORD handle;
WORD attrib[lO];

handle = contr1[6]

attrib[O] = intout[O]
attrib[l] = intout[l]

.
attrib[5] = intout[5]
attrib[6] = ptSQut[O]

.
attrib[9] = ptSQut[3]

8-14

,/

(
GEM VDI Programmer's Guide Inquire Text Extent

INQUIRE TEXT
EXTENT

Input

This function returns a rectangle that
encloses the requested string. The coor­
dinates of the vertices are given relative
to a coordinate system defined such that the
extent rectangle touches both the x and y
axes, and the string is in the first quad­
rant. All text attributes, including style
and baseline rotation, affect the calcula­
tion.

Figure 8-1. Inquire Text Extent Function

contrl(O) Opcode = 116.
contrl(1) Number of input vertices = O.
contrl(3) Number of words in text.
contrl(6) Device handle.

intin Character string in current
character set.

8-15

GEM VDI Programmer's Guide Inquire Text Extent

Output

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

contrl(2)
contr1(4)

ptsout(O)

ptsout(l)

ptsout(2)

ptsout(3)

ptsout(4)

ptsout(5)

ptsout(6)

ptsout(7) --

Number of output vertices = 4.
Length of intout array = O.

de1ta-x for point 1 of the
string in the current coor­
dinate system.
de1ta-y for point 1 of the
string in the current coor­
dinate system.
de1ta-x for point 2 of the
string in the current coor­
dinate system.
de1ta-y for point 2 of the
string in the current coor­
dinate system.
de1ta-x for point 3 of the
string in the current coor­
dinate system.
de1ta-y for point 3 of the
string in the current coor­
dinate system.
de1ta-x for point 4 of the
string in the current coor­
dinate system.
de1ta-y for point 4 of the
string in the current coor­
dinate system.

vqt_extent(handle, string, extent)

WORD vqt extent();
WORD handle;
WORD extent[8];
BYTE string[];

handle = contr1[6]
string = intin

extent [0] = ptsout[O]

.
extent[7] = ptsout[7]

8-16

('
GEM VDI Programmer's Guide Inquire Character Cell Width

INQUIRE CHARACTER
CELL WIDTH

Input

This function returns the character cell
width for a specified character in the cur­
rent text face. The character cell width is
the distance from the left edge of the
character to the left edge of the character
that follows it in a text string. Special
effects and rotation do not apply. GEM VDI
returns all values in the current coordinate
system.

Figure 8-2. Character Cell Definition

contrl(O)
contr1(1)
contr1(3)
contr1(6)

intin(O)

8-17

Opcode = 117.
Number of input vertices = O.
Length of intin array = 1.
Device handle.

Character value in current
character set in ADE format.

GEM VnI Programmer's Guide Inquire Character Cell Width

Output

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

contrl(2)
contrl(4)

intout(O)

ptsout(O)

ptsout(l)
ptsout(2)

ptsout(3·)
ptsout(4)

ptsout(5)

Number of output vertices = 3.
Length of intout array = 1.

ADE value of the character
being inquired on; -1 if an
invalid character (status).
Cell width of the character in
the current coordinate system.
O.
Left character alignment
delta.
O.
Right character alignment
delta.
O.

status = vqt width(handle, character,
&Cell_wIdth, &left_delta, &right_delta

WORD status;
WORD vqt width();
WORD handle;
BYTE character;
WORD cell width;
WORD left-delta;
WORD right_delta;

handle = contrl[6]
character = intin[O]

status = intout[O]
cell width = ptsout[O]
left-delta = ptsQut[2]
right_delta = ptsout[4]

8-18

GEM VDI Programmer's Guide Inquire Face Name and Index

INQUIRE FACE NAME
AND INDEX

Input

Output

This function returns a 32-character string
that describes the face. The face is
selected by its element number (1 to the num­
ber of faces available). One word of zero
in the intin array terminates the string.

The string describing the face is returned in
ADE form in intout(1 ... 32). The face ID to
access this face with Set Text Face is
returned in intout(l). The first 16 charac­
ters name the face. The next 16 characters
describe the style and weight. See Table 8-
1 for a sample of the possible con­
figurations.

Table 8-1. Face Names and Styles

Face Name Styles

Swiss 721
Swiss 721
Dutch 801
Dutch 801

Light
Thin Italic
Roman
Bold Italic

contrl(O)
contrl(1)
contrl(3)
contrl(6)

intin(O)

contrl(2)
contrl(4)

intout(O)
intout(l) to
intout(32) -

8-19

Opcode = 130.
Number of input vertices = O.
Length of intin array = 1.
Device handle.

Element number.

Number of output vertices = O.
Length of intout array = 33.

ID number.

32 ADE.

GEM VDl Programmer's Guide Inquire Face Name and Index

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

index = vqt_name(handle, element_num, name)

WORD index;
WORD vqt name();
WORD handle;
WORD element num,
BYTE name[32T;

handle = contr[6]
element_num = intin[O]

index = intout[O]
name[O] = intout[l]

.
name[31] = intout[32]

Note: The BYTE array elements contain the
eight least significant bits of the intout
array elements. The array is terminated with
a null byte.

8-20

(

(

GEM VDI Programmer's Guide Inquire Current Face Information

INQUIRE CURRENT
FACE INFORMATION

Input

Output

This function returns size information for
the current face with the current size and
special effects. Because the special effects
may change the cell width and extent, a
value is returned to allow the use of the
width information returned in Inquire
Character Cell Width. When the character is
skewed, the cell contains left and right of­
fsets as shown in Figure 8-3.

Figure 8-3. Right and Left Offset

contrl(O)
contrl(l)
contrl(3)
contrl(6)

contrl(2)
contrl(4)

intout(O)

intout(l)

ptsout(O)

ptsout(l)

ptsout(2)

8-21

Opcode = 131.
Number of input vertices = O.
Length of intin array = O.
Device handle.

Number of output vertices = 5.
Length of output array = 2.

Minimum ADE (ASCII Decimal
Equivalent) the first charac­
ter in this face.
Maximum ADE, the last charac­
ter in this face.

Maximum cell width not in­
cluding special effects.
Bottom line distance relative
to baseline.
Special effects delta x. The
current special effects in­
crease character width by
this amount.

GEM VDI programmer's Guide Inquire Current Face Information

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

ptsout(3)

ptsout(4)

ptsout(S)

ptsout(6)
ptsout(7)

ptsout(8)
ptsout(9)

Descent line distance relative
to baseline.
Left offset; (see Figure 8-
2) positive value relative to
position.
Half distance relative to
baseline.
Right offset (see Figure 8-2).
Ascent distance relative to
baseline.
O.
Top distance relative to
baseline.

vqt fontinfo(handle, &minADE, &maxADE,
distances, &maxwidth, effects)

WORD vqt fontinfo ();
WORD handle;
WORD minADE;
WORD maxADEi
WORD distances[S];
WORD maxwidth;
WORD effects[3]i

handle = contrl[6]

minADE = intout[O]
maxADE = intout[l]
distances [0] = ptsout[l]
distances [1] = ptsout[3]
distances [2] = ptsout[S]
distances [3] = ptsout[7]
distances [4] = ptsout[9]
maxwidth = ptsout[O]
effects[O] = ptsout[2]
effects[l] = ptsout[4]
effects[2] = ptsout[6]

8-22

/\
{ \

~.j

GEM VDI Programmer's Guide Inquire Cell Array

INQUIRE CELL ARRAY This function returns the cell array defini­
tion of the specified pixels. Color indices
are returned one row at a time, starting from
the top of the rectangular area, proceeding
downward.

Input

Output

Note: This function is not required and may
not be available on all devices.

contrl(O)
contrl(l)
contrl(3)
contrl(6)
contrl(7)

contrl(8)

ptsin(O)

ptsin(l)

ptsin(2)

ptsin(3)

contrl(2)
contrl(4)

contrl(9)

contrl(lO)

contrl(ll)

8-23

Opcode = 27.
Number of input vertices = 2.
Length of intin array = O.
Device handle.
Length of each row in color
index array.
Number of rows in color index
array.

x-coordinate of lower left
corner in current coordinate
system.
y-coordinate of lower left
corner in current coordinate
system.
x-coordinate of upper right
corner in current coordinate
system.
y-coordinate of upper right
corner in current coordinate
system.

Number of output vertices = O.
Length of the color index ar­
ray, same as contrl(3).

Number of elements used in
each row of color index array.
Number of rows used in color
index array.
Invalid value flag.

o if no errors
1 if a color value could

not be determined for
some pixel

GEM VDI Programmer's Guide Inquire Cell Array

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

intout Color index array, stored one
row at time.

-1 -- indicates that a color
index could not be
determined for that
particular pixel

vq ce11array(handle, pxyarray, row length,
- num rows, &el used, &rows used,-&status,

col'array) - -

WORD vq cellarray();
WORD handle;
WORD pxyarray[4];
WORD row_length;
WORD num rows;
WORD el used;
WORD rows used;
WORD status;
WORD colarray[n];

handle = contrl[6]
pxyarray[O] = ptsin[O]
pxyarray[1] = ptsin[1]
pxyarray[2] = ptsin[2]
pxyarray[3] = ptsin[3]
row length = contrl[7]
num=rows = contrl[8]

el used = contrl[9]
rows used = contrl[10]
status = contrl[11]
colarray[O] = intout[O]

.
colarray[n] = intin[n]

8-24

31

GEM VDI Programmer's Guide Inquire Input Mode

INQUIRE INPUT MODE This function returns the current input mode
for the specified logical input device:
locator, valuator, choice, and string.

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

contrl(O)
contrl(l)
contrl(3)
contrl(6)

intin(O)

contrl(2)
contrl(4)

intout(O)

Opcode = 115.
Number of input vertices = O.
Length of intin array = 1.
Device handle.

Logical input device.

1 = locator
2 = valuator
3 = choice
4 = string

Number of output vertices = O.
Length of intout array = 1.

Input mode.

1 = request
2 = sample

vqin_mode(handle, dev_type, &input_mode

WORD vqin mode();
WORD handle;
WORD dev type;
WORD input_mode;

handle = contrl[6]
dev_type = intin[O]

input_mode = intout[O]

End of S.ection 8

8-25

Section 9
ESCAPES

ESCAPE

Input

The Escape function allows the application
program to access the special capabilities
of a graphics device. GEM VDI predefines
some escape functions; others can be defined
for specific devices. The parameters passed
depend on the escape function the applica­
tion requests.

contrl(O)
contrl(l)
contrl(3)
contrl(5)
contrl(6)

Opcode = 5.
Number of input vertices.
Number of input parameters.
Function identifier (id).
Device handle.

Table 9-1. Escape Function Identifiers

Number Description

1

2

3

4

5

6

7

8

9

10

11

12

13

INQUIRE ADDRESSABLE ALPHA
CHARACTER CELLS

EXIT ALPHA MODE

ENTER ALPHA MODE

ALPHA CURSOR UP

ALPHA CURSOR DOWN

ALPHA CURSOR RIGHT

ALPHA CURSOR LEFT

HOME ALPHA CURSOR

ERASE TO END OF ALPHA·SCREEN

ERASE TO END OF ALPHA TEXT LINE

DIRECT ALPHA CURSOR ADDRESS

OUTPUT CURSOR ADDRESSABLE ALPHA
TEXT

REVERSE VIDEO ON

9-1

GEM VDI Programmer's Guide Escapes

Table 9-1. (continued)

Number Description

14

15

16

17

18

19

20

21

22

23

24-59

60

61-90

91

92

93

94

95

96

98

99

100

>100

REVERSE VIDEO OFF

INQUIRE CURRENT ALPHA CURSOR
ADDRESS

INQUIRE TABLET STATUS

HARD COpy

PLACE GRAPHIC CURSOR
LOCATION

REMOVE LAST GRAPHIC CURSOR

FORM ADVANCE

OUTPUT WINDOW

CLEAR DISPLAY LIST

OUTPUT BIT IMAGE FILE

AT

UNUSED BUT RESERVED FOR FUTURE
EXPANSION

SELECT PALETTE

UNUSED BUT RESERVED FOR FUTURE
EXPANSION

INQUIRE PALETTE FILM TYPES

INQUIRE PALETTE DRIVER STATE

SET PALETTE DRIVER STATE

SAVE PALETTE DRIVER STATE

SUPPRESS PALETTE MESSAGES

PALETTE ERROR INQUIRE

UPDATE METAFILE EXTENTS

WRITE METAFILE ITEM

CHANGE GEM VDI FILENAME

UNUSED AND AVAILABLE FOR USE

9-2

..3?7'

(

GEM VnI Programmer's Guide

Output

intin

ptsin

contrl(2)
contrl(4)

intout

ptsout

9-3

Escapes

Function-dependent information
described on following pages.

Array of input coordinates for
escape function.

Number of output vertices.
Number of output parameters.

Array of output parameters.

Array of output coordinates.

371

GEM VDI Programmer's Guide Escapes

ESCAPE 1: INQUIRE
ADDRESSABLE ALPHA
CHARACTER CELLS

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

This escape returns information to the
calling program about the number of vertical
(row) and horizontal (column) positions at
which the alpha cursor can be positioned on
the screen. Typically, only screens support
alpha text.

contrl(O)
contrl(l)
contrl(3)
contrl(5)
contrl(6)

contrl(2)
contrl(4)

intout(O)

intout(l) --

Opcode = 5.
Number of input vertices = O.
Length of intin array = O.
Function id = 1.
Device handle.

Number of output vertices = O.
Length of intout array = 2.

Number of addressable rows on
the screen, (-1 indicates
cursor addressing not pos-
sible) .
Number of addressable columns
on the screen, (-1 indicates
cursor addressing not pos-
sible) .

vq_chcells(handle, &rows, &columns)

WORD vq chcells ();
WORD handle;
WORD rows;
WORD columns;

handle = contrl[6]

rows = intout[O]
columns = intout[l]

9-4

~ ~"

'''" ,I

(

c

GEM vnI Programmer's Guide Inquire Addressable Character Cells

ESCAPE 2: EXIT
ALPHA MODE

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

This escape causes the graphics device to
enter graphics mode if graphics mode i"s dif­
ferent from alpha mode. It is used to exit
alpha cursor addressing mode explicitly and
to make the transition from alpha to
graphics mode properly.

contrl(O)
contrl(l)
contrl(3)
contrl(5)
contrl(6)

contrl(2)
contrl(4)

Opcode = 5.
Number of input vertices = O.
Length of intin array = O.
Function id = 2.
Device handle.

Number of output vertices = O.
Length of intout array = O.

WORD v exit cur ();
WORD handle;

handle = contrl[6]

9-5

GEM VDI Programmer's Guide Exit Alpha Mode

ESCAPE 3: ENTER
ALPHA MODE

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

This escape causes the graphics device to
exit graphics mode if graphics mode is dif­
ferent from alpha mode. It is used to enter
the alpha cursor addressing mode explicitly
and to make the transition from graphics to
alpha mode properly. This opcode also
returns the cursor to the upper left charac­
ter cell of the display device.

contrl(O)
contrl(l)
contrl(3)
contrl(5)
contrl(6)

contrl(2)
contrl(4)

Opcode = 5.
Number of input vertices = O.
Length of intin array = O.
Function id = 3.
Device handle.

Number of output vertices = O.
Length of intout array = O.

WORD venter cur ();
WORD handle;

handle = contrl[6]

9-6

(

GEM VDI Programmer's Guide Enter Alpha Mode

ESCAPE 4: ALPHA
CURSOR UP

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

This escape moves
without altering
If the cursor is
nothing happens.

the alpha cursor up one row
its horizontal position.

already at the top margin,

contrl(O)
contrl(l)
contrl(3)
contrl(5)
contrl(6)

Opcode = 5.

contrl(2)
contrl(4)

Number of input vertices = O.
Length of intin array = O.
Function id = 4.
Device handle.

Number of output vertices = O.
Length of intout array = O.

v_curup(handle)

WORD v curup ();
WORD handle;

handle = contrl[6]

9-7

GEM VDl Programmer's Guide Alpha Cursor Up

ESCAPE 5: ALPHA
CURSOR DOWN

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

This escape moves the alpha cursor down one
row without altering its horizontal position.
If the cursor is already at the bottom mar­
gin, nothing happens.

contrl(O)
contrl(l)
contrl(3)
contrl(5)
contrl(6)

contrl(2)
contrl(4)

Opcode = 5.
Number of input vertices = O.
Length of intin array = O.
Function id = 5.
Device handle.

Number of output vertices = O.
Length of intout array = O.

v_curdown(handle)

WORD v curdown ();
WORD handle;

handle = contrl[6]

9-8

(

GEM VDI Programmer's Guide Alpha Cursor Down

ESCAPE 6: ALPHA
CURSOR RIGHT

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

The Alpha Cursor Right escape moves the alpha
cursor right one column without altering its
vertical position. If the cursor is already
at the right margin, nothing happens.

contrl(O)
contrl(l)
contrl(3)
contrl(5)
contrl(6)

contrl(2)
contrl(4)

Opcode = 5.
Number of input vertices = O.
Length of intin array = O.
Function id = 6.
Device handle.

Number of output vertices = O.
Length of intout array = O.

v_curright(handle)

WORD v curright ();
WORD handle;

handle = contrl[6]

9-9

GEM VDI Programmer's Guide Alpha Cursor Right

ESCAPE 7: ALPHA
CURSOR LEFT

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

The Alpha Cursor Left escape moves the alpha
cursor left one column without altering its
vertical position. If the cursor is already
at the left margin, nothing happens.

contrl(O)
contrl(l)
contrl(3)
contrl(5)
contrl(6)

contr1(2)
contrl(4)·

Ope ode = 5.
Number of input vertices = O.
Length of intin array = O.
Function id = 7.
Device handle.

Number of output vertices = O.
Length of intout array = O.

v_curleft(handle)

WORD v curl eft ();
WORD handle;

handle = eontrl[6]

9-10

('

GEM VDl Programmer's Guide Alpha Cursor Left

ESCAPE 8: HOME
ALPHA CURSOR

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

This escape moves the alpha cursor to the
home position, usually the upper left charac­
ter· cell of the display device.

contrl(O)
contrl(l)
contrl(3)
contrl(5)
contrl(6)

contrl(2)
contrl(4)

Opcode = 5.
Number of input vertices = O.
Length of intin array = O.
Function id = 8.
Device handle.

Number of output vertices = O.
Length of intout array = O.

v_curhome(handle)

WORD v curhome ();
WORD handle;

handle = contrl[6]

9-11

GEM VDI Programmer's Guide Home Alpha Cursor

ESCAPE 9: ERASE
TO END OF ALPHA
SCREEN

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

This escape erases the display surface from
the current alpha cursor position to the end
of the alpha screen. The current alpha cur­
sor location does not change.

contrl(O)
contrl(l)
contrl(3)
contrl(5)
contrl(6)

contrl(2)
contrl(4)

Opcode = 5.
Number of input vertices = O.
Length of intin array = O.
Function id = 9.
Device handle.

Number of output vertices = O.
Length of intout array = O.

v_eeos(handle)

WORD v eeos ();
WORD handle;

handle = contrl[6]

9-12

GEM VDr Programmer's Guide Erase to End of Alpha Screen

ESCAPE 10: ERASE
TO END OF ALPHA
TEXT LINE

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

This escape erases the display surface from
the current alpha cursor position to the end
of the current alpha text line. The current
alpha cursor location does not change.

contrl(O)
contrl(l)
contrl(3)
contrl(5)
contrl(6)

contrl(2)
contrl(4)

Opcode = 5.
Number of input vertices = O.
Length of intin array = O.
Function id = 10.
Device handle.

Number of output vertices = O.
Length of intout array = O.

v_eeOl(handle)

WORD v eeol ();
WORD handle;

handle = contrl[6]

9-13

GEM VDI Programmer's Guide Erase to End of Alpha Text Line

ESCAPE 11: DIRECT
ALPHA CURSOR
ADDRESS

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

The Direct Alpha Cursor Address escape moves
the alpha cursor directly to the specified
row and column address anywhere on the dis­
play surface. Addresses beyond the display­
able range of the screen are set to the
nearest value that is within the displayable
range of the screen.

contrl(O)
contrl(1)
contrl(3)
contrl(5)
contrl(6)

intin(O)

intin(l)

contrl(2)
contrl(4)

Opcode = 5.
Number of input vertices = O.
Length of intin array = 2.
Function id = 11.
Device handle.

Row number (1 to maximum num­
ber of rows).
Column number (1 to maximum
number of columns).

Number of output vertices = O.
Length of intout array = O.

vs_curaddress(handle, row, column)

WORD vs curaddress ();
WORD handle;
WORD row;
WORD column;

handle = contrl[6]
row = intin[O]
column = intin[1]

9-14

/

(--

GEM VDl Programmer's Guide Direct Alpha Cursor Addres~

ESCAPE 12: OUTPUT
CURSOR ADDRESSABLE
ALPHA TEXT

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

This escape displays a string of alpha text
starting at the current cursor position.
The alpha text attributes currently in effect
determine alpha text attributes.

contrl(O)
contrl(1)
contrl(3)

contrl(5)
contrl(6)

intin

contrl(2)
contrl(4)

Opcode = 5.
Number of input vertices = O.
Number of characters in
character string.
Function id = 12.
Device handle.

Text string in ADE.

Number of output vertices = O.
Length of intout array = O.

v_curtext(handle, &string)

WORD v curt ext ();
WORD handle;
BYTE string[];

handle = contrl[6]
string = intin

Note: The BYTE values contain the eight
least significant bits of the intin array.

9-15

GEM VDI Programmer's Guide Reverse Video On

ESCAPE 13:
REVERSE
VIDEO ON

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

This escape displays all subsequent alpha
text in reverse video.

contrl(O)
contrl(1)
contrl(3)
contrl(5)
contrl(6)

contrl(2)
contrl(4)

Opcode = 5.
Number of input vertices = O.
Length of intin array = O.
Function id = 13.
Device handle.

Number of output vertices = O.
Length of intout array = O.

v_rvon(handle)

WORD r von ();
WORD handle;

handle = contrl[6]

9-16

f

GEM VDI Programmer's Guide Reverse Video On

ESCAPE 14:
REVERSE
VIDEO OFF

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

This escape displays all subsequent alpha
C text in normal video format.

contrl(O)
contrl(1)
contrl(3)
contrl(5)
contrl(6)

contrl(2)
contrl(4)

Opcode = 5.
Number of input vertices = O.
Length of intin array = O.
Function id = 14.
Device handle.

Number of output vertices = O.
Length of intout array = O.

v_rvoff(handle)

WORD v rvoff ();
WORD handle;

handle = contrl[6]

9-17

GEM VDI Programmer's Guide Reverse Video Off

ESCAPE 15:
INQUIRE CURRENT
ALPHA CURSOR
ADDRESS

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

This escape returns the current position of
the alpha cursor in row, column coordinates.

contrl(O)
contrl(l)
contrl(3)
contrl(5)
contrl(6)

contrl(2)
contrl(4)

intout(O)

intout(1)

Opcode = 5.
Number of input vertices = O.
Length of intin array = O.
Function id = 15.
Device handle.

Number of output vertices = O.
Length of intout array = 2.

Row number (1 to the maximum
number of rows).
Column number (1 to the maxi­
mum number of columns).

vq_curaddress(handle, &row, &column)

WORD vq curaddress ();
WORD handle;
WORD row;
WORD handle;

handle = contrl[6]

row = intout[O]
column = intout[1]

9-18

GEM VDI Programmer's Guide Inquire Current Alpha Cursor Address

ESCAPE 16:
INQUIRE TABLET
STATUS

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

This escape returns the availability status
of a graphics tablet, mouse, joysti~k, or
other similar device.

contr1(O)
contr1(l)
contr1(3)
contr1(5)
contr1(6)

contr1(2)
contr1(4)

intout(O)

Opcode = 5.
Number of input vertices = O.
Length of intin array = O.
Function id = 16.
Device handle.

Number of output vertices = O.
Length of intout array = 1.

Tablet status.

o = tablet not available
1 = tablet available

status = vq_tabstatus(handle)

WORD vq tabstatus ();
WORD handle;
WORD status;

handle = contr1[6]

status = intout[O]

9-19

GEM VDI Programmer's Guide Inquire Tablet Status

ESCAPE 17: HARD
COpy

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

The device generates a hard copy with this
escape. The escape is device-specific and
copies the physical screen to a printer or
other attached hard copy device.

contrl(O)
contrl(l)
contrl(3)
contrl(5)
contrl(6)

contrl(2)
contrl(4)

Opcode = 5.
Number of input vertices = O.
Length of intin array = O.
Function id = 17.
Device handle.

Number of output vertices = O.
Length of intout array = O.

v_hardcopy (handle)

WORD v hardcopy ();
WORD handle;

handle = contrl[.6]

9-20

(~

GEM VDI Programmer's Guide Hard Copy

ESCAPE 18: PLACE
GRAPHIC CURSOR
AT LOCATION

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

This escape places a graphic cursor at the
specified location. The cursor is usually a
cross hair cursor and is of the same type as
that used for Input Locator, Request Mode.
If sample mode input is supported, the ap­
plication can use this call to generate the
cursor for Input Locator, Sample Mode. In
memory-mapped devices, the cursor is drawn in
XOR mode so GEM VDI can remove it.

contrl(O) Opcode = 5.
contrl(1) Number of input vertices = l.
contrl(3) Length of intin array = O.
contrl(5) Function id = 18.
contrl(6) Device handle.

ptsin(O) x-coordinate of
place cursor in
dinate system.

ptsin(1) y-coordinate of
place cursor in
dinate system.

contrl(2) Number of output
contrl(4) Length of intout

v_dspcur(handle, x, y)

WORD v dspcur ();
WORD handle;
WORD x, y;

handle = contrl[6]
x = ptsin[O]
y = ptsin[1]

9-21

location to
current coor-

location to
current coor-

vertices = O.
array = O.

GEM VDI Programmer's Guide Place Graphic Cursor at Location

ESCAPE 19: REMOVE
LAST GRAPHIC
CURSOR

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

This escape removes the last
placed on the screen.

Opcode = 5.

graphic cursor

contrl(O)
contrl(1)
contrl(3)
contr1(5)
contrl(6)

Number of input vertices = O.
Length of intin array = O.
Function id = 19.

contr1(2)
contr1(4)

Device handle.

Number of output vertices = O.
Length of intout array = O.

v_rmcur(handle)

WORD v rmcur ();
WORD handle;

handle = contrl[6]

9-22

;
/

GEM VDI Programmer's Guide Form Advance

ESCAPE 20: FORM
ADVANCE

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

This escape is required only for printers.
It advances the printer page. This escape
can be used instead of invoking a Clear
Workstation function if it is desirable to
retain the current printer display list while
advancing to the next page.

contrl(O)
contrl(l)
contrl(3)
contrl(5)
contrl(6)

contrl(2)
contrl(4)

Opcode = 5.
Number of input vertices = O.
Length of intin array = O.
Function id = 20.
Device handle.

Number of output vertices = O.
Length of intout array = O.

WORD v form adv();
WORD handle;

handle = contrl[6]

9-23

GEM VDI Programmer's Guide Output Window

ESCAPE 21: OUTPUT This escape is required only for printers.
WINDOW It allows the application to request that a

particular rectangular window of the picture
be output to the printer. This escape is
similar to the Update Workstation function,
except that the rectangular area must be
specified.

Input

Output

Note that use of this function does not al­
ways guarantee that adjacent pictures will
abut. Pictures will abut with a resolution
of one printer head height.

contrl(O)
contrl(l)
contrl(3)
contrl(5)
contrl(6)

ptsin(O)

ptsin(l)

ptsin(2)

ptsin(3)

contr1(2)
contrl(4)

Opcode = 5.
Number of input vertices = 2.
Length of intin array = O.
Function id = 21.
Device handle.

x-coordinate of corner of win­
dow to be output in NDe/Re.
y-coordinate of corner of win­
dow to be output in NDe/Re.
x-coordinate of corner of win­
dow, diagonally opposite
corner selected in ptsin(O),
in NDe/Re.
y-coordinate of corner of win­
dow, diagonally opposite
corner selected in ptsin(1),
in NDC/RC.

Number of output vertices = O.
Length of intout array = O.

9-24

(~ .•
j

GEM VDI·Programmer's Guide Output Window

C BINDING

Procedure Name

Data Types

Input Arguments

v_output_window(handle, xyarray)

WORD v output window();
WORD handle; -
WORD xyarray[4];

handle = contrl[6]
xyarray[O] = ptsin[O]

.
xyarray[3] = ptsin[3]

9-25

GEM VDI Programmer's Guide Clear Display List

ESCAPE 22: CLEAR
DISPLAY LIST

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

This escape is required only for printers.
It allows the application to request that
the printer display list be cleared. It is
similar to the Clear Workstation function,
but does not cause \ a form advance on the
printer.

contrl(O)
contrl(l)
contrl(3)
contrl(5)
contrl(6)

contrl(2)
contrl(4)

Opcode = 5.
Number of input vertices = O.
Length of intin array = O.
Function id = 22.
Device handle.

Number of output vertices = O.
Length of intout array = O.

WORD v clear disp list();
WORD handle;- -

handle = contrl[6]

9-26

~I

(/

GEM VOl Programmer's Guide Output Bit Image File

ESCAPE 23: OUTPUT This escape is required only for printers.
BIT IMAGE FILE It allows the application to request proces­

sing of a bit image file (see Appendix I,
"Bit Image File Format"). As input
parameters, the application provides a
filename and information on image transfor­
mation and page placement.

The application uses three parameters to con­
trol image transformation:

o pixel aspect ratio flag
o x-axis scaling flag
o y-axis scaling flag

The application can set the pixel aspect
ratio flag to preserve or ignore the pixel
aspect ratio defined in the bit image file.
Preserving pixel aspect ratio means the
printed object will have the same aspect
ratio it had on the device on which it was
originally drawn. For example, squares
remain squares, and circles remain circles.
Ignoring pixel aspect ratio means the
printed object will not necessarily have the
same aspect ratio it had on the original
device.

The application can set the two axis scaling
flags independently of each other. The
flags determine if the bit image's x or y
axes are to be scaled fractionally or in in­
teger multiples. The upward boundary of
this scaling is an application-defined rec­
tangle.

If an axis of the bit image is scaled frac­
tionally, it will exactly fit the correspon­
ding axis of the scaling rectangle, with the
exception noted below.

If an axis of the bit image is scaled in in­
teger multiples, it might not exactly fit
the corresponding axis of the scaling rec­
tangle.

If the scaled bit image does not exactly fit
the scaling rectangle, the application can
use alignment parameters to locate the bit
image within the rectangle. These parameters
allow any combination of three vertical and
three horizontal positions.

9-27

GEM VOl Programmer's Guide output Bit Image File

Input

(~--,\

Note: The scaled bit image always resides ,,---j
within the scaling ,rectangle. If a combina-
tion of preserved pixel aspect ratio,
scaling, or alignment causes the scaled bit
image to extend beyond an edge of the scaling
rectangle, GEM VOl clips the bit image to
that edge.

contrl(O)
contrl(l)

contrl(3)

contrl(5)
contrl(6)

intin(O)

intin(l)

intin(2)

intin(3)

intin(4)

intin(5)

intin(n+4)--

Opcode = 5.
Number of input vertices = 2.

Length of intin array = length
of filename + 5.
Function id = 23.
Device handle.

Aspect ratio flag.

o = ignore aspect ratio
1 = honor pixel aspect ratio

Scaling for x-axis.

o = fractional scaling
1 = integer scaling

Scaling for y-axis.

o = fractional scaling
1 = integer scaling

Horizontal alignment.

o = left
1 = center
2 = right

Vertical alignment.

o = top
1 = middle
2 = bottom

First character of filename.

Last (nth)
filename.

character of

9-28

c

GEM VDI Programmer's Guide output Bit Image File

Output

C BINDING

Procedure Name

Data Types

Input Arguments

ptsin(O)
ptsin(l)
ptsin(2)
ptsin(3)

contrl(2)
contrl(4)

Upper left x (if specified).
Upper left y (if specified).
Lower right x (if specified).
Lower right y (if specified).

Number of output vertices = O.
Length of intout array = O.

v_bit_image(handle, filename, aspect,
x scale, y scale, h align,
v=align, xyarray) -

WORD v bit image();
BYTE fIlename[];
WORD handle, aspect, x scale, y_scale,

h align, v align;
WORD xyarray[];-

handle = contrl[6]
filename = intin[2] . . . intin[n + 1]
aspect = intin[O]
x scale = intin[l]
y-scale = intin[2]
h-align = intin[3]
v-align = intin[4]
xyarray[O] = ptsin[O]
xyarray[l] = ptsin[l]
xyarray[2] = ptsin[2]
xyarray[3] = ptsin[3]

Note: Bytes for the filename array are
mapped into the corresponding eight least
significant bits of intin. The string must
be nUll-terminated.

9-29

GEM VDI Programmer's Guide Output Bit Image File

ESCAPE 60: SELECT This escape allows the selection of the
PALETTE palette on the IBM .. medium-resolution color

screen.

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

contrl(O)
contrl(l)
contrl(3)
contrl(5)
contrl(6)

intin(O)

contrl(2)
contrl(4)

intout(O)

Opcode = 5.
Number of input vertices = O.
Length of input array = 1.
Function id = 60.
Device handle.

Color selection.

o = use red, green, brown
palette (default)

1 = use cyan, magenta, white
palette

Number of output vertices = O.
Length of intout array = 1.

Palette selected.

selected = vs_palette(handle, palette)

WORD vs palette();
WORD handle;
WORD palette;

handle = contrl[6]
palette = intin[O]

selected = intout[O]

9-30

GEM VDI Programmer's Guide Polaroid Palette

POLAROID .. PALETTE

Palette Driver

Error Messages

Use these escapes to modify the operation of
the Polaroid Palette image recorder. While
their use is not mandatory, they allow con­
struction of a more efficient user inter­
face.

These escapes affect a header in the palette
driver. The header contains information on
the current state of the driver and the types
of films it can use. The palette driver con­
tains exposure tables for five film types.
A 25-character string describes each film
type, stating its manufacturer and its ASA
number. These strings are padded with blanks
if the information requires less than 25
characters.

Seventy-two colors are defined for each film
type. These colors are mapped to an 8 x 9
array with ASCII capitals (A ... H), naming the
columns and ASCII digits (1 •.. 9), numbering
the rows. A color is selected by its letter
and number. For example, A2 identifies the
second color in column A.

Numbers also identify the port to which the
palette is connected, an f-stop control, and
a resolution control for environments where
memory size prevents the use of the Palet­
te's full capabilities.

The palette driver normally outputs its mes­
sages directly to the screen. These messages
include error messages and user prompts.

The palette error messages appear when the
application calls GEM VDI with a function
other than Open Workstation, Close Worksta­
tion, or any of the Escape functions. These
messages can be suppressed with Escape 95.
The application can then use the code
returned from Escape 96 to inform the user of
the error condition.

9-31

GEM VDI Programmer's Guide Inquire Palette Film Types

ESCAPE 91:
INQUIRE PALETTE
FILM TYPES

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

This escape returns five strings that
describe the films that the driver is
currently capable of exposing. The strings
are padded with spaces if they have fewer
than 25 characters. The strings are
returned as ADE integers in intout.

contrl(O)
contrl(1)
contrl(3)
contrl(5)
contrl(6)

contrl(2)
contrl(4)

intout

Opcode = 5.
Number of input vertices = O.
Length of intin array = O.
Function id = 91.
Device handle.

Number of output vertices = O.
Length of intout = 125.

5 sets of 25 ADE character
strings.

vqp_films(handle, film names)

WORD vqp films();
WORD handle;
WORD film_names[125];

handle = contrl[6]

film names = intout

Note: Intout words (ADE) are converted to
byte string.

9-32

(
~/

(/

GEM VDI Programmer's Guide Inquire Palette Driver state

ESCAPE 92:
INQUIRE PALETTE
DRIVER STATE

Input

Output

This escape returns a block of data that
describes the current state of the driver.
The state can be updated by changing this
block and returning it to the driver with
Escape 93.

contrl(O)
contrl(l)
contrl(3)
contrl(5)
contrl(6)

contrl(2)
contrl(4)

intout(O)

intout(l)
intout(2)

intout(3) --

intout(4)

intout(5
to 20)

9-33

Opcode = 5.
Number of input vertices = O.
Length of intin = O.
Function id = 92.
Device handle.

Number of output vertices = O.
Length of intout array = 20.

Port number.

o = first comm port

Film number (O •.. S).
Lightness control (-3 ... 3).

Each integer increase
represents opening the aper­
ture 1/3 of an f-stop. A-3
results in an exposure half as
long as normal, while a 3
doubles the exposure time.

Interlace flag.

o = noninterlaced
1 = interlaced

A noninterlaced picture re­
quires slightly more than half
the memory of an interlaced
picture.

Planes, a number (1 ... 4) cor­
responding to number of colors
(2 .•. 16).

Two-character color codes for
8-color indices stored in ADE
format.

GEM VDI Programmer's Guide Inquire Palette Driver State

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

vqp state(handle, &port, &film name,
-&lightness, &interlace, &planes,

&indexes)

WORD vqp state();
WORD handle;
WORD port;
WORD film name;
WORD lightness;
WORD interlace;
WORD planes;
WORD indexes[8] [2];

handle = contrl[6]

port = intout[O]
film name = intout[l]
lightness = intout[2]
interlace = intout[3]
planes = intout[4]
indexes = intout[5 •.. 20]

9-34

GEM VDI Programmer's Guide Set Palette Driver State

ESCAPE 93: SET
PALETTE DRIVER
STATE

Iqput

This escape moves a block of characteristics
into the driver. Use this function after
ESCAPE 92.

contrl(O)
contrl(l)
contrl(3)
contrl(5)
contrl(6)

intin(O)

intin(l)
intin(2)

intin(3)

intin(4)

intin(5
to 20)

9-35

Opcode = 5.
Number of input vertices = O.
Length of intin array = 20.
Function id = 93.
Device handle.

Port number.

o = first comm port

Film number (0 ... 4).
Lightness control (-3 ... 3).

Each integer indicates opening
the aperture 1/3 an f-stop. A
-3 results in an exposure
half as long as normal, while
a 3 doubles the exposure time.

Interlace flag.

o = noninterlaced
1 = interlaced

Planes (1 to 4), number cor­
responds to number of colors
(2 to 16).

Color codes for up to 16
colors.

GEM VDl Programmer's Guide Set Palette Driver State

C BINDING

·Procedure Name

Data Types

Input Arguments

vsp state(handle, port, film num, lightness,
- interlace, planes, indexes)

WORD vsp style();
WORD handle;
WORD port;
WORD film num;
WORD lightness,
WORD interlace;
WORD planes;
WORD indexes[8] [2];

handle = contrl[6]
port = intin[O]
film num = intin[l]
lightness = intin[2]
interlace = intin[3]
planes = intin[4]
indexes = intin[S-20]

9-36

GEM VDI Programmer's Guide Save Palette Driver State

ESCAPE 94: SAVE
PALETTE DRIVER
STATE

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

This escape saves the current state of the
driver to disk. The application can change
the default film and index mapping with this
escape.

contrl(O)
contrl(l)
contrl(3)
contrl(5)
contrl(6)

contrl(2)
contrl(4)

Opcode = 5.
Number of input vertices = O.
Length of intin array = O.
Function id = 94.
Device handle.

Number of output vertices = O.
Length of intout array = O.

vsp_save(handle)

WORD vsp save();
WORD handle;

handle = contrl[6]

9-37

•

GEM VDI Programmer's Guide Suppress Palette Messages

ESCAPE 95:
SUPPRESS PALETTE
MESSAGES

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

This escape allows the application to
suppress the messages the palette driver
normally outputs to the screen. These mes­
sages are either error messages or user
prompts. Refer to Escape 96 for the messages
and their codes.

contrl(O)
contrl(l)
contrl(3)
contrl(5)
contrl(6)

contrl(2)
contrl(4)

Opcode = 5.
Number of input vertices = O.
Length of intin array = O.
Function id = 95.
Device handle.

Number of output vertices = O.
Length of output array = O.

vsp_message(handle)

WORD vsp message();
WORD handle;

handle = contrl[6]

9-38

/
i

c

GEM VDI Programmer's Guide Palette Error Inquire

ESCAPE 96:
PALETTE ERROR
INQUIRE

Input

Output

This escape returns an error code so the
application can notify the user of a problem.
This escape also returns codes for pending
user prompts. The error is not cleared, so a
message can be displayed if such messages
are not suppressed.

contrl(O)
contrl(l)
contrl(3)
contrl(5)
contrl(6)

contrl(2)
contrl(4)

intout(O)

9-39

Opcode = 5.
Number of input vertices = O.
Length of intin array = O.
Function id = 96.
Device handle.

Number of output vertices = O.
Length of intout array = 1.

Error codes and pending user
prompts.

o = no error
1 = open dark slide for print

film
2 = no port at location

specified in driver
3 = palette not found at

specified port
4 = video cable disconnected
5 = operating system does not

allow memory allocation
6 = not enough memory to

allocate buffer
7 = memory not deallocated
8 = driver file not found
9 = driver file found is not

correct type
10= prompt user to process

print film

GEM VDI Programmer's Guide Palette Error Inquire

C BINDING

Procedure Name

Data Types

Output Arguments

Input Arguments

status = vqp_error(handle)

WORD vqp errore);
WORD handle;

status = intout[O]

handle = contrl[6]

9-40

c

GEM VDI Programmer's Guide Update Metafile Extents

ESCAPE 98: UPDATE The values passed in the ptsin array are
METAFILE EXTENTS used to update the extents information in the

metafile header. The extents information may
be used by some applications to provide a
quick indication of the minimum rectangle
which will bound all primitives output to the
metafile.

Input

Output

If the Update Metafile Extents escape is not
used when outputting to the metafile, zeroes
will be written in the extents information
portion of the metafile header.

contrl(O)
contrl(l)
contrl(3)
contrl(5)
contrl(6)

ptsin(O)

ptsin(l)

ptsin(2)

ptsin(3)

contrl(2)
contrl(4)

9-41

Opcode = 5.
Number of input vertices = 2.
Length of intin array = O.
Function id = 98.
Device handle.

Minimum x value of the minimum
bounding rectangle.
Minimum y value of the minimum
bounding rectangle.
Maximum x value of the minimum
bounding rectangle.
Maximum y value of the minimum
bounding rectangle.

Number of output vertices = O.
Length of intout array = O.

GEM VDl Programmer's Guide Update Metafile Extents

C BINDING

Procedure Name

Data Types

Input Arguments

v meta extents(handle, min_x, min_y,
- -max_x, max_y)

WORD v meta extents();
WORD handle; min_x, min_y, max_x, max_y;

handle = contrl[6];
min x = ptsin[O];
min:y = ptsin[l];
max x = ptsin[2];
max_y = ptsin[3];

9-42

(j

(""
-~/

(
'-'~

. "

~-.~/

GEM VDI Programmer's Guide Update Metafile Extents

ESCAPE 99: WRITE
METAFILE ITEM

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

The parameters passed in the intin and ptsin
arrays are written to the metafile with an
opcode defining the item as a user-defined
metafile item. Intin(O) should contain a
sub-opcode that defines what type of user­
defined metafile item is being written. Sub­
opcodes numbered 0 through 100 are reserved;
the sub-opcode you use to define your
metafile item should be numbered 101 or
higher.

contrl(O) Opcode = 5.
contrl(l) Number of input vertices.
contrl(3) Length of intin array.
contrl(5) Function id = 99.
contrl(6) Device handle.

intin 'User-defined information.
intin(O) Sub-opcode.

ptsin User-defined information.

contrl(2) Number of output vertices
contrl(4) Length of intout array =

v wri.te meta(handle, num intin, intin,
~, num=ptsin l ptsin) -

WORD v write meta();
WORD handle,--:-n~m intin, :hum,ptsin;
WORD intin[num_intin], ptsin[num_ptsin];

handle = contrl[6];
num intin = contrl[3];
num-ptsin = contrl[l];
intIn = intin;
ptsin = ptsin;

9-43

= o.
O.

GEM VDI Programmer's Guide Change GEM VDI Filename

ESCAPE 100:
CHANGE GEM VDI
FILENAME

Input

Output

C BINDING

Procedure Name

Data Types

Input Arguments

This escape renames a metafile from
GEMFILE.GEM to the specified name and
maintains the file extension .GEM. A path
name and drive can be specified to locate the
file somewhere other than on the current
drive and directory. Contrl(3) contains the
length of the file specification string.

Note: This escape must be called immediately
after Open Workstation, or it has no effect.
It also closes any open metafiles.

contrl(O)
contrl(l)
contrl(3)

contrl(5)
contrl(6)

intin(O
to n)

contrl(2)
contrl(4)

Opcode = 5.
Number of input vertices = O.
Length of intin array = number
of significant characters
[1. •. 74].
Function id = 100.
Device handle.

Path/filename.

Number of output vertices = O.
Length of intout array = O.

vm_filename(handle, filename)

WORD vm filename();
WORD handle;
BYTE filename[];

handle = contrl[6]
filename = intin[O-n]

Note: The filename must be nUll-terminated.

End of Section 9

9-44

(/ Appendix A
GEM VDI ERROR MESSAGES

Command line syntax error

Description: The GEM VDI command line includes an
illegal character, path, or drive ide

Solution: Check for conformance to your operating
system's conventions for specifying command
lines. Reenter the command line after correcting
illegal entries.

Unable to find ASSIGN.SYS

Description: This message appears when GEM VDI is
unable to find the ASSIGN.SYS file in the
specified location.

Solution: Locate the
drives and specific
tories. Reenter the
location.

Error reading ASSIGN.SYS

ASSIGN.SYS file, checking
directories and subdirec­

command with the correct

Description: The format of the ASSIGN.SYS file is
incorrect. GEM VDI cannot use the file.

Solution: Refer to Appendix B for the correct
format for the ASSIGN.SYS file.

Memory table corrupted

Description: This message appears when memory is
corrupted.

Solution: Reboot your system.

Insufficient memory

Description: This message appears when you try to
reserve memory and not enough memory exists for
allocation.

Solution: If your system has adequate memory to
run GEM VOl, reboot your system.

A-I

GEM VDl Programmer's Guide GEM VDl Error Messages

Invalid memory block address

Description: This message occurs when the memory
is corrupted.

Solution: Reboot the system.

Drive specification not allowed in ASSIGN.SYS

Description: This error appears when you specify
a drive id in the ASSlGN.SYS file, which is
illegal.

Solution: Remove the drive id from the file with
your text editor. Refer to Appendix B for the
correct format of an ASSlGN.SYS file.

Illegal device id in ASSIGN.SYS

Description: This error appears when the device
id number is greater than 32767 or an alphanumeric
string, for example 12D4.

Solution: Refer to Table 1-1 in Section 1 for the
correct numbers to assign to devices, and correct
the ASSlGN.SYS file with your text editor.

Partial record-found in ASSIGN.SYS

Description: This error appears when a partial
ASSlGN.SYS entry exists.

Solution: Check your ASSlGN.SYS file for incom­
plete device id numbers or filenames. Refer to
Appendix B for the correct ASSlGN.SYS file format.

Invalid filename encountered in ASSIGN.SYS

Description: This error-appears when a filename
in the ASSlGN.SYS file is too long or contains
illegal characters.

Solution: Refer to Appendix B for the ASSlGN.SYS
file-naming conventions.

A-2

(j

GEM VDl Programmer's Guide GEM VDl Error Messages

Requested path not found

Description: This message appears when GEM VDl
does not find the requested path specifying the
locations of the device drivers.

Solution: Respecify the path with the correct
path name.

ASSIGN.SYS file is empty

Description: This message appears when GEM VDl
finds an empty ASSlGN.SYS file.

Solution: Enter the necessary information with
your text editor. Refer to Appendix B for the
necessary ASSlGN.SYS file contents.

Driver file not found

Description: GEM VDl cannot find the first driver
specified in the ASSlGN.SYS file.

Solution: Make sure that the
specified drive, in the correct
the correct subdirectory.

Corrupted driver file

driver is in the
directory, and in

Description: GEM VDl finds the device driver, but
is unable to use it.

Solution: Use your distribution disk to make
another copy of the device driver. Try to use
the new copy. Contact your dealer if the device
driver is unusable.

End of Appendix A

A-3

-- ------~ .•. ----- .-----------.~-~-.~---.-------.----------------

(Appendix a
ASSIGN.SYS FILE

REQUIREMENTS

Device Id Numbers

Device Driver
Filename

FORMAT

The ASSIGN.SYS file is parsed by the GOOS to
create the assignment table. The assignment
table resides in memory and is referenced
when the application makes an Open Worksta­
tion call. The information required by the
ASSIGN.SYS includes the device id number and
the device driver filename and corresponding
faces.

Table a-I. Device Id Numbers

Type

Monitor
Plotter
Printer
Metafile
Camera
Tablet

Number

1-10
11-20
21-30
31-40
41-50
51-60

The device driver filenames follow specific
naming conventions:

o They must have eight or fewer characters.
o The first character must be alphabetic.
o The file extension must be .SYS.

Figure 8-1 shows the ASSIGN.SYS file format:

Device
Id

01

Driver Face
Filename Name

SCREEN.SYS FACE1.FNT

Figure a-I. ASSIGN.SYS File Format

8-1

GEM VDI Programmer's Guide Sample ASSIGN.SYS

SAMPLE ASSIGN.SYS
21 printer.fnt

; comments, if desired
facel.fnt ;facel description
face2.fnt ;face2 description
face3.fnt ;face3 description
01 screen.fnt
; comments, if desired
face4.fnt ;face4 description
face5.fnt ;face5 description
11 plotter.fnt
; comments, if desired
face6.fnt ;face6 description
face7.fnt ;face7 description

End of Appendix B

B-2

Appendix C
GEM VDI METAFILE FORMAT

INTRODUCTION

STANDARD METAFILE
ITEM FORMAT

The metafile driver outputs the information
specified below and performs the described
operations for the indicated opcodes.

Most function requests passed to the metafile
driver result in a standard format metafile
item being written to the metafile buffer.
In a standard format metafile item, the con­
trol, integer, and vertex parameters are
written to the metafile in the following for­
mat:

word

o
1
2
3
4 •••
n+4 •••

value

contrl[O]
contrl[l]
contrl[3]
contrl[5]
ptsin[O-n]
intin[O-m]

description

opcode
vertex count
integer parameter count
sub-opcode (or zero)
vertices (if provided)
integer parameters

(if provided)

Note that nothing will be output for the
ptsin or intin information if the vertex
count or the integer parameter count is zero.

The following function requests result in the
output of a standard metafile item:

3
4
5, 2
5, 3
5,21
5,21
5,22
5,23
6
7
8
9
11, 1
11, 2

clear workstation
update workstation
exit alpha mode escape
enter alpha mode escape
advance form
output window
clear display list
output bit image file
polyline
polymarker
text
fill area
bar
arc

C-l

GEM VOl Programmer's Guide GEM VOl Metafile Format

NONSTANDARD
METAFILE ITEMS

1 open
workstation

11, 3
11, 4
11, 5
11, 6
11, 7
11, 8
11, 9
11,10
12
13
14
15
16
17
18
19
20
21
22
23
24
25
32
39
104
106
107
108
112
113
114
129

pie
circle
ellipse
elliptical arc
elliptical pie
rounded rectangle
filled rounded rectangle
justified graphics text
set character height, absolute mode
set character baseline vector
set color representation
set polyline linetype
set polyline line width
set polyline color index
set polymarker type
set polymarker height
set polymarker color index
set text face
~et text color index
set fill interior style
set fill style index
set fill color index
set writing mode
set graphic text alignment
set fill perimeter visibility
set graphic text special effects
set character height, points mode
set polyline end styles
set user-defined fill pattern
set user-defined line style pattern
fill rectangle
set clipping

The metafile file buffer is initialized and
the metafile header is output to it. The
workstation description values normally
returned by an "open workstation" invocation
are returned.

C-2

C'---
"

/

(~'

GEM VDI Programmer's Guide GEM VDI Metafile Format

Metafile header format:

word

1

2

3

4 - 7

description

o Offffh

Length of header in words.

100*major version number + minor
version number.

NDC/RC transformation mode flag

o = positive y values ascend from
origin (origin in lower left
corner)

2 = positive y
from origin
left corner)

values descend
(origin in upper

Minimum and maximum x and y ex­
tent values for the information
contained in the metafile. If
undefined by the application (see
"Escape 98: Update Metafile
Extents"), all four values are
zero. The values are stored in
the following order: minimum x,
minimum y, maximum x, maximum y.

8 - 9 Physical page size: page width
in tenths of millimeters,
followed by page height in tenths
of millimeters. If undefined by
the application, both values are
zero. (See Appendix H, "Reserved
Metafile Sub-opcodes.")

10 - 13 The coordinate window which
defines the coordinate system
used in the metafile. If un­
defined by the application, all
four values are zero. The values
are stored in the following or­
der: lower left x, lower left y,
upper right x, upper right y.
(See Appendix H, "Reserved
Metafile Sub-opcodes.")

C-3

GEM VDl Programmer's Guide GEM VDl Metafile Format

2 close
workstation

An end-of-metafile opcode is appended to the
metafile file buffer. The metafile file
buffer is flushed and the metafile is closed.

End-of-metafile format:

SPECIAL METAFILE
ESCAPES

5, 98 update
metafile extents

5, 99 write
metafile item
escape

word description

1 Offffh

The extents information in the metafile
header is updated to indicate the extents
passed in the ptsin array.

A standard format metafile item
The first word of the intin
contain a sub-opcode that can
application to identify the
when it is read in.

is written.
array should
be used by an

metafile item

5, 100 change GEM If any information currently exists in the
VDI filename metafile or metafile buffer, the buffer is
escape flushed and the file is closed. The metafile

buffer is reinitialized and rudimentary file
name validation is performed. If the drive,
path, and filename are valid, they are used
to update the file control block (FCB) of the
metafile. The metafile will not actually be
opened until the first buffer needs to be
flushed.

C-4

(

GEM VDl Programmer's Guide GEM VDl Metafile Format

INQUIRY FUNCTIONS

5, 1 inquire
addressable
alpha character
cells escape

26 inquire color
representation

35 inquire
current polyline
attributes

36 inquire
current polymarker
attributes

37 inquire
current fill
area attributes

38 inquire
current graphic
text attributes

102 extended
inquire function

117 inquire
character cell
width

131 inquire
current face
information

-1 is returned in both lNTOUT parameters to
indicate that cursor addressing is not
possible.

-1 is returned for the color index to
indicate that no value is available.

The set values are returned.

The appropriate inquiry values are returned.

End of Appendix C

C-5

(-:'
/

(:

Appendix D
STANDARD KEYBOARD

GEM VDI defines a standard keyboard so ap­
plications can take advantage of special keys
not defined in the standard, 7-bit ASCII
character set. A 16-bit value is used to
return these characters. The high byte con­
tains a binary value assigned to each key.
The low byte contains the 7-bit ASCII value,
if such a value is defined, or a zero if the
code is an extended code.

Table D-l. GEM VDI Standard
Keyboard Assignments

High Low
Byte Byte Character

03 00 CNTL 2 (Nul)
IE 01 CNTL A
30 02 CNTL B
2E 03 CNTL C
20 04 CNTL D
12 05 CNTL E
21 06 CNTL F
22 07 CNTL G
23 08 CNTL H
17 09 CNTL I
24 OA CNTL J
25 OB CNTL K
26 OC CNTL L
32 OD CNTL M
31 OE CNTL N
18 OF CNTL 0
19 10 CNTL P
10 11 CNTL Q
13 12 CNTL R
IF 13 CNTL S
14 14 CNTL T
16 15 CNTL U
2F 16 CNTL V
11 17 CNTL W
2D 18 CNTL X
15 19 CNTL y
2C lA CNTL Z
lA IB CNTL [
2B lC CNTL \
IB ID CNTL]
07 IE CNTL 6
OC IF CNTL -
39 20 Space

D-l

GEM VOI Programmer's Guide standard Keyboard

Table D-1. (continued)

High Low
Byte Byte Character

02 21 !
28 22 "
04 23 #
05 24 $
06 25 %
08 26 &
28 27 ,
OA 28 (
OB 29)
09 2A *
OD 2B +
33 2C
OC 2D
34 2E .
35 2F /
OB 30 0
02 31 1
03 32 2
04 33 3
05 34 4
06 35 5 f/~ --~'",,-

07 36 6
08 37 7
09 38 8
OA 39 9
27 3A
27 3B . ,
33 3C <
OD 3D =
34 3E >
35 3F ?
03 40 @
IE 41 A
30 42 B
2E 43 C
20 44 D
12 45 E
21 46 F
22 47 G
23 48 H
17 49 I
24 4A J
25 4B K
26 4C L
32 4D M
31 4E N
18 4F 0

D-2

GEM VDI Programmer's Guide Standard Keyboard

(
Table D-l. (continued)

High Low
Byte Byte Character

19 50 P
10 51 Q
13 52 R
IF 53 S
14 54 T
16 55 U
2F 56 V
11 57 W
2D 58 X
15 59 y
2C 5A Z
lA 5B [
2B 5C \
IB 5D]
07 5E -
OC 5F Underscore
29 60

,

IE 61 a
30 62 b
2E 63 c

(' 20 64 d
12 65 e
21 66 f
22 67 g
23 68 h
17 69 i
24 6A j
25 6B k
26 6C 1
32 6D m
31 6E n
18 6F 0
19 70 P
10 71 q
13 72 r
IF 73 s
14 74 t
16 75 u
2F 76 v
11 77 w
2D 78 x
15 79 y
2C 7A z
lA 7B f 2B 7C
IB 7D }
29 7E

(' OE 7F Rubout (DEL)
------./

D-3

GEM VDl Programmer's Guide standard Keyboard

Table D-1. (continued)

High Low
Byte Byte Character

81 00 Alt 0
78 00 Alt 1
79 00 Alt 2
7A 00 Alt 3
7B 00 Alt 4
7B 00 Alt 5
7D 00 Alt 6
7E 00 Alt 7
7F 00 Alt 8
80 00 Alt 9
IE 00 Alt A
30 00 Alt B
2E 00 Alt C
20 00 Alt D
12 00 Alt E
21 00 Alt F
22 00 Alt G
23 00 Alt H
17 00 Alt I
24 00 Alt J

j/"

25 00 Alt K
26 00 Alt L
32 00 Alt M
31 00 Alt N
18 00 Alt 0
19 aD Alt P
10 00 Alt Q
13 00 Alt R
IF 00 Alt S
14 00 Alt T
16 00 Alt U
2F 00 Alt V
11 00 Alt W
2D . 00 Alt X
15 00 Alt Y
2C 00 Alt Z
3B 00 Fl
3C 00 F2
3D 00 F3
3E 00 F4
3F 00 F5
40 00 F6
41 00 F7
42 00 F8
43 00 F9
44 00 FlO
54 00 F11 (~\

i

~-j

D-4

GEM VOl Programmer's Guide Standard Keyboard

(-,
- /'

Table D-l. (continued)

High Low
Byte Byte Character

55 00 F12
56 00 F13
57 00 F14
58 00 F15
59 00 F16
5A 00 F17
5B 00 F18
5C 00 F19
50 00 F20
5E 00 F21
5F 00 F22
60 00 F23
61 00 F24
62 00 F25
63 00 F26
64 00 F27
65 00 F28
66 00 F29
67 00 F30

(' 68 00 F31
/' 69 00 F32

6A 00 F33
6B 00 F34
6C 00 F35
60 00 F36
6E 00 F37
6F 00 F38
70 00 F39
71 00 F40
73 00 Ctr1 left-arrow
40 00 right-arrow
40 36 Shift right-arrow
74 00 Ctrl right-arrow
50 00 down-arrow
50 32 Shift down-arrow
48 00 up-arrow
48 38 Shift up-arrow
51 00 Page down
51 33 Shift Page down
76 00 Ctr1 Page down
49 00 Page up
49 39 Shift Page up
84 00 Ctr1 Page up
77 00 Ctr1 Home

C'
0-5

GEM VOl Programmer's Guide standard Keyboard

Table D-l. (continued)

High Low
Byte Byte Character

47 00 Home
47 37 Shift Home
52 00 Insert
52 30 Shift Insert
53 00 Delete
53 2E Shift Delete
72 00 Ctrl Print Screen
37 2A Print Screen
01 1B Escape
OE 08 Backspace
82 00 Alt -
83 00 Alt =
lC OD CR
1C OA Ctrl CR
4C 35 Shift Num Pad 5
4A 2B Num Pad -
4E 2B Num Pad +
OF 09 Tab
OF 00 Backtab
4B 00 left-arrow
4B 34 Shift left-arrow
4F 00 End
4F 31 Shift End
75 00 Ctrl End

End of Appendix D

D-6

Appendix E
PROCESSOR-SPECIFIC DATA

SOS6-SPECIFIC DATA

Registers and
Interrupts

Exchange Mouse
Movement Vector

Exchange Button
Change Vector

The address of the Parameter Block
in two l6-bit registers (Ds:Dx for
from the application program to
Pass 0473h in the Cx register. The
is EF.

is passed
the S086)
GEM VDI.
interrupt

Note: GEM VDI supports Concurrent .. operating
systems that support DOS calls of versions
2.0 and above.

For 8086-based microcomputers, the
application-dependent code is invoked via a
CALL FAR (CALLF) instruction. On entry, the
Bx register contains the new x position of
the mouse. The Cx register contains the new
y position of the mouse. When complete, the
application-dependent code should do a RETURN
FAR (RETF) instruction with the x,y position
of the mouse the driver is to store in Bx,
Cx.

For 8086-based processors, the application
code is invoked via a CALL FAR (CALLF) in­
struction with Ax containing the mouse button
keys. Keys are encoded by the same rules
that apply to the Sample Mouse Button State
function. When complete, the application­
dependent code should do a RETURN FAR (RETF)
instruction with the mouse button state the
driver is to store in Ax.

E-l

GEM VDI Programmer's Guide 8086-specific Data

Exchange Cursor
Change Vector

Exchange Timer
Interrupt Vector

For 8086-based machines, the application­
dependent code is invoked with a CALL FAR
(CALLF) instruction. Upon entry, the Bx
register contains the x position and the Cx
register the y position. If the application­
dependent code does not draw its own cursor,
a CALL FAR should be performed to the address
returned in contrl(9) and contrl(lO) with the
x,y position at which to draw the cursor in
Bx, Cx. This causes GEM VDI to draw a cur­
sor. When complete, the application should
perform a RETURN FAR (RETF) instruction.

For 8086-based processors, the application­
dependent code is invoked with a CALL FAR
(CALLF) instruction. When complete, the ap­
plication should perform a RETURN FAR (RETF)
instruction.

B-2

(j

Ci

GEM VDI Programmer's Guide 68000-specific Data

68000-SPECIFIC DATA

Registers and
Interrupts

Exchange Mouse
Movement Vector

Exchange Button
Change Vector

The address of the Parameter
in one 32-bit register, DO.l
application program to GEM
tains the function code 115.

Block is passed
for 68K from the
VDI. Dl.w con-

For CP/M-68K, GEM VDI is invoked via
For other 68K operating systems that
GEM VDI, the TRAP is identified
operating system's manual.

TRAP 2.
support
in the

For 68000-based microcomputers, the
application-dependent code is invoked via a
JUMP TO SUBROUTINE (JSR) instruction. On
entry, the DO.w register contains the new x
position of the mouse. The Dl.w register
contains the new y position of the mouse.
When complete, the application-dependent code
should do a RETURN FROM SUBROUTINE (RTS) in­
struction with the x,y position of the mouse
the driver is to store in DO.w, Dl.w.

For 68000-based processors, the application
code is invoked via a JUMP TO SUBROUTINE
(JSR) instruction with DO.w containing the
mouse button keys. Keys are encoded by the
same rules that apply to the Sample Mouse
Button State function. When complete, the
application-dependent code should do a RETURN
FROM SUBROUTINE (RTS) instruction with the
mouse button state the driver should store in
DO.w.

E-3

GEM VDI Programmer's Guide 68000-specific Data

Exchange Cursor
Change Vector

Exchange Timer
Interrupt Vector

For 68000-based machines, the application­
dependent code is invoked with a JUMP TO
SUBROUTINE (JSR) instruction. Upon entry,
the DO.w register contains the x position and
the Dl.w register the y position. If the
application-dependent code does not draw its
own cursor, a JUMP TO SUBROUTINE (JSR) in­
struction should be performed to the address
returned in contrl(9) and contrl(lO) with the
x,y position at which to draw the cursor in
DO.w and Dl.w. This causes GEM VDI to draw a
cursor. When complete, the application
should perform a RETURN FROM SUBROUTINE
(RTS) instruction.

For 68000-based processors, the application­
dependent code is invoked with a JUMP TO
SUBROUTINE (JSR) instruction. When complete,
the application should perform a RETURN FROM
SUBROUTINE (RTS) instruction.

End of Appendix E

E-4

/----"
i

~j

Appendix F
CHARACTER SETS

The system fonts provided with GEM VnI are
illustrated in Figure F-l and F-2. Figure F-
1 shows the USASCII character set. Figure F-
2 shows the additional characters included to
form the international character set.

Note that external fonts (those which are
dynamically loaded) do not include characters
for decimal equivalents 0 through 31.

F-l

GEM VDl Programmer's Guide Character Sets

Figure F-l. GEM VDI USASCII Character Set

F-2

(

GEM VOI Programmer's Guide Character Sets

Figure F-2. GEM VDI International
Character Set Extension

End of Appendix F

F-3

(.. Appendix G
FONT FORMAT

INTRODUCTION

FONT DATA

FONT HEADER

The system fonts and external fonts used in
GEM VOl are composed of four parts: the font
data, a font header, a character offset
table, and a horizontal offset table.

The font data is organized as a single raster
area. The area's height equals the font
height and its width equals the sum of the
character widths.

The top scan line of the first character in
the font is aligned to a byte boundary. The
top scan line of the second character is
abutted to the first character and is not
necessarily byte-aligned. That is, the end
of any character and the beginning of the
following character often occur within the
same byte; no byte alignment occurs within
the font form.

Bit padding occurs only at the end of a scan
line. Each scan line in the font form
begins on a word boundary. The number of
bytes from the beginning of one scan line to
the beginning of the next is called the form
width. The number of scan lines required to
draw any character is called the form height.

A flag within the font header indicates the
orientation of bytes within a word in the
font data. If the flag is cleared, the font
data is in a format such that the low byte of
a word occurs in memory before the high byte
(Intel .. format). If the flag is set, the
high byte precedes the low byte in memory.

The font header contains information that
describes global aspects of the font. For
example, the name of the face, the font size,
the minimum and maximum characters in the
font, and any other data that applies to
every character of the font are global
aspects of that font. The format of the font
header is shown in Table G-l.

G-l

GEM VDI Programmer's Guide Font Header

Table G-l. Font Header Format

Byte Number Description

0-1

2 - 3

4 - 35

36 37

38 39

40 - 41

42 - 43

44 - 45

46 - 47

48 - 49

50 - 51

52 53

54 - 55

56 - 57

58 - 59

60 - 61

G-2

face identifier (see the
Set Text Face function)

font size in points

face name (see the Inquire
Face Name and Index func­
tion)

lowest ADE value in the
face

highest ADE value in the
face

*top line distance

*ascent line distance

*half line distance

*descent line distance

*bottom line distance

width of the widest charac­
ter in the font

width of the widest charac­
ter cell in the face

left offset (see the
Inquire Current Face Infor­
mation function)

right offset (see the
Inquire Current Face Infor­
mation function)

thickening:
pixels by
thickened

the number of
which to widen

characters

underline size: the width
(in pixels) of the under­
line

(-

c:

GEM VDl Programmer's Guide Font Header

Table G-l. (continued)

Byte Number Description

62 - 63

64 - 65

66 - 67

68 - 71

72 - 75

76 - 79

80 - 81

82 - 83

84 - 87

lightening mask: the mask
used to drop pixels out
when lightening; usually
5555H

skewing mask: the mask
that is rotated to deter­
mine when to perform addi­
tional rotation on the
character to perform
skewing; usually 5555H

flags:

bit 0

bit 1

bit 2

bit 3

set if default sys­
tem font

set if horizontal
offset tables
should be used

byte-swap flag (see
"Font Data")

set if mono-spaced
font

pOinter to the horizontal
offset table

pointer to the character
offset table

pointer to the font data

form width (see
Data")

form height (see
Data")

"Font

"Font

pointer to the next font
(set by the driver)

* - Distances are measured relative to the
character baseline and are always a positive
value (magnitude rather than offset).

G-3

GEM VDI Programmer's Guide Character Offset Table

CHARACTER OFFSET
TABLE

HORIZONTAL OFFSET
TABLE

The character offset table is used to index
into the font data and to determine the width
of specific characters in the font. It is
indexed by relative character value (the ADE
value of the desired character, minus the
lowest ADE value in the font) and yields the
offset from the base of the font data to the
beginning of the character definition. The
difference between the offset to a character
and the offset to the following character
gives the width of the character. Note that
the character offset table includes one more
entry than the number of characters in the
font so that a width may be obtained for the
final character in the font.

Note: The character offset table is required
even for mono-spaced fonts.

The horizontal offset table is indexed by
relative character value and yields any addi­
tional positive or negative spacing necessary
before outputting the character. The
horizontal offset table often does not exist.
Whether it exists or not is indicated by the
horizontal offset table bit in the flags word
of the font header.

End of Appendix G

G-4

(

c'

Appendix H
Reserved Metafile Sub-opcodes

METAFILE SUB­
OPCODES FOR USE
WITH GEM OUTPUT

The following sub-opcodes are reserved for
use by the GEM Output application. GEM VDI
defines sub-opcodes for the following sub­
functions:

o Physical Page Size
o Coordinate Window

The opcodes are used by the GEM Output ap­
plication to define how large a picture is to
be rendered on the output page and also to
define a transformation which maps from the
metafile coordinate system to the output
device.

The two GEM Output metafile sub-opcodes
result in an update of the metafile header.
The opcodes are not actually written to the
body of the metafile.

PHYSICAL PAGE SIZE This sub-function defines the size of the
area to be output to. All of the data in the
coordinate window is mapped to this area. If
no physical page size is defined, the Output
application will attempt a best fit on the
target device, assuming that "pixels" in the
metafile are square.

Input

Output

contrl(O)
contrl(l)
contrl(3)
contrl(5)
contrl(6)

intin(O)
intin(l)

intin(2)

contrl(2)
contrl(4)

H-1

Opcode = 5.
Number of input vertices = O.
Length of intin array = 3.
Function id = 99.
Device handle.

Sub-opcode number = O.
Page width in tenths of
millimeter.
Page height in tenths of
millimeter.

Number of output vertices = O.
Length of intout array = O.

COORDINATE WINDOW

Input

Output

This sub-function defines the coordinate sys­
tem used in the metafile. All of the data in
the defined coordinate window is mapped to
the area defined by the physical page size
sub-function.

The coordinate window defaults to NDC space
(0 to 32K). The location of the origin, (0,
0), depends on the coordinate space set when
the metafile was opened (see "Open Worksta­
tion"). For example, if the Open Worksta­
tion function was invoked specifying raster
coordinate space, the origin would be located
in the upper left corner of the display sur­
face.

Note that the window corner information must
be specified as the lower left and upper
right corners. Arbitrary opposing corners
will not convey enough information.

contrl(O)
contrl(l)
contrl(3)
contrl(5)
contrl(6)

intin(O)
intin(l)

intin(2)

intin(3)

intin(4)

contrl(2)
contrl(4)

B-2

Opcode = 5.
Number of input vertices = O.
Length of intin array = 5.
Function id = 99.
Device handle.

Sub-opcode = 1.
x-coordinate of lower left
corner of window.
y-coordinate of lower left
corner of window.
x-coordinate of upper right
corner of window.
y-coordinate of upper right
corner of window.

Number of output vertices = O.
Length of intout array = O.

(

GEM VDl Programmer's Guide Coordinate Window

METAFILE SUB­
OPCODES FOR USE
WITH GEM DRAW

START GROUP

Input

Output

The following sub-opcodes are reserved for
use by the GEM Draw •• application. GEM VDl
defines the sub-opcodes for the following
sub-functions:

o start Group
o End Group
o Set Attribute Shadow On
o Set Attribute Shadow Off
o Start Draw Area Type Primitive
o End Draw Area Type Primitive
o Set No Line Style

This sub-function indicated the beginning of
a group of primitives for the GEM Draw ap­
plication. All subsequent primitives which
occur before the next End Group sub-opcode
will be regarded as a group by the GEM Draw
application.

contrl(O)
contrl(l)
contrl(3)
contrl(5)
contrl(6)

intin(O)

contrl(2)
contrl(4)

H-3

Opcode = 5.
Number of input vertices = O.
Length of intin array = 1.
Function id = 99.
Device handle.

Sub-opcode number = 10.

Number of output vertices = O.
Length of intout array = O.

GEM VOl Programmer's Guide Metafile Sub-opcodes with GEM Draw

END GROUP

Input

Output

SET NO LINE STYLE

Input

Output

This sub-function indicated the end of a
group of primitives for the GEM Draw applica­
tion.

contrl(O)
contrl(l)
contrl(3)
contrl(5)
contrl(6)

intin(O)

contrl(2)
contrl(4)

Opcode = 5.
Number of input vertices = O.
Length of intin array = 1.
Function id = 99.
Device handle.

Sub-opcode number = 11.

Number of output vertices = O.
Length of intout array = O.

This sub-function is used by
dicate that subsequent area
are not to be outlined. The
sub-opcode are cancelled by
set line style opcode.

GEM Draw to in­
type primitives
effects of this
any subsequent

contrl(O)
contrl(l)
contrl(3)
contrl(5)
contrl(6)

intin(O)

contrl(2)
contrl(4)

Opcode = 5.
Number of input vertices = O.
Length of intin array = 1.
Function id = 99.
Device handle.

Sub-opcode number = 49.

Number of output vertices = O.
Length of intout array = O.

H-4

(-

GEM VDI Programmer's Guide End Group

SET ATTRIBUTE
SHADOW ON

Input

Output

This sub-function is used by GEM Draw to
indicate that all subsequent primitives which
occur before the next Set Attribute Shadow
Off sub-opcode should be ignored because they
are used to draw a drop shadow for the first
primitive immediately following the Set
Attribute Shadow Off sub-opcode. Internally,
GEM Draw assigns a shadowed attribute to the
first primitive following the Set Attribute
Shadow Off sub-opcode and performs its own
shadow drawing. All attribute information
which occurs between Set Attribute Shadow On
and Set Attribute Shadow Off will continue to
be processed.

Note that GEM Draw will not drop shadows from
text or from polylines consisting of only two
vertices.

contrl(O)
contrl(1)
contrl(3)
contrl(5)
contrl(6)

intin(O)

contrl(2)
contrl(4)

H-5

Opcode = 5.
Number of input vertices = O.
Length of intin array = 1.
Function id = 99.
Device handle.

Sub-opcode number = 50.

Number of output vertices = O.
Length of intout array = O.

GEM VDl Programmer's Guide Set Attribute Shadow On

SET ATTRIBUTE
SHADOW OFF

Input

Output

START DRAW AREA
TYPE PRIMITIVE

Input

Output

This sub-function indicates to GEM Draw the
end of primitives used to draw a drop shadow
of the first primitive following this sub-op­
code.

contrl(O)
contrl(l)
contrl(3)
contrl(5)
contrl(6)

intin(O)

contrl(2)
contrl(4)

Opcode = 5.
Number of input vertices = O.
Length of intin array = 1.
Function id = 99.
Device handle.

Sub-opcode number = 51.

Number of output vertices = O.
Length of intout array = O.

This sub-function indicates to GEM Draw that
an area type primitive block follows. GEM
Draw will use the vertices of the first
primitive (anything except text) which
follows this sub-opcode to define a GEM Draw
area type primitive. All other primitives
encountered before the next End Draw Area
Type Primitive sub-opcode will be ignored.

contrl(O)
contrl(1)
contrl(3)
contr1(5)
contrl(6)

intin(O)

contrl(2) -­
contr1(4)

H-6

Opcode = 5.
Number of input vertices = O.
Length of intin array = 1.
Function id = 99.
Device handle.

Sub-opcode number = 80.

Number of output vertices = O.
Length of intout array = O.

(.

c

GEM VDl Programmer's Guide Set Attribute Shadow Off

END DRAW AREA
TYPE PRIMITIVE

Input

Output

This sub-function indicates to GEM Draw the
end of an area type primitive block.

contrl(O)
contrl(l)
contrl(3)

-contr1(5)
contrl(6)

intin(O)

contrl(2)
contrl(4)

Opcode = 5.
Number of input vertices = O.
Length of intin array = 1.
Function id = 99.
Device handle.

Sub-opcode number = 81.

Number of output vertices = O.
Length of intout array = O.

End of Appendix H

H-7

Appendix I
Bit Image File Format

INTRODUCTION

HEADER FORMAT

DATA FORMAT

A GEM VDI bit image file is a file with ex­
tension .IMG and contains information which
may be used to re-create a picture from its
bit (pixel) image. The file consists of a
header and raw pixel information. The pixel
information may be encoded in a variety of
formats.

The bit image file header consists of sixteen
words. Each word is in machine-dependent
format (for example, oriented with low byte
first for Intel 808x processors or with high
byte first for Motorola 68000 processors).

Word

o
1
2
3
4
5
6
7
8
9 - 16

Contents

upper left x of the bit image
upper left y of the bit 1mage
lower right x of the bit image
lower right y of the bit image
source device page width
source device page height
source device pixel width in microns
source device pixel height in microns
bits per pixel
reserved for future use (zero)

Pixel data may be encoded in any of four for­
mats. All four formats may occur within the
same bit image file. The four formats in­
clude:

o run-length encoding
o extended run-length encoding
o raster encoding
o raster-run encoding

The data portion of the bit image file is en­
coded as bytes of information.

I-I

GEM VDI Programmer's Guide Data Format

Run-length
Encoding

Extended Run­
length Encoding

Each of the four formats except for run­
length encoding (the default) consists of a
single packet prefaced by an opcode. A run­
length encoded packet has no preface opcode.

This is the default pixel data format and
requires no identifying opcode (i.e., when an
extended run, a raster stream, or a raster­
run stream ends, run-length encoding is in
effect). A run-length packet consists of two
bytes of information: a run length and a
pixel value. The run length must be less
than 128 and the pixel value must be less
than 256. A run of pixels may wrap across
lines.

Run-length packet:
byte a
byte 1

run length
pixel value

When a run is longer than 127 pixels, the
extended run-length encoding may be used. An
extended run includes a count of 128 pixel
runs. For example, if a run exists which is
1000 pixels in length, it would be most effi­
cient to encode it as an extended run of
length seven (896 pixels) followed by a stan­
dard run of length 104.

Extended run-length
byte a
byte 1
byte 2

1-2

packet:
opcode = -1
extended run
pixel value

length

GEM VDI Programmer's Guide Raster Encoding

Raster Encoding

Raster-run
Encoding

Data which is not efficiently encoded in any
of the other formats may be raster-encoded.
A raster stream is built which consists of
packed pixel values. Pixel values are packed
into bytes such that each pixel value oc­
cupies the number of bits indicated in the
"bits per pixel" parameter of the file header
and such that a pixel value packed into a
higher order portion of the byte occurs
before the adjacent lower order pixel value.
Pixel values should be packed across byte
boundaries when necessary.

For example, assume that five pixels are to
be encoded in raster format and that their
pixel values are, respectively, one, two,
three, four, and five. Assume that there are
three bits per pixel. The resulting raster
stream would be as follows:

pixels: 1 2 3 4 5
bits: 0 0 1 010 0 1 1 1 0 0 1 0 1 x

I byte 0 I byte 1 I
The bit designated "x" may be either o or 1.

Raster packet:
byte 0 opcode = -2
byte 1 number of pixels in the stream
byte 2 packed pixel values

Raster-run encoding may be used to run­
length encode groups of raster streams. For
example, if a pattern of pixels repeats a
number of times, the pattern may be packed
into a raster stream (see "Raster Encoding"
above) and a repeat count may be indicated.

Raster-run packet:
byte 0 opcode = -3
byte 1 pattern repeat count
byte 2 number of pixels in the stream
byte 3 packed pixel values

End of Appendix I

1-3

'\

Glossary

ASSIGN.SYS Text file created by the driver installation
program. Associates device identification
(id) numbers with specific device driver
files so that devices can be referred to by
type within the application program. The
ASSIGN.SYS file can be modified using any
text editor.

coordinate scaling Converting points from one space or coor­
dinate system to another. In GEM VDI, this
term refers to the change between Normalized
Device Coordinates (NDC) and Raster Coor­
dinates (RC).

coordinate systems Cartesian space in which points are defined.

default device
driver

device driver

device handle

device
identification
number

GEM VDI supports two systems: Normalized
Device Coordinates (NDC) and Raster Coor­
dinates (RC).

First driver named
file. It must be the
will be loaded during a

in the ASSIGN.SYS
largest driver that
graphics session.

Device-dependent portion of GEM VDI that
translates standard device-independent
graphics operations to device-specific com­
mand sequences for a particular device.

Unique value used
tion the GEM VDI
VDI assigns these
tion.

to identify which worksta­
function should use. GEM
numbers at Open Worksta-

Id number
ASSIGN.SYS
ASSIGN.SYS
assigned to

assigned
file.

file has
it.

Glossary-l

to a device in the
Each device in the
a unique device number

GEM VDI Programmer's Guide Glossary

face Letter style, such as Times Roman. GEM VDI
stores the definition of each style in a

I data file. When an application calls for the
use of a particular text face, GEM VDI uses
the definition to form the text characters on
the specified graphics device.

font

function code

graphics command

graphics device

Graphics Device
Operating System
(GDOS)

Generalized
Drawing
Primitive (GDP)

Graphics
Environment Manager
Virtual Device
Interface (GEM VDI)

Graphical Kernel
System (GKS)

graphics
primitives

Collection of characters all in one typeface,
a subset of face.

See operation code.

Command that loads the GDOS into memory.

Hardware that accepts graphics input (mouse
or keyboard, for example) or displays
graphics output (screen, printer, or plotter,
for example).

Device-independent
services graphics
device driver to
devices.

portion of GEM VDI that
requests and calls the

send commands to graphics

Display function used to address special
device capabilities such as curve drawing.

GEM VDI supports the following GDPs: bar,
arc, pie, circle, ellipse, elliptical arc,
elliptical pie, rounded rectangle, filled
rounded rectangle, and justified graphics
text. Not all devices support all GDPs.

Graphics extension to microcomputer opera­
ting systems. The GEM VDI makes it possible
to run graphics applications on a micro­
computer.

International standard
interface to graphics

program.

for the programming
from an application

Basic graphics operations performed by GEM
VDI, for example, drawing lines, markers, and
text strings.

Glossary-2

(

GEM VOl Programmer's Guide Glossary

hot spot

metafile

Memory Form
Definition Block
(MFDB)

Normalized Device
Coordinate (NDC)
space

normalized
device coordinates
(NOC)

operation codes
(opcodes)

pixel (pixel
element)

Area of the cursor that covers the pixel
whose x,y location is returned during locator
input. For example, the hot spot on a cross
hair cursor is the intersection point of the
two lines making up the cross.

Oata file containing a picture description.
The GEM VOl metafile can be sent to any
device or used to exchange a picture between
two applications.

Block of memory that defines a raster area.
An MFOB includes the following raster area
information:

o pointer to the memory address of the upper
left corner of the first plane

o height and width, in pixels

o width, in words

o number of planes

o flag to indicate if format is standard or
device-dependent

o locations reserved for future use

Uniform virtual space by which a graphics
application program can pass graphics
information to a device. The GOOS maps NOes
to Res. Noe space has its origin in the
lower left corner.

Any point in NOe space.

Passed to GOOS as part of a
The opcode indicates which
tion is requested.

parameter list.
graphics opera-

Smallest element of a display surface that
can be independently referenced.

Glossary-3

GEM VDI Programmer's Guide Glossary

raster area

Raster
Coordinate (RC)
space

Raster Coordinate
(RC)

raster functions

transformation
mode

Virtual Device
Interface (VDI)

virtual screen

Rectangular blocks of either bits in memory
or pixels on a physical device. Rasters are
the steps between pixels.

Actual device units. Raster coordinate space
has its origin in the upper left corner. Its
limits are determined by the resolution of
the specific device.

Point in RC space.

Functions that operate on pixels either in­
dividually or in groups.

Determines which coordinate system the
application is using, NDC or RC. If NDC, the
transformation mode determines how the GDOS
maps the NDCs to the RCs with two methods:
full NDC to RC space or uniform NDC to RC
space.

standard interface between
and device-independent code
vironment. The GEM VDI
drivers appear identical
program.

device-dependent
in a graphics en­
makes all device
to the calling

Block of memory that can be addressed as if
it were a memory-mapped display.

End of Glossary

Glossary-4

Index

A

architecture, 1-2

B

bit image file format, I-1
BYTE, 2-1

C

Cell Array function, 4-11
character offset, G-4
Close Virtual Screen

Workstation function, 3-12
Close Workstation function, 3-9
control array, 1-5
coordinate window, H-1, H-2
Copy Raster

D

Opaque function, 6-7
Transparent function, 6-9

data format with bit image
files, I-1

device drivers, 1-2
device handle, 1-4
device id number, 1-4

E

error messages, A-1
escape

alpha cursor down, 9-1, 9-8
alpha cursor home, 9-11
alpha cursor left, 9-1, 9-10
alpha cursor right, 9-1, 9-9
alpha cursor up, 9-1, 9-7
clear display list, 9-2, 9-26
direct alpha cursor address,

9-1, 9-14
enter alpha mode, 9-1, 9-6
erase to end of alpha screen,

9-1, 9-12
erase to end of alpha text

line, 9-1, 9-13
exit alpha mode, 9-1, 9-5
form advance, 9-2, 9-23
change GEM VDI filename, 9-44
hard copy, 9-2, 9-20
home alpha cursor, 9-1, 9-11

inquire addressable alpha
character cells, 9-1, 9-4

inquire current alpha cursor
address, 9-2, 9-18

inquire palette driver
state, 9-2, 9-33

inquire palette film
types, 9-2, 9-32

inquire tablet status,
9-2, 9-19

output bit image file, 9-27
output cursor addressable

alpha text, 9-1, 9-15
output window, 9-2, 9-24
palette error inquire,

9-2, 9-39
place graphic cursor at

location, 9-2, 9-21
remove last graphic

cursor, 9-2, 9-22
reverse video off, 9-2,

9-17
reverse video on, 9-1,

9-16
save palette driver state,

9-2, 9-37
select palette, 9-2,

9-30
set palette driver state,

9-2, 9-35
suppress palette

messages, 9-2, 9-38
update metafile extents, 9-41
write metafile item,

9-2, 9-43
Exchange Button Change

Vector function, 7-27
Exchange Cursor Change

Vector function, 7-31
Exchange Mouse Movement

Vector function, 7-29
extended run-length encoding,

1-2
external fonts, G-1

F

Filled Area function, 4-8
Filled Rounded Rectangle

function, 4-25
font data, G-1
font form, G-1

Index-l

font format, G-1
font header, G-1
Form Advance

function, 9-23
function code

escape, 9-1
function

Bar, 4-8
Cell Array, 4-11
Circle, 4-28
Close Virtual Screen

Workstation, 3-12
Close Workstation, 3-9
Copy Raster, Opaque, 6-7
Copy Raster, Transparent, 6-9
Exchange Button Change

Vector, 7-27
Exchange Cursor Change Vector

function, 7-31
Exchange Mouse Movement

Vector, 7-30
Filled Area, 4-8
Filled Rounded Rectangle,

4-25
Get Pixel, 6-13
Input Locator, Request Mode,

7-3
Input Locator, Sample Mode,

7-6
Input String, Request Mode,

7-15
Input String, Sample Mode,

7-17
Input Valuator, 7-9
Inquire Current Face

Information, 8-21
Inquire Face Name and Index,

8-19
Justified Graphics Text, 4-27
Load Fonts, 3-15
Open Virtual Screen

Workstation, 3-10
Open Workstation, 3-1
Polyline, 4-1
Polymarker, 4-4
Rounded Rectangle, 4-25
Sample Keyboard State

Information, 7-33
Sample Mouse Button State,

7-26
Set Graphic Text Special

Effects, 5-27
Set Input Mode, 7-1
Set Mouse Form, 7-19

G

Set Polyline End Styles, 5-12
Set Text Face, 5-24
Set User-defined Fill

Pattern, 5-37
Text, 4-6
Unload Fonts, 3-16
Update Workstation, 3-14

GDOS, 1-2
GDP

Arc & Pie function, 4-19
Bar function, 4-18
Circle function, 4-21
Ellipse, 4-24
Elliptical Arc and Pie, 4-22

GEMVDI command, 2-19
Get Pixel function, 6-13
Graphics Device Operating

System, See GDOS

H

hard copy escape, 9-20
header format with bit image

files, I-I
hide cursor escape, 7-25
horizontal offset table, G-4

Input Locator
Request Mode function, 7-3
Sample Mode function, 7-6

input parameters array, 1-5
input point coordinates, 1-5
Input String

Request Mode function, 7-15
Sample Mode function, 7-17

Input Valuator function, 7-9
inquire cell array, 8-23
inquire character cell width,

8-17
inquire color representation,

8-5
Inquire Current Face

Information function, 8-21
Inquire Face Name and Index

function, 8-19
Inquire Palette Driver State

Escape, 9-33
Inquire Palette Film Types

Escape, 9-32

Index-2

r-\ inquire text extent, 8-15
interrupt for 68K, E-3
interrupt for 8086, E-1

J

justified graphics text, 4-27

L

Load Fonts function, 3-15

M

memory requirements, 2-20
metafile sub-opcodes, H-1, H-3
multiple workstations, 1-4

N

NDC, 1-4, 1-6
normalized device coordinates,

1-4, 1-6

o

Open Virtual Screen Workstation
function, 3-10

Open Workstation function, 3-1
output parameters, 1-5
output point parameters, 1-5
Output Window

Escape, 9-24

p

Palette Error Inquire
Escape, 9-39

physical page size, H-1
plotter functions, 2-13
Polaroid Palette Escapes, 9-31
Polyline function, 4-1
Polymarker function, 4-4

R

registers for 68K, E-3
registers for 8086, E-1
required functions for

printers, 2-11
required functions for screens,

2-9
reserved metafile sub-opcodes,

H-1

Rounded Rectangle function,
4-25

run-length encoding, I-I, I-2

s

Sample Keyboard State
Information function, 7-33

Sample Mouse Button State
function, 7-26

Save Palette Driver State
Escape, 9-37

scan line, G-l
Select Palette

Escape, 9-30
set character baseline vector,

5-22
set character cell height

points mode, 5-18, 5-20
set character height

absolute mode, 5-18
Set Clipping Rectangle

function, 3-18
set color representation, 5-4
set fill color index, 5-35
set fill interior style, 5-32
set fill perimeter visibility,

5-36
set fill style index, 5-33
set graphic text alignment,

5-30
set graphic text color index,

5-26
set graphic text special

effects, 5-27
Set Input Mode function, 7-1
Set Mouse Form function, 7-19
Set Palette Driver State

Escape, 9-32
set polyline color index, 5-11
Set Polyline End Styles

function, 5-12
set polyline line type, 5-6
set polyline line width, 5-9
set polymarker color index,

5-17
set polymarker height, 5-16
set polymarker type, 5-14
set text color index, 5-24
Set Text Face function, 5-24
Set User-defined Fill Pattern

function, 5-33
set user-defined line style,

5-8

Index-3

set writing mode, 5-1
show cursor, 7-23
stack requirements, 2-20
sub-opcodes, H-l
Suppress Palette Messages

Escape, 9-38
system fonts, G-l

T

Text function, 4-6
transforming points, 1-6

u
Unload fonts function, 3-16
Update Workstation function,

3-14

v

VDI, 1-5
Virtual Device Interface, 1-5

VDI, 1-5

W

WORD, 2-1
Write Metafile Item Escape,

9-43

Index-4

