
PowerPC Microprocessor CHRP binding 1

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

PowerPC™ Microprocessor

 Common Hardware Reference Platform (CHRP™)

System binding to:

IEEE Std 1275-1994

Standard for Boot

(Initialization, Configuration)

Firmware

Revision: 1.7 [Approved Version]

Date: September 23, 1996

2 PowerPC Microprocessor CHRP binding

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

PowerPC Microprocessor CHRP binding 3

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Purpose of this PowerPC Microprocessor CHRP™ System
binding

This document specifies the application of Open Firmware to a PowerPC Microprocessor CHRP System,
including requirements and practices to support unique hardware and firmware specific to the platform
implementation. The core requirements and practices specified by Open Firmware must be augmented by
system-specific requirements to form a complete specification for the firmware implementation of a PowerPC
Microprocessor CHRP System. This document establishes such additional requirements pertaining to the
platform and the support required by Open Firmware.

Task Group Members

The following individuals were members of the Task Group that produced this document:

Rob Baxter, Motorola®

Mitch Bradley, FirmWorks

Steve Bunch, Motorola

Bob Coffin, IBM® (editor)

Ron Hochsprung, Apple®

John Kingman, IBM

Dr. Luan Nguyen, IBM

John O’Quin, IBM

Andy Rawson, IBM

Mike Segapeli, IBM

Trademarks

The following terms, denoted by a registration symbol (®) or trademark symbol(™)
on the first occurrence in this publication, are registered trademarks or trademarks of
the companies as shown in the list below:

Trademark Company

AIX™ International Business Machines Corporation

Apple Apple Computer, Inc.

CHRP Apple Computer, Inc.

Ethernet™ Xerox

IBM International Business Machines Corporation

Microsoft® Microsoft Corporation

Macintosh™ Apple Computer, Inc.

4 PowerPC Microprocessor CHRP binding

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Mac™ OS Apple Computer, Inc.

Motorola Motorola, Inc.

PowerPC International Business Machines Corporation

Windows NT™ Microsoft Corporation

Revision History

Revision 0.1 07/27/95 Initial draft; limited distribution to CHRP AIM(Apple, IBM & Motorola) Team

Revision 0.2 08/15/95 Initial draft with distribution to CHRP AIM Team for review.

Revision 0.3 09/08/95 Distribution to CHRP AIM Team for review. Added more function to Open
Firmware(properties & methods) and RTAS.

Revision 0.4 10/20/95 Distribution to CHRP AIM Team for review. Changed basic format and
structure of document with appendices for proposals. Added
function/expanded function to: ‘bootp’, Power Management, System Nodes.
Expanded review process to include FIrePower, FirmWorks and SunSoft.

Revision 0.5 11/11/95 Added description material to Appendix A for (proposed)interrupt support.
Expanded review process to include Bull, Canon & Toshiba.

Revision 0.6 12/07/95 Added Appendix A for Future Direction. Differed certain function to next
version of CHRP System binding. CHanged old Appendix A to Appendix B
for an interrupt proposal as a recommended practice format. Numerous
editorial changes.

Revision 0.7 02/07/96 Removed Appendix A; an example of CHRP Device Tree. Appendix A became
Interrupt Structure. Changed multi-boot in Section 3.0. Moved Sections of
PowerPC Processor binding Document to system binding; ELF, endianess,
properties, Client Callbacks. Numerous editorial changes. Internal IBM
Version.

Revision 0.8 02/08/96 Minor changes to version 0.7 for review with AIM Members in Tempe, AZ.

Revision 0.9 02/23/96 Changed Multi-boot and ELF sections to clarify. Made numerous editorial
changes for accuracy and clarification.

Revision 1.0 04/10/96 Changes to reflect AIM working Cupertino Meeting on 03/7&8/96.
Added references(CHRP I/O device bindings) and edited references. Edited
boot flow(Section 3) to add path names and SGML tag format for bootinfo.
Combined ROM Node(5.2.1.1) to include OS-ROM function. Numerous
editorial changes to ISA and “disk-label” Support Package Sections.

Revision 1.1 04/16/96 Made changes for AIM Meeting, 04/15/96 in Tempe, AZ. Edited references
15, 21, 23 thru 32. Edited Boot Overview and the /options Node. Edited
Table 1 end eliminated Note 2. Changed the tags in the ‘bootinfo.txt’ file.
Redefined the ICON string definition. Changed Boot Script Description to
reboot-command Description. Abbreviated Section 5.7.1.1 by referencing
[14]. Edited the ISA Device Support Section 8.0. Added Load Method,

PowerPC Microprocessor CHRP binding 5

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Section 10.1.3 and modified “tape” package(10.2).

Revision 1.2 04/22/96 Made changes from AIM Meeting, 04/16/96 in Tempe, Az. Changed
‘boot Overview(Section 3.0) and made ‘bootinfo.txt’ format use SGML
Tags. Added reboot-command. Added material to ISA Device Support
(Section 8.0). Eliminated Mac OS file support for the “disk-label”
package. Added/changed material to OF NVRAM SECTION 11.0.

Revision 1.3 04/29/96 Removed PE Section 9.4.2. Made changes to CHRP Boot Flow Section 3.0.
Changed ‘bootinfo.txt’ tags in Section 3.1.3. Changed System Control Area
section 5.2.1 and Removed 5.2.1.2. Modified Section 12.0, OF NVRAM to
change partition definition. Changed Event Sources Node Section 5.9.1.
Changed ISA Device Support Section 8.0. Changed NVRAM Partition Section
12.0.

Revision 1.4 05/02/96 Numerous editorial changes regarding Open Firmware practices about names
of properties and methods. Corrected the Table of Contents and added a List
of Tables. Added/changed material in Section 9.1, ISA Configuration Utility
(ICU). Modified NVRAM Partition Section 12.0.

Revision 1.5 05/08/96 Numerous editorial changes regarding document to make consistent with
Open Firmware convention and improve readability. Changed Section 3.0 to
have a boot overview. Renamed most of section to ‘Multi-boot’. Made
changes to root node Section 5. Changed Section 12.0; modified OS naming
convention and classified System Partition Configuration Variables as to
category(boolean, string or number). Rewrote all of Section 12.4, System
Partition.

Revision 1.6 07/27/96 Some editorial changes. Added Interposition reference. Changed Table 1
to just reflect standard pathnames for install media. Added #size-cell property
in Section 5.1.1. Added RTAS property and RTAS Function Property Names.
Added interrupt-controller property to Section 5.5.1. Removed Interrupt
Properties. Changed built-in property, Section 5.6.2. Added Section 6.2.1,
Processor Node (slot-names-index property). Clarified Section 11.1,
disk-label Support package. Changed Table 12. Changed multi-initiator
script, Section 12.4.4.

Revision 1.7 09/23/96 Added Reference [5] and version numbers/url’s to other references. Removed
“reserved” property and reference from Section 5.3.1, PCI Host Bridge
Properties. Added reference to ROM Node methods, added decode-unit
and encode-unit methods and added arguments for the set-args method
for Section 5.1.3.2. Added clarification to “reg” property for the ROM Child
Node, Section 5.1.4.1. Added epow-events property, Section 5.8.1.2,
“power-on-triggers”. Added Sections 5.9, reserved Node and 5.10,
/chosen Node. Made Section 9.0, ICU optional. Added Section 11.4.1
Windows NT PE Support. Corrected Multi-initiator script example in Section
12.4.4.1.

6 PowerPC Microprocessor CHRP binding

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

PowerPC Microprocessor CHRP binding 7

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Table of Contents:

1. Overview. 13
1.1 General Requirements for Open Firmware. 13

2. References and Terms. 13
2.1 References. 13
2.2 Terms . 15

3. CHRP Boot Flow . 16
3.1 CHRP Boot Overview. 16

3.1.1 Additional Requirements for probe-all Method. 17
3.1.2 CHRP Multiboot . 17
3.1.3 Bootinfo Configuration Variables . 18
3.1.4 Bootinfo Properties . 18
3.1.5 Standard Locations for Bootinfo Objects 18
3.1.6 Bootinfo Objects . 19

3.1.6.1 Bootinfo Entities . 20
3.1.6.2 Bootinfo Character Sets . 20
3.1.6.3 Element Tag Descriptions . 21
3.1.6.4 CHRP-BOOT Element . 21
3.1.6.5 OS-NAME element . 21
3.1.6.6 BOOT-SCRIPT element . 21
3.1.6.7 ICON element . 21

3.1.6.7.1 BITMAP element. 21
3.1.7 Multiboot Menu . 22

3.2 Reboot-Command Variable Description. 22
4. CHRP PowerPC Processor . 23

4.1 Processor Endian-ness Support. 23
4.1.1 Bi-Endian Booting . 23

5. Open Firmware Platform Extensions . 23
5.1 Open Firmware Root Node. 24

5.1.1 Root Node Properties. 24
5.1.2 Root Node Methods . 25
5.1.3 ROM Node(s). 25

5.1.3.1 ROM Node Properties . 25
5.1.3.2 ROM Node Methods . 26

5.1.4 ROM Child Node(s). 27
5.1.4.1 ROM Child Node Properties . 27
5.1.4.2 ROM Child Node Methods . 27

5.2 Run Time Abstraction Services (RTAS) Node. 28
5.2.1 RTAS Node Properties . 28
5.2.2 RTAS Function Property Names . 29
5.2.3 RTAS Node Methods. 30

8 PowerPC Microprocessor CHRP binding

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

5.3 PCI Host Bridge Nodes. 30
5.3.1 PCI Host Bridge Properties . 31
5.3.2 Methods for PCI Host Bridge Nodes . 32

5.4 Memory Controller Nodes . 33
5.4.1 Memory Controller Node Properties . 33

5.5 Interrupt Controller Nodes . 34
5.5.1 Open PIC Interrupt Controller Node Properties 34

5.6 Additional Node Properties. 35
5.6.1 Interrupt Properties . 35
5.6.2 Miscellaneous Node Properties . 35

5.7 Aliases Node . 36
5.8 Event Sources Node . 37

5.8.1 Child nodes of the Event Sources Node 37
5.8.1.1 internal-errors . 37
5.8.1.2 epow-events . 37
5.8.1.3 power-management-events . 37

5.9 Reserved Node . 38
5.10 ‘/chosen’ Node . 38

6. Symmetric Multi-Processors(SMP) . 38
6.1 SMP Platform Device Tree Structure . 38
6.2 SMP Properties . 39

6.2.1 Processor Node . 39
7. Device Power Management Properties/Methods . 39

7.1 System Node Properties . 40
7.1.1 Properties assigned to the RTAS node. 40
7.1.2 Properties of the power-management-events node 41

7.2 Device Properties . 41
7.2.1 Properties for Power Domain Control Points 43

7.3 Power Management Related Methods . 43
7.4 Power Management NVRAM Partition . 43

8. ISA Device Support . 43
8.1 Additional ISA Requirements. 44

8.1.1 ISA Addresses . 45
8.1.2 ISA Interrupts and DMA Channels . 45
8.1.3 ISA Unit Address Format . 45
8.1.4 ISA Additional Properties . 45

9. Configuration of Platform Resources . 45
9.1 ISA Resource Configuration. 46

9.1.1 ISA Resource Configuration Description 46
9.1.1.1 ISA Configuration Handle Assignment 46

9.1.2 ISA Legacy Configuration Data Format Requirements. 47
9.2 Power Management Resource Configuration 49

9.2.1 Power Management Information Utility 49
9.2.2 PM Configuration Process . 49
9.2.3 PM Configuration Format . 49

10. Client Program Requirements. 51

PowerPC Microprocessor CHRP binding 9

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

10.1 Load Address . 51
10.2 Initial Register Values. 52
10.3 I/O Devices State . 52
10.4 Client Program Format . 52

10.4.1 ELF-Format . 52
10.4.1.1 ELF Note Section . 52
10.4.1.2 Recognizing ELF-Format Programs 53
10.4.1.3 Preparing ELF-Format Programs for Execution 54

10.5 Additional Client Interface Requirements . 55
10.5.1 Client Interface Callbacks . 55

10.5.1.1 Real-Mode Memory Management Assist Callbacks . . . 55
10.5.1.2 Virtual Address Translation Assist Callbacks 55

10.5.2 Client Interface Services . 55
11. Support Packages . 56

11.1 "disk-label" Support Package . 56
11.1.1 Media Layout Format . 56

11.1.1.1 FDISK Partition Types . 56
11.1.2 Open Method Algorithm . 57

11.2 “tape-label” Support Package . 63
11.2.1 Tape Format . 63
11.2.2 Tape bootinfo.txt File. 63

11.3 “network” Support Package . 64
11.4 Program-image formats. 64

11.4.1 CHRP PE Program-image Format Support 65
11.4.1.1 Windows NT Veneer Implementation 65

12. Open Firmware Related NVRAM Usage . 65
12.1 Open Firmware Partition. 66
12.2 Firmware Partition . 66
12.3 Hardware Partition . 66
12.4 System Partition . 66

12.4.1 Name . 67
12.4.2 Value . 67
12.4.3 Open Firmware Configuration Variables. 67

12.4.3.1 Boolean Configuration Variables 67
12.4.3.2 Integer Configuration Variables 68
12.4.3.3 String Configuration Variables 68
12.4.3.4 Byte Configuration Variables . 68

12.4.4 nvramrc Script . 68
12.4.4.1 Multi-initiator Script . 69

12.5 Configuration Partition . 70
12.5.1 ISA PnP Configuration Resources. 70
12.5.2 Device Power Management Configuration Resources 70
12.5.3 Error Log Partition. 70

12.6 Vendor-Defined Partition . 70
12.7 Free Space Partition . 70

10 PowerPC Microprocessor CHRP binding

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

PowerPC Microprocessor CHRP binding 11

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

List of Tables:

Table 1.. Standard Pathnames for bootinfo.txt file 18
Table 2...Semantics of device state values 42
Table 3............. Combinations of Device Power State/Domain Power Level 42
Table 4..ISA Open Firmware Resource Information 44
Table 5..ISA Card Configuration Directory 47
Table 6................................ISA Card PnP-like Small Data Item Tag Format 47
Table 7................................ ISA Card PnP-like Large Data Item Tag Format 48
Table 8................................ Power Management Configuration Data Header 50
Table 9..Data Block Format 50
Table 10.. Node Data Block Format 50
Table 11... Property Data Block Format 51
Table 12....................................Open Firmware Related NVRAM Partitions 66

12 PowerPC Microprocessor CHRP binding

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

PowerPC Microprocessor CHRP binding 13

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

1. Overview
This document specifies the application of IEEE Std 1275-1994 Standard for Boot (Initialization, Configuration)
Firmware, Core Practices and Requirements, Core Errata, IEEE P1275.7 and appropriate Open Firmware
Standards for PowerPC Microprocessor CHRP Computer Systems[3], including practices for client program
interface and data formats.

1.1. General Requirements for Open Firmware
An Open Firmware implementation for a PowerPC Microprocessor CHRP platform shall implement the core
requirements as defined in [1], core errata[2], the PowerPC Processor-specific extensions described in [6], other
appropriate bindings and/or recommended practices contained in the references (Section 2.1), and the PowerPC
Microprocessor CHRP binding specific extensions described in this document.

In addition, an Open Firmware implementation for a PowerPC Microprocessor CHRP platform shall implement
the Device Interface, Client Interface and User Interface as defined in Open Firmware core document, reference
[1].

The Open Firmware Documentation can be found on servers, ‘playground.sun.com’ and ‘chrp.apple.com’.
The URL for this documentation is the following:

http://playground.sun.com/1275

or

http://chrp.apple.com/1275

Open Firmware Documentation can also be found on an ftp server. The ftp server has the Open Firmware
Documentation plus more archieved documents. The URL for this documentation is the following:

ftp://playground.sun.com/pub/1275

Versions of the Open Firmware Documentation are maintained in sub-directories under the 1275 directory on a
topic basis. For example, under the bindings/ sub-directory, the isa/, pci/ and ppc/ sub-directories have versions
of the ISA/EISA/ISA-PnP binding, PCI Bus binding and PowerPC Processor binding respectively. The sub-
directory postscript/ contains the latest postscript versions of the Open Firmware Documentation.

For ISA support, the CHRP System binding has additional restrictions and/or requirements imposed on the
ISA/EISA/ISA-PnP binding(See “Additional ISA Requirements” on page 44.). Also, for completeness, the ISA
I/O Device bindings ([24],[25],[26],[27],[27],[28],[29],[30],[31] and [32]) are listed in the references. The I/O
device bindings support the CHRP Standard I/O specified in the I/O Device Reference Document[4].

2. References and Terms
References and terms for the CHRP System binding are listed in this section.

2.1. References
This Open Firmware System binding standard shall be used in conjunction with the following publications.
When the following standards are superseded by an approved revision, the revision shall apply.

[1] IEEE Std 1275-1994 Standard for Boot (Initialization, Configuration) Firmware, Core Practices and
Requirements.

[2] Core Errata, IEEE P1275.7/D4.

14 PowerPC Microprocessor CHRP binding

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

[3] PowerPC Microprocessor Common Hardware Reference Platform: A System Architecture. This document
describes the platform specifications; hardware attributes, characteristics and I/O Sub-system content. The URL
for the document is: http://www.austin.ibm.com/tech/chrp/index.html.

[4] PowerPC Microprocessor Common Hardware Reference Platform: I/O Device Reference. This document
describes the platform Standard I/O Devices; hardware registers, register locations, and hardware attributes. The
URL for the document is: http://www.austin.ibm.com/tech/chrpio/index.html.

[5] CHRP Architecture Version 1.0 Change Notice, 08/01/96. This document contains architectures changes to
the base CHRP Architecture. The URL for this document is:
ftp://www.austin.ibm.com/pub/technology/spec/chrp/CHNG_C10.PS.Z

[6] PowerPC Processor binding to: IEEE Std 1275-1994, Standard for Boot (Initialization, Configuration)
Firmware, Version 2.0.

[7] PCI Bus binding to: IEEE Std 1275-1994, Standard for Boot (Initialization, Configuration) Firmware,
Version 2.1.

[8] ISA/EISA/ISA-PnP binding to: IEEE Std 1275-1994, Standard for Boot (Initialization, Configuration)
Firmware, Version 0.4.

[9] PC Card binding to: IEEE Std 1275-1994, Standard for Boot (Initialization, Configuration) Firmware,
Version 1.2.

[10] Open Firmware: Recommended Practice - Device Support Extensions, Version 0.8.

[11] Open Firmware: Recommended Practice - 16-color Text Extensions, Version 1.2.

[12] Open Firmware: Recommended Practice - 8-bit Graphics Extensions, Version 1.2.

[13] Open Firmware: Recommended Practice - Forth Source and FCode Image Support, Version 1.0. This
document describes program-image formats for FCode and Forth Source Code.

[14] Open Firmware: Recommended Practice - Generic Names, Version 1.3. This document describes a naming
convention for Open Firmware device nodes.

[15] Open Firmware: Recommended Practice - Interrupt Mapping, Version 1.0. This document describes an
interrupt structure for Open Firmware.

[16] Open Firmware: Recommended Practice - TFTP Booting Extensions, Version 0.8. This document describes
network extensions to the OBP-TFTP Support Package.

[17] Open Firmware: Recommended Practice - Interposition, Version 0.2. This document describes a standard
technique which allows file system services to be layered (interposed) on top of unmodified FCode device
drivers. The recomended practice creates a new FCode and a new client interface service.

[18] MS-DOS Programmer's Reference, published by Microsoft. This document describes the MS-DOS
partition, directory and FAT formats used by disk-label support package.

[19] Peering Inside the PE: A Tour of the Win32 Portable Executable File Format, found in the March, 1994
issue of Microsoft Systems Journal.

[20] ISO-9660, Information processing -- Volume and file structure of CD-ROM for information interchange,
published by International Organization for Standardization.

[21] System V Application Binary Interface, PowerPC Processor Supplement, Sunsoft. This document defines the
PowerPC ELF format.

[22] Inside Macintosh, SCSI Disk Partition Definition, CD-ROM ISBN 0-201-94591-6.

[23] Open PIC Multiprocessor Interrupt Controller Register Interface Specification, Revision 1.2. Refer to URL
of http://www.amd.com/html/products/pcd/openpic/19725c.pdf for the document.

PowerPC Microprocessor CHRP binding 15

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

[24] CHRP ISA Keyboard/Mouse Controller Device binding, Version 1.0.

[25] CHRP ISA DMA Controller Device binding, Version 1.0.

[26] CHRP ISA Parallel Port Device binding, Version 1.0.

[27] CHRP ISA Audio Device binding, Version 1.0.

[28] CHRP ISA Interrupt Controller Device binding, Version 1.1.

[29] CHRP ISA Serial Port Device binding, Version 1.0.

[30] CHRP ISA Floppy Controller Device binding, Version 1.0.

[31] CHRP Linear Frame Buffer Display Device binding, Version 1.0.

[32] CHRP VGA Display Device binding, Version 1.0.

[33] ISO Standard 8879:1986, Information Processing -- Text and Office Systems -- Standard Generalized
Markup Language(SGML).

[34] Plug and Play ISA Specification, Version 1.0a, 05/05/1994.

[35] Clarification to the Plug and Play ISA Specification, Version 1.0a, 12/10/94.

2.2. Terms
This standard uses technical terms as they are defined in the documents cited in "References", plus the following
terms:

ARP: Address Resolution Protocol

BOOTP: Bootstrap Protocol

CHRP: Common Hardware Reference Platform, also PowerPC Platform.

core, core specification, core document: Refers to IEEE Std 1275-1994 Standard for Boot (Initialization,
Configuration) Firmware, Core Practices and Requirements

core errata: Refers to Core Errata, IEEE P1275.7

CPU: Central Processing Unit

ELF: Executable and Linking Format. A binary object file format defined by [21]that is used to represent client
programs in Open Firmware for PowerPC.

FDISK: Refers to the boot-record and partition table format used by MS-DOS, as defined in [18].

gateway: Network connecting device

host: A computer. In particular a source or destination of messages from the point of view of the
communication network.

ICMP: Internet Control Message Protocol

ICU: ISA Configuration Utility; Refers to CHRP platform program to assist a user to configure ISA resources.

IETF: Internet Engineering Task Force

IP: Internet Protocol

IO: Input/Output

LAN: Local Area Network

16 PowerPC Microprocessor CHRP binding

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

NVRAM: Non-volatile memory that is the repository for various platform, Open Firmware and operating system
information that remains persistent across reboots, power management activities and/or cycles.

Open Firmware: The firmware architecture defined by the core specification[1] and errata[2], or, when used as
an adjective, a software component compliant with the core specification and errata.

OpenPIC: Is a register-level architectural definition of an interrupt controller that supports up to 32
processors(Refer to [23] for more information).

PCU: Power Configuration Utility; Refers to CHRP platform program to assist a user to manage device power.

PE: Portable Executable. A binary object file format defined by [19]; this format is used by Windows NT™
operating system.

PROM: programmable read only memory

real-mode: The mode in which Open Firmware and its client are running with translation disabled; all addresses
passed between the client and Open Firmware are real (i.e., hardware) addresses.

RFC: Internet Request For Comments; part of the technical process of establishing a standard.

ROM: Read Only Memory

suspend: A form of Power Management characterized by a fast recovery to full operation. Typically, system
memory will not be powered off while in the suspend state.

TFTP: Trivial File Transfer Protocol

UDP: User Datagram Protocol

virtual-mode: The mode in which Open Firmware and its client share a single virtual address space, and
address translation is enabled; all addresses passed between the client and Open Firmware are virtual (translated)
addresses.

3. CHRP Boot Flow
This section gives a system boot process overview and defines the enhancements to the standard Open Firmware
boot process that are present in the boot process for a CHRP platform.

3.1. CHRP Boot Overview
The CHRP platform performs a normal Open Firmware boot(See [1], IEEE Std 1275-1994 Standard for Boot
(Initialization, Configuration) Firmware, Core Practices and Requirements) as stated in the Core Practice
Document, Section 4.2.3, Start-up script evaluation. CHRP platforms provide an additional capability to assist
the user in choosing which of several operating systems to boot. A key sequence can be used to interrupt the
normal boot flow and present the user with a multiboot menu, which can be either graphical or text-based at the
discretion of the platform’s firmware, from which the user can choose one of the installed or installable
operating systems. Presenting the user with this choice can also be made the default mode of operation at
platform boot time, by means of the auto-boot? and menu? configuration variables.

An overview of a CHRP platform boot sequence and the additions of the multiboot menu are given below:

PowerPC Microprocessor CHRP binding 17

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

The CHRP boot flow described above occurs after all of the devices have been probed (i.e., by the execution of
probe-all); See section 3.1.1. additional requirements for probe-all method.

The CHRP boot sequence defaults to a normal boot if the boolean variable auto-boot? is true and
diagnostic-mode? is false. In this situation, the system shall then boot from information contained in the
configuration variables boot-device and boot-file.

From the boot sequence above, entry to the multiboot menu may occur anywhere after step ‘f’, banner, if the
platform key sequence(multiboot menu) has been depressed or in step ‘i’ if the boolean variable menu? is true.

3.1.1. Additional Requirements for probe-all Method
Before probing for plug-in devices, Open Firmware shall execute the probe method, as with execute-
device-method, of any built-in device nodes. The order of evaluation shall ensure that the probe method
of a parent device node is executed before the probe method of any of its children.

Note: During this built-in probing, /rom nodes will locate ROM based OSs. The FCode
for these devices can publish their “bootinfo” properties that are used during the
multiboot scenario as described below.

3.1.2. CHRP Multiboot
The boot choices identified to the user are defined by bootinfo objects which are located on various system
media. Each bootinfo object contains information about one operating system, such as its name and
description, an icon depicting it, and an Open Firmware command sequence to load and execute it. The
locations where bootinfo objects can be found are specified by Open Firmware device-specifiers that are the
values of configuration variables, the names of which are of the form “bootinfo-nnnnn”, where “nnnnn”
is OS-specific. These configuration variables are stored in the System Partition in NVRAM and are published
in the device tree as properties under the /options node. The multiboot menu will use these configuration
variables to locate and parse bootinfo to obtain the OS icon, description, etc.

a) Power On Self Test(POST)

b) System Initialization

c) Evaluate the script (if use-nvramrc? is true)

d) probe-all (evaluate FCode)

e) install-console

f) banner

g) Secondary Diagnostics and other system-dependent initialization

h) Default boot (if auto-boot? is true)

i) Entry to multiboot menu (if menu? is true)

j) Invoke the command interpreter (if preceding step returns)

(key chord for multiboot menu will be recognized and acted upon after this point)

CHRP Start-up Script Sequence Evaluation:

18 PowerPC Microprocessor CHRP binding

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

In addition to the bootinfo-nnnnn configuration variables, the multiboot menu will search the device tree for
nodes containing “bootinfo” properties, which specify that the node can supply a bootinfo object. This is
particularly useful for operating systems contained in ROMs.

Note: The order prescribed by probe-all guarantees that these properties be created
before the multiboot menu has been invoked.

Different versions of the same operating system may each have their own bootinfo and associated configuration
variables. Although it is possible to put bootinfo in any media location that Open Firmware can read, this
specification defines standard locations for various types of media, to allow the firmware to establish the
bootinfo configuration variables automatically in many cases.

3.1.3. Bootinfo Configuration Variables
A bootinfo configuration variable is any configuration variable that meets the following requirements:

• Its name is of the form “bootinfo-nnnnn”, where nnnnn is a string of at most 22 characters from the set of
valid characters for Open Firmware configuration variable names. The exact value of “nnnnn” for a particular
operating system may be chosen by that operating system. The naming convention for the operating system
should be chosen to avoid possible naming conflicts between operating system vendors(See Section 12.4.1. on
page 67.)

• Its value is an Open Firmware device-specifier that identifies an object (e.g. disk file, tape file, disk partition or
/rom child node) whose contents are a “bootinfo object” as defined below.

3.1.4. Bootinfo Properties
Any node in the device tree can have a “bootinfo” property whose value specifies the arguments to use in
opening that device in order to access its bootinfo object.

“bootinfo” S

prop-name, locates the node’s bootinfo object

prop-encoded-array: A string, encoded as with encode-string

The presence of this property signifies that the device has an associated bootinfo object. The value is a text
string such that when this devices node open method is called, the value of text string that is passed to the
device’s node open method is my-args. When so opened, subsequent calls to the node’s “read”
method will yield the contents of the node’s bootinfo object.

3.1.5. Standard Locations for Bootinfo Objects
The standard locations for bootinfo objects on various CHRP media and partition types is shown in the table
below. An operating system must put it’s bootinfo object in the standard location in order to guarantee
interoperability with the CHRP multiboot menu mechanism.

Table 1. Standard Pathnames for bootinfo.txt file

Name Device/Partition Notes

Installation Media:

Any block device: device:parti-
tion,\ppc\bootinfo.txt

Any file system format

PowerPC Microprocessor CHRP binding 19

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Note 1: If bootinfo.txt file is not present, file 0 should contain a program image file
for a bootable tape.

Example of installed(“bootinfo-nnnnn”) block device(disk):

ALIAS EXAMPLE:

bootinfo-aix-4.3=disk:2 (The contents of partition 2, which is probably a “0x41” partition, on the
default disk, is the bootinfo.txt file for a version of the AIX Operating System.)

bootinfo-nt-4.0=disk:\os\winnt\bootinfo.txt (The file \os\winnt\bootinfo.txt on the
default partition of the default disk is the bootinfo.txt file for a version of the Windows NT Operating System.)

NON-ALIAS EXAMPLE:

bootinfo-aix-4.4=/pci@ff500000/pci3,1000@10/sd0,0:3 (The contents of partition 3, which is
probably a “0x41” partition, on the SCSI disk at target 0 unit 0, is the bootinfo.txt file for a version of the AIX
Operating System.)

3.1.6. Bootinfo Objects
The information used by Open Firmware to display information in the multiboot menu and to locate and process
an OS load image is contained within a sequence of text that is called a bootinfo object. The text comprising
the bootinfo object uses SGML[33] syntax, with tags identifying the subordinate elements.

The following outline is a summary of the organization of the bootinfo object. Elements at the same level do not
have any required order. The tags are illustrated in upper case, but shall be processed in a case-insensitive
manner.

<CHRP-BOOT>

<DESCRIPTION>

....

</DESCRIPTION>

<OS-NAME>

....

</OS-NAME>

Tape: device:0 (Note 1) Presence of
bootinfo.txt is
optional

ROM: device:bootinfo bootinfo is the value of
the “bootinfo” prop-
erty in a /rom child node

Network: Could specify bootinfo.txt
or some other file from the Bootp
server

Specifying
bootinfo.txt from
the Bootp server is
optional

Name Device/Partition Notes

20 PowerPC Microprocessor CHRP binding

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

<BOOT-SCRIPT>

....

</BOOT-SCRIPT>

<ICON

SIZE=ww,hh

COLOR-SPACE=r,g,b

>

<BITMAP>

hh hh hh hh

</BITMAP>

</ICON>

</CHRP-BOOT>

Note 1: If ‘SIZE’ is not present, assume default of 64,64. If ‘COLOR-SPACE’ is not
present, assume default of 3,3,2.

Note 2: Another <chrp-boot> tag sequence could define a different boot selection

Note 3: CHRP platforms will recognize only the tags between the beginning <chrp-boot>
tag until the end </chrp-boot> tag. If a tag is unrecognized, the material will be ignored
until the end tag. Other non-<chrp-boot> tags may be supported in the future. These
additional selections would also be presented to the user as boot options.

3.1.6.1. Bootinfo Entities
SGML provides “entities” that provide symbolic names for text. When the entity names are contained within &
and ‘;’, the entity is replaced with text as defined by the entity; i.e., entities provide a “macro” substitution
capability. The bootinfo object may use entities to supply pathname components that depend upon the location
of the file. Also, entities have been defined for the standard SMGL Tags for the presence of the ‘<‘, ‘&’ and
‘>’ characters in the text as < , & and >. Within the <BOOT-SCRIPT> element, the following
entities are defined with respect to the fully qualified pathname of the bootinfo object:

device the device component.

partition the partition component.

directory the directory component.

filename the filename component.

full-path the entire fully qualified pathname.

The fully qualified pathname could be represented by the following text:

&device;:[&partition;][,]\&directory;\&filename;

Note: underlined portions illustrate where entities are positioned within the full pathname

3.1.6.2. Bootinfo Character Sets
The character set used by the bootinfo.txt file is ISO-8859-1 (Latin-1). Element tags and entity names are not
case sensitive; all other text is case sensitive.

PowerPC Microprocessor CHRP binding 21

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.1.6.3. Element Tag Descriptions
The following sections describe each of the element tags and how they are used.

3.1.6.4. CHRP-BOOT Element
This element provides the grouping for each OS that is represented within a single bootinfo.txt file.
Multiple CHRP-BOOT sections are allowed within a single bootinfo.txt file.

3.1.6.5. OS-NAME element
This element contains the complete name of the OS.

3.1.6.6. BOOT-SCRIPT element
This element contains an Open Firmware script that is executed when the OS defined by this CHRP-BOOT
section is selected to be loaded. Each line of this element is processed as if it were entered from the input
device of the user interface. Typically, the last line of this script would contain a boot command; the
pathname of the OS’s load image can be constructed with the entities described above.

3.1.6.7. ICON element
This element describes the OS icon that can be displayed by the multi-boot process. The icon should be
designed to be pleasant against a light background.

The SIZE parameter consists of a two decimal numbers, separated by a comma, that represent the width and
height (in pixels) of the icon, respectively. The default value is “64,64”

The COLOR-SPACE parameter consists of three decimal numbers, separated by commas, that represent the
number of bits for the red, green, and blue components of each pixel. The default value is “3,3,2”1.

Note 1: This version of CHRP supports only a 3,3,2 icon color-space and 64,64 icon size.
Other icon size’s and color-space’s are reserved for future CHRP implementations

If an icon is not stated, the platform will display a generic system icon that is platform dependent.

3.1.6.7.1. BITMAP element
This element specifies the bitmap. It consists of a sequence of hex digit pairs, each of which defines a pixel;
white spaces is allowed between pixel values. The number of hex digit pairs is defined by the product of the
width and height values of the SIZE parameter.

icon string example: <icon size=64,64 color-space=3,3,2><bitmap>hh hh...

hh2</bitmap></icon>

Note 2: Hex string would be 8192 characters for a size=64,64 in the above example.

For the two examples below, the tags have been indented and separated by line feeds for each start/end tag pair
to make a more readable script style.

AIX Bootinfo Object Example:

<chrp-boot>

<description>AIX 4.2.D.0</description>

<os-name>AIX 4.2.D.0</os-name>

<boot-script>boot &device;:2</boot-script>

22 PowerPC Microprocessor CHRP binding

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

<icon size=64,64 color-space=3,3,2><bitmap>hh ... hh1</bitmap></icon>

</chrp-boot>

AIX Diagnostics Bootinfo Object Example:

<chrp-boot>

<description>AIX 4.2.D.0 Diagnostics</description>

<os-name>AIX 4.2.D.0 Diagnostics</os-name>

<boot-script>boot &device;:2 diag</boot-script>

<icon size=64,64 color-space=3,3,2><bitmap>hh ... hh1</bitmap></icon>

</chrp-boot>

Note 1: 64x64 icon size would have 8192 hex string characters

3.1.7. Multiboot Menu
If the boot sequence is interrupted by the multiboot key sequence, then the firmware shall present a multiboot
menu that provides at least the functions listed below. The form of the menu (e.g. graphical or text- oriented)
and the selection mechanism (e.g. numbered choices, arrow keys, or mouse) are platform-dependent.

Multiboot Required Functions:

• Locate all bootinfo objects specified by bootinfo configuration variables and device node “bootinfo” proper-
ties. For each bootinfo object, present a choice corresponding to each valid <chrp-boot> section contained
therein. For each such choice, allow the user to either:

• Execute the contents of that bootinfo object’s <boot-script> element.

• Set the “boot-command” configuration variable to the contents of that bootinfo
object’s <boot-script> element.

• Present a choice corresponding to each install device, which, when invoked, will attempt to locate a bootinfo
object at the device’s standard location (see Table 1).

• Allow the user to manage configuration variables
• Allow the user to invoke the Open Firmware user interface

Additional options that could be implemented would be to provide a means to get to diagnostics or specific
platform options.

There shall be at least one key sequence to enter the multi-boot platform function for a CHRP platform.

Note: Operating System have the responsibility to update the NVRAM System Partition
Variable to reflect a change where the bootinfo.txt file is located; e.g., moving to a different
disk device. Also, the OS is responsible for maintaining the contents of the bootinfo.txt
file.

3.2. Reboot-Command Variable Description
The OS can cause Open Firmware to execute a specified sequence of commands at the next boot by setting the
value of the “reboot-command” configuration variable. CHRP firmware implementations shall implement
the following configuration variable.

reboot-command(-- addr len) N

One time or temporary reboot command.

The value of this configuration variable is a string consisting of zero or more lines of text, with lines
separated by either <return>, <linefeed>, or <return><linefeed>.

PowerPC Microprocessor CHRP binding 23

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

During firmware start-up, just prior to checking the auto-boot? configuration variable for automatic
booting, the firmware shall check the value of reboot-command. If the value is not the empty string,
the firmware shall save the value to a temporary location, set reboot-command to the empty string, and
evaluate the saved value as though it were a series of user interface command lines.

If the evaluation of reboot-command returns without executing, the firmware shall proceed with its
normal start-up sequence. In typical usage, however, the value of reboot-command will include a boot
command that starts a client program and does not return.

4. CHRP PowerPC Processor
Open Firmware defines a minimum cell size of 32 bits; therefore, only one cell is necessary to represent
addresses up to 4GB (32 bits). Two cells are necessary to represent addresses above 4GB and within 64 bits.
Also, two cells are necessary to represent sizes greater than 4GB.

4.1. Processor Endian-ness Support
An implementation of the PowerPC Open Firmware shall support both Big- and Little-Endian system
implementations. This section describes added features to the core Open Firmware architecture features to
support bi-endian booting.

4.1.1. Bi-Endian Booting
The Configuration Variable little-endian? must be implemented. The basic concept of bi-endian support is
to keep in the little-endian? variable a "cached" indication of the desired endian-ness of client programs
(for example operating systems or their loaders). This variable indicates the expected endian-mode of a boot
target; false (0) indicates Big-Endian, true (-1) indicates Little-Endian; the default value of little-endian?
is implementation dependent.

The client program must describe its endian-mode in the header section of its image as described in
Section 10.4. on page 52. When Open Firmware is started, Open Firmware shall use the value of little-
endian? to establish the endian-mode of a system. After Open Firmware locates and loads a client program,
the correct endian-mode must be verified with the description in the header section of the client program image.
If the cached value is correct, Open Firmware proceeds, with the system in its current endian-mode.

If, however, Open Firmware determines that the endian-mode of the client program is different from what it had
assumed, it must set little-endian? appropriately and reconfigure the system (hardware and firmware) for
the new endian-mode, possibly by resetting the system as with reset-all.

Note: The endian-mode applies to the entire hardware platform, including the processor(s).
Open Firmware shall perform whatever steps are required to enable the platform to run
in the specified mode.

Client programs can use setprop to alter the value of little-endian?; users can alter it via the setenv
command from the user interface (if present). The alteration of little-endian? shall not cause the platform
to be reconfigured until the platform is re-booted.

Note: This mechanism introduces an extra configuration pass. However, this occurs only
when switching the endian-mode from that which was last used. For most boots, Open
Firmware will be appropriately configured, so that no additional overhead will occur.

5. Open Firmware Platform Extensions
This section defines Open Firmware properties, methods, device tree structure and Client Interface Service
requirements for a CHRP platform.

24 PowerPC Microprocessor CHRP binding

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

5.1. Open Firmware Root Node
This section defines additional properties and methods associated with CHRP platforms that CHRP operating
systems expect to find in the root node. The unit address of all non-system nodes that are children of the root
node shall have the same value each time the platform is booted; i.e., shall be invariant for each boot process.

Note: This requirement ensures that the PHB would have a stable unit address. Violations
of this rule may require reinstallation of an OS.

Note: Typically, the root node corresponds to the common processor bus in a PowerPC
platform.

5.1.1. Root Node Properties
This section defines the additional properties which shall be present in the root node unless otherwise specified.

"#address-cells" S

Standard property, encoded as with encode-int, that specifies the number of cells required to represent
physical addresses on the processor bus. The value of "#address-cells" for the processor bus shall be 1 or 2
depending on whether there is any memory addressable at or above 4GB’s.

"#size-cells" S

Standard property, encoded as with encode-int, that specifies the size of cells required to represent physical
addresses on the processor bus. The value of "#size-cells" for the processor bus shall be 1 or 2 depending
on whether there is any memory addressable at or above 4GB’s.

"clock-frequency" S

Standard property, encoded as with encode-int, that represents the primary system bus speed (in hertz).

"system-id" S

Standard property, encoded as with encode-string, that contains the identification of the computer
system (Reference the “name” property in the core specification[1]). This string should be unique across
all systems and all manufacturers. An example of an address of this form is "0nnnnnnmmmmmm" where
nnnnnn is a sequence of 6 uppercase hexadecimal digits representing a 24-bit value that identifies
manufacturer and mmmmmm is a sequence of 6 uppercase hexadecimal digits representing a 24-bit binary
number assigned by the manufacturer to assure uniqueness.

Note: For platforms with built-in ethernet or other IEEE 802-style interfaces, the 6-byte
MAC address assigned to that interface meets the requirements and could be used as the
system-id.

“model” S

prop-name is a printable string identifying the manufacturer and model number of the platform.

prop-encoded-array: Text string, encoded as with encode-string.

The value of this property is a vendor dependent string which identifies this platform via its manufacturer
and model number.

“device_type” S

prop-name is a printable string identifying the platform as CHRP Compliant.

prop-encoded-array: Text string, encoded as with encode-string.

The value of this property is a string, “chrp” which identifies the platform is CHRP Compliant.

“pc-emulation” S

Note: The recommended procedure to determine if the PC Emulation Function is present
is to do a “test-method” (Refer to Section 10.5.2. on page 55) for the set-pc-emulation
method. This property could be deleted in future CHRP Open Firmware Architecture
Versions.

prop-name indicates the presence of the PC Emulation option for PCI Host Bridge 0 and the Memory
Controller(s).

PowerPC Microprocessor CHRP binding 25

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

prop-encoded-array: <none>

This property shall be present if PCI Host Bridge 0 and the Memory Controller(s) support the PC emulation
option, otherwise this property shall be absent. (The option may be enabled via the set-pc-emulation
method, if the PC Emulation option is present, see Section 5.1.2. on page 25.)

“exception-relocation-size” S

prop-name specifies the fixed amount of address space above physical address 0xFFF00000 which is
relocated down into System Memory when the PC Emulation option is enabled.

prop-encoded-int: Integer, encoded as with encode-int.

The granularity of “exception-relocation-size” properties value is 4 KB and the minimum size
is 12 KB. This property shall be present if the PC Emulation capability is available, otherwise this property
shall be absent.

“processor-hole” S

Note: The recommended procedure to determine if the Processor Hole Function is present
is to do a “test-method” (Refer to Section 10.5.2. on page 55) for the “set-processor-hole”
Method. This property could be deleted in future CHRP Open Firmware Architecture
Versions.

prop-name indicates that this PCI Host and Memory Controller has the optional processor-hole capability.

prop-encoded-array: <none>

This property shall be present if PCI Host Bridge 0 and the Memory Controller(s) support the processor-
hole, otherwise this property shall be absent. (The processor hole may be enabled via the set-
processor-hole method if the capability is supported, see Section 5.1.2. on page 25.)

“platform-open-pic” S

prop-name indicates the system Open Firmware Interrupt Controller physical addresses.

prop-encoded-array: List of system phys-addr values

This property value is a list of system physical addresses corresponding to “reg” property of the system
OpenPIC Interrupt Controller

5.1.2. Root Node Methods
This section defines methods associated with the platform via “/” (the root node).

set-processor-hole (true | false --) M

Enable(true) or disable(false) the processor-hole on PCI Host Bridge 0 and the Memory Controller(s). This
method shall be present if the processor-hole capability is supported.

set-pc-emulation (err-value tem-value enable? --) M

If the flag enable? is true, enable the PC Emulation option on PCI Host Bridge 0 and the Memory
Controller(s). Also disable the system-memory-alias on PCI Host Bridge 0 and the Memory Controller(s).
The input value err-value is loaded into the Exception Relocation Register (ERR) in the PCI Host Bridge(s)
and Memory Controller(s). The input value tem-value is loaded into the Top of Emulated Memory (TEM)
boundary in the PCI Host Bridge(s) and Memory Controller(s). If the flag enable? is false, the PC
Emulation option on PCI Host Bridge 0 and the Memory Controller(s) is disabled. The state of PCI Host
Bridge 0’s initial memory aliases is undefined after it is disabled. This method shall be present if the PC
Emulation option is present. The units for err-value and tem-value are in bytes.

5.1.3. ROM Node(s)
The ROM Node(s) shall be a child or children of the root node.

5.1.3.1. ROM Node Properties
Each ROM Node shall have the following properties:

26 PowerPC Microprocessor CHRP binding

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

“name” S

Standard prop-name: The value of this property shall be “rom”.

“reg” S

Standard prop-name to define a unit-address for the node.

prop-encoded-array: One (phys-addr, size) pair.

The phys-addr of this property shall be the starting physical address of this ROM and the size value shall
be 0. The size=0 prevents a conflict with the ”reg” of this node’s children.

“#address-cells” S

Standard prop-name to define the address space representation of child nodes.

prop-encoded-array: an integer, encoded as with encode-int. Its value shall be identical to that of this
node’s parent’s “#address-cells” value.

“ranges” S

Standard prop-name to define the address range that is decoded by this /rom node.

prop-encoded-array: One (child-phys, parent-phys, size) triple, where child-phys equals parent-phys and the
number of cells of each corresponds to the parrent’s “#address-cells” value.

“available” S

Standard prop-name, to define available ROM resources.

prop-encoded-array: Arbitrary number of phys-addr, size pairs. Phys-addr is a phys.hi...phys.lo list of
integers, each integer encoded as with encode-int. Size is one or more integers, each encoded as with
encode-int.

The value of this property defines resources, managed by this package, that are currently available for use
by a client program.

“write-characteristic” S

Standard prop-name, defines the ROM Technology.

prop-encoded-array: a string, encoded as with encode-string, where the value could equal “flash”,
“eeprom”, “rom” or “nvram”.

“cacheable” S

Open Firmware standard property indicating that the ROM is cacheable.

prop-encoded-array: <none>.

The presence of this property indicates that the ROM is cacheable.

5.1.3.2. ROM Node Methods
If one or more ROM nodes are present, they shall each implement the following standard methods [1], Section
3.6.1. The “reg” property is used to determine which ROM the standard methods apply to for multiple
ROM’s.

The following methods must be defined by /rom node.

open (-- true) M

Standard method to prepare the ROM Node for subsequent use.

close (--) M

 Standard method to close the previously opened ROM Node.

decode-unit (addr len -- phys.lo...phys.hi M

Standard method to convert text unit-string to physical address.

PowerPC Microprocessor CHRP binding 27

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

encode-unit (phys.lo...phys.hi -- unit-str unit-len) M

 Standard method to convert physical address to text unit-string.

probe (--) M

Open Firmware method used at boot time to probe all ROM’s.

The probe method for ROM Nodes shall probe for FCode images within the address space defined by its
“reg” property as defined herein. For each page within its address space, look for a valid FCode image. A
valid FCode image is defined to start with an FCode-header(See section 5.2.2.5 in [1]) where the first byte
is start1, the format byte is 0x08, the length field indicates that the FCode program is contained within
the address space of the /rom node, and where the checksum is correct. (This probing must take into
account the possibility that the ROM image is in the opposite endian-ness from which Open Firmware is
currently running.)

If such an FCode image is found, a new child node shall be created by executing new-device and set-
args, the FCode image copied to memory (taking into account the endian-ness) and the copy evaluated
with byte-load. (The FCode program can use my-unit to create its “reg” property.). The arguments
used by set-args are defined to be 0,0,unit-str,unit-len where unit-str is a text string
representation of the physical address location for the FCode Image and unit-len is the length of the
FCode Image.

5.1.4. ROM Child Node(s)
This section describes the properties and methods for a ROM Child Node.

5.1.4.1. ROM Child Node Properties
The following properties must be created by /rom child nodes.

“name” S

Standard prop-name that names the child node.

Some physical ROM implementations may not fully decode their entire address range. This could lead to
multiple images of the ROM to appear at different addresses, due to the “aliasing” of the ROM image. To
prevent multiple device nodes from appearing in the device tree, the FCode for such ROMs should look for
an already existing peer node that represents their image. This could be done, for example, by checking
that any of the peer of the child of its parent node has a “name” property value that is the same as
this node’s FCode would create.

If such a node is found, the FCode should “abort” the evaluation of its FCode (e.g., by executing an end0)
before creating its “name” property. Open Firmware shall remove a node when the FCode evaluation for
the node does not result in a “name” property being defined.

“reg” S

Standard prop-name that defines the child node address range for a ROM image(s).

prop-encoded-array: List of (phys-addr, size) specifications.

Phys-addr is encoded as with encode-phys, and size is encoded as with encode-int. The phys-addr
is a base address of the ROM image and size is the length of the ROM image.

5.1.4.2. ROM Child Node Methods
 The following methods must be defined by /rom child nodes.

open (-- true) M

Standard method to prepare this device for subsequent use.

The open method must be prepared to parse my-args for the case(s) when the node is being opened in
order to access “files”; e.g., when the bootinfo.txt file is being accessed during the multiboot menu.

close (--) M

 Standard method to close the previously opened device.

28 PowerPC Microprocessor CHRP binding

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

load (addr -- len) M

Standard method to load an image. The image must be one that is recognized by the Open Firmware
init-program method. It is strongly recommended that the ELF format be used, since it has the
mechanism to specify configuration variable requirements of an OS.

5.2. Run Time Abstraction Services (RTAS) Node
This system node is a child of “/” (root). This section defines properties and methods for the RTAS node. The
RTAS Node shall not have “reg” or “ranges” properties.

5.2.1. RTAS Node Properties
This section describes the rtas node properties.

“name” S

Standard prop-name: Denotes the RTAS node.

prop-encoded-array: A string, encoded as with encode-string

The value of this property shall be “rtas”.

“rtas-event-scan-rate” S

prop-name, is the rate at which an operating system should read indicator/sensor/error data

prop-encoded-array: An integer, encoded as with encode-int

The value of this property shall be a number indicating the desired rate for reading sensors and/or error
information in calls per minute. This number is platform dependent.

“rtas-indicators” S

prop-name, indicates indicators implemented.

prop-encoded-array: An array of paired integers(token maxindex), each encoded as with encode-
int.

The values for this property is a list of integers that are the token values(token)for the defined indicators
and the number of indicators(maxindex) for that token which are implemented (Refer to [3], Chapter 7) on
the platform.

Note: The indicator indices for a given token are numbered 0 ... maxindex-1.

“rtas-sensors” S

prop-name, indicates sensors implemented.

prop-encoded-array: An array of paired integers(token maxindex), each encoded as with encode-
int.

The values for this property is a list of integers that are the token values(token)for the defined sensors and
the number of sensors(maxindex) for that token which are implemented (Refer to [3], Chapter 7) on the
platform.

Note: The sensor indices for a given token are numbered 0 ... maxindex-1.

“rtas-version” S

prop-name, describes version information for the RTAS implementation.

prop-encoded-array: An integer, encoded as with encode-int.

The value of this property shall denote the version the RTAS implementation. For this version, the integer
shall be as defined in [3].

“rtas-size” S

prop-name, is the size of the RTAS memory image.

prop-encoded-array: An integer, encoded as with encode-int.

PowerPC Microprocessor CHRP binding 29

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

The value of this property shall be the amount of contiguous real system memory required by RTAS, in
bytes.

“rtas-display-device” S

prop-name, identifies RTAS Display Device

prop-encoded-array: An integer, encoded as with encode-int.

The value of this property shall be the phandle of the device node used by the RTAS display-character
function.

“rtas-error-log-max” S

prop-name, identifies maximum size of an extended error log entry.

prop-encoded-array: An integer, encoded as with encode-int.

The value of this property shall be the maximum size of an extended error log entry, in bytes.

“power-on-max-latency” S

prop-name, specifies a future power on time capability.

prop-encoded-array: An integer, encoded as with encode-int.

The value of this property specifies the capability of the hardware to control the delay of system power on
in days. If the property is present, the value shall indicate the maximum delay or latency in days. If the
property is not present, the maximum delay or latency is 28 days.

5.2.2. RTAS Function Property Names
This section defines the property names associated with the various RTAS functions defined by Reference [5],
Table 12, RTAS Tokens for Functions. Table 12 of [5] should be used as the reference for RTAS Functions cur-
rently implemented.

“restart-rtas” S

“nvram-fetch” S

“nvram-store” S

“get-time-of-day” S

“set-time-of-day” S

“set-time-for-power-on” S

“event-scan” S

“check-exception” S

“read-pci-config” S

“write-pci-config” S

“display-character” S

“set-indicator” S

“get-sensor-state” S

“set-power-level” S

“get-power-level” S

“assume-power-management” S

“relinquish-power-management” S

“power-off” S

“hibernate” S

“suspend” S

“system-reboot” S

30 PowerPC Microprocessor CHRP binding

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

“cache-control” S

“freeze-time-base” S

“thaw-time-base” S

“stop-self” S

“start-cpu” S

“update-flash-and-reboot” S

“update-flash” S

For each of the indicated prop-names, the value returned for the property is a token.

prop-encoded-array: The value, token, is an integer encoded as with encode-int.

If an RTAS function is implemented, there is a property name which corresponds to its function name. The
value of this property is a token. This token, when passed to RTAS via its rtas-call interface (see below),
invokes the named RTAS function. If a RTAS function is not implemented, there will not be a property
corresponding to that function name. See the RTAS chapter of the CHRP Specification [3] for more
information about RTAS functions.

5.2.3. RTAS Node Methods
The instantiate-rtas method is invoked by the operating system to instantiate the RTAS functionality.
This is accomplished via the call-method Client Interface Service.

instantiate-rtas (rtas-base-address -- rtas-call) M

Invoking the instantiate-rtas method binds the RTAS environment to a given location in System
Memory and initializes the RTAS environment. The in parameter, rtas-base-address, is the physical address
to which the RTAS environment is to be bound. This call indicates that RTAS is instantiated in a 32-bit
mode. The amount of contiguous real memory that should be allocated for the RTAS environment is given
by the value of the “rtas-size” property.

Upon completion of the instantiate-rtas method, an entry point address, rtas-call, is returned. The
value of rtas-call specifies the physical address of the entry point into RTAS for future RTAS function calls.

instantiate-rtas-64 (rtas-base-address -- rtas-call) M

Invoking the optional instantiate-rtas-64 method binds the RTAS environment to a given location
in System Memory and initializes the RTAS environment. The in parameter, rtas-base-address, is the
physical address to which the RTAS environment is to be bound. This call indicates that RTAS is
instantiated in a 64-bit mode. The amount of contiguous real memory that should be allocated for the
RTAS environment is given by the value of the “rtas-size” property.

Upon completion of the instantiate-rtas-64 method, an entry point address, rtas-call, is returned.
The value of rtas-call specifies the physical address of the entry point into RTAS for future RTAS function
calls.

5.3. PCI Host Bridge Nodes
This section describes the PCI Host Bridge properties which are added or modified for a PowerPC Microproces-
sor CHRP implementation. Refer to the PCI Bus binding [7] for the base PCI properties and methods. For each
platform PCI Host Bridge, a “reg” property shall be present in the respective PCI Node.

Note: Since the RTAS PCI configuration access services do not have separate arguments
identifying the PCI host bridge to which a service applies, platforms with multiple PCI
host bridges must assign them unique bus numbers. An operating system must not reas-
sign those bus numbers if it expects to make subsequent use of the RTAS PCI configura-
tion access services..

PowerPC Microprocessor CHRP binding 31

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

5.3.1. PCI Host Bridge Properties
For each PCI Host Bridge (PHB) in the platform (called a PCI Bus Controller in the PCI Bus binding), a PCI
Host Bridge Node shall be defined as a child node of the system bus, in accordance with the PCI Bus
binding[7]. Each PCI PHB Node shall have a Unit Address defined in the “reg” property that is unique and
persistent from each boot-to-boot. The following properties are modified or added by the PowerPC
Microprocessor CHRP architecture and shall apply to each of these nodes.

Each PHB shall also have the “used-by-rtas” property, since rtas is used for PCI Configuration.

“ranges” S

Standard prop-name, defines this PHB’s physical address ranges.

prop-encoded-array: From two to four (child-phys, parent-phys, size) specifications.

This property is mandatory for PCI Host Bridges in PowerPC Microprocessor CHRP implementations. The
property value consists of four (child-phys, parent-phys, size) specifications, as described in the core
document[1].

The first specification shall specify the configured address and size of this PHB’s I/O Space. (I/O Space is
shown as “BIOn” to “TIOn” in the Common Hardware Reference Platform Architecture [3].) The second
specification shall specify the configured address and size of this PHB’s Memory Space. (Memory Space is
shown as “BPMn” to “TPMn” except for PHB0, when aliases are enabled, maps BPM0 to BIM, in the
Common Hardware Reference Platform Architecture.) If present, the PHB method change-address-
map can be used to reallocate these areas.

The third and fourth(components) specifications only apply to PHB 0. The third specification shall specify
the configured address and size of the initial memory aliases. (The initial memory aliases are shown as
“BIM” to “TPM0” in the PowerPC Microprocessor CHRP Architecture.) The third specification shall have a
size of zero if the aliases are not enabled and shall be omitted if the aliases and the processor-hole are not
enabled. The PHB method set-initial-aliases can be used to enable or disable the initial aliases.
The fourth specification shall specify the configured address and size of the processor-hole. The fourth
specification shall have a size of zero if the processor-hole is not enabled and shall be omitted if the
processor-hole is not present. The root node method set-processor-hole can be used to enable or
disable the processor-hole, if present.

“model” S

Standard prop-name, indicating this PHB’s manufacturer, part number, and revision level. This property
shall be present if this PHB does not supply the following standard PCI configuration properties which
represent the values of standard PCI configuration registers: “vendor-id”, “device-id”, and
“revision-id”.

prop-encoded-array: Text string, encoded as with encode-string.

The value of this property is a vendor dependent string which uniquely identifies this PHB and is correlated
to its manufacturer, part number, and revision level. (see Core document[1] for more information.) The
string value is device dependent, but shall supply information sufficient to identify the part to a level
equivalent to the level achievable via the standard PCI configuration registers: “vendor-id”, “device-
id”, and “revision-id”.

“initial-memory-aliases” S

prop-name indicates the status of the 16 MB initial memory aliases.

prop-encoded-array: <none>

This property shall be present if the initial memory aliases are enabled, otherwise this property shall be
absent. (The aliases can be enabled or disabled via the set-initial-aliases method, see
Section 5.3.2. on page 32.)

“64-bit-addressing” S

prop-name indicates this PHB’s capability to address more than 4 Gigabytes of memory.

prop-encoded-array: <none>

32 PowerPC Microprocessor CHRP binding

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

This property shall be present if this PHB supports addressing more than 4 Gigabytes of memory, otherwise
the property shall be absent. (If supported, the capability can be enabled via the set-64-bit-
addressing method, see Section 5.3.2. on page 32.)

“external-control” S

prop-name indicates this PHB’s ability to support the PowerPC external control facility.

prop-encoded-int: List of integers, each encoded as with encode-int.

The property value, if present, is a list of Resource ID’s the version of the PowerPC external control facility
supports. This property shall be present if this PHB supports the PowerPC external control facility,
otherwise the property shall be absent.

“64-bit-dma” S

prop-name indicates this PHB’s ability to support Dual Address Cycle for DMA.

prop-encoded-array: <none>

This property shall be present if this PHB supports Dual Address Cycle for DMA, otherwise the property
shall be absent.

“io-hole” S

prop-name indicates that this PHB has enabled the io-hole capability, and the size of the hole.

prop-encoded-int: Integer, encoded as with encode-int.

This property shall be present if this PHB (phb,0 only) supports the io-hole, otherwise the property shall be
absent. (If supported, the hole can be enabled via the set-io-hole method, see Section 5.3.2. on
page 32.). The value of this property shall be the size of the io-hole in bytes. If the value is 0, the io-hole
is disabled.

“8259-interrupt-acknowledge” S

prop-name indicates the address of the 8259 interrupt acknowledge facility.

prop-encoded-array: One phys-addr value

Phys-addr is encoded as with encode-phys.

The presence of this property indicates the presence of an 8259 interrupt acknowledge facility. A processor
load-byte to this address will generate a Interrupt Acknowledge on the 8259 interrupt acknowledge facility.

5.3.2. Methods for PCI Host Bridge Nodes
The following methods are provided for the purposes of enabling, initializing, and/or modifying PHB features. If
these features are present, the node shall implement the following methods. Operating systems can call these
methods via the client interface service call-method function.

change-address-map (new-mem-addr size new-io-addr size -- M

 okay?)

Relocate a PHB’s peripheral spaces in the system address map, if possible.

Note: The “ranges” property may no longer reflect address spaces after execution of
change-address-map and Open Firmware may no longer be capable of performing
I/O.

set-discontiguous-io (true | false --) M

Enable (true) or disable (false) a PHB’s discontiguous I/O map.

Note: Once discontiguous I/O mode is enabled, the client should not call Open Firmware
for I/O functions, since Open Firmware is not required to support the discontiguous I/O
map.

set-64-bit-addressing (location size enable? --) M

PowerPC Microprocessor CHRP binding 33

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

If the flag enable? is true, enable this PHB’s 64-bit addressing capabilities and change the size and location
of the PHB’s TCE Table. If the flag enable? is false, disable this PHB’s 64-bit addressing capabilities. For
the case where all devices are 64-bit capable, both location and size can be specified as zero, in which case
the 64-bit addressing capabilities will be enabled, but no TCE Table will be allocated. The Client Program
shall initialize and maintain the Open Firmware and RTAS Areas to be mapped 1:1 as long as these areas
are in use.

Note: The set-64-bit-addressing method should not be executed if the PHB
Device is not open.

set-initial-aliases (true | false --) M

Enable (true) or disable (false) the initial memory aliases for this PHB (PHB,0 only).

set-io-hole (true | false --) M

Enable (true) or disable (false) the io-hole for PHB 0. This method shall be present if the io-hole capability
is supported.

5.4. Memory Controller Nodes
This section describes memory-controller nodes and their properties.

5.4.1. Memory Controller Node Properties
For each Memory Controller in the platform, a memory-controller node shall be defined as a child of “/” (the
root) and shall not have a “ranges” property. The following properties shall apply to each of these nodes.

A Memory Controller can also have the used-by-rtas property (See “Miscellaneous Node Properties” on
page 35.), if it has functions abstracted by RTAS.

“device_type” S

Open Firmware standard property.

prop-encoded-array: Text string, encoded as with encode-string.

The value of this property shall be “memory-controller”.

“reg” S

Standard prop-name, defines the base physical address and size of this Memory Controller’s addressable
register space.

prop-encoded-array: One (phys-address, size) pair where phys-address is encoded as with encode-phys,
and size is encoded as with encode-int.

The property value shall be the base physical address and size of this Memory Controller’s register space.

“model” S

Standard prop-name, indicating this Memory Controller’s manufacturer, part number and revision level.

prop-encoded-array: Text string, encoded as with encode-string.

The value of this property is a vendor dependent string which uniquely identifies this Memory Controller
and shall be correlated to its manufacturer, part number, and revision level. (see Core document for more
information.)

“external-control” S

prop-name indicates this Memory Controller’s ability to support the PowerPC external control facility.

prop-encoded-int: List of integers, each encoded as with encode-int.

The property value, if present, is a list of Resource ID’s the version of the PowerPC external control facility
supports. This property shall be present if this Memory Controller supports the PowerPC external control
facility, otherwise the property shall be absent.

“error-checking” S

34 PowerPC Microprocessor CHRP binding

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Standard prop-name, defines the error checking capability of the node.

prop-encoded-array: a string, encoded as with encode-string, where the value could equal “none”,
“ecc”, or “parity”.

5.5. Interrupt Controller Nodes
This section describes the properties for the PowerPC Microprocessor CHRP interrupt controller node. An inter-
rupt controller node shall not have the “used-by-rtas” property.

The CHRP Platform shall adhere to the Open Firmware: Recommended Practice - Interrupt Mapping (Refer to
[15] for an interrupt structure Open Firmware representation) definition of the interrupt structure.

5.5.1. Open PIC Interrupt Controller Node Properties
An open-pic node shall be defined as a child of the bus to which the Open PIC is attached and through which
registers are addressed. The following properties apply to this node.

“name” S

Standard prop-name: The value of this property shall be “interrupt-controller”.

“device_type” S

Open Firmware standard property.

prop-encoded-array: Text string, encoded as with encode-string.

The value of this property shall be “open-pic”.

“reg” S

Standard prop-name, defines the base physical address(s) and size(s) of this Open PIC’s addressable register
space.

prop-encoded-array: List of (phys-addr, size) specifications.

Phys-addr is encoded as with encode-phys, and size is encoded as with encode-int.

The first entry in this list shall be the physical address and size decoded by the base Open PIC Interrupt
Delivery Unit (IDU). Successive entries in this list shall be the physical addresses and sizes decoded by any
additional Open PIC Interrupt Source Units (ISU).

“compatible” S

Standard prop-name, to define alternate “name” property values.

prop-encoded-array: The concatenation, with encode+, of an arbitrary number of text strings, each
encoded as with encode-string.

The property value shall include “chrp,open-pic”.

“interrupt-ranges” S

Standard prop-name, defines the interrupt number(s) and range(s) handled by the base Open PIC IDU and
each additional Open PIC ISU, if any.

prop-encoded-array: List of (int-number, range) specifications.

Int-number is encoded as with encode-int.

Range is encoded as with encode-int.

The first entry in this list shall be zero (0) and the number of interrupts handled by the base Open PIC
IDU. Successive entries in this list shall be the lowest interrupt number and the number of interrupts
handled by each additional Open PIC ISU, if any. Successive entries shall include an equal or greater
interrupt number. It is assumed that if range is zero in any entry, that unit does not handle any interrupts in
that range. Note that there is a one-to-one correspondence between “reg” entries and “interrupt-
ranges” entries.

PowerPC Microprocessor CHRP binding 35

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

“interrupt-controller” S

Standard prop-name, to indicate an interrupt (sub-)tree root.

prop-encoded-array: <none> The presence of this property indicates that this node represents an interrupt
controller.

“model” S

Standard prop-name, indicating this Open PIC’s manufacturer, part number, and revision level.

prop-encoded-array: Text string, encoded as with encode-string.

The value of this property shall be a string which uniquely identifies the interrupt controller and shall be
correlated to the manufacturer, part number, and revision level. This value is device dependent (See the
Core document for more information.).

5.6. Additional Node Properties
Additional properties and methods are defined in this section for PowerPC Microprocessor CHRP binding adapt-
ers and/or devices.

5.6.1. Interrupt Properties
The properties in this section shall be implemented for any device that can present an interrupt for a CHRP
platform implementation. The CHRP Platform shall adhere to the Open Firmware: Recommended Practice -
Interrupt Mapping (Refer to [15] for an interrupt structure Open Firmware representation) definition of the inter-
rupt structure.

5.6.2. Miscellaneous Node Properties
This section defines properties which support devices, adapter and buses with geographical information. These
properties shall be present for a CHRP platform.

"slot-names" S

prop-name: Describes external labeling of adapter/device connectors.

prop-encoded-array: An integer, encoded as with encode-int, followed by a list of strings, each encoded
as with encode-string.

The integer portion of the property value is a bitmask of available connectors; for each connector associated
with the adapter/device, the bit corresponding to that connector’s ID number is set from least-significant to
most-significant ID number. The number of following strings is the same as the number of connectors; the
first string gives the platform nomenclature or label for the connector with the smallest ID number, and so
on.

Note: Each device that has a connector should identify the order and contents of the list of
strings in a binding.

"built-in" S

Standard prop-name: Any device that connects to an industry standard I/O expansion bus attached through
a non-standard connector.

prop-encoded-string: <none>.

Note: This property will also include platform ‘riser’ cards.

"used-by-rtas" S

Standard prop-name: Indicates the device can be in use by an RTAS Function Call.

prop-encoded-int: Presence of property indicates a device may have an I/O or resource conflict with a RTAS
Function Call.

36 PowerPC Microprocessor CHRP binding

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

5.7. Aliases Node
A device alias, or simply alias, is a shorthand representation of a device-path. Aliases are properties of the
aliases node, encoded as with encode-string. Aliases are typically used by a user to facilitate not specify-
ing a long path name at the User Interface ‘ok’ prompt.

An implementation of Open Firmware for a CHRP platform shall provide the following aliases as properties of
the aliases node, if the corresponding device exists:

“disk” S

prop-name, indicating the device path of the factory default disk.

“tape” S

prop-name, indicating the device path of the factory default tape.

“cdrom” S

prop-name, indicating the device path of the factory default CDROM.

“keyboard” S

prop-name, indicating the device path to the keyboard to be used for the User Interface.

“mouse” S

prop-name, indicating the device path to the mouse to be used for the User Interface.

“screen” S

prop-name, indicating the device path to the screen to be used for the User Interface.

“pc-keyboard” S

prop-name, indicating the device path of the factory default PC-style keyboard.

“pc-mouse” S

prop-name, indicating the device path of the factory default PC-style mouse.

“adb-keyboard” S

prop-name, indicating the device path of the factory default ADB-style keyboard.

“adb-mouse” S

prop-name, indicating the device path of the factory default ADB-style mouse.

“scsi” S

prop-name, indicating the device path of the factory default built-in SCSI device.

“com1” S

prop-name, indicating the device path of the factory default 16550-style serial port known as “com1.”

“com2” S

prop-name, indicating the device path of the factory default 16550-style serial port known as “com2.”

“scca” S

prop-name, indicating the device path of the factory default SCC-style serial port known as “SCCA.”

“sccb” S

prop-name, indicating the device path of the factory default SCC-style serial port known as “SCCB.”

“floppy” S

prop-name, indicating the device path of the factory default floppy drive.

“net” S

prop-name, indicating the device path of the factory default built-in network interface controller.

PowerPC Microprocessor CHRP binding 37

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

“rtc” S

prop-name, indicating the device path of the factory default real-time-clock chip.

“nvram” S

prop-name, indicating the device path of the factory default NVRAM.

5.8. Event Sources Node
The Event-Sources Node describes the possible RTAS Error and Event Classes for Open PIC Interrupts (Refer to
[3], Table 50). The Event-Sources Node shall be defined to be a child of the root device tree node. The fol-
lowing properties shall be defined for this node:

“name” S

Open Firmware standard property. The value of this property shall be “event-sources”.

5.8.1. Child nodes of the Event Sources Node
The following specify standard child nodes of the /event-sources node. These nodes could be present in a
CHRP platform.

5.8.1.1. internal-errors
The presence of the node indicates that all or some of the function has been implemented using an OpenPIC
interrupt.

“name” S

Open Firmware standard property. The value of this property shall be “internal-errors”.

“open-pic-interrupt” S

The value of this property shall be a prop-encoded-array of integers encoded as with encode-int.

The value indicates one or more Open PIC interrupt source numbers that are used to report the internal-
errors class of error conditions.

5.8.1.2. epow-events
The presence of the node indicates that all or some of the function has been implemented.

“name” S

Open Firmware standard property. The value of this property shall be “epow-events”.

“open-pic-interrupt” S

The value of this property shall be a prop-encoded-array of integers encoded as with encode-int.

The value indicates one or more Open PIC interrupt source numbers that are used to report events of the
epow-events class.

“power-on-triggers” S

Standard prop-name defining the power-on trigger types implemented on a specific platform.

prop-encoded-array: an array of integers, each encoded as with encode-int. Each entry in this array is
one of the values defined by Reference [5], Table 62b, Defined Power-on Triggers, for the power-on trigger
types corresponding to the power-on trigger types available on the platform.

5.8.1.3. power-management-events
The presence of the node indicates that all or some of the function has been implemented.

“name” S

Open Firmware standard property. The value of this property shall be “power-management-events”.

38 PowerPC Microprocessor CHRP binding

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

“open-pic-interrupt” S

The value of this property shall be a prop-encoded-array of integers encoded as with encode-int.

The value indicates one or more Open PIC interrupt source numbers that are used to report events of the
power-management-events class.

5.9. Reserved Node
This section defines a reserved node which shall have a “reg” property which allocates addresses (on the
bus of which it is a child) which is intended to be a place to identify hardware registers that do not otherwise
belong to a recognized device.

“name” S

Standard prop-name, the value of this property shall be “reserved”.

“device_type” S

Standard prop-name, indicating the device type.

prop-encoded-array: Text string, encoded as with encode-string.

The value of this property shall be “reserved”.

“reg” S

Standard prop-name, defines a hardware register address and range of addresses not intended for operating
system (OS) use.

prop-encoded-array: List of (phys-addr, size) specifications.

Phys-addr is encoded as with encode-phys, and size is encoded as with encode-int.

The first entry in this list shall be a hardware register address (phys-addr) and a range of hardware
addresses (size) that is not intended for OS usage. Successive entries in this list shall be additional hardware
addresses not intended for OS usage.

5.10. ‘/chosen’ Node
This section lists additional properties as required under the /chosen node with the following text in a manner
that is consistent with [1], core document, Section 3.5.

“nvram” S

Standard prop-name, defines the package Ihandle for CHRP NVRAM.

prop-encoded-array: an integer, as encoded with encode-int, that is the package Ihandle the CHRP
NVRAM.

Note: The nvram Node identified in the /chosen Node shall support a size
method as specified in [10], Recommended Practice-Device Support Extensions, Sec-
tion 7.2. The size method will return a value that is the total CHRP platform NVRAM
size.

6. Symmetric Multi-Processors(SMP)
CHRP platforms can have Symmetric Multi-Processor(SMP) Configurations. In addition to the processor node
properties defined in [6], PowerPC Processor binding to: IEEE Std 1275-1994, Standard for Boot (Initialization,
Configuration) Firmware, a SMP Configuration will utilize the /cpus node as explained in section 6.1.

6.1. SMP Platform Device Tree Structure
Open Firmware requires that multiple instances of any device that appears more than once in the device tree
must be unique and distinguishable by means of their “reg” properties. For CHRP platforms, processors shall

PowerPC Microprocessor CHRP binding 39

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

not be directly attached to the main physical bus(root node (“/”)). Instead, cpu devices shall be children of the
/cpus node.

The /cpus node shall have one child node of device type cpu for each processor. The value of the “reg”
property of each cpu device node shall be an integer encoded as with encode-int, which shall be the index
of the output of the Open PIC interrupt controller which is attached to this processor; i.e., the bit number
corresponding to this processor in the Open PIC Destination Register. The ihandle of the “executing” processor
shall be published in the “cpu” property of the /chosen node.

Note: The properties of a cpu device are already defined in the PowerPC Processor bind-
ing document[6]. The only change for symmetric multiprocessor (SMP) systems is that
there will be a cpu device node under the /cpus node for each individual processor. Other
properties of the cpu devices shall conform with the requirements stated in the PowerPC
Processor binding document.

6.2. SMP Properties
The following properties are for a CHRP PowerPC SMP environment. These SMP properties will be under the
/cpus Node.

“slot-names” S

prop-name: Describes platform labeling of add-in cpu/processor card slots.

prop-encoded-array: An integer, encoded as with encode-int, followed by a list of strings, each encoded
as with encode-string.

The integer portion of the property value is a bitmask of possible processors; for each add-in slot on the
bus, the bit corresponding to that slot’s ID number is set from least-significant to most-significant ID
number. The number of following strings is the same as the number of slots; the first string gives the
platform nomenclature for the slot with the smallest ID number, and so on. The CPU’s “slot-names-
index” property can be used as an index into the bitmask integer of this property. The absence of this
property indicates that no slots are present.

“smp-enabled” S

The presence of this property signifies that the platform is SMP enabled, even if it only has one processor.

prop-encoded-array: <null>

6.2.1. Processor Node
The following properties are for a CHRP PowerPC SMP environment. This SMP property will be under each
/cpu Node.

“slot-names-index” S

prop-name: Indentifies each cpu with a unique number.

prop-encoded-array: An integer, encoded as with encode-int.

The value of this integer is a platform unique number with a range from 0 to n-1 for each CPU where n is
the number of slots. This number is used to index into the “slot-names” property to identify the value
of the string associated with the slot name.

7. Device Power Management Properties/Methods
This section defines standard platform node properties, device node properties, and methods related to power
management. The properties and methods of this section shall be implemented on any platform which supports
power management except where noted. However, it is still being enhanced. Operating system providers who
want to ensure that the data needed for their power management policies is included should contact the authors
of this document.

40 PowerPC Microprocessor CHRP binding

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

7.1. System Node Properties
The following defines properties are to be associated with the rtas and the power-management-events nodes of
the device tree.

7.1.1. Properties assigned to the RTAS node
Power domains are a feature of CHRP platforms which support power management. Within the Open Firmware
device tree, power domains are represented by a power domain identifier which is defined to be an integer in the
range 0..n-1, where n is the number of power domains on the platform.

“power-domains-tree” S

Standard prop-name which defines the power domain hierarchy for this platform.

prop-encoded-array: An array of integers, each encoded as with encode-int, that is a flattened representation
of the power domain dependency tree.

The array consists of a number of tuples, one for each power domain defined on the platform. Each tuple
consists of the power domain identifier domain#, followed by the number of power levels #levels supported by
the domain, followed by an array of tuples, one for each level. These tuples consist of a level identifier level,
followed by the number of power sources from which the domain draws power, followed by an array of tuples
(power-source-id, power). The power domain tuple is terminated by the number of children #children followed
by a list of the domain identifiers of each child. The power values are expressed in milliamperes and include
only the power consumed by support logic not represented as devices in the device tree including any RTAS
abstracted devices within the particular power domain.

“power-domains-controllers” S

Standard prop-name which defines the power domain controllers (The CHRP architecture calls them power
domain control points) present on this platform.

prop-encoded-array: an array of integers, each encoded as with encode-int. Each integer is the phandle of
the device tree node that functions as the power domain controller for a domain. A single controller may serve
as the control point for multiple domains. Each device which serves as a controller encodes the controls-power-
domain property.

“power-domains-names” S

Standard prop-name used to define the user readable names for the power domains.

prop-encoded-array: an array of strings, each encoded as with encode-string, that are the user readable
names for the domains.

The number of strings matches the number of domains and there is a one-to-one correspondence between the
entries in the “power-domain-controllers” property and the entries in this array.

“platform-power-sources” S

Standard prop-name defining the platform power sources.

prop-encoded-array: an array of integers, each encoded as with encode-int. The array is structured as a
number of tuples. Each of these tuples consists of the values source-voltage, (given in millivolts), peak-power,
continuous-use-power (both expressed in milliamperes supplied at the stated voltage), and conversion-efficiency
(expressed in percent).

“power-sources-names” S

Standard prop-name defining the platform power source names.

prop-encoded-array: an array of strings, each encoded as with encode-string, that are the user readable
names for the power sources.

PowerPC Microprocessor CHRP binding 41

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

The number of strings match the number of power sources and is in one-to-one correspondence to the entries in
the “platform-power-sources” property.

“platform-battery-sources” S

Standard prop-name defining the batteries utilized by a platform.

prop-encoded-array: an array of integers, each encoded as with encode-int. Each value in this array is the
manufacturer’s rated capacity of the battery expressed in milliwatt-hours.

“battery-sources-names” S

Standard prop-name defining the human-readable identifier of the batteries utilized by a platform.

prop-encoded-array: an array of strings, each encoded as with encode-string. Each entry in this array
corresponds one-for-one with the batteries defined in the “platform-battery-sources” property.

7.1.2. Properties of the power-management-events node
“power-type” S

Standard prop-name defining the power management event types implemented on a specific platform.

prop-encoded-array: an array of integers, each encoded as with encode-int. Each entry in this array is one
of the values defined by Reference [3] and extended by Reference [5], Table 62, for the power management
event types corresponding to the event types available on the platform.

7.2. Device Properties
“power-domains” S

Standard prop-name: Indicates the power domains of which this device is a member. If the device is a member
of the default power domain 0 alone, this property does not need to be provided.

prop-encoded-array: List of one or more domain-ids to which this device belongs. domain-ids is encoded as
with encode-int.

The power-domains property should only list the domain-ids of the lowest power domain tree nodes in which
this device has membership.

“device-power-states” S

Standard prop-name which describes the power states this device supports. This property shall be provided for
each physical device which has multiple power states, if platform firmware provides device power state informa-
tion.

prop-encoded-array: An array of integers, each encoded as with encode-int that defines the supported power
states for this device.

The array consists of an integer representing the initial device power state after reset, followed by the number of
power sources from which the device draws power, followed by an arbitrary number of tuples, one for each
supported power state of the device. Each tuple consists of the state, followed by an array of tuples (power-
source-id, power) giving the average power consumption from each power source during active use. This is
followed by another array of tuples (power-source-id, power) giving the idle power consumption for each power
source. Each power state tuple is terminated by the maximum expected power usage lifetime in seconds for the
device if it were to remain in that state. The value power is stated in the millamperes consumed at the voltage
supplied by the power source.

The value state shall be further constrained to have the following semantics:

42 PowerPC Microprocessor CHRP binding

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

The semantics of device power states may be further defined by device type specific bindings.

The interaction of the defined semantics of device power state and domain power level is defined in Table 3.
Combinations of Device Power State/Domain Power Level. Those combinations not marked are disallowed.

“device-state-transitions” S

Standard prop-name that describes the legal power state transitions supported by the device. This property shall
be provided if platform firmware provides device power state information.

prop-encoded-array: an array of integers, each encoded as with encode-int that defines the legal power state
transitions for this device.

The array is structured as a number of tuples, one for each possible transition. Each tuple consists of the starting
state, followed by the destination state, followed by an array of tuples (power-source-id, power), one for each
power source, followed by the time required to make the transition in microseconds, followed by the maximum
count allowed for this transition. The starting state and destination state are values defined in the “device-
power-states” property. The value power is stated in the millamperes consumed.

“power-sources” S

Standard prop-name which designates this device as a consumer of power sourced from a defined power source.
This property shall be provided if platform firmware provides device power state information.

prop-encoded-array: an array of integers, each encoded as with encode-int that gives the list of power
sources to which this device is connected. The values are indices into the platform-power-sources data structure

“power-management-mapping” S

Standard prop-name. This optional property provides a device dependent mapping between device power state
and commands which the device driver sends to its device. Also provides information concerning which device

Table 2. Semantics of device state values

Value Semantics
100 This is the device’s most responsive state.

20-99 The device is functional. The range represents a range of performance.

11-19 Reserved

10 Device is not operational, but retains its internal functional parameters.

1-9 Reserved

0 Device not functional, may lose internal functional parameters.

Table 3. Combinations of Device Power State/Domain Power Level

 Device Power State

100 99-20 10 0

Domain
Power
Level

Full On Allowed Allowed Allowed Allowed

Reduced Allowed Allowed Allowed

Freeze Allowed Allowed

Off Allowed

PowerPC Microprocessor CHRP binding 43

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

power states are supported for each of the four domain power levels. See the device type binding for a defini-
tion of the property value.

7.2.1. Properties for Power Domain Control Points
The following are specific to devices which can act as power domain control points.

“controls-power-domains” S

Standard prop-name which designates the domains over which this device exercises control.

prop-encoded-array: an array of integers, each encoded as with encode-int that defines the domains for
which this device can act a power domain control point.

A single device may serve as multiple logical control points.

7.3. Power Management Related Methods
This section defines methods associated with device tree nodes which serve as power domain controllers (CHRP
architecture calls them control points).

set-power-level (domain# level -- actual-level) M

This method is only present for power domain controllers. The domain# is the power domain whose power level
is altered, and level is the desired level. actual-level reports the level to which the domain was actually set.

get-power-level (domain# -- level) M

This method is only present for power domain controllers. The domain# is the power domain that is being que-
ried. level is the current level at which the domain is now operating.

system-off (--) M

Method to turn the system off. This method is attached to the root node of the device tree and is only present in
a platform with software control over system power.

7.4. Power Management NVRAM Partition
The standard format for data located in the Power Management Configuration partition of the NVRAM is under
development(see “Device Power Management Configuration Resources” on page 70).

8. ISA Device Support
The CHRP System binding identifies ISA platform support areas that are unique. These areas have to do with
the DMA and Interrupt Controller attributes. In addition, it is desirable to further define certain choices for the
CHRP standard ISA I/O and/or ISA pluggable resources where an OS expects to find information defining the
attributes. These additional ISA dependencies for a CHRP Platform are in the area of DMA Modes, interrupt
request states, address modes(I/O or memory), state of Interrupt and DMA Request Lines (tri-stateable: can be
disabled) and the Unit Address Format. Open Firmware is responsible for programming ISA modes that are
configured appropriately with the stated level of CHRP Platform support.

The following sections describe further restrictions and/or requirements for the CHRP Platform ISA Devices
and/or Adapters:

•ISA Resources
• ISA address mode

• Interrupt triggering/level modes

• DMA modes and width

•ISA Properties
•ISA Unit Address Format
•ISA Configuration Requirements

44 PowerPC Microprocessor CHRP binding

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

8.1. Additional ISA Requirements
Additional ISA Adapter/Device resource restrictions and/or formats are stated in this section for a CHRP Plat-
form. Refer to ISA/EISA/ISA-PnP binding[8] for the various resources defined in this section. Open Firmware
information for ISA is defined in the following Table 4. for a set of standard ISA I/O platform devices or ISA
plug-in adapters/devices.

The meaning of the table headings below are defined to be:

• Device Tree - The Open Firmware device tree is expected to define the entries within property values. The oper-
ating system is expected to get the properties from the Open Firmware Device Tree.

• Device Binding - The Open Firmware device binding for that device is expected to define the entries within a
property value, if necessary. The operating system is expected to get the properties from the Open Firmware
device binding for that device.

• CHRP platform - The capabilities of the CHRP legacy interrupt controller or DMA controller create restrictions
on the entries within property values, if necessary.

The ISA terms or nomenclature used in the table below relate to the ISA/EISA/ISA PnP binding[8] in the
following manner:

interrupt level irq#

interrupt triggering type

dma channel # dma#

DMA master or slave mode busmaster

DMA width width and countwidth

DMA timing mode

Table 4. ISA Open Firmware Resource Information

Device Tree Device Binding

 CHRP Platform
Restrictions on ISA
Adapters/Cards

Interrupts - ‘level’ specified Interrupts - ‘triggering’ speci-
fied

Interrupts - NO support for
’active high level sensitive’
or ‘high to low edge’ trigger-
ing

DMA - ‘channel #’ specified DMA - master or slave Mode
specified
DMA - channel and width
count

DMA - No support for “C”
Mode, 32-bit channel or 32-
bit countwidth

Address - physical or aliased
address specified

Address Mode - I/O or mem-
ory address specified

DMA: ISA “Compatibility”
Mode shall be supported(see
note 1)

DMA: ISA “Compatibility”
Mode shall be supported(see
note 1)

DMA: ISA “Compatibility”
Mode shall be supported(see
note 1)

PowerPC Microprocessor CHRP binding 45

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Note 1: ISA DMA slaves and masters must support the ISA compatible timing mode. ISA
DMA slaves and masters are allowed to support additional timing modes that may be
reported in the Open Firmware device tree. An operating system may restrict its mode
operation to just the ISA compatible timing mode or may use the timing mode specified in
the Open Firmware device tree node for that device.

8.1.1. ISA Addresses
All ISA Adapters shall use an I/O Address or memory address for operation with the ISA Bus per Table 4.

8.1.2. ISA Interrupts and DMA Channels
A CHRP Platform shall ensure that all I/O device states are consistent with the interrupt legacy controller and
DMA controller specified in Table 4.

8.1.3. ISA Unit Address Format
A CHRP platform may use a ‘legacy’ or a ‘PnP’ Unit Address Format defined in Reference[8] as the first entry
in a “reg” property. The ‘legacy’ Unit Address value used by a CHRP platform for I/O ISA devices shall
remain invariant across platform boots.

This requirement ensures that ISA adapters or functions would have a stable unit address across boots.
Violations of this rule may require reinstallation of an OS.

8.1.4. ISA Additional Properties
The CHRP Platform shall support two additional properties that identify when an adapter cannot disable inter-
rupt lines or DMA Channels.

“dma-enabled” S

prop-name indicates that a DMA Channel is active

prop-encoded-array: a list of integers, each one encoded as with encode-int.

The property value is a list of integers for index indicating DMA channel numbers used by the
adapter/device. The presence of this property signifies that the specified DMA Channels for the ISA
adapter are enabled and thus not tri-stated.

“interrupt-enabled” S

prop-name indicates that interrupt request line is active

prop-encoded-array: a list of integers, each one encoded as with encode-int.

The property value is a list of integers for index indicating interrupt request lines used by the
adapter/device. The presence of this property signifies that the specified interrupt request lines for the ISA
adapter are enabled and thus not tri-stated.

9. Configuration of Platform Resources
Any computer platform is composed of standard components which are invariant (platform ‘built-in’ standard
I/O and power management), optional components which are detectable (a second processor, for example), and
configurable components which are self-identifying (system memory, for example). Most computer platforms
also provide one or more industry standard I/O buses which allow the insertion of specialized functional adapter
cards. These buses generally support a method for automatic identification, interrogation, and option selection
of installed adapter cards. Some older adapter cards, however, may not support these methods or may supply
incomplete information. Thus it is necessary to provide interactive utilities to aid in the setup of ‘legacy’
pluggable ISA adapter cards and to provide information describing the power management of platform
resources.

A CHRP platform should be capable of configuring ISA resources, if required, and power management resources
(if implemented). A CHRP platform with ISA slots should be capable of using both ‘legacy’ ISA adapter cards

46 PowerPC Microprocessor CHRP binding

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

and ‘Plug and Play’(PnP) ISA adapter cards (see the ISA/EISA/ISA PnP binding[8] and Device Support Exten-
sions binding[10]). For the ISA PnP Adapter Cards, Open Firmware shall be capable of reading data resource
records from the adapters to determine properties and device tree nodes. For ‘legacy’ ISA adapter cards, ISA
Configuration Utility (ICU) support is optional and should be present to interact with the user to provide assign-
ment of ISA resources; i.e., the I/O address, interrupt number, DMA channel, system memory and slot-names.
The platform firmware should provide an ISA Configuration Utility(ICU) as defined in section 9.1., if the plat-
form supports ISA plug-in adapters.

A CHRP Platform shall also have the capability of configuring power management resources, if power
management is implemented by the platform, as defined in section 9.2.

9.1. ISA Resource Configuration
CHRP platforms should provide an ICU program which ‘legacy’ vendors and users of the platform can use to
generate the Open Firmware configuration information for ISA devices, as described in this section. The
information the ICU produces, if present, should be stored in the NVRAM Configuration Partition (NVRAM
partition 0x71), and the information should have the format described in this section. In addition, the platform
firmware should provide a user interface method (keyboard sequence, icon, or other means) for the user to enter
the ICU at system boot time in order to enter configuration data before an operating system is executed.

9.1.1. ISA Resource Configuration Description
The CHRP Platform ISA Configuration Utility should contain appropriate functions which will determine the
information needed to completely fill in the required data structures. This may require obtaining information
from a human user, as well as interacting with and controlling hardware interface features of some ISA devices.
A recommended set of interactions is:

• Interact with CHRP platform user to assign fixed ISA resources, if necessary
• Determine status of hardware defined ISA adapter resources (switches)

• Allocate ISA resources per adapter

• Verify that resources don’t conflict with platform base I/O devices
• Interact with CHRP platform user to assign programmable ISA resources, if necessary

• Set the state of software controlled ISA adapter resources (soft switches)

• Allocate ISA resources per adapter

• Verify that resources don’t conflict with platform base I/O devices and any fixed ISA
adapter resources

• Assign ISA-PnP adapter and/or base device relocatable resources
• Determine relocatable ISA resources

• Allocate ISA resources per adapter

• Verify that the assigned ISA-PnP adapter and/or base device resources do not conflict
with ISA (base I/O devices and adapters) assigned resources

• Verify that ISA and ISA-PnP resources do not conflict with the PCI-to-ISA bridge/PCI bus resources
• Interact with CHRP platform user to provide the capability to display platform assigned ISA/ISA-PnP resources

9.1.1.1. ISA Configuration Handle Assignment
Logical device handle numbers will be first assigned, starting with number “1” through “m”, to ISA legacy card
devices. Resource assignment information gained from user input interactively will be tabulated and conflict
checked by the ISA Configuration Utility (ICU). Conflict information will be displayed to the user and it will
be the user’s obligation to re-adjust legacy card jumpers/switches to resolve conflicts and to provide updated
resource information to the ICU. After completion of the assignment of legacy card resources, PnP device
resource assignments will be made for logical devices with handles corresponding to PnP CSN assignments
“m+1” through “m+n” via standard PnP isolation and auto-configuration methods. Card slot/connector

PowerPC Microprocessor CHRP binding 47

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

information will also be solicited interactively by the ICU for both legacy and PnP cards to support POST
diagnostic fault location requirements.

9.1.2. ISA Legacy Configuration Data Format Requirements
The ISA Data Format shall be in a ‘PnP’ TAG Format (Refer to [34] and [35] for detailed tag information)
and represent allocated resources only. The PnP Vendor extension tag will be used to represent the slot
names/connector information.

The ISA Configuration Data Format will follow the format conventions which have been defined for ISA Plug
and Play (PnP) attach cards. The PnP-like format given below will be used to characterize ISA legacy cards
which may also be present in a CHRP platform. The Configuration Manager will solicit additional information
via an interactive setup routine to obtain resource information for ISA legacy cards as well as physical attribute
information (such as card slot location and connector attributes) for all cards in general.

The following information will be stored in NVRAM to maintain configuration status and to characterize
resource requirements for ISA legacy cards. It has been assumed here that handles 1 through m+n have been
assigned by the Configuration Manager to logical devices in the attach card set.

Data stored in NVRAM to characterize ISA legacy cards will make use of the following PnP-like format system
of tags for small data items:

Table 5. ISA Card Configuration Directory

Bytes Data Field

1 Number of Assigned Legacy Card Handles (0 thru m-1)

1 Number of Assigned PnP Card Handles (0 thru n-1)

6 Reserved

32 Card Slot List (Slot location by handle index)

32 Pointers to Legacy Card Resource Data (handle indexed)

64 Reserved for additional physical attributes

Table 6. ISA Card PnP-like Small Data Item Tag Format

Tag Data Item Type

0x15 Logical Device ID (Assigned Handle)

0x1C Compatible Resource Requirement

0x23 IRQ Resource Requirement

0x2A DMA Resource Requirement

0x30 Start Dependent Function(optional)

0x38 End Dependent Function(optional)

0x4B I/O Resource Requirement(10 bit)

0x4C I/O Resource Requirement(11 bit)

0x4D I/O Resource Requirement(16 bit)

48 PowerPC Microprocessor CHRP binding

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Currently, the compatible device ID set for the legacy devices is restricted to that defined for equivalent PnP
devices. Unlike PnP cards, however, the compatible device ID for legacy cards cannot be used to identify
driver requirements.

Large data items will make use of the PnP-like format tags:

The minimum base address and maximum base address fields of a tag type 0x81 Memory Range descriptor data
item must be defined to be the same value. This is required to assure unambiguous interpretation of the
memory range attributes as a resource assignment.

An example of an ISA legacy card resource requirement description structure in NVRAM is as follows:

TAG (0x82) ANSI String Description (optional)

TAG (0x15) Logical Device ID (Assigned Handle)

TAG (0x72) Vendor Extension (Slot Location)

TAG (0x1C) Compatible Device ID

TAG (0x23) IRQ Resource Requirement

TAG (0x2A) DMA Resource Requirement

TAG (0x4B) I/O Port Resource Requirement (May be more than one)

TAG (0x81) Memory Range Resource Requirement (May be more than one)

TAG (0x86) 32 Bit Fixed Memory Range Resource Requirement (May be more than one)

TAG (0x78) End Tag.

The absence of a particular data item type indicates that no resource of that type is required or assigned. The
presence of an empty (all zeroes) mask in IRQ/DMA resource data items also indicates that no resource of that
type is required.

Because ISA devices can conflict in their use of DMA channels, memory addresses, I/O addresses, and
interrupts, a configuration utility may detect conflicts which cannot be resolved by software. In such cases, the
ICU needs to interact with a human user to suggest configuration changes such as changing jumper settings. It is
recommended that the utility suggest non-conflicting ISA resources which the user could set the device to
utilize.

0x72 PhysicalAttributes(VendorExtension)-‘slot
names’/’connectors’

0x78 End Tag

Table 7. ISA Card PnP-like Large Data Item Tag Format

Tag Data Item Type

0x81 Memory Range Descriptor

0x82 ANSI String ID (optional)

0x86 32-bit Fixed Location Memory Range Description

Table 6. ISA Card PnP-like Small Data Item Tag Format

Tag Data Item Type

PowerPC Microprocessor CHRP binding 49

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

9.2. Power Management Resource Configuration
For a platform which supports device power management, all platform power management related information
shall be resident in the Open Firmware device tree prior to the transfer phase of software operation (see the def-
inition of transfer phase in [3], Chapter 2). Dummy devices shall be placed in the device tree for all standard
I/O bus connectors which are not in use to provide a node to assign the slot-names, power-domains, and power-
sources properties.

Ultimately, the goal is that pluggable devices would not only identify themselves to platform firmware but
would also provide all applicable power management related information. As an interim solution, a utility shall
be provided either in the platform firmware ROM or supplied as a loadable Open Firmware utility on external
media. This utility interacts with a person to obtain power management information concerning plug-in adapters
and peripherals.

9.2.1. Power Management Information Utility
Any platform capable of being expanded via the addition of power-managed devices shall provide a device
power management information utility. The purpose of the utility is to allow a person (end-user or system
developer) to enter power management related device properties of plug-in adapters and peripherals which have
no mechanism to automatically report this information to firmware or system software. The need for this utility
will disappear as standard protocols are developed for interrogating pluggable adapters and devices to provide
power management related information.

In the most general case, the devices to be added to a node representing a standard bus or I/O port are in the
form of multilevel subtrees. The root of this subtree specifies the path to the node in the device tree where the
subtree is to be grafted.

The utility determines the path to the node at which to graft the new devices by interacting with a person to
receive the information. The utility uses the “slot-names” property to identify the location of the device for
which it needs information. For example, the utility might prompt the user with, “Enter the name of the first
device attached to the external scsi connector labeled ‘SCSI1’.”

A data structure describing the subtree is stored in NVRAM. The root node of this subtree contains an “in-
graft-node” property which specifies the path to the parent node where the subtree is to be grafted into the
Open Firmware device tree.

As adapters and devices are enhanced to support the automatic reporting of power management information the
parent node would supply a method query-power-management-attributes which can be used by firmware to
obtain this information without the need for this utility. Any information obtained by direct device interrogation
may update that supplied via the PM NVRAM partition.

9.2.2. PM Configuration Process
When the platform is booted after a configuration change and the newly inserted adapter does not support the
automatic reporting of power management information, firmware should prompt the user asking if he wishes to
supply this information or potentially forfeit some or all of the power management capabilities of the device.

The utility records the information it obtains in the NVRAM Power Management Configuration Partition
(NVRAM Signature of 0x71 and name pm-config). On a subsequent reboot, platform firmware uses the informa-
tion saved in NVRAM to fill out the device tree adding new nodes and their properties, as well as adding prop-
erties and updating the values of properties of existing device tree nodes.

9.2.3. PM Configuration Format
The NVRAM power management configuration partition is designed to be accessed primarily by firmware, but
the partition is designated global and the format is specified to allow a third party to write a power management
information utility which runs on the booted operating system.

The data field of the power management NVRAM partition shall be defined as follows:

50 PowerPC Microprocessor CHRP binding

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

The data field is composed of a header, followed by a number of fixed length data blocks, and finally a variable
length property list area. The length of the header and each data block is 8 bytes. The data blocks use 16-bit
integer offsets into the partition as pointers to the data blocks and into the property list area. The base of this
offset is the beginning of the partition. This effectively limits the size of the PM configuration area to 64K
bytes. If more space is required, additional PM configuration partitions may be provided. Each pointer into the
property list area locates the start of a null-terminated string which represents a list of property name/value
pairs.

The following table specifies the format of the header:

The PM Partition data area format value shall be 1.

The following table specifies the format of the data blocks:

Two data blocks are defined: one defining a device node and a second defining properties to be added to the
base platform device tree.

The data block type field shall have the value 1 for a data block which describes a device node. The data block
type field shall have a value 2 for a data block which describes a property.

Table 8. Power Management Configuration Data Header

Field Size Description

Version 1 byte Designates the version of the PM Partition data area format

Subtree_ptr 2 bytes Pointer to the first data block which describes a device subtree

Property_ptr 2 bytes Pointer to first data block which describes a property list to be
added to the base platform device tree

Reserved 3 bytes Reserved

Table 9. Data Block Format

Field Size Description

Block_type 1 byte Designates the data block type

Data Block
Data

7 bytes Remainder of data block, format specific to data block type

Table 10. Node Data Block Format

Field Size Description

Block_type 1 byte This field shall contain the value 0x01

Prop_list_ptr 2 bytes Pointer to a null terminated string containing the property list
for this node

PowerPC Microprocessor CHRP binding 51

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

The first node of a subtree shall have a “name” property equal to “/” and shall specify the “in-graft-node”
property. The child_ptr of this data block points to the first in a list of data blocks which describe the nodes which
make up the subtree to be grafted onto the system tree.

The final area of the partition is a set of null terminated strings which represent property name/value pair lists.
The last string in this area will be terminated by at least two null bytes. The property list for each node shall
provide all the required PM properties and their values. These include “power-domains”, “device-
power-states”, “device-state-transitions”, “power-sources”, “power-management-
mapping”, and “controls-power-domains”.

10. Client Program Requirements
For CHRP platforms, the client program requirements are defined in Section 9 of Reference [6], with the follow-
ing modifications. Open Firmware Client Programs for a CHRP platform shall execute in 32-bit mode with an
Open Firmware cell size of 1.

10.1. Load Address
The client’s load address is specified by the value of the load-base Configuration Variable. The value of
load-base defines the default load address for client programs when using the load method. Load-base
shall be a real address in real mode or a virtual address in virtual mode. Note that this address represents the
area into which the client program file will be read by load; it does not correspond to the addresses at which
the program will be executed. All of physical memory from load-base to either the start of Open Firmware
physical memory or the end of physical memory, whichever comes first, shall be available for loading the client
program.

Child_ptr 2 bytes Pointer to a data block defining a child node of this node. This
pointer will be equal to 0x0000 if this node has no children.

Sibling_ptr 2 bytes Pointer to a data block defining a sibling node of this node.
This pointer will be equal to 0x0000 if this node has no sib-
lings.

Reserved 1 byte Reserved

Table 11. Property Data Block Format

Field Size Description

Block_type 1 byte This field shall contain the value 0x02

Node_path 2 bytes Pointer to a null terminated string giving the path name of the
node to which the designated property list belongs.

Property_list_
ptr

2 bytes Pointer to a null terminated string containing the property list to
be assigned to the designated node.

Reserved 3 byte Reserved

Table 10. Node Data Block Format

Field Size Description

52 PowerPC Microprocessor CHRP binding

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Note: The load-base address represents the area into which the client program will be
read by load and does not correspond to the address at which the program will be exe-
cuted.

10.2. Initial Register Values
Table 2, “Initial Register Values”, of Reference [6] is modified as follows:

•r3 -- shall be 0 on client program entry
•r4 -- shall be 0 on client program entry

10.3. I/O Devices State
With the exception of the stdin and stdout devices, Open Firmware shall close all devices with the following
conditions true:

All Devices - no DMA and not interrupting

Normal I/O Devices - not responding to access PCI and ISA PnP Adapter/Devices

HOST Bridges - responding to config cycles and passing through config cycles to children

RTAS Devices - contract with Open Firmware to leave in state to perform intended function

10.4. Client Program Format
The data format of a client program compliant with this specification shall be either ELF (Executable and
Linkage Format) as defined by [21], and extended by section 10.4.1.1., or PE (Portable Executable) as defined
by [19]. The standard ELF format contains explicit indication as to the program's execution modes (e.g., 32- or
64-bit, Big- or Little-Endian). CHRP only supports the 32-bit version (i.e., ELFCLASS32) for 32 and 64 bit
platforms.

Note: other client program formats may be supported, in an implementation specific man-
ner, by an Open Firmware implementation.

A standard client program shall be statically linked, requiring no relocation of the image. The program's entry
point (e_entry) shall contain the address of the first PowerPC instruction of the client program. It is the
responsibility of the client program to establish the appropriate value of the TOC (r2), if necessary.

Note: the entry point is the address of the first instruction of the client program, not that
of a procedure descriptor.

10.4.1. ELF-Format
This section defines how Open Firmware recognizes and prepares to execute an ELF-Format Program.

10.4.1.1. ELF Note Section
Part of the process of loading a client program involves verifying its environmental requirements (e.g., endian-
ness and address translation mode) against the current firmware configuration. The client’s endian-ness can be
directly determined by examining the ELF EI-DATA value; ELFDATA2LSB (1) implies Little-Endian while
ELFDATA2MSB (2) implies Big-Endian. However, the other client requirements (e.g., address translation mode)
are defined by means of an ELF Note Section (PT_NOTE), pointed to by the program header. The following
describes the format of the Note Section for a client program file.

As defined by [21], an ELF file can be "annotated" by means of Note Sections within the executable file. A
Note Section contains a "header" followed by a (possibly null) "descriptor", as follows:

PowerPC Microprocessor CHRP binding 53

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Note: the endian format of the values corresponds to the endian-ness specified by the EI-
DATA field of the file.

The format of a Note Section header can be described by an CHRP Open Firmware struct as:

struct \ Note Section header for Open Firmware
/L field ns.namesz \ length of ns.name, including NULL
/L field ns.descrsz
/L field ns.type
0 field ns.name \ NULL-terminated, /L padded

The ns.name field of the PowerPC Open Firmware Note Section shall be "PowerPC"; the ns.type field n shall be
0x1275.

Following the Note Section header is a descriptor (desc); the length (in bytes) of the descriptor is specified by a
word in the Note Section’s header (descsz). The interpretation of the descriptor depends upon the kind of Note
Section in which it is contained. For Open Firmware, the format of the Note Section’s descriptor can be
described by an Open Firmware struct, as follows:

struct \ Note Section descriptor for CHRP Open Firmware
/L field ns.real-mode
/L field ns.real-base
/L field ns.real-size
/L field ns.virt-base
/L field ns.virt-size
/L field ns.load-base

If the ns.load-base value is not -1, then that value is compared against the current value of the load-
base configuration variable. If they are equal no further action is taken. If they are not equal then the load-
base configuration variable is set to the value of ns.load-base and the system is rebooted.

10.4.1.2. Recognizing ELF-Format Programs
The init-program shall recognize client program images that conform to all the requirements listed below
as "ELF-format" programs.

In the description below, field names refer to fields within the ELF "file header" structure, which is assumed to
begin at load-base, and offsets are relative to the beginning of that structure. Multi-byte numerical fields are
interpreted according to the endianess specified by the "data" field at offset 5.

• a) The "e_ident" field (at offset 0) contains the string "\7fELF", where '\7f'’ is a byte whose value is (hex) 7f.
This indicates the beginning of an ELF file header.

• b) The "EI_CLASS" field (at offset 4) contains the value 1. This indicates the 32-bit variant of the ELF format.
• c) The "e_type" field (at offset 16) contains the value 2. This indicates that the ELF image is executable.

namesz

descsz

type

name
. . .

desc
. . .

header

descriptor

54 PowerPC Microprocessor CHRP binding

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

• d) The "e_machine" field (at offset 18) contains the value 20. This indicates that the ELF image is for the Pow-
erPC instruction set.

• e) The “e_version” field (at offset 20) contains the value 1.
• f) The “e_flags” field (at offset 36) contains the value 0.

10.4.1.3. Preparing ELF-Format Programs for Execution
Upon recognition of the client program image at load-base as an ELF-format program, init-program shall pre-
pare the program for execution by performing the following sequence of steps.

In the description below, the fields mentioned by name are within ELF "program header" structures, unless
specified otherwise.

• a) Search for an ELF "note" section of type "1275" as defined in the section "ELF Note Section". If one is found,
and the values specified by its descriptor do not match the firmware's current operating mode, set the appropriate
configuration variables to the values specified in the note section descriptor, and restart the firmware so that it
will re-execute the boot command that resulted in the execution of init-program.

• b) Set the p_paddr field for each PT_LOAD segment equal to its p_vaddr field value if real-mode? is false
and p_paddr is -1. This effectively maps these segments v=r.

• c) Allocate and map, if required, sufficient physical memory for all program segments of type PT_LOAD (i.e.
whose "p_type" field contains the value 1) listed in the ELF image's program headers. Note that all PT_LOAD
program segments that have a p_paddr value that matches their location in physical memory need not be moved,
but the memory that they occupy must be claimed. This special case is added to allow large program images to
be loaded without the 2x memory required to move the segments.

• d) Copy the program headers to a "safe" location to guard against the possibility of them being overwritten by the
following steps.

• e) For each program segment of type "PT_LOAD":

• 1) Copy, if required, the initialized portion of the program segment from its current loca-
tion in the loaded image to the location given by the section's "p_paddr" field.

• 2) Fill the rest of the segment with zero bytes (i.e., fill "p_filez - p_memsz" bytes begin-
ning at the address "p_paddr + p_filesz").

• 3) If real-mode? is false, then map the program segment to the virtual address speci-
fied by p_vaddr.

• f) Set the saved program state so that subsequent execution of "go" will begin execution at the address given by
the "e_entry" field in the ELF file header. The e_entry field is a physical address if real-mode? is true and is
a virtual address if real-mode? is false.

The implementation need not take precautions to ensure that the process of copying and zeroing program segments
does not overwrite the portions of the load image that have not yet been copied. In order to guarantee correct
copying, the value of the load-base configuration variable and the destination addresses of the various sections
must be such that such overwriting does not occur. One sufficient condition is that the region of memory beginning
at load-base, of size equal to the size of the loaded image, be disjoint from the regions of memory to which the
program segments are copied and zero-filled. Another sufficient condition is to specify a load-base in the
Notes Section (PT_NOTE) that ensures that the PT_LOAD segments are loaded at the address required by their
program headers and thus are not moved. There are other less-stringent sufficient conditions, especially for simple
ELF images with a small number of program segments that are to be copied to contiguous regions.

An implementation shall permit the ELF image to contain other program segments in addition to those described
above, but need not take any action beyond that defined above as a result of the presence of such other program
segments.

An implementation shall ignore all ELF sections. ELF sections are intended for binders, not loaders. Note that
the CHRP ELF Note Section is actual an ELF segment of type PT_NOTE and thus the above does not apply to
it.

PowerPC Microprocessor CHRP binding 55

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

10.5. Additional Client Interface Requirements
This section describes processor assist callbacks for real and virtual memory management and a service.

10.5.1. Client Interface Callbacks
This section describes callbacks for memory management. These callbacks are provided by the client.

10.5.1.1. Real-Mode Memory Management Assist Callbacks
claim_mem

IN: [address] min_addr, [address] max_addr, size, align
OUT: throw-code, error,[address] real_addr

Allocate contiguous physical memory between min_addr and max_addr of size bytes (128KB max for an area
in the 0 to 16MB address range), with align alignment. The alignment boundary is the smallest power of two
greater than or equal to the value of align; an align value of 1 signifies one-byte alignment. A non-zero error
code shall be returned if the mapping can not be performed. If error code is zero (i.e. allocation succeeded)
the routine returns the real address (real_addr) of the physical memory block which was allocated for Open
Firmware.

release_mem
IN: [address] phys, size
OUT: throw-code

Free size bytes of physical memory starting at real address phys, making that physical memory available for
later use. That memory must have been previously allocated by claim_mem.

10.5.1.2. Virtual Address Translation Assist Callbacks
alloc_virt_mem

IN: size
OUT: throw-code, error,[address] virt_addr

Return the virtual address of a virtual memory area of size bytes aligned to a doubleword (8-byte) boundary.
A non-zero error code shall be returned if the allocation can not be performed. If error code is zero (i.e. allo-
cation succeeded) the routine returns the virtual address (virt_addr)of the memory block which was allocated.

free_virt_mem
IN: [address] virt_addr, size
OUT: throw-code

Free memory allocated by alloc_virt_mem. The values virt_addr and size must correspond with memory pre-
viously allocated by alloc_virt_mem.

claim_virt
IN: size, align
OUT: throw-code, error,[address] virt_addr

Allocate a memory area of size bytes and alignment align. The alignment boundary is the smallest power of
two greater than or equal to the value of align; an align value of 1 signifies one-byte alignment. A non-zero
error code shall be returned if the allocation can not be performed. If error code is zero (i.e. allocation suc-
ceeded) the routine returns the virtual address (virt_addr)of the memory block which was allocated.

release_virt
IN: [address] virt, size
OUT: throw-code

Free size bytes of virtual memory starting at virtual address virt, making that physical memory and the cor-
responding ranges of virtual address space available for later use. That memory must have been previously
allocated by claim_virt.

10.5.2. Client Interface Services
Open Firmware shall provide the following Client Interface Service:

56 PowerPC Microprocessor CHRP binding

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

test-method
IN: phandle, [string] method
OUT: missing-flag?

Tests whether the package method named method exists in the package phandle. missing-flag? is FALSE (0)
if the method exists or TRUE (-1) if the method does not exist.

11. Support Packages
This section describes the CHRP System binding specific requirements of Open Firmware support packages.
These support packages are “disk-label” and “tape-label”. For “network” and/or “obp-tftp”
extensions, refer to [16]. These packages support the loading and executing of a client program. Another means
of executing a Client Program is provided when an operating system ROM is a “bootable device”(Refer to
Section 5.1.3. on page 25, as an example).

11.1. "disk-label" Support Package
The process of loading and executing a client program is described in two stages. The first stage determines
what partition and/or file(if one exists) to read into memory. This is done by locating a partition and a file
within the partition (if the partition supports a file system structure) from the boot device, usually by means of a
name lookup within a directory contained within a disk "partition". The second stage examines the front portion
(header) of the image for "well-known" program formats. When the format of the image has been determined,
the loading is completed in a manner determined by that format.

The name of the partition (and, a file contained within the partition) can be explicitly specified by the user via
the load or boot command, or can be implicitly specified by the value of the "boot-device" property of
the "/options" node. The partition and filename are the ARGUMENTS portion of the final COMPONENT of the
PATH_NAME, as described in section 4.3.1 of [1].

The syntax for explicit partition/filename specification is given in section 11.1.2. below where partition identifies
the partition to be used and filename is the name of a file within that partition. If partition is omitted, the default
partition (as determined by the partition format) is used. If filename is omitted, the default filename (i.e., the
filename component of the boot-device path-name) is used.

11.1.1. Media Layout Format
This section describes the media layout formats of Client Program Images that the disk-label support package
for a CHRP platform shall support; an implementation may support additional mechanisms, in an
implementation-specific manner. The “disk-label” package for a CHRP platform shall support at least
four(4) media layout types:

•FAT (FAT12 and FAT16 File System)
•FDISK (Partitions 4, 5, 6, 0x41 & 0x96)
•ISO-9660 (9660 File System)
•Mac OS (MAC Binary Image)

11.1.1.1. FDISK Partition Types
The following FDISK partition types shall be supported:

Partition Type 4: FAT 12 or FAT 16 File System

Partition Type 5: Extended Chained Partitions

Partition Type 6: Extended Partitions

Partition Type 0x41: Single program image

Partition Type 0x96: ISO 9660 File System

PowerPC Microprocessor CHRP binding 57

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

FDISK partition type 0 is a free partition. Partition type 0x82 is reserved and should not be used by CHRP
Architecture.

11.1.2. Open Method Algorithm
The open method of the "disk-label" support package shall implement a disk partition recognition
algorithm that supports at least the set of disk formats that are supported by the following algorithm. The
following algorithm is intended to support raw (uninterpreted) disks, raw partitions of disks beginning with an
FDISK partition map, and files on FAT and ISO-9660 file systems both within FDISK partitions and by
themselves on disks without a partition map.

 That open method shall accept an argument string (as returned by "my-args") with the following syntax
(according to the algorithm below), where brackets denote an optional component:

 [partition][,[filename]]

If the argument string contains a comma, or if the argument string begins with a decimal digit, the partition
component is deemed to be present. Note that the arguments above are not the client arguments with the boot
command.

If the partition component is present, it selects the desired partition, where partition 0 refers to the entire disk,
partition 1 refers to the first partition, partition 2 to the second, and so forth. If the partition component is
absent and the disk has an FDISK or Mac partition map, the first "bootable" partition is used. If a “bootable”
partition is not found, then fail in an implementation specific manner with an error.

If the filename component is present, it selects a particular file within the file system on the disk or partition
thereof.

11.1.2.1. OPEN algorithm

11.1.2.1.1. Set D.SIZE to -1

11.1.2.1.2. If ARGUMENT$ is not the null string and the first
character of ARGUMENT$ is in the range '0'..'9' or is
equal to ','

11.1.2.1.2.1. LEFT-PARSE (ARGUMENT$) -> PARTITION$, FILENAME$

11.1.2.1.3. Else

11.1.2.1.3.1. Set PARTITION$ to the null string

11.1.2.1.3.1.0.1. Set FILENAME$ to ARGUMENT$

11.1.2.1.4. If PARTITION$ is not the null string

11.1.2.1.4.1. If PARTITION$ is not a decimal number

11.1.2.1.4.1.1. Return FALSE

11.1.2.1.4.2. DECIMAL_STRING_TO_NUMBER(PARTITION$) -> PARTITION

11.1.2.1.4.3. If PARTITION is 0

11.1.2.1.4.3.1. GET_DISK_SIZE

11.1.2.1.4.4. Else

11.1.2.1.4.4.1. Read the first 512 bytes of the device into a buffer

11.1.2.1.4.4.2. SELECT_EXPLICIT_PARTITION(PARTITION)

11.1.2.1.4.4.3. If SELECT_EXPLICIT_PARTITION returned an error

58 PowerPC Microprocessor CHRP binding

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

indication

11.1.2.1.4.4.3.1. Return FALSE

11.1.2.1.5. Else \ PARTITION$ is NULL

11.1.2.1.5.1. Read the first 512 bytes of the device into a buffer

11.1.2.1.5.2. SELECT_ACTIVE_PARTITION

11.1.2.1.5.3. If SELECT_ACTIVE_PARTITION returned an error
indication

11.1.2.1.5.3.1. Return FALSE

11.1.2.1.6. \ (At this point, D.OFFSET is set to the beginning of
the selected partition and D.SIZE is set to the size
of that partition. If the entire disk was selected,
D.OFFSET is 0 and D.SIZE is the size of the disk.)

11.1.2.1.7. Call parent’s "seek" method with an argument of 0,0.

11.1.2.1.8. Return TRUE

11.1.2.2. CHECK_FOR_BPB procedure

11.1.2.2.1. If the first four(4) bytes are EBCDIC 'IBMA'(hex
character string C9C2D4C1), then the sector does not
contain a BPB.

11.1.2.2.2. If the 16-bit little-endian quantity beginning at
buffer offset 510 is 0xAA55, and the 16-bit little-
endian quantity beginning at buffer offset 11 (which
is the BPB "bytes per sector" field) is either 256,
512, or 1024, and the byte at offset 16 (the BPB
"number of FATs" field is either 1 or 2, the sector is
deemed to contain a BPB. Otherwise, the sector does
not contain a BPB.

11.1.2.3. CHECK_FOR_ISO_9660 procedure

11.1.2.3.1. Read 512-byte sector 64 (the beginning of logical 2048-
byte sector 16)into a buffer.

11.1.2.3.2. If the byte at offset 0 contains the binary number "1",
and the 5 bytes beginning at offset 1 contains the
text string "CD001", the partition or raw disk is
deemed to contain an ISO 9660 file system. Otherwise,
the partition or raw disk is deemed not to contain an
ISO 9660 file system.

11.1.2.4. CHECK_FOR_FDISK procedure

11.1.2.4.1. If the buffer does not contain an FDisk partition map
signature of "AA55" as a 16-bit little-endian number
beginning at buffer offset 510, the buffer is deemed
not to contain an FDISK partition map.

11.1.2.4.2. If none of the partition type code field (the bytes at
buffer offsets 0x1C2,0x1D2, 0x1E2, and 0x1F2)
contains a recognizable partition type code (4,5, 6,
0x41, 0x96, or other types that may be recognized by
the implementation), the buffer is deemed not to
contain an FDISK partition map.

11.1.2.4.3. Otherwise, the buffer is deemed to contain an FDISK

PowerPC Microprocessor CHRP binding 59

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

partition map.

11.1.2.4.4. The implementation may, at its option, apply additional
validity tests to the partition map information.

11.1.2.5. CHECK_FOR_MAC_DISK procedure

11.1.2.5.1. If the first(i.e., at the lowest offset) two bytes in
the buffer contains the 16-bit big-endian signature
0x4552, then the disk is deemed to be a Mac
partitioned disk. Otherwise, the partition or raw
disk is deemed not to be a Mac partitioned disk.

Note: Subsequent 512 byte sectors will contain Mac partition map entries, each of which
begins with the 16-bit big-endian signature 0x504D. Each such partition map entry con-
tains a field (V) indicating the total number of partition entries in the map.

11.1.2.6. INTERPOSE_BY_TYPE procedure

11.1.2.6.1. If FILENAME$ is not the null string

11.1.2.6.1.1. If PARTITION-TYPE is 0x96

11.1.2.6.1.1.1. INTERPOSE[17](ISO-9660 File System package,
FILENAME$)

11.1.2.6.1.2. Else

11.1.2.6.1.2.1. If PARTITION-TYPE is FAT,

11.1.2.6.1.2.1.1. INTERPOSE (FAT File System package, FILENAME$)

11.1.2.7. SELECT_ACTIVE_PARTITION(PARTITION) procedure

11.1.2.7.1. CHECK_FOR_BPB

11.1.2.7.1.1. If the buffer contains a BPB

11.1.2.7.1.1.1. Set OFFSET to 0

11.1.2.7.1.1.2. Set D.SIZE to the maximum size of the disk in bytes,
as indicated by the information in the BIOS
Parameter Block

11.1.2.7.1.1.3. If FILENAME$ is not the null string

11.1.2.7.1.1.3.1. INTERPOSE (FAT File System package, FILENAME$)

11.1.2.7.1.1.4. Return OKAY

11.1.2.7.2. CHECK_FOR_FDISK

11.1.2.7.3. If the buffer contains an FDISK partition map

11.1.2.7.3.1. Search the FDisk partition map, reading new 512-byte
sectors into the buffer if necessary to "chain" to
extended partition entries (i.e. ones whose type
byte at offset 4 contains "5") for the first(i.e.,
at the lowest offset)partition entry whose
"bootable" field (at offset 0 in the partition
entry) contains 0x80.

11.1.2.7.3.2. If a "bootable" partition was found:

11.1.2.7.3.2.1. Set PARTITION-TYPE to that entry's "type" field
(the byte at offset 4)

11.1.2.7.3.2.2. Set D.OFFSET to the byte offset from the beginning
of the disk of the beginning of the partition
denoted by that entry.

11.1.2.7.3.2.3. Set D.SIZE to the size of the partition denoted by

60 PowerPC Microprocessor CHRP binding

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

that entry.

11.1.2.7.3.2.4. INTERPOSE_BY_TYPE

11.1.2.7.3.2.5. Return OKAY

\ (If this point is reached, no partition was marked "bootable")

11.1.2.7.3.3. Search the FDisk partition map beginning in 512-byte
sector 0,reading new 512-byte sectors into the
buffer if necessary to "chain" to extended
partition entries, for the first partition(i.e.,
at the lowest offset) entry whose "type" byte is
neither 0 nor 5 (5 is the type code that indicates
a "chained" extended partition entry).

11.1.2.7.3.4. If one is found:

11.1.2.7.3.4.1. Set PARTITION-TYPE to that entry's "type" field
(the byte at offset 4)

11.1.2.7.3.4.2. Set D.OFFSET to the byte offset from the beginning
of the disk of the beginning of the partition
denoted by that entry.

11.1.2.7.3.4.3. Set D.SIZE to the size of the partition in bytes
denoted by that entry.

11.1.2.7.3.4.4. INTERPOSE_BY_TYPE

11.1.2.7.3.4.5. Return OKAY

11.1.2.7.3.5. Else \ (If this point is reached, the partition map
did not contain any valid partition entries)

11.1.2.7.3.5.1. Return ERROR

11.1.2.7.4. CHECK_FOR_ISO_9660

11.1.2.7.5. If it is an ISO 9660 disk

11.1.2.7.5.1. GET_DISK_SIZE

11.1.2.7.5.2. If FILENAME$ is not the null string

11.1.2.7.5.2.1. INTERPOSE (ISO-9660 File System package, FILENAME$)

11.1.2.7.5.3. Return OKAY

11.1.2.7.6. CHECK_FOR_MAC_DISK

11.1.2.7.7. If this is a Mac partitioned disk

11.1.2.7.7.1. Search the Mac partition table for the first
"bootable" partition. A partition is "bootable"
when the pmPartStatus flags indicate that this is
a valid, allocated, readable and bootable
partition and the pmProcessor field contains
"powerpc" (using case-insensitive matching).

11.1.2.7.7.2. If a Mac "bootable" partition is found

11.1.2.7.7.2.1. If FILENAME$ is "%BOOT"

11.1.2.7.7.2.1.1. If the Nth partition is marked bootable

11.1.2.7.7.2.1.1.1. Set D.OFFSET to the byte offset from the
beginning of the disk to the beginning of
the boot area, as given by the
pmLgBootStart field.

11.1.2.7.7.2.1.1.2. Set D.SIZE to the size of the partition in bytes

PowerPC Microprocessor CHRP binding 61

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

denoted by pmBootSize.

11.1.2.7.7.2.1.1.3. Return OKAY

11.1.2.7.7.2.2. Else

11.1.2.7.7.2.2.1. If the FILENAME$ is the null string

11.1.2.7.7.2.2.1.1. Set D.OFFSET to the byte offset of the "real"
partition data

11.1.2.7.7.2.2.1.2. Set D.SIZE to the size of the "real" partition
data

11.1.2.7.7.2.2.2. Else

11.1.2.7.7.2.2.2.1. INTERPOSE_BY_TYPE

11.1.2.7.7.2.2.3. Return OKAY

11.1.2.7.7.3. Else

11.1.2.7.7.3.1. Return ERROR

11.1.2.7.7.4. (If this point is reached, no “bootable” partition was
found)

11.1.2.7.7.5. Return ERROR

11.1.2.8. GET-DISK-SIZE procedure

11.1.2.8.1. Set OFFSET to 0

11.1.2.8.2. If the parent has a "#blocks" method

11.1.2.8.2.1. Execute the parent's "#blocks" and "block-size"
methods

11.1.2.8.2.2. Set D.SIZE to the product of the numbers they returned

11.1.2.8.3. Else

11.1.2.8.3.1. Set D.SIZE to -1

11.1.2.9. SELECT_EXPLICIT_PARTITION procedure

11.1.2.9.1. CHECK_FOR_BPB

11.1.2.9.2. If the buffer contains a BPB

11.1.2.9.2.1. If PARTITION is 1

11.1.2.9.2.1.1. Set OFFSET to 0

11.1.2.9.2.1.2. Set D.SIZE to the maximum size of the disk in bytes,
as indicated by the information in the BIOS
Parameter Block

11.1.2.9.2.1.3. If FILENAME$ is not the null string

11.1.2.9.2.1.3.1. INTERPOSE (FAT File System package, FILENAME$)

11.1.2.9.2.1.4. Return OKAY

11.1.2.9.2.2. Else \ Have a BPB, but PARTITION <> 1

11.1.2.9.2.2.1. Return ERROR

11.1.2.9.3. CHECK_FOR_FDISK

11.1.2.9.4. If an FDisk partition map is found

11.1.2.9.4.1. Search the FDisk partition map beginning in 512-byte
sector 0, reading new 512-byte sectors into the
buffer if necessary to "chain" to extended
partition entries, for the Nth, where N is the
value of PARTITION, partition entry whose "type"
byte is neither 0 nor 5 (5 is the type code that

62 PowerPC Microprocessor CHRP binding

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

indicates a "chained" extended partition entry).

11.1.2.9.4.2. If the Nth partition is found:

11.1.2.9.4.2.1. Set PARTITION-TYPE to that entry's "type" field
(the byte at offset 4)

11.1.2.9.4.2.2. Set D.OFFSET to the byte offset from the beginning
of the disk to the beginning of the partition
denoted by that entry.

11.1.2.9.4.2.3. Set D.SIZE to the size of the partition in bytes
denoted by that entry.

11.1.2.9.4.2.4. INTERPOSE_BY_TYPE

11.1.2.9.4.2.5. Return OKAY

11.1.2.9.4.3. Else \Nth partition does not exist

11.1.2.9.4.3.1. Return ERROR

11.1.2.9.5. CHECK_FOR_MAC_DISK

11.1.2.9.6. If this is a Mac partitioned disk

11.1.2.9.6.1. Search the Mac partition map for the Nth partition,
where N is the value of PARTITION.

11.1.2.9.6.2. If the Nth partition is valid, allocated, and readable

11.1.2.9.6.2.1. If FILENAME$ is %BOOT

11.1.2.9.6.2.1.1. If the Nth partition is marked bootable

11.1.2.9.6.2.1.1.1. Set D.OFFSET to the byte offset from the
beginning of the disk to the beginning of
the boot area, as given by the
pmLgBootStart field.

11.1.2.9.6.2.1.1.2. Set D.SIZE to the size of the partition in bytes
denoted by pmBootSize.

11.1.2.9.6.2.1.1.3. Return OKAY

11.1.2.9.6.2.1.2. Else \Nth partition not “bootable”

11.1.2.9.6.2.1.2.1. Return ERROR

11.1.2.9.6.2.2. Else

11.1.2.9.6.2.2.1. If FILENAME$ is not the null string

11.1.2.9.6.2.2.1.1. INTERPOSE_BY_TYPE

11.1.2.9.6.2.2.2. Return OKAY

11.1.2.9.6.3. Else \ (If this point is reached, the partition is
invalid)

11.1.2.9.6.3.1. Return ERROR

11.1.2.9.7. Else \ (If this point is reached, the partition map is
not regconized)

11.1.2.9.7.1. Return ERROR

This algorithm can be used to locate the correct partition and/or file and/or load image from the specified
device. The boot device is selected as described in 7.4.3.2 of [1]. A filename can be explicitly given as the
arguments field of the device-specifier (i.e., the field following the ':' of the last path component). Other formats
may be recognized in an implementation-specific manner.

PowerPC Microprocessor CHRP binding 63

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

11.2. “tape-label” Support Package
The “tape-label” Support Package shall support tape as a standard “byte” device with the set of methods
specified in [1], Section 3.7.3. Presence of the bootinfo.txt file is optional.

The open method shall accept an argument string, where brackets denote an optional component:

[file number]

where the first file on the tape media is located at file number 0.

11.2.1. Tape Format
The CHRP tape format shall consist of files ending with a file mark(FM). The first block of data will be
identified as file 0. The bootinfo.txt file, if present, shall be located on the tape as file 0 (the first file).
There shall be only one bootinfo.txt file on the tape media. Refer to Figure 1 below for the CHRP Tape
format.

11.2.2. Tape bootinfo.txt File
The bootinfo.txt file shall have included for each set of <chrp-boot> tags a set of <boot-script>
tags that contains a pointer to the program image to be loaded (Refer to Section 3.1.6. on page 19). The form
for this tape pointer will be:

device specifier = device:file number

EXAMPLE: device specifier = tape:2 (For the specified set of <chrp-boot> tags, load the tape program
image from file 2).

FIGURE 1 Tape Boot Format

. . .File 0 File 1 File 2 File n File n+1
bootinfo.txt data file data file data file data file

. . .File 0 File 1 File 2 File n File n+1
data file data file data file data file data file

Optional bootinfo.txt File present

FM FM FM FM

FM FM FM FM

bootinfo.txt File not present

64 PowerPC Microprocessor CHRP binding

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

A bootinfo.txt file may contain a multiple set of <chrp-boot> tags where each one can point to a
different tape file number. If a bootinfo.txt file is not present, file 0 should be a bootable file. Only file 0
will be loaded as a bootable image. No other files will be searched if a bootinfo.txt file is not present
unless the file number to load is specified by an argument.

11.3. “network” Support Package
The "network" Support Package shall adhere to the Recommended Practice - TFTP Booting Extension[16]
documentation functions and conventions.

11.4. Program-image formats.
Open Firmware must recognize a client program that is formatted as ELF [21] and PE [19]. Other formats may
be handled in an implementation-specific manner. Reference [13] defines using FCode and Forth Program-
Image Formats.

After locating the file, Open Firmware reads the image into memory at the location specified by the load-base
Configuration Variable. Then, Open Firmware must perform the following procedure to prepare the image for
execution.

init-program.

set restart? false

if the image is in ELF format(Refer to Section 10.4.1.2. on page 53)

if the EI_DATA field does not match little-endian?

set little-endian? appropriately.

set restart? true

locate the PowerPC Note Section

if the Note Section’s values do not match

set Configuration Variables appropriately

set restart? true

if restart?

restart the system, possibly by executing reset-all

else

move and/or relocate the ELF image
(Refer to Section 10.4.1.3. on page 54).

set GO’s context with initial register values

else if the image is in PE format

if little-endian? is false

set little-endian? to true.

PowerPC Microprocessor CHRP binding 65

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

restart the system, possibly by executing reset-all

else

move and/or relocate the PE image.

set GO’s context with initial register values

else if the image is FCode Image(hex characters F1,08)

setup system and do subsequent go and perform a byte load of the FCode
image

else if the image is Forth Code Source Image(ASCII characters \"<space>")

setup system to evaluate Forth Source Image

else if the image is a bootinfo.txt file (i.e., begins with "<CHRP-BOOT>")

setup system to parse the bootinfo.txt file

else

FAIL, in an implementation-specific manner.

11.4.1. CHRP PE Program-image Format Support
When the PE File Format is recognized, the Windows NT Veneer is loaded with the following environment:

• Open Firmware shall ensure that virtual address space from 0x80000000 to 0x81000000 (2GB to 2GB+16MB)
is available and that any other virtual address space has not been mapped into the physical address space from 0
to 0x1000000 (0 to 16MB). If necessary, Open Firmware shall also modify the real-base configuration vari-
able in such a way as to ensure that the Open Firmware image itself is not loaded into any part of the 0 to
0x1000000 physical address space.

• For CHRP Systems with greater than 256MB’s of physical memory, a suggested Open
Firmware Image loading address is at the top of the first 256MB bank.

• For CHRP Systems with equal to or less than 256MB’s, a suggested Open Firmware
Image loading address is at the top of physical memory.

• Open Firmware shall zero the first 256 bytes (0 to 0x100) of physical memory.
• Open Firmware shall set the little-endian? configuration variable to little endian mode.
• Open Firmware shall set the real-mode? configuration variable to virtual address mode.

11.4.1.1. Windows NT Veneer Implementation
The current NT Veneer implementation calls the MMU node’s standard map method through the Client Interface
to map virtual address 0x80000000 to physical address 0. CHRP System’s intention is to continue using NT
calling the standard map method to map virtual memory to physical memory.

12. Open Firmware Related NVRAM Usage
This section describes the NVRAM partitions for a CHRP platform. The platform Open Firmware defines the
currently-defined NVRAM partitions and tags(see table below). Other partitions whose tags and usage are
defined in the CHRP specification [3], Chapter 8, should be treated as RESERVED FOR FUTURE USE.

66 PowerPC Microprocessor CHRP binding

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Note 1: Ownership

Firmware - Read/Write of partition done only by firmware

Global - Read/Write of partition can be done by firmware and/or operating system

Note 2: Definitions

OF - Open Firmware

FW - Firmware

RTAS - Run Time Abstraction Services (OS environment)

Note 3: OS’s each have their own private partition, using one of the signatures 0xA0
through 0xAF, Signature Type OS.

12.1. Open Firmware Partition
This partition is for Open Firmware usage

12.2. Firmware Partition
This partition is for firmware usage.

12.3. Hardware Partition
This partition is used for platform specific operations; i.e., like storage of a vendor Vital Product Data(VPD).

12.4. System Partition
The System Partition, with name = ’common’, contains information that is accessible to both Open Firmware
and operating systems. The contents of this partition are represented in the Open Firmware device tree as
properties (i.e., (name, value) pairs) in the /options node. While Open Firmware is available, the operating
system can alter the contents of these properties by using the setprop client interface service. When Open
Firmware is no longer available, the operating system can alter the contents of the System Partition itself,

Table 12. Open Firmware Related NVRAM Partitions

Signature Type Ownership 1
Number of
partitions Description 2

0x50 Open Firm-
ware

Firmware 1 For general OF usage

0x51 Firmware Firmware 0 to n General FW usage

0x52 Hardware Firmware 1 to n For system information

0x70 System Global 1 For configuration variables

0x71 Configuration Global 0 to n For ISA and Power Manage-
ment utilities data resource

0x72 Error log Global 0 to n For errors during OF/RTAS

0x7E Vendor-defined Global 0 to n “name” prefix

0x7F Free Space Global 0 to n Marks free space

PowerPC Microprocessor CHRP binding 67

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

following the rules below for the formats of the name and value. Information is stored in the System Partition
as a sequence of (name, value) pairs in the following format:

name = value

where name follows the rules defined in Section 12.4.1 and value follows the rules defined in Section 12.4.2.
The end of the sequence of pairs is denoted by a null (0x00) byte.

12.4.1. Name
Since the data in the System Partition is an external representation of properties of the /option node, the
name component must follow the rules for property names as defined by Section 3.2.2.1.1 Property names of
[1]; i.e., a string of 1-31 printable characters containing no uppercase characters or the characters ’/’, ’\’,
’:’, ’[‘, ’]’ or ’@’. In addition to these rules, a naming convention is required for operating system
specific names to avoid name conflicts. Each such name must begin with the OS vendor’s OUI followed by a
’,’; e.g., aapl,xxx or ibm,xxx. This introduces separate name spaces for each vendor in which it
manages its own naming conventions.

12.4.2. Value
The value component of System Partition data can contain an arbitrary number of bytes in the range 0x01-
0xFF, terminated by a null (0x00) byte. Bytes in the range 0x01-0xFE represent themselves. In order to
allow arbitrary byte data to be represented, an encoding is used to represent strings of 0x00 or 0xFF bytes.
This encoding uses the 0xFF byte as an escape, indicating that the following byte is encoded as:

bnnnnnnn

where b, the most-significant bit, is 0 to represent a sequence of 0x00 bytes or 1 to represent a sequence of
0xFF bytes. nnnnnnn, the least-significant 7 bits, is a binary number (in the range 0x01-0x7F) that
represents the number of repetitions of 0x00 or 0xFF.

12.4.3. Open Firmware Configuration Variables
Open Firmware configuration variables control the operation of Open Firmware. In addition to the standard
configuration variables defined in [1], other configuration variables are defined by the PowerPC Processor
binding [6] and by this binding. While such variables are stored in the System Partition as described above,
they have additional rules placed on the format of the value component. Each configuration variable is also
represented by a user interface word (of the same name) that returns stack value(s) when that word is evaluated.
Each also has a platform defined default value; the absence of a configuration variable in the System Partition
indicates that the value is set to its default value. The format of the external representation of configuration
variables, and their stack representation, is defined by Section 7.4.4.1 Configuration Variables of [1]; the format
depends upon the data type of the configuration variable. Whereas the internal storage format is not defined by
[1], this binding specifies them as described below. The names of configuration variables are followed by the
reference in which they are defined (where [*] refers to this binding).

12.4.3.1. Boolean Configuration Variables
The value of a boolean configuration variable is represented in the System Partition as the string ”true” or
”false”. The following configuration variables are of type boolean:

auto-boot? [1]

diag-switch? [1]

fcode-debug? [1]

oem-banner? [1]

oem-logo? [1]

use-nvramrc? [1]

68 PowerPC Microprocessor CHRP binding

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

little-endian? [5]

real-mode? [5]

menu? [*]

12.4.3.2. Integer Configuration Variables
The value of an integer configuration variable is represented in the System Partition as a decimal number or a
hexidecimal number preceded by ”0x“. The following configuration variables are of type integer:

screen-#columns [1]

screen-#rows [1]

security-#badlogins [1]

security-mode [1]

selftest-#megs [1]

real-base [5]

real-size [5]

virt-base [5]

virt-size [5]

load-base [5]

12.4.3.3. String Configuration Variables
The value of a string configuration variable is represented in the System Partition as the characters of the string.
Where multiple “lines” of text are represented (e.g., in the nvramrc script), each line is terminated by a
carriage-return (0x0D), a linefeed (0x0A), or carriage-return, linefeed sequence (0x0D,0x0A). The following
configuration variables are of type string:

boot-command [1]

boot-device [1]

boot-file [1]

diag-device [1]

diag-file [1]

input-device [1]

nvramrc [1]

oem-banner [1]

output-device [1]

security-password [1]

bootinfo-nnnnn [*]

reboot-command [*]

12.4.3.4. Byte Configuration Variables
The value of a bytes configuration variable is represented by an arbitrary number of bytes, using the encoding
escape for values of 0x00 and 0xFF. The following configuration variables are of type bytes:

oem-logo [1]

12.4.4. nvramrc Script
A CHRP Platform will implement the function nvramrc script as defined in [1] to allow an OS to change vari-
able settings or initialize needed environment variables.

PowerPC Microprocessor CHRP binding 69

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

In addition, it is recommended for a CHRP Platform that has a hardware configuration with multiple SCSI
Controllers on the same SCSI Bus to assign SCSI ID’s to avoid possible bus address conflicts. The mechanism
to do this is a nvramrc script using a multi-initiator script defined below. The multi-initiator nvramrc script
shall use banner or surpress-banner executed within the script to modify or suppress the automatic
execution of the Open Firmware start-up sequence; probe-all install-console banner (Reference [1],
Section 4.2.3). The multi-initiator script should execute probe-all to construct the device nodes before the
multi-initiator is assigned.

12.4.4.1. Multi-initiator Script
A CHRP Platform recommends the use of a nvramrc script to set the SCSI ID or multi-initiator for the next
boot operation for a SCSI hardware configuration that is shared by two systems. That is, on SCSI buses where
there are two or more SCSI Controller Adapters present on the same SCSI Bus. Below is a recommended script
by which an OS can set the alternate SCSI Adapter ID to not conflict with the primary SCSI Controller.

nvramrc script for SCSI multi-initiator (This script is represented using new line characters <nl> to parse into
a readable format):

dev device-specifier<nl>

nnn encode-int “ scsi-initiator-id” property<nl>

device-end<nl><null>

where ‘nnn’ is an integer specifying the SCSI ID. The <nl> is the ASCII new line character and <null> is the
ASCII null character. Note that the formatting is for visual purposes.

Ground Rules:

• The “scsi-initiator-id” property defines the SCSI ID for that node (typically adapter). Absence of this
property implies that SCSI ID 7 is in use by the adapter.

• This property can be assigned to any SCSI adapter node via the nvramrc script.
• Open Firmware processes the nvramrc script prior to performing any operations on the SCSI bus.

• banner or suppress-banner shall be executed within the script to suppress Open
Firmware start-up sequence

• probe-all shall be executed within the script before setting the multi-initiator or
SCSI ID

• install-console shall be executed within the script after the setting of the SCSI ID
to complete the normal Open Firmware start-up sequence

• The nvramrc script is contained in the NVRAM System Partition(0x70).

An example of a multi-initiator script follows:

Assume that the following are two SCSI adapter paths; /pci@ff500000/pci3,1000@10 and
/pci@ff500000/pci3,1000@18.

Then the following example sets the SCSI ID for /pci@ff500000/pci3,1000@10 to 6 and SCSI ID for
/pci@ff500000/pci3,1000@8 to 7 at each boot before any SCSI operations.

This sequence of code should be inserted in the nvramrc script:

probe-all dev /pci@ff500000/pci3,1000@10<nl>
6 encode-int " scsi-initiator-id" property<nl>
device-end<nl>
dev /pci@ff500000/pci3,1000@8<nl>
7 encode-int " scsi-initiator-id" property<nl>
device-end<nl>
install-console banner1<nl>
<null>

70 PowerPC Microprocessor CHRP binding

September 23, 1996 Revision 1.7 [Approved Version]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Note 1: suppress-banner could also be used to suppress the normal Open Firmware
start-up sequence of operations

12.5. Configuration Partition
The Configuration Partition (0x52) has two separate partitions with names of isa-config and pm-config (when
power management is implemented by the platform). The ICU stores the ISA Resource information in the isa-
config partition.

The device power management resources are stored in the pm-config partition by a CHRP platform Power
Configuration Utility (PCU).

12.5.1. ISA PnP Configuration Resources
ISA legacy card resource data is stored in the isa-config partition of NVRAM as shown in Section 9.1.2. on
page 47.

12.5.2. Device Power Management Configuration Resources
The format of power management information provided in the optional pm-config partition is defined in
Section 9.2.3. on page 49.

12.5.3. Error Log Partition
This partition data format is defined in the CHRP Architecture for the possible error logs resulting from RTAS
calls.

12.6. Vendor-Defined Partition
This partition is used as part of the naming convention to identify a partition within a signature group.

12.7. Free Space Partition
This partition signature is used to mark free NVRAM in a CHRP Platform

-- END OF DOCUMENT --

