®€. Macintosh. FEtherTalk and
Alternate AppleTalk
Reference

Alpha Draft; Working Draft 1 - December 11, 1987

Communications & Networking
Apple Technical Publications

Engineering Part No. 6588279

& APPLE COMPUTER, INC.

This manual is copyrighted by Apple, with all right reserved. Under the copyright
laws, this manual may not be copied, in whole or in part, without the written consent
of Apple Computer, Inc. This exception does not allow copies to be made for others,
whether or not sold, but all of the material purchased may be sold, given or lent to
another person. Under the law, copying includes translation into another language.

© Apple Computer, Inc.. 1987
20525 Mariani Avenue
Cupertino, California 95014
(408) 996-1010

Apple and the Apple logo are registered trademarks of Apple Computer, Inc.
AppleTalk is a registered trademark of Apple Computer, Inc.

NuBus™ is a trademark of Texas Instruments.
Ethernet® is a registered trademark of Xerox.
Simultaneously published in the United States and Canada.

Contents

Figures and tables v
Radio and television interference xx

Preface

You Should Know... vii
Document Contents vii

Suggested Reading vii

Chapter 1 introduction 1

AppleTalk 2
AppleTalk Implementations 3
LAP Functions 3
Using EtherTalk 4
Possible Applications 5

Chapter2 EtherTalk Overview 7

Block Diagram 8
Device Files 'adev' and ‘cdev' 9
Control Panel Device File 9
AppleTalk Device File 11
The 'adev' and 'atlk' Resources 11
The LAP Manager INIT Resource 12
Calls to the 'adev’ Resource 12
The GetADEV Call 13
The SelectADEV Call 14
Calls to the ‘atlk' Resource 15
The Alnstall and LWrtInsert Calls 15
The LWnGet, AShutdown, and LWrtRemove Calls 17
The LAP Manager 18
AppleTalk Selection 19
Insulling the AppleTalk Selection 19

i

Contents

Choapter 3

Chaptler 4

Chapter §

Intranode Delivery 19
Packet Reception 19
AppleTalk Address Resolution Protocol (AARP) 20
AARP Functions 20
The Ethemnet Driver 20
Opening the Ethemnet Driver 21
Transmission and Reception 21

Calls to the ‘odev’ Flle 23

The 'adev’ File Contents 24
The 'adev' and 'atlk' Resources 25
Calls 1o the 'adev' Resource 25
T:e GetADEV Call (DO = 101) 26
Status-flag Byte 27
The SelectADEV Call (DO = 102) 28
Calls to the 'atk' Resource 28
The Alnstall Call (D0 = 1) 29
The AShutdown Call (D0 = 2) 29

Calis to the LAP Manager 31

Calling the LAP Manager 32

LAP Manager Functions 33
LWrtlnsert (DO = 2) 33
LWrntRemove (DO = 3) 34
LWnGet D0 = 9 35
LSetinUse (DO = 5) 35
LGetSelfSend (DO = 6) 35
LRdDispatch (DO = 1) 36
LGetATalkInfo (DO = 9) 36
LAARPAttach (DO = 7) 37
LAARPDetach (D0 = 8) 37

AARP and Data Packets 39

About AARP 40
Protocol Sets 40
Hardware Addresses 41
Protocol Addresses 41
Obtaining an Address 42

AARP Functions 42

Packet Categories 42

EtherTalk Addresses 43

AARP Operation 43
The Address Mapping Table 43

Chapter 6

Chaptet 7

Choosing an Address 44
Random Address Selection 44
Probe Packets 44
Response to Probe Packets 45
Avoiding Duplicate Tentative Addresses 45
Request Packets 46
Response to Request Packets 46
Examining Incoming Packets 47
Verifying Packet Address 47
Gleaning Information 48
Aging AMT Entries 48
Age-on-probe 49
Generic AARP Packet Formats 50
AARP Ethernet-AppleTalk Packet Formats 52
Retransmission Details 53
Packet Specifics 53
EtherTalk Data Packet Format 54

The Ethemet Driver 57

Write Data Structure 58
Protocol Handlers 59
Writing Protocol-handler Code 59
Calling ReadPacket and ReadRest 60
Opening the Ethernet Driver 61
Slot Manager sNextsRsrc Trap Macro 62
Device Manager PBOpen Call 62
Making Commands to the Ethernet Driver 63
The EWrite Command 63 ‘
The EAntachPH Command 63
The EDetachPH Command 64
The ERead Command 64
The ERdCancel Command 65
The EGetinfo Command 65
The ESetGeneral Command 65

The EtherTalk Interface Card 67

About the EtherTalk Card 68

EtherTalk Card Hardware Description 68
Local Memory 70
Address Assignments 71
NIC Register Addresses 72

Contents

Appendix A EtherTalk Components A-1
Component List A-2
Ethernet Driver Equates A-3
LAP Manager Equates A4
AARP Equates A-S
ADEYV File Boilerplate A-6

iv Contents

Chapter 1

Chapter 2

Chapter 3

Chapter 5

Chapter

Chapter 7

Figures and tables

introduction 1

Figure 1-1 AppleTalk Implementations 2
Figure 1-2 Network Icons 4

EtherTalk Overview 7

Figure 2-1 EtherTalk Component Relationship 8

Figure 2-2 Control Panel 10

Figure 2-3 The GetADEV Call 13

Figure 24 The SelectADEV Call 14

Figure 2-S Alnstall and LWrtInsert Calls 16

Figure 2-6 LWrtGet, AShutdown, and LWrtRemove Calls 17
Figure 2-7 LAP Manager Position 18

Calls to the ‘adev’ File 23 .
Figure 3-1 ‘adev' File Contents 24

AARP and Data Packets 39

Figure 5-1 Generic AARP Packet Formats S0 .
Figure 5-2 AARP Ethemet-AppleTalk Packet Formats 52
Figure 5-3 EtherTalk Data Packet Format 54

The Ethemet Driver §7
Figure 6-1 Write Data Structure for Ethernet 58

The EtherTalk Interface Card 67

Figure 7-1 EtherTalk Interface Card Architecture 69

Figure 7-2 Address Assignments 71

Table 7-1 Page 0 Address Assignments (PS1=0, PS0=0) 72
Table 7-2 Page 1 Address Assignments (PS1=0, PSO=1) 73

Figures and tables v

Appendix AEtherTalk Components A-1

Table A-1
Table A-2
Table A-3
Table A4

vi Figures and tables

EtherTalk Components A-2
Ethernet Driver Equates A-3
LAP Manager Equates A4
AARP Equates A-S

Preface

This preliminary note is intended to be used by Apple® software developers who wish
to develop an alternate AppleTalk® implementation or Ethernet application in
conjunction with the Macintosh™ operating system. To make use of the information
presented here, you should have a2 working knowledge of the existing AppleTalk
environment and, depending on your application, a working knowledge of Ethemnet

Document Contents

This preliminary note provides you with an interactional overview of Apple’s
EtherTalk™ software, as well as a detailed description of each software component.
Call definitions, register usage, and call applications are discussed.

Suggested Reading

Here is a list of reference materials that relate or apply directly to the EtherTalk
network environment:

a

m]

Sidhu, Gursharan S., Richard F. Andrews and Alan B. Oppenheimer, Inside
AppleTalk (Apple Programmers and Developers Association)

Ininside Macintosh, Volume II, Chapter 6 “The Device Manager” (Apple
Computer Inc.)

Inside Macintosh, Volume II, Chapter 10 “The AppleTalk Manager” (Apple
Computer Inc.)

Inside Macintosh, Volume V, Chapter 23 *The Device Manager” (Apple
Computer Inc.)

Inside Macintosh, Volume V, Chapter 24 “The Slot Manager” (Apple Computer Inc.)

- Inside Macintosh, Volume V, Chapter 28 “The AppleTalk Manager” (Apple

Computer Inc.)
Ethemnet Blue Book (Xerox Inc.)
EtherTalk User Guide (Apple Computer Inc.)

Chapter 1

Introduction

AppleTalk

The name AppleTalk refers to a system of hardware and software components that
transfer information when connected by a physical medium. The AppleTalk Personal
Network (APN), EtherTalk, AppleShare™, and LaserShare™ are all components of the
AppleTalk system. Figure 1-1 shows the AppleTalk system as it interacts with the APN
and EtherTalk implementations on a Macintosh II computer:

[AppleTalk ™|

Protocol

Stack

LEEREERR LRI L CEELTERTUETTEELTLRTERRTTLTERY CETETTELELTELTELLTEIRTERTTELER UL T UERRERRURCCRURN

Link Access
Protocol
Manager
@ ®
Link
Access
AppleTalk Addres ::°'.°r°°'
Resolution y
Protocol
! |
AppleTalk : . '
Link Acosss j Ofper Lk EtherTalk Link
Protocol { Protocols Access Protocol
§
{ Other I/F cards EtherTalk card
! eaperannnand
DR NN L Wit || l
L]
~\\\\\\\\\\\\\\w\\\\\\\\\\\\\\\\\\\\\\\\\\\\\i\\\\\\\\\\\\\\\\\\\\\\\\\\\ SUSRURNUANSNUNNNNN
L]

SN\

LAppleTalk Personal Network) S Olho; Cable ~ }? Ethernet Cable)
MSC NNNN
ART: NN x 17 pi
20.5 pitext to FN b/b

Figure 1-1
AppleTalk iImplementations

2 Chapter 1. introduction

Apple developed a specific set of rules, or communication protocols, to control the
transfer of information among all nodes on the network. These AppleTalk protocols
correspond to the various layers (Physical, Data Link) of the International Standard
Organization-Open Systems Interconnection (ISO-OSI) reference model.

© Note: Refer to Inside AppleTalk and Inside Macintosh, Volume 1I for more
information about AppleTalk protocols.

AppleTalk implementations

In addition to transferring information over the APN cabling scheme, AppleTalk
protocols can now transfer information over a higher-performance AppleTalk
connection— EtherTalk. EtherTalk, for the Macintosh I, consists of the EtherTalk
interface card and a software package which enables transmission and reception of
AppleTalk packets over Ethernet coaxial cable and allows compatibility with Ethernet.

Before the development of EtherTalk, the only option available to the user was to
transfer information over the APN or equivalent cabling system by using the AppleTalk
Link Access Protocol (ALAP) to perform node-to-node delivery of information. While
this process was sufficient for many situations, the Macintosh could transfer
information on only the APN. To expand the networking capability of the Macintosh,
Apple chose to incorporate a Link Access Protocol (LAP) Manager to perform a
“switching” function that can direct AppleTalk protocol information to the APN,
Ethemnet, or any other LAPs that support additional networks.

LAP Functions

The ALAP assigns a unique identification number to each device, or node, on the .
APN. This identification number, known as the node ID, is an 8-bit address that ALAP
dynamically assigns at node-startup time. The 8-bit node ID works well on the APN
and is required by the AppleTalk protocols; however, the Ethemet data link only
recognizes 48-bit addresses. The EtherTalk Link Access Protocol (ELAP) parallels the
ALAP function of assigning addresses by using another protocol—AppleTalk Address
Resolution Protocol (AARP). The EtherTalk implementation of AARP converts, or
maps, a series of 8-bit AppleTalk node IDs and their 48-bit Ethernet equivalents. This
Preliminary Note discusses AARP and the driver-level ELAP in more detail in later
chapters. :

AppleTalk

Using EtherTalk

EtherTalk software is designed to operate with the Macintosh operating system and,
more specifically, the Macintosh I computer. The Macintosh II may contain as many
as six EtherTalk interface cards to allow connection to multiple Ethernet cabling
systems. Any Macintosh computer may operate EtherTalk software as long as a
compatible Ethernet interface card and driver are present. A high-level look at
EtherTalk software reveals new network icons as shown in Figure 1-2.

MSC NNNN
ART: NN x 8.5 pi
12 pitext to FN b/b

G @

Network Built-in EtherTalk

Figure 1-2
Network Icons

When the user selects the Network icon from the Control Panel, the content area of the
Control Panel's window displays the icons for all AppleTalk connections supported by
the system, of which EtherTalk is only one. The Built-in icon represents the AppleTalk
Personal Network.

@ Note: AppleTalk must still be active in the Chooser for any AppleTalk
implementation to operate.

In addition to the Control Panel software, EtherTalk software also contains these
components:
O the Ethernet Driver, which is the interface to the Ethernet card.

O the Link Access Protocol (LAP) manager, which standardizes interaction with
AppleTalk drivers.

O the AppleTalk Address Resolution Protocol (AARP), which performs Ethernet-
AppleTalk address mapping; and which may also perform address mapping
between AppleTalk addresses and other networks.

O the LAP Manager INIT Resource, which informs the system of which AppleTalk
connection to use at startup time.

4 Chapter 1: Infroduction P r‘?:gﬂEN.H AL

Possible Applications

There are many possible applications that you may wish to develop. For example, you
may want to create your own alternate AppleTalk implementation or to develop an
Ethernet driver for use with a different interface card. Other applications might be to
make Ethernet calls directly on 2 Macintosh, create your own AARP, or develop an
EtherTalk implementation for use on another device.

Possible Applications

Chapter 1: Introduction

Chapter 2

EtherTalk Overview

This chapter identifies the contents of each component of EtherTalk software and
discusses their interaction and, to some extent, their application. Later chapters
discuss each piece of EtherTalk software in more detail.

Block Diagram

Figure 2-1 shows all EtherTalk components and the way that these components relate
to the AppleTalk environment.

Control Panel
Device File

Flle Type ‘cdev’

AppleTalk

Applications

N

AppleTalk
Device File
. AppleTalk File Type ‘adev’
Protocol
Stack
|
LAP LAP Manager
Manager / INIT
{
ALAP (in
ELAP and
-MPP driver) Um‘?{';.‘. AARP function
Protocol from ‘adev’
Ethernet
Dcz-'l':/.o'r Driver
EtherTalk
Card
4_ .4 v

AppleTalk Other Ethernet

Personal Network c..bllni

MSC NNNN
ART: NN x 17 pi
20.5 pi text to FN b/b

Figure 2-1

EtherTalk Component Relationship

Chapter 2: EtherTalk Overview

Device Files '‘adev' and 'cdevV'

AppleTalk Device files (file type 'adev) and the Control Panel Device files (file type
'cdev”) both reside in the System Folder. These device files work together to display a
scrollable list of icons in the left side of the Control Panel. EtherTalk software contains
the Network 'cdev’ file which, when selected, displays a series of icons to represent
each AppleTalk connection. Each alternate (other than Built-in) AppleTalk
implementation must have its own 'adev' file.

Control Panel Device File

Control Panel Device files, which are of file type 'cdev', contain various resources that
communicate machine options in some form (buttons, icons, and so on) to the user
via the Control Panel. These 'cdev’ files also handle user events such as clicks and
keystrokes. Examples of 'cdev' files are the General, Mouse, Keyboard, and Color
files.

EtherTalk software contains a new 'cdev’ file called Network. The Network 'cdev' file,
located in the System Folder, allows the user to select one AppleTalk connection from
a list of others. The Network 'cdev' file contains various resources to display user-
interface selections and to communicate selection information to the system.

When the user selects the Control Panel from the Apple Menu, the Control Panel
scans the System Folder for files of type 'cdev'. Upon finding a ‘cdev’ file, the Control
Panel takes the file's icon and title (string) and adds them to the scrollable list on the
left side of the Control Panel. When all the icons are added to the scrollable list, the
Control Panel selects the General icon and constructs the control information in the
window’s content area. At this point, the user may select any one of the icons in the
scrollable list.

Device Files ‘adev' and ‘cdev’

Figure 2-2 shows the Built-in AppleTalk selection and the alternate AppleTalk
selections EtherTalk(1) and EtherTalk(2) that are available to the user after the Network
icon is selected.

[E00==———=——== Control Panel §
- O
B =2 =

General EtherTalk(1) EtherTalk(2)

Bl

Keyboard

S

use

o o)
o
=

3

EJ Seletaleteteletetatatetetelatatilatitiritatitilatitaliied
MSC NNNN
ART: NN x 17 pi
20.5 pitext to FN b/b

Figure 2-2
Control Panel

<l
<l

% Note: The term Network ‘cdev’ refers to the resources that comprise the Network
‘cdev’ file.

When the user selects the Network icon, the Network 'cdev' scans the System Folder for
all files of type 'adev'. As the Network 'cdev' accesses each 'adev’ file, each 'adev' file
responds by passing various information back to the Network 'cdev' file, including the
'adev’' icon and icon string. Each 'adev' file may support more than one AppleTalk
connection of the same type and, if so, must also instruct the Network 'cdev’ as to the
number of identical icons to display and the strings for each.

10 Chapter 2: EtherTalk Overview

For example, if two EtherTalk cards are installed in the Macintosh II, a single 'adev' file
that supports both cards informs the Network ‘cdev' to display two EtherTalk icons and
place an identifying string under each icon. For EtherTalk, the Network 'cdev' places
the string EtherTalk(n) under each icon, where 'n' equals each card's slot number.

After all icons appear in the content area of the Control Panel, the user may select one
of the AppleTalk icons for use. When the user makes a new selection, the Network 'cdev’
highlights this icon and performs various operations to inform the system of the new
AppleTalk selection.

AppleTalk Device File

The construction of an ‘adev file is similar to that of a 'cdev' file. For each alternate
AppleTalk implementation such as EtherTalk, the 'adev' file must contain the following
resources:

O 'ICN#

'STR '

'‘BNDL!

'FREF'

owner resource
‘adev' code resource
O ‘atk’ code resource

‘oo ooo

The 'ICN#" and 'STR ' resources are the icon and the string that the Network 'cdev' file
displays in the Control Panel content area for the alternate AppleTalk

implementation. In addition, if the 'adev' file contains the 'BNDL', 'FREF', and owner
resources, and the 'adev’ file has it's bundle bit set, the TCN#' will appear as the custom
icon in the Finder.

The '‘adev’' and ‘atlk’ Resources

The 'adev' and ‘atlk' resources are pieces of stand-alone code. The 'adev' resource is
responsible for handling all interaction with the Network 'cdev'. The Network 'cdev’
loads the 'adev' resource into the application heap, calls the 'adev' resource to identify
or to select an AppleTalk implementation, and removes the 'adev' resource as the
Network 'cdev' requires.

The ‘'atlk’ resource contains the actual implementation code for the alternate
AppleTalk selection. The Network 'cdev' loads the 'atlk’ resource into the system heap,
calls for initialization and installation, and detaches the 'atlk' resource. Because the
Network 'cdev' detaches the 'atlk' resource, the current alternate AppleTalk selection
remains in effect when the 'adev’ file closes.

Device Flles ‘adev' and ‘cdev’

N

The LAP Manager INIT Resource

When the user makes an alternate AppleTalk selection from the Control Panel, the
Network 'cdev' updates parameter RAM with 2 value that represents the current
AppleTalk selection. This value remains in parameter RAM when the Macintosh is

powered off.

At boot time, the LAP Manager INIT resource, located in the System File, interacts with
the ‘atlk' resource in much the same manner as the Network 'cdev' does. This INIT
resource obtains the last AppleTalk selection value from parameter RAM, loads the
corresponding 'atlk' file into the system heap, calls the 'atlk' resource for initialization,
and then detaches the 'atk' resource.

< Note: The LAP Manager INIT resource also loads the LAP Manager into memory
and initializes the LAP Manager at startup time.

Calis to the 'adev’ Resource

When the user selects a new alternate AppleTalk implementation form the Control
Panel, the Network ‘cdev' makes two calls to the 'adev' resource to handle the user
interface. These two calls are GetADEV and SelectADEV.

12 Chapter 2: EtherTalk Overview

The GetADEV Call

When the user selects the Network 'cdev' icon in the Control Panel, the Network 'cdev'
makes a series of GetADEV calls to each 'adev' resource in the System Folder. Each
‘adev’ resource responds by telling the Network ‘cdev' how many icons to display and
by identifying the string ('STR ") for each icon. Figure 2-3 shows this interaction.

EtherTalk - File Type ‘adev’ Other -~ File Type ‘adev’

EtherTalk ‘adev’ resource Other ‘adev’ resource
A 4
. icon, number Ilcon, number
GetADEV of icons to GetADEV of icons to
Calls display, and Calls display, and
icon string icon string
\4

Network ‘cdev’ resource

Network - File Type ‘cdev’

MSC NNNN
ART: NN x 17 pi
20.5 pitext to FN b/b

Figure 2-3
The GetADEV Call

© Note: The Network 'cdev' does not make the GetADEV call to the Built-in AppleTalk
code. The Built-in code is part of the Network 'cdev’ file.

Device Files ‘adev' and ‘cdeVv’

13

The SelectADEV Call

When the user clicks on an alternate AppleTalk icon, the Network 'cdev' makes a
SelectADEV call to the 'adev' resource to indicate the selection and determine the
value that the AppleTalk selection wants to place in parameter RAM. This value
indicates the details of the AppleTalk selection.

For example, imagine that a Macintosh II contains two EtherTalk cards and displays
two EtherTalk icons. The user selects one icon. The Network 'cdev' makes a
SelectADEV call to the 'adev' resource. The 'adev' resource returns a value to the
Network 'cdev' to indicate which card is currently selected. This value is eventually
passed to the 'adk’ resource and placed in parameter RAM.

Figure 2-4 illustrates the SelectADEV call for EtherTalk.

EtherTalk ~ File Type ‘adev’

EtherTalk ‘adev' resource

——-A
Value to
set in
SelectADEV :::mm'
Call

Network ‘cdev’' resource

Network - Flle Type ‘cdev’

MSC NNNN
ART: NN x 17 pi
20.5 pitext to FN b/b

Figure 2-4
The SelectADEV Call

@ Note: Refer to Chapter 3 for more information about calls to the 'adev' resource.

14 Chapter 2: EtherTalk Overview

Calis to the ‘atlk’ Resource

In addition to making the SelectADEV call, the Network ‘cdev' must also close down the
previously selected AppleTalk implementation and install the new user selection as the
current AppleTalk implementation. To close down the AppleTalk selection, the
Network 'cdev' makes an AppleTalk Shutdown (AShutdown) call to the 'atlk' resource.
To install the new AppleTalk selection, the Network 'cdev' makes an AppleTalk Install
(Alnstall) call to the 'atlk' resource.

The Alinstall and LWrtinsert Cails

After the Network 'cdev’ calls the 'adev' resource with the SelectADEV call, the Network
‘cdev' loads the new ‘atlk' code into the system heap, calls the 'atlk' resource with an
Alnstall call, and detaches the 'atlk' resource so that it remains in memory when the
user closes the Control Panel.

Device Files ‘adev' and '‘cdev’

18

Generally, in response to the Alnstall call, the 'atlk' code makes a Lap Write Insert
(LWrtinsert) call to the LAP Manager to tell the LAP Manager to install a portion of the
'atk' code into the LAPWrite hook which is a low-memory location equal to ATalkHk?2 .
The portion of 'atlk' code that the LAP Manager loads into low memory is responsible
for sending packets. At startup time, the LAP Manager INIT resource also loads the
‘atlk' resource, as indicated by parameter RAM, into the system heap; calls with
Alnstall; and detaches it. Figure 2-5 illustrates the Alnstall and LWrtinsert calls.

New AppleTalk Selection -
File Type 'adev’

LWrtinsert o LAP Manager

.'atlk' resource]

A

Alnstall

Network ‘cdev’' resource

Network - File Type ‘cdev’

MSC NNNN
ART: NN x 17 pi
20.5 pitext to FN b/b

Figure 2-5
Alnstall and LWrtinsert Calis

16 Chapter 2: EtherTalk Overview

The LWriGet, AShutdown, and LWrtRemove Calls

To close down the previous AppleTalk selection, the Network 'cdev' makes an
AShutdown Call to dispose of the 'atlk' resource. However, the Network 'cdev' has
detached the previously installed 'atlk' code and does not know its location in the
system heap. Before making the AShutdown call to the 'atlk' code, the Network 'cdev*!
makes a Lap Write Get (LWrtGe?t) call to the LAP Manager to obtain the location of the
‘atk' code. In general, after the Network 'cdev' makes the AShutdown call, the 'atlk’
code should respond by making a LAP Write Remove (LWrtRemove) call to the LAP
Manager. The LAP Manager responds to this call by removing the old ‘atlk' code in the
LAPWrite hook. Normally, the AShutdown and LWrtRemove calls are made before the
Alnstall and LWrtinsert calls.

Figure 2-6 illustrates the LWrtGet, AShutdown, and LWrtRemove calls.

‘atlk’ code In LWrtRemove .J LAP Manager
4 System Heap
location of t
® aco | fonmoe
AShutdown Heap
\

Network ‘cdev’ resource

Network - File Type ‘cdev’

MSC NNNN
ART:NNx 17 pi
20.5 pi text to FN b/b

Figure 2-6
LWrtGet. AShutdown, and LwWrtRemove Calls

Device Files ‘adev' and ‘cdeVv’

17

The LAP Manager

The LAP Manager standardizes interactions with the AppleTalk drivers/protocol stack
and the link access protocol layer of the current AppleTalk selection. By standardizing
these interactions, various AppleTalk implementations will not interfere with each
other and will not have to make use of information that is private to the AppleTalk

drivers.

The LAP Manager resides between the link access protocols of all AppleTalk

implementations and the AppleTalk protocol stack, as Figure 2-7 shows.

—AppleTalk |
Protocol
) Stack
AMATAETHTHHETEEE T T T T T T ELLETEA T AT AT TS LT ATATAS AR ATATATATLERAAATHITATHRLLAA AT LR I R R i L b e

Link Access .

Protocol -

Manager

o [J
Link
Access
AppleTaik Address :;: ':'“'
Resolution
Protocol
! |
AppleTalk Other Link
e et AT,
Protocol Protocols
Other UF cards EtherTalk card
R R R INEEN]
AAALATALALLALLATATALLALLALALALLALLATALALAAL AL TR L L A L L R R
. « .
7 AppleTalk Personal Network ? .,.‘ Other Cable ..‘) Ethemet Cable ?
)

MSC NNNN
ART: NN x 17 pi
20.5 pi text to FN b/b
Figure 2-7

LAP Manager Position

18 Chapter 2: EtherTalk Overview

The LAP Manager is installed in the system heap at startup time, before the AppleTalk
drivers are opened. The LAP Manager takes control of the LAPWrite hook, which is
located in low memory as ATalkHk2. The AppleTalk drivers use the LAPWrite hook to
direct outgoing AppleTalk packets.

AppleTalk Selection

The LAPWrite hook contains the code that is, for all practical purposes, the actual
AppleTalk implementation for outgoing packets. The LAP Manager installs this code
in LAPWrite hook under the direction of the code itself. In the case of EtherTalk, the
‘atlk’' code resource tells the LAP Manager which portion of the 'atlk' code to insert in
the LAPWrite hook. Loading 'atlk' code into the LAPWrite hook happens at two
different times:

O whenever the user makes an AppleTalk selection from the Control Panel

O at startup timé when the INIT resource obtains the AppleTalk selection value from
parameter RAM.

Installing the AppleTalk Selection

As indicated earlier in this chapter, when the user makes a new AppleTalk selection,
the Network 'cdev' loads the 'atlk' code into the systemn heap. The 'atlk' code then makes
a LWrtinsert call to the LAP Manager. The LWrtInsert call contains a pointer which tells
the LAP Manager the location of the portion of the'atlk' code to insert into the
LAPWrite hook as the AppleTalk selection.

Intranode Delivery

The LAP Manager handles the sending of an AppleTalk packet to its own node unless
the 'atk' code specifies otherwise. If the LAP Manager is to handle intranode packets,
the LAP Manager generally will not call the 'atlk’' code for packet delivery. However, if
the LAP Manager is to handle intranode delivery and an application sends a broadcast
packet to the network, the LAP Manager will handle the intranode delivery of this
packet and will call the 'adk' code for packet transmission on the network.

Packet Reception

When the ‘atlk' code receives an incoming AppleTalk packet, the 'atlk' code makes a
LAP Read Dispatch (LRdDispatch) call to the LAP Manager to indicate that a packet
needs to be delivered. The 'atlk' code delivers this packet by providing and executing
routines that emulate ALAP’s ReadRest and ReadPacket routines.

Refer to Chapter 4 for more information on the LAP Manager.

The LAP Manager

19

AppleTalk Address Resolution Protocol (AARP)

AARP can be used to map between any two sets addresses. The AARP implementation
that EtherTalk uses maps between a 48-bit Ethernet address and an 8-bit AppleTalk
address. To distinguish between these two sets of addresses further, this document will
refer to them as follows:

O An Ethernet address, which is the node address that is determined by the
Physical and Link layers of the network. An example of an Ethernet address is a
48-bit Ethernet destination address. The Ethernet address is the EtherTalk
equivalent of the generic hardware address.

O An AppleTalk address, which is the node address used by high-level AppleTalk
protocols. An example of an AppleTalk address is an 8-bit AppleTalk node
address for the Datagram Delivery Protocol (DDP). The AppleTalk address is
the EtherTalk equivalent of the generic protocol address.

AARP Functions

A generic AARP implementation resides between the Link Access layer and the
Network layer of the network and performs three basic functions:

O Initial determination of a unique protocol address for a node using a given
protocol set. This address must be unique among all nodes on the network.

O Mapping from a protocol address to a hardware address. Given a protocol
address for a node on the network, AARP returns either the corresponding
hardware address or an error that indicates that no node on the network has such
a protocol address. ' ‘

O Filtering of packets. For all data packets received by a given node, AARP verifies

* that the destination node address of the packet is equal to either the node’s
protocol address or the network broadcast value or multi-cast value of the node.
If the packet does not equal either of these values, AARP discards the packet.

Refer to Chapter S for more information on AARP.

The Ethernet Driver

‘While using EtherTalk software on the Macintosh II, the Ethernet driver serves as a
general-purpose interface between the 'atlk' resource and the Ethernet Interface card.
The driver interface is recommended for use with other Ethernet implementations,
such as an interface to a Macintosh SE driver.

20 Chapter 2: EtherTalk Overview

CONFICENTIAL

The Ethernet driver, located in the system file, is named .ENET. If you are developing
a driver for use with a slotless device, name the driver .ENETO.

Opening the Ethernet Driver

On the Macintosh II, use the Device Manager to make a PBOpen call to open the
Ethernet driver. Before you can make this call, you will have to obtain certin field
values, such as the EtherTalk card slot number. You may obtain these field values by
using the Slot Manager sNexisRsrc trap.

The Ethernet driver opens in AppleTalk mode. In this mode, packets for transmission
can contain no more than 768 bytes. Packets for transmission and reception share a
common buffer pool. The transmission-packet size is large enough to encapsulate
packets for transmission and to allow a larger buffer pool area for packet reception. If
packets require more than 768 bytes, issue a control call (ESetGeneral) to change the
mode from AppleTalk to General. In General mode, the driver can transmit any valid
Ethernet packet.

" Transmission and Reception
A series of Device Manager control calls are made to the driver to control packet
transmission and reception over Ethernet. These calls are as follows:

DO EAuachPH, which attaches a protocol handler to the driver specified by the
protocol type

O EDetachPH, which removes a protocol handler from the driver for the given
protocol type
EWrite, which writes a packet out to Ethemnet

O
O ERead, which reads in a packet

O ERdCancel, which cancels a specified ERead call

0 EGetnfo, which returns the node address on which the driver is running
O ESetGeneral, which switches the driver from AppleTalk to General mode

© Note: For more information about the Ethernet driver, refer to Chapter 6.

The Ethernet Driver

21

Chapter 2: EtherTalk Overview

Chapter 3

Calls to the 'adeV’ File

23

This chapter contains information about making calls to the 'adev' file for an
AppleTalk selection. The 'adev’ file is similar to the 'cdev file, and both reside in the
System Folder. When the user selects the Network 'cdev' icon from the Control Panel,
the Network 'cdev' makes a series of calls to each 'adev’ file and displays the 'adev' icons
to represent all AppleTalk selections available to the user. In addition, the Network
‘cdev' file highlights the current AppleTalk selection. If the user then makes a different
AppleTalk selection, the Network 'cdev' highlights the new selection and updates
parameter RAM with the information obtained from the 'adev' resource. The next time
the Macintosh restarts, the LAP Manager INIT resource obtains the latest user selection
from parameter RAM, loads the corresponding AppleTalk ‘atlk' resource into the
system heap, and initializes the ‘atlk' code.

The 'adeV’ File Contents

The 'adev file for EtherTalk and any other AppleTalk selection is located in the System
Folder and must contain the following resources and code segments as shown in Table
2-1.

Code 1D
‘BNDL' resource -4032
‘FREF' resource -4032
'ICN# resource -4032
'STR ' resource -4032

‘adev’ code segment in range of 1-254

‘atlk’ code segment in range of 1-254

MSC NNNN
ART: NN x 17 pi
20.5 pitextto FN b/b

Figure 3-1
‘adeVv' File Contents

24 Chapter 3: Calls to the ‘adeV' File

In addition to these resources and code segments, the 'adev’ file should contain an
owner resource to display the icon in the Finder. For example, because the EtherTalk
‘adev' file has a creator of etlk, the 'adev' contains an owner resource called ‘etlk’ with
an ID of 0. In addition, the 'adev' file has its bundle bit set to allow the 'ICN#' resource
to display the EtherTalk icon in the Finder.

The '‘adev' and 'atlk’ Resources

The 'adev' resource located in an 'adev! file, is responsible for handling all interaction
with the user. The Network 'cdev' loads the 'adev' resource into the application heap,
calls the 'adev' resource, and removes it as needed. The 'atlk' resource is responsible
for the actual implementation of the alternate AppleTalk selection. When the user
selects an alternate AppleTalk icon, the Network 'cdev’ file loads the 'atlk' resource into
the system heap, calls the ‘atlk' resource for initialization, and then detaches it At
startup time, the LAP Manager INIT resource performs the loading, calling, and
detaching of the ‘atk' resource.

The 'atk' resource must have its system-heap bit set and botli the 'adev' and 'atk'
resources should have their locked bit set. The resource ID of the 'adev' resource and
the 'auk' resource must be the same and in the range of 1 to 254. When stored in the low
byte of parameter RAM, this ID identifies the current AppleTalk selection.

% Note: Parameter RAM contains 4 bytes of information that identify an AppleTalk
selection. The low byte contains the resource ID of the 'adev' resource and the'atlk’
resource, and the high bytes contain other information that uniquely identifies the
selection.

Like drivers, no two AppleTalk implementations can have the same ID. Apple reserves
the use of the ID ranges of 1 to 127. You may use the ID ranges of 128 to 254. Contact
Apple Technical Support to obtain an ID.

Calls to the 'adeVv' Resource
The Network 'cdev' calls the ‘adev' resource, at the first location in the resource (an
offset of 0), at two different times:
O When the user selects the Network 'cdev' icon, the Network 'cdev' calls GetADEV.
O When the user selects an alternate AppleTalk icon, the Network 'cdev' calls
SelectADEV.

The Network 'cdev' passes a value in register DO that distinguishes between these two
calls. Your code must observe Pascal register saving conventions and should return
with an RTS.

Calls to the ‘adev' Resource

25

The GetADEV Call (DO = 101)

Call: D1 (long) = current value of parameter RAM

D2 (long) = value returned from previous GetADEV call, or 0 if first
GetADEV call

Return: DO (byte) = status flag

D2 (ong) = next value for D2 to call; also used by SelectADEV call
AQ —> string to place under icon.

When the user selects the Network 'cdev’ icon, the Network 'cdev' needs to display a list
of icons to represent all alternate AppleTalk selections that are available to the user.
To do this, the Network 'cdev' makes a series of GetADEV calls to each 'adev' resource
in the System Folder. Since each 'adev' resource could possibly be handling multiple
interface cards, the 'adev' resource must tell the Network 'cdev' how many icons to
display and identify the string for each icon. The Network 'cdev’ displays these
identical icons for each card as the TCN#' resource specifies. You may use the string to
which AQ points to identify the icon uniquely. For example, you could obtain the slot
number of the card with a Slot Manager sNextsRsrc call and then append the slot
number to the string.

The first GetADEYV call contains the current value of parameter RAM in D1, to indicate
the current AppleTalk selection, and 0 in D2 to indicate that this call is the first
GetADEV call. The 'adev' resource responds to the first GetADEV call by returning a
status-flag value in DO, indicating whether or not there are additional cards that this
'adev' resource supports. Also, the 'adev' resource returns 2 value in D2 that the
Network 'cdev' associates with this icon, and a pointer in AO that points to the Pascal
string to place under the icon.

% Note: The Network 'cdev' also passes the D2 value to the 'adev' resource when
making the SelectADEYV call.

If the status flag indicates to the Network 'cdev' that there is an additional card that the
‘adev' resource supports, the Network 'cdev' makes another GetADEV call with the
same value in D1 and the D2 value that was returned from the first call. Upon receipt of
the D2 value, the 'adev' resource knows it returned first-call information the last time,
and responds by returning second-call information to the Network ‘cdev'. The Network
‘cdev' continues to make subsequent GetADEV calls until- the status flag indicates that
there are no more cards to support. When the user selects an icon that the 'adev'
resource supports, the Network 'cdev' makes a SelectADEV call to the 'adev' resource,
passing the value in D2 to indicate the current selection.

26 Chapter 3: Calls to the ‘adeVv' File

Status-flag Byte

There are three status-flag bytes (-1, 0, and 1) that the 'adev’ resource may return in DO
to indicate the status of the altemnate AppleTalk selection.

The ‘adev' returns DO = -1 to inform the Network 'cdev that there is one and maybe
more AppleTalk selections (cards) supported by this 'adev' resource. Returning DO =
-1 also indicates to the Network 'cdev' that this AppleTalk selection seems to be the one
currently selected, as indicated by parameter RAM. The Network ‘cdev' responds by
making another GetADEV call to the 'adev' resource.

Returning DO = 0 also informs the Network 'cdev that there is one and maybe more
AppleTalk selections to support; however, returning DO = 0 also indicates that this
AppleTalk selection is not the one currently selected, as indicated by parameter RAM.
The Network ‘cdev' responds by making another GetADEV call to the 'adev' resource.

Returning DO = 1 informs the Network 'cdev' that there are no more AppleTalk
selections to support.

€ Note: The 'adev' resource may return DO = 1 in response to the the first GetADEV
call to inform the Network ‘cdev’ that there are currently no AppleTalk selections to
support.

Before the 'adev' returns information about an alternate AppleTalk it supports, the
‘adev' resource examines the high 3 bytes of the long word in D1 for the current value
of parameter RAM. Depending on the contents of D1, the 'adev' resource returns the
appropriate status value in DO. If the 'adev' resource returns DO = -1, the Network 'cdev’
checks various system parameters and highlights the icon only if it is the current
selection. The 'adev' may be wrong about identifying the current selection to the
Network 'cdev'. For instance, after two different AppleTalk implementations examine
the high 3 bytes of parameter RAM, they both may return DO = ~1. To handle this
possibility, the Network 'cdev' examines the low byte of parameter RAM, which
conuins the resource ID of the previous selection, and matches the ID with the proper
AppleTalk implementation. The Network 'cdev' highlights the appropriate icon after
making the final determination.

Calls to the ‘adev’' Resource

27

The SelectADEV Call (DO = 102)
Call: D2 (long) = value returned from associated GetADEV call.

Return: D1 (high three bytes) = value to set in parameter RAM; also passed to
‘atlk’ code by the Alnstall call.)

The Network 'cdev' makes a SelectADEV call to the associated 'adev' resource when the
user selects an alternate AppleTalk icon. This call’s main purpose is to determine the
value that the 'atk’' code wishes to store in parameter RAM. This value, which is specific
to the alternate AppleTalk implementation, indicates the details of the alternate
AppleTalk selection and is passed to the 'atlk' resource by the Alnstall call. For
instance, in addition to the resource ID of the 'adev' resource and ‘atlk' resource, the
high 3 bytes may contain the slot number of the interface card ($09 - $OE). Depending
on your application, you may wish to direct the 'adev' resource to display a dialog box
at this point to obtain some type of user information such as data rate, and to save this
information in parameter RAM.

€ Note: The SelectADEV call is not an initialization call.

Calis to the 'atlk’ Resource

The ‘'atlk' resource, loaded into the system heap by the Network 'cdev', contains two
distinct sections of code. The first section, at the start of the resource, contains the
LAPWrite code to be inserted into the LAPWrite hook as the alternate AppleTalk
implementation. This procedure is explained in detil in Chapter 4.

The second section of the code, located at the start of the ‘atlk’ resource plus two,
conuains the initialization and shutdown routines. After the Network 'cdev' makes the
SelectADEV call to the ‘adev' resource, the Network ‘cdev' loads the associated 'atk'
resource into the system heap and calls it with Alnstall to perform initialization. The
LAP Manager INIT resource also makes the Alnstall call at startup time to initialize the
‘atlk' resource as indicated by parameter RAM. Following this call, if there is no error,
the Network 'cdev' detaches the 'atlk' resource (from the Resource Manager) so it will
remain in the system heap when the user closes the Control Panel.

The Network 'cdev' also makes an AShutdown aall to dispose of the previously selected
‘atlk' resource. Before making this call, the Network 'cdev' needs to obtain the location
of the 'atlk' resource because it is detached from the Resource Manager. To accomplish
this, the Network 'cdev' calls the LAP Manager with LWrtGet, which returns the location
of the LAPWrite code. The LAPWrite code starts at the beginning of the 'atlk' resource;
therefore, the Network 'cdev' knows where to call the ‘atlk' code with AShutdown.

For the Alnstall and AShutdown calls, the contents of register DO indicate which call is
made by the Network 'cdev'. The code must observe interrupt-register-saving
conventions (it may use D0O-D3 and A0-A3) and should rewrn with an RTS.

28 Chapter 3: Calls to the ‘adeV' File

The Alnstall Call (DO = 1)

Call: D1 (ong) = value from parameter RAM (as set in the SelectADEV
call)

Return: DO = error code.
D1 Chigh 3 bytes) = new value to set in parameter RAM

When the Network 'cdev' or LAP Manager INIT resource makes the Alnstall call to the
‘atlk’ code, it should respond by allocating variables, opening the appropriate 1/O
device (such as the slot driver), and performing any other initialization necessary.
The 'atlk' code should call the LAP Manager with a LWrtInsert call to install itself as the
alternate AppleTalk selection. This call should return a value to set in parameter RAM
only if that value is different than the one received; otherwise, the ‘atlk' code should
preserve D1. If an error occurs during any portion of this process, your code should
return a negative Yalue in DO, otherwise, DO should return 0.

The AShutdown Call (DO = 2)

There are no arguments to the AShutdown call. The Network 'cdev' makes this call after
the LAP Manager closes the AppleTalk drivers, and before the Network 'cdev' installs a
new alternate AppleTalk implementation. The 'atlk' code should issue a LWrtRemove
call to the LAP Manager, dispose of its variables, and perform any other operations
necessary before the Network 'cdev' disposes of the ‘atlk' resource.

Calls to the ‘atlk’ Resource

29

Chapter 3: Calls to the ‘adev' File

Chapter 4

Calls to the LAP Manager

31

The LAP Manager standardizes interactions between the AppleTalk protocol stack and
the Link Access layer of the current AppleTalk selection. Standardizing these
interactions ensures that various AppleTalk implementations will not interfere with
each other and will not have to make use of information that is private to the AppleTalk
drivers. The LAP Manager resides between the LAPs (such as ALAP and ELAP) of all
AppleTalk implementations and the AppleTalk protocol stack.

This chapter describes the calls that the LAP Manager provides. Once the Network
‘cdev' loads the 'atlk' code into the system heap and makes the Alnstall call, the 'atk’
code responds by making a call to the LAP Manager which inserts the 'atlk’ code into
the LAPWrite hook. The LAP Manager also provides functions for removing the ‘atlk'
code from the LAPWrite hook, receiving packets from the network, and standardizing
the packet transfer process with AppleTalk’s .MPP driver.

The LAP Manager is installed in the system heap at boot time, before the AppleTalk
Manager opens the .MPP driver.

——-—----—-- -
Calling the LAP Manager
The ‘atlk' code resource makes all calls to the LAP Manager by jumping through a low-

memory location, with DO equal to a dispatch code that identifies the function. The
exact sequence is

MOVE.W #Code, DO : DO = function
MOVE.L LAPMgrPtr, An ; An —=> start
JSR LAPMgrCall (An) ; Call at entry point

LAPMgrPur is defined as the low-memory global ATalkHk2, which is the location
jumped through by the .MPP driver immediately before it writes a packet out through
ALAP to the APN. If the user selects an alternate AppleTalk implementation, the LAP
Manager uses LAPMgrPtr to take control at this point and call the alternate AppleTalk
implementation. Offset LAPMgrCall within this code is the command-processing part
of the LAP Manager.

& Note: ATalkHk?2 is not defined in the original Macintosh ROMs. The LAP
Manager is available only on Macintosh Plus and later ROMs.

32 Chapter 4: Calls to the LAP Manager

LAP Manager Functions

The LAP Manager supports the following nine functions that are used for packet
handling.

LWrtinsert (DO = 2)
Call: A0 —> code to insent (first pant of ‘atlk' resource)
D1 (byte) = flags

D2 (word) = maximum number of times to try to get an unused node
address (0 = infinite)
Return: DO = 0 (no error)

This call inserts an alternate AppleTalk in the LAPWrite hook. After the 'atlk’' resource
makes this call, the LAP Manager calls the code to which A0 points before writing any
packet out on the network. Use the bits in the low byte of D1 to inform the LAP Manager
of the way to handle the packet. Set these bits to indicate the following to the LAP
Manager:

O Bit 7= let the 'atlk' code handle self-sends (intranode delivery); normally the
LAP Manager intercepts self-send packets and processes them.

D Bit 6 = do not disable the port B serial-communications controller (SCC);
normally the LAP Manager disables the SCC.

O Bit 5= honor the server/workstation (server/wks) bit in the node-number-
assignment algorithm.

The LAP Manager generally handles intranode-packet delivery (packets sent to one'’s -
own node). If a packet is an intranode packet, the LAP Manager delivers this packet
without calling the code in the LAPWrite hook; however, if the packet is a2 broadcast,
the LAP Manager delivers the packet within its node and calls the ‘atlk' code to handle
the broadcast delivery. For this process to happen, the MPP driver’s SelfSend flag
must be set. To disable the LAP Manager's handling of intranode delivery, set bit 7 in
D1 when making the LWrtInsert call. .

Setting bit 6 in D1 tells the LAP Manager not to disable SCC port interrupts. Normally,
the LAP Manager disables these interrupts because it assumes that the alternate
AppleTalk implementation does not want to receive ALAP packets on this port.

When picking a node address, set bit 5 to tell the LAP Manager to honor the server/wks
bit. Normally, the LAP Manager assumes that the alternate AppleTalk implementation
does not distinguish between server addresses (128-254) and workstation addresses
(1-127), and that the AppleTalk implementation wants to pick a node address in the
full range of 1 to 254.

LAP Manager Functions

33

The LAP Manager calls the code to which A0 points at two different times. The first is at
node-address-choosing time. The LAP Manager calls the ‘atlk' code for each set of
ENQs (ALAP type $81) that ALAP would normally send out to the network. The second
is at the time when the AppleTalk drivers would normally write a packet out through
ALAP. Once installed in the LAPWrite hook, the LAP Manager calls the 'atlk' code as
follows:

A0 —> where to retumn when done with the operation

Al —> WDS (if sending a data packet, not an ENQ) or port-use byte (if

sending ENQs))

A2 —> MPP variables

DO (byte) = nonzero if sending ENQs, zero if not

D1 —> where to return in .MPP to continue packet processing

D2 (byte) = ALAP destination address

The 'atlk' code should return with a2 normal RTS if the write is still in progress, and
should jump to the location to which A0 points when the write finishes. When the write
finishes, it must reset A1, A2, and D2 to their initial values, and must preserve A4-A6
and D4-D7. If the code wishes the .MPP driver to continue its normal processing (for
example, if the code does not intercept the call), it should jump to the location to
which D1 points. Generally, code will intercept the call.

If DO is nonzero, which indicates a call to send ENQs, the code should query if the
address that D2 specifies is in use, and return through A0 immediately. At any time
thereafter, if the code discovers that the address is in use, the code should make a
LSetInUse call to the LAP Manager.

¥ Note: The LAP Manager passes both the variable pointer of the .MPP driver and the
address of the port-use byte (if sending ENQs) to the 'atlk' code. Do not assume that
pointer is stored at location $2D8 (AbusVars) or that the port-use byte is at
location $291 (PortBUse). Save these pointers from the first ENQ call for future use.:

LWriRemove (DO = 3)
Return: DO =0 (no error)

The 'atlk' code makes the LWrtRemove call to the LAP Manager to remove an alternate
AppleTalk selection from the LAPWrite hook. Generally, the 'atk' code should make
this call following an AShutdown call.

34 Chapter 4. Calls to the LAP Manager

LWrtGet (DO = 4)
Return: DO =0 (no error)
A0 —> start of code in the LAPWrite hook
When the LWntGet call is made, AO returns a pointer to the alternate AppleTalk code in

the LAPWrite hook. Normally, the ‘atlk' code does not need to make this call; however,
the Network 'cdev' makes this call as part of the process to dispose of the ‘atk' code.

LSetinUse (DO = 5)
Call: A2 —> MPP variables
Return: DO =0 (no error)
This LSetInUse call indicates to the LAP Manager and the .MPP driver that another

node on the network is currently using the requested node address. The .MPP driver
will try another address.

LGetSelfSend (DO = 6)
Call: A2 —> MPP variables
Return: DO =0 (no error)
D1 (byte) = value of .MPP SelfSend flag

This LGetSelfSend call is for use by alternate AppleTalk implementations that use their
own intranode delivery. If D1 is nonzero, intranode delivery is enabled.

LAP Manager Functions

35

LRdDispatch (DO = 1)
Call: A2 —> MPP variables
Return: DO = non-zero if error

This LRdDispatch call indicates to the LAP Manager that a packet has arrived from the
network and requires delivery. Registers should be set up to provide a simulation of the
ALAP client ReadPacket and ReadRest routines. Refer to Chapter 10 Mnstde
Macintosh, Volume 11 for details. Specifically, register setup and restrictions are as
follows:

A0, A1 —> hardware register (can be used by the altemate AppleTalk for any

reason)
A2 —> _MPP variables
A3 —> past the 5 header bytes in the MPP RHA
A4 —> the ReadPacket routine (previous value saved and restored after

«ReadRest is complete)
AS has been saved and is restored after ReadRest is complete
D1 = packet length left to input
D2 (byte) = LAP type for which to dispatch a protocol handler

€ Note: The ReadRest routine begins 2 bytes after ReadPacket.

Generally the LRdDispatch routine, even though it is called with a JSR, will not return
to the caller, but will jump to the protocol handler attached to the protocol indicated
in D2, which in turn calls ReadPacket and ReadRest routines. If the routine does return,
doing so indicates an error—there was no handler attached to the protocol indicated
in D2.

LGetATalkinfo (DO = 9)
Return: D1 (long) = value of parameter RAM
Uses A0

This LGetATalkInfo call returns the current 4-byte value of parameter RAM. The low
byte contains the resource ID of 'adev' resource and the 'atlk' resource for the current
AppleTalk implementation (0 for Built-in and 2 for Ethertalk). The high 3 bytes
contain values that further distinguish this AppleTalk implementation.

36 Chapter 4: Calls to the LAP Manager

LAARPAttach (DO = 7)

Call: D1 (ong) = hardware/protocol type (hardware type in high word).
D2 (word) = Ethernet driver reference number
AQ —> listener code

Return: DO = non-zero if error
Uses A0 and D2

This call is only used when attaching an AARP listener to the LAP Manager to handle
incoming AARP packets other than those used to map between Ethernet and AppleTalk
addresses. The LAP Manager determines which AARP listener to attach by examining
the contents of D1. Currently, the LAARPAttach call only supports one driver.

€ Note: The LAARPAttach and LAARPDetach calls are used to multiplex incoming
AARP packets for various possible hardware-protocol mappings. These two calls
should be used by any application that wishes to receive AARP packets.

LAARPDetach (DO = 8)
Call: D1 (ong) = hardware/protocol type (hardware type in high word)
D2 (word) = Ethernet driver reference number
Return: DO = nonzero if error
Uses D2

The LAARPDetach call detaches an AARP listener as the contents of D1 specify.

LAP Manager Functions 37

38

Chapter 4: Calls to the LAP Manager

Chapter §

AARP and Data Packets

39

Depending on your application, you may decide to use AARP (0 resolve your network
addressing requirements. This chapter details the operation of AARP from a generic
standpoint and also explains the way EtherTalk uses AARP to resolve network-
addressing requirements. In addition, this chapter discusses generic AARP packet
formats, EtherTalk AARP packet formats, and the EtherTalk data packet format.

About AARP

Basically, AARP is a set of rules and procedures that work together to provide packet-
addressing information to an AARP client. To ensure proper and efficient packet
delivery and reception on the network, AARP maintains a collection of protocol
addresses and their corresponding hardware addresses for each protocol set that a
node supports.

Protocol Sets

A protocol set is a collection of related protocols that correspond to the layers of the
1SO-OSI reference model. Protocol sets enable transmission and reception of packets
over a network. AppleTalk protocols are an example of a protocol set. Information on
the network is transferred between protocol sets of the same type. For example, when a
node transmits an AppleTalk packet, the node addresses the packet to a receiving
node'’s AppleTalk protocol set Before a2 node sends a packet on the network, the
sending node addresses the packet to the recipient by inserting a hardware destination
address and a protocol address into the header section of the packet. These two
addresses, when used together, identify the node that is to receive the packet and the
protocol set for which the packet is indended. Because a node may support more than’
one protocol set, AARP maintains a collection of protocol-to-hardware address
mappings for each protocol set that 2 node supports. These address mappings are
kept in an address mapping table (AMT) which is updated by AARP to ensure that
current addressing information is available. The AMT serves as a cache of known
protocol-to-hardware address mappings. The way AARP obtains these protocol-to-
hardware address mappings is explained later in this chapter.

40 Chapter 5: AARP and Data Packets

Hardware Addresses

A hardware address is the address that is determined by the Physical and Data Link
layers of the network. Each node on the network must have a hardware address that is
unique. An example of 2 hardware address is a 48-bit Ethernet node address or an 8
bit AppleTalk Link Access Protocol address. In addition to receivng packets addressed
to a node’s hardware address, a2 node may also receive packets that are addressed to
the node's broadcast-hardware address or a multicast address. If a2 sending node
transmits a packet that contains a2 hardware-broadcast address as the destination
address, all nodes on the network will receive the packet. The hardware-broadcast
address is predefined by the network and is the same for all nodes on the network. A
multicast address is similar to a broadcast-hardware address. If a2 sending node
transmits a packet that contains a2 multicast address as the destination address, only a
specific subset of all nodes on the network will receive the packet Depending on
network configuration and application, some nodes on the network may 7ot have a
multicast address, and other nodes may have one or more multicast addresses. In
summary, each node on the network will receive all packets sent to the node’s unique
hardware address, to the broadcast-hardware address, and to any multicast address
group to which the node belongs.

Protocol Addresses

A protocol address is the address that 2 node assigns to identify the protocol client
that is to receive a packet for a given protocol set. An example of a protocol address is
the 8-bit AppleTalk protocol address that the Datagram Delivery Protocol (DDP) and
AARP use to verify that an incoming packet is intended for this DDP. For EtherTalk,
AARP randomly assigns a protocol address at initialization time and verifies that this
protocol address is unique among all other protocol addresses on the network. Once
AARP verifies that this address is unique, AARP informs DDP of the protocol address.
In addition to receiving packets that contain a unique protocol protocol address, a
protocol client (such as DDP) may also receive packets addressed to a broadcast-
protocol address. As the broadcast-hardware address causes all nodes on the network
to respond at the physical level, the broadcast-protocol address causes all nodes on
the network to respond at the “protocol-set” level. For example, addressing a packet
with a broadcast-hardware address and a broadcast-protocol address for the
AppleTalk protocol set causes all nodes on the network to receive the packet However,
only those nodes that support the AppleTalk protocol set will process the packet. Ifa
node supports more than one protocol set, this node (or AARP) should assign a
protocol address that corresponds to a protocol client for each protocol set

About AARP

41

Obtaining an Address

Generally to send packets on the network, a transmitting AARP client requests from
AARP the hardware address that corresponds to the protocol address of the node that
is to receive the packet. To provide its client with the desired hardware address, AARP
attempits to retrieve, from the cache of address in the AMT, this hardware address. 1f
the hardware address is among the cache, AARP returns this address to its client If the
protocol-to-hardware mapping is not resident, AARP transmits a series of AARP
packets to all nodes on the network to obtain the desired hardware address.

AARP Functions

A generic AARP implementation resides between the Link Access layer and the
Network layer of the network and performs three basic functions for each protocol set
that AARP supports:

O Initial determination of a unique protocol address for a given protocol client.
This address must be unique among all nodes on the network.

0O Mapping from a protocol address to a hardware address. Given a protocol
address for a node on the network, AARP returns either the corresponding
hardware address or an error that indicates that no node on the network has such
a protocol address.

O Filtering of pachkets. For all data packets received by a given node, AARP verifies
that the destination protocol address of the packet is equal to either the node’s
protocol address or the broadcast-protocol value. If the packet does not equal
either of these values, AARP discards the packet.

Packet Categories

Within a given protocol set, there are two categories of packets that 2 node may
encounter on a network. This document distinguishes one category as AARP packets
and the other category as data packets. AARP packets are those packets that perform
address-resolution functions (such as request, response,.and probe). Data packets are
those packets that contain information for processing by a protocol set.

42 Chapter 5: AARP and Data Packets

EtherTalk Addresses

AARP can be used to map between any two sets addresses. The AARP implementation
that EtherTalk uses maps between a 48-bit Ethernet address and an 8-bit AppleTalk
address. To distinguish between these two sets of addresses further, this document will
refer to them as follows:

-0 An Ethemet address, which is the node address that is determined by Ethernet'’s
Physical and Data Link layers of the network. An example of an Ethernet address
is a2 48-bit Ethemnet destination address. This document uses the term “Ethernet
address” to refer to the EtherTalk implementation of a generic hardware address.

D An AppleTalk address, which is the node address used by high-level AppleTalk
protocols. An example of an AppleTalk address is an 8-bit AppleTalk address
that AARP and DDP use to ensure that a packet is intended for processing by this
DDP. This document uses the term “AppleTalk address” to refer to the EtherTalk
implementation of a generic protocol address.

AARP Operation

The following section details the operational concept of AARP. These sections
contain generic AARP information followed by an EtherTalk example.

The Address Mapp‘ing Table

Within a given node, AARP maintains an Address Mapping Table (AMT) for each
protocol set that a node supports. Each AMT contains a list of protocol addresses and
their corresponding hardware addresses—serving as a cache of known protocol-to-
hardware address mappings. Whenever AARP learns of 2 new mapping, AARP updates
the appropriate AMT to reflect the new addresses. If there is no more room for new
addresses in an AMT, AARP should purge this AMT by using some sort of least-
recently used algorithm.

% EtherTalk example: Within a given node, AARP maintains an Address Mapping
Table (AMT) for the AppleTalk protocol set. The AMT for EtherTalk contains a list
of AppleTalk addresses and their corresponding Ethernet addresses—serving as a
cache of known AppleTalk-to-Ethernet address mappings. Whenever AARP learns
of a2 new mapping, AARP updates the AMT to reflect the new addresses. Note that
AppleTalk addresses are 8 bits in length, thefore, the AMT will contain no more
than 256 address entries.

AARP Operation

43

Choosing an Address

Each protocol set supported by a node must have an associated protocol address.
‘This address is usually assigned at initialization time. AARP includes one way of
making this assignment; however, your AARP client may choose to assign its own
protocol address and inform AARP of this address using a different method. The only
requirement is that these protocol addresses are unique for each protocol set.

€ EtherTalk example: At initialization time, AARP randomly picks an AppleTalk
address for the node that AARP supports. After checking with other nodes on the
network to ensure that this address is unique, AARP assigns this address as the
node's AppleTalk address.

Random Address Selection

AARP includes the ability to pick a unique protocol address dynamically at
initialization time. When an AARP client requests this function, AARP picks a protocol
address at random for a given protocol set, and sets that address as the node’s
tentative protocol address. If, by chance, there is already 2 mapping for that address
in the AMT for that protocol set, AARP knows that another node on the network is
using this protocol address. AARP continues to pick additional random addresses
until it identifies an address that is not in the AMT. Once AARP identifies an address
that is not in the AMT, AARP verifies the uniqueness of the address as described in the
following chapters.

& EtherTalk example: When an AARP client requests an AppleTalk address, AARP
picks an AppleTalk address at random and sets that address as the node's tentative |
AppleTalk address. If, by chance, there is already 2 mapping for that address in the
AMT, AARP picks additional random addresses until it identifies an address that is
not in the AMT.

Probe Packets

Once AARP identifies a tentative protocol address for a given protocol set, AARP
broadcasts a number of probe packets that contain the tdéntative protocol address (for
a given protocol set) to determine if any other node on the network is currently using
that protocol address. Any node receiving a probe packet whose protocol address
matches its protocol address must respond by sending an AARP response packet.

44 Chapter 5: AARP and Data Packets

© EtherTalk example: Once AARP identifies a tentative AppleTalk address, AARP
broadcasts 2 number of probe packets that contain the tentative AppleTalk address
to determine if any other node on the network is currently using that AppleTalk
address. Any node receiving a probe packet whose AppleTalk address matches its
AppleTalk address must respond by sending an AARP response packet.

Response to Probe Packets

When a node receives a probe packet for a protocol set that this node supports, it
checks its protocol address that is associated with the protocol set . If the tentative
protocol address matches the the receiving node’s protocol address, the receiving
node sends an AARP response packet to the probing node. Upon receiving the
response packet, the probing node knows the protocol address is already in use and
probes with another address. If the probing node does not receive a response packet
after a specific number of probes, AARP sets the tentative protocol address to
permanent and returns this address to its client.

& EtherTalk example: When a node receives an AARP probe packet, this node
matches this address to its AppleTalk address. If the AppleTalk addresses match,
the receiving node sends an AARP response packet to the probing node. Upon
receiving the response packet, the probing node knows the AppleTalk address is
already in use and probes with another address. If the probing node does not
receive a response packet after a specific number of probes, AARP sets the tentative
AppleTalk address to permanent and returns this address to its client.

Avoiding Duplicate Tentative Addresses

It is possible, although unlikely, that two nodes on the network could pick the same
tentative address at the same time. To avoid this possibility, if 2 node receives a probe
packet whose tentative address matches its tentative address, the receiving node)
should assume that this address is in use and select another random address. A node
should never respond to an AARP probe packet or an AARP request packet while it is
probing. : :

AARP Operation

45

Request Packets

When an AARP client makes a request to determine the hardware address that
corresponds to a protocol address for a given protocol set, AARP first scans the
associated AMT for the protocol address. If the protocol address is in the AMT, AARP
returns the corresponding hardware address. If the hardware address is not in the
AMT, AARP attempts to determine the hardware address by broadcasting a series of
AARP request packets to all nodes on the network. The request packet indicates the
protocol address for which a hardware mapping is desired, as well as the type of
protocol set for that mapping.

© EtherTalk example: When the AARP client makes a request to determine the
Ethernet address that is associated with an AppleTalk address, AARP first scans the
AMT for the AppleTalk address. If the AppleTalk address is in the AMT, AARP
returns the corresponding Ethernet address. If the Ethernet address is not in the
AMT, AARP attempts to determine the Ethemet address by broadcasting a series of
AARP request packets to all nodes on the network. The request packet indicates the
AppleTalk address for which an Ethernet mapping is desired.

Response {0 Request Packets

When a node receives a request packet, AARP attempts to match the desired protocol
address to its own protocol addresses for the given protocol set If the receiving node’s
protocol address for that protocol set matches, the receiving node responds by
sending an AARP response packet to the requestor indicating the protocol-to-
hardware node-address-mapping information. The requesting AARP enters this
mapping in the AMT and returns the hardware address to AARP’s client. If there is no -
reply within a specific time-out period, AARP retransmits the packet a given number of
times and retumns an error to its client if there is still no response; the error indicates
there is no such node on the network.

& EtherTalk example: When a node receives an AARP request packet, the node’s
AARP auempts to match the desired AppleTalk address to its own AppleTalk
address. If the receiving node’s AppleTalk address matches, the receiving node
.responds by sending an AARP response packet to the requestor. The response
packet contains the receivng node’s Ethernet address.. The requesting AARP enters
this mapping in the AMT and returns the hardware address to AARP’s client If there
is no reply within a specific time-out period, AARP retransmits the packet a given
number of times and returns an error to its client if there is still no response; the
error indicates there is no such AppleTalk node on the network.

46 Chapter 5: AARP and Data Packets PR S

Examining Incoming Packets

In addition to receiving and processing its own packets (probe, request and response),
an active AARP (such as one that is performing translation) should receive and
process all packets for each protocol set that AARP supports. There are two reasons for
this requirement. The first reason is that AARP must verify that an incoming packet is
in fact addressed to its client for the given protocol set. The second reason is that
AARP can gather or glean address information from the incoming packet to update
the AMT, limiting the number of AARP packets sent on the network.

€ EtherTalk example: In addition to receiving and processing its own packets (probe,
request and response), AARP receives and processes all AppleTalk data packets to
glean packet-address information from the packet and update the AMT. Also,
AARP verifies that the incoming packet is intended for the node’s AppleTalk
address (or broadcast-protocol address) and , if so, passes the packet to the
AppleTalk protocol stack for further processing.

Veritying Packet Address

To verify that an incoming data packet is intended for a client that AARP serves, AARP
examines the packet’s destination-protocol address. Because the protocol set to which
the packet belongs determines the data packets’s construction, the location of the
destination address within a data packet is different for different protocol sets. AARP'’s
client must inform AARP of the location of the data packet’s destination address for
each protocol set that AARP supports. The AARP client must also inform AARP of
which address or addresses to accept as broadcast-protocol values. If AARP
determines that the destination-protocol address of the packet does not match the
node’s protocol address or broadcast-protocol address, AARP must discard the
packet and assume the originator sent this packet by mistake.

& EtherTalk example: To verify that an incoming data packet is intended for the
AppleTalk address that AARP serves, AARP verifies that the packet’s destination
address in the ALAP header matches the node’s AppleTalk address, broadcast-
protocol value ($FF). Figure 5-2 shows the location of the destination-protocol
address in the data packet’s header. If AARP determines that the destination
address of the packet does not match the node’s AppleTalk address or broadcast-
protocol address, AARP discards the packet.

Examining Incoming Packets

47

Gleaning Information

Incoming data packets will generally contain the source hardware address and the
source protocol address. Once AARP determines that the packet contains a valid
protocol address, AARP can glean the source hardware and protocol address-
mapping information from the packet and update the appropriate AMT. Gleaning
mapping information in this fashion eliminates the need to send an additional request
packet when the node next tries to communicate with the sender.

Note that this gleaning of source information from client packets is not a requirement
of AARP. In certain cases, this information may not be available. Depending on your
application, you may determine that gleaning information is too inefficient to add an
entry to the AMT for each incoming packet.

" Source information can also be gleaned from AARP request packets. Because these
packets are broadcast to every node on the network, every AARP implementation
receives them. These packets always contain the source hardware address and source
protocol address. AARP should always add this address information to its AMT, even
if AARP does not answer this packet. AARP should 7ot glean any source information
from probe packets because this information is tentative.

© EtherTalk example: Incoming data packets contain the source Ethemnet address and
the source AppleTalk address. Once AARP determines that the packet is intended
for AARP’s AppleTalk client, AARP gleans the AppleTalk-to-Ethernet address-
mapping information and updates the AMT. Gleaning mapping information in this
fashion eliminates the need to send an additional AARP request packet when the
node next tries to communicate with the sender.

Source information is also gleaned from AARP request packets. These packets
always contain the source Ethernet address and source AppleTalk address. AARP |
adds this address information to its AMT, even if AARP does not answer this packet.
AARP does not glean source information from probe packets because this
information is tentative.

Aging AMT Entries

An AARP implementation may wish to age AMT entries."One method of doing this is
for AARP to associate a timer with each AMT entry. Each time AARP receives a packet
that causes an entry update or confirmation in the AMT, AARP resets that entry’s
timer. If AARP does not reset the entry’s timer within a certain period of time, the
timer times out and AARP removes this entry from the AMT. The next request for the
protocol address associated with this entry will result in AARP sending a request
packet, unless AARP gleans a new mapping for this entry after removing it.

48 Chapter 5: AARP and Data Packets

- Aging AMT entries prevents the following situation: when one node goes down or takes
itself off the network, a second node with a different hardware address starts up and
acquires the same protocol address as .the first node. An AARP implementation in a
third node needs to learn about this change in mapping. Unless the second node
broadcasts an AARP request, the third node will not be aware of this change and will
continue to contain an invalid hardware address in the AMT.

@ EtherTalk example: AARP associates a timer with each AMT entry. Each time
AARP receives a packet that causes an entry update or confirmation in the AMT,
AARP resets that entry’s timer. If AARP does not reset the entry’s timer within a
certain period of time, the timer times out and AARP removes this entry from the
AMT. The next request for the AppleTalk address associated with this entry will
result in AARP sending a request packet, unless AARP gleans 2 new mapping for this
_entry after removing it.

Age-on-probe

Instead of using timed aging, another approach is to remove an AMT entry whenever
AARP receives a probe packet for the entry’s protocol address. This process
guarantees that the AMT always contains current mapping information, although
unnecessary entry removal occurs if a new node probes for an address that is already
in use. AARP should implement this age-on-probe function in any node that does not
glean address information from data packets because time-based aging in this case is
inefficient (data packets would not reset the aging timer).

© EtherTalk example: In addition to timed aging, AARP also incorporates an age-
on-probe function. AARP removes an AMT entry whenever AARP receives a probe
packet for the entry’s AppleTalk address. This process guarantees that the AMT
always contains current mapping information, although unnecessary entry removal
occurs if 2 new node probes for an AppleTalk address that is already in use.

Aging AMT Entries

49

Generic AARP Packet Formats
Refer to Figure 5-1 for the generic AARP packet formats.

Link Link Link
Access Access Access
Header Header Header
| Hardware __| . Hardware __ . Hardware __
Type Type Type
| Protocol __| b Protocol __J | Protocol __|
Type Type Type
H/W Adr. Length H/W Adr. Length H/W Adr. Length
Prot. Adr. Length Prot. Adr. Length Prot. Adr. Length
__ Command __| . Command __ | Command __|
(Request = 1) (Response = 2) (Probe = 3)
Source Source Source
Hardware Hardware Hardware
Address Address Address
Source Source Tentative
Protocol Protocol Protocol
Address Address Address
Destination
0 Hardware 0
Address
Desired Destination Tentative
Protocol Protocol Protocol
| Address I l Address | | Address]

MSC NNNN
ART: NN x 17 pi
20.5 pitext to FN b/b

Figure 5-1
Generic AARP Packet Formats

AARP Request Packet AARP Response Packet AARP Probe Packet

50 Chapter 5: AARP and Data Packets

Each packet begins with the standard link access header for the medium in use (14
bytes for Ethernet). Following this, there is header information which is a constant for
the particular protocol-to-hardware mapping. This header information consists of the
following:

O Two-byte hardware type, which indicates the medium type (pre-defined).

0O Two-byte protocol type, which indicates the desired protocol set (pre-defined).

O One-byte hardware address length, which indicates the length, in bytes, of this
field.

O One-byte protocol address length, which indicates the length, in bytes, of this
field.

Following this header is a two-byte command field that indicates the packet function
(request, response, or probe). Next are the hardware and protocol addresses of the
sending node (their length are specified in the preceeding length fields). Last in the
packet are the hardware and protocol addresses of the node that is to receive this
packet. °

In the case of an AARP request packet, the hardware address of the destination is
unknown and should be set to zero. The protocol address should be the address for
which a hardware mapping is desired.

For the probe packet, both the source and destination protocol addresses should be
set to the sender's tentative protocol address and the destination hardware address
should again be set to zero.

@ Note: These conventions also apply to AARP Ethernet-AppleTalk packets.

Generic AARP Packet Formats

51

AARP Ethernet-AppleTalk Packet Formats
Figure 5-2 shows the AARP Ethemnet-AppleTalk packet formats.

o — o— .
— Ethernet — =~ Ethernet — — Ethernet —
— Destination T —— Destination : Destination
e (Droadcast) o — — e (Droadcast) e
—— Ethernet p— —— Ethernet = — Ethernet E
— Source pu— — Source — — Source —
Ethernet Ethernet Ethernet
== Protocol — . Protocol — — Protocol —
Type ($80F3) Type ($80F3) Type ($80F3)
|__Hardware Type __| |__Hardware Type __| |__Hardware Type __|
(Ethernet = 1) (Ethernet = 1) (Ethernet = 1)
Protocol! Type Protocol Type Protocol Type
(AppleTalk = $809B) (AppleTalk = $809B) [AppleTalk = $8098B)
H/W Adr. Length = 8 H/W Adr. Length = 6 H/W Adr. Length = 6
Prot. Adr. Length = 4 Prot. Adr. Length = Prot. Adr. Length = 4
| Command __ | | Command __| ' . Command __
(Request = 1) (Response = 2) (Probe = 3)
: Source : = Source — — Source -
—— Ethernet — [Ethernet —— Ethernet __
— Address — - Address — e Address —
— — a— o p— —
[—Src. AppleTalk = —Src. AppleTalk = — Tent. AppleTaik —
b Address — — Address —— b Address —_
— p— ™ Destination] — —
—— 0 — e Hardware e — 0 —
— — [Address — h—
— Desired c— L~ Destination == [~ Tentative ——
— AppleTalk j— [AppleTalk] = AppleTalk =
Address Address - Address]

AARP Request Packet ~ AARP Response Packet AARP Probe Packet
MSC NNNN
ART: NN x 17 pi
20.5 pi text to FN b/b

Figure 5-2
AARP Ethemet-AppleTalk Packet Formats

52 Chapter 5: AARP and Data Packets

Each AARP packet on Ethernet begins with the Ethernet 14-byte link access header.
Following the Ethernet header, there are 6 bytes (predefined) of additional header
information that further identify this AARP packet:

o0 Two-byte hardware type, which indicates Ethernet as the medium
O Two-byte protocol type, which indicates the AppleTalk protocol

O One-byte hardware address length, which indicates the length in bytes of the
Ethernet address

O One-byte protocol length, which indicates the length in bytes of the AppleTalk
address

Following this header information is a 2-byte command field that indicates the packet
function (request, response, or probe). Next are the Ethernet and AppleTalk
addresses of the sending node. Last in the packet are the Ethernet and AppleTalk
addresses of the node that is to receive this packet

In the case of an AARP request packet, the Ethernet address of the destination is
unknown and should be set to 0. The AppleTalk address should be the address for
which an Ethemnet address mapping is desired.

For the probe packet, both the source AppleTalk address and destination AppleTalk
address should be set to the sender's tentative AppleTalk address and the destination
hardware address should again be set to 0.

Retransmission Details

AARP must retransmit both probes and requests until AARP either receives a reply or
exceeds a maximum number of retries. The specifics of the retransmit count and
interval depend on the desired thoroughness of the search. In general, the probe-
retransmission interval is fixed by AARP, but the request-packet-transmission interval
can be assigned as a client-dependent parameter.

Packet Specifics

The following constants are currently defined for AARP.
O Protocol type for Ethernet-like media (in data link header): $80F3
0 AARP hardware type for Ethernet: $0001
DO AARP AppleTalk protocol type: $809B
O AARP Ethemet address length: 6

O AARP AppleTalk address length: 4—first 3 bytes of the address must be 0 and are
reserved by Apple for future use

0 AARP request command: $0001

AAPR Ethemet-AppleTalk Packet Formats

53

O AARP response command: $0002
O AARP probe command: $0003

O AARP probe-retransmission interval for Ethernet-AppleTalk packets: 1/30
second

O AARP probe-retransmission count for Ethernet-AppleTalk packets: 20

EtherTalk Data Packet Format
Figure 5-3 shows the data-packet format for AppleTalk packets on Ethernet.

Ethernet
Destination

Ethernet
Source

UL LLLLL
ARRRARNRAR

Ethernet
- Protocol

Type ($809B)
AppleTalk Dest.

AppleTalk Src.
AppleTalk Type

Data Length

Data

Pad
(if needed)

MSC NNNN
ART:NNx 17 pi
20.5 pitext to FN b/b

Figure 5-3
EtherTalk Data Packet Format

§4 Chapter 5: AARP and Data Packets

AppleTalk Packets on Ethernet contain the standard 14-byte header to identify the
Ethernet destination, Ethernet source, and Ethernet protocol type. For AppleTalk
packets, the Ethernet protocol type is $809B. A complete AppleTalk packet follows this
header. The AppleTalk packet consists of a 3-byte header to specify the AppleTalk
destination, source, and type, followed by the data field. The low-order 10 bits of the
first 2 bytes in the data field contain the length in bytes of the data field (self-
including). The high-order 6 bits are protocol dependent.

The minimum size of Ethernet packets is 60 bytes. Including the header, an Ethernet-
AppleTalk packet could be as small as 19 bytes; therefore, the packet must be padded
to increase packet size to 60 bytes. The contents of the pad are undefined. The
maximum size of an AppleTalk packet on Ethernet is 603 bytes plus 14 bytes Ethernet
header, or a total of 617 bytes.

Apple recommends, although currently does not require, that any DDP packet sent on
Ethernet use the extended DDP header format (see Inside AppleTalk for details). This
header format ensures compatibility with potential future systems that may require
such a header. Alf EtherTalk implementations must accept extended headers for any
incoming AppleTalk packet and these implementations should also accept short DDP
headers (including packets which Iside AppleTalk, July 1986 identifies as requiring
short headers).

EtherTalk Data Packet Format

55

56

Chapter 5: AARP and Data Packets

Chapter 6

The Ethernet Driver

57

EtherTalk software uses a general-purpose Ethernet driver to transmit and receive
packets on the Ethernet network. Provided with EtherTalk software, the Ethernet driver
is specifically designed for use on the Macintosh II and the EtherTalk interface card;
however, it is envisioned that equivalent interfaces will be provided for other Ethernet
interface cards and networking devices.

The Ethernet driver, located in the System file, is named .ENET. If you are developing
a driver for use with a slotless device, name the driver .ENETO.

Write Data Structure

Typically, to send a packet on the network, the driver is called with 2 write command
(see “EWrite Command” this chapter for more information) that contains a pointer to
a write data structure (WDS). The WDS contains a series of length and pointer pairs
that identify the lengths and memory locations of the packet's components. The WDS
for Ethernet is shown in Figure 6-1.

Length of first entry (word)

Destination node ID (6 bytes)

Pointer to first entry (long)

i

Used internally (6 bytes)

Z

4

Protocol Type (2 bytes)

Length of last entry (word)

Pointer to last entry (long)

Data (optional)

0 (word)
MSC NNNN
ART: NN x 17 pi
205 pitextto FNb/b
Figure 6-1

Write Data Structure for Ethemet

Data

The length-pointer pairs tell the driver to gather packet information in the order in
which they appear in the WDS. For Ethernet, the first entry in the WDS must point to
the 6-byte destination address, which is followed by 6 unused bytes and a 2-byte

protocol type. Data may then follow.

¢ Note: When the Ethernet driver transmits the packet, the driver inserts a 6-byte sou
rce address to replace the 6 unused bytes.

58 Chapter 6: The Ethemet Driver

If you are writing a software driver for transmission of AppleTalk packets on some other
network, the first WDS entry may differ from that of Ethernet.

Protocol Handlers

During a typical read operation, the interface card sends an interrupt to inform the
driver that a packet is ready for delivery. The driver responds to this interrupt by
reading the Ethernet header into internal driver space and calling a piece of code,
known as a protocol handler, to process the rest of the packet The 2-byte protocol
type in the header specifies to the driver which protocol handler to call. The protocol
handler responds by calling one or both of two driver routines (ReadPacket and
ReadRest) to process packet reception.

The Ethernet driver provides a general-purpose default protocol handler for use with
the standard read _call (see “ERead Command” in this chapter); however, you may
decide to write you own protocol handler to process packet reception.

Wwiriting Protocol-handier Code

After determining how many bytes to read and where to put them, the protocol
handler must call one or both of two Ethernet driver routines that perform all low-level
manipulations of the card required to read bytes from the network. These two routines
are ReadPacket and ReadRest. The protocol handler may call ReadPacket repeatedly
to read in the packet piece-by-piece into a number of buffers, as long as it calls
ReadRest to read the final piece of the packet. This process is necessary because
ReadRest restores state information and checks error conditions. ReadPacket returns |
an error if the protocol handler attempts to read more bytes than remain in the
packet.

When the Ethernet driver passes control to your protocol handler, it passes various
parameters and pointers in the processor’s registers. Register setup and restrictions
are essentially the same as those for ALAP protocol handlers. The Ethernet driver calls
the protocol handler as follows:

A0, Al: reserved for internal use by the driver (handler must preserve until
ReadRest is complete) .

A2: free (A2 is not free in an ALAP protocol handler)

A3: pointer to first byte past data link header bytes (for Ethernet, the byte
after the two-byte type field)

A4: pointer to ReadPacket and ReadRest
AS: free (until ReadRest is complete)
DO: free

D1: number of bytes in packet left to read

Protocol Handlers

59

D2: free
D3: free

€ Note: ReadRest begins 2 bytes after ReadPacket.

Registers AQ, Al, A4, and D1 must be preserved until the protocol handler calls
ReadRest. After the protocol handler calls ReadRest, normal interrupt conventions
apply. D1 contains the number of bytes remaining to be read in the packet as derived
from the packet’s length field. D1 can be reduced to indicate pad bytes that will not be
read, but should not be changed otherwise.

If the protocol handler is to handle multiple protocol types, the protocol handler
should examine the data link header for the protocol-type field to initiate the proper
read routine for the incoming packet. Because A3 points to the first bvte after the 2-
byte protocol type field, the protocol handler can read the type fielc by using negative
offsets from A3. In the case of Ethernet, the 2-byte type field begins it -2(A3), the
source address begins at -8(A3), and the destination address is at ~14(A3).

Calling ReadPacket and ReadRest
Your protocol handler can call the Ethernet driver's ReadPacket routine in the
following way.
JSR (A9)
On entry
D3: number of bytes to be read (word)—must be nonzero
A3: pointer to a buffer to hold the bytes
On exit
DO: modified
D1: number of bytes left to read in packet (word)
D2: preserved
D3: =0 if requested number of bytes were read; < > 0 if error
AO0-A2: preserved
A3: pointer to 1 byte past the last byte read
ReadPacket reads the number of bytes that D3 specifies into the buffer to which A3

points. The number of bytes remaining to read is returned in D1. A3 points to the
location to begin reading next time (1 byte following the last byte read).

To read in the rest of the packet, call the Ethernet driver's ReadRest routine in the
following way.

JSR 2 (A9
On entry

60 Chapter é: The Ethemet Driver ' o 4

A3: pointer to a buffer to hold the bytes
D3: size of the buffer (word)—can be zero
On exit
DO0-D1: modified
D2: preserved
D3: = 0 if requested number of bytes were read
< 0 if packet was -D3 bytes too large to fit in buffer and was
truncated
> 0 if D3 bytes were not read (packet is smaller than buffer)
A0-A2: preserved

A3: pointer to 1 byte past the last byte read

ReadRest reads the remaining bytes of the packet into the buffer whose size is given in
D3 and whose location is pointed to by A3. The result of the operation returns in D3. If
the buffer size that D3 indicates is larger than the packet size, ReadRest does not return
an error.

Warning
Always call ReadRest to read the last part of a packet to avold a system crash.

If the protocol handler wishes to discard the remaining data before reading the last
byte of the packet, it should terminate by calling ReadRest as follows:

MOVEQ 40,03 ;byte count of 0
JSR 2 (A4) ;call ReadRest
RTS

In all cases, the protocol handler should end with an RTS, even if the driver returns an
error. If the driver returns an error from a ReadPacket call, the protocol handler must
quit via an RTS without calling ReadRest at all. Upon return from ReadRest and
ReadPacket, the zero (2) bit in the command control register will be set if an error did
not occur. If an error occurs, the zero bit is not set.

Opening the Ethemet Driver '

On a Macintosh II, use the Device Manager to make a PBOpen call to open the
Ethernet driver. However, you will have to obtain certain field values, such as the
card's slot number, before making this call. The Slot Manager may be used to obtain
these values.

Opening the Ethernet Driver

6

Slot Manager sNextsRsrc Trap Macro

There are six slots in the Macintosh II, ranging from $09 to $OE. Built-in devices use

slot zero. Because these slots may contain interface cards other that EtherTalk cards,

your code must identify the type of card in each slot One method of doing this is to

use the Slot Manager sNextsRsrc trap macro. This function is defined as follows:
Required Parameters <—> spSlot -

<—> spid
<— spsPointer
<— spRefNum
<— splOReserved
<—> spExtDev
<— spCategory

. <— spCType
<— spDrviSw
<— spDrvrHw

If you supply a 0 for the sNextsRsrc fields spSlot, spID, and spExtDev, this routine
returns the spld, spSlot, spCategory, and spType values in addition to other
information for each card installed. The routine starts, at slot $09 and continues to slot
$OE and returns a non-fatal error report to indicate routine completion. By matching
the spCategory and spType fields to the sResource Type format for the EtherTalk
interface card, your code can identify which slots contain EtherTalk cards. The
sResource Type format for the EtherTalk interface card identifies the spCategory field
as CatNetwork and the spType field as TypEthernet.

% Note: More information about the sResource Type formats is contained in MPW,
version 2.0. Refer to Inside Macintosh, Chapter 24, Volume V for more '
information on the Slot Manager.

Device Manager PBOpen Call

Once you have obtained the slot number (spSlot) and the sResource Identification
number (spld), you may use the Device Manger to make a PBOpen call. The PBOpen
call requires that you supply, in addition to other information, the driver name
(.ENET) and the ioSlot and iold parameters as this portion of the parameter block
shows:

—_> 34 ioSlot byte

—> 35 iold byte

62 Chapter 6: The Ethemet Driver

For the EtherTalk card, the ioSlot parameter contains the slot number, obtained as
spSlot, for the EtherTalk card to be opened, in the range of $09 to $OE. The iold
parameter contains the sResource ID, obtained as spld. Be sure to set the immediate-
bit in the trap word when making the PBOpen call. Refer to Mside Macintosh,
Chapter 23, Volume V for additional information about opening slot devices.

The driver opens in the AppleTalk mode. This mode limits the size of a packet sent by
the driver to 768 bytes, which is more than sufficient to encapsulate 2 maximum-size
Ethernet-AppleTalk packet of 617 bytes. In this mode, the driver can allocate more
space in the buffer pool for packet reception. If the packets for your application
require more than 768 bytes, you may change to General mode to transmit any valid
Ethernet packet up to 1514 bytes in length.

<<Network Engineering to provide sample code for opening the driver>>

Making Commands to the Ethernet Driver

Once the Ethemet driver opens, a series of Device Manager control calls to the driver
are made to control packet transmission and reception. The calling code passes
command arguments in the queue element starting at CSParam. Refer to Chapter 6 of
Inside Macintosh, Volume 11, for more information about making control calls.

The EWrite Command

Use the Device Manager to make the EWrite control call to write a packet out on
Ethernet. The only argument is a pointer that identifies the location of the write data
structure used to send the packet on the network. '
Parameter block
—>26 csCode word {always EWrite}
—>30 EWdsPointer pointer {write data structure}
<<Result codes for all commands to be supplied by Network Engineering>>

The EAttachPH Command

Make the EAttachPH command to attach a protocol handler to the driver. Arguments
are a 2-byte protocol type and a protocol-handler address. If the protocol-handler
address is 0, 2 default protocol handler is attached to the Ethernet driver. The default
protocol handler is for use with the ERead call (see “ERead Command” this chapter).
Parameter block
—>26 csCode word {always EAttachPH}

Making Commands to the Ethernet Driver

63

—>28 EprotType 2 bytes {Ethernet protocol type}
—>30 Ehandler pointer {protocol handler}

EAnachPH adds the protocol handler pointed to by Ehandler to the node’s protocol
table. EprotType specifies what kind of packet the protocol handler can service. After
EAttachPH is called, the protocol handler is called for each incoming packet whose
Ethernet protocol type equals EprotType.

¢ Note: To attach or detach a protocol handler for IEEE 802.3, which uses protocol
types 0 through $5DC, specify protocol type zero.

The EDetachPH Command
Makes the EDetachPH command to detach a protocol handler from the driver.

Parameter block
—>26 csCode word {always EDetachPH}
—>28 EprotType 2 bytes {Ethernet protocol type}

The command removes the protocol type and corresponding protocol handler from
the protocol table.

The ERead Command

Make the ERead call only to read in a packet after an EAttachPH with a zero-handler
address is issued for the protocol indicated in this command. ERead takes as
arguments the protocol type, buffer pointer, and buffer size. The ERead call places the
entire packet, including the header, into the buffer. After the read, the call returns the
actual size of the packet. If the packet is too large to fit into the buffer, the call places as
much of the packet as it can into the buffer and retums an error. The driver dequeues
the ERead call from the system queue, so more than one ERead call can be active
concurrently. .

Parameter block _
26 —> c¢sCode {always ERead}

28 —> EProtType {protocol type}
30 —> EBuffPtr {buffer into which packet is read}
34 —> EBuffSize {buffer size}
36 <— EDataSize {actual number of bytes read}
('_".‘ - ,."‘""’f'z !.!
64 Chapter 6: The Ethemet Driver g --N {148
TN L el !U—v_

The ERdCancel Command

The ERdCancel command cancels a particular ERead call. The only argument is the
queue- element pointer of the ERead call to cancel. If the ERead call is active, the
ERdCancel call returns an error.

Parameter block
26 —> csCode {always ERdCancel}
30 —> EKillQE] {queue element pointer to cancel}

The EGetinfo Command

The EGetinfo command obtains driver information and takes arguments of a buffer
pointer and size. This call returns, in the first 6 bytes of the buffer, the Ethernet
address for the node on which the driver is installed.

Parameter block

26 —> csCode {always EGetInfo}
30 —> EBuffPtr {buffer pointer}
34 —> EBuffSize buffer size}

With the EtherTalk driver installed on a2 Macintosh II, the EGetInfo call returns 12
additional bytes as follows:

Bytes 07-10 = number of buffer overwrites on receive
Bytes 11-14 = number of time-outs on transmit
Bytes 15-18 = number of packets received that contain an incorrect address

The ESetGeneral Command

The ESetGeneral command changes the driver from AppleTalk mode to General
mode. There are no arguments. There is no command to change the driver from
General mode to AppleTalk mode. Changing the driver's mode may involve a
hardware reset, and could cause loss of an incoming packet

Parameter block
% —> csCode {always ESetGeneral}

Making Commands to the Ethernet Driver

65

66

Chapter 6: The Ethemet Driver

Chapter 7

The EtherTalk Interface Card

67

This chapter overviews the operation of the EtherTalk Interface card and generally
explains each major component on the card. In addition to this information, this
chapter identifies the address assignments for local menory and gives the address
assignments for the network interface controller (NIC) register.

7

About the EtherTalk Card

The EtherTalk Interface card installs in any NuBus slot on a Macintosh I computer.
The card interfaces the Ethernet driver to the Ethernet cabling system to enable packet
transmission and reception among EtherTalk nodes. The EtherTalk Interface card may
also function in Apple Computer's A’UX environment, transporting transmission
control protocol/internet protocol {TCP/IP) packet information. Please note that the
A/UX operating system does mnot support EtherTalk software.

A deuiled discussion of the A/UX operating system or device drivers is beyond the
scope of this document. Please refer to the Apple publications Butlding A/UX Device
Drivers, A/UX Programmer’s Reference, and A/UX Networking Applications
Programming for more information about TCP/IP, A/UX, and device drivers.

<<Alan, this chapter is lifted from the Schlitz Preliminary Note. The information
presented here seems to be a little weak. Is there anything else that you think needs to
be here? How about a more detailed explanation of drop cable and Thin Net
connections and give some programming application information on how to use the
local memory addresses and NIC register addresses? >>

EtherTalk Card Hardware Description

The EtherTalk Interface Card is a non-intelligent Ethernet adapter for the Macintosh II
computer. The card uses a local-area-network (LAN) chipset from National
Semiconductor Corporation. The three LAN chips are the NIC, Serial Network .
Interface (SNI), and a Coaxial Transceiver Interface (CTT). The card has 16K of dual-
ported Random Access Memory (RAM) and 32K of Read Only Memory (ROM). The
local memory allows back-to-back packet reception with multipacket buffering.

68 Chapter 7: The EtherTalk Interface Card

Figure 7-1 shows the architecture of the Ethernet Interface card.

ROM RAM ' Serial Ethernet
32K 16K Network Network Drop Cable
| | Interface Interface Connector
Controller
Coaxial Thin Net
Transceiver | Connector
y Interface
Nubus Interface
MSC NNNN

ART:NNx 17 pi |,
20.5 pi text to FN b/b

Figure 7-1
EtherTalk Interface Card Architecture

The EtherTalk card uses the Apple’s implementation of the Nubus interface. More
information on the Apple’s implementation of Nubus can be found in the Apple
Computer publication Macintosh II and Macintosh SE Cards and Drivers available
from Apple Programers and Developers Association (APDA).

The CTI chip is used as a coaxial line driver and receiver for Thin Net LANs. The CTI is
not used when attaching to an Ethernet backbone cable by means of an external
transceiver <<what external transceiver?>> The selection is made with a jumper on
the EtherTalk card <<what selection?>> '

The SNI chip provides the encoding and decoding functions <<of what?>>for
Ethernet or Thin Net LANs. The SNI also provides a collision signal translator and a
diagnostic loopback circuit. <<more info here?>>

The NIC chip is the heart of the LAN chipset The NIC performs all Media Access
Control (MAQC) layer functions for transmission and reception of Ethernet packets.
The NIC provides buffer management that supervises storage of received packets in the
local memory. During packet transmission, the NIC generates and appends the
preamble and sync byte to the transmitted packet. Also, the NIC will optionally
compute and append Cydlic Redundancy Check (CRC) bytes. During reception, the
NIC decodes and filters addresses and performs CRCs. More programming
information about the NIC can be found in the National Semiconductor specification
document tided DP8390/NS32490 Network Interface Controlier.

EtherTalk Card Hardware Description

69

Local Memory

The local memory consists of 16K of static RAM segmented into transmit and receive
buffers by setting registers in the NIC. The segments are further divided into 256-byte
pages. Some number of pages (under driver control) is used for a transmit buffer. The
remaining pages are used for a receive ring buffer. Page Start and Page Stop registers
establish a buffer that forms a continuous address space. As the last address is reached
(set up by the Page Stop register), the next memory location wraps around to the start -
of the buffer (set up by the Page Start register) to form the receive ring buffer.

The local ROM memory is 32K in size and contains the Ethernet address and Nubus
card slot information. Direct access of the ROM is not usually necessary because these
services are provided by the slot library available in A/UX

70 Chapter 7: The EtherTalk interface Card

Address Assignments
Figure 7-2 shows the address map of devices on the EtherTalk card.

Address Map EtherTalk Card Device

(M) x F 7FFF| RoM - 32K
D) x F 0000 (readable on word boundaries)

F (ID) x E 003C NIC Control Registers

16 1-byte registers

(readable on 4-byte boundaries)

F (ID) x E 0000 (reg 0 at 3C, reg 1 at 38, ...ref F at 00)

(D) x D 3FFF | p1ocalRAM - 16K
M) x D 0000 (addressable on word boundaries)

e the low-order 16 bits form the
address of devices on the board

—— these 4 bits determine the addressed device
D-RAM, E-NIC, F-ROM

these 4 bits perform no function

these 4 bits are the Nubus ID character

these 4 bits are always F, indicating card space

MSC NNNN
ART: NN x 17 pi
20.5 pitext to FN b/b

Figure 7-2
Address Assignments

EtherTalk Card Hardware Description

NIC Register Addresses

NIC registers are divided into three pages. The content of the highest-order bits in the
Command register (PSO and PS1) defines which page of registers is being read from
and written to for addresses E0000 through E003C. Page O registers are those registers
commonly accessed during normal operation of the NIC. Page 1 registers are
accessed during the initialization process. Page 2 registers should only be accessed for
diagnostic purposes and should not be modified during normal operation. For
complete definition of the register terms in the tables, consult the National
Semiconductor Corporation publication DP8390/NS532490 Network Interface
Controller.

The following tables show the registers used for programming the NIC. Table 1
displays the NIC Page 0 register addresses on the EtherTalk card.

Table 7-1

Page 0 Address.Assignments (PS1=0, PSO=0)

Address Page 0 Read Page 0 Write
E003C Command Register Command Register

E0038 Current Local DMA Address (CLDA) 0 Page Start Register
E0034 Current Local DMA Address (CLDA) 1 Page Stop Register

E0030 Boundary Register Boundary Register

E002C Transmit Status Register Transmit Page Start Register

E0028 Number of Collisions Register Transmit Byte Count Register
(TBCR) 0

EQ024 First In First Out (FIFO) Register Transmit Byte Count Register
(TBCR) 1

E0020 Interrupt Status Register Interrupt Status Register

E001C Current Remote Data Address (CRDA) 0 Remote Start Address Register
(RSAR) 0

E0018 Current Remote Data Address (CRDA) 1 Remote Start Address Register
(RSAR) 1

E0014 Reserved Remote Byte Count Register
(RBCR) 0

E0010 Reserved Remote Byte Count Register
(RCBR) 1

EO0OC Receive Status Register Receive Configuration Register

72 Chapter 7: The EtherTalk Interface Card

E0008 Counter (CNTR) 0

E0004

Counter (CNTR) 1

E0000 Counter (CNTR) 2

The byte counts in Transmit Byte Count registers 0 and 1 are combined to create a
single count. The byte counts in Remote Byte Count registers 0 and 1 are also
combined. Counter 0 is used for frame alignment errors, counter 1 for CRC errors,
and counter 2 for missed packet errors.

Table 2 displays the NIC Page 1 register addresses on the EtherTalk card.

Transmit Configuration Register
Data Configuration Register
Interrupt Mask Register

Table 7-2

Page 1 Address Assignments (PS1=0, PSO=1)

Address Page 0 Read Page 0 Write

E003C Comm.and Register Command Register

E0038 Physical Address Register (PAR) 0 Physical Address Register (PAR) 0
E0034 Physical Address Register(PAR) 1 Physical Address Register (PAR) 1
E0030 Physical Address Register (PAR) 2 Physical Address Register (PAR) 2
E002C Physical Address Register (PAR) 3 Physical Address Register (PAR) 3
E0028 Physical Address Register (PAR) 4 Physical Address Register (PAR) 4
E0024 Physical Address Register (PAR) 5 Physical Address Register (PAR) 5
E0020 Current Point (CURR) Current Point (CURR)

E001C Mulﬁast Address Register (MAR) 0 Multicast Address Register (MAR) 0
E0018 Multicast Address Register (MAR) 1 Multicast Address Register (MAR) 1 |
E0014 Multicast Address Register (MAR) 2 Multicast Address Register (MAR) 2
E0010 Multicast Address Register (MAR) 3 Multicast Address Register (MAR) 3
E000C Multicast Address Register (MAR) 4 Multicast Address Register (MAR) 4
E0008 Multicast Address Register (MAR) 5 Multicast Address Register (MAR) 5
E0004 Multicast Address Register (MAR) 6 Multicast Address Register (MAR) 6
E0000 Multicast Address Register (MAR) 7 Multicast Address Register (MAR) 7

<<Change for EtherTalk>>The operating system reads the EtherTalk card ROM and
installs 6 bytes into the Physical Address registers O through 5. The Current Point is a
page where a packet is currently being received; it is used to detect packet reception.
The Multicast Address registers are initialized to OXFF because A/UX does not support
multicasting.

EtherTalk Card Hardware Description

74 Chapter 7: The EtherTalk Interface Card

Appendix A

EtherTalk Components

Component List
Table A-1 lists the location, resource type, and description of each EtherTalk software

component.
Table A-1
EtherTalk Components
Location Type 0D Name Description
System File DRVR 127 _.ENET EtherNet driver for Macintosh II EtherTalk
interface card.
ALRT -4031 Alerts and associated dialog item lists used at
ALRT -4032 boot time to indicate an error ocurred while
. installing the altenate AppleTalk selection.
DITL -4031 ALRTs and DITLs must be installed with the
DITL -4032 LAP Manager INIT Resource.
INIT 18 LAP Manager INIT resource. Contains LAP
Manager code plus other code to install the
alternate AppleTalk selection at startup time.
System Folder Network Network 'cdev' file. Contains code to
implement one or more alternate AppleTalk
Selections.
EtherTalk EtherTalk 'adev' file. Contains code to

implement one or more alternate AppleTalk
selections. ‘

A-2 Appendix A: EtherTalk Components

Ethernet Driver Equates

Table A-2 lists the equates for the .ENET driver.

Table A-2

Ethernet Driver Equates

Group and Name Equate Comment

Control codes
ESetGeneral EQU 253 Set General mode
EGetinfo EQU 252 Get info
ERdCancel EQU 251 Cancel read
ERead EQU 250 Read
EWrite . EQU 249 Write
EDetachPH EQU 248 Detach protocol handler
EAttachPH EQU 247 Attach protocol handler
FirstENET EQU EAttachPH First ENET command
LastENET EQU ESetGeneral Last ENET command

ENET queue element standard structure—arguments passed in the CSParam area
EProtType EQU CSParam Offset to protocol type code
EHandler EQU EProtType+2 Offset to protocol handler
EWDSPointer EQU EHandler WDS pointer (EWrite)
EBuffPtr EQU EHandler Buffer pointer (ERead, EGetInfo)
EKillQE! EQU EHandler QE!l pointer (EReadCancel)
EBuffSize EQU EBuffPtr+4 Buffer size (ERead, EGetinfo)
EDataSize EQU EBuffSize+2 Actual data size (ERead)

Equates for the Ethernet packet header
EDestAddr EQUO Offset to destination address
ESrcAddr EQU 6 Offset to source address
EType EQU 12 Offset to data link type
EHdrSize EQU 14 Ethernet header size
EMinDataSz EQU 46 Minimum data size
EMaxDataSz EQU 1500 Maximum data size
EAddrSz EQU 6 Size of an Ethernet node address
MAddrSz EQU 8 Size of an Ethernet multicast address

Ethemet Driver Equates

LAP Manager Equates
Table A-3 lists the equates for the LAP Manager.

Table A-3
LAP Manager Equates

Group and Name Equate Comment

LAP Manager call codes passed in DO (call at [ATalkHk2] + 2)

LRdDispatch EQU 1 Dispatch to protocol handler
LWrtinsert EQU 2 Insert in LAPWrite hook
LWrtRemove EQU 3 Remove from LAPWrite hook
LWrtGet EQU 4 Get code in LAPWrite hook
1SetInUse . EQUS Set address-in-use flag
LGetSelfSend EQU6 Get value of self-send flag
LAARPAttach EQU 7 Artach an AARP listener
LAARPDetach EQU 8 Detach an AARP listener
LGetATalkinfo EQUY9 Get AppleTalk info
Flag bits passed in D1 on LWrtInsert
LWSelfSend EQU 7 ADEV handles self-send
LWEnableSCC EQU 6 Do not disable SCC
LWSrvrwWks EQU S Honor server/wks bit
'atlk' resource call codes passed in DO (call at atlk + 2)
Alnstall EQU 1 Installation
AShutdown EQU 2 Shutdown
atlkCall EQU2 Offset at which to make calls
ADEYV file call code passed in DO (call at ADEV start)
GetADEV EQU 101 Get next ADEV
SelectADEV EQU 102 Select ADEV
Low-memory equates
LAPMgrPtr EQU $B18 This points to our start
LAPMgrCall EQU 2 Offset to make LAP Manager calls
ATalkPRAM EQU SEO Start of our parameter RAM
LAPMgrByte EQU $60 Value of byte pointed to by LAPMgrPtr
Resource ID
adevBaselD EQU 4032 Base resource ID for ADEVs

A-4 Appendix A: EtherTalk Components

AARP Equates

Table A-4 lists the equates for AARP.

Table A-4
AARP Equates
Group od Name Equate Comment
AARP protocol type:
AARP EQU $80F3
Offsets in packet
AAHardware EQUO Hardware type
AAProtocol . EQU AAHardware+2 Protocol type
AAHLength EQU AAProtocol+2 Hardware length
AAPLength EQU AAHLength+1 Protocol length
‘AACommand EQU AAPLength+1 AARP command
AAData EQU AACommand+2 Data start
AARP commands
AARPReq EQU 1 Request
AARPResp EQU 2 Response
AARPProbe EQU 3 Probe
EtherTalk specifics
H_Ethernet EQU1 Hardware type for Ethernet .
HL_Ethernet EQU6 Ethernet address length
P_AppleTalk EQU $8095B Protocol type for AppleTalk
PL_AppleTalk EQU 4 AppleTalk address length
AAESrcPhys EQU AAData Source hardware address offset
AAESrclog EQU AAESrcPhys+ Source protocol address
HL_Ethernet
. Thys EQU AAESrcLog+ Destination hardware address
PL_AppleTalk
AAEDstLc EQU AAEDstPhys+ Destination protocol address
HL_Ethernet
AAEEnd EQU AAEDstLog+ End of packet
L_AppleTalk
Retransmission equates
APrbTicks EQU 2 " Number of ticks between probes
AReqTicks EQU 2 Number of ticks between requests
AReqTries EQU 6 Number of tries on requests

AARP Equates

ADEV File Boilerplate
<<To be supplied by Developer Tech. Support>>

A-b Appendix A: EtherTalk Components

