
|||||||||||III
United States Patent (19)
Andrade et al.

54) DATA CHAINING MECHANISM FOR SCSI
DEVICES

75 Inventors: Gustavo Andrade, San Jose; Mathew
Gulick, Gilroy; Gerald Katzung,
San Jose, all of Calif.
Apple Computer, Inc, Cupertino,
Calif.

63,637
May 19, 1993

73) Assignee:

21
(22)

Appl. No.:
Filed:

Related U.S. Application Data
Continuation of Ser. No. 573,462, Aug. 27, 1990, aban
doned.

Int. C. .. G06F 12/02
U.S. C. 395/425; 364/DIG. 1;

364/251.5; 364/252.6; 364/254.1; 364/254.2
Field of Search 395/400, 425;

364/200 MS File, 900 MS File
References Cited

U.S. PATENT DOCUMENTS

4,718,003 1/1988 Andersen et al. ...

(63)

(51)
(52)

(58)

56

... 395/200
4,773,005 9/1988 Sullivan 395/275
4,945,479 7/1990 Rusterholz et al. 395/800
5,175,822 12/1992 Dixon et al. 395/275

132 OPERAING
SYSTEM

E. E. 104

SCS
CD-ROM
DRIVE

133

SCS
TAPE
ORIVE

134

SCS
HARO
DSK

135

36

137

SCS
HARDCOPY
PRINTER

101

US005293624A

11 Patent Number: 5,293,624
45 Date of Patent: Mar. 8, 1994

Primary Examiner-Joseph L. Dixon
Assistant Examiner-Hiep T. Nguyen
Attorney, Agent, or Firm-Blakely, Sokoloff, Taylor &
Zafiman

57 ABSTRACT
A mechanism for exchanging information between
SCSI devices which allows for specifying multiple
source or destination buffers. The mechanism includes a
first apparatus for generating at least one move instruc
tion which when executed by the SCSI manager either
writes or reads the specified number of bytes to or from
that buffer address and subsequently adds the offset
field value to the buffer address to create a current
buffer address. The current buffer address and the
buffer address may be non-contiguous. The mechanism
also has a second apparatus for generating at least one
looping instruction by which the SCSI manager
branches the offset number of instructions until the
number is exhausted. This allows the SCSI manager to
repeat instructions. During each repetition of the move
instruction, the buffer address location gets incre
mented by the value in the offset field. This increment
ing allows buffer locations to be accessed that are non
contiguous; thus, multiple source and destinations can
be created and they can be non-contiguous.

21 Claims, 3 Drawing Sheets

106

STATIC
MEMORY

13

25

KEYBOAR)

O2 2 122

WoO WDEO

U.S. Patent Mar. 8, 1994 Sheet 1 of 3 5,293,624

132 OPERATING 106

STATIC
MEMORY

33

SCS
TAPE O
DRIVE 125

134 Bus
KEYBOARD

102 121 122

135
VIDEO VIDEO

PROCESSOR MEMORY MONITOR

36

137

SCS
HARDCOPY

PRINTER FIGURE 1

201 2O2 2O3 204

SAVE
OPCODE FIELD COUNT FIELD OFFSETFIELD PolNTE FIELD
(LONGWORD) (LONGWORD) (LONGWORD) (LONGWORD)

FIGURE 2

U.S. Patent Mar. 8, 1994 Sheet 2 of 3 5,293,624

OAA CHANING
MAN LOOP START

301

N. VARIABLES
SET POINTERTO

1ST ENTRY

302
30

GET VALUE FROM
1ST FIELD

303

Ism
EQUALIONULL YES 8.

NO

304

EGUAL TO-1 ()

DC MOVE LOGIC 305

SET BUFFER
PONTER

306

GET REQUEST
COUNT

307

JUMPODATA
VO ROUTINE

ADD OFFSET TO
BUFFER PONTER

JUMPO NEXT
BUFFER, COUNT

FIGURE 3

U.S. Patent Mar. 8, 1994 Sheet 3 of 3 5,293,624

DC SPECIAL

SHE
NEXT FELD

EQUAL go NULL

FIGURE 4

IS
countE ZERO

No. 603

GET OFFSET VALUE

JUMP TO NEXT
BUFFER, COUNTs

OFFSET

JUMP TO NEXT
BUFFER, COUNT 1

604

FIGURE 6

5,293,624
1.

DATA CHAINING MECHANISM FORSCSI
DEVICES

This is a continuation of application Ser. No.
07/573,462, filed Aug. 27, 1990 now abandoned.

FIELD OF THE INVENTION

The invention relates to the field of data management
in computer systems; particularly to the area of data
transfer operations.

BACKGROUND OF THE INVENTION

The Small Computer Standard Interface (SCSI) is a
specification of the mechanical, electrical, and func
tional standards followed when coupling small comput
ers to intelligent peripherals such as hard disks, printers,
and optical disks. Typically, a part of the operating
system, the SCSI manager, is employed to provide rou

5

O

15

tines and data structures to control the exchange of 20
information between the small computer and
ripheral devices.

Devices are usually connected to a SCSI bus in a
daisy-chain configuration. When two SCSI devices
communicate with each other, one acts as an "initiator'
and the other as a "target.” The initiator asks the target
to perform a certain operation, such as reading a block
of data. Before any operation can occur, the initiator
must first gain control of the bus, select a target device,
and then instruct the target device regarding which
operation is to be performed.
When the command to be performed involves a trans

fer of data, a pointer must be passed to a transfer instruc
tion block which indicates to the SCSI manager how
the data is to be manipulated. In the prior art, data could
only be read from or written into contiguous memory
locations. Moreover, data transfers which required mul
tiple buffers to be used, would have to be separated into
several calls to the operating system. Furthermore,
during actual data transfer process, the running of appli
cation procedures between calls to the operating system
caused a loss of system performance.
As will be seen, the present invention involves a

mechanism which allows data to be read from or writ
ten into memory non-contiguously. Moreover, a single
buffer may be employed repeatedly without having to
divide a transaction into several calls to the operating
system. The present invention also includes a mecha
nism which allows for application routines to be called
in between data calls of an actual data transfer process
without loss to system performance.

SUMMARY OF INVENTION

In a computer system having a Small Computer Stan
dard Interface (SCSI) and a SCSI manager, a data
chaining mechanism for exchanging information be
tween SCSI devices which allows for specifying multi
ple source or destination buffers. In one embodiment,
the mechanism includes a first apparatus for generating
at least one move instruction in the format of a first
opcode field containing a buffer address representing a
move command, a first count field containing a number
specifying an amount of bytes to transfer, a first offset
field containing a value to add to the buffer address, and
a first save pointer field. The SCSI manager executes
the move instruction in which the SCSI manager either
writes or reads the amount of bytes to or from the buffer
address and subsequently adds the value to the buffer

the pe

25

30

35

45

50

55

65

2
address to create a current buffer address, wherein the
current buffer address and the buffer address may be
non-contiguous.
The mechanism also includes a second apparatus for

generating at least one looping instruction in the format
of a second opcode field containing a loop command, a
second count field containing a number corresponding
to the number of iterations, a second offset field contain
ing an offset number of instructions to branch from the
move instruction, and a second save pointerfield. When
executing a looping instruction, the SCSI manager
branches the offset number of instructions until the
number of loop times is zero such that the SCSI man
ager repeats the move instruction the specified number
of loop times, during which time the SCSI manager
either writes or reads the amount of bytes to or from the
current buffer address.
A third apparatus generates a stop instruction in the

format of a third opcode field containing a stop com
mand, a third count field containing a zero, a third offset
field containing a zero, and a third save pointer field.
The SCSI manager completes execution of the data
chaining instructions upon encountering the stop in
struction.
The mechanism further includes a fourth apparatus

which generates at least one special instruction in the
format of a fourth opcode field containing a special
command, a fourth count field containing a branch
address to a routine, a fourth offset field containing data
as defined by the routine referenced by the branch ad
dress, and a fourth save pointer field. Upon execution,
the SCSI manager relinquishes control of the SCSI
either before or after the one move instruction or after
the one loop instruction causing the execution the re
maining instructions by the SCSI manager to be halted
for a predetermined time during which the routine at
the branch address is executed. After the predetermined
time, the SCSI manager assumes control and completes
execution of any remaining data chaining instructions.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is an illustration of the computer system archi
tecture of the present invention.

FIG. 2 is the format of a data chaining instruction of
the present invention.

FIGS. 3, 4, 5 and 6 are flowcharts depicting how the
SCSI manager processes the data chaining instructions.
DETALED DESCRIPTION OF THE PRESENT

INVENTION

A mechanism for exchanging information between
SCSI devices which allows for specifying multiple
source and destination buffers is described. In the fol
lowing description, numerous specific details are set
fourth such as specific computer components, bit
lengths, etc., in order to provide a thorough under
standing of the present invention. It will be obvious,
however, to one skilled in the art that the present inven
tion may be practiced without these specific details. In
other instances, well-known components, structures
and techniques have not been shown in detail to avoid
unnecessarily obscuring the present invention.

Overview of the Computer System
Referring first to FIG. 1, an overview of a computer

system of the present invention is shown in block dia
gram form. It will be understood that while FIG. 1 is
useful for providing an overall description of the com

5,293,624
3

puter system of the present invention, a number of de
tails of the system are not shown. As necessary for
disclosure of the present invention, further detail is set
forth with reference to the other figures provided with
this specification. Further, the present invention is de
scribed with reference to its preferred embodiment;
alternative embodiments which may be conceived by
one of ordinary skill in the art are considered within the
scope of the claims set forth below.
The present invention may be implemented on a gen

eral purpose microcomputer, such as one of the men
bers of the Apple II or Apple Macintosh TM family, one
of the members of the IBM Personal Computer family,
or one of several graphic computer devices which are
presently commercially available. Of course, the pres
ent invention may also be implemented on a multi-user
system while encountering all of the cost, speed and
function advantages and disadvantages available with
these machines. The currently preferred embodiment of
the present invention is implemented on an Apple II
computer system,

In any event, the computer system of the currently
preferred embodiment, generally comprises a bus 101
for communicating information coupled to a processor
102. A randon access memory (RAM) 104 (commonly
referred to as a main memory) is coupled to bus 101 for
storing information and instructions for processor 102.
Read only memory (ROM) 106 is coupled to bus 101 for
storing static information and instructions for processor
102. Display device 122, such as a cathode ray tube,
liquid crystal display, etc., is coupled to bus 101, by way
of a video memory 121, for displaying information to
the computer user. An alphanumeric input device 125
including alphanumeric and other keys, etc., is coupled
to bus 101 for communicating information and con
mand selections to processor 102 and for controlling
cursor OVerent.

Also connected to bus 101 are SCSI devices. These
SCSI devices include SCSI CD-ROM 132, SCSI tape
drive 133, SCSI hard disk 134, SCSI hard disk 135,
SCSI scanner 136, and SCSI printer 137. Each of SCSI
devices 132-135 provide storage facilities and is ac
cessed via the SCSI manager 131 which resides as part
of the operating system 130 that is stored in the main
memory 104. SCSI scanner 136 provides a means to
input hardcopy information directly into the computer
system. Finally, SCSI printer 137 provides permanent
copies of information.
Of course, certain implementations and uses of the

present invention may not require nor include all of the
above components. For example, in certain implementa
tions a keyboard and cursor control device for inputting
information to the system may not be required. In other
implementations, it may not be required to provide a
display device for displaying information.

Operation of the Present Invention
SCSI manager 131 automatically initializes at system

start-up and is employed to perform an operation when
access to a SCSI device is requested. Access is re
quested when a pointer is passed to a command descrip
tor block. If the command to be performed involves a
transfer of data (e.g., a read or write operation), a
pointer to a data chaining instruction block is also
passed. The data chaining instruction block contains
structures which specify data chaining. Data chaining is
a mechanism which allows for the specification of mul
tiple source or destination buffers without requiring one

O

15

25

30

35

45

55

65

4.
entry for each buffer address. Thus, the datachaining
instruction block instructs SCSI manager 131 how the
transferred data bytes are to be distributed during the
data phase, and SCSI manager 131 invokes its logic to
execute each instruction in the block. The format of the
data chaining instructions in the data chaining instruc
tion block is shown in FIG. 2. Each data chaining in
struction consists of four long word fields and are in the
computer system's native format. The first field, opcode
field 201, is an opcode which describes the action to be
performed. The second field, count field 202, is a ge
neric count specific specific to the opcode in opcode
field 201. The third field, offset field 203, is a generic
offset specific to the opcode in opcode field 201. Lastly,
the fourth field, save pointer field 204, is for use by
SCSI manager 131 and is set to zero.
The first field, opcode field 201, defines the type of

instruction. There are three data chaining instructions
that compose the data chaining structure. By various
combinations, data can be gathered and distributed
depending on the direction of transfer. The three data
chaining instruction types are: DCMove, DCLoop and
DCStop. A variation of the DCStop, the DCSpecial,
offers an alternate data chaining structure.
A DCMove instruction is defined where the value in

opcode field 201 is between $00000001-SFFFFFFFE
hexadecimal. In other words, when the value in opcode
field 201 is not zero (S00000000) or SFFFFFFFF, the
data chaining instruction is a DCMove instruction. The
long word value in the opcode field for the DCMove
instruction is treated as a buffer address. The buffer
address in the opcode field need only be a valid address
for the system.
Where opcode field 201 contains a DCMove instruc

tion, count field 202 defines the requested number of
bytes to transfer, and the offset field 203 contains the
value to add to the buffer address after the requested
number of bytes have been transferred. Save pointer
field 204 is reserved for use by SCSI manager 131 and is
set to Zero.
When a DCMove data chaining instruction is exe

cuted, SCSI manager 131 waits for the device that is
reading or writing the data to be ready, and then the
requested number of bytes specified in count field 202 is
read from or written to the buffer address stored in
opcode field 201. The type of operation, normally a
read or write, is determined when the data transfer is
occurring. Once the data transfer is completed, the
value in offset field 203 is added to the buffer address in
opcode field 201 and the result is stored in opcode field
201. Thus, if a particular DCMove data chaining in
struction is repeated during the next pass by SCSI man
ager 131, a new buffer address is used in the data trans
fer.
A DCLoop instruction is defined where the value in

opcode field 201 is SFFFFFFFF. In other words,
where the value in opcode field 201 is a negative one
(-1), a DCLoop instruction is defined. If the instruc
tion is a DCLoop instruction, count field 202 defines the
number of iterations to be performed. Thus, count field
202 corresponds to the number of times the loop in
struction is to be executed. For a DCLoop instruction,
offset field 203 contains the relative offset from the
current data chaining instruction to the next instruction
to be executed if the count is not exhausted. As in the
case of a DCMove instruction, save pointer field 204 is
set to zero.

5,293,624
5

When a DCLoop data chaining instruction is exe
cuted, the instructions in the data chaining instruction
block that are within the offset number of instructions
from the DCLoop instruction are repeated until the
loop count, as specified in count field 202, is exhausted. 5
A DCStop instruction is defined where the value in

opcode field 201 is $00000000. If the instruction is a
DCStop instruction, count field 202 and offset field 203
must be zero. As in the case of the DCMove and
DCLoop instructions, save pointer field 204 is set to
zero. The execution of a DCStop data chaining instruc
tion indicates that no more executable data chaining
instructions exist.
A special variety of the DCStop data chaining in

struction exists where countfield 202 does not contain a
zero. If count field 202 in the DCStop instruction is
nonzero, then count field 202 contains a branch address
to a routine through which SCSI manager 131 passes
control. This special DCStop instruction is called a
DCSpecial data chaining instruction. With a DCSpecial
instruction, the routine address can be any address in
memory. Also, offset address 203 can hold data as de
fined by the routine being referenced at the address.
This instruction can be used by the application calling
the SCSI device to carry out an action which must
occur during the middle of the data transfer. Upon
returning to the execution in the data chaining environ
ment, the system must be set exactly as it was when
SCSI manager 131 passed control.
As an example, assume now that a SCSI device is to

receive sixteen groups of data, each of which is $800
bytes. The data is to be stored in the buffers $3000 bytes
apart from each other, starting at buffer address $2000.
The present invention accomplishes the transfer in three
data chaining instructions. A first data chaining instruc
tion is generated with the starting buffer address $2000
in opcode field 201, the number of bytes being trans
ferred, $800, in count field 202, the offset value, $3000,
in offset field 203, and a zero in save pointer field 204.
This instruction is a DCMove instruction which, when
executed, allows $800 bytes of data, as specified in
count field 202, to be stored at buffer address $2000, as
specified in opcode field 201. After the data has been
stored, the value $3000, as specified in offset field 203, is
added to the buffer address in opcode field 201 and
stored in opcode field 201.
A second data chaining instruction is generated with

a negative one in opcode field 201, the number sixteen in
count field 202, a negative one (-1) in offset field 203,
and a zero in save pointer field 204. The second data
chaining instruction is a DCloop instruction which
allows instructions an offset of negative one away, as
specified in offset field 203, to be executed a total of
sixteen times, as specified in count field 202.
A third data chaining instruction is generated with a

zero in opcode field 201, countfield 202, offset field 203,
and save pointer field 204. The third data chaining in
struction is a DCStop instruction which indicates to
SCSI manager 131 that all data chaining instructions 60
have been executed.
The three data chaining commands are as follows:

10

15

20

25

30

35

45

50

55

Opcode Byte Count Offset Save Ptr. 65
S00002000 S00000800 S00003000 S00000000
(DCMove)
SFFFFFFFF S00000010 SFFFFFFFF S00000000
(DCLoop)

6
-continued

Opcode Byte Count Offset Save Ptr.
S00000000 S00000000 S00000000 S00000000
(DCStop)

When SCSI manager 131 executes the first data
chaining instruction the first time, it stores the first (of
sixteen) of the groups of $800 bytes of data to be stored
at buffer address $2000. The buffer address is then incre
mented by $3000. The SCSI manager then executes the
second data chaining instruction which loops to the first
data chaining instruction to repeat the instruction. This
time, the execution of the first data chaining instruction
results in the storage of $800 bytes of data at buffer
address $5000. Again, after the storage of data, the
buffer address in the opcode field of the first data chain
ing instruction is incremented by $3000. The SCSI man
ager then re-executes the loop command which, in turn,
loops again to the first data chaining instruction. This
looping is repeated until the DCMove command is
executed 16 times as specified in the count field of the
DCLoop instruction and 16 groups of $800 bytes are
stored in buffer addresses $3000 bytes apart, starting at
buffer address $2000. Once SCSI manager 131 has
looped 16 times, SCSI manager 131 executes the third
data chaining command, a DCStop command, which
terminates the SCSI managers execution of data chain
ing instructions in the data chaining instruction block.

In the prior art, non-contiguous memory locations
could not be accessed without utilizing additional in
structions to increment the address. Therefore, the prior
art requires extra instructions. At best, the prior art
could add one to the buffer address after a move in
struction so that a new buffer address would be created.
The present invention allows for almost unrestricted
non-contiguous transfer of data.
As a second example, assume now that a SCSI printer

is coupled to the SCSI interface that requires a header
to be sent prior to the sending of the image to be
printed. The image resides in memory as 25 contiguous
pages and is rather large. Each page of data is the same
size. Assume also that the image is to be printed in
negative (or opposite) colors such that a routine must be
inserted which inverts the data as it goes to the printer.
The present invention accomplishes the transfer in

five data chaining instructions. A first data chaining
instruction is generated with the starting buffer address
of the heater information in opcode field 201, the num
ber of bytes representing the header size to transfer,
$200, in count field 202, the offset value, S0000, in offset
field 203, and a zero in save pointer field 204. This in
struction is a DCMove instruction which, when exe
cuted, allows $200 bytes of data representing the header
information which is to be sent each time through the
loop, as specified in count field 202, to be written from
the buffer address in opcode field 201. After the data has
been transferred, the value S0000, as specified in offset
field 203, is added to the buffer address stored in opcode
field 201 and stored in opcode field 201; therefore, the
buffer address does not change. When this data chaining
instruction is executed again, the same header informa
tion is transferred.
A second data chaining instruction is generated with

a zero in opcode field 201, the address of the inversion
routine in count field 202, and a zero in both offset field
203 and save pointer field 204. The second data chain
ing instruction is a DCSpecial instruction which allows

5,293,624
7

SCSI manager 131 to relinquish control of the system so
that the invention routine can manipulate the data be
fore it arrives at the printer. In this manner, the data can
be handled during the transfer so that system perfor
mance is not slowed because data is not in the correct
format and must be re-formatted.
A third data chaining instruction is generated with

the starting buffer address of the image in opcode field
201, the number of bytes being transferred, $4000, in
count field 202, the offset value, $4000, in offset field
203, and a zero in save pointerfield 204. This instruction
is a DCMove instruction which, when executed, allows
$4000 bytes of data (a page of the image), as specified in
count field 202, to be written from buffer address speci
fied in opcode field 201. After the data has been trans
ferred, the value $4000, as specified in offset field 203, is
added to the buffer address stored in opcode field 201
and stored in opcode field 201; therefore, since each
page is $4000 bytes in size and the added offset is $4000
bytes is size, the new buffer address will be contiguous
to the original buffer address. Upon repeated execution
of this particular DCMove instruction, the next page of
the image is transferred.
A fourth data chaining instruction is generated with a

negative one in opcode field 201, the number 25 (S19) in
count field 202, a negative three (-3) in offset field 203,
and a zero in save pointer field 204. The fourth data
chaining instruction is a DCLoop instruction which
allows instructions that are located an offset of negative
three away from the DCLoop instruction in the data
chaining instruction block, as specified in offset field
203, to be executed a total of 25 (S19) times, as specified
in count field 202. Therefore, the two previous
DCMove instructions and the DCSpecial instruction
are executed 25 ($19) times.
The fifth data chaining instruction is generated with a

zero in opcode field 201, count field 202, offset field 203,
and save pointer field 204. The fifth data chaining in
struction is a DCStop instruction which indicates to
SCSI manager 131 that all data chaining instructions
have been executed.
The five generated data chaining commands are:

Opcode Byte Count Offset Save Ptr.
i. OCMove S00000200 S00000000 S00000000
2. DCSpecial S (Address) S00000000 S00000000
3. DCMove S00004000 S0000-4000 S00000000
4. DCLoop S00000019 SFFFFFFFD S00000000
5. DCStop S00000000 S00000000 S00000000

When SCSI manager 131 executes the first data
chaining instruction the first time, it transfers the $200
bytes of header data at the header buffer address speci
fied in the opcode field of the first instruction. The
header buffer address is not incremented after the trans
fer. Next the SCSI manager executes the second data
chaining instruction which transfers control to the in
version routine located in memory at the address speci
fied in the count field. Once the inversion routine is
completed, SCSI manager 131 regains control and con
tinues execution of the data chaining instructions.
The SCSI manager then executes the third data

chaining instruction which transfers the first page of the
image, S4000 bytes, and then increments the buffer ad
dress which points to the next page of the image stored
in memory (i.e., by $4000 bytes).

Execution of the fourth data chaining instruction
results in a loop to the first data chaining instruction to

10

15

20

25

30

35

45

55

65

8
repeat the first, second and third instructions. Each
iteration of the loop results in the header data, S200
bytes, and $4000 bytes of the image stored at a $4000
byte offset to be transferred in their inverted format.
Again, after the transfer of data, the header buffer ad
dress in the opcode field of the first data chaining in
struction remains unchanged, while the buffer address
of the image, stored in the opcode field of the second
data chaining instruction is incremented by $4000 bytes
again.
The SCSI manager re-executes the loop command

which, in turn, loops again to the first data chaining
instruction. This looping is repeated until the three
previous instructions are executed 25 (S19) times as
specified in the count field of the DCLoop instruction.
Once SCSI manager 131 has looped 25 (S19) times,
SCSI manager 131 executes the fifth data chaining com
mand, a DCStop command, which terminates the SCSI
managers execution of data chaining instructions in the
data chaining instruction block.

In the prior art, the image would have to be broken
up and the data integrated with copies of the header
information. This results in poor system performance.
Also the prior art did not allow for SCSI manager 131
to relinquish control during data transfer. The DCSpe
cial command integrated into routines allows actions to
be performed during data transfer such that system
performance remains unhampered. Clearly, the data
chaining mechanism offers these substantial advantages
over the prior art system employing SCSI devices.

Processing Logic for the Present Invention
After the instructions are generated into the data

chaining instruction block, the logic of SCSI manager
131 can begin execution. SCSI manager 131 automati
cally initializes at system start-up and is employed to
perform an operation when a pointer is passed to a
command descriptor block. If the command to be per
formed involves a transfer of data (e.g., a read or write
operation), a pointer to the data chaining instruction
block is passed which tells SCSI manager 131 the man
ner in which the data bytes transferred are to be manip
ulated during the data phase. SCSI manager 131 logic
operates on the instructions in the block. This logic is
described in the following section and in FIGS. 3-6.
The manner by which SCSI manager 131 executes

the instructions is shown in FIG. 3. First, SCSI manager
131 initializes variables and sets the pointer to the first
entry in the instruction block 301. SCSI manager 131
obtains the long word value from the first field of the
first entry 302. If the first field is equal to zero 303,
control passes to the logic beginning at B in FIG. 4 to
determine if a DCSpecial command is to be executed. If
the first field is not equal to zero, SCSI manager 131
tests whether the value of the first entry is equal to
negative one 304. If the first field is equal to negative
one (-1), control passes to the logic beginning at C in
FIG. 6 to execute a DCLoop instruction. If the first
field is not equal to negative one, SCSI manager 131
executes a DCMove instruction. Thus, SCSI manager
131 executes a DCMove instruction whenever the first
field is not a zero or negative one (-1).
To execute the DCMove instruction, SCSI manager

131 sets the buffer pointer 305. The pointer is set to the
buffer address in memory specified by the first field of
the first entry. Next SCSI manager 131 obtains the
value from the second field. This value is the byte count

5,293,624
specifying the number of bytes to be transferred. With
the buffer address and the number of bytes to be trans
ferred, SCSI manager 131 jumps 307 to the code seg
ment that executes an I/O operation depending on the
command in the command descriptor block. If a read
operation is to be invoked, a number of bytes equal to
the byte count specified in the second field are read
from the SCSI bus into memory beginning at the loca
tion in the buffer address in the first field. If a write
operation is to be invoked, SCSI manager 131 writes a
number of bytes equal to the number specified in the
second field from memory addresses starting at the
buffer address in the first field, out over the SCSI bus.

After the I/O operation, SCSI manager 131 returns
to the data chaining instruction block and adds the
value in the third field to the buffer address found in the
first field 308. Hence, a new buffer address is created
such that if this instruction was repeated in the future
due to a DCLoop instruction passing control to this
data chaining instruction or another data chaining in
struction ahead of this one in the data chaining instruc
tion block then this instruction would be executed with
a different buffer address and new results would be
produced. After the value in the third field has been
added to the buffer address in the first field, SCSI man
ager 131 jumps to the next instruction in the data chain
ing instruction block 309 and control returns to A.
As specified above, if a zero is stored in the first field,

control passes to B in FIG. 4. In this case, SCSI man
ager 131 test whether the second field contains a zero
401. If the second field contains a zero, control passes to
the logic beginning at B1 in FIG. 5. If this is the case,
SCSI manager 131 executes a DCStop command. If the
second field does not contain a zero, the data chaining
instruction is a DCSpecial instruction. SCSI manager
131 obtains the value in the second field 402 corre
sponding to a memory address. SCSI manager 131
passes control to the address specified in the second
field 403 such that the execution of the data chaining
instructions is halted until control returns to SCSI man
ager 131. SCSI manager 131 can jump to any memory
location and is not limited to jumping to locations in the
same memory bank.

Data handling routines are stored at the addresses
specified in the second field. These data operations
typically allow for preprocessing or post-processing of
data. Some of the routines allow the data manipulations
to occur on the data being written or read while the
computer system to accommodates another batch of
data. In this situation, the DCSpecial command allows
routines to run without a loss of system performance or
speed.
Once the routine located at the address specified in

the second field has been completed, SCSI manager 131
jumps to the next instruction in the data chaining in
struction block and returns control to A in FIG. 3.
As specified above, if a zero is stored in the first field

and a zero is stored in the second field, control passes to
B1 wherein a DCStop instruction is executed as in FIG.
5. The DCStop instruction terminates the execution by
SCSI manager 131 of the data chaining instructions in
the data chaining instruction block. When executing a
DCStop instruction, SCSI manager 131 determines the
total number of bytes transferred 501 and cleans up the
memory 502. In cleaning up the memory 502, SCSI
manager 131 releases any portion of memory required
in the data manipulations so that the computer system

10

15

20

25

30

35

45

50

55

60

65

can access those portions. After cleaning up memory,

10
SCSI manager 131 exits 503 and returns control to the
routine which initially called SCSI manager 131.
As specified above, if a value of negative one (-1) is

stored in the first field, control passes to C in FIG. 6.
FIG. 6 displays the manner in which SCSI manager 131
executes a DCLoop instruction. As shown in FIG. 6,
SCSI manager 131 obtains the loop count stored in the
second field 601. If the count is zero, SCSI manager 131
continues onto the next instruction in the data chaining
instruction block 606 and returns control to A in FIG.
3.

If the count is not zero, SCSI manager 131 obtains the
offset value located in the third field 603. This offset
value, as discussed above, represents the number of
instructions to jump in the data chaining instruction
block. Next SCSI manager 131 decrements the loop
counter by one, and, if the result is greater than zero,
SCSI manager 131 jumps to the instruction in the data
chaining instruction block located the offset number of
instructions from the DCLoop instruction 604. Control
then returns to A in FIG. 3 with the instruction pointer
located at the instruction to which SCSI manager 131
looped.
SCSI manager 131 repeats the execution of the in

structions in the data chaining instruction block be
tween the DCLoop instruction and the offset number of
instructions until the loop count in the second field of
the DCLoop instruction is exhausted. At that time,
SCSI manager 131 continues onto the next instruction
beyond the DCLoop instruction in the data chaining
instruction block and continues with its execution.
Although this invention has been shown in relation to

the operating system, it should not be considered so
limited. Rather, it is limited only by the appended
claims.

Thus, a mechanism has been described which allows
the specification of multiple source or destination buff
ers without the need to have one entry for each buffer
address.
We claim:
1. A computer system comprising a bus, a processor

coupled to said bus; a memory means coupled to said
bus for storing data; a plurality of Small Computer
Standard Interface (SCSI) devices, wherein a SCSI
manager provides routines and data structures for con
trolling communication between said plurality of SCSI
devices, a mechanism for exchanging information be
tween said SCSI devices including:

first means coupled to said bus for moving data be
tween said SCSI devices, said means for moving
including means for generating at least one move
operation, wherein said means for generating has at
least a first opcode field, a first count field, and a
first offset field, wherein said first opcode field
contains a move command represented as a buffer
address, said count field specifies a number of bytes
to transfer, and said first offset field contains an
offset value to said buffer address; and

second means coupled to said bus for repeating an
operation, wherein said means for repeating in
cludes means for generating at least one looping
operation, said means for generating at least one
looping operation having at least a second opcode
field, a second count field, and a second offset field,
wherein said second opcode field specifies the
looping operation, said second count field contains
a loop count, said second offset field contains an

fourth count field, and a fourth offset field, wherein said

control of said SCSI either before or after said one

5,293,624
11

offset number of operations for repeating in said at
least one looping operation;

third means coupled to said bus for stopping the exe
cution of said operations by said SCSI manager,
wherein said SCSI manager halts execution of said 5
move operations and said looping operations;

wherein said at least one move operation and said at
least one looping operation are ordered for sequen
tial execution by said SCSI manager, and further
wherein said SCSI manager transfers said number 10
of bytes to or from said buffer address and subse
quently adds said offset value to said buffer address
to create a current buffer address in one atomic
operation upon execution of said at least one move
operation and said SCSI manager repeats opera
tions within said offset number of said looping
operation in said sequential order until said loop
count is exhausted upon execution of said at least
one looping operation, wherein said at least one
move operation accomodates a plurality of buffer 20
addresses;

said SCSI manager transferring said number of bytes
to or from said current buffer address when said
SCSI manager re-executes said at least one move
operation, wherein transfers occur between SCSI
devices by allowing said at least one move opera
tion to specify multiple source or destination buff
es.

2. The computer system as in claim 1 further compris
ing a fourth means coupled to said bus for interrupting
the execution of said operations, said means for inter
rupting including means for generating at least one
interrupt operation, said means for generating at least
one interrupt operation having a fourth opcode field, a

15

25

30

35
fourth opcode field specifies the special command, said
fourth count field contains a branch address to a rou
tine, and said fourth offset field contains data defined by
said routine, wherein said SCSI manager relinquishes

move operation or after said one looping operation
causing the execution of said remaining operations by
said SCSI manager to be halted for a predetermined
time during which said routine is executed, such that
after said predetermined time said SCSI manager as
Sunes control and completes execution of said remain
ing operations.

3. The computer system as in claim 2 wherein each of
said fields comprises a long word.

4. The computer system as in claim 1 wherein said

45

50
buffer address and said current buffer address are non
contiguous.

5. A computer system comprising a bus, a processor
coupled to said bus; a memory means coupled to said
bus for storing data; a plurality of Small Computer 55
Standard Interface (SCSI) devices coupled to said bus,
wherein a SCSI manager provides routines and data
structures for controlling communication between said
plurality of SCSI devices, said computer system further
comprising a mechanism for exchanging information
between said SCSI devices including:

first means coupled to said bus for moving data be
tween said SCSI devices, said means for moving
including means for generating at least one move
operation, wherein said means for generating has at
least a first opcode field, a first count field, and a
first offset field, wherein said first opcode field
contains a move command represented as a buffer

65

12
address, said count field specifies a number of bytes
to transfer, and said first offset field contains an
offset value to add to said buffer address; and

second means coupled to said bus for repeating an
operation, wherein said means for repeating in
cludes means for generating at least one looping
operation, said means for generating at least one
looping operation having at least a second opcode
field, a second count field, and a second offset field,
wherein said second opcode field specifies the
looping operation, said second count field contains
a loop count, said second offset field contains an
offset number of operations for repeating in said at
least one looping operation;

wherein said at least one move operation and said at
least one looping operation are ordered for sequen
tial execution by said SCSI manager, and further
wherein said SCSI manager transfers said number
of bytes to or from said buffer address and subse
quently adds said offset value to said buffer address
to create a current buffer address in one atomic
operation upon execution of said at least one move
operation and said SCSI manager repeats opera
tions within said offset number of said looping
operation in said sequential order until said loop
count is exhausted upon execution of said at least
one looping operation, wherein said at least one
move operation accommodates a plurality of buffer
addresses;

said SCSI manager transferring said number of bytes
to or from said current buffer address when said
SCSI manager re-executes said at least one move
operation, wherein transfers occur between SCSI
devices by allowing said at least one move opera
tion to specify multiple source or destination buff
ers,

6. The computer system as in claim 5 wherein said
buffer address and said current buffer address are non
contiguous.

7. The computer system as in claim 5 further compris
ing a third means coupled to said bus for stopping the
execution of said operations by said SCSI manager, said
means for stopping including means for generating a
stop operation, said means for generating a stop opera
tion having a third opcode field, a third count field, and
a third offset field, wherein said third opcode field spec
ifies a stop command, and said third count and offset
fields both contain zero, such that said SCSI manager
halts execution of said move operations and said looping
operations upon execution of said stop operation.

8. The computer system as in claim 5 further compris
ing a fourth means coupled to said bus for interrupting
the execution of said operations, said means for inter
rupting including means for generating at least one
interrupt operation, said means for generating at least
one interrupt operation having a fourth opcode field, a
fourth count field, and a fourth offset field, wherein said
fourth opcode field specifies a special command, said
fourth count field contains a branch address to a rou
tine, and said fourth offset field contains data defined by
said routine, wherein said SCSI manager relinquishes
control of said SCSI either before or after said one
move operation or after said one looping operation
causing the execution of said remaining operations by
said SCSI manager to be halted for a predetermined
time during which said routine is executed, such that
after said predetermined time said SCSI manager as

5,293,624
13

sumes control and completes execution of said remain
ing operations.

9. A computer system comprising a bus, a processor
coupled to said bus; a memory means coupled to said
bus for storing data; a plurality of Small Computer
Standard Interface (SCSI) devices coupled to said bus,
wherein a SCSI manager provides routines and data
structures for controlling communication between said
plurality of SCSI devices; a mechanism for exchanging
information between said SCSI devices including:

first means coupled to said SCSI manager for moving
data between SCSI devices, said means for moving
including means for generating at least one move
operation, wherein said means for generating has at
least a first opcode field, a first count field, and a
first offset field, wherein said first opcode field
contains a move command represented as a buffer
address, said count field specifies a number of bytes
to transfer, and said first offset field contains an
offset value to add to said buffer address, wherein
said SCSI manager transfers said number of bytes
to or from said buffer address and subsequently
adds said offset value to said buffer address to cre
ate a current buffer address in one atomic operation
upon execution of said at least one move operation,
wherein said move command accommodates a
plurality of buffer addresses; and

second means coupled to said SCSI manager for re
peating said at least one move operation, wherein
said SCSI manager transfers said number of bytes
to or from said current buffer address when said
SCSI manager re-executes said at least one move
operation, wherein information is exchanged be
tween SCSI devices by having each move opera
tion specify multiple source or destination buffers.

10. The computer system defined in claim 9 wherein
said means for repeating includes means for generating
at least one looping operation having at least a second
opcode field, a second count field, and a second offset
field, wherein said second opcode field specifies the
looping operation, said second count field contains a
loop count, said second offset field contains an offset
number, wherein said SCSI manager repeats operations
within said offset number of said looping operation until
said loop count is exhausted upon execution of said at
least one looping operation.

11. The computer system as defined in claim 9 further
comprising means for stopping execution of said move
operations and said looping operations.

12. The computer system as defined in claim 11
wherein said means for stopping execution includes
means for generating a stop operation, said means for
generating a stop operation having a third opcode field,
a third count field, and a third offset field, wherein said
third opcode field specifies a stop command, and said
third count and offset fields both contain zero, wherein
said SCSI manager halts execution of said move opera
tions and said looping operations upon execution of said
stop operation.

13. The computer system as defined in claim 9 further
comprising means for interrupting execution of said
operations, wherein said SCSI manager relinquishes
control of said SCSI either before or after said one
move operation or after said one looping operation
causing the execution of said remaining operations by
said SCSI manager to be halted for a predetermined
time during which said routine is executed, such that
after said predetermined time said SCSI manager as

O

15

20

25

30

35

45

50

55

65

14
sumes control and completes execution of said remain
ing operations.

14. The computer system as defined in claim 13
wherein said means for interrupting execution of said
operations includes means coupled to said bus for gener
ating at least one interrupt operation, said means for
generating an interrupt operation having a fourth op
code field, a fourth count field, and a fourth offset field,
wherein said fourth opcode field specifies the special
command, said fourth count field contains a branch
address to a routine, and said fourth offset field contains
data defined by said routine, wherein said SCSI man
ager relinquishes control of said SCSI either before or
after said one move operation or after said one looping
operation causing the execution of said remaining oper
ations by said SCSI manager to be halted for a predeter
mined time during which said routine is executed,
wherein after said predetermined time said SCSI man
ager assumes control and completes execution of said
remaining operations.

15. In a computer system having a bus and utilizing a
Small Computer Standard Interface (SCSI), wherein a
SCSI manager provides routines and data structures for
controlling communication between a plurality of SCSI
devices, a method for exchanging information between
said SCSI devices said method comprising the steps of:
moving data between said SCSI devices, said step of
moving including the step of generating at least one
move operation comprising a first opcode field, a
first count field, and a first offset field, wherein said
first opcode field contains a move command repre
sented as a buffer address, said count field specifies
a number of bytes to transfer, and said first offset
field contains an offset value to add to said buffer
address, wherein at least one move operation ac
commodates a plurality of buffer addresses;

repeating an operation, wherein the step of repeating
includes the step of generating at least one looping
operation comprising a second opcode field, a sec
ond count field, and a second offset field, wherein
said second opcode field specifies the looping oper
ation, said second count field contains a loop count,
and said second offset field contains an offset num
ber of operations for repeating in said at least one
looping operation;

executing each of said at least one move operation
wherein said SCSI manager either transfers said
number of bytes to or from said buffer address and
subsequently adds said offset value to said buffer
address to create a current buffer address in one
atomic operation; and

executing said looping operation wherein said SCSI
manager repeats operations within said offset num
ber of each said looping operation, wherein said
SCSI manager repeats said at least one move in
struction until said loop count is exhausted wherein
said SCSI manager transfers said number of bytes
to or from said current buffer address, wherein
transfers occur between SCSI devices by allowing
said at least one move operation to specify multiple
source or destination buffers.

16. The method as in claim 15 wherein said buffer
address and said current buffer address are non-contigu
OS.

17. The method as in claim 15 further including the
steps of:

generating a stop operation comprising a third op
code field, a third count field, and a third offset

5,293,624
15

field, wherein said third opcode field specifies the
stop operation; and

executing said stop operation wherein said SCSI
manager completes execution of said operations.

18. The method as in claim 15 further including the
step of generating at least one interrupt operation a
fourth opcode field, a fourth count field, a fourth offset
field, and a fourth save pointer field, wherein said
fourth opcode field specifies an interrupt operation, said
fourth count field contains a branch address to a rou
tine, and said fourth offset field contains data defined by
said routine; and

executing said special instruction such that said SCSI
manager relinquishes control of said SCSI either
before or after said at least one move operation or
after said at least one loop instruction causing the
execution of said operations by said SCSI manager
to be halted for a predetermined time during which
said routine is executed, such that after said prede
termined time said SCSI manager assumes control
and completes execution of said operations.

19. In a computer system having a bus and utilizing a
Small Computer Standard Interface (SCSI), wherein a
SCSI manager provides routines and data structures for
controlling communication between a plurality of SCSI
devices, a method for exchanging information between
said SCSI devices, said method comprising the steps of:
moving data between said SCSI devices, said step of
moving including the step of generating at least one
move operation comprising a first opcode field, a
first count field, and a first offset field, wherein said
first opcode field contains a move command repre
sented as a buffer address, said count field specifies
a number of bytes to transfer, and said first offset
field contains an offset value to add to said buffer
address, wherein said at least one move operation
accommodates a plurality of buffer addresses;

repeating an operation, wherein the step of repeating
includes the step of generating at least one looping
operation comprising a second opcode field, a sec
ond count field, and a second offset field, wherein
said second opcode field specifies the looping oper
ation, said second count field contains a loop count,
and said second offset field contains an offset num

O

15

20

25

30

35

45

SO

55

65

16
ber of operations for repeating in said at least one
looping operation;

generating a stop operation comprising a third op
code field, a third count field, and a third offset
field, wherein said third opcode field specifies the
stop operation;

executing each of said at least one move operation
such that said SCSI manager either transfers said
number of bytes to or from said buffer address and
subsequently adds said offset value to said buffer
address to create a current buffer address in one
atomic operation; and

executing said looping operation wherein said SCSI
manager repeats operations within said offset num
ber of each said looping operation, such that said
SCSI manager repeats said at least one move in
struction until said loop count is exhausted wherein
said SCSI manager transfers said number of bytes
to or from said current buffer address, wherein
transfers occur between SCSI devices by allowing
said at least one move operation to specify multiple
source or destination buffers; and

executing said stop operation such that said SCSI
manager completes execution of said operations.

20. The method as in claim 19 further including the
steps of:

generating at least one interrupt operation a fourth
opcode field, a fourth count field, a fourth offset
field, and a fourth save pointer field, wherein said
fourth opcode field specifies an interrupt operation,
said fourth count field contains a branch address to
a routine, and said fourth offset field contains data
defined by said routine; and

executing said special instruction such that said SCSI
manager relinquishes control of said SCSI either
before or after said at least one move operation or
after said at least one loop instruction causing the
execution of said operations by said SCSI manager
to be halted for a predetermined time during which
said routine is executed, wherein after said prede
termined time said SCSI manager assumes control
and completes execution of said operations.

21. The method as in claim 20 wherein each of said
fields comprises a long word.

