
•~ MacintoshTll EtherTalk and
Alte~ate AppleTalk
Reference

. Alpha Draft; Working Draft 1 - December 11, 1987

Communications & Networking
Apple Technical Publications

Engineering Part No. 6588279

- ·. · ·-~ 'T f

. :. _:_;..,~ ! ;_'.

S APPLE COMPUTER, INC.
This manual is copyrighted by Apple, with all right reserved. Under the copyright
laws, tlUs manual may not be copied, in whole or in pait, without the written consent
of Apple Computer, Inc. This exception does not allow copies to be made for others,
whether or not sold, but all of the material purchased may be sold, given or lent to
another person. Under the law, copying includes tramlation into another language.

C App1e Computer, Inc.. 1987
20525 Mariani Avenue
Cupertino, California 95014
(408) 996-1010

Apple and the Apple logo are registered trademarks of Apple Computer, Inc.
AppleTalk is a registered trademark of Apple Computer, Inc.

NuBusn1 is a trademark of Texas Instruments.

Ethernet® is a registered trademark of Xerox.

Simultaneously published in the United States and Canada.

Preface

Contents

Flgur• and tabl• v
Radio and televlslon Interference xx

You Should Know... vii
Document Contents vii
Suggested Reading vii

Chapter 1 lntroducHon 1
AppleTalk 2

AppleTalk Implementations 3
LAP Punaions 3

Using EtherTalk 4
Possible Applications 5

Chapter 2 EtherTalk Overview 7

Block Diagram 8
Devic.e riles 'adev' and 'cdev' 9

Control Panel Device File 9
AppleTalk Device File 11
1be 'adev' and 'atlk' Resources 11
1be LAP Manager INIT Resource 12
Calls to the 1adeV' Resource 12

1be GetADEV Call 13
1be SelectADEV Call 14

Calls lO the 'atlk' Resource 15
The Alnstall and LWrtlnsert Calls 15
1be L WrtGet, AShutdown, and L WrtRemove Calls 17

The LAP Manager 18
AppleTalk Seleaion 19

Installing the AppleTalk Seleaion 19

II Contents

Intranode Delivery 19
Packet Reception 19

AppleTalk Address Resolution Protocol (AA.RP) 20
MRP Functions 20

The Ethernet Driver 20
Opening the Ethernet Driver 21
Transmission and Reception 21

Chapter 3 Coll to th• 'adev' AJe 23

The 'adev' File Contents 24
The 'adev' and 'atlk' Resources 25
Calls to the 'adev' Resource 25

T<e GetADEV Call (DO• 101) 26
Status-flag Byte 27

The Select.A.DEV Call (DO• 102) 28
Calls to the 'atlk' Resow'c:e 28

The Aimta1l Call (DO • 1) 29
The AShutdown Call (DO • 2) 29

Chapter 4 Calla to th• LAP Manager 31

Calling the LAP Manager 32
LAP Manager Functions 33

LWrtinsert (DO • 2) 33
LWltRemove (DO • 3) 34
LWrtGet (DO • 4) 35
LSetlnUse (DO - 5) 35
LGetSeUSend (DO • 6) 35
LRdDispatch (DO • 1) 36
LGetATalklnfo (DO• 9) 36
LAARP Attach (DO • 1) 37
LAA.R.PDetach (DO - 8) 37

Chapter 5 MRP and Data Packets 39

AboutMRP 40
Protocol sets 40
Hardware Addresses 41
Protocol Addresses 41
Obtaining an Addres,, 42

MRP Functions 42
Packet Categories 42
EtherTalk Addresses 43
A.ARP Operation 43

The Address Mapping Table 43

Choosing an Address 44
Random Address Selection 44
Probe Pac:kefs 44
Response to Probe Packets 45
Avoiding Duplicate Tentative Addresses 45
Request Packets 46
Respome to Request Packets 46

Examining Incoming Packets 47
Verifying Packet Address 47
Gleaning Information 48

Aging AMT Entries 48
Age-on-probe 49

Generic AARP Packet Formats 50
AABl' Ethemet-AppleTalk Packet Formats 52

Retransmission Details 53
Packet Specifics 53

Ethetralk Data Packet Format 54

Chapter 6 Th• Eth•m•t Driver 57

Write Data Structure 58
Protocol Handlers 59

Writing Protocol-handler Code 59
Calling ReadPacket and ReadRest 60

Opening the Ethernet Driver 61
Slot Manager sNextsRsrc Trap Macro 62
Device Manager PBOpen Call 62

Making Commands to the Ethernet Driver 63
The !Write Command 63
The EAttachPH Command 63
The EDetachPH Command 64
The ERead Command 64
The ERdCancel Command 65
The EGetlnfo Command 65
The ESetGeneral Command 65

Chapter 7 Th• EtherTalk Interface Card 67

.About the Ethetralk Card 68
Ethetralk Card Hardware Desaiption 68

Local Memory 70
Address Assignments 71
NIC Register Addresses 72

Contents iii

Appendix A EtherTalk Compon.nta A· 1

Component List A-2
Ethernet Driver Equates A-3
LAP Manager Equates A-4
AARP Equates A-5
ADEY P'Jle Boilerplate A-6

iv Contents

Figures and tables

Chapter 1 lntroducflon 1

Figure 1-1 AppleTalk Implementations 2
Figure 1-2 Network Ia>m 4

Chapter 2 EtherTalk overview 7

Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7

EtherTalk Component Relationship 8
Control Panel 10
The GetADEV Call 13
'Ibe SeleaADEV Call 14
Alnstall and LWttinsert Calls 16
LWrtGet, AShutdown, and LWrtRemove Calls 17
LAP Manager Position 18

Chapter 3 Calla to the 'adev' Fii• 23 .

Figure ~1 'adeV File Contents 24

Chapter 5 AARP and Data Packets 39

Figure 5-1 Generic AARP Packet Formats 50
Figure 5-2 A.ARP Ethemet-AppleTalk Packet Formats 52
Figure 5-3 EtherTalk Dara Packet Fonnat 54

Chapter 6 Th• Eth•m•t Driver 57

Figure 6-1 Write Dara Structure for Ethernet 58

Chapter 7 Th• EtherTalk lnterfQC• Card 67

Figure 7-1
Figure 7-2
Table 7-1
Table 7-2

EtherTalk Interface Card Architecture 69
Address Assignments 71
Page 0 Address Assignments (PSl-0, PSO•O) 72
Page 1 Address Assignments (PSl•O, PSO•l) 73

Figures and tables v

Appendix AEtherTalk Components A· 1

Table A-1
Table A-2
Table A-3
Table A-4

v I Figures and tables

EtherTalk Components A-2
Ethernet Driver Equates A-3
LAP Manager Equates A-4
AARP Equates A-5

Preface

nus preliminary note ~ intended to be used by Apple® software developers who wish
to develop an alternate AppleTalk® implementation or Ethernet application in
conjunction with the Macintosh,,. operating system. To make use of the information
presented here. you should have a working knowledge of the existing AppleTalk
environment and, depending on your application, a working knowledge of Ethernet

Document Contents
nus preliminary note provides you with an interactional overview of Apple's
EtherTalkTM software, as well as a detailed description of each software component.
Call definitions, register usage, and call applications are discussed.

Suggested Reading
Here is a list of reference materials that relate or apply direaly to the EtherTalk
network environment:

CJ Sidhu, Gursharan S., Richard F. Andrews and Alan B. Oppenheimer, Inside
AppleTalle (Apple Programmers and Developers Association)

o Inlnstde Mactntosh, Volume Il, Chapter 6 •The Device Manager" (Apple
Computer Inc.)

CJ Instde Mactntosh, Volume II, Chapter 10 •The AppleTalk Manager• (Apple
Computer Inc.)

CJ Instde Macmtosh, Volume V, Chapter 23 "The Device Manager• (Apple
Computer Inc.)

o Instde Mactntosh, Volume V, Chapter 24 "The Slot Manager" (Apple Computer Inc.)

o. Instde Mactntosh, Volume V, Chapter 28 •The AppleTalk Manager• (Apple
Computer Inc.)

o Ethernet Blue Book (Xerox Inc.)

CJ EtherTalk User Gutde (Apple Computer Inc.)

vii

Chapter 1

Introduction

Apple Talk
The name AppleTalk refers to a S)'Stem of hardware and software components that
transfer information when conneaed by a physical medium. 1be AppleTalk Personal
Network CAPN), Ether'I'alk, AppleShareTM, and LaserShareTM are all components of the
AppleTalk system. Figure 1-1 shows the AppleTalk system as it interacts with the APN
and Ether'I'alk implementations on a Macintosh ll computer:

Apple Talk

Protocol

,,... ,,,

Apple Talk
Link Access

Protocol

Unk Access
Protocol
Manager

: • : • • • • • •

AppleTalk Addras
Resolution
Protocol

Link
Ace•••
Protocol
Layer

• : : , ~---····-~ • • : Other Unk :
! Access !
: Protocols :•....•.........• • • : • : 1

: Other VF cards :
• • • • ',
' 'I • • • • ' ' ,.J JJ :

EtherTalk Unk
Access Protocol

EtherTalk card

'''''''''''''''l''''''''''''''''''''''''''''t''''''''''''''''''''''''''"' ,,,,,,,,,,,,,,,,,

J AppleTalk Personal Network J 1=~~~=~~~) Ethemet Cable

MSCNNNN
ART: NN x 17 pl
20.5 pi text to FN b/b

Figure 1·1
AppleTalk Implementations

2 Chapter 1: Introduction

Apple developed a specific set of rules, or communication protocols, to control the
transfer of information among all nodes on the network. These AppleTalk protocols
correspond to the various layers (Physical, Data Link) of the International Standard
Organization-Open Systems Interconnection (ISO-OSO reference model.

+ Note: Refer to hls'lde .A.ppleTalk and hls'lde Macintosh, Volume n for more
information about AppleTalk protocols.

AppleTalk Implementations
In addition to transferring information over the APN cabling scheme, AppleTalk
protocols can now transfer information over a higher-performance AppleTalk
connection- EtherTalk. EtherTalk, for the Macintosh n, consists of the EtherTalk
interface card and a software package which enables transmission and reception of
AppleTalk packe~ over Ethernet coaxial cable and allows compatibility with Ethernet.

Before the development of EtherTalk, the only option available to the user was to
transfer information over the APN or equivalent cabling system by using the AppleTalk

• Link Access Protocol (AI.AP) to perform node-to-node delivery of information. While
this process was sufficient for many situations, the Macintosh could transfer
information on only the APN. To expand the networking capability of the Macintosh,
Apple chose to incorporate a Link Access Protocol (LAP) Manager to perform a
•switching• function that can direa AppleTalk protocol information to the APN,
Ethernet, or any other LAPs that support additional networks.

LAP Functions

The AI.AP assigns a unique identification number to each device, or node, on the
APN. Th.is identification number, known as the node ID, is an 8-bit address that AI.AP
dynamically assigns at node-startup time. The 8-bit node ID works well on the APN
and is required by the AppleTalk protocols; however, the Ethernet data link only
recognizes 48-bit addresses. The EtherTalk Link Access Protocol (EI.AP) parallels the
AI.AP function of assigning addresses by using another protocol-AppleTalk Address
Resolution Protocol (AARP). The EtherTalk implementation of AA.RP converts, or
maps, a series of 8-bit AppleTalk node IDs and their 48-bit Ethernet equivalents. This
Preliminary Note ~ AA.RP and the driver-level EI.AP in more detail in later
~~~ . 

Apple Talk 3 



Using EtherTalk 
EtherTalk software is designed to operate with the Macint~h operating system and, 
more specifically, the Macinto.sh II computer. The Macint~h n may contain as many 
as six EtherTalk interface cards to allow conneaion to multiple Ethernet cabling 
systems. Any Maci.nt~h computer may operate EtherTalk software as long as a 
compatible Ethernet interface card and driver are present A high-level look at 
EtherTalk software reveals new network icons as shown in Figure 1-2. 

MSCNNNN 
ART: NN x 8.5 pi 
12 pi text to FN b/b 

Network Built-in EtherTalk 

Figure 1·2 
Network Icons 

When the user seleas the Network icon from the Control Panel, the content area of the 
Control Panel's window displays the icons for all AppleTalk connections supponed by 
the system, of which EtherTalk is only one. 1he Built-in icon represents the AppleTalk 
Personal Network. 

+ Note: AppleTalk must still be aaive in the Cho~ for any AppleTalk 
implementation to operate. 

In addition to the Control Panel software, EtherTalk software also contains these 
components: 

4 

o the Ethernet Driver, which is the interface to the Ethernet card. 

o the Link Access Protocol (LAP) manager, which standardizes interaction with 
AppleTalk drivers. 

o the AppleTalk Address Resolution Protocol CA.ARP), which performs Ethemet
AppleTalk address mapping; and which may also perform address mapping 
between AppleTalk addresses and other networks. 

o the LAP Manager INIT Resource, which informs the system of which AppleTalk 
conneaion to use at startup time. 

Chapter 1 : Introduction 



Possible Applications 
There are many possible applications that you may wish to develop. For example, you 
may want to create your own alternate AppleTalk implementation or to develop an 
Ethernet driver for use with a different interface card Other applications might be to 
make Ethernet ca.lls directly on a Macintosh, create your own A.ARP, or develop an 
EthefI'alk implementation for use on another device. 

Possible Appllcctions 5 



6 Chapter 1 : Introduction 





Chapter 2 

EtherTalk Overview 

7 



This chapter identifies the contents of each component of EtherTalk software and 
discusses their interaction and, to some extent, their application. Later chapters 
discuss each piece of EtherTalk software in mote detail. 

Block Diagram 
Figwe 2-1 shows all EtherTalk components and the way that these components relate 
to the AppleTalk environment. 

Apple Talk 
Pel'80nal Network 

MSCNNNN 
ART: NN x 17 pl 
20.5 pl text to FN bib 

Figure 2·1 

Apple Talk 
Appllcatlon• 

Apple Talk 

Protocol 

Other 
Driver 

Other: 
Cablln 

EtherTalk Component Relatlonshlp 

8 Chapter 2: EtherTolk Overview 

Control Panel 
Device File 

Fiie Type 'cdev' 

Ethernet 
Driver 

&therTalk 
card 

AppleTalk 
Devi- Fiie 

Fiie Type •aoev• 

I.AP Manager 
INIT 



Device Files 'adev' and 'cdev' 
AppleTalk Device files (file type 'adev') and the Control Panel Device files (file type 
'cdev') both reside in the System Folder. These device files work together to display a 
scrollable list of icons in the left side of the Control Panel. EthetTalk software contains 
the Network 'cdev' file which, when selected, displays a series of icons to represent 
each AppleTalk connection. Each alternate (other than Built-in) AppleTalk 
implementation must have its own 'adev' file. 

Control Panel Device Fiie 
Control Panel Device files, which are of file type 'cdev', contain various resources that 
communicate machine options in some form (buttons, icons, and so on) to the user 
via the Control Panel. These 'cdev' files also handle user events such as clicks and 
keystrokes. Examples of 'cdev' files are the General, Mouse, Keyboard, and Color 
files. 

EtherTalk software contains a new 'cdev' file called Network. 1be Network 'cclev' file, 
located in the System Folder, allows the user to selea one AppleTalk connection from 
a list of others. The Network 'cdev' file contains various resources to display user
interface selections and to communicate selection information to the system. 

When the user selects the Control Panel from the Apple Menu, the Control Panel 
scans the System Folder for files of type 'cdev'. Upon fmding a 'cdev' file, the Control 
Panel takes the file's icon and title (string) and adds them to the scrollable list on the 
left side of the Control Panel. When all the icons are added to the saollable list, the 
Control Panel selects the General icon and constructs the control information in the 
window's content area. At this point, the user may selea any one of the icons in the 
saollable list. 

Device Flies 'adev' and 'cdev· 9 



Figure 2-2 shows the Built-in AppleTalk seleaion and the alternate AppleTalk 
seleaions EtherTalk(l) and EtherTalk(2) that are available to the user after the Network 
icon is selected. 

------------- Control Panel 

MSCNNNN 
ART: NN x 17 pi 

.1 

.. fl 
Moust 

IC I I 
EL• 

115411 

20.5 pi text to FN b/b 

Figure 2-2 
Control Panel 

II 
liffl@ 

-=~ 

-----------

~ 
EthtrT11k(2) 

+ Note: The term Networll 'cdev' refers to the resources that comprise the Network 
'cdev' file. 

When the user seleas the Network icon, the Network 'cdev' scans the System Folder for 
all files of type 'adev'. As the Network 'cdev' accesses each 'adev' file, each 'adev' f.tle 
responds by passing various information back to the Network 'cdev' file, including the 
'adev' icon and icon string. Each 'adev' f.tle may support more than one AppleTalk 
conneaion of the same type and, if so, must also instrua the Network 'cdev' as to the 
number of identical icons to display and the strings for each. 

10 Chapter 2: EtherTalk Overview 



For example, if two EtherTalk card.t are installed in the Macintosh II, a single 'adev' file 
that supports both cards informs the Network 'cdev' to display two EtherTalk icom and 
place an identifying string under each icon. For EtherTalk, the Network 'cdev' places 
the string EtherTalk(n) under each icon, where 'n' equals each card's slot number. 

After all icom appear in the content area or the Control Panel, the user may selea one 
or the AppleTalk icons for use. When the user makes a new selection, the Network 'cdev' 
highlights this icon and performs various operatiom to inform the system or the new 
A~pleTalk selection. 

AppleTalk Device Fiie 
The comtruction of an 'adev' file is similar to that of a 'cdev' me. For each alternate 
AppleTalk implementation such as EtherTalk, the 'adev' file must contain the following 
resources: 

o 'ICN•' 

Cl 'STR' 

o 'BNDL' 

o 'PREF 

o owner resource 

o 'adev' code resource 

o 'atlk' code resource 

The 'ICN•" and 'STR ' resources are the icon and the string that the Network 'cdev' file 
displays in the Control Panel content area for the alternate AppleTalk 
implementation. In addition, if the 'adev' file contains the 'BNDL', 'PREF', and owner 
resources, and the 'adev' file has it's bundle bit set, the 'ICN#' will appear as the custom 
icon in the Finder. 

The 'adev' and 'atlk' Resources 
The 'adev' and 'atlk' resources are pieces or stand-alone code. The 'adev' resource is 
responsible for handling all interaction with the Nerwork.'cdev'. The Network 'cdev' 
loads the 'aclev' resource into the application heap, calls the 'adev' resource to identify 
or to selea an AppleTalk implementation, and removes the 'adev' resource as the 
Network 'cdev' requires. 

The 'atlk' resource contains the aaual implementation code for the alternate 
AppleTalk selection. The Network 'cclev' loads the 'atlk' resource into the system heap, 
calls for initialization and installation, and detaches the 'atlk' resource. Because the 
Network 'cdev' detaches the 'atlk' resource, the current alternate AppleTalk selection 
remains in effea when the 'adev' file doses. 

Device Ries 'adev' and 'edev· 11 



The LAP Manager INIT Resource 
When the user makes an alternate AppleTalk selection from the Control Panel, the 
Network 'cdev' updates parameter RAM with a value that .represents the current 
AppleTalk selection. 11li.s value remains in pan.meter RAM when the Macintosh is 
powered off. 

At boot time, the LAP Manager INIT raourc:e, located in the System File, inter.acts with 
the 'atlk' resource in much the same manner as the Network 'cdev' does. 'Ibis INIT 
resource obtains the last AppleTalk selection value from parameter RAM, loads the 
corresponding 'atlk' file into the system heap, calls the 'atlk' resource for initialization, 
and then detaches the 'atlk' resource. 

+ Note: The LAP Manager INIT resource also loads the LAP Manager into memory 
and initializ.es the LAP Manager at startup time. 

Calls to the 'aclev' Resource 
When the user seleas a new alternate AppleTalk implementation fonn the Control 
Panel, the Network 'cdev' makes two calls to the 'adev' resource to handle the user 
interface. These two calls are GetADEV and SeleaADEV. 

12 Chapter 2: EtherTalk Overview 



The GetADEV Call 

When the user seleas the Network 'cdev' icon in the Control Panel, the Network 'cdev' 
makes a series of Get.ADEV calls to each 'adev' resource in the System Folder. Each 
'adev' resource responds by telling the Network 'cdev' how many icons to display and 
by identifying the string ('STR ') for each icon. Figure 2-3 shows this interaaion. 

EtherTalk - File Type 'adev' Other - File Type 'adev' 

EtherTalk 

. 
~ 
Calls 

MSCNNNN 
ART: NN x 17 pi 

~ 

20.5 pi text to FN b/b 

Figure 2-3 
The GetAOEV Coll 

'adev' resource Other 'adev' resource 
_A. 

Icon, number Icon, number 
of loons to GetADeJ of icons to 
display, and Calls display, and 
icon string icon string 

~· 
~, 

Network 'cdev' resource 

Network - Fiie Type 'cdev' 

+ Note: The Network 'cdev' does not make the GetADEV call to the Built-in AppleTalk 
code. The Built-in code is part of the Network 'cdev' rile. 

Device Flies 'adev' and 'cdev' 13 



The SelectADEV Call 

When the user clicks on an alternate AppleTalk icon, the Network 'cdev' makes a 
SelectADEV call to the 'adev' resource to indicate the selection and determine the 
value that the AppleTalk selection wants to place in parameter RAM. nus value 
indica~ the details of the AppleTalk selection. 

For example, imagine that a Macintosh n contains two Ethe.r'Talk cards and displays 
two Ethe.r'l"alk icons. The user selea,, one icon. The Network 'cdev' makes a 
SelectADEV call to the 'adev' resource. The 'adev' resource returns a value to the 
Network 'cdev* to indicate which card is currently selected. nus value is eventually 
passed to the 'atlk' resource and placed in parameter RAM. 

Figure 2-4 illustrates the SelectADEV call for EtherTalk. 

. 
EtherTalk - Fiie Type 'adev' 

EtherTalk 'adev' r••ource 

Value to 
set in 

SelectADEV 
Parameter 

Call 
RAM 

r 

Network 'cdev' resource 

Network - Fii• Type 'cdev' 

MSCNNNN 
ART: NN x 17 pi 
20.5 pi text to FN bib 

Figure 2·4 
The SelectADEV can 

+ Note: Refer to Chapter 3 for more information about calls to the 'adev' resource. 

14 Chapter 2: EtherTalk Overview 



Calls to the 'atlk' Resource 
In addition to making the SeleaADEV call, the Network 'cdev' must also close down the 
previously seleaed AppleTalk implementation and install the new user selection as the 
a.irrent AppleTalk implementation. To close down the AppleTalk selection, the 
Network 'cdev' makes an AppleTalk Shutdown CAShutdown) call to the 'atlk' resource. 
To install the new AppleTalk selection, the Network 'qjev' makes an AppleTalk Install 
CAinstall) call to the 'atlk' resource. 

The Alnstall and L Wrtlnsert calls 

After the· Network 'cclev' calls the 'adev' resource with the SelectADEV call, the Network 
'cdev' loads the new 'atlk' code into the system heap, calls the 'atlk' resource with an 
Alnstall call, and detaches the 'atlk' resource so that it remains in memory when the 
user closes the Control Panel. 

Device Flies 'odev' and 'cdev' 15 



Generally, in response to the Ainstall call, the 'atlk' code makes a Lap Write Insert 
O.Wrtin.sert) call to the LAP Manager to tell the LAP Manager to install a portion of the 
'atlk' code into the LAPWrite hook which is a low-memory location equal to ATalkHk2 . 
The portion of 'atlk' code that the LAP Manager loads into low memory is responsible 
for sending packeas. At startup time, the LAP Manager INIT resource also loads the 
'atlk' resource, as indicated by parameter RAM, into the system heap; calls with 
A.Install; and detaches it. Figure 2-5 illustrates the Alnstall .and LWrtlnsert calls. 

New AppleTalk Selection -
Fiie Type 'adev' 

LWrtlnsert aJ 
-., 

'atlk' resource . 

Alnstall 

Network 'cdev' resource 

MSCNNNN 
ART: NN x 17 pl 
20.S pi text to FN b/b 

Figure 2·5 
Alnstall and LWrtlnsert Cells 

Network - File Type 'cdev' 

16 Chapter 2: EtherTalk Overview 

LAP Manager 



The LWrtGet, AShutdown, and LWrtRemove Calls 

To close down the previous AppleTalk seleaion, the Network 'cdev' makes an 
AShutdown Call to dis~ of the 'atlk' resource. However, the Network 'cdev' has 
detached the previously installed 'atlk' code and does not know its location in the 
system heap. Before making the AShutdown call to the 'atlk' code, the Network 'cdev' 
makes a Lap Write Get 0. WrtGet) call to the LAP Manager to obtain the location of the 
'atlk' code. In general, after the Network 'cdev' makes the AShutdown call, the 'atlk' 
code should respond by making a LAP Write Remove 0.WrtRemove) call to the LAP 
Manager. The LAP Manager responds to this call by removing the old 'atlk' code in the 
LAPWrite hook. Normally, the AShutdown and LWrtRemove calls are made before the 
Ainstall and LWrtlnsert calls. 

Figure 2-6 illustrates the LWrtGet, AShutdown, and LWrtRemove calls. 

© 
'atlk' code In LWrtRemove .. LAP Manager 

.. ~ System Heap 

... 
® location of 

<D © 'atlk' code 
in System LWrtGet 

AShutdown He~ 

,, . 

Network 'cdev' resource 

Network - File Type 'cdev' 

MSCNNNN 
ART: NN x 17 pl 
20.5 pi text to FN b/b 

Flgure 2·6 
LWrtGet. AShutdown. and LWrtRemove Calls 

Device Files 'adev' and 'cdev' 17 



The LAP Manager 
The LAP Manager standardizes interactions with the AppleTalk drivers/protocol stack 
and the link access protocol layer of the current AppleTalk selection. By standardizing 
these interactions, various AppleTalk implementations will not interfere with each 
other and will not have to make use of information that is private to the AppleTalk 
drivers. 

The LAP Manager resides between the link access protocols of all AppleTalk 
.implementations and the AppleTalk protocol stack, as Figure 2-7 shows. 

Apple Talk 

Protocol 

''''''''''''""''''''''''''''''''''''''''''''''" ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 

Apple Talk 
Link Acceu 

Protocol 

Link AcceH 
Protocol 
Manager • 

: 
Link 

• • • : • • • • 

AppleTalk Acldreas 
Resolution 
Protocol 

Ace••• 
Protocol 
Layer 

: : 
, .............. t... ............. . 

• • : Other Link : 
: AcceH : 
: Protocols : 
..................... ~--·······-' 

• • • ................. : ............................ . • • : Other VF cards : • • • • : . . ' ' ' : ... ·1··--··-.J '-•········· . ' 

EtherTalk Link 
Acee•• Protocol 

EtherTalk card 

"'''''''''''''''"" ''''''''''''''''''''''''''''''''\"'''''''''''''''''''''''''''''' ,,,,,,,,,,,,,,,,,,,, • --------------- " ................... "" ............................. ,----------.... 
AppleTalk Personal Network 

MSCNNNN 
ART: NN x 17 pl 
20.5 pi text to FN bib 

Figure 2-7 
LAP Manager Position 

l Other Cable l 
! ...................... - .................... .J ----------

Ethemet Cable 

18 Chapter 2: EtherTalk Overview 



The LAP Manager is installed in the system heap at startup time, before the AppleTalk 
drivers are opened. The LAP Manager takes control of the LAPWrite hook, which is 
located in low memory as ATalkHk2. The AppleTalk drivers use the IAPWrite hook to 
direct outgoing AppleTalk packets. 

AppleTalk Selection 
The LAPWrite hook contains the code that is, for all practical purposes, the actual 
AppleTalk implementation for outgoing packets. The LAP Manager installs this code 
in LAPWrite hook under the direction of the code itself. In the case of EtherTalk, the 
'atlk' code resource tells the LAP Manager which portion of the 'atlk' code to insert in 
the LAPWrite hook. Loading 'atl.k' code into the LAPWrite hook happens at two 
different times: 

o whenever the user makes an AppleTalk selection from the Control Panel 

o at startup time when the INIT resource obtains the AppleTalk selection value from 
parameter RAM. 

Installing the AppleTalk Selection 

As indicated earlier in this chapter, when the user makes a new AppleTalk selection, 
the Network 'cdev' loads the 'atlk' code into the system heap. The 'atlk' code then makes 
a LWrtlnsert call to the LAP Manager. The LWrtinsert call contains a pointer which tells 
the LAP Manager the location of the portion of the'atl.k' code to insert into the 
LAPWrite hook as the AppleTalk selection. 

lntranode Delivery 

The LAP Manager handles the sending of an AppleTalk packet to its own node unless 
the 'atl.k' code specifies otherwise. If the LAP Manager is to handle intranode packets, 
the LAP Manager generally will not call the 'atl.k' code for packet delivery. However, if 
the LAP Manager is to handle intranode delivery and an application sends a broadcast 
packet to the network, the LAP Manager will handle the intranode delivery of this 
packet and will call the 'atlk' code for packet transmission on the network. 

Packet Reception 
When the 'atlk' code receives an incoming AppleTalk packet, the 'atlk' code makes a 
LAP Read Dispatch (LRdDispatch) call to the LAP Manager to indicate that a packet 
needs to be delivered. The 'atlk' code delivers this packet by providing and executing 
routines that emulate ALAP's ReadRest and ReadPacket routines. 

Refer to Chapter 4 for more information on the LAP Manager. 

The LAP Manager 19 



AppleTalk Address Resolution Protocol (AARP) 
AARP can be used to map between any two sets addresses. The AARP implementation 
that EthcrTalk uses maps between a 48-bit Ethernet address and an 8-bit AppleTalk 
address. To distinguish between these two sets of addtesses fwther, this document will 
refer to them as follows: 

o An Ethernet address, which is the node address that is determined by the 
Physical and Link layers of the network. An example of an Ethernet address is a 
48-bit Ethernet destination address. The Ethernet address is the EthetTalk 
equivalent of the generic hardware addres.5. 

o An AppleTalk address, which is the node address used by high-level AppleTalk 
protocols. An example of an AppleTalk addres.$ is an 8-bit AppleTalk node 
address for the Datagram Delivery Protocol (DDP). The AppleTalk address is 
the EtherTalk equivalent of the generic protocol address . . 

AARP Functions 
A generic AARP implementation resides between the Link Access layer and the 
Network layer of the network and performs three basic functions: 

o lntt1al determtnatton of a unique protocol address for a node using a gtven 
protocol set. 1llis address must be unique among all nodes on the network. 

Cl Mapptng from a protoc<>I address to a hardware address. Given a protocol 
address for a node on the network, AARP returns either the corresponding 
hardware address or an error that indicates that no node on the network has such 
a protocol address. 

Cl Ftltertng of padcets. For all data packets received by a given node, AARP verifies 
that the destination node address of the packet is equal to either the node's 
protocol address or the network broadcast value or multi-ca.st value of the node. 
If the packet does not equal either of these values, AARP discards the packet. 

Refer to Chapter 5 for more information on AARP. 

The Ethemet Driver 
While using EthctTalk software on the Macintosh n, the Ethernet driver serves as a 
general-purpose interface between the 'atlk' resource and the Ethernet Interface card. 
The driver interface is recommended for use with other Ethernet implementations, 
such as an interface to a Macintosh SE driver. 

20 Chapter 2: EtherTalk Overview 

CONFiOENT\AL 



The Ethernet driver, located in the system file, is named .ENET. If you are developing 
a driver for use with a s/otless device, name the driver .ENETO. 

Opening the Ethernet Driver 
On the Macint~h II, use the Device Manager to make a PBOpen call to open the 
Ethernet driver. Before you can make this call, you will have to obtain certain field 
values, such as the EtherTalk card slot number. You may obtain these field values by 
using the Slot Manager sNextsRsrc trap. 

The Ethernet driver opens in AppleTalk mode. In this mode, packets for transmission 
can contain no more than 768 byteS. Packets for transmission and reception share a 
common buffer pool. The transmission-packet size is large enough to encapsulate 
packets for transmission and to allow a larger buffer pool area for packet reception. If 
packets require more than 768 byteS, issue a control call CESetGeneral) to change the 
mode from AppleTalk to General. In General mode, the driver can transmit any valid 
Ethernet packet. 

Transmission and Reception 
A series of Device Manager control calls are made to the driver to control packet 
transmission and reception over Ethernet. These calls are as follows: 

o EAttachPH, which aaaches a protocol handler to the driver specified by the 
protocol type 

o EDetachPH, which removes a protocol handler from the driver for the given 
protocol type 

o EWrite, which writes a packet out to Ethernet 

· o ERead, which reads in a pack.et 

o ERdCancel, which cancels a specified ERead call 

o EGetlnfo, which returns the node address on which the driver is running 

o ESetGeneral, which switches the driver from AppleTalk to General mode 

+ Note: For more information about the Ethernet driver, ~fer to Chapter 6. 

The Ethernet Driver 21 



22 Chapter 2: EtherTolk Overview 



Chapter 3 

Calls to the 'adev' File 

23 



This chapter contains information about making calls to the 'adev' file for an 
AppleTalk selection. The 'adev' ftle is similar to the 'cdev' tlle, and both reside in the 
System Folder. When the user seleas the Network 'c:dev' icon from the Control Panel, 
the Network 'cdev' makes a series of c:a1ls to each 'adev' me and displays the 'adev' icons 
to represent all AppleTalk selections available to the user. In addition, the Network 
'cdev' file highlights the current AppleTalk aelec:tioo. If the user then makes a different 
AppleTalk selection, the Network 'cdev' highlights the new selection and updates 
para.meter RAM with the information obtained from the 'adev' resource. The next time 
the Macintosh restarts, the LAP Manager INrr resource obtains the latest user selection 
from parameter RAM, loads the corresponding AppleTalk 'at1k' resource into the 
system heap, and initializes the 'atlk' code. 

The 'adev' File Contents 
The 'adev' file for EtherTalk and any other AppleTalk selection is located in the System 
Folder and must contain the following resources and code segments as shown in Table 
2-1. 

MSCNNNN 
ART: NN x 17 pi 
20.5 pi text to FN b/b 

Figure 3·1 
'odev' Fiie Contents 

Code 

'BNOL' resource 

'FREF' resource 

'ICN#' resource 

'STR ' resource 

'adev' code segment 

'atlk' code segment 

24 Chapter 3: Calls to the 'adev' FUe 

ID 

-4032 

-4032 

-4032 

-4032 

in range of 1-254 

in range of 1-254 



In addition to these resources and code segmentS, the 'adev' r..J.e should contain an 
owner resource to display the icon in the Finder. For example, because the EtherTalk 
'adev' file has a aeator of etlk, the 'adev' contains an owner resource called 'etlk' with 
an ID of 0. In addition, the 'adev' flle has irs bundle bit set to allow the 'ICN•' resource 
to display the EtherTalk icon in the Pinder. 

The 'adev' and 'atlk' Resources 
The 'adev' resource located in an 'adev' file, is responsible for handling all interaction 
with the user. The Network 'cdev' loads the 'adev' resource into the application heap, 
calls the 'adev' resource, and removes it as needed. lbe 'atlk' resource is responsible 
for the actual implementation of the alternate AppleTalk selection. When the user 
selects an alternate AppleTalk icon, the Network 'cdev' flle loads the 'atlk' resource into 
the system heap, calls the 'atlk' resource for initialization, and then detaches it At 
startup time, the UP Manager INlT resource performs the loading, calling, and 
detaching of the 'atlk' resource. 

The 'atlk' resource must have its system-heap bit set and botlt the 'adev' and 'atlk' 
resources should have their locked bit set. The resource ID of the 'adev' resource and 
the 'atlk' resource must be the same and in the range of 1 to 254. When stored in the low 
byte of parameter RAM, this ID identifies the current AppleTalk selection. 

+ Note: Parameter RAM contains 4 bytes of information that identify an AppleTalk 
selection. The _low byte contains the resource ID of the 'adev' resource and the'atlk' 
resource, and the high bytes contain other information that uniquely identifies the 
selection. 

Like drivers, no two AppleTalk implementations can have the same ID. Apple reserves 
the use of the ID ranges of 1to127. You may use the ID ranges of 128 to 254. Contact 
Apple Technical Support to obtain an ID. 

Calls to the 'adev' Resource 
The Network 'cdev' calls the 'adev' resource, at the rust location in the resource (an 
offset of 0), at two diffeient times: 

o When the user selects the Network 'cdev' icon, the Network 'cdev' calls GetADEV. 

o When the user selects an alternate AppleTalk icon, the Network 'cdev' calls 
SelectADEV. 

The Network 'cdev' puses a value in register DO that distinguishes between these two 
calls. Your code must observe Pascal register saving conventions and should return 
with an R'IS. 

Calls to fhe 'adev' Resource 25 



The GetADEV Call (DO • 101) 

Call: Dl Oong) • o.iment value of parameter RAM 

D2 Oong) • value returned from previous GetADEV call, or 0 if first 
GetADEV call 

Return: DO (byte) • status flag 

D2 Oong) • next value for 02 to call; also used by SelectADEV call 
AO -> string to place under icon. 

When the user seJeas the Network 'cdev' icon, the Network 'cdev' neech to display a list 
of icom to represent all alternate AppleTalk selections that are available to the user. 
To do this, the Network 'cdev' makes a series of GetADEV calls to each 'adev' resource 
in ·the System Folder. Since each 'adev' resource could possibly be handling multiple 
interface cards, the 'adev' resource must tell the Network 'cdev' how many icons to 
display and identify the string for each icon. The Network 'cdev' displays these 
identical icom for each card as the 'IQl#' resource specifies. You may use the string to 
which AO points to identify the icon uniquely. For example, you could obtain the slot 
number of the ca.rd with a Slot Manager sNextsRsrc call and then append the slot 
number to the string. 

The first GetADEV call contaiN the current value of parameter RAM in 01, to indicate 
the current AppleTalk selection, and 0 in 02 to indicate that this call is the first 
GetADEV call. The 'adev' resource respond,, to the first GetADEV call by returning a 
status-flag value in DO, indicating whether or not there are additional cards that this 
'adev' resource supports. Also, the 'adev' resource returns a value in 02 that the 
Network 'cdev' associates with this icon, and a pointer in AO that points to the Pascal 
string to place under the icon. 

+ Note: The Network 'cdev' also passes the 02 value to the 'adev' resource when 
making the SelectADEV call. 

If the starus flag indicates to the Network 'cdev' that there is an additional card that the 
'adev' resource supports, the Network 'cdev' makes another GetADEV call with the 
same value in 01 and the 02 value that was returned from the fust call. Upon receipt of 
the 02 value, the 'adev' resource knows it returned first-call information the last time, 
and responds by returning second-call information to the Network 'cdev'. The Network 
'cdev' continues to make subsequent GetADEV calls until. the status flag indicates that 
there are no more cards to support. When the user seleas an icon that the 'adev' 
resource supports, the Network 'cdev' makes a SelectADEV call to the 'adev' resource, 
passing the value in D2 to indicate the o.irrent selection. 

26 Chapter 3: Cells to the 'cdev' FUe 



Status-flag lyte 

There are three swus-ftag bytes (-1, 0, and 1) that the 'adev' resource may retum in DO 
to indicate the status of the alternate AppleTalk selection. 

1be 'adev' returns DO• -1 to infonn the Network 'cdev' that there is one and maybe 
more AppleTalk selections (carcb) supported by this 'adev' resource. Retuming DO • 
-1 also indicates to the Network 'cdev' that this AppleTalk selection seems to be the one 
currently selected, as indicated by parameter RAM. 1be Network 'cdev' responcb by 
making another GetADEV call to the 'adev' resource. 

I 

Returning DO • 0 also informs the Network 'cdev' that thete is one and maybe more 
AppleTalk selections to suppon; however, returning DO • 0 also indicates that this 
AppleTalk selection is not the one currently selected, as indicated by parameter RAM. 
1be Network 'cdev' responcb by malcing another GetADEV call to the 'adev' resource. 

Returning DO • 1 informs the Network 'cdev' that there are no more AppleTalk 
selections to support. 

+ Note: The 'adev' resource may return DO • 1 in response to the the first GetADEV 
call to inform the Network 'cdev' that there are currently no AppleTalk selections to 
support. 

Before the 'adev' returns information about an alternate AppleTalk it supports, the 
'adev' resource examines the high 3 byte:S of the long word in Dl for the current value 
of parameter RAM. Depending on the contents of Dl, the 'adev' resource returns the 
appropriate status value in DO. If the 'adev' resource returns DO • -1, the NetWOrk 'cdev' 
checks various system parameters and highlights the icon only if it is the current 
selection. The 'adev' may be wrong about identifying the current selection to the 
Network 'cdev'. For instance, after two different AppleTalk implementations examine 
the high 3 bytes of parameter RAM, they both may retum DO • -1. To handle this 
possibility, the Network 'cdev' examines the low byte of parameter RAM, which 
contains the resource ID of the previous selection, and matches the ID with the proper 
AppleTalk implementation. The Network 'cdev' highlights the appropriate icon after 
making the final determination. 

Calls to the 'adev' Resource 27 



The SeleetADEV Call (DO • 102) 
Call: 02 Qong) • value returned from associated GetADEV call. 

Return: Dl (high three bytes)• value to set in parameter RAM; also passed to 
'atlk' code by the Ainstall call. 

The Network 'cdev' makes a SeleaADEV call to the :wociated 'adev' resource when the 
user selects an alternate AppleTalk icon. 'Ibis call's main purpose is to determine the 
value that the 'atlk' code wishes to store in parameter RAM. ~ value, which is specific 
to the alternate AppleTalk implementation, indicates the details of the alternate 
AppleTalk sele<:tion and is passed to the 'atlk' resource by the Ainstal1 call. For 
instance, in addition to the resource ID of the 'adev' resource and 'atlk' resource, the 
high 3 bytes may contain the slot number of the interface card ($09 - SOE). Depending 
on your application, you may wish to direct the 'adev' resource to display a dialog box 
at this point to obtain some type of user information such as data rate, and to save this 
information in paiameter RAM. 

+ Note: The Selea.ADEV call is not an initialization call. 

Calls to the 'atlk' Resource 
The 'atlk' resource, loaded into the system heap by the Network ··cdev', contains two 
distina seaions of code. The rust sea.ion, at the start of the resource, contains the 
LAPWrite code to be insened into the LAPWrite hook as the alternate AppleTalk 
implementation. This procedure is explained in detail in Chapter 4. 

The second seaion of the code, located at the start of the 'atlk' resource plus two, 
contains the initialization and shutdown routines. After the Network 'cdev' makes the 
Select.ADEY call to the 'adev' resource, the Network 'cdev' loam the associated 'atlk' 
resource into the system heap and calls it with Ainstall to perform initialization. The 
LAP Manager lN1T resource also makes the Alnstall call at startup time to initialize the 
'atlk' resource as indicated by parameter RAM. Following this call, if there is no error, 
the Network 'cdev' detaches the 'atlk' resource (from the Resource Manager) so it will 
remain in the system heap when the user closes the Control Panel. 

The NetWOrk 'cdev' also makes an AShutdown call to disJX*= of the previously selected 
'atlk' resource. Before making this call, the Network 'cdev' needs to obtain the location 
of the 'atlk' resource because it is detached from the Resource Manager. To accomplish 
this, the Network 'cdev' calls the LAP Manager with LWrtGet, which returns the location 
of the LAPWrite code. The LAPWrite code starts at the beginning of the 'atlk' resource; 
therefore, the Network 'cdev' knows where to call the 'atlk' code with AShutdown. 

For the Ainstall and AShutdown calls, the contents of register 00 indicate which call is 
made by the Network 'cdev'. The code must observe interrupt-register-saving 
conventions (it may use 00-03 and AO-A3) and should return with an RTS. 

28 Chapter 3: Calls to the 'odev· FHe 



The Alnstall Call (DO • 1 > 
Call: Dl Oong) • value from parameter RAM (as set in the SeleaADEV 

call) 

Return: DO • error code. 

Dl (high 3 bytes) • new value to set in parameter RAM 

When the Network 'cdev' or LAP Manager INIT resource makes the Ainstall call to the 
'atlk' code, it should respond by allocating variables, opening the appropriate VO 
device (such as the slot driver), and performing any other initialization necessary. 
1be 'adk' code should call the LAP Manager with a LWrtlnsert call to install itself as the 
alternate AppleTalk selection. This call should return a value to set in parameter RAM 
only if that value is different than the one received; otherwise, the 'atlk' code should 
preserve Dl. If an error occurs during any portion of this process, your code should 
return a negative value in DO; otherwise, DO should return 0 . . 

The AShutdown Call (DO • 2) 
'Ibere are no arguments to the AShutdown call. The Network 'cdev' makes this call after 
the LAP Manager doses the AppleTalk drivers, and before the Network 'cclev' installs a 
new alternate Apple Talk implementation. The 1atlk1 code should issue a L WrtRemove 
call to the LAP Manager, dispose of its variables, and perform any other operations 
necessary before the Network 'cdev' disposes of the 'adk' resource. 

Calls to the ·attk' Resource 29 



30 Chapter 3: Calls to the 'adev' Fiie 



Chapter 4 

Calls to the LAP Manager 

31 



The LAP Manager standardizes interactions between the AppleTalk protocol stack and 
the Link Access layer of the current AppleTalk selection. Standardizing these 
interactions eMUres that various AppleTalk implementations will not interfere with 
eac:h other and will not have to make use of information thatis private to the AppleTalk 
drivers. The LAP Manager resides between the LAPs (suc:h as ALA.P and EI.AP) of all 
AppleTalk implementations and the AppleTalk protocol stack. 

J 

This c:haprer describes the c:alls that the LAP Manager provides. Once the Network 
'cdev' loads the 'atlk' a>de into the system heap and makes the Alnstall call, the 'atlk' 
code responds by making a call to the LAP Manager whic:h inserts the 'ad\<' code into 
the I..APWrite hook. 1be LAP Manager also provides functions for removing the 'atlk' 
code from the I..APWrite hook, receiving packets from the network, and standardizing 
.the packet transfer process with AppleTalk's .MPP driver. 

The LAP Manager is installed in the system heap at boot time, before the AppleTalk 
Manager opens the .MPP driver. 

Calling the LAP Manager 
1be 'atlk' code resource makes all calls to the LAP Manager by jumping through a low
memory location, with DO equal to a dispatch code that identifies the function. '1be 
exact sequence is 

HOVE.W tcode,00 ; DO • func:ticn 

HOVE.L LAPHqrPtr, An ; An -> start 

JSR LAPMqrCall (An) ; Call at entry pcint 

LAPMgrPtr is defined as the low-memory global ATalkHk2, whic:h is the location 
jumped through by the .MPP driver immediately before it writes a packet out through 
AlAP to the APN. If the user selects an alternate AppleTalk implementation, the LAP 
Manager uses LAPMgrPu to take control at this point and call the alternate AppleTalk 
implementation. Offset LAPMgrCall within this code is the command-proces.sing part 
of the LAP Manager. 

+ Note: ATalkHk2 is not defined in the original Macintosh ROMs. '1be LAP 
Manager is available only on Macintosh Plus and later ROMs. 

32 Chapter 4: Calls to the LAP Manager 



LAP Manager Functions 
The LAP Manager supports the following nine functions that are used for packet 
handling. 

LWrtlnsert (DO• 2) 
Call: AO -> code to insert (fU'St part of 'atlk' resource) 

Dl (byte) • flap 
02 (word) • maximum number of times to try to get an unused node 
address (0 • infinite) 

Return: DO • 0 (no error) 

nus call inserts an alternate AppleTalk in the LAPWrite hook. After the 'atlk' resource 
makes this call, the LAP Manager calls the code to which AO points before writing any 
packet out on the network. Use the bits in the low byte of Dl to inform the LAP Manager 
of the way to handle the packet Set these bits to indicate the following to the IAP 
Manager: 

o Btt 7 • let the 'atlk' code handle self-sends (intranode delivery); normally the 
LAP Manager intercepts self-send packets and processes them. 

CJ Bit 6 • do not disable the port B serial-communications controller (SCC); 
normally the LAP Manager disables the SCC. 

CJ Bit 5 • honor the server/workstation (server/wks) bit in the node-number-
assignment algorithm. 

The LAP Manager generally handles intranode-packet delivery (packets sent to one's · 
own node). If a packet is an intranode packet, the IAP Manager delivers this packet 
without calling the code in the LAPWrite hook; however, if the packet is a broadcast, 
the LAP Manager delivers the packet within its node and calls the 'atlk' code to handle 
the broadcast delivery. For this process to happen, the .MPP driver's SelfSend flag 
must be set To disable the LAP Manager's handling of intranode delivery, set bit 7 in 
Dl when ma.king the L Wrtlnsert call. 

Setting bit 6 in Dl tells the LAP Manager not to disable SCC port interrupts. Normally, 
the LAP Manager disabies these interrupts because it assumes that the alternate 
AppleTalk implementation does not want to receive AI.AP packets on this port. 

When picking a node address, set bit 5 to tell the LAP Manager to honor the server/wks 
bit Normally, the LAP Manager assumes that the alternate AppleTalk implementation 
does not distinguish between server addresses (128-254) and workstation addresses 
(1-127), and that the AppleTalk implementation wants to pick a node address in the 
full range of 1 to 254. 

LAP Manager Functions 33 



The LAP Manager calls the code to which AO points at two different times. The first is at 
node-address-choosing ti.me. The LAP Manager calls the 'atlk' code for each sec of 
ENQs CAI.AP type $81) that AI.AP would nonnally send out to the network. The second 
is ac the ti.me when the AppleTallc drivers would nonnally write a packet out through 
.A.LAP. Once installed in the LAPWrite hook, the LAP Manager calls the 'atlk' code as 
follows: 

AO -> where to retum when done with the operation 
Al -> WDS (if sending a data packet, not an ENQ) or port-use byte (if 

sending ENQs) 
A2 -> .MPP variables 
DO (byte) • nonzero if sending ENQs, zero if not 

Dl-> where to return in .MPP to continue packet processing 
D2 (byte) • AI.AP destination address 

The 'atlk' code should return with a normal RTS if the write is still in progress, and 
should jump to the location to which AO points when the write finishes. When the write 
finishes, it must reset Al, A2, and 02 to their initial values, and must preserve A4-A6 
and 04-07. If the code wishes the .MPP driver to continue its normal processing (for 
example, if the code does not intercept the call), it should jump to the location to 
which Dl points. Generally, code will intercept the call. 

If DO is nonzero, which indicates a call to send ENQs, the code should query if the 
address that 02 specifJes is in use, and return through AO immediately. At any time 
thereafter, if the code discovers that the address is in use, the code should make a 
ISetinUse call to the LAP Manager. 

+ Note: The LAP Manager passes both the variable pointer of the .MPP driver and the 
address of the port-use byte (if sending ENQs) to the 'atlk' code. Do not assume that 
pointer is stored at location $208 CAbusVars) or that the port-use byte is at 
location $291 (PortBUse). Save these pointers from the fust ENQ call for future use: 

LWrtRemove (DO • 3) 
Return: DO • 0 (no error) 

The 'atlk' code makes the L WrtRemove call to the LAP Manager to remove an alternate 
AppleTalk selection from the LAPWrite hook. Generally •• the 'atlk' code should make 
this call following an AShutdown ·call. 

34 Chapter 4: Calls to the LAP Manager 



LWrtGet (DO • 4) 
Return: DO • 0 (.no error) 

AO -> swt of code in the LAPWrite hook 

When the LWrtGet call is made, AO returns a pointer to the altemate AppleTalk code in 
the LAPW'rite hook. Normally, the 'atlk' code does not need to make this call; however, 
the Network 'cdev' makes this call as part of the process to dispose of the 'adk' code. 

LSeHnUse (DO • 5) 
Call: A2 -> .MPP variabies 
Return: DO • 0 (.no error) 

This ISetlnUse call indicates to the LAP Manager and the .MPP driver that another 
node on the network w currently using the requested node address. 'Ibe .MPP driver 
will try another address. 

LGetSelfSend (DO • 6) 
Call: A2 -> . .MPP variables 
Return: DO • 0 (.no error) 

Dl (byte)• value of .MPP SelfSend flag 

This LGetSelfSend call w for use by altemate AppleTalk implementations that use their 
own intranode delivery. If 01 is nonzero, intranode delivery is enabled. 

LAP Manager Functions 35 



LRdDlspatch (DO • 1) 
Call: A2 -> . .MPP variables 

Return: DO • non-zero if error 

This LRdDispatch call indicates to the LAP Manager that a packet has anived from the 
network and requite$ delivery. Registers should be set up to provide a simulation of the 
AI.AP client ReadPacket and Read.Rest routines. Refer to Chapter 10 lns1de 
Mactntosh, Volume II for details. Specifically, register setup and restriaions are as 
follows: 

AO, Al -> hardware register (can be used by the alternate AppleTalk for any 
reason) 

A2 -> .MPP variables 

A3 -> past the 5 header bytes in the .MPP RHA 
A4 -> the ReadPacket routine (previous value saved and restored after 

•Read.Rest is complete) 

AS has been saved and is restored after Read.Rest is complete 

D 1 • packet length left to input 

D2 (byte) • LAP type for which to dispatch a protocol handler 

+ Note: The Read.Rest routine begins 2 bytes after ReadPacket 

Generally the I.RdDispatch routine, even though it is called with a JSR, will not return 
to the caller, but will jump to the protocol handler attached to the protocol indicated 
in D2, which in tum calls ReadPacket and Read.Rest routines. If the routine does return, 
doing so indicates an error-there was no handler attached to the protocol indicated 
in D2. 

LGetATalklnfo (DO • 9) 
Return: Dl Oong) • value of parameter RAM 

UsesAO 

This LGetA Talklnfo call returns the current 4-byte value of parameter RAM. The low 
byte contains the resource ID of 'adev' resource and the 'atlk' resource for the current 
AppleTalk implementation (O for Built-in and 2 for Ethertalk). The high 3 byres 
contain values that further distinguish this AppleTalk iniplementation . 

.- ,._, 

36 Chapter 4: Calls to the LAP Manager 

... _ ··:--·. 
·-. ' : . _·".I 

-· : .. , ~ : '. ~-'. l 



LAARPAttach (DO • 7) 
Call: 01 Oong) • hardware/protocol type (hardware type in high word). 

02 (word) • Ethernet driver reference number 
AO -> listener code 

Return: DO • non-zero if error 

Uses AO and 02 

This call is only used when attaching an AARP listener to the LAP Manager to handle 
incoming AARP packets other than those used to map between Ethernet and AppleTalk 
addresses. The LAP Manager determines which AARP listener to attach by examining 
the contents of 01. Currently, the lAARPAttach call only supports one driver. 

+ Note: The LAARPAttach and lAARPDetach calls are used to multiplex incoming 
AARP packets for various possible hardware-protocol mappings. These two calls 
should be used .by any application that wishes to receive AARP packets. 

LAARPOetach (00 • 8) 
Call: 01 Oong) •hardware/protocol type (hardware type in high word) 

02 (word)• Ethernet driver reference number 

Return: DO • nonzero if error 
Uses 02 

The LAARPDetach call detaches an AARP listener as the contents of Dl specify. 

LAP Manager Functions 37 



38 Chapter 4: Calls to 1he LAP Manager 



Chapter 5 

AARP and Data Packets 

39 



Depending on your application, you may decide to use AARP to resolve your network 
addressing requirements. This chapter details the operation of AARP from a generic 
standpoint and also explains the way EtherTallc: uses AARP to resolve network
addressing requirements. In addition, this chapter discusses generic AARP packet 
formats, EtherTalk AARP packet formats, and the EtherTallc: data packet formal 

About AARP 
Basically, AARP is a set of Nies and procedures that work together to provide packet
addressing information to an AARP client. To ensure proper and efficient packet 
delivery and reception on the network, AARP maintains a colleaion of protocol 
addresses and their corresponding hardware addresses for each protocol set that a 
node supports. 

Protocol Sets 
A protocol set is a colleaion of related protocols that correspond to the layers of the 
ISO-OSI reference model. Protocol sets enable transmission and reception of packets 
over a network. AppleTalk protocols are an example of a protocol set. Information on 
the network is transferred between protocol sets of the same type. For example, when a 
node transmits an AppleTalk packet, the node addresses the packet to a receiving 
node's AppleTalk protocol set. Before a node sends a packet on the network, the 
sending node addresses the packet to the recipient by inserting a hardware destination 
address and a protocol address into the header seaion of the packet. These two 
addresses, when used together, identify the node that is to receive the packet and the 
protocol set for which the packet is indended. Because a node may support more than 
one protocol set, AARP maintains a colleaion of protocol-to-hardware address 
mappings for each protocol set that a node supports. These address mappings are 
kept in an address mapping table CAMn which is updated by AARP to ensure that 
current addressing information is available. The AMT serves as a cache of known 
protocol-to-hardware address mappings. The way AARP obtains these protocol-to
hardware address mappings is explained later in this chapter. 

40 Chapter 5: AARP and Dato Pockets 



Hardware Addresses 
A hardware address is the address that is derennined by the Physical and Data Link 
layers of the network. Each node on the network must have a hardware address that is 
unique. An example of a hardware ~ is a 48-bit Ethernet node address or an 8-
bit AppleTalk Link Ac:cess Protocol address. In addition to receivng packets addressed 
to a node's hardware address, a node may also receive packets that are addressed to 
the node's broadcast-hardwa1'fl address or a mullfcasf address. If a sending node 
transmits a packet that contains a hardware-broadcast address as the destination 
address, all nodes on the network will receive the packet 1be hardware-broadcast 
address is predefined by the network and is the same for all nodes on the network. A 
multicast address is similar to a broadcast-hardware address. If a sending node 
transmits a packet that contains a multicast address as the destination address, only a 
specific subset of all nodes on the netWork will receive the packet Depending on 
network configun.tion and application, some nodes on the network may not have a 
multicast address, and other nodes may have one or more multicast addresses. In 
summary, each node on the network will receive all packets sent to the node's unique 
hardware address, to the broadcast-hardware address, and to any multicast address 
group to which the node belonp. 

Protocol Addresses 
A protocol address is the address that a node assigns to identify the protocol client 
that is to receive a packet for a given protocol set An example of a protocol address is 
the 8-bit AppleTalk protocol address that the Datagram Delivery Protocol CDDP) and 
AARP use to verify that an incoming packet is intended for this DDP. For EtherTalk, 
AARP randomly assigns a protocol address at initialization time and verifies that this 
protocol address is unique among all other protocol addresses on the network. Once 
AA.RP verifies that this address is unique, AA.RP informs DDP of the protocol address. 
In addition to receiving packets that contain a unique protocol protocol address, a 
protocol client (such as DDP) may also receive packets addressed to a broadcast
protocol address. As the broadcast-hardware address causes all nodes on the network 
to· respond at the physical level, the broadcast-protocol address causes all nodes on 
the network to respond at the •protocol-set• level. For example, addressing a packet 
with a broadcast-hardware address and a broadcast-protocol address for the 
AppleTalk protocol set causes all nodes on the network to receive the packet However, 
only those nodes that support the AppleTalk protocol set will process the packet If a 
node supports more than one protocol set, this node (or AA.RP) should assign a 
protocol a~ that corresponds to a protocol client for each protocol set 

About AARP 41 



Obtaining an Address 
Generally to send packets on the network, a trammitting AARP client requests from 
AARP the hardware address that corresponds to the protocol address of the node th.at 
is to receive the packet. To provide its client with the desired hardware address, AARP 
attempts to retrieve, from the cache of address in the AMT, um hardware address. If 
the hardware address is among the cache, AARP returns um address to its client If the 
protocol-to-hardware mapping is not resident, AARP t.rammits a series of AARP 
packets to all nodes on the network to obtain the desired hardware address. 

AARP Functions 
A generic AARP implementation resides between the Link Access layer and the 

Network layer of tbe network and performs three basic functions for each protocol set 
that AARP supportS: 

o lnittal detenninatton of a un"1f,le protocol address for a gtven protocol client. 
This address must be unique among all nodes on the network. 

o Mapping from a protocol address to a hardware address. Given a protocol 
address for a node on the network, AARP returns either the corresponding 
hardware address or an error that indicates that no node on the network has such 
a protocol address. 

CJ F1ltering of pac/lets. For all data paclcets received by a given node, AARP verifies 
th.at the destination protocol address of the packet is equal to either the node's 
protocol address or the broadcast-protocol value. If the packet does not equal 
either of these values, AARP discards the packet 

Packet Categories 
Within a given protocol set, there are two categories of packets that a node may 
encounter on a network. This document distinguishes one category as AARP packets 
and the other category as data packets. AARP packets are those packets that perform 
address-resolution funaions (such as ~t, response,. and probe). Data packets are 
those packets th.at contain information for processing by a protocol set. 

42 Chapter 5: AARP and Data Packets 



EtherTalk Addresses 
AARP can be used to map between any two sets addresses. 'The AARP implementation 
that Ethetralk uses maps between a 48-bit Ethernet address and an 8-bit AppleTalk 
address. To distingWh between these two sets of addresses further, this doa.lment will 
refer to them as follows: 

Cl An Ethernet address, which is the node addres,, that is determined by Ethernet's 
Physical and Data Link layers of the network. An example of an Ethernet address 
is a 48-bit Ethernet destination addres,,. This doa.iment uses the term •Ethernet 
address• to refer to the Ethetralk implementation of a generic hardware address. 

CJ An AppleTalk address, which is the node address used by high-level AppleTalk 
protocols. An example of an AppleTalk address is an 8-bit AppleTalk address 
that AARP and DDP use to ensure that a packet is intended for processing by this 
DDP. This document uses the term •AppleTalk address• to refer to the EtherTalk 
implementatlon of a generic protocol address. 

AARP Operation 
The following section details the operational concept of AARP. 1bese sections 
contain generic AARP information followed by an EtherTalk example. 

The Address Mapping Table 
Within a given node, AARP maintains an Address Mapping Table Wf1} for each 
protocol set that a node supports. Each AMT contains a list of protocol addresses and 
their corresponding hardware addresses-serving as a cache of known protocol-to
hardware address mappings. Whenever AARP learns of a new mapping, AARP updates 
the appropriate AMT to reflect the new addresses. If there is no more room for new 
addresses in an AMT, AARP should purge this AMT by using some sort of least
recently used algorithm. 

+ EtherTalk example: Within a given node, AARP maintains an Address Mapping 
Table CAMn for the AppleTalk protocol seL The AM'F for EtherTalk contains a list 
of AppleTalk addresses and their corresponding Ethernet addresses-serving as a 
cache of known AppleTalk-to-Ethernet address mappings. Whenever AARP learns 
of a new mapping, AARP updates the AMT to reflect the new addresses. Note that 
AppleTalk addresses are 8 bits in length, thefore, the AMT will contain no more 
than 256 address entries. 

AARP Operation 43 



Choosing an Address 
Each protocol set supported by a node must have an ass<>c:iated protocol address. 

This address is usually assigned 11 initialization time. AARP includes one way of 
making this assignment; however, your AARP client may choose to wign irs own 
protocol address and inform AARP of this address using a difTenw method. The only 
.requirement is that these protocol addresses are unique for each prorocol set 

+ EtherTalll e:cample: At initialization time, AARP randomly picks an AppleTalk 
addiess for the node that AARP supports. After chec:kina with other nodes on the 
network to ensure that this address is unique, AARP assigns this address as the 
node's AppleTalk address. 

Random Add.ress Selection 
AARP includes the ability to pick a unique protocol address dynamically at 
initialization time. When an AARP client requesrs this function, AARP picks a protocol 
a~ at random for a given protocol set, and sets that address as the node's 
tentative protocol address. If, by chance, there is already a mapping for that address 
in the AMT for that protocol set, AARP knows that anoc:her node on the network is 
using th.is protocol address. AARP continues to pick additional random addresses 
until it identifaes an address that is not in the AMT. Once AARP identifies an address 
that is not in the AMT, AARP verifies the uniqueness of the address as desaibed in the 
following chapters. 

+ ElherTallt example: When an AARP client requests an AppleTalk address, AARP 
picks an AppleTalk add.reu at random and sets that address as the node's tentative . 
AppleTalk address. If, by chance, there is already a mapping for that add.reu in the 
AMT, AARP picks additional random addresses until it identifies an address that is 
not in the AMT. 

Probe Packets 
Once AARP identifies a tentative protocol add.reu for a given prorocol set, A.ARP 
broadcasts a number of probe padlets that contain the ~tative protocol address (for 
a given protocol set) to determine if any other node on the network is currently using 
that protocol address. Any node .receiving a probe packet whose protocol address 
matches its protOCOI address must respond by sending an AARP response packet 

44 Chapter 5: AARP and Data Packe1s 



+ ElherTalk example: Once AARP identifies a tentative AppleTalk address, AARP 
broadcasts a number of probe packets that contain the tentative AppleTalk address 
ro determine if any other node on the network is currently using that AppleTalk 
address. Any node receiving a probe packet wh~ AppleTalk address matches its 
AppleTalk address must respond by sending an AARP response packet 

Response to Probe Packets 
When a node receives a probe packet for a protocol set that this node supports, it 
c:hedcs its protocol address that is associated with the protocol set . If the tentative 
protocol address matches the the receiving node's protocol address, the receiving 
node sends an AARP response packet to the probing node. Upon receiving the 
response packet, the probing node knows the protocol addreu is already in use and 
probes with another address. If the probing node does not receive a response packet 
after a specific nUGlber of probes, AARP sets the tentative protocol address to 
permanent and returns this address to its client 

+ Ethefla/11 example: When a node receives an AARP probe packet, this node 
matches this address to its AppleTalk address. If the AppleTalk addresses match, 
the receiving node sends an AARP response packet to the probing node. Upon 
receiving the response packet, the probing node knows the AppleTalk address is 
already in use and probes with another address. If the probing node does not 
receive a response packet after a specific number of probes, AARP sets the tentative 
AppleTalk address to permanent and returns this address to its client 

Avoiding Duplicate Tentative Addresses 
It is pouible, although unlikely, that two nodes on the network could pick the same 
tentative address at the same ti.me. To avoid this possibility, if a node receives a probe 
packet whose tentative address matches its tentative address, the receiving node 
should assume that this address is in use and selea another random address. A node 
should never respond to an AARP probe packet or an AARP request packet while it is 
probing. 

AARP Operation 45 



Request Packets 
When an AARP client makes a request to determine the hardware addles,, that 
corresponds to a protocol address for a given protocol set, AARP rust scans the 
associated AMT for the protocol address. If the protocol address is in the AMT, AARP 
returns the corresponding hardware address. If the hardware addles,, is not in the 
AMT, AARP attempts to determine the hardware address by broadcasting a series of 
AARP request padtels to all nodes on the network. The request packet indicates the 
protocol address for which a hardware mapping is desired, as well as the type of 
protocol set for that mapping. 

+ Ethe1"I'alk example: When the MRP client makes a request to detennine the 
Ethernet address that is associated with an AppleTalk address, MRP first scans the 
AMT for the AppleTalk address. If the Apple Talk addles,, is in the AMT, AARP 
returns the corresponding Ethemet address. If the Ethernet address is not in the 
AMT, AARP attempts to detennine the Ethernet address by broadcasting a series of 
AARP request packets to all nodes on the network. The request packet indicates the 
AppleTalk address for which an Ethernet mapping is desired 

Response to Request Packets 
When a node receives a request packet, AARP attempts to match the desired protocol 
address to its own protocol addresses for the given protocol set If the receiving node's 
protocol address for that protocol set matches, the receiving node responds by 
sending an A.ARP response packet to the requestor indicating the protocol-to
hardware node-address-mapping information. The requesting AARP enters this 
mapping in the AMT and returns the hardware address to AARP's client If there is no · 
reply within a specific time-out period, AARP retransmits the packet a given number of 
times and returns an error to its client if there is still no response; the error indicates 
there is no such node on the network. 

+ Ethe1"I'alk exa~ When a node receives an AARP request packet, the node's 
AARP attempts to match the desired AppleTalk address to its own AppleTalk 
address. If the receiving node's AppleTalk address matches, the receiving node 
responds by sending an AARP response packet to the requestor. The response 
packet contains the receivng node's Ethernet address .. The requesting AARP enters 
this mapping in the AMT and returns the hardware address to AARP's client If there 
is no reply within a specific time-out period, AARP retransmits the packet a given 
number of times and returns an error to its client if there is still no response; the 
error indicatel there is no such AppleTalk node on the network. 

- .. -· ·---~. ~--:-\ i; 

Chapter 5: AARP and Data Packets 



Examining Incoming Packets 
In addition to receiving and processing its own packers (probe, request and response), 
an active AARP (such as one that is performing translation) should receive and 
prOc:ess all packets for each protocol set that AARP supports. There are two reasons for 
this requirement. The first reason is that AARP must verify that an incoming packet is 
in fact addressed to its client for the &iven protocol set 1be second reason is that 
AARP can gather or glean address information from the incoming packet to update 
the AMT, limiting tbe number of AARP packers sent on the network. 

+ Ether'Talll e:rample: In addition to receiving and processing its own packets (probe, 
request and response), AARP receives and proc:enes all AppleTalk data packers to 
glean packet-address information from the packet and update the AMT. Also, 
AARP verifies that the incoming packet is intended for the node's AppleTalk 
address (or broadcast-protocol address) and • if so, piwes the packet to the 
AppleTalk prcxoc:ol stack for further processing. 

Verifying Packet Address 
To verify that an incoming data packet is intended for a client that AAB.P serves, AARP 
examines the packet's destination-protocol address. Because the protocol set to which 
the packet belongs determines the data packetS's construaion, the location of the 
destination address within a data packet is different for different protocol sets. AARP's 
client must infonn AARP of the location of the data packet's destination address for 
each protocol set that AARP supports. 1be AARP client must also infonn AARP of 
which address or addresses to accept as broadcast-protocol values. If AARP 
determines that the destination-protocol address of the packet does not match the 
node's protocol address or broadcast-protocol address, AARP must discard the 
packet and assume the originator sent this packet by mistake. 

+ Etluw'Talll e:mmple: To verify that an incoming data packet is intended for the 
AppleTalk address that AARP serves, AARP verifies that the packet's destination 
address in the Al.AP header matches the node's AppleTalk address, broadcast
prococol value ($FF). Figure 5-2 shows the location of the destination-protocol 
address in the data packet's header. If AARP determines that the destination 
address of the packet does not match the node's App1eTalk address or broadcast
prococol address, AAB.P discards the packet 

Examining Incoming Packets 47 



Gleaning Information 
Incoming data packets will generally contain the source hardware address and the 
source protocol address. Once AARP determines that the packet contains a valid 
protocol address, AARP can glean the source hardware and protocol address
mapping information from the packet and update the appropriate AMT. Gleaning 
mapping information in this fashion eliminates the need to send an additional request 
packet when the node next tries to communicate with the sender. 

Note that this gleaning of source information from client packets is not a requirement 
of AARP. In certain cases, this information may not be available. Depending on your 
application, you may determine that gleaning information is too inefficient to add an 
entry to the AMT for each incoming packet 

· Source information can also be gleaned from AARP request packets. Because these 
packets are broadcast to every node on the network, every AARP implementation 
receives them. These packets always contain the source hardware address and source 
protocol address. AARP should always add this address information to its AMT, even 
if AARP does not answer this packet AARP should not glean any source information 
from probe packets because this information is tentative. 

+ EtherTalk example: Incoming data packets contain the source Ethernet address and 
the source AppleTalk address. Once AARP determines that the packet is intended 
for AARP's AppleTalk client, AARP gleans the AppleTalk-to-Ethemet address
mapping information and updates the AMT. Gleaning mapping information in this 
fashion eliminates the need to send an additional AARP request packet when the 
node next tries to communicate with the sender. 

Source information is also gleaned from AARP request packets. 1bese packets 
always contain the source Ethernet address and source AppleTalk address. AARP 
adds this address information to its AMT, even if AARP does not answer this packet. 
AARP does not glean source information from probe packets because this 
information is tentative. 

Aging AMT Entries 
An AARP implementation may wish to age AMT entries. ·one method of doing this is 
for AARP to aaociate a timer with each AMT entry. Each time AARP receives a packet 
that causes an entry update or confirmation in the AMT, AARP resets that entry's 
timer. If AARP does not reset the entry's timer within a certain period of time, the 
timer times out and AARP removes this entry from the AMT. The next request for the 
protocol address associated with this entry will result in AARP sending a request 
packet, unless AARP gleans a new mapping for this entry after removing it 

48 Chapter 5: AARP and Data Packefs 



· Aging AMT entries prevents the following situation: when one node goes down or takes 
itself off the network, a second node wich a different hardware addtess starts up and 
acquires the same protocol address as .the first node. An A.ARP implementation in a 
third node needs to learn about this change in mapping. Unless the second node 
broadcasts an AARP request, the third node will not be aware of this change and will 
continue to contain an invalid hardware address in the AMT. 

+ Ether'Ta/11 e:mmple: AARP associares a timer with each AMT entry. Each time 
AARP receives a packet that cause5 an entry update or conftrmation in the AMT, 
AARP reselS that entry's timer. If AARP does not reset the entry's timer within a 
certain period of time, the timer times out and AARP removes this entry from the 
AMT. The next request for the AppleTalk address associated with this entry will 
result in AARP sending a request packet, unless AARP gleans a new mapping for this 

. entry after removing iL 

Age-on-prot>e 
Instead of using timed aging, another approach ~ to remove an AMT entry whenever 
AARP receives a probe packet for the entry's protocol address. This process 
guarantees that the AMT always contains current mapping information, although 
unnecessary entry removal occurs if a new node probes for an address that is already 
in use. AARP should implement this age-on-probe function in any node that does not 
glean address information from data packets because time-based aging in this case is 
inefficient (data packets would not reset the aging timer). 

+ EtherTalk example: In addition to timed aging, AARP also incorporates an age
on-probe function. AARP removes an AMT entry whenever AARP receives a probe 
packet for the entry's AppleTalk address. This process guarantees that the AMT 
always contains current mapping information, although unnecessary entry removal 
occurs if a new node probes for an AppleTalk address that is already in use. 

Aging AMT Entries 49 



Generic AARP Packet Formats 
Refer to Figure S-1 for the generic AARP packet formats. 

I 
Link Link Unk 

Acceaa Acceaa Access 
Header Header Header 

Hardware Hardware Hardware 
Type Type Type 

Protocol Protocol Protocol 
Type Type Type 

H/W .Adr. Length H/W Adr. Length HIW Adr. Length 

Prot. Adr. Length Prot. Adr. Length Prot. Adr. Length 

Convnand Corrvnand Command 
(Request - 1) (Response - 2) (Probe • 3) 

Source Source Source 
Hardware Hardware Hardware 

I 
Addreaa AddreH 

I 
Address 

I Source Source Tentative 
Protocol Protocol Protocol 

I Address AddreH I AddreH I Destination 
0 Hardware 0 

I Address I I Desired Oeatlnation Tentative 
Protocol Protocol Protocol 
Address Address Address 

AARP Request Packet AARP Response Packet AARP Probe Packet 
MSCNNNN 
ART: NN x 17 pl 
20.5 pi text to FN b/b 

Figure 5·1 
Generic AARP Packet Formats 

50 Chapter 5: AARP and Doto Pockets 



Each packet begins with the standard link acc::e§ header for the medium in use (14 
bytes for Ethernet). following this, there iS header information which is a constant for 
the particular protocol-to-hardware mapping. This header information consists of the 
following: 

o Two-byte hardware type, which indicates the medium type (pre-defined). 

o Two-byte protocol type, which indicates the desired protocol set (pre-defined). 

o One-byte hardware address length, which indicates the length, in bytes, of this 
field. 

o One-byte protocol address length, which indicates the length, in bytes, of this 
field. 

following this header is a two-byte command field that indicates the packet function 
(request, response, or probe). Next are the hardware and protocol addresses of the 
sending node (their length are specified in the preceeding length fields). Last in the 
packet are the hardware and protocol addresses of the node that is to receive iru,, 
packet • 

In the case of an AARP request packet, the hardware address of the destination is 
unknown and should be set to zero. The protocol address should be the address for 
which a hardware mapping is desired. 

For the probe packet, both the source and destination protocol addresses should be 
set to the sender's tentative protocol address and the destination hardware address 
should again be set to zero. 

+ Note: These conventions also apply to AARP Ethemet-AppleTalk packets. 

Generic AARP Packet Formats 51 



AARP Ethernet-AppleTalk Packet Formats 
Figure 5-2 shows the AA.RP Ethemet-AppleTalk packet formats. 

Ethe met 
Destination 
(broadcast) 

Ethernet 
Source 

Ethernet 
Protocol 

Type ($80F3) 

Hardware Type 
(Etbemet • 1) 

Protocol Type 

(AppleTalk • $809B) 

H/W Adr. Length - e 
Prot. Adr. Length • 4' 

Command 
(Request - 1) 

Source 
Ethe met 
Address 

Src. AppleTalk 
Address 

0 

Desired 
Apple Talk 
Address 

Etha met 
Destination 

Etha met 
Source 

Ethernet 
Protocol 

Type ($80F3) 

Hardware Type 
(Ethernet - 1 ) 

Protocol Type 

(AppleTalk • $809B) 

H/W Adr. Length • 6 

Prot. Adr. Length • 

Source 
Ethernet 
Address 

Destination 
Hardware 
Address 

Ethernet 
Destination 
(broadcast) 

Ethernet 
source 

Ethernet 
Protocol 

Type ($80F3) 

Hardware Type 
(Ethernet • 1) 

Protocol Type 

AppleTalk • $8098) 

Command 
(Probe • 3) 

Source 
Ethernet 
Address 

Tant. AppleTalk 
Address 

0 

entative 
Apple Talk 
Address 

AARP Request Packet 
MSCNNNN 

AARP Response Packet AARP Probe Packet 

ART: NN x 17 pl 
20.5 pi text to FN b/b 

Figure S-2 
AARP Ethemet-AppleTolk Pocket Formats 

52 Chapter 5: AARP and Dato Pockets 



Each AARP packet on Ethernet begins with the Ethernet 14-byte link access header. 
Following the Ethernet header, there are 6 bytes (predefined) of additional header 
information that further identify this AARP packet: 

CJ Two-byte hardware type, which indicates Ethernet as the medium 

CJ Two-byte protocol type, which indicates the AppleTalk protocol 

CJ One-byte hardware address length, which indicates the length in bytes of the 
Ethernet address 

CJ One-byte protocol length, which indicates the length in bytes of the AppleTalk 
address 

Following this header information is a 2-byte command field that indicates the packet 
funaion (request, response, or probe). Next are the Ethernet and AppleTalk 
addresses of the sending node. Last in the packet are the Ethernet and AppleTalk 
addresses of the node that is to receive this packet 

In. the case of an AARP request packet, the Ethernet address of the destination is 
unknown and should be set to 0. The AppleTalk address should be the address for 
which an Ethernet address mapping is desired 

For the probe packet, both the source AppleTalk address and destination AppleTalk 
address should be set to the sender's tentative AppleTalk address and the destination 
hardware address should again be set to 0. 

Retransmission Details 
AARP must retransmit both probes and requests until AARP either receives a reply or 
exceeds a maximum number of retries. 'Ibe specifics of the retransmit count and 
interval depend on the desired thoroughness of the search. In general, the probe
retransmission interval is fixed by AARP, but the request-packet-transmission interval 
can be assigned as a client-dependent parameter. 

Paeket Specifies 
The following constants are currently defined for AARP .• 

CJ Protocol type for Ethernet-like media (in data link header): $80F3 

o AARP hardware type for Ethernet: $0001 

o AARP AppleTalk protocol type: $809B 

CJ AARP Ethernet address length: 6 
o AARP AppleTalk address length: 4-fltSt 3 bytes of the address must be 0 and are 

reserved by Apple for future use 

o AARP request command: $0001 

AAPR Ethernet-AppleTolk Pocket Formats 53 



o AARP response command: $0002 

o AARP probe command: $0003 

CJ AARP probe-retransmission interval for Ethemet-AppleTalk packets: 1/30 
second 

CJ AARP probe-retransmission count for Ethernet-AppleTalk packets: 20 

EtherTalk Data Packet Format 
Figure 5-3 shows the data-packet format for AppleTalk packets on Ethernet. 

MSCNNNN 
ART: NN x 17 pi 
20.5 pi text to FN b/b 

Figure 5·3 
EtherTolk Doto Pocket Format 

Ethernet 
D .. tlnatlon 

Ethernet 
Source 

Ethernet 
Protocol 

Type ($8098) 

AppleTalk Dest. 

AppleTalk Src. 

AppleTalk Type 

Data Length 

Data 

Pad 
(H needed) 

54 Chapter 5: AARP and Data Packets 



AppleTalk Packers on Ethernet contain the standard 14-byte header to identify the 
Ethernet destination, Ethernet source, and Ethernet protocol type. For AppleTalk 
packets, the Ethernet protocol type is S809B. A complete AppleTalk packet follows this 
header. The AppleTalk packet consists of a 3-byte header to specify the AppleTalk 
destination, soW'Ce, and type, followed by the data field. The low-order 10 bits of the 
first 2 bytes in the data field contain the length in byteS of the data field ($elf. 
including). The high-order 6 bits are protocol dependenL 

The minimum size of Ethernet packets is 60 byteS. Including the header, an Ethernet
AppleTalk packet could be as small as 19 byteS; therefore, the packet must be padded 
to inaease packet size to 60 byteS. The contents of the pad are undefined. The 
maximum size of an AppleTalk packet on Ethernet is 603 bytes plus 14 byteS Ethernet 
header, or a total of 617 byres. 

Apple recommends, although currently does not require, that any DDP packet sent on 
Ethernet use the extended DDP header format (see Instde AppleTalk for details). This 
header format ensures compaubility with potential future systems that may require 
such a header. Alf EtherTalk implementations must accept extended headers for any 
incoming AppleTalk packet and these implementations should also accept short DDP 
headers (including packets which Instde AppleTalll, July 1986 identifies as requiring 
short headers ). 

EtherTolk Doto Pocket Format 55 



56 Chapter 5: AARP and Doto Pockets 



Chapter 6 

The Ethernet Driver 

57 



EtherTalk software uses a general-purpose Ethernet driver to transmit and receive 
packets on the Ethernet network. Provided with EtherTalk software, the Ethernet driver 
is specifically designed for use on the Macintosh n and the EtherTalk interface card; 
however, it is envisioned that equivalent interfaces will be provided for other Ethernet 
interface cards and networking devices. 

The Ethernet driver, located in the System me, is named .ENET. If you are developing 
a driver for use with a slotless device, name the driver .ENETO. 

Write Data Structure 
Typically, to send a packet on the network, the driver IS called with a write command 
(see •£Write Command• this chapcer for more infonnation) that contains a pointer to 
a write data structure (WDS). The WDS contains a series of length and pointer pairs 
that identify the lengths and memory locations of the packet's components. The WOS 
for Ethernet is shown in Figure 6-1. 

Length of first entry (word) 

Pointer to first entry (long) 

Length of last entry (word) 

Pointer to last entry (long) 

MSCNNNN 
ART: NN x 17 pi 

O (word) 

20.5 pi text to FN b/b 

Figure 6-1 
Write Data Strue1ure for Ethemet 

~ 

n 

• Destination node ID (6 bytes) .... 

Used internally (6 bytes) 

Protocol Type (2 bytes} 

Data (optional) 

... Data .. 

The length-pointer pairs tell the driver to gather packet information in the order in 
which they appear in the WDS. For Ethernet, the first entry in the WDS must point to 
the 6-byte destination address, which is followed by 6 unused bytes and a 2-byte 
protocol type. Data may then follow. 

+ Note: When the Ethernet driver transmits the packet, the driver inserts a 6-byte sou 
rce address to replace the 6 unused bytes. 

58 Chapter 6: The Ethernet Driver 



If you are writing a software driver for transmission of AppleTalk packers on some other 
network, the first WDS entry may differ from that of Ethernet. 

Protocol Handlers 
During a typical read operation, the interface card sends an interrupt to inform the 
driver that a packet is ready for delivery. The driver responds to this interrupt by 
reading the Ethernet header into internal driver space and calling a piece of code, 
known as a protocol handler, to process the rest of the packet The 2-byte protocol 
type in the header specifies to the driver which protoeol handler to call. The protocol 
handler responds by calling one or both of two driver routines (ReadPacket and 
ReadRest) to process packet reception. 

The Ethernet driver provides a general-purpose default protqcol handler for use with 
the standard read.call (see •ERead Command• in this chapter); however, you may 
decide to write you own protocol handler to process packet reception. 

Writing Protocol-handler Code 
After determining how many byteS to read and where to put them, the protocol 
handler must call one or both of two Ethernet driver routines that perform all low-level 
manipulations of the card required to read bytes from the network. These two routines 
are ReadPacket and ReadRest. The protocol handler may call ReadPacket repeatedly 
to read in the packet piece-by-piece into a number of buffers, as long as it calls 
ReadRest to read the final piece of the packet. This process is necessary because 
ReadRest restores state information and checks error conditions. ReadPacket returns 
an error if the protocol handler attempts to read more byr.es than remain in the 
packet. 

When the Ethernet driver passes control to your protocol handler, it passes various 
parameters and pointers in the processor's registers. Register setup and restrictions 
are essentially the same as those for Al.AP protocol handlers. The Ethernet driver calls 
the protocol handler as follows: 

AO, Al: reserved for internal use by the driver (handler must preserve until 
ReadRest is complete) 

A2: free (.A2 is not free in an Al.AP protocol handler) 
A3: pointer to first byte past data link header bytes (for Ethernet, the byte 

after the two-byr.e type field) 
A 4: pointer to ReadPacket and ReadRest 
A 5: free (until ReadRest is complete) 
DO: free 
D 1 : number of bytes in packet left to read 

Protocol Handlers 59 



1:>2: free 
03: fiee 

+ Note: ReadRest begins 2 bytes after ReadPacket 

Registers AO, Al, A4, and 01 must be preserved until the protocol handler calls 
ReadRest. ~r the protocol handler calls ReadRest, normal interrupt conventions 
apply. 01 contains the number of bytes remaining to be read in the packet as derived 
from the packet's length field. D 1 can be reduced to indicate pad bytes that will not be 
read, but should not be changed otherwise. 

If the protocol handler is to handle multiple protocol typeS, the protocol handler 
should examine the data link header for the protocol-type field to initiate the proper 
read routine for the incoming packet Because A3 points to the first bvte after the 2-
byte protocol type field, the protocol handler can read the type fielc! by using negative 
offsets from A3. In the case of Ethernet, the 2-byte type field begins .at -2CA3), the 
source address begins at -8(A3), and the destination address is at -1400) . . 

Calling ReadPacket and ReadRest 
Your protocol handler can call the Ethernet driver's ReadPacket routine in the 
following way. · 

JSR (A4) 

On entry 
03: number of bytes to be read (word)-must be nonzero 
A3: pointer to a buffer to hold the bytes 

On exit 
DO: 
01: 
02: 
03: 

AO-A2: 

A3: 

modified 
number of bytes left to read in packet (word) 
preserved 
• 0 if requested number of bytes were read; < > 0 if error 
preserved 
pointer to 1 byte past the last byte read 

ReadPacket reads the number of bytes that 03 specifies into the buffer.to which A3 
points. The number of bytes remaining to read is returned in 01. A3 points to the 
location to begin reading next time (1 byte following the last byte read). 

To read in the rest of the packet, call the Ethernet driver's ReadRest routine in the 
following way. 

JSR 2 CA-0 

On entry 

60 Chapter 6: The Ethernet Driver 



A3: poinrer to a buffer to hold the bytes 
03: siz of the buffer (word)-can be zero 

On e.xil 

D0-01: modified 
0 2: preserved 
D 3: • 0 if requesred number of bytes were read 

< 0 if packet was -03 bytes too large to fit in buffer and was 

AO-A2: 

A3: 

truncated 
> 0 if 03 bytes were not read (packet is smaller than buffer) 
preserved 

pointer to 1 byte past the last byte read 

ReadRest ream the remaining byres of the packet into the buffer whose size is given in 
D3 and whose location is poinred to by A3. The result of the operation returns in 03. If 
the buffer size tha:t 03 indicates is larger than the packet siz.e, ReadRest does not rerum 
an error. 

Warning 
Always cell ReadRest to read 1he lost port of a pocket to avoid a system crash. 

If the protocol handler wishes to discard the remaining data before reading the last 
byte of the packet, it should terminate by calling ReadRest as follows: 

MOVEQ 

JSR 

RTS 

t0,03 

2 !A4) 

;byte count of O 

;call ReadRest 

In all cases, the protocol handler should end with an RTS, even if the driver returns an 
error. If the driver rerurns an error from a ReadPacket call, the protocol handler must 
quit via an RTS without calling ReadRest at all. Upon rerum from ReadRest and 
ReadPacket, the zero (z) bit in the command control register will be set if an error did 
not occur. If an error occurs, the zero bit is not set 

Opening the Ethemet Driver 
On a Macintosh n, use the Device Manager to make a PBOpen call to open the 
Ethernet driver. However, you will have to obtain certain field values, such as the 
card's slot number, before making this call. The Slot Manager may be used to obtain 
these values. 

Opening the Ethernet Driver 61 



Slot Manager sNextsRsrc Trap Macro 
There are six slots in the Macinto,,h n, ranging from $09 to SOE. Built-in devices use 
slot zero. Because these slots may contain interface cards other that EtherTalk cards, 
your code must identify the type of card in each sloe:. One method of doing this is to 
use the Slot Manager sNextsRsrc trap maao. This function is defined as follows: 

Required Parameters <-> spSlot · 
<-> spld 
<- spsPointer 
<- spRefNum 
<- spIOReserved 
<-> spExtDev 
<- spCategory 
<- spCType 
<- spDrvrSw 
<- spDrvrHw 

If you supply a 0 for the sNextsRsrc fields spSlot, spID, and spExtDev, this routine 
returns the spld, spSlot, spCategory, and spType values in addition to other 
information for each card installed. The routine swtl. at slot S09 and continues to slot 
SOE and returns a non-fatal error report to indicate routine completion. By matching 
the spCategory and spType fields to the sResource Type format for the EtherTalk 
interface card, your code can identify which slots contain Ethetralk cards. The 
sResource Type format for the EtherTalk interface card identifies the spCategory field 
as CatNetwork and the spType field as 'l}'pEthernet. 

+ Note: More information about the sResource Type formats is contained in MPW, 
version 2.0. Refer to Inside Macintosh, Chapter 24, Volume V for more 
information on the Slot Manager. 

Device Manager PBOpen Call 
Once you have obtained the slot number (spSlot) and the sResource Identification 
number (spld), you may use the Device Manger to make a PBOpen call. The PBOpen 
call require$ that you supply, in addition to other inforniation, the driver name 
(.ENE'I) and the ioSlot and iold parameters as this portion of the parameter block 
shows: 

-> 
-> 

34 
35 

ioSlot 
iold 

62 Chapter 6: lhe Ethernet Driver 

byte 
byte 



For the EtherTalk card, the ioSlot parameter contains the slot number, obtained as 
spSlot, for the EtherTalk card to be opened, in the range of $09 to SOE. The ioid 
parameter contains the sResource ID, obtained as spid. Be sure to set the immec:Uate
bit in the uap word when making the PBOpen call. Refer to Inside Macintosh, 
Chapter 23, Volume V for additional information about opening slot devices. 

The driver opens in the AppleTalk mode. This mode limits the size of a packet sent by 
the driver to 768 bytes, which is more than sufficient to encapsulate a maximum-size 
Ethemet-AppleTalk packet of 617 bytes. In this mode, the driver can allocate more 
space in the buffer pool for packet reception. If the packets for your application 
iequin: more than 768 bytes, you may change to General mode to uansmit any valid 
Ethernet packet up to 1514 bytes in length. 

<<Network En&fneering to provide sample code for opening the driver>> 

Making Commands to the Ethernet Driver 
Once the Ethernet driver opens, a series of Device Manager control calls to the driver 
are made to control packet transmission and reception. The calling code passes 
command arguments in the queue element starting at CSParam. Refer to Chapter 6 of 
Inside Macintosh, Volume ll, for more information about making control calls. 

The EWrite Command 
Use the Device Manager to make the EWrite control call to write a packet out on 
Ethernet The only argument is a pointer that identifies the location of the write data 
stroaure used to send the packet on the netwotk. 

Parameter block 
-> 26 csCode word {always EWrite} 
-> 30 EWdsPointer pointer {write data structure} 

<<R.esult codes for all commands to be supplied by Network Engineering>> 

The EAttachPH Command 
Make the EAttachPH command to attach a protocol handler to the driver. Arguments 
are a 2-byte protocol type and a protocol-handler address. If the protocol-handler 
address is 0, a default protocol handler is attached to the Ethernet driver. The default 
protocol handler is for use with the ERead call (see •ERead Command• this chapter). 

Parameter block 
->26 csCode word {always EAttachPH} 

Making Commands to the Ethernet Driver 63 



-> 28 EprotType 2 bytes {Ethernet protocol type) 

-> 30 Ehandler pointer {protocol handler} 

EAttachPH adds the protocol handler pointed to by Ehandler to the node's protocol 
table. EprotType specifies what kind of packet the protocol handler can service. After 
EAttachPH is called, the protocol handler is called for each incoming packet whose 
Ethernet protocol type equals EprotType. 

+ Note: To attach or detach a protocol handler for IEEE 802.3, which uses protocol 
types O through S5DC, specify protocol type zero. 

The EDetachPH Command 
Makes the EDetachPH command to detach a protocol handler from the driver. 

Parameter block 
->i6 
->28 

csCode 
EprotType 

word 
2 bytes 

{always EDetachPH} 
{Ethernet protocol type} 

The command removes the protocol type and corresponding protocol handler from 
the protocol table. 

The ERead Command 
Make the ERead call only to read in a packet after an EA.ttachPH with a zero-handler 
address is issued for the protocol indicated in this command. ERead takes as 
arguments the protocol type, buffer pointer, and buffer size. The ERead call places the 
entire packet, induding the header, into the buffer. After the read, the call returns the 
aaual size of the packet If the packet is too large to fit into the buffer, the call places as 
much of the packet as it can into the buffer and returns an error. The driver dequeues 
the ERead call from the system queue, so more than one ERead call can be active 
concurrently. 

Parameter block 

26 -> csCode 

28 -> EProtType 

30 -> EBuffPtr 

34 -> EBuffSize 

36 <- EDataSize 

Chapter 6: The Ethernet Driver 

{always ERead} 

{protocol type} 

{buffer into which packet is read} 

{buffer size} 

£actual number of bytes read} 

'':··,- ~ ··.,-.~'Tl '1 
' ' .. - I I ,- td t I I : i 
~_,,., . · ... , __ ; .. th l.-



The ERdCancel Command 
The ERdCancel command cancels a particular ERead call. The only argument is the 
queue- element pointer of the ERead call to cancel. If the ERead call is active, the 
ERdCancel call returns an error. 

Parameter block 

26 -> csCode 

30 -> EKillQEl 

The EGeHnfo Command 

{always ERdCancel} 

{queue element pointer to cancel} 

The EGetinfo command obtains driver information and takes arguments of a buffer 
pointer and size. '?his call returns, in the first 6 bytes of the buffer, the Ethernet 
address for the node on which the driver is installed 

Parameter block 

26 -> csCode 

30 - > EBuffPtr 

34 - > EBuffSize 

{always EGetlnfo} 

{buffer pointer} 

{buffer size} 

With the EtherTalk driver installed on a Macintosh II, the EGetlnfo call returns 12 
additional bytes as follows: 

Byres 07-10 • number of buffer overwrites on receive 

Byres 11-14 • number of time-outs on transmit 

Byres 15-18 •number of packets received that contain an incorrect address 

The ESetGeneral Command 

The ESetGeneral command changes the driver from AppleTalk mode to General 
mode. There are no arguments. There is no command to change the driver from 
General mode to AppleTalk mode. Changing the driver's mode may involve a 
hardware reset, and could cause loss of an incoming packet 

Parameter block 

-> csCode {always ESetGeneral} 

Making Commands to the Ethernet Driver 65 



Chapter 6: The Ethernet Driver 



Chapter 7 

The EtherTalk Interface Card 

67 



This chapter overviews the operation of the EtherTalk Interface card and generally 
explains each major component on the card. In addition to this information, this 
chapter identifies the address assignments for local menory and gives the address 
assignments for the network interface controller (NIC) register. 

About the EtherTalk Card 
The EtherTalk Interface card installs in any NuBus slot on a Macintosh n computer. 

The card interfaces the Ethernet driver to the Ethernet cabling system to enable packet 
transmission and reception among EtherTalk nodes. The EtherTalk Interface card may 
also funaion in Apple Computer's A/UX environment, transporting transmission 
control protocol/internet protocol :-:-cp /IP) packet information. Please note that the 
A/UX operating system does not support EtherTalk software. 

A detailed discussion of the A/UX oper:iting system or device drivers is beyond the 
scope of this docUmenl Please refer to the Apple publications Butld1ng AIUX Device 
Drivers, A/UX Programmer's Ref~e, and AIUX Networking A.ppltcaffons 
Programmtng for more information about TCP /IP, A/UX, and device drivers. 

<<Alan, this chapter is lifted from the Schlitz Preliminary Note. The information 
presented here seems to be a little weak. Is there anything else that you think needs to 
be here? How about a more detailed explanation of drop cable and Thin Net 
conneaions and give some programming application information on how to use the 
local memory addresses and NIC register addresses? >> 

EtherTalk Card Hardware Description 
The EtherTalk Interface Card is a non-intelligent Ethernet adapter for the Macintosh II 
computer. 1be card uses a local-area-network (LAN) chipset from National 
Semiconductor Corporation. The three LAN chips are the NIC, Serial Network . 
Interface (SNI), and a Coaxial Transceiver Interface (C'Il). The card has 16K of dual
ported Random Access Memory (RAM) and 32K of Read Only Memory (ROM). The 
local memory allows back-to-back packet reception with multipacket buffering. 

68 Chapter 7: The EtherTolk Interface Cord 



Figure 7.1 shows the architecture of the Ethernet Interface card. 

ROM RAM 
32K 16K 

Nubus Interface 

MSC NNNN 
ART: NN x 17 pi • 
20.5 pi text to FN bib 

Figure 7-1 

Network 
In1el'face 
Con1r0llcr 

J 

EtherTalk Interface Card Architecture 

Serial 
Network 
Interl'acc 

r"' 

II-
... 

Ethernet 
Drop Cable 
Connector 

Coaxial KJ T: . • ranscc1vcr 
Thin Net 
Connector 

Interface 

The EtherTalk card uses the Apple's implementation of the Nubus interface. More 
information on the Apple's implementation of Nubus can be found in the Apple 
Computer publication Macintosh n and Macintosh SE Cards and Drivers available 
from Apple Programers and Developers Association (APDA). 

The en chip is used as a coaxial line driver and receiver for Thin Net I.ANS. The en is 
not used when attaching to an Ethernet backbone cable by means of an external 
tranSceiver <<what external transceiver?>> The selection is made with a jumper on 
the EtherTalk card <<what selection.'>> 

The SNI chip provides the encoding and decoding functions «of what?»for 
Ethernet or Thin Net LANs. The SNI also provides a collision signal translator and a 
diignostic loopback circuit. <<more info here?>> 

The NIC chip is the heart of the LAN chipset The NIC performs all Media Access 
Control (MAC) layer functions· for transmission and reception of Ethernet packets. 
The NIC provides buffer management that supervises storage of received packets in the 
local memory. During packet transmission, the NIC generates and appends the 
preamble and sync byte to the transmitted packet. Also, the NIC will optionally 
compute and append Cyclic Redundancy Check (CRC) bytes. During reception, the 
NIC decodes and ftlters addresses and performs CRCs. More programming 
information about the NIC can be found in the National Semiconduaor specification 
document tided DP8390/NS32490 Network Interface Controller. 

EtherTalk Card Hardware Description 69 



Local Memory 
The local memory consists of 16K of static RAM segmented into transmtt and Tecetve 
buffers by setting registers in the NIC. The segments are further divided into 256-byte 
pages. Some number of pages (under driver control) is used for a transmit buffer. The 
remaining pages are used for a receive ring buffer. Page Start and Page Stop registers 
establish a buffer that forms a continuous address spice. As the last addres.s is reached 
(set up by the Page Stop register), the next memory location wraps around to the start · 
of the buffer (set up by the Page Start register) to form the receive ring buffer. 

The local ROM memory is 32K in si7.e and contains the Ethernet address and Nubus 
card slot information. Direct access of the ROM is not usually necessary because these 
services are provided by the slot hbrary available in A/UX 

70 Chapter 7: The EtherTolk Interface Cord 



Address Assignments 
Figure 7-2 shows the address map of devices on the EtherTalk card. 

Address Map 

F (ID) x 

F (ID) x 

F (ID) x 

F (ID) x 

F (ID) x 

F (ID) x 

MSCNNNN 
ART: NN x 17 pl 

F 

F 

E 

E 

D 

D 

20.5 pi text to FN b/b 

Figure 7-2 
Address Assignments 

::1 
003C 

()()()() 

3FFF 

()()()() 

L 

EtherTalk Card Device 

ROM - 32K 
(readable on word boundaries) 

NIC Control Registers 
16 1-byte registers 
(readable on 4-byte boundaries) 
(reg 0 at 3C, reg 1 at 38, ... ref F at 00) 

Local RAM - l 6K 
(addressable on word boundaries) 

the low-order 16 bits form the 
address of devices on the board 

these 4 bits determine the addressed device 
D - RAM, E - NIC, F - ROM 

these 4 bits perform no function 

these 4 bits are the Nubus ID character 

these 4 bits are always F, indicating card space 

EtherTolk Cord Hardware Description 71 



NIC Register Addresses 
NIC registers are divided into three pages. 1be content of the highest-order bits in the 
Command register (PSO and PSl) defines which page of registers is being read from 
and written to for addresses EOOOO through E003C. Page 0 registers are those registers 
commonly accessed during normal operation of the NIC. Page 1 registers are 
accessed during the initialization process. Page 2 registers should only be accessed for 
diagnostic purposes and should not be modified during normal operation. For 
complete definition of the register terms in the tables, consult the National 
Semiconductor Corporation publication DP8390/NS32490 Network Interface 
Controller. 

The following tables show the registers used for programming the r-."IC. Table 1 
displays the 1'11C Page 0 register addresses on the EtherTalk card. 

Table 7-1 
Page O Address.Assignments CPSl•O. PS0-0) 

Addr•ss Pag4t 0 I.ad Page 0 Write 

E003C Command Register Command Register 

E0038 Current Local DMA Address (CIDA) 0 ~age Start Register 

E0034 Current Local OMA Address (CLOA) 1 Page Stop Register 

E0030 Boundary Register Boundary Register 

E002C Transmit Status Register Transmit Page Start Register 

E0028 Number of Collisions ·Register Transmit Byte Count Register 
(TBCR) 0 

E0024 First In First Out (FIFO) Register Transmit Byte Count Register 
(TBCR) 1 

E0020 Interrupt Status Register Interrupt Status Register 

EOOlC Current Remote Data Address (CROA) 0 Remote Start Address Register 
(RSAR) 0 

E0018 Current Remote Data Address (CROA) 1 Remote Start Address Register 
(RSAR) 1 

E0014 Reserved Remote Byte Count Register 
(RBCR) 0 

EOOlO Reserved Remote Byte Count Register 
(RCBR) 1 

EOOOC Receive Status Register Receive Configuration Register 

72 Chapter 7: The EtherTalk Interface Card 



E0008 Counter (CNTR) 0 

E0004 Counter (CNTR) 1 

EOOOO Counter (CNTR) 2 

Transmit Configuration Register 

Data Configuration. Register 

Interrupt Mask Register 

1be byte counts in Transmit Byte Count registers 0 and 1 are combined to create a 
single counL The byte counrs in Remote Byre Count registers 0 and 1 are also 
combined Counter 0 is used for frame alignment errors, counter 1 for CRC errors, 
and counter 2 for missed packet errors. 

Table 2 displays the NIC Page 1 register addresses on the EtherTalk card. 

Table 7-2 
Page 1 Address Assignments CPS1•0. Pso-1) 

Acldr .. 1 Page 0 lead Page 0 Write 

E003C Co~and Register Command Register 

E0038 Physical Address Register (PAR) 0 Physical Address Register (PAR) 0 

£0034 Physical Address Register•(PAR) 1 Physical Address Register (PAR) 1 

E0030 Physical Address Register (PAR) 2 Physical Address Register (PAR) 2 

E002C Physical Address Register (PAR) 3 Physical Address Register (PAR) 3 

E0028 Physical Address Register (PAR) 4 Physical Address Register (PAR) 4 

£0024 Physical Address Register (PAR) 5 Physical Address Register (PAR) 5 

E0020 Current Point (CURR) Current Point (CURR) 

EOOlC Multicast Address Register (MAR) 0 Multicast Address Register (MAR) 0 

E0018 Multicast Address Register (MAR) 1 Multicast Address Register (MAR) 1 

E0014 Multicast Address Register (MAR) 2 Multicast Address Register (MAR) 2 

£0010 Multicast Address Register (MAR) 3 Multicast Address Register (MAR) 3 

EOOOC Multicast Address Register (MAR) 4 Multicast Address Register (MAR) 4 

EOOOS Multicast Address Register (MAR) 5 Multicast Address Register (MAR) 5 

E0004 Multicast Address Register (MAR) 6 Multicast Address Register (MAR) 6 

EOOOO Multicast Address Register (MAR) 7 Multicast Address Register (MAR) 7 

<<Change for EtherTalk>>The operating system reads the EtherTalk card ROM and 
installs 6 byteS into the Physical Address registers 0 through 5. The Current Point is a 
page where a packet is currently being received; it is used to detea packet reception. 
1be Multicast Address registers are initialized to OXFF because A/UX does not suppon 
multicasting. 

EtherTalk Card Hardware Description 73 



74 Chapter 7: The EtherTalk Interface Cord 



Appendix A 

EtherTalk Components 

A-1 



Component List 
Table A-1 lists the location, resource type, and desaiption of each EtherTalk software 
component. 

Table A-1 
EtherTolk Components 

LocaHon Type 

System File DRVR 

ALRT 
ALRT 

DITI 
DITI 

INIT 

System Folder 

ID 

127 

-4031 
-4032 

-4031 
-4032 

18 

Name 

.ENET 

DescrtpHon 

EtherNet driver for Macintosh Il EtherTalk 
interface card. 

Alerts and associated dialog item lists used at 
boot time to indicate an error ocurred while 
installing the altenate AppleTalk selection. 
ALRTs and DITLs must be installed with the 
LAP Manager INIT Resource. 

LAP Manager INIT resource. Contains LAP 
Manager code plus other code to install the 
alternate AppleTalk selection at startup time. 

Networlc Network 'cdev' file. Contains code to 
implement one or more alternate AppleTalk 
Selections. 

EtherTalk EtherTalk 'adev' file. Contains code to 
implement one or more alternate AppleTalk 
selections. · 

A-2 Appendix A: EtherTolk Components 



Ethernet Driver Equates 
Table A-2 lists the equates for the .ENET driver. 

Table A-2 
Ethemet Driver Equates 

Qroup and Name 

Control codes 

ESetGeneral 
EGetlnfo 
ERdCancel 
ERead 
EWrite 
EDetachPH 
EAttachPH 

FirstENET 
LastENET 

Equate 

EQU 253 
EQU 252 
EQU 251 
EQU 250 
EQU 249 
EQU 248 
EQU 247 

EQU EAttachPH 
EQU ESetGeneral 

Comment 

Set General mode 
Get info 
Cancel read 
Read 
Write 
Detach protocol handler 
Attach protocol handler 

First ENET command 
Last ENET command 

ENET queue element standard structure-arguments passed in the CSParam area 

EProtType EQU CSParam Offset to protocol type code 

EHandler 
EWDSPointer 
EBuff'Ptr 
EKillQEl 

EBuft'Size 
EDataSize 

EQU EProtType+2 
EQU EHandler 
EQU EHandler 
EQU EHandler 

EQU EBufi'Ptr+4 
EQU EBuft'Size+2 

Equates for the Ethemet packet header 

EDestAddr EQU 0 
ESrcAddr EQU 6 
EType EQU 12 
EHdrSize EQU 14 

EMinDataSz EQU 46 
EMaxDataSz EQU 1500 
EAddrSz EQU 6 
MAddrSz EQU 8 

Offset to protocol handler 
WDS pointer (EWrite) 
Buffer pointer (ERead, EGetlnfo) 
QEl pointer (EReadCancel) 

Buffer size (ERead, EGetlnfo) 
Actual data size (ERead) 

Offset to destination address 
Offset to source address 
Offset to data link type 
Ethernet header size 

Minimum data size 
Maximum data size 
Size of an Ethernet node address 
Size of an Ethernet multicast address 

Ethemet Driver Equates 3 



LAP Manager Equates 
Table A-3 lists the equates for the LAP Manager. 

Table A-3 
LAP Manager Equates 

Group and Name Equate Comment 

LAP Manager call codes passed in DO (call at tATalkHk21 + 2) 

LRdDispatch EQU 1 Dispatch to protocol handler 
L Wrtlnsert EQU 2 Insert in LAPWrite hook 
LWrtRemove EQU 3 Remove from LAPWrite hook 
LWrtGet EQU 4 Get code in LAPWrite hook 
LSetinUse • EQU 5 Set address-in-use flag 
LGetSelfSend EQU 6 Get value of self-send flag 
LAARP Attach EQU 7 Attach an AARP listener 
LAARPDetach EQU 8 Detach an AA.RP listener 
LGetA Talklnfo EQU 9 Get AppleTalk info 

Flag bits passed in Dl on LWrtlnsert 

LWSelfSend 
L WEnableSCC 
LWSrvrWks 

EQU7 
EQU6 
EQU5 

ADEV handles self-send 
Do not disable SCC 
Honor server/wks bit 

'atlk' resource call codes passed in DO (call at atlk + 2) 

Alnstall EQU 1 Installation 
AShutdown EQU 2 Shutdown 

atlkCall EQU2 Offset at which to make calls 

ADEV file call code passed in DO (call at ADEV start) 

GetADEV EQU 101 Get next ADEV 
SelectADEV EQU 102 Selea ADEV 

low-memory equates 

LAPMgrPtr EQU $Bl8 
LAPMgrCall EQU 2 
ATalkPRAM EQU SEO 
LAPMgrByte EQU $60 

Resource ID 

adevBaseID EQU -4032 

This points to our start 
Offset to make LAP Manager calls 
Start of our parameter RAM 
Value of byte pointed to by LAPMgrPtr 

Base resource ID for ADEVs 

A-4 Appendix A: EtherTalk Components 



AARP Equates 
Table A-4 lists the equates for AARP. 

Table A·• 
AARP Equates 

Group ad Name Equate 

AARP protocol type: 

AARP EQU $80F3 

Offsets in packet 

AAHardware EQUO 
AAProtocol . EQU AAHardware+2 
AAHLength EQU AAProtocol+2 
AAPLength EQU AAHLength+l 
·AACommand EQU AAPLength+l 
AAData EQU AACommand+2 

AARP commands 

AARPReq EQUl 
AARPResp EQU2 
AARPProbe EQU3 

EtherTalk specifics 

H_Ethernet EQUl 
HL_Ethernet EQU6 
P _AppleTalk EQU $809B 
PL_AppleTalk EQU4 
AAESrcPhys EQU AAData 
AAESrcLog EQU AAESrcPhys+ 

HL_Ethernet 
"hvs EQU AAESrcLog+ 

PL_AppleTalk 
AAEDstlc EQU AAEDstPhys+ 

HL_Ethernet 
AAEEnd EQU AAEDstLog+ 

L_AppleTalk 

Retransmission equates 

APrbTicks 
AReqTicks 
AReqTries 

EQU2 
EQU2 
EQU6 

Comment 

Hardware type 
Protocol type 
Hardware length 
Protocol length 
AARP command 
Data start 

Request 
Response 
Probe 

Hardware type for Ethernet . 
Ethernet address length 
Protocol type for AppleTalk 
AppleTalk address length 
Source hardware address offset 
Source protocol address 

Destination hardware address 

Destination protocol address 

End of packet 

Number of ticks between probes 
Number of ticks between requests 
Number of tries on requests 

AARP Equates 5 



ADEV File Boilerplate 
<<To be supplied by Developer Tech. Support>> 

A-6 Appendix A: EtherTalk Components 


