
EtherTalk'

Preliminary Note

Final Draft; Working Draft 3 - October 15, 1987

Communications & Networking
Apple Technical Publications

Engineering Part No. 6588279

Copyright© 1987 Apple Computer, Inc. All rights reserved. CONFIDENTIAL

APPLE COMPUTER, INC.

This manual is copyrighted by Apple, with all right reserved. Under the copyright laws,
this manual may not be copied, in whole or in part, without the written consent of Apple
Computer, Inc. This exception does not allow copies to be made for others, whether or not
sold, but all of the material purchased may be sold, given or lent to another person. Under
the law, copying includes translation into another language.

©Apple Computer, Inc., 1987
20525 Mariani A venue
Cupertino, California 95014
(408) 996-1010

Apple and the Apple logo are registered trademarks of Apple Computer, Inc. AppleTalk is
a registered trademark of Apple Computer, Inc.

NuBus™ is a trademark of Texas Instruments.

Ethernet® is a registered trademark of Xerox.

Simultaneously published in the United States and Canada.

Notice

The information in this document reflects the current state of the product.

Every effort has been made to verify the accuracy of this information;

however, it is subject to change. Preliminary Notes are released in this

form to provide the development community with essential information to

work on compatible third-party products.

EtherTalk Preliminary Note Apple Confidential

Table of Contents

Page Section

Preface

i You Should Know ...
i Document Contents
i Suggested Reading

Chapter 1 - Introduction

1 Apple Talk
2 AppleTalk Implementations
2 LAP Functions
2 Using EtherTalk
3 Possible Applications

Chapter 2 - EtherTalk Overview

4 Introduction
6 Device Files 'adev' and 'cdev'
6 Control Panel Device File
8 AppleTalk Device File
8 The 'adev' and 'atlk' Resources
8 The LAP Manager INIT Resource
9 Calls to the 'adev' Resource
9 The GetADEV Call
9 The SelectADEV Call
10 Calls to the 'atlk' Resource
10 The Alnstall and LWrtlnsert Calls
11 The LWrtGet, AShutdown, and LWrtRemove Calls
12 The LAP Manager
13 AppleTalk Selection
14 Installing the AppleTalk Selection
14 Intranode Delivery
14 Packet Reception
14 AppleTalk Address Resolution Protocol (AARP)
15 AARP Functions
15 The Ethernet Driver
15 Opening the Ethernet Driver
16 Transmission and Reception

Fina/Draft TOC-1 Table of Contents

EtherTalk Preliminary Note Apple Confidential

Chapter 3 - Calls to the 'adev' File

17 Introduction
17 The 'adev' File Contents
18 The 'adev' and 'atlk' Resources
18 Calls to the 'adev' Resource
19 The GetADEV Call (DO= 101)
19 Status-flag Byte
20 The SelectADEV Call (DO = 102)
20 Calls to the 'atlk' Resource
21 The Alnstall Call (DO = 1)
21 The AShutdown Call (DO= 2)

Chapter 4 - Calls to the LAP Manager

22 Introduction
22 Calling the LAP Manager
23 LAP Manager Functions
23 L Wnlnsert (DO = 2)
24 LWnRemove (DO= 3)
24 LWrtGet (DO= 4)
25 LSetlnUse (DO= 5)
25 LGetSelfSend (DO = 6)
25 LRdDispatch (DO = 1)
26 LGetATalklnfo (DO= 9)
26 LAARP Attach (DO = 7)
26 LAARPDetach (DO = 8)

Chapter 5 - AARP and Data Packets

27 Introduction
27 AARP Functions
28 The Address Mapping Table
28 Choosing an Address
28 Random Address Selection
28 Probe Packets
28 Response to Probe Packets
28 Avoiding Duplicate AppleTalk Addresses
29 Request Packets
29 Response to Request Packets
29 Examining Incoming Packets
29 Verifying Packet Address
30 Gleaning Information
30 Aging AMT Entries
30 Age-on-probe
32 AARP Ethernet-AppleTalk Packet Formats
33 Retransmission Details
33 Packet Specifics
35 EtherTalk Data Packet Format

Fina/Draft TOC-2 Table of Contents

EtherTalk Preliminary Note Apple Confidential

Chapter 6 - The Ethernet Driver

37 Introduction
37 Write Data Structure
38 Protocol Handlers
38 Writing Protocol-handler Code
39 Calling ReadPacket and ReadRest
40 Opening the Ethernet Driver
40 Slot Manager sNextsRsrc Trap Macro
41 Device Manager PBOpen Call
41 Making Commands to the Ethernet Driver
42 The EWrite Command
42 The EAttachPH Command
42 The EDetachPH Command
43 The ERead Command
43 The ERdCancel Command
43 The EGetlnfo Command
44 The ESetGeneral Command

Appendix A - EtherTalk Components

A-1 Component List

FinalDrqft TOC-3 Table of Contents

EtherTalk Preliminary Note

List of Figures

Page

1
3
5
7
9
10
11
12
13
32
35
37

Figure Number

1-1
1-2
2-1
2-2
2-3
2-4
2-5
2-6
2-7
5-1
5-2
6-1

List of Tables

Page

17
A-1

Fina/Draft

Table Number

2-1
A-1

Title

AppleTalk Implementations
Network Icons
EtherTalk Component Relationship

. Control Panel
The GetADEV Call
The Sele.ctADEV Call
Alnstall and L Wrtlnsen Calls

Apple Coefi.dential

LWrtGet, AShutdown, and L WnRemove Calls
LAP Manager Position
AARP Ethemet-AppleTalk Packet Formats
EtherTalk Data Packet Format
Write Data Structure for Ethernet

Title

'adev' File Contents
EtherTalk Components

TOC-4 Table of Contents

EtherTalk Preliminary Note Apple Corifidential

Preface

You Should Know ...

This preliminary note is intended to be used by Apple® software developers who wish to
develop an alternate AppleTalk® implementation or Ethernet application in conjunction with
the Macintosh™ operating system. To make use of the information presented here, you
should have a working knowledge of the existing Apple Talk environment and, depending
on your application, a working knowledge of Ethernet.

Document Contents

This preliminary note provides you with an interactional overview of Apple's EtherTalk™
software, as well as a detailed description of each software component Call definitions,
register usage, and call applications are discussed.

Suggested Reading

Here is a list of reference materials that relate or apply directly to the EtherTalk network
environment:

• Inside AppleTalk (Apple Programmers and Developers Association)
• Inside Macintosh, Volume IT, Chapter 6 ''The Device Manager" (Apple

Computer Inc.)
• Inside Macintosh, Volume IT, Chapter 10 ''The AppleTalk Manager" (Apple

Computer Inc.)
• Inside Macintosh, Volume V, Chapter 23 ''The Device Manager'' (Apple

Computer Inc.)
• Inside Macintosh, Volume V, Chapter 24 "The Slot Manager" (Apple

Computer Inc.)
• Inside Macintosh, Volume V, Chapter 28 "The AppleTalk Manager'' (Apple

Computer Inc.)
• EtherTalk Interface Card Preliminary Note (Apple Computer Inc.)
• Ethernet Blue Book (Xerox Inc.)
• EtherTalk User Guide (Apple Computer Inc.)

Fina/Draft i Preface

.J

EtherTalk Preliminary Note Apple Confidential

Chapter 1

Introduction

AppleTalk

The name Apple Talk refers to a system of hardware and software components that transfer
information when connected by a physical medium. The AppleTalk Personal Network
(APN), EtherTalk, AppleShare™, and LaserShare™ are all components of the AppleTalk
system. Figure 1-1 shows the AppleTalk system as it interacts with the APN and
EtherTalk implementations on a Macintosh II computer:

Apple Talk

Protocol

Stack

''" ~,,

Apple Talk
Link Access

Protocol

Link Access
Protocol
Manager

• • • • • • • : • • • • • •

AppleTalk Address
Resolution
Protocol

. : f
~---------~-------~-~ • • : Other Link ~ • • EtherTalk Link

Link
Access
Protocol
Layer

t Access ~ • • t Protocols ~
Access Protocol

~---------r----------·

• :········---~---···········
• • : Other l/F cards t
! :
' ····~·········~ t,,,,,, ~

EtherTalk card

•
~'''''''''''''''1~'''''''''''''''''''''''''''''''l'''''''''''''''''''''''''''''''~''''''''''''''''''''

) AppleTalk Personal Network I r_----~~i~~~-~~~~~~~----~~-) Ethernet Cable

Figure 1-1. AppleTalk Implementations

Fina/Draft 1 Chapter 1

EtherTalk Preliminary Note Apple Confidential

Apple developed a specific set of rules, or communication protocols, to control the transfer
of information among all nodes on the network. These protocols, known as Apple Talk
protocols, correspond to the various layers (Physical, Data Link) of the International
Standard Organization Open Systems Interconnection (ISO-OSI) reference model.

Note: Refer to Inside AppleTa/k and Inside Macintosh, Volume II for more information
about AppleTalk protocols.

AppleTalk Implementations

In addition to transferring information over the APN cabling scheme, AppleTalk protocols
can now transfer information over a higher-performance AppleTalk connection
EtherTalk. EtherTalk, for the Macintosh II, consists of the EtherTalk interface card and a
software package which enables transmission and reception of AppleTalk packets over
Ethernet coaxial cable and allows compatibility with Ethernet

Before the development of EtherTalk, the only option available to the user was to transfer
information over the APN or equivalent cabling system by using the AppleTalk Link
Access Protocol (ALAP) to perform node-to-node delivery of information. While this
process was sufficient for many situations, the Macintosh could transfer information on
only the APN. To expand the networking capability of the Macintosh, Apple chose to
incorporate a Link Access Protocol (LAP) Manager to perform a "switching" function that
can direct AppleTalk protocol information to the APN, Ethernet, or any other LAPs that
support additional networks.

LAP Functions

The ALAP assigns a unique identification number to each device, or node, on the APN.
This identification number, known as the node ID, is an 8-bit address that ALAP
dynamically assigns at node-startup time. The 8-bit node ID works well on the APN and is
required by the AppleTalk protocols; however, the Ethernet data link only recognizes 48-bit
addresses. The EtherTalk Link Access Protocol (ELAP) parallels the ALAP function of
assigning addresses by using another protocol-AppleTalk Address Resolution Protocol
(AARP). The EtherTalk implementation of AARP converts, or maps, a series of 8-bit
AppleTalk node IDs and their 48-bit Ethernet equivalents. This Preliminary Note discusses
AARP and the driver-level ELAP in more detail in later chapters.

Using EtherTalk
EtherTalk software is designed to operate with the Macintosh operating system and, more
specifically, the Macintosh II computer. The Macintosh Il may contain as many as six
EtherTalk interface cards to allow connection to multiple Ethernet cabling systems. Any
Macintosh computer may operate EtherTalk software as long as a compatible Ethernet
interface card and driver are present

Fina/Draft 2 Chapter 1

EtherTalk Preliminary Note Apple Confidential

A high-level look at EtherTalk software reveals new network icons as shown in Figure
1-2.

Network Built-in EtherTalk

Figure 1-2. Network Icons

When the user selects the Network icon from the Control Panel, the content area of the
Control Panel's window displays the icons for all AppleTalk connections supported by the
system, of which EtherTalk is only one. The Built-in icon represents the AppleTalk
Personal Network.

Note: AppleTalk must still be active in the Chooser for any AppleTalk implementation
to operate.

In addition to the Control Panel software, EtherTalk software also contains these
components:

• the Ethernet Driver, which is the interface to the Ethernet card.

• the Link Access Protocol (LAP) manager, which standardizes interaction with
AppleTalk drivers.

• the AppleTalk Address Resolution Protocol (AARP), which performs Ethernet
AppleTalk address mapping; and which may also perform address mapping
between AppleTalk addresses and other networks.

• the LAP Manager INIT Resource, which informs the system of which Apple Talk
connection to use at startup time.

Possible Applications

There are many possible applications that you may wish to develop. For example, you
may want to create your own alternate AppleTalk implementation or to develop an Ethernet
driver for use with a different interface card. Other examples might be to make Ethernet
calls directly on a Macintosh, create your own AARP, or develop an EtherTalk
implementation for use on another device.

Fina/Drqft 3 Chapter 1

)

EtherTalk Preliminary Note

Chapter 2

EtherTalk Overview

Introduction

Apple Confidential

This chapter identifies the contents of each component of EtherTalk software and discusses
their interaction and, to some extent, their application. Later chapters discuss each piece of
EtherTalk software in more detail.

Figure 2-1 shows all EtherTalk components and the way that these components relate to the
AppleTalk environment.

Fina/Draft 4 Chapter2

\
'

EtherTalk Preliminary Note

ALAP (in
.MPP driver)

Apple Talk
Personal Network

Apple Talk
Applications

Apple Talk

Protocol

Stack

LAP
Manager

Other
Link Access

Protocol

Other
Driver

Other
Cabling

Control Panel
Device File

File Type 'cdev'

ELAPand
AARP function

from · 'adev' ·

Ethernet
Driver

EtherTalk
Card

Ethernet
Cable

Apple Confidential

Apple Talk
Device File

File Type 'adev'

LAP Manager
INIT

Figure 2-1. EtherTalk Component Relationship

Fina/Draft 5 Chapter2

EtherTalk Preliminary Note Apple Confidential

Device Files 'adev' and 'cdev'

AppleTalk Device files (file type 'adev') and the Control Panel Device files (file type
'cdev') both reside in the System Folder. These device files work together to display a
scrollable list of icons in the left side of the C.Ontrol Panel. EtherTalk software contains the
Network 'cdev' file which, when selected, displays a series of icons to represent each
AppleTalk connection. Each alternate (other than Built-in) AppleTalk implementation must
have its own 'adev' file.

Control Panel Device File

Control Panel Device files, which are of file type 'cdev', contain various resources that
communicate machine options in some form (buttons, icons, and so on) to the user via the
Control Panel. These 'cdev' files also handle user events such as clicks and keystrokes.
Examples of 'cdev' files are the General, Mouse, Keyboard, and Color files.

EtherTalk software contains a new 'cdev' file called Network. The Network 'cdev' file,
located in the System Folder, allows the user to select one AppleTalk connection from a list
of others. The Network 'cdev' file contains various resources to display user-interface
selections and to communicate selection information to the system.

When the user selects the Control Panel from the Apple Menu, the Control Panel scans the
System Folder for files of type 'cdev'. Upon finding a 'cdev' file, the Control Panel takes
the file's icon and title (string) and adds them to the scrollable list on the left side of the
Control Panel. When all the icons are added to the scrollable list, the Control Panel selects
the General icon and constructs the control information in the window's content area. At
this point, the user may select any one of the icons in the scrollable list.

Fina/Draft 6 Chapter2

EtherTalk Preliminary Note Apple Confidential

Figure 2-2 shows the Built-in AppleTalk selection and the alternate AppleTalk selections
EtherTalk(l) and EtherTalk(2) that are available to the user after the Network icon is
selected.

General

Keyboard

···~

[OJ
Mouse

'Ii -=-• I =-- •
1•11

3.1

Control P8nel

~
EtherTalk(1) EtherTalk(2)

............................
0 0 t 0 0 0 O 0 • 0 0 I 0 0 0 0 I 0 0 0 0 0 O 0 0 0 0 0

Figure 2-2. Control Panel

Note: The term Network 'cdev' refers to the resources that comprise the Network
'cdev' file.

When the user selects the Network icon, the Network 'cdev' scans the System Folder for
all files of type 'adev'. As the Network 'cdev' accesses each 'adev' file, each 'adev' file
responds by passing various information back to the Network 'cdev' file, including the
'adev' icon and icon string. Each 'adev' file may support more than one AppleTalk
connection of the same type and, if so, must also instruct the Network 'cdev' as to the
number of identical icons to display and the strings for each.

For example, if two EtherTalk cards are installed in the Macintosh Il, a single 'adev' file
that supports both cards informs the Network 'cdev' to display two EtherTalk icons and
place an identifying string under each icon. For EtherTalk, the Network 'cdev' places the
string EtherTalk(n) under each icon, where 'n' equals each card's slot number.

After all icons appear in the content area of the Control Panel, the user may select one of the
AppleTalk icons for use. When the user makes a new selection, the Network 'cdev'
highlights this icon and performs various operations to inform the system of the new
AppleTalk selection.

Fina/Draft 7 Chapter2

)

EtherTalk Preliminary Note Apple Confidential

AppleTalk Device File

The construction of an 'adev' file is similar to that of a 'cdev' file. For each alternate
AppleTalk implementation such as EtherTalk, the 'adev' file must contain the following
resources:

• 'ICN#'
• 'STR I

• 'BNDL'
• 'FREF'
• owner resource
• 'adev' code resource
• 'atlk' code resource

The 1CN#" and 'STR ' resources are the icon and the string that the Network 'cdev' file
displays in the Control Panel content area for the alternate AppleTalk implementation. In
addition, if the 'adev' file contains the 'BNDL', 'FREF', and owner resources, and the
'adev' file has it's bundle bit set, the 'ICN#' will appear as the custom icon in the Finder.

The 'adev' and 'atlk' Resources

The 'adev' and 'atlk' resources· are pieces of stand-alone code. The 'adev' resource is
responsible for handling all interaction with the Network 'cdev'. The Network 'cdev'
loads the 'adev' resource into the application heap, calls the 'adev' resource to identify or to
select an AppleTalk implementation, and removes the 'adev' resource as the Network
'cdev' requires.

The 'atlk' resource contains the actual implementation code for the alternate AppleTalk
selection. The Network 'cdev' loads the 'atlk' resource into the system heap, calls for
initialization and installation, and detaches the 'atlk' resource. Because the Network 'cdev'
detaches the 'atlk:' resource, the current alternate AppleTalk selection remains in effect
when the 'adev' file closes.

The LAP Manager INIT Resource

When the user makes an alternate AppleTalk selection from the Control Panel, the Network
'cdev' updates parameter RAM with a value that represents the current AppleTalk selection.
This value remains in parameter RAM when the Macintosh is powered off.

At boot time, the LAP Manager INIT resource, located in the System File, interacts with
the 'atlk' resource in much the same manner as the Network 'cdev' does. This INIT
resource obtains the last AppleTalk selection value from parameter RAM, loads the
corresponding 'atlk' file into the system heap, calls the 'atlk:' resource for initialization, and
then detaches the 'atlk' resource.

Note: The LAP Manager INIT resource also loads the LAP Manager into memory and
initializes the LAP Manager at startup time.

Fina/Draft 8 Chapter2

EtherTalk Preliminary Note Apple Confuiential

Calls to the 'adev' Resource

When the user selects a new alternate AppleTalk implementation form the Control Panel,
the Network 'cdev' makes two calls to the 'adev' resource to handle the user interface.
These two calls are GetADEV and SelectADEV.

The GetADEV Call

When the user selects the Network 'cdev' icon in the Control Panel, the Network 'cdev'
makes a series of GetADEV calls to each 'adev' resource in the System Folder. Each
'adev' resource responds by telling the Network 'cdev' how many icons to display and by
identifying the string ('STR ')for each icon. Figure 2-3 shows this interaction.

EtherTalk - File Type 'adev' Other - File Type 'adev'

EtherTalk 'adev' resource Other 'adev' resource

4~

Icon, number Icon, number
GetADEV of icons to GetADEV of icons to
Calls display, and Calls display, and

icon string icon string

~, ,,
Network 'cdev' resource

Network - File Type 'cdev'

Figure 2-3. The GetADEV Call

Note: The Network 'cdev' does not make the GetADEV call to the Built-in AppleTalk
code. The Built-in code is part of the Network 'cdev' file.

The SelectADEV Call

When the user clicks on an alternate AppleTalk icon, the Network 'cdev' makes a
SelectADEV call to the 'adev' resource to indicate the selection and determine the value that
the AppleTalk selection wants to place in parameter RAM. This value indicates the details
of the AppleTalk selection.

Fina/Draft 9 Chapter2

EtherTalk Preliminary Note Apple Confidential

For example, imagine that a Macintosh II contains two EtherTalk cards and displays two .
'\ EtherTalk icons. The user selects one icon. The Network 'cdev' makes a SelectADEV call i
,l to the 'adev' resource. The 'adev' resource returns a value to the Network 'cdev' to

indicate which card is currently selected. This value is eventually passed to the 'atlk'
resource and placed in parameter RAM.

Figure 2-4 illustrates the SelectADEV call for EtherTalk.

EtherTalk - Fiie Type 'adev'

EtherTalk 'adev' resource

l

Value to
set in

SelectADEV
Parameter

Call
RAM

r

Network 'cdev' resource

Network - Fiie Type 'cdev'

Figure 2-4. The SelectADEV Call

Ref er to Chapter 3 for more information about calls to the 'adev' resource.

Calls to the 'atlk' Resource

In addition to making the SelectADEV call, the Network 'cdev' must also close down the
previously selected AppleTalk implementation and install the new user selection as the
current AppleTalk implementation. To close down the AppleTalk selection, the Network
'cdev' makes an AppleTalk Shutdown (AShutdown) call to the 'atlk' resource. To install
the new AppleTalk selection, the Network 'cdev' makes an AppleTalk Install (Alnstall) call
to the 'atlk' resource.

The Alnstall and LWrtlnsert Calls

After the Network 'cdev' calls the 'adev' resource with the SelectADEV call, the Network
'cdev' loads the new 'atlk' code into the system heap, calls the 'atlk' resource with an

Fina/Draft 10 Chapter2

EtherTalk Preliminary Note Apple Confidential

Alnstall call, and detaches the 'atlk' resource so that it remains in memory when the user
closes the Control Panel.

Generally, in response to the Alnstall call, the 'atlk' code makes a Lap Write Insert
(L Wrtlnsert) call to the LAP Manager to tell the LAP Manager to install a portion of the
'atlk' code into the LAPWrite hook which is a low-memory location equal to ATalkHk2 .
The portion of 'atlk' code that the LAP Manager loads into low memory is responsible for
sending packets. At startup time, the LAP Manager INIT resource also loads the 'atlk'
resource, as indicated by parameter RAM, into the system heap; calls with Alnstall; and
detaches it. Figure 2-5 illustrates the Alnstall and LWrtinsert calls.

New AppleTalk Selection -
File Type 'adev'

LWrtlnsert _. LAP Manager
-

'atl k' resource
l_

Alnstall

Network 'cdev' resource

Network - File Type 'cdev'

Figure 2-S. Alnstall and L Wrtlnsert Calls

The LWrtGet, AShutdown, and LWrtRemove Calls

To close down the previous AppleTalk selection, the Network 'cdev' makes an
AShutdown Call to dispose of the 'atlk' resource. However, the Network 'cdev' has
detached the previously installed 'atlk' code and does not know its location in the system
heap. Before making the AShutdown call to the 'atlk' code, the Network 'cdev' makes a
Lap Write Get (L WrtGet) call to the LAP Manager to obtain the location of the 'atlk' code.
In general, after the Network 'cdev' makes the AShutdown call, the 'atlk' code should
respond by making a LAP Write Remove (L WrtRemove) call to the LAP Manager. The
LAP Manager responds to this call by removing the old 'atlk' code in the LAPWrite hook.
Normally, the AShutdown and LWrtRemove calls are made before the Alnstall and
L Wrtlnsert calls.

Fina/Draft 11 Chapter2

)

EtherTalk Preliminary Note Apple Confidential

Figure 2-6 illustrates the LWrtGet, AShutdown, and LWrtRemove calls.

©
'atlk' code In LWrtRemove .. LAP Manager

4~ System Heap ...

0
® location of

© ® 'atlk' code
in System LWrtGet

AShutdown ~

~'

Network 'cdev' resource

Network - File Type 'cdev'

Figure 2-6. LWrtGet, AShutdown, and LWrtRemove Calls

The LAP Manager
The LAP Manager standardizes interactions with the AppleTalk drivers/protocol stack and
the link access protocol layer of the current AppleTalk selection. By standardizing these
interactions, various AppleTalk implementations will not interfere with each other and will
not have to make use of information that is private to the AppleTalk drivers.

Final Draft 12 Chapter2

EtherTalk Preliminary Note Apple Confidential

The LAP Manager resides between the link access protocols of all AppleTalk
implementations and the AppleTalk protocol stack, as Figure 2-7 shows.

Apple Talk
Link Access

Protocol

Apple Talk

Protocol

Link Access
Protocol
Manager

Stack

• • • • • • • • • • • • • •

AppleTalk Address
Resolution
Protocol

• : : , '-.... ,
: Other Link : • • EtherTalk Link

Link
Access
Protocol
Layer

: Access : • • : Protocols :
Access Protocol

~ .. . • • • • • • : ~ , . ' : Other l/F cards :
: i
: , ...•.....•... J
Lt .. ! .. ! .. ! .. JJ i

•

EtherTalk card

~'''''''''''''''!~'''''''''''''''''''''''''''''''°'}''''''''''''''''''''''''''''''~ ~'''''''''''''''''"'
) AppleTalk Personal NetNork) f~~~~~~~~~~~~~~~~~~~) Ethernet Cable

Figure 2-7. LAP Manager Position

The LAP Manager is installed in the system heap at startup time, before the AppleTalk
drivers are opened. The LAP Manager takes control of the LAPWrite hook, which is
located in low memory as ATalkHk2. The AppleTalk drivers use the LAPWrite hook to
direct outgoing AppleTalk packets.

AppleTalk Selection

The LAPWrite hook contains the code that is, for all practical purposes, the actual
AppleTalk implementation for outgoing packets. The LAP Manager installs this code in
LAPWrite hook under the direction of the code itself. In the case of EtherTalk, the 'atlk'

Fina/Draft 13 Cha.pter2

EtherTalk Preliminary Note . Apple Confulential

code resource tells the LAP Manager which portion of the 'atlk' code to insert in the
LAPWrite hook. Loading 'atlk' code into the LAPWrite hook happens at two different
times:

• whenever the user makes an AppleTalk selection from the Control Panel

• at startup time when the INIT resource obtains the Apple Talk selection value from
parameter RAM.

Installing the AppleTalk Selection

As indicated earlier in this chapter, when the user makes a new AppleTalk selection, the
Network 'cdev' loads the 'atlk' code into the system heap. The 'atlk' code then makes a
L Wnlnsert call to the LAP Manager. The L Wnlnsert call contains a pointer which tells the
LAP Manager the location of the portion of the'atlk' code to insert into the LAPWrite hook
as the AppleTalk selection.

Intranode Delivery

The LAP Manager handles the sending of an AppleTalk packet to its own node unless the
'atlk' code specifies otherwise. If the LAP Manager is to handle intranode packets, the
LAP Manager generally will not call the 'atlk' code for packet delivery. However, if the
LAP Manager is to handle intranode delivery and an application sends a broadcast packet to
the network, the LAP Manager will handle the intranode delivery of this packet and will call
the 'atlk' code for packet transmission on the network.

Packet Reception

When the 'atlk' code receives an incoming AppleTalk packet, the 'atlk' code makes a LAP
Read Dispatch (LRdDispatch) call to the LAP Manager to indicate that a packet needs to be
delivered. The 'atlk' code delivers this packet by providing and executing routines that
emulate ALAP' s ReadRest and ReadPacket routines.

Refer to Chapter 4 for more information on the LAP Manager.

AppleTalk Address Resolution Protocol (AARP)

Although the AppleTalk Address Resolution Protocol (AARP) can be used to map between
any two sets of addresses, the AARP implementation that EtherTalk uses maps between a
48-bit Ethernet address and an 8-bit AppleTalk address. To further distinguish between
these two sets of addresses, this preliminary note will refer to them as follows:

• An Ethernet address, which is the node address that is determined by the Physical
and Link layers of the network. An example of an Ethernet address is a 48-bit
Ethernet destination address.

Fina/Draft 14 Chapter 2

\
I

/

EtherTalk Preliminary Note Apple Confu1ential

• An AppleTalk address, which is the node address used by high-level
AppleTalk protocols. An example of an AppleTalk address is an 8-bit
AppleTalk node address for the Datagram Delivery Protocol (DDP).

AARP Functions

In the case of EtherTalk, AARP resides between the Link Access layer and the Network
Layer of the network, and performs three basic functions:

• Initial determination of a unique AppleTalk address. This address is unique among
all other nodes that are physically attached to the network.

• Mapping from an AppleTalk address to an Ethernet address. Given an AppleTalk
address for a node on the network, AARP returns either the corresponding Ethernet
address or an error that indicates that no node on the network has such an
AppleTalk address.

• Filtering of packets. For all Apple Talk packets received by a given node, AARP
verifies that the destination node address of the packet is equal to either the node's
AppleTalk address or broadcast value. ff the packet does not equal either of these
values, AARP discards the packet.

Refer to Chapter 5 for more information on AARP.

The Ethernet Driver

While using EtherTalk software on the Macintosh Il, the Ethernet driver serves as a
general-purpose interface between the 'atlk' resource and the Ethernet Interface card. The
driver interface is recommended for use with other Ethernet implementations, such as an
interface to a Macintosh SE driver.

The Ethernet driver, located in the system file, is named .ENET. ff you are developing a
driver for use with a slotless device, name the driver .ENETO.

Opening the Ethernet Driver

On the Macintosh Il, use the Device Manager to make a PBOpen call to open the Ethernet
driver. Before you can make this call, you will have to obtain certain field values, such as
the EtherTalk card slot number. You may obtain these field values by using the Slot
Manager sNextsRsrc trap.

The Ethernet driver opens in AppleTalk mode. In this mode, packets for transmission can
contain no more than 768 bytes. Packets for transmission and reception share a common
buffer pool. The transmission-packet size is large enough to encapsulate packets for
transmission and to allow a larger buff er pool area for packet reception. ff packets require
more than 768 bytes, issue a control call (ESetGeneral) to change the mode from AppleTalk
to General. In General mode, the driver can transmit any valid Ethernet packet

Final Draft 15 Chapter2

EtherTa/k Preliminary Note Apple Confidential

Transmission and Reception

A series of Device Manager control calls are made to the driver to control packet
transmission and reception over Ethernet These calls are as follows:

• EAttachPH, which attaches a protocol handler to the driver specified by the protocol
type

• EDetachPH, which removes a protocol handler from the driver for the given
protocol type

• EWrite, which writes a packet out to Ethernet

• ERead, which reads in a packet

• ERdCancel, which cancels a specified ERead call

• EGetlnfo, which returns the node address on which the driver is running

• ESetGeneral, which switches the driver from AppleTalk to General mode

Note: For more information about the Ethernet driver, refer to Chapter 6.

Final Draft 16 Chapter2

EtherTalk Preliminary Note Apple Corifidential

Chapter 3

Calls to the 'adev' File

Introduction

This chapter contains information about making calls to the 'adev' file for an AppleTalk
selection. The 'adev' file is similar to the 'cdev' file, and both reside in the System Folder.
When the user selects the Network 'cdev' icon from the Control Panel, the Network 'cdev'
makes a series of calls to each 'adev' file and displays the 'adev' icons to represent all
AppleTalk selections available to the user. In addition, the Network 'cdev' file highlights
the current Apple Talk selection. If the user then makes a different AppleTalk selection, the
Network 'cdev' highlights the new selection and updates parameter RAM with the
information obtained from the 'adev' resource. The next time the Macintosh restarts, the
LAP Manager INIT resource obtains the latest user selection from parameter RAM, loads
the corresponding AppleTalk 'atlk' resource into the system heap, and initializes the 'atlk'
code.

The 'adev' File Contents

The 'adev' file for EtherTalk and any other AppleTalk selection is located in the System
Folder and must contain the following resources and code segments as shown in Table 2-1.

Code ID

'BNDL' resource -4032

'FREF' resource -4032

'ICN#' resource -4032

'STR ' resource -4032

'adev' code segment in range of 1-254

'atlk' code segment in range of 1-254

Table 2-1. 'adev' File Contents

In addition to these resources and code segments, the 'adev' file should contain an owner
resource to display the icon in the Finder. For example, because the EtherTalk 'adev' file
has a creator of etlk, the 'adev' contains an owner resource called 'etlk' with an ID of 0. In
addition, the 'adev' file has its bundle bit set to allow the 'ICN#' resource to display the
EtherTalk icon in the Finder.

Final Draft 17 Chapter3

EtherTalk Preliminary Note Apple Confidential

The 'adev' and 'atlk' Resources

The 'adev' resource located in an 'adev' file, is responsible for handling all interaction with
the user. The Network 'cdev' loads the 'adev' resource into the application heap, calls the
'adev' resource, and removes it as needed. The 'atlk' resource is responsible for the actual
implementation of the alternate AppleTalk selection. When the user selects an alternate
AppleTalk icon, the Network 'cdev' file loads the 'atlk' resource into the system heap, calls
the 'atlk' resource for initialization, and then detaches it. At startup time, the LAP Manager
INIT resource performs the loading, calling, and detaching of the 'atlk' resource.

The 'atlk' resource must have its system-heap bit set and both the 'adev' and 'atlk'
resources should have their locked bit set. The resource ID of the 'adev' resource and the
'atlk' resource must be the same and in the range of 1 to 254. When stored in the low byte
of parameter RAM, this ID identifies the current Apple Talk selection.

Note: Parameter RAM contains 4 bytes of information that identify an AppleTalk
selection. The low byte contains the resource ID of the 'adev' resource and the'atlk'
resource, and the high bytes contain other information that uniquely identifies the
selection.

Like drivers, no two AppleTalk implementations can have the same ID. Apple reserves the
use of the ID ranges of 1to127. You may use the ID ranges of 128 to 254. Contact Apple
Technical Support to obtain an ID.

Calls to the 'adev' Resource

The Network 'cdev' calls the 'adev' resource, at the first location in the resource (an offset
of 0), at two different times:

• When the user selects the Network 'cdev' icon, the Network 'cdev' calls
GetADEV.

• When the user selects an alternate AppleTalk icon, the Network 'cdev' calls
SelectADEV.

The Network 'cdev' passes a value in register DO that distinguishes between these two
calls. Your code must observe Pascal register saving conventions and should return with
an RTS.

Final Draft 18 Chapter3

EtherTalk Preliminary Note Apple Conjulential

The GetADEV Call (DO = 101)

Call:

Return:

01 (long) = cmrent value of parameter RAM
02 (long) = value retmned from previous GetAOEV call, or 0 if first
GetADEV call

DO (byte) = status flag
02 (long) = next value for 02 to call; also used by SelectADEV call
AO-> string to place under icon.

When the user selects the Network 'cdev' icon, the Network 'cdev' needs to display a list
of icons to represent all alternate AppleTalk selections that are available to the user. To do
this, the Network 'cdev' makes a series of GetAOEV calls to each 'adev' resource in the
System Folder. Since each 'adev' resource could possibly be handling multiple interface
cards, the 'adev' resource must tell the Network 'cdev' how many icons to display and
identify the string for each icon. The Network 'cdev' displays these identical icons for
each card as the 'ICN#' resource specifies. You may use the string to which AO points to
identify the icon uniquely. For example, you could obtain the slot number of the card with
a Slot Manager sNextsRsrc call and then append the slot number to the string.

The first GetAOEV call contains the cmrent value of parameter RAM in 01, to indicate the
cmrent AppleTalk selection, and 0 in 02 to indicate that this call is the first GetADEV call.
The 'adev' resource responds to the first GetADEV call by returning a status-flag value in
DO, indicating whether or not there are additional cards that this 'adev' resource supports.
Also, the 'adev' resource returns a value in 02 that the Network 'cdev' associates with this
icon, and a pointer in AO that points to the Pascal string to place under the icon.

Note: The Network 'cdev' also passes the 02 value to the 'adev' resource when
making the SelectADEV call.

If the status flag indicates to the Network 'cdev' that there is an additional card that the
'adev' resource supports, the Network 'cdev' makes another GetAOEV call with the same
value in 01 and the 02 value that was returned from the first call. Upon receipt of the 02
value, the 'adev' resource knows it returned first-call information the last time, and
responds by returning second-call info~tion to the Network 'cdev'. The Network 'cdev'
continues to make subsequent GetADEV calls until the status flag indicates that there are no
more cards to support. When the user selects an icon that the 'adev' resource supports,
the Network 'cdev' makes a SelectAOEV call to the 'adev' resource, passing the value in
02 to indicate the cmrent selection.

Status-flag Byte

There are three status-flag bytes (-1, 0, and 1) that the 'adev' resource may return in DO to
indicate the status of the alternate Apple Talk selection.

The 'adev' returns DO= -1 to inform the Network 'cdev' that there is one and maybe more
AppleTalk selections (cards) supported by this 'adev' resource. Returning DO= -1 also
indicates to the Network 'cdev' that this AppleTalk selection seems to be the one currently
selected, as indicated by parameter RAM. The Network 'cdev' responds by making
another GetADEV call to the 'adev' resource.

Final Draft 19 Chapter 3

EtherTalk Preliminary Note Apple Confulential

Returning DO = 0 also informs the Network 'cdev' that there is one and maybe more
AppleTalk selections to support; however, returning DO = 0 also indicates that this
AppleTalk selection is not the one currently selected, as indicated by parameter RAM. The
Network 'cdev' responds by making another GetADEV call to the 'adev' resource.

Returning DO = 1 informs the Network 'cdev' that there are no more AppleTalk selections
to support.

Note: The 'adev' resource may return DO= 1 in response to the the first GetADEV call
to inform the Network 'cdev' that there are currently no AppleTalk selections to
support.

Before the 'adev' returns information about an alternate AppleTalk it supports, the 'adev'
resource examines the high 3 bytes of the long word in D 1 for the current value of
parameter RAM. Depending on the contents ofDl, the 'adev' resource returns the
appropriate status value in DO. H the 'adev' resource returns DO = -1, the Network 'cdev'
checks various system parameters and highlights the icon only if it is the current selection.
The 'adev' may be wrong about identifying the current selection to the Network 'cdev'.
For instance, after two different AppleTalk implementations examine the high 3 bytes of
parameter RAM, they both may return DO = -1. To handle this possibility, the Network
'cdev' examines the low byte of parameter RAM, which contains the resource ID of the
previous selection, and matches the ID with the proper AppleTalk implementation. The
Network 'cdev' highlights the appropriate icon after making the final determination.

The SelectADEV Call (DO = 102)

Call: D2 (long) = value returned from associated GetADEV call.

Return: D 1 (high three bytes) = value to set in parameter RAM; also passed to
'atlk' code by the Alnstall call.

The Network 'cdev' makes a SelectADEV call to the associated 'adev' resource when the
user selects an alternate AppleTalk icon. This call's main purpose is to determine the value
that the 'atlk' code wishes to store in parameter RAM. This value, which is specific to the
alternate Apple Talk implementation, indicates the details of the alternate Apple Talk
selection and is passed to the 'atlk' resource by the Alnstall call. For instance, in addition
to the resource ID of the 'adev' resource and 'atlk' resource, the high 3 bytes may contain
the slot number of the interface card ($09 - $OE). Depending on your application, you may
wish to direct the 'adev' resource to display a dialog box at this point to obtain some type
of user information such as data rate, and to save this information in parameter RAM.

Note: The SelectADEV call is not an initialimtion call.

Calls to the 'atlk' Resource

The 'atlk' resource, loaded into the system heap by the Network 'cdev', contains two
distinct sections of code. The first section, at the start of the resource, contains the
LAPWrite code to be inserted into the LAPWrite hook as the alternate AppleTalk
implementation. This procedure is explained in detail in Chapter 4.

Final Draft 20 Chapter 3

EtherTalk Preliminary Note Apple Confidential

The second section of the code, located at the start of the 'atlk' resource plus two, contains
the initialization and shutdown routines. After the Network 'cdev' makes the SelectADEV
call to the 'adev' resource, the Network 'cdev' loads the associated 'atlk' resource into the
system heap and calls it with Alnstall to perform initialization. The LAP Manager INIT
resource also makes the Alnstall call at startup time to initialize the 'atlk' resource as
indicated by parameter RAM. Following this call, if there is no error, the Network 'cdev'
detaches the 'atlk' resource (from the Resource Manager) so it will remain in the system
heap when the user closes the Control Panel.

The Network 'cdev' also makes an AShutdown call to dispose of the previously selected
'atlk' resource. Before making this call, the Network 'cdev' needs to obtain the location of
the 'atlk' resource because it is detached from the Resource Manager. To accomplish this,
the Network 'cdev' calls the LAP Manager with L WrtGet, which returns the location of the
LAPWrite code. The LAPWrite code starts at the beginning of the 'atlk' resource;
therefore, the Network 'cdev' knows where to call the 'atlk' code with AShutdown.

For the Alnstall and AShutdown calls, the contents of register DO indicate which call is
made by the Network 'cdev'. The code must observe interrupt-register-saving
conventions (it may use DO-D3 and AO-A3) and should return with an RTS.

The Alnstall Call (DO = 1)

Call:

Return:

D 1 (long) = value from parameter RAM (as set in the SelectADEV
call)

DO = error code.
D 1 (high 3 bytes) = new value to set in parameter RAM

When the Network 'cdev' or LAP Manager INIT resource makes the Alnstall call to the
'atlk' code, it should respond by allocating variables, opening the appropriate 1/0 device
(such as the slot driver), and performing any other initialization necessary. The 'atlk' code
should call the LAP Manager with a LWrtlnsert call to install itself as the alternate
Apple Talk selection. This call should return a value to set in parameter RAM only if that
value is different than the one received; otherwise, the 'atlk' code should preserve Dl. If
an error occurs during any portion of this process, your code should return a negative value
in DO; otherwise, DO should return 0.

The AShutdown Call (DO = 2)

There are no arguments to the AShutdown call. The Network 'cdev' makes this call after
the LAP Manager closes the AppleTalk drivers, and before the Network 'cdev' installs a
new alternate AppleTalk implementation. The 'atlk' code should issue a LWrtRemove call
to the LAP Manager, dispose of its variables, and perform any other operations necessary
before the Network 'cdev' disposes of the 'atlk' resource.

Final Draft 21 Chapter 3

EtherTalk Preliminary Note Apple Conjzdential

Chapter 4

Calls to the LAP Manager

Introduction

The LAP Manager standardizes interactions between the AppleTalk protocol stack and the
Link Access layer of the current AppleTalk selection. Standardizing these interactions
ensures that various AppleTalk implementations will not interfere with each other and will
not have to make use of information that is private to the AppleTalk drivers. The LAP
Manager resides between the LAPs (such as ALAP and ELAP) of all AppleTalk
implementations and the AppleTalk protocol stack.

This chapter describes the calls that the LAP Manager provides. Once the Network 'cdev'
loads the 'atlk' code into the system heap and makes the Alnstall call, the 'atlk' code
responds by making a call to the LAP Manager which inserts the 'atlk' code into the
LAPWrite hook. The LAP Manager also provides functions for removing the 'atlk' code
from the LAPWrite hook, receiving packets from the network, and standardizing the packet
transfer process with AppleTalk's .MPP driver.

The LAP Manager is installed in the system heap at boot time, before the AppleTalk
Manager opens the .MPP driver.

Calling the LAP Manager

The 'atlk' code resource makes all calls to the LAP Manager by jumping through a low
memory location, with DO equal to a dispatch code that identifies the function. The exact
sequence is

MOVE.W
MOVE.L
JSR

#Code,DO
LAPMgrPtr, An
LAPMgrCall (An)

; DO = function
; An-> start
; Call at entry point

LAPMgrPtr is defined as the low-memory global ATalkHk2, which is the location jumped
through by the .MPP driver immediately before it writes a packet out through ALAP to the
APN. If the user selects an alternate Apple Talk implementation, the LAP Manager uses
LAPMgrPtr to take control at this point and call the alternate AppleTalk implementation.
Offset LAPMgrCall within this code is the command-processing part of the LAP Manager.

Note: ATalkHk2 is not defined in the original Macintosh ROMs. The LAP
Manager is available only on Macintosh Plus and later ROMs.

Fina/Draft 22 Chapter4

EtherTalk Preliminary Note Apple Confulential

LAP Manager Functions

The LAP Manager supports the following nine functions that are used for packet handling.

LWrtlnsert (DO = 2)

Call: AO-> code to insert (first part of 'atlk' resource)
D 1 (byte) = flags
D2 (word) = maximum number of times to try to get an unused node
address (0 =infinite)

Return: DO = 0 (no error)

This call inserts an alternate AppleTalk in the LAPWrite hook. After the 'atlk' resource
makes this call, the LAP Manager calls the code to which AO points before writing any
packet out on the network. Use the bits in the low byte of D 1 to inform the LAP Manager
of the way to handle the packet Set these bits to indicate the following to the LAP
Manager:

Bit 7 =let the 'atlk' code handle self-sends (intranode delivery); normally the
LAP Manager intercepts self-send packets and processes them.

Bit 6 = do not disable the port B serial-communications controller (SCC);
normally the LAP Manager disables the SCC.

Bit 5 = honor the server/workstation (server/wks) bit in the node-number
assignment algorithm.

The LAP Manager generally handles intranode-packet delivery (packets sent to one's own
node). If a packet is an intranode packet, the LAP Manager delivers this packet without
calling the code in the LAPWrite hook; however, if the packet is a broadcast, the LAP
Manager delivers the packet within its node and calls the 'atlk' code to handle the broadcast
delivery. For this process to happen, the .MPP driver's SelfSend flag must be set. To
disable the LAP Manager's handling ofintranode delivery, set bit 7 in Dl when making the
LWrtlnsert call.

Setting bit 6 in D 1 tells the LAP Manager not to disable SCC port interrupts. Normally, the
LAP Manager disables these interrupts because it assumes that the alternate AppleTalk
implementation does not want to receive ALAP packets on this port.

When picking a node address, set bit 5 to tell the LAP Manager to honor the server/wks bit.
Normally, the LAP Manager assumes that the alternate Apple Talk implementation does not
distinguish between server addresses (128-254) and workstation addresses (1-127), and
that the AppleTalk implementation wants to pick a node address in the full range of 1 to
254.

Fina/Draft 23 Chapter4

EtherTalk Preliminary Note Apple Confidential

The LAP Manager calls the code to which AO points at two different times. The first is at
node-address-choosing time. The LAP Manager calls the 'atlk' code for each set of ENQs
(ALAP type $81) that ALAP would normally send out to the network. The second is at the
time when the AppleTalk drivers would normally write a packet out through ALAP. Once
installed in the LAPWrite hook, the LAP Manager calls the 'atlk' code as follows:

AO-> where to return when done with the operation
Al-> WDS (if sending a data packet, not an ENQ) or port-use byte (if sending
ENQs)
A2 -> .MPP variables
DO (byte) =nonzero if sending ENQs, zero if not
D 1 -> where to return in .MPP to continue packet processing
D2 (byte) = ALAP destination address

The 'atlk' code should return with a normal RTS ifthe write is still in progress, and should
jump to the location to which AO points when the write finishes. When the write finishes,
it must reset Al, A2, and D2 to their initial values, and must preserve A4-A6 and D~7.
H the code wishes the .MPP driver to continue its normal processing (for example, if the
code does not intercept the call), it should jump to the location to which D 1 points.
Generally, code will intercept the call.

H DO is nonzero, which indicates a call to send ENQs, the code should query if the address
that D2 specifies is in use, and return through AO immediately. At any time thereafter, if
the code discovers that the address is in use, the code should make a LSetlnUse call to the
LAP Manager.

Note: The LAP Manager passes both the variable pointer of the .MPP driver and the
address of the port-use byte (if sending ENQs) to the 'atlk' code. Do not assume that
pointer is stored at location $208 (AbusVars) or that the port-use byte is at location
$291 (PortBUse). Save these pointers from the first ENQ call for future use.

L WrtRemove (DO = 3)

Return: DO = 0 (no error)

The 'atlk' code makes the LWrtRemove call to the LAP Manager to remove an alternate
AppleTalk selection from the LAPWrite hook. Generally, the 'atlk' code should make this
call following an AShutdown call.

LWrtGet (DO = 4)

Return: DO = 0 (no error)
AO-> start of code in the LAPWrite hook

When the LWrtGet call is made, AO returns a pointer to the alternate AppleTalk code in the
LAPWrite hook. Normally, the 'atlk' code does not need to make this call; however, the
Network 'cdev' makes this call as part of the process to dispose of the 'atlk' code.

Final Draft 24 Chapter4

EtherTalk Preliminary Note Apple Confuiential

LSetlnUse (DO = 5)

Call: A2 -> .MPP variables

Return: DO = 0 (no error)

This LSetln Use call indicates to the LAP Manager and the .MPP driver that another node
on the network is currently using the requested node address. The .MPP driver will try
another address.

LGetSelfSend (DO = 6)

Call: A2 -> .MPP variables

Return: DO = 0 (no error)
DI (byte)= value of .MPP SelfSend flag

This LGetSelfSend call is for use by alternate AppleTalk implementations that use their
own intranode delivery. If Dl is nonzero, intranode delivery is enabled.

LRdDispatch (DO = 1)

Call: A2 -> .MPP variables

Return: DO = non-zero if error

This LRdDispatch call indicates to the LAP Manager that a packet has arrived from the
network and requires delivery. Registers should be set up to provide a simulation of the
ALAP client ReadPacket and ReadRest routines. Refer to Chapter 10 Inside Macintosh,
Volume II for details. Specifically, register setup and restrictions are as follows:

AO, Al -> hardware register (can be used by the alternate AppleTalk for any reason)
A2 -> .MPP variables
A3 -> past the 5 header bytes in the .MPP RHA
A4 -> the ReadPacket routine (previous value saved and restored after ReadRest is

complete)
A5 has been saved and is restored after ReadRest is complete
D 1 = packet length left to input
D2 (byte) = LAP type for which to dispatch a protocol handler

Note: The ReadRest routine begins 2 bytes after ReadPacket

Generally the LRdDispatch routine, even though it is called with a JSR, will not return to
the caller, but will jump to the protocol handler attached to the protocol indicatoo in D2,
which in turn calls ReadPacket and ReadRest routines. If the routine does return, doing so
indicates an error-there was no handler attached to the protocol indicated in D2.

Fina/Draft 25 Chapter4

EtherTalk Preliminary Note Apple Confulential

LGetA Talklnfo (DO = 9)

Return: Dl (long)= value of parameter RAM
Uses AO ·

This LGetA Talldnfo call returns the current 4-byte value of parameter RAM. The low byte
contains the resource ID of 'adev' resource and the 'atlk' resource for the current
AppleTalk implementation (0 for Built-in and 2 for Ethertalk). The high 3 bytes contain
values that further distinguish this AppleTalk implementation.

LAARP Attach (DO = 7)

Call:

Return:

D 1 (long) = hardware/protocol type (hardware type in high word).
D2 (word) = Ethernet driver reference number
AO-> listener code

DO = non-zero if error
Uses AO and D2

This call is only used when attaching an AARP listener to the LAP Manager to handle
incoming AARP packets other than those used to map between Ethernet and AppleTalk
addresses. The LAP Manager determines which AARP listener to attach by examining the
contents of D 1. Currently, the LAARP Attach call only supports one driver.

Note: The LAARPAttach and LAARPDetach calls are used to multiplex incoming
AARP packets for various possible hardware-protocol mappings. These two calls
should be used by any application that wishes to receive AARP packets.

LAARPDetach (DO = 8)

Call:

Return:

D 1 (long) = hardware/protocol type (hardware type in high word)
D2 (word) =Ethernet driver reference number

DO = nonzero if error
UsesD2

The LAARPDetach call detaches an AARP listener as the contents of D 1 specify.

Fina/Draft 26 Chapter4

EtherTalk Preliminary Note Apple Confidential

Chapter 5

AARP and Data Packets

Introduction

There are two categories of packets that an EtherTalk node encounters on Ethernet This
preliminary note distinguishes one category as AARP packets and the other category as data
packets. AARP packets are those packets that perform address-resolution functions (such
as request, response, and probe). Data packets are those packets that contain Apple Talk
packet data.

AARP can be used to map between any two sets addresses. The AARP implementation that
EtherTalk uses maps between a 48-bit Ethernet address and an 8-bit AppleTalk address.
To distinguish between these two sets of addresses further, this preliminary note will refer
to them as follows:

• An Ethernet address, which is the node address that is determined by the Physical
and Link layers of the network. An example of an Ethernet address is a 48-bit
Ethernet destination address.

• An AppleTalk address, which is the node address used by high-level
AppleTalk protocols. An example of an AppleTalk address is an 8-bit
AppleTalk node address for the Datagram Delivery Protocol (DDP).

AARP Functions

AARP resides between the Link Access layer and the Network layer of the network and
performs three basic functions:

• Initial determination of a unique AppleTalk address. This address is unique among
all other nodes that are physically attached to the network.

• Mapping from an AppleTalk address to an Ethernet address. Given an AppleTalk
address for a node on the network, AARP returns either the corresponding
Ethernet address or an error that indicates that no node on the network has such an
AppleTalk address.

• Filtering of packets. For all data packets received by a given node, AARP verifies
that the destination node address of the packet is equal to either the node's
Apple Talk address or the networkbroadcast value. H the packet does not equal
either of these values, AARP discards the packet.

Note: This preliminary note discusses AARP as it applies to the EtherTalk
environment Using AARP as a generic protocol will be explained in future
documentation.

Final Draft 27 Chapter 5

EtherTalk Preliminary Note Apple Coefulential

The Address Mapping Table

Within a given node, AARP maintains an Address Mapping Table (AMT). In the case of
EtherTalk, the AMT contains a list of AppleTalk addresses and their corresponding
Ethernet addresses-serving as a cache of known AppleTalk-to-Ethernet address
mappings. Whenever AARP learns of a new mapping; AARP updates the AMT to reflect
the new addresses. If there is no more room for new addresses, AARP should purge the
AMT by using some sort of least-recently used algorithm

Choosing an Address

At initiali:r.ation time, AARP needs to acquire an AppleTalk node address. This address
must be unique for all AppleTalk nodes on the Ethernet network.

Random Address Selection

AARP includes the ability to pick a unique AppleTalk address dynamically at initiali:r.ation
time. When an AARP client requests this function, AARP picks an AppleTalk address at
random and sets that address as the node's tentative AppleTalk address. If, by chance,
there is aready a mapping for that address in the AMT, AARP picks additional random
addresses until it identifies an address that is not in the AMT.

Probe Packets

Once AARP identifies a tentative Apple Talk address, AARP broadcasts a number of probe
packets that contain the tentative AppleTalk address to determine if any other node on the
network is currently using that AppleTalk address. Any node receiving a probe packet
whose AppleTalk address matches its AppleTalk address must respond by sending an
AARP response packet.

Response to Probe Packets

Upon receiving the response packet, the probing node knows the address is already in use
and probes with another address. If the probing node does not receive a response packet
after a specific number of probes, AARP sets the tentative address to permanent and returns
this address to its client.

Avoiding Duplicate AppleTalk Addresses

It is possible, although unlikely, that two nodes on the network could pick the same
tentative address at the same time. To avoid this possibility, if a node receives a probe
packet whose tentative address matches its tentative address, the receiving node should
assume that this address is in use and select another random AppleTalk address. A node
should never respond to an AARP probe packet or an AARP request packet while it is
probing.

Final Draft 28 Chapter5

EtherTalk Preliminary Note Apple Confulential

Request Packets

When an AARP client makes a request to determine the Ethernet address that is associated
with an AppleTalk address, AARP first scans the AMT for this address. If the AppleTalk
address is in the AMT, AARP returns the corresponding Ethernet address. If the Ethernet
address is not in the AMT, AARP attempts to determine the Ethernet address by
broadcasting an AARP request packet to all nodes on the network. The request packet
indicates the AppleTalk address for which an Ethernet mapping is desired.

Response to Request Packets

When a node receives a request packet, the node's AARP attempts to match the request
packet's AppleTalk address to its own AppleTalk address. If the receiving node's
AppleTalk address matches, the receiving node responds by sending an AARP response
packet to the requestor indicating the AppleTalk-to-Ethemet node-address-mapping
information. The requesting AARP enters this mapping in the AMT and returns to its
client If there is no reply within a specific time-out period, AARP retransmits the packet a
given number of times and returns an error to its client if there is still no response; the error
indicates there is no such node on the network.

Examining Incoming Packets

In addition to receiving and processing its own packets (probe, request and response), an
active AARP (such as one that is performing translation) must receive and process all
AppleTalk data packets. There are two reasons for this requirement. The first reason is that
AARP must verify that an incoming packet is in fact intended for this AppleTalk node. The
second reason is that AARP can glean address information from the incoming packet to
update the AMT, limiting the number of AARP packets sent on the network.

Verifying Packet Address

To verify that an incoming data packet is intended for a node that AARP serves, AARP
verifies that the packet's destination address in the data packet's header matches the node's
AppleTalk address or broadcast value ($FF). Figure 5-2 shows the location of the
destination address in the header.

If AARP detennines that the destination address of the packet does not match the node's
AppleTalk address, and the packet is not a broadcast, AARP must discard the packet and
assume the originator sent this packet by mistake.

Fina/Draft 29 Chapters

EtherTalk Preliminary Note Apple Confulential

Gleaning Information

Incoming data packets contain the source Ethernet address and the source AppleTalk
address. Once AARP determines that the packet contains a valid address, AARP can glean
the Ethernet and AppleTalk address-mapping information and update the AMT. Gleaning
mapping information in this fashion eliminates the need to send an additional request packet
when the node next tries to communicate with the sender.

Note that this gleaning of source information from client packets is not a requirement of
AARP. In certain cases, this information may not be available. Depending on your
application, you may determine that gleaning information is too inefficient to add an entry
to the AMT for each incoming packet

Source information can also be gleaned from AARP request packets. Because these
packets are broadcast to every node on the network, every AARP implementation receives
them. These packets always contain the source Ethernet address and source AppleTalk
address. AARP should always add this address information to its AMT, even if AARP
does not answer this packet.

Note: AARP should not glean any source information from probe packets because this
information is tentative.

Aging AMT Entries

An AARP implementation may wish to age AMT entries. One method of doing this is for
AARP to associate a timer with each AMT entry. Each time AARP receives a packet that
causes an entry update or confirmation in the AMT, AARP resets that entry's timer. If
AARP does not reset the entry's timer within a certain period of time, the timer times out
and AARP removes this entry from the AMT. The next request for the AppleTalk address
associated with this entry will result in AARP sending a request packet, unless AARP
gleans a new mapping for this entry after removing it

Aging AMT entries prevents the following situation: when one node goes down or takes
itself off the network, a second node with a different Ethernet address starts up and
acquires the same AppleTalk address of the first node. An AARP implementation in a third
node needs to learn about this change in mapping. Unless the second node broadcasts an
AARP request, the third node will not be aware of this change and will continue to contain
an invalid Ethernet address in the AMT.

Age-on-probe

Instead of using timed aging, another approach is to remove an AMT entry whenever
AARP receives a probe packet for the entry's AppleTalk address. This process guarantees
that the AMT always contains cUITCnt mapping information, although unnecessary entry
removal occurs if a new node probes for an address that is already in use. AARP must
implement this age-on-probe function in any node that does not glean address information
from data packets.

Using the age-on-probe process instead of timed aging prevents the following situation that
can occur if timed-aging is used: when one node goes down or takes itself off the network,
a second node, with a different Ethernet address starts up and acquires the same AppleTalk

Fina/Draft 30 Cha.pter 5

EtherTalk Preliminary Note Apple Confuiential

address of the first node. An AARP implementation in a third node, which does not glean
addressing information from data packets, receives a request packet from the second node.
The third node answers by resetting its aging timer and sending a reply packet to the wrong
Ethernet address. The second node, receiving no reply, continues to send requests to the
third node. In tum, the third node continues to reset its timer and send a reply to the wrong
Ethernet address.

To prevent this situation, the third node should glean the correct source information from
the second node's initial request packet, or should age the associated AMT entry when the
second node sends its probe packet.

Final Draft 31 Chapter 5

EtherTalk Preliminary Note Apple Coefidential

AARP Ethernet-AppleTalk Packet Formats

Figure 5-1 shows the AARP Ethemet-AppleTalk packet formats.

Ethernet Ethernet Ethernet
Destination Destination Destination
(broadcast) (broadcast)

Ethernet Ethernet Ethernet
Source Source Source

Ethernet Ethernet Ethernet
Protocol Protocol Protocol

Type ($80F3) Type ($80F3) Type ($80F3)

Hardware Type Hardware Type Hardware Type
(Ethernet = 1) (Ethernet • 1) (Ethernet = 1)

Apple Talk Apple Talk Apple Talk
Protocol Protocol Protocol

Type = $8098 Type = $8098 Type = $8098

Hardware length = 6 Hardware length • 6 Hardware length = 6

Protocol length = 4 Protocol ten th = 4 Protocol ten th = 4

Command Command Command
(Request = 1) (Response• 2) (Probe = 3)

Source Source Source
Ethernet Ethernet Ethernet
Address Address Address

Src. AppleTalk Src. AppleTalk Tent. Apple Talk
Address Address Address

Destination
0 Hardware 0

Address

Desired Destination Tentative
Apple Talk Apple Talk Apple Talk
Address Address

. AARP Request Packet AARP Response Packet AARP Probe Packet

Figure 5-1. AARP Ethemet-AppleTalk Packet Formats

Fina/Draft 32 Chapter 5

EtherTalk Preliminary Note Apple Coefuiential

Each AARP packet on Ethernet begins with the Ethernet 14-byte link access header.
Following the Ethernet header, there are 6 bytes (predefined) of additional header
information that further identify this AARP packet:

• Tw~byte hardware type, which indicates Ethernet as the medium

• Tw~byte protocol type, which indicates the AppleTalk protocol

• One-byte hardware address length, which indicates the length in bytes of the
Ethernet address

• One-byte protocol length, which indicates the length in bytes of the AppleTalk
address

Following this header infonnation is a 2-byte command field that indicates the packet
function (request, response, or probe). Next are the Ethernet and AppleTalk addresses of
the sending node. Last in the packet are the Ethernet and AppleTalk addresses of the node
that is to receive this packet.

In the case of an AARP request packet, the Ethernet address of the destination is unknown
and should be set to 0. The AppleTalk address should be the address for which an Ethernet
address mapping is desired.

For the probe packet, both the source AppleTalk address and destination AppleTalk address
should be set to the sender's tentative AppleTalk address and the destination target address
should again be set to 0.

Retransmission Details

AARP must retransmit both probes and requests until AARP either receives a reply or
exceeds a maximum number of retries. The specifics of the retransmit count and interval
depend on the desired thoroughness of the search. In general, the probe-retransmission
interval is fixed, but the request-packet-transmission interval can be assigned as a client
dependent parameter.

Packet Specifics

The following constants are currently defined for AARP.

• Protocol type for Ethernet-like media (in data link header): $80F3

• AARP hardware type for Ethernet: $0001

• AARP AppleTalk protocol type: $809B

• AARP Ethernet address length: 6

• AARP AppleTalk address length: 4-first 3 bytes of the address must be 0 and are
reserved by Apple for future use

Final Draft 33 Chapter 5

EtherTalk Preliminary Note Apple Confidential

• AARP request command: $0001

• AARP response coipmand: $0002

• AARP probe command: $0003

• AARP probe-retransmission interval for Ethemet-AppleTalk packets: 1/30 second

• AARP probe-retransmission count for Ethemet-AppleTalk packets: 20

Final Draft 34 Chapters

EtherTalk Preliminary Note

EtherTalk Data Packet Format

Figure 5-2 shows the data-packet format for AppleTalk packets on Ethernet.

Ethernet
Destination

Ethernet
Source

Ethernet
Protocol

Type ($8098)

AppleTalk Dest.

AppleTalk Src.

AppleTalk Type

Data Length

Data

Pad
(if needed)

Figure 5-2. EtherTalk Data Packet Format

Apple Confulential

AppleTalk Packets on Ethernet contain the standard 14-byte header to identify the Ethernet
destination, Ethernet source, and Ethernet protocol type. For AppleTalk packets, the
Ethernet protocol type is $809B. A complete AppleTalk packet follows this header. The
AppleTalk packet consists of a 3-byte header to specify the AppleTalk destination, source,
and type, followed by the data field. The low-order 10 bits of the first 2 bytes in the data
field contain the length in bytes of the data field (self-including). The high-order 6 bits are
protocoldependenL

The minimum size of Ethernet packets is 60 bytes. Including the header, an Ethernet
AppleTalk packet could be as small as 19 bytes; therefore, the packet must be padded to
increase packet size to 60 bytes. The contents of the pad are undefined. The maximum size
of an AppleTalk packet on Ethernet is 603 bytes plus 14 bytes Ethernet header, or a total of
617 bytes.

FinalDrqft 35 Chapter5

EtherTalk Pre/imi.nary Note Apple Confidential

Apple recommends, although currently does not require, that any DDP packet sent on
Ethernet use the extended DDP header format (see Inside AppleTalk for details). This
header format ensures compatibility with potential future systems that may require such a
header. All EtherTalk implementations must accept extended headers for any incoming
Appletalk packet (supersedes header information in Inside AppleTalk, July 1986) and they
should also accept short DDP headers

Fina/Draft 36 Chapter 5

EtherTalk Preliminary Note Apple Confuiential

Chapter 6

The Ethernet Driver

Introduction

EtherTalk software uses a general-purpose Ethernet driver to transmit and receive packets
on the Ethernet network. Provided with EtherTalk software, the Ethernet driver is
specifically designed for use on the Macintosh Il and the EtherTalk interface card; however,
it is envisioned that equivalent interfaces will be provided for other Ethernet interface cards
and networking devices.

The Ethernet driver, located in the System file, is named .ENET. If you are developing a
driver for use with a stotless device, name the driver .ENETO.

Write Data Structure

Typically, to send a packet on the network, the driver is called with a write command (see
"EWrite Command" this chapter for more information) that contains a pointer to a write
data structure (WDS). The WDS contains a series of length and pointer pairs that identify
the lengths and memory locations of the packet's components. The WDS for Ethernet is
shown in Figure 6-1.

..
Destination node ID (6 bytes) Length of first entry (word) --

Pointer to first entry (long) 1--' Used internally (6 bytes)

Protocol Type (2 bytes)

Length of last entry (word) Data (optional)

Pointer to last entry (long) n 0 (word) .. Data --..

Figure 6-1. Write Data Structure for Ethernet

The length-pointer pairs tell the driver to gather packet information in the order in which
they appear in the WDS. For Ethernet, the first entry in the WDS must point to the 6-byte
destination address, which is followed by 6 unused bytes and a 2-byte protocol type. Data
may then follow.

Note: When the Ethernet driver transmits the packet, the driver inserts a 6-byte
source address to replace the 6 unused bytes.

Final Draft 37 Chapter6

EtherTalk Preliminary Note Apple Conf'ulential

ff you are writing a software driver for transmission of AppleTalk packets on some other
network, the first WDS entry may differ from that of Ethernet.

Protocol Handlers

During a typical read operation, the interface card sends an intermpt to inform the driver
that a packet is ready for delivery. The driver responds to this interrupt by reading the
·Ethernet header into internal driver space and calling a piece of code, known as a protocol
handler, to process the rest of the packet. The 2-byte protocol type in the header specifies
to the driver which protocol handler to call. The protocol handler responds by calling one
or both of two driver routines (ReadPacket and ReadRest) to process packet reception.

The Ethernet driver provides a general-purpose default protocol handler for use with the
standard read call (see "ERead Command" in this chapter); however, you may decide to
write you own protocol handler to process packet reception.

Writing Protocol-handler Code

After determining how many bytes to read and where to put them, the protocol handler
must call one or both of two Ethernet driver routines that perform all low-level
manipulations of the card required to read bytes from the network. These two routines are
ReadPacket and ReadRest The protocol handler may call ReadPacket repeatedly to read in
the packet piece-by-piece into a number of buffers, as long as it calls ReadRest to read the
final piece of the packet This process is necessary because ReadRest restores state
information and checks error conditions. ReadPacket returns an error if the protocol
handler attempts to read more bytes than remain in the packet

When the Ethernet driver passes control to your protocol handler, it passes various
parameters and pointers in the processor's registers. Register setup and restrictions are
essentially the same as those for ALAP protocol handlers. The Ethernet driver calls the
protocol handler as follows:

AO, Al: reserved for internal use by the driver (handler must preserve until ReadRest is
complete)

A2: free (A2 is not free in an ALAP protocol handler)
A3: pointer to first byte past data link header bytes (for Ethernet, the byte after the

two-byte type field)
A4: pointer to ReadPacket and ReadRest
AS: free (until ReadRest is complete)
DO: free
D 1: number of bytes in packet left to read
02: free
03: free

Note: ReadRest begins 2 bytes after ReadPacket.

Fina/Draft 38 Chapter6

EtherTalk Preliminary Note Apple Confidential

Registers AO, Al, A4, and Dl must be preserved until the protocol handler calls Read.Rest.
After the protocol handler calls ReadRest, normal interrupt conventions apply. Dl contains
the number of bytes remaining to be read in the packet as derived from the packet's length
field. D 1 can be reduced to indicate pad bytes that will not be read, but should not be
changed otherwise.

If the protocol handler is to handle multiple protocol types, the protocol handler should
examine the data link header for the protocol-type field to initiate the proper read routine for
the incoming packet Because A3 points to the first byte after the 2-byte protocol type
field, the protocol handler can read the type field by using negative offsets from A3. In the
case of Ethernet, the 2-byte type field begins at -2(A3), the source address begins at
-8(A3), and the destination address is at-14(A3).

Calling ReadPacket and ReadRest

Your protocol handler can call the Ethernet driver's ReadPacket routine in the following
way.

JSR (A4)

On entry

03: number of bytes to be read (word)-must be nonzero
A3: pointer to a buffer to hold the bytes

On exit

DO:
Dl:
02:
03:
AO-A2:
A3:

modified
number of bytes left to read in packet (word)
preserved
= 0 if requested number of bytes were read; < > 0 if error
preserved
pointer to 1 byte past the last byte read

ReadPacket reads the number of bytes that 03 specifies into the buffer to which A3 points.
The number of bytes remaining to read is returned in DI. A3 points to the location to begin
reading next time (1 byte following the last byte read).

To read in the rest of the packet, call the Ethernet driver's Read.Rest routine in the following
way.

JSR 2 (A4)

On entry

A3: pointer to a buffer to hold the bytes
03: size of the buffer (word)-can be zero

Fina/Draft 39 Chapter6

EtherTalk Preliminary Note Apple Confidential

On exit

DO-Dl:
02:
03:

AO-A2:
A3:

modified
preserved
= 0 if requested number of bytes were read
< 0 if packet was -03 bytes too large to fit in buffer and was
truncated
>O if 03 bytes were not read (packet is smaller than buffer)
preserved
pointer to 1 byte past the last byte read

ReadRest reads the remaining bytes of the packet into the buffer whose size is given in D3
and whose location is pointed to by A3. The result of the operation returns in 03. H the
buffer size that 03 indicates is larger than the packet size, ReadRest does not return an
error.

Warning: Always call ReadRest to read the last part of a packet to avoid a system
crash.

H the protocol handler wishes to discard the remaining data before reading the last byte of
the packet, it should terminate by calling ReadRest as follows:

MOVEQ
JSR
RTS

i0,D3
2 (A4)

;byte count of 0
;call ReadRest

In all cases, the protocol handler should end with an RTS, even if the driver returns an
error. H the driver returns an error from a ReadPacket call, the protocol handler must quit
via an RTS without calling Read.Rest at all. Upon return from Read.Rest and ReadPacket,
the zero (z) bit in the command control register will be set if an error did not occur. Han
error occurs, the zero bit is not set.

Opening the Ethernet Driver

On a Macintosh Il, use the Device Manager to make a PBOpen call to open the Ethernet
driver. However, you will have to obtain certain field values, such as the card's slot
number, before making this call. The Slot Manager may be used to obtain these values.

Slot Manager sNextsRsrc Trap Macro

There are six slots in the Macintosh Il, ranging from $09 to $OE • Built-in devices use slot
zero. Because these slots may contain interface cards other that EtherTalk cards, your code
must identify the type of card in each slot. One method of doing this is to use the Slot
Manager sNextsRsrc trap macro. This function is defined as follows:

Required Parameters <-> spSlot
<-> spld
<- spsPointer
<- spRefNum
<- spIOReserved
<-> spExtDev
<- spCategory

Final Draft 40 Chapter6

EtherTalk Preliminary Note Apple Confidential

<- spCType
<- spDrvrSw
<- spDrvrHw

If you supply a 0 for the sNextsRsrc fields spSlot, splD, and spExtDev, this routine
returns the spld, spSlot, spCategory, and spType values in addition to other information
for each card installed. The routine starts at slot $09 and continues to slot $OE and returns
a non-fatal error report to indicate routine completion. By matching the spCategory and
spType fields to the sResource Type format for the EtherTalk interface card, your code can
identify which slots contain EtherTalk cards. The sResource Type format for the EtherTalk
interface card identifies the spCategory field as CatNetwork and the spType field as
TypEthernet.

Note: More information about the sResource Type fonnats is contained in
MPW, version 2.0. Refer to Inside Macintosh. Chapter 24, Volume V for
more information on the Slot Manager.

Device Manager PBOpen Call

Once you have obtained the slot number (spSlot) and the sResource Identification number
(spld), you may use the Device Manger to make a PBOpen call. The PBOpen call requires
that you supply, in addition to other information, the driver name (.ENET) and the ioSlot
and iold parameters as this portion of the parameter block shows:

-> 34
-> 35

ioSlot
ioid

byte
byte

For the EtherTalk card, the ioSlot parameter contains the slot number, obtained as spSlot,
for the EtherTalk card to be opened, in the range of $09 to $OE. The ioid parameter
contains the sResource ID, obtained as spld. Be sure to set the immediate-bit in the trap
word when making the PBOpen call. Refer to Inside Macintosh, Chapter 23, Volume V
for additional information about opening slot devices.

The driver opens in the AppleTalk mode. This mode limits the size of a packet sent by the
driver to 768 bytes, which is more than sufficient to encapsulate a maximum-size Ethernet
AppleTalk packet of 617 bytes. In this mode, the driver can allocate more space in the
buffer pool for packet reception. If the packets for your application require more than 7 68
bytes, you may change to General mode to transmit any valid Ethernet packet up to 1514
bytes in length.

Making Commands to the Ethernet Driver

Once the Ethernet driver opens, a series of Device Manager control calls to the driver are
made to control packet transmission and reception. The calling code passes command
arguments in the queue element starting at CSParam. Refer to Chapter 6 of Inside
Macintosh, Volume II, for more information about making control calls.

Fina/Draft 41 Chapter6

EtherTalk Preliminary Note Apple Coefidential

The EWrite Command

Use the Device Manager to make the EWrite conttol call to write a packet out on Ethernet
The only argument is a pointer that identifies the location of the write data structure used to
send the packet on the network.

Parameter block

-> 26 cs Code word
-> 30 EW dsPointer pointer

The EAttachPH Command

(always EWrite}
(write data structme}

Make the EAttachPH command to attach a protocol handler to the driver. Arguments are a
2-byte protocol type and a protocol-handler address. If the protocol-handler address is 0, a
default protocol handler is attached to the Ethernet driver. The default protocol handler is
for use with the ERead call (see "ERead Command" this chapter).

Parameter block

-> 26
-> 28
-> 30

cs Code
EprotType
Ehandler

word
2 bytes
pointer

{always EAttachPH}
{Ethernet protocol type}
(protocol handler}

EAttachPH adds the protocol handler pointed to by Ehandler to the node's protocol table.
EprotType specifies what kind of packet the protocol handler can service. After EAttachPH
is called, the protocol handler is called for each incoming packet whose Ethernet protocol
type equals EprotType.

Note: To attach or detach a protocol handler for IEEE 802.3, which uses protocol
types 0 through $5DC, specify protocol type zero.

The EDetachPH Command

Makes the EDetachPH command to detach a protocol handler from the driver.

Parameter block

-> 26
-> 28

cs Code
EprotType

word
2 bytes

{always EDetachPH}
(Ethernet protocol type}

The command removes the protocol type and coITCsponding protocol handler from the
protocol table.

Fina/Draft 42 Chapter6

EtherTalk Preliminary Note Apple Confidential

The ERead Command

Make the ERead call only to read in a packet after an EAttachPH with a ~handler
address is issued for the protocol indicated in this command. ERead takes as arguments the
protocol type, buffer pointer, and buffer size. The ERead call places the entire packet,
including the header, into the buffer. After the read, the call returns the actual size of the
packet. H the packet is too large to fit into the buffer, the call places as much of the packet
as it can into the buffer and retmns an error. The driver dequeues the ERead call from the
system queue, so more than one ERead call can be active concurrently.

Parameter block

26
28
30
34
36

-> csCode
-> EProtType
-> EBuffPtr
-> EBuffSize
<- EDataSize

The ERdCancel Command

{always ERead}
{protocol type}
{buffer into which packet is read}
{buffer size}
{actual number of bytes read}

The ERdCancel command cancels a particular ERead call. The only argument is the queue
element pointer of the ERead call to cancel. H the ERead call is active, the ERdCancel call
returns an error.

Parameter block

26
30

-> csCode
-> EKillQEl

The EGetlnfo Command

{always ERdCancel}
{queue element pointer to cancel}

The EGetlnfo command obtains driver information and takes arguments of a buffer pointer
and size. This call retmns, in the first 6 bytes of the buffer, the Ethernet address for the
node on which the driver is installed.

Parameter block

26
30
34

-> csCode
-> EBuffPtr
-> EBuffSize

(always EGetlnfo}
(buffer pointer}
(buffer size}

With the EtherTalk driver installed on a Macintosh Il, the EGetlnfo call returns 12
additional bytes as follows:

Bytes 07-10 =number of buffer overwrites on receive

Bytes 11-14 =number of time-outs on transmit

Bytes 15-18 =number of packets received that contain an incorrect address

Fina/Draft 43 Chapter6

EtherTalk Preliminary Note Apple Coefulential

The ESetGeneral Command

The ESetGeneral command changes the driver from AppleTalk mode to General mode.
There are no arguments. There is no command to change the driver from General mode to
AppleTalk mode. Changing the driver's mode may involve a hardware reset, and could
cause loss of an incoming packet.

Parameter block

26 -> csCode {always ESetGeneral}

Final Draft 44 Chapter6

EtherTalk Preliminary Note Apple Coefulential

Appendix A

EtherTalk Components

Component List

Table A-1 lists the location, resource type, and description of each EtherTalk software
component.

Location Type ID Name Description

System File DRVR 127 .ENET Ethernet driver for Macintosh II
EtherTalk interface card.

AL.RT -4031 Alerts and associated dialog item
ALRT -4032 lists used at boot time to indicate

an error occurred while installing
DITL -4031 the alternate AppleTalk selection.
DITL -4032 ALRTs and DITLs must be installed

with the LAP Manager INIT
resource.

INIT 1 8 LAP Manager INIT resource.
Contains LAP Manager code plus
other code to install the alternate
AppleTalk selection at startup time.

System Network Network 'cdev' file. Contains code
Folder to handle user selection information

with the EtherTalk 'adev' file and the
LAP Manager.

EtherTalk EtherTatk 'adev' file. Contains code
to implement one or more alternate
AppteTalk selections.

Table A-1. EtherTalk Components

Final Draft A -1 Appendix A

