
Apple. Macintosh.Coprocessor Platfonn,. 
Developer's Guide 

Beta Draft, 29 November 1989 
Networking &: Communications Publications 
Network Integration Group 
Keith Grigoletto 



• APPLE COMPUTEll, INC. 

This manual is copyrighted by 
Apple, with all rights reserved. 
Under the copyright laws, this 
manual may not be ropied, in 
whole or in part, without the 
written consent of Apple 
Computer, Inc. This exception 
does not allow copies to be made 
for others, whether or nct sold, 
but all of the material purchased 
may be sold, given or lent to 
another person. Under the law, 
copying includes translating into 
another language. 

(l Apple Computer, Inc., 1987, 
lses,l~ 

20525 Mariani Avenue 
Cupertino, California 95014 
(4re)?)6.1010 

Apple, the Apple logo, AppleTaIk, 
LaserWriter, and Macintosh are 
registered trademarks of Apple 
Computer, Inc. 

AlROSE, Loca1Talk, the Macintosh 
Coprocessor Platform, and MPW 
are trademarks of Apple Computer, 
Inc. 

ASf and AST-ICP are trademarks 
of ASr Research, Inc. 

DEC is a trademark of the Digital 
Equipment Corporation. 

Ethernet Is a trademark of 11 

NuBus is a trademark of Texas 
Instruments. 

Systems Network Architecture 
(SNA) is a registered trademark of 
International Business Machines 
Corpaation. 

Simultaneously published in the 
United States and Canada. 

Apple ContldenHal 



Contents 

Figures and tables / xx 

Preface / xx 

What you should know 
How to use this guide 
Equipment and system requirements 
Important safety instructions 
Conventions used in this guide / xx 
Terminology 

Part I Getting Started With MCP 

1 What Is MOJ? / 1·1 

The canponents of MCP / 1-2 
The MCP hardware / 1-3 
The MCP software / 1-4 

AlROSE /1-5 
I AlROS! Prep / 1~ 
Developmental diagnostics / 1 ~ 

Developing with MCP / 1-6 
Development opportunities and applications / 1-7 

Off-loading task processing / 1-8 
Parallel processing / 1-8 
Interfacing or controlling / 1-8 
Data acquisition / 1-8 
Intemetworking / 1-8 

limitations / 1-9 

2 Getting Started / 2-1 

Preparing to use MCP / 2-2 
Installing the MCP card / 2-2 
Installing MCP software / 2-6 

I Installing the AlROSE Prep driver / 2~ 

viii 



iv Contents 

Running a sample program / 2-7 
Selecting files for the sample exercise / 2-8 
Downloading files to the card / 2-10 
Verifying the sample exercise / 2-10 

Where do you go from here? / 2-12 



Part n Software Development / 

3 The MCP Software Interface / 3-1 

What is A/ROSE? / 3-2 
A/ROSE primitives / 3-2 
AlROSE utilities / 3-2 
AlROSE managers f 3-2 

Echo Manager / H 
InleICard Communications Manager QCCM) / 3-5 
Name Mana8er I 3-5 
Print Manaser I 3-5 
Remote System Manager (RSM) I 3-5 
Tuner library and Tuner Manager / 3-6 
Trace Manager I 3-6 

What is A/ROSE Prep? / 3-7 
A/ROSE Prep driver / 3-7 
A/ROSE Prep library / 3-8 
A/ROSE Prep managers / 3-8 

FunC1ions of MCP software / 3-8 
Using messages for interprocess communication / 3-9 

Message structures I 3-9 
Mechanisms for data transfer I 3-13 
Message and status codes I 3-14 

The dient/server relationship / 3-14 
Client and server ruruUns orr a smart card under AlROSE 3-16 
Client and server running on Macintosh usin8 AlROSE Prep I 3-18 

Using task scheduling in a multitasking environment / 3-21 
Task Identifiers I 3-21 
Modes in which tasks run I 3-21 
Tuner services I 3-22 
Task scheduling I 3-22 
Task initialization I 3-22 
Task execution I 3-23 
Task termination I 3-23 

Memory management / 3-23 
Background on virtual addressing with AlROSE 

FIal address space 
24-bit virtual addresses 
32-bit virtual addresses 
NuBus address 
latched virtual address 

Virtual memory support 

Contents v 



4 A/ROSE Prlmltlves / 4-1 
operating system primitives / 4-2 

FreeMem() / 4-3 
FreeMsg() / 4-4 
GetMem() / 4-5 
GetMsg() / 4-6 
LockReaIArea( ) 

UnLockReaIArea( ) 
Receive() / 4-7 
RescheduIe() / 4-9 
Sene() / 4-12 
SpI() / 4-13 
Start1'ask() / 4-14 
StopTask() / 4-17 

5 AlROSE UtDitles / 5-1 
A description of utilities / 5-3 

BJockMove() / 5-3 
AROSEDare2Sea() / 54 
GelBSize() / >6 
GetCard() / 5-7 
AROSEGelDateTIme() / 5-8 
GetET'JCk() / 5-9 
GetgC.onmm() / 5-10 
GetHeap() / 5-11 
GelICClID() / 5-12 
GetNameTIDO / 5-13 
GetStParms() / 5-14 
GetTCB() / 5-15 
GetTtekPS() / 5-16 
GetTID() / 5-17 
GetTJmerTID() / 5-18 
GetTraceTID() / 5-19 
GetUCountO / 5-20 
IncUCount() / 5-21 
IsLocaI() / 5-22 . 
Lookup_Task() / 5-23 
MapNuBus() / 5-24 
Netcopy( ) 
RegistecTask() / 5-25 
AROSESecs2Dale() / 5-26 
SwapTID() / 5-7:1 
ToNuBus() / 5-28 

vi Contents 



TrareReg() / 5-29 

Contents vii 



6 AlROSE Managers / 6-1 
Echo Manager I 6-2 

viii Contents 

InterCard Communications Manager I 6-3 
ICC_GETCARDS I 6-3 

Name Manager I 6-4 
Looking up tasks I 6-6 

NM_LOOKUP _NAME / 6-6 
NM_LOOKUP _no / 6-7 

Notification of Communications Loss I 6-8 
NM_N_SLOT_REQ / 6-8 
NM_N_SLOT_CAN / 6-9 

Notifation of Task Terminatioo I 6-9 
NM_N_TASK_REQ / 6-9 
NM_N_TASK_CAN / 6-10 

Repering tasks I 6-10 
NM_REG_TASK / 6-10 
NM_UNREG_TASK / 6-11 
NM_UNREG_NAME 

Printing support I 6-12 
Print Buffer request I 6-12 

Remote System Manager I 6-15 
RSM_FreeMem I 6-13 
RSM_GetMem I 6-14 
RSM_StartTask I 6-14 
RSM_StopTask I 6-15 
F"mding the Remote System Manager I 6-15 
Loading remote tasks I 6-15 

Tuner library and Tuner Manager I 6-19 
Tuner library I 6-16 

TllnitT'uner() / 6-16 
TlSWtT'uner() / 6-17 
TLCance1Tune!() / 6-17 
TLAc.tiveT'une!() / 6-17 
TLReceive() / 6-18 

Tuner Manager I 6-18 
Ac.tive T'm:r Query / 6-19 
Cancel T'uneout / 6-20 
Request One-Shot T'uneout / 6-20 
Request Periodic T'uneout / 6-21 

Trace Manager I 6-24 
Tum on tracing I 6-23 
Tum off tracing I 6-23 
Tracing messages I 6-23 
DumpTrace I 6-23 



, Programming Notes for A/ROSE / '-I 

Intercard communications / 7-2 
Address mapping / 7-2 
Intercard buffer copy / 7-3 
Intercard message passing / 7-3 

VoidDCache() n-3 
Interrupt handlers / 7-4 
TICk awn / 7-6 
Idle awn / 7-8 
Writing your own download program / 7-9 

NewDownload 
Return status 
DynamicDown1oad / 7-19 
Supporting routines 

TestSJot 
NewFindcard 
StartCard 
HaltCard 

8 Developing Smart card Applications / 8-1 

Before you start / 8-1 
How to create an application / 8-3 

Creating new code / 8-3 
Modifying the main program / 8-4 

Modifying the makefile / 8-14 
AlROSE irx:lude files / 8-16 
AlROSElibraries / 8-17 
Olanges to the makefUe / 8-17 

Compiling and linking your axle / 8-20 
Downloading code to the MCP card / 8-21 

Generic AlROSE downJooding 
Qilling the Download tool / 8-24 
Download errors / 8-25 

Using the download subroutines / 8-24 
NewDownload 
Return status 
DynamicDownload 
NewDownload (NOLO) 

Inter&a: specif1C3tion 
Load module description 
Implementation strategy 

AlROSE Prep file 

Contents ix 



TestSlot 
NewFindCard 
Startcard 
Haltcard 

9 A/ROSE Prep / 9-1 

The AlROSE Prep software I 9-2 
Using AlROSE Prep I 9-2 
AlROSE Prep servi:es I 9-3 

0aieQueue() I 9-5 
PreeMsgO I 9-0 
GetC.arcK) / 9-0 
GetEilCk() I 9-1 
GetlCCIID() I 9-1 
GetIPCg() I 9-1 
GetMsg() I 9-8 
I.ockReaI.Area 
GetNameTID() I 9-9 
GetTICkPS() I 9-9 
GetTID() I 9-9 
IsLocal() I 9-9 
KiIIReceive() I 9-10 
lookup_Task() I 9-10 
0penQueue() I 9-11 
Receive() I 9-12 
Regim3ask() I 9-17 
Selx() I 9-18 
SwapTID() I 9-18 
UnlockReaJArea 
NetCopy 

10 Using the Forwarder with AlROSE Prep / 10-1 

What is the Forwarder? / 10-2 

x Contents 

How the Forwarder sends messages I 10-2 
Initialization I 10-3 
Normal processing with the Forwarder / 10-4 
Completing communication with the Forwarder I 10-5 

Using the Forwarder / 10-8 
Installing the Forwarder I 10-6 
Messages used by the Forwarder / 10-6 

MC_CLOSECONNECf / 10-6 
MC_aoSESERVER I 10-7 



MCJ~CHO / 10-7 
MC_OPENSERVER / 10-7 
MC_READDATA / 10-8 
MC_SENDDATA / 10-9 

Using the Forwarder on the server machine / 10-9 
Using the Forwarder from the client machine / 10-15 
Message transactioos while the Forwarder is active / 10-22 
Errors returned by the Forwarder / 10-24 

11 Troubleshooting Guide / 11-1 
What happened? / 11-2 
Troublesboaing AlROSE / 11-3 
Using dumpcard / 11-4 
If AlROSE aashes / 11-30 

Using the load map / 11-30 
Using AlROSE error codes / 11-14 

eBTHH - Bad Things Have Happened / 11-15 
eCArr - Cannot Allocate Idle Task / 11-16 
eCAMS - Cannot Allocate Message Space / 11-16 
eCAPR - Cannot Allocate Priority Table / 11-17 
eCAPT - Cannot Allocate Process Table / 11-17 
ePMSG - Attempt to free Bad Message / 11-18 
eMEMB - Attempt to free Bad Memory Buffer / 11-18 
eNPTR - No Processes to Run / 11-19 
eOVFL - Slack Overflow Detected / 11-20 
eSMSG - Attempt to Send Bad Message Buffer / 11-21 
eSTPI - Stop Task a.nnot be called from interrupt routine / 11·21 
e5I1l - Start Task a.nnot be called from interrupt routine / 11-21 
eTIMQ - Task Not in Tuner Queue / 11-21 
Task Not Stopped / 11-22 

If AlROSE hangs / 11-22 
gMajorTick is not incrementing / 11-23 

Determining the cause / 11-24 
gMajorTick is incrementing / 11-25 

Is a task waiting on a blocking Receive request? / 11-25 
Has A/ROSE have run out eX message buffers? / 11-27 
Is a task running in block scheduling mode? / 11-27 
Is a task executing in an infutite loop in slice scheduling mode? / 11-28 
Is code on the Idle Chain executing in an infutite loop? / 11-28 

Troubleshocting AlROSE Prep / 11-44 
If AlROSE Prep aashes / 11-46 

AlROSE Prep crashes during Macintosh startup / 11-30 
A/ROSE Prep INIT31 - Unit Table full / 11-30 
A/ROSE Prep INIT31 - No DRVR resource in file / 11-31 
A/ROSE Prep INIT31 - Failed to open driver / 11-31 

Contents xi 



AlROSE Prep crashes with improper parameter usage I 11-31 
AlROSH Prep FreeMsg - Bad message pointer / 11-32 
AlROSE Prep Send - Bad message pointer or mFrom / 11-32 

AlROSE Prep crashes during driver initialization / 11-32 
AlROSH Prep - Missing resource: AlROSE Prep entries / 11·32 
AlROSH Prep - Unable to get space from system heap / 11·33 
AlROSH Prep Name Manager - Missing aipn resource: Name Manager entries / 11-33 

!PC driver crashes during exeaJtion / 11 c33 
AlROSH Prep KillReceiveiOoseQueue - timeout queue error / 11·34 
AlROSE Prep Send ~ timeout queue error / 11-34 
AlROSH Prep Periodic processing - timeout queue error / 11-34 
AlROSH Prep Receive - timeout queue error / 11-35 
AlROSE Prep Receive - Interrupt routine did blocking Receive / 11-35 

IPC Name Manager crashes during execution / 11-35 
Name Manager Receive with Completion / 11-35 
Name Manager Receive Request Failure / 11-36 
Name Manager Receive Request without Completion / 11-36 

If the IPC glue code crashes / 11-52 
If NROSE Prep hangs / 11-52 

Events that cause AlROSE Prep to hang / 11-37 
Macintosh II 32-bit mode debugger hangs / 11-37 
blocking Receive request is Unsatisfted / 11·38 

Examining the AlROSE Prep global area / 11-38 

Part m Hardware Development 

12 MCP Card Specifications / 12-1 

Introdu<1ion to the MCP card / 12-2 

x ii Contents 

MCP card description / 12-2 
ASIC MCP support 
Pn:xl!ssor / 12-3 
ROM / 12-3 
RAM / 12-3 
Address map / 12-4 
Tuner / 12-4 
Reset /12-5 
Interrupts / 12-5 

NuBus interface / 12-6 
NuBus address space / 12-6 
Acquiring the internal ~ bus / 12-7 
Design notes for NuBus / 12-7 



13 Listings for the MCP Card / 13-1 

PAL listings / 13-1 
PAL equation: arbitration / 13-2 
PAL equation: bus driver / 13-3 
PAL equation: bus master / 13-5 
PAL equation: bus master control / 13-7 

PAL equation: bus slave / 13-7 
PAL equation: decode / 13-11 
PALequation: DMAexample / 13-12 
PAL equation: interrupt / 13-13 
PAL equation: RAM / 13-15 
PALequation: RAM24 / 13-17 

Parts for the MCP card / 13-16 

14 Diagnostics for the MCP Card / 14-1 

MQ> card declaration ROM / 14-2 
Power-up diagnostics / 14-4 
68020/030 primary initialization tests / 14-5 
Data area / 14-<> 
Error ccxies / 14-7 

Appendix A Flles on the MCP Distribution Disks / A-I 

Files on A/ROSE 1 / A-2 
Files on A/ROSE 2 / A-8 

Appendix B Where to Go for More Information / B-1 

Glossary / G-1 

Index / 1-1 

Contents xiii 





Figures and Tables 

CHAPTER 1 What is Ma? 

Figure 1-1 
F'tgme 1-2 
Table 1-1 

Macintosh Coprocessor Platfonn for the Macintosh computer 
The MCP card 
Features of AlROSE 

C HAP T E R 2 Getting Started 

Figure 2-1 
Figure 2-2 
Figure 2-3 

Aligning the card 
MPW window 
Select Current Directory window 

C HAP T E R 3 The MCP Software Io.tctface 

Figure 3-1 Structure ci AlROSE 
Figure 3-2 Flow of information between AiROSE and managers 
Figure 3-3 Fixed-length message structure 
Figure 3-4 Oient/server relationship for AlROSE program modules (NuBus 

card-to-NuBus card) 
F'lgure 3-5 Oient/server relatiooship for applications using the AROSE Prep 

driver (Macintosh-to-Madntosh ) 
Table 3-1 Structure for fIXed-length messages 
Table 3-2 Message and status codes 

C HAP T E R 4 A/ROSE Primitives 

Table 4-1 AlROSE primitives 
Table 4-2 Macintosh Operating System Calls 

C HAP T E R 5 A/ROSE Utilities 

Table 5-1 AlROSE utilities 

C HAP T E R 6 A!1tOSE Managers 

Table 6-1 AlROSE Managers 
Table 6-2 Card status 
Table 6-3 Name Manager message codes 
Table 6-4 Pr int f standard conversion 
Table 6-5 Printf nonstandard conversion 
Table 6-6 Timer Manager calls 



C HAP T E R 8 Developing Smart card AppUcatioos 

Figure~1 

Table~1 

Table~2 

Table~3 

The NDLD Dialog Box 
Include files 
Link command parameters 
Error constants for Download 

CHAPTER 9 AllOSE Prep 

Table 9-1 AlROSE Prep services 
Table 9-2 AlROSE Prep Address Usage 
Table 9-3 State stable for the Receive call 
Table 9-4 Errors returned 

C HAP T E R 10 Usia, the Forwarder with Apple DPC 

Figure 10-1 
F"lgute 10-2 
Figure 10-3 
Figure 10-4 
Table 10-1 
Table 10-2 

Messages paths using the Forwarder 
Initializatioo process using the Forwarder 
NonnaI processing using the Forwarder 
End of processing using the Forwarder 
Messages used by the Forwarder 
Errors returned by the Forwarder 

C HAP T E R 11 Troubleshooting Guide 

Table 11-1 
Table 11-2 
Table 11-3 
Table 11-4 
Table 11-5 
Table 11-6 

Crash area format 
Dumpcard cross reference 
Error rodes for AlROSH 
F:ror rodes for AlROSH Prep driver 
Error messages from the INlT resource 
Error messages fran the AlROSE Prep driverlName Manager 

C HAP T E R 12 MCP card Spedfications 

F"lgute 12-1 
Figure 12-2 
Figure 12-3 
Figure 12-4 
F"lgute 12-5 
Table 12-1 
Table 12-2 

MCP card installed in the Macint<l!ih II 
MCP card functions 
Generatioo of 20 MHz and 10MHz docks 
A simple NuBus slave design 
Read and writing timing cycles 
Address map 
Interrupt priorities 

C HAP T E R 13 LIstings for the MCP card 

Table 13-1 Parts Ims for the MCP card 



C HAP T E R 14 Diagnostics for the MCP Card 

Table 14-1 Data area 
Table 14-2 Error codes 

A P PEN D I X A Fila on the MCP DIstribution Disks 

Table A-I Files 00 AlROSE 1 
Table A-2 FHes On AlROSE 2 

A P PEN D I X B Where to Go for More Joformation 

Table B-1 List of reference material 
Table B-2 Additional references 





Preface 

This guide helps you create an interface to the Applec Macintoshc II bus. 

This guide is written for developers may be within Apple Computer, Inc., as 

well as third-party developers working under a licensing agreement 

What you should know 

You should be familiar with the Macintosh computer and NuBusTII. Appendix 

B lists developer tools, resources, and reference documents that may facilitate 

your development efforts. 

The Macintosh Coprocessor PlatformTII (MCP) supports applications written 

under the Macintosh Programmer's WorkshopTII (MPW) development 

environment, which uses Assembler or C. This guide assumes that you are 

familiar with MPW and have a working knowledge of MPW C, MPW 

Assembler, or both. 

i 



Bow to use this guide 
The following table provides a road map to information on various subjects 
of the Macintosh Coprocessor Platform. 

Ma Subject: 

Ga8r1ll ",,/OrJIuItfotl 

What makes up the 
Madntosh Coprocessor 
Platform 

Applicatioos or potential 
uses of MCP 

Installing the MCP card and 
running a sample program 

softwtlt'e spcfJks 

AlROP andAIROSE Prep 
software in the Macintosh 
II famUy of computers 

Task scheduling in the 
operating system 

Interprocess 
communication between 
processes on the Macintosh 
computer and tasks on the 
MCPcard 

Fundamental services of 
the AlROSE operating 
system 

Library routines available to 
tasks in your application 

Operating-system 
managers that provide 
services to tasks 

i i About This Manual 

Location in manual: 

Pm 1-Geltblg SttIrtetl 

Chapter 1, "What is MCP?" 

Chapter 1 

Chapter 2, -Getting Started" 

ParI II - Softu1are DelleIo"".. 

Chaprer 3, -Introduction to the 
MCP Software" 

Chapter 3 

Chapter 3 for general 
information (for additional 
information, see Chapter 9, 
• AlROSE Prep") 

Chapter 4, -AIROSE Primitives" 

Chapter 5, • AlROSE Utilities" 

Chapter 6, -AIROSE Managers" 



To flnd out about: 

Peruliarities of AlROSE and 
programming notes (with 
examples of code) 

How to develop 
applicatioos by using M~ 
software (with examples 
of code) 

AlROSE services provided 
on the Macintosh II 

Forwarding data on an 
AppleTaJk$ network 
system using AlROSE Prep 

Troubleshooting MCP 
software 

MCP card specifications and 
information on accessing 
the NuBus 

PAL listings and parts lists 

The diagnostics provided 
for development of the 
M~r:.rd 

Look in: 

Chapter 7, ·Programming Notes 
for AlROSE-

Chapter 8, -Developing smart 
card Applicatioos-

Chapter 9, • AlROSE Prep-

Chapter 10, ·Using the 
Forwarder with AlROSE Prep-

Chapter 11, "Troubleshooting 
Guide-

Part 111-Hardware tmd 
Development 

Chapter 12, "MCP Card 
Specifications-

Chapter 13, ·Ustings for the 
M~Card-

Chapter 14, "Diagnostics for the 
M~Card-

About This Manual iii 



Equipdlent and system requirements 

To develop your axle, you need the following equipment: 
• a NuBus-compatible Macintosh computer running System 6.0.2 or later 
• MPW, verSion 2.0 or later 
• one or more MCP cards 
• MCP distribution dwks 
• MPW C ancVor MPW Assembler 
• the appropriate debugging tools 
Connectors and memory requirements are hardware-specific; refer to Part III, 
"Hardware and NuBus Development", for more information. 

Important safety Instructions 

Before you plug in your Macintosh and get started, read the following 
important safety instructions. 

Conmatioos used in this guide 

Each new term introduced in thw book m printed in bold type where it is 
ra defined. That lets you know that the term has not been defIned earlier, 
and aJso indicates that there w an entry for it in the glossary. 

ArJy text displayed in Courier typeface is used to represent: 
• tell that you will see on the saeen (such as source code or an example file) 
• a command that you enter on the keyboard 
• a program or subroutine name 
• a parameter or field name 

Any text that is surrounded by colons (:) refeJS to the pathname of a particular 
folder or file. For example, :AlROSE:Examples: refeJS to the folder named 
~Ies· within the folder named • AlROSE". 

AlROSE uses C calling conventions, and all registers are preserved except DO, 

01, AO, and Al. The assembly-language maaos also adhere to these 
conventions. 

Iv About This Manual 



The foUowing typographic elements mark special mesages to you: 

• Note: Text set off in this manner presents sidelights or interesting points of information. 

6. Important Text set off in this manner-with the word Important-presents 
important infonnation or instructions. 6 

6. Caution Text set off in this manner-with the word Caution-indicates 
potentially serious problems. Actions couJd result in system hangs or 
incompatibility with future versions. 6 

A Warning Text set off in this manner-with the word Warning-indicates 
potentially hazardous consequences to you or to your equipment • 

Terminology 
This document refers to processes on the Macintosh computer, and tasks 
under AlROSE and AlROSE Prep. A process is an operation or function 
performed by the Macintosh operating system A task is a message-driven 
transadion process that runs on the MCP card. The behavior of a task 
depends on the messages it receives. 

User refers to the end user of the hardware or software produd that you 
will develop by using the Macintosh Coprocessor Platform. 

Refer to the glossary at the end of this guide for a comprehensive list of 
terms and an explanation of each term. 

About This Manual v 





Part I Getting Started With MCP 

Part I, -GeUing Started with MCP,· provides: 

• an introduction to and overview of the Macintosh Coprocessor 
Platform 

• descriptions of the hardware, software interface, and diagnostics 

• instructions for installing the MCP card, operating system, and 
support software 

• a simple -hands-on· exercise that demonstrates how the operating 
system works with the MCP card 





Chapter 1 What Is MCP? 

THE MACI NTOSH COPROCESSOR PLATFORMTII(MCP) isa 

generic hardware and software foundation to help developers create add-on 

cards and software applications for NuBus-compatible Macintosh4D 

computers. 

App1e Computer, Inc., makes this platform available to assist developers in 

quickly building Macintosh coprocessor prototypes and to reduce the time-to­

market for new prodUdS. The Macintosh Coprocessor Platform is available 

through Apple Computer, Inc. under a licensing agreement _ 

1·1 



The components of MCP 

The Macintosh Coprocessor Platform is made up of hardware and software: 

• Hardware: the MCP card, an intelligent NuBusTII prototype card (such cards may be referred to 
as smart cards) 

• Software: two distribution disks Oabeled AlROSE 1 and A/ROSE 2) that include A/ROSETM (Apple 
Real-time Operating System Environment) and AllOSE Prep (Macintosh II Driver) 

NROSE is a multitasking operating system for smart cards, such as the MCP card, and provides 
an intelligent peripheral-controller interface to NuBus on the Macintosh. 

AlROSE Prep includes a driver and support software installed in the Macintosh computer. 
NROSE Prep allows Macintosh applications to communicate with an application running under 
NROSE on the MCP card or on another computer. 

• Developmental diagnostic software: one distribution disk Oabeled MCP_Diagnostic) that 
includes the diagnostic application, support code, and examples to. test various functions of the 
MCP-based hardware that you develop 

Figure 1-1 shows the Mep software and hardware components for the Macintosh computer. 

1-2 Macintosh Coprocessor Platform Developer's Guide 



• Figure 1-1 Macintosh Coprocessor Platform for the Macintosh computer 

Macintosh Coprocessor AfROSE and application 
Platform tasks in RAM 

-1---- MCP Diagnostics in ROM and RAM 

• 

• 

-----.:::::::::::::t ................... :' AfROSE Prep 

~AlROSEl 
~ AlROSE2 

in RAM on the 
main logic board 

You can customize each of these components, which are described in this chapter, for the particular 
application or product you want to develop. For more detailed information, refer to Part II, 
Software DelJelopmem or Part III, Hardware Developmems. 

The MCP hardware 

With approximately 26 square inches ri space available, the MQ> card lets you create a prototype of 
your application. Figure 1-2 shows the layout of the MCP card; shading indicates the primary area 
available for development 

1 / What is MCP? 1·3 



• Flgute 1·2 The MCP card 

The MCP card itself has no input/ootput 0/0) interface, but 5 a generic master/slave I/O processor. 
AftUiated VO devices that you develop, such as RS-232 ports or token r ing connectors, give the 
smart card access to the outside world. 

The MCP card indudes a Motorola 68000 processor operating at 10 megahertz and 512 kUobytes of 
random access memory (RAM). The NuBus interface provides a bus master interface to NuBus on 
the Macintosh main logic board. The MCP card aas as a ·slot device- to the Macintosh operating 
system, freeing the processor on the Macintosh to perform other functions. 

During development efforts, you may additionally want to use a smart card that is available 
commercially, such as the AST-ICP (Intelligent Communications Processor) smart card from AST 
Research, Inc., which indudes an VO interface through four serial ports. 

The MCP software 

Software for the Macintosh Coprocessor Platform consists of AfROSE, AfROSE Prep, and support 
software (indude fdes, source code examples, and other development software tools). MCP 
software was created to take advantage of the design features of the MCP card by providing 
software services to smart card application programs. 

The code for AlROSE and AfROSE Prep indudes a collection of traps, interrupt handlers, and tasks 
that provide support for task naming, timing services, and intercard and intracard communications 
using messages. These routines enable a smart card to support a multitasking distributed operating 
environment for communications and other real-time services on the same card or on other smart 
cards installed in the Macintosh computer. 

• MJleCard-dependent axle has been separated from AlROS£. The download subroutines will 
load the appropriate card-dependent code when performing an initial load of AlROSE 
operating system to the card. 

1-4 Macintosh Coprocessor Platform Developer's Guide 



A/ROSE 

AlROSE provides the operating system and core software services required by MCP cards for on­
board applications software. The design of NROSE is suffICiently general to support a wide variety 
of software applications on MCP cards, and offers the functionality described in Table I-I. 

• Table 1·1 Features of NROSE 

Feat1It'C Dacrlption 

Configurability For maximum flexibility in meeting the needs ri. a variety 
of prodUds, large parts ri. AlROSE are configurable. 
AlROSE code that supports services not required by an 
application need not be loaded onto the MCP card To 
complement configurability, the AlROSE kernel is as small 
as possible. 

Intercard services Allows communication between tasks on different 
cards. Remote system facilities allow allocating and 
freeing memory, as well as starting and stopping tasks, 
to support dynamic downloading of tasks on a different 
smart card in the same machine. 

Interprocess communication Interprocess communication is accomplished through 
messages that are fIXed-size but flexibly formatted. 
AlROSE allows dynamic name-binding of tasks to 
support interprocess communication. 

Multitasking Multiple independent tasks share the CPU on the smart 
card, under control of NROSE. Tasks are always executed 
in the user mode on the ~, while interrupt routines 
and the main program are executed in supervisor mode. 
This process is important because some 68000 
instructions cannot be executed in user mode (such as 
any instruction that modifies the status register). 

Priority scheduling and timer services Priority scheduling is available to mntro! the order in 
which tasks use the CPU. NROSE supports time sliCing 
and processing that cannot be preempted Tasks may 
request one-shot or recurrent notifICation of time 
events. 

Real-time responsiveness To deal with the demands of real-time environments, 
such as communications I/O, both context switching 
and message passing are designed for very high 
performance. Memory management is available in an 
efficient form. 

Refer to Part II for more detailed information on AlROSE and the services it provides. 

1 / What is MCP? 1-5 



A/ROSE Prep 

AlROSE Prep is composed of: 

• a driver that runs under the Macintosh operating system 

• AlROSE Prep interface code 

• library routines (in the fde Ipcqlue.o) 

• associated support code, including the AlROSE Prep Name Manager and AlROSE Prep Echo 
Manager 

• ard-dependent routines 

• a portion of the download subroutines 

The AlROSE Prep driver handles aU message passing (interproceSS communk:alion) between 
processes running under the Macintosh operating system and MO tasks running under AlROS£. 
Periodically, AlROSE Prep scans for and processes incoming messages, times out slots that have 
become inactive, and processes outgoing messages. The driver receives messages from and delivers 
messages to Macintosh processes. 

• Note: Since the Macintosh computer currently does not implement a multitasking operating 
system, the functions are referred to as processes rather than IaSIts. 

Refer to Part II for more detailed information on AlROSE Prep and the services it provides. 

Developmental diagnostics 

Developmental dia~tics are provided in the finnware. The finnware is provided in the 
declaration ROM on the MO card. 

These dia~tics are being provided solely as a framework for test verification of board designs. 
Refer to Part III, Hardware Development. for more detailed information. 

Developing with MCP 

MO provides hardware and software to assist you in creating 

• an application-specific smart card 

• Macintosh application software that uses AlROSE Prep for communication with tasks on the card 

• software that executes under AlROSE on the card 

1-6 Macintosh Coprocessor Platfonn Developer's Guide 



MCP provides a common design to save time in research, design, and development efforts, helping 
you produce greater and more accurate results in a shorter period of time. 

During development, you'll need MPWand standard development tools (linker, C compiler, 
Assembler, and so forth). The MCP distributioo disks provide source code fdes and examples for 
AlROSE and AlROSE Prep, as well as all ci the support software. 

You will also need a Macintosh computer with one or more smart cards in the expansion slots. You 
could conceivably create applications 00 a Macintosh computer without smart cards installed, and 
then port it to a Macintosh computer with smart cards installed for testing. 

Some of the SpecifIC concerns you may have in developing your own application may include the 
following (refer to the chaptetS listed for detaUed informatioo): 

• how to create an AlROSE or AlROSE Prep application (Chapter 8) 

• how to create interrupt handletS (Chapter 7) 

• how to to send data directly to anaher card (Chapter 5) 

The next section describes some development opportunities and potential applications. 

Development opportunities and applications 

The communications and networking strategy of Apple Computer is to integrate the Macintosh 
computer into other environments. Some of these environments include those offered by Digital 
Equipment Corporatioo (DEC)TII, IBM's Systems Network Architecture (SNA), and the proposed 
Open Systems Integration (051) standard. 

The on-board operating system provided with MCP gives you the capability to 

• off-load tasks usually performed by the central processor, and thus have faster response times 
(computational speed) 

• control and arbitrate multiple communications protocols 

• control sessions among users 

• run applications in the background 

Applications developed with MCP mayor may not require users to dedicate a Macintosh computer 
for the applicatioo, depending 00 how you customize the interface on the card It is possible to 
create MCP card applications that, once downloaded, have no dependence on the Macintosh 
operating system. 

Any application or environment that requires the performance of a Macintosh computer can use 
MCP-developed cards and software. Some of the potential development opportunities described in 
this sectioo include off-loading task processing, parallel processing, interfacing to or cootrolling 
other equipment, data acquisition, and intemetworking. 

1 / What is MCP? 1·7 



Oft'-loadlng task processing 

With RAM and a processor on the MCP card, you can off-laid a task from the main logic board of 
the Macirlosh and have AlROSE handle the interprocess communication. A potential development 
opportunity would be a digital signal processa or a high-speed modem. 

ParaJlel processing 

With shared data in a Macin~ computer, the user may want multiple processors to work on data 
simultaneously. Using multiple cards, an application could 

1 IDad a task that processes the data adO MCP cards. 

2. Send messages to the tasks on the cards wth instructions and data. 

3. Have the tasks compute in parallel. 

4. Receive the results. 

0af2 analysis is an example of this type of an application. 

Ioterfadng or controlling 

MCP-developed cards and applicaf.ions are not strictly a communications interface, but rather a 
connectivity interface. The product you develop can lie into the Macintosh environment, using the 
power of the Macintosh to control devices, collect data, or perform some type of analysis. In this 
siluation, the Macin~ computer is dedicated to controlling that device. 

Some examples d potentiaJ products include 

• a numeric controller, machine controller, or any type d device that needs a computerized 
controller, such as process control in a factory environment (factory automation, specialized 
devices, or robots) 

• medical imaging, such as a system console for a Magnetic Resonance Imaging (MRI) machine 

Data acquisition 

By developing a SCSI or EDSI (External System Device Interface) connection on the MCP card, you 
could connect a drive from the Macintosh computer to use it as a database machine distributed 
over a network, with connections either to or from a host mainframe or other workstations. 
EDmpIes of applications include instrumentation in a lab, medical applications, or areas in which 
there is a great deal of tC3ing activity. 

Ioternctworking 

The Macintosh Coprocessor Platform offers cost-effective solutions for internetworking needs, 
inducting 

• providing an environment in which many different kinds of links are simultaneously active 

• 10000Iy distriooting services aaoss networks 

1-8 Macintosh Coprocessor Platform Developer's Guide 



• using the intercard communications capability (such as LU 6.2 to Elhe(falk) 

• using the card as a gateway. hridge. or ~uter into another environment (the other environment 
may be a nonmainstream environment or a computer that does not use standard protocols) 

• enabling other AppleTalk-connected machines to use the communication facilities of the 
Macintosh 

I.fmftatlons 

When using M(J) to develop a NuBus peripheral interface card and associated applications. you are 
limited in just two aspects: 

• what you can program on the card in the existing memory space 

• what you can physically build onto the board in the remaining real estate 

1 I What is MCP? 1-9 





Chapter 2 Getting Started 

T HIS C HAP T E R shows you how to install the MCP card and software. 

Then. this chapter takes you through an exercise using the Macint~h 

Coprocessor Plalform card and source-code meso This exercise demonstrates a 

simple function of the operating system and verifies that the smart card and 

operating system are working. 

This chapter assumes you have already set up your Macintosh II-family 

computer, according to the instructions in your owner's guide, but have not 

yet installed any MCP hardware or software. _ 

2-1 



Preparing to use MCP 
Before you install the MCP card, follow these steps: 

1 Install MPW SOftW3re on your hard disk into a new folder called MPW. 

2 Insrall Macsbug into the System Folder of your Macintosh. 

3. Make a backup copy of the two MCP distribution disks. When you fmish copying the disks, 
remember to put the master disks in a safe place. 

One of the MCP d6tributioo disks oonrains source code and programming examples you will need 
for application software development and for the exercise in this chapter; the distribution disks 
include AlROSE, ROSE Prep, and the support software for bah. 

• Nots: Please be sure to follow instrudions given in, -mstaIling MCP software,· later in this 
chapter, when mpying the contents of the MCP distribution disks to your hard disk. The 
source code examples check certain locations in the hierarchical file structure for any files 
needed, not only for the exercise given in this chapter but for aU software development 
efforts. 

For a complete guide to the folders and ftJes included on the MCP distribution disks, refer to 
Appendix A, '"F'des on the MCP Distribution Disks.· (This chapter simply identifies the folders and 
files you wiD need for the exercise.) 

Now follow the instrudions provided in the following sections to install hardware and software 
for the Macintosh Coprocessor Platform. 

This sedion tells you how to install the MCP card in the Macintosh. If roo are not familiar with 
installing cards, refer to the owners guide for your Macintosh and to the Preface of this guide for 
important safety instrudions. Follow all instructions and warnings dealing with your system 
detaiJed in the owner's guide for your Macintosh. 

For your own safety and the safety of your equipment, rake the following precautions before 
installing the MCP card: 

• Do not tum on the computer system until you have completed the entire installation process. 
Turning on the system at the wrong time coold result in eledrical shock to you or cause 
damage to your computer system's components. 

• Disconnect cables for the monitor, mouse, and keyboard by pulling on the plugs, not the cords. 
I.eave th8 powet' cord plugged In. The plugged-in power cord acts as a ground for the system, 
protecting its components from static electrical discharge. Do not defeat the purpose of the 
grounding plug! 

2-2 Macintosh Coprocessor Platform Developer's Guide 



• Touch the power supply case inside the computer to discharge any static electricity that might 
be on your clothes or body. You can safely touch the power supply if you've just unpacked 
your computer. However, the power supply can get ha in normal use. If the computer has 
been on, shut it off and let it cool down for at least five minutes before you open up the main 
unit and touch the power supply. 

To install the MCP card, foHow these steps: 

L Choose the expulSlon slot 1!l which you would Jike to install the )lCP card. 

For purposes of this exercise, you can use any slot except the second slot from the right d the 
video card (slot D). However, any slot will work on the Macintosh Hex. The MCP software 
downloaded in this example assumes that the MCP card in sla 0 has an sec interface; 
therefore, l is recommended that you use another slot, such as slot B, for this exercise. 

Refer to the owners guide that came with your particular computer if you need help opening 
the cover to reach an available expansion slot. 

2. Insert the MQI card 1!lto the expansion slot but do not touch the pins 011 the bouom 
of the card; hao.dIc the MCP card by the top edges only. 

If your card has a bracket, the expansion cover shield on the card attaches to the inside of the 
back panel in the same way as the shield you removed in step 1. Just align the card so that the 
guide ftts through the lower slot. 
Align the connec.tor on the bottom of the card, directly over the sla, as shown in Rgure 2-1. 

Place one hand along the top edge of the card, directly over the ronnedor area, and push down 
fmnly until the conneaor is fully seated. 

2 / Getting Started 2·3 



• Figure 2·1 Aligning the card 

~ Important Don't force the card. If you meet a lot ci resisWlce, pull the card out and try 
again. 

Don't wiggle the card from side to side when you insert it Wiggling the 
card puts unnecessary stress on the card and the slot, and may break 
elearical connections. A 

You can test to see if the card is properly connected by gently trying to lift the card. If it 
resists and stays in place, it is connected. 

3. If you have purchased other peripheral cIerias that requite ards, iDstall them now. 

You can use this same method for insraJIing all expansion cards in your Madntosh at any time. 
Read and follow any instructions that come with other expansion cards you may have. If you 
plan to install more cards, see Appendix C in the owner's guide to your Macintosh for details on 
the power available fa expansion slots. 

40 Now that the canI Is instaUed, remnncd the monitor, the mouse, the keyboard, and 
plug in any necessary cables. 

2-4 Macintosh Coprocessor Platform Developer's Guide 



If you installed additional cards (such as the AST·ICP smart card) that interface to a network or 
sane other device, conned those cables at this time. 

The owner's guide for your Macintosh shows different ways to conned Apple DeskTop BusT!( 
devices (the keyboard, the mouse, and other devices such as a graphics tablet, a joystick, or 
another keyboard), You can either daisy-chain them to the keyboard or use one of the back­
panel connectors. 

• Note: Avoid turning on the Power prematurely. The steps are presented in this order so that 
the last thing you do is connect the keyboard to a power source. Once the keyboard has 
power, you could accidentally press the Power On key and tum on your computer before it 
is appropriate. 

So Connect any other equipment you plan to use, such as a printer, external disk drive, 
or modem. 

You will fmd instrudions for connecting those devices in the manuals that came with them. If 
you're using an external device of any kind that uses a SCSI (Small Computer System Interface) 
connedOr, you must conned that device to the one SCSI port on the back of the Macintosh . 

.. Warning Connecting a SCSI device to the wrong port can damage your system. You 
can also damage the system if you mistakenly connect a non·SCSI device 
(with an RS-232 plug, for example) to this port. Read -Adding SCSI 
Terminators- in Appendix A of the owner's guide to your Madntosh for 
important instructions about SCSI terminators. • 

Once you are satisfied that everything is connected properly, arrange the Macintosh components 
conveniently in your work area. Tum the main unit so that it faces you, and place the monitor 
where you want it (on top of the main unit is fIDe). Position the keyboard and mouse where you 
can reach them comfortably, 

2 / Getting Started 2·5 



Insta11iog MCP software 

To install MCP software, reboot your Macintosh and do the following: 

L Create a new folder called MCP Software OIl your M'adntosh desktop. 

1. Copy the mntenta of the MCP cUstribudoa disks to the new MCP Software folder. 

It takes just a couple of minutes to copy all files from the MCP distribution disks. 

~ ImportaDt Because ri naming conventions required by AlROSE, do ntt change the . 
names of any ri the files or folders copied from the distribution disks. Of 
course, you can ae2le your own names fa the hard disk and fU'Sl-levei 
folder to which you copy the MCP files and folders. ~ 

• Noll: The AlROSH folder and AlROSH Prep folder must be at same level within the new folder 
you just created, because cert2in items within the A/ROSE Prep file use data in the 
include files in the AlROSE folder. 

InstaWng the AlROSE Prep driver 

Now that the files and folders for the MOt software are installed on your hard disk, you will need 
to install the AlROSE Prep driver into the System Folder on the Macintam. Here are the steps that 
you should follow: 

L Sdcct the AlROSE Prep folder within the new folder you autecl on the Madutosh 
desktop. 

1. WlthJn the AlROSH Prep folder, open the Examples folder and select the A/ROSE 

Prep file. 

3. Copy the A/ROSE Prep me Into the System Folder of the Madntosh. 

• Note: Yoo can copy the me in one step by holding down the Option key while dragging the 
A/ROSE Prep me into the System Folder. 

4. Reboot the M'adntosh. 

IThe AlROSH Prep driver is loaded into the system heap during system startup by an INlT31 
resoorce within the AlROSH Prep file. 

2·6 Macintosh Coprocessor Platform Developer's Guide 



Running a sample program 

This section describes how to run a sample program that shows the features and functions of the 
AlROSE operating system on the MCP card 

To execute this exercise, you must first run MPW. To do so: 

L Open the MPW folder. 

You can open the folder either by selecting it, then selecting Open from the File menu, or by 
double-clicking the MPW folder icon. 

2. llun MPW by double..cJiddng on the appIkation ca1led MPW ShelL 

An MPW worksheet appears, similar to that shown in Figure 2-2. 

• Figure 2·2 MPW window 

2 / Getting Started 2-7 



Selecting mes for the sample exerdse 

Now you must select the appropriate files to use for the exercise. To do so, first open the folders in 
which they are located Follow these stepS: 

L Choose Set DIrectory ... from the Ditec:tory menu. 

A dialog box appears similar to that shown in RgUre 2-3. 

• Note: 1be cootents ri this dialog box will vary depending on the contents d your hard disk. 

• Pigure 2-3 Select Qarrent Directory window 

QEumpie. 
Q Interfac •• 
Clllln ..... 
C ROM M.P. 
Q Script. 
CTempm •• 
CTooi. 

c::IN ........ y 

£,.( t 

The box beneath the directory tide shows all the items in that folder. 

2. Locate and open the folder named MCP Software that you created earlier in this 
chapter. 

To open the folder, select the me name, then dick Open. You can also open folders and flies by 
double-clicking on the name ri the folder you want. 

3. Open the folder named AllOSE. 

4. Open the folder named Examples. 

I So Select the folder named BJoaries. 

6. CUc:k the DIrectory button. 

To verify the diredory (folder) in which you are working, type the MPW coounand 
directory and press Enter. To continue the example in this chapter, you should see the 
following lines on the screen: 

2-8 Macintosh Coprocessor Platfonn Developer's Guide 



dir9ctory 
'New Baby:MCP Software:A/ROSE: Examples :Binaries: ' 

where: directory is the command you entered to the folder 

'New Baby:MCP Software:A/ROSE:Examples:Binaries:' is the pathname 

• Notit Your saeen will display the pathname and name of the hard disk you are using instead 

d the text shown in this example. 

8. To see the name of the t1Ia In the Binaries Examples foJdcr, type the MPW command 
Ul... and press Enter. You should see the following list of all fdes in the Binaries Examples 

folders. 

files 
echo.c.o 
GenAROSE.c.o 
name_tester.c.o 
osmain.c.o 

ossccint.a.o 
pr_manager.c.o 
printf.c.o 
start 
start.map 
start.xrf 
timeIt.c.o 
timer_tester.c.o 
trace_manager.c.o 

For this exercise, you will use the fdes named download and start. The download fde contains 

an MPW tool that loads code from AlROSE to the cardj the start me is sample code that runs on the 
smart card. (Refer to Part II for more detailed infonnation on the download tool.) 

2 / Getting Staned 2·9 



Downloading mes to the card 

To download a file, enter both the command name and the name of the sample me, as follows: I 'New Baby:MCP Software:A/aOSE:Downloader':download start 

The start me is now running with the AlROSE operating system on the MCP smart card in your 
Macintosh. Until you verify that the program is running by using the process described in the next 
section, you will not see any activity on the screen. 

Verifying the sample exercise 

Using an MPW tool c:aIled the print manager (pr_manager), provided on the MCP distribution 
disks, you can verify that 

• the card is running the sample program and fde 

• communication processes between the card and Macintosh are functioning correctly 

The print manager is also designed to run on a card that has an see for printing to a terminal (such 
as an AST-ICP card). 

To verify that the program is running, follow these steps: 

I L IJl the MCP Software foJdct, f1nd the folder oamed AlJ.oR Prep, then the folder named 
Examples. 

Follow the steps listed for -Selecting Files for the Sample Exercise,· given earlier in this chapter. 

2. Verify the dlrectory using the MPW command ciirectory. 

You should see the following text displayed on the screen: 

directory 

'New Baby:HCP SOftware:Allose Prep: Examples :' 

3. Verify the fU.es bJ. that folder using the MPW command files. 

You should see the following listing on the screen: 

----------------------------_.--.. -------------
files 
:DumpTrace: 
• A/ROSE Prep' 
'AROSE Prep. r' 
echo.c 
echo_example 
echoglobals.a 
Makefile 
name_tester 
name_tester.c 
pr_manager 
pr_manager.c 
RSM_File 
RSH_File.c 

2-10 Macintosh Coprocessor Platform Developer's Guide 



RSM_tester 

RSM_tester.c 

TestR 

TestR.c 

timeit 

timeIt.c 

trace_monitor.c 

TraceMonitor 

Notice the file for the print manager (named pr_manager). 

3. To new the ICtivity of the card, type pr_manager and press Enter. 

You11 see messages similar to the foUowing 00 the saeen; fa example, the Task Identifier (TID) 
numbers would be different for different sitts. 

pr_manager 
Print Manager TID - 4 
Startinq Main Loop 
TID .. bOOOOOa - echo tid - bOOOOOS 
TID - b000008 - Sent messaqe, waitinq for reply ---­
TID - b000008 - Received msq - FB0706AC, ID .. FB002476 
TID .. b000008 - From: 0364, To: B000008, mCode .. -32666, mStatus .. -32768 
TID .. bOOOOOc - RAM test (!$fb064898 passed. 
TID .. bOOOOOc - Testinq Slot B 
TID .. b000008 - About to send msg .. FB0706AC, ID .. FB0029AC 
TID - b000008 - To: 0464, meode .. 102, mDataSize .. 1144 
TID - b000008 - Sent messaqe, waitinq for reply ----
TID - b000008 - Received msq .. FB0708FO, ID .. FB0029AC 
TID - b000008 - From: 0464, To: B000008, mCode - -32666, mStatus - -32768 
TID - b000008 - About to send msg - FB070638, ID - FB0029BC 
TID - b000008 - To: 0564, mCode - 102, mDataSize .. 1144 
TID .. b000008 - Sent messaqe, waitinq for reply ----
TID - b000008 - Received msg - FB0708FO, ID .. FB0029BC 
TID - b000008 - From: 0564, To: B000008, mCode - -32666, mStatus - -32768 
TID - b000008 - About to send msg - FB0706AC, ID .. FB0029D1 
TID" b000008 - To: 0664, meode .. 102, mDataSize .. 1144 
TID - b000008 - Sent message, waitinq for reply ----
TID - b000008 - Received msg .. FB0708FO, ID .. FB0029D1 
TID - b000008 - From: 0664, To: B000008, meode - -32666, mStatus .. -32768 
TID - b000008 - About to send msq .. FB07087C, ID .. FB0029El 
TID - b000008 - To: 0764, meode - 102, mDataSize .. 1144 
TID - b000008 - Sent message, waiting for reply ----
TID - b000008 - Received msg .. FB0708FO, ID .. FB0029E1 
TID - b000008 - From: 0764, To: B000008, mCode - -32666, mStatus .. -32768 
TID - b000008 - About to send msg - FB070638, ID - FB0029F5 
TID - b000008 - To: 0864, meode - 102, mDataSize - 1144 
TID - b000008 - Sent message, waitinq for reply ----
TID - bOOOOOc - RAM test @$fb064d18 passed. 
TID - b000008 - Received msg .. FB0708FO, ID - FB0029F5 

2 / Getting Started 2-11 



where: pr_manager is the command you entered 

Print Manager is the name of the program that started running under AlROSE 

TIO-4 is the Task Identifier (TID) assigned to that task by AlROSE 

bOOOO n is a task (Note that there are several tasks running at the same time.) 

These messages originate on the MCP card. This activity not only shows that MCP is functioning 
correctly. but also displays that multitasking activities are taking place. 

The program continues to execute. To stop the activity, press the Command-period key 
combination. MPW stops the program and displays the following message on the screen: 

CloseQueue Called 
ttt MPH Shell - pr_manager aborted. 

You can direct this output as you would do anything else in MPW. such as saving it to a temporary 
me for printing later. 

Where do you go from here? 
Now that you've been through a sample exercise, it is time to work on your own applications. 
Part II, Software Development, provides information on software development using AiROSE and 
AlROSE Prep; Part III, Hardware Development, provides information on hardware development and 
diagnostics. 

2·12 Macintosh Coprocessor Platform Developer's Guide 



Part II Software Development 

Part II, ·Software Development,· provides 

• an introduction to and an overview of NROSE and NROSE Prep (Otapter 
3) 

• defmitions of NROSE operating system primitives, utilities, and 
managers and NROSE Prep Services and managers, along with examples in 
both assembly language and C (Chapters 4, 5, 6) 

• information on how to use NROSE and NROSE Prep (Chapter 7,9 and 10) 

• an exercise to modify standard MCP mes to build an application program 
(Chapter 8) 

• programming guidelines and notes for AlROSE, with program 
listings for selected examples (Chapter 7) 

• a discussion of the Forwarder, an unassociated piece of code that allows 
A/ROSE tasks to run over AppleTalk. 

• a troubleshoaing section for crashes and hangs with either 
NROSE or NROSE Prep (Chapter 11) 





Chapter 3 The MCP Software Interface 

5 0 F TWA R E for the Macintosh Coprocessor Platfonn includes AlROSE, 

A/ROSE Prep, and support software (development tools, include mes, and 

examples). This software was created to take advantage of the common 

design features of the MCP card by providing a common software 

environment 

This chapter describes the components of the MCP software in greater detail. 

3-1 



What is A/ROSE? 

AlROSE (Apple Real-time Operating System Environment) is a multitasking operating system for 
smart card devices, such as the MCP card, and provides an intelligent peripheral-controller interface 
to NuBus. 

AlROSE is a kernel operating system that operates in supenisor mode (sometimes referred to as 
server mode). The basic part of the kernel is as small as possible, with the fewest functions 
necessary to do real work. The design phil~pby of the operating system is to ncx get in the way 
of what most people want to do; AlROSE makes minimal assumptions about how things operate. 
AlROSE provides basic support services to tasks through sySlem calls (primitives) and library 
routines (utiJlties). 

AlROSE primitives 

A primitive is an AlROSE system call that provides fundamental services; it is part of the operating 
system kernel. You must use these services to start and stop tasks, get and free memory, get and 
free message buffers, send and receive messages, change the scheduling parameters of a task, and 
set the hardware-interrupt priority level. Refer to Chapter 4 for more detailed information on 
AlROSE primitives. 

AlROSE utillt1es 

A utility is the library code needed to make the functional call interface between the kernel and 
other code providing higher-level services (such as the AlROSE managers or oode you develop for 
other tasks). The utilities allow you to move data, manage buffers, obtain the operating 
environment, translate NuBus addresses, and register and look up task names through the Name 
Manager. Refer to Chapter 5 for more infonnation on AlROSE utilities. 

AlROSE managers 

Managers are tasks that carry out higher-level services on behalf of other tasks. AlROSE managers 
extend the kernel to provide services that are not in the kernel, but are useful for all users of the 
AlROSE operating system. 

3-2 Macintosh Coprocessor Platform Developer's Guide 



Managers exist on top d the kernel. Because code for the managers is provided on the MCP 
distribution disk, you can incorporate desired functions into the application program you develop 
using appropriate calls. Both managers and application code for tasks that you develop operate in 
user mode (sometimes referred to as client mode). 

Figure 3-1 shows the relationship between the A/ROSE kernel, primitives, utilities, and managers. 

• Figure 3-1 Strutture d A/ROSE 

Supervisor mode 

Message interface --:I~-----r. 

User mode --+-

User task 

. .. 
.. .. .. 

~ .. 
~ .. . ~ ... ~ 

System trap interface -------

User task 

Kernel 
(primitiva) 

~ ..... . .. .. 
.~ .. '~ 

.. 

Figure 3-2 illustrates the flow of information between AlROSE and the managers on an MCP card. 

3/ Introduaion to the MCP Software Interface 3·3' 



• Figure 3-2 Aow of information between AlROSE and managers 

MCPcard i:;~~~ NuBus htterface 

Userappllcation 

Other 

--- Palh that a message may take 

This section provides a brief description for each of the AlROSE managers (refer to Chapter 6 for 
more detailed infonnation); 

• Echo Manager 

• InterCard Communications Manager 

• Name Manager 

• Print Manager 

• Remote System Manager 

• Tuner Manager and Timer Library 

• Trace Manager 

Echo Manager 

The Echo Manager returns each message it receives to the sender. You can use the Echo Manager 
primarily during the early stages of development for 

• sending test messages 

• determining the time required for a round-trip message response 

3-4 Macintosh Coprocessor Platform Developer's Guide 



InterCard Communications Manager (lCCM) 

The InterCard CooImunications Manager (ICCM) is responsible for sending and receiving all 
messages between smart cards installed in the same machine. AlROSE delivers any messages 
addressed off-card (off the active MCP card) to AlROSE Prep or ICCM. ICCM forwards the message 
to a peer ICCM on the destination smart card or AlROSE Prep on the Macintosh main board for 
delivery. ICCM also allows tasks to request infonnation about other cards; namely, the tasks ask 
for information about the existence d a smart card in a given slot and the task identifier of its 
Name Manager. 

Name Manager 

The Name Manager allows AlROSE tasks to fmd the task IDs of other AlROSE tasks, given the 
names of those tasks. 

To provide these naming services, the Name Manager allows tasks to 

• register and unregister their own name with the Name Manager 

• look up the task identifier d named tasks 

• look up the name d a task corresponding to a given task identifier 

• become visible to other tasks on the same card and, optionally, to tasks on the Macintosh main 
logic board or other smart cards 

The Name Manager supports searching for names using wildcard characters; the Name Manager also 
provides for notifying tasks of the loss of communication with a smart card or the termination of 
a task. 

The Name Manager operates with a single message loop: for each message it receives, it performs 
the service specified in the message code. The Name Manager handles errors by indicating the failure 
status in the message sent back to the requesting task. 

Print Manager 

The Print Manager is a diagnostic tool that allows you to put print statements in your program and 
get the output printed on a display. The display can be output either on the Macintosh or to a serial 
port. 

Remote System Manager (15M) 

The Remote System Manager (RSM) provides a mechanism for supporting dynamic downloading d 
tasks to another smart card in the same machine. RSM provides two types of services: 

• getting and freeing memory 

• starting and stopping tasks 

3/ Introduction to the MCP Software Interface 3-5 



RSM operates with a single message loop; for each message it receives, it performs the service 
specified in the message code. For each kind of request message, RSM on the remote (destination) 
card executes the applicable AlROSH primitive on behalf d the requesting task. RSM handles errors 
by indicating the faUure status in the message sent back to the requesting task. 

Timer library and TImer Manager 

The timer library allows user tasks to receive "wake-up· calls and activates timing, cancels timing, 
sets timing, and so forth. Use the timer library when you want to use periodic timers, for high­
ped'onnance timers, and when you want to cancel a timer reliably when an event occurs. 

The timer library is avaBable in the rde 0 •• 0 00 the MCP distribution disk. The timer library 
provides three types of timing services to tasks: 

• time-event notiflC2tion 

• time-event query 

• time-event cancellation 

The user task can request two types of time events: 

• ate-shot, in which only one time-event notification message is sent 

• periodic, in which time-event notifteations are sent at specified intervals 

The TImeI' Manager is provided with this version of the AlROSH software for compatibility with 
previous versions; its function has been replaced by the Tuner Ubrary. 

Trace Manager 

The Trace Manager provides a way to dynamically trace all the message exchanges in the operating 
system. The Trace Manager can be an extremely useful debugging facility; when all else fails, you 
can trace messages and slow the process down in order to see things you could not see before. The 
Trace Manager traces everything except itself: every message that is sent is put in a log me. 

L:::. Caution A limitation of using the Trace Manager is that it alters time where a 
program is concerned, and therefore may affect the operation of a task if 
timing is a factor. Therefore, some operations work while others do not 
when the Trace Manager is running. 

For example, the Trace Manager may impact programs that control high­
speed VO devices. Because messages are traced, they may not retum fast 
enough to activate the device, or the timing may be altered. This results in 
errors that are time-dependent. t:. 

3·6 Macintosh Coprocessor Platform Developer's Guide 



What is A/ROSE Prep? 

A/ROSE Prep is a combination of a driver and support software found in the AlROSE Prep file in the 
A/ROSE Prep folder on the MCP distribution disk. 

A/ROSE Prep provides message-passing and naming services for communication among the 
Macintosh, tasks on the Macintosh, and tasks on smart cards. Interprocess communication is 
accomplished through messages that are fIXed-size but flexibly formatted (AIROSE Prep provides 
functionality similar to the InterCard Communications Manager on A/ROSE). 

• NoIIJ: This document refers to processes on the Macintosh, and tasks under AlROSE and 
NROSEPrep. 

An application that uses A/ROSE Prep must have an initial call to OpenQueue to establish its use 
of AlROSE Prep. Messages are sent and received via the Send and Receive calIs, much like tasks 
under AlROS£. Several source-language examples a applications are provided in the AlROSE 
Prep:Examples folder on the MCP distribution disk. Refer to Chapter 9 for a more detailed 
desaiption a the services provided by A/ROSE Prep. 

AlROSE Prep driver 

A/ROSE Prep servires are handled by the AlROSE Prep driver, which handles all message passing 
between processes running under the Macintosh operating system and AlROSE tasks on the smart 
card over the NuBus. Using calIs to the A/ROSE Prep driver, the Macintosh process sends messages 
to and receives messages from tasks on the smart card and on processes on the Macintosh. 

You will need to place the AlROSE Prep file in the System Folder; routines contained in the me are 
installed by the 1NIT31 mechanism during system startup. (Refer to Chapter 2, -Getting Started,· 
for installation instructions.) 

During initialization, the driver sets up a communication area, and then searches NuBus slots for the 
ICCM communication areas of smart cards installed in the Macintosh, much as the AlROSE ICCM 
does. For each valid ICCM communication area found, the driver stores the address of the A/ROSE 
Prep communication area in a vector in the ICCM's communication area. 

Periodically, A/ROSE Prep scans for Receive operations that have timed out, incoming messages, 
active slots that have timed out, and outgoing messages. The driver receives messages from and 
delivers messages to the Macintosh processes. 

3 I Introduction to the MCP Software Interface 3-7 



AfROSE Prep library 

The interface between a Macintosh application and the AlROSE Prep driver is made through the 
object routines, or glue code, in the AlROSE Prep Dbrary. These routines provide for opening and 
cl~ing the message queue to the driver, getting and freeing message buffers, and sending and 
receiving messages. 

In addition, the AlROSE Prep library provides access to many of the same utftities as provided by 
AlROSE, such as moving data, obtaining the operating environment, and registering and looking up 
task names tbrough the AlROSH Prep Name Manager. These routines are located in the fde A/ROSE 

Prep: IPCGlue. 0 on the MCP distributioo disks. (All d these routines use the C calling 
sequence.) 

A/l.OSE Prep managers 

The managers for AlROSE Prep are the Echo Manager and the Name Manager. These AlROSE Prep 
managers perform functions identical to and have the same message interf2ce as their AlROSE 
counterparts; minor differences are due to the slightly different interface to AlROSE Prep. 

The AlROSH Prep managers are processes that carry out higher-level services on behalf of 
applications on the Macintosh computer. These managers are often referred to as slot 0 
managers, and the Macintosh main logic Ixmd itself is sometimes referred to as the slot 0 card. 

• Nole: The slot 0 card is not to be confused wlh the Slot Manager in the Macint~h (part d 
the Macintosh Operating System). 

Functions of MCP software 

The func:tic>m of MCP software include the following: 

• using messages for interprocess communication 

• using the client/server relationship as a mechanism for data transfer 

• using task scheduling in the AlROSE multitasking environment 

• managing memory under AlROSE 

3·8 Macintosh Coprocessor Platform Developer's Guide 



Using messages for Interprocess communication 

Messages are the fundamental means for communication between AlROSE tasks and AlROSE Prep 
processes. Message structures are allocated from and returned to a special area a memory dedicated 
to holding messages. Intracard messaging is accomplished through the operating-system kernel; 
intercard messaging is handled by ICCM and AlROSE Prep. 

Message structures 

A message is a fIXed-length data structun: that is sent between tasks. Some of the fields in a 
message indude 

• a destination address, which is the identifier of the task to which the message is directed 

• a source address, which is the identifier of the task that serl the message 

• a message code specified by the task that sent the message 

• three long words a data for the task to which the message is directed 

• three long words of data that should be returned untouched in a response to the task that sent 
the message 

• a pointer to a data buffer 

• the size a the data buffer 

• a message identifier 

• message priority 

• message status 

Some of the fields in a message structure in C are: 

long mId; 1* Message ID *1 
short meode; 1* Messaqe code wI 
short mStatus; 1* Messaqe return status *1 
unsiqned short mPriority; 1* Messaqe priority *1 
tid_type mFrom; 1* Messaqe source *1 
tid_type mTo; 1* Message destination *1 
unsiqned lonq mSData[3]; 1* Sender's private data *1 
unsiqned lonq mOData[3]; 1* Sender'S shared data *1 
lonq mDataSize; 1* Size of data buffer *1 

1* in bytes *1 
char *mDataPtr; 1* Address of data *1 

IPigure 3-3 illustrates the fields contained in fIXed-length messages for AlROSE and AlROSE Prep. 

3 / Introduction to the MCP Software Interface 3-9 



• figure 3-3 Fixed-length message structure 

mNext 

mid 

mCode 

mSlatus 

mPriority 

mFrom 

mOData 

mDataPtr 

Table 3-1 describes some of the fields in the message structure and provides a brief description of each. 

• Note: Always use the message structure as dermed in the includes file. 

• Table 3-1 Structure for fIXed-length messages 

FiddName 

mNext Ptr 

mId long 

DescriptionlUsage 

a pointer used internally by AlROSE for linking message 
buffers that are in a queue. While the message buffer is 
being used by the application, the mNext field can serve 
any function. 

a statistically-unique, 32-bit number to identify the 
message, initialized when a message is obtained from 

3·10 Macintosh Coprocessor Platform Developer's Guide 



AlROSE or the AlROSE Prep driver by way of a GetMsg () 

request. Your applications should never modify the 
message ID field of a message 

3 I Introduction to the Mep Software Interface 3-11 



FJddName 

meode 

mStatus 

ml?riority 

mFrom 

short 

short 

DescriptlonlUslge 

a l~bit message code understood only by the 
sender and receiver of a message 

By convention, an even mCode is a request message, and 
an odd mCode is a reply message. 

You can ftnd examples of this convention in the files 
:A/ROSE:includes:managers.a and 
:A/ROSE: includes :managers. h. For example, the 
ICCM request code ICC_GETCARDS (150) is even; the 
ICCMreplycode ICC_GETCARDS+l(151) isodd. The 
Name Manager request code NM_REG_TASK(100) is even; 
the Name Manager reply code NM]EG_TASK+l is odd. 

The AlROSE ope!3ting system, the A/ROSE Prep driver, and 
the managers (Name Manager, ICCM, and others) set the 
high bit of the mCode in a message if the mCode is not 
recognized or the message is undeliverable. User tasks 
should also set the high bit if the message code was not 
recognized. The file managers. a and the file 
managers. h in the folder :NROSE: includes: list the 
mCodes known by NROSE, the AlROSE Prep driver, and 
the managers. 

a 16-bit status code, with the upper 8 bits of mS tat u s 

designated as an AlROSE system status code and the lower 
8 bits of mStatus designated as a user status code. The 
mStatus values used by AlROSE, A/ROSE Prep, and the 
managers are found in the files managers. a and 
managers. h in the folder :AlROSE:indudes:. 

User tasks should set the mstatus to 
OS_Unknown_Message if the message code was not 
recognized. 
For any message that is undeliverable, A/ROSE and NROSE 
Prep change the entire mStatus word to a value of $8000. 
If a message with mStatus already set to $8000 is found 
to be undeliverable, A/ROSE and A/ROSE Prep free the 
message. 

short umigned a 16-bit umigned word representing the priority of 
the message (0 is the lowest priority) 

long a source address (the task that sent the message) 

By convention, mFrom is the Task Identifier (TID) of the 
task sending the message. NROSE automatically fills in the 
mFrom field to that of the current TID when a message is 
obtained by a GetMsq ( ) request A task receiving a 

3·12 Macintosh Coprocessor Platfonn Developer's Guide 



message should swap the mFrom and mTo fields before 
sending a message in reply. 

3 / Introduction to the MCP Software Interface 3-13 



FJeidName FleWSI2Ie Dac:ripdoalUUF 

To declare the TID number, use tid_type TYPEDEF des-
cribed later in this chapter. Do not assume anything about 
the famal of fields in the TID. For example, the slot number 
may not always appear in the same location of the TID. 

mTo long a destination address (the task to which the message is 
directed) 

The mTo field is the Task Identifier (TID) of the task to 
which you want to send a message. This field must be filled 
in before doing a Send request. To declare the TID 
number, use tid_type T'lPEDEF . Do not assume 
anything about the format of fields in the TID. For 
example, the slot number may not always appear in the 
same location of the TID. 

mSData 3 long words 
'l' 

12 bytes c:i data defined by the sender, associated with the 
message, that should be returned unchanged and 
unexamined by the receiver in a reply message. This field 
contains internal context information meaningful only to 
the tasks that sent the request 

By convention within AlROSE, a task receiving a request 
message copies the three mSData words from the 
request to the mSData words of the reply message. The 
task receiving the request should not otherwise manipulate 
this mSData. 

mOData 3 long words 12 bytes of data deflDed by the receiver, associated with the 
message. 

By convention, these 3 long words are meant to be used 
between the requesting task and the replying task for 
passing information. 

mCataSize long the size of an associated data buffer pointed to by 

Imoataptr 

mOataPtr. This size is in 8-bit bytes. 
long a pointer to an associated data buffer. 

Messages are obtained by a Receive request in the following order: 

1 The message must fit any match criteria that was specifteci in the Receive request 

2. The highest mPr!ority message fitting the march criteria is obtained 

3-14 Macintosh Coprocessor Platform Developer's Guide 



• Note: If two or more messages fitting the match criteria have the highest mP rio r it y, 

the first one received and queued for the task is obtained (as in a First-fniFirst-Out, or 
FIFO, queue). 

Mechanisms for data transfer 

Data is transferred between tasks by one of three mechanisms: in the message code, in three long 
words in the message, or in a data buffer. A task may use all three mechanisms simultaneously 
when sending a message. Here is a desaiption of these three mechanisms: 

• the message code 
Through bilateral agreement between cooperating processes, the message code alone may 
convey the entire meaning of the message. 

• three Jong words In the message 
The second mechanism allows a task to pass three long words of data in the message 
(mOData (0), mOData [11, and mOData (2) whose meaning is specified by the receiving 
task (refer to the Timer Manager on the MCP distribution disk for an example). 

In addition, the task may pass another three long words of data in the message (mS Da t a [ 0 1 , 

mSData [ 11, and mSData (21) that the receiver returns untouched. The mSData long 
words are privale to the sending taskj these words are net altered by the receiving task and 
should be returned to the requesting task unchanged This feature allows tasks to pass context 
and other infonnalion, such as return addresses for processing, for the sending task's private 
use within the messaging mechanism. 

• Note: This passing of infonnatio~ by tasks for private use is a conventionj it is net 
enforced by the AlROSE Operating system. 

• a data buffer 
The third mechanism involves passing the address of a data buffer and its size (that is, its 
length in bytes) in the message to the receiving task for it to use. The address of the buffer is 
placed in mDataPtr and the size of the buffer is placed in mDataSize. 

In an environment that includes intercard communications, mDataPtr could be pointing to 
an off-card buffer. The MCP card supports 32-bit accessesj however, with some other smart 
cards, all reads and writes to off-card buffers from a 32-bit CPU must be made with accesses of 
16 or fewer bits. 

3/ Introduction to the MCP Software Interface 3-15 



Message and status codes 

Table 3-2 lists message and status codes, with a brief description. 

• Table 3-1 Message and status codes 

meade 16-bit 

mStatus 16-bit 

message code fldd 
Cl the upper bit is reserved for undeliverable messages 
o use an even number to request services 
Cl use an odd number for replies 

message status field 
o the upper 8 bits are used for passing operating-system 

status 
Cl use the lower 8 bits used passing user status 

The reply mCade to a request for service is the original meade, plus l. 

The Receive system call uses message code 0 to indicate a match of any value. Therefore, you 
should not use message code 0 in the meade field, as the field cannot be explicitly matched. By 
convention, the message code 0xFFFF (-0 is not used 

When a message cannot be delivered, the operating system changes the message code and message 
status as follows: 

• the message code bit 1 «15 is set (me ade I 0xr0(0) 

• the message status is assigned a value of 0xS000 

If the operating system is unable to retum the message to the sender (that is, if the sender has 
stopped or does not exist), the operating system frees the message but not any buffer associated 
with the message (pointed to by mDataPtr). 

A task that receives a message it does not recognize must check if (meade & 0xS(00) is true (bit 1 « 
15 is set). 

• If true, the message was undeliverable and should be released via FreeMsg ( ) . Any buffer 
associated with the message must not be released. This requirement ensures that messages will 
not loop and shared buffers are not freed. 

• If false, meade should be modified by setting bit 1« 15 (meade I 0xB0(0). The message 
status, mStatu5, should be set to OS_UNKNOWN_MESSAGE. The task should then swap the 
source and destination TIOs and return the message to the sender. 

3~16 Macintosh Coprocessor Platform Developer's Guide 



The client/server relationship 

The life ri a typical message buffer begins in the message buffer pool. This message buffer pool is 
available to any task that may request a message buffer from the system 

When a task sends a message, it either utilizes a message buffer it owns (usually the message buffer it 
just received) or requests a message buffer from the system using a GetMsg () call. After flliing the 
message with required addressing information and data, the task sends the message to its 
destination with a Send system call. The sending task has then lost rights to the message buffer, 
and it should not read from or write into the message buffer (or otherwise use the message buffer). 

Upon receipt, the destination task either reutilizes the message buffer for an outgoing message, or 
returns it to the message buffer pool using a FreeMsg ( ) call. 

3 / Introduction to the MCP Software Interface 3-17 



Client and server running on a smart card under A/ROSE 

This section provides an example of a client and server running on a smart card under AlROSE. You 
can fllKf the source code for this exampJe in the folder :AlROSE: Examples:. The client is a timing test 

found in the t imei t • c file; the server is the Echo Manager (similar to the echo example found in 
the acho. c file). (See the file MakeFile in the folder :AlROSE:Exampies: for making the 
echo. c and timei t • c examples.) 

Both tasks are started within osmain, the main program, during AlROSE initialization. The server 
first uses the AlROSE utility Reqister_Task to register its name so that clients can fllKf it. The 
server then enters its main loop and issues a Racei ve utility, waiting for messages from clients. 

A clienllocates the server it wants to axnmunicate fth, using AlROSE Lookup_Task utility to 
obtain the no of the server. The client next obtains a message buffer, stores the TID of the server 
into the mTo field of the message buffer, sets the desired mCoda request in the message buffer, 
and uses the Send utility to send the message buffer to the server. Next, the client issues a 
Recei ve to wait for a reply from the server. 

The server receives the message, takes any action that is required of it, SW2pS the contents of the 
mFrom and mTo fields of the message, sets an appropriate mCode reply in the message buffer, 
and uses the Send utility to send the message buffer to the client. The server next issues a 
Racei ve utility to wait for another message from a client 

The client receives the reply from the server and takes appropriate attion. 

Rgu1e 3-4 illUSU2tes the clienl/server relationshp for tasks running under AlROSE on the MCP card 

~ 18 Macintosh Coprocessor Platform Developer's Guide 



• Figure 3-4 Oienl/server relationship for A/ROSE program modules 

NuBus catd·to-NuBus card 

Inl.tl.all.ze 

CT_tid - GetTID () 

NM_tid - GetNameTID () 

Initialize index to 0 

ST_tid - Lookup_Taak ("Example", 
"Server", NM_tid, 'index) 

ST_tid _. 0 ? 

maq - GetHllq () 

maq _. 0 ? 

raid • msq->mId 

Formulate Request 

msq->mTo - ST tid 
msq->mFrom - CT tid 
maq->mCode - code 
Send (msg) 

mag - Receive (mid, 
os MATCH ALL, OS MATCH ALL. 
OS:NO_TIMEOUT) - -

Process Response 

Done? 

FreeMsq (msg) 

AllOSE 
onMCP 
card 

Remove 
Hessage 
fr_ 
Pool 

Forward 
Message 

Forward 
Message 

Add 
Message 
to 
Pool 

Inl.tl.all.ze 

ST_tid - GetTID () 

ok - Reqister_Task ("Example", 
"Sarver", Don't depend on 
the value of FALSE) 

msq - Receive (OS MATCH ALL, 
OS MATCH ALL, OS MATCH ALL. 
OS:NO_TIMEOUT) - -

Perform Servl.ce 
Formulaee Response 

Swap TID (msq) 
msq->mCode++ 
Send (msq) 

3 / Introduction to the MCP Software Interface 3·19 



CUent and server running on Macintosh using AlROSE Prep 

The sequence of actions needed for a client and server running on the Macintosh using AlROSE Prep 
is similar to that described earlier. This section also describes some of the differences between an 
application program running on the Macintosh and program modules running under AlROSE on the 
MCPcard. 

Server and client processes using the AlROSE Prep driver on the Macintosh are different from server 
and client processes running under AlROSE because of the differences between AlROSE and the 
Macintosh operating system; that is, AlROSE is a multitasking operating system, and the 
Macintosh operating system assumes that there is a single application. 

The source code for the example discussed in this section is found in the file HaJceF ile in folder 
:A/ROSE:AlROSE Prep: Examples, as follows: 

• For the client, source code for a timing example can be found in the timeit. c fde (Timeit is an MPW 
tool) 

• For the server, source code fofthe Echo Manager can be found in the os. 0 file 

The Echo Manager is started during INIT31 resource processing. 

A server or client running under AlROSE automatically has a TID associated with it; a server or client 
using the AlROSE Prep driver on the Macintosh must fll'St make itself known to the driver by 
issuing an OpenQueue ( ) request. The OpenQueue ( ) request makes the task known to the 
driver and assigns the requesting task a TID. The server in this example registers its name with the 
Name Manager as it did under AlROSE so that clients can fmd it. 

Under AlROSE, both the server and the client can issue a blocking Receive request. AlROSE has 
separate stacks for each task and saves each task's registers when switching between tasks. Using 
AlROSE Prep on the Macintosh, only one process at a time (either the server or the client) can issue a 
blocking Receive request. Since the Macintosh operating system assumes that there is a single 
application, it will not switch to another application while one application is waiting for something 
to fmish. 

Using the AlROSE Prep driver on the Macintosh, the Receive calling sequence includes an extra 
parameter. This parameter is the address of a completion routine to be called when the AlROSE Prep 
driver receives a message that satisfies the Receive request. A task not using a completion 
routine to receive messages and not blocking must periodically issue a non blocking Receive 
request to determine if there are any messages for it 

3-20 Macintosh Coprocessor Platform Developer's Guide 



In the case of A/ROSE Prep Echo Manager code, the server issues a Receive request with a 
completion routine specified. The code following the Receive request exits the server; 
effectively. the server is no longer running. The server becomes a dangling piece of code tucked 
away in memory, called by the AlROSE Prep driver when the driver receives a message satisfying its 
Receive request. 

• Note: The echo. c me has no A5 references within it An assembly language routine is used 
to access echo. c globaJs. 

The client locates the server it wants to communicate with, using Lookup_Task to obtain the 
TID d the server. The client next obtains a message buffer, sets the nD of the server into the 
mTo field of the message buffer, sets the desired mCode request in the message buffer, and uses 
the Send request to send the message to the server. The client then issues a Receive request 
to wait for a reply from the server, specifying the address of a completion routine. 

The AlROSE Prep driver calls the server at the server's completion routine address. passing the 
message to the server. The server takes any action required of it, swaps the contents of the mFrom 

and mTo fields of the message, sets an appropriate meode reply in the message buffer. and uses 
the Send request to send the message buffer to the client. The server must be carefully designed 
in how it handles the completion routine, since the completion routine may be called from an 
interrupt. 

The client receives the reply from the server and takes appropriate action. The client then issues a 
CloseQueue request to notify the AlROSE Prep driver that the client is fmished talking to the 
AlROSE Prep driver. 

Figure 3-5 illustrates the client/server relationship for applications using the AlROSE Prep driver. The 
first Receive request in the completion routine processes all messages in the queue. When there 
are no more messages, the second Receive request specifies the same completion routine again 
so that the routine will be called when there is another message. 

• Note: Two Recei ve requests are specified so that the stack will not be overrun. 

3/ Introduction to the MCP Software Interface 3-21 



• Figure 3-5 Client/server relationship for applications using the AJROSE Prep driver 
Macintosh to MadJltosh 

In.1t:.1al.1ze 

ok - openQueue (0) 

ole. -- a ? 

ok - GetTID () 

NM_tid - GetNameTID () 

Initialize index to 0 

ST_tid - Lookup_Task(-Example·, 
-server-, NM_tid, 'index) 

msg - GetMag () 

msg -- 0 ? 

mid .. mSq->m!d 

Formulate Request 

msq->mTo - ST tid 
msq->mFrom .. CT tid 
msq->mCode - code 
Send (msg) 

msq .. Receive (mid, 
OS MATCH ALL, OS MATCH ALL, 
OS:NO_TIMtOUT, 0) -

Process Response 

Done? 

FreeMag (msg) 

CloseQueue () 

AppieIPC 

Remove 
Message 
from 
Pool 

Initialize 

ok .. Open Queue (0) 

ok .. - 0 ? 

ok .. Register_Task ("Example", 
"Server", Don't depend on 
the value of FALSE) 

ok -- 0 ? 

Receive (OS MATCH ALL, 
OS MATCH ALL, OS MATCH ALL, 
OS:NO_TIMtOUT, completIon) 

Completion routine 

Forward !--.... of 
Message 

Forward 
Message 

Add 
Message 
to 
Pool 

completion (msg) 

Perform Service 

Formulate Response 

Swap TID (msg) 
msg->mCode++ 
Send (msq) 

msg .. Receive (OS MATCH ALL, 
OS MATCH ALL. OS MATCH ALL, 
-1:- 0) - - -

msg > 0 ? 

Receive (OS MATCH ALL, 
OS MATCH ALL, OS MATCH ALL, 
OS:NO_TIMtOUT, completIon) 

3-22 Madntosh Coprocessor Platform Developer's Guide 



Using task scheduling in a multitasking environment 

A task is a message-driven transaction processor that runs on the MCP card. The behavior of a task 
depends on the messages it receives. 

Tasks include the Idle Task; managers, such as the ICCM, Name Manager, Print Manager, Remote 
System Manager, Timer Manager, and Trace Manager; and any developer-written tasks. 

Task Identifiers 

Tasks are known by and referred to AlROSE by Task Identifiers (1lOs). These identifiers are for 
internal use and are automatically assigned by AlROSE when it starts a task. 

Modes In which tasks run 

There are two modes in which tasks run: 

• tun-ta-b1ock mode (also referred to as block mode) 

• sllce mode 

In run-ta-block mode, a task has control of the CPU until the task explicitly releases it, either by 
changing its scheduling parameters (using a Reschedule cal!), or by waiting to receive a message 
(using a blocking Receive call) or by using an AlROSE library routine that waits for a response to 
a message (printf, Lookup_Task, and so forth). The purpose of run-ta-block mode is to 
guarantee uninterrupted use of the CPU to tasks that need it; an example of a place where you 
should use run-to-block mode is in critical sections of code. 

• Note: Do not confuse run-ta-block mode with the blocking receive operation in which a 
message is awaited. The name Crun-ta-block- captures the idea that the task holds onto the 
processor until it performs a blocking receive. A blocked task is one that waits for a message, 
having performed a blocking Receive. 

In slice mode, the task can be time-sliced, that is, the operating system temporarily suspends 
execution of the task to allow tasks of equal or higher priority to run. 

A task can change its running mode as necessary by using the AlROSE primitive Reschedule () , 

see Chapter 4. 

3/ Introduction to the MCP Software Interface 3·23 



Timer services 

You can schedule tasks using timer services provided by AlROSE. Fa timer services and message 
reception done with a timeout, time is specified in major ticks. A major tick is the smallest time unit 
recognized by tasks in the operating system This value is specified in all blocking Receive and 
timing operations. 

• caution 

Task scbedullag 

All code segments that have been installed in the TICk chain run when a 
major dock tick is detected by the operating system. These segmentS are 
executed even if the current task is in run-to-b1ock mode. Refer to 
Chapter 7 for mae information about the TICk chain •• 

Tasks are scheduled in round-robin fashioo in each priaity ring. There are 32 priorities, ranging from 
o Oowest) to 31 (highest). The operating system sans the priority table, beginning at the highest 
priority, for a task that is eligible to run. Tasks with the same priority are scheduled on a first.come, 
rust-served basis. Over time, this scheduling allows all tasks in a priority ring to be given an equal 
opportunity to execute. Tasks of equal priority therefore share the processor. 

A task d higher priority can indermitely keep a lower priority task from executing, but in common 
pmctice, a task always does a blocking Receive that permits lower priority tasks to execute. 
Obviously, priorities of tasks must be chosen carefully, SO that the DQt critical tasks have the 
highest priorU:s. A task may change its scheduling mode by using a Reschedule call. 

ScbeduJing dedsioos are made at every major tick of the system dock. 

• If the current task is in slice mode, it can be preempted; that is, another task with a higher priority 
, can take precedence over the task running in slice mode. If a high-priority task is available (not 

blocked), that task will be scheduled before the lower-priority task running in slice mode. 

• If the current task is in run-to-b1ock mode, it is always allowed to continue. 

Task JnitJaUzatlon 

During initialization, a task performs whatever functions may be necessary for its execution. Every 
task has different needs, but typical functions include 

• setting its scheduling mode as necessary 

• waiting fa ~ required tasks to begin 

• registering its name with the Name Manager 

The choice d scheduling mode depends 00 the function the task performs: 

• Slice mode is used for tasks that are pre-emptible. Tune-slicing ci such tasks permits other 
tasks to share the CPU. 

• Run-to-block mode is for tasks that, because of time coostraints or the need to be proteaed 
during aitical sectioos of code, cannot give up the CPU to other tasks. 

3-24 Macintosh Coprocessor Platform Developer's Guide 



• Note: Tasks can take exclusive control of the CPU only in situations where ether tasks do 
not need to executej if other tasks are ever to execute, the task must change its scheduling 
mode or perform a blocking receive to free the CPU. 

In response to its needs, a task can change its scheduling mode as it executes. 

AlROSE always creates one task during its initializationj that task is the Idle task. The Idle task 
increments a counter, calls the Idle Chain, and issues the Reschedule primitive to allow tasks to 
run. The IcDe task runs in block mode, and is given the lowest priority (priority 0). When no other 
task is eligible for execution on the processor, AlROSE schedules the Idle task. Code segments can be 
run when AlROSE is idle by instaUing them in the Idle Chain (refer to Olapler 7 for more 
information). 

A Cautlon 

Task execution 

The Idle task must always be eligible for executioo. The system halts if it 
can fmd no tasks to schedule; hence a StopTask should not be 
performed on the Idle task .• 

The bulk of a task is a message loop in which a message is waited for, received, and processed 
Actually, a message is both wailed for and received through the Receive primitive. 

Task termination 

If a task must terminate, it notifies the operating system via a StopTask call. Start Task 

initializes a task such that, if the main routine returns, a StopTask is automatically issued. 

Memory managment 

To increase performance of the AlROSE operating system, developers must make a distinction 
between using general-purpose memory and using message buffers. 

For general-purpose memory, the available pool of memory extends from the last address in which 
the operating-system code is loaded, up to the system stack area that occupies the last cOSStack 

bytes of RAM. The system stack occupies the last portion of RAM and the stack is the size you 
specify. Therefore, the amount d memory available in the pool depends on the size of the code and 
data spaces. You can alIOC1le and free general-purpose memory to tasks using the GetMem and 
FreeMem calls, described in Chapter 4. 

During initialization, the operating system sets aside a block of memory large enough to hold the 
maximum number of messages that you specified. This block d memory is then linked together to 
form the free list of messages. Messages can be quickly alIOC1led and released from this list. You 
specify the number of messages allOClled to the operating system in the call to osinit () from 
main (). 

3/ Introduction to the MCP Software Interface 3-25 



When using this document to manage memory on MCP, be aware d the following specialized 
tenninology used in this document. The terminology refers to locations on the main logic board of 
Macint~h and the MCP card. The main logic board in any Macint~b computer is called slot 0. In 
the descriptions that follow, slot refers to the Macintosh main logic board or any smart NuBus 
card. This document also uses the term NuBus address even though some members of the 
Mac~h family do not actually have a NuBus. 

Background on virtual addressing with AlROS! 

This sedJon shows bow virtual addressing func:.1ions on Macintosh, partiaalady ftb AlROSE. Each smart 
NuBus card has a 68OxO processa and local memory; a virtual address is the address used by a task to reference 
its own memory. 

For example, assume a task is running on a smart NuBus card that has a 68000 processa. The card is in slot 0x0d. 
The task bas a buffer in local memory at address OxOOOOSOOO and can reference this 10C31 memory using address 
0x0000S000. Since a 68XlO processor ignores the most significant byte of every address, the task can also 
reference this local memory using virtual address OxfdOOSOOO or any virtual address OxMNOOSOOO, where M and N 
are any hex digits. Each ci these addresses (OxOOOOSOOO, OxfdOO5OOO, and 0xMN00S(00) is a virtual address that the 
task can use to refer to its own memory. In the example just mentioned, the task has mukiple virtual addresses 
for the same memay. 

A NuBus address is the address of the memory location through the nubus. 

• Note: A card can be coostructed so that not all local memory addresses can be accessed from 
the NuBus. A card can also be constructed so that certain card addresses can be accessed 
from the NuBus but cannot be accessed locally. 

In this example (which could be called a flat address space), assume a task is running on a smart NuBus card in 
slot 0x0d and the task has a buffer in its local memory at address OxOOOOSOOO. Two possibilities exist for the 
NuBus address (the actual NuBus address depends on the hardware on the NuBus card in slot 0x0d). 

One address could be OxfdOOSOOO. This is the Minor NuBus address of the buffer. The buffer is in slot OxOd. 
Local addresses on a card that respond to Minor NuBus addresses all have Oxfd as the most significant byte of 
the address. 

The other address could be 0xdl005000. This is the Major NuBus address of the buffer. I.ocaI addresses on a card 
that respood to Major NuBus addresses all have OxdM as the most signif'1C3ll1 bjle of the address. 

NuBus cards, however, can respond to both Minor and Major NuBus addresses. 

• Note: The Apple MCP card only responds to Minor NuBus addresses. 

3-26 Macintosh Coprocessor Platform Developer's Guide 



The desaiptions d the A/ROSE Prep services and the A/ROSE primitives and utilities refer to several 
different types d memory addresses. The types of virtual addresses used in the remainder d this 
document are described in the next four sections. Only NuBus addresses and 32-bit virtual 
addresses (with associated TID) can be passed freely between slots in a Macintosh computer. 

Flataddtessspace 

A Oat address space means that the virtual address of any byte in memory is the same as the real address of 
the byte. 

In the previous example, a flat address space would be the instance where the task in slot 0x0d referenced its 
local buffer using address Oxfd005000 and the 1f1IJI address ci the bIffer W2S OxfdOO5000. 

• Note: The MCP card uses a Oat address space for local addresses. 

Some Macintosh computers come with 68030 processors containing a PMMU. A PMMU allows the 
implementation of some special memory management functions, described in the following two examples. 

• Note: On a Macintosh computer containing a PMMU, NuBus accesses from smart cards to 
memory on the Macintosh main logic board to Macintosh main board memory do not go 
through the PMMU. 

In this example, assume a task is running on the Macintosh main logic board containing a PMMU. Assume the 
task has a local buffer at its virtual address OxOOOOSOOO. Because a PMMU exists, the buffer does not have to be at 
real address 0x0000S000. The buffer could be at real address 0x00060000, for example. In fact, a buffer does not 
even have to be contiguous in real memory. Assume that the buffer has a very large capacity. The large buffer 
can still start at virtual address OXOOOOSOOO. Assume the large buffer goes through virtual address OxOOOOFOOO. In 
this case, virtual address OxOOOOSOOO through O:xOOOO7FFF could be at real addresses 0x00060000 through 
0x00067FFF. In addition, Virtual address ()x()()()()8)() through virtual address OxOOOOFOOO could be at real address 
()x()(KBXX)() throogh ()x(XX)87000. 

At the lowest level, NuBus cards accessing memory on the Macintosh main board must use NuBus addresses 
and access real memory. 

Nctice how the use of virtual memory is possible using a PMMU and a backing store such as a disk drive. 
Assume a task is running on the Macintosh main board and the task has a local buffer at virtual address 
OxOOOOSOOO. With a PMMU and backing store, the buffer does not have to be in real memory unless the buffer is 
being accessed by the task. The buffer can also be at different real memory locations each time the buffer is 
paged in from disk. 

24-blt virtual addresses 
A 24-bit virtual address identifIeS a location within the address space of a Macintosh main logic 
board. All versions of the Macintosh operating system use 24-bit virtual addresses. Applications 

31 Introduction to the MCP Software Interface '3-27 



running on the Macinl~h main logic board use 24-bit virtual addresses internally when accessing C 
and as5embly language variables. <What about applications that don't run on the main logic 
board'» 
On the Macintosh main logic board, a 24-bit virtual address itakes the form ·mOaa aaaa", where am" 
contains bits used by the Memory Manager. Since the Memory Manager modifies these bits 
independently of the active application, all 24-bit virtual addresses wh~e lower 24 bits are identical 
refer to the same memory location. 
24-bl virtual addresses cannot be passed to smart NuBus cards. An application running on the 
MacnosllJDlin logic board must call the Macintosh operating system trap _StripAddress to 
coavert a 24-bl virtual address to a 32-bit virtual address before passing the address to a NuBus 
smart card. 

.... caution AlROSE does not support the 24-bit ·NuBus-like" addresses used by 
applications such as MacsBug. These 24-bit addresses are of the form ·OOsa aaaa", where ·5" 

is the number of the slot containing the memory location.. A 

32·bit virtual addresses 
A 32-bit virtual address identifIeS the loal address space of a particular slot. A 32-bit virtual 
address takes the fonn "aaaa aaaa", where all bits are treated as part ci the address. 

Because the RAM on the main logic board of a Macintosh IIci is not contiguous, consecutive 32-bit 
virtual addresses can refer to memory locations with very different NuBus addresses. 

When the 32-bit virtual address is passed to a task on another slot, the TID of that task (on th8 slot 
contabrtng the memory kIcatfon ) must also be passed to provide contextual information. Because 
of the unusual NuBus address space of the Macintosh lIci, 32-bit virtual addresses are 
recommended for paSsing addresses between slas. 

The AlROSE, MapNuBus, Loc:kReaIArea, UnIockRealArea, and NetCopy primitives and services discussed later in 
this document all require 32-bit addresses. These AlROSE primitives and utilities take 32-bit virtual addresses as 
input parameters and return 32-bit virtual address results. 

.... Caution Do not use 24-bit addresses with MOSE functions. The Macintosh operating 
system trap _StripAddress should be used on the Macintosh main logic board to convert 24-bit addresses, 
which may contain memory manager information, into 32-bit addresses. A 

NuBus adcIn:ss 
A NuBus address uniquely identifIeS the entire NuBus address space of the Macintosh computer. 
The Macintosh recognizes a distinction between two types of NuBus addresses: minor NuBus 
addresses and major NuBus addresses. The minor NuBus address takes the form·Fsaa aaaa", 
where ·5" is the number ci the slot containing the location. The major NuBus address takes the 
form "saaa aaaa·, where ·5· is the number ci the slot containing the location. 
The main logic board of a Macint~h computer responds only to NuBus accesses using major 
NuBus addresses. MCP-based smart NuBus cards respond only to NuBus accesses using minor 
NuBus addresses. However, Smart NuBus cards can be designed to respond to either minor or 
major NuBus addresses, or both. 

3-28 Macintosh Coprocessor Platform Developer's Guide 



The NuBus address of a memory location can be passed freely between slots without additional 
contextual infonnation. 
RAM on the main logic board on all Macintosh computers, except the Macintosh llci, is contiguous: 
the main logic board of an 8MB Macintosh IIx, for example, contains RAM at major NuBus 
addresses 0x00000000 through 0x007FFFFF. A Macint~h with contiguous RAM is said to have a 
Jlat address space (discussed earlier in this section).The main logic board fX the Macintosh IIci 
contains discontiguous RAM. As a result, the RAM on Macintosh Uci does not have a flat address 
space. 

A Caution A NuBus address cannot arbitrarily be used to access more than one byte of 
memory on the Ma~h IIci main logic board. To ensure compatibility with the Macint~h IIci, your 
applicatial should avoid using NuBus addresses wherever possible.. & 

latched virtual address 
The Jatchcd virtua1 address is unique to Mcp·1Ydsed cards and aber smart NuBus cards that 
cannot direcllyaccess the entire NuBus address space of a Macint~h computer (see Chapter 12, 
Mep card Spec1ftcat1ons). A latched virtual address is of the form ·OOAa aaaa·. The upper 12 bits 
of a Ialched virtual address are the actual hexadecimal digits 0x00A. 

Despite the "virtual- in its name, a latched virtual address suffers from the same disadvantages as a 
NuBus address on the Macintosh IIci «what are the disadvantages?». In addition, latched 
virtual addresses are subject to memory boundary restrictions that make them even more awkward 
and dangerous to use. 
Before accessing an off-card (off the MCP card) memory directly from code running on an MCP­
based card, make sure that some task calls the MOSE MapNuBus utility. In addition, make sure 
MapNuBus contains the NuBus address of the memory location you're trying to access. The 
MapNuBus utility sets the MCP-based card's page latch registers for the task and returns a latched 
virtual address. The latched virtual address is used in accessing the off-card memory location. The 
latched virtual address is valid only for the task that called the MapNuBus utility and only until the 
task's next call to the MapNuBus utility. MOSE saves and restores the card's page latch registers 
during task scheduling. 

A Caution On Mcp·based NuBus cards, the MOSE MapNuBus utility sets up a one-megabyte 
window begInnIng on a one-megabyte boundary. If you must use latched virtual addresses, your task must 
issue a new call to MapNuBus when the low 20 bits of the latched virtual address overflow .. 

In addition, you cannot arbttrarily use a latched virtual address to access more than one byte of 
memory on the Macintosh IIci main logic board. To ensure compatibility with the Macintosh IIci, 
your application should avoid using latched virtual addresses whenever possible. & 

VIrtual memory support 

The physical memory of the Macint~h lId is noncontiguous so a memory management unit is 
used to map a contiguous virtual memory onto noncontiguous physical memory. However, only 
accesses by the main Macint~h logic board processor are mapped, leaving smart card processors 
with the problem of being able to deal only with physical memory. 

31 Introduction to the MCP Software Interface 3-29 



Solutions to the Macintosh IIci support problem can conveniently be applied when working with 
virtual memory in System 6.0.4. 

In System 6.0.4 .. , the Macintosh operating system provides a call to acquire contiguous and, in the 
case of virtual memory, frozen and locked memory. Locked memory means that the memory area 
will always be in the physical memory and will not be swapped out to disk; however, the memory 
area can move within the real memory. -Frozen- memory means the memory area will stay in the 
same place and will not be eligible for paging to the backing store. Also, the operating system will 
provide a way to unlock and unfreeze this memory through another call. AlROSE provides these 
system calls to provide access to main memory from smart cards. 

Extreme care should be exercised by users of the AlROSE MapNuBus functioo. Direct access of 
Macintosh main logic board memory from the card is hazardous because to use NuBus addresses 
means that you must lock pages in physical memory for the period that the NuBus address is to be 
used. As more pages are locked in physical memory, fewer are avaUable for swapping. This can 
result in an overall reduction in performance if too many pages become ineligible for swapping since 
those pages are locked. As a limit, if all pages are locked, the system will aash on the next page 
fault, because no more pages are eligible to be swapped out When you use BlockMove to 
move data quickly. (the only situation where you might use MapNuBus) , you must be aware 
that the memory addresses you use might be virtual addresses and might not correspond to the 
actual NuBus addresses. Two new routines are provided to help users run AlROSE in the Macintosh 
lId and virtual memory environments. These routines are LockRealArea () , and 
UnlockRealArea () , (bcxh described in <llapter 4). You must use LockRealArea () and 
UnlockRealArea () calls to get the actual NuBus addresses. The BlockMove routine is a 
simple assembly language loop that moves long words from one area to another and so is very fast. 
Developers must take care to set up the addresses for the call so that the addresses are real and are 
present. 

In the Macintosh lId and virtual memory environments, the CopyNuBus () utility would not 
be safe and has been removed from AlROSE. The NetCopy () utility (described in Olapter 5) 
copies data from one virtual address to another safely, but requires two additional parameters to 
spectfy the conteJl of the virtual source and destination addresses. These two parameters are the 
TaskIDs of the source and destination tasks. 

• Note: The virtual address passed to the A/ROSE Prep, LockRealArea services and 
UnlockRealArea must be 32-bit clean addresses and must not contain memory manager 
bits. In addition, the virtual address must be in the same address space as the process that 
calls these services. 

The AlROSE Prep driver has been augmented to provide calls corresponding to the Macintosh 
operating system calls that acquire and free contiguous memory. By having applications go 
through AlROSE Prep to acquire and free their buffers, AlROSE Prep can access the information 
needed for optimization 

The existing MapNuBus () routine within AlROSE will not be changed in the Macintosh operating 
system running in virtual memory environment. 

3-30 Macintosh Coprocessor Platform Developer's Guide 



The input parameter to MapNuBus () continues to be a NuBus address. MapNuBus () will 

return an address that must be used to reference this NuBus address. 

3/ Introduction to the MCP Software Interface 3-31 





Chapter 4 A!ROSE Primitives 

T HIS C HAP T E R describes the operating-system primitives used for 

AlROSE. A primitive is similar to a system call, in that a primitive provides 

fundamental services from the operating system. Primitives are invoked as 

hardware traps and thus operate in supervisor, or server, mode. -

4-1 



Table 4·1 lists the primitives provided by AlROSE and gives a brief description of each. 

• Table 4-1 AlROSE primitives 

Name Description 

FreeMem (J Frees a block of memory 

FreeMsq () Frees a message buffer 

GetMem (I Allocates a block of memory 
GetMsq (I Allocates a message buffer 

Receive () Receives a message 
Reschedule () Changes a task's scheduling mode 
Send () Sends a message 
Spl (I Sets the hardware-priority level 

StartTask () Initiates a task 
StopTask() Stops a task 

These primitives are calls that are made by most tasks running under AlROSE. Some primitives are 
used in main (I , the program that executes before anything else starts. You can modify main () 

for whatever application you are writing. 

• Table 4-2 

_StripAddress 

_SwapMMUMode 

Macintosh Operating System Calls 

The _StripAddress call converts a 24-bit virtual address 
to a 32·bit virtual address. A 32-bit virtual address passed to 
_StripAddress is returned unchanged. 

The _SwapMMUMode call toggles the addressing mode of 
the Macintosh main logic board between 24-bil virtual and 32-
bit virtual addressing. 

• Note: AlROSE uses C calling oonventions, and all registers are preserved except DO, 01, AO, 

and AI. The assembly-language macrQCi also adhere to these coqventions. 

Operating system primitives 

This section describes each of the operating system primitives and provides examples of how to call 
primitives from both C and assembler. Both calling sequences take arguments and use similar data 
structures. 

4·2 Macintosh Coprocessor Platform Developer's Guide 



FreeMem( ) 

FreeMem () frees a block of memory that was acquired earlier by a call to GetMem ( ). AlROSE 
decrements the usage count associated with the buffer. If the resulting usage count is zero, the 
memory is returned to the free memory pool; if the usage count is non-zero, the memory is not 
released. 

The C declaration of FreeMem ( ) is 

void 
char 

FreeMem( ptr ) 
*ptr; 1* pointer to memory buffer to free *1 

The form for the FreeMem macro is as follows, where P 1 is the address of the memory block to 
be freed: 

(Labell FreeMem Pl 

PI can be specified as a register (AO-A6, 00-07), or can useany~ addressing mode valid in an 
LEA instruction to specify the location containing the desired address. 

A Cautlon AlROSE will execute an illegal instruction if an attempt is made to free a 
memory buffer that has not been allocated by AlROSE. 4 

FreeMem will return to the caller doing nothing if PTR is NIL «What does this mean, doing 
nothing?» 

4 / AlRose Primitives 4-3 



FreeMsg( ) 

FreeMsg () frees a message buffer that was acquired earlier by a call to GetMsg () . 

The operating system distinguishes between messages and memory in order to speed up the 
acquisition and disposal of messages. The number of messages initially available depends upon the 
number requested in the call to os in it () from main () . 

The C declaration of FreeMsg ( ) is 

voia 
message 

FreeMsg ( mptr ) 
*mptr; 1* pointer to message buffer to free *1 

The form for the FreeMsg maao is as follows, where P 1 is the address of the message buffer to 
be freed: 

[Label) FreeMsg Pl 

PI can be specifJed as a register (AO-A6, 00-07), or can use any 68:lOO addressing mode valid in an 
LEA instruction to specify the location containing the desired address. 

.& Caution In most cases, AlROSE will execute an illegal instruction if an attempt is 
made to free a message after it has been sent and when a message buffer 
that has not been allocated by AlROSE is freed using FreeMsg ( ). .. 

4-4 Macintosh Coprocessor Platform Developer's Guide 



GetMem( ) 

GetMem ( ) requests a block of memory from the free memory pool. The size of the free memory 
pool depends upon the size of the program or code space loaded and the amount of memory 
installed on the card. 

GetMem ( ) returns either a pointer to the allocated block of memory or O. If the memory could 
not be allocated, a call to FreeMem ( ) releases the memory. The allocated message block is 
initialized to 0 by GetMem ( ) if the number ci bytes requested is greater than OJ otherwise, the 
memory is not initialized. For example, GetMem (-10) returns a pointer to a block ci 10 bytes. 
GetMem ( 10) returns a pointer to a block of 10 bytes that have been initialized to zero. The usage 
count associated with the buffer is set to 1. (See AlROSE utilities GetOCount and IncOCount 

in Chapter 5.) 

The C declaration of GetMem ( ) is 

char 

lonq 

*GetMem ( size ) 

size; /* size of block to allocate */ 

The form for the GetMem macro is as follows, where Pi is the size of the memory block to be 
allocated: 

(Label] GetMem Pi 

PI can be specified as a register (AO-A6, 00-07), or an immediate value (i<abs expr», orean use 
any 68000 addressing mode valid in an LEA instruction to specify the location of a long word holding 
the desired block size. The address of the allocated block is returned in DO unless the block could 
not be allocated, in which case 0 is returned in 00. 

4 / AlRose Primitives 4-5 



GetMsg( ) 

GetMsg ( ) requests a message buffer from the free message pool. GetMsg () either returns a 
pointer to the allocated message or 0 if the message could not be allocated. A call to FreeMsg ( ) 

releases the message. 

AlROSE clears all fields in the message, except Message ID (mID) and From address (mFrom), 

before the pointer to the message is returned. Message ID (mID) is set to a number that is 
statistically unique to the field. mFrom is set to the current task identifier. 

The C declaration of GetMsg ( ) is 

message *GetMsg () 

The form for the GetMsq macro is 

(Label] GetMsg 

The address of the allocated message buffer is returned in DO unless no buffer was available. In 
that case, 0 is returned in DO. 

LockRealArea( ) 

LockRealArea enables the Netcopy call to use information for performance improvements 

6 Caution LockRealArea must be called by the task in the same virtual address space as the 
buffer to be locked and frozen in memory. 6 

Once called, LockRealArea creates a table entry informing AlROSE, ruming on NuBus smart cards, of any areas 
that are successfully locked. LockRealArea then returns the phystcaJ addresses and lengths of the memory areas 
that are successfully locked in memory. «how does this benefit programmers who want to use MapNubus?» 

LockRea1Area should be used to lock a memory buffer that needs to be accessed frequently and quickly. 
LockRealArea is especially useful because it speeds up NetCopy (described in chapter 5) requests. In the future, 
you might be required to use LockRealArea to lock down memory buffers residing on smart NuBus cards. 

LockRea1Area should be called when the buffer is obtained to lock the memory in place. LockRealArea is a slow 
operation. Trial and error will determine when best not to use LockRealArea. LockRealArea will lock memory so 
it cannot be paged. Do not use LockRealArea to lock down an infrequentJy-used buffer that does not have to be 
accessed quickly. Do not use LockRea1Area to lock down large buffers because of the dangers of page-fault 
thrashing. 

LockRealArea () will accept as input a virtual address and a length and will attempt to lock the 
memory associated with this virtual address into physical memory. The virtual address must be in 
the same address space as the routine that called LockRealArea. Therefore, a NuBus card 
camet lock memory on the Macinta;h main logic board. Likewise, an<Xher NuBus card and the 
mother board cannot lock memory on any other NuBus card. If successful, the physical 
address/length pairs of the memory associated with the virtual address are returned. 

4-6 Macintosh Coprocessor Platform Developer's Guide 



The structure addressareas, in which LockRealArea returns the physical address/length 
pair is defined as the following: 

struct addressareas 

void *address; 1* Physical address of memory area *1 
unsiqned lonq lenqth; 1* Lenqth of memory area *1 

} ; 

The calling sequence fa LockRealArea () is the following: 

short LockRealArea (void *virtualaddr, unsiqned lonq lenqth, 
struct addressareas *buffer, unsiqned lonq count); 

virtualaddr is the virtual address of the memory area to be mapped lenqth is the length of 
the memory area. buffer is the area where the physical address map is returned. buffer is a 
pointer to an array of structure addressareas. count is the number a physical 
addressllength pairs (addressareas structures) that the buffer can hold. This is the same as 
the number of elements in the array addressareas. 

You can declare the buffer in the following way: 

struct addressareas buffer [16); 

If the size of the buffer [] is large enough fa only one entry; that is, count has a value a one, 
the pages are forced to be contiguous. Otherwise, the pages may not to be contiguous when 
locked in memory. 

The physical address/length pairs are returned in buffer. Any unused address/lenglh entries in the 
buffer are initialized to zero. 

LockRealArea () returns zero if successful. If the pages could not be locked and frozen in 
physical memory a if the buffer was not large enough to contain the entire physical address map 
then LockRealArea () will either return an erra code of -erLockFailed- or an error code returned 
by Macin1~h Operating System. The memory is neither locked nor frozen if an error is returned. 

UnlockRealArea( ) 

UniockRealArea is the inverse operation of LockRealArea. Only buffers that were previously locked USing 
LockReaIArea can be unlocked using UnlockReaIArea. 

UniockRealArea should be called when the buffer is no longer going to be shared acr~ the NuBus. 
UniockRealArea is a slow operation. 

caution UnlockRealArea must be called by the task that locked the buffer in memory. ... 

4 / AIRose Primitives . 4-7 



UnLockRealArea takes a virtual address and a length as parameters, and will attempt to unlock and 
unfreeze the memory associated with this virtual address into physical memory. If successful, the 
physical address(es) of the pages associated with the virtual address are returned. 
The structure address area is defined in the following way: 
UnlockRealArea () unlocks a memory area that was previously locked with a call to 
LockRealArea() • 

The calling sequence for UnlockRealArea () is 
short.. UnlockRealArea(void *virtualaddress, unsigned long length); 

virtualaddress is the beginning virtual address of an area of memory that was previously 
locked and frozen. length is the length of the memory area that was locked and frozen. 

UnlockRealArea () returns zero if the address was successfully unlocked. Otherwise, an error is 
returned. 

• Note: The address and length parameters specified in a call to UnlockRealArea () 

must exactly match the virtual address and length specified in a previous call to 
LockRealArea (). UnlockRealArea () cannot handle fragmented unlocking in this release, 
that is, you cannot unlock a portion of a previously locked and frozen memory area. 

UnlockRealArea ( ) returns a status of zero if the virtual memory support is not available .• 

4·8 Macintosh Coprocessor Platform Developer's Guide 



Receive( ) 

Rece i ve ( ) returns the highest priority message from the task's message queue that matches the 
specified criteria. Like the Reschedule primitive, Receive may be used to enable the CPU to 
run other tasks. Unlike Reschedule, Receive allows tasks of lower priority to run. 

The C declaration of Receive () is 

mFrom, mCode, timeout ) 

/* Unique message ID to wait on */ 

message*Receive( mID, 
unsigned long mID; 
tid_type mFrom; 
unsigned short mCode; 
long timeout; 

/* 

/* 

Sender address to wait on * / 
Message code to wait on * 1 
/* Time to wait in major ticks 

*1 /* before giving up 

*1 

The fll'St three criteria (mID, mFrom, and mCode) may be set to match either a specifIC value (by 
specifying the value), or to match any value (by specifying the symbol os _MATCH_ALL), a to no 
value (by spedfying the symbol OS_MATCH_NONE). 

The timeout parameter in major ticks takes one of the three values described here: 

• A value of timeout < 0 requests a nonblocking Receive. A nonblocking Receive returns 
control immediately to the task, regardless of whether a message matching the criteria was 
found or not. If no message was found, '" is returned. Any negative value can be used 

• A value of timeout .. 0 requests a blocking Receive with no timeout. This Receive 

returns control only when a message matching the criteria is found 

• A value of timeout > 0 requests a blocking Receive with a timeout. This Receive returns 
when either the timeout parameter expires a a message matching the criteria is received, 
whichever occurs first A timeout returns 0. 

The form for the Rece i ve macro is as follows, where P 1 is the message ID match code, P 2 is 
the sender address match code, P3 is the message code match code, and P4 is the timeout code: 

[Label] Receive Pl, P2, P3, P4 

Pl through P4 can each be specified as a register (AO-A6, 00-07) or an immediate (t<abs-expr» 

or it can use any 68000 addressing mode valid in an LEA instruction to specify the location of a long 
wad containing the desired value. The address of the returned message buffer is returned in DO 

unless no message was available. In that case, 0 is returned in ~o. 

4 / AlRose Primitives 4·9 



The following example shows how to use the Receive primitive in your code segment to delay a 
task for five seconds: 

Receive (OS_HATCH_NONE, OS_HATCH_NONE, OS_HATCH_NONE, 

5*GetTickPS () ; 

The Receive criteria for message 10, sender's address, and message code must never be satisfied 
in order to delay for a specified period of time. After every fIVe seconds, AlROSE causes the task to 
be eligible for execution. To implement a delay, you can use a Receive with matching criteria 
that can match no message. 

~ Important Take care using the mCode selector in Receive requests. The 
operating system will set bit 15 of mCode (mCode I 0xB(00) when a 
message cannot be delivered. If a task does a Receive and waits on 
mCode, Receive will never see its message criteria matched if the 
message is undeliverable; hence the program will never get what it's 
waiting for. It's better to wait on messaqe ID (mID), because the 
operating system does not change this field t::. 

4-10 Macintosh Coprocessor Platform Developer's Guide 



Reschedule( ) 

The Reschedule () primitive is used to give tasks of the same or higher priority a chance to run 
before scheduling the task that issues the Reschedule call. Reschedule () never causes 
tasks d lower priority to run. 

Reschedule ( ) selects the operating mode of the task, which can be any one of the options 
listed in Table 4-3. Block mode differs from slice mode only in that the task wUl not give up the 
CPU until the task is explicitly blocked by Receive ( ) or executes another call to 

Reschedule(). 

• Table 4-3 Reschedule options 

Option 

OS_SLICE_MODE 

oS_BLacK_MoDE 

OS_SLICE_IMMED 

OS_BLOCK_IMMED 

OS_RTN_MODE 
OS_RTN_IMMED 

Slice 

Block 

Slice 

Block 

Does not change 
Does not change 

Schalule I bfabc:r-or equal prforily task 
bcbe n:turJIiDt to the task that issued 
tbe Iac ....... '-= request' 

Yes 

Yes 

No 
No 
Yes 

No 

OS _ SLI CE _MODE changes the scheduling mode d the task to time-slice scheduling, and allows 
any higher-priority or equal-priority task to execute before this task executes again. 

OS_BLaCK_MODE changes the scheduling mode of the task to run-to-block scheduling mode, and 
allows any higher-priority or equal-priority task to execute before this task executes again. 

OS_SLICE_IMMED changes the scheduling mode of the task to time-slice scheduling mode, and 
continues execution of this task until the next time-slice interval, when nonnal task scheduling 
occurs. 

OS_BLOCK_IMMED changes the scheduling mode of the task to run-ta-block mode, and continues 
execution of this task until the task blocks itself by doing another Reschedule or a blocking 
Receive request. 

OS_RTN_MODE returns the current scheduling mode of the task without changing the scheduling 
mode, and allows any higher-priority or equal-priority task to execute before this task executes 
again. 

4 / AlRose Primitives 4-11 



OS_RTN_IMMEO returns the current scheduling mode of the task, and continues execution of the 
current task without attempting to schedule any other higher-priority or equal-priority task. 

The C declaration ci Reschedule () is 

Reschedule ( mode short 

short mode; /* Scheduling mode */ 

Reschedule returns the previous scheduling mode. 

The form for the Reschedule macro is as follows, where P1 specifies the new operating mode 
of the task: 

[Labell Resched P1 

PI can be specified as a register (AO-A6, 00-07), an immediate value (t<abs-expr», or use any 
68000 addressing mode valid in an LEA instruction to specify the location of a long word containing 
the desired operating mode. The previous scheduling mode is returned in ~o. 

Reschedule may be useful when combined with a non blocking Receive request to give other 
tasks a chance to run, as shown in the following example. 

This example describes how to use Reschedule for two tasks implementing two different 
layers of the X.25 protocol. Suppose one task implements X.25 Level 2; the other task implements 
X.25 Level 3. In this example, both tasks execute with the same scheduling priority. The Level 2 task 
is operating in block scheduling mode; the Level 3 task is operating in either time slice or block 
scheduling mode and should not depend on what the Level 2 layer is doing. 

Accordingly. a portion ci the Level 2 task might look like the following: 

message *msg *m; 

/* Initialize and send message to level 3 task indicating data is present 

*/ 

If (msg=GET MSG ()) 

/* Fill in msg to send */ 

Send (msg); 

m - Receive (OS_MATCH_ALL. OS_MATCH_ALL. OS_MATCH_ALL. -1); 

Send(m); 

if (m -- 0) 

{ 

/* See if data present from Level 3 *1 
/* Send data to Level 3 task *1 

1* If nothing from Level 3 yet */ 

4-12 Macintosh Coprocessor Platform Developer's Guide 



Reschedule(OS_BLOCK_MODEI; /* Let Level 3 task execute */ 

m - Receive (OS_MATCH_ALL, OS_MATCH_ALL, OS_MATCH_ALL, -1 I; 
/* Try to get data from Level 3 */ 

/ * Three cases exist: 
*1. No information was available; m - 0 
*2. Information was previously available from Level 3 before we 

* 
*3. 

* 
*1 

did the Send; m - address of message 
Level 3 task had enough time to provide information after 

we did the send; m - address of message 

1* See if data present from level 3 *1 
if (m !- 0) 

{ 

else 

1* If Level 3 task has information to be sent, *1 
1* send I frame message with information. *1 

1* If Level 3 did not have information to be sent, *1 
1* send RR frame. *1 

The Level 2 task gives up the CPU by way of the Reschedule request in order to allow the Level 
3 task to execute. In the case of an X25 implementation, this could allow level 2 
acknowledgements to be piggy-backed with data from Level 3. 

4 / AlRose Primitives 4-13 



Selld( ) 

Send ( ) places a message on the task's queue specified by the message field, mTo. The message is 
placed in the queue in priority order (from highest to lowest) . 

... Caution In most cases, AlROSE executes an illegal instruction if an attempt is made 
to send a message that is nex available to a task for sending. For example, 
do not send the same message twice; also, do not send a message and then 
free it • 

The C dedamtion of Send () is 

void Send ( mptr ) 
message *mptr; /* pointer to message buffer */ 

If a message is undeliverable, it will be returned to the sender with the message status (mStatus) 

set to ~ and the message code (mCode) 'having bit 15 set 

• NoI8: Send () assumes that all fields have been filled in (mFrom, mTo, mCode, and so 
forth) when this call is made. 

The fann for the Send maao is as follows, where Pl is the address of the message buffer to be 
sent: 

[Labell Send Pl 

PI can be specified as a register (AO-A6, 00-07) or use any 68>00 addressing mode valid in an LEA 
instruction to specify the location containing the address of the message buffer to be sent. 

4-14 Macintosh Coprocessor Platform Developer's Guide 



Spl( ) 

Programmers modify the status register to temporarily disable interrupts; AlROSE provides the 
Spl ( ) system call to allow user-mode tasks to set the hardware interrupt-priority level. 

Tasks are always executed in the 68OOO's user mode, while interrupt routines and main () are 
executed in supervisor mode. This process is important because some 68000 instructions cannot be 
executed in user mode (such as any instruction that explicitly modifies the status register). 

While a task is running with an elevated Cnon-zero) interrupt priority, it temporarily behaves as if it 
is in rurHcrblock mode. 

A Warning Depending upon the elevated priority, interrupt handlers may still 
execute. A 

In addition, if the task calls Receive and blocks with an elevated priority level, the priority level 
of the hardware is changed to the priority level of the next task that AiROSE schedules. Therefore, 
you should not call Receive with an elevated priority level. 

Spl () expects an integer from 0 to 7, and returns the previous priority as an integer from 0 to 7 (0 
is the lowest interrupt priority and 7 is the highest interrupt priority). 

The C declaration of Spl () is 

short Spl( npr ) 

short npr; /* New interrupt priority */ 

The form for the SIL macro is as follows, where PI specifies the new interrupt priority (0 to 7): 

[Label] 

A Caution 

SIL PI; not Spl 

The name of the macro is SIL, not the 68000 instruction Spl to avoid 
. any conflict with the ~ instruction. A 

PI can be specified as a register (AO-A6, 00-07), an immediate value (iI<abs-expr», or can use 
any 68000 addressing mode valid in an LEA instruction to specify the location of a long word 
containing the desired interrupt priority level. The previous interrupt priority level is returned in DO. 

4 / AiRose Primitives 4-15 



StartTask( ) 

StartTask () is used to aeate a task and make it eligible for execution. StartTask () returns 
either the task identifier of the aeated task, or 0 if the task could not be aeated The new task is 
initially started in slice mode. 

The C declaration of StartTask () is 

Start Task ( STpb) 
ST_PB *STpb; 

The format of the parameter block referenced by *STpb is shown next. 

char *CodeSegment; /* memory r Et9i on on 

char *DataSegment; /* memory region on 
/* global data 

char *StartParmSegment; /* memory region on 
/* start parameters 

struct ST_Registers InitRegs; /* initial register 
/* starting task */ 

card for code 

card for 
*/ 

card for */ 

*/ 

set for 

long stack; /* initial stack size (in bytes) 

*/ 

*/ 

*/ 

long heap; /* initial heap size (in bytes) */ 

short return_code; /* error code if task not started */ 

/* (Tid - 0) */ 

unsigned char priority; /* priority of task */ 

tid_type ParentTIO; /* TID of Parent on Network/Host */ 

) ; 

struct ST_Registers 

long D_Registers (8] ; /* DO - 07 */ 
long A_Registers (8] ; /* AO - 11.7 Note: 1.7 not used */ 

long PC; /* Program Counter */ 

4-16 Macintosh Coprocessor Platform Developer's Guide 

*/ 



These parameters include the following: 

• pr i 0 r i t y, which is the scheduling priority at which the task will run. There is currently no 
way to change this priority once a task is created. Priority 0 is the lowest; priority 31 is the 
highest. 

• stack, which is the size of the task's stack in bytes. There is no way to change this size after 
execution of Start Task (). 

• heap, which is the amount of heap storage in bytes that the task wHl need to start up. Using 
heap prevents tasks from coming up and oct being able to run due to lack of memory. The 
pointer to this storage is accessible via Get Heap () . 

• Par e n tTl D, the task ID of the task that is designated as the parent of the running task; use 
GetTlD () to obtain the TID to be used for the parent TID. 

The parameter block contains pointers to up to three memory segments that must have been 
previously allocated by calls to GetMem () • 

In all cases, CodeSeqment and DataSeqment must be zero if the task being started was 
linked into the operating system. 

If the task was not linked into the operating system, you must issue a GetMem ( ) or an 
RSMGetMem () request to reserve the space for the code segment The CodeSeqment 

parameter must be set to the value returned by GetMem (). If the task was linked to the 
operating system, set the CodeSeqment parameter to zero. 

A GetMem request must be issued to reserve space for the DataSeqment, if the DataSeqment 

is present. The DataSeqment must be set to the value returned by GetMem (), or zero if the 
DataSeqment is not present. 

If there are parameters, a GetMem request must be issued to get memory for the 
StartP armSeqment. StartParmSeqment is set to zero if there are no start parameters to 
pass to the task; otherwise, the StartParmSeqment must be set to the value returned by 
GetMem() • 

The registers hold the initial values of the registers when the task is started The value specified for 
Register A7 is not used; the value is replaced by the pointer to the stack when the task is started. 
The program counter contains the absolute address of the start code. 

The task is initially started in slice mode. If the task was not started (if it returns 0), the return code 
specifies the reason, as shown here: 

STE_NO_ERRORS 1* The start task functions */ 

1* successfully *1 

STE_NO_TCB 1* No room in task table or */ 

1* no memory available for stack *1 
1* or heap *1 

4 / AIRose Primitives 4-17 



A Warning FreeMem () must not be called by your application to release the memory 
allocated for CodeSegment, OataSegment, or StartParmSegment, 

because releasing memory is done automatically by StopTask () . Refer 
to the section later in this chapter on StopTask () for more 
information. 4 

The form for the StartTask macro is as follows, where Pl is the address of a StartTask 

parameter block: 

[Label] StartTask Pl 

Pl can be specified as a register (AO-Mi, 00-07), an immediate (t<abs-expr», or use any 68000 
addressing mode valid in an LEA instruaion to specify the location d. a long word containing the 
address of the parameter block. The task ID of the started task is retumed in DO unless the task 
could not be started, in which case 0 is returned in ~o. 

To start a task on a different smart card that is also running AlROSE, send a message to the Remote 
System Manager on the other card to reserve memory for the task; download the task to the card; 
then send messages to the Remote System Manager to start executing the task. 

4-18 Macintosh Coprocessor Platform Developer's Guide 



StopTask( ) 

StopTask () kills a currently executing task. StopTask () is automatically called to kill the task 
when the task fails or returns from the task's main () . 

If the task was started with any CodeSegment, OataSegment, or StartParmSegment, 

StopTask () calls FreeMem() to release each memory buffer. 

The C declaration of StopTask () is 

StopTask ( tid ) 

tid; 1* Task IO to kill *1 

The form for the StopTask macro is as follows, where Pl specifIeS the task 10 of the task to 
stop: 

[Label) StopTask Pl 

PI can be specifled as a register (AO-A6, 00-07) or as an immediate value (t<abs-expr» or it 
can use any 6~ addressing mode valid in an LEA instruction to specify the location of a long word 
containing the desired task 10. 

The task identifler specifled must not be that of the idle task (110 .. 0), and it must be a task 
running on the requester's card. 
If a task calls StopTask () and specifies its own task identifler, the task will cease functioning 
and stop your program. To stop a task on a different smart card that is also running AlROSE, send a 
message to the Remote System Manager on the other card . 

• Wa.rning If one task stops another task, that task being stopped will not have 
the opportunity to release any message buffers that it is currently 
processing. 

4 / AlRose Primitives 4-19 





Chapter 5 A/ROSE Utilities 

This chapter describes the operating system utilities available with AlROSE. A 

utility is a library code segment linked with your application. _ 

5·1 



Table 5-1 lists the AlROSE utilities, and provides a brief description of each. 

• Table Sol AlROSE utilities 

Name Dac:tipdon 

BlockMove () Copies a block of data from the source physical address to the 
destination physical address 

ARosaDate2Sees () Calculates and returns the number d seconds given a specifIC date and 
time 

Get BSize () Returns the size of a memory buffer in bytes 

GatC ard () Returns the NuBus slot number of the cud on which the calling 
process or task is running 

AROSEGetDateTime () Returns the number of seconds between 12:00 P.M. (Midnight), January 
1, 1904, and the time that the function was called 

GetETick () Returns the number d major ticks since the AlROSE was started 

GetgCommon () Returns the address of the gCommon operating system data area 
GetHeap ( ) Returns the address d the heap area allocated to the task 

GetICCTID () Returns the task identifier of the IntetCard Communication Manager 

GetNameTID () Returns the task identifter of the Name Manager 

GetStParms () Returns the address of the calling task's Start Parameters 
Get TCB ( I Returns the address of the calling task's Task Control Block 

GetTickPS () Returns the number d major ticks in 1 second 

Get TI 0 ( ) Returns the task identifJet of the calling task 

Get TimerTID () Returns the task identifaer of the Tuner Manager 

Get Trace TID () Returns the task identifier of the Trace Manager 

GetOCount () Returns the usage count associated with a buffer 

IneOCount () Increments the usage count associated with a buffer 

I s Local ( ) Returns an indication of whether or not an address is local 

Lookup _ Tas k ( I Returns the task identifier of the task that matches the Object Name 
and the Type Name specified 

MapNuBus () Translates a NuBus address into a local address and sets any address-
mapping hardware 

NetcopyO Takes virtual addresses for its address arguments 
Register_Task (I Registers a task with the Object Name and the Type Name specified 

ARoseSecs2Date () Calculates and returns the corresponding date and time rerord, given a 
number ci seconds 

SwapTID () Swaps the mFrom and mTo fields in a message buffer 

ToNuBus () Translates a local address into a NuBus address 

TraeeReg () Registers the current task as the Trace Manager 

5-2 Macintosh Coprocessor Platform Developer's Guide 



A description of utilities 

This chapter describes each of the operating system utilities and provides examples of the C 
declarations for each utility. This chapter also describes the assembler macrosj these macros have a 
one-to-one relationship to the calls and require the same number of parameters. AlROSE uses C 
calling conventions, and all registers are preserved except DO, 01, AO, and A1. AlROSE macros 
adhere to this convention 

• Note: The routines MapNuBus and ToNuBus are hardware dependent Code written in C 
that uses these calls may not be portable. Code written in Assembler that makes calls to 

MapNuBus and ToNuBus will nol be portable. 

Three date- and time-related routines are provided with AlROSEj the calling sequences and 
structures for these routines are defined in the file os. h in the folder :AlROSE:includes:. These 
routines are identical to the routines AROSEGetDateTime (), AROSEDate2Secs () ,and 
AROSESecs2Date () within the Macintosh II operating system. 

BlockMove( ) 

BlockMove () does a simple move of bytes from the source to the destination, without checking 
for overlapping source and destination addresses. The number of bytes is specified in count. 

A Caution Overlapping the source and destination blocks could cause partial 
overwriting of the destination block. • 

The C declaration for BlockMove ( ) is 

void BlockMove ( source, destination, count ) 

char 

char 

long 

*source; 

*destination; 

count; 

The following example shows how to call BlockMove in assembly language. 

HOVE.L 

PEA 

PEA 

.JSR 

ADD.L 

'Count,-(A7) 

Destination 

Source 

BlockMove 

U2,A7 

5/ MCP AlRose Utilities 5-3 



AROSEDate2Secs( ) 

AROSEDate2Secs () takes the given date/time record, converts it to the corresponding number 
of seconds elapsed since 12:00 P.M. (MidnighO,January 1, 1904, and returns the result in the location 
whose address is contained in the secs parameter. 

The C declaration for AROSEDate2Secs () is 

pascal void AROSEDate2Secs (Date, secs) 

AROSEDateTimeRec *Date; 

unsigned long 

extern; 

*secs; 

The following example program shows how to use all three date/time utUities. 

iinclude 
main () 

"os.h" 

unsigned long secs; 

AROSEDateTimeRec dtrec; 

unsigned long newsecs; 

GetDateTime(&secs); 

Secs2Date (secs, &dtrec); 

Date2Secs(dtrec, &newsecs); 

printf(" Date .. 'd/'d/'d, Time - 'd:'d:'ci\n", 
citrec. year, dtrec. month, dtrec. day, 

dtrec.hour, dtrec.minute, dtrec.second); 

printf ("Sees .. 'd, Day of week - 'd, New secs .. 'd\n", 

sees, dtrec.dayOfWeek, newsecsl; 

The following example shows how to call Date2Secs in assembly language: 

PEA 

PEA 

JSR 

Date 

sees 

Date2Secs 

Address of Date/time record 

; Address for result 

• Caution In the previous version of the operating system, a routine 
Date2Secs () was included to give code running on NuBus cards the same functionality as the 
Macintosh toolbox Date2Secs () can. Unfortunately, the parameters were declared different 
from the Macintosh toolbox call. 

The AlROSE calling sequence caused C to push the entire DateTimeRec structure onto the stack 
instead d pushing a pointer to the DateTimeRec structure. The code within the previous 
version of the operating system would then get the DateTimeRec structure off the stack. 

To be compatible with MPW 3.0 C, A/ROSE passes a pointer to the Da t eT imeRec. The code that processes the 
Date2Secs () request has been changed to expect a pointer ... 

5-4 Macintosh Coprocessor Platform Developer's Guide 



GetBSize( ) 

The input to GetBSize ( ) is a pointer to a memory data buffer. The pointer was obtained by a 
call to GetMem (). The output from GetBSize () is either the size of the buffer in bytes or O. 
Each buffer has an associated buffer header that is not included in the value returned by 
GetBSize () . 

GetBSize () accepts 0 as input and returns 0 as output GetBSize () does not check the input 
pointer for validity. The C declaration for GetBSize () is 

unsiqnec1 lonq GetBSize buffer ) 

extern unsiqnec1char *buffer; I*pointer to buffer *1 

The following example shows how to call GetBSize in assembly language: 

buffer pointer in A4 

MOVE.L A4,-(A7) move buffer ac1c1ress onto stack 
JSR GetBSize qet the buffer size 
ADD.L '4,A7 pop the stack 
TST.L DO DO has the size 
BEQ.S XXX bac1 buffer 

• Note: If a pointer to the buffer is given to GetBSi ze () which was not obtained through 
the GetMem ( ) call, the return results are not predictable. 

5 / MCP A/Rose Utilities 5-; 



Getcard( ) 

GetCard () returns the NuBus slot number of the card on which the calling task is running, 

The C declaration for GetCard (I is 

char GetCard (); 

The following example shows how to call GetCard in assembly language: 

JSR GetCard 

Upon return, DO contains the slot number. The slot number is kept in location qSlotNum in 
the qCommon data area. 

5·6 Macintosh Coprocessor Platform Developer's Guide 



AROSEGetDateTlme( ) 

AROSEGetDateTime (I returns the number of seconds between 12:00 P.M. (Midnight), January 1, 
1904, and the time that the function was called. 

The C declaration for AROSEGetDateTime () is 

extern pascal void AROSEGetDateTime (sees I 

unsiqned lonq * sees; 

extern; 

The following example shows how to call AROSEGetDateTime in assembly language: 

PEA sees ; Address for result 

JSR AROSEGetDateTime 

Refer to the utility AROSEDate2Secs (I earlier in this chapler for an example program that 
shows how to use each date/time utility. 

5 / MCP AlRose Utilities 5·7 



GetETkk() 

GetETiclc () returns the number of major ticks-that is, the elapsed time in ticks-since the 
operating system started. 

The C declaration for GetETiclc () is 

externunsiqned lonq GetETiclc () ; 

The following example shows how to call GetETiclc in assembly language. and shows the 
location of the number ci major ticks 

JSR GetETiclc 

Upon return, DO contains the number of major ticks since the operating system started. 

5-8 Macintosh Coprocessor Platform Developer's Guide 



GetgCommon( ) 

GetqCommon () returns the address of the AlROSE operating system data area, qCommon. Refer 
to the include files on the MCP distribution disks for the structure of qCommon. 

The C declaration for GetqCommon () is 

extern struct qCommon *GetqCommon () ; 

The following example shows how to call GetqCommon in assembly language. 

JSR 
MOVE.L 

GetqCommon 

DO -> AD /* AO contains the beqinninq * / 

/* address of the qCommon data area* / 

The qCommon address is contained in the constant qCommon. 

5/ MCP AlRose Utilities 5-9 



GetBeap( ) 

Get Heap ( ) returns the address of the heap area allocated to the task. If no heap area has been 
allocated, Get Heap returns O. The heap size is specifted in a parameter to the AlROSE 
StartTask utility. 

The C declaration for Get Heap ( ) is 

char *GetHeap(); 

The following example shows how to call Get Heap in assembly language: 

JSR 
TS'l'.L 

SEQ.S 

• Caution 

Get Heap 

DO 

XXX 

on return, DO has pointer to heap 

check if heap present 

jump if no heap 

FreeHem ( ) must na be called by your application to release the heap 
area allocated, as this process is done automatically by StopTask () ... 

5-10 Macintosh Coprocessor Platform Developer's Guide 



GetICCI1D( ) 

Get ICCTID () returns the task identifier of the InterCard Communication Manager. If there is no 
ICCM registered, GetICCTID returns O. The C declaration for GetICCTID () is 

extern tid_type GetICCTID (); 

The following enmple shows how to call GetICCTID in assembly language. The task identifier 
of the InlerCard Communication Manager is kept in the location qIccTask in the qCommon 

data area. 

JSR GetICCTID 

Upon return, DO contains the task identifier of the ICCM. 

5 / MCP AlRose Utilities 5-11 



GetNameTID( ) 

GetNameTID () returns the task identifier of the Name Manager. The C declaration for 
GetNameTID () is 

extern tid_type GetNameTID (): 

The following example shows how to call GetNameTID in assembly language. The task 
identifier in the Name Manager is kept in the location qNameTask in the qCommon data area. 

JSR GetNameTID 

Upon return, DO contains the task identifier of the Name Manager. 

5-12 Macintosh Coprocessor Platfonn Developer's Guide 



GetStParms( ) 

GetStParms () returns the address of the calling task's Start Parameter s. If the calling 
task has no StartParameter, GetStParms returns O. The C declaration for GetStParms () 

is 

extern char *GetStParms (); 

The following example shows how to call GetStParms in assembly language: 

JSR 

TST.L 

BEQ.S 

... Caution 

GetStParms 

DO 

XXX 

on return, DO has pointer to 

Start Parameters 

check if Start Parameters present 

jump if no Start Parameters 

Your application must not call FreeMem () to release the memory 
allocated for its start parameters; this process is done automatically by 
StopTask () .... 

5 / MCP A/Rose Utilities 5-13 



GetTCH( ) 

Get TeB ( I returns the address of the calling task's Task Control Block (TCB). The C include fdes 
contain information on the TeB structure. The C declaration for Get TCB ( ) is 

extern struct pTaskSave *GetTCB (); 

The following example shows how to call Get TCB in assembly language. The address of the 
calling task's Task Control Block is kept in location gCurrTask in the qCommon data area 

JSR GetTCB 

Move.L Do, so ; address of task control bolock 

S-14 Macintosh Coprocessor Platform Developer's Guide 



GetTlck.PS( ) 

Get T ickP 5 ( ) returns the number of major ticks in one second. The C declaration for 
GetTickPS () is 

extern unsigned short GetTickPS (); 

The following example shows how to call GetTickPS in assembly language. The number of 
major ticks in 1 second is kept in the location gTickPerSec in the gCommon data area. 

JSR GetTickPS 

Upon return Do contains the number of major ticks in one second 

£ Warning Because of hardware limitations, the number of major ticks per second multiplied 
by the length of one tick may not equal one second. ... 

5 / MCP A/Rose Utilities 5·15 



GetTID( ) 

Get TID (l returns the task identifier of the calling task. 

The C declaration for Get T ID () is 

extern tid_type GetTID (); 

The following example shows how to call GetTID in assembly language. The task identifier of 
the calling task is kept in the location gTID in the gCommon data area. 

JSR GetTID 

Opon return. Do contains task identifier of calling task. 

5-16 Macintosh Coprocessor Platform Developer's Guide 



GetTlmerTJD( ) 

GetTimerTID () returns the task identifier of the Timer Manager. If there is no Timer Manager 
registered, Get Time r returns 0. 

The C declaration for GetTimerTID () is 

extern tid_type Get T imerTID ( ) ; 

The following example shows how to call GetTimerTID in assembly language. The task 
identifier of the Timer Manager is kept in the location gTimerTask in the gCommon data area. 

JSR GetTimerTID 

Upon return, Do contains task identifier of calling task. 

5 / MCP A/Rose Utilities 5·17 



GetTraceTID( ) 

GetTraceTID () returns the task identifier of the Trace Manager. If there is no Trace Manager 
registered, then GetTraceTID returns O. 

The C declaration for GetTraceTID () is 

extern tid_type GetTraceTID (); 

The following example shows how to call Get TraceTID in assembly language. The task 
identifier of the Trace Manager is kept in the location gTraceTask in the gCommon data area. 

JSR GetTraceTID 

Opon return, Do contains task identifier of calling task. 

5·18 Macintosh Coprocessor Platform Developer's Guide 



GetUCount( ) 

Get UCount (l provides information when one task is sending information to many tasks; that is, 
when there are multiple tasks sharing a buffer. GetUCount (l returns the usage count associated 
with the buffer. 'The buffer must have been allocated by a call to GetMem () . The usage count 
starts at 1 and is incremented by calling the AlROSE IncUCount utility. A return value of 0 
indicates that the pointer passed was O. 

'The C declaration for GetUCount () is 

extern unsigned char GetUCount ( buffer l 

char *buffer; 1* pointer to buffer *1 

'The following example shows how to call GetUCount from assembly language: 

MOVE.L AO,-(A7) 
JSR GetUCount 

ADD.L t4,A7 

push buffer address 

usage count is returned in DO 
pop the stack 

• Note: If a pointer to a buffer not obtained through the GetMem ( ) call is given to 
GetUCount () ,the return results are not predictable. 

5 / MCP A/Rose Utilities 5-19 



IncUCount( ) 

IncUCount () is useful where buffers are shared between different tasks and a mechanism is 
needed to ensure the orderly release of the buffers. IncUCount () increments a buffer's usage 
count and returns the incremented usage count (when it has a value of 2 or greater) of the buffer, 
or O. A return value of 0 indicates that the pointer passed was 0 or that the usage count has not 
been incremented because an overflow d the usage count field would have resulted. The buffer 
must have been allocated with a call to GetMem (). The usage count is decremented when the 
buffer ~ freed using FreeMem () . 

The C declaration for IncUCount () is 

unsiqned char IncUCount buffer ) 

char *buffer; /* pointer to buffer */ 

The following example shows how to call IncUCount in assembly language: 

MOVE.L A4,-(A7) 
JSR IncUCount 

ADD.L t4,A7 

push buffer address 

usage count is returned in DO 

pop the stack 

• Note: If a pointer to a buffer not obtained through the GetMem ( ) call is given to 
IncUCount () J the return results are not predictable. 

5-20 Macintosh Coprocessor Platform Developer's Guide 



IsLoca1() 

IsLocal () returns a true or false indication of whether or not a NuBus address is local. 

The C declaration for IsLocal () is 

extern short 

char 

IsLocal (address) 

*address; /* address to test. */ 

Isl..ocalO returns true (non-zero) if the NuBus address passed is local. IsLocal () returns false 
(zero) if the address passed is a remote Nubus address. 

The fonn for the IsLocal macro is as follows, where Pl is the address to examine: 

[Label] IsLocal Pl 

Pl can be specifIed as a register (.lI,O-A6, DO-D7) or an immediate (t<abs-expr» or it can use any 
68000 addressing mode valid in an LEA instruction to specify the location of a long word containing 
the desired value. • 

5 / MCP A/Rose Utilities 5·21 



Lookup_Task () returns either the task identifier of the task that matches the Object Name and 
Type Name specified, or 0 if no matching task is found. The wildcard character .. is allowed. 
Initially, the index must be set to OJ on su~equent calls, it should be left unchanged. 
Lookup_Task () modifies the variable indexj this index allows Lookup_Task () to find any 
additional entries that may match the criteria in subsequent calls. 

• Caution Lookup_Task () communicates with the Name Manager and issues a blocking 
Receivej therefore, the task gives up control of the CPU during this call.. Do not use the Lookup_Task 
utility in a completion routine or from a routine on the tick or idle chain. A 

The C dedaration for Lookup_Task () is 

tid_type 
char 
char 
tid_type 
unsigned 

Lookup_Task (object, type, nm_TID, index) 
object [); 
type [J; 

nm_TID; 
short * index; 

• 

The task identifier of a Name Manager is nm_TID, and may be obtained by using GetNameTID () 
or by sending the message ICC_GetCards to the ICCM. Lookup_Task () returns the task 
identifJef of the rust task that matches the criteria. 

The foUowing code provides an example of how to look up all tasks on the current card: 

short index 
tid_type tid 

index - 0 
while «tid - Lookup_Task (".", It.", GetNameTID (), 'index» > 0) 

printf ("TID b Found \015\012", tid); 

The following example shows how to call LookupTask in assembly language: 

MOVE.W to, INDEX initialize index 
PEA INDEX address of index 
MOVE.L TID,DO value of tid on stack 
MOVE.L DO,-(A7) place on stack 
PEA TYPE_NAME address of type name 
PEA OBJECT_NAME; address of object name 
JSR Lookup_Task 
ADD.W tl6,A7 pop the stack 
TST.L DO check if found 
BNE.S DO,XXX jump if found 

5-22 Macintosh Coprocessor Platform Developer's Guide 



MapNuBus( ) 

MapNuBus exists only under A1ROSE running on the smart NuBus card MapNuBus does not exist within the 
AlROSE Prep driver running on the Macintosh main board. The operating system preserves the state of the page 
latch registers if any, for each task. 

The input parameter to MapNuBus is the NuBus address of a buffer that is guaranteed to be frozen and locked. 
MapNuBus sets up page latch registers, if any, and returns a 32-bit virtual address that can be used for accessing 
the physical memory location. 

MapNuBus is dangerous to use. Use MapNuBus only when speed is most important Mast programmers can 
use NetCopy (described next) in place of MapNuBus with great satisfaction .Programmers chOOSing to use 
MapNuBus must know the hardware limitations of the smart NuBus card being used For example, on certain 
smart NuBus cards, such as the MCP card, the page latch register moves a NuBus address space window. The 
NuBus address space window for the MCP card is one-megabyte long and always begins on a one-megabyte 
boundary. A new MapNuBus request must be done each time a one-megabyte boundary is crossed. 

Programmers choosing to use MapNuBus must also know information about the buffer to be 
accessed. For example, the buffer on the Macintosh main board might be paged out to disk unless 
the programmer takes special care that it is not paged. 

MapNuBus () translates a pointer that may contain a NuBus address to a local pointer. This local 
pointer is used by the calling task to access the associated data. MapNuBus () also sets up any 
address mapping hardware required for the access. The local pointer is only valid for the task that 
called MapNuBus because each task may set up the address mapping hardware differently. 

• Nole: The local pointer is hardware specifIC. See Part II for details on the numeric value or 
the bounds on the value. 

MapNuBus () passes through 0 and local addresses without modifying them. You should assume 
that only a single off-card mapping for a task is active at any given time on each card; each call to 
MapNuBus () by a particular task invalidates any mapping established by the task's previous calls 
to MapNuBus (I. 

The C declaration for MapNuBus (I is 

char *MapNuBus ( ptr ) 

char *ptr; 

'nle following example shows how to call MapNuBu 5 in assembly language. Only the register 
supplied is modified. The address may be specifted by an A register or a D register. The mapped 
address is returned in the register supplied. 

MapNuBus }l.O 

5 / MCP AiRose Utilities 5-23 



6. caution To move data across the NuBus, use Netcopy () (described next). Tasks 
that use the AlROSE utility MapNuBus ( ) must assume the 
responsibility for checking NuBus boundaries. Some hardware cards, 
including the MCP card, have a limited NuBus address space through which 
NuBus accesses are made. The hardware page latch that controls th~ 
NuBus address space needs to be changed whenever address boundaries 
are crossed. Net copy ( ) checks for and correctly handles these 
boundaries. A 

The Macint~h lId also has memory discontinuities that further complicate the use of MapNuBus. 

NetCopy( ) 

NetCopy is a solution to many problems involving virtual memory. NetCopyexists in both AlROSE running on a 
smart NuBus card and the AlROSE Prep driver running on the Madnt~h main board. 

NetCopy takes two virtual addresses for its address parameters. NetCopy then examines internal AlROSE 
structures to determine if it can convert the virtual addresses to NuBus addresses. These internal structures are 
initizIized when AlROSE on the smart NuBus card and the AiROSE Prep driver on the Madnt~h main board 
initialize. The internal structures are then updated if LockRealArea or UnlockRealArea services are called on the 
Macintosh main logic board in a virtual memory environment 

If NetCopy cannot convert a Virtual address to a NuBus address, NetCopy sends an internal AiROSE message to 
a task located in the appropriate virtual address space that can perform the conversion. An internal AlROSE 
message is retumed to NetCopy when the conversion is completed. 

In a virtUal memory environment, LockRealArea increases the execution speed of NetCopy. When converting 
virtual addresses to NuBus addresses, NetCopy examines the internal structures updated by LockRealArea and 
UnlockRealArea. NetCopy does not have to send internal AlROSE messages if the buffers were locked down 
using LockRealArea 

• Note: NetCopy will never be as fast as using MapNuBus and doing the copying directly. 
However, NetCopy is much safer than using MapNuBus. 

NetCopy () will copy data from a source virtual address to a destination virtual address. 
NetCopy () has been designed to be safe and convenient, although you are advised to use only 
NetCopy for your data transfers. If the memory areas specified are locked and frozen in 
memory, then the copy process will go very fast 

5-Z4 Macintosh Coprocessor Platform Developer's Guide 



... Caution NetCopy may send messages and issue blocking receive requests to wait for 
replies. Therefore, NetCopy must n<x be called at interrupt level by code that must be 
run in run-w-block mode, or called by code on the tick or idle chain. .. 

The C declaration for NetCopy () is the following: 

short NetCopy (tid_type srcTID. void *srcAddress. 

tid_type dstTID. void *dstAddress. 

lonq bytecount); 

The virtual address srcAddress is the virtual address space of the task whose Task ID is 
srcTID. The virtual address dstAddress is the virtual address space of the task whose Task 10 
is dstTID. 

NetCopy () will safely, perhaps slowly, copy data from the source to the destination. Both the 
source and destination virtual addresses can be paged out to disk in a virtual memory environment 
NetCopy () will cause these pages to be brought back into physical memory and perform the 
copy. The copying a data might be done by the processor 00 the Macintosh main logic board 
rather than by the NuBus card 

NetCopy () returns zero if the copy was successful. Otherwise, NetCopy () returns an error 
status. 

Error Codes: 

Noo zero if there was an error in NetCopy () • 

... Warning srcAddress and dstAddress must both be 32-bit clean virtual 
addresses. Memory manager flags must n<x be in the high byte a a Macintosh main logic board 
address. 
Do nOl call NetCopy from interrupt routine because it does a blocking receive. Do not call 
NetCopy in idle chain because you canna block idle chain. .. 

If you call NetCopy from task that runs under run to block mode, be aware that NetCopy may 
do a receive and give up the control a the Q>U. 

5/ MCP A/Rose Utilities 5-25 



Register_Task () allows a task to register itself with the object and type names specified, 
using the Name Manager. The object and type names must not exceed 32 characters. If the task 
should be visible only to other tasks on the same card, local_only is set nOD-zerO. If the task " 
should be seen by other tasks on other cards, then local_only is set to O. Register_Task () 

returns a non-zero value if the task was registered; otherwise, 0 is returned. 

At. WandIla Register_Task () communicates with the Name Manager and issues a blocking 
Recei ve; therefore, the application gives up control of the CPU during this call. Do not use the register-task 
utility in code that can be called at inlemJpt level, such as a compIetial routine, or the tick or idle chain. 4\ 

The C declaration for Register_Task () is 

typedef Doolean short; 
char Register_Task ( object, type, local_only) 
char OD ject ( I ; 
char type [I; 

boolean 

The following code provides an example of how to register a task: 

if (!Register_Task ("my_name", "my_type", 0» 
printf ("Could not Register Task"); 

The following example shows how to caJI the Register_Task routine in assembly language: 

MOVE.L tLOCAL, -(A7) value of local on stack 
PEA TYPE_NAME address of type name 
PEA OBJECT_NAME address of object name 
JSR Register_Task 
ADDQ.W fl2, A 7 pop the stack 
TST.B DO check if register ok 
BNE.S OK jump if OK 

So26 Macintosh Coprocessor Platform Developer's Guide 



AROSESecs2Date( ) 

AROSESecs2Date () takes the number of seconds elapsed since 12:00 P.M. (MidnighO, January I, 
1904, as specified by the seconds parameter, converts it to the corresponding date and time, and 
returns the corresponding date/time record in the dale parameter. 

The C declaration for AROSESecs2Date () is 

pascal void AROSESecs2Date (sees, Date) 

lonq sees; 

DateTimeRec *Date; 

extern; 

The following example shows how to call AROSESecs2Date from assembly language: 

Move.L 

PEA 

JSR 

sees, - (A?) 

Date 

Secs2Date 

; number of seconds 

Address for result -

date/time record 

Refer to the utility AROSEDate2Secs () earlier in this chapter for an example program that 
shows how to use each date/time request 

5 / MCP NRose Utilities 5-27 



SwapTID( ) 

SwapTIO ( ) swaps the mFrom and mTo fields of a message buffer. 

The C dedaration of SwapTIO ( ) is 

void 5wapTID ( mptr ); 
message *mptr; 1* pointer to message buffer *1 

The fonn for the SwapTIO maao is as follows, where Pl is the address of the message buffer: 

(Labell SwapTIO Pl 

Pl can be specified as a regisler(Ao-A6, 00-07 ),OI'can use any6EmO addressing mcxIevalid in an 
LEA instruction to specify the location containing the desired address. 

S-28 Macintosh Coprocessor Platform Developer's Guide 



ToNuBus( ) 

ToNuBus () translates the pointer into a format suitable for passing to processes that may be on 
other cards. The pointer may contain a local address, which is translated to a NuBus address. 
ToNuBus () passes through 0 and NuBus addresses without modification 

• Note: Addresses on the MCP card are already in NuBus address form. This call is included to 
provide functionality for future releases. 

The C declaration for ToNuBus ( ) is 

char *ToNuBus ( ptr ) 

char *ptr; 

The follOWing example shows how to call ToNuBus from assembly language. Only the specifIed 
register is modified «Reviewers, is this correct?». The NuBus address may be specified by an 
A register or a D register, or through any other 68000-addressing mode (other than auto-increment 
or auto-decrement). The NuBus address is returned in the register or location supplied 

ToNuBus AO 

5 I MCP AlRose Utilities 5· 29 



TraceReg( ) 

TraceReq () is used to register the current task as the Trace Manager. For more infonnation, refer 
to the section on the Trace Manager in Chapter 6. 

The C declaration for TraceReq () is 

void TraceReq ( ) ; 

The following example shows how to call TraceReq () in assembly language: 

JSR Tr aceReq 

S-30 Macintosh Coprocessor Platform Developer's Guide 



Chapter 6 A/ROSE Managers 

T HIS C HAP T E R describes the operating system managers provided 

with NROSE. A manager is a task that provides a set of services to other 

tasks; each manager is specific to a certain function. The description of each 

manager includes the message codes used by that manager. • 

Table 6-1 lists the managers provided with the AiROSE operating system and a brief description 
of each. 

• Table 6-1 NROSE Managers 

Name 

Echo Manager 

InterCard Communications 
Manager 

Name Manager 

Print Manager 

Remote Systems Manager 

Timer library 

Trace Manager 

Description 

Returns messages sent to it. Useful for diagnostic purposes, 
and as a mechanism to time messages between cards or 
between machines 

Responsible for intercard message delivery and 
transport (sending and receiving all messages between cards) 

Provides naming services to tasks 

Provides a means to print and to display information and 
debugging messages 

Executes system calls on behalf of tasks on other cards 

Provides timing services to tasks 

Sends copies of all messages to a Trace Monitor (if available) for 
debugging purposes 

Note: The Timer Manager is provided in this version of the A/ROSE software for compatibility with previous 
versions; it may not appear in the next version. 

6-1 



Echo Manager 

, The Echo Manager returns each message it receives to the sender. The Echo Manager is primarily 
used in the early stages of development: 

• test messaging 

• determining how long the IPC takes to send a message round-trip to a card or the Macintosh II 

The Echo Manager operates with a single message loop. For each message it receives, it first checks 
if the received message is marked as undeliverable. If so, it is a message the Echo Manager already 
attempted to send the message and it is discarded. If not, the Echo Manager increments the 
message code, sets the message destination to the previous source of the message, sets the 
message source to the TID of the Echo Manager, and sends the message. 

6-2 Macintosh Coprocessor Platrorm Developer's Guide 



InterCard Communications Manager 

The InterCard Communications Manager (ICCM) sends and receives all messages between cards and 
provides a mechanism tasks use to find out which other cards are configured on the NuBus. 

• Note: Slot 0 has an implicit ICCM, since the ICCM is built into the NROSE Prep driver thal is 
configured into the System File of the Macintosh II. 

At initializalion time, the ICCM on a smart card registers itself with the operating system; the task 
identifier of ICCM may be found by using Get ICCT ID () ,described in Chapter 5. 

ICCM then attempts to discover if any other smart card installed (including slot 0) has an ICCM 
running by searching the RAM of the card for the ICCM area. If it is found, the ICCM area writes the 
NuBus address of its own communication area to the corresponding ICCM. This action makes the 
receiving ICCM aware of the startup of a new ICCM on the other card that it missed at its own 
initialization time. 

ICC_GETCARDS is a message code to the ICCM that allows a task to find out which other cards 
are known by ICCM on the NuBus. Conditionally, ICC _ GETCARDS also allows a task to find the 
TID of the Name Manager on each of the configured cards. The ICC _ GETCARDS message is 
passed with a buffer of size (struct ra_GetCards). Each entry is filled in by ICCM, with the 
stalus of the card installed in the corresponding slot and, optionally, with the TID of the Name 
Manager on that card. The buffer contains one entry per slot number. 

The message parameters for ICC_GETCARDS are as follows: 

mCade 

mDataPtr 

mDataSize 

ICC GETCARDS 

Painter ta a data buffer 

Length af data buffer 

Remember, the convention within NROSE is that an even mCade is a request and an odd mCade 

is a reply. For example, the ICCM request code ICC _ GETCARDS (150) is even; the ICCM reply 
code ICC_GETCARDS+l (151) is odd. The Name Manager request code NM_REG_TASK(lOO) is 
even; the Name Manager reply code NM REG TASK+ 1 is odd. 

6 / NRosc Managers 6-3 



The data buffer format for ICC GETCAROS is 

Itdefine IC_MaxCards 16; 

struct ra GetCards 

/* Maximum NuBus Cards */ 

tid_type tid [IC_maxcards J; 
} ; 

Each entry in the tid array corresponds to a NuBus slot number (Ud [0) is slot 0, tid [1 J is slot 
I, and so on). ICCM fills in each entry with the information shown in Table 6-2. 

• Table 6-2 Card status 

Value of the entry 

<0 

=0 

>0 

Card status 

Either does not exist or has no functioning {CCM 

Exists, and has an ICCM but no Name Manager 

Exists, and has an ICCM; this value is the Name Manager's TID 

The returned TID may be used in the mTo field of a message to send a message to the Name 
Manager on the card corresponding to the entry. 

Name Manager 

The Name Manager performs functions similar to those of Name Binding Protocol (NBP) in 
AppleTalk. Tasks can register and unregister their names, look up the task identifiers of named tasks, 
and look up the name of a task corresponding to a given task identifier. The Name Manager allows 
tasks to become visible to other tasks on the same card and, optionally, to tasks on other cards. 

The messages passed to the Name Manager are listed and described in Table 6-3. 

• Table 6-3 Name Manager message codes 

Name 

NM LOOKUP NAME 

NM LOOKUP TID - -
NM N SLOT_REQ 

NM N SLOT CAN 

NM N TASK_REQ 

NM N TASK CAN 

NM REG TASK 

Nt., UNREG TASK 
- -

6-4 I I What Is Mep? 

Description 

Looks up all object and type names for specified tasks 

Looks up the task identifiers for specified Type Names and Object Names 

Provides notification of communications loss 

Cancels the request for notification of communications loss 

Provides notification of task termination 

C'..ancels the request for notification of task termination 
Registers the task name 

Unregisters the task name 



A task has two names: a type name and object name. Each name is a maximum of 32 characters 
long. (The Mep implementation of type name and object name is similar to Inside AppleTalk For 
more information on type names and object names, refer to Inside AppleTalk) 

• Note: Any character may be used in a Type or Object name; however, the equal sign (=), a 
wildcard character, should be avoided since it is not possible to match it explicitly. 

The parameters in the message buffer, that are sent to the Name Manager to look up names, look up 
task identifiers, and register tasks, are passed in a data buffer associated with the message buffer. The 
address of the buffer is placed in the message field mDataPtr, and the size of the buffer is placed in 
the message field mDataSize. The message to unregister a task contains in the mFrom field the 
task identifier of the task to unregister. 

The following structures (defined in the file manage r s . h) are used when calling the 
Name Manager: 

utiny a_len; 

char a name [NM_Obj_Size_Maxl; 

) ; 

struct typ_rec 

) ; 

) ; 

utiny t_len; 

char t name [NM_Type_Size_Maxl; 

struct obj_rec rt on; 

struct typ_rec rt_tn; 

char rt_local_vis; 

struct ra ltid 

} ; 

struct obj rec ra_on; 

struct typ_rec ra_tn; 

tid_type ra_tid; 

/* object name record * / 

/* length of object name */ 

/* object name */ 

/* type name record */ 

/* length of object name */ 

/* type name * / 

/* register name param block */ 

/* object name */ 

/* type name * / 
/* locally visible only flag */ 

/* return area for lookup tid */ 

/* object name * I 

1* type name *1 
1* task id *1 

struct pb_lookup_tid 1* lookup task id parameter block *1 

struct obj rec ltid on; 1* object name *1 --- -
struct typ rec ltid t n; 1* type name */ - -
unsigned short it id index; 1* index *1 -
unsigned short L tid RAsize; 1* size at return area *1 -

Name Manager 6-5 



struct ra - ltid ltid -ra [11; /* return area (OUTPUT) * / 
} ; 

struct ra lnm /* return area for lookup name * / -

struct obj rec ra on; -
struct typ_rec ra - tn; 

) ; 

tid_type lnm_tid; 

unsigned short lnm index; -

/* object name */ 

/* type name */ 

/* task id */ 

/* index (INPUT/OUTPUT) */ 

unsigned short lnm_RAsize; /* size of return area */ 

struct ra lnm Inm ra [11; /* return area (OUTPUT) -

The Name Manager registers itself with Object Name name manager and Type Name name 

man ager. The Name Manager is found by calling GetNameTID () , or by sending ICCM an 
ICC GETCARDS message. 

Looking up tasks 

*/ 

You can look up tasks by name or task identifier, by using one of the Name Manager messages: 

• NM LOOKUP NAME - -
• NM LOOKUP TID - -

NM_LOOKUP_NAME returns all Object Names and Type Names for the specified task identifier. If 
no task identifier was found, then the size of Object Name will be set to zero. The index parameter 
(in the parameter block) on the initial call must be set to zero. 

The parameter block for NM_LOOKUP _NAME is as follows: 

struct pb_lookup_name 

{ 

} ; 

tid_type 

unsigned short 

unsigned short 

struct ra lnm 

lnm_tid; 

lnm_index; 

lnm_RAsize; 

Inm ra [lJ; 

/* task id */ 

/* index (INPUT/OUTPUT) */ 
/* size of return area */ 

/* return area (OUTPUT) * / 

The relurn area specified will be filled with zero, or with one or more entries of the following form: 

struct ra lnm /* return area for lookup name -

struct ob j ree ra - on; /* object name */ 
struct typ_ree ra - tn; /* type name */ 

} ; 

6-6 1 / Whal Is MCP? 

*/ 



The last entry plus one (entry+ 1) in the return area has the length of Object Name set to zero to 
indicate that there are no more entries to follow. If the return area is not large enough to hold all 
entries that could be returned, the index is set to a non-zero value. A subsequent 
NM_LOOKUP _NAME message must be sent to retrieve these entries, with the value of index set to 
the returned value of the previous NM_LOOKUP _NAME message. 

The minimum size of the return area must be large enough to hold at least one entry plus the size of 
Object Name. To return more information, increase the size enough to hold the number of entries 
that the requesting task requests to process. 

The parameter block for NM_LOOKUP _NAME is as follows: 

tid_type lnm - tid; /* task id */ 

unsigned short lnm index; /* index (INPUT/OUTPUT) -
unsigned short lnm - RAsize; /* size of 

struct ra lnm lnm ra [1] ; 1* return - -
} ; 

The message parameters for NM_LOOKUP_NAME are as follows: 

meade 

mDataPtr 

mDataSize 

NM_LOOKUP_NAME 

Address of the parameter block 

Size of the parameter block 

return area 

area (OUTPUT) 

*/ 

*/ 

*/ 

NM_LOOKUP _TID looks up the task identifiers of all tasks that match the Type Name and the 
Object Name specified. Use the equal sign (=), a wildcard character, to match all names. The index 
parameter on the initial call must be set to zero. 

The parameter block for NM_LOOKUP _TID is as follows: 

struct pb_Iookup_ tid /* lookup task id parameter block 

struct obj_rec !tid on; /* object name */ -
struct typ - rec !tid tn; /* type name */ -
unsigned short !tid index; /* index */ -
unsigned short !tid RAsize; 1* size of return area */ -
struct ra !tid ltid ra [1] ; /* return area (OUTPUT) */ - -

) ; 

The return area specified will be filled with zero or with one or more entries of the form: 

struct ra - ltid 1* return area for lookup tid */ 

struet obj rec ra - on; 1* object name */ 

steuet typ ree ra tn; /* type name */ - -
tid type ra tid; /* task id */ - -

} ; 

*/ 

Name Manager 6-7 



The last entry plus one (entry+ 1) in the return area has the length of Object Name set to zero to 
indicate that there are no more entries to follow. If the return area is not large enough to hold all 
entries that could be returned, AlROSE sets the index to a non-zero value. You must make·a 
subsequent NM_LOOKUP_TID message to retrieve these entries with the value of index set to the 
returned value of the previous NM_LOOKUP _TID message. 

The return area must be large enough to hold at least one entry, plus the size of Object Name. For 
more information to be returned, the size should be increased to hold the number of entries that 
the requesting task attempts to process. 

The message parameters for NM _ LOOKUP _TID are as follows: 

meode 

mDataPtr 
mDataSize 

NM LOOKUP TID - -
Address of the parameter block 
Size of the parameter block 

Notification of Conununications Loss 

A task can request that the Name Manager notify it when a card in a slot changes its 
communications status. The Name Manager immediately replies to the request, indicating whether 
the card in the slot is "up· or "down·. The card is defined to be "up" if AiROSE is running on that 
card. The Name Manager continues to notify the task whenever the status of the card in the slot 
changes until the task either 

• stops running, or 

• issues a request to the Name Manager to cancel notification of communications status for that 
card slot 

The Notification of Communications Loss request must be sent to the Name Manager on the card 
where the requesting task is running. The message parameters for Notification of Communications 
Loss are as follows: 

mCode 
mOData[O] 

NM_N_SLOT_REQ 

Card slot number. Slots are numbered from 
OxOO through OxOf. 

• Note: The Macintosh II currently supports slot 0, as well as slots 0x09 through OxOe. 

The reply parameters for Notification of Communications Loss are as follows: 

mCade 

mStatus 

6-8 1 / What Is Mep? 

NM N SLOT_REQ+l 

NM NO ERRORS 

NM SLOT NOT UP - - -

If the card in the slot is up 
If the card in the slot is down 



The message parameters for Cancel Notification of Communications Loss are as follows: 

mCode 

mOData[O] 

NM N SLOT CAN 
- - -

Card slot number. Slots arc numbered from Ox09 
through oxOe. 

• Note: The Macintosh II currently supports slot 0, as well as slots Ox09 through OxOe; the 
value -1 specifies all slots. 

The reply parameters for Cancel Notification of Communications Loss are as follows: 

mCode 

mStatus 

NM_N_SLOT_CAN+l • 

NM NO ERRORS 

NM NO ENTRY FOUND 

Request processed. 
The task has no communications 
loss requests. 

Notification of Task Termination 

A local task can request that a remote Name Manager notify it when a task on the Name Manager's 
card is terminated. The Name Manager immediately replies to the request, indicating whether the 
remote task is currently running or not. The remote task is considered to have terminated if it 
stops or if it issues an NM_UNREG_TASK request. 

• Note: The Name Manager must be running on the slots of both the remote task and the 
local task. 

The message parameters for Notification of Task Termination are as follows: 

mFrom 

mCode 

mOData[O] 

TID 

NM N TASK_REQ 

TID 

Task Identifier of the requesting or 
local task 

Task Identifier of the remote task 
to monitor 

The reply parameters for Notification of Task Termination are as follows: 

mCode 

mStatus 

NM N TASK_REQ+l 

NM NO ERRORS if the remote task is currently running 
NM_TASK_NOT_EXIST if the remote task is not running 
NM_NAME_NOT _REG if there is no Name Manager on the card 

where the local task is running 

Name Manager 6-9 



The message parameters for Canceling Notification of Task Termination are as follows: 

mFrom TID Task Identifier of the local task 
mCode 

mOData[O] 

NM N TASK CAN - - -
TID Task Identifier of the remote task to 

monitor. The value of -1 specifies that 
all notification of task termination 
requests by this local task be 
cancelled 

The reply parameters for Canceling Notification of Task Termination are as follows: 

mCode 

mStatus 

Registering tasks 

NM N TASK CAN+l - - -
NM_NO_ERRORS 
NM_NO_ENTRY_FOUND 

Request processed. 
The local task had no outstanding 
request for notification of termination 
of the remote task. 

You can register and unregister tasks by using one of these Name Manager messages: 

• NM REG TASK 

• NM_UNREG_TASK 

• NM_UNREG_NAME 

NM_REG_TASK 

NM_REG3ASK allows a task to become visible either to tasks on the local card only or to all tasks 
in the system. If rt_Iocal_vis is non-zero, then this task is not visible to Lookup Task ID 
utility, NM_LOOKUP-NAME, or NM_LOOKUP _TID messages from other cards. Tasks may only 
register with the Name Manager on their own card. If the name is already taken, the error 
NM_DUPLICATE_NAME is returned in the message field mStatus. 

The parameter block for NM_REG_TASK is 

/* register 

/* object name */ struct obj_rec rt_on; 

struct typ_rec rt_tn; /* type name */ 

char rt_local_vis; /* locally 
} ; 

The message parameters for NM REG TASK are as follows: 

meade 

mDataPtr 

mDataSize 

6-10 1/ What [s Mep? 

NM REG TASK 

Address of the parameter block 

Size of the parameter block 

visible 

name param block 

only flag */ 

*/ 



NM_UNREG_TASK removes all entries in the Name Table for the task issuing the call. When a task 
terminates, any names it had will be removed automatically. 

The message parameters for NM_UNREG_TASK are as follows: 

meade 

mDataPtr: 

mDataSize 

NM_UNREG_NAME 

NM UN REG TASK - -
o 
o 

Another Name Manager allows a task to unregister a single name. Any other registered names for 
this task are not affected. Unlike the Unregister Task request, Task Termination messages are not 
sent as a result of this request. 

The following is example code using the new Name Manager request to unregister a single name. It 
is assumed that the name was previously registered by this task. 

Following is the new structure defined for unregister name request: 

} ; 

struct obj_rec ut on; 

struct typ_rec ut tn; 

#include 

#include 

"os.h" 

"managers.h" 

str:uct pb unr:egister name *lunr_ptr:, punr_buffer:; 

lunr: ptr &punr buffer; 

if ((p ~ GetMsg ()) NULL) 

illegal (); 

P -> meode NM UNREG NAME; 

Printing support 6-11 



P -> mDataPtr = (char *) lunr_ptr; 

p -> mDataSize = sizeof (struct pb_unregister_name); 

p -> mTo = GetNameTID () ; 

strcpy(lunr_ptr -> ut onoo name, "Namel"); 

1* Do not include zero byte in length! *1 

1* Do not include zero byte in length! *1 

Send(p); 

When the reply is received, mStatus indicates the success or failure of the request. The following 
table lists each mStatus option with the corresponding meaningo 

mStatus Meaning 

NM_NO_ERRORS 

NM_NAME_NOT ]OUND 

NM_RT_PB300_SMALL 

NM_RT _REMOTE_REG 

Printing support 

The request completed successfully. 

The name was not registered. 

The parameter block is too small 

The request was sent to a Name Manager 

for which the task is not local 

Printing is accomplished by using the library pc inU code and the Print Manager. 

Each time pc int f is called and does not know the TID of the Print Manager, it searches for a 
Print Manager starting at slot 0, and continues searching the remaining slots until a Print Manager is 

6-12 1/ What Is MCP? 



found or all the slots have been searched. If pr int f knows the TID of the Print Manager and a 
Print Manager is found, the printf code sends the text to the Print Manager. 

.&. Caution If the Print Manager is not found after thirty seconds, the text is 
discarded with no indication to the calling code .... 

The pr int f code is linked into the user task; you install the Print Manager on a card or on the 
Macintosh II. (Refer to osmain for an example of using the print manager on a card; see 
pr _ manager in the Apple IPe example folder for the Macintosh II). 

After receiving a message from print f, the Print Manager code sends the contents of the 
message to the print device, and sends a reply to the requesting task's printf code when the 
information in the buffer has been printed. The Pr\nt Manager call includes the print buffer request, 
PRINT_ME, described next. 

Print Manager operates with a single message loop. For each output request message it receives, 
Print Manager outputs as specified in the message and sends a reply when the message has been 
printed or discarded. 

Table 6-4 lists the standard conversion characters that the printf code supports. 
Table 6-5 lists the nonstandard conversion characters that printf also supports. 

Printing support 6-13 



• Table 6-4 Printf standard conversion 

Characterx Standard conversion 

%d 

%u 

%x 

%X 

%0 

%e 

%5 

%m.n 

%-m.n 

%Om.n 

%*.* 

decimal conversion 

unsigned conversion 

hexadecimal conversion 

hexadecimal conversion with capitallelters 

octal conversion 

character 

string 

field width, preciSion 

left adjustment 

zero padding 

width and precision taken from arguments 

Note: Printf does not support %i, %e, or %g.ItacceplS,butignores,a '1' asin %ld, %lo, 

%lx, and %lu. 

• Table 6-5 Printf nonstandard conversion 

Character Nonstandard conversion 

%b binary conversion 

%r roman numeral conversion 

%R roman numeral conversion with capital letters 

The Print Manager registers itself with Object Name "print manager" and Type Name 
"pr int manager". The Print Manager slot is determined by the Start Parameters specified in 
osmain. 

Print Buffer request 

The Print Buffer request allows a task to specify a buffer that contains data to be printed. The 
message parameters for the Print Buffer request are as follows: 

mCode 

mDataPtr 

mDataSize 

PRINT ME 

Pointer to data buffer 

Length of data (in bytes) 

• Note: Applications do not normally need to directly use Print Manager. The printf code 
implements Print Manager interface on behalf of the application. 

6·14 1/ What Is Me]>? 



Remote System Manager 

The Remote System Manager (RSM) on a remote card is responsible for executing system calls on 
behalf of local tasks. The local task sends a message to the Remote System Manager on a remote card 
specifying the desired request; the request is processed and the result is returned to the local task. 

The Remote System Manager supports the following functions: 

• RSM FreeMem 

• RSM GetMem 

• RSM Start Task 

• RSM_StopTask 

The Remote System Manager registers itself with Object Name "RSM" and Type Name "RSM". 

The Remote System Manager is found by using the Lookup_Task utility. 

The end of this section mentions how to find out information regarding the Remote System 
Manager on another card and how to use the Remote System Manager on other card to control 
tasks on that remote card. 

RSMJreeMem returns the memory specified to the free pool. The memory must have been 
previously obtained on the destination card by using either the GetMem() system primitive or the 
RSM_GetMem message. The calling parameter mDataPtr contains the virtual (local) address of 
the memory to be released. 

The calling parameters for RSMJreeMem are as follows: 

mCode 

mDataPtr 

RSM FreeMem 

virtual (local) address of the memory to be 

released 

The reply parameters for RSMJreeMem are as follows: 

mCode 

mDataPtr 

RSM FreeMem + 1 

Original pointer if mStatus ! = RSE NO ERRORS; 

otherwise, 0 

mStatus RSE NO ERRORS if memory buffer released 

mStatus RSE NOT MEM if not a memory buffer 

~ Caution In most cascs, NROSE on the remote card executes an illegal instruction if 
an attempt is made to free a memory buffer that has not been allocated 
by NROSE .... 

When issuing the request to RSM_FreeMem, mDataPtr must contain the virtual address of the 
memory to be freed. 

Remote System Manager 6-15 



• Note: When AlROSE is running on MCP cards or AST-ICP cards, the virtual address for 
memory on the card is the same as the NuBus address. 

6-16 1 / What Is MCP? 



RSM_GetMem obtains the memory specified from the free pool on the remote card. Two buffer 
addresses are returned to the caller if the buffer was allocated. The calling parameter mDataPtr 

contains the global (NuBus) address of the memory; the calling parameter mODat a [ 0 J contains 
the address of the memory on the remote card. 

The calling parameters for RSM_GetMem are as follows: 

meode 

mOData(O] 

RSM GetMem 

Size in bytes (as in the GetMem primitive) 

The reply parameters for RSM_GetMem are as follows: 

meode 

MDataPtr 

mOData[O] 

mStatus 

RSM GetMem + 1 

Address of buffer (as returned to RSM) , or 

o if not allocated 

Global (NuBus) address of the buffer, or 

o if not allocated 

RSE NO ERRORS 

When issuing the reply from RSM_GetMem, mOData [0] contains the NuBus address of the 
memory obtained and mDataPtr contains the virtual address of the memory obtained. 

... Warning Be aware that in 1.1, the values returned in MOData[O] and MDataPtr are reversed 
from what happened in 1.0. The current values are stated earlier under reply parameters for RSM_GetMem .... 

RSM_StartTask' creates a task and makes it eligible for execution on the remote card. 

The calling parameters for RSM_StartTask are as follows: 

meade 

mDataPtr 

mDataSize 

RSM StartTask 

struct *ST_PB; /* see StartTask primitive* / 

sizeof (struct (ST_PB)) 

The reply parameters for RSM_Start Task are as follows: 

me ode 

mOData(O} 

RSM StartTask + 1 

Task identifier of started Task or zero; if a Task 

identifier of zero was returned, an error may have 

occurred. 

The parameter block for RSM_StartTask is the same as the operating system primitive 
StartTask () . 

• Note: The memory allocated for the code, data, and StartParameter segments must 
have been previously obtained on the remote card by a call to RSM GetMem or 
GetMem () . 

Remote System Manager 6-17 



RSM_StopTask stops the task whose task identifier is specified, provided the task is running on 
the remote card. 

The calling parameters for RSM_StopTask are as follows: 

mCode 

mOData[O] 

RSM_StopTask 

Task identifier of task to stop 

The reply parameters for RSM_StopTask are as follows: 

mCode 

mStatus 

RSM_StopTask + 1 

RSE_NO_ERRORS 

6. Important If one task stops another task, the one being stopped will not have 
the opportunity to release any message buffers that it is currently processing.. l::. 

Finding the Remote System Manager 

Tasks can determine the task identifier of a Remote System Manager on another card when you 
follow these steps: 

1. Send an ICC_GETCARDS message to ICCM to obtain the task identifiers of the Name 
Managers on each of the known cards. 

2 Use the Lookup Task utility to each found Name Manager, specifying the Object Name "RSM" 

and Type Name "RSM". 

Loading remote tasks 

Tasks may be loaded, started, and stopped on remote cards when you use the Remote System 
Manager on the remote card. To do so, refer to the file A/ROSE 

Prep: Examples: RSM_tester. c for annotated code. 

• Note: If errors occur, then you must return any allocated memory to the card by sending a 
FreeMem message with the appropriate buffer to the Remote System Manager on the 
remote card. 

6-18 1 / What Is Mep? 



The Remote System Manager processes the RSM_StartTask message, attempts to start the 
task, and returns either the task identifier of the started task or O. If zero is returned or if errors are 
detected, then any allocated memory must be returned. 

Timer library and Timer Manager 

Both the timer library and the Timer Manager allow user programs to receive "wake-up" calls and to 
activate timing, cancel timing, set timing, and so forth. Timeouts are implemented as messages 
sent to the requesting tasks at specified times . 

... Caution 

Timer library 

It is strongly recommended that you use the timer library rather than the 
Timer Manager, because the timer library provides greater performance and 
allows you to reliably cancel ,a timer when an event occurs. The Timer 
Manager is provided for compatibility with previous releases (primarily for 
using periodic timers without canceling timers), and will be removed in 
future versions of the software .... 

The timer library is available in the file os. 0 on the Mep distribution disk, and provides services 
similar to the Timer Manager. 

The timer library handles timeouts for time-critical user code, and provides fast timer cancels and 
activations. You must use the include file timerlibrary.h in your code, which defines the 
interface to the calls listed in this section. 

TUnitTimer( ) 

The TLlnitTimer () call initializes the timer library, and must be the first call made to it. The 
parameter returned from TLlnit Timer must be passed in all other timer library calls. 

struct Tmem TOPB; 

TOPB *TLlnitTimer () 

Remote System Manager 6-19 



TLStartTimer( ) 

The TLStartTimer () call allows a task to request either a periodic or a one-shot timer message. 
The message is not available for use after the call. 

• Note: Timer indication messages must be received through a TLReceive () call; they 
cannot be received by the primitive Receive () call. 

char TLStartTimer (topb, m) 

TOPB *topb; 

message *m; 

The message m must have been allocated and set up as a periodic or one-shot timer message as 
defined for the Timer Manager. TI.StartTimer returns a non-zero value if the message was valid; 
otherwise TLStartTimer returns 0 and the message buffer may be reused or released by the 
calling task. 

TLCancelTimer( ) 

The TLCance 1 Timer call allows the calling task to cancel a timer message. The timer message 
can be either a periodic or a one-shot timer message. 

message *TLCancelTimer (topb, mID) 

TOPB *topb; 

long mID; 

The canceled message matches the mID specified, unless the mID is zero. If the mID is zero, the 
first timer message to expire is canceled. 

TLActiveTimer( ) 

The TLActiveTimer () call returns a count of the number of active timer messages. 

long TLActiveTimer (topb, mID) 

TOPB *topb; 

long mID; 

If mID is not zero, TLActiveTimer () returns 1; if the message corresponding to the mID is 
active, TLActiveTimer () returns 0; if the mID is zero, TLActi veTimer () returns the 
number of timer messages. 

6-20 1 / What Is Mep? 



TLReceive( ) 

T LRece i ve is called to provide receive processing with timeout on behalf of the application. 

message *TLReceive ( topb, mID, mFr-om, meode) 

TOPB *topb; 

unsigned long mID; 

tid_type mFrom; 

unsigned short meode; 

.... Caution If you use the timer library, you must use the TLRece i ve () routine 
instead of the primitive Rece i ve () request. ... 

TLReceive returns either the message that matches the TLReceive criteria or a timeout 
indication message (periodic reply or one-shot reply), whichever comes first. 

Timer Manager 

The Timer Manager provides timing services to tasks, and is useful when long timeouts are 
needed or where there is an infrequent need to start and cancel timers. 

.... Caution This section describing the Timer Manager is provided in this document 
for compatibility with previous releases. It is strongly recommended that 
you use the timer library. The Timer Manager may not be included in 
future releases .... 

Table 6-6 lists the Timer Manager calls 

• Table 6-6 Timer Manager calls 

Calls 

Active Timer Query 

Cancel Timeout 

Request One-Shot Timeout 

Requests Periodic Timeout 

Description 

Allows a task to determine if a particular timer is running or if any 
timers are running that are associated with the task 

Allows a task to cancel either an individual timer or all of the timers 
outstanding for the requesting task 

Allows a task to receive a timeout reply n major ticks in the future 

Allows a task to receive a periodic timeout reply starting x major 
ticks from when it is set, and then repeating every y major ticks 

Timer library and Timer Manager 6-21 



The user sends to the Timer Manager the desired timer message. The Timer Manager holds onto 
timeout request messages in its internal queue. A task may request either one-shot or periodic 
notification of timeout events. 

• When a one-shot timeout occurs, the request is answered by returning to the user the original 
user message, with a message code of TIMER_l_SHOT_REPLY. 

• When a periodic timeout occurs, the Timer Manager gets a message buffer from the operating 
system. This message buffer is returned to the user with a message code of 
TIMER_PERIODIC_REPLY. Any user data in the original message is copied into the message 
buffer that the Timer Manager uses for a reply. 

Outstanding time events may be queried and, optionally, canceled. When the user requests that a 
timer be canceled, the original timer message is answered with a message status of timer canceled, 
followed by the response to the cancel-timer mess~ge. 

• Note: Users should be careful in their use of message priority. A cancel message of a higher 
priority than the original periodic timeout request message could result in the cancel-timer 
reply arriving before the canceled timer message. 

The number of ticks per second may be determined by calling the routine GetTickPS () . 

The Timer Manager registers itself with Object Name "timer manager" and Type Name 
"timer manager". You can find the task ID of the Timer Manager by calling GetTimerTID () , 

or by using the Lookup_Task utility. 

Active Timer Query 

Active Timer Query allows a task to determine if a particular timer is running or if any timers are 
running that are associated with the task. 

The message code for the Active Timer Query is as follows: 

The message parameters for the Active Timer Query are as follows: 

mOData[O] 

mOData[O] 

Message ID 

Zero 

If an individual timer is being queried 
If query is for any timer associated with the task 

The reply-message code for the Active Timer Query is as follows: 

The reply parameters for the Active Timer Query are as follows: 

mOData[O] 

mOData[l] 

6-22 1/ What Is Mep? 

Unchanged 

Number of timer messages found 



Cancel Timeout 

Cancel Timeout allows a task to cancel either an individual timer or all of the timers outstanding for 
the requesting task. All oUlStanding timer messages are returned to the requesting task with a 
TIMER CANCELED status. 

The message code for Cancel Timeout is as follows: 

The message parameters for Cancel Timeout are as follows: 

mOData [0] Message ID If an individual timer is to be canceled 
mOData [0] Zero Cancel all timers associated with the task 

The reply message code for Cancel Timeout is as follows: 

TIMER CANCEL REPLY 

The reply message parameters for Cancel Timeout are as follows: 

Unchanged mOData[O] 

mOData(l] Number of timer messages canceled 

• Note: Users should be careful in their use of message priority. A cancel message of a higher 
priority than the original periodic timeout request message could result in the cancel-timer 
reply arriving before the canceled timer message. 

Request One-Shot Timeout 

Request One-Shot Timeout allows a task to receive a timeout reply a specified number of major 
ticks in the future. 

The message code for Request One-Shot Timeout is as follows: 

TIMER 1 SHOT_REQUEST 

The message parameter for Request One-Shot Timeout is as follows: 

mOData[O] Time to wait in major ticks before replying 

The reply message code for Request One-Shot Timeout is as follows: 

TIMER 1 SHOT REPLY 

The reply message parameter for Request One-Shot Timeout is as follows: 

mODa ta [0 I Unchanged 

The possible error status for Request One-Shot Timeout is as follows: 

TIMER CANCELED 

Timer library and Timer Manager 6-23 



Request Periodic Timeout 

Request Periodic Timeout allows a task to receive a periodic timeout reply starting a specified 
number of major ticks from when it is set, and then repeating at every specified interval thereafter. 

The message code for Request Periodic Timeout is as follows: 

The message parameters for Request Periodic Timeout are as follows: 

mOData[O] 

mOData[l) 

Time to wait in major ticks before first 
timeout reply 
Periodic interval in major ticks 

The reply message code for Request Periodic Timeout is as follows: 

TIMER PERIODIC REPLY - -

The reply message parameter for Request Periodic Timeout is as follows: 

mOData[O) Message ID of requesting user message 

The possible error status for Request Periodic Timeout is as follows 

TIMER CANCELED 

Trace Manager 

The Trace Manager provides tracing services for messages sent between tasks, and includes calls to 
turn tracing on or off. 

Upon startup, the Trace Manager waits to find a Trace Monitor registered with the Object Name 
"Trace Monitor" and Type Name "Trace Monitor". No tracing is performed until a Trace 
Monitor is found that is so registered. 

... Caution Once the Trace Manager registers, message throughput is dramatically 
reduced. When sending trace messages to the Trace Monitor, message 
throughput may be reduced by a factor of twenty or more, depending on 
the actions taken by the Trace Monitor. Even if tracing is turned off, the 
Trace Manager is still registered with the operating system and all 
messages must pass through it, reducing normal message throughput by 
more than half. 

You cannot trace the Trace Manager. A 

The Trace Monitor is an MPW tool that works with the Trace Manager to record all message traffic 
between tasks. The Trace Monitor relics on NROSE Prep to communicate with the Trace Managers 

on the cards; the Trace Monitor does little unless there are active Trace Managers present. 

6-24 6/ Mep Operating System Managers 



The format of the trace file is simply a sequence of messages. If a message has an associated data 
buffer (that is, mDataSize is non-zero), the message is immediately followed by the data buffer 
conents of size mDa t a S i z e. The syntax of the Trace Monitor command is 

TraceMonitor [file) 

where f i 1 e is the name of the trace file in which to record message traffic. If f i leis not 
supplied, the default trace file name is TraceFile. The trace file is intended to be searched and 
interpreted by the MPW trace file dumping tool, OumpTrace, described later in this section. 

Once a Trace Manager detects the presence of a Trace Monitor, the Trace Manager registers with 
A/ROSE using a TraceReg call and begins tracing. The A/ROSE Send primitive forwards all 
messages to the Trace Manager; the Trace Manager sends its own trace message to the Trace 
Monitor with the data pointer pointing to the traced message, and waits for an acknowledgement. 
The Trace Monitor records each traced message in a data file, along with any associated data, and 
acknowledges receipt of the message; the Trace Manager then forwards the original message to its 
intended destination. You can stop the Trace Monitor by pressing Command-period. 

If the Trace Monitor fails to acknowledge in a reasonable time, the Trace Manager stops the process 
of sending trace messages to the Trace Monitor until it receives a message to turn tracing back on; 
this ensures that the message flow does not stop indefinitely. If necessary, the Trace Monitor can 
control tracing activity through the use of messages to the Trace Manager that direct it to tum 
tracing on or off. 

Turn on tracing 

The message code to turn on tracing is as follows: 

TM TRACE ON - -

The Trace Manager assumes the request comes from the Trace Monitor, and uses the TID value of 
the message mFrom field as the TID of the Trace Monitor for subsequent tracing. 

Turn off tracing 

The message code to turn off tracing is as follows: 

TM TRACE OFF 
- -

This stops the Trace Manager from sending trace messages to the Trace Monitor until tracing is 
turned back on. 

Trace Manager 6-25 



Tracing messages 

The trace message TM _ TRACE describes the location of the traced message from the Trace 
Manager to the Trace Monitor. The message parameters for a trace message are as follows: 

mCade 

mDataPtJ:" 

mDataSize 

TM TRACE 

Pointer to copy of tJ:"aced message (and data) 

Size of message plus size of data 

The area pointed to by mD at aPt r is a copy of the original message, immediately followed by the 
contents of the associated message data buffer (if any). The receiving message then has access to 
both the message and its data buffer. 

The message code for acknowledging the receipt of a trace message to Trace Manager is as follows: 

TM TRACE+l 

DumpTrace 

DumpTrace is an MPW tool that searches and interprets message trace files created by the 
TraceMonitor tool. DumpTrace dumps the messages from each trace file specified. If you do not 
specify a file name, DumpTrace dumps the file TraceF He. The messages are dumped to standard 
output. 

The syntax of DumpTrace is 

DumpTJ:"ace [-an] [-cnJ [-dnJ [-fnJ [-inJ [-lnl [-pn] [-snJ [-tnJ [file ••• ) 

where the following values are specified as hexadecimal numbers: 

-an dump messages having To or FJ:"om values of n 

-cn dump messages having Code value of n 

-dn dump messages having DataPtJ:" value of n 

-fn dump messages having FJ:"om value of n 

-in dump messages having ID value of n 

-1 n dump messages having DataSize value of n 

-pn dump messages having Priadty value of n 

-s n dump messages having Status value of n 

-t n dump messages having To value of n 

file the name of the trace file in which to record message traffic 

Messages are dumped selectively based on values specified by the options just listed. If options arc 
specified, a message is dumped only if its fields match one of the values specified by each of the 
options. If no options are specified, all messages are dumped. Each option can be repeated with 
different values, as shown in the following examples. 

6-26 6/ Me!> Operating System Managers 



Here is the first example: 

OumpTrace -fOdOOOOOl -fOd000002 -c64 fileNamel fileName2 

In this example DumpTrace dumps from fileName 1 and fileName2 those messages that have 
Code values of 100 (64 hex) and that are from task OdOOOOOl (slot d, task 1) or OdOOO002 (slot d, task 2). 

Here is another example: 

OumpTrace -aOd000003 

In this example, DumpTrace dumps from TraceFile those messages that are either to or from slot d, 
task 3. 

The following example of DumpTrace shows output for a message with an associated data buffer: 

To: OdOOOOOl Code: 009,7 TO: fdOO09al 

from: OdOOOO05 Status: 0000 OataPt r: 0000090c 

Priority: 0000 OataSize: 00000040 

SOata: 00 00 00 00 00 00 00 00 00 00 00 00 •• 0.4 ......... 

OOata: 00 00 00 00 fd 00 00 08 00 00 02 6c ., ......... 1 

0000090c 0000 0000 ffff ffff ffff fHf ffff ffff .. 0 ................... 

0000091c ffff ffff ffff ffff ffff ffff ffff ffff ........ 0 ................ 

0000092c ffff ffff ffff ffff ffff ffff ffff ffff ..................... " .. 

0000D93c OcOO 0001 OdOO 0001 ffff ffff ffff ffff .......................... 

Trace Manager 6·27 





Chapter 7 Programming Notes for A/ROSE 

T HIS C HAP T E R describes methods to handle peculiarities of AlROSE, 

and includes some guidelines and brief code examples for the following: 

• accessing memory for intercard communications (including address 

mapping. intercard buffer copying. and intercard message passing) 

• calling primitives from interrupt routines 

• executing small routines at every major tick (using the Tick Chain) 

• using the Idle Chain 

• writing your own download program 

• loading remote tasks • 

7·1 



Intercard communications 
Accessing memory that may be off-card introduces special coding considerations on cards using 
processors that do not directly support 32-bit addressing (such as the Motorola 68000). The Ma> 
provides special hardware (page latch) to map off-card memory into the processor's address space. 

Address mappJng 

You can use the MapNuBus function to set the hardware page latch and to return the appropriate 
local address. The operating system saves and restores the state of the hardware page latch (the 
address mapping) when task switching occurs. Interrupt routines that need to gain access to off­
card buffers must also save and restore the state of the hardware page latch (the address mapping). 

The following is an example that demonstrates a simple case of using MapNuBus. 

message *mptr; 

mptr - Receive (OS_MATCH_ALL, OS_MATCH_ALL, OS_MATCH_ALL, 0); 

switch (mptr->mCode) 

case myCode: 

/* Process myCode */ 
process_myCode(MapNuBus(mptr->mDataPtr»; 

break; 

«Other code » 

The function process_myCode processes the buffer associated with the message. Because 
. MapNuBus was already called, it can simply treat the pointer it receives as an ordinary pointer, as 
long as the routine does na access any other off-card pointer or call MapNuBus . 

.A caution To move data across the NuBus, use NetCopy () (described earlier in 
chapter 5) over MapNuBus () . The MCP card has a NuBus address space 
through which access to the NuBus is made. The hardware page latch that 
controls this NuBus address space needs to be changed whenever address 
boundaries are crossed; tasks which use MapNuBus may not check for 
these boundaries. However, Net copy () checks for and correctly handles 
the boundaries. 4 

7-2 Macintosh Coprocessor Platform Developer's Guide 



Intercard buffer copy 

Any piece of code that manipulates more than one potentially off-card buffer at a time can be 
complex. For example, if you copy data between two such buffers the operating system will 
continually call MapNuBus to adjust the mapping hardware. This operation may actually be more 
efficient if the data is copied through an intermediate local buffer. 

111tercard message passing 

Normally, there is no need to be concerned about how messages are moved from one card to 
another, since AlROSE handles these transparently to the use through the use of TIDs and ICCMs. 
However, this section is included to provide more detailed information about this function. 

Communication between peer ICCMs is done by using the communication areas. The Send ( ) 

primitive checks the mTo field of each message. If the mTo field specifies a destination that is 
not on the senders card, the Send primitive passes the message unaltered to ICCM. ICCM then 
examines the mTo field to discover the destination of the message. 

ICCM on the sending card first checks thal any previous message in the communication area of the 
destination card has been processed. ICCM then checks that a new buffer is available to receive the 
message; if not, a new buffer is requested. When a buffer becomes available, ICCM writes into the 
communication area the message to be sent to the destination card 

The receiving ICCM polls the communication area for new messages. When a new message arrives, 
it is forwarded to the receiving task. Once the message has been forwarded, the receiving ICCM 
clears the sender's communication area on the receivers card and supplies a new Receive buffer. The 
new buffer allows the sending ICCM to again send a message to the receiver's card 

If the destination does not exist, the message is returned to the sender as undeliverable. If the 
destination does exist, it is passed to a peer ICCM on the destination card. The ICCM on the 
destination card attempts to forward the message to the task specified. If the task does not exist, 
the message is returned to the sender as undeliverable. 

VoidDCacheO 
As part of MCP 1.1, VoidDCache () has been added to the AlROSE Prep driver to clear the data 
cache on a machine running with a Motorola 68030 processor. This routine is only effective if the 
processor is a 68030. This routine dears the ~3O data cache to prevent the 60030 processor from 
seeing stale data that was changed by a NuBus smart card or other DMA device. 

The calling sequence in C is 

void VoidDCache () ; 

The assembler language call is 

Import VoidDCache 

7 / Programming Notes for A/ROSE 7-3 



JSR VoidDCache 

No result is returned. 

• Note: The AlROSE Prep driver voids the data cache automatically each time a message is 
received from a NuBus card and during vertical blank interrupts. (Applications do not have to call 
VoidDCache after receipt eX a message from the card under one oondition. The condition is if 
the applications examine buffers on the Macintosh main logic board that are shared with NuBus 
cards. The buffers should be emnined only after receiving a message from a task 00 the card) 

Caching is totally disabled 00 the Macintosh DO. 

Interrupt handlers 
This section describes some guidelines for calling primitives from interrupt routines. 

When using interrupt routines, do not call the following primitives since results are unpredictable: 

• Receive() 

• Reschedule () 

7-4 Macintosh Coprocessor Platform Developer's Guide 



• StartTask () 

• StopTask () 

All other operating system primitives. may be caDed from interrupt routines. However, be careful 
when using the primitives GetMem (), FreeMem () ,and Send () because these primitives 
execute at the same interrupt level as the caller. This ensures that device-interrupt interlocks are 
maintained Send () can be used to notify the appropriate task that a message bas arrived; 
however, system performance may be impacted 

Use of AlROSE primitives at interrupt level should be minimized, because they may interfere with 
high-performance communication devices. User tasks should pre-allocate buffers for their interrupt 
routines, and should also release ttuR buffers when the interrupt routine has fmished with the 
buffer. 

• Note: When using GetMsg, AlROSE always fills in the mFrom field with the TID of the 
current user task. Your interrupt routine must overwrite the mFrom field with the task ID 
that wiD process any reply. 

You can see an example of a task that uses interrupt routines to control hardware in the flies 
:A/ROSE :Examples:pr_manager.c and :A/ROSE :Examples:ossccint.a. These files 
show how to control sces and use them in asynchronous mode. 

The following is an example of how to install an interrupt routine, along with an example of an 
interrupt routine within the code: 

IInstall Proc Export 
Import PostRTE 
LEA MyAS, AO Get address of location to hold AS 
MOVE.L AS, (AO) Put AS there for interrupt routine 
LEA LvlS, AO Get address of interrupt routine 
MOVE.L AO, $74 

RTS 
MyA5 DC.L 0 

... Actual interrupt routine follows. 
Lv15 MOVEM.L AO-Al/AS/DO-D2, -(A7) 

Put address of routine 

Holds AS for interrupt 

; Be sure to save 
registers 

... If the routine is going to access the processes global data, 

... AS will have to be set to provide access. 

into vector 

routine 

MOVEA. L MyA5, AS ; Set AS to this process' AS value 

<Do whatever you want here> 

... If access to a possibly off-card buffer is needed, 

... do something like this: 

MOVE. W gCommon .gPageLatch, - (A7) ; Save page latch 
MapNuBus AO ; Map address to access 

7 / Programming Notes for AlROSE 7-5 



<Access the buffer> 

MOVE.W (A7) +, qCommon.qPaqeLatch ; Restore paqe 

ResetLatch ; Reset mapping hardware to match 

*Now qet ready to leave the interrupt routine. 

where: 

MOVEM.L (A7)+, AO-Al/AS/DO-D2 ; Restore reqisters 

saved on entry 

JMP PostRTE ; Return trom exception 

• qCommon. qPaqeLatch contains the pagelatc:h value associated with the currentJy-executing 
task 

• ResetLatch resets the hardware page Iatcb based upon the value contained in 
qCommon.gPageLatch 

• PostRTE provides a common exit routine from interrupt handlers 

Tick Chain 
The TICk Chain allows you to incorporate very small routines in the code that are executed at every 
major tick. For example, a Tick Chain routine might be the operating system allowing the ICCM to 
go out and look in buffers. Take care to ensure that shared data buffers are not touched by code 
placed in the TICk Chain; TICk Chain code is scheduled independently d AlROSE tasks, including 
those in run-ta-block mode. 

The start of the Tick Chain is a location in low memory (gTickChain), which is a pointer to a 
subroutine that the timer interrupt code calls every major tick. The pointer allows the timer 
interrupt routine to call user-installed time-aitical code routines. The number d ticks per second 
may be determined by calling the library routine GetTickPS () . 

Register AS is set up to allow access to AlROSE global variables. 

• Note: Any routine not loaded with the AlROSE operating system that is placed in the Tick 
OJainlIdie Chain must use its own AS value. 

The routine in the Tick ChainlIdie Chain must preserve the value of AS aaas the call and ensure 
that their routine is using the correct value of AS during its processing. To do so, follow the steps 
ISed below for the appropriate code: 

In the code that inserts a routine into the Tick OJainlldie Chain: 

t Save the value of AS in the code segment for the routine in the Tick OJainlldie Chain. 

2. Save the address d the routine that is currendy in the Tick ChainlIdie Chain. 

7-6 Macintosh Coprocessor Platform Developer's Guide 



3. Insert the address into the Tick Chain/Idle Chain. 

In the routine in the Tick Chain/Idle Chain: 

1. Save the value of AS. 

2 Load the AS value saved by your code segment that inserted this routine into the Tick 
ClainlIdle Clain. 

3. Perform the desired operations. 

4. Restore AS to its previous value. 

5. Call the routine that was saved in Step 2 ci the first set of instructions (for the code that 
inserts the routine). 

The following code segment shows how to install and use the Tick Chain mechanism: 

• Note: Use this mechanism with caution, because it may degrade system performance unless 
you install extremely short time-duration code segments. To ensure that the operating system 
will reliably execute tasks and not hang the card, the total time of the routines installed should 
not exceed the duration set for the major tick. 

void (*ticknextcall) (); 

void tickinstall () 

void myRoutine (); 

extern 

short 

struct gCommon *GetgCommon (); 

s; 
struct gCommon *p; 

1* Fetch local of gCommon area * 1 
p - GetgCommon (); 

1 * disable interrupt s ., / 

s '"' Spl (7); 

/* Fetch next routine * 1 
1* install myRoutine *1 
ticknextcall a p -> gTickChain; 

p -> gTickChain '" myRoutine; 

1* restore interrupts *1 
(void) Spl (5); 

void myRoutine (); 

1* please do something useful *1 
ticknextcall (); 

7 / Programming Notes for NROSE 7·7 



Idle Chain 
The Idle task perfonns the following functions: 

• increments a counter 

• calls the Idle Chain 

• issues the Reschedule primitive to allow other tasks to run 

The Idle task runs in block mode, and is given the lowest priority (priority 0). When no other task is 
eligible for execution on the processor, AlROSE schedules the Idle task. 

The start d the Idle Chain is a location in low memay (qldlechain), which is a pointer to a 
subroutine that the Idle task calls every time the Idle task is scheduled (qldleLoop in 
qCommonArea). The pointer allows the Idle task to call user-installed, noncritical time-code 
routines. On entry, Register A5 is set to allow access to gIobals. Register A5 must be preserved 
across this call. 

The following code segment shows how to install and use the Idle Chain mechanism. 

• Note: Since the Idle task runs in block mode, use this mechanism with caution. The Idle 
Chain does not release control untH the task is completed, and therefore can impact 
performance. You should install only extremely short time-duration code segments. 

void ('* idlenextcall) () i 

void idleinstall () 

void myRoutine (); 

extern struct qCommon '*GetqCommon (); 

short Si 

struct gCommon *Pi 

'* Fetch local of gCommon area * I 
p - GetgCommon (); 

1'* disable interrupts *1 
s - Spl (7) i 

1'* Fetch next routine *1 
1* install myRoutine * I 
idlenextcall - p -> qldleCh,ain; 

p -> gIdleChain - myRoutine'i 

1* restore interrupts *1 
(void) Spl (s); 

void myRoutine () i 

1* very short time duration " shop rental calculator *1 
idlenextcall (); 

7·8 Macintosh Coprocessor Platform Developer's Guide 



Writing your own download program «Reviewers, does this 
section get deleted?» 
Two methods are available for downloading code onto NuBus cards. The first method is used 
during Macintosh startup when AlROSE is not yet running on the card In this case user code is 
downloaded onto the card with A/ROSE operating system code. To downlmd A/ROSE and user 
code at the same time, the user must halt the card, downlmd the code and the operating system, 
and then start the card. The second method is used to download only user tasks when the card is 
already running the AlROSE operating system. In this case, the card must not be halted or started. 

To implement one ri these methods for downloading code onto NuBus cards, use one of the 
following download subroutines: NewDownload or DynamicDownload. NewDownioad, 
described in the next heading, is a general download subroutine that can be used to download 
AlROSE and user programs onto a card at the same time. DynamicDownload is a special 
subroutine that can be used to download user tasks onto cards running AlROSE. These routines are 
supplied in an object library module named -downioad-Iib.o· which also includes other subroutines 
such as Testslot, NewFindcard, startCard, and HaltCard (these routines are 
described later in this section.) 

The new download subroutines read card-specifIC information from the AlROSE Prep me, which 
must be in the System Folder of the startup volume. To control downloading, parameters can then 
be passed as arguments to either the NewDownload or DynamicDownload subroutines . 

• Note: NewDownload neither stops nor starts the card. User programs must specifically 
issue any calls when using NewDownload. This gives users the option of downloading 
code and setting up user-specific data before starting the card 

The NewDownload or DynamicDownload subroutines provide special facilities to specify the 
following: 

• the load address of the downlmded program 

• the address of the gCommon area 

• the type ri the resource where the code can be found (default is 'CODE') 

• the address offset to be used when accessing the card memory 

• the start parameter segment address 

• the length of the start parameter segment 
The parameters you select depend on the subroutine you are calling. Operations such as initializing 
the gCommon area may be specified using the options parameter. The code may be downloaded 
when the card is already running AlROSE by setting a bit in the options parameter. The start 
parameter segment may be specified when using DynamicDownload. 

although NewDownload can be used to down load tasks dynamically. it is provided specifically 
for the initial download of AlROSE system and manager tasks. You must specifically stop the card 
before downloading and start the card after downloading. Do not call Start Card or 
HaltCard when USing DynamicDownload. 

7 / Programming Notes for A/ROSE 7-9 



A Macintosh application is also included that can be used to download applications onto NuBus 
cards. The source for this application, (ndld. c,) is provided in the Downloader folder. ndld. c can 
be used as an ex:unple of how to call the NewDownload subroutine. 
The Download subroutine and MPW tool oownlald released with an earlier version of AlROSE will 
not work with AlROSE 1.1. 

• Hole The resource fde that contains the code to be downloaded must be the current 
resource fde when NewDownload () or DynamicDownload () is called. 

To use the downlald subroutines the user code must be linked with : Downloader: download­

lib. o. The user programs can then call the download subroutines to downIald code onto NuBus 
cards in the Macintosh computer. The following sections desaibe the calling mechanisms for the 
download subroutines and the ndld application. 

NewDownload 

To use the NewDown load subroutine you must have the AlROSE Prep me in the System Folder 
of the startup volume. The fonnat of the AlROSE Prep me wUl be described in a later tech n<Xe. 

typedet pascal void (*PascalPtrLong) (long seg5ize); 

pascal short NewDownload(slotNUM, addrOffset, loadaddr, 

gCommonAddr, options, restype, registers, ProgProc) 

short slotNUM; 

/'* Slot number to use when loading code. This parameter is NOT a bit 
mask. Specify a value between Ox9 and OxE inclusive. */ 

long addrOffset; 

/* Offset from address of card to use as start. The default address is 
defined by the symbol DEF _ADDROFFSET in file Download.h in the A/ROSE 
includes folder * / 

long loadaddr; 

7·10 Macintosh Coprocessor Platform Developer's Guide 



/* Address RELATIVE to addrOffset on the card to load data and code. 

The default initial load address of A/ROSE is defined by the symbol 

DEF LOADADDR in file download.h in the A/ROSE includes folder. */ 

struct gCommon *gCommonAddr; 

/* Address RELATIVE to addrOffset on the card to load locate the 

gCommon area. The default initial load address of A/ROSE gCommon is 
defined by the symbol DEF_GCOMMON in file Download.h in the A/ROSE 

includes folder. */ 

short options; 

/* Set to (DL_INITLOAD + DL_CLEARMEM) if an initial download and low 

memory is to be cleared. Set to DL_INITLOAD if an initial download and 

low memory is not to be cleared. Set to 0 if a dynamic download. (Low 

memory will not be cleared.) If an initial download is being done then 

low memory I gCommon I and the jump tables will be set up. I f a dynamic 

download is being done then low memory will NOT be touched. * / 

Res Type restype; 

/* The resource type (eg. 'CODE') of the resource to load into the 

card. * / 

struct ST_Registers *registers; 

/* Pointer to a register area (defined in os.h in the 

":A/ROSE:includes:" folder) where the correct registers will be 

returned for use in an RSM_StartTask request to start a task loaded 

dynamically. Users need to specify only an address of an area of 

struct ure ST_Register s * / 

PascalPtrLong ProgProc; 

/* Progress report procedure. Called with length of code segment 

being downloaded. This call is done before the segment is download. 

This is a user written procedure that displays the download progress. 

Specify 0 if you do not have a routine. */ 

7 / Programming Notes for NROSE 7-11 



ProgProc is provided to facilitate continuous monitoring of the download process if you are 

downloading a large program. ProgProc is declared as a Pascal procedure that takes one long 

word as a pamneter. Whenever the downlooder is about to download a segment, the downloader 

calls the progress procedure with the size of the segment being downJooded. 

Dynamically downlooded tasks that are downloaded by calling NewDownload are allocated a 
stack space of 4096 bytes and started with a priority of 10. The heap allocated is O. 

• Note addrOffset must be 0 and gCommonAddr must be DEF _ GCOMMON. 

loadaddr must be greater or equal to DEF _LOADADDR. 

Return status 

The NewDownlood routine can return any of the following error constants. The state of any 
NuBus cards to be downloaded is undefined if an error is retumed. DLE_NOERR is a nonnal, 
successful retum. The following is taken from the include me Download. h located in the folder 
:A/ROSE:includes: 

1* Error Constants */ 

#derme DLE_NOERR 0 /* No error */ 

#derme DLE_NOJT 1 /* No jump table found */ 

#derme DLE_DATAINIT 2 /* Bad Data Init segment */ 

-defme DLE_GLOBALF 3 /* Global data format error */ 

#derme OLE_CODES 4 1* Code segment error */ 

#derme DLE_MAC2 5 /* Can only run on Mac II family */ 

Iderme OLE_EMPTY 6 /* All slots are empty */ 

ldefme DLE_NOCARD 7 /* No card in specified slot */ 

#derme DLE_STARTERR 10 /* Starting error */ 

#derme DLE_NOMEM 11 1* No memory */ 

-define DLE_RSMERR 12 /* RSM error */ 

-derme DLE_NORSM 13 /* No RSM */ 

lderme DLE_NOAROSE 14 /* No AlROSE running on card */ 

lderme DLE_NORSRC 15 1* No 'CNFG' resource */ 

7-12 Macintosh Coprocessor Platform Developer's Guide 



'define DLE_NOPREP 

'define OLE_ABORT 

1* Useful constants * I 

16 
17 

16 

1* No A/ROSE prep file 

1* Aborting download 

1* Max number of card slots *1 

*1 

*1 

Make sure the resowce rue is the top most resource and is open before making the call to 
NewDownload. The resource type d. the resource to be downloaded is specifted in restype. The caller is 

responsible to call HaltCard () and Start Card () to halt and start the hardware if you are downloading the 
subroutine for the rlfSt time. The support routines TestSlot () • NewFindCard (). StartCard, and HaltCard 

are provided to assist the user.. & 

DynamicDownload 
To use DynamicDownload you must have the AlROSE Prep me in the System Folder of the 
startup volume; AlROSE must also be adive and running on the NuBus card you installed . 

pascal tid_type DynamicDownload(slotNUM, restype, 

st_parmblock, startParmSegment, lenParmSegment) 

short slotNUM; 

1* slot number to use when loading code. This is NOT a bit mask. 

Specify a value between Ox9 and OxE inclusive. *1 

Res Type restype; 

1* The resource type (eg. 'CODE') of the resource which has the code to 

load into the card. * I 

1* Pointer to an RSM_StartTask parameter area (defined in 

:A/ROSE:includes:os.h). It is the caller's responsibility to initialize 
the following fields: 

7 / Programming Notes for AlROSE 7-13 



st_parmblock->stack 

st_parmblock->priority 

st_parmblock->ParentTID 

The updated parameter block along with the reply from Remote System 

Manager is returned. • 1 

char ·startParmSegment; 

1* Starting parameters for the downloaded task. *1 

long lenParmSegment; 

1* Length of the startParmSegment *1 

DynamicDownload returns the Task ID of the downloaded task. If the task could not be 
downloaded for any reason, a value of 0 is returned. 

Supporting routines 
TIle following routines (TestSlot, NewFindCard, StartCard, and HaltCard) are provided 
to help users administer basic functions to their NuBus cards. 

TestSlot -
Use TestSlot to COnflIlIl that a NuBus card is capable of running AlROSE. TestSlot checks a 

slot for a card with valid configuration information and returns the characteristics of the card 

short TestSlot (slotNUM, boardIDPtr, lenMemPtr, startMemPtr, 

CPURsrcPtr, networkRsrcPtr) 

short slotNUMi 1* Ox9 through OxE. Not a bit mask *1 

7-14 Macintosh Coprocessor Platform Developer's Guide 



short *boardIDPtr; /* place where the board ID is returned */ 

long *lenMemPtr; /* TestSlot returns the max. length of RAM in 

location pointed by lenMemPtr * / 

long *startMemPtr; /* TestSlot returns the starting address of the RAM 

area in location pointed by startMemPtr * / 

short CPORsrcPtr [4] ; /* CPORsrcPtr is a double long word area 

where the CPO resource info is returned */ 

short networkRsrcPtr [4]; /* networkRscrPtr is a double long word where 

the network resource info is returned */ 

The BoardID is a unique number assigned to each type of installed NuBus card. The starting 
address of RAM and the maximum length of RAM are returned in startMemPtr and 
lenMemPtr, respectively. The starting address of the RAM area is returned as a NuBus address and 
the length of the RAM is the maximum amount of RAM that the architecture of the board allows. 
The download subroutine flOds the actual size of the RAM physically present in the card at the time 
of download. CPORsrcPtr and networkRsrcPtr are pointers to two arrays of four short 
words. CPORsrc and networkRsrc are returned to help the caller identify the type of NuBus 
card found. 

TestSlot returns 0 if the slot does not contain a card capable of running A/ROSE. TestSlot 

returns -1 if the card is capable of running AlROSE. 

1re collowing table li$ts Board IDs of some existing NuBus cards: 

Board type Board IDs (Decimal) 

MCP board 10, 11, 13, and 25 

ASIC MCP board 24,28, and 105 

ASf ICP board 261 

Green Spring board 441 

7 / Programming Notes for AlROSE 1-15 



NewFfndatd . 
Use NewFindcard to fand all smart cards that match the specified board IO installed in the 
system. 

pascal short NewFindcard (slot. boardID) 

short *slot; /* Where bit mask is returned */ 

short boardID; /* Specifies the type ot the board */ 

* slot is a bit mask indicating which slas are available for loading. Bit 0 is the least signiflC31lt bit 
Bit9 (bit mask 0x2(0) corresponds to slot 9. Bit 14 (bit mask Ox40(0) corresponds to slot E. 

Findcard will return DLE_NOERR if at least one card of the correa type is found. Findcard 

wiD return OLE_EMPTY if no card of the correct type is found. 

If the specified boardIO is zero, then NewFindcard win retum the existence of an cards 
capable of running MOSE. 

If the specified boardIO is nonzero, then NewFindcard will flOd all the cards that match the 
boardIO. The BoardIO information is found in the configuration ROM of the card. 

StartCard 
Use StartCard to stan the NuBus card 
The StartCard subroutine routine resets the CPU on the NuBus card and stans the execution 
of the downJalded program. The downIald subroutine operates as if the card pRXeSSOr is of type 
Motorola ~XO; the subroutine Ialds the program counter into location 4 on the card and the stack 
pointer into location 0 on the card. . 

A halted or unloaded NuBus card should not be swted wiIhout fust downloading code 
into it. <<WHY N01?» .. 

short StartCard (SlotNUm) 

short SlotNum; /* Ox9 throuqh OxE */ 

SlotNum contains the slot number of the card to start. 

'·16 Madntosh Coprocessor Platform Developer's Guide 



Return status represents the return values for StartCard routine are same as the 
NewDownload subroutine. 

HaltCard . 
Use HaltCard to To halt a specifted NuBus Card. 

The HaltCard subroutine halts the execution of programs on the NuBus card by activating the 
reset line. The card remains in the halted state until it is started again. 

short HaltCard (SlotNum) 

short SlotNum; 1* Ox9 through OxE *1 

SlotNum contains the slot number of the card to start or halt. 

Return status represents The return values for Hal tCard routines that are same as the 
NewDownload subroutine. 

The following example (Compiled with MPW C 3.0) shows the two ways to download code onto 
NuBus cards. 

To initially load and start a card in Slot OxOD the NewDownload subroutine would be called in this 
way: 

short slotNUM; 

long addrOffset, loadaddr; 

struct gCommon *gCommonAddr; 

short options; 

ResType restype; 

struct ST_Registers registers; 

PascalPtrLong progProc; 

short refNum; 

7 / Programming Notes for NROSE 7·17 



slotNUM- OxOd; 

addrOffset .. DEF _ADDROFFSET; 

loadaddr .. DEF_LOADADDR; /* Ox800 */ 

qCommonAddr .. DEF_GCOMMON; /* Ox400 */ 

options- DL_INITLOAD 

proqProc - NIL; 

restype- 'CODE'; 

if «refNum-OpenResFile ("\pSampleCode"» !- -1) 

if (options " DL_INITLOLAD) 

if (Halt Card (slotNUM) !- DLE_NOERR) 

/* cannot halt card * / 

printf("\nError halt card in slot tx", slotNUM); 

else /* Not initial load * / 

status - NewDownload (slotNUM, addrOffset, loadaddr, 

gCommonAddr, options, Resource, 

'registers, progProc); 

7·18 Macintosh Coprocessor Platform Developer's Guide 



if (status !- DLE_NOERR) 

printf("\nDownload error in slot 'x", slotNUM); 

else /* No error in downloadinq * / 

if (options " DL_INITLOLAD) 

if (StartCard (slotNUM) ! .. DL_NOERR) 

/ * Cannot start card * / 

printf ("\nError start card in slot 

slotNUM) ; 

closeResFile (refNum); 

To dynamically download a user task to the card in Slot OxOD the DynamicDownload subroutine 
would be called in this way: 

7 / Programming Notes for A/ROSE 7-19 



pascal tid_type DynamicDownload(slotNUM, restype, 
st_parmblock, startParmSegment, lenParmSegment) 

short slotNUM; 

Res Type restype; 

char startParmSegment [1 .. {"-c • ASDF' -t"}; 

/* start parameters for the user task */ 

long lenParmSegment; 

short refNum; 

tid_type taskID; 

slotNOM- OxOd; 

restype- 'CODE'; 

lenParmSegment- sizeof startParmSegment; 

st_parmblock.stack .. OxlOOO; 

st_parmblock .heap .. 0; 

st_parmblock.priority - 10; 

st_parmblock. Parent TID - 0; 

if « refNum-OpenResFile ("\pSampleCode"» ! - -1) 

7-20 Macintosh Coprocessor Platform Developer's Guide 



taskID - DynamicDownload (slotNUM, restype, 
,st_parmblock, startParmSegment, 
lenParmSegment); 

if (taskID ! - 0) 

/'* You can send and receive messages to this task '* / 

closeResFile (refNum); 

7 / Programming Notes for AlROSE 7-21 





Chapter 8 Developing Smart Card Applications 

T HIS C HAP T E R describes how to develop software applications for 

the MCP smart card, and includes infonnation on 

• how to create new applications with MCP 

• how to get code running on the MCP card 

• debugging the progr:un • 

MCP lets you develop an application on the Macintosh II computer that communicates with 
processes on the Macintosh II main logic board, tasks on the MCP card or aber smart cards, or 
processes and tasks on both. 

During software development, you need to create the following: 

• an MCP card application containing an AlROSE task that will be downloaded to the smart card 

• a MacintO$h application to run on the Macintosh main logic board that incorporates AlROSE 
Prep, the driver that interacts with the AlROSE task on the smart card program 

Before you start 

Before learning how to create M(J) applications, you should have an understanding ri the 
c1ienr/server relationship. (Refer to Chapter 3 for more information.) 

The resources and tools you need to develop applications are included on the M(J) distribution disks 
and described in this chapter. You should already have copied all the files provided on the MCP 
distribution disks to a new folder on your hard disk; if not, do so now by following the 
instructions in Chapler 3. 

Within the M(J) folder you created, yoo should now create another folder for the application you 
will be working on. You will use the following rUes to buad an MCP card application then download 
it to the MCP card: 

• A/ROSE:Examples:osmain.c 

• A/ROSE:Examples:makefile 

Copy these files, then rename them as appropriate for the application you want to build 

8-1 



6. Important To speed development, you should read and use the include fdes provided 
on the distribution disk. You should also read and understand the code 
provided in the Examples files for AlROSE and AlROSE Prep. A 

The examples in this chapter demonstrate how to build an A/ROSE MCP card application and 
download it to an MCP card. Development is similar for building a Macintosh application using 
AlROSE Prep that runs on the Macintosh II main logic board 

Development is iItended to be carried out under MPW, using Assembler and C; the exampJes in this 
chapter are wriUen in C. Compile and link your code for AlROSE as though it were a normal 
Madnlosh application. 

You should avoid normal Macintosh run-time libraries; the Macintosh toolbox is not supported by 
AlROSE. 

8-2 Macintosh Coprocessor Platform Developer's Guide 



How to create an application 
In order to use MCP to to create applications that run on a smart card, you will need to: 

• create original code for the functions you want an application program to perfonn (You can 
use one d the enmple programs provided on the MCP distribution disks as a starting point for 
writing your new code, if you prefer.) 

• modify the main program (osmain .c) by removing any existing code for functions that you 
do not wad (such as the sample tasks currently included) and adding the application program 
cootaining your new code 

• modify the makefile to compile and link the edited code and the new axle for your task(s) 
with the appropriate AlROSE library routines 

Makefiles are supplied as enmples to illustrate the creation of applications for both AlROSE and 
AlROSE Prep. In the examples of code provided in this chapter, any characters highlighted in bold 
show a change to the code (either added, deleted, or in some way modified). 

• Note: If you want to download dynamically (AIROSE already present on the card ), then 
you donlt have to modify osmain. c. For more information, refer to the section on Generic 
AfROSE Down/oQdtnglater in this chapter. 

Creating new code 

You wal need to create new code for the functions you want the program to perform. For 
purposes of this example, the following sample code was created under MPW for a new task to run 
on an MCP card. This task illustrates how to display message text; this text can also be printed 
using standard MPW C print procedures. 

• 

/**************************************************************************/ 

/* 

/* 
/* 

example NewTask - A/ROSE 
*/ 
*/ 

*/ 

/**************************************************************************/ 

'include 
New_Task () 

"os.h" 

short i; 

for (i - 0; i < 10; i++) /* or it could be 100 or 1000! */ 

printf("My TID - 'x, Times through the loop - 'd, I am here?\n", 
GetTIO (), i); 

/**************************************************************************/ 

8/ Developing Smart card Applications B-3 



Modifyiag the main program 

The main program initiates boIh the tasks and MCP software (including AlROSE and supporting 
software services). 

The fie : A/ROSE: Example: osmain • c provides a main program written in C as well as 
examples d tasks. These examples are typical d the highest level d an application that runs on a 
smart card The purpose d osmain is entirely that of initialization. To initialize AlROSE, define 
and start a number d tasks, set the clock rate, and then pass comoI to AlROSE. 

The main program jOU aeate should coosist of. 

• a call to osinit () to initialize AlROSE. Your code must make this call first, so that the 
initialization required for the rest of osmain can be done. 

• a call to StartTask () for each deveJoper-<Zlted task that is desired 

• a call to Startl'ask () fa each AlROSE manager task desired 

• any other initialization that needs to be done. This initialization may be ha~ dependent or 
simply appropriate to your application axle, such as calling a function to reset the sec chips 
after you call osinit on the !Sf card 

• fmally, a call to osstart () to start the operating system and the tasks 

• Note: After the call to osstart () , control is never returned. 

StartTaskO can also be executed by a running task within AlROSE once AlROSE is started. The RSM 
Manager is specifically designed to support downloading and starting of tasks dynamically. 

You should have already created a new main program me by copying the osmain file &om the 
folder :AlROSE:Examples; you are now ready to begin editing that file. Modify this new file to use 
what you need, delete the example tasks you do not need for your progtam, and insert code for 
your own tasks. 

For this example, the code for the osmain me is highligtted in bold to show some tasks that can 
bedelered. 

Macintosh Coprocessor Platfonn Developer's Guide 



/***************************************************** *********************/ 

1* 
1* 
1* 
1* 
1* 
1* 

example os main - A/ROSE 

Copyright e 1987,1988 Apple Computer, Inc. All rights reserved. 

*/ 

*/ 

*1 
*/ 

*/ 

*1 
/**************************************************************************/ 

'include 

'include 

'include 
tinclude 

"os.h" 
"managers.h" 

"mrdos.h" 

"siop.h" 

void osinit (): 

void osstart 0: 
void name server 0; -
void .ccre.et (); 
void time _manager (); 
void time _te.ter (): 
void timeit 0: 
void echo_manager 0: 
void echo_exampla (): 
void trace _manager 0: 

'ifdef PRINT 
void print_manager (); 
'define PRINT_SLOT OxOd 
'endif 

void te.tar 0: 
void ICCM 0; 
void remote_manager (); 

void MMSVP (): 
void MMSVPClient (): 

pascal void illegal () 

extern OX4afc; 
main () 

struct ST_PB stpb, *pb; 

/* default .lot for printing */ 

unsigned short clockyarms, *cp_ptr; 

osinit (cMaxMsg, cOSStack); 

1* Init OS with cMaxMsg messages and cstackOs stack "I 

pb - 'stpb; 

(CetCard () -- PRINT_SLOT) 
.ccre.at (); /* Be .ura SCC i. re.at ... */ 

8/ Developing Smart Card Applications 8-5 



/* Start name server - priority 31, 

pb -> CodeSeqment .. NULL; 

pb -> DataSeqment .. NULL; 

pb -> StartParmSeqment - NULL; 

pb -> stack = 4096; 

pb -> heap - Q; 

pb -> priority '" 31; 

pb -> InitReqs.PC - name server; -
ph -> InitReqs.A_Registers [5] 

ph -> Parent TID -Get TID (); 

if (StartTask (pb) -- Q) 

illegal (); 

Ufdaf PRIB~ 

if (QatCard () _. PRIH~_SLO~) 

{ 

.. 

4k stack, 0 heap. */ 

GetqCommon() -> qlnitA5; 

/* 
*/ 

Start print managar priority 30, 'k atack, 0 heap. 

pb -> CodeSe9lllant - BULL; 
pb -> DataSa9lllant - RULL: 
pb -> StartParmSa9lllent - QatMam (1): 

/* Sat print managar to print from alot PRIH~_SLO~. Thia allow. 
*/ 

/* all card. to aend their output to one alot for printing. U 

*/ 

*/ 

*/ 

/* printing ia deaired on each card individually, 
*/ 

/* the line balow with the following: 

/* *(pb -> StartParmSagment) • QetCard (); 

*(pb -> 
pb -> 
pb -> 
pb -> 

StartParmSegment) 
atack - C096; 

haap - 0; 
priority - 31; 

than 

pb -> 
pb -> 

InitRega oPC • print_.anager; 
InitRega.A_Regiatera [5] - QetgComaon() -> 

gInitA5; 
pb -> Parent~ID - Qet~ID(); 

if (atart~aak (pb) _. 0) 
111agal () ; 

'end1t PRIR~ 

8-6 Macintosh Coprocessor Platform Developer's Guide 

replace 



/* Start timer manaqer priority 30, Ck atack, 0 heap. 

*/ 

pb -> CodeSeqaent - BOLL; 
pb -> DataSepeat - BOLL; 
pb -> StartParmSeqaent - BOLL; 
pb -> atack - COUp 
pb -> heap - 0; 
pb -> priority - 31; 
pb -> InitReqa.PC - tiae_aanaqer; 
pb -> InitReqa.A_Reqiatera [5] - C;etqCo_oa ( ) -> qlnitA5; 
pb -> 'arent~ID - C;et~ID (); 

it (St.rt~a.k (pb) - 0) 
il.l.eqal. 0; 

/* Start ICC manager - priority 31, 128-oyte stack, 0 heap. */ 

• 
po -> CodeSegment - NULL; 

po -> OataSegment - NULL; 

po -> StartParmSegment - NULL; 

po -> stack -128; 

po -> heap -0; 

po -> priority - 31; 

po -> InitRegs.PC - ICCM; 

po -> InitRegs.A_Registers [5] - GetgCommon () -> gInitA5; 

po -> ParentTIO -
if (StartTask (po) -- 0) 

illegal (); 

GetTIO 0; 

/* Start RSM manager - priority 30, 4k-oyte stack, 0 heap. */ 

po 

po 

po 

po 

po 
po 

po 

po 

po 

-> 
-> 

-> 

-> 
-> 
-> 

-> 

-> 

-> 

CodeSegment - NULL; 

OataSegment - NOLL; 

StartParmSegment - NULL; 

stack - 4096; 

heap - 0; 
priority - 30; 

InitRegs .PC - remote_manager; 

InitRegs.A_Registers [5] - GetgCommonO -> 
ParentTIO - GetTIO 0; 

if (StartTask (po) -- 0) 
illegal (); 

/* 

po 

po 
po 

po 

po 

Start echo manager - priority 30, 128 stack, 0 heap. 

-> CodeSegment - NULL; 

-> OataSegment - NULL; 

-> StartParmSegment - NULL; 

-> stack - 128; 

-> heap - 0; 

gInitA5; 

*/ 

8/ Developing Smart Card Applications g. 7 



pb -> priority - 30; 

pb -> InitRegs.PC - echo_manager; 
pb -> InitRegs.A_Registers (5) -
pb -> Parent TIC -
if (StartTask (pb) -- 0) 

illegal (); 

Get TIC 0; 
GetgCornmon () -> gInitA5; 

1* Start trace manager - priority 30, lk stack, 0 heap. *1 

pb -> Cod.Segment -NOLL; 

pb -> OataSegment -NOLL; 

pb -> StartParmSegment - NOLL; 

pb -> stack -1024; 
pb -> heap - 0; 
pb -> priority -30; 
pb -> InitReqs.PC -trace_manager; 
pb • -> InitReqs.A_Reqisters [5 ) - GetgCornmon () -> 

pb -> ParentTIC - GetTIO 0; 

if (StartTask (pbl -- 0) 
illeqal (I; 

1* Start echo ezaaple 
*1 

pb -> CodeSepent -
pb -> Dat.Sepent -
pb -> StartPar.Sepent 
pb -> ataclc - 128; 
pb -> heap - 0; 
pb -> priority - 30; 

pri.od.ty 

.OLL: 
ROLL; - ROLL; 

30, 

pb -> lnitaeqa.PC - echo_eza.ple; 
pb -> lnitaeqa.A_aeqiatera [5 ) -
pb -> Parentl'lD - Qet1'lD 0; 

U (Startl'aale (pb) - 0) 
illeqal 0; 

1* Start n ... teater priority 10, 

*1 

pb -> CodeSepent - ROLL: 
pb -> DataSepent - ROLL; 
pb -> StartPar.Seg.ent - ROLL; 
pb -> atacle - COU; 
pb -> heap - 102C; 
pb -> priority - 10; 
pb -> lnitaeqa.PC - te.ter; 
pb -> lnitaeqa.A_Reqi.ter. [5) -pb -> Parent1'lD - Qet1'ID 0; 

if (Start1'a.le (pb) -- 0) 

8-8 Macintosh Coprocessor Platform Developer's Guide 

128 atacle, 

QetqCo_on ( ) 

Cle atacle, 

QetqCo_on () 

gInitAS; 

0 heap. 

-> qlnitA5; 

102C he.p. 

-> qlnitAS; 



1* 
*1 

illeqal () ; 

Start timer te.ter priority 10, 4k .tack, 0 h.ap. 

-> 
-> 
-> 
-> 
-> 
-> 
-> 

CodeSeqment - NOLL; 
OataSegment - NOLL; 
StartPar.Seq.ent - NOLL; 
.tack - 4096; 
heap - 0; 
priority - 10; 
InitReq •. PC - ti.e_te.ter; 

pb 
pb 
pb 
pb 
pb 
pb 
pb 
pb 
pb 

-> InitReq •. A_Reqi.ter. [5] - GetqCo •• on() 
Parent~ID - Get~ID (); 

-> qlnitA5; 
-> 

it (Start~a.k 

illeqal 
(ph) -- 0) 

0; 

1* Start ti.erit priority 

ph -> Code Segment - NOLL; 
ph -> OataSeq.ent - NOLL; 

10, 4k 

pb -> StartPar.Seq.ent - NOLL; 
pb -> .tack • 4096; 
pb -> heap - 0; 

pb -> priority • 10; 
pb -> InitReq •• PC - ti.eit; 
ph -> InitReq •. A_Reqi.ter. [5 ] 
pb -> Parent~lO - G.t~ID 0; 

it (StartTa.k 
illeqal 

(pb) -- 0) 

(); 

1* WllJW: Start MMSVP priority 10, 

/* Thi. i. provided tor diaqno.tic 

pb -> CodeSeqment • NOLL; 
pb -> OataSeq •• nt - NOLL; 
pb -> StartPar.Seg.ent - NOLL; 
pb -> .tack - 4096; 
pb -> heap - 0; 
pb -> priority - 10; 
pb -> lnitReq •. PC - MMSVP; 
pb -> InitReq •. A_Reqi.ter. 
pb -> ParentTIO -
it (StartTa.k 

illegal 
(pb) -- 0) 
0; 

GetTlO 
[5 ] 
0; 

.tack, 0 heap. * 1 

GetqCoaaon () -> qlnitA5; 

4k atack, 0 h.ap. *1 
purpo •••. */ 

GetqCoaaon () -> qlnitAS; 

/* WllJW: Start 
/* 

MMSVP client 
o heap. Thi. 

ta.k priority 11, 4k .tack, 
diaqno.tic 

*1 
i. provided tor 

purpo •••. *1 

8/ Developing Smart Card Applications 8-9 



ph -> CodeSeqment - NOLL; 

ph -> DataSeq.ent - NOLL; 

ph -> StartPar.Seq.ent - ROLL; 

ph -> atack - COIH;; 

ph -> heap - 0; 
ph -> priority - 11; 
ph -> Initaeqa .PC - MMSVPC~ient; 

pb -> Initaeqa.A_aeqiatera 
pb -> Parent~ID • 

(Start~aalt 

il.l.eqal. 
(pb) 
(); 

-- 0) 

Q.t~ID 

/* Start operating system. 

'.1:rde:r AS~_ICP 

*/ 

/* a.tup VIA 
cl.ockJar.a -

to .1nterrupt ua 
VIA_~ICK_RA~Z; 

cp-ptr • 'c~ockJar.a; 

'endit ASl'_ICP 

f.i,td.t MCP 
cpytr - NULL; 

'.nd.1t MCP 

(5] 

0; 

."ery 
/* 

• QetqColDIDon () 

10 • .1l.l..1a.conda 
c~ocll: rate tor 

-> qlnitAS; 

*/ 

*/ 
10 .a tick 

osstart 
*/ 

/* start things up 

illegal (); /* should never qet here */ 

/ •• w********* •• ************************************************************/ 

8-10 Macintosh Coprocessor Platfonn Developer's Guide 



Next, edit the file to remove the tasks highlighted, and then insert code for the new task (named 
NewTask). The main program file for this example should now look like this: 

'****************************************************-*********************/ 

/* 

/* 

/* 

/* 

example os main - A/ROSE 

*1 
*/ 

*1 
*/ 

/* Copyright C 1987,1988, 1989 Apple Computer, Inc. All rights reserved. 

*/ 

/* */ 

'**************************************************************************/ 

tinclude "os .h" 

tinclude "manaqers.h" 

tinclude "mrdos.h" 

tinclude "siop.h" 

void 

void 
void 

void 

void 

void 

void 

voicl 

osinit (); 

osstart (); 

name_server (); 

echo_manager (); 

trace_manager (); 

ICCM (); 

remote_manager (); 

11 ... _~a.k () ; 

pascal void illegal () extern 

main () 

struct ST_PB stpb, *pb; 

Ox4afc; 

unsigned short clockyarms, *cp_ptr; 

osinit (cMaxMsg, cOSStack); 

/* Init as with cMaxMsg messages and cStackOS stack *1 

pb - Utpb; 

/* Start name server - priority 31, 4k stack, 0 heap. *1 

pb -> CodeSegment - NOLL; 
pb -> DataSegment - NOLL; 

pb -> StartParmSegment - NOLL; 
pb -> stack - 4096; 

pb -> heap -0; 
pb -> priority - 31; 
pb -> InitRegs.PC - name server; -
pb -> InitRegs.A_Registers (5] - GetgCommon () -> gInitA5; 
pb -> ParentTID -Get TID (); 

8/ Developing Smart Card Applications 8-11 



if (StartTask (ph) == 0) 
illegal (); 

1* Start ICC manager - priority 31, 128-hyte stack, 0 heap. *1 

ph -> CodeSegment - NULL; 

ph -> DataSegment - NULL; 

ph -> StartParmSegment - NULL; 

ph -> stack -128: 
ph -> heap - 0; 
pb -> priority - 31; 
pb -> InitRegs.PC - ICCH; 
pb -> InitRega.A_Regiatera [5] 
pb -> ParentTID -GetTID (); 

if (StartTaak (pb) -- 0) 
illegal (I; 

1* Start RSH manager - priority 30, 

pb -> CodeSegment - NULL; 

pb -> DataSegment - NOLL; 

pb -> StartParmSegment -NOLL; 

pb -> stack -4096; 
pb -> heap - 0; 
pb -> priority - 30; 

- GetgCommon ( I 

4k-hyte stack, 

ph -> InitRegs.PC -remote_manager; 
pb -> InitRegs.A_Registers [5] 
ph -> Parent TID -
if (Start Task (ph) -- 0) 

illegal (); 

1* Start echo manager 

ph -> CodeSegment 
pb -> DataSegment 

GetTID (); 

- priority 

- NULL; - NULL; 

-

30, 

ph -> StartParmSegment - NULL; 

pb -> stack - 128; 
pb -> heap - 0; 
ph -> priority - 30; 
pb -> InitRegs.PC - echo_manager; 
ph -> InitRegs.A_Registers 
pb -> Parent TIC -
if (StartTask (pb) -- 0) 

illegal (); 

Get TID 
[5] -

(); 

GetgCommon() 

128 stack, 0 

GetgCommon () 

-> gInitA5; 

0 heap. *1 

-> gInitA5; 

heap. *1 

-> gInitA5; 

1* Start trace manager - priority 30, 1k stack, 0 heap. *1 

pb 
ph 

-> 

-> 
CodeSegment - NULL; 

DataSegment - NULL: 

8-12 Macintosh Coprocessor Platform Developer's Guide 



pb -> StartParmSegment a NULL: 
pb -> stack - 1024: 

pb -> heap -0; 

pb -> priority ,. 30; 

pb -> InitRegs.PC . trace_manager; 

pb -> InitRegs.A_Registers [51 - GetgCommon ( ) -> gInitA5; 

pb -> Parent TID -Get TID (); 

if (StartTask (pb) -- 0) 

illegal (); 

/* Sta~t Be._~aak pd.od.ty 20, 

ph -> CodeS.pent - BULL; 
ph -> DataSepent - BULL; 
ph -> Sta~tPa~.Seq.ent - BULL; 
ph -> atack - tOg,; 
ph -> heap - 0; 
ph -> prio~ity - 20; 
ph -> InitReqa.PC - Be._~aak: 

ph -> InitReqa.A_Reqiate~a 

pb -> Pa~.nt~ID -
i~ (Start~aak 

illeqal 
(pb) -- 0) 
0: 

c:.t~ID 

1* Start operating system. 

cp~tr - NULL; 

[S] 

(); 

tk atacle, 0 heap. 

- c:.tqCo .. on () -> 

os start 
illegal (); 

(TICK_MIN_MAJ, TICKS_PS, cp~tr); 1* start things up 

1* should never get here 

*/ 

qlnitAS: 

*1 

*1 
*1 

/********w*****************************************************************/ 

8/ Developing Smart Card Applications 8-13 



Modifying the makeftle 

Now that you have modified osmain to include the code for your new task, next you will 
modify the makefde. You should have already copied the makefile from the folder 
:AlROSE:Exampiesj if so, you are now ready to modify that new fde. Using the makefile, you can do 
the following: 

• compile the initialization software (osmain • c) and application tasks 

• link the desired AlROSE libraries with the application tasks and initialization software to build 
the program to be downlalded to the smart card 

CootpiJe and link this code as though it were a normal Macintosh application. You should not use 
nonnaI Macintosh run-time Iibrariesj the AlROSE operating system does n<X support the Macintosh 
toolbox. The next two sections direct you to the available include fdes and libraries you can use to 
modify the makeflle. 

AlROSE include mes 
Table 8-1 lists sane ri the include rues available and briefly describes each me. These include flies 
are located in the folder AI ROSE : inel udes: on the MCP distribution disks. You can use these 
include mes to compile and link your code. 

• Table 8-1 Include flies 

os.a os.h 

manaqers.a manaqers.h 

arose.a arose.h 

Defines the operating-system message structure, 
commonly used constants, and externally 
visible system library routines. 

Contains the structures and constants used 
when accessing the Name Manager, TIme Manager, 
and InterC1rd Communications Manager. 

Contains constants and structures for the 
operating-system tables. 

In addition, there are four include rues similar to those listed in Table 8-1 specifically for use with 
the AST-ICP card; these files are named see.a, see.h. siop.a, and siop.h and are 
located in the AlROSE:includes: folder on the distribution disks. These fdes are useful if any SCC 
hardware is to be used 

8-14 Macintosh Coprocessor Platform Developer's Guide 



AlROSE libraries 

The file : A/ROSE: Binar ies: 05.0 is the library containing the generic A/ROSE routines. The 
file : A/ROSE: Binaries: osgl ue. 0 is the glue (interface) library containing code to allow tasks 
to use A/ROSE utility routines . 

• Note Do not use the standard C library cruntime.oj the osglue.o file that is provided 
00 the MCP distribution disks contains run-time library routines. 

When you're ready. use the MPW Unk command to link your code with these files . 

.6. Important To avoid conflicts in the MPW linker with duplicate names, you should prefIX 
all nonvisible and externally invisible C function and subroutine names with 
static. Doing this reduces the possibility that routines with the same names 
from different object files will interact to produce linker errors. t:. 

Changes to the makefile 

The following code from the new file (the sample file that you copied) is highlighted in bold to 
show the tasks that changed or were deleted from the makefile. Compare this file with the one 
following to determine the code that has been changed, added, or deleted 

• Note. {Card} represents a string that you will replace. 

8 / Developing Smart Card Appl ications 8-15 



1***************************************************** ************* •• ** 

'**'**1 
1'* 

1* 

1* 

1* 

*1 
Makefile for example download. 

*1 

*1 

*1 
1* Copyright C 1987, 1988 Apple Computer, Inc. All rights 

reserved. * 1 
1* 

*1 
1********************************************************************** 

*****1 

t Maket~1e tor t •• t dovn1oad. 

t To ~nvok. th~. .ak.t~1. pl. a.. type 
make 

Card Binaries 

CI ::inc1udes: 

LinkOpts -1 -x :"{Card}":start.xrf > :n{Card}":start.map 

AOptions -d 'Card-o'{Card}o' -i ::includes:,::"{Card}": -1 

font Courier, 7 0 

-pagesize 115,124 -print Data, Obj, Lits, NoMDir 

COptions -D "{Card}" -D PRINT -i {CI} 

CSources : : includes: scc. h echo. c trace_manager. c 

pr_manager.c printf.c name_tester.c 0 

timer_tester. c osmain. c time It. c L30smain. c 

L3MMSVP • c L3MMSVPClient. c r s. c 

AsmLists ossccint.a.lst IOPNub.a.1st L3MMSVP.a.lst 

Targets -.0 -.1st start GenAROSE 

8-16 Macintosh Coprocessor Platform Developer's Guide 



:"{Card}": f : : includes: 

all f 

:"{Card}":start f 
::"{Card)":osglue.o a 

:"{Card}":start :"{Card}":GenAROSE 

:"{Card}":osmain.c.o ::"{Card}":OS.o 

:"{Card}":printf.c.o :"{Card)":name_tester.c.o 

:"{Card}":timer_tester.c.o a 

:"{Card}":timelt.c.o :"{Card}":echo.c.o 

:"{Card}":trace_manager.c.o a 

:" {Card}": ossccint. a. 0 :" {Card}" :pr_manaqer .c. 0 

link -t 'OMRP' -c 'RWM ' -0 :"{Card)":start a 

:"{Card}":osmain.c.o :"{Card)":ossccint.a.o 

::"{Card}":OS.o ::"{Card}":osqlue.o a 

: .. {Card} ":pr_manager.c.o :" {Card}" :printf .c.o 

:" {Card}": name_tester. c. 0 :" {Card}" :timer_tester. c. 0 a 

:"{Card}":timelt.c.o :"{Card}":echo.c.o 

:"{Card}":trace_manaqer.c.o a 

{LinkOpts} 

:"{Card)":GenAROSE f 
::"{Card)":osqlue.o 

:"{Card)":GenAROSE.c.o ::"{Card)":OS.o 

link -t 'OMRP' -c 'RWM ' -0 :"{Card)":GenAROSE a 

:"{Card)":GenAROSE.c.o ::"{Card}":OS.o ::"{Card)":osqlue.o 

{LinkOpts) -1 >GenAROSE.map 

:"{Card}":osmain.c.o 
{CI)siop.h 

f {CI)os.h {CI}managers.h {CI}arose.h 

8/ Developing Smart Card Applications 8-17 



:"{Card)":GenAROSE.c.o 

:"(Card}":ossccint.a.o 

:"ICard)":pr_manaqer.c.o 
{CI)manaqers.h 

:"{Card)":printf.c.o 

:"{Card)":echo.c.o 

:"{Card}":trace_manaqer.c.o 
(CI)manaqers.h 

f 

f 

f 

f 

f 

:n{Card)":name_tester.c.o f 

:"{Card}":timer_tester.c.o 

:"{Card)":timelt.c.o 

:"{Card}":L3MMSVP.c.o 

:"{Card}":L3MMSVP.a.o 
{CI)diaqs.a {CI}siop.a 

:"{Card)":L3MMSVPClient.c.o 
{CI)manaqers.h 

{CI}os.h {CI}managers.h {CI)arose.h 

::"{Card}":OSDefs.d 

{CI}scc.h {CI)siop.h {CI}os.h 

{CI}os.h {CI}manaqers.h 

{CI)os.h 

f {CI}scc.h {CI}siop.h {CI)os.h 

{Cl}os.h {CI)manaqers.h {CI}arose.h 

f {CI}os.h {CI}manaqers.h 

f {CI}os.h {CI}manaqers.h 

f {CI)os.h {CI)diags.h 

f {CI)arose.a {CI}os.a 

f {CI}os.h {CI}diaqs.h 

8-18 Macintosh Coprocessor Platform Developer's Guide 



Special targets. 

Listings - Print changed files. 

Listings if {AsmLists} 

Print -f Courier -s 7 -ls 0.70 -r {NewerDeps} 

Listings if {CSources} 

Print -f Courier -s 7 -ls 0.70 -r -hf Courier -hs 9 -h -n 

{NewerDeps} 

echo "Last listings made . Date' • II > Listings 

Clean - Remove all targets. 

Clean f {Targets} 

Delete -i {Targets} 

81 Developing Smart Card Applications 8-19 



Compiling and linking your code 
You will next use the makefile to generate the commands that will compile and link your code 
together. To do so, enter the MPW command Make. 

The commands produced are: 

C -0 "Binaries" -0 PRINT -i ": :MCP Software:A/ROSE: "includes: osmain.c -0 

osmain.c.o 
C -0 "Binaries" -0 PRINT -i ": :MCP Software:A/ROSE:"inc1udes: NewTask.c d 

-0 newTask. c. 0 

Link -t 'GMSC' -c '????' -0 start a 
osmain.c.o ": :MCP Software:A/ROSE:MCP:"OS.o a 
"::MCP Software:A/ROSE:MCP:"osq1ue.o a 
": :MCP Software :A/ROSE: Examples :MCP: "printf. c. 0 a 
"::MCP Software:A/ROSE:Examp1es:MCP:"trace_manaqer.c.o a 
NewTask .c. 0 -1 -x xref > map 

• Note:. {AROSE} is the pathname of the AlROSE folder under MPW. You must set this up 
when using MPW; otherwise, you must substitute the full patbname for {AROSE}. 

Table 8-2 defines the parameters to the Link command, shown in the example above. 

• Table 8-2 Link command parameters 

-t 

GMSC 

-c 

-0 start 

osmain.c.o 

os.o 

osqlue.o 

printf.c.o 

trace_manaqer.c.o 

NewTask.c.o 

The type of file that Link command is going to 
generate 
The file type convention GMSC takes is for the MCP card 
but the file type can be anything. 
The creator 
Enter any appropriate creator name 
The output file from the linker; the file start will be 
created in your directory 
The initialization routine that you modified 
File that contains AlROSE operating system 
File containing glue code 
Printing subroutine source code for AlROSE; equivalent 
to the printf IOOtine in standard C 
Tracing tool for AlROSE 
The name of the main program containing your task 

8-20 Macintosh Coprocessor Platform Developer's Guide 



• Note. Only the globally-visible name of the task should be the task's main program. The 
task's main routine should not be called 'main- but must be given an04her name, because 
your code is sharing space with the entire operating system, and the name osmain is 
always visible. 

Select the entire section listed above to enter and execute these commands; this creates the 
application that you will download to an MCP card. 

Downloading code to the MCP card 
Download is an MPW tool that downloads smart card application fues to smart cards .. The 
makefue in :AlROSE:F.xamples produces the following one executable file for downloading: 

:A/ROSE:Examples:Binaries:start 

This section first discusses the Download tool, then presents information to help you 
create your own download application. 

Generic A/ROSE downloading 
You can download a generic version AlROSE with a single call. With this feature you can download 
an executable ready to use AlROSE onto a NuBus card without the effort of modifying 
"osmain. e" , linking with AlROSE routines, and downloading the initial module. 
StartAROSE will halt the card, download AlROSE module with commonly used managers listed 
below, and start the card The generic version of AlROSE is called, StartAROSE. The 
StartAROSE ranine is dermed in downIoadJib.o 

Managers induded in the generic version of AlROSE are: 

• Name Manager 

• InterCard Communications Manager 

• Remote System Manager 

• Echo Manager 

The generic AlROSE module is placed in the AlROSE Prep file under the resource 'DMRPI. The call to 
StartAROSE makes a call to NewDownload to download this resource from the AlROSE Prep 
me in the system folder. 

This is the Calling Sequence: 

tid_type StartAROSE(short slotNum); 

/* slotNum is value between Ox9 and OxE */ 

81 Developing Smart Card Applications 8-21 



StartAROSE retums the Task lD of the Name Manager. Generic AlROSE is part of the AlROSE 
Prep tile. 'Ibis facility enabies.AppIe to update the OS. You can download the generic AlROSE and 
your other rues using the dynamic download facility. In a later release you will be able to specify 
the managers to be included in the Generic AlROSE. 

The Retum Status will indicate if the card could not be downloaded for any reason by returning a 
valueofO. 

CalIJng the Download tool 

The name of the fie to be downloaded and the destinalioo slot number or numbers are provided as 
parameteJS. The calling sequence for the Download tool is 

Download Filename (-Sl ••• -SnJ where: Filename specUtes the name of the program 
file to be downloaded to the card, and Sn is the slet where the card is found 

Slots are numbered in hex from 9 to E (left to right), two examples might be -9 or -A. You can 
specify multiple slots. If you do not specify a slet number, the default for Download is all slots 
containing smart cards of the kind matching the Download tool. 

After validating these parameters, Download does the follOwing: 

• perfonns the download for each of the slots selected 

• copies the resources of the object file (including Jump Tablet Data Initialization, and Segments) 
into RAM of the selected smart cards 

• starts each card when Download sets the program counter to the appropriate address 

8-22 Macintosh Coprocessor Platform Developer's Guide 



You can now download the compiled and linked code to the smart card for execution, using lhe 
Download tool provided on the MCP distribution disk. 

To continue the example from the makefile presented earlier in this chapter, follow the steps 
described next. To download the sample application to the card, enter 

": :MCP Software:A/ROSE:Oownloader:Oownload" start 

Next, enter the following comand: 

directory ":: MCP Software: A/ROSE Prep: Examples:" 

pr_manager 

This command starts up the MPW Print Manager tool. Using this tool, you can check if the 
downloaded card ~ running and able to send messages to tasks running on the Macintosh II, and 
then d~play results on the screen (similar to the example shown next). 

Print Manager TID - 4 

Starting Main Loop 

TID b05: Trace Manager: Starting. 

My TID ,. b06, Times through the loop .. 0, I am here 

My TID - b06, Times through the loop ,. 1, I am here 
My TID - b06, Times through the loop - 2, I am here 
My TID ,. b06, Times through the loop - 3, I am here 
My TID ,. b06, Times through the loop - 4, I am here 

My TID ,. b06, Times through the loop - 5, I am here 
My TID - b06, Times through the loop - 6, I am here 
My TID ,. b06, Times through the loop - 7, I am here 

My TID - b06, Times through the loop - 8, I am here 
My TID ,. b06, Times through the loop ,. 9, I am here 
My TID - b06, Times through the loop .. 10, I am here 

To stop using the MPW print manager tool, press Command-period; the screen displays 
CloseQueue Called. 

Download errors 

Download errors are indicated by messages to the stderr file. The state ri any cards to be downloaded 
is undefined if an error is returned. DLE_NOERR is a normal return. Table B-3 lists Download error 
constants; these constants are found in the file :AlROSE:includes:Download.h. 

8/ Developing Smart Card Applications 8-23 



• Table 8-3 Error constants for Download 

£nor DJspIaycd Number Description 

'define DLE_NOERR 0 No error 
'define OLE_NOJT 1 No jump table found 
'define OLE_DATAINIT 2 Bad Data Init segment 
'define DLE_GLOBALF 3 Global data-format error 
'define OLE_CODES 4 Code segment error 
'define DLE_MAC2 5 Code only runs on Macintosh II 
'define OLE_EMPTY 6 No cards foond 
'define OLE_NOCARO 7 Slot specified is empty 
'define OLE_RESFILE 8 Q>uldn't open resource file 
'define OLE_FILEWRONG 9 Download fde is wrong type 
'define OLE_STARTERR 10 Starting error 
'define DLE_NOMEM 11 No memory 
'define OLE_RSMERR 12 RSM error 
'define OLE_NORSM 13 NoRSM 
'define OLE_NOAROSE 14 No AlROSE running on card 
'define DLE_NORSRC 15 No 'CNFG' resource 
'define OLE_NOPREP 16 No AlROSE Prep file 
'define OLE_ABORT 17 Download aborted 

Using the download subroutines 
You can use two methods to download code onto NuBus cards. Use the fll'St method during start 
up when there is nothing loaded on the cards. With this method, your code is downloaded along 
with AlROSE operating system code. To implement this first method, 100 must halt the card, 
download the code and the operating system, and then start the card. Use the second method to 
download your tasks when the card is already running the AlROSE operating system. In this C3Se, 
the card should not be halted or started 

Use the following subroutines to implement the two methods just described for downloading 
code onto cards: 

• NewDownload 

• DynamicDownload 
NewDownload is a general download subroutine that can be used to oownload AlROSE and user 
programs initially onto a card. Dynami cDownl oad is provided speciftcally to download user 
tasks dynamicaUy onto cards running AlROSE. These routines are supplied in an object library 
module named -download-Iib.o,· foond in the AlROSE:Downloader folder The object library also 
indudesaherusefulsubroutinessuchasTestSlot, NewFindcard, StartCard, and 
Hal tCard. These subrootines read card specifIC information from the AlROSE Prep file. This 
prep me must be in the System Folder of the startup volume. Varioos parameters can be passed as 
arguments to these subroutines to control downloading. 

8-24 Macintosh Coprocessor Platform Devdoper's Guide 



• Note: The NewDownload subroutine neither halts nor starts a card. User programs must 
issue the desired calls specifically when using the NewDownload subroutine. This is to 
allow users the option to download code and set up user-specific data before starting the 
card. 

These two subroutines support important features that can specify the following: 

• load address (where the downloaded program goes), 

• the address of the qCommon area, 

• the resource type of the code (default is 'CODE' J 
• the address offset to be used when accessing the card memory, 

• the start parameter segment address, and the length ri the start parameter segment 
The parameters that are specifJcalIy passed depend on the subroutine you are calling. For 
example, operations such as initializing the common area can be specified using the options 
parameter. In any case, your code can be downloaded dynamically, when the card is running 
AlROSE, by setting a bit in the options parameter. You can specify the start parameter 
segment when using OynamicOownload. 

Although NewOownload can be used to download tasks dynamically, it is provided specifically 
for the initial download ri the AlROSE system and manager tasks. You must specifICally halt the 
card before downloading and start the card after downloading. You must not call stanlhalt card 
fur OynamicOownloa~ 

Your installation disk contains a sample Macintosh application that can be used to download your 
code and AlROSE onto NuBus cards. The source code for this application, NOLO. c, is also provided. 
NOLO. c can be used as an example of setting up parameters for the NewOownload subroutine. 

• Note: The Download subroutine and MPW tool download released with an earlier version of 
AlROSE will nct work with this version of AlROSE. In addition, the resource file that 
contains the code to be downloaded must be the current resource me when you call 
download. A download tool is provided in the Downloader folder. 

To use any of the OOwnload subroutines your code must be linked with download-lib. o. Your programs (only 
code running on the main Macintosh logic board) can then call the download subroutines to download code to NuBus 
cards. The following sectioruJ describe the calling mechanism for both the download subroutines and the ndld 

sample application. 

NewDownload 

To use the NewDownl oad subroutine you must have the AlROSE Prep fIle in the system folder. The format of the 
AlROSE Prep me will be found in a future Macintosh tech nae. 

8/ Developing Smart Card Applications 8-25 



The foJlowing shows the NewDownload format 

t Incl ude "Download. H n 

typedef pascal void (*PascalPtrLong) (long segSize); 

pascal short NewDownload (slotNUM, addrOffset, loadaddr, 

gCommonAddr, options, restype, registers, ProgProc) 

short slotNUM; 

1* Slot number to use when loading code. This parameter is NOT a bit 
mask. Specify a value between Ox9 and OxE. *1 

lonq addrOffset; 

1* Offset from address of card to use as beqinning. The default 
address is defined by the symbol DEF_ADDROFFSET in file Download.h in 
the A/ROSE includes folder *1 

lonq loadacldr; 

1* Address RELATIVE to addrOffset on the card to load data and code. 
The default initial load address of AIROSE is defined by the symbol 
DEF_LOADADDR in file download.h in the AIROSE includes folder. *1 

struct gCommon *gCommOnAcldr; 

j. Address RELATIVE to addrOffset on the card to I~d locate the gCommon area. The default initial I~d 
address d AlROSE gCommon is defmed by the symbol DEF _GCOMMON in file Downloadh in the AlROSE 
indudes folder .• / 

short options; 

1* Set to DL_INITLOAD I DL_CLEARMEM if an initial download and low 
memory is to be cleared. Set to DL_INITLOAD only if an initial download 
and low memory is not to be cleared. Set to 0 if a dynamic download. 
(Low memory will not be cleared.) If an initial download is being done 
then low memory, qCommon, and the jump tables will be set up. If a 
dynamic download is beinq done then low memory will NOT be touched. *1 

Res Type restype; 

8-26 Macintosh Coprocessor Platform Developer's Guide 



1* The resource type (eg. 'CODE') of the resource to load into the 

card. *1 

struct ST_Registers *registers; 

1* Pointer to a register area (defined in os.h in the AIROSE includes 
folder) where the correct registers will be returned for use in a 
RSM_StartTask request to start a task loaded dynamically. Users need 
to specify only an address of an area of structure ST_Registers * 1 

PascalPtrLong ProgProc; 

1* Progress report procedure. Called with length of code being 
downloaded * 1 

You can create a progress report procedure to monitor the download process continuously if you 
are downloading a large program. The progress report procedure is declared as a Pascal procedure 
that takes one long word as a parameter. Whenever the downloader is aboot to download a 
segment it calls the progress procedure with the size of the segment being downloaded 

• Note: addrOffset mustbeOandgCommonAddr mustbeOx400. 

loadaddr must be greater than or equal to 0xB00. 

Return status 

The NewDownload subroutine can return any of the following error constants. The state of the 
card to be downloaded is undefined if an error is returned OLE_NOERR is a normal, successful 
return. The following error constants are taken from the include me Download. h located in the 
~:A/ROSE:includes: 

r Error Conslanls "/ 

ldefme DLE_NOERR 0 r Noermr "/ 

ldefane DLE_NOIr 1 r No jump table found "/ 

ldefme DLE_DATAINrr 2 r Bad Data Ini1 segment "/ 

ldefme DLE_ GLOBALP 3 /" Global data format error "/ 

8 / Developing Smart Card Applications 8-27 



#defme DLltCODES 4 r Code segment error °1 

#defme DLE_MAC2 5 I" Can only run on Mac II family °1 

#defme DLE_EMPTY 6 r Slot specified is empty °1 

#defme DLE_NOCARD 7 1° No cards found °1 

#defme DLE_STARTERR 10 r Swting error °1 

#defme DLE_NOMEM 11 r No memory °1 

#defme DLE_RSMERR 12 r RSM error °1 

#defme DLE_NORSM 13 r NoRSM °1 

#defme DLE_NOAROSE 14 r No AlROSE running on card °1 

#defme DLE_NORSRC 15 I" No 'CNFG' resource °1 

#defme DLE_NOPREP 16 r No AlROSE prep rue °1 

#defme DLE_ABORT 17 I' Aborting downlaad °1 

A Caution The resou.rce me must be open before the call to Downlaad and must be the top most 
resource. The resource type of the resource to be downloaded is specified in restype. It is the caller's responsibility to call 
HaltCard() and Start Card () to halt and start the hardware if it is an initial laad Supporting routines described 
in the section titled Supporting Routines have been provided to assist you. • 

DynamicDowruoad 

To use DynamicDownJoad you must have the AlROSE Prep file in the system folder and AlROSE 
must be active and running on the NuBus card plugged in the specified slot. 

pascal tid_type DynamicDownload(slotNUM, restype, 

st_parmblock, startParmsegment, lenParmsegment) 

short slotNUM; 

/* slot number to use when loading code. This is NOT a bit mask. 

Normally a value between Ox9 and OxE. */ 

ResType restype; 

/* The resource type (eg. 'CODE') of the resource which has the code to 

load into the card. */ 

8-28 Macintosh Coprocessor Platfonn Developer's Guide 



/* Pointer to a RSM_StartTask parameter area (defined in os. h) in the 

A/ROSE includes folder). It is the caller I s respnsibility of to 

initialize the following fields: 

st~armblock->stack 

st_parmblock->heap 

st_parmblock->priority 

st_parmblock->ParentTID 

The updated parameter block along with the reply from Remote System 

Manager is returned. */ 

char *startParmSegment; 

/* Starting parameters for the downloaded task. */ 

long lenParmSegment; 

/* Length of the startParmSegment * / 

DynamicDownload returns the Task ID of the downloaded task. If the task could not be 
downloaded, a value of 0 is returned. 

NewDownload (NOLO) 

NDLO is an application used to download software onto smart NuBus Cards. NDLO calls the 
NewDownload subroutine. NDLO is launched like any ether Macintosh application. When ndld is 
launched it displays a dialog box listing all the options available. Figure 8-1 shows the NDLO Dialog 
Box. A translation d the dialog box options follows the illustration. 

Figure 8-1 The NDLD Dialog Box 

8/ Developing Smart Card Applications 8-29 



Load Option 

@ I nitial Load 

o Dynamic Load 

10 TestPrograms I 
C1 [or-out :t1 
[) data 
[) datal 
CI start 
[) TestDate 
[) testgen 
CI TestlCCM 
[) TestSem 

Slot selection 

09 DC 

On DO 
On 01: 

E:::) Raja 

( 1:.iJ:- C1 ) 

IJrh·(~ ) 

UDownloadl 

( Quit 

Resource: I CODE I 
status: 

Load option 

Slot selection 

Standard Gettlle 

Download 

Quit 

B.csource 

Offers button selection for either initial or dynamic load. 

Specifleds the computer slas into code should be downloaded 

File to be downloaded 

Download start button 

End download dialog and QUit the application 
Type of the resource to be downloaded Default is 'CODE' 

8-30 Macintosh Coprocessor Platform Developer's Guide 



Interface spedflcatlon 

NewDownload and DynamicDownload subroutines are designed to be linked with applications running on the 
Macintosh. The following is the only object library module provided that must be linked to use the Download 
subroutines: 

Download-lib.o Oocated in theA/ROSE:Downloader folder) 

for example., the following link statement is used for linking NDW wlh downloader. 

Link -w -t APPL -c '????' a 

Download-lib.o a 

"{Libraries}"Interface.o a 

"( CLibraries} "CRuntime. 0 a 

"(CLibraries}"StdCLib.o a 

" {CLibraries } "Math. 0 a 

" (CLibrar ies} "Clnterf ace. 0 a 

-0 NOLO 

Load module description 
The load module generated by the MPW linker is a relocatable code with jump tables. The code is 
downloaded to the card by the NewDownload subroutine starting at the location you 
specify(default is Ox8)()). The NewOownload subroutine fIXes the addresses of the code in memory 
and the segment entries in the jump table are set to a loaded «What does loaded mean?» state. 

In dynamic download, an area large enough to acconunodate the task being downloaded and the 
starting parameter segments is allocated in the card using the Remote System Manager GetMem 

command. The task is downloaded into the card and started using the Remcte System Manager 
StartTask command. 

Implementation strategy 

The A/ROSE Prep me is very important for the downloader to work. Start/Halt routines and the 
NewDownload subrootine flfSt call the TestSlot routine to get information about the card to be 
downloaded. This information includes the BoardID of the card and the actual address that is used 
to download from the Macintosh. The code that does the actual download is also in the A/ROSE 

8/ Developing Smart Card Applications 8-31 



Prep file in the resource named 'dwnl'. This allows the download code to be modified in future 
releases without the need for users to relink their code with a new release of AlROSE. 

A/HOSE Prep file 
The AlROSE Prep me contains information that is used by the download subroutines. Some of this 
information is SpecifIC to the type ci card. The AlROSE Prep me must be in the System Folder 
before any programs are downloaded onto NuBus cards. 
There is a unique BaaId 10 for each type of NuBus carel These board IDs are assigned by Apple. 
The Slot Manager information on the cards is used to determine the BaaId ID of each card in the 
System. The BaaId 10 is used as the JeSQ1rt'e ID to get card specific information, such as routines 
to startlhalt card. 

The format of the AlROSE Prep file will be described in a taler Tech Note. 
The following sections describe supporting routines that aid in the maintenance of the card The 
specific tasks are discussed as well as how to perfonn them. 

TestSlot 

This test detennines if a card is capable of running AlROSE. TestSlot checks a slot for a card with 
valid configuration information and returns the characteristics of the card. The BoardIO is unique 
for each type ci card The starting address of RAM and the maximum length of RAM are returned 
in startMemPtr and lenMemPtr, respectively. The staning address cithe RAM area is 
returned as a NuBus address and the length ci the RAM is the maximum amount of RAM that the 
architecture of the board allows. The download subrootine finds the aaual size of the RAM 
physical1y present in the card at the time ci download CPURsrcPtr and networkRsrcPtr 
are pointers to two arrays of 4 short words. 

short TestSlot (slotNUM, boardIDPtr, lenMemPtr, startMemPtr, 

CPURsrcPtr, networkRsrcPtr) 

short slotNUM; 

/* Ox9 through OxE. Not a bit mask */ 

short *boardIDPtr; /* place where the board ID is returned */ 

long *lenMemPtr, *startMemPtr; 

/* lenMemPtr is the maximum length of RAM and startMemPtr is the 
starting address of the RAM area */ 

short CPURsrcPtr (4), networkRsrcPtr (4); 

8-32 Macintosh Coprocessor Platform Developer's Guide 



/* CPURsrcPtr is a double long word area where the CPU resource info 
is returned and networkRscrPtr is a double long word where the network 

resource info is returned * / 

TestSlot returns zero if the sltt does not contain a card capable of running AfROSE. TestSlot returns -1 for 
slot zero if the card is capable of rurming AlROSE. 

Board tvoe Board IDs 

MCP board 10, 11, 13, and 25 

ASIC MCP board 24 and 105 

ASr ICP board 261 

Green 50rin2 board 441 

NewFindCard 

This test helps you fmd all cards loaded in the system 

pascal short NewFindcard (slot, boardID) 

short *slot, boardID; 

• slot is a bit mask indicating which slots are available for loading. Bit 0 is the least signifICant bit. 
Bit9 (bit mask Ox2(0) corresponds to sltt 9. Bit 14 (bit mask Ox40(0) corresponds to sltt E. 

NewF indcard will return OLE_NOW if adeast one card of the carect type is found and will 
return OLE_EMP'IY if no card d the correct type is found. 

If the specified boardIO is zero, then NewFindcard will return nttification of all cards capable of 
running AfROSE. 

If the specified boardIO is non zero, then NewFindcard will find all the cards that match the 
boardIO. BoardIO infonnation is found in the configuration ROM d the carel. 

8/ Developing Smart Card Applications 8-33 



StanCard 
The start card routine resets the CPU and the NuBus card starts the execution of the downloaded 
program. In the case of Motorola 68000 processor the program counter is loaded with the value in 
location 4 and the stack pointer is loaded with the value specified in location O. A NuBus card 
should not be started without first downloading code into it 

short StartCard (SlotNum) 

short SlotNum; 1* Ox9 through OxE *1 

where SlotNum contains the slot number of the card to start or halt 

Haltcard 
The halt card routine halts the execution of programs on the NuBus card by permanently activating 
the reset line. You must halt the card before doing an initial download 

short HaltCard (SlotNum) 

short SlotNum; 1* Ox9 through OxE *1 

where SlotNum contains the slot number of the card to start or halt. 

• Note: The return values for start/halt card routines are same as for download calls. 

Example: (Compiled with MPW C 3.0) 

To initially load and start a card in Slot OxOD the NewDownload subroutine would be called in the following 
way: 

short slotNum; 

long addrOffset, loadaddr; 

8-34 Macintosh Coprocessor Platform Developer's Guide 



struct qCommon *qCommonAddr; 

short initial_load; 

ResType Resource; 

struct ST_Registers Reqisters; 

PascalPtrLong proqProc; 

short refNum; 

slotNum - OxOd; 

addrOf f set - 0; 

loadaddr - INIT_LOAD; /* Ox800 * / 

qCommonAddr - INIT_GCOM; /* Ox400 * / 

progProc - NIL; 

Resource - 'CODE'; 

if «refNum-OpenResFile("\pSampleCode"» !- -1) 

if (initial_load) 

HaltCard (slotNum); 

status - NewDownload (slotNum, addrOffset, loadaddr, 

qCommonAddr, initial_load, Resource, 

'Registers, progProc); 

8/ Developing Smart C1rd Applications 8-35 



if (status -- OLE_NOERR " initial_load) 

StartCard (SlotNum); 

closeFile (refNum); 

To dynamically download and start a user task in Slot OxOD, the Oynamicoownload subroutine would be 
caJled in the following way: 

short slotNum; 

ResType Resource; 

char startParmSeg[] - {"-c 'ASDF' -t"}; 

/* start parameters for the user tasle */ 

long lenParmSeg; 

short refNum; 

tid_type tasleIO; 

slotNum - OxOd; 

Resource - 'CODE' ; 

lenParmSeg - sizeof startParmSeg; 

st_parmblocle.stacle - OxlOOO; 

st_parmblocle.heap - 0; 

8-36 Macintosh Coprocessor Platfonn Developer's Guide 



st_parmbloclt .priority - 10; 

st_parmblock.ParentTID - 0; 

if «refNum-OpenResFile ("\pSampleCode"» !- -1) 

taskID - DynamicDownload (slotNum, Resource, 
,st-parmblock, startParmSeg, 
lenParmSeg); 

if (taskID ! - 0) 

• 
1* You can send and receive messages to this task *1 

closeFile (refNum); 

8/ Developing Smart Card Applications 8-37 





Chapter 9 A/ROSE Prep 

AlROSH Prep is the driver that provides services to Macintosh programs or 

processes that are used to communicate with other processes on the 

Ma~h or on one or more smart cards. AlROSH Prep includes AlROSE 

message passing, task naming, and echo services; it is not another operating 

system for the Macintosh computer. 

This chapter describes where to find AlROSE Prep on the MCP distribution disks, 

how to install and use AlROSE Prep, and how to make specific calls to A/ROSE 

Prep .• 

9·1 



The A/ROSE Prep software 
The AlROSE Prep file contains information that is used by the AlROSE download subroutines 
(NewOownLoad and OynamicDoWnload). Some of this infonnation is specifIC to different types 
of cards. The AlROSE Prep file must be in the system folder before any programs are downloaded 
onto NuBus cards. Installation instructions are provided in Chapter 2. 

There is a unique Board 10 for each type of NuBus card. These board Ids are assigned by Apple. 
The Slot Manager infonnatioo on the cards is used to determine the Board 10 of each card in the 
system. The Board ID is used as the resource 10 to get card specifIC information; such as routines 
to startlhalt card. 

AlROSE Prep software consists of the AlROSE Prep driver, development tools, include files, and 
examples. The Ma distribution disks COlUins a folder named :A!ROSE Prep: that contains the 
following: 

• a file named IPCGl ue • 0 that contains the AlROSE Prep library, providing object routines 
(glue code) for interfadng to the AlROSE Prep driver, as well as glue code that allows C 
progr3IDS running under the Macintosh II operating system to make calls to the driver 

• a file named AlROSE Prep, which contains 
c the AlROSE Prep driver, which runs under the Macintosh II operating system 
Cl an INIT31 resource, which installs the driver and managers at system start-up 

Cl the Name Manager, which is provided for the Macintosh II main logic board 
Cl the Echo Manager, which is provided for the Macintosh II main logic board 

• a folder named Examples, which contains 
Cl an AlROSE Prep file that contains everything just described for the AlROSE Prep file, plus 

the Echo example. (The Echo example is almost identical to the Echo Manager, and is 
provided to show how you can add a manager.) 

Cl a makeftle that shows how IPCGlue.o is used in linking 
Cl Example flies that cootain source code examples of Macintosh II programs that use the 

AlROSE Prep driver 

Each of these oompooents is described in this chapter in the section on AlROSE Prep services, along 
with examples of C and assembly-language macros for each AlROSE Prep call. 

Using A/ROSE Prep 

An application that uses AlROSE Prep must make an initial call to OpenQueue to establish its use 
of IPC. Each process that uses AlROSE Prep requests that a queue be opened by calling 
OpenQueue. 

Messages are sent and received through AlROSE Prep using Send and Receive. 

9-1 Macintosh Coprocessor Platform Developer's Guide 



• When the A/ROSE Prep driver gets a Receive request and no completion routine is specified, 
the message queue is searched for a message matching the criteria specified. If a matching 
message is found, it is retumed to the process. If no matching message is found, the driver 
either returns immediately or, depending on the timeout specified, blocks the process until a 
matching message arrives (indefmitely if the timeout is 0, or until the timeout is reached). 

However, the Receive request behaves differendy when a completion routine is specified. 
Refer to information on the Rece! ve call in the next section of this chapter for more details. 

• If a Send request is destined for a process on the Macint~h II, the destination -process is 
Unblocked, if waiting for the message that bas arrived, or the message is placed in its queue. If 
the message is destined fa a task on a smart card, the message is transferred to the ICCM on 
that slot for delivery to the task. 

A/aOSE Prep services 
This section describes the AlROSE Prep services and provides examples of how to call primitives and 
utilities from both C and Assembler. These services are provided to support features similar to 

those of AlROSE fa applications running on the Macint~h II computer. 

• Note: As with AlROSE, AlROSE Prep uses C caHing conventions, and aU registers are preserved 
except DO, 01, AO, and At. Calls in both C and Assembler take arguments and use similar data 
structures. 

9 / AlROSE Prep 9-3 



Table 9-1 lists the services provided by AlROSE Prep, with a brief description of each. 

• Table 9-1 AlROSE Prep services 

CloseQueue () 

FreeMsg () 

GetCard () 

GetETick () 

GetICCTID () 

GetIPCq() 

GetMsg () 

GetNameTID () 

GetT14;:kPS () 

GetTID () 

IsLocal () 

KillReceive () 

Lookup_Task () 

OpenQueue ( ) 

Receive () 

Register_Task() 

Send() 

SwapTID () 

LockRealArea () 

OnLockRealArea () 

NetCopy () 

<bes an AlROSE Prep queue 

Frees a message buffer 

Returns the NuBus slot number on which the calling process is running 
returns the number of major ticks 

Returns the task identifier of the InterCard OJmmunication Manager 

Returns the address d the glomi data area wlhin the AlROSE Prep driver 
Gets a message buffer 

Returns the task identifier of the Name Manager 
Returns the number of major ticks in one second 
Returns the task identifier of the calling process 

Returns an indication of the locality of an address 
C':mcels an outstanding receive request 
Returns the task identifaer of the process or task that matches the Object 
Name and Type Name specified 

Opens an AlROSE Prep queue 

Receives a message 
Allows a process to register itself wIb the Object Name and 
Type Name specified 
Sends a message 

Swaps the mFrom and mTo fields in a message buffer 

Accepts a virtual address and a length; attempts to lock the memory 
associated with the virtual address into real memory 
Unlocks a memory area that was previously locked with a call to 
LockReaIAreaO 
Takes virtual addresses for its address arguments 

9-4 Macintosh Coprocessor Platform Developer's Guide 



OoseQueue( ) 

CloseQueue () closes a queue that was previously opened. This call should be the last one made 
before an entity terminates. 

The C declaration for CloseQueue () is 

void CloseQueue(); 

The following example shows how to call CloseQueue using assembly language: 

JSR CloseQueue 

9 / AlROSE Prep 9-5 



FreeMsg( ) 

FreeMsg () frees a message buffer that was acquired earlier by a call to GetMsg (). 

The number of messages initially available depends upon the number requested in the named 
AlROSE Prep resource entries of type aipn found in the AlROSE Prep driver fde. 

The C declaration of FreeMsg () is 

void FreeMsg( mptr ) 
message *mptr; /* pointer to messaqe buffer to free * / 

The fonn for the FreeMsq maao is as follows, where PI is the addJess oftbe message bUffer 
to be freed: 

(Label] FreeMsC) PI 

PI can be specified as a register (AO.A6, DO(07), or use any 6fro) addressing mode valid in an LEA 
instruction to specify the location containing the desired address. 

• Table 9-2 A/ROSE Prep Address Usage 

FreeMsq 

Get IPCg 

GetMsq 

IsLocal 

LockRealArea 

NetCopy 

Open Queue 

Receive 

The addJess of the message buffer to be freed must be a 32-
bit virtuaJ address. 

The address of the global table will be a 32-bit virtual address. 

The address d the allocated message buffer will be a 32-bit virtual address. 

The address to check must be a NuBus address. 

The address d the memory to be locked must be a 32-bit virtual address. 
The address of the addressareas structure must be either a 24-bit virtual or 
32-bit virtual address, depending on the current addressing mode of the 
Macintosh main logic board (see SwapMMUMode).. The addressareas 
struc:.ture will be fdled with NuBus addressllength pairs. 

The addresses of the type and objec.t name strings must be either 24-bit 
virtual or 32-bit virtual addresses, depending on the current addressing mode 
of the Macintosh main logic baud (see SwapMMUMode). 

The source and destination addresses must be 32-bit virtual addresses. 

The address d the blocking Receive procedure must be either a 24-bit virtual 
or 32-bit virtual address, depending on the current addressing mode of the 
Macintosh main logic board (see SwapMMUMode). 

The address of the completion routine must be either a 24-bit virtual or 32-bit 
virtual address, depending on the current addressing mode of the Macintosh 
main logic board (see SwapMMUMode). The address d the received message 
will be a 32-bit virtual address. 

9-6 Madntosh Coprocessor Platform Developers Guide 



Register_Task 

Send 

OnlockRealArea 

The addresses of the type and object name strings must be either 24-bit 
virtual or 32-bit virtual addresses, depending on the current addressing mode 
of the Macintosh main logic bcmd (see SwapMMUMode) 

The address of the message buffer to send must be a 32-bit virtual address 

The address of the memory to unlock must be a 32-bit virtual address 

9 / AlROSE Prep 9·7 



GetCard() 

GetCarci () returns the NuBus slot number d the card on which the calling process is running. For 
the Macintosh II computer, the number returned is always zero. 

The C declaration for GetCarci () is 

char GetCard (); 

The following example shows how to call GetCard using assembly language. Upon return, DO 
contains the NuBus slot number on which the calling process is running. 

JSR GetCard 

9-8 Macintosh Coprocessor Platform Developer's Guide 



GetETlck() 

Get ET ick () returns the number of major ticks-that is, the elapsed time in ticks-since the 
operating system started. 

The C declaration for GetETick () is 

unsigned long GetETick () ; 

The following enmple shows the how to call GetETick using assembly language. To return the 
number d major ticks, get the value of location gMajorTick in the qCommon data area. 

JSR GetETick 

• Note: A tick on the Macintosh n is d a different duration than that on an MCP card. 

9 / AlROSE Prep 9·9 



GetICCl'ID( ) 

GetICCTIO () returns the task identifier of the InterCard Communication Manager. 

The C declaration for Get I CCT 10 () is 

GetICCTIO (); 

The following example shows the how to call Get ICCTIO using assembly language. Upon return, 
DO contains the t2sk identifJer of the InteJCard Communication Manager. 

JSR GetICC1IO 

• Noll!: Sia 0 bas an implicit ICCM, since the ICat is buUt into the AlROSE Prep driver that is 
configured into the System PUe. 

9-10 Macintosh Coprocessor. Platform Developer's Guide 



GetlPCg() 

Get IPCq ( ) returns the address of the data area of the AlROSE Prep driver. This routine is provided 
as an aid for debugging purposes. Refer to the include files on the MCP distribution disks for the 
structure of IPCq. 

The C declaralion for Get IPCq () is 

struct IPCq *GetII?Cq () ; 

A Warning Use this call at your own risk! Subject to change with no notice. A 

The following example shows how to call Get IPCq using assembly language. Upon return, DO 
contains the address of the data area of the MOSE Prep driver. 

JSR Get II?Cq 

• Note: If you use this routine in Assembler, the routine returns the beginning of the driver's 
area; you must change the address by an offset defmed in II?Cqdefs. a in order to use 
the record for this data area. 

9 / AlROSE Prep 9·11 



I 

GetMsg( ) 

GetMsg () requests a message buffer from the free-message pool. GetMsg () either returns zero 
indicating failure to obtain a message buffer, or a pointer to the allocated message. A call to 
FreeMsg () releases the message. 

All fields in the message, except message 10 (mID) and the From address (mFrom) ,aredeared 
before the pointer to the message is returned Message 10 is set to a number that is statistically 
unique to the field; the From address is set to the current task identifier. 

The C declaration of GetMsg () is 

message *GetMsg(); 

The form for the GetMsg macro is 

[Label] GetMsg 

The address of the allocated message buffer is returned in DO unless no buffer was available. In that 
case, 0 is returned in DO. 

LockRealArea( ) 

LocltRealArea () will accept as input a virtual address and a length and wUl attempt to Jock the 
memory associated with this virtual address into real memory. The virtual address must be in the 
same address space as the routine that called LocltRealArea (I • Therefore, a NuBus card cannot 
lock: memory on the mother board. Similarly, another NuBus card and the mother board cannot 
lock memory on any other NuBus card. If successful, the physical address(es) of the memory 
associated with the virtual address are returned 

The structure addressareas, in which LocltRealArea reblrns the physical addressllength 
pair is defmed in the following way: 

struct addressareas 

void *address; 1* Physical address of memory area *1 

unsigned long length; 1* Length of memory area *1 

} ; 

The calling sequence for LocltRealArea () is the following: 

short LocltRealArea (void *virt ualaddr, unsigned long length, 

struct address areas *buffer, 

9·12 ~cintosh Coprocessor Platform Developer's Guide 



I 

unsigned long count); 

virt ual addr is the virtual address of the memory area to be mapped. length is the length of 
the memory area buffer is the area where the physical address map is returned buffer is a 
pointer to an array of stru<1Ure addressareas. count is the number of real address/length 
pairs in the structure a ddr e s s ar e a s that the buffer can hold. This is the same as the number 
of elements in the array addressareas. 

You can declare the buffer in the following way: 

struct addressareas buffer [16] ; 

If the size of the buf f er [] is large enough for only one entry; that is, count has a value of one, 
the pages are forced to be contiguous. Otherwise, the pages may not to be contiguous when 
locked in memory. 

The physical address/length pairs are returned in buffer. Any unused address/length entries in the 
buffer are initialized to zero. 

LockRealArea () returns zero if successful. If the pages oould not be locked in physical 
memory or if the buffer was not large enough to contain the entire physical address map then 
LockRealArea () will either return an error code of-erLockFailed- or an error code returned by 
the Macintosh operating system. The memory is not locked if an error is returned. 

9 / AlROSE Prep 9-13 



GetNameTID( ) 

GetNameTID () rerums the task identifier of the Name Manager. 

The C declaration for GetNameTID () is 

GetNameTID (): 

The following example shows how to call GetNameTID using assembly language. Upon rerum, 
DO is the task identifier d the Name Manager. 

JSR GetNameTID 

9-14 Macintosh Coprocessor Platform Developer's Guide 



GetTlckPS( ) 

Get T ickP 5 ( ) returns the number of major ticks in 1 second. 

The C declaration for GetTickPS () is 

unsigned short GetTickPS (); 

The following example provides how to call GetTickPS using assembly language. Upon return, 
DO is the number c:i major ticks in 1 second. 

JSR GetTickPS 

9/ NROSEPrep 9-15 



GetTID( ) 

Get TID () returns the task identifier of the calling task. 

The C declaration for 'GetTID () is 

GetTID (); 

The following example shows how to call GetTID using assembly language. Upon return, DO is 
the task identifier d the calling process. 

JSR GetTID 

• 

9-16 Macintosh Coprocessor Platform Developer's Guide 



IsLocal( ) 

I s Local () returns a true or false indication ci whether or not an address is local. 

The C declaration for IsLocal () is 

short IsLocal(address) 
char *address; /* address to test. */ 

I s Local () returns true (oon-zero) if the address passed is local. I sLocal () returns fa1se fit if the 
address passed is a remote NuBus address. 

The form for the IsLocal maao is as follows, where Pl is the address to examine: 

[Label) IsLocal Pl 

Pl em be specifaedas a register (AO-A6, 00-07), an immediate (t<abs-expr», cruse any6fD)O 
addressing mode valid in an LEA instructioo to specify the location r:i a long word containing the 
desired value. 

9 / AlROSE Prep 9-17 



KillReceive( ) 

KillRacai va () cancels any outstanding Recei va request for this process. Messages destined 
for this process are na discarded. 

The C declaration for KillRecei ve () is 

void KillReceive(); 

The following example shows how to call KillReceive using assembly language: 

JSR KillReceive 

KiUReceive cannot be called from aerrupt level. Only receipt compIetial rootines can be called from interrupt 
level. 

9-18 Macintosh Coprocessor Platfonn Developers Guide 



Lookup_Task 0 returns the task identifier of the process or task that matches the Object Name 
and Type Name specified, or 0 if no matching process or task is found. The wildcard character ":" is 
allowed Initially, the index should be set to 0; on subsequent calls, it should be left unchanged. 

• Note: Lookup_Task () modifies the variable index. The variable index allows 
Lookup_Task () to fmd any additional entries that may match the criteria in subsequent 
calls. 

The C dedaration for Lookup_Task () is 

tid_type Lookup_Task (object, type, nm_TID, index) 

char object [1; 1* Object Name *1 
char 

tid_type 

unsigned 

type [1; 

nm_TID; 

short * index; 

1* Type Name *1 
1* Name Manager Task Identifier .. 1 
1* Index * / 

The task identifier of the Name Manager is nm _TID, and may be obtained by using 
GetNameTID () for Name Managers on the Macintosh II, or by sending an ICC_GetCards 

message to the ICCM for Name Managers on NuBus cards. Lookup_Task () returns the task 
identifier of the fU'St process or task that matches the criteria. 

The following code shows how to look up all processes on the main logic board of the 
Macintosh II computer: 

short index; 

tid_type tid; 

index - 0; 

while «tid,. Lookup_Task ("-", """, GetNameTID 0, 'index» > 0) 

printf ("TID 'x Found \n", tid); 

The following example shows how to call Lookup_Task from assembly language: 

MOVE.W to, INDEX initialize index 

PEA INDEX address of index 

MOVE.L TID,DO value of tid on stack 

MOVE.L DO,-(A7) place on stack 

PEA TYPE_NAME address of type name 

PEA OBJECT_NAME address of object name 

JSR Lookup_Task 

ADDO.W tl6, A7 pop the stack 

TST.W DO check if found 

BNE.S DO,XXX jump if found 

9/ NROSEPrep 9-19 



OpenQueue( ) 

Open Queue () assigns an AlROSE Prep queue and returns the TID of the process that called 
Open Queue, or zero if no queue could be assigned This method allows you to set up your own 
procedure to determine what to do while waiting on a blocking Reed ve; if you do not want to 
use this mechanism, use a parameter of zero. This method also lets you decide whether to cancel 
the outstanding Receive request or discontinue communication with AlROSE Prep; that is, it is a 
way ri letting you check for operator termination. 

This function must be called before any <Xher call to AlROSE Prep can be made. You can issue either 

• an AlROSE Prep CloseQueue request, or 

• a KillReceive request 

If the procedure issues an AlROSE Prep CloseQueue request and ret1Jrm to the AlROSE Prep 
driver, then the driver returns to the outstanding Receive request with a value ri O. Issuing a 
KillReceive request returns 0 to the Receive request (no message). 

The C declaration for OpenQueue () is 

tid_type OpenQueue(procedure) 

void (*procedure) (): 1* Procedure to execute while waiting *1 
1* for blocking receive to complete. *1 

• Note: This parameter is required; use 0 if you do not want to call the procedure. 

The form for the OpenQueue macro is as follows, where Pl is the address of the procedure to 
execute while waiting for a blocking receive to complete: 

[Label] Open Queue Pl 

Pl can be specifIed as a register (AO-A6, 00-07), an immediate (t<abs-expr», or use any 68000 
addressing mode valid in an LEA instruction to specify the location of a long word containing the 
desired value. 

9-20 Macintosh Coprocessor Platform Developer's Guide 



Receive( ) 

Rece i ve () returns the highest priority message from the message queue of the process that 
matches the specified criteria. 

The C declaration of Receive () is 

message 
unsigned 
tid_type 
unsigned 
long 

void 

*Receive ( mID, 
long mID; 
mFrom; 
short meode; 
timeout; 

compl(); 

mFrom, mCode, timeout, compl ) 

/* Unique message ID to wait on 
/* Sender address to wait on *1 
/* Message code to wait on 
/* Time to wait in major ticks */ 
/* before giving up 
/* Address of a completion routine 

The fIrSt three parameters (mI D , mFr om, and mCode) are selection criteria used to receive a 
specifIC kind of message. These parameters may be set to match either a specific value, to match 
any value (by specifying OS_MATCH_ALL), or to match no value (by specifying 
OS_MATCH_NONE). 

*/ 

The fourth parameter is the timeout value. A timeout value of 0 waits forever for a satisfying 
message. A negative value returns either a satisfying message or 0 immediately, and a positive value 
waits that many ticks for a satisfying message to arrive. 

• Note: If a completion routine is not specified, the NROSE Prep Receive performs in 
exactly the same way as the NROSE Receive primitive. 

The ftfth parameter is the address of a C completion routine. This parameter is required for AlROSE 
Prep, and changes the way the Receive request performs. This fifth parameter must be either 
the address of a completion routine or zero, if no completion routine is desired. When this 
completion routine parameter is non-zero, the call to Receive always returns immediately with a 
result of 0 or an error status as shown in Table 9-4. 

The completion routine will be called with a parameter d type 'message *'. If the completion 
routine is passed a pointer of zero, a timeout occurred 

• Note: It is ~ible for the completion routine to be called before the Rece i ve actually 
returns. The purpose d the completion routine is to provide a mechanism by which the 
Macintosh II application can continue to execute without having to wait for a message. This is 
necessary because the current version of the Macintosh II operating system is not a multi­
tasking operating system; therefore, the application cannot cease to process events. Under 
NROSE, a process can do a blocking Receive and permit other processes to execute. 

Table 9-3 describes the results from various settings of the timeout parameter in major ticks for 
the Receive call. The results column describes what is returned to the Receive request and 
completion routine, as well as when the completion routine is called. 

*1 

*1 

*1 

9 / AlROSE Prep 9-21 



• Table 9-3 Stale table for the Rece i ve all 

TbMout Compledoa Messa. immediate SuIJIequeat 
ftIue l'Oudae anIIabIe reauJu resu.1tt 

<0 No (0) No Returns 0 to the Receive None 
request 

No (0) Yes Returns message to None 
Receive request 

Yes No The AlROSE Prep driver returns None 
o to the Receiva request; 
the completion rootine is 
nacaUed 

Yes Yes The AlROSE Prep driver calls None 
the completion routine with 
the message, after which 
the driver returns 0 to the 
Recei ve request 

No (0) No Waits until it gets a message, Waits for a 
then returns a message to the message; the 
Receive request OpenQueue routine 

is called cootinuously 
No (0) Yes When a message arrives, None 

returns a message to the 
Receive request 

Yes No Returns 0 to the Rece! ve None 
. request 

When a message arrives, the 
driver calls the completion 
routine with the message 

Yes Yes Returns a message to the None 
completion routine and 
returns 0 to the Receive 

request 

No (0) No Waits for a message OpenQueue 

that does not arrive routine is 
called continuously 

If the time interval that you 
specify expires. then it returns 
o to the Racei ve request 

No (0) Yes Message returns to the None 
Receive request 

corWalWi .. 

9·22 Madntosh Coprocessor Platform Developer's Guide 



Timeout Completion MessltIC immediate Sub8equeat 
ftJue roudae IftIIabIe results results 

Yes No Immediately returns 0 to the None 
Receive request and the 
task continues executing 

When a message comes in, 
the driver calls the completion 
routine with the_message 

If the timeout expires, the 
driver calls the completial 
routine with 0 

Yes Yes Returns a message to the None 
completion routine; returns 
o to the Rece! ve request 

When using completion routine, you should observe the following guidelines: 

• Never use a blocking Receive in a completion routine. 

• Be cautious about starting the next asynchrooous Receive within a completion routine, as 
rerursion can be deadly. 

• Remember that completion routines might sometimes be called as the result of an interrupt; 
anticipate the unexpeded! 

Only one Receive may be outstanding on a given queue at a time; attempted additional 
Receive routines will return errors. Receive returns 0 in the event of one of the following: 

• no message is available (either timeout or non-blocking) 

• a negative error axie in the case of an error 
• or a positive pointer to the received message buffer 

• Note: You must exercise caution when testing the pointer returned by Receive for a 
negative value to ensure that the test is valid. 

The fonn for the Receive macro is: 
[Label) Receive Pl. P2. P3. P4. PS 

where Pl is the message ID match code, as follows: 

P2 - the sender address match code 
P3 - the messaqe code match code 
P4 - the timeout code 
PS - the completion routine address 

PI through PS can each be specified as a register (AO-A6, 00-07), an inunediate (t<abs­
expr», or any 68000 addressing mode valid in an LEA instruction to specify the location of a long 
word containing the desired value. 

9 / A/ROSEPrep 9-23 



... Waroing Code running on the Macintosh main baud must call the AlROSE Prep 
driver Send or Receive only when that code is running in a virtual memory (VM) safe mode. 

The AlROSE Prep driver will call all completion routines in VM safe mode as long as the AlROSE Prep 
Prep driver Send and recd ve are done in VM safe mode. 

Completion routines called by the AlROSE Prep driver as the result ci a receive request with completion routine 
specified can be called either in user or in supervisor mode, in main line code or at interrupt level. Do not assume 
that canpletion routines wUl always be called at irterrupt level in supervisor mode.. • 

9-24 Macintosh Coprocessor Platform Developer's Guide 



Results returned 

Whenever you call the Receive request on AlROSE Prep, you get one of three results returned 
from the IPC driver: 

• 0 
• message 

• negative number (indicating an error) 

Table 9-4 lists the two errors only that can be returned when a Receive request is made to AlROSE 
Prep. 

• Table 9-4 FJ'rors returned 

NoQueueErr 

QueueBusy 

-64 

-65 

Error oode for no more queues or bad queue 
If Receive is already outstanding on queue 

Error -64 (NoQueueErr ) is returned if the queue number ('nO) of the task doing the Recei ve 

request is bad. A queue number is bad if it is not within the range of legal queue numbers or is not 
open (either Open Queue was not done or CloseQueue was done). 

Error -65 (QueueBusy) is returned if an attempt is made to do a Receive request for a particular 
queue number (TID) when a request is already outstanding. Refer to the section earlier in this 
chapter on OpenQueue for more information . 

.. Warning To check for an error in the message pointer returned by a Rece i ve 

request in C language, you must cast the message pointer to long before 
checking to see if the pointer is negative. Failure to do so will result in a 
system crash. • 

The following code checks the message pointer to see if an error code was returned: 

message *msgptr; 

msgptr - Receive (0, 0, 0, 0, 0); 

if «long) msgptr < 0 I 

/* Process error code */ 

else 

/* No error, process message * / 

9/ A!ROSE Prep 9·25 



Reqister_Task () allows a process to register itseJfwith the Object Name and Type Name 
specified, using the Name Manager. If the process should be visible only to <Xher processes on the 
Macintosh II main logic board, local_only is set non-zero. If the process should be seen by 
tasks on other cards, then local_only should be set to O. Reqister_Task () returns a non-zero 
value if the process was registered; if not, 0 is retumed. 

TIle C declaration for Reqister_Task () is 

typedet boolean short; 
char Reqister_Task ( object, 
char object [J; 

type, local_only); 

/* Object Name */ 
/* Type Name */ char 

boolean 
type [J; 

local_only; /* If Local Visibility Only */ 

The following code provides an example of how to register a process: 

it (lReqister_Task ("my_name", "my_type", 0» 
printf ("Could. not Reqister Process"); 

TIle following example shows how to call Reqister_Task from assembly language: 

MOVE.L tLOCAL, -(A7) value of local on stack 
PEA TYPE_NAME address of type name 
PEA OBJECT_NAME address of object name 
JSR Reqister_Task 
ADDQ.W #12, A 7 pop the stack 
TST.B DO check it reqister ok 
BNE.S OK jump if OK 

9-26 Macintosh Coprocessor Platform Developer's Guide 



Send( ) 

Send () allows you to send a message to the destination address specified in the message. Send () 

places a message on the queue of the process specified by the message field, mTo. The message is 
placed in the queue in priority order (from highest to lowest). It is assumed that all fields have been 
fdled in (mFrom, mTo, meode, and so forth) when this call is made. 

The C declatation of Send () is 

void Send ( mptr ) 
message *mptr; /* pointer to message buffer */ 

If a message is undeliverable, it is returned to the sender with the message status, mStatus, set 
to OxalOO and the message code, mCode, having bit 1 « 15 set. 

The assembly-language form for the Send maao is as follows, where P1 is the address of the 
message buffer to be sent: 

[Label] Send Pl 

P 1 can be specified as a register (AO-A6, DO(07), or can use any 6lmO addressing mode valid in an 
LEA instruction to specify the location containing the address of the message buffer to be sent 

9/ AlROSEPrep 9·27 



SwapTID( ) 

SwapTID () swaps the mFrom and mTo fields of a message buffer. 

The C declaration of SwapTID () is 

void SwapTID( mptr ) 

message *mptr; /* pointer to message buffer */ 

The assembly-language fonn for the SwapTID macro is as follows, where Pl is the address of the 
message buffer: 

(Labell SwapTID Pl 

PI can be specifaed as a register (AO -A6, DO -0 7 ), or can use any 6imO addressing mode valid in an 
LEA instrudion to specify the location containing the desired address. 

UnlockRealAtea( ) 

OnlockRealArea () unlocks a memory area that was previously locked with a call to 
LockRealArea() • 

The calling sequence for OnlockRealArea (l is the following: 

IShort UnlockRealArea(void *virtualaddress, unsigned long length); 

virtualaddress is the beginning virtual address of an area of memory that was previously 
locked. length is the length of the memory area that was locked. 

UnlockRealArea () returns zero if the address was successfully unlocked. Otherwise, an error is 
returned. 

• Note: The address and length parameters specified in a call to UnlockRealArea () must 
exactly match an address and length specified in a call to LockRealArea (I • 

UnlockRealArea () cannot handle fragmented unlocking in this release; in other words, 
you cannot unlock a portion of a perviously locked memory area. 

UnlockRealArea () returns a status of zero if the virtual memory support is not available. 

NetCopy( ) 

NetCopy () exists in both AlROSE running on a smart NuBus card and the AlROSE Prep driver 
running on the Macintosh main board. NetCopy () is a solution to many problems involving virtual 
memory. 

NetCopy () takes virtual addresses for its address arguments. The NetCopy () can will then 
examine internal AlROSE structures to detennine if it can convert the virtual addresses to real 

9-28 Macintosh Coprocessor Platfonn Developer's Guide 



NuBus addresses. These internal structures are initizlized when AlROSE on the smart NuBus card 
and the AlROSE Prep driver on the Macintosh main board initialize. The internal structures are then 
updated if lDckRealArea or UnJockReaJArea is done on the Macintosh main board in a virtual 
memory environment. 

If NetCopy cannot convert a vtrtual address to a reIli NuBus address, NetCopy sends an internal 
AlROSE message to a task (located in the appropriate virtual address space) that can perform the 
conversion. A message is returned to NetCopy when the cooversion is completed. 

LockReaIArea is important in the functioo of NetCopy. When cooverting virtual addresses to reIli 
NuBus addresses, NetCopyexamines the internal structures updated by LockRealArea and 
UnloclcReaIAre3. NetCopy does not have to send internal AlROSE messages if the buffers were 
locked down using LockRealArea. 

• Note: NetCopy will never be as fast as using MapNuBus and doing the copying directly. 
However, NetCopy is much safer than using MapNuBus. 

NetCopy () will copy data from a source virtual address to a destination virtual address. 
NetCopy () has been designed to be fail safe and users are advised to use only NetCopy for all 
their data transfers. If the memory areas specifIed are locked in memory then the copy process will 
go very fast. 

... Waming NetCopy may send messages and issue blocking receive requests to wait for 
replies. Therefore, NetCopy must not be called at interrupt level or code that must be run 
in run-to-block mode, or by code on the tick or idle chain. A 

The calling sequence for NetCopy () is the following: 

short NetCopy (tid_type srcTID, void *srcAddress, 

tid_type dstTID, void *dstAddress, 

unsigned long bytecount); 

The address srcAddress is a virtual address as viewed by the task whose Task ID is srcTID. 

The address dstAddress is a virtual address as viewed by the task whose Task ID is dstTID. 

NetCopy () will safely, perhaps slowly, copy data from the source to the destination. Bah the 
soorce and destination addresses can be paged out to disk in a virtual memory environment. 
NetCopy () will cause these pages to be brought back into the physical memory and perform the 
copy. The copying d data can be done by the main board rather than by the NuBus card in some 
cases. 

9/ A/ROSEPrep 9-29 



NetCopy ( ) returns zero if the copy was successful. Otherwise, NetCopy ( ) returns an error 
status. 

Error Codes: 
Noo zero if there was an error in NetCopy () • 

• WatDio& srcAddress and dstAddress must both be 32 bit dean addresses. 
Memory manager flags must not be in the high byte of a mother board address. 
Do not caD NetCopy &om ilterrupt routine because l does a blocking receive. Do not call 
Net Copy in idle cbain because}'OO c::mncx block idle chain. • 

If you call NetCopy &om task that runs under run to block mode, be aware that NetCopy may 
do a receive and give up the control eX the au. 

9-30 . Macintosh Coprocessor Platform Developer's Guide 



Chapter 10 Using the Forwarder with A/ROSE Prep 

The FOI'W3I'der is a general purpose dangling entity (an unassociated piece d 

code) for providing AlROSE tasks the ability to access AppleTalk. This 

chapter desaibes the Forwarder, tells how the Forwarder sends messages in 

conjunction with AlROSE Prep, provides instructions on installing the 

Forwarder, lists the messages and errors codes used by the Forwarder, and 

provides example code. • 

10·1 



What is the Forwarder? 
The Forwarder is a mechanism for the interchange of messages between tasks running on MCP­
based cards under AlROSE and applications over the AppleTalk network system; the Forwarder 
communicates via the AppleTalk Data Stream Protocol (ADSP). (For more information on ADSP and 
other AppleTalk protocols, refer to /nstde AppIeTalk.) Both multiple server tasks and requests from 
multiple client applications can be handled by the Forwarder, 

The Forwarder functions as a gateway, converting ADSP messages to AlROSE messages. Figure 10-
1 shows the message path when a client machine sends data over the AppieTalk network system 
to the server. A sctVU is a NuBus-compatible Madntosh computer with an MCP-based smart card 
installed. A dlent machine is any Macintosh computer that incorporates code in its application to 
use the Forwarder. Both the server and client are part of the AppleTalk network system. 

The data travels over the AppieTalk network system though the main logic board on the 
Macintosh II to communicate with the task running on the MCP card. 

How the Forwarder sends messages 
The Forwarder sends messages when: 

• a task running under A/ROSE on an MCP card wants to send data to an application on another 
machine over the AppieTalk network system 

• an application running on a machine on the AppleTalk network system wants to send data to a 
task running under A/ROSE 

The following figures show the processing sequence USing the Forwarder when an application 
running on a client machine wants to send a message to an MCP card (the server) over the 
AppleTalk network system, 

Within the fIle FWD are two resources that can be used for configuring the Forwarder: 

• svcn, which tells the Forwarder how much memory to preallocate for the server and for 
communications. The Forwarder will attempt to call for this number of free services and free 
(validate?) communication memory available. 

• sys z, which can be changed to increase the size ci the system heap. For more information, 
refer to the section about the INIT Resource 31 in /nstde Maantosh, Volume 5, ·System 
Startup Information», 

10-2 Macintosh Coprocessor Platform Developer's Guide 



• Figure 10·1 Message paths using the Forwarder 

Task running 
in server mode 
onMacard 

Main logic board ----" 

AppleTalk D 
network system 

,-------~Io ~ 

------tID 
,-------~Io ~ 

AppleTalk application 
U$ingADSP 

10/ Using the Forwarder with Apple IPC 10-3 



InitiaUzation 

Figure 10-2 lists the initialization process for the Forwarder, the server, and the client respectively. 

• Figure 10-Z Initialization process using the Forwarder 

IaftfalfzadQ1l process 
using tbe Forwarder 

End of Fotwarder 
inilialization 

End of Server 
inilialization 

End of Client 
inilialization 

Sem!r 
AlROSH 
on MCP ard 

Forwudet 
on the Macintosh IT 

t 
, Mac IT bocxs up; 
: Forwarder registers 
: name with AlROSE 
t system Name M2nager 

-------------~---------------
MCP carel gets loaded; 
server st2rtS executing 
onard 

Uses Name Manager 
Lookup_Task () 
10 request 10 

findFotwarder 

Sends 
MC_OPENSERVER 
to Porwuder to 
register name 
on AppleTalk 

Wait 

-------------~---------------
Server open 
for business 

10-4 Macintosh Coprocessor Platform Developer's Guide 

CUent 
on the AppleTalk 
network system 

Issues an NBP Look Up 
for seJVetS on the -
AppleTaik network system 

Opens an ADSP connection 
10 the Forwarder via 
ADSP driver request 

"",..",m processing /oIIt:Ju4 ... 



The Forwarder registers its name with the Name Manager using the Register_Task () routine 
using the Object Name "Forwarder" and Type Name "AOSP". The server task issues an 
A!ROSE Name Manager Lookup_Task () request to find the TID of the Forwarder. 

The server task then registers its name with the Forwarder with an MC_OPENSERVER call, which 
the Forwarder acknowledges. The Forwarder then registers the server's name using the Name 
Binding Protocol (NBP) Look _Up call (refer to Ins#de App/IJTalk for more information). The 
application on a client machine finds the Forw2rder also using the NPB Look_Up call. 

Normal processhlg with the Forwarder 

Figure 10-3 illustrates normal processing using the Forwarder. This set of messages are repeated as 
long as the server and client want to communicate with each other. 

The appliCllion on a client machine on the network initiates a connection to the Forwarder using 
ADSP; the application then sends a message (or messages) to the Forwarder. The Forwarder 
generates a Connection 10 to identify the ADSP connection when the connection is established. 

The Forwarder then sends the message to the server using the MC_REAOOATA message code and 
waits for a reply from the server. At this point, the server knows the Connection ID (which 
identifies the client appIiCllion). 

• Note: Messages are sent one at a time in either direction. Before a second message can be 
sent, the sender must wait for an acknowledgement There can be one MC_REAOOATA and 
one MC_SENDOATA outstanding per connection at any one time. 

The server prepares a reply and sends it back to the Forwarder in an MC_SENDDATA message code, 
after which the Forwarder sends MC_SENDDATA+l to reply to the server. The Forwarder then 
sends the message over the AppleTalk network system to the requesting application on the client 
machine. 

• Nole: The server can send data acknowledgement (MC_REAODATA+l) either before or after 
the server sends data using MC_SENDDATA, depending on how code for the server and 
client is written. 

10/ Using the Forwarder with Apple IPC 10-5 



• Figure 1()..3 Normal processing using the Forwarder 

Server 
AlROSE 
onMCPcaId 

Serier sends daIa 
to client via 
the Forwarder using 
MC_SENDDATA 

Server sends 
aclmowledgement 
of receiving daIa from 
the Forwarder 
MC_READDATA+l 

Forwudet 
on the Macintosh n 

Sends daIa to server 
uAng MC_READDATA 

Forwarder sends 
thedalatothe 
client via ADSP 

Forwarder sends reply 
to server using 
MC_SENDDATA+l 

10-6 Macintosh Coprocessor Platform Developer's Guide 

CHeat 
on the AppleTaik 
netWOrlt 

Client receives data 

md 0/ proce:s:smg/oilDws ... 



Completing communication with the Forwarder 

Figure 10-4 shows how the client completes communication and terminates the connection. 

• Figure 10-4 End of processing using the Forwarder 

End of processfng 
using the Forwarder 

Server sends reply 
to the Forwarder using 
MC_CLOSECONNECT+l 

on the Macintosh n 

Forwuder sends 
MC CLOSECONNECT 
to the server 

1M .serwr f.IIUi lorvJtlrrittr wait lor 
ImOlIter amn«timllO be ~ 

Server shuts down 
opemion using 
MC_CLOSESERVER 

Forwarder sends negative 
reply that the server has 
closed down using 
MC_CLOSESERVER+8000 
(hex) 

The Forwarder doses any 
or all ADSP connections 
from a client associated 
with this server 

on the AppleTalk 
netWOrk system 

Oient closes the 
ADSP connection 

The client closes the ADSP connection; the Forwarder sends MC _ CLOSECONNECT to the server; 
the Server sends a reply to the Forwarder using MC_CLOSECONNECT+1. The server and Forwarder 
wait for another connection to be requested 

10 / Using the Forwarder with Apple IPC 10-7 



At any point, the server can discontinue its availabillity by sending an MC_CLOSESERVER message 
to the Forwarder. The server acknowledges that the server has cl~ed down, and cl~es any or all 
ADSP connections from a client that are associated with this server. In actuality, the server and 
Forwarder wait continuously for more connections from other clients. 

Using the Forwarder 

This section describes how to install the Forwarder, lists the messages you need to use the 
Forwarder, and provides examples of code to use the Forwarder for both the client machine and 
server machine in the transaction. 

This section also describes the errors returned by the Forwarder. 

Installing the Forwarder 

The Forwarder is code that resides in memory on the Macint~h II above BufPtr. This code is 
provided on the MCP distribution disk in the me : Forwarder: FWD. The Forwarder is installed by 
an INIT31 resource (in the same manner as the AlROSE Prep driver) during start-up of the 
Macintosh. 

To install the Forwarder: 

1 Move the file FWD into the System Folder of the Macintosh II. 

2. The Forwarder uses both the A/ROSE Prep driver and ADSP, an ·Init me. Place both of these mes 
in the System Folder of your Macintosh II at this time, if you have not already done so. 

3. Reboot. 

Messages used by the Forwarder 

Table l~llists the messages used by the Forwarder, and the direction in which the message is 
sent Each of these messages is more fully described after the table. 

• Table 10-1 Messages used by the Forwarder 

Name 

MC_CLOSECONNECT 

MC_CLOSESERVER 

MC_ECHO 

MC_OPENSERVER 

MC_READDATA 

MC_SENDDATA 

Dfrectfon of message 

Forwarder to the server 
Server to the Forwarder 
Forwarder to the server 
Server to the Forwarder 
Forwarder to the server 
Server to the Forwarder 

10-8 Macintosh Coprocessor Platform Developer's Guide 



MC_CLOSECONNECf 

The Forwarder uses the MC _ CLOSECONNECT message to tell the server task that the specified 
client has closed the connection with the server. 

The message parameters for MC_CLOSECONNECT are as follows: 

mCode 
mOData(O] 
mOData(l] 

MC_CLOSECONNECT 

connection Identifier 
Reason connection closed 

- 1 (if connection failed) 
- 0 (if connnection closed normally) 

The reply parameter for MC_CLOSECONNECT is as follows: 

meod. MC _ CLOSE CONNECT + 1 

The MC_CLOSESERVER message is sent by the server task to the Forwarder to tell the Forwarder 
that the server is shutting down. The Forwarder doses all connections and unregisters the server's 
name on the Appletalk network system. 

The message parameter for MC _ CLOSESERVER is as follows: 

mCode 

The reply parameter for MC _ CLOSESERVER is as follows: 

mCode MC _ CLOSESERVER + 1 

MC_ECHO 

The MC_ECHO message is sent from the Forwarder to all server tasks every 30 seconds to test if 
the servers are still running. Each server must reply to the message to let the Forwarder know it is 
active. 

The message parameter for MC_ECHO is as follows: 

mCode 

The reply parameter for MC_ECHO is as follows: 

mCode MC ECHO + 1 

10/ Using the Forwarder with Apple IPC 10-9 



The MC_OPENSERVER message is sent from a server to the Forwarder to tell the Forwarder to 
register its name on the Appletalk network system begin accepting ADSP connections on the 
server's behalf. 

The message parameters for MC _ OPENSERVER are as follows: 

mCode 
mFrom 
mDataPtr 
mDataSize 

MC OPENSERVER 

Sef;er's task ID (used by Forwarder to uniquely identify the servers) 
Pointer to NBP EntityName structure with type, object, and zone fdled in 
size of EntityName structure 

The reply parameters for MC_OPENSERVER are as follows: 

mCode 
mStatus 

MC_OPENSERVER + 1 

Result 

The MC_READOATA message is sent by the Forwarder to the server task when data is received 
from a client The data is not copied onto the server's card The server must use CopyNuBu s to 
access the data. The server must reply to this message to free up the Forwarder's data space and 
receive further messages. 

• Note: The connection ID is first given to the server using MC_READDATA. When the server 
gets a connection ID that it does not recognize, the server knows it is a new connection and 
should do any connection initialization necessary (for example, adding the ID to a list of 
open connections). 

The message parameters for MC]EADDATA are as follows: 

mCode 
mFrom 
mDataPtr 
mDataSize 
mOData[O] 
mOData[l] 

MC_READDATA 

Forwarder's task ID 
Pointer to data 
Length of data 
Connection ID 
End-of-message flag 

-1 (if end of message) 
-0 (not end ci message) 

• Note: Refer to ADSP documentation for more information on the end-of-message flag. 

The reply parameters for MC_READOATA are as follows: 

mCode 
MOData(O] 

MC READDATA + 1 

Connection 10 

10-10 Macintosh Coprocessor Platform Developer's Guide 



MC_SENDDATA 

The MC_SENDDATA message is sent by the server to send data to ADSP clients. The Forwarder 
will send a reply to this message when it is able to accept more data from the server. 

The message parameters for MC_SENDDATA are as follows: 

mCode 

mFrom 

mDataPtr 

mDataSize 

mOData[O] 

mOData[l] 

MC_SENDDATA 

Server's task ID 
Pointer to data 
Length of data (limited to DATA_BUFFER, which is 5~ bytes) 
Connec.1ion ID 
End-of-message flag 
-I (if end of message) 
-0 (not end of message) 

• Note: Refer to ADSP documentation for more information on the end-of-message flag . 
• 

The reply parameters for MC_SENDDATA are as follows: 

mCode 

mOData[O] 

mStatus 

MC_SENDDATA + 1 

Connection ID 

Result 

Using the Forwarder on the server machine 

Following is an example of a task that gets downloaded to the MCP card; this example shows how 
the server establishes a server task and uses the Forwarder. The task must send the 
MC_OPENSERVER message to the Forwarder; the server uses the Type Name and Object Name to 
register its name on the AppleTalk network system. 

• Note: On the lines highlighted in bold, you should use your own Type Name and Object Name. 

/* 

* 
* 
* 
* 
* 
* 
* 
* 
*/ 

FWDExample. c - A/ROSE forwarder example. 

Copyright C 1988, 1989 Apple Computer, Inc. All rights reserved. 

In this example, the server receives data from a client. The 

server changes uppercase letters to lowercase letters, and lowercase 

letters to uppercase letters, then sends the data back to the client 

using the Forwarder. 

'include nos .hn 

'include nmanagers. h n 

10 I Using the Forwarder with Apple IPC 10-11 



'include "arose.h" 

'include "siop.h" 
'include "AppleTalk.h" 

'include "ADSP.h" 

'include "FWD .h" 

pascal void illegal () 

extern Ox4afc; 

FWDExample() 

{ 

message 

long 

short 
EntityName 

long 

*msg; 

finish; 

done; 
ent; 

mid; 

printf ("FWD Example starting. \nH); 

fwd_tid" GetFWDTID(); /* Get the forwarder task ID * / 

/* 

printf ("Couldn' t find forwarder. \n n) ; 

StopTask( GetTIDI) I; 

Fill in NBP entity structure */ 

ent. objStr .length - 4; 
B1ockMove( "TYPE", ent.objStr.text, S ); 

1* Enter your Type Hame *1 
ent. typeStr . length - 7; 

B1ockMove( "OBJECT", ent.typeStr.text, 8 ); 
1* Enter your Object Hame 

ent.zoneStr.length - 1; 

BlockMove( "*", ent.zoneStr.text. 2 ); 

/* Send OPENSERVER request to forwarder 

msg - GetMsg () ; 

msg->mTo - fwd_tid; 

msg->mCode - HC_OPENSERVER; 
msg->mDataPtr - ,ent; 

msg->mDataSize - sizeof (EntityName) ; 

mid - msq->mId; 
Send( msg ); 

10-12 Macintosh Coprocessor Platform Developer's Guide 

*/ 

*1 



msg - Receive ( O. O. MC_OPENSERVER+l. 0 ); 
if (msg->mStatus) 

{ 

printf ("MC_OPENSERVER failed. status ~ 'x\n". 

msg->mStatus) ; 

FreeMsg ( msg ): 

StopTask ( GetTID () ); 

FreeMsg ( msg ); 

finish - GetETick () + 5 * 60 * GetTickPS () ; 

done - 0: 
while ( ! done) 

/* Stick Around for 5 minutes */ 

msg - Receive ( 0, 0, 0, finish - GetETick () ); 

/* Wait for message or timeout */ 
if (msg) 

else 

switch (msg->mCode) 
( 

/* 

case 

case 

case 

case 

MC_CLOSECONNECT: 

/* Connection Failed/Closed */ 

printit ( "CLOSECONNECT", msg ); 

Reply ( msg. 0 ); 

break: 

MC_READDATA: /* Received data from 

/* client via FWD*/ 

printit( "READDATA". msg ): 

dosomething( msg ); 

Reply ( msg. 0 ): /* Let forwarder know .. / 

/* we I ve read the data .. / 

break; 

MC_SENDDATA+l:/* write data(from the */ 

/* server to the client) */ 

printit ( "SENDDATA (Reply)", msg ): 

FreeMem( msg->mDataPtr ); /* Forwarder .. / 

/* is done with buffers; free them .. / 
FreeMsg ( msg ); 

break; 

/* Tickle Message */ 

printit ( "ECHO". 

Reply ( msg. 0 ); 
msg ): 

/* Let forwarder know .. / 

/* we are alive */ 

break; 

default: 

printit( "BAD". msg ): 

Reply ( msg, Ox8000 ); 

break: 

if timeout */ 

msg - GetMsg () : 

10/ Using the Forwarder with Apple IPC 10-13 



msq->mTo '" fwd_tid; 
msq->mCode - HC_CLOSESERVER; 
Send( msq ); 
done'" 1; 

printf ("FWD example finished! \n") ; 

1* This example was adapted from GetPrintTID in printf.c *1 

static tid_type GetFWDTID () 

tid_type FWDTID; 
qet_carda; 

*maqptr; 

index; 

struct ra_GetCarda 

mesaaqe 
short 

ahort al 

FWDTID .. 0; 

if (GetICCTID () !- 0) 
{ 

else 

if «msqptr - GetHsq (» -- NULL) 
return (FWDTID); 

msqptr -> mCede .. ICC_GETCARDS; 
msqptr -> mDataPtr - 'qet_cards; 
msqptr -> mDataSize - aizeef {struct 

maqptr -> mTo .. Get ICCTID 0; 
Send (msqptr); 

msqptr .. Receive (OS_HATCH_ALL, OS_HATCH_ALL, ICC_GETCARDS+l, 

OS_NO_TIHEOUTI; 

if (msqptr -> mStatus -- 0) 
{ 

for (s .. 0; (a < IC_HAXCARDS) " (FWDTID .... 0); s++) 

if (qet_cards.tid[s) > 0) 
{ 

index .. 0; 

FWDTID - Lookup_Task ("Forwarder", "ADSP", 
qet_cards.tid[s], 'index); 

FreeHsq (msqptr); 

print! ("FWDTID-tx; NHTID-tx\n", FWDTID, 

qet_cards.tid(s) ); 

10-14 Macintosh Coprocessor Platform Developer's Guide 



index - 0; 
FWDTID - Lookup_Task ("Forwarder", "ADSP", GetNameTID (), 

&index) ; 

printf("Local: FWDTID-'x; NMTID-'x\n", FWDTID, GetNameTID() ); 

return (FWDTID); 

printit ( what, msg ) 

char 

message 

*what; 

*msg; 

printf("---- 's\n", what ); 

printf( 

"mId - '08. 8X mCode - '04. 4X mStatus - '04. 4X 
mPriority - '04. 4X\n", msq->mId, msg->mCode, msq->mStatus, 

• msq->mPriority ); 

printf(" mFrom'" '08.8X mTo - '08.8X mDataPtr '" '08.8X 
mDataSize - '08.8X\n", msq->mFrom, msq->mTo, msg->mDataPtr, msg-

>mDataSize ); 

print!(" mSData!O) - '08.8X mSData!ll - '08.8X 
mSData(2) - '08.8X\n", msg->mSData!O), msq->mSData!l), 
msg->mSData(2) ); 

printf(" mOData!O) - '08.8X mOData!l) - '08.8X 

mOData(2) - '08.8X\n", msg->mOData!O), msg->mOData[l)' 

msg->mOData(2) ); 

1* Replace the following with your code to process data *1 

dosomething(msg) 

message *msq; 

char buffer!lOO]; 

message *m; 

short i; 

CopyNuBus( msg->mDataPtr, buffer, msg->mDataSize+l ); 

printf ("---- Data Received: 's\n", buffer ); 

fore i-O; i < msg->mDataSize; i++ ) 

if «buffer[i] >- 'a') " (buffer!i] <- 'z'» 

buffer!i] - buffer!i] - 'a' + 'A'; 

else if «buffer!i) >- 'A') " (buffer(i] <- 'Z'» 
buffer(i] - buffer!i] - 'A' + 'a'; 

printf("---- Data Sent: 's\n", buffer ); 

1* Send processed data to client *1 

10 / Using the Forwarder with Apple IPC 10-15 



void 

m - GetMsg () ; 
m->mTo .. fwd_tid; 

m->mDataPtr .. GetMem ( msg->mDataSize ); 

m->mDataSize - msg->mDataSize; 

BlockMove( buffer, m->mDataPtr, 

m->mCode - MC_SENODATA; 

m->mOData [0] - msg->mOOata (0] ; 

m->mOData (1] - 1; /* 

Send ( m ); 

msg->mDataSize+l ); 

EOM flag */ 

Reply ( m, stat ) 

message *m; 

unsigned short stat; 
{ 

Hfdef 

tendif 

if (m) 

{ 

temp; 

if (m->mStatus Ox8000) 

else 

DEBUG 

DEBUG 

FreeMsg ( m ); 

temp - m->mFrom; 

m->mFrom - m->mTo; 

m->mTo - temp; 

m->mStatus - stat; 

if (m->mStatus -- Ox8000) 

m->mCode 1- Ox8000; 

else 

m->mCode 1- 1; 

printf ("Sending reply <'xl to tx, status .. tx\n", 

m->mCode, m->mTo, m->mStatus I; 

Send( m I; 

10-16 Macintosh Coprocessor Platform Developer's Guide 



Using the Forwarder from the ellent machine 

The following is an example d MPW code that you can put in your client application. The first line 
shows the command to run the code, the second two lines show the output on a client machine on 
the network. 

FWDExample TYPE OBJECT "ThIS is ThE FiRSt EXampLe" 

Sending 'ThIS is ThE FiRSt EXampLe' 

Received 'tHis IS tHe fIrsT exAMPlE' 

The following code shows the source code for the MPW tool to access the server on an MCP card 
CIbis code is currently ott on the MCP distribution disks.) 

1* 

* FWDExample • c - MPW Tool to access "server" on MCP card. 

* 
* Copyright e 1988, Apple Computer, Inc. All rights reserved. 

* 
* The tool is accessed by: 

* 
* FWD Example TYPE OBJECT "MESSAGE" 

* 
* TYPE is the NBP type that the server has registered as. 

* OBJECT is the NBP object that the server has registered as. 

* MESSAGE is the data that the server is to act upon. 

* 
*1 

tinclude 

tinclude 

Hnclude 

Hnclude 
tinclude 

'define 

'define 

"Types.h" 

"stdio.h" 

"Memory.h" 

"ADSP.h" 
"AppleTalk.h" 

"t FWDExample type object \"message\"\n" 

200 1* Size of our ADSP queues 

*1 
tdefine 

*1 
200 1* NBP wants big buffer for some reason 

short 

*1 
EntityName 

char 

short 

TPCCB 

Ptr 

DSPPBPtr 

DSPParamBlock 

short 

char 

dspRefNum; 

ent; 

adr[WEIRD_SIZE]; 

count; 

ccb; 

sen dO, recvO, attn; 
openPB; 
pb; 

rc; 

buffer[200]: 

1* ADSP ref. num. from OpenDriver 

1* NBP entity name *1 
1* AddrBlock buffer *1 

1* Number of nodes 

1* ADSP Connection Control 

1* ADSP queues *1 

found by 

Block 

1* Open parameter block *1 

NBP 

*1 

1* Param block for ADSP requests 

1* Place to put result codes *1 
1* Buffer for processed data *1 

*1 

*1 

10/ Using the Forwarder with Apple IPC 10-17 



main(argc,argv) 
int argc; 

char *argv [] ; 

short MyLookupName(); 

if (argc < 3) 
( 

fprintf( staerr, Nt. Not enough parameters.\n"); 

fpr intf ( staerr, OSAGE ); 
exit(l); 

if «(strlen (argv[l]) < 1) II (strlen (arqv[l]) > 30)) /* TYPE */ 
( 

fprintf( stderr, ".t \"type\" must be from 1 to 30 characters 
in length. \n"); 
fprintf( staerr, OSAGE ); 
exit{l); 

if ((strlen(argv[2]) < 1) II (strlen(a·rqv[2]) > 30)) /* OBJECT *1 
( 

fprintf( stderr, "tt \"object\" must be from 1 to 30 characters 
in length. \n") ; 
fprintf( staerr, OSAGE ); 
exit(l); 

if ((strlen (argv[3]) < 1) II (strlen (argv[3]) > 100)) 

1* MESSAGE * I 

fprintf( staerr, "it \"message\" must be from 1 to 100 

characters in length. \n") ; 

fprintf( staerr, OSAGE ); 
exit(l); 

1* open MPP first *1 

if «( rc .. MPPOpen ()) ! - noErr) 
{ 

fprintf ( staerr, "MPP Open failed. err-lfId\n", rc); 

fprintf( staerr, OSAGE ); 
exit (1); 

/* open AOSP *1 

if (Irc - OpenOriver (" .OSP", 'dspRefNum)) ! - noErr) 
( 

fprintf( staerr, "AOSP Open failed. err-lfId\n",rc); 
fprintf( stderr, OSAGE ); 
exit(l); 

10-18 Madntosh Coprocessor Platform Developer's Guide 



1* allocate ADSP pointers *1 

sendQ - NewPtr (O_SIZE) ; 

if (sendO -- OL) 
{ 

fpr intf ( stderr, "Memory failed. \n" I ; 

fpr intf ( stderr, OSAGE ); 

exit(l); 

recvQ - NewPtr (Q_SIZE) ; 

if (recvO -- OL) 
{ 

fprintf( stderr, "Memory failed.\n"); 

fprintf( stderr, OSAGE ); 

exit(l); 

attn • NewPtr (attnBufSize); 

if (attn -- OL) 
{ 

fprintf ( stderr, "Memory failed. \n"); 

fprintf( stderr, OSAGE I; 
exit(l); 

ccb - (TPCCB) NewPtr (sizeof (TRCCB) ) ; 

if (ccb -- OL) 
{ 

fprintf ( stderr, "Memory failed. \n"); 

fprintf( stderr, OSAGE I; 
exit(l); 

openPB - (DSPPBPtrINewPtr(sizeof(DSPParamBlockll; 

if (openPB -- OL) 

fprintf ( stderr, "Memory failed. \n"l; 

fprintf( stderr, OSAGE I; 

exit(ll; 

1* Fill in Entity block to be passed to NBPLookup *1 

ent.objStr.length - strlen (argvll); 

BlockMove( argvll), ent.objStr.text, ent.objStr.length+l I; 

ent. typeStr • length - str len (argv I 2) ) ; 

BlockMove( argv(2), ent.typeStr.text, ent.typeStr.length+l I; 

ent. zoneStr .length - 1; 

BlockMove( "*", ent.zoneStr.text, ent.zoneStr.length+ll; 

count - 0; 

10/ Using the Forwarder with Apple IPC 10-19 



if (! MyLookupName ( 'ent, adr, 1 0, 5, 'count » 

1* Find our server *1 

fprintf( stderr, 

fprintf( stderr, 
exit(l); 

"tt Lookup failed. \n"); 

USAGE ); 

if (count < 1) 
{ 

1* If none found *1 

fprintf( stderr, "ff Couldn't find the server.\n"); 

fprintf( stderr, USAGE ); 

exit(l); 

1* Initialize connection end *1 

pb.ioCompletion - OL; 

pb.ioVRefNum - 0; 

pb.ioCRefNum - dspRefNum; 

pb.csCode .. dspInit; 

pb.u.initParams.cebPtr .. ccb; 

pb. u. initParams. userRoutine .. OL; 

pb.u.initParams.sendQSize - Q_SIZE; 

pb.u.initParams.sendQueue .. sendQ; 

pb.u.initParams.recvQSize .. Q_SIZE; 

pb.u.initParams.reevQueue .. recvQ; 

pb. u. initParams • attnPtr .. attn; 

pb. u. initParams .1oealSoeket - 0; 

re - PBControl (&pb, false); 

if (re !- noErr) 

{ 

fprintf ( stderr, "tt ADSP Init failed. \n err-tid", re); 

fprintf( stderr, USAGE ); 

exit (1); 

1* Request a connection * 1 

openPB->ioCompletion - OL: 
openPB->ioVRefNum .. 0; 

openPB->ioCRefNum .. dspRefNum; 
openPB->csCode .. dspOpen; 

openPB->eebRefNum - ccb->refNum; 
(openPB->u.openParams.remoteAddress) .aNet - «AddrBlock *)adr)->aNet; 

(openPB->u.openParams.remoteAddress) . aNode - «AddrBloek *)adr)->aNode; 

(openPB->u. openParams. remoteAddress) . aSocket - «(AddrBloek *) adr) ->aSocket; 

(openPB->u.openParams.filterAddress) .aNet - 0; 

(openPB->u.openParams.filterAddress) .aNode - OxOO; 

(openPB->u.openParams.filterAddress) .aSocket - OxOO; 

openPB->u. openParams. ocMode - ocRequest; 

10-20 Macintosh Coprocessor Platform Developer's Guide 



openPB->u. openParams. oclnterval ,. 4; 

openPB->u. openParams. ocMaximum = 4; 

rc '"' PBControl (openPB, false); 

if (rc !~ noErr) 

{ 

fprintf ( stderr, "Ii ADSP Open failed. err=td\n", rc); 

fpr int f ( stderr, USAGE ); 

exit(l); 

fprintf( stderr, "Sending 'ts'\n", argv(3] ); 

1* Send data to server *1 

pb. ioCompletion .. OL; 

pb.ioVRefNum = 0; 

pb. ioCRefNum - dspRefNum; 
pb. csCode ,. dspWrite; 

pb.u.ioParams.reqCount ,. strlen(argv(3]) + 1; 

pb.u.ioParams.dataPtr - argv[3]; 

pb.u.ioParams.eom '"' 1; 

pb.u.ioParams.flush '"' 1; 

rc - PBControl ('pb, false); 

if (rc != noErr) 

{ 

1* flush now * 1 

fprintf ( stderr, "tt ADSP Write failed. err-td\n", rc); 

fprintf( stderr, USAGE ); 

exit (1) ; 

1* Read processed data from server *1 

pb. ioCompletion - OL; 

pb. ioVRefNum - 0; 

pb. ioCRefNum '"' dspRefNum; 

pb. csCode .. dspRead; 

pb.ccbRefNum - ccb->refNum; 

pb.u.ioParams.reqCount - 101; 

pb.u.ioParams.dataPtr .. buffer; 

rc - PBControl ('pb, false); 

if (rc !- noErr) 

{ 

fprintf( stderr, 

fprintf ( stderr, 

exit(l); 

"II ADSP Read failed. err-td\n", 

USAGE ); 

fprintf( stderr, "Received 'ts'\n", buffer ); 

1* Close ADSP connection *1 

rc) ; 

10/ Using the Forwarder with Apple IPC 10·21 



pb. ioCompletion = OL; 

pb. ioVRefNum = 0; 

pb. ioCRefNum = dspRefNum; 

pb. csCode '" dspRemove; 

pb. ccbRefNum - ccb->refNum; 

rc - PBControl ('pb, false); 
if (rc !- noErr) 

I 
fprintf ( stderr, "tt ADSP Remove failed. err - td\n", rc); 

fprintf( stderr, USAGE ); 
exit(l); 

1* deallocate ADSP pointers *1 

DisposPtr(sendQ); 

DisposPtr(recvQ); 

DisposPtr (attn) ; 

DisposPtr(openPB); 
DisposPtr(ccb) ; 

1* close ADSP driver *1 

1* arbitrary exit code *1 

if (CloseDriver (dspRefNum) ! '" noErr) 
( 

fprintf( stderr, "tt ADSP Close failed. err - td\n", rc); 

fprintf( stderr, USAGE ); 
exit(l); 

exit(O); 

short 

MyLookupName(srvrEnt, 

EntityName 

adrBufPtr, 

*srvrEnt; 

*adrBufPtr; 

intervaJ" count, numgotten) 

char 

short 

short 

NBPparms 

char 

OSErr 

interval, count; 
*numqotten; 

nbp; 

entBufPtr[200); 

rc; 

1* set up entity *1 
NBPSetEntity(entBufPtr, ,(srvrEnt->objStr), 

'(srvrEnt->typeStr), '(srvrEnt->zoneStr»; 

1* look for specified server *1 
nbp. interval - interval; 

nbp.count - count; 

nbp.parm.Lookup.retBuffPtr = adrBufPtr; 

10-22 Macintosh Coprocessor Platform Developer's Guide 



nbp.parm.Lookup.retBuffSize 2 WEIRD_SIZE; 

nbp.parm.Lookup.maxToGet 2 1; 

nbp.NBPPtrs.entityPtr - entBufPtr; 

re - PLookupName(&nbp, false); 

if (re !- noErr) 
( 

fprintf( stderr, "Lookup failed. err-'d\n", re); 

fprintf ( stderr, USAGE ); 

return (false); 

/* return number found */ 

*numgotten - nbp.parm.Lookup.numGotten; 

return (true) ; 

10/ Using the Forwarder with Apple IPe 10·23 



Message transadions while the Forwarder is adive 

The following shows the flow of AlROSE messages between a typcial server and the Forwarder 
before, during, and after the transaction. 

FWD Example starting. 

FWDTID-4; NMTID-2 

ECHO 

mId - 0000SBF7 mCode - 2002 mStatus - 0000 mPriority - 0000 

mFrom - 00000004 mTo - OB000003 mDataPtr - 00000000 

mDataSize .. 00000000 mSData(O)" 00000000 mSData{11" 00000000 

mSData(2] - 00000000 mOData[O) - 00000000 mOData(1)" 00000000 

mOData(2) - 00000000 

ECHO 

mId - OOOOSBFB mCode • 2002 mStatus" 0000 mPriority '" 0000 

mFrom .. 00000004 mTo '" OB000003 mDataPtr - 00000000 

mDataSize - 00000000 mSData(O] .. 00000000 mSData(1) '" 00000000 

mSData(2] '" 00000000 mOData(O] '" 00000000 mOData(1]'" 00000000 

mOData(2) - 00000000 

READ DATA 

mId - OOOOSBFC mCode .. 1006 mStatus" 0000 mPriority = 0000 

mFrom '" 00000004 mTo '" OB000003 mDataPtr .. 00026AAO 

mDataSize .. 0000001A mSData[O] '" 00000000 mSData(1]" 00000000 

mSData(2) .. 00000000 mOData[O] - 00000002 mOData(1) '" 00000001 

mOData[2] - 00000000 

Data Received: ThIS is ThE FiRSt EXampLe 

Data Sent: tHis IS tHe fIrsT exAMPlE 

SENDDATA (Reply) 

mId - FB00003A mCode - 1009 mStatus" 0000 mPriority '" 0000 

mFrom - 00000004 mTo - OB000003 mDataPtr .. FB06DF18 

mDataSize - 0000001A mSData[O] - 00000000 mSData[1) ... 00000000 

mSData(2] - 00000000 mOData[Oj" 00000002 mOData[1j '" 00000001 

mOData (2] .. 00000000 

CLOSECONNECT 

mId '" OOOOSBFD mCode '" 1004 mStatus .. 0000 mPriority .. 0000 

mFrom - 00000004 mTo - OB000003 mDataPtr" 00000000 

mDataSize .. 00000000 mSData (0] 00000000 mSData [1] .. 00000000 

mSData[2] - 00000000 mOData[O] - 00000002 mOData[l]" 00000000 

mOData [2] - 00000000 

ECHO 

mId - 0000SC01 mCode - 2002 mStatus - 0000 mPrior:ity ... 0000 

mFrom - 00000004 mTo - OB000003 mOataPtr - 00000000 

mDataSize - 00000000 mSData [0] - 00000000 mSData [1] - 00000000 

mSOata [2] - 00000000 mOData (0) - 00000000 mOOata (1) - 00000000 

mOData[2] - 00000000 

ECHO 

mId - OOOOSCOS mCode - 2002 mStatus" 0000 mPriority .. 0000 

mFrom - 00000004 mTo - OB000003 mDataPtr.. 00000000 

mDataSize - 00000000 mSData(O] - 00000000 mSData(l] - 00000000 

mSData[2] .. 00000000 mOData[O) - 00000000 mOData[1]" 00000000 

mOData[2] .. 00000000 

10-24 Macintosh Coprocessor Platform Developer's Guide 



ECHO 

mId - 0000SC09 mCode .. 2002 mStatus = 0000 mPriority = 0000 

mFrom - 00000004 mTo" 08000003 mDataptr" 00000000 

mDataSize - 00000000 mSData [0] .. 00000000 mSData [1] .. 00000000 

mSData[2] - 00000000 mOData[O]" 00000000 mOData[l] '" 00000000 

mOData [2] .. 00000000 

ECHO 

mId - OOOOSCOD mCode - 2002 mStatus - 0000 mPriority - 0000 

mFrom - 00000004 mTo - 08000003 mDataPtr - 00000000 

mDataSize - 00000000 mSData (0) .. 00000000 mSData [1) - 00000000 

mSData[2} - 00000000 mOData[O} - 00000000 mOData[l} - 00000000 

mOData [2} - 00000000 

ECHO 

mId - 0000SC11 mCode - 2002 mStatus - 0000 mPriority .. 0000 

mFrom - 00000004 mTo - 08000003 mDataPtr - 00000000 

mDataSize .. 00000000 mSData [OJ - 00000000 mSData [1] - 00000000 

mSData[21 - 00000000 mOData[OI - 00000000 mOData[ll" 00000000 

mOData[2] - 00000000 

ECHO 

mId - OOOOSCIS 

mFrom - 00000004 

mCode - 2002 mstatus - 0000 mPriority = 0000 

mTo - 08000003 mDataPtr .. 00000000 

mDataSize - 00000000 

mSData[2] - 00000000 

mOData[2] .. 00000000 

ECHO 

mSData [O} .. 00000000 

mOData [0 I .. 00000000 

mSData[11 .. 00000000 

mOData[l] .. 00000000 

mId .. 00005C19 mCode - 2002 mStatus - 0000 mPriority - 0000 

mFrom - 00000004 mTo - 08000003 mDataPtr - 00000000 

mDataSize - 00000000 mSData [0] .. 00000000 mSData [1] .. 00000000 

mSData [21 - 00000000 mOData [0] .. 00000000 mOData [11 - 00000000 

mOData [2] - 00000000 

ECHO 

mId - 0000SC1D mCode .. 2002 mStatus - 0000 mPriority = 0000 

mFrom .. 00000004 mTo .. 08000003 mDataPtr .. 00000000 

mDataSize - 00000000 mSData [0] .. 00000000 mSData [1] - 00000000 

mSData [2] - 00000000 mOData [0] .. 00000000 mOData [1] '" 00000000 

mOData(2) .. 00000000 

FWD example finished! 

10 I Using the Forwarder with Apple IPC 10-25 



Errors returned by the Forwarder 

Table 10-2 lists the errors returned by the Forwarder, and briefly describes each. 

• Table 10·2 Errors returned by the Forwarder 

Error 

FWE_NoConnect 

FWE_Overflow 

FWE_NoSMemory 

FWE_NoSListen 

FWE_NoReqister 

Only one server can be opened per AlROSE task. 
(Attempted to open more than one.) 

Forwarder did not fmd a server registered under the current 
task ID. 

Attempted to issue an MC_SENDDATA before the Forwarder 
was fmished processing the previously issued MC_SENDDATA 
for this connection. 

The Connection 10 specified was not found. 

The maximum data size of 580 bytes (DATA_BUFFER) was 
exceeded by MC_SENDDATA. . 

Could not get memory on the Macintosh II to open server. 

The ADSP listener failed 

The NBP name registration failed. (This error most likely 
occurred due to a duplicate server name, or improperly­
filled in EntityName structure.) 

10·26 Macintosh Coprocessor Platform Developer's Guide 



Chapter 11 Troubleshooting Guide 

T HIS C HAP T E R describes the illegal instructions and debugger calls 

that can occur when using AlROSE and the AlROSE Prep driver, and lists error 

codes and messages that may be returned for both AlROSE and the AlROSE 

Prep driver. 

This chapter assumes you have a working knowledge ci the M68000 

microprocessor architecture and instruction set. • 

11·1 



What happened? 
. During development, you computer system will crash or hang from time to time. Here's what to 

do when either of those situations occur: 

• If the system crashes,look at the load map of the code executing on the card, or at the 
supervisor stack for the Macintosh II. 

• If the system hangs, you must -hunt and discover" to find where there is a possible problem in 
the code. On a smart card, check the task control blocks; on the Macintosh 0, check the 
supervisor stack. 

• Note: To find the task control blocks, check the pointer named qTaskTable in the array 
within gCommon. 

The sections that follow may help you determine what has occurred and provide direction for 
correcting the problem. AlROSE troubleshooting is discussed first, followed by AlROSE Prep 
troubleshooting. 

11·2 Macintosh Coprocessor Platform Developer's Guide 



Troubleshooting A/ROSE 

If the operating system code on the MCP smart card appears to have stopped running, A/ROSE may 
have crashed or may be in a hung state. 

Where do you start troubleshooting? The value qCommon. qHa jorTick provides an indication of 
whether or not the A/ROSE kernel is still functioning. The value qCommon. gHajorTick is the 
major tick counter within A/ROSE, and is incremented at the beginning of every major tick cycle. 

-
If gCommon .gHajorTick is incrementing, the system has not crashed, but may be hung. Go to 
the section in -A/ROSE hangs- called -gCommon.gMajorTick Is Incrementing-. 

If gCommon.gMajorTick is not inaementing, A/ROSE may either have hung, detected a 
problem and intentionally crashed by executing an illegal instruction, or crashed due to an exception 
(such as a bus error). The following information will help detennine if A/ROSE has crashed. 

On execution of an exception or hardware error interrupt, an A/ROSE handler dumps the current 
register set to the -crash area,· a portion of card memory starting at 0x0600 on the smart carel. Table 
11-1 lists the format of the crash area 

• Table 11·1 Clash area format 

Memory Locadon +0 +4 

DO D1 
04 05 
AO At 
A4 A5 
SR PC 

trap number 

where ssp is the Supervisor Stack Pointer 

s R is the Status Register 

PC is the Program Counter 

u SP is the User Stack Pointer 

+. +C 

02 03 
D6 07 
A2 A3 
A6 SSP 

USP Flag 

F lag is a byte that starts at address <D064A that conrains the value 
0xFF when an error has ocx:urred. Clearing this byte causes the registers 
to be reloaded with the saved registers and the system restarted. 

trap nWllDer is the 6IDlO esception ID 

Examine the Flag byte at 0x064A. If it contains an OxFF, the system has crashed; go to the 
section on If A/ROSE Crashes. Otherwise, the system is hung; go to the section on A/ROSE Hangs 
to determine the cause c:i the hang. 

• Note: When Flag is 0, this area of memory has no meaning. Specifically, this area c:i 
memory does not show the current registers or state c:i anything when this Flag is O. 

11 / Troubleshooting Guide 11·3 



Using dumpcard 
To assist in troubleshooting during your development efforts, you can use the MPW tool 
dumpcard to display a list of values within the AlROSE. 

Dumpcard dumps the card and formats the output to the standard output you specify in 
MPW. 

The syntax of the dumpcard tool is the following: 

dumpcard H~?l (-b] (-d fwa lwa] (-e] (-f] (-hI (-m] [-n] [-r] [-5 51 52 ... snJ [­

t I [-v I . 

where -a? displays description of options 

-b dumps AlROSE memory blocks 

-d fwa lwa dumps card memory from lfwal to llwa' (Jwa/fwa both in hex) 

-e do not dump exception vectors 

-f display a Jist of valid slots 

-h halts a running card 

-m do not dump AlROSE messages 

-n do not dump names for TIDs 

-r do not dump registers 

-5 51 52 ••• 5n dump cards in specified slots (Default is no slots dumped) 

-t do not dump task info 

-v show dumpcard version 

11-4 Macintosh Coprocessor Platform Developer's Guide 



The following example shows how to dump the contents of an MCP smart card in slot B. Use the 
MPW tool dumpcard in the folder :A/ROSE:Examples:MCP and enter the foUowing string in the 
MPW worksheet: 

dumpcard -s b -e 

In this example, the following infonnation would be sent to the standard output you specify in 
MPW (such as the Macintam II saeen). 

Version 1.1.1(RWMlGAB) . 

..... Slot#E 

Object Name Type Name Taskm 

name manager name manager eOOml 

time manager time manager cOO)})2 

RSM RSM e(XX)504 

echo manager echo manager ~ 

echoemnple echo manager c!11HJ7 

Trace Manager Trace Manager efiJJIffJ 

Unable to display reqisters - processor runninq 

Exception Vectors 

00000000: Reset (Initial SSP) FrmXXX> 

00000004: Reset (Initial PC) fBX)961C 

00000OO8: Bus Error FfOO4CD4 

OOOOOOOC: AcJcIress Error flIDiCEO 

00000010: IIIega!lnstruction FEOO4CEC 

00000014: Zero Divide FEOO4Q'8 

00000018: OIK Instruction FEOO4D04 

0000001 C: TRAPV Instruction FF.OO4DIO 

00000020: Privilege Violation FEOO4DIC 

11 I Troubleshooting Guide 11·5 



OOOOX>24: Trace FEOO4D28 

00000028: Une 1010 Emulator FEOO4D34 

0000002C: Line 1111 Fm.dalOr FEOO4D4O 

0000003(: Uninitialized Interupt Vector FEOO4D70 

()()()()()()6(): Spwious Interrupt FEOO4DDC 

()()()()()()64: Levell Interrupt fBX)()l)lE 

00000068: Level 2 Interrupt FEOO893A 

0000006C: Level 3 Intenupt FEOO4EOO 

00000070: Level 4 Interrupt FEOO4EOC 

00000074: LevelS Interrupt FEOO4E18 

00000078: Level 6 Interrupt FEOO4E24 

0000007C: Level 7 Interrupt FEOO4E3O 

()()()()()(8): Trap 0 (Unused5) FEOO4AB2 

00000084: Trap 1 (Unused4) FEOO4AB2 

00000088: Trap 2 (FreeMsg) Fm05036 

0000008C: Trap 3 (GetMsg) fm05118 

~: Trap 4 (SpI) FBX>53C6 

00000094: Tl3p 5 (Send) fm05374 

00000098: Trap 6 (Rereive) fm05254 

()()()O()()9C: T13p 7 (StartTask) FEOO53EO 

OOOOOOAO: T13p 8 (StopTask) FEOO55A4 

OOOOOOA4: T13p 9 (Reschedule) Fm05330 

OOOOOOA8: T13p 10 (SpecReqs) Fm05174 

OOOOOOAC: Trap 11 (FreeMem) FEOO4FAB 

OOOOOOBO: Tl3p 12 (GetMem) FEOO506A 

000000B4: Trap 13 (Unused2) FEOO4AB2 

000000B8: Trap 14 (Unusedl) FEOO4AB2 
OOOOOOBC: Trap 15 (unused3) FEOO4AB2 

***** Slot IB 

Unable to display registers - processor running 

11-6 Macintosh Coprocessor Platform Developer's Guide 



Initial AS value 

Memory buffer list ptr 

Slot address 

Slot number 

Time Base 

Major Tick 

CAP (Magic Number) 

CAP (Pointer) 

CAP (Checksum) 

Free message list 

Unique Counter 

Tick Chain 

Idle Chain 

Current Task Pointer 

Idle Loop Counter 

Task Table Pointer 

Error status 

Timeout queue 

Priority Table Pointer 

Priority List 

Name Unregister pointer 

FWA of message area 

LWA of message area 

Initial PC 

FWA of initial code 

LWA of initial code 

Minor Tick Counter 

Debugger Pointer 

Debugger Comm Area 

Release version 

FE001D3A 

FE009718 

FEOOOOOO 

OEOOOOOO 

A16D4SB4 

00023BAC 

1CCA1943 

FE00178C 

1ACA30CF 

FE077892 

FE10CE30 

FE008SAC 

FE0085B2 

FE07EA98 

0186FBCF 

FE07EAF8 

00000000 

FE071SEO 

FE07EFOO 

FE07EFF8 

FEOOIDAC 

FE0776F8 

FE07E840 

FE00961C 

FE001DD6 

FE009714 

00040000 

00000000 

00000000 

0101 

11 I Troubleshooting Guide 11·7 



Current Task ID OEOOOlOO 

Minor I Major Cycle 0008 

Ticks per Second 0013 

Major Cycles defered FA49 

Major Cycles skipped 0000 

Page Latch 0000 

Name Task TID OEOOO201 

ICC Task TID OEOOO403 

Trace Task TID 00000000 

Timer Task TID OEOO0302 

Messages discarded 00 

Major Flag 00 

Time Queue Flag 00 

Debugger Flag 00 

Task Table dump 

** Task to (TCB - FE07EA98) 

Next Task (priority) FE07EA98 

Next Task (timeout) 00000000 

Stack Buffer FE07E848 

Heap Buffer 00000000 

Program Counter FE0044C8 

Stack Pointer FE07EASO 

Code Segment 00000000 

Data Segment 00000000 

Start Parameters 00000000 

Parent TID 00000000 

Status Register 0004 

Page Latch 0000 

11-8 Macintosh Coprocessor Platform Developer's Guide 



Priority 

Block Mode 

Receive Mode 

Task ID 

Message Q Head 

Message Q Tail 

Blocked Timeout 

Blocked Message 

Blocked Message 

Blocked Message 

-Stack (TOS 100 bytes) 

Value 

1D 

From 

Code 

00 

01 

00 

0000 

00000000 

00000000 

00000000 

00000000 

00000000 

00000000 

FOO7FASO: 00 00 00 01 00 00 00 01 00 00 00 00 00 00 00 00 ............... . 

FE07EA6O: 00 00 00 00 00 02 3B BO 00 00 FF FF 00 00 00 00 ...... ;. ....... . 

FE07EA70: FE CJ7 EA 98 FE CJ7 15 B) FE CJ7 78 IE FE 00 18 AS ..••..•.• .x. ... . 

FE07EA8O: FE 00 17 8C FE 00 44 3A 00 00 00 D6 FE 00 4C CA ....••. : ...... 1.. 

FE07EA9O: FE 07 EA ro 01 00 00 OC FE CJ7 EA 98 00 00 00 00 ............... . 

FECJ7EAA0: FE 07 E8 48 00 00 00 00 FE 00 44 C8 FE 07 EA 50 ... H ..•... D .... P 

FBJ7EABO: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ............... . 

FOO7EACO: 00 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ............... . 

FOO7EADO: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 ............... . 

FE07EAEO: FE 00 44 C2 FE 00 09 2A OE 00 01 00 00 00 00 00 .. D .... • ....... . 

FE07EAFO: FE 07 EEFSOI 00 00 81 FE 07 EA 98FECJ7 76 98 .............. v. 

FE07EBOO: FE 0765 E8 FE CJ7 55 38 FE 07 54 C6 FE CJ7 43 58 .. e ... U8 .. T ... CX 

FE07EB10: FE 07 41 AS FE 07 3C FS FE CJ7 3B 48 FE 07 26 90 . .A. .. < ... ;R.&' 

Fm7EB2O: FE CJ7 15 EO 00 00 00 00 00 00 00 00 00 00 00 00 ............... . 

FID7EB30: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ............... . 

FB77EB4O: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .............. .. 

•• Task #1 (iCB" FE077698) 

11 I Troubleshooting Guide 11·9 



Next Task (priority) ... FE075538 

Next Task (timeout) .... OOOOOOOO 

Stack Buffer ........... FE076648 

Heap Buffer ............ OOOOOOOO 

Program Counter ........ FE007180 

Stack Pointer .......... FEOn4F4 

Code Segment .......... OOOOOOOO 

Data Segment .......... OOOOOOOO 

Start ParameteJs ....... OOOOOOOO 

Parent TID ............. OOOOOOOO 

Status Register ........ OOO4 

Page Latch. .......... J.lOOl 

Priority ............... IF 

Block Mode ............. Ol 

Receive Mode ........... FF 

Task ID ................ OOOI 

Message Q Head ........ OOOOOOOO 

Message Q Tail ........ .FE0776C8 

Blocked Tuneout Value .. OOO23C4F 

Blocked Message 10 ..... 00000000 

Blocked Message From. .. OOOOOOOO 

Blocked Message Code ... OOOOOOOO 

DO OOXXXXX> Dl <XXJ23C4F 02 <XXXXXX)() 03 OOXXXlI0 

D4 OO<XXJOBE D5 00023C4F D6 OOOlOO9F 07 OOOOX>10 

AD FE073B4B Al FE077698 A2 QOO(XX)OO A3 FE077892 

A4 FEOO15E6 AS FEOOID3A A6 FE077688 

Running in • 0'. 

-Stack (TOS 100 bytes) 

11·10 MadnloSh Coprocessor Platform Developer's Guide 



FfD774F4: 00 00 00 00 00 02 3C 4F 00 00 00 00 00 00 00 10 ...... <0 ....... . 

FfD77504: 00 00 00 BE 00 02 3C 4F 00 00 00 9F 00 00 00 10 ...... <0 ....... . 

FE077514: FE CTl3B 48 FE CTl76 98 00 00 00 00 FE CTl78 92 .. ;H .. v ...... .x. 

FE077524: FE 00 15 E6 FE 00 10 3A FE 07 76 88 FE 00 59 8) .•••••. : .. v ... y. 

FBm534: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 9F ._ ...•..•.•... 

fBJ77544: 00 00 00 00 00 00000000 00 00 0000 00 00 00 ..••••.. "." ••. 

FBm554: 0000 0000 00 00 00 00 00 00 0000 00 01 FE 07 ............... . 

mm564: 78 92 06 74 65 73 746572 00 00 00 00 00 00 00 x..tester ...... . 

FBm574: 00 00 00 0000 00 00 00 00 00 00 00 00 00 00 00 .... " ...... _. 

FfD77584: 00 00 00 00 03 70 6D 72 00 0000 00 00 00 00 00 ..... pnr ....... . 

FBm594: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ............... . 

FE0775A4: 00 00 00 00 00 00 01 00 00 7072 (fJ 6E 7420 60 ......... print m 

Fm775B4: 61 6E 6167 65 72 00 00 00 00 00 00 00 00 00 00 anager ......... . 

FE0775C4: 00 00 00 00 00 00 00 00 00 0000 70 72 69 6E 74 ........... pritt 

FmTl5D4: /1) 60 616E 6167 65 72 00 00 00 00 00 00 00 00 manager ........ 

FBm5E4: 00 00 00 00 00 00 0000 00 00 00 00 00 00 00 6A ............... j 

.. Task #2 (TCB • FE0765E8) 

Next Task (priority) ... FE075408 

Next Task (timeout) .... OOOOOOOO 

Slack Buffer ........... FE075598 

Heap Buffer ............ OOOOOOOO 

Program COUnter ........ FE0CTI1~ 

Slack Pointer .....•••.. FE076564 

Code Segment. .......... OOOOOOOO 

Data SegrnenL .......... OOOOOOOO 

Start Parameters ....... oooooooo 

Parent 110 ............. 00000000 

Status Register ••••••.• OOO4 

Page Latch. ............ OOOO 

11 /Troubleshooting Guide 11-11 



Priorly ......•.. _ ... 1E 

Block Maie.._ ......... 01 

Receive Mode ........... FF 

Task 10 .......... _ •••. 0002 

Message Q Head ........ OOOOOOOO 

Message Q Taii.-..... FE076618 

Blocked Tuneout Value..OOOOOOOO 

Blocked Message ID ..... OOOOOOOO 

Bkx:ked Message Prom. •• OOOOOOOO 

Blocked Message Code. .. OOOOOOOO 

DO 00XXl000 01 00(XXXXl0 D2 (XX)(XXXX) D3 0CXXXXX>3 

D4 (XXXXX)OO OS <XmXX>1 D6 OBXX>302 07 0CXXXXX>3 

AD FE076618 At FE076~ A2 00000OO) A3 00000OO) 

M FE0778CC AS Ff:DOlO3A A6 FE0765D8 

Running in • rI. 

-Stack (TOS 100 bytes) 

FBJ76S64: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 03 ............... . 

FBJ76574: 00 00 00 00 00 00 00 01 OE 00 03 02 00 00 00 03 .............. .. 

FB776584: FE C1166 18 FE 07 65 ~ 00 00 00 00 00 00 00 00 .Le. ....... . 

FE076594: FE C1178 CC FE 00 10 3A FE C1165 OS FE 00 7E BE . .x. .•. : .. e. .. -. 

FB7765A4: 00 00 0000 00 00 00 00 00 00 00 00 00 00 00 00 ............... . 

FBJ765B4: 00 00 0000 0000 00 00 0000 0000 00 00 00 00 ............... . 

FE0765C4: 00 00 00 00 00 00 00 00 00 00 00 00 FE C1177 36 .............. w6 

FE0765D4: FE 00 16 C6 00 00 00 00 FE 00 4C CA FE C1166 40 ......... .L. .. f@ 

FB7765E4: 01 00 00 OC FE C1154 ~ 00 00 00 00 FE 07 55 98 ..... :T ....... U. 

FBJ765F4: 00 0000 00 FE 00 71 a> FE C1165 64 00 00 00 00 ...... q ... oL. 

FBJ76r04: 0000 00 00 00 00 00 00 00 00 00 00 00 04 0000 .... _ ........ .. 

fm76614: IE FF 00 02 00 00 00 00 FE 07 66 1800 00 00 00 .......... f... .. 

11-12 Macintosh Coprocessor Platform Developer's Guide 



Flm6624: 00 00 00 00 00 00 00 00 00 00 00 01 FE 00 10 Be ............... . 

FID76634: FE 00 09 '].A OE 00 030200 00 00 00 FE 07 76 90 .............. v. 

Flm6644: 01 00020A4F56 464C 0000 0000 0000 0000 .... OVFl ...... . 

Flm6654: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .............. .. 

.. Task #3 (TCB • FE075538) 

Next Task (priority) ... FE077698 

Next Task (timeout) .... OOOOOOOO 

Stack Buffer ........... FE075468 

Heap Buffer ............ OOOOOOOO 

Program COUnter ........ FE~154 

Stack Pointer .......... FE0754EO 

Code Segr:nent. .......... OOOOOOOO 

Data Segment .......... OOOOOOOO 

Start Parameters ....... OOOOOOOO 

Parent 110 ............. 00000000 

Status Register ........ OOO4 

Page Latch ............. FFFF 

Priority ............... IF 

Block M<Xie ............. 01 

Receive M<Xie ........... FF 

Task ID ................ OOO3 

Message Q Head ........ OOOOOOOO 

Message Q TaiI ......... FE075568 

Blocked TImeOUt Value..OOOOOOOO 

Blocked Message ID ..... OOOOOOOO 

Blocked Message From ... OOOOOOOO 

Blocked Message Code ... OOOOOOOO 

11 / Troubleshooting Guide 11·13 



DO <XXXXro) 01 <XXXXro) 02 00XXXXXl 03 <XXXXro) 

D4 OOOOOOOE D5 0002FFFF D6 0000<XX>1 07 FA020001 

AO Fro75568 Al FE07SS38 A2 FE072D26 A3 FE0017 A4 

A4 FEOOl78C AS FE00103A A6 OOOO(XX)() 

Running in IBY 1@2<6 I. 

-Stack (TOS 100 bytes) 

FBJ7S4ID. 00 0000 00 00 0000 0000 00 00 00 0000 00 00 ............... . 

FE0754FO: 00 00 00 OE 00 02 FF FF 00 00 00 01 FA 02 00 01 ............... . 

FE075SOO: FE (JJ 55 68 FE C17 5S 38 FE C17 2D 26 FE 00 17 A4 .. Uh..US .. -&. ... 

FE075510: FE 00 178CFEoo 10 3AOO 00 00 0000 00 00 00 ......• : ....... . 

FED7552D: 00 00 00 00 00 00 00 00 00 00 00 00 FE 00 4C CA ............ ..L 

FE075530: FE C17 55 90 01 00 00 OC FE C17 76 98 00 00 00 00 .. u. ...... v .... . 

FE075540: FE C17 54 68 00 00 00 00 FE 00 81 54 FE (JJ 54 EO .. lb. ...... T .. T. 

FE075550: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .............. .. 

FE075560: 00 04 FF FF IF FF 00 03 00 00 00 00 FE (JJ 55 68 .............. Uh 

Fro75570: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 ............... . 

FE0755ro. FE 00 10 C4 FE 00 (1) 2A OE 00 04 03 00 00 00 00 ............... . 

Fro75590: FE C17 65 EO 01 00 020A 4F 56 46 4C 00 00 00 00 .. e. .... OVFL. ... 

Fro755AO: 00 00 00 00 00 0000 00 00 00 00 00 00 00 00 00 ............... . 

Fro7SSBO: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .............. .. 

Fro75S<D: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .............. .. 

Fro755DO: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .............. .. 

.. Task #4 (TCB • PE075408) 

Next Task (priority) ... FE074358 

Next Task (tirneout) .... OOOOOOOO 

Stack Buffer ........... FE0743B8 

Heap Buffer ............ OOOOOOOO 

Program COUnter ........ FE00718> 

11·14 Macintosh Coprocessor Platform Developer's Guide 



Stack Pointer .......... FE07533C 

Code Segmenl .......... OOOOOOOO 

Data Segtnent. ••...•.... OOOOOOOO 

Start Parameters ....... OOOOOOOO 

Parent TID .•••••••••••• OOOOOOOO 

Status Register ........ 0014 

Page Uttch. ............ ()()()() 

Priorty ............... 1E 

Block Mode. ............ 01 

Receive Mode. .......... FF 

Task ID ................ OOO4 

Message Q Head ........ OOOOOOOO 

Message Q TaiI ......... FE075438 

Blocked llltleOUt Value..OOOOOOOO 

Blocked Message ID ..... OOOOOOOO 

Blocked Message From. .. OOOOOOOO 

Blocked Message Code ... OOOOOOOO 

DO <XXXXXXX) 01 <XXXXXXX) 02 OOOOXXX) 03 OOOOXXX) 

D4 OOXXX>OO 05 ooxxx>oo D6 oo:xxmo 070E000504 

AO FE075438 At FF.07~ Kl <XXXXXX)(} A3 <XXXXXXX) 

A4 OOOOOOOO AS FE00103A A6 FE07S3F8 

Running in • 0·. 

-Stack (TOS tOO bytes) 

FF.07533C: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .............. .. 

FF.07534C: 00 00 00 00 00 00 00 00 00 00 00 00 OE 00 05 04 .............. .. 

FF.0753SC: FE 07 54 38 FE 07 54 ~ 00 00 00 00 00 00 00 00 . .1'8..T ....... .. 

FE07536C: 00 00 00 00 FE 00 10 3A FE 07 53 F8 FE 00 6E DB ....... : .. 5 .. .0. 

FF.07537C: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ............... . 

11 /Troubleshooting Guide 11-15 



Fm75~ 00 00 00 00 00 00 0000 0000 00 00 0000 00 00 ............... . 

FB17539C: 00 0000 00 00 0000 0000 00 00 00 000000 00 .......... HO ••• 

FB1753AC: 000000 00 00 00 00 00 000000 00 00 0000 00 .............. .. 

FBJ753BC: 00 0000 00 0000 0000 00000000 00 00 0000 ............... . 

FB1753CC: 00 00 00 00 00 00 00 00 00 00 000000 00 00 00 .. _ ....... .. 

F8J753DC: 00 0000 00 00 0000 000000 0000 00 0000 00 00_."00'''''' 

FB1753EC: 00 0000 00 0000 0000 FE 00 ID 3A 00 0000 00 ..... __ :00 .. 

fE0753FC: FE 004CCA FE fJ15460 0100 OOOCFE fJ143 58 • .L..T' ...... CX 

FBJ754OC: 00 0000 00 FE fJ143 B8 00 00 00 00 FE 00 718> ...... c. .. _.q. 

FBJ7541C: FE fJ153 3C 00 00 00 00 0000 0000 00 00 00 00 .. 5<"_"00" 

Fm7542C: 00 00 00 00 00 14 00 00 IE FPOO 04 00 00 00 00 .. HM.H ....... 

.. Task IS (TCB • FE074358) 

Next Task (priority) .. .FEfJ141A8 

Next Task (timeout) .... OOOOOOOO 

Stack Buffer .......... .FF.074208 

Heap Buifer •.•• H ...... OOOOOOOO 

Program Counter ....... .FE00718l 

Stack Pointer .......... FE0742FO 

Code Segment. .......... OOOOOOOO 

Data SegmenL .......... OOOOOOOO 

Start Parameters ....... OOOOOOOO 

Parent 110 ............. 00000000 

Status Register ........ OOO4 

Page lalch. ............ OOOO 

Priorty ............... 1E 

Block Mcxie. ............ OO 

Receive Mode ........... FP 

Task 1D ................ OOO5 

11-16 Macintosh Coprocessor Platfonn Developer's Guide 



Message Q Head ........ OOOOOOOO 

Message Q TaiI ......... FE074388 

Blocked Timeout Value .. OOOOOOOO 

Blocked Message ID ...•• OOOOOOOO 

Blocked Message From. •• OOOOOOOO 

Blocked Message Code. .. OOOOOOOO 

DO oomm 01 (XXXXXXX) D2 (XXXXXXX) D3 (XXXXXXX) 

D4 OOXXXXX) D5 OOXXXXX) D6 OOXXXXX) D7 OEOO>BOA 

AD Fm74388 Al FF1J74358 A2 OOOOXXX) A3 FBm8CC 

A4 FBX>15C4 AS FBX>103A A6 OOOOOOOO 

Running in • 0·. 

-Stack (TOS 100 bytes) 

FBJ742ro: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ....••.......... 

FBJ74300: 00 00 00 00 00 00 00 00 00 00 00 00 OE 00 OB OA ............... . 

FBJ74310: FE 07 43 88 FE 07 43 58 00 00 00 00 FE 07 78 CC .. c. .. CX .... .x. 

FF1J7432D: FE 00 15 C4 FE 00 10 3A 00 00 00 00 FE 00 58 08 ..•.... : ....• .x. 
FBJ7433(}. 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 •..•••. _ .... .. 

FBl74340: 00 00 00 00 00 00 00 00 00 00 00 00 FE 00 4C CA ............. .1.. 

Fm74350: FE 07 43 BO 01 00 00 OC FE 07 41 A8 00 00 00 00 .. c. ..... .A. .. .. 

FF1J74360: FE 07 42 ~ 00 00 00 00 FE 00 718> FE 07 42 R) .. B ....... q ... B. 

FBJ7437(k 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .............. .. 

FBl7438>: 00 04 00 00 IE FF 00 05 00 00 00 00 FE 07 43 88 .............. c. 
FBl74390: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .............. .. 

FBl743AO: FE 00 10 9C FE 00 09 2A OE 00 06 05 00 00 00 00 ............... . 

Fm743BO: FE 07 54 00 01 00 02 OA 4F 56 46 4C 00 00 00 00 .. T ..... OVFL. .... 

Fm743CD: 00 00 00 00 0000 00 00 00 0000 00 00 00 00 00 .............. .. 

Fm743DO: 00 00 00 00 00 00 00 00 00 000000 00 00 00 00 .............. .. 

FBl743fD: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .............. .. 

11 / Troubleshooting Guide 11·17 



.. Task 16 (TCB • fE0741A8) 

Next Task (priority) ... FE073CF8 

Next Task (tineout) .... FE073B48 

Stack Buft'er ........... fE073058 

Heap BuR'er ............ 1XlOOOOOO 

Propn Coumer ...... ..FE00718> 

Stade Poilter .......... FE074140 

Code Segtnent. .......... OOOOOOOO 

Data 5egInenL .......... OOOOOOOO 

Start Pammeters ....... OOOOOOOO 

Parent TID ............. OOOOOOOO 

Status Register ........ OOO8 

Page Latcb. .......... J1OOO 

Pricrly ............... lE 

Block Mode. ............ OO 

Receive Mode. .......... Ot 

Task 10 ................ 0006 

Message Q Head ........ OOOOOOOO 

Message Q TaiI ......... fE0741D8 

Blocked Timeout Value..OOO23BCA 

Blocked Message ID ..... FFFFFFFF 

Blocked Message Fran ... FFFFFFFF 

Blocked Message Code ... OOOOFFFF 

DO FE077698 D1 <XX>23BCA 02 00Xl0000 03 00Xl0000 

D4 00Xl0000 D5 00Xl0000 D6 00Xl0000 D7 <XXlOO(XX) 

AD Fm71Sm At Fm74lA8 A2 <XXXlOOOO A3 0<XXl0000 

A4 FE00l4DE AS FE001D3A A6 FE074198 

Running in • 0'. 

11-18 Madntosh Coprocessor Platfonn Developer's Guide 



-Slack (TOS 100 bytes) 

FB174140: FE 07 76 9800 02 3B CA 00 00 00 00 00 00 00 00 .. v ... ; ........ . 

FB174150: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ............... . 

FID741~: FECf715 ED FECf7 41 ABOO 000000 00000000 ..... .A ..... ... 

FE074170: FE 00 14 DE FE 00 10 3AFECf7 4198FE003FSC ....... : . .A .. ? 

FE07418): FF FF FF FF IT IT FF FF FF FF IT FF 00 00 00 13 ............... . 

Fm74190: 00 00 00 00 00 00 00 00 00 00 00 00 FE 00 4C CA ............. .1. 

FE07 41A0: FE Cf7 42 00 01 00 00 OC FE 07 3C F8 FE Cf7 3B 48 .. B ....... < ... ;H 

FE0741BO: FE Cf7 3D 58 00 00 00 00 FE 00 718) FE Cf7 4140 ... x. ..... q .. .A@ 

FB1741CD: 000000 00000000000000000000000000 ............... . 

FB17 4100: 00 ~ 00 00 IE 01 00 06 00 00 00 00 FE Cf7 41 D8 ............. .A 

FE0741EO: 00 02 3B CA FF IT FF FF IT FF FF IT FF FF 01 00 .. ; ............ . 

FB174U~: FE 00 10 94 FE 00 (1) 2A OE 00 Cf7 06 00 00 00 00 .............. .. 

FID74200: FE Cf7 43 50 01 00 00 2A 4F 56 46 4C 00 00 00 00 .. CP ... "OVFl.. ... 

FB174210: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ............... . 

FB174Z?D: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .............. .. 

FB174230: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ............... . 

" Task #7 (TCB - FE073CF8) 

Next Task (priority) ... FE0765E8 

Next Task (timeout).. .. OOOOOOOO 

Slack Buffer ........... FE073BAB 

Heap Buffer ............ OOOOOOOO 

Program COUnter ........ FE0Cf71~ 

Slack Pointer .......... FE073Q3C 

Code Segment. .......... 00l00000 

Data Segmenl. .......... OOOOOOOO 

SIart Pacunelers ....... OOOOOOOO 

Parent 110 ............. ()()()()(X)(l() 

11 / Troubleshooting Guide 11·19 



Status Register ........ OO14 

Page Latch. •••..•.•...• OOOO 

Priorty ............... lE 

Block Mode. ............ oo 
Receive MOOe ........... FF 

Task ID ................ OOO7 

Message Q Head. ........ OOOOOOOO 

Message Q TaiJ ...•.•••. FE073D2B 

Blocked imeout Value •• OOOOOOOO 

Blocked Message ID ••••• OOOOOOOO 

Blocked Message From. .• OOOOOOOO 

Blocked Message Code. .. OOOOOOOO 

DO ooxxxro D1 ooxxxro D2 <XXXXXXX> D3 <XXXXXXX> 

D4 ooxxxro OS ooxxxro D6 ooxxxro D7 OOXXXXX) 

AD FE013D/8 At FE073(}'8 A2 OOO)(XX)() A3 OOX)(XX)() 

A4 FE001484 A5 FE00103A A6 FE073CEB 

Running in • 0'. 

-Stack (TOS 100 bytes) 

FFD73a!C: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ............... . 

FFD73C9C: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ............... . 

Fm73CAC: rr: (J7 3D /8 rr: (J7 3C F8 00 00 00 00 00 00 00 00 .... (.. < ........ . 

FE013CBC: rr:oo 14 84 FE 00 10 3AFE(J7 3CrB FE 00 3ED4 ....... : .. < ... >. 

Fm73CCC: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ............... . 

FFD73CDC: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .............. .. 

FE013CEc: rr: 00 4C CA FE (J7 3D 50 01 00 00 OC FE (J7 65 rB .,L .. ·P ...... e. 

FE013CFC: 00 00 00 00 FE (J7 3B AB 00 00 00 00 FE 00 71 00 ...... j. ...... q. 

FFD73DOC: FE (J7 3C ~ 00 00 00 00 00 00 00 00 00 00 00 00 .. < ............ . 

FFD73D1 c: 00 00 00 00 00 14 00 00 IE FF 00 (J7 00 00 00 00 ............... . 

11·20 Macintosh Coprocessor Platfonn Developer's Guide 



FE073D2C: FE (f7 3D 28 00 00 00 00 00 00 00 00 00 00 00 00 .. =(. .......... . 

FB>73D3C: 00 00 00 00 FE 00 1D 8C FE 00 (1) 2A OE 00 ~ (f7 .............. .. 

FE073D4C: 00 00 00 00 FE (f7 41 AD 0100 00 SA 4F 56 46 4C ..... .A. .... OVfl. 

FE073D5C: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ............... . 

rm73J)6C: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ............... . 

FE073D7C: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ............... . 

.. Task 18 ('rCB .. FE073B48) 

Next Task (priority) ... FE072690 

Next Task (timeout) .... FE0715EO 

Stack Buffer ........... FE072AF8 

Heap Buffer ............ FE0726FO 

Program COOnter ........ FE007180 

Stack Pointer .......... FE0739AE 

Code Segrnenl .......... ()(X)()(X)(X) 

Data Segrnent. .......... ()()()()(X)()() 

Start Parame!ers ....... OOOOOOOO 

Parent TID ............. ()()()()(X)()() 

Status Register ........ OOO8 

Page La1cb. ............ OOOO 

Priority ............... OA 

Block Mode ............. OO 

Receive Mode. .......... Ol 

Task ID ................ OOOO 

Message Q Head ........ FE077736 

Message Q Tail ......... FE077736 

Blocked Tuneout Value •. OOO23BCC 

Blocked Message ID ..... FFFFFFFF 

Blocked Message From ... FFFFFFFF 

11 / Troubleshooting Guide 11·21 



Blocked Message Code ... OOOOFfFF 

DO FBJ77698 01 ro>23BCC 02 OOXXXXX) 03 OOXXXXX) 

D4 08)()()2()1 OS FElO9CED D6 OOOOOOOB 07 OOOOOOOD 

AD FE074lA8 At FE073B4B A2 OOXXXX)() A3 OOXXXX)() 

A4 FE06PCFO AS PE00103A A6 FE073A12 

Running in • 0'. 

-Stack (TOS 100 bytes) 

FBJ739AE: FE (J7 76 9800 02 3B a: 00 00 0000 00 00 0000 .. v ... j._ .... . 

Fm739BE: OE 00 02 01 FE 10 9C ED 00 00 00 OB 00 00 00 OD .............. .. 

FE0739CE: FE (J7 41 N3 FE (J7 3B 48 00 00 00 00 00 00 00 00 • .A .. ;H. ..... .. 

FE0739DE: FE 06 PC ro FE 00 10 3A FE (J7 3A 12 FE 00 24 38 ....... : .. : ... $8 

FE0739EE: FP FF FP FP FP FP FP FP FP FP FP FP 00 00 00 13 ............... . 

FE0739FE: FE 10 9C ED OE 00 09 08 00 00 00 00 FE (J7 77 E4 .............. w. 

FE073AOE: FE 06 PC ro FE (J7 3B 38 FE 00 30 OE FE 00 OB F8 ...... ;8..0 ..... 

FE073A1E: OE 00 09 0800 00 OD 64 OE 00 09 08 FP FP 8) 66 ....... d ..... .f 

FE073A2E: FF FP 8) 00 FE 00 OB CE OE 00 09 08 FE (J7 77 E4 .............. w. 

FE073A3E: FE 10 9C ED FE 10 9C ED 00 00 00 00 00 00 00 00 .............. .. 

FE073ME: 00 00 00 00 FE 00 OB 9C OE 00 09 08 FE (J7 77 70 .............. wp 

FE073A5E: FE 00 OB 6A OE 00 09 08 00 00 OD 64 00 00 00 66 ... ~ ...... d . .f 

FE073A6E: 00 00 04 78 FE 00 OB 3C OE 00 09 08 FE (J7 77 70 .. ~ .. < ...... wp 

FE073A7E: FE 10 9C ID 00 00 00 00 00 00 00 00 00 00 00 00 .............. .. 

FE073ABE: 00 00 00 00 00 0000 00 00 000000 00 0000 00 .............. .. 

FE073A9E: OE 00 09 ~ 00 00 00 00 FE 06 FP 60 FE 06 FB AD .............. .. 

.. Message at FB177736 

Next. .... _ ... ()()()()()(XX) 

1D .... _ .. _ .. FE0C7F44 

Code.._ ... -.OO6B 

Status ........ ()(X)() 

Priaity ...... ()(X)() 

11·22 Macintosh Coprocessor Platform Devdoper's Guide 



Fran .......... OIDXl201 

To ............ O~ 

Sender Oata. •• OOOOOOOO 

OOXXXXX) 

OOXXXXX) 

Oher Data. ••. OOOOOOOO 

OOXXXXX) 

OOXXXXX) 

Data Size. •• jXXXXXXX) 

Data Pointer .. OOOOOOOO 

.. Task 19 ('rCB • FE072690) 

Next Task (priority) ... FE0715EO 

Next Task (timeout) .... OOOOOOOO 

Stack Buffer ...•••••..• FE071640 

Heap Buffer ............ OOOOOOOO 

Program COUnter ........ FE0071~ 

Stack POinler .......... FE072624 

Code Segrnent. .......... OOOOOOOO 

Data SegmenL ........ OOOOOOOO 

Start Parameters ....... OOOOOOOO 

Parent 110 ............. 00000000 

Status Register ........ OOO4 

Page Latch. ............ OOOO 

Priority ............... OA 

Block M<XIe. ............ OO 

Receive Mcxie ........... FF 

Task ID ................ OOO) 

Message Q Head ........ OOOOOOOO 

11 I Troubleshooting Guide 11·23 



Message Q Tau ........ .FE0726cO 

Blocked Timeout Yalue .. OOOOOOOO 

Blocked Message 10 ..... 00000000 

.Blocked Message From. .. OOOOOOOO 

Blocked Message CcxIe. .. OOOOOOOO 

DO <mXXXX> 01 <mXXXX> 02 <mXXXX> D3 <XXXXXXX> 

D4 000XXXl0 OS <XXXXXXX) D6 <mXXXX> 07 FEOO6183 

AD FFD726<D AI FBm690 A2 <mXXXX> A3 f'F11TTP.IJ 

A4 0000XXl0 AS FE00103A A6 ~ 

Running in • 0·. 

-Stack (TOS 100 bytes) 

FBm624: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ............... . 

FED72634: 00 00 00 00 00 00 00 00 00 00 00 00 fE 00 6183 ............. .a. 

FH172644: FE 07 26 (l) FE (J7 26 SX> 00 00 00 00 FE 07 T7 36 .. & ... & ....... w6 

FE072654: 00 00 00 00 FE 00 10 3A FE 07 26 00 FE 00 3B FA ....... : .. &. .. ;. 

FrD'7266tt 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .............. .. 

FED72674: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .............. .. 

FBJ72684: FE 00 4C CA FE (J7 26 ~ 01 00 00 OC fE (J715 EO . .1.. .. &. ...... .. 

FBJ72694: 00 00 00 00 fE (JJ 1640 00 00 00 00 FE 00 71 00 ....... @ ...... q. 

FED726A4: FE (J7 26 24 00 00 00 00 00 00 00 00 00 00 00 00 .. &$ ........... . 

FBJi'26B4: 00 00 00 00 00 04 00 00 OA FF 00 (J) 00 00 00 00 .............. .. 

FBJi'26C4: FE 07 26 (l) 00 00 00 00 00 00 00 00 00 00 00 00 . .&. .......... .. 

FE0726D4: 00 00 00 00 FE 00 10 7C FE 00 (J) 2A OE 00 OA (J) ....... 1 ...... .. 

FBJ726E4: 00 00 00 00 fE 07 2A ro 01 00 00 81 00 00 00 00 ............... . 

FED726F4: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .............. .. 

FBJ7Z704: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .............. .. 

FBJ7Z714: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .............. .. 

11-24 Macintosh Coprocessor Platform Developer's Guide 



•• Task IA ('rCB· FE0715EO) 

Next Task (priority) ... FE073B48 

Next Task (timeout) .... FE0741A8 

Stack Buffer .......... .FE070590 

Heap Buffer ............ OOOOOOOO 

Program Camter ........ FE0071~ 

Stack Pointer ..••.••••• FE07153E 

QxIe Segment. ..... N ••• OOOOOOOO 

Data Segmenl. ....••.... OOOOOOOO 

Start Par.uneters ••••••• OOOOOOOO 

Parent TID ............. OOOOOOOO 

Status Register ........ OOO8 

Page Ultch. ............ OOOO 

Priority ............... OA 

Block Male. ............ Ol 

Receive Mode. .......... Ol 

Task IO ................ OOOA 

Message Q Head. ........ OOOOOOOO 

Message Q TaiI ......... FE071610 

Blocked Timeout Value..()OO23BD6 

Blocked Message IO ..... FFFFFFFF 

Blocked Message Prom ... FFFFFFFF 

Blocked Message Code. .. OOOOFFFF 

DO FE0776SlJ D1 00023806 02 OO(XX)(XX) 03 OO(XX)(XX) 

D4 <XXl23~1 OS OBXlOBOA D6 (xx)(xx)1 C D7 OOOOC350 

AD FBT73B4B Al Fm715EO A21XXXXXXlO A3 ()(XXXXXX) 

A4 OOOOOOOO A5 FEOOlD3A A6 Fm715A2 

Running in • 0'. 

11 /Troubleshooting Guide 11·25 



-Stack (TOS 100 bytes) 

Fm7153E: FE('f7 76 980002 3B 06000000 000000 00 00 .. v ... ;. ...... .. 

Fm7154E: 00 02 33 01 OE 00 OB OA 00 00 00 Ie 00 00 C3 50 . .3 ............ P 

FB>7155E: FE ('f7 3B 48 FE 0715 EO 00 00 00 00 00 00 00 00 .. jH. ......... .. 

mJ7156E: 00 00 00 00 FE 00 10 3A FE ('f715 A2 FE 00 24 38 ....... : ...... $8 

FE07157E: FF FF FF FF FF FF FF FF FF FF FF FF 00 00 00 13 ............... . 

mJ7158E: OE 00 OB OA OEOO (Xi 05 0000 C3 so FE ('f7n E4 ........... P .. w. 

mJ7159E: 00 00 00 00 FE ('f715 DO FE 00 3<:72 FE 00 13 2A .......... <r ... • 

Fm715AE: OE 00 OB OA 0000 00 00 00 00 00 00 00 00 00 00 ............... . 

Fm715BE: 00 00 00 00 00 00 00 00 00 00 00 00 00 02 2£76 ............... v 

Fm715CE: 00 OF 00 00 00 00 FE 00 4C CA FE ('f716 38 01 00 ....... .1. ... 8 .. 

mJ715DE: 00 OC FE ('f7 3B 48 FE ('f7 41 AS FE ('f7 05 90 00 00 .... ;H . .A. ..... . 

Fm715EE: 00 00 FE 00 71 a> FE ('f715 3E 00 00 00 00 00 00 .... q .... > .... .. 

Fm715FE: 00 00 00 00 00 00 00 00 00 00 OO~OO 00 OA 01 ............... . 

FE07160E: 00 OA 00 00 00 00 FE ('f71610 00 02 3B 06 FFFF ............ ; ... 

FE07161E: FF FF FF FF FF FF FF FF 01 01 FE 00 10 84 FE 00 ............... . 

Fm7162E: 09 2A OE 00 OB OA 00 00 00 00 FE ('f7 26 ~01 00 ............... . 

............ &... 

The above sequence is repeated for each active Task Control Block. 

In this example, the current task ID string shows the value of OBOOOOOO, which is the TID of the 
currently-ruruiing task. Refer to Table 11-2 to determine the field name from which this value was 
obtained by checking the name of the string (current Task IO), then looking in the structure 
indicated (gcommon) in the file listed (arose. h) to determine the actual location (gTIO). 

Table 11-2 shows a cross reference to the field names, listed in alphabetical order to the locations, 
structures, and indude flies in which the dumpcard fJclds are found 

• Wamfng These structures may change in future versions; therefae, do not hard 
oode addresses for these locations. 4 

11·26 Macintosh Coprocessor Platform Developer's Guide 



• Table 11·2 Dumpcard cross reference 

DIIIIIpcard 8dII name I.oc:adon structure BIe:oaax 

Blocked Message Code pQMsgCode pTaskSave os.h 

Blocked Message From pQMsgFrom pTaskSave os.h 

Blocked Message 10 pQMsgIO pTaskSave os.h 

Blocked TlIl1eOOt Value pQTimeout pTaskSave os.h 

CAP (Checksum) gCAP.iCksum gCommon arose.h 

CAP (Magic Number) qCAP.iMaqic qCommon arose.h 

CAP (Pointer) qCAP.iPointer qCommon arose.h 

COOe mCode mMessage os.h 

Code Segment pCodeSeq pTaskSave os.h 

Current Task 10 qTIO qCommon arose.h 

Current Task Pointer qCurrTask qCommon arose.h 

Data Pointer mOataPtr mMessage os.h 

Data Segment pOataSeq pTaskSave os.h 

Data Size mOataSize mMessage os.h 

Debugger Comm Area qOebuqCom gCommon arose.h 

Debugger Flag qOebuqOn gCommon arose.h 

Debugger Pointer qOebuqTemp qCommon arose.h 

Error status gError qCommon arose.h 

Free message list qMsqFree qCommon arose.h 

FW A of initial code qFwaCode qCommon arose.h 

FW A d message area gFwaMess gCommon arose.h 

From mFrom mMessage os.h 

Heap Buffer pHeapBuf pTaskSave os.h 

ICC Task TID qIccTask qCommon arose.h 

ID mId mMessaqe os.h 

11 /Troubleshooting Guide 11-27 



• Table 11·1 Oumpcard cross reference conltnued 

DumpcIId BeJd aame toeadon Structure RIcname 

IdJeChain qldleChain qCommon arose.h 

Idle Loop Counter qldleLoop qCommon arose.h 

Initial A5 value qlnitAS qCommon arose.h 

InliaJ PC qlnitPC qCommon arose.h 

LWA of inliaJ code qLwaCode qCommon arose.h 

LWA of message area qLwaHess qCommon arose.h 

Major Cydes defered qHajorDefer qCommon arose.h 

Major Cydes skipped qHajorSkip qCommon arose.h 

Major Rag qHajorFlaq qCommon arose.h 

Major Tick qHajorTick qCommon arose.h 

Memory buffer list ptr qBuffList qCommon arose.h 

Message Q Head pQHead pTaskSave os.h 

Message Q Tau pQTail pTaskSave os.h 

Messages discarded qHsqBucket qCommon arose.h 

Minor / Major Cycle qHinPerHaj qCommon arose.h 

Minor TICk Counter qHinorTick qCommon arose.h 

Name Task TID qNameTask qCommon arose.h 

Name Unregister pointer qUnreqTask qCommon arose.h 

Next mNext mHessaqe os.h 

Next Task (priority) pNextTask pTaskSave os.h 

Next Task (timeout) pNextTime pTaskSave os.h 

Other Data mOData[O] mHessaqe os.h 
mOData[l] mHessaqe os.h 
mOData[2j mMessage os.h 

Page Latch qPaqeLatch qCommon arose.h 

Page Latch pPaqeLatch pTaskSave os.h 

Parent TID pParentTID pTaskSave os.h 

Priority mPriority mHessaqe os.h 

11·18 Macintosh Coprocessor Platform Developer's Guide 



• Table l1·Z Dumpcard cross reference conttnued 

Dumpc:anlfldd aamc Locatloll Struct1U"e FIImame 

Priority pPriority pTaskSave os.h 

Priority List gPriList gCommon arose.h 

Priorly Table Pointer gPriTaole gCommon arose.h 

Progr3m Counter pPcSave pTaskSave os.h 

Release version gRelease gCommon arose.h 

Sender Data mSData[O] mMessage os.h 

mSData[l] mMessage os.h 

mSData[2] mMessaqe os.h 

Sict address qSlotAdd qCommon arose.h 

Slot number qSlotNum qCommon arose.h 

Stack Buffer pStackBuf pTaskSave os.h 

Stack Pointer pSpSave pTaskSave os.h 

Start Parameters pStartParm pTaskSave os.h 

Status mStatus mMessage os.h 

Status pStatus pTaskSave os.h 

Status Register pSrSave pTaskSave os.h 

Task ID pTID pTaskSave os.h 

Task Table Pointer gTaskTaole gCommon arose.h 

Tick Chain gTickChain gCommon arose.h 

Ticks per Second gTickPerSec gCommon arose.h 

T"me Base qTimeBase gCommon arose.h 

Timeout queue gTimeout gCommon arose.h 

T"une Queue Flag gTQFlaq gCommon arose.h 

Timer Task TID qTimerTask gCommon arose.h 

To mTo mMessage os.h 

Trace Task TID gTraceTask gCommon arose.h 

Unique Counter gOnique gCommon arose.h 

11 / Troubleshooting Guide 11·29 



If A/ROSE crashes 
The following steps will help you determine if AlROSE has crashed and aid in finding the error: 

1. First check location $64A to make sure that Flag is non-zero; that means AlROSE has crashed. 

2 If AlROSE has crashed (F lag is non-zero), then examine PC located at location $642 and look 
at the address to which PC points. 

• ~ The long word at location $650 is the exception number, which caused the 6BOOO to 
crash. This number is valid only if Flag at $64A is non-zero. 

If A/ROSE does not detect an error, use the load map (described in the next section) to determine 
what code was executing at the time of the error. If AlROSE does detect an error I it executes code 
that changes the error code to a symbolic name (described in the section following that). 

Using the load map 

You can use the load map produced when bUilding your download me to examine locations on the 
carel. Given a routine name in the load map, you can fmd where the routine actually exists on a smart 
card. 

The starting addresses of the routines in AlROSE in the load map are prcxiuced by the linker (refer to 
makefile in the file MCP : Examples :A/ROSE: for an example). The location 
gCommon. gFwaCode contains the first word address of the code containing the AlROSE 
operating system that was downloaded to the carel 

• Note: The location oxoooeeo on the MCP card contains the initial stack pointer. The initial 
stack is at the high end of memory. 

You can calculate the address of a routine within the load map in two ways. The first method 
calculates the code loaded that contains AlROSE, as follows: 

Address of routine on the card 

• gCommon. gFwaCode 

+ length of each previously loaded code segment 

+ 4 • number of previously loaded code segments 

11-30 Macintosh Coprocessor Platform Developer's Guide 



The second method eX calculation works whether the downloaded code contains the AiROSE 
operating system or was dynamically downloaded, assuming that register A5 points to the Jump 
Table of the task. The second method calculates the code loaded to a smart card running AlROSE, as 
follows: 

Address of routine on the card 

• value at location 4(A5) 

+4 

+ length of each previously-loaded code segment 

+ 4 • number of previously-loaded code segments 

This second method of calculation assumes that 4(A5) is approximately the address of the fll'St 
code segment; this assumption may 1IOt always be the case. 

• 
Using AfROSE error codes 

If the AlROSE operating system detects an error, it executes the following code (the PC at location 
$642 points to this code): 

MOVE.L ferror code, gError 

illegal 

Within the common error-handling routines, AlROSE changes the error code at location gError to 
the symbolic name eBTHH, and the processor executes a tight loop. Table 11-3 lists the symbolic 
names d the error codes found in the files : MR-DOS: includes: mrdos • a and 
:MR-DOS:includes:mrdos.h. 

• Table 11-3 Error codes for AlROSE 

Value 

eBTHH 

or 
eCAlT 

eCAMS 

eCAPR 

SfmXXX)1 eCAPT 

LocatJoll 

hwbuserr (osinit) 

hwerr (osinit) 

osinit 

osinit 

osinit 

os in it 

bplaaatioll 

Bad things have happened 

Bad things have happened 

Cannot allocate idle task 

Cannot allocate message 

space 

Cannot allocate priority 

table 

Cannot allocate process table 

conlinued. .. 

11 I Troubleshooting Guide 11-31 



• Table 11-3 Error codes for NROSE conttnued 

Value Symbolic loc:atJon Explanation 
Name 

eFMSG tfreemsg (ostrap) Attempt to free bad 

message buffer 

eMEMB tfreemem (ostrap) Attempt to free bad 

memory buffer 
$8XXXXX)3 eNPTR pickTask (ostask) No processes to run 

S8XXmJ7 eOVFL saveTask (ostask) Stack overflow detected 
$8XXXXX)A eSMSG tsend (ostrap) Attempt to send bad 

message buffer 

S8XXXXX>O eSTPI tstoptask (ostrap) StopTask cannot be called 
• 

from interrrupt 

eSTTI tstarttask (ostrap) StartTask cannot be called 

from interrupt 

$8XXXXX)B eTIMO tsend (ostrap) Task not in timer queue 

The symbolic names described below (listed in alphabetical order) match the error code returned, 
describe potential problems, and suggest how to find a solution. 

eBTmI - Bad Things Have Happened 

Description 

Either a hardware error (hwerr) or hardware bus error (hwbuserr) has occurred. 

Solution 

When the NROSE operating system encounters an error, it executes the following code: 

MOVE.L #errorcode,gError 

illegal 

To check the hardware error, examine the PC at location $642 on the MCP card to see what code 
was being executed at the time of the problem. To check the hardware bus error, examine location 
$650 on the MCP card to see what hardware trap occurred. 

• Note: Executing the illegal instruaion causes the hwerr routine to be entered. The hwerr 

routine overwrites location gError with the error code eBTHH. 

11-32 Macintosh Coprocessor Platform Developer's Guide 



eCAlT - Caonot Allocate Idle Task 

Dlscrlptloa 

The routine osinit executes an alegal instruction if it cannot allocate a Task Control Block for the 
Idle task. 

The main routine calls the osinit routine to initialize A/ROSE. The routine osinit causes a 
crash if 0 s in it cannot allocate enough memory for system data strudllre. Th~ crash indicates a 
serious shortage of memory. 

• Check: the parameters sent to osinit in osmain.c (stack size and number d message 
blffers) and reduce as necessary. 

• Make sure that the size of code ~ not too large for available memory. If necessary, rewrite to 
reduce the size of the code. 

• Make sure that the initial stack pointer value in card location OXOOOO is valid. If invalid, download 
again. If still invalid after trying again, contact Apple Developer Services. 

eCAMS - Cannot Allocate Message Space 

Descrlptloa 

The routine osinit executes an illegal instruction if it cannot allocate the A/ROSE message buffer 
pool. 

The main routine calls the osinit routine to initialize A/ROSE. The routine osinit crashes if it 
cannot allocate enough memory for system data structures. This crash indicates a serious shortage 
of memory. 

• Check the parameters sent to osinit in osmain. c (stack size and number d message 
blffers) and reduce as necessary. 

• Make sure that the size of code is not too large for available memory. If necessary, rewrite to 
reduce the size of the code. 

• Make sure that the initial stack pointer value in card location 0x0000 is valid. If invalid, download' 
again. If still invalid after trying again, contact Apple Developer Services. 

11 /Troubleshooting Guide 11·33 



eCAPR - cannot Allocate Priority Table 

Descrlptforl 

The routine osinit executes an illegal instruction if it cannot aJlocate the AlROSE Priority Table. 

The main routine calls the osinit routine to initialize AlROSE. The routine os in it crashes 

if it canntt aJlocate enough memory for system data structures. This crash indicates a serious 
shortage of memory. 

SolMtto,. 

• Check the parameters sent to osinit in osmain. c (stack size and number of message 
buffers) and reduce as necessary. 

• Make sure that the size of code is not too large for available memory. If necessary, rewrite to 
reduce the size of the code. 

• Make sure that the initial stack pointer value in card location 0x0000 is valid. If invalid, download 
again. If still invalid after trying again, contact Apple Developer Services. 

eCAPT - cannot Allocate Process Table 

Descrlptforl 

The routine osinit executes an illegal instruction if it canntt aJlocate the AlROSE process table. 

The main routine calls the osinit routine to initialize AlROSa The routine osinit crashes if it 
canntt aJlocate enough memory for system data structures. Any of these crashes indicates a 
serious shortage of memory. 

SolutlOtJ 

• Check the parameters sent to osinit in osmain. c (stack size and number of message 
buffers) and reduce as necessary. 

• Make sure that the size of code is not too large for available memory. If necessary, rewrite to 
reduce the size of the code. 

• Make sure that the initial stack pointer value in card location OXOOOO is valid. If invalid, download 
again. If still invalid after trying again, contact Apple Developer Services. 

eFMSG - Attempt to Free Bad Message 

Descrlptforl 

The routine t freemsq is a kernel trap routine that performs the work of a FreeMsq request. 
The tfreemsq routine executes an illegal instruction if it determines that the pointer to the 
message it is attempting to free is invaJid or the message is not in use. 

11-34 Macintosh Coprocessor Platform Developer's Guide 



Solutio,. 

Verify that the pointer passed to FreeMsg points to a valid, in-use message buffer: 

The message buffer is preceded by a four-byte header indicating whether the message buffer is in 
use or available. The first three bytes contain the characters MSG. The fourth byte contains one of 
the following: 

• OxFs (where s is the slot number) if the message buffer is in use 

• Ox20 (space) if the message buffer has never been used 

• Oxoo if the message buffer has been used but is now available for reuse 

• OxFF if ICCM has obtained a message for internal use 

• OxsF (where s is the slot number) if message is on the internal AiROSE queue 

• Note: If the fQurth byte is OxOO, the application code may be attempting to free a 
particular message multiple times. 

Diagnose and correct the user code. 

eMEMB - Attempt to Free Bad Memory Buffet 

Descrlpttcm 

The t freemem routine is a kernel trap routine that performs the work of a FreeMem request. 
The tfreemem routine executes an illegal instruction if it is invoked with a bad memory buffer 
pointer; that is, the pointer does not point to an area of memory that was allocated by a previous 
GetMem request or an attempt was made to free a memory buffer that was already freed. 

Solutio,. 

Check the pointer passed to the FreeMem request. Verify that it points to a valid memory buffer. 

The buffer address must be equal to or greater than the address stored in gCommon .gBuffList. 

The eight bytes in front of the buffer area pointed to should contain a memory buffer header of 
the form: 

bHeader 

bNext DS.L 1 

bUsage DS. B 1 

bSize DS.B 3 

ENDR 

RECORD 0 

; pointer to next header (32-bit NuBus form) 

; usage count: Qafree; nonze~allocated 

; Size of block in 8-byte chunks 

11 I Troubleshooting Guide 11-35 



If the buffer header is invalid, determine where in the user code the buffer header has been 
corrupted and correct the code. If the buffer header appears to be valid, the buffer pool links may 
be corrupted. Verify the buffer pool links as follows: 

t Get the pointer to the buffer pool area (gCommon. gBuffList). This points to the first buffer 
header (bHeader). 

2 Get the pointer to the next memory block header from bHeader .bNext. This pointer can 
also be determined by the following equation (except for the last buffer, which has a 
bHeader. bNext pointer of zero): 

bHeader • bNext - bHeader. bSi ze * 8 + bHeader 

If bHeader. bNext does not equal the result of the calculation, a buffer header has been corrupted. 

Check bHeader .bUsage to determine if the buffer is free or allocated (see header). There 
should not be multiple free adjacent buffers. 

3. Repeat 2 until bHeader .bNext is zero, indicating that this is the last buffer, or a buffer pool 
corruption is discovered. 

If a buffer pool corruption has caused the crash, diagnose and correct the user code that caused the 
corruption. Otherwise, call Apple Developer Services. 

eNFfR - No Processes to Run 

Descrlptlorl 

The pickTask routine chooses the next task to schedule when the current task gives up the 
CPU. The pickTask routine executes an illegal instruction if there is no task available for 
execution. The Idle task should always be available for execution. 

Solutio" 

• Ensure that the Idle task is available for execution (no routine on the Idle Chain should invoke a 
Recei ve request). If a routine on the Idle Chain invokes Receive, correct the code. 

The MPW tool dumpcard can be used to determine the state of the Idle task at the time of 
the crash. 

t Run dump card -e -r under MPW. 

2 Locate the task control block for Task O. 
3. Check the Status line. If the word (Blocked) appears, the Idle task is blocked from 

execution by a Receive request. 

• If the Idle task appears to be available for execution, call Apple Developer Services for help. 

11-36 Macintosh Coprocessor Platform Developer's Guide 



eOVFL - Stack Overflow Detected 

DeserlptlDa 

The saveTask routine stores the context of the current task when the current task gives up the 
CPU. The saveTask routine executes an illegal instruction if it detects an apparent overflow 
condition in the users stack area. 

The system inserts the string OVFL at the end of the user stack at user task startup time. The 
task saveTask checks for this string to determine if the user stack is corrupted; pStackBuf 
within pTaskSave points to the OVFL string. The pStackBuf pointer is a single element 
within pTaskSave, located in the fde os. a and the fde os. h. 

Caruption d AlROSE global data structures can also cause this crash. 

SobItiOfI 

Correct the user code that causes the stack overflow. If a condition that causes a stack overflow 
cannot be found, use the MPW dumpcard tool to display the AlROSE data structures and 
investigate for inconsistencies. 

Verify that: 

• Current Task 10 (qCommon. qTIo) is valid 

• Current Task Pointer (qcommon. qCurrTask) points to the Task Control Block ('rCB) of the 
currently-executing task 

• TCB of current task is valid 

eSMSG - Attempt to Send Bad Message Buffer 

DeserlpllDa 

The tsend routine is a kernel trap routine that performs the work of a Send request If tsend 
determines that the pointer to the message it is attempting to send is invalid or the message is not 
in use, tsend executes an illegal instruction and causes a crash. 

SoI"'lo,, 

Verify that the pointer passed to Send points to a valid, in-use message buffer (refer to eFMSG 
for the crash solution). Diagnose and correct the user code. 

eSTPI- Stop Task cumot be called from Interrupt routine 

Descrlp'lDa 

The tstoptask routine checks that StopTask is na called from an interrupt routine. 

SoI",lo" 

Correct the code that issued the StopTask request 

11 / TroUbleshooting Guide 11-37 



eSTl1- Start Task annot be called from interrupt routine 

Desmptlmt 

The tstarttask routine checks that StartTask is not called from an interrupt routine. 

Solutltm 

Correct the code that issued the StartTask request. 

eTIMQ - Task Not in TImer Queue 

Descrlptlotl 

The t send routine is a kernel trap routine that perfortm the work of a Send request. If the 
message being sent can satisfy an outstanding Receive request, or the Receive request has 
specified a timeout value but tsend could not locate the receiving task in the AlROSE timeout 
queue, then tsend executes an Ulegal instruction. This a2Sh indicates a corruption of the timeout 
queue. 

Solutio,. 

Use the MPW dumpcard tool to display the AlROSE data structures and investigate for AlROSE 
timeout queue corruption: 

1 Execute dumpcard -e -m -r from MPW. 

2 Get the address of timeout queue. This is the address of the fU'st Task Control Block (TCB) on 
the timeout queue. 

3. Search for a TCB that is located at the timeout queue address 

4. Get the address of the next TCB in the queue from the NextTask (timeout) entry in the TCB. 

5. Search for the next TCB in the queue. 

6. Repeat 4 and 5 until either NextTask (timeout) is 00000000, indicating the end of the 
timeout queue chain, or it points to a value that is not a valid TCB, indicating a corruption of 
the timeout queue. 

If the timeout queue is corrupted, locate the ccxie that caused the corruption, and fIX it 

Task Not Stopped 

There is no associated error code for this problem. 

Desmptlmt 

The deadMan routine executes when a user task runs to completion. deadMan executes an megal 
instruction if it cannot stop the task that has just completed This a2Sh indicates a problem in the 
AlROSE kernel. The global area gCommon may have been corrupted or the task control block for a 
particular user task may have been corrupted. 

Solutio,. 

If user code has not corrupted memory, call Apple Developer Services. 

11·38 Macintosh Coprocessor Platform Developer's Guide 



If A/ROSE hangs 

If your system appears to be nonfunctional but you have determined that your code has not 
crashed, then your system may be hung; that is, the CPU may still execute instructions, but the 
section ci code being executed wUl never give up control ci the CPU. 

Determining the cause of a hang can be a difficult process. This section provides information and 
guidelines to use in investigating hangs. It does not cover all ~ible problems. 

When the system is healthy, a hardware timer routindy activates a timer interrupt routine. The 
interrupt routine deaements a counter, qCommon.qMinorTick, each time the routine is 
executed. Every nth time the timer interrupt routine executes (where n is a configuration 
par:uneter), the interrupt routine increments a counter, qCommon. qMa jorTick. Thus, 
qCommon. qMa jorTick increments every 11th decrement ci qCommon .qMinorTick. 

During major tick processing (whenever qCommon.qMajorTick inaements), the timer interrupt 
routine performs the following: 

• sets qCommon .qMajorFlaq to non-zero to indicate major tick processing in progress 

• resets qCommon. qMinorT iek 

• executes any routines on the Tick Chain are executed 

• if the current task is running in slice mode, the system task scheduling mechanism schedules a 
new task 

• sets qMajorFlaq to zero to indicate the end of major tick processing 

The health of the major and minor tick counters provides an indication of the state ci the system. 
FIrSt, examine the qMajorTiek counter: if it is inaementing, go to the section tided ·gMajorTick 
is inaementing;- otherwise, go to the section tided ·gMajorTick is not incrementing.-

gMajorTick is not Incrementing 

The following sections are provided to help the user diagnose why the qMajorTiek counter is 
not incrementing. 

Any of the following events could stop the timer routine from incrementing 
qCommon. qMa jorT ick (assuming the system has not crashed). These events are referred to by 
letters for later reference to each event. 

A. A piece of code disables interrupts and goes into an infInite loop (never exits). 

B. Interrupt code servicing an interrupt ci higher priority than the timer interrupt goes into an 
infmite loop. 

e. Interrupt code servicing an interrupt of higher priority than the timer interrupt may not 
properly clear the interrupt, which then appears as a continuously-generated interrupt. 

11 / Troubleshooting Guide 11-39 



D. A routine on the Tick Chain is infinitely looping. 

£. A routine on the Tack Chain corrupts the system stack during tick chain processing. 

F. A progranunable hardware timer may have been improperly set up or accidentally changed. 

DetermfnJng the cause 
To identify the cause of the problem, follow the steps listed below to determine why 
gMajorTick is not incrementing: 

1 Examine the qCommon. gMinorTick counter to see if it is changing. 

o If it is not changing, the problem could be (A), (B), (0 a (P) d the above list 

o If it is changing, the problem could be (0) a (E). 

2. Try each irlenuptlevel once. Starting at the lowest interrupt level , change each interrupt 
autovector to the value Ox00000001. 

If an interrupt is continuously generated, an address error exception occurs at the address of 
the autovector associated with that interrupL Examine the 0x0600 area to see if an address error 
exception 0C0lrred. 

The problem is (0 above if the code to clear the interrupt is wrong. Examine the code to 

determine its correctness. 

The problem is (B) above if the code to process an interrupt d lower priority than the interrupt 
prioJty executing at the time the machine hangs is infmitely looping (that is, never executing an 
m). Examine the supervisor stack for other interrupt routine addresses to determine if other 
interrupt code is currendy being processed. 

Be sure to.save your files before trying the next step; the ~ processor 
on the smart card may aash the Macintosh II computer during this 
operation. A 

4. If all else fails, execute the MPW dumpcard tool to halt the smart card. 

Cl Type dumpcard - h to halt the 68)()() processor on the smart card. 

Cl Examine the PC stored in area 0x0600 to determine what code was being executed at the 
time of the halt 

Cl Examine the SR stored in area 0x0600 to determine what interrupt level and state 
(user/supervisor) the 68)()() processa was in . 

Cl Examine the appropriate stack (user/supervisor) and analyze the information found to 
determine the cause of the hang. 

11-40 Macintosh Coprocessor Platfonn Developer's Guide 



gMajorTkk is Inaementlng 

If qCommon. qMa jorTick is incrementing properly, the AlROSE kernel is not hungj that is, 
everything appears healthy from the point of view of the operating system. However, one or more 
user tasks may be hung. Use the MPW dumpcard tool to examine the state of the hung system. 

The following events that can cause one or more tasks to appear hung. These events are listed in 
the order of greatest probability of happeningj check each cause in turn. 

• Hoe This list is ntt complete, and cannot be. The events listed here are provided as 
guidelines for commonly found problems. 

L A task has invoked a blocking Receive request for a message, but never receives a message 
to satisfy the request; the task is never rescheduled for execution. 

2 AlROSE runs out of message butTers and a task loops on a GetMsq call, waiting for a buffer. 

3. A task may be running continuously in block mode without executing a blocking Receive or 
a Reschedulej other tasks never get a chance to execute. 

4. A task of high priority may be running in slice mode and not doing a blocking Receive to 
relinquish the CPU; lower-priority tasks running in slice mode never have a chance to execute. 

5. Code on the Idle <llain may be executing in an infmite loop. 

Each of these are desaibed more fully in this set.1ion. 

Is a task waiting on a blocking Receive request? 

If tasks appear to be behaving properly, but the task just refuses to do anything useful, check the 
following: Is this task doing a blocking Rece i ve request with bad matching criteria? Is the task 
waiting for a reply that will never be received? 

• Examine the Current Task IO to get the number of the currendy-executing task. 

I. pTasksave.prcvF1ag is non-zero if the task is doing a blocking Receive request. 

• Examine pTaskSave.pPcSave. This is the PC where the task will begin execution when its 
blocking Receive request is satisfied. The PC may be in the Rece! ve code in the glue 
library. The stack for this task should also be examined to determine what routine the 
Receive code in the glue library wUI return to. 

• Examine pTaskSave.pSpSave. This is the saved user stack pointer. The user stack has the 
following format when the task is not currently executing: 

The top of the stack contains the registers for this task in the following order: 00-07, AO­

A 6, followed by the rest of the stack. 

11 /Troubleshooting Guide 11-41 



• Examine the code that the task is currently executing to determine what message the task 
should be waiting for. 

• PTaskSave. pRcvFlag is greater than zero if the task is waiting for a message with specific 
matching criteria. 

• Examine the pTaskSave.pqMsqID, pTaskSave.pQMsqFrom, and 
pTaskSave. pQMsqCode ftelds. These fields are the specific matching criteria fields. Ensure 
that the matching criteria makes sense given what message the task should be waiting for. 

• Examine pT askSave . pQRead. This pointer points at the fust message buffer on the task's 
Receive message queue. The pointer is zero if no message is waiting on the task's Receive 
message queue. 

• EDmine any waiting messages for this task. Determine if any waiting message is the message 
that the task should be waiting for. Determine if any waiting message Signifies an error 
condition that indicates that the task will not receive the message it is waiting for. 

• If the task is waiting for a message that is from a task on another card, ensure that the other 
cud has not crashed or hung. Ensure that the ether card has enough message buffers. Ensure 
that the sending task on the other card is not itself hung. 

• If the task is waiting for a message that is from a task on another card, attempt to determine 
if intercard communication between the two cards is occurring. 

The symbol qCommon. qCAP . CaPtr points at the local intercard communications area 
on this card Use this pointer to fmd the intercard communications area. The files 
iccmDef s . a and : A/ROSE: INCLUDES describe the intercard communications area. 
These ftIes are for debugging purposes only. 

The structure ca_Rec is the intercard communications area. 

The arrays ca_Rec. IFlaqs, ca_Ree.Addrs, and ca_Ree.Ptrs are indexed by the slot 
number of the card. The Macintaih II is treated as slot O. 

ca _ Ree . Addr s is an array of pointers to other intercard communications areas that the local 
card knows about. Make sure that both the local and the remote intercard communications 
areas know about each other. Intercard communications have been lost should the respective 
ca _ Ree . Addr s fIeld in either card be zero. 

ca _ Ree . Pt r s is an array of pointers to message buffers. When two cards are 
communicating, the respective ca_Ree. Ptrs should contain the addresses of message 
buffers. If they do not, a card may have run out of message buffers. 

11-42 Macintosh Coprocessor Platform Developer's Guide 



Has A/ROSE run out of message buffers? 

Check the pointer gCommon. gMsqFree. This pointer is zero if no free message buffer is available. 
Tasks cannot communicate with each other if A/ROSE runs out of message buffers. 

The foUowing are possible causes for running out of message buffers: 

• An insufficient number of message buffers may have been specified as a parameter to osinit. 

• The message buffer free list pointed to by gCommon.gMsgFree has been corrupted . 

• A task is allocating message buffers but not freeing them with FreeMsq. 

• The message buffers are accumulating on a task's Receive message queue and not being 
processed by the task. 

The following should be checked to determine the cause (see the previous description of a message 
header): 

• The symbol qCommon. qFwaMess points at the fust byte of the message buffer area. Look 
and see what is in the message buffers that are in use. 

• Check the header of each message buffer to see if any are free. Any free message buffer should 
be linked to the qCommon. gMsqFree message buffer list 

• look at the task control blocks of the tasks to see if any task has a large number of message 
buffers on its Receive message queue. 

Is a task ru.nn.Jng in block scheduling mode? 

A task running in block scheduling mode must periodically do either a blocking Receive request 
or a Reschedule request to let other tasks execute. A blocking Receive request is a request 
with a positive or zero timeout value. 

No <Xher task will be able to run if a task running in block scheduling mode dces nct do a blocking 
Receive request or a Reschedule request. 

In particular, the leCM is responsible for forwarding messages to other cards. It runs as a user task 
and will never execute if a task runs in block mode and never executes a blocking Rece i ve request 
or a Reschedule request. 

• Determine which task is currently executing. 

• Examine its ccxie to ensure that it is periodically doing either a blocking Rece i ve or a 
Reschedule request to allow other tasks to execute. 

11 / Troubleshooting Guide 11-43 



Is a task em:udng In an InftnJte loop In sllce scheduling mode? 

A task running in slice mode must periodically execute a blocking Receive request to allow 
lower-priority tasks to be scheduled for execution. Tasks of equal or higher priority than the 
infinitely looping task will continue to run. Tasks of lower priority will na execute. 

Determine what tasks are currently executing. Examine the code for the currently executing tasks to 
ensure that they are periodically doing a blocking Receive request to allow the scheduling lower­
priority tasks . 

Is code 00 tile Idle Chaio execudllg In an JotJoite loop? 

The Idle task executes the Idle awn while in block scheduling mode. 

• Determine which task is cunemly executing. If it is the Idle task, examine the code on the Idle 
Olain to ensure that the code is ntt executing in an infinite loop. 

• Warning Be sure to save your files before trying the following step; the 68000 
processor on the smart emf may crash the Madntosh II computer during 
this operation. A 

• From MPW, type dumpcard -h to try to halt the 68XlO processor on the card. 

• Once halted, eDmine the PC stored in area Ox0600 to determine the code that was being executed. 

Troubleshooting AlROSE Prep 
This section desaibes the following events that can occur during AlROSE Prep processing: 

• illegal instructions 

• OebuqStr a-line trap calls that are executed 

• hang conditions 

To assist in troubleshooting during your development efforts, both error codes and error messages 
have been integrated into the code for the AlROSE Prep driver. Error messages are displayed on the 
screen when you use a debugger; error codes are not displayed. A positive number indicates a message 
pointer; zero indicates no message or error code; and a negative number indicates an error code. 

Two types of errors can occur when calling the AlROSE Prep driver. The fll'St type is more 
informative and provides error codes or messages Oisted in the following tables). When the AlROSE 
Prep driver detects a serious error, however, it executes the following instructions: 

PEA MsqAddress; Address of error messaqe 

_DebuqStr Call Debuq A-Trap 

Table 11-4 lists the AlROSE Prep driver error codes returned from an AlROSE Prep Receive 

request F.:ach of these codes is described, along with a paential solution. 

11-44 Macintosh Coprocessor Platform Developer's Guide 



• Table 11-4 Error codes for A/ROSE Prep driver 

Value Name ExpJaoatJon 

-64 No more queues available 

-65 
NoQueueErr 
QueueBusy Receive already outstanding on queue 

Table 11-5 lists the possible error messages from the INIT resource that installs the A/ROSE Prep 
driver. Each ri these messages is described in this section, along with a potential solution. 

• Table 11-' Error messages from the INIT resource 

Error IIlCIUF suta. 

A1ROSE Prep INIT31 - Unit Table full 

A/ROSE Prep INIT31 - No DRVR resource in file 

A/ROSE Prep INIT31 - Failed to open driver 

Table 11-6 lists the ~ible error messages from the A/ROSE Prep driver or Name Manager. Each of 
these messages is described in this section, along with a potential solution. 

• Table 11-6 Error messages from the AlROSE Prep driverlName Manager 

A/ROSE Prep Freemsg - Bad message pointer 

A/ROSE Prep Send - Bad message pointer or mFrom 

A/ROSE Prep 

A/ROSE Prep 

Missing resource: A/ROSE Prep Entries 

Unable to get space from system heap 

A/ROSE Prep Name Manager - Missing aipn resource: 

NameManagerEntries 

A/ROSE Prep KillReceive/CloseQueue - timeout queue error 

A/ROSE Prep Send - timeout queue error 

A/ROSE Prep Periodic processing - timeout queue error 

A/ROSE Prep Receive timeout queue error 

A/ROSE Prep Receive - Interrupt routine did blocking Receive 

11 I Troubleshooting Guide 11-45 



If A/ROSE Prep crashes 

This section describes the crashes that can occur with A/ROSE Prep because of improper parameter 
usage; corruption of either the A/ROSE Prepdriver or its internal data structures; corruption of the 
A/ROSE Prepintemai data structures during request execution or periodic processing; or during 
invocation of the A/ROSE Prepdriver or the A/ROSE Prep Name Manager. 

AlROSE Prep crashes during Macintosh startup 

During Macintosh II startup, an INIT3! resource found in the AlROSE Prep file installs the A/ROSE 
Prep driver and the AlROSE Prep Name Manager. The INlT3! resource may aash by executing a 
DebuqStr ca1J if it detects a serious problem These potential problems are desaibed in the 
following sections. 

A/ROSZ Prep INIT31 - Unit Table full 

lNIT3! executes a DebugStr call if there is no empty slot. in the driver Unit Table pointed to by 
OTableBase, indicating that there are too many drivers configured in the Macint~h II system. 
(Refer to Inside MactnlOSh for more information on the Unit Table.) 

$ol"tloa 

Boot from another system disk and either remove the MOSE Prep file or remove another driver. 

A/ROSZ Prep INIT31 - No CRVR re.ource in fil. 

INlT31 executes a DebugStr call if it does not fllld a driver of resource type • DRVR' and 
resource name I. IPC' in the AlROSE Prep file. This indicates that the MOSE Prep file is in error 
(due to improper file generation or data corruption). 

$o"'tioa 

Boot from anodler system disk and replace the MOSE Prep file. 

11-46 Macintosh Coprocessor Platform Developer's Guide 



A/ROSE Prep INIT31 - Fa~led to open dr~ver 

INIT31 executes a DebugStr call if the A/ROSE Prep driver cannot be opened successfully. This 
indicates there is a serious problem either with the AlROSE Prep driver or with the MacintQ')h II 
operating system. 

Solutio. 

Boot from another system disk and replace the A/ROSE Prep file. 

AlROSE Prep crashes with improper parameter usage 

This section describes the events relating to improper parameter usage that can cause the AlROSE 
Prep driver to crash. These crashes occur when the AlROSE Prep driver detects a bad message 
pointer passed as a parameter to a driver request 

The AlROSE Prep driver considers a message buffer pointer to be bad if it either does nct point to a 
message buffer or the message buffer pointed to is nct in use. 

Every message buffer is preceded by a four-byte header, indicating whether the message buffer is in 
use or available. The first three bytes are the characters MSG. The fourth byte is one of the 
following: 

• Ox20 (a space) if the message buffer has never been used 

• Oxoo if the message buffer has been used but is now available for re-use 

• OxFO if the message buffer is in use 

• OxOF if the message is currently on an internal AlROSE Prep queue 

• OxFF if IeCM has obtained a message for internal use 

AlROSE Prep FreeMsg - Bad message pointer 

Descrlptiml 

The A/ROSE Prep driver executes a DebugStr call if user code invokes a FreeMsg request with a 
bad message pointer. 

Solutio. 

Diagnose problem, correct code, and retry. 

11 I Troubleshooting Guide 11-47 



A/ROSE Pr.p S.nd - Bad •••• aq. point.r or .'ro. 

The A/ROSE Prep driver executes a DebuqSt r call if user code invokes a Send request with a bad 
message pointer. 

So"'t'o. 

Diagnose problem, correct code, and retry. 

AlROSE Prep crashes during driver JnItJa.lJzation 

The A/ROSE Prep driver and the AlROSE Prep Name Manager em cause a crash due to detection of 
data corruption during their initialization sequences. 

The A/ROSE Prep driver executes a DebugStr call if it does not find a resource of type 'aipn' 

and name 'A/ROSE Prep Entries' in the A/ROSE Prep file, indicating that the NROSE Prep file 
was either improperly generated or corrupted after generation. 

Solutio. 

BO<l from another system disk and either replace the A/ROSE Prep file or add the missing 
resource to the A/ROSE Prep file using ResEdit. The resource consists d two 16-bit words as 
follows: 

• The fllSt 16-bit word is the stack size in bytes of the stack to be used when completion 
routines are called (initial value is OxlOOO). 

• The second 16-bit word is the number of message buffers to be permanently allocated (initial 
value is 0x00>4). 

A/ROSE Pr.p - On&b~. to q.t .pac. fro. .y.t.. h.ap 

At Startup. the A/ROSE Prep driver executes a DebugStr call if it cannot allocate a 12-byte non­
relocatable block from the system heap. Either the Macintosh has insufficient memory or used all 
of the available system heap. 

Solutio. 

This crash indicates a serious system problem (such as conftgUred in the System Folder or in the 
System file). Diagnose and correct the problem and retry. You may need to reduce the number of 
applications, or remove or fIX the driver or Init31 resource. 

11-48 Macintosh Coprocessor Platform Developer's Guide 



A/ROSS 'rep •••• ..n.ger - .~ •• ~D9 .~pn re.ource: Name 

.anager .ntr~ •• 

The AlROSE Prep Name Manager executes a DebuqStr call if it does not find a resource of type 

• aipn' and name • NameHanaqerEntries' in the A/ROSE Prep file, indicating lhal the 
AlROSE Prep me was either improperly generated ex corrupted after generation. 

The Pascal string 'NameHanaqerEntries' immediately follows the illegal instruction. This 
string can be used to verify that the aash is, in fatt, the Name Manager • Missinq Resource' 

aash. 

Solallml 

To correct the problem, add the missing resource to the A/ROSE Prep file using ResEdit The 
resource consists of a 16-bit word indicating the number of entries allowed in the Name Managers 
tables (the initial value is ox0012). 

!PC driver crashes during execution 

The following events cause a aash if the AlROSE Prep driver detects corruption of its inlernal data 
SlrUctures during request execution or periodic processing: 

• invocation of a KillRecei ve or a CloseQueue request 

• receipt of a message that satisfIeS a previous Send or Receive with timeout request 

• a Receive request with a positive timeout 

• interrupt routine did a blocking Receive 

A/ROSS 'rep K~~~R.c.~v./C~o •• Qu.u. - t~ •• out qu.u. .rror 

The AlROSE Prep driver executes a DebuqStr call if there is an a outstanding • Recei ve with 

timeout' request and either a KillReceive or a CloseQueue request is invoked, but the 
driver detects internal data corruption during processing of the request. 

Sol",ta 

Report the problem to Apple Developer Services. 

11 / Troubleshooting Guide 11-49 



A/ROSE Prep Send - ti.eout queue error 

There may be situation in which a I Receive with timeout I request is outstanding and a 
message that satisfies the Send request becomes available. If the driver detects internal data 
corruption during processing of the Send request, the AlROSE Prep driver executes a DeBugStr 

call. 

Solutio. 

Report the problem to Apple Developer Services. 

The AlROSE Prep driver executes a DebuqStr call if a I Receive with timeout I request 
times out, but the driver detedS internal data corruption during processing of the timeout 

Following this call to DebuqStr. the AlROSE Prep driver immediately and unconditionally 
branches back to the code that called DebugStr. This can be used to verify that the crash is, in 
fact, a timed-out Recei ve request crash. 

Solutio. 

Report the problem to Apple Developer Services. 

A/ROSE Prep Receive - ti.eout queue error 

The AlROSE Prep driver executes a DebugStr call ifa 'Receive with timeout' request is 
outstanding and a message that satisfies the Recd ve request becomes available, but the driver 
detects internal data corruption during processing of the message. 

Solutio. 

Report the problem to Apple Developer Services. 

A/ROSE Prep Receive - Interrupt routine did b~ockinq Receive 

The AlROSE Prep driver executes a DebugStr call if it detects an interrupt routine that does a 
blocking Receive request. (Interrupt routines may not do a blocking Receive request.) 

Solutio. 

Change your interrupt routine. 

lPC Name Manager crashes during execution 

The Name Manager executes an illegal instruction when it detects an internal problem. These do nex 
call the DebugSt r routine. 

ll-SO Macintosh Coprocessor Platform Developer's Guide 



Raae Manaqer Receive with Coap~etion 

If the NROSE Prep Name Manager issues a Receive request with a completion routine specified 
and the request fails, the Name Manager executes an illegal instruction. 

Solutio. 

Report the problem to Apple Developer Services. 

Ra.. Kanaqer Receive Reque.t rai~ure 

If the MOSE Prep driver invokes a Name Manager Receive request with a completion routine 
specified and provides an error indication instead of a valid message buffer pointer, the Name 
Manager executes an illegal instruc:1ion. 

Solutio. 

Report the problem to Apple Developer Services. 

Raae Kanaqer Receive Requ •• t without Coap~etion 

Tf the A/ROSE Prep Name Manager issues a nonblocking Receive reque st with no completion 
routine specified and the request returns an error indication instead of a valid message buffer 
pointer, the Name Manager executes an illegal instruction. 

Solutio. 

Report the problem to Apple Developer Services. 

11 / Troubleshooting Guide 11·51 



If the IPC glue code crashes 

This section describes troubleshexting guidelines for Macintosh II applications using the AlROSE Prep 
driver. 

Requests to the AlROSE Prep driver are made through a glue library. The glue library provides an 
interface between the calling code and driver code, allowing future driver changes to be made 
transparent to the user. 

The glue library initializes on invocation of the rust driver request (with a command such as GetMsg, 

Send, Receive, GetTId, and SO forth). The glue library executes an illegal instruction if the 
AlROSE Prep driver could not be opened successfully, or the glue library could not be properly 
initialized. 

A glue library illegal crash is surrounded on either or both sides by multiple instances of the 
following instructions: 

LEA LocBlock, AO 

JSR Set JmpT 

illegal 

t::. Important For crashes of this type, you must report the problem to Apple Developer 
Services. 6 

Detection of these instructions can be used to verify that the crash is, in fact, a glue library crash. 

If A/ROSE Prep hangs 

The Macintosh II may appear to be hung whUe executing A!ROSE Prep request code. This section 
describes some of the conditions under which your system wUl appear to be hung and provides 
suggested solutions to these problems. 

Events that cause A/ROSE Prep to hang 

The following sections describe two of the most common events that could result in this condition. 

Madntosh D 32·bit mode debugger hangs 

Descrlptlorl 

The AlROSE Prep driver accesses the smart card's memory in 32·bit memory mcxIe. Older versions of 
sane de buggers cann<x handle bus errors; if the Macintosh II is running in 32·bit mode, the 
debugger can freeze the Macintosh II. 

The following events can cause a hang while the Macintosh II is in 32-bit mode: 

11-52 Macintosh Coprocessor Platform Developer's Guide 



• Invoking CopyNuBus with invalid source or destination addresses. 

• A smart card hardware problem resulting in a bus error. 

11 / Troubleshooting Guide 11·53 



SOlutio. 

Be sure that your debugger can handle 32-bit mode, and reboot 

blocking Receive Request is UusatfsBed 

Descrlptlolt 

The Macintosh II will appear to hang if a task issues a blocking Receive request for which no 
message is available. 

SOIuIlorl 

The following are two possible solutions: 

1. The AlROSE Prep driver periodically calls the routine specifaed in the OpenQueue request while 
processing a blocking Receive request. This routine could issue a KillRecei ve or 
CloseQueue request to caned the blocking Receive request. 

2. A positive timeout value can be specified for the blocking Receive request. The AlROSE Prep 
driver returns a zero message pointer should the time specified elapse. 

Examining the AfROS! Prep global area 

You can examine the AlROSE Prep global area to determine the state of a task on the Macintosh II 
that is using the AlROSE Prep driver. Yoo'U want to examine the global area when the Macintosh II 
does not appear to be hung and the task appears to be doing nothing (rather than what it's 
supposed to be doing). IPCq is the global area, described in the includes rues IPCqDef s • a or 
IPCqDefs. h in the AlROSE Prep folder. . 

Examine the AlROSE Prep global area to determine if there 

• is a task waiting for a message 

• are any matching aiteria that must be met for the task to receive a message 

• are any messages currently queued waiting to be received by the task 

• are any free message buffers 

There are many ways to fmd the AlROSE Prep global area; these methoch get progressively more 
complicated, but yield the same results. The mast common method is the most simple and easiest 
to use. Simply issue a GetIPCq request to the AlROSE Prep driver. The driver returns the starting 
address d the AlROSE Prep global area. 

11-54 Macintosh Coprocessor Platform Developer's Guide 



Part. III Hardware Development 

Part III, Hardware Development,provides: 

• MCP card description and specifications 

• overview ri NuBus on the MCP card, with functional 
examples 

• PAL listings for the MCP card 





Chapter 12 MCP Card Specifications 

T HIS C HAP T E R describes the hardware portion d the Macintosh 

Coprocessa Platform and provides descriptions of the components of the 
MCPcarci. _ 

12·1 



Introduction to the MCP card 
The MCP card is a generic master/slave va processor card. This smart card has a full NuBus 
master/slave interface with a 6BOOO processor on board The 68000 can aa:ess any device on NuBus, 
and the memory and I/O of the 68lOO can be accessed by any device on NuBus. 

Figure 12-1 shows the MCP card being installed in a Macintaih II computer. 

• Figure 12·1 MCP card installed in the Macintosh II 

MCP card description 
There are approximately 26 square inches ri prototyping space on a standard size MCP card. This 
area is provided for developing an interface logic to connect to the communications link ri the 
developer's choice. 

12·2 Macintosh Coprocessor Platform Developer's Guide 



Electrically, the interface is the 16-bit 68000 processor bus. The added interface logic should decode 
the 4()()()"9FfF address space for all accesses. Refer to the information in the section describing the 
address map for additional details. 

This section provides detailed descriptions of the following elements of the MCP card: 

• The functional components, including processor, ROM, and RAM 

• Address map 

• Timer 

• Reset 

• Interrupts 

• NuBus interface 

• ASIC MCP Support 

ASIC MO' support 
ASIC MCP refers to the version of Macintosh Coprocessor Platfonn NuBus card implemented using 
the Application SpecifIC Integrated Circuits (ASICs.) The ASICs used in the ASIC MCP cards 
implement all the NuBus bus protocols. There are a few differences between a regular MCP card 
and an ASIC MCP card in tenns ri controlling the board (card) Also, there is a programmable timer 
in the ASC MCP card whereas the regular MCP card has a fIXed interval timer. AlROSE 1.1 supports 
the ASIC MCP card. ASCI MCP cards have unique board IDs. The new download routines use 
BoardIos to select the correct card dependent routines to use for downloading to a particular ASIC 
MCP Card. 

Processor 

The va Processor utilizes a 10 Megahertz (MHz) 68>00 processor with no wait states for access to 
. onboard RAM. The 10 MHz clock is derived from the 10 MHz NuBus clock. All access by the 6&>00 is 

implemented by a 16-bit data bus, with byte mode also supported. 

ROM 

The 16-bit-wide ROM is implemented with two 256-Kilobit (Kbit) ROMS, yielding a 64-Kilobyte (KB) 
ROM space. The ROM: 

• serves as power-up code for the 6a>OO 

• provides a place for user finnware 

• stores the NuBus ID data for the card 

The ROM inserts one wait state when accessed by the on-board 68000. To the NuBus interface, 
ROM appears as a full 32-bit-wide device, supporting 8-bit, 16-bit, and 32-bit bus reads. 

12 / MCP Card SpecifICations 12-3 



RAM 

The card contains 112 megabyte (MP) d 16-bit-wide dynamic RAM. RAM is accessed by the 6&)()() 

and NuBus. When any device is accessed via NuBus, the 6&>00 is locked out from all access. RAM 
starts at location 000000, with the current 112 MB of RAMi the last RAM address is 07FFFF. When 
the 6&>00 accesses onboard RAM, no wait states are inserted 

12-4 Macintosh Coprocessor Platform Developer's Guide 



To the NuBus interface, RAM appears as a full 32-bit wide device. RAM on the MCP card supports 8-
bit, 16-bit, and 32-bit bus operations. 

The operating system requires approximately 15 KB of memory on the MCP card. 

Address map 

Table 12-1 lists the various functions fa' the address spaces on the MCP card 

• Table 12-1 Address map 

Addftu hacdoa 

FFOOOO-FFFFFF ROM (with two 256-Kbit ROMs, 64 KB) 
FOOOOO Write - Place 68lOO in RESET 

EOOOOO-EFFFFF Test ROM (off card) 

COOOOA Read - Set Interrupt lOP request 
coooos Read - Oear Interrupt lOP request 
COOOO6 Read - Set Interrupt Host request 
COOOO4 Read - Oear Interrupt Host request 
COOOO2 Read - Oear Tuner Interrupt 
cooooo Read - aear RESET 
cooooo Wrle - NuBus Extension Register 
AOOOOO-BFFFFF NuBus 

800000-9FFFFF I/O Interface Logic 

400000-7FFFFF I/O Interface Logic 

OSOOOO-3FFFFF Future RAM 
oOOOOO-07FFFF RAM (with 1/2 MB of RAM) 

Timer 

The MCP card provides an intema16.5536 millisecond (ms) timer. Every 6.5536 ms, a level 1 interrupt 
occurs. This interrupt is cleared by reading location C00002. 

f:::. Important If this interrupt is ignored for 3 ms, the next interrupt may not occur and a 
dock tick will be lost 6 ' 

12/ MCP Cud Speciftcations 12-5 



Reset 

The lOP can be placed in RESlIT by writing location rococo and placed out of reset by reading cooooo. 
Any write to rxxxxx will place the 68>00 in RESlIT, and any access to cxxxxx will take the 68000 out 
of RESET. 

• NoIJ]: When NuBus resets, the ~ comes out of RESlIT. 

On power-on reset (NuBus reset), the first four accesses are fetched from the fU'St four ROM locations 
(that is, the execution address and the stack pointer). Under -programmed- RESET, the address and stack 
pointer are fetched fran RAM, starting at location 000000. 

The start-up address vetta in location 2 of the ROM must point to ROM address space (rooooo-FFFFF). 

I1lterrupts 

Three interrupts are provided in the basic design: one for the timer, one for the NuBus interface, and one 
for the I/O interface. Table 12-2 lists the interrupt priorities and provides a brief description of each: 

• Table 12·2 Interrupt priaities 

Intemtpt 

Timer 

NuBus 

I/O Interface 

1 The I/O interface interrupt must remain asserted until the software 
resets this interrupt request. 

2 The lOP can interrupt the host by reading location COOOO6j this 
interrupt is cleared by the host reading I~ion COOOO4 .. 

3 The lOP is interrupted by the host reading location COOOOAj this 
interrupt is cleared by the 6fmO reading location COOOOS. 

NuBus interface 

The NuBus interface proVides fa either master or slave operation. In master mode, the 68000 simply 
gains access to NuBus address space, and waits until the operation is complete. In slave mode, the 68000 
is -removed- from the internal bus while the NuBus access is taking place. 

Since the 6fmO has an intemallCrbit bus, all bus cycles aiginating from the 6fmO can be either 8-bit or 
lCrbit operations. This includes NuBus operations, where the 68>00 is the NuBus master and both 8-bit 
and 16-bit operations are supported. 

SpeciaJ hardware has been included so that 32-bit access coming from NuBus will function correaly. 
The hardware perfonns two 16-bit bus operations on the 68)()() bus whenever NuBus requests a 32-
bit operation .As a result, the card supports 8-bit, lCrbit, and 32-bit NuBus transfers. 

12-6 Macintosh Coprocessor Platform Developer's Guide 



f:::. Important Two ~ bus cycles are required for a 32-bil NuBus operation. Therefore, you 
should avoid using a 32-bit operation when only 16-bils are required, because of 
the increased amount of time required for the extra ~ bus cycle. 6. 

If the NuBus access cannot be completed, a bus error to the ~ is reported. 

NuBus address space 

Access to the 32-bit NuBus address space is provided by a 12-bit address extension register. The 
most significant 12 bits of the NuBus address should be placed in this register before accessing the 
NuBus address space. This wrile-only register is located at location COOOOOO. 

In addition, the hardware uses A2D in the address field (not used for address c:aJculation) to perfonn 
a read-modiFy-write cycle. Whenever a test-and-set instruction is executed, A2D must be set true. 
A20 should be set false for all other operations. 

Acquiring the internal 68000 bus 

An I/O front-end can insert itself in the BR/BG/BGACK daisy chain between the NuBus interface 
and the ~. The I/O front-end can take over the 68000 bus and thus have full access to the 
resources on the card and NuBus. This gives the front-end the ability to talk to anything in the 
system that is on NuBus. 

There is nothing in particular that the front-end must do to acquire NuBusj however, if the front­
end does nOl provide its own extension register, the NuBus extension register must be loaded with 
the upper 12 address bits for any NuBus access. If the front-end provides its own dedicated NuBus 
extension register, there will not be any contention for the otherwise shared extension register. 

• Note: The Programmable Array Logic (PAL) listing "OMA Example- in the next chapter is proVided 
as an example for developers who may want to include DMA devices on the 68000 bus. 

Design notes for NuBus 

The following illustrations are provided to assist in your development efforts. For more details 
concerning NuBus, refer to Designtng cards and Drivers. 

f:::. Important These examples do not pertain specifically to the MCP card, but are 
provided to assist you in designing your own NuBus interface. 6. 

Rgu18 12-2 shows the function of various components, including arbitrating NuBus, generating 
the ~ cycle when NuBus owns the local bus, decoding the slot, and so forth. 

12/ MCP Card SpecifICations 12-7 



• Figure 12·2 MCP card functions 

- 1 
°ARBCYC - 2 

"PARK - 3 
-4 
- 5 

ro.r - 6 
ror- 7 
roI'- 8 
IDO'- 9 

~10 

IOM- 1 
ACY:- 2 

AO- 3 
°DTACK- 4 
°BGACK - 5 

1M}' - 6 
TMOO - 7 
ADI' - 8 

-swT- 9 

~ 10 

ArWtndon +5 

;l)J 
19 - GRANT 
18 -
17 -
16 -
15 - AJIB3" 
14 - ARBr 
13 - ARBI' 
12 - AIBO' 
11 - AIBO' 

16JBB 
NuBus arbilmion 

luamutercontrol +5 

CK ;l)J 
I R 19 - Al 

R 18 - "BYTE 
R 17 - "AS 
R 16-"~ 

R 15 - "IDS 
R 14 - READ 
R 13 - ('lnt) 
R 12 - "LONG 

OE 11 - "BGACK 

16R8B 
Ge.neme 68000 cycle 

(byteIwordIdouble word) 
when NuBus owns JoaI bus 

10M - 1 
READ - 2 

GRANT- 3 
"NUBUS - 4 

A.3) - 5 
"RST- 6 
"AS- 7 

"GAS - 8 
ACY:- 9 

~ 10 

VO 
R 
R 
R 
R 
R 
R 

va 
OE 

16R6B 

+5 

20 J 
19 - RQST" 
18 - ("arbdn) 
17 - "ARBCYC 
16 - "STCYC 
15 - "OWN 
14 - 'PARK 
13 - "BUSY 
12 - START' 

11~ 

<:ani going to NuBus 
(68000 cycle to NuBus) 

12-8 Macintosh Coprocessor Platfonn Developer's Guide 

10M - 1 
"ARBCYC - 2 

START" - 3 
"OWN- 4 

°00 - 5 
"GAS - 6 

"DTACK- 7 
"SLOT- 8 

"RST- 9 
Atr-IO 

"LONG - 11 

~12 

AD31" - 17 
AD3O' - 15 
AD'lJ' - 13 
AD2B' - 11 
ADTI'- 8 
AD'lll- 6 
AD25°- 4 
AD24°- 2 

gnd- 18 
gnd - 16 
gnd - 14 
gnd- 12 

1D3" - 9 
ror- 7 
IOr- 5 
IIXl" - 3 

"~- 1 
o~- 2 

°BGACK- 3 
°ACKCYC- 4 

°STCYC- 5 
'OWN- 6 

0AlBCYC- 7 
"BUSY- 8 
READ- 9 

+5 

24 J 
23 - TMCr 
22 - (RD) 
21 - "BDTA 
20 - 'ACKCYC 
19 - "DR 
18 - "BGACK 
17 - ('Iock) 
16 - "Bm 
IS - 0RLQ 
14 - 1MI' 

13~ 

8-BIt Identity Comp 

f17 
16 P-Q 19 - "SLOT 
15 
P4 Gt 1 - STAR~ 

P3 
12 
PI 
PO 
Q7 
Q6 
QS 
Q4 
Q3 
Q2 
Ql lo-gnd 
QO 2o-Vcc 

A1S521 
Slot decode 

+5 

;l)J 
19 - NBDlER 
18 - "NBDIE 
17 - ("tmen) 
16 - ACK" 
15 - 1M00 
14 - 1Ml" 
13 - NBDIEL 
12 - (°nbdoe) 
11 - Al ~ 10 

16L8B 
MisdNuBus conaol drivers 



Figure 12-3 shows the generation of 20MHz and lOMHz clocks from the NuBus clock. Note that 
there is an equal delay from the NuBus clock for each of these cycles. 

• Figure 12-3 Generation of 20-MHz and 10 MHz clocks 

----- .-----... -

------:::----;::::~ ... 

Equal delay from -----< 
NuBusclock 

I. 

=~:'-=T:"r(' -

ouoo 

lI­
S -
10 -170-~ 
6 
9 
8 -

74ASOO 

12/ MCP Card SpecifICations 12·9 



Figure 124 shows an example d a simple NuBus slave design, with explanatory notes. 

• Fipre 12-1 A simple NuBus slave design 

AD3I· - 17 
AD3O' - 15 
AD?/f - 13 
AD2&" - 11 
AD7:r- 8 
ADw-6 

AD~- " 
AD2V- 2 

P7 
P6 
P5 
1'4 
P3 
P2 
PI 
PO 
([I 
Q6 
Q5 
Q4 
Q3 
Q2 

P-Q 19 - "SLOT 

Gl 1 - STAIT" 

c.r- 1 
c.r- 2 

STAIT"- 3 

"SLOT- " 
RI!SE'r - 5 

-6 
-7 
-8 
-9 

~lO 

gncI- 18 
gncI- 16 
gnd- 1" 
gnd- 12 
103'"- 9 
102' - 7 
101· - 5 
!DO" - 3 

Ql lOagnd 
QO 2()aVa: 

L ALS521 

Nole Run START in here 
if,ou are not 

Be swe to put pullups on 10 lines 

Nole Be swe your Iogieends in a valid Slate 

using it anywhere eJse 

if,ou do net generate ACK (i.e., busenor) 

LATCHED ADDRF.SS LINES 

NuBus AD" Lines A DATA BUS 

12·10 Macintosh Coprocessor Platform Developer's Guide 

Bu&SIave +5 

20 J 
19 - TMOO 
18 - TMI' 
17 - ackcyc" 
16 - SEJ: 
15 - READ 
1" -
13 - Acr 
12 - Ale 

161"8 
1l~ 

*IF(ackcyc)TMo-l 
II"(ackcyc)TM1-l 
IF (ackcyc)ACK-l 
SEL:-SLOT*/ACK 

+SEL*/ACK*/RESET 
/READ:-SLOT*/ACK*TMl 

+/READ*/ACK*/RESET 
ackcyc:-SEL*/ackcyc J 
/AIC-START+CLK 

Nole Remermer to power-on/ 
Ieset into a valid stare 



Ftgure 12-5 shows the read and write timing cycles for the simple NuBus slave design shown 
in Ftgure 12-4. 

• Figure 12-5 Read and writing timing cycles 

IlF.AD Cycle timing 
ox· ------~l.Jr----~l.Jp----~l.JP----~l.JP----~L.J 

SI'ART' 

ACK· 

TM· 

READ 

·SEt ------,..--~~,L-I---
Nole Remember tostop driving NuBus 

Cit.MIIIM: Back-to-back Cycles wiJJ happen 

READ:TMl=O 
ACK: TMOal 

TMI"} 

WRrrE Cycle timing 

SI'ART' 

ACK· 

TM· 

READ 

'SEt 

u 

Nole The Mac II does 1IOt supply -5v to NuBus __ J 

Nole Be sure ACK is FALSE when -------' 
decoding ADDRESS cycles 

WRITE: TM1=l 
ACK: TMO-l 

TMl=l 

u u u L.J 

data bus en2bled 

12/ MCP Card SpecifICations 12·11 





Chapter 13 listings for the MCP Card 

T HIS C HAP T E R provides listings for the PAL (Programmable Array 

Logic) equations and a parts list for the MCP card. • 

(The latest schematics for the MCP card are enclosed as separate pages at the back of this 
document «Kev.lewers, should we delete thisl Is this still truel») 

13-1 



PAL listings 

This section lists the equations for the PAL devices on the Mep carel. These listings include 
equations for the following: 

• Arbitration 

• Bus driver 

• Bus master 

• Bus master control 

• Bus slave 

• Decode 
• DMA example 

• Note: This PAL listing is provided as an example for developers who may want to include 
DMA devices on the 68000 bus. 

• Interrupts 

• RAM (one row of RAM) 

• RAM24 (two rows of RAM) 

• Note: Use either RAM or RAM24, depending on your requirements for one or two rows 
of DRAM. 

Each of these equations is more fully described in the next sections. 

13-2 Macintosh Coprocessor Platform Developer's Guide 



PAL equation: arbitration 

The PAL equation for arbitration on the MCP card is listed below. 

.IDENT PAL16L8 

DATE: 

VERSION: 

.NAMES 
nel IAEI IAE2 

Arb 

717/87 

1A 

ne4 ne5 
IARBOi IARBOo IARBI IARB2 IARB3 

• EQUATIONS 

.if[ AEl'" AE2 ... 103 1 
ARB3 ,. Vee 

larb20e - 1103 ... ARB3 

• if [ AEl'" AE2 ... 102 ... arb20e 1 
ARB2 ,. Vee 

larb10e - 1103 ... ARB3 
+ 1102 ... ARB2 

.if[ AEl'" AE2 ... 101 ... arb10e 1 

ARBI - Vee 

larbOoe ,. 1103 ... ARB3 

+ 1102 ... ARB2 

+ 1101 ... ARBI 

.if[ AEl'" AE2 ... 100 ... arbOoe 1 
ARBOo ,. Vee 

IGRANT ,. 1103 ... ARB3 

+ 1102 ... ARB2 
+ 1101 ... ARBI 

+ lIDO ... ARBOi 

.END 

{53E2} 

1103 1102 1101 lIDO GNO 

arbOoe arbloe arb20e GRANT vee 

13 / Lists for the MCP Card 13·3 



PAL equation: bus driver 

The PAL equation for the bus driver on the M~ card is listed below. 

.IDENT PAL16L8 

DATE: 
VERSION: 

BusDvr 

5/18/88 
B 

{6F25 } 

• NAMES 
IUDS ILDS IBGACK IACKCYC ISTCYC IOWN IARBDN IBUSY READ GND 

A1 INBOOE NBOIEL ITM1 ITMO lACK Itmen Inbdie NBDIEH VCC 

• EQUATIONS 
tmen. ACKCYC 

+ STCYC 
inactive} 

.IF ( tmen 
ACK - ACKCYC 

+ STCYC * 

.IF tmen ) 

TMO - ACKCYC 
+ STCYC * 
+ STCYC * 
+ STCYC * 

.IF tmen) 
TM1 - ACKCYC 

BUSY 

BUSY 
IARBON * 
IARBON * 

UOS * ILOS 
IUDS * LOS 

+ STCYC * I ARBON * BUSY 
+ STCYC * IARBDN * IREAD 

{enable TMx and ACK buffers} 
{delay th/ tmen drives lines 

(LOCK or UNLOCK) 
{STCYC prevents qlitch} 

{LOCK or UNLOCK} 
{START - byte mode operation} 
{START - byte mode operation} 

{UNLOCK} 
{START - write operation} 

NBDOE OWN * ISTCYC * /READ * BUSY {enable for master write} 
+ READ * ACKCYC {enable for slave read} 

nbdie OWN * READ * ISTCYC 
+ nbdie * UDS 
+ nbdie * LOS 
+ BGACK * I READ 

INBOIEH - Inbdie + IA1 

INBDIEL - Inbdie + A1 

• NOTES 
STCYC definitions: 

BUSY ARBON Function 
0 0 START 
0 1 IDLE 
1 0 UNLOCK 
1 1 LOCK 

.END 

{we own nubus - master read} 
{hold until DSs qo away} 
{hold until DSs qo away} 
{bus owns us - slave write} 

{hiqh word} 

{low word} 

13-4 Macintosh Coprocessor Platform Developer's Guide 



PAL equation: bus master 

The PAL equation for the bus master on the MCP card is listed below. 

.IDENT PAL20R8 BusMas (7A8? ) 

DATE: 9/19/88 

VERSION: C 

• NAMES 
10M /NUBUS /START IOWN /BG /GAS IDTACK /SLOT /RST /ACK /LONG GND 

en ITMO /RLQ /BERR flock IBGACK /BR /ACKC'fC IBDTA /rb /TM1 VCC 

• EQUATIONS 

rb :- RST (reset delayed for ICE) 
+ OWN * START * /ACK (busy for our mastership) 
+ OWN * rb * lACK {hold until ACK or null/attn} 

• lock :- /TM1 * START * TMO * ACK (LOCK from NuBus) 
+ /RST * lock * /TMO (hold until UNLOCK . ) 
+ IRST * lock * /TM1 
+ IRST * lock * /START 
+ /RST * lock * lACK 

BR :- SLOT * /ACK * /RST {START cycle to our slot} 
+ BR * /BGACK * IRST {hold until BGACK} 

BGACK :- /DTACK * BR * BG * /GAS * IOWN (wait 'til everyone's done, own 
rmw) 

+ BGACK * /rb * lock * ISTART {if locked, hold until UNLOCK} 
+ BGACK * /rb * lock * ITMO (if locked, hold until UNLOCK) 
+ BGACK * Irb * lock • ITM1 (if locked, hold until UNLOCK) 
+ BGACK * /rb • lock * /ACK {if locked, hold until UNLOCK} 
+ BGACK * /rb * flock * /ACK * /ACKC'fC (if not locked, hold until any ACKCYC) 
+ BGACK * /rb * flock * START * I ACKC'fC (if not locked, hold until any ACKCYC) 
+ RST (if 68K reset, we own bus) 

ACKC'fC : - DTACK * BGACK * GAS * /LONG * / ACKCYC (when we get DTACK) 

RLQ:- BR • NUBUS * GAS * /DTACK • IRLQ (we want NuBus, NuBus wants us) 
+ RLQ * BERR (hold one clk past BERR(drvs halt» 

BERR :­
+ ACK 
+ ACK 

BR * NUBUS * GAS * IDTACK * IRLQ {we want NuBus, NuBus wants us} 
* /START * OWN * /THO (THO , TH1 both asserted for OK op) 
* ISTART * OWN • ITH1 (THO , TM1 both asserted for OK op) 

+ BERR * IRST * GAS 

for 

BDTA:- OWN • ACK * /START * THO * TH1 
+ BDTA * GAS * /RST 

(DTACK pulse for master operation) 

.END 

13 / Usts for the MCP Cird 13-5 



PAL equation: bus master control 

The PAL equation for bus master control on the MCP card is listed below. 

.IDENT PAL16R8 BMCtl {6303} 

DATE: 
VERSION: 

9/30/87 
lA 

• NAMES 
10M lACK AO IDTACK IBGACK ITMl ITMO IADl ISLOT GND 
en ILONG lint READ ILOS IUDS lAS Ibyte Al VCC 

• EQUATIONS 

byte : - SLOT * TMO * lACK 
+ byte * lAS 

(save bytelword mode for awhile) 
{and hold until AS} 

+ Ibyte * int * DTACK * AS (used as 2nd internal state) 

• IREAD :- SLOT * TMI * lACK 
+ IREAD * ISLOT 

{set R/W from TM1} 
{save until next access} 

AS :- lAS • lint * BGACK (start AS after BGACK-Ist time, lint nth 
time) 

+ AS * lint (and hold it ••• ) 
+ AS· int * Ibyte {remove AS one state after DTACK} 

UDS :- READ * Ibyte * lint * BGACK 
+ READ * byte * lint * BGACK * lAO 
+ AS * Ibyte * lint 

{word read} 
{byte read} 
{word write} 
(byte write) 
{hold} 

+ AS 
+ UDS 

* byte * lint * lAO 
* Ibyte * int 

LOS : - READ * Ibyt e * lint * BGACK 
+ READ * byte * lint * BGACK * AO 
+ AS * Ibyte * lint 
+ AS • byte * lint * AO 
+ LOS * Ibyte * int 

int :- lint· AS 
+ int· ILONG * BGACK· ISLOT 
+ int· ILONG * BGACK * ACK 
+ int· LONG * Ibyte 

IAl :- SLOT * IADl 

+ ISLOT • IAl • ILONG 
+ ISLOT • IAI • Ibyte 

{internal state} 
{if we keep 68K bus, hold int until SLOT} 
{ .•• w/out ACK=addr cycle} 
{first access of 32-bit operation} 

{set Al at START cycle} 
(hold until next SLOT or until ..• } 
{ ... last access of 32-bit access} 

LONG . - AS • lint 
+ lAS • LONG 

• Ibyte * lAO * IAl {set for 32-bit NuBus operation} 
{hold until 2nd access starts} 

+ int· LONG {hold until 2nd access starts} 

.END 

13-6 Macintosh Coprocessor Platform Developer's Guide 



PAL equation: bus slave 
The PAL equation for the bus slave on the MCP card is listed below. 

. IDENT PAL16R6 BusSlv 

DATE: 2/22/88 

VERSION: A 

• NAMES 
10M READ GRANT INUBUS A20 IRST lAS 
en ISTART IBUSY IPARK I OWN ISTCYC IARBCY 

• EQUATIONS 

ARBCY :- AS .. IGAS .. NUBUS .. IPARK 

+ AS 

+ AS 

+ GAS 

+ IRST 
+ IRST 

+ IRST 

.. IGAS .. NUBUS .. RQST 

.. IGAS .. NUBUS .. A20 .. IPARK .. ARBCY .. PARK .. ARBCY .. ISTCYC .. GAS .. NUBUS .. A20 .. 
PARK .. ARBCY" IBUSY" STCYC 

.. ARBCY" STCYC" arbdn 

IGAS 
larbdn 

PARK :­

+ AS 

AS .. IGAS .. NUBUS" IPARK .. IRQST 
.. IGAS .. NUB US" A20 .. IRQST 

+ ARBCY" IRQST 
+ PARK .. IRQST .. IRST 

+ PARK .. ARBCY" IRST 

OWN:- ARBCY" GRANT" arbdn" IOWN .. IBUSY 
+ ARBCY" GRANT" arbdn" IOWN" ACK 
+ AS .. IGAS .. NUBUS" IA20 .. IRQST .. PARK 
+ ARBCY" OWN .. IRST 
+ IARBCY" OWN .. lACK .. IRST .. larbdn 

STCYC :- ARBCY .. GRANT .. arbdn .. I OWN .. IBUSY 
+ ARBCY .. GRANT .. arbdn .. IOWN .. 
+ IGAS .. AS .. IA20 .. NUBUS .. IOWN .. 
+ STCYC .. BUSY .. arbdn 

+ GAS .. A20 .. IREAD * OWN * 
+ ARBCY * ACK * IREAD .. OWN .. 
+ STCYC .. BUSY .. larbdn 

+ ISTCYC .. OWN .. IGAS .. lAS 

BUSY :- IBUSY .. lACK .. START 
+ BUSY .. lACK .. IRST 

+ ARBCY" ACK .. IREAD 

+ arbdn" GRANT" IOWN 

+ arbdn" GRANT" IOWN 
+ arbdn" GRANT" IOWN 
+ ISTCYC" OWN .. IGAS 

.. 
.. 
.. 
.. 
.. 

OWN .. 
GAS .. 

ACK .. 
ACK .. 

lAS 

ACK 

IRQST .. PARK 

ISTCYC * IBUSY 
ISTART 

ISTART 
NUBUS .. A20 

IGAS 

INUBUS 

arbdn :- larbdn" ARBCY" PARK .. IOWN * ISTART 
+ arbdn * GRANT" BUSY .. lACK 

{93BF} 

lACK GND 

IRQST VCC 

(if don 't own) 
(if PARK going away next cycle rearb) 
{if RmW force rearb} 

(hold while others arb) 

{hold until STCYC or UNLOCK} 

{hold during START for rmw} 
(hold during LOCK for rmw) 

{if don't own} 
(if RmW) 

{if someone else arbing wait for RSQT fa: 
(hold as long as no other RQSTs) 

(hold as long as ARBCY) 

{always take after arb} 
(always take after ack) 
(norm parked) 

{hold if we buslock, until UNLOCK} 
(if not rmw, OWN goes away with ACK) 

{always take after arb} 
(always take after ack) 

{norm parked} 

{take after LOCK (read of RmW)} 

(write of RmW) 
(UNLOCK of rmw) 

{after UNLOCK do IDLE} 

(UNLOCK if OWN w/out GAS,rmw failed) 

(start on START cycle) 
(hold 'til ACK) 
{UNLOCK of rmw} 

(LOCK if rmw still there) 

{UNLOCK if GAS gone} 
(UNLOCK if NUBUS gone) 

{UNLOCK if OWN w/out GAS,rmw failed} 

(hold if busy, release on ACK) 

13/ Lists for the MCP Card 13-7 



+ arbdn'" 
+ /arbdn ... 
+ /arbdn ... 

GRANT'" tOWN 
STCYC'" BUSY 
STCYC'" BUSY 

... GAS'" 

... GAS * 
... /NUBUS 

+ /arbdn'" STCYC'" BUSY ... /GAS 

NUBUS ... A20 
NUBUS ... A20 

• IF ( OWN I START STCYC'" BUSY 
+ STCYC'" /arbdn 

.IF ARBCY ... PARK ( ... /STCYC I ) RQST Vce 

.END 

13-8 Macintosh Coprocessor Platfonn Developer's Guide 

{LOCK if rmw still there} 
{qoto IDLE from UNLOCK after rmwl 
{qoto IDLE from UNLOCK if no nubus I 

{else do START} 

{Drive START while we own bus} 
(assert durinq STCYC except IDLE cye 

{hold RQST until start cycle} 



PAL equation: decode 

The PAL equation for decoding on the MCP card is listed below. 

.IDENT PAL20R4 

DATE: 

VERSION: 

.NAMES 

Decode 

1/6/88 

2A 

{80F?} 

10M A23 

en IRFCYC 

A22 

ICR 

A21 A20 lAS 

INUBUS WAL I LRST 

READ IRESET IGAS 

Isetup IDDTA IVPA 

FC1 FCO GND 

I ROM nc23 VCC 

.EQUATION 

ROM A23 * A22 * A21 * 
+ IA23 * IA22 * 

A20" AS * READ * IVPA 

AS * READ * setup 

{ROM space decode} 

{ROM at setup} 

CR A23" A22" IA21 * IA20 * AS * READ 

IWAL 's IA23 + IA22 + A21 + A20 + lAS + READ 

setup:- RESET 

LRST 

DDTA 

.IF 

VPA 

NUBUS 

.END 

+ setup * lAS 

+ setup * IA23 

's 

+ 

:-
+ 

+ 

+ 
... 
+ 

A23 * A22 * A21 * A20'" AS ... IREAD 

LRST * ICR ... IRESET 

GAS'" A23 * A22" A21 ... IVPA 

GAS ... IA23 * IA22 * setup 

AS ... A23 * A22" IA21 * IA20 

GAS .. DDTA" A23 

AS * IA23 .. IA22 .. /setup ... /RFCYC 

GAS .. DDTA .. IRFCYC 

GAS" FCO" FC1 {.. INBACK} ) 

AS 

A23 ... /A22 .. A21 

{ctl reg read - CXXXXX} 

{write addr latch} 

{as long as in low 8mb} 

{set RST wi write to FOOOOO} 

{clear reset w/ CR read} 

{EOOOOO-FFFFFF - ROMs} 

{OOOOOO-3FFFFF - ROM wi setup} 

{COOOOO-CFFFFF - ctl reg} 

(good hold, not RAM) 

{OOOOOO-3FFFFF - RAM} 

{good hold, RAM, for rmw} 

{NuBus - AOOOOO-BFFFFF} 

13 / lists for the MCP Oird 13·9 



PAL equation: DMA example 

An example of a PAL equation for providing DMA on the MCP card is listed below. 

DATE: 

VERSION: 

.NAMES 

2/22/88 

1.1 

/BG /NBACK /XBACK /NBR SRE /XBR ISTCYC /XDE A22 COND 

/RST /XBG /NBG /nbn /BR /BGACK /STCYO /STC'll nc19 vcc 

• EQUATIONS 

STCYO - STCYC * NBACK * /SRE 

+ STCYC * SRE * IA22 

STCYI - STCYC * /NBACK * /SRE 

+ STCYC * SRE * A22 

• IF XDE 

XBG - BG * /nbn * /NBACK * INBG 
+ XBG * BG * XDE 

NBG '"' nbn * BG * /XBACK 

+ nbn * BG * /XDE 

+ NBG * BG 

nbn '"' NBR * IBG 
+ nbn * /NBG * /RST 

BR - NBR 

+ XBR * XDE 

BGACK - NBACK 

+ XBACK * XDE 

• NOTES 

{internal, normal AB} 

lint/ext, seperate AB) 

{external, normal AB} 

lint/ext, seperate DE} 

{*if XDE dissabled) 

This PAL can be placed between the MCP logic and the 68000 and adds external DMA 

arbitration logic: 

BR, BG, 'BGACK go to. 68000 

NBR, NBR, , NBACK go to MCP logic 

XBR, XBG, , XBACK go to external logic 

STCYO , STeY1 are used if a second NuBus extension register is added • 

• END 

13-10 Macintosh Coprocessor Platform Developer's Guide 



PAL equation: interrupt 

The PAL equation for interrupts on the MCP card is listed below. 

• IDENT PAL16R4 

DATE: 
VERSION: 

.NAMES 

Int 

7/15/87 

1A 

{SDA6} 

10M leR A3 A2 A1 IRST IIOIR TMR MUX GND 
lEN IIPLO lULl /TMRIR IIOUR IHSTIR Itmrdly IRAO INMR vee 

• EQUATIONS 

IPLO IOIR (timer - level 1 ) 
+ TMRIR * IIOPIR (NuBus - level 2) 

{IIO - level 3} 
IPL1 IOIR 

+ IOPIR 

.IF HSTIR 
NMR Vee 

tmrdly :- TMR 

RAO MUX * A2 
+ IMUX ... A1 

TMRIR :- TMR * Itmrdly * IRST (Addr~2 elr, set by timer) 
+ leR * TMRIR * IRST 
+ A3 * TMRIR * IRST 
+ A2 ... TMRIR * IRST 
+ IAI ... TMRIR * IRST 

HSTIR :- IA3 ... A2 ... Al * CR * IRST IAddrs 4 clr, 6 set) 
+ leR * HSTIR * IRST 
+ A3 * HSTIR * IRST 
+ IA2 * HSTIR * IRST 

IOPIR :- A3 * IA2 * Al .. CR * IRST {Addr-8 clr, A set} 
+ leR ... IOPIR * IRST 
+ IA3 * IOPIR * IRST 
+ A2 * IOPIR * IRST 

.END 

13/ Usts for the MCP Card 13·11 



PAL equation: RAM 

The PAL equation for RAM on the MCP card is listed below. 

.IDENT PAL16R6 

DATE: 

VERSION: 

• NAMES 

20M 

en 

• EQUATIONS 

10M 

A23 

9/20/88 

D 

A22 

Irfd 
lAS 
IGAS 

IUDS 
Irfcyc 

GAS :- 110M * AS * IREAD 

+ 110M * UDS 

+ 110M * tDS 

+ GAS * UDS 

+ GAS * toS 
+ GAS * AS * IA23 

{99A9} 

ILoS 

ICASH 
READ 13us 

ICASt IMUX 

ISETUP 

lRAS 

{first time write, 

{first time read, wi OS} 

{first time read, wi DS} 

{hold with OS, for RmW to 

{hold with DS, for RmW to 
{hold with AS, for RAM to 

GND 

VCC 

wi AS} 

8-F, 2 

8-F, 2 

0-7, 1 

GAS} 

GAS} 
GAS) 

{C} + GAS * AS * IREAD 

+ 110M * GAS 

{hold with AS, for for write} 

RAS - Irfcyc * AS 
+ MUX 

{aways hold on this edqe} 

* IA23 * IA22 * leASL * ICASH * ISETUP 

MUX :- Irfcyc * 110M * ICASL * ICASH * AS * IA23 * IA22 * ISETUP * IMUX 

{D) + Irfcyc * MUX * ICASt * ICASH * GAS (GAS added rev D) 

{D} 

(D) 

+ Irfcyc * MUX * 110M 
+ rfcyc * Irfd * CASt (CAS-MOX durinq refresh) 

+ rfcyc * 10M * MUX 

CASt :- Irfcyc * tDS * MUX * READ 

+ Irfcyc * LOS * MUX * 110M 
+ Irfcyc * CASt * MUX 

+ Irfcyc * CASt * 110M 
+ Irfcyc * CASL * tDS 

+ rfcyc * rfd * 110M 
+ rfcyc * Irfd * 10M * CASL 

CASH :- Irfcyc * UDS * MUX 

+ Irfcyc * ODS * MOX * 
+ Irfcyc * CASH * MUX 

+ Irfcyc * CASH * 110M 
+ Irfcyc * CASH * UDS 

+ rfcyc * rfd * 110M 

* 
110M 

+ rfcyc * Irfd * 10M * CASH 
rfd:- 13us * Irfcyc 

+ rfd 

+ rfd 
* Irfcyc 

* 10M 

READ 

(CAS on read early) 

(CAS on write late) 

(refresh) 

(CAS on read early) 

(CAS on write late) 

{refresh} 

(rfcyc for RMW only) 

+ Irfcyc * CASH * IUDS * ILDS * AS * 10M (RMW force refresh cycle) 

13-12 Macintosh Coprocessor Platform Developer's Guide 



+ Irfcyc .. CASL .. IUDS .. ILDS * AS * 10M {in b/twn r'w to add delay} 

rfcyc :- 113us .. rfd .. 110M .. lAS .. IGAS {to meet su in both dirs} 

+ 113us .. rfd .. 110M .. AS .. A23 {ok if not RAM access} 

+ 113us .. rfd .. 110M .. AS .. A22 {ok if not RAM access} 
+ rfcyc .. 10M 
+ rfcyc .. rfd 
+ rfcyc .. MUX 
+ Irfcyc .. CASH .. ICDS .. ILDS .. AS .. 10M {RMW force refresh cycle} 
+ Irfcyc .. CASL .. IUDS .. ILDS .. AS .. 10M {in b/twn r'w to add delay} 
: 

.END 

13/ Usts for the MCP C1rd 13·13 



PAL equation: RAM24 

The PAL equation for RAM24 on the MQ> card is listed below. 

.IDENT PAL20R6 RAM24 
9/20/88 

(D5DA) 
DATE: 
VERSION: D 

• NAMES 
20M 10M 

A19 
nc3 

/RASH 
lAS IUDS 
/rfcyc /GAS 

ILDS 
Irfd 

READ 
ICASH 

13us 
ICASL 

ISETUP A23 A22 
nc23 en IMUX IRASL 

• EQUATIONS 

{C} 

GAS :- 110M * /GAS * AS * IREAD 
+ 110M * IGAS * ODS 
+ 110M * IGAS * LOS 

+ 10M * GAS * ODS 
+ 10M * GAS * LDS 
+ 10M * GAS * AS * IA23 

+ 10M" GAS * AS .. IREAD 
+ 110M" GAS 

{first time write, wi AS} 
{first time read, wi OS} 
(first time read, wi OS) 
{hold with DS, for RmW to 8-F, 2 GAS} 
{hold with DS, for RmW to 8-F, 2 GAS} 
{hold with AS, for RAM to 0-7, 1 GAS} 

{hold with AS, for for write} 
{aways hold on this edge} 

RASH - Irfcyc" AS 
+ Irfcyc * MOX .. 
+ rfcyc * MUX 

* IA23 
A19 

* IA22 .. A19 .. ICASL .. ICASH .. ISETUP 

RASL - Irfcyc" AS .. IA23 .. IA22 .. IA19 .. ICASL .. ICASH .. ISETUP 
+ Irfcyc * MUX .. IA19 

+ rfcyc" MUX 

GND 
VCC 

MOX :- Irfcyc * 110M .. ICASL .. ICASH * AS .. IA23 .. IA22 .. ISETUP .. IMUX 
(D) + Irfcyc * MUX .. ICASL .. ICASH .. GAS {GAS added rev D} 

+ Irfcyc" MUX .. 110M 
+ rfcyc" Irfd .. CASL {CAS=MUX during refresh} 

{D} 

(D) 

+ rfcyc" 10M .. MUX 

CASL :- Irfcyc" LDS .. 
+ Irfcyc" LDS .. MUX 

+ Irfcyc" CASL" MUX 
+ Irfcyc * CASL" 110M 

+ Irfcyc * CASL .. 

+ rfcyc * rfd .. 110M 
+ rfcyc * Irfd * 10M 

CASH :- Irfcyc .. UDS .. 
+ Irfcyc * UDS .. MOX 
+ Irfcyc * CASH .. MUX 

+ Irfcyc .. CASH .. 110M 
+ Irfcyc .. CASH .. 

+ rfcyc .. rfd .. 110M 
+ rfcyc .. Irfd .. 10M 

MUX .. READ 
.. 110M 

LDS 

* CASL 

MUX .. READ .. 110M 

UDS 

.. CASH 

13-14 Macintosh Coprocessor Platfonn Developer's Guide 

{CAS on read early} 
{CAS on write late} 

{refresh} 

{CAS on read early} 
(CAS on write late) 

{refresh} 



rfd .. . 13us * /rfcyc 
+ rfd * /rfcyc 
+ rfd * 10M 
+ Irfcyc * CASH * IUDS * 
+ Irfcyc * CASL * IUDS * 

rfcyc :- 113us * rfd * 110M 
+ 113us * rfd * 110M * 
+ l13us * rfd * 110M * 
+ rfcyc * 10M 
+ rfcyc * rfd 
+ rfcyc * MUX 
+ Irfcyc * CASH * ICDS • 
+ Irfcyc * CASL * IUDS • 

.END 

ILDS * AS * 
ILDS * AS * 

* lAS * IGAS 
AS * A23 
AS * A22 

ILDS * AS • 
ILDS • AS • 

10M 
10M 

10M 
10M 

{rfcyc for RMW only} 

(RMW force refresh cycle} 
{in b/twn r'w to add delay} 

(to meet su in both dirs} 
(ok if not RAM access} 
(ok if not RAM access} 

(RMW force refresh cycle} 
(in b/twn r&w to add delay} 

13/ Usts for the MCP Card 13-15 



Parts for the MCP card 

Table 13-2 lists the parts required for the MCP smart card, along with the quantity required and a 
brief description of each part 

• Table 13-1 Parts list for the MCP card 

Quantity Name Description 

1 Capacitor fiedrolytic,lO UP 16v 
l> Capacitor Q:1'3lllic, Axial· .01 UP 21)% SOV 
1 Q)nnector Header, Right Angie, furo DIN 3-Row 96-Pin 
1 Delay Line 24P, 20 TAP Delays lOONS 
4 IC 44056 (DIP Package) 
1 IC 68>00, CPU, 12.5 MHz 
1 IC 74AIS02 
1 IC . 74AlS09 Quad 2-lnput 
1 IC 74AlS521, 8-bit Identity Q)mp 
1 IC 74AlS563. Octal D-Type 
1 IC 74AlS564, Octal D-Type 
6 IC 74ALS651 
1 IC 74ALS880, Dual 4-Bit D-Type 
1 IC 74AFOO, Quad 2-Input Nand Gate 
2 IC 74ALS258 
2 IC 74LS590, S-bit Binary Counter 
2 IC EPROM, 32K x 8, 2SONS 
5 Resistor tKB OHM 1I4W 5% 

3 Resistor Pak 47 OHM, 10POS 
1 Resistor Pak Network 9 x 3.3K OHM 5% 
10 Socket IC, 2D-Pin 
2 Socket IC,24-Pin 
1 Socket IC,64-Pin 
2 Socket PLCC, 28-Pin 
1 Switch KeyType 
1 PAL 161.8B (Arbitration) 
1 PAL 161.8B (Bus driver) 
1 PAL 16R4A (Interrupt) 
1 PAL 2OR4B (Decode) 

1 PAL 16R6B(RAM) 
1 PAL 16R6B (Bus sJave) 
1 PAL 16RBB (Bus master controO 
1 PAL 20RBB (Bus master) 

13-16 Macintosh Q)processor Platform Developer's Guide 



13/ Lists for the MCP Card 13·17 





Chapter 14 Diagnostics for the MCP Card 

This chapter provides an overview d the diagnostics available for MCP 1.1. 

14·1 



MCP card declaration ROM 

The MCP card declaration ROM is divided into several parts: 

• the on-card power-up tests 

• the primary initialization code (run by the Macintosh II system at boot time) 

• the application-specific resources 

• the application-specific drivers 

You can use the hooks available in the power-up and initialization sections of the ROM to insert 
your own application-specifIC code into the test sequence. 

Power-up diagnostics 

When power reaches the card (or upon a software reset), the on-board 68000 power-up tests 
automatically begin execution. Before execution, all interrupts are disabled by the MCP hardware. 
The tests 

• verify the 68000 data and address lines 

• check CRC of the Declaration ROM 

• check: critical functionality of on-board RAM 

• clear RAM memory from $1&:l to S7FFFE (that is, the last half-megabyte) 

The tests are implemented so that, if a test crashes as a result of hardware problems, the failure is 
still reported in low memory and to the Slot Manager. 

If these tests pass, the 68000 exception vettor table is initialized and the oo-board RAM size is stored 
in low memory (currently SIIC-F). The timer interrupt Oevel 1) vettor points to a routine that 
increments a 32-bit counter at location $118 every 6.5536 milliseconds. The Non-Maskable Interrupts 
(NMI), wired to the button on the prototype MCP card, are vectored to a routine that restarts the 
power-up code by simulating a reset You can change these default interrupts using the file 
ApplPowerOn • a (described in the next section). 

Next, the levell-7 auto vettor interrupts are enabled to the routines defined in the me 
ApplPowerOn. a. Then the code executes a test reserved for the application you develop. 
Currently, this is a stub function named VendorPowerOp in the file ApplPowerOn. a. If you 
insert any code here, it must signal success or failure by returning a bit flag into the test status 
location. 

All tests have an associated bit flag. These flags are kept in a word at location $102. At the start of 
the power-up code, all bits in the flag word are set. To indicate success, the bit flag associated with 
that test is cleared. In the case of the developer tes~ bit 4 (the $0010 bit) is the associated bit Any 
code you insert here should not take more than 600 milliseconds, because a software reset causes 
the 68020 to execute an abbreviated memory ~ thereby shortening the time between reset and 
68020 primary initialization. 

14·2 Macintosh Coprocessor Platform Developer's Guide 



When the power-up code is fmished, a wait flag is cleared at word location $100. Next, the 68000 
executes a STOP instruction with interrupts enabled to wait for the primary initialization tests. 

68020/030 primary initlaJJzation tests 

The primary initialization code is run by the Macintosh II operating system at the time of system 
initialization. The code is read off of the declaration ROM and executed on the card across NuBus. 
Any application code that you add must take this into account 

The primary initialization code tests NuBus and the interrupt system for the MCP card. The code 
begins by getting the results d the power-up tests. If these have passed, the primary initialization 
code then tests 

• 32 bit data line test aaoss NuBus to the card's RAM 

• the ability of the Macint~h II to reset the 68000 

• the timer interrupt 

• the ability of the Macintosh II to interrupt the on-board processor via a NuBus interrupt 

After this, any routines you sUpply are executed Currently, there is a stub routine in the file 
ApplPrimaryInit. a, but any application-specific initialization should either be done here or 
during the device driver Open function. 

6. Important The primary initialization code for the discrete PAL version of the MCP card 
must currently reside at the very end of the declaration ROM before the 
formar/header block. In tlie current version, some of the test subroutines 
reside at specific addresses and must not be moved t::. 

If you want to put your own code in the VendorInit routine, you must be sure to indicate 
whether the routine has passed or failed. The primary initialization code expects the 01 register to 
return $00 if the test has passed and -1 if it has failed The Al, A3, and DO registers must be 
preserved 

Data area 

The power-up and primary initialization code have a data area in the on-board RAM that starts at 
location $100 and extends to $150. 

6. Important If any application uses this area d memory (such as A/ROSE), these values 
are destroyed t::. 

14/ Diagnostics for the MCP Card 14-3 



Locations $100 through $14F are reserved for existing code; locations $150 through $100 are reserved 
for developers. Certain locations are reserved for use by the application-specifIC code on the ROM. 
Table 14-1 identifies the data areas and briefly describes each. 

A Warniog The ROMs provided on the MCP card will overwrite these locations. 
However, this will not occur when you build your own ROMs, since the 
source code provided on the distribution disk that you will use to build 
yDUr own ROM has fixed this problem. A 

• Table 14-1 Data area 

Location 

$102- $103 

$1aJ- $109 

$lOE-$lU 

$118- $UB 

$Ue- $11F 

$134- $137 

$138- $13B 

$13<:- $13F 

$140- $143 

$150-$100 

Error codes 

Tests status bit flags. Tbis word holds the bit flags used to track the power-up 
code. A-32 in this location means that all power-on tests have passed The first 
fIVe error codes listed in Table 14-4 are found in this location. 

Signals a soft reset. This word is set to $FFFF when the primary initialization 
code has finished. 

Contains the CRe checksum calculated by the power-on ROM. 

Used as a timer tick counter and is incremented every 6.5536 milliseconds. 

Contains the amount of RAM on the card in bytes. 

Used by vendor to pass back information about power-on test other than PASS 

or FAIL. 

Used by vendor to pass back more information about primary-initialization test 
other than PASS or FAIL. 

Stores the 68000 Program Counter here after any hardware exception. 

Stores the address that the 68000 was trying to access, when a hardware 
exception occurs. 

Reserved for developers. 

Table 14-2 lists the codes returned to the Slot Manager by the primary initialization code. At the 
end of the primary initialization code, if any test has failed, the bit flags are returned as a negative 
number. The Slot Manager stores this number in an array. 

To fmd the error code, use the Macintosh toolbox call SReadlnfo (refer to the chapter on the 
Slot Manager in 1ns1tie Madntosh, Volume 5); the value of the error code for the MCP _Diagnostic is 
returned in the sInitStatusV freld. 

• Note: These error codes are applicable only for Revision 0 ROMs. 

14-4 Madntosh Coprocessor Platform Developer's Guide 



• Table 14-2 Fnorcodes 

Error code Delcriptlon 

0 All tests passed 

·1 Data Line test failed 

·2 ROM test pattern not found 

-6 CRC test faDed 
-14 RAM test faDed 

·16 Vendor power-up test failed 
.21) power-on tests did not complete 

-32 NuBus data line test failed 

-64 lOP interrupt test failed (Level 2) 
-321) Host reset test faDed 

-384 Timer interrupt test failed (Level 1) 

-512 Vendor initialization test failed 

Note: Since interrupts annot be enabled during primary initialization, the NMRQ (card-ta-Macintosh 
interrupt) annot be tested during primary ini1. 

141 Diagnostics for the MCP Card 14·5 





Appendix A Files on the MCP Distribution Disks 

For your information, this appendix provides a list of folders and files on the 

MCP distribution disks. Be sure to check the aClual distribution disks for 

accurate, up-to-the-minute listings of ftles and folders. 

There are two distribution disks provided for Version 1.1 of the Macintosh 

Coprocessor Platform: 

• AlROSE 1 

• AlROSE2 

A·I 



Files on A/ROSE 1 
Table A-I lists the folders and files found on the distribution disk named AlROSE 1 and provides a 
brief description of each. The folder name provides a complete description of the pathname to the 
file . 

... Caudon Diagnostic code is still under development. & 

• Table A·1 Files on AlROSE 1 

FOLDER: AlROSE l:AlROSE: 

:Examples: 

:includes: 

:MCP: 

DacripUon 

Folder containing files and folders tailored to the AST-ICP 
card 
Folder containing example flIes and folders 
Folder containing includes files 
Folder containing files and folders tailored to the MCP card 

A-2 Macintosh Coprocessor Platform Developer's Guide 



• Table A·1 Files on AIROSE 1 contInued 

L3MMSVP.c 

L3MMSVPClient.c 

Makefile 

:MCP: 

name_tester.c 

osmain.c 

ossccint.a 

printf.c 

pr_manager.c 

timelt.c 

timer_tester.c 

trace_manager.c 

Description 

The source of C routines comprising part of the hardware 
diagnostic task MMSVP 
The source of the task, L3HMSVPClient, designed to 
control the hardware diagnostic task MMSVP 
MakeFie makes all examples and test tasks found within the 
:AlROSE:F.xamp1es: folder 
a folder cootaining example files for the MCP card 

The source of the test task designed to test the Name Manager 

The source of the initialization routine that makes calls to 
initialize AlROSE, initializes any hardware that needs initialization 
before any tasks start executing, specifies tasks to be initially 
started when AlROSE starts executing, and starts A/ROSE 
executing 

The source of a set of example interrupt handler routines. These 
inlenupt handler routines handle interrupts from an sec chip. 
Please see the pr_manager.c example 

The source of the subroutine that performs the text formatting 
functions of the standard C printf routine (this subroutine 
also looks for a print manager and requests that the Print 
Manager print the text that it has formatted) 

The source of a task that controls an sec chip running in an 
asynchronous mode. This task receives a message from another 
task requesting that text be printed and sends a reply to the 
requesting task when the text is printed. This task uses 
interrupt handler routines found in ossccint. a 

The source of a test program that measures the amount of time 
it takes for messages to be sent between itself and a echo 
manager. The Echo Manager may be on the same card as this 
test program, on a different card, or in the Macintosh II (slot 0) 

The source of a test program designed to test the Timer 
Manager 

The source of a software diagnostic program that can be used 
to trace messages sent between tasks 

Appendix A / Files on the MCP Distribution Disks A·3 



• Table A·l Files on AlROSE 1 continued 

Deacription 

FOLDER: AlROSE 1 :AlROSE:Examp/es:AST.}CP: 

FOLDER: AlROSH 1 :AIROSH:Exampies:Btnm1es: 

Download 

dumpcard 

echo.c.o 

L3MMSVP.a.o 

An MPW tool designed to download a module to the card 
'Ibis module contains the AlROSE oper3ling system and any 
tasks or managers that are to be downloaded with the A/ROSE 
operating system. 

An MPW tool designed to dump information about a card 
that is or was running AlROSE. This tool is meant to assist in 
trooble·shcxxing problems. It dumps the global common area 
of AlROSE, task control block information for the tasks running 
under AlROSE, and other information 
The object file of the echo. C routine compiled to run on the 
card 

The object file ci assembler routines canprising part of the 
hardware diagnostic task MMSVP 

A-4 Macintosh Coprocessor Platform Developer's Guide 



• Table A·1 Files on A/ROSE 1 conttnueti 

L3MM5VP.c.o 

L3MM5VPClient.c.o 

map 

name_tester.c.o 

osmain.c.o 

ossccint.a.o 

printf.c.o 

pr_manager.c.o 

start 

timelt.c.o 

timer_tester.coo 

trace_manager.c.o 

xref 

Dac:ription 

The object file of C routines ccxnprising part of the hardware 
diagnostic task MMSVP 
The object file of the task, L3MM5VPClient, designed to 
control the hardware diagnostic task MMSVP 
The map produced by Link during the building of the start 
module for the card 

The object me of the name _test er • c routine compiled to 
run on the card 

The object me of the osmain. c routine compiled to run on 
the card 

The object file of the ossccint. a routine compiled to run 
on the card 

The object file of the print!. c routine compiled to run on 
the card 

The object file of the pr_manager. c routine compiled to 
run on the card 

The module produced by Link during the use of the MakeFile in 
folder :NROSE:Examples: for building an example to be 
downloaded to the card; this module contains the initialization 
routine osmain. c, the version of MCP operating system 
designed to run on the carel, and numerous test tasks 

The object file of the time It. c routine compiled .to run on 
the MCP card 

The object file of the timer_tester. c routine compiled 
to run on the card 

The object fde of the trace_manager. c routine compiled 
to run on the card 

The cross reference produced by Link during the building of the 
start module for the card 

Appendix A / Files on the MCP Distribution Disks A·5 



• Table A·I Files on AlROSE 1 continued 

Filename Description 

FOIDER: AiROSE I:AlROSE:tndudes 

clister.h 

diaqs.a 

diaqs.h 

Download.h 

iccmOefs.a 

iccmOefs.h 

manaqers.a 

manaqers.h 

mrdos.a 

mrdos.h 

oS.a 

os.h 

scc.a 

Include file that defines dummy macros for a program clister 

Include file that contains constants used by the hardware 
diagnostic programs MMSVP and HMSVPClient 

Include file that contains constants used by the hardware 
diagnostic programs MMSVP and HMSVPClient 

Include file that contains constants and def'mitions used when 
calling the Download and rmdcard subroolincs 
Include file provided for debugging purposes only that contains 
constants and definitions used by ICCM 

Include file provided for debugging purposes only that contains 
constants and definitions used by ICCM 

Include file that contains constants and defmitions used when 
sending message requests to the AlROSE managers (such as 
ICCM, Name Manager, and others) 

Include me that contains constants and defmitions used when 
sending message requests to the AlROSE managers(such as 
ICCM, Name Manager, and others) 

Include me that contains constants and defmitions used by the 
AlROSE operating system, as wen as the definition of the global 
common area 
Include me that contains constants and defmitions used by the 
AlROSE operating system, as wen as the defmition of the global 
common area 

Include file that contains constants and defmitions and macros 
used when invoking AlROSE primitives (those functions within 
AlROSE invoked by instruction traps and include GetMsq, 

GetMem. Send. Reschedule, and others) 

Include file that contains constants and definitions and external 
routine declarations used when calling AlROSE primitives and 
utility routines (primitives are those functions within AlROSE 
invoked by instruction traps and include GetMsq, GetMem. 

Send. Reschedule. and others; utility routines include 
GetTlD. GetCard. Lookup_Task, and others) 

Include file that contains the defmition of the interrupt handler 
table used by the routines in :AlROSE:Examples: that makes use 
ofSCCs ' 

A·6 Macintosh Coprocessor Platform Developer's Guide 



• Table A·l Files on A/ROSE 1 conttnued 

scc.h 

ofSCCs 

siop.a 

siop.h 

timerlibrary.a 

timerlibrary.h 

FOlDER: A/ROSE J:A/ROSE:MCP: 

Download-lib.o 

OS.o 

OSDefs.d 

osglue.o 

Description 

Include file that contains the definition of the interrupt handler 
table used by the routines in :N'ROSE:Examples: that makes use 

Include file that contains constants used to describe hardware 
on the card including control register locations and some of the 
values that can be stored inlo those localioos 

Include file that contains constants used to describe hardware 
on the card including control register locations and some of the 
values that can be stored into those localions 

Include me that contains the constants and defmitions needed 
to use the timer library 
This include me contains the constants and definitions needed 
to use the timer library 

Library containing Download and Fmdcard subroutines tailored 
to code to the MCP card 

Library containing N'ROSE operating system and utility routines 
tailored to run on the MCP card 
Assembler symbol table file of mrdos.a, os.a, 

man ager s • a, and s iop. a containing constants and 
macros tailored to the version of the AlROSE operating 
system that runs on the MCP card 

Library containing glue code and the iopruntime routines 
for programs that run on the MCP card 

Appendix A / Files on the MCP Distribution Disks A· 7 



Files on A/ROSE 2 

Table A-21lsts the folders and files found on the distributioo disk named AIROSE 2 and provides a 
brief description of each. 

• TabJe A-2 FDes on AlROSE 2 

HIe_ 

FOlDER: #ROSE 2:Apfie !PC 
: 'Apple IPC': 

:Forwarder: 

FOLDER: #ROSE 2:AppIe !PC 

'Apple IPC' 

'Apple IPC.r' 

Copydriver 

:Examples: 

ipcGOefs.a 

ipcGOefs.h 

IPCGlue.o 

Folder containing folders and lies for Apple IPC 

Polder containing the Forwarder appliation and files 

Contains a driver and code to provide some of the MCP 
operating system features to applications running 00 the 
Macintosh II that is placed in the System Folder and the 
Macintosh II restarted. This me contains an INlT resource for 
installing the Apple IPC driver, the Apple IPC driver, the Name 
Manager, and the Echo Manager OCCM is buDt into the Apple 
IPCdriver) 

The Re z file used in the creation ri the Apple IPC file that 
provides certain resoorces used within the Apple IPC me for 
confl8Uration p~ This file is provided as a quick reference 
to see the names and formats d those resources. Accesses to 
these resources are by name during initialization. These 
resources are not accessed by resource IO 

The saipt that copies the Apple IPC me to the System Folder 

Folder ri example files using Apple IPC 

Include file provided for debugging purposes only that contains 
the format of the Apple IPC driver's global data area 

Include file provided for debugging purposes only that contains 
the format of the Apple IPC driver's global data area 

Libmy me that contains the glue interface routines necessary 
for using the Apple IPC driver 

A·8 Macintosh Coprocessor Platfonn Developer's Guide 



• Table A-2 Files on AlROSE 2 conttnued 

Dellcriptlon 

FOIDER: AlROSE 2:App/e IPCExampIes 

'Apple IPC' 

'Apple IPC.r' 

:AST_ICP: 

: DumpTrace: 

echo.c 

echo_example 

echoglobals.a 

Makefile 

:MCP: 

name_tester 

name_tester.c 

pr_manager 

pr_manager.c 

RSM_File.c 

TestR 

TestR.c 

timeit 

timelt.c 

TraceMonitor 

trace_monitor.c 

Contains everything the Apple IPC me in folder :Apple IPC: 
contains plus an Echo Example task. The MakeFile shows how 
this file is created; the purpose of this me is to show how to add 
a new manager or task to the Apple IPC file 

This is the Rez file used in the creation of the Apple !PC me in 
the Examples folder (this Rez file is different than the Rez 

me found in the Apple IPC folder) 

Folder ci examples for the ASCICP card 

Folder for OumpTrace tool and examples 

The source of the Echo Example task 

The linked Echo Example task (the Makerde shows how this file 
is created and used) 

The sauce ci assembler routines used within the Echo Example 
task 

Used by Make to create all of the programs and tasks within the 
:Examples: folder 

Folder of examples for the MCP card 

An MPW tool designed to test the Name Manager 

The source of the test task designed to test the Name Manager 

This MPW tool is a Print Manager task. The printf 

subroutine will look for a Print Manager, and request that a Print 
Manager print formatted text 

This is the source of the pr_manager MPW tool 

This is the source ci a test task RSMJile which is to be 
dynamically downloaded to a card running MCP operating 
system 

The source ci a MPW tool that dynamically downloads a task to 
a smart card running AlROSE 

This MPW tool tests the Apple IPC driver 

The source of a MPW tool that tests the Apple IPC driver 

This MPW tool measures the time required to exchange 
messages between itself and a Echo Manager 

The source of the MPW tool which measures the time required 
to exchange messages between itself and a Echo Manager 

This MPW tool receives messages from Trace Managers and 
reoords them in a trace me 

The source of the TraceMonitor MPW tool 

Appendix A / Files on the MCP Distribution Disks A·9 



• Table A·2 FUes on AIROSE 2 corutnu8d 

FOLDER: #ROSE 2:AppIe IPC:E%amples:ASTjCP 

RSM]He An example rJ a module built to be dynamically downloaded to the 
AST-ICP card 
11m MPW tool dynamially downloads a module to the AST-ICP card 

FOWER: #ROSE 2:AppIe lPC:E%amples:Dump»-ace 

DumpTr ace This MPW tool analyzes a trace me aeated by the TraceMonitor and dump 
selected messages from the trace fde 

dump_16_bytes. c 

dump_line.c 

dump_memory.c 

dump_messaqe.c 

dump_trace_file.c 

init.c 

is_selected.c 

main.c 

Makefile 

The sowte of one rJ the subroutines comprising the DumpTl'3ce MPW tool 
The sowte of one of the subroutines comprising the DumpTl'3ce MPW tool 
The sowte of one of the subroutines comprising the OumpTrace MPW tool 
The source of one of the subroutines comprising the OumpTl'3ce MPW tool 
The source of one of the subroutines comprising the OumpTrace MPW tool 
The source of one of the subroutines comprising the OumpTl'3ce MPW tool 
The source of one of the subroutines comprising the OumpTrace MPW tool 
The source c:J the main routine comprising the OumpTrace MPW tool 
The MakeF"de used when building the DwnpTrace MPW tool 

FOLDER: NROSE 2:AppIe IPC:E%amples:MCP 

RSM] He An example of a module built to be dynamically downloaded to the MCP card 
RSM_ tester This MPW tool dynamically downloads a module to the MCP card 

FOLDER: NROSE 2:FonoarrJer 

FWD Contains the ADSP forwarder used within MacAPPC, along with an INIT 
resource that installs the forwarder 

fwd. h Indude me that contains constants and defmitions used by applications 
using the ADSP forwarder 

fwd. r The Rez file used in the creation of the FWD file (certain resources are used 
within the FWD me for configuration purposes; this file is provided as a 
quick reference to see the names and formats of thcR resources. Accesses 
to these resources are by name during initialization These resources are not 
accessed by resource ID) 

A-I0 Macintosh Coprocessor Platform Developer's Guide 



Appendix B Where to Go for More Information 

In addition to the books aboot the Macintosh n itself, there are books on 

related subjeds. Table B·l1ists d reference materia1s that you might fmd 

helpful. • 

B·1 



• Table B-1 List of reference material 

Name 

Ins1Iie Mactntosh, 
Volumes J-V 

Mactntosh Programmer's 
Worishop(MPW) 
Reference 

MPW C Language 
Manual 

MPW Assembly Langutlge 
Manual 

Designing Cards and 
Drivers for MacinlDSh II 
and MactnlDSh SE 

Human InJerj'ace 
Guttiellnes: The Apple 
Desklcp InJerj'ace 

Technical Introduction 
to the MacinlDSh Family 

Deacription 

Provides a complete reference to the Macintosh 
Toolbox and Operating System for the original 64 KB 
Macintosh, Macintosh Plus (128 KB ROM), Macintosh Sf, 
and Macintosh II (256 KB ROM) 

Describes the software programming environment 
for the Macintosh computer. This manual includes a 
combined editor and command inl:erpreter, 68000 
family assembler, linker, debugger, Macintosh ROM 
interfaces, resoorce editor, resource compiler and 
deoompBer, and a variety d utBity programs. (Version 2.0 
contains complete inter&ces to beth the Macintosh Sf and 
Macintosh II ROMs, improved structured maao processing 
from the assembler, editor markers, performance enhancements, 
ease-of-use features, and a variety of new commands.) 

Describes a native Macintosh C compiler, the standard 
C library, Macintosh interface libraries, and offers 
sample programs (Version 2.0 contains full interfaces to both the 
Macintosh Sf and Macintosh II ROMs) 

Tells you how to prepare source flies to be assembled by 
MPW Assembler (Version 2.0 also contains interfaces to both the 
Macintosh Sf and Macintosh II ROMs) 

Contains the hardware and software requirements for 
developing cards and drivers for the Macintosh II and 
the Macintosh Sf (this document covers Apple's 
implementation of the NuBus interface in the Macintosh 
II and the Apple's Sf-Bus interface in the Macintosh Sf) 

Detailed guidelines for developers implementing the 
Macintosh user interface 

Introduction to the Macintosh software and hardware for all 
Macintosh computers: the original Macintosh, the Macintosh 
Plus, the Macintosh Sf, and the Macintosh II 

B·2 Macintosh Coprocessor Platform Developer's Guide 



These documents are available to internal Apple developers through the Engineering Support Library, 
or to third-party developers through APDA til (formerly, the Apple Programmer's and Developer's 
Association ). 

APDATII provides a wide range of technical prooucts and documentation, from Apple and other 
suppliers, for programmers and developers who work on Apple equipment For information about 
APDA, contact 

APDA 
Apple Computer, Inc. 
20525 Mariani Avenue, Mailstop 33-G 
Cupertino, CA 95014-6299 

(rol) 282-APDA, or (ax» 282-2732 
Fax: 4<&562-3971 
Telex:: 171-576 
AppleUnk: APDA 

If you plan to develop hardware or software products for sale through retail channels, you can get 
valuable support from Apple Developer Progra~. Write to 

Apple Developer Programs 
Apple Computer, Inc. 
20525 Mariani Avenue, Mailstop 51-W 
Cupertino, CA 95014-6299 

In addition, you may fmd the references listed in Table B-2 available through your local bookstore 
or computer dealer to be helpful. 

• Table B-2 Additional references 

Name 

Motorola M68000 8-116-132-Btt 
Mtcrop1OCessDTS Programmer's 
Reference Manual 

Describes the latest information to aid in the 
completion of software syst~ using the 
M68000 family of microprocessors. This 
manual also covers the MC68008 8-bit data bus 
device, the MC6a:110 virtual memory 
processor, and the MC6a:l12 exten,ded virtual 
memory processor ' 

Appendix B / Where to go for more information B·3 





Glossary 

+ Note: All tenDs in this glossary apply to the 
Macintosh II family of computers 

address: a number used to identify a location in the 
computer's address space (some locatioos are 
allocated to memory, others to VO devices) 

address bus: the path along which the addresses of 
specifIC memory locations are transmitted. The 
width of the path detennines how many addresses 
can be accessed (addressed) directly by the computer 

address space: a range of memory locations 
accessible by a GU 

Al'ROSE Prep: a driver and support software 
Oibrary code, managers, and so forth) that handle 
message passing between a Macintosh application 
and applications running under AlROSE on MCP­
based smart cards or on another computer. AlROSE 
Prep and AlROSE perfonn similar functions on the 
main logic board and smart cards, respectively 

AlROSE: Apple Real-time Operating System 
Environment; the multitasking operating system for 
MCP-based smart cards that provides an intelligent 
peripheral-controller interface to the NuBus 

Board sResource Ust: the sResource list that 
describes the board in whose declaration ROM the 
list resides 

block mode: see run-to-block mode 

blocked: the state of a task or process awaiting a 
message, having performed a blocking Receive 

bloddng Receive: Receive request where a 
task specifIeS a timeout value of greater than or 
equal to zero. AlROSE suspends execution d this 
task and schedules another (also see non-blocking 
Receive) 

bus: a path along which information is transmitted 
eledrOnicaily within a computer 

bus master: at a given time, the bus device that 
initiates a transaction. Also, a device with the ability 
to initiate a NuBus transaction by asserting the 
START* line (also see NuBus) 

card: a printed circuit board connected to the bus in 
parallel with other boards 

cBent: for AlROSE and AlROSE Prep, a software 
process or task that requests a service rrom a server 
task 01' process 

code segment: area of memory for loading code 
that is allocated before a parent task invokes 
StartTask or RSM_StartTask. The code 
segment is automatically deallocated when the 
parent task issues either a StopTask or 
RSM_StopTask 

coprocessor: any microprocessors on NuBus 
expansion cards; that is, any microprocessors in 
addition to the MC68Oxo on the main logic board; 
coprocessors may perfonn system tasks, such as 
running alternative operating systems 

cycle: one period of the NuBus clock, nominally 100 
nanoseconds in duration and beginning at the rising 
edge 

data bus: the path along which general information 
is transmitted within the computer. The wider the 
data bus, the more information can be transmined 
at once. The Macintosh II, for example, has a 32-bit 
data bus. Thus, 32 bits of information can be 
transferred at a time, so that information is 
transferred twice as fast as in 16-bit computers 
(assuming equal system clock rates). 

G-t 



data segment: area of memory for storing global 
data that is allocated before a parent task invokes 
Start Task or RSM_startTask for a new task. 
The data segment is automatically deallocated when 
the parent task issues either a StopTask or 
RsM_stopTask 

declaration ROM: ROM on a NuBus slot card that 
contains slot manager information about the card 
and may also contain code or <1her resources 

free memory pool: the total amount of memory 
on a card that is available for allocation either by an 
application using the GetMem primitive or by 
NROSE 

free message pool: total number of messages 
available for allocation either by application code 
using the GetMsq primitive or by AlROSE 

gCommon: a table kept by AlROSE on each MCP­
based card that contains global information about all 
tasks and data structures associated with tasks 
running on the card 

heap: the area of memory in which space is 
dynamically allocated and released on demand by the 
memory manager of the Macintosh operating 
system 

Idle Chain: Singly-linked list of small routines that 
are executed when when all tasks are blocked; the 
Idle Chain has the lowest priority of all tasks 

intelligent card: see smart card 

!PC: InterProcess Communication; provides 
message passing between cards and the main logic 
board, as well as with other computers on the 
network (also see AlROSE Prep) 

kernel: operating system code that runs in 
supervisor mode. In AlROSE, the core software 
responsible for processing primitives, scheduling, 
IPC, and memory management; however, this code 
does not manage files or peripherals 

G-2 Glossary 

Ioc:aI: point of reference when describing intercard 
or inlertask communicationsj typically, the "local" 
card or task is the initial point of origin in a message­
passing transaction. (also see remote) 

major tick: the smallest time unit recognized by 
tasks running under AlROSE (see also minor tick) 

managers: tasks that carry out higher-level services 
on behalf of other tasks. AlROSE managers extend 
the kernel to provide services not in the kernel 

master: a card that initiates the addressing of a card 
or the main logic board across the NuBusj the card 
addressed is at that time acting as a slave 

MCP card: the board provided with the Macintosh 
Coprocessor Platfonn that developers can use to 
build their own NuBus expansion card for the 
Macintosh II family of computers 

MCP_Diagnostic:: the diagnostic application 
provided with MCP 

message: structure containing data to be passed by 
A/ROSE between two tasks running in a machine 

message buft'er: buffer or block of memory large 
enough to hold a message; a message buffer is 
allocated by application code using the GetMsg 

primitive 

message ID: a statistically unique 32-bit number 
assigned by AlROSE to identify each messsage 
buffer 

message queue: a list of all messages that have 
been sent to a task but have not yet been received 

minOt tick: the smallest unit of time recognized by 
AlROSE in scheduling tasksj tasks can be switched at 
minor ticks (see also major tick) 

non-blocking Receive: Receive request where a 
task specUteS a negative timeout value. AlROSE 
returns control to the task immediately with either a 
message matching the criteria specified on the 
Rece! ve request, or zero if no message is available. 
AlROSE will not attempt to schedule another task 
for execution (also see blocking Receive) 



NuBus: a synchronous bus defined by Texas 
Instruments that operates on a 10 MHz clock .. with a 
full 32-bit data and address transfer. Apple's 
implementation of NuBus does not include parity 
checks, but does add interrupt lines to each of the 
Macintosh II NuBus slots 

PAL TIl: an integrated circuit that implements 
Progmnmable Array Logic 

pareDt task: any task that starts a new task 

peer cards: cards that are designed to execute code 
that is not specialized to the cardj for example, two 
cards that are executing cooperating processes to 

solve a problem 

pre-emptive scheduU.ng: in AlROSE, a scheduling 
function that takes precedence when (1) a 
Reeei ve request of a higher priority task is 
satisfied, the higher priority task does not 
necessarily execute immediately, or (2) when a task 
sends a message to another task on the same card, 
AlROSE schedules the receiving task immediately, 
regardless of the priorities of the two tasks 

primitive: an AlROSE system call that provides 
fundamental services such as starting and stopping 
tasks, getting and freeing memory, getting and 
freeing message buffers, sending and receiving 
messages, changing the scheduling parameters of a 
task, and setting the hardware-interrupt priority 
level 

priority: (1) hardware priority: the status according 
to rank of the hardware interrupts; this status may 
be changed by the SPL primitive (a 68000 priority­
level instruc.tion)j (2) task priority: the order in which 
a task is executed, relative to other tasks 

process: an operation or func.tion performed by the 
Macintosh operating system (also see blocked) 

remote: point ci reference when describing 
intercard or intertask communications; typically, the 
-remote; card or task is the initial destination in a 
message-passing transac.tion. Remote cards can also 
send messages (also see local) 

run·to·block mode: a mode in which a task has 
control of the CPU until the task explicitly releases it. 
Guarantees that tasks can make uninterrupted use 
of the CPU. 

scheduling: a func.tion of AiROSE that suspends 
one task and selec.ts another task for immediate 
execution 

server: for AlROSE and AlROSE Prep, a software 
process or task that provides a service to client tasks 
or processes 

slave: a card that responds to being addressed by 
another card ac.ting as a master. For example, the 
Macintosh II main logic board may be either master 
or slave. Also, a device that cannot initiate a NuBus 
transaction or arbitrate requests for bus mastership 

sllc:e mode: a mode in which a the operating 
system enables time-slicing by temporarily 
suspending execution of the task to allow tasks of 
equal or higher priority to run 

slot: (1) a connec.tor attached to the bus. A card 
may be inserted into any of the physical slots (the 
Macintosh II has six slots). (2) An area of address 
space allocated to a physical slot (also see slot space) 

slot ID: the hexadecimal number corresponding to 
each card slot. Each slot ID is established by the 
main logic board of the Macintosh II and 
communicated to the card 

Slot Manager: a set of Macintosh II ROM routines 
that enable applications to have access to declaration 
ROM information on slot cards (also see slot 0 

managers) 

slot space: an area of address space allocated to a 
physical slot; the upper one-sixteenth of the total 
NuBus address space. These addresses are of the 
form $Fsxx xxxx where F, s, and x are hexadecimal 
digits of 4 bits each. This address space is 
geographically divided among the NuBus slots 
according to the slot ID number. The sid space for 
each slot is 16 megabytes (also see superslot) 

Glossary G-3 



slot 0 managers: AiROSE Prep manager processes, 
running on the Macintosh I1j the Macintosh itself is 
sometimes referred to as the slot 0 card. 

smart card: a card containing one or more 
processors that can work independently of the main 
processor of the computer. Smart cards can serve as 
a medium for introducing new processor 
technologies into a system, but most personal 
computer architectures require too much support 
from the main processor for th~ to happen. NuBus, 
however, ~ a notable exception, because it was 
designed specifically to support multiple processors, 
and hence, smart cards (also referred to as intelligent 
cards) 

sllesource: a software structure in the declaration 
ROM of a slot card (sResource is analagous to, but 
not the same as, system resources under the 
Macintosh operating system.) 

sllesoutce directory: the structure in a dedaration 
ROM that provides access to its sResource lists 

sllesoun:e list: a list of characteristics of a slot 
resource 

start parameters: data passed to a new task 
started by a Start Task or RSM_StartTask 

call by the parent task 

Sllpcr slot space: the large portion of memory in 
the range $9000 0000 through $EFFF FPFF. NuBus 
addresses of the fonn sxxx xxxx (that is, $sOOO 0000 
through $sFFF FFFF') reference the super sla space 
that belongs to the card in slot s, where s is an IO 
digit in the range $9 through $E 

Sllperv:lsor mode: privilege state of the 68000 on 
the MCP cardj the MOSE kernel operates in the 
supervisor mode, a higher state of privilege than user 
mode (contrast with user mode) 

task: semi-independent software program code 
designed to accomplish specific functio~ that 
communicates by messagesj this code is isolated 
from interfering with other tasks running at the 
same time; a task has its own stack space and 
resources 

Glossary 

Task ID: a value that may be used to uniquely 
identify a task running in a machine 

TIck Cbabl: singly-linked list of very small routines 
that are executed at every major tick 

timeout period: the time period that a bus master 
wails for a noo-responding slave to respond before 
generating a bus timeout error code 

time-sUeed: when the operating system . 
temporarily suspends execution of the task to allow 
tasks of equal a higher priority to run. (also see slice 
mode.) 

transaction: a complete NuBus operation, such as 
read or write. In the Macintosh n, a transaction 
co~ists of an address cycle, wait cycles as required 
by the responding card, and a data cycle. Address 
cycles are one dock period long and convey address 
and command infonnation. Data cycles are also one 
clock period long and convey data and 
acknowledgement information 

user mode: privilege state in the 68000 on the M CP 
cardj the user mode has the lower state of privilege 
(contrast with supervisor mode) 

utiUties: AlROSE library routines that provide for 
moving data, managing buffers, obtaining the 
operating environment, translating NuBus 
addresses, and registering and looking up task 
names. 



Glossary G-S 




