
Big Pink #3
March 15, 1990

Big Pink #3 Table of Contents

1. Overview
1.1. Pink Project Goals
1.2. Pink System Architecture
1.3. Pink Human Interface

2. System Objects
2.1. System Foundation

~:i:~: ~~~;~sli:I.[ji;@liji.j~jijji~~]:~)

Hi~ ~~ll.".l&a~~~:)Y)
2.1.7. Tokerti.t

2.2. Application\:Ffamework
2.2.1. Makutg./\NhQQp..~ (The Application................. -;................................•.......;.....

2.4.2. The Outer Limits (The Prirlt:Sifver)
2.4.3/::$hi~BDu.terLimits (Printer I¢ams)

:::: 1iJ~I{.;i~!~"ftr7
2.6.1. Audio Objects
2.6.2. Sound, Speech, and Telephony
2.6.3. Editors
2.6.4. Sound Effects

2.7. Text
2.7.1. Base Text Classes (Text Storage & Style Management)
2.7.2. ZZText (Text Formating & Editing Classes)
2.7.3. Text (Line Layout)

c Registered/Restricted Table of Contents March 15.1990

Big Pink #3
March 15, 1990

Big Pink #3 Table of Contents

1. Overview
1.1. Pink Project Goals
1.2. Pink System Architecture
1.3. Pink Human Interface

2. System Objects
2.1. System Foundation

~:i:~: ~~~;~sli:I.[ji;@liji.j~jijji~~]:~)

Hi~ ~~ll.".l&a~~~:)Y)
2.1.7. Tokerti.t

2.2. Application\:Ffamework
2.2.1. Makutg./\NhQQp..~ (The Application................. -;................................•.......;.....

2.4.2. The Outer Limits (The Prirlt:Sifver)
2.4.3/::$hi~BDu.terLimits (Printer I¢ams)

:::: 1iJ~I{.;i~!~"ftr7
2.6.1. Audio Objects
2.6.2. Sound, Speech, and Telephony
2.6.3. Editors
2.6.4. Sound Effects

2.7. Text
2.7.1. Base Text Classes (Text Storage & Style Management)
2.7.2. ZZText (Text Formating & Editing Classes)
2.7.3. Text (Line Layout)

c Registered/Restricted Table of Contents March 15.1990

Big Pink #3
March 15, 1990

2.8. Files/Storage
2.8.1. Psychokiller (Data Management)
2.8.2. Pluto (File System)
2.8.3. Bluto (Pink Personal AppleShare)

2.9. OS Services
2.9.1. Opus/2 (Memory, Tasks, & IPC)
2.9.2. Elixir (The Pink I/O System)

2.9.2.1. Pink Booting Overview
2.9.2.2. KT-22(Mass Storage I/O)
2.9.2.3. Funnel of Love (NuBus I/O Framework)
2.9.2.4. Rob Lowe(Video Framework)

2.10.fff:fF~!II:'II~t
2.11. Network S¢'Mices

2.11.1. BahetEish (The Network)
2.11.2. Co;~::.p~wn (A/Rose)

...;...:.:.: ::.::;/:;:;:.: :.: .

::::::::::::::::::::::::{:::~:::"

:.:.:.:.:.:.:.;.:-:.'-:.
:::::~{::«:~~: :.:::::-:

• Registered/Restricted Table of Contents March 15, 1990 II

Big Pink #3
March 15, 1990

2.8. Files/Storage
2.8.1. Psychokiller (Data Management)
2.8.2. Pluto (File System)
2.8.3. Bluto (Pink Personal AppleShare)

2.9. OS Services
2.9.1. Opus/2 (Memory, Tasks, & IPC)
2.9.2. Elixir (The Pink I/O System)

2.9.2.1. Pink Booting Overview
2.9.2.2. KT-22(Mass Storage I/O)
2.9.2.3. Funnel of Love (NuBus I/O Framework)
2.9.2.4. Rob Lowe(Video Framework)

2.10.fff:fF~!II:'II~t
2.11. Network S¢'Mices

2.11.1. BahetEish (The Network)
2.11.2. Co;~::.p~wn (A/Rose)

...;...:.:.: ::.::;/:;:;:.: :.: .

::::::::::::::::::::::::{:::~:::"

:.:.:.:.:.:.:.;.:-:.'-:.
:::::~{::«:~~: :.:::::-:

• Registered/Restricted Table of Contents March 15, 1990 II

• Registered/Restricted Pink System Architecture Monday, March 26, 1990 l.2-i• Registered/Restricted Pink System Architecture Monday, March 26, 1990 l.2-i

• Registered/Restricted Pink System Architecture Monday, March 26, 1990 1.2-ii• Registered/Restricted Pink System Architecture Monday, March 26, 1990 1.2-ii

David Goldsmith

• Registered/Restricted Pink System Architecture Monday, March 26, 1990 1.2-iii

David Goldsmith

• Registered/Restricted Pink System Architecture Monday, March 26, 1990 1.2-iii

.& Registered/Restricted Pink System Architecture Monday, March 26, 1990 1.2-iv.& Registered/Restricted Pink System Architecture Monday, March 26, 1990 1.2-iv

1. Introduction. ..' 1

2. Architectural Goals ~ 1

2.1. Flexibility and Expandability....•..................................•...................... 1

2.2. Portability........••........•...........••...............•........................... e ••• 1

2.3. Performance. • . • 2

2.4. Robustness. • . • . • • . • • • • . • . . • • . . • . . • . . • • .. 2

::: :~:~::~::::if!l'I\lillllll,rJllll!~~: ::::::::::::"",','"~,,,,,,,,.
3. Architectural Pt!nsip!$~.~.. ~ .

:~: ::::;::!~~~'ltl"j,~':':'::':,:",
3,4, Frameworks Protect Subsystems fr:~:!lllll&r, ,,,,

.:::.::::::::::::;:;:::::::::;:;:::::

3.5. Let Resources Find You...............•:~~:~~l·illlj~·t.l!~{••..••••

4, Architect~tll~~tMi~wand Issue~I\II~1~',,,,,,,,,
\:){{{{..•• :{.:\:.::)::::{:::~.:\(...................:{::\:~~j~j;r~::::::··

••. 4

5

5

6

6

4.2. The Run Time Environment...........•.•..••.......•.....•............................... 8

4.3. The Foundation Classes.•........•.••..•....•.•........••.••...........•.................. 9

4.4. "'Operating System" Services.....................•........•.............................. 10

4.5. The Graphics System.............................•...................................... 11

4.6. Application Support. •.................•..•••.. 12

4.7. Text and International••...•.....................••.•..•..•.............................. 14

4.8. Printing. . . . • • . • • • • . • • . • • . . • . • • . . • • • . . • • • 15

4.9. Time, Sound, and Animation...........•.•......••..•.•...•......................•....... 16

4.10. Networking and Communications. . • . . • . . . •• .. 16

.& Registered/Restricted Pink System Architecture Monday, March 26, 1990 1.2-v

1. Introduction. ..' 1

2. Architectural Goals ~ 1

2.1. Flexibility and Expandability....•..................................•...................... 1

2.2. Portability........••........•...........••...............•........................... e ••• 1

2.3. Performance. • . • 2

2.4. Robustness. • . • . • • . • • • • . • . . • • . . • . . • . . • • .. 2

::: :~:~::~::::if!l'I\lillllll,rJllll!~~: ::::::::::::"",','"~,,,,,,,,.
3. Architectural Pt!nsip!$~.~.. ~ .

:~: ::::;::!~~~'ltl"j,~':':'::':,:",
3,4, Frameworks Protect Subsystems fr:~:!lllll&r, ,,,,

.:::.::::::::::::;:;:::::::::;:;:::::

3.5. Let Resources Find You...............•:~~:~~l·illlj~·t.l!~{••..••••

4, Architect~tll~~tMi~wand Issue~I\II~1~',,,,,,,,,
\:){{{{..•• :{.:\:.::)::::{:::~.:\(...................:{::\:~~j~j;r~::::::··

••. 4

5

5

6

6

4.2. The Run Time Environment...........•.•..••.......•.....•............................... 8

4.3. The Foundation Classes.•........•.••..•....•.•........••.••...........•.................. 9

4.4. "'Operating System" Services.....................•........•.............................. 10

4.5. The Graphics System.............................•...................................... 11

4.6. Application Support. •.................•..•••.. 12

4.7. Text and International••...•.....................••.•..•..•.............................. 14

4.8. Printing. . . . • • . • • • • . • • . • • . . • . • • . . • • • . . • • • 15

4.9. Time, Sound, and Animation...........•.•......••..•.•...•......................•....... 16

4.10. Networking and Communications. . • . . • . . . •• .. 16

.& Registered/Restricted Pink System Architecture Monday, March 26, 1990 1.2-v

4.11. The Desktop and Finder. • • . . • . . • • . . . • . • .. 17

4.12. Adap terse • . • • . ..• • . • • . . . • • • . • .. 18

• Registered/Restricted Pink System Architecture Monday, March 26, 1990 1.2-vi

4.11. The Desktop and Finder. • • . . • . . • • . . . • . • .. 17

4.12. Adap terse • . • • . ..• • . • • . . . • • • . • .. 18

• Registered/Restricted Pink System Architecture Monday, March 26, 1990 1.2-vi

Introduction

Pink is Apple's new system software architecture. It draws on the strengths of Macintosh, but also
introduces a new programming model and architecture designed to open up new opportunities for Apple
and third party developers. This document gives an overview of the architecture of the Pink system.

Architectural Goals

Pink has several important architectural goals which are crucial to meeting the project goals of opening
new opportunities for Apple and developers.

Flexibility and Expandability

E;:;~~t£~~~ifillllil~g:g~~~~iii!!~£!.;1~~lt
built. Worse, these asstimptions are spread throughout the system, aoo:i~r~:::nR~:gasilychanged.

.:;:::;:::;::::

.:::::::::::::::::::::::::::::::::::.:.....:...

the level of infonnationtheymUsfknow. Base classes provide the minimumiJ"r6'toc6f£or dealing with an
object; derived classes provide extra information for those who need to know.

Objects, of course, are not enough. Pink cannot meet its goal of flexibility without care and diligence on
the part of all designers.

Portability

Apple does not currently have the option of moving its system software to another hardware platfonn.
This is because it is written almost entirely in 68000 assembly language, driven by the need to fit in small
amounts of memory (ROM and RAM). Although memory will never be free, our hardware has grown to
the point where Apple can afford to trade off some memory consumption for the ability to run on plat
forms other than the 68000. Having this ability lets Apple take maximum advantage of competition
among microprocessor vendors. This enables us to introduce important new products like Jaguar. Con
sidering the agony of developing a complete suite of system software, the company's best interests de
mand we not tie Pink to a specific processor architecture.

• Registered/Restricted Pink System Architecture Monday, March 26, 1990 1.2-1

Introduction

Pink is Apple's new system software architecture. It draws on the strengths of Macintosh, but also
introduces a new programming model and architecture designed to open up new opportunities for Apple
and third party developers. This document gives an overview of the architecture of the Pink system.

Architectural Goals

Pink has several important architectural goals which are crucial to meeting the project goals of opening
new opportunities for Apple and developers.

Flexibility and Expandability

E;:;~~t£~~~ifillllil~g:g~~~~iii!!~£!.;1~~lt
built. Worse, these asstimptions are spread throughout the system, aoo:i~r~:::nR~:gasilychanged.

.:;:::;:::;::::

.:::::::::::::::::::::::::::::::::::.:.....:...

the level of infonnationtheymUsfknow. Base classes provide the minimumiJ"r6'toc6f£or dealing with an
object; derived classes provide extra information for those who need to know.

Objects, of course, are not enough. Pink cannot meet its goal of flexibility without care and diligence on
the part of all designers.

Portability

Apple does not currently have the option of moving its system software to another hardware platfonn.
This is because it is written almost entirely in 68000 assembly language, driven by the need to fit in small
amounts of memory (ROM and RAM). Although memory will never be free, our hardware has grown to
the point where Apple can afford to trade off some memory consumption for the ability to run on plat
forms other than the 68000. Having this ability lets Apple take maximum advantage of competition
among microprocessor vendors. This enables us to introduce important new products like Jaguar. Con
sidering the agony of developing a complete suite of system software, the company's best interests de
mand we not tie Pink to a specific processor architecture.

• Registered/Restricted Pink System Architecture Monday, March 26, 1990 1.2-1

"The only reasonable numbers are one and infinity." Thus, portability means more than portability to
Jaguar. There will be other machines beyond Jaguar. Some day, the company might even want to run
Pink on something really obscure, like an Intel processor ("bite your tongue!").

To meet this goal in Pink, all but the most performance critical code is being written ina processor- and
system-independent fashion. There will be code in Pink which varies from implementation to implemen
tation, but it must be carefully controlled. Note that "portable" does not mean "least common denomina
tor". Every platform will have distinguishing features which Pink can and must take advantage of. Parts
of the system may change significantly from platform to platform. Again, the key is management of as
sumptions to give the most flexibility possible.

Performance

Like any large system, Pink carries the risk of inadequate performance. The processor hasn't been de
signed which can't be brought to its knees by inattention to this goal. Pink must perform well 0t:\M.?~ II

Robustness ..:.:::<\t~~::~}?{~:}J:(::::::-
::::::~:~~tj~j~jj~j~t:~:~::~t:~~]~:::~:~~::~~~~~::::·: ..

.;-:.:.;.;.;.;.:.....

ded in several thousand Madhtoshapplications: the architecture prevents a solriH6h.

Pink solves this problem by eliminating low memory from the address space. The first N (currently 16
megabytes) locations of the address space simply don't exist, and any reference results in an immediate
error. This is just one example of how an architecture can plan ahead for programmer errors.

Empower Developers

In addition to goals motivated by Apple's needs, Pink has the goal of making it easier for developers to
build great applications. There are two thrusts to this goal: first, to allow the developer to concentrate on
their application domain by removing much of the boilerplate code associated with developing a Macin
tosh application. Second, to raise the ante for applications by introducing major new system-wide fea
tures which enhance applications.

Saving a file is an excellent example of the first area. There are more than twenty steps to follow to correct
ly save a file in a way that is AppleShare friendly, deals with disk full, handles errors, works around Poor
Man's Search Path, etc. These steps are documented in twenty different places. MacApp solves the prob-

'* Registered/Restricted Pink System Architecture Monday, March 26, 1990 1.2-2

"The only reasonable numbers are one and infinity." Thus, portability means more than portability to
Jaguar. There will be other machines beyond Jaguar. Some day, the company might even want to run
Pink on something really obscure, like an Intel processor ("bite your tongue!").

To meet this goal in Pink, all but the most performance critical code is being written ina processor- and
system-independent fashion. There will be code in Pink which varies from implementation to implemen
tation, but it must be carefully controlled. Note that "portable" does not mean "least common denomina
tor". Every platform will have distinguishing features which Pink can and must take advantage of. Parts
of the system may change significantly from platform to platform. Again, the key is management of as
sumptions to give the most flexibility possible.

Performance

Like any large system, Pink carries the risk of inadequate performance. The processor hasn't been de
signed which can't be brought to its knees by inattention to this goal. Pink must perform well 0t:\M.?~ II

Robustness ..:.:::<\t~~::~}?{~:}J:(::::::-
::::::~:~~tj~j~jj~j~t:~:~::~t:~~]~:::~:~~::~~~~~::::·: ..

.;-:.:.;.;.;.;.:.....

ded in several thousand Madhtoshapplications: the architecture prevents a solriH6h.

Pink solves this problem by eliminating low memory from the address space. The first N (currently 16
megabytes) locations of the address space simply don't exist, and any reference results in an immediate
error. This is just one example of how an architecture can plan ahead for programmer errors.

Empower Developers

In addition to goals motivated by Apple's needs, Pink has the goal of making it easier for developers to
build great applications. There are two thrusts to this goal: first, to allow the developer to concentrate on
their application domain by removing much of the boilerplate code associated with developing a Macin
tosh application. Second, to raise the ante for applications by introducing major new system-wide fea
tures which enhance applications.

Saving a file is an excellent example of the first area. There are more than twenty steps to follow to correct
ly save a file in a way that is AppleShare friendly, deals with disk full, handles errors, works around Poor
Man's Search Path, etc. These steps are documented in twenty different places. MacApp solves the prob-

'* Registered/Restricted Pink System Architecture Monday, March 26, 1990 1.2-2

lem by dealing with the issue itself, asking the developer only to provide the data to be saved. Pink takes
the same approach.

Examples of the second area are linking, provided by CHER, and the Albert 20/30 graphics system.
CHER empowers developers first by providing lots of default functionality to every application, and sec
ond by allowing applications to build on top of what CHER provides. Albert empowers developers by
giving them an extremely rich (but non-fattening) graphics system with more capabilities than anything
else in the industry. Developers don't use transformation matrices, anti-aliasing, and 3D in their applica
tions today because there would be no time left for the application after implementing all those capabili
ties. If it's built in, people use it.

Support the Interface

The Macintosh has a well defined human interface, and a set of human interface design principles, but al
most no system support for implementing those principles. Consequently, developers must makeCi.ITIajor

::::::::::::::::~:::~:::~:~::::::::~~~:~~{~~::::':"

'.; "::-:::";:':::~-.:~.:~'.: ~.:~ ".:~:.:~ :.}.:~~.~.~ ~.~ ~ :.:~.~ ~.~ ~ :.:~.r.}(: .. . " '. '.
. . ;..:.. ~.~:~.:.:.~.:.:.:;.'~. .;"'::::::::::;:::::={}:}}::::-';:::::;:;:;:::::;:;:::::::::; ':fi~~~~i~~~?f~~~f~}ri~ft~J)<~~~:~ ::::::::::::~:;:}~.:.:.:.:-:.: ...,

:~~f~:b7eO~~~ill_~il;~?:=:o~;;.'4!:~~~~u~~ill~':~~~~:~~:ti:ll;fs:~e

This section discusses some techniques which are not goals themselves, but are intended to help us reach
the goals discussed above.

All Interfaces through Objects

In order to get the most flexibility we can (by hiding as many assumptions as possible), the only client in
terface to services is through classes and objects of those classes. Among other things, this means that the
following (usually important) concepts should never be part of an interface: messages, file formats, data
formats, IPe. Note that these are all services themselves which can be used in the implementation of other
services, but that they should never be part of that service's interface.

For example, you may well implement a service using the Scream client/server classes, but that fact
should be completely hidden from the clients of that service. After all, you may want to change to an im
plementation based on shared memory and libraries instead of messages and servers, and the client
doesn't need to care. Part of the problem with the Macintosh architecture is that interfaces are defined at
too Iowa level (lithe parameter block is laid out like this", "send a message which has these bytes in this

.. Registered/Restricted Pink System Architecture Monday, March 26, 1990 1.2-3

lem by dealing with the issue itself, asking the developer only to provide the data to be saved. Pink takes
the same approach.

Examples of the second area are linking, provided by CHER, and the Albert 20/30 graphics system.
CHER empowers developers first by providing lots of default functionality to every application, and sec
ond by allowing applications to build on top of what CHER provides. Albert empowers developers by
giving them an extremely rich (but non-fattening) graphics system with more capabilities than anything
else in the industry. Developers don't use transformation matrices, anti-aliasing, and 3D in their applica
tions today because there would be no time left for the application after implementing all those capabili
ties. If it's built in, people use it.

Support the Interface

The Macintosh has a well defined human interface, and a set of human interface design principles, but al
most no system support for implementing those principles. Consequently, developers must makeCi.ITIajor

::::::::::::::::~:::~:::~:~::::::::~~~:~~{~~::::':"

'.; "::-:::";:':::~-.:~.:~'.: ~.:~ ".:~:.:~ :.}.:~~.~.~ ~.~ ~ :.:~.~ ~.~ ~ :.:~.r.}(: .. . " '. '.
. . ;..:.. ~.~:~.:.:.~.:.:.:;.'~. .;"'::::::::::;:::::={}:}}::::-';:::::;:;:;:::::;:;:::::::::; ':fi~~~~i~~~?f~~~f~}ri~ft~J)<~~~:~ ::::::::::::~:;:}~.:.:.:.:-:.: ...,

:~~f~:b7eO~~~ill_~il;~?:=:o~;;.'4!:~~~~u~~ill~':~~~~:~~:ti:ll;fs:~e

This section discusses some techniques which are not goals themselves, but are intended to help us reach
the goals discussed above.

All Interfaces through Objects

In order to get the most flexibility we can (by hiding as many assumptions as possible), the only client in
terface to services is through classes and objects of those classes. Among other things, this means that the
following (usually important) concepts should never be part of an interface: messages, file formats, data
formats, IPe. Note that these are all services themselves which can be used in the implementation of other
services, but that they should never be part of that service's interface.

For example, you may well implement a service using the Scream client/server classes, but that fact
should be completely hidden from the clients of that service. After all, you may want to change to an im
plementation based on shared memory and libraries instead of messages and servers, and the client
doesn't need to care. Part of the problem with the Macintosh architecture is that interfaces are defined at
too Iowa level (lithe parameter block is laid out like this", "send a message which has these bytes in this

.. Registered/Restricted Pink System Architecture Monday, March 26, 1990 1.2-3

order", etc.).

Just using objects isn't enough; the objects must be designed correctly. Objects in Pink are defined in
terms of the abstraction being presented to the client, not the implementation. It's quite easy to spill your
implementation's guts through a class interface. The key is to design the class t~inking about it from the
client's point of view. What are the entities being dealt with? What do I need to know about them? What
operations can I perform on them? These are the key object design questions.

Manage Commonality through Inheritance
~

Commonality in software systems has traditionally been managed by commonality of implementation.
For example, UNIXl systemsmanage devices by making everything look like a block device or a charac
ter device. Device specific features are glued on through extensions. The Macintosh architecture uses the
same approach: devices all support the same small set of calls, except that there are usually 1,897,422 vari
ants of the control call to handle the specific attributes of a device.

[€:;§1I~~"I'lllff~i§~~iir~~;~~~cts

.............

formance disk wnh:W$P¢S~~l..~p~j.t.5.]nteHace card; its driver would inhenJ:J##n{fm~$$St6rageand
?v1NubusDevice. In each<case/cllents deal only with the protocol they care aboUC~ha unnecessary detail
is hidden. Similarly, a video NuBus card would be a 1VideoDevice and an MNubusDevice.

Leverage Where Possible

Using an existing object rather than inventing a new one is a good way to achieve several Pink goals. Less
code means a smaller memory footprint, which yields better performance. Fewer classes means less for
the developer to learn. Less to implement means fewer bugs, leading to a more robust system. It also
means we get done faster, leading to bigger profit sharing checks (this is an implicit Pink goal not men
tioned above).

For example, Pink has a set of collection classes which implement common data structures from Comput
er Science (note capital letters), such as stacks, sets, trees, etc. Pink uses these classes heavily to avoid
reinventing the wheel. Similarly, the many building block classes Pink provides allow the developer to
~oncentrate on his or her application rather than reinventing common tools.

1. I don't care whose trademark it is. So there.

• Registered/Restricted Pink System Architecture Monday, March 26, 1990 1.2-4

order", etc.).

Just using objects isn't enough; the objects must be designed correctly. Objects in Pink are defined in
terms of the abstraction being presented to the client, not the implementation. It's quite easy to spill your
implementation's guts through a class interface. The key is to design the class t~inking about it from the
client's point of view. What are the entities being dealt with? What do I need to know about them? What
operations can I perform on them? These are the key object design questions.

Manage Commonality through Inheritance
~

Commonality in software systems has traditionally been managed by commonality of implementation.
For example, UNIXl systemsmanage devices by making everything look like a block device or a charac
ter device. Device specific features are glued on through extensions. The Macintosh architecture uses the
same approach: devices all support the same small set of calls, except that there are usually 1,897,422 vari
ants of the control call to handle the specific attributes of a device.

[€:;§1I~~"I'lllff~i§~~iir~~;~~~cts

.............

formance disk wnh:W$P¢S~~l..~p~j.t.5.]nteHace card; its driver would inhenJ:J##n{fm~$$St6rageand
?v1NubusDevice. In each<case/cllents deal only with the protocol they care aboUC~ha unnecessary detail
is hidden. Similarly, a video NuBus card would be a 1VideoDevice and an MNubusDevice.

Leverage Where Possible

Using an existing object rather than inventing a new one is a good way to achieve several Pink goals. Less
code means a smaller memory footprint, which yields better performance. Fewer classes means less for
the developer to learn. Less to implement means fewer bugs, leading to a more robust system. It also
means we get done faster, leading to bigger profit sharing checks (this is an implicit Pink goal not men
tioned above).

For example, Pink has a set of collection classes which implement common data structures from Comput
er Science (note capital letters), such as stacks, sets, trees, etc. Pink uses these classes heavily to avoid
reinventing the wheel. Similarly, the many building block classes Pink provides allow the developer to
~oncentrate on his or her application rather than reinventing common tools.

1. I don't care whose trademark it is. So there.

• Registered/Restricted Pink System Architecture Monday, March 26, 1990 1.2-4

Sometimes this requires battling habits learned in previous lives. For example, the AppleTalk datagram
protocol (DDP) has a concept of a socket. A machine may have up to 256 sockets, which are mostly allo
cated dynamically. Th~ first inclination might be to use a bit vector to keep track of which socket numbers
have been allocated. This leads to a fair amount of custom code. If you look more closely at the applica
tion, however, you notice that first, there is only one such data structure per CPU, and second, perfor
mance is not a critical issue. Instead of building a custom data structure, the existing classes TSet and
TCollectibleLong could be used to implement a set of integers, which is precisely what a bit vector is.

Naturally, leverage does not mean "one size fits all" (TProcrustes?). In another context, speed or space
performance may demand that a custom data structure be used. That's OK. As Einstein said, "Everything
should be as simple as possible, but no simpler." ~

Frameworks Protect Subsystems from Each Other

Use of objects and inheritance help isolate clients from assumptions and unneeded details, but what

classes, among them T~pplication, TDocument, and TCommand. Th~~]t.~~~~1[nklethe details of the

~:~~~~~::~e:JI:,£;~~~~:cta~i~:~f::~~:~~I[t£.p~:;;::~~:~~i~~:'~~

................................... . -:.:.:.:.:.: .
'.:.:.:.;.:.:-:.:-:. . :.:-:.:::-:.:::::::::::::::::::................ . ; -;.: -: : .

The MacApp appnbltiori·tra.m~WQr~:::~KdHisprotected from the detail~··df::$~~#949Q.l9Whbtand the de
veloper is protected frdffithedetattS'of documents which are irrelevant. The:·11)6C!tttn.e'ritframework dass
has interfaces which go both ways: one for clients, and another for subclasses (of course, these can over
lap somewhat).

Pink uses frameworks extensively. In addition to the MacApp application and document frameworks,
Pink adds: a client/server framework, a graphics device framework, a concurrency control and recovery
framework, several frameworks for implementing different kinds of device drivers (NuBus, SCSI, video,
disk, etc.), a text editing framework, a framework for file systems, and more. This structuring technique
made MacApp possible, and it's an important part of Pink.

Let Resources Find You

Traditionally, programs have names of resources or collections of resources hard wired into them, and go
out looking for these resources. Yet programs do not usually need to know this information, and fre
quently it's only used to put up a list for the user to choose from. Needless to say, having many different
programs write their own code to find things and then to put them up in lists for the user to choose is not
in keeping with the Pink principle of hiding assumptions and information.

• Registered/Restricted Pink System Architecture Monday, March 26, 1990 1.2-5

Sometimes this requires battling habits learned in previous lives. For example, the AppleTalk datagram
protocol (DDP) has a concept of a socket. A machine may have up to 256 sockets, which are mostly allo
cated dynamically. Th~ first inclination might be to use a bit vector to keep track of which socket numbers
have been allocated. This leads to a fair amount of custom code. If you look more closely at the applica
tion, however, you notice that first, there is only one such data structure per CPU, and second, perfor
mance is not a critical issue. Instead of building a custom data structure, the existing classes TSet and
TCollectibleLong could be used to implement a set of integers, which is precisely what a bit vector is.

Naturally, leverage does not mean "one size fits all" (TProcrustes?). In another context, speed or space
performance may demand that a custom data structure be used. That's OK. As Einstein said, "Everything
should be as simple as possible, but no simpler." ~

Frameworks Protect Subsystems from Each Other

Use of objects and inheritance help isolate clients from assumptions and unneeded details, but what

classes, among them T~pplication, TDocument, and TCommand. Th~~]t.~~~~1[nklethe details of the

~:~~~~~::~e:JI:,£;~~~~:cta~i~:~f::~~:~~I[t£.p~:;;::~~:~~i~~:'~~

................................... . -:.:.:.:.:.: .
'.:.:.:.;.:.:-:.:-:. . :.:-:.:::-:.:::::::::::::::::::................ . ; -;.: -: : .

The MacApp appnbltiori·tra.m~WQr~:::~KdHisprotected from the detail~··df::$~~#949Q.l9Whbtand the de
veloper is protected frdffithedetattS'of documents which are irrelevant. The:·11)6C!tttn.e'ritframework dass
has interfaces which go both ways: one for clients, and another for subclasses (of course, these can over
lap somewhat).

Pink uses frameworks extensively. In addition to the MacApp application and document frameworks,
Pink adds: a client/server framework, a graphics device framework, a concurrency control and recovery
framework, several frameworks for implementing different kinds of device drivers (NuBus, SCSI, video,
disk, etc.), a text editing framework, a framework for file systems, and more. This structuring technique
made MacApp possible, and it's an important part of Pink.

Let Resources Find You

Traditionally, programs have names of resources or collections of resources hard wired into them, and go
out looking for these resources. Yet programs do not usually need to know this information, and fre
quently it's only used to put up a list for the user to choose from. Needless to say, having many different
programs write their own code to find things and then to put them up in lists for the user to choose is not
in keeping with the Pink principle of hiding assumptions and information.

• Registered/Restricted Pink System Architecture Monday, March 26, 1990 1.2-5

Pink instead takes the approach that code should wait for resources to find it, rather than looking for re
sources. A form of this happens today on the Macintosh. The file system does not know about all possible
devices which can act as disks, and go out looking for them. If it did, it would be impossible to create
things like tape disks or NuBus disks, simply because the file system would have contained the (unneces
sary) assumption that, say, only SCSI disks can contain file systems. Instead, the Macintosh file system
waits for resources to find it through the drive queue data structure. Anything can declare itself to be ca
pable of holding a file system by inserting an entry in the drive queue.

Pink takes this idea as an architectural principle, and takes it one step further. First, resources should reg
ister themselves with services; services should not go out looking for resources. This is a "bottom up" ap
proach rather than the traditional "top down" approach. Second, whenever possible resources should
register themselves on the desktop, and services should be told what resources to use via choices from the
desktop, so that users have to remember only one way to "choose" things.

Here is one example of these principles in action. At boot time, the SCSI software must enumerate the de-

~~g~E~~~]~lti1~t~r~~~;X~:;~itltj,-,I!:;~:~:-
A SCSI disk would reffi§J~r itself on the desktop as a raw device, to aJ!9#f\m:g\jfJ,\~r' to select it for format-

Naturally, some things don't fit this model. Although fonts need to be manipulated on the desktop, I
doubt users would like to select them this way when writing a document. Thus, some resources may
need to be registered in more than one place and presented in more than one way.

Architectural Overview and Issues

This section gives a broad overview of the architecture of the system. It's supposed to be a complete
synopsis, but will probably only approach that goal asymptotically. As I discuss each functional area, I
will also enumerate the open issues and coming attractions.

The Opusl2 Kernel

Any view of the Pink architecture must start with the fundamentals of the programming model and envi
rQnment. The foundation of that environment is the Opus/2 Kernel.

.& Registered/Restricted Pink System Architecture Monday, March 26, 1990 1.2-6

Pink instead takes the approach that code should wait for resources to find it, rather than looking for re
sources. A form of this happens today on the Macintosh. The file system does not know about all possible
devices which can act as disks, and go out looking for them. If it did, it would be impossible to create
things like tape disks or NuBus disks, simply because the file system would have contained the (unneces
sary) assumption that, say, only SCSI disks can contain file systems. Instead, the Macintosh file system
waits for resources to find it through the drive queue data structure. Anything can declare itself to be ca
pable of holding a file system by inserting an entry in the drive queue.

Pink takes this idea as an architectural principle, and takes it one step further. First, resources should reg
ister themselves with services; services should not go out looking for resources. This is a "bottom up" ap
proach rather than the traditional "top down" approach. Second, whenever possible resources should
register themselves on the desktop, and services should be told what resources to use via choices from the
desktop, so that users have to remember only one way to "choose" things.

Here is one example of these principles in action. At boot time, the SCSI software must enumerate the de-

~~g~E~~~]~lti1~t~r~~~;X~:;~itltj,-,I!:;~:~:-
A SCSI disk would reffi§J~r itself on the desktop as a raw device, to aJ!9#f\m:g\jfJ,\~r' to select it for format-

Naturally, some things don't fit this model. Although fonts need to be manipulated on the desktop, I
doubt users would like to select them this way when writing a document. Thus, some resources may
need to be registered in more than one place and presented in more than one way.

Architectural Overview and Issues

This section gives a broad overview of the architecture of the system. It's supposed to be a complete
synopsis, but will probably only approach that goal asymptotically. As I discuss each functional area, I
will also enumerate the open issues and coming attractions.

The Opus/2 Kernel

Any view of the Pink architecture must start with the fundamentals of the programming model and envi
rQnment. The foundation of that environment is the Opus/2 Kernel.

.& Registered/Restricted Pink System Architecture Monday, March 26, 1990 1.2-6

Opus is an operating system kernel which provides a small set of powerful abstractions. It follows in the
same spirit of previous such kernels, like Stanford University's V and Carnegie Mellon University's
Mach. The design goal of Opus is to abstract away the variations of machine architecture while at the
same time remaining small, leaving as much as possible to code running outside the kernel.

The primary abstractions that Opus provides are:

• Multiple, independent virtual address spaces. Each address space is associated with a team (see
below).

• Multiple mapped segmentg2 within an address space. Each segment has a corresponding backing
store, which may be a file on disk, part of the physical address space, or anything else. Segments are
usually demand paged, unless otherwise requested. Segments can be mapped into more than one
virtual address space simultaneously, allowing communication via shared memory.

Opus Issues

• Currently, access to shared memory is SYnchronized via semaphores implemented in library code.
This function is likely to migrate into the Opus kernel, and may be replaced by a model of monitors
and conditions.

• Certain real time applications such as sound, video, and human interface do not work well with a pri
ority based scheduler. The system scheduling model is likely to expand to support real time require
ments, by including concepts like deadlines or periodic scheduling (this may be in the kernel or lay
ered on top).

• Currently, segments which do not correspond to physical address space must be backed by disk files.
This will be changed to support segments backed by other stores, as well as segments (such as caches)
which do not have backing store at all. On a- related note, the interface for segments is currently closely

,tied to the file system. It will become more independent in the future.

2. OK, so it's a horrid name. So sue me.
3. An archaic acronym, for Inter Process Communication.

• Registered IRestricted Pink System Architecture Monday, March 26, 1990 1.2-7

Opus is an operating system kernel which provides a small set of powerful abstractions. It follows in the
same spirit of previous such kernels, like Stanford University's V and Carnegie Mellon University's
Mach. The design goal of Opus is to abstract away the variations of machine architecture while at the
same time remaining small, leaving as much as possible to code running outside the kernel.

The primary abstractions that Opus provides are:

• Multiple, independent virtual address spaces. Each address space is associated with a team (see
below).

• Multiple mapped segmentg2 within an address space. Each segment has a corresponding backing
store, which may be a file on disk, part of the physical address space, or anything else. Segments are
usually demand paged, unless otherwise requested. Segments can be mapped into more than one
virtual address space simultaneously, allowing communication via shared memory.

Opus Issues

• Currently, access to shared memory is SYnchronized via semaphores implemented in library code.
This function is likely to migrate into the Opus kernel, and may be replaced by a model of monitors
and conditions.

• Certain real time applications such as sound, video, and human interface do not work well with a pri
ority based scheduler. The system scheduling model is likely to expand to support real time require
ments, by including concepts like deadlines or periodic scheduling (this may be in the kernel or lay
ered on top).

• Currently, segments which do not correspond to physical address space must be backed by disk files.
This will be changed to support segments backed by other stores, as well as segments (such as caches)
which do not have backing store at all. On a- related note, the interface for segments is currently closely

,tied to the file system. It will become more independent in the future.

2. OK, so it's a horrid name. So sue me.
3. An archaic acronym, for Inter Process Communication.

• Registered IRestricted Pink System Architecture Monday, March 26, 1990 1.2-7

• Currently, IPC, semaphores, and paging do not take priorities into account (i.e., the queuing is "fair").
This is probably not appropriate for an interactive, real time system. We will experiment with these is
sues to find the right approach.

• Several clients need "copy on write" functionality for segments. This will be provided by a "lazy eval-
uation" copy function. .

The Run Time Environment

The Pink run time system builds a programming model on top of the abstractions of the Opus/2 kernel.
This programming model is designed to support the classic Algol family of languages: C, Pascal, Fortran,
and so on. In addition, the run time supports an object programming model based on the semantics of
C++. Finally, there isa set of features specific to Pink.

Shared Libraries and Classes

Language Support

The Pink run time also has the following features:

• Standard C, C++ (minus AT&T's task package), and SANE (including complex) libraries.

• Fast semaphores for SYnchronization of shared memory.

• Very fast storage allocation which is safe for use by multiple tasks. This is not a relocating storage allo
cator like the Macintosh; allocated blocks don't move unless requested.

• Support for a software exception handling model. This model is based on termination semantics (like
CLU, Ada, and MacApp), and will support the semantics being developed for C++. All unusual condi
tions in Pink are expressed through this mechanism rather than through error codes.

• Support for debuggers and handling of hardware (processor) exceptions.

• Registered/Restricted Pink System Architecture Monday, March 26, 1990 1.2-8

• Currently, IPC, semaphores, and paging do not take priorities into account (i.e., the queuing is "fair").
This is probably not appropriate for an interactive, real time system. We will experiment with these is
sues to find the right approach.

• Several clients need "copy on write" functionality for segments. This will be provided by a "lazy eval-
uation" copy function. .

The Run Time Environment

The Pink run time system builds a programming model on top of the abstractions of the Opus/2 kernel.
This programming model is designed to support the classic Algol family of languages: C, Pascal, Fortran,
and so on. In addition, the run time supports an object programming model based on the semantics of
C++. Finally, there isa set of features specific to Pink.

Shared Libraries and Classes

Language Support

The Pink run time also has the following features:

• Standard C, C++ (minus AT&T's task package), and SANE (including complex) libraries.

• Fast semaphores for SYnchronization of shared memory.

• Very fast storage allocation which is safe for use by multiple tasks. This is not a relocating storage allo
cator like the Macintosh; allocated blocks don't move unless requested.

• Support for a software exception handling model. This model is based on termination semantics (like
CLU, Ada, and MacApp), and will support the semantics being developed for C++. All unusual condi
tions in Pink are expressed through this mechanism rather than through error codes.

• Support for debuggers and handling of hardware (processor) exceptions.

• Registered/Restricted Pink System Architecture Monday, March 26, 1990 1.2-8

Run Time Issues

• The load files used for shared library files are currently Blue application (resource) files. These will be
replaced by a native load file format when the Compiler Technology project (CompTech) compiler be
comes available (this compiler is being built by the Class group).

• The design for how shared libraries are located is not complete. There will be "published" shared li
braries for everyone to use, but how library searching is handled when a developer doesn't want to
globally publish one is not clear yet.

• The virtual function tables used for virtual function calls are currently constructed at compile time and
live in the global data for a library. This means 1) new virtual functions cannot be added without
recompiling clients, and 2) virtual function tables are not shared between teams. When the CompTech
compiler is available, virtual tables will be constructed dynamically by the run time system, alleviating
both these problems.

The Foundation Classes::)
<':-~'..... . .

· ~e:~:~~c:.~~~;e~r7r~~t~:c~~~~:IJ~~~~.aft~l:li~~t flattening 111111~li$UCh
• Numerical classeS which support 64 b~t. ~~mgers and fixed point :numbers In addition" SANE may be

extended witK:ijgW')At.lm¢g9~rJY~$p~R~f.rashigher or arbitrary preq$.;gW.ij~mbers()r:~n.t&valarith-
metic. :.::.:::::::::::::::::::::.: .::::':::::::':::'::::::::::::?::.: .

• A framework for concurrency control and recovery (Credence). These classes allow shared data to be
updated in a way which guarantees its integrity. They can be used to prevent data from becoming cor
rupted due to software crashes or some hardware crashes. These will be used by the Pink file system
and other components; Pink will have no "Disk First Aid" like applications.

• A class which allows objects to be stored in files and retrieved by keys, which may themselves be
objects (PsychoKiller).

• A class which allows short unique identifiers to be assigned to entities in an extensible fashion
(Tokens).

• A set of classes for implementing client/server relationships (Scream). This is widely used throughout
the system to implement classes which do their work by communicating with servers.

• Registered/Restricted Pink System Architecture Monday, March 26, 1990 1.2-9

Run Time Issues

• The load files used for shared library files are currently Blue application (resource) files. These will be
replaced by a native load file format when the Compiler Technology project (CompTech) compiler be
comes available (this compiler is being built by the Class group).

• The design for how shared libraries are located is not complete. There will be "published" shared li
braries for everyone to use, but how library searching is handled when a developer doesn't want to
globally publish one is not clear yet.

• The virtual function tables used for virtual function calls are currently constructed at compile time and
live in the global data for a library. This means 1) new virtual functions cannot be added without
recompiling clients, and 2) virtual function tables are not shared between teams. When the CompTech
compiler is available, virtual tables will be constructed dynamically by the run time system, alleviating
both these problems.

The Foundation Classes::)
<':-~'..... . .

· ~e:~:~~c:.~~~;e~r7r~~t~:c~~~~:IJ~~~~.aft~l:li~~t flattening 111111~li$UCh
• Numerical classeS which support 64 b~t. ~~mgers and fixed point :numbers In addition" SANE may be

extended witK:ijgW')At.lm¢g9~rJY~$p~R~f.rashigher or arbitrary preq$.;gW.ij~mbers()r:~n.t&valarith-
metic. :.::.:::::::::::::::::::::.: .::::':::::::':::'::::::::::::?::.: .

• A framework for concurrency control and recovery (Credence). These classes allow shared data to be
updated in a way which guarantees its integrity. They can be used to prevent data from becoming cor
rupted due to software crashes or some hardware crashes. These will be used by the Pink file system
and other components; Pink will have no "Disk First Aid" like applications.

• A class which allows objects to be stored in files and retrieved by keys, which may themselves be
objects (PsychoKiller).

• A class which allows short unique identifiers to be assigned to entities in an extensible fashion
(Tokens).

• A set of classes for implementing client/server relationships (Scream). This is widely used throughout
the system to implement classes which do their work by communicating with servers.

• Registered/Restricted Pink System Architecture Monday, March 26, 1990 1.2-9

Foundation Issues

• It is not clear there are resources to implement any of the proposed SANE ext.ensions.

UOperating System" Services

Many of the services that traditionally would be provided by an operating system are instead implement
ed via shared libraries and server teams under Pink. These services include:

• A set of framework classes and servers for implementing device drivers. These include frameworks for
SCSI, Nubus (or other expansion schemes), mass storage devices, video, serial devices, and ADB. In
each case, new kinds of devices can be added by deriving new classes from one or more of the base
classes supplied by Apple. In many cases, developers will not need. to write their own interrllEtfgde

·~iiii~~"IIII~:i1i~~~:E:.I!~~~~~:: will

....

.:.:::;:::::::::::::::::::.:.:.:.:. .::;:;::::.;.:.:.:.:.;.:-:.;-:::::::::::::.:-:.:.~::::::::::. :.:.:.:.:.;

:o:':~~::i:iit~~;~i~~.nS..::...~.-:.::.,.r.::~..::.::-..:.:.n.t.:.h.:~.r./.•:.:~:.;ca..r.:~:.jll":~;~;~:tl.l'tlIt~:~~~;~ ~~:'I;II'~
.... ":;:::': ::::::;::::;:::::::;:::::;:"
.......... ":"': :"':':::::::::'::~::::::::"'<;::::::~:;:::::::::::::\::;::.;. ".:-:.:.»:.:.:.:.:. ::?))((::::::-:-:....

-.,<::::;::::::::

• It is not clear yet wh:effi:~tilrihaiVidualdevices will be controlled. by separ~m::'t~:Mhs'orwhether some
devices may be controlled by objects operating within shared. teams.

• The functions provided by Rainbow Warrior overlap somewhat with those provided by the Desktop;
they need to be coordinated.

• There is a major missing component, namely security and authentication services. This is necessary to
guarantee the security of the local file system. Access to the file system, to certain hardware resources
(such as mass storage devices), and to certain OS features (loading ISRs, creating physical segments)
must be authenticated if the local file system is to have any more security than it does today. A recent
survey stated that around sixty percent of all Macintoshes were used by two or more people, so this
seems like a good idea. This issue must be resolved soon. A related issue is how to deal with people as
objects in the system; this is needed for collaboration as well as authentication.

• Another area which we must consider is system reliability. If Pink systems will be used as servers, we
may need some or all of the following features: storing information redundantly to protect against
media failures (including disk mirroring), logging of soft and hard errors to spot potential problems,

11 Registered/Restricted Pink System Architecture Monday, March 26, 1990 1.2-10

Foundation Issues

• It is not clear there are resources to implement any of the proposed SANE ext.ensions.

UOperating System" Services

Many of the services that traditionally would be provided by an operating system are instead implement
ed via shared libraries and server teams under Pink. These services include:

• A set of framework classes and servers for implementing device drivers. These include frameworks for
SCSI, Nubus (or other expansion schemes), mass storage devices, video, serial devices, and ADB. In
each case, new kinds of devices can be added by deriving new classes from one or more of the base
classes supplied by Apple. In many cases, developers will not need. to write their own interrllEtfgde

·~iiii~~"IIII~:i1i~~~:E:.I!~~~~~:: will

....

.:.:::;:::::::::::::::::::.:.:.:.:. .::;:;::::.;.:.:.:.:.;.:-:.;-:::::::::::::.:-:.:.~::::::::::. :.:.:.:.:.;

:o:':~~::i:iit~~;~i~~.nS..::...~.-:.::.,.r.::~..::.::-..:.:.n.t.:.h.:~.r./.•:.:~:.;ca..r.:~:.jll":~;~;~:tl.l'tlIt~:~~~;~ ~~:'I;II'~
.... ":;:::': ::::::;::::;:::::::;:::::;:"
.......... ":"': :"':':::::::::'::~::::::::"'<;::::::~:;:::::::::::::\::;::.;. ".:-:.:.»:.:.:.:.:. ::?))((::::::-:-:....

-.,<::::;::::::::

• It is not clear yet wh:effi:~tilrihaiVidualdevices will be controlled. by separ~m::'t~:Mhs'orwhether some
devices may be controlled by objects operating within shared. teams.

• The functions provided by Rainbow Warrior overlap somewhat with those provided by the Desktop;
they need to be coordinated.

• There is a major missing component, namely security and authentication services. This is necessary to
guarantee the security of the local file system. Access to the file system, to certain hardware resources
(such as mass storage devices), and to certain OS features (loading ISRs, creating physical segments)
must be authenticated if the local file system is to have any more security than it does today. A recent
survey stated that around sixty percent of all Macintoshes were used by two or more people, so this
seems like a good idea. This issue must be resolved soon. A related issue is how to deal with people as
objects in the system; this is needed for collaboration as well as authentication.

• Another area which we must consider is system reliability. If Pink systems will be used as servers, we
may need some or all of the following features: storing information redundantly to protect against
media failures (including disk mirroring), logging of soft and hard errors to spot potential problems,

11 Registered/Restricted Pink System Architecture Monday, March 26, 1990 1.2-10

some measure of fault recovery. Do we want to do these? Also for servers, we may want to allow vol
umes to span multiple physical disks.

• Currently there is no strategy for dealing with power management, an important issue when running
on future Pink-eapable battery-powered machines. The key requirement is to be able to tell that the
machine is "idle", i.e., no useful work is going on, so that it may be put to sleep. Since many teams and
tasks will be running even in the idle state, we need to put a framework in place for extracting this in
formation.

• The system boot sequence has not been designed yet. Pink mayor may not be in ROM, but we will
probably design a boot sequence capable of dealing with either eventuality (if only to aid during de
velopment) and of booting over the network. This work will commence shortly.

• Rainbow Warrior provides a change notification facility, as do CHER and some other components.
These need to be unified, or at least be expressed using a common set of base classes.

.....:.....

•

•

•

.~~i=~m~
•.....:.:.:.:.:..-:-: .

• A large set of 3D primitives: lines, polylines, and curves; boxes, polygons, meshes, polynets, boxes,
swept and extruded shapes, and 3D spline surfaces. 3D geometric collections: paths and surfaces.

• An extensible 3D rendering and viewing model that includes camera and light source modeling and
many shading techniques. New kinds of rendering techniques can be added by developers, similar to
programmable shaders in Renderman.

• An extensible 2D modeling framework which can tag objects with rendering attributes and transfor
mations, and includes the ability to create nested groups.

• An extensible 3D modeling framework which includes support for sweep and extrusion.

• A graphics output device model which is extensible to support many different rendering techniques,
including standard frame buffers, graphics accelerators, and spooling of graphics for printing.

• Registered/Restricted Pink System Architecture Monday, March 26, 1990 1.2-11

some measure of fault recovery. Do we want to do these? Also for servers, we may want to allow vol
umes to span multiple physical disks.

• Currently there is no strategy for dealing with power management, an important issue when running
on future Pink-eapable battery-powered machines. The key requirement is to be able to tell that the
machine is "idle", i.e., no useful work is going on, so that it may be put to sleep. Since many teams and
tasks will be running even in the idle state, we need to put a framework in place for extracting this in
formation.

• The system boot sequence has not been designed yet. Pink mayor may not be in ROM, but we will
probably design a boot sequence capable of dealing with either eventuality (if only to aid during de
velopment) and of booting over the network. This work will commence shortly.

• Rainbow Warrior provides a change notification facility, as do CHER and some other components.
These need to be unified, or at least be expressed using a common set of base classes.

.....:.....

•

•

•

.~~i=~m~
•.....:.:.:.:.:..-:-: .

• A large set of 3D primitives: lines, polylines, and curves; boxes, polygons, meshes, polynets, boxes,
swept and extruded shapes, and 3D spline surfaces. 3D geometric collections: paths and surfaces.

• An extensible 3D rendering and viewing model that includes camera and light source modeling and
many shading techniques. New kinds of rendering techniques can be added by developers, similar to
programmable shaders in Renderman.

• An extensible 2D modeling framework which can tag objects with rendering attributes and transfor
mations, and includes the ability to create nested groups.

• An extensible 3D modeling framework which includes support for sweep and extrusion.

• A graphics output device model which is extensible to support many different rendering techniques,
including standard frame buffers, graphics accelerators, and spooling of graphics for printing.

• Registered/Restricted Pink System Architecture Monday, March 26, 1990 1.2-11

Albert implements all these capabilities with a small set of abstract classes, among them MGraphic (the
abstract class for modeling), TGrafBundle (object rendering attributes), several geometric classes,
TGrafDevice (an abstract output device), TGrafPort (graphics context for rendering), and TMatrix and
TMatrix3D (transfonnation matrices).

Albert Issues

• It is not clear how to handle developer supplied extended rendering classes (e.g., for shading) when
sending graphics output to a graphics accelerator or other external rendering engine, or when putting
graphic objects into a document which may be transferred to another system.

•

•

•

• Still to be defined is the architecture for handling buffering, compositing, sprites, and animation. This
is needed to support the mouse cursor, and dragging of objects in front of other, animating objects. It
would also speed window dragging and handling of updates by obviating the need for redrawing
windows in all cases.

.,.-:::.-.:: :::-:.

-:.:.;.:.:.;.;.

Application Support ::n::~::::t·
:::::::::::::::

'::::f~:}It(Jnn/HH:::

..... ' - , , ,., :..•......:::;: ' '.. . .

• A view system whi~h~~~flfi8:h:;::~~;·~isplayof an application into self~~~:i~{R~d::g~~~onents.Views
are similar to windows, except that they fonn a hierarchy rather than a simple collection. They also
provide a framework for managing interaction.

• A set of user interface components (windows, buttons, menus, scroll bars, etc.) built on the foundation
and extensible by third parties. This also includes views for common presentation techniques such as
tables of items and collections of graphics.

• A framework for tracking user interface actions which includes standard support for tracking the
mouse, for handling double clicks, and for dragging elements within views, between views, and be
tween windows. The dragging framework also provides a means for a dragged element to
communicate with other elements it is dragged over.

The two primary building blocks of the application framework are the responder, which is an object that
c~n receive events, and the view, which is an object that can contain graphics and receive positionally di
rected events (such as from a mouse). Views are also responders; they are a subclass.

'* Registered/Restricted Pink System Architecture Monday, March 26, 1990 1.2-12

Albert implements all these capabilities with a small set of abstract classes, among them MGraphic (the
abstract class for modeling), TGrafBundle (object rendering attributes), several geometric classes,
TGrafDevice (an abstract output device), TGrafPort (graphics context for rendering), and TMatrix and
TMatrix3D (transfonnation matrices).

Albert Issues

• It is not clear how to handle developer supplied extended rendering classes (e.g., for shading) when
sending graphics output to a graphics accelerator or other external rendering engine, or when putting
graphic objects into a document which may be transferred to another system.

•

•

•

• Still to be defined is the architecture for handling buffering, compositing, sprites, and animation. This
is needed to support the mouse cursor, and dragging of objects in front of other, animating objects. It
would also speed window dragging and handling of updates by obviating the need for redrawing
windows in all cases.

.,.-:::.-.:: :::-:.

-:.:.;.:.:.;.;.

Application Support ::n::~::::t·
:::::::::::::::

'::::f~:}It(Jnn/HH:::

..... ' - , , ,., :..•......:::;: ' '.. . .

• A view system whi~h~~~flfi8:h:;::~~;·~isplayof an application into self~~~:i~{R~d::g~~~onents.Views
are similar to windows, except that they fonn a hierarchy rather than a simple collection. They also
provide a framework for managing interaction.

• A set of user interface components (windows, buttons, menus, scroll bars, etc.) built on the foundation
and extensible by third parties. This also includes views for common presentation techniques such as
tables of items and collections of graphics.

• A framework for tracking user interface actions which includes standard support for tracking the
mouse, for handling double clicks, and for dragging elements within views, between views, and be
tween windows. The dragging framework also provides a means for a dragged element to
communicate with other elements it is dragged over.

The two primary building blocks of the application framework are the responder, which is an object that
c~n receive events, and the view, which is an object that can contain graphics and receive positionally di
rected events (such as from a mouse). Views are also responders; they are a subclass.

'* Registered/Restricted Pink System Architecture Monday, March 26, 1990 1.2-12

Events are usually routed to responders in three ways. Non-positional events, such as keystrokes, are sent
to a specific responder associated with the current frontmost layer; this responder is called the target. Po
sitional events, such as mouse button down, are routed through the view hierarchy to the view which
was under the mouse when the event occurred. Finally, events can be routed directly to a specified re
sponder.

In addition to receiving events through the event distribution mechanism, responders can receive input
directly from other responders. This is done through output ports, which connect output from one re
sponder to the input of another. Thus, responders can be hooked together in different configurations
without having to write code to do so. This is essential to a user interface construction capability, like that
being planned for the Hoops development environment (Pink's native development environment, also
being built by the Class group).

Views can be thought of as virtual paper, and the view hierarchy as a mechanism for arranging those pa
pers to make a coherent interface. Each view has, at a minimum, a container (the view within whi~llitap-

The tracking framewor:iHs based on the tracker object, which repre~t§)~ij@tm@actionin progress. The

..-:.:.:.;
":;::::::::::::
.:;:;:::::::;::::;::::::::::: ?:::::::::::::::;:
............:•..:.:.: .

.~:j~~t~~[;: ;:~~~:\~~~~~~~~~~~~: ~~ ~~::; ~~;::;::

·~~;~~lfItlljl~li~~~:~~~!~~]j'i~i~~~tiii~!i~~~n-
• Multi-level undo: like MacApp, CHER provides a framework for implementing undo. Unlike

MacApp, CHER's undo is multi-level; users can undo back as far as system resources permit. User ac
tions are logged using Pink's recovery features, so users need not save to preserve their work from
crashes. /

• Content based retrieval: CHER provides a framework for indexing and content searching, to allow
documents to be located by content.

CHER is at the heart of Pink applications because Pink has a document-eentered user model: users deal
with documents, not with applications. CHER provides a subclass of the application framework which
knows how to deal with documents and knows how to integrate with the desktop. Applications are in
voked whenever necessary to perform services in a manner transparent to the end user.

'* Registered/Restricted' Pink System Architecture Monday, March 26, 1990 1.2-13

Events are usually routed to responders in three ways. Non-positional events, such as keystrokes, are sent
to a specific responder associated with the current frontmost layer; this responder is called the target. Po
sitional events, such as mouse button down, are routed through the view hierarchy to the view which
was under the mouse when the event occurred. Finally, events can be routed directly to a specified re
sponder.

In addition to receiving events through the event distribution mechanism, responders can receive input
directly from other responders. This is done through output ports, which connect output from one re
sponder to the input of another. Thus, responders can be hooked together in different configurations
without having to write code to do so. This is essential to a user interface construction capability, like that
being planned for the Hoops development environment (Pink's native development environment, also
being built by the Class group).

Views can be thought of as virtual paper, and the view hierarchy as a mechanism for arranging those pa
pers to make a coherent interface. Each view has, at a minimum, a container (the view within whi~llitap-

The tracking framewor:iHs based on the tracker object, which repre~t§)~ij@tm@actionin progress. The

..-:.:.:.;
":;::::::::::::
.:;:;:::::::;::::;::::::::::: ?:::::::::::::::;:
............:•..:.:.: .

.~:j~~t~~[;: ;:~~~:\~~~~~~~~~~~~: ~~ ~~::; ~~;::;::

·~~;~~lfItlljl~li~~~:~~~!~~]j'i~i~~~tiii~!i~~~n-
• Multi-level undo: like MacApp, CHER provides a framework for implementing undo. Unlike

MacApp, CHER's undo is multi-level; users can undo back as far as system resources permit. User ac
tions are logged using Pink's recovery features, so users need not save to preserve their work from
crashes. /

• Content based retrieval: CHER provides a framework for indexing and content searching, to allow
documents to be located by content.

CHER is at the heart of Pink applications because Pink has a document-eentered user model: users deal
with documents, not with applications. CHER provides a subclass of the application framework which
knows how to deal with documents and knows how to integrate with the desktop. Applications are in
voked whenever necessary to perform services in a manner transparent to the end user.

'* Registered/Restricted' Pink System Architecture Monday, March 26, 1990 1.2-13

The Scripting System,

Pink provides a system which allows end users to automate repetitive tasks. It has the following features:

• Scripts can be recorded, and the system watches to try to discern repetitive actions. The system uses
these to try to generalize the actions the user has just performed.

• Scripts are represented in a visual fashion similar to storyboards or film clips, to make them more ac-
cessible than textual languages. -

• Scripts are universal; the scripting framework is integrated with the document framework, making it.

easy for all actions taken by the user to be recorded and played back.

• Help support will be integral to the application framework, but we are waiting for a human interface
design before designing the software.

• Work on the scripting system is just underway, and many issues remain to be resolved.

Text and International

Initially, support for text on the Macintosh consisted of TextEdit (32K characters, plain text) and the Inter
national utilities (Roman languages). Since then, the Script Manager has been added to support non-Ro
man languages, and TextEdit has been extended to support multiple fonts and styles. Unfortunately, be
cause there is no support for sophisticated text editing and because the Script Manager is not integrated,
every developer who wishes to support text must write their own editor, and most skimp on non-essen
tial features. Very few use the Script Manager because of the effort involved, and many do not implement
all of the Macintosh human interface (the word processor I'm using to write this does not support Uintelli
gent" cut and paste).

'* Registered/Restricted Pink System Architecture Monday, March 26, 1990 1.2-14

The Scripting System,

Pink provides a system which allows end users to automate repetitive tasks. It has the following features:

• Scripts can be recorded, and the system watches to try to discern repetitive actions. The system uses
these to try to generalize the actions the user has just performed.

• Scripts are represented in a visual fashion similar to storyboards or film clips, to make them more ac-
cessible than textual languages. -

• Scripts are universal; the scripting framework is integrated with the document framework, making it.

easy for all actions taken by the user to be recorded and played back.

• Help support will be integral to the application framework, but we are waiting for a human interface
design before designing the software.

• Work on the scripting system is just underway, and many issues remain to be resolved.

Text and International

Initially, support for text on the Macintosh consisted of TextEdit (32K characters, plain text) and the Inter
national utilities (Roman languages). Since then, the Script Manager has been added to support non-Ro
man languages, and TextEdit has been extended to support multiple fonts and styles. Unfortunately, be
cause there is no support for sophisticated text editing and because the Script Manager is not integrated,
every developer who wishes to support text must write their own editor, and most skimp on non-essen
tial features. Very few use the Script Manager because of the effort involved, and many do not implement
all of the Macintosh human interface (the word processor I'm using to write this does not support Uintelli
gent" cut and paste).

'* Registered/Restricted Pink System Architecture Monday, March 26, 1990 1.2-14

Pink provides extensive support for sophisticated text editing. It includes a text editing framework which
supports arbitrary length text and an extensible set of styles. The text system supports sophisticated
typographic controlsl fext flow across blocksl high quality line breakingl and more. The framework is in
tended to provide a highly functional base level of text support in Pinkl as well as a toolkit for construc
tion of high end text applications (word processors and page layout programs). The goal is to prevent de
velopers from having to reinvent the wheel so they can concentrate on providing distinguishing features.
The text framework can be overridden to provide such features (like footnotes or indices).

-:-:.:.:.:.:.:::-:-:.:;:.:.;.:.:-:.:....

•

•

•

The text framework works closely with the international classes so that all text manipulation is fully inter
national by default. Pink uses a 16 bit character set (Unicode) and is capable of handling multiple scripts
with different writing directions and input techniques. Because of the integration between text and inter
national softwarel input of complex scripts such as Japanese can be done inline while editing. Pink text
can take advantage of such sophisticated options as automatic kerningl ligaturesl contextual fonnsl and
optical alignment. Pink will support simultaneous use of multiple scripts within documentsl and will be

~~~~i~iiii~i;~tl'II.~~?~;;iiiiI1i~!~!?ji~~~g,
~;~~~~~:~t~~n~~JlI~;:laa~~:~~:cse from multiple langua::1;1~.I~IIIII::rolesllocal rules (such

Text and Internati·onal>\.·:-r.···.··.:~·.·::.:s:.··.:'..:.u·.··.:·:··.::.·:.:.•e:>.·.··s:.:·.::.·:.: .
~ ;.:.;.:.}}:;::=::.....

::~:)~~~{I::::~::~}~{{:t}~:~:~:~:~~f~:~~l%f~ttttt~\:::.; ..

used to let a query:f(j-r/'eap1.firid?~aUtomobilefll for example.

Printing

The Pink printing system is composed of several pieces which work together to provide a flexible and ex
tensible system. These are:

• A framework for objects which can be printedl which helps them deal with paginationl page sizel and
other printer attributes. This framework has a set of useful defaults which allow most applications to
print with very little work.

• A set of classes for characterizing printer attributes and print jobs. This includes user interface classes
for presenting a standard human interface to select such attribu tes.

• A framework for building print drivers, which lets developers define new kinds of printers with new
-capabilities. This is similar to the applicationl documentl and other frameworks in Pink: developers
need only define the unique behavior of their particular printer.

• Registered/Restricted Pink System Architecture MondaYI March 261 1990 1.2-15

Pink provides extensive support for sophisticated text editing. It includes a text editing framework which
supports arbitrary length text and an extensible set of styles. The text system supports sophisticated
typographic controlsl fext flow across blocksl high quality line breakingl and more. The framework is in
tended to provide a highly functional base level of text support in Pinkl as well as a toolkit for construc
tion of high end text applications (word processors and page layout programs). The goal is to prevent de
velopers from having to reinvent the wheel so they can concentrate on providing distinguishing features.
The text framework can be overridden to provide such features (like footnotes or indices).

-:-:.:.:.:.:.:::-:-:.:;:.:.;.:.:-:.:....

•

•

•

The text framework works closely with the international classes so that all text manipulation is fully inter
national by default. Pink uses a 16 bit character set (Unicode) and is capable of handling multiple scripts
with different writing directions and input techniques. Because of the integration between text and inter
national softwarel input of complex scripts such as Japanese can be done inline while editing. Pink text
can take advantage of such sophisticated options as automatic kerningl ligaturesl contextual fonnsl and
optical alignment. Pink will support simultaneous use of multiple scripts within documentsl and will be

~~~~i~iiii~i;~tl'II.~~?~;;iiiiI1i~!~!?ji~~~g,
~;~~~~~:~t~~n~~JlI~;:laa~~:~~:cse from multiple langua::1;1~.I~IIIII::rolesllocal rules (such

Text and Internati·onal>\.·:-r.···.··.:~·.·::.:s:.··.:'..:.u·.··.:·:··.::.·:.:.•e:>.·.··s:.:·.::.·:.: .
~ ;.:.;.:.}}:;::=::.....

::~:)~~~{I::::~::~}~{{:t}~:~:~:~:~~f~:~~l%f~ttttt~\:::.; ..

used to let a query:f(j-r/'eap1.firid?~aUtomobilefll for example.

Printing

The Pink printing system is composed of several pieces which work together to provide a flexible and ex
tensible system. These are:

• A framework for objects which can be printedl which helps them deal with paginationl page sizel and
other printer attributes. This framework has a set of useful defaults which allow most applications to
print with very little work.

• A set of classes for characterizing printer attributes and print jobs. This includes user interface classes
for presenting a standard human interface to select such attribu tes.

• A framework for building print drivers, which lets developers define new kinds of printers with new
-capabilities. This is similar to the applicationl documentl and other frameworks in Pink: developers
need only define the unique behavior of their particular printer.

• Registered/Restricted Pink System Architecture MondaYI March 261 1990 1.2-15

• A spooling architecture which will do all printing in the background.

• An architecture for dealing with scanners. This consists of a set of classes for use with CHER to allow
images to be input into applications, plus a desktop scanner object (a driver).

Printing Issues

• We would like to support multimedia output (sound, animation, video) in the printing architecture.
This is still under investigation.

Time, Sound, and Animation

Pink has a set of classes dedicated to timing and time-dependent media. These include:

• Classes for getting the current Julian date and time. Pink uses Universal Time (a.k.a. Green""ic:h.Mean

•

Issues

•

....................................... . .

• There are muitipi~:·:~y§t~ij<j¢~~tihiRfg?thatuse the metaphor of hookirii::t.mng~.~R:jfh:~:t~:rinterface
(responders and outpufportS>;the sound classes, and the time sequenced dahi'dasses. The common
ground needs to be determined (if there is any) and shared as a set of abstract base classes.

• The animation and video architecture has not been defined yet.

Networking and Communications

The Pink networking classes provide:

• A framework for implementing a wide variety of networking protocols. In some cases, these protocols
can be mixed and matched.

• Support for simultaneous connection to multiple networks (Umulti-home").

• A class which represents a network resource, which can also instantiate transaction or streaming con
nections to that resource, independent of the network protocols used.

'* Registered/Restricted Pink System Architecture Monday, March 26,1990 1.2-16

• A spooling architecture which will do all printing in the background.

• An architecture for dealing with scanners. This consists of a set of classes for use with CHER to allow
images to be input into applications, plus a desktop scanner object (a driver).

Printing Issues

• We would like to support multimedia output (sound, animation, video) in the printing architecture.
This is still under investigation.

Time, Sound, and Animation

Pink has a set of classes dedicated to timing and time-dependent media. These include:

• Classes for getting the current Julian date and time. Pink uses Universal Time (a.k.a. Green""ic:h.Mean

•

Issues

•

....................................... . .

• There are muitipi~:·:~y§t~ij<j¢~~tihiRfg?thatuse the metaphor of hookirii::t.mng~.~R:jfh:~:t~:rinterface
(responders and outpufportS>;the sound classes, and the time sequenced dahi'dasses. The common
ground needs to be determined (if there is any) and shared as a set of abstract base classes.

• The animation and video architecture has not been defined yet.

Networking and Communications

The Pink networking classes provide:

• A framework for implementing a wide variety of networking protocols. In some cases, these protocols
can be mixed and matched.

• Support for simultaneous connection to multiple networks (Umulti-home").

• A class which represents a network resource, which can also instantiate transaction or streaming con
nections to that resource, independent of the network protocols used.

'* Registered/Restricted Pink System Architecture Monday, March 26,1990 1.2-16

• A networking and communication component to the Blue Adapter, which emulates native Blue net
working services by calls on Pink network services.

• A set of classes for accessing the capabilities of MCP cards which utilize the A/Rose kernel, to enable
use of the many NuBus cards which use the MCP platfonn.

N&C Issues

• There is currently no equivalent to the Communications Toolbox defined. Something on the order of a
TSerialConnection desktop object seems necessary to allow configuration of native Pink software~

using serial connections.

• There are human interface problems involved in mix and match protocols and multiple networks.

The Desktop and Finder

.•...............•.......::::::}:::::~:~:::::::.:

for a document). The conn.ection·between desktop objects and potential users·o{fl1oseobjects is made
using the dragging and type negotiation protocol defined in the Pink application framework: a target can
accept a desktop object if the protocol determines that they have a '1anguage" (a type, representing a pro
tocol) in common.

Developers will also deal with the desktop by creating desktop objects of their own: the example given in
the principles section was of a TMassStorage object creating a desktop object to represent the raw device,
and of the File System creating a desktop object to represent the volume or volumes on such a device. Be
cause objects find the desktop, rather than vice versa, the mapping of resources into desktop objects can
vary widely across system components and over time.

In order to increase the consistency of the metaphor, Pink discards some components of the Blue inter
face. Like Lisa, Pink uses a document metaphor; applications are only resources that need be present to
enable certain kinds of documents to be opened and manipulated. The user opens a document, and does
not (consciously) "run" an application. Similarly, Pink discards some File menu commands: New, stan
dard file, Save, and Quit.

• Registered/Restricted Pink System Architecture Monday, March 26, 1990 1.2-17

• A networking and communication component to the Blue Adapter, which emulates native Blue net
working services by calls on Pink network services.

• A set of classes for accessing the capabilities of MCP cards which utilize the A/Rose kernel, to enable
use of the many NuBus cards which use the MCP platfonn.

N&C Issues

• There is currently no equivalent to the Communications Toolbox defined. Something on the order of a
TSerialConnection desktop object seems necessary to allow configuration of native Pink software~

using serial connections.

• There are human interface problems involved in mix and match protocols and multiple networks.

The Desktop and Finder

.•...............•.......::::::}:::::~:~:::::::.:

for a document). The conn.ection·between desktop objects and potential users·o{fl1oseobjects is made
using the dragging and type negotiation protocol defined in the Pink application framework: a target can
accept a desktop object if the protocol determines that they have a '1anguage" (a type, representing a pro
tocol) in common.

Developers will also deal with the desktop by creating desktop objects of their own: the example given in
the principles section was of a TMassStorage object creating a desktop object to represent the raw device,
and of the File System creating a desktop object to represent the volume or volumes on such a device. Be
cause objects find the desktop, rather than vice versa, the mapping of resources into desktop objects can
vary widely across system components and over time.

In order to increase the consistency of the metaphor, Pink discards some components of the Blue inter
face. Like Lisa, Pink uses a document metaphor; applications are only resources that need be present to
enable certain kinds of documents to be opened and manipulated. The user opens a document, and does
not (consciously) "run" an application. Similarly, Pink discards some File menu commands: New, stan
dard file, Save, and Quit.

• Registered/Restricted Pink System Architecture Monday, March 26, 1990 1.2-17

New documents are made by copying stationery (the application itself could serve as default stationery to
avoid the Lisa problem of throwing all your stationery away). Documents are saved automatically; rever
sion is handled by multiple level undo and usnapshots" of document versions. Standard File functions
are handled by the Finder; users will not miss Standard File as long as q.ll the shortcuts (and speed) it pro
vides are in the Finder too. Quit is superfluous since users work on documents, not in applications. Each
document will appear separately, rather than all documents of a given type being lumped together if
more than one is open. When and how application code runs is determined by the system, not the user.

Finally, the Pink desktop will reduce the distinction between desktop objects and data. Desktop objects
can be dragged into containers, and in Pink selections can be dragged between documents. We would
also like to be able to drag selections into containers (perhaps creating new documents) and desktop
objects into windows and documents (as in the printer selection example above).

Desktop Issues

::::::::::::::::~;:::::::;:::::: ::::::::: .:.:.. ':':-.'
.................:.:.:.:.:-:-:.;.;......

:-:-:.:::::::::::::;:::::::::::::::: .

:-:.:-:.... .:. :"::::::::::::::::::::::::::::;"'';

• The pervasivenes~>~tthJa~§kmp~eansthat it will permeate every cor~;i::6Fpirik,~~dthus affect the
design of many components of Pink. However, the desktop classes are only now being designed and
implemented.

• Once the desktop classes are available, there are an awfullot of desktop objects and utilties which
need to be designed and implemented. All functions that are currently handled by Chooser, Control
Panel, HD SC Setup, Font/DA Mover, ad nauseum, must be built. This is a lot of work.

Adapters

Pink is designed to allow foreign operating environments to be emulated concurrently with native Pink
applications. These emulators are known as adapters. There are two currently being planned:

• The Blue adapter will allow Pink to run existing Macintosh applications and some subset of other Blue
software (probably DAs, cdevs, and some INITs). The technology used will be very similar to that in
A/UX 2.0; the major difference is that unlike A/UX, Pink has a native video architecture and cannot
use the Blue model unchanged. In addition, some measure of data exchange between the two worlds

• Registered/Restricted Pink System Architecture Monday, March 26, 1990 1.2-18

New documents are made by copying stationery (the application itself could serve as default stationery to
avoid the Lisa problem of throwing all your stationery away). Documents are saved automatically; rever
sion is handled by multiple level undo and usnapshots" of document versions. Standard File functions
are handled by the Finder; users will not miss Standard File as long as q.ll the shortcuts (and speed) it pro
vides are in the Finder too. Quit is superfluous since users work on documents, not in applications. Each
document will appear separately, rather than all documents of a given type being lumped together if
more than one is open. When and how application code runs is determined by the system, not the user.

Finally, the Pink desktop will reduce the distinction between desktop objects and data. Desktop objects
can be dragged into containers, and in Pink selections can be dragged between documents. We would
also like to be able to drag selections into containers (perhaps creating new documents) and desktop
objects into windows and documents (as in the printer selection example above).

Desktop Issues

::::::::::::::::~;:::::::;:::::: ::::::::: .:.:.. ':':-.'
.................:.:.:.:.:-:-:.;.;......

:-:-:.:::::::::::::;:::::::::::::::: .

:-:.:-:.... .:. :"::::::::::::::::::::::::::::;"'';

• The pervasivenes~>~tthJa~§kmp~eansthat it will permeate every cor~;i::6Fpirik,~~dthus affect the
design of many components of Pink. However, the desktop classes are only now being designed and
implemented.

• Once the desktop classes are available, there are an awfullot of desktop objects and utilties which
need to be designed and implemented. All functions that are currently handled by Chooser, Control
Panel, HD SC Setup, Font/DA Mover, ad nauseum, must be built. This is a lot of work.

Adapters

Pink is designed to allow foreign operating environments to be emulated concurrently with native Pink
applications. These emulators are known as adapters. There are two currently being planned:

• The Blue adapter will allow Pink to run existing Macintosh applications and some subset of other Blue
software (probably DAs, cdevs, and some INITs). The technology used will be very similar to that in
A/UX 2.0; the major difference is that unlike A/UX, Pink has a native video architecture and cannot
use the Blue model unchanged. In addition, some measure of data exchange between the two worlds

• Registered/Restricted Pink System Architecture Monday, March 26, 1990 1.2-18

will be possible: at least clipboard and file import/export, and possibly some connection with CHER.

• The UNIX adapter will allow some subset of applications written for UNIX to run under Pink. The set
of applications which run depends on what UNIX applications, and thus what UNIX features, we con
sider important to emulate. The goal is to let applications which use standard System V, BSD, or
POSIX interfaces to run, and also to support such common UNIX accouterments as X. It may even be
possible to support one of the application binary interface (ABI) UNIX standards and thus run existing
binaries, but given the projected installed base of Pink this may not be necessary.

Adapter Issues

.- ... ,

~({{{{; :::.::::::;-::::: :-:-:-:-:.;.:.:-:

":::::;:::}:::::::;:':"':'{::::;}::
........:.; .

:~:::>~~l:::~:~:::::::::::···

• The technique for handling graphics in the Blue adapter has not been decided. Allowing QuickDraw
to continue to draw to the screen guarantees pixel perfection, and the Layer Server was designed to
allow multiple rendering systems. However, this doesn't work well on devices which are not a
multiple of 72 DPI, and i~lJ.~~.a.~~..cl.()~f.l.C:.().~P~~.~~.~Y.f()r graphics accelerators. Under Pink, a ~Clph}ss

disk drivers (by far t.~~::inost important) to make them run under E![WJ]?:H~::~m~fis not guaranteed by

:-: -:-:.:-:-:-:-:-:-:-:-:-:.'. '.' . ~ . ':.:.::,:;::-:,:-:-:.:.; .

(/@{{} ..
::::::;:::;.:.

........

}:(y: .. :::;i?\:;::..
:;:::;:;::::::::-:-: :::::::::::::::'::::::::=;:}: :.:-.:-:::::-:-::-:. ::?:::=:=t)::-·

..............:.: ..-: : :- .. :.:.:.:-:.:.:-: :.:<::::::::::;:::;:::.:;:-:::::::.:;:::-:-:.: .

" Registered/Restricted Pink System Architecture Monday, March 26, 1990 1.2-19

will be possible: at least clipboard and file import/export, and possibly some connection with CHER.

• The UNIX adapter will allow some subset of applications written for UNIX to run under Pink. The set
of applications which run depends on what UNIX applications, and thus what UNIX features, we con
sider important to emulate. The goal is to let applications which use standard System V, BSD, or
POSIX interfaces to run, and also to support such common UNIX accouterments as X. It may even be
possible to support one of the application binary interface (ABI) UNIX standards and thus run existing
binaries, but given the projected installed base of Pink this may not be necessary.

Adapter Issues

.- ... ,

~({{{{; :::.::::::;-::::: :-:-:-:-:.;.:.:-:

":::::;:::}:::::::;:':"':'{::::;}::
........:.; .

:~:::>~~l:::~:~:::::::::::···

• The technique for handling graphics in the Blue adapter has not been decided. Allowing QuickDraw
to continue to draw to the screen guarantees pixel perfection, and the Layer Server was designed to
allow multiple rendering systems. However, this doesn't work well on devices which are not a
multiple of 72 DPI, and i~lJ.~~.a.~~..cl.()~f.l.C:.().~P~~.~~.~Y.f()r graphics accelerators. Under Pink, a ~Clph}ss

disk drivers (by far t.~~::inost important) to make them run under E![WJ]?:H~::~m~fis not guaranteed by

:-: -:-:.:-:-:-:-:-:-:-:-:-:.'. '.' . ~ . ':.:.::,:;::-:,:-:-:.:.; .

(/@{{} ..
::::::;:::;.:.

........

}:(y: .. :::;i?\:;::..
:;:::;:;::::::::-:-: :::::::::::::::'::::::::=;:}: :.:-.:-:::::-:-::-:. ::?:::=:=t)::-·

..............:.: ..-: : :- .. :.:.:.:-:.:.:-: :.:<::::::::::;:::;:::.:;:-:::::::.:;:::-:-:.: .

" Registered/Restricted Pink System Architecture Monday, March 26, 1990 1.2-19

Pink Human Interface

• Registeredl Restricted Human Interface Architecture March I:', 1990 1.3-1

Pink Human Interface

• Registeredl Restricted Human Interface Architecture March I:', 1990 1.3-1

Pink Human Interface

• Simplifies what is

• Adds what's new

• Restores the fun

Lee Honigberg
Frank Ludolph

Annette Wagner

• Registered/ Restricted Human Interface Architecture March b, 1990 1.3-2

Pink Human Interface

• Simplifies what is

• Adds what's new

• Restores the fun

Lee Honigberg
Frank Ludolph

Annette Wagner

• Registered/ Restricted Human Interface Architecture March b, 1990 1.3-2

Table Of Contents

Introduction 4

Extending the Macintosh Design Principles 5
Metaphors from the real world 5
It works the way you do 5
Direct Manipulation 6
See-and-Point (instead of remember-and-type) 6
Feedback and Dialog 6
User Control. 7
Safety (a.k.a. Forgiveness) 7
Consistency 7

Macintosh AgU:dged ~.d~#@@W@[@L I0
The New Lay~ghgModel cA~Wh@@@@@@§ 11

Interaction · ·~~· : :~ 31
Taxonomy 33

• Registered / Restricted Human Interface Architecture March 15, 1990 13-3

Table Of Contents

Introduction 4

Extending the Macintosh Design Principles 5
Metaphors from the real world 5
It works the way you do 5
Direct Manipulation 6
See-and-Point (instead of remember-and-type) 6
Feedback and Dialog 6
User Control. 7
Safety (a.k.a. Forgiveness) 7
Consistency 7

Macintosh AgU:dged ~.d~#@@W@[@L I0
The New Lay~ghgModel cA~Wh@@@@@@§ 11

Interaction · ·~~· : :~ 31
Taxonomy 33

• Registered / Restricted Human Interface Architecture March 15, 1990 13-3

Introduction

Pink continues the Apple tradition of innovative, attractive, easy and fun-to-use human interfaces.
The Pink Human Interface also has the following goals:

• Similar in style and appearance to the current Macintosh interface but more refined and
attractive.

• Integrates and simplifies existing Macintosh interface features where appropriate.
• Avails users of new technologies in Pink.
• Designed to support groups of users, yet retains its focus on the individual.
• Run on existing hardware, but designed for the attachment bf additional interface peripherals.

This document consists of
.·c.·.··c·,.·.·.·.·.·.·.·.·.·.

design principles. This
describes the ar<:tllitectur~)()

section is a description of the Pink human
interface for some parts of Pink. J§~m:$.Btt;iOI

i Registeredl Restricted Human Interface Architecture March 1j, 1990 134

Introduction

Pink continues the Apple tradition of innovative, attractive, easy and fun-to-use human interfaces.
The Pink Human Interface also has the following goals:

• Similar in style and appearance to the current Macintosh interface but more refined and
attractive.

• Integrates and simplifies existing Macintosh interface features where appropriate.
• Avails users of new technologies in Pink.
• Designed to support groups of users, yet retains its focus on the individual.
• Run on existing hardware, but designed for the attachment bf additional interface peripherals.

This document consists of
.·c.·.··c·,.·.·.·.·.·.·.·.·.·.

design principles. This
describes the ar<:tllitectur~)()

section is a description of the Pink human
interface for some parts of Pink. J§~m:$.Btt;iOI

i Registeredl Restricted Human Interface Architecture March 1j, 1990 134

Extending the Macintosh Design Principles
The user interface design principles enumerated and detailed in the book "Human Interface Guidelines:
The Apple Desktop Interface" will be applied to the Pink user interface. Experience and changing
technology suggest that some modifications are needed. Pink also adds two additional guidelines: "It
works the way you do" and "Fun to Use."

Each of the guidelines is reviewed below. The boldface sentence at the start of each section summarIzes
the book's definition.

Metaphors from the real world

...;.:.:.:::::.:.::.: .

.............:.....:.:.:.:.::::::::;::::::::::.:.:.:... ',"

:,:,:-:-:,;,>:,:->',;,:-',:.

.......;.:::.:.:::::::::;::::::::::....

memories. They are<slbppy'/heaC They organize things one way someffmes/:it:different way other
times. People sometimes work alone, sometimes in groups. Some things are private, others are
(sometimes) shared. Some things are worked on alone, some by several people.

Supporting flexible working styles is not the same as giving users a zillion options. While large
numbers of options theoretically support extensive personalization, they also increase complexity.

The Pink Human interface extends Blue to include user-centered mechanisms to support projects,
sharing, network access, and communication.

• Registered/ Restricted Human Interface Architecture March 15, 1990 13-5

Extending the Macintosh Design Principles
The user interface design principles enumerated and detailed in the book "Human Interface Guidelines:
The Apple Desktop Interface" will be applied to the Pink user interface. Experience and changing
technology suggest that some modifications are needed. Pink also adds two additional guidelines: "It
works the way you do" and "Fun to Use."

Each of the guidelines is reviewed below. The boldface sentence at the start of each section summarIzes
the book's definition.

Metaphors from the real world

...;.:.:.:::::.:.::.: .

.............:.....:.:.:.:.::::::::;::::::::::.:.:.:... ',"

:,:,:-:-:,;,>:,:->',;,:-',:.

.......;.:::.:.:::::::::;::::::::::....

memories. They are<slbppy'/heaC They organize things one way someffmes/:it:different way other
times. People sometimes work alone, sometimes in groups. Some things are private, others are
(sometimes) shared. Some things are worked on alone, some by several people.

Supporting flexible working styles is not the same as giving users a zillion options. While large
numbers of options theoretically support extensive personalization, they also increase complexity.

The Pink Human interface extends Blue to include user-centered mechanisms to support projects,
sharing, network access, and communication.

• Registered/ Restricted Human Interface Architecture March 15, 1990 13-5

Direct Manipulation

Users should be able to manually interact with the metaphor rather than having to 'talk' to it via the
keyboard. .

The most important factor affecting the quality of direct manipulation in Pink is the physical
similarity of manipulations in Pink to their real world counterparts. It is best to maintain a direct
correspondence between the real world and Pink's virtual world. For example, moving something in
Pink should always be done by the user moving the mouse, rolling a track ball, or other comparable
physical displacement movement.

The limited capabilities of the hardware may make the implementation of a physically corresponding
action impossible and require the creation of controls in order to support a needed operation. These
controls should, when possible, simulate real world controls that are used in similar situations.

Feedback and Dialog

Keep the user informed by providing immediate feedback.

Feedback and dialogs are the way the computer shows the user what is going on inside itself and across
the network. Feedback must be immediate for direct manipulation interactions to work well. Long
tasks, which can potentially run concurrently, will use animated feedback to indicate actual progress
and anticipated completion when possible rather than a "time is passing" wristwatch. (How long do
you look at the watch before deciding that something is wrong?)

Pink's multi-tasking will allow users to do other things while long tasks proceed. Feedback and abort
mechanisms for these ongoing tasks must be accessible but not disruptive.

• Registeredl Restricted Human Interface Architecture March 15, 1990 1.3006

Direct Manipulation

Users should be able to manually interact with the metaphor rather than having to 'talk' to it via the
keyboard. .

The most important factor affecting the quality of direct manipulation in Pink is the physical
similarity of manipulations in Pink to their real world counterparts. It is best to maintain a direct
correspondence between the real world and Pink's virtual world. For example, moving something in
Pink should always be done by the user moving the mouse, rolling a track ball, or other comparable
physical displacement movement.

The limited capabilities of the hardware may make the implementation of a physically corresponding
action impossible and require the creation of controls in order to support a needed operation. These
controls should, when possible, simulate real world controls that are used in similar situations.

Feedback and Dialog

Keep the user informed by providing immediate feedback.

Feedback and dialogs are the way the computer shows the user what is going on inside itself and across
the network. Feedback must be immediate for direct manipulation interactions to work well. Long
tasks, which can potentially run concurrently, will use animated feedback to indicate actual progress
and anticipated completion when possible rather than a "time is passing" wristwatch. (How long do
you look at the watch before deciding that something is wrong?)

Pink's multi-tasking will allow users to do other things while long tasks proceed. Feedback and abort
mechanisms for these ongoing tasks must be accessible but not disruptive.

• Registeredl Restricted Human Interface Architecture March 15, 1990 1.3006

User Control

The user, not the computer, initiates and controls all actions.

Under Blue users must sit and wait for a long operation, e.g. initializing a disk, to finish. The only
thing they can do is to cancel the operation by typing CMD-PERIOD (if supported). Users are also
arbitrarily interrupted by network related tasks (mail applications are notorious for this). In Pink,
users will be able to immediately select and use objects that are not part of the long operation.

The user, not the computer, controls the positioning of the pointer, icons, windows, and scroifable
content. When it is necessary for the computer to scroll to bring the selection into view during an
operation, it is best done in a way that helps users to quickly reorient themselves by minimizing change
and/or maximizing the surrounding context.

Pink extends the concept.J>:f)J..?J~X:.q?D..trQ1J9..)Jg.tW9.r.~;.:.bymaintaining a user-centric view ra~h~I.>t:b.~~ the
bureaucratic, system-eenro~HY~~bttij#.!~:mi:@f.t~f(~i.~jgU$.While system security requirep::w;):t~jB:ij}ff.e:quire

:.:~::::::[::[:ji:i!l:l:::[~:[:[i[:~:I{W?:t?

.....................................

appropria te. "<:/::n::::::> .. ::;;;:::\;::::\:::::::::::::::::::;::)~:::::::::::::::::::::\:::/. '.' "'::::;::/:::::::.:.: ".:.:::.
..

We cannot anticipateI-io~:~ti.ppb~t~verydeveloper's needs and desires in th~"f~'hNk:.·However,Pink will
provide a toolbox of basic interface elements that can be combined to support future functionality.

Many applications in Blue have added invisible commands to the interface, usually in the form of
modified mouse-clicks, using the COMMAND, OPTION, and SHIFT keys. Pink assigns standard meanings to
these keys, e.g. 'constrain' or 'do'.

Perceived Stability

Users feel more comfortable in an environment that only responds to their actions rather than changing
randomly.

Whereas Blue initially supported a single thread of execution, the user's process, and was more recently
extended to include background tasks such as printing and mail, Pink must prOVide users with a sense of
stability in a heavily multi-tasked environment.

i Registered/ Restricted Human Interface Architecture March 1::', 1990 13-7

User Control

The user, not the computer, initiates and controls all actions.

Under Blue users must sit and wait for a long operation, e.g. initializing a disk, to finish. The only
thing they can do is to cancel the operation by typing CMD-PERIOD (if supported). Users are also
arbitrarily interrupted by network related tasks (mail applications are notorious for this). In Pink,
users will be able to immediately select and use objects that are not part of the long operation.

The user, not the computer, controls the positioning of the pointer, icons, windows, and scroifable
content. When it is necessary for the computer to scroll to bring the selection into view during an
operation, it is best done in a way that helps users to quickly reorient themselves by minimizing change
and/or maximizing the surrounding context.

Pink extends the concept.J>:f)J..?J~X:.q?D..trQ1J9..)Jg.tW9.r.~;.:.bymaintaining a user-centric view ra~h~I.>t:b.~~ the
bureaucratic, system-eenro~HY~~bttij#.!~:mi:@f.t~f(~i.~jgU$.While system security requirep::w;):t~jB:ij}ff.e:quire

:.:~::::::[::[:ji:i!l:l:::[~:[:[i[:~:I{W?:t?

.....................................

appropria te. "<:/::n::::::> .. ::;;;:::\;::::\:::::::::::::::::::;::)~:::::::::::::::::::::\:::/. '.' "'::::;::/:::::::.:.: ".:.:::.
..

We cannot anticipateI-io~:~ti.ppb~t~verydeveloper's needs and desires in th~"f~'hNk:.·However,Pink will
provide a toolbox of basic interface elements that can be combined to support future functionality.

Many applications in Blue have added invisible commands to the interface, usually in the form of
modified mouse-clicks, using the COMMAND, OPTION, and SHIFT keys. Pink assigns standard meanings to
these keys, e.g. 'constrain' or 'do'.

Perceived Stability

Users feel more comfortable in an environment that only responds to their actions rather than changing
randomly.

Whereas Blue initially supported a single thread of execution, the user's process, and was more recently
extended to include background tasks such as printing and mail, Pink must prOVide users with a sense of
stability in a heavily multi-tasked environment.

i Registered/ Restricted Human Interface Architecture March 1::', 1990 13-7

WYSIWYG

There should be no significant difference between what the user sees on the screen and what eventually
gets printed. '

Pink's resolution-independent, anti-aliased graphics (Albert), and better display hardware will
enable the appearance of a document on the screen to correspond even more closely with the printed
appearance than in Blue.

Pink also extends WYSIWYG to include sound, video, and animations that can both be manipula ted on
the machine and output in the form of a recording to video and audio tape.

Aesthetic Integrity

• Registered/Restricted Human Interface Architecture March I", 1990 1.3-8

WYSIWYG

There should be no significant difference between what the user sees on the screen and what eventually
gets printed. '

Pink's resolution-independent, anti-aliased graphics (Albert), and better display hardware will
enable the appearance of a document on the screen to correspond even more closely with the printed
appearance than in Blue.

Pink also extends WYSIWYG to include sound, video, and animations that can both be manipula ted on
the machine and output in the form of a recording to video and audio tape.

Aesthetic Integrity

• Registered/Restricted Human Interface Architecture March I", 1990 1.3-8

Fun to Use

•
•

•
•

On the negative side, anything that requires extra time and effort will be irritating. This means that
many things that make games interesting, e.g. non-obvious strategies and high failure rates, are
inappropriate in Pink.

The only way that developers can tell if their products are enjoyable to use is to watch all kinds of
people use them. User test, user test, user test!

i Registered! Restricted Human Interface Architecture March 15, 1990 13-9

Fun to Use

•
•

•
•

On the negative side, anything that requires extra time and effort will be irritating. This means that
many things that make games interesting, e.g. non-obvious strategies and high failure rates, are
inappropriate in Pink.

The only way that developers can tell if their products are enjoyable to use is to watch all kinds of
people use them. User test, user test, user test!

i Registered! Restricted Human Interface Architecture March 15, 1990 13-9

A Pink Interface Proposal
This document attempts to describe how the Pink system will look to the us~r. The purpose of the
design is to give us something to criticize. It should function as a "strawman" - an early plan set up
with the intention that it should be knocked down.

Describing a user interface is tricky business. My approach will be to begin with the existing Macintosh
interface and pare it down to a simple core. The next step is to add (hopefully) clear and simple
interface parts to represent the functionality that was stripped away as well as the new functionality
that defines Pink. In other words, the design requirements are:

1) Oean up the old stuff

2) Provide an intj~I~:Gj~~j~IT~jj~j~lj:~:~fj~ijijlij~~~jij~illi:~:jJfollaboration or multitaskin
g
)_:_:-:_: :::::::::::::::::_::-:-:-:-::-:- __

A few comments might)Agl.P{~gpl~wnlfj:~Ip.M!tmPRliybehind the design preseI}:_t.~9m;A~tjt:}:Frrst,I am
extremely wary of tryiI'\.gm:~~tj~@Wfj#F:#.fj9.@:::~fm#.yt#.9-mplex interface is ultin}3~J¢htm4~f#i:ed only by the
implementation. It's j~~tiplM#Ihi.1p.§~~p:t£]f.Fpmq;ctall the cases that n~J~4.fm:Jjif~@iiiltwith given the

:i~!nE:~~~i~':Z:~':=~~:~~:J~:~~~~i~~a~I'lll;~ie:~::'~;::~:n~~~\:

With all that in mind, please read on.

.......-..;.:.:-:.
:.:-:.:.'.:-:.:.:

.... ::;:::;:::;::::.:.:...;. .

is to add the functidri.ality:§p*~ijmed:frtthese elements today in a clear::anq:::-~P#tp:JgWaYgiven a clear
and simple Finder to start from. Similarly, get rid of standard-file. (Bear with "i:l:1e on this...) Get rid of
everything in the system folder except two files -- "System" and "Finder". (And just to be complete, get
rid of the Finder menu items "Get Privileges" and "Set Startup".)

Add to this minimalist system two features from NuFinder: Keyboard NaVigation and the "Find..."
menu command. Keyboard Navigation allows the user to type the first few letters of a filename to jump
to and select that icon in the frontmost Finder window in a manner similar to the scrolling list in the
Standard File Open Dialog (the arrow keys also work). The "Find... / Find Next" menu commands very
quickly search all mounted volumes for a filename, opening any necessary windows and selecting
matching files. These features are needed because the Finder is going to be used to represent lots of new
kinds of information, and the better it is at finding, the easier that will be.

• Registered; Restricted Human Interface Architecture March 15, 1990 1.3=10

A Pink Interface Proposal
This document attempts to describe how the Pink system will look to the us~r. The purpose of the
design is to give us something to criticize. It should function as a "strawman" - an early plan set up
with the intention that it should be knocked down.

Describing a user interface is tricky business. My approach will be to begin with the existing Macintosh
interface and pare it down to a simple core. The next step is to add (hopefully) clear and simple
interface parts to represent the functionality that was stripped away as well as the new functionality
that defines Pink. In other words, the design requirements are:

1) Oean up the old stuff

2) Provide an intj~I~:Gj~~j~IT~jj~j~lj:~:~fj~ijijlij~~~jij~illi:~:jJfollaboration or multitaskin
g
)_:_:-:_: :::::::::::::::::_::-:-:-:-::-:- __

A few comments might)Agl.P{~gpl~wnlfj:~Ip.M!tmPRliybehind the design preseI}:_t.~9m;A~tjt:}:Frrst,I am
extremely wary of tryiI'\.gm:~~tj~@Wfj#F:#.fj9.@:::~fm#.yt#.9-mplex interface is ultin}3~J¢htm4~f#i:ed only by the
implementation. It's j~~tiplM#Ihi.1p.§~~p:t£]f.Fpmq;ctall the cases that n~J~4.fm:Jjif~@iiiltwith given the

:i~!nE:~~~i~':Z:~':=~~:~~:J~:~~~~i~~a~I'lll;~ie:~::'~;::~:n~~~\:

With all that in mind, please read on.

.......-..;.:.:-:.
:,:-:,:.'.:-:.:.:

.... ::;:::;:::;::::.:.:...;. .

is to add the functidri.ality:§p*~ijmed:frtthese elements today in a clear::anq:::-~P#tp:JgWaYgiven a clear
and simple Finder to start from. Similarly, get rid of standard-file. (Bear with "i:l:1e on this...) Get rid of
everything in the system folder except two files -- "System" and "Finder". (And just to be complete, get
rid of the Finder menu items "Get Privileges" and "Set Startup".)

Add to this minimalist system two features from NuFinder: Keyboard Navigation and the "Find..."
menu command. Keyboard Navigation allows the user to type the first few letters of a filename to jump
to and select that icon in the frontmost Finder window in a manner similar to the scrolling list in the
Standard File Open Dialog (the arrow keys also work). The "Find... / Find Next" menu commands very
quickly search all mounted volumes for a filename, opening any necessary windows and selecting
matching files. These features are needed because the Finder is going to be used to represent lots of new
kinds of information, and the better it is at finding, the easier that will be.

• Registered; Restricted Human Interface Architecture March 15, 1990 1.3=10

The New Layering Model

Menubar

The menubar stays at the top ofthe screen. It might be a user preference to place redundant menubars at
the top of each topmost monitor on a multiple monitor system.

Document Layers

The first change is to the window layering scheme. Instead of MultiFinder's one layer per application,
the rule is one layer per document. In addition, each Finder window acts as if it were in it's own layer.
So a possible window ordering from front to back might be:

:.>:.:-:-:-:.;.:

:::::::::::::::::::::::~:?\t:::::-:··

"Release Notes", an(:tSb on. .::::t(((}{})}))}{{::
::;:;:;:':::::::;:::;:'.:.;-.,

The Windows Menu
.... :: :;:;.:.:.; :-:.:

...

Lettert~Mt>ffi}·:).·<U :::::::::::;.:.

My Budget
My Novel

Hide "Letter to Mom"

Like the current Apple menu, small icons appear next to each item in the list of documents to convey
more information and a check mark indicates the frontmost document.

i Registered/Restricted Human Interface Architecture March IS, 1990 L1=ll

The New Layering Model

Menubar

The menubar stays at the top ofthe screen. It might be a user preference to place redundant menubars at
the top of each topmost monitor on a multiple monitor system.

Document Layers

The first change is to the window layering scheme. Instead of MultiFinder's one layer per application,
the rule is one layer per document. In addition, each Finder window acts as if it were in it's own layer.
So a possible window ordering from front to back might be:

:.>:.:-:-:-:.;.:

:::::::::::::::::::::::~:?\t:::::-:··

"Release Notes", an(:tSb on. .::::t(((}{})}))}{{::
::;:;:;:':::::::;:::;:'.:.;-.,

The Windows Menu
.... :: :;:;.:.:.; :-:.:

...

Lettert~Mt>ffi}·:).·<U :::::::::::;.:.

My Budget
My Novel

Hide "Letter to Mom"

Like the current Apple menu, small icons appear next to each item in the list of documents to convey
more information and a check mark indicates the frontmost document.

i Registered/Restricted Human Interface Architecture March IS, 1990 L1=ll

The Apple Menu

The Apple Menu contains the "About" menu command followed by a list of tools and documents to which
the user wants quick access. The mechanism for customizing the Apple Menu is described later in the
document. For the moment, the Apple Menu might look like this:

About Excel...

Alarm Clock
Calculator
Puzzle

Random Thoughts
Doodles

Icons on the Desktop
:::;::::::::::::;:::::::::::::::::::::::;::::::.:.:.., .

desktop as th~y:::~t!:::·~pt~Pz~~~~::;. .-::::ti~~:I1:::}~::::· ·-::~:~:::::~::::1:::::j::{1:1Hm::}::::. :::'U:·?::·j··I;;·:.:;:··:..::'::/
.. _.. -...:-:-:-:.;.:.:.:.:.:.. .::::)~::::;>::::::.,.... .::::::::.:~:.:::::::-:::):.: ..-:.,-:.

The New D:=:::o\::;'.'·.~.• ~.:.::,·ii.·:.:.·.•,.·'"":·.:..:.·.:.'.:•. ·,·.. •.. ·.·.·,·.. '•..·e·,·,:,.,:.·.·.·,.n·,::··,.:.'.·.•• ·.·,·:'.,.::·.fJ:.·:'•.,·•. ·,:.·..:•. :.·,.·.•,.:. :A.:.·.:,·,:·.:.·.~.;.:.:.:.:.n.. ::.:.··,:.',:.:•.•tl.::...•.·.::·.:.•,:.·..•.·.t:·.:,:.·,·:.·.l~:·.·.:.·.:.::.:.c:.~.·.•.···.·a\··t}lio=::=;::n·'·· Scheme .;.: :.: ;.. ::.... ::::::::: ,::.,::::.:: ..
,"".I.U ftJ:?C 1 .··· 1:!.: :::.:.· .•..::..>··

Stationery

New documents are created using the long familiar stationery pad. Double clicking on a stationery pad
results in a quick animation to show an untitled document sliding off the stationery pad. This icon
immediately opens into window named "untitled". The user can name the document by choosing
"Rename" from the File Menu. (An option in the naming dialog makes this document into a stationery
pad itself.)

The user can also name the document by going back to the Finder while the document is open, selecting
the icon, and typing a new name. Just as the titlebar in a Finder window changes dynamically to reflect
a new name as it is typed, the titlebar in a document window changes dynamically to reflect the new
document name as it is typed. The rule is that an open document window is always in sync with its
finder icon. If the user moves the icon of an open document into a different folder, the document is
Simply now in the new folder.

i Registered I Restricted Human Interface Architecture March I:>, 1990 1.3-12

The Apple Menu

The Apple Menu contains the "About" menu command followed by a list of tools and documents to which
the user wants quick access. The mechanism for customizing the Apple Menu is described later in the
document. For the moment, the Apple Menu might look like this:

About Excel...

Alarm Clock
Calculator
Puzzle

Random Thoughts
Doodles

Icons on the Desktop
:::;::::::::::::;:::::::::::::::::::::::;::::::.:.:.., .

desktop as th~y:::~t!:::·~pt~Pz~~~~::;. .-::::ti~~:I1:::}~::::· ·-::~:~:::::~::::1:::::j::{1:1Hm::}::::. :::'U:·?::·j··I;;·:.:;:··:..::'::/
.. _.. -...:-:-:-:.;.:.:.:.:.:.. .::::)~::::;>::::::.,.... .::::::::.:~:.:::::::-:::):.: ..-:.,-:.

The New D:=:::o\::;'.'·.~.• ~.:.::,·ii.·:.:.·.•,.·'"":·.:..:.·.:.'.:•. ·,·.. •.. ·.·.·,·.. '•..·e·,·,:,.,:.·.·.·,.n·,::··,.:.'.·.•• ·.·,·:'.,.::·.fJ:.·:'•.,·•. ·,:.·..:•. :.·,.·.•,.:. :A.:.·.:,·,:·.:.·.~.;.:.:.:.:.n.. ::.:.··,:.',:.:•.•tl.::...•.·.::·.:.•,:.·..•.·.t:·.:,:.·,·:.·.l~:·.·.:.·.:.::.:.c:.~.·.•.···.·a\··t}lio=::=;::n·'·· Scheme .;.: :.: ;.. ::.... ::::::::: ,::.,::::.:: ..
,"".I.U ftJ:?C 1 .··· 1:!.: :::.:.· .•..::..>··

Stationery

New documents are created using the long familiar stationery pad. Double clicking on a stationery pad
results in a quick animation to show an untitled document sliding off the stationery pad. This icon
immediately opens into window named "untitled". The user can name the document by choosing
"Rename" from the File Menu. (An option in the naming dialog makes this document into a stationery
pad itself.)

The user can also name the document by going back to the Finder while the document is open, selecting
the icon, and typing a new name. Just as the titlebar in a Finder window changes dynamically to reflect
a new name as it is typed, the titlebar in a document window changes dynamically to reflect the new
document name as it is typed. The rule is that an open document window is always in sync with its
finder icon. If the user moves the icon of an open document into a different folder, the document is
Simply now in the new folder.

i Registered I Restricted Human Interface Architecture March I:>, 1990 1.3-12

There continues to be a "new" command in the File menu of applications. It creates a new untitled
document from the stationery pad that was used to create the current document. Double clicking on an
application icon will open a window containing, among other things, a default stationery pad that
cannot be deleted.

Versions

Document saving is handled quite differently than it is in the current system. Documents are always
saved to disk to within an operation or two. It's as if the user were constantly hitting comman9.-S.
Multiple level undo and versions will (hopefully) replace the back tracking allowed by "Revert to
Saved" in the current model.

Undo and Redo step back and forth through the operations in a single document. What exactly is
defined as an operation is left up to the application, but Apple should offer suggestions at some point

I}
2}
3}

............................;:.; .. ;. ;. ..:.::::::::::::;:;>::\:::::::.:.:..:.;.;.;.;.::::;.;' ::::;:;::::::.;.;-:.;.:-;.;.. :::::::::::::::::::::~/::::::::::::

(Version historY;::ffi~Y"d~ery.~:~t'$:P~l(}iMh~command "Get Version HfgtQJiY~~-::~4if~qW#WVersionInfo
Box" instead of overloadirigJ:hearready full Get Info Box.) ---:-:::::::-:-:-:_:-::::-: -_. --

(......Does the user get the undo history for old versions?)

Sununary - The File Menu

Suppose the user had just opened a document from a stationery pad labeled "Pink Letterhead." The
File Menu would look like this:

New "Pink Letterhead"
Rename "Untitled"
Close "Untitled"
Checkpoint
Previous Checkpoint
Print

• Registeredl Restricted Human Interface Architecture March IS, 1990 1.3-13

There continues to be a "new" command in the File menu of applications. It creates a new untitled
document from the stationery pad that was used to create the current document. Double clicking on an
application icon will open a window containing, among other things, a default stationery pad that
cannot be deleted.

Versions

Document saving is handled quite differently than it is in the current system. Documents are always
saved to disk to within an operation or two. It's as if the user were constantly hitting comman9.-S.
Multiple level undo and versions will (hopefully) replace the back tracking allowed by "Revert to
Saved" in the current model.

Undo and Redo step back and forth through the operations in a single document. What exactly is
defined as an operation is left up to the application, but Apple should offer suggestions at some point

I}
2}
3}

............................;:.; .. ;. ;. ..:.::::::::::::;:;>::\:::::::.:.:..:.;.;.;.;.::::;.;' ::::;:;::::::.;.;-:.;.:-;.;.. :::::::::::::::::::::~/::::::::::::

(Version historY;::ffi~Y"d~ery.~:~t'$:P~l(}iMh~command "Get Version HfgtQJiY~~-::~4if~qW#WVersionInfo
Box" instead of overloadirigJ:hearready full Get Info Box.) ---:-:::::::-:-:-:_:-::::-: -_. --

(......Does the user get the undo history for old versions?)

Sununary - The File Menu

Suppose the user had just opened a document from a stationery pad labeled "Pink Letterhead." The
File Menu would look like this:

New "Pink Letterhead"
Rename "Untitled"
Close "Untitled"
Checkpoint
Previous Checkpoint
Print

• Registeredl Restricted Human Interface Architecture March IS, 1990 1.3-13

Tools - Applications Without Documents

There are some icons the user will open which do not yield documents. Call these things tools. Into this
class will fall the desk accessories and control panels of today. The rule is: there are no mysterious
chunks of code that don't open into a window.

Multitasking

To understand what multitasking will do to the system, join me in the following thought experiment.
Picture a simple animation application. There are two squares in a window. The user selects one and
chooses "Spin". The square starts spinning. Then the user selects the other square and chooses "Spin".
Now both squares are spinning -- voila - multitasking. This is the kind of stuff my mother could
understand. What is it about this scenario that makes it so easy to grasp? There are multiple tasks, or
activities, going on simultaneously but each one is confined to a single object. The rule, the.Il, for

mUltitaSkin~~::~~~llillltlillflllll,t,;!f' ;dl~;l.;;iL..··.•,;;?lIP;i .
What is an object? In gmi.i#Mf:Jj}j?:pjAAt!~¥f!!J!~entor a tool. This m.§#.!Mj!M~Ktb~· user could see, say,
three documents, eacltppe doing something. But, like the spinning sqy#.rf$UW:4:@(pocumentis only doing
one thing at a time. /JPepending on the application, there may al§gJ?t:Wmw:iJasking objects within a
document. So the a~ation application above is introducing a finl#fgr~*~M~#~ty of multitasking objects
with the spinning sqti'#t~$':::Ji~W~fgY:~:t::,.what goes on inside docum.M~§]%:j19.Mm:Wfocusof this discussion, so

......;•..-:.:.:....
.........;.; :::::::-;:::;:':;.. ,

....................··!I.·.·•.••.•··.I.··..:;..!..•·.I.l.;.I.•··I..11111?
Mouse -ahe:aa)::.:·~:::m/::::::::::: ..::::::: :::::::::::::.......... :.: .

A somewhat ~~;~l;;~~~~~~fJB~~commands on a d:JII'i~ qUeue4~~il~~~hamPle,
consider a spread~ft¢et<th~f'i$:R14$Y:tetalculating. Three things"djOO@np~:<iqlw"With·the"Close"
command in the File::meriti:~(temetriber~menus are always accessible). "-::;.:-:::::::::-:::-:.:::-:::::::-:./:-:::.:-:.'

1) Disable it. The "Oose" command (and almost every command) is grayed out.
2) Leave it enabled without command queueing. When chosen, the "Gose" command would

cancel the recalculation (reverting the document its state before the recalc) and immediately
close the window.

3) Leave it enabled with command queueing. When chosen, the "Close" command would dose
the window after the recalculation is done.

In the spirit of making decisions, assume that the rule is this: whenever possible leave a menu command
enabled with queueing (3), and when that can't be done, disable the command (1).

Status Window

The "System Status" tool opens to show a list of currently busy documents and tools and what each one is
doing. A task would be listed in "System Status" only if it is going to take longer than a second or two.
.If possible, some indication of estimated time remaining would be nice.

i Registered! Restricted Human Intertace Architecture March I:", 1990 1.30"14

Tools - Applications Without Documents

There are some icons the user will open which do not yield documents. Call these things tools. Into this
class will fall the desk accessories and control panels of today. The rule is: there are no mysterious
chunks of code that don't open into a window.

Multitasking

To understand what multitasking will do to the system, join me in the following thought experiment.
Picture a simple animation application. There are two squares in a window. The user selects one and
chooses "Spin". The square starts spinning. Then the user selects the other square and chooses "Spin".
Now both squares are spinning -- voila - multitasking. This is the kind of stuff my mother could
understand. What is it about this scenario that makes it so easy to grasp? There are multiple tasks, or
activities, going on simultaneously but each one is confined to a single object. The rule, the.Il, for

mUltitaSkin~~::~~~llillltlillflllll,t,;!f' ;dl~;l.;;iL..··.•,;;?lIP;i .
What is an object? In gmi.i#Mf:Jj}j?:pjAAt!~¥f!!J!~entor a tool. This m.§#.!Mj!M~Ktb~· user could see, say,
three documents, eacltppe doing something. But, like the spinning sqy#.rf$UW:4:@(pocumentis only doing
one thing at a time. /JPepending on the application, there may al§gJ?t:Wmw:iJasking objects within a
document. So the a~ation application above is introducing a finl#fgr~*~M~#~ty of multitasking objects
with the spinning sqti'#t~$':::Ji~W~fgY:~:t::,.what goes on inside docum.M~§]%:j19.Mm:Wfocusof this discussion, so

......;•..-:.:.:....
.........;.; :::::::-;:::;:':;.. ,

....................··!I.·.·•.••.•··.I.··..:;..!..•·.I.l.;.I.•··I..11111?
Mouse -ahe:aa)::.:·~:::m/::::::::::: ..::::::: :::::::::::::.......... :.: .

A somewhat ~~;~l;;~~~~~~fJB~~commands on a d:JII'i~ qUeue4~~il~~~hamPle,
consider a spread~ft¢et<th~f'i$:R14$Y:tetalculating. Three things"djOO@np~:<iqlw"With·the"Close"
command in the File::meriti:~(temetriber~menus are always accessible). "-::;.:-:::::::::-:::-:.:::-:::::::-:./:-:::.:-:.'

1) Disable it. The "Oose" command (and almost every command) is grayed out.
2) Leave it enabled without command queueing. When chosen, the "Gose" command would

cancel the recalculation (reverting the document its state before the recalc) and immediately
close the window.

3) Leave it enabled with command queueing. When chosen, the "Close" command would dose
the window after the recalculation is done.

In the spirit of making decisions, assume that the rule is this: whenever possible leave a menu command
enabled with queueing (3), and when that can't be done, disable the command (1).

Status Window

The "System Status" tool opens to show a list of currently busy documents and tools and what each one is
doing. A task would be listed in "System Status" only if it is going to take longer than a second or two.
.If possible, some indication of estimated time remaining would be nice.

i Registered! Restricted Human Intertace Architecture March I:", 1990 1.30"14

......

Cancelling a Background Task

Any task can be cancelled from the "System Status" tool. Also, the task in the frontmost document or
tool window can be cancelled using command-period. Lastly, the user can select the icon for a busy
document or tool and cancel the task, again using command-period. What happens to queued commands
when the current task is cancelled? They get cancelled also. Cancelling always returns an object to its
non-busy state.

Transparent Multitasking

Finally, some parts of the system may use multitasking but never tell the user. For example, the Finder
windows preflighting described above would probably be done using a separate task, but the user will
never know about it. The.ruleJS;...be.h.ind...the...sce.nes...l.!$es of multitasking are never noticeabl~:-.tQ:Jne::vser.

Copying files - -:.:-:-::::::::

Printing -

The Network

Network icon is deteI':t:n.i#¢4pY.:ijje:way people and equipment are connected:jriJ,$¢.:reafworld. The user
can't drag a printer from inside the Network icon to the trash and forever lose that printer. The user
can't move a fileserver from one zone to another. Network things w:ould get a different "look" than
ordinary file system objects to convey they fact that they cannot be edited.

Note: The following scheme is based on the assumptions that zones are a fact of life.

Copying Network Things

Since the Network works like a read only disk drive, dragging a network thing out of a network window
makes a copy of that thing. So I can drag a person, a printer, or a file server to the desktop or to any of
my own folders. The copies of network things work just like network things found inside the Network
icon.

i Registered I Restricted Human Interface Architecture March 1~, 1990 l.3=b

......

Cancelling a Background Task

Any task can be cancelled from the "System Status" tool. Also, the task in the frontmost document or
tool window can be cancelled using command-period. Lastly, the user can select the icon for a busy
document or tool and cancel the task, again using command-period. What happens to queued commands
when the current task is cancelled? They get cancelled also. Cancelling always returns an object to its
non-busy state.

Transparent Multitasking

Finally, some parts of the system may use multitasking but never tell the user. For example, the Finder
windows preflighting described above would probably be done using a separate task, but the user will
never know about it. The.ruleJS;...be.h.ind...the...sce.nes...l.!$es of multitasking are never noticeabl~:-.tQ:Jne::vser.

Copying files - -:.:-:-::::::::

Printing -

The Network

Network icon is deteI':t:n.i#¢4pY.:ijje:way people and equipment are connected:jriJ,:fj¢.:real'world. The user
can't drag a printer from inside the Network icon to the trash and forever lose that printer. The user
can't move a fileserver from one zone to another. Network things w:ould get a different "look" than
ordinary file system objects to convey they fact that they cannot be edited.

Note: The following scheme is based on the assumptions that zones are a fact of life.

Copying Network Things

Since the Network works like a read only disk drive, dragging a network thing out of a network window
makes a copy of that thing. So I can drag a person, a printer, or a file server to the desktop or to any of
my own folders. The copies of network things work just like network things found inside the Network
icon.

i Registered I Restricted Human Interface Architecture March 1~, 1990 l.3=b

People

Within the "People" folder, organized by zones, are icons for other users on the network. Double
clicking a person gives useful information about that person such as their phone number or office
location. People icons don't do much by themselves, but are used in other parts of the interface (such as
mail) to refer to other users. See Figure 1.

r • File Edit Uiew Special

Printers

Illllllll1ll'Irtll

present printer~.i.~~::~[-~:i·t,)f·~::;~~g::?f:::~:?:~~~g:lheirgeographicallodl~R¥1:[:mH::t::: ..

The user can print:ci:d6@ffi~rtt:@y.··:dffig~~gits icon to a printer. The d~ffi:it.:iq)B~~§fhroughsome
quick animation with the printer icon, then the document goes back to where it was dragged from and
the print dialog appears. The print dialog, like most good Pink dialogs, should be non-modal. With
the fast switch to the Finder described earlier, printing by dragging documents to printers should be
fairly painless, but some mechanism for printing from within a document is still necessary. This
requires defining a default printer. For more details on how that is done, see "Print Shop" below.

Double clicking on a printer opens a window showing printer status.

File Servers

Once again arranged by zones, icons for file servers appear inside the Network icon. Call these icons
"server stubs." Double-clicking on a server stub mounts that server. Server stubs work very much like
Quick Mount documents on the Mac today. Although it would be nice to just open the fileserver's
window directly from the stub icon (instead of mounting the server), this leads to several gotcha's that
are best avoided at this point. No doubt there is a better solution than the one proposed here (a

i Registered/Restricted Human Interface Architecture March b, 1990 1.3=16

People

Within the "People" folder, organized by zones, are icons for other users on the network. Double
clicking a person gives useful information about that person such as their phone number or office
location. People icons don't do much by themselves, but are used in other parts of the interface (such as
mail) to refer to other users. See Figure 1.

r • File Edit Uiew Special

Printers

Illllllll1ll'Irtll

present printer~.i.~~::~[-~:i·t,)f·~::;~~g::?f:::~:?:~~~g:lheirgeographicallodl~R¥1:[:mH::t::: ..

The user can print:ci:d6@ffi~rtt:@y.··:dffig~~gits icon to a printer. The d~ffi:it.:iq)B~~§fhroughsome
quick animation with the printer icon, then the document goes back to where it was dragged from and
the print dialog appears. The print dialog, like most good Pink dialogs, should be non-modal. With
the fast switch to the Finder described earlier, printing by dragging documents to printers should be
fairly painless, but some mechanism for printing from within a document is still necessary. This
requires defining a default printer. For more details on how that is done, see "Print Shop" below.

Double clicking on a printer opens a window showing printer status.

File Servers

Once again arranged by zones, icons for file servers appear inside the Network icon. Call these icons
"server stubs." Double-clicking on a server stub mounts that server. Server stubs work very much like
Quick Mount documents on the Mac today. Although it would be nice to just open the fileserver's
window directly from the stub icon (instead of mounting the server), this leads to several gotcha's that
are best avoided at this point. No doubt there is a better solution than the one proposed here (a

i Registered/Restricted Human Interface Architecture March b, 1990 1.3=16

mysterious chunk of code which doesn't open into a window). Like people and printers, the user can
drag a server stub out of the network icon and leave it on my desktop or put it inside a finder window.

Double-elicking on a server stub brings up a password dialog box for file servers with controlled access.

Other Kinds of Network Things

Other devices on the network also appear inside the Network icon.

......How do they work?

Modems

Scanners

spreadsheet cells, s<m~p and anlll1ation clips, and most kinds of ;;@:~i.t;..:RB~4);t documents. The general

• Registered / Restricted Human Interface Architecture March 15/ 1990 1.3=17

mysterious chunk of code which doesn't open into a window). Like people and printers, the user can
drag a server stub out of the network icon and leave it on my desktop or put it inside a finder window.

Double-elicking on a server stub brings up a password dialog box for file servers with controlled access.

Other Kinds of Network Things

Other devices on the network also appear inside the Network icon.

......How do they work?

Modems

Scanners

spreadsheet cells, s<m~p and anlll1ation clips, and most kinds of ;;@:~i.t;..:RB~4);t documents. The general

• Registered / Restricted Human Interface Architecture March 15/ 1990 1.3=17

Linking

Scripting

Post-its

Post-its or annotations are kept very very simple. An "Attach Note" command is added to the standard
edit men.u. The user can attach an annotation to any selection. A small standard icon appears in the
document. Double clicking on it brings up a window. There are buttons to record and playback sound, and
a simple type-in text field. The text field would be limited in powers to approximately that of
TeachText.

Filling Out Forms

The designs for the next few pieces of the interface apply anew technique to expand the use of direct
manipulation. In the current Finder, direct manipulation (or dragging) of icons representing files has
two characteristics which make it successful: First, it always works. The user doesn't have to know
any special rules about where dropping an icon is allowed and where it isn't. Second, placement of icons

• Registered I Restricted Human Interface Architecture March 15, 1990 1.3=18

Linking

Scripting

Post-its

Post-its or annotations are kept very very simple. An "Attach Note" command is added to the standard
edit men.u. The user can attach an annotation to any selection. A small standard icon appears in the
document. Double clicking on it brings up a window. There are buttons to record and playback sound, and
a simple type-in text field. The text field would be limited in powers to approximately that of
TeachText.

Filling Out Forms

The designs for the next few pieces of the interface apply anew technique to expand the use of direct
manipulation. In the current Finder, direct manipulation (or dragging) of icons representing files has
two characteristics which make it successful: First, it always works. The user doesn't have to know
any special rules about where dropping an icon is allowed and where it isn't. Second, placement of icons

• Registered I Restricted Human Interface Architecture March 15, 1990 1.3=18

by direct manipulation always means the same thing -- where a file is stored. In fact, the place where
this meaning is overloaded is exact!y the place where users get confused. The System Folder in the
current model has all kinds of additional semantics and as a result it has become somewhat of a
sinkhole in the Macintosh interface.

It's time for a new Widget. If dragging icons from the Finder is going to be used to represent some of the
new functionality of Pink, users need to know when that dragging is appropriate, which icons go where,
and what the dragging represents. The mechanism for all this is called (for lack of a better name)
"filling out forms". The idea is that in order to complete a task which involves something represented
by an icon in the rmder, the user drags the icon into the appropriate blank space on a form. The outline
shape of a blank space in a form matches the outline shape of the kind of icon that goes in that space.
Most forms have the magical property that there is always a blank space available. When an icon is
dragged into an existing blank space, that space is filled and the eternal blank space moves over one.

In addition to indicating when dragging is appropriate, forms are the mechanism for referencing things

.......;.;.;-::-..
..

;:;:;:::::;::;:::.:- .

....

enclosure had beenphlggc#t:iijF:CliCkmg "Send" would send themail.C16sing:JA~:mau:dOcumentwould
allow the user to save thisd6cument or discard it, just like any document.

Notice that dragging a person or file into the mail form is not the same as dragging an icon into a folder.
Dragging an icon into a blank on a form is a reference to the real thing in the file system or the network.
So the icon for the enclosed file "Budget Doc" does not represent a copy of that file, but a reference to
that file.

• Registeredl Restricted Human Interface Architecture March 1.':>, 1990 1.3=19

by direct manipulation always means the same thing -- where a file is stored. In fact, the place where
this meaning is overloaded is exact!y the place where users get confused. The System Folder in the
current model has all kinds of additional semantics and as a result it has become somewhat of a
sinkhole in the Macintosh interface.

It's time for a new Widget. If dragging icons from the Finder is going to be used to represent some of the
new functionality of Pink, users need to know when that dragging is appropriate, which icons go where,
and what the dragging represents. The mechanism for all this is called (for lack of a better name)
"filling out forms". The idea is that in order to complete a task which involves something represented
by an icon in the rmder, the user drags the icon into the appropriate blank space on a form. The outline
shape of a blank space in a form matches the outline shape of the kind of icon that goes in that space.
Most forms have the magical property that there is always a blank space available. When an icon is
dragged into an existing blank space, that space is filled and the eternal blank space moves over one.

In addition to indicating when dragging is appropriate, forms are the mechanism for referencing things

.......;.;.;-::-..
..

;:;:;:::::;::;:::.:- .

....

enclosure had beenphlggc#t:iijF:CliCkmg "Send" would send themail.C16sing:JA~:mau:dOcumentwould
allow the user to save thisd6cument or discard it, just like any document.

Notice that dragging a person or file into the mail form is not the same as dragging an icon into a folder.
Dragging an icon into a blank on a form is a reference to the real thing in the file system or the network.
So the icon for the enclosed file "Budget Doc" does not represent a copy of that file, but a reference to
that file.

• Registeredl Restricted Human Interface Architecture March 1.':>, 1990 1.3=19

,.. C File Edit Uiew Special

Untitled Mail

r1}}

! III

~
BUdget Doc

Re: I Budgets!Hff. is'" pI.....

IrbI/ Dave

Thomas

ThomasHeidiDave
o 0

.:.:.:.:-::::::::.,. .,.

~llllliillf{lllllll'I~~gure3

Figure 4

• Registered/ Restricted Human triterface Architecture March 15, 1990 1.3-20

,.. C File Edit Uiew Special

Untitled Mail

r1}}

! III

~
BUdget Doc

Re: I Budgets!Hff. is'" pI.....

IrbI/ Dave

Thomas

ThomasHeidiDave
o 0

.:.:.:.:-::::::::.,. .,.

~llllliillf{lllllll'I~~gure3

Figure 4

• Registered/ Restricted Human triterface Architecture March 15, 1990 1.3-20

Summary

The blank on a form tells the user three things, and these hold true for all blanks on all forms:

1) that an icon of a particularly kind can be dropped here.
2) that dropping an icon here has semantics other than the standard Finder semantic of

rearranging my file system. The semantics are stated right there on the fonn, probably as
text. This should visually distinguish a window containing a fonn from a standard blank
background finder window.

3) that the icon being dropped here is not being moved or copied but referenced.

Details

How does the user remove something from a form?

Can the user drag an:::~$p'ri out of one form and into another?

y es. :::::::~:::~;::j:j:::::i::::::;~:::j:;::::j~:~::j:I}:::}::@~m?::::::::;::;::;.:-.

• Registered I Restricted Human Interface Architecture March 15, 1990 1.3=21

Summary

The blank on a form tells the user three things, and these hold true for all blanks on all forms:

1) that an icon of a particularly kind can be dropped here.
2) that dropping an icon here has semantics other than the standard Finder semantic of

rearranging my file system. The semantics are stated right there on the form, probably as
text. This should visually distinguish a window containing a form from a standard blank
background finder window.

3) that the icon being dropped here is not being moved or copied but referenced.

Details

How does the user remove something from a form?

Can the user drag an:::~$p'ri out of one form and into another?

y es. :::::::~:::~;::j:j:::::i::::::;~:::j:;::::j~:~::j:I}:::}::@~m?::::::::;::;::;.:-.

• Registered I Restricted Human Interface Architecture March 15, 1990 1.3=21

Groups of People

Opening the Group stationery pad gives a form similar to Figure 5. The user successively drags in
people icons to create a group. Click on the close box, select the untitled group' document, and name it.
Group icons resemble people icons, and can be dragged into any blank that is expecting people (including
the group form itself - groups of groups). Groups are first order objects just like people, so the user can
duplicate them, mail them around, etc.

0==== Untitled Group ====
Group- Members:

DDD[:m

Collaboration

Three kinds of collabB.i~tionhave been discussed:

To begin a same-time same-document collijp9@pon, the :#:~~trW9W9m:jppen the Co~~i&9t#:~~§##ool

the phone as well.:'" ····· •• ·· ••:.:•• <.:::/:.·./•• :jU:U:>·.·:···:· ::::::::.:::::.:;:.:.::: •.:::::<::"': .

Once the collaboration has started, how should pointer passing work? This is undetermined at this
point. Experimentation is the only way to find out.

• Registeredl Restricted Human Interface Architecture March 15, 1990 1.3-22

Groups of People

Opening the Group stationery pad gives a form similar to Figure 5. The user successively drags in
people icons to create a group. Click on the close box, select the untitled group' document, and name it.
Group icons resemble people icons, and can be dragged into any blank that is expecting people (including
the group form itself - groups of groups). Groups are first order objects just like people, so the user can
duplicate them, mail them around, etc.

0==== Untitled Group ====
Group- Members:

DDD[:m

Collaboration

Three kinds of collabB.i~tionhave been discussed:

To begin a same-time same-document collijp9@pon, the :#:~~trW9W9m:jppen the Co~~i&9t#:~~§##ool

the phone as well.:'" ····· •• ·· ••:.:•• <.:::/:.·./•• :jU:U:>·.·:···:· ::::::::.:::::.:;:.:.::: •.:::::<::"': .

Once the collaboration has started, how should pointer passing work? This is undetermined at this
point. Experimentation is the only way to find out.

• Registeredl Restricted Human Interface Architecture March 15, 1990 1.3-22

Notably and intentionally missing are any control enforcing mechanisms. Everyone in a collaboration is
on equal footing, and there is no access privilege scheme. If a user is afraid that collaborators will mess
up a document, then that user can make a copy of the document before entering the collaboration. Also
intentionally missing is any kind of whiteboard. If users want to share a drawing space, then they can
open a draw or paint document.

o Untitled Collaboration

Collaborators:

l_:m

Figure 6

Fill out a form.

.... .}}}}}~{ ':;.~'.:..::'::.::..•:::.•::~.::::~:.:::~;.:.:~'.::.:.:.::~::.:.:~.::.:~::..•::'::.:~'.:::: .•:::~:.:.::'::..::.::'::.::.:.:'::.:.:::'.:.::.:.::.::...:.:'.:.:~::......;.. .. Atfft?'
Print Shon::.. :::.:.:.:.:::.·.::.. :.:·.i.:.::.:..·.:i.:..:.:.•..::.:.:.i.:.:.::...:.i.:.!.:.:.:.:·.:.:.:i.. :.::.·.::.::.:.:.::.::.::.:;.:...:.i.:.:.:.:.::.:.:.:.::.::.:..::.:.::...::..:.:.::....... }::}:)(f ·::::::~rr::t::;:;:i/i;:::;::::::::::::::. .::-:-.:::::. :.::.:::.. ::::::... :.::.:::.• :::..:.:.::...::::.::.::.:.::::::.. ::::::::.::.:.:..:.:....::.::.::....:.::.:::..t:: ::..:.~.~~.t.:~.: ..:.i~.?:.t~::::·· -.:::;::;::::::::::::;:;:;:;:::::::::::;:;:::;::

·~:;:t/tt>:::::::>:-:···· '.'.. . '::::::::::::;:::::::;:;:;:;:::;:;:;:::;:;:::; ·/)f~)

Users would df#,gnpfil"ttef~:i#.:t9)\tti$·:.:t9PW:loset the default Print~;:::::::::i~:::~~~~~ltPriJ:lt~t::rW:theprinter
that is used by the<PriAtffi~!tH>¢Qmmand from within a document. It rifaYHti1#:#.:~§gl)se:-toset a default
color printer, a default blackand white printer, a default legal size paper prin·ter, etc.

... >t... Where to put page setup options and what is the relationship between documents, page setups, and
printers?

All the Other Stuff Now Found in the System Folder

The plan is to have no magic places in the file system. Instead of moving a screen dimmer INIT to the
system folder and restarting in order to get it to work, the user would double click on the screen dimmer
icon to open a control panel with an onloff switch and perhaps some other controls. Switch the screen
dimmer on and dose the cantrol panel. In other words, the two rules are:

1) It doesn't matter where the user puts an icon.
2) Every icon oPens into something.

• Registered/Restricted Human Interface Architecture March 15, 1990 1.3=23

Notably and intentionally missing are any control enforcing mechanisms. Everyone in a collaboration is
on equal footing, and there is no access privilege scheme. If a user is afraid that collaborators will mess
up a document, then that user can make a copy of the document before entering the collaboration. Also
intentionally missing is any kind of whiteboard. If users want to share a drawing space, then they can
open a draw or paint document.

o Untitled Collaboration

Collaborators:

l_:m

Figure 6

Fill out a form.

.... .}}}}}~{ ':;.~'.:..::'::.::..•:::.•::~.::::~:.:::~;.:.:~'.::.:.:.::~::.:.:~.::.:~::..•::'::.:~'.:::: .•:::~:.:.::'::..::.::'::.::.:.:'::.:.:::'.:.::.:.::.::...:.:'.:.:~::......;.. .. Atfft?'
Print Shon::.. :::.:.:.:.:::.·.::.. :.:·.i.:.::.:..·.:i.:..:.:.•..::.:.:.i.:.:.::...:.i.:.!.:.:.:.:·.:.:.:i.. :.::.·.::.::.:.:.::.::.::.:;.:...:.i.:.:.:.:.::.:.:.:.::.::.:..::.:.::...::..:.:.::....... }::}:)(f ·::::::~rr::t::;:;:i/i;:::;::::::::::::::. .::-:-.:::::. :.::.:::.. ::::::... :.::.:::.• :::..:.:.::...::::.::.::.:.::::::.. ::::::::.::.:.:..:.:....::.::.::....:.::.:::..t:: ::..:.~.~~.t.:~.: ..:.i~.?:.t~::::·· -.:::;::;::::::::::::;:;:;:;:::::::::::;:;:::;::

·~:;:t/tt>:::::::>:-:···· '.'.. . '::::::::::::;:::::::;:;:;:;:::;:;:;:::;:;:::; ·/)f~)

Users would df#,gnpfil"ttef~:i#.:t9)\tti$·:.:t9PW:loset the default Print~;:::::::::i~:::~~~~~ltPriJ:lt~t::rW:theprinter
that is used by the<PriAtffi~!tH>¢Qmmand from within a document. It rifaYHti1#:#.:~§gl)se:-toset a default
color printer, a default blackand white printer, a default legal size paper prin·ter, etc.

... >t... Where to put page setup options and what is the relationship between documents, page setups, and
printers?

All the Other Stuff Now Found in the System Folder

The plan is to have no magic places in the file system. Instead of moving a screen dimmer INIT to the
system folder and restarting in order to get it to work, the user would double click on the screen dimmer
icon to open a control panel with an onloff switch and perhaps some other controls. Switch the screen
dimmer on and dose the cantrol panel. In other words, the two rules are:

1) It doesn't matter where the user puts an icon.
2) Every icon oPens into something.

• Registered/Restricted Human Interface Architecture March 15, 1990 1.3=23

However, when icons can be grouped together with some higher meaning, then the device to use is the
previously mentioned "Fill in the Blank".

Here are some examples:

How might the user customize the Apple menu to contain the Calculator, Alarm
Qock, and nothing else?

Double click on the "Apple Menu Shop" icon and fill in the blanks. See Figure 7.

How might the user preview the font "Gaillard" (a la Keycaps)?
Double click on the icon labelled "Gaillard" to open a window showing the font

mapped onto the keyboard.

How might the user add the font "Galliard" to the system?
Double click. on .the "FC?nt Shop:: ico~ an~.add "Galliard" to the system fonts form

by draggmg m.::~B~ill!:rli~:[~ll:[:~[jW.llli~~j:~~!I:I~jl!:~:I;!::[!!1/ .:<:«··{:i[;::::::::~;:::){..:.::}}}??

.:

..::::..:::::!:!:•...•:.•:•.::•...•:.•.II~llttllllfIt'!tlli!i~itu s:::.:::;~ .;tl!lllilliiltllll!II'iii

v

.....
:::}~{::::::::::~?tt?ttt{

...... Calculator Alarm Clock
..

'~i~){:~~tf~~fr/rttt:~:}~:
....:.:.:.:.:.:.:.:;:;=;:::::::::;::::::}=::::;;:;::;:::;::
ff \{:::~::::::::::::::::::

:::;:::::::::::~:: ;:;:;::.>:-:.:.:.:.:.: .
"':-:'::::;::<:>:<':':':' .:.:.:",::.:-:.:,:-:->,

.... :.;.;:::>::;:::::::-
-. :...:.:.:.....;.»:.;. ..
:::::::::::;:::::~:::}:::{:::}}::.:::-:.:- ... "

:::::::::<:~:}}~~}~ -.-:.:«.:-:-:-:-

I can imagine sittiIigdoWffi~*(i·:·W9t~g··through the details of thesePt9-p~~m.~<gi.y~r(th(tframework
described above without-revetnngtothat completely fuzzy state of mind ili::\vhtdl:none of the interface
is defined and everything depends on everything else. Which is also to say that these are the pieces
which I haven't thought much about except to suggest that they sure would be nice. Everything in this
section deserves a .. ,..,..,.... for lack of content. With that in mind, here is a grocery list of new interface
things:

Mail

Outgoing
See Figure 4 and the description above (in the section describing forms).

This represents the simplest case. Other fields, like "CC:", might be revealed using the progressive
disclosure device described below under "New Widgets for Applications." Since mail forms originate
from a stationery pad, there should be a mechanism for creating custom letterheads.

• Registeredl Restricted Human Interface Architecture March 15, 1990 1.3-24

However, when icons can be grouped together with some higher meaning, then the device to use is the
previously mentioned "Fill in the Blank".

Here are some examples:

How might the user customize the Apple menu to contain the Calculator, Alarm
Qock, and nothing else?

Double click on the "Apple Menu Shop" icon and fill in the blanks. See Figure 7.

How might the user preview the font "Gaillard" (a la Keycaps)?
Double click on the icon labelled "Gaillard" to open a window showing the font

mapped onto the keyboard.

How might the user add the font "Galliard" to the system?
Double click. on .the "FC?nt Shop:: ico~ an~.add "Galliard" to the system fonts form

by draggmg m.::~B~ill!:rli~:[~ll:[:~[jW.llli~~j:~~!I:I~jl!:~:I;!::[!!1/ .:<:«··{:i[;::::::::~;:::){..:.::}}}??

.:

..::::..:::::!:!:•...•:.•:•.::•...•:.•.II~llttllllfIt'!tlli!i~itu s:::.:::;~ .;tl!lllilliiltllll!II'iii

v

.....
:::}~{::::::::::~?tt?ttt{

...... Calculator Alarm Clock
..

'~i~){:~~tf~~fr/rttt:~:}~:
....:.:.:.:.:.:.:.:;:;=;:::::::::;::::::}=::::;;:;::;:::;::
ff \{:::~::::::::::::::::::

:::;:::::::::::~:: ;:;:;::.>:-:.:.:.:.:.: .
"':-:'::::;::<:>:<':':':' .:.:.:",::.:-:.:,:-:->,

.... :.;.;:::>::;:::::::-
-. :...:.:.:.....;.»:.;. ..
:::::::::::;:::::~:::}:::{:::}}::.:::-:.:- ... "

:::::::::<:~:}}~~}~ -.-:.:«.:-:-:-:-

I can imagine sittiIigdoWffi~*(i·:·W9t~g··through the details of thesePt9-p~~m.~<gi.y~r(th(tframework
described above without-revetnngtothat completely fuzzy state of mind ili::\vhtdl:none of the interface
is defined and everything depends on everything else. Which is also to say that these are the pieces
which I haven't thought much about except to suggest that they sure would be nice. Everything in this
section deserves a .. ,..,..,.... for lack of content. With that in mind, here is a grocery list of new interface
things:

Mail

Outgoing
See Figure 4 and the description above (in the section describing forms).

This represents the simplest case. Other fields, like "CC:", might be revealed using the progressive
disclosure device described below under "New Widgets for Applications." Since mail forms originate
from a stationery pad, there should be a mechanism for creating custom letterheads.

• Registered; Restricted Human Interface Architecture March 15, 1990 1.3-24

Incoming

Add a mailbox icon on the right edge of the desktop. The icon changes appearance when mail arrives.
Double clicking on the icon opens a window containing incoming mail.

Personal AppleShare

Users would open a File Sharing tool and drag in people (or groups) and file system objects to be shared
(a disk volume, a folder, or just an individual document could be shared). Those people would then ~ee a
server stub in their Network icon.

New Widgets For Applications

ep~vides~a~~t~

Progressive disclosU;¢.@s the name for the technique of hiding com.p!~*UYM#§.#fbeginning users. The

••••.•;:::::;.::>..•..;•.•'.

Standard Pickers
..........:.:.:.:-:.:-:-:.:.;.:... :'::;:::::::::;::::-:;

:':':-:-:':-:':';';':;:::':''; ::\::::::::::::::;

~ ~~~~~
...... - .;...;..-:.:-:.:->:.;.:

Standard SoundR~~6i:a:t"l1.~:::~:~dPlayback Interface

Standard (and Replaceable) Dictionary and Thesaurus

Provide a mechanism and interface so that the same dictionary can be used across all applications.

Dialog Layout Rules

Decide on some set of rules for the size, spacing, and arrangement of buttons in dialogs and give
developers the tools that make it easy to follow those rules.

Content Based Document Retrieval and Filtering

Fill out a form using a graphical query language.

• Registered/Restricted Human Interface Architecture March 15, 1990 1.3=25

Incoming

Add a mailbox icon on the right edge of the desktop. The icon changes appearance when mail arrives.
Double clicking on the icon opens a window containing incoming mail.

Personal AppleShare

Users would open a File Sharing tool and drag in people (or groups) and file system objects to be shared
(a disk volume, a folder, or just an individual document could be shared). Those people would then ~ee a
server stub in their Network icon.

New Widgets For Applications

ep~vides~a~~t~

Progressive disclosU;¢.@s the name for the technique of hiding com.p!~*UYM#§.#fbeginning users. The

••••.•;:::::;.::>..•..;•.•'.

Standard Pickers
..........:.:.:.:-:.:-:-:.:.;.:... :'::;:::::::::;::::-:;

:':':-:-:':-:':';';':;:::':''; ::\::::::::::::::;

~ ~~~~~
...... - .;...;..-:.:-:.:->:.;.:

Standard SoundR~~6i:a:t"l1.~:::~:~dPlayback Interface

Standard (and Replaceable) Dictionary and Thesaurus

Provide a mechanism and interface so that the same dictionary can be used across all applications.

Dialog Layout Rules

Decide on some set of rules for the size, spacing, and arrangement of buttons in dialogs and give
developers the tools that make it easy to follow those rules.

Content Based Document Retrieval and Filtering

Fill out a form using a graphical query language.

• Registered/Restricted Human Interface Architecture March 15, 1990 1.3=25

Smart Icon Cleanup

Take a better guess at what the user is trying to place in rows and columns. Make sure icon names don't
overlap.

Smart Window Placement and Dragging

It seems as if there is some set of rules for usually doing the right thing when dragging windows. For
example, if there is only one document from an application open, then it probably makes sense to
maintain the relative positions of satellite windows when the document window is moved.

System-wide tiling or stacking of document windows might be done through a universal menu command
in the Windows menu

Replace the inside of .~p·::aocumenticon with a reduced version of

Preferences

Help

Bubble help and/or procedural help.

Backup
,.:-:.:.:-:-:-:.:.:-:.:.:.:.:.:,:.:.

Connection to veiSlOnsZ/\

Quiz
.-:-::::::::;::::::::::::::::::::::::::::::::.:::.::.::::.:.;....

If this was at all a~~he~~ht:::d:~:~~~~tionof a reasonable approach, then
reader, should be able to see a solution which fits the model. And your SOl.ulJ.on
mine.

So here is the problem:

Design an interface for starting the Screen Sharing collaboration. The user needs to connect to o~e other
user. (Don't worry about all the pointer passing conventions once the connection is made.) Design the
interface for making the connection and ending the connection.

See Figure 8 for the answer I was looking for.

• Registered; Restricted Human Interface Architecture March 15, 1990 1.3=26

Smart Icon Cleanup

Take a better guess at what the user is trying to place in rows and columns. Make sure icon names don't
overlap.

Smart Window Placement and Dragging

It seems as if there is some set of rules for usually doing the right thing when dragging windows. For
example, if there is only one document from an application open, then it probably makes sense to
maintain the relative positions of satellite windows when the document window is moved.

System-wide tiling or stacking of document windows might be done through a universal menu command
in the Windows menu

Replace the inside of .~p·::aocumenticon with a reduced version of

Preferences

Help

Bubble help and/or procedural help.

Backup
,.:-:.:.:-:-:-:.:.:-:.:.:.:.:.:,:.:.

Connection to veiSlOnsZ/\

Quiz
.-:-::::::::;::::::::::::::::::::::::::::::::.:::.::.::::.:.;....

If this was at all a~~he~~ht:::d:~:~~~~tionof a reasonable approach, then
reader, should be able to see a solution which fits the model. And your SOl.ulJ.on
mine.

So here is the problem:

Design an interface for starting the Screen Sharing collaboration. The user needs to connect to o~e other
user. (Don't worry about all the pointer passing conventions once the connection is made.) Design the
interface for making the connection and ending the connection.

See Figure 8 for the answer I was looking for.

• Registered; Restricted Human Interface Architecture March 15, 1990 1.3=26

0:: Screen Sharing Tool~

Users to see my screen:

D}}
Connect II Disconnect I

Double click on the "Screen Sharing
Tool" to get this window. Drag in a user

and click "Connect."

8

• Registered/ Restricted Human Interface Architecture March IS, 19§O 1.3-27

0:: Screen Sharing Tool~

Users to see my screen:

D}}
Connect II Disconnect I

Double click on the "Screen Sharing
Tool" to get this window. Drag in a user

and click "Connect."

8

• Registered/ Restricted Human Interface Architecture March IS, 19§O 1.3-27

The Architecture of the User Interface
[The following has not been widely reviewed and the reader may find it incomplete and/or
idiosyncratic. Reader's comments are appreciated.]

The architecture of the Pink Human Interface lays the foundation for everything involved with the
user's interaction with the Macintosh. Based on a real world metaphor, enhancements to the original
Lisa/Macintosh architecture, and an extended Uevery-user" model, the Pink Human Interface
Architecture is a broader and more general architecture that supports current useful extensions to Blue,
anticipated Pink extensions, and, hopefully, mostfuture unexpected extensions.

The Pink Human Interface Architecture provides a systematic basis for designing all user interactions

what follows is a n«~$'sary first step. Also, it does not provide~*,p*9§4~~gner'sguidelines for the
interface - that will)Mtve to be developed over time and involve~:Jt'gt¢'~lJJ~~lofuser testing - much of

.':': '::::::~i~i::;:::::::/:::?/:~:}~:~:~:~:?~::::'::::::::::':'.'

.:.:.:.:.;.:.: ::::::::;:; ::.:: ;. .

HyperCard sta:Cksi annotations, and alia~~~;l:"" The remaind~<-·O~ thIs section descrlhe:::Hl:f6s~ four

characteristics ~:~~~~:~il., .@i\;Y';;;1;;, i! iii}
BehaVl·or ' :-:-.,':-:::.,,,:,:':..:::::::>::/:.:i::..•...:'.:.:::..:..::..:..::•.,' .•...,'.:.......•::::..,'.:..:..,,:,: ..•.:.:.'.~ :.~.•. ::::.:.::::;.'.::,:::.,.,.•.,•.::•.>::~:::".... ..::::>::\::// :::::::'« ,:,:,'::.:-:.:-:.:-:-: ~{{:::::::::::::::::::::::.;.>:

Behavior is what things do, how they act. All objects appear to the user to have behavior. Even
documents that have no code in them exhibit behavior when they are moved about (Finder code) or
opened up and edited (application code).

Lisa and the early Macintosh considered only one kind of behavior, built-in. Experience and technology
show that there are more aspects of behavior that need to be considered:

i Registered! Restricted Human Interface ArchItecture March 15, 1990 1.3=28

The Architecture of the User Interface
[The following has not been widely reviewed and the reader may find it incomplete and/or
idiosyncratic. Reader's comments are appreciated.]

The architecture of the Pink Human Interface lays the foundation for everything involved with the
user's interaction with the Macintosh. Based on a real world metaphor, enhancements to the original
Lisa/Macintosh architecture, and an extended Uevery-user" model, the Pink Human Interface
Architecture is a broader and more general architecture that supports current useful extensions to Blue,
anticipated Pink extensions, and, hopefully, mostfuture unexpected extensions.

The Pink Human Interface Architecture provides a systematic basis for designing all user interactions

what follows is a n«~$'sary first step. Also, it does not provide~*,p*9§4~~gner'sguidelines for the
interface - that will)Mtve to be developed over time and involve~:Jt'gt¢'~lJJ~~lofuser testing - much of

.':': '::::::~i~i::;:::::::/:::?/:~:}~:~:~:~:?~::::'::::::::::':'.'

.:.:.:.:.;.:.: ::::::::;:; ::.:: ;. .

HyperCard sta:Cksi annotations, and alia~~~;l:"" The remaind~<-·O~ thIs section descrlhe:::Hl:f6s~ four

characteristics ~:~~~~:~il., .@i\;Y';;;1;;, i! iii}
BehaVl·or ' :-:-.,':-:::.,,,:,:':..:::::::>::/:.:i::..•...:'.:.:::..:..::..:..::•.,' .•...,'.:.......•::::..,'.:..:..,,:,: ..•.:.:.'.~ :.~.•. ::::.:.::::;.'.::,:::.,.,.•.,•.::•.>::~:::".... ..::::>::\::// :::::::'« ,:,:,'::.:-:.:-:.:-:-: ~{{:::::::::::::::::::::::.;.>:

Behavior is what things do, how they act. All objects appear to the user to have behavior. Even
documents that have no code in them exhibit behavior when they are moved about (Finder code) or
opened up and edited (application code).

Lisa and the early Macintosh considered only one kind of behavior, built-in. Experience and technology
show that there are more aspects of behavior that need to be considered:

i Registered! Restricted Human Interface ArchItecture March 15, 1990 1.3=28

• script

• dependent
• cooPerating
• external

• built-in non-modifiable, except via preferences, comes with an object
• system-based' uses system-supplied behavior when possible or overrides with built-in.
• component non-modifiable functionality that can be added to an object (may have

preferences)
user-modifiable functionality that can be added to' an object (may have
preferences)
may vary by user, time, situation, editing vs. run
the behavior of one object may trigger the behavior of another
behavior that is applied to other objects, e.g. move and delete; all the above are
'internal'

A task denotes the execution of some initial behavior and the behaviors it triggers. The current Pink
position is that an object can only exhibit one behavior at a time, Le. one task per object. The
consequences of this position are under consideration.

Content

•

•
•
•
•
•
•
•
•
•

.....
:;::;;;;;~:~:r:}::::::::~:::::::::::::::::

• shared multi-task access, acce'$.S)Wdti.'ols ::::::::::::):{Ut:}})::\ :{{\::::::::::::::.
• versions multiple snapshots are:\i#i5rted ::::::::/::::::/j}:t/?j///\

....):::I::j~I:I:(·:::?::::::::::::::tr:::::::::::........... j:::)::\{)).:::
Connectionsj::::H:j:::::::::.:U::):\ .:::::::::::::::::::::' .::t))))\::::::::::::::: ..:::-::.:-:::-:-:'.

:){:\){{\ ..:.:....:-::::::-:.:::.:.... ..:::::tt:m:::::::, ··::::::::I:I::I::jjj::::::~m::::::::\.

~~':::: !'I'dt~~i~,!I~.tllr'!~j=~~c:no~~~~::~9.a~;f:~~1Ijr:,~:fl~~~n~
spreadsheet, frames irt a: vided sequence, sound samples in a recording. C6ritilmment:isanother simple
fonn of connection e.g. documents in a folder or pictures in a document. More complex forms may require
computational support e.g. cross references, picture-to-text (to keep them on the same page),
spreads~eet formulas, and filters.

Objects are responsible for supporting connections from the outside to internal objects. The connection
may be maintained by either unique id or attribute matching as appropriate.

A connection may be represented by a concrete object (explicit) or not (implicit). Examples of explicit
connections include links, aliases, annotations, and filters. Examples of implicit connections include the
document to app (document type), cross reference look up, and containment of documents in folders.
Explicit connections are objects in their own right and can have their own content, behavior, and
interface.

Lisa and the early Macintosh supported only a few implicit connections: containment (disks and folders
contain folders and documents), sequence, spatial, and document-to-application. The early Mac also

i Registeredl Restricted Human Interface Architecture March 15, 1990 1.3=29

• script

• dependent
• cooPerating
• external

• built-in non-modifiable, except via preferences, comes with an object
• system-based' uses system-supplied behavior when possible or overrides with built-in.
• component non-modifiable functionality that can be added to an object (may have

preferences)
user-modifiable functionality that can be added to' an object (may have
preferences)
may vary by user, time, situation, editing vs. run
the behavior of one object may trigger the behavior of another
behavior that is applied to other objects, e.g. move and delete; all the above are
'internal'

A task denotes the execution of some initial behavior and the behaviors it triggers. The current Pink
position is that an object can only exhibit one behavior at a time, Le. one task per object. The
consequences of this position are under consideration.

Content

•

•
•
•
•
•
•
•
•
•

.....
:;::;;;;;~:~:r:}::::::::~:::::::::::::::::

• shared multi-task access, acce'$.S)Wdti.'ols ::::::::::::):{Ut:}})::\ :{{\::::::::::::::.
• versions multiple snapshots are:\i#i5rted ::::::::/::::::/j}:t/?j///\

....):::I::j~I:I:(·:::?::::::::::::::tr:::::::::::........... j:::)::\{)).:::
Connectionsj::::H:j:::::::::.:U::):\ .:::::::::::::::::::::' .::t))))\::::::::::::::: ..:::-::.:-:::-:-:'.

:){:\){{\ ..:.:....:-::::::-:.:::.:.... ..:::::tt:m:::::::, ··::::::::I:I::I::jjj::::::~m::::::::\.

~~':::: !'I'dt~~i~,!I~.tllr'!~j=~~c:no~~~~::~9.a~;f:~~1Ijr:,~:fl~~~n~
spreadsheet, frames irt a: vided sequence, sound samples in a recording. C6ritilmment:isanother simple
fonn of connection e.g. documents in a folder or pictures in a document. More complex forms may require
computational support e.g. cross references, picture-to-text (to keep them on the same page),
spreads~eet formulas, and filters.

Objects are responsible for supporting connections from the outside to internal objects. The connection
may be maintained by either unique id or attribute matching as appropriate.

A connection may be represented by a concrete object (explicit) or not (implicit). Examples of explicit
connections include links, aliases, annotations, and filters. Examples of implicit connections include the
document to app (document type), cross reference look up, and containment of documents in folders.
Explicit connections are objects in their own right and can have their own content, behavior, and
interface.

Lisa and the early Macintosh supported only a few implicit connections: containment (disks and folders
contain folders and documents), sequence, spatial, and document-to-application. The early Mac also

i Registeredl Restricted Human Interface Architecture March 15, 1990 1.3=29

supported name-to-object and the newest versions support aliases and warm-links. The various aspects
of a connection include:

• destination
• fan-out
• computation
• kind

identification of the referenced object
can there be more than one destination
the destination may be computed at look up
an optional link type

Other items that might be associated with links, e.g. direction and behavior, are actually parts of
explicit connection objects.

Interface

Interface is that part of an object that people and other objects deal with. Each Pink object has a
concrete visual interface..:--:-:-:?9P'}~:.J?l?j~SJ~:-:.:h~x~.:-:.9tht.rrepresentations as well, e.g. audibl~t.:-::-PE~BJed,

• external electr9~lf.: ~re~~;m~~i~~~ls~~;~ed· ..::(1~j~.!jj:···i ..I:i:~:1.~~.·!1111.·!!1!i·!11::~)i·~:!~~{:

•
•
•

Operations
.:::::;:::::::;:;:::::::;::::::::::::::::;:::::.:.:.: .

-: :.:.:.:.: : ;::......•....:.:.:.- .

,\,:;:::::::-:",{,:,::::::::::::::.:.:-:-:., :Un}::·::.,:: ...
. ';':-:':-'';:> ..•..•..... ··//}r~r{trr}:::::::::· ..

~:~::;r~~~.'J&ii~;~E~~br~£'1'&~~:~'i~\'!n~~~~
manipulation als611f-Wimj(ltm~::fu:Odelsince we can describe anything::W~{g9:Y¢tfjally/althoughthe
actual interaction is qualitatively different. .

A command is directed to the agent that is to perform the action. In the real world this is done by
naming the agent or by getting the agent's attention and addressing him/her directly. The latter is
what we do when we select a window. The former depends on a naming scheme which Pink will
probably address via the 'forms' mechanism described in the strawman section above.

The next part is the naming of the action to be performed. Pink uses the old stand-bys of menus, buttons,
and controls to do this and also provides a textual form that is used in scripts and message boxes (if the
latter is supported).

There may be a subject of the action, e.g. the document to be discarded. This is the roll played by the
selection, if any.

Finally, one or more phrases may be included that specialize the action to this situation. Direct
manipulation interactions may allow for the equivalent of a single phrase, e.g. the destination of a

• Registered/Restricted Human Interface Architecture March 1~, 1990 1.3=30

supported name-to-object and the newest versions support aliases and warm-links. The various aspects
of a connection include:

• destination
• fan-out
• computation
• kind

identification of the referenced object
can there be more than one destination
the destination may be computed at look up
an optional link type

Other items that might be associated with links, e.g. direction and behavior, are actually parts of
explicit connection objects.

Interface

Interface is that part of an object that people and other objects deal with. Each Pink object has a
concrete visual interface..:--:-:-:?9P'}~:.J?l?j~SJ~:-:.:h~x~.:-:.9tht.rrepresentations as well, e.g. audibl~t.:-::-PE~BJed,

• external electr9~lf.: ~re~~;m~~i~~~ls~~;~ed· ..::(1~j~.!jj:···i ..I:i:~:1.~~.·!1111.·!!1!i·!11::~)i·~:!~~{:

•
•
•

Operations
.:::::;:::::::;:;:::::::;::::::::::::::::;:::::.:.:.: .

-: :.:.:.:.: : ;::......•....:.:.:.- .

,\,:;:::::::-:",{,:,::::::::::::::.:.:-:-:., :Un}::·::.,:: ...
. ';':-:':-'';:> ..•..•..... ··//}r~r{trr}:::::::::· ..

~:~::;r~~~.'J&ii~;~E~~br~£'1'&~~:~'i~\'!n~~~~
manipulation als611f-Wimj(ltm~::fu:Odelsince we can describe anything::W~{g9:Y¢tfjally/althoughthe
actual interaction is qualitatively different. .

A command is directed to the agent that is to perform the action. In the real world this is done by
naming the agent or by getting the agent's attention and addressing him/her directly. The latter is
what we do when we select a window. The former depends on a naming scheme which Pink will
probably address via the 'forms' mechanism described in the strawman section above.

The next part is the naming of the action to be performed. Pink uses the old stand-bys of menus, buttons,
and controls to do this and also provides a textual form that is used in scripts and message boxes (if the
latter is supported).

There may be a subject of the action, e.g. the document to be discarded. This is the roll played by the
selection, if any.

Finally, one or more phrases may be included that specialize the action to this situation. Direct
manipulation interactions may allow for the equivalent of a single phrase, e.g. the destination of a

• Registered/Restricted Human Interface Architecture March 1~, 1990 1.3=30

move. Complex phrase structures, e.g. printing instructions, are represented by dialog boxes. Dialog
boxes can be tedious, specially when the defaults are correct, so Pink is considering mechanisms that
support 'prepackaged' command-dialog sets.

Interaction

Interactions are the way a person and machine communicate. This section deals with the syntax of that
communication, not the content. The syntax of the content was dealt with in the previous section; the
symantics of the content are contained in the Taxonomy section below.

People interact with the world, including people, in two distinct ways: symbolically and directly.
Symbols are representations of something else, and each symbol's meaning must be agreed upon by its
users. Written and spoken languages are symbolic. Direct interaction deals with way people
manipulate tangible objects in the physical world, things that we can touch, see, smell, and hear.

Symbolic
:.::::':: ...

..
.... ':::;::::::::::::::/~~)j{ ...

In the real world the hands (plural) and fingers are used:

• to point out objects of interest,
• to grab objects,
• to position and rotate objects in six ways,
• to sense an object's temperature, texture, shape, and size, and
• to apply varying amounts of pressure with different fingers.

When incorporating direct manipulation into Pink, it is best to maintain a direct correspondence of
action between the real world and Pink's virtual world. For example, moving something in Pink should
always be done by the user moving the mouse, rolling a track ball, or other comparable physical
movement. The limited capabilities of the hardware, e.g the mouse, may make the implementation of
comparable actions impossible and require the creation of artifacts in order to support a needed
operation.

• Registered / Restricted Human Interface Architecture March b, 1990 1.3"031

move. Complex phrase structures, e.g. printing instructions, are represented by dialog boxes. Dialog
boxes can be tedious, specially when the defaults are correct, so Pink is considering mechanisms that
support 'prepackaged' command-dialog sets.

Interaction

Interactions are the way a person and machine communicate. This section deals with the syntax of that
communication, not the content. The syntax of the content was dealt with in the previous section; the
symantics of the content are contained in the Taxonomy section below.

People interact with the world, including people, in two distinct ways: symbolically and directly.
Symbols are representations of something else, and each symbol's meaning must be agreed upon by its
users. Written and spoken languages are symbolic. Direct interaction deals with way people
manipulate tangible objects in the physical world, things that we can touch, see, smell, and hear.

Symbolic
:.::::':: ...

..
.... ':::;::::::::::::::/~~)j{ ...

In the real world the hands (plural) and fingers are used:

• to point out objects of interest,
• to grab objects,
• to position and rotate objects in six ways,
• to sense an object's temperature, texture, shape, and size, and
• to apply varying amounts of pressure with different fingers.

When incorporating direct manipulation into Pink, it is best to maintain a direct correspondence of
action between the real world and Pink's virtual world. For example, moving something in Pink should
always be done by the user moving the mouse, rolling a track ball, or other comparable physical
movement. The limited capabilities of the hardware, e.g the mouse, may make the implementation of
comparable actions impossible and require the creation of artifacts in order to support a needed
operation.

• Registered / Restricted Human Interface Architecture March b, 1990 1.3"031

Design Language

Elements of the Pink design language should look plausible, as if they could exist in the real world.
Elements are represented with Ucartoons" or caricatures that indicate function through form. On the
Macintosh and Lisa, buttons had rounded edges and clearly delineated regions and were clicked. Menus
were square with a shadow and contained more than one item and were pulled down. Icons were
cartoons with a variety of shapes but one particular size and could be dragged. Icons were not drawn as
buttons, nor buttons drawn as menus, and so on.

This applies to the visual behavior of the elements as well; if the element could exist, then it should
behave as that real world element might behave. If a control in the real world flattens when pressed,
then the counterpart in the Pink model should also appear to flatten. On the Macintosh, the model for
controls is based upon highlighting them when the user activates them.

~~~~~~:~~'i_\t,lIl1t11'i'~!;e~,~~~~~n~~~~I~l~~~:i~ti~~I~;;~~:~
may be subtlety distirictf:t'()m:~:btiftdnelement. The edge an alert elemenfmayha;yecfcolor, in addition
to the alert icon, to indicate the kind of alert. The edges of control and the edges of a window will have
different contrast to indicate that the control is contained within the window.

Physical Model

The physical model the Pink look is patterned after is a thin three dimensional block, 1/16" to 1/8"
thick, that has rolled or extruded edges. The rolled edges are smooth with no abrupt planes. The
surface of the block is flat. To show content one exposes the interior of the block. To control the block,
one puts controls on top of the block. This is similar to a TV. One can watch the content which appears
on the inside of the TV set, or control the content with the dials and knobs on the edges of the TV set
frame.

The light source on the block is from the front, approximately centered on the user's nose. This provides
for even illumination. Shadows, if any, are transparent.

• Registered/ Restricted Human Interface Architecture March 15, 199b 1.>3"032

Design Language

Elements of the Pink design language should look plausible, as if they could exist in the real world.
Elements are represented with Ucartoons" or caricatures that indicate function through form. On the
Macintosh and Lisa, buttons had rounded edges and clearly delineated regions and were clicked. Menus
were square with a shadow and contained more than one item and were pulled down. Icons were
cartoons with a variety of shapes but one particular size and could be dragged. Icons were not drawn as
buttons, nor buttons drawn as menus, and so on.

This applies to the visual behavior of the elements as well; if the element could exist, then it should
behave as that real world element might behave. If a control in the real world flattens when pressed,
then the counterpart in the Pink model should also appear to flatten. On the Macintosh, the model for
controls is based upon highlighting them when the user activates them.

~~~~~~:~~'i_\t,lIl1t11'i'~!;e~,~~~~~n~~~~I~l~~~:i~ti~~I~;;~~:~
may be subtlety distirictf:t'()m:~:btiftdnelement. The edge an alert elemenfmayha;yecfcolor, in addition
to the alert icon, to indicate the kind of alert. The edges of control and the edges of a window will have
different contrast to indicate that the control is contained within the window.

Physical Model

The physical model the Pink look is patterned after is a thin three dimensional block, 1/16" to 1/8"
thick, that has rolled or extruded edges. The rolled edges are smooth with no abrupt planes. The
surface of the block is flat. To show content one exposes the interior of the block. To control the block,
one puts controls on top of the block. This is similar to a TV. One can watch the content which appears
on the inside of the TV set, or control the content with the dials and knobs on the edges of the TV set
frame.

The light source on the block is from the front, approximately centered on the user's nose. This provides
for even illumination. Shadows, if any, are transparent.

• Registered/ Restricted Human Interface Architecture March 15, 199b 1.>3"032

(

c
Taxonomy

Figure 9. Side view Pink interface objects

(

This section describes all of the generic kinds of objects, operations, and interactions. The large size of

.::::::::::::::.

Environment

The computer object represents the CPU, all attached peripherals including networks (but not the
objects on the network), and all system software including the Finder, drivers, cdevs, and inits,(but not
applications or system utilities). It replaces the Blue system folder and control panel. It provides a
graphical means and indication of what is in the machine (including memory size and boards),
configuration information, what is connected to what and mechanisms for holding and activating both
system software and system level augmentations. The computer object from the start up disk appears on
the desktop. Computer objects on other disks appear in the disk window; they cannot be placed in
folders.

Other environmental objects, e.g. Fonts and Help files, also reside within the computer object.

Document-based applications could also be included here, maybe.

• Registered I Restricted Human Interface Architecture March 15, 1990 1.3=33

(

c
Taxonomy

Figure 9. Side view Pink interface objects

(

This section describes all of the generic kinds of objects, operations, and interactions. The large size of

.::::::::::::::.

Environment

The computer object represents the CPU, all attached peripherals including networks (but not the
objects on the network), and all system software including the Finder, drivers, cdevs, and inits,(but not
applications or system utilities). It replaces the Blue system folder and control panel. It provides a
graphical means and indication of what is in the machine (including memory size and boards),
configuration information, what is connected to what and mechanisms for holding and activating both
system software and system level augmentations. The computer object from the start up disk appears on
the desktop. Computer objects on other disks appear in the disk window; they cannot be placed in
folders.

Other environmental objects, e.g. Fonts and Help files, also reside within the computer object.

Document-based applications could also be included here, maybe.

• Registered I Restricted Human Interface Architecture March 15, 1990 1.3=33

One network object, currently the 'phone book', appears on the desktop to represent all attached
networks and network objects. References to network objects can be dragged from the phonebook to the
desktop, folders, etc. to prOVide quick access at later times. The network object cannot be dragged
onto/into a disk, folder, or other container.

Each peripheral attached to the machine or network, e.g. disks, scanners, monitors, etc., is represented
by an object. These objects are normally found within the computer or network objects as appropriate.
These objects can be opened to set configuration and user preference infonnation. (User preference info is
actually stored with the current person object.) Peripheral objects can be moved to the desktop, leaving
a gray place holder behind. The peripherals include: disks, diskette drives, keyboard, mOltse,
monitor(s), scanner, printers, other computers, telephones, etc.

The desktop is essentially the same as the Mac desktop except that it remembers the placement of all
objects on it across reboots.

~:rl~~~;~a~~:o~~~~~::::::~~~.(characters, words), graP:;llil~i'!hnapS' shapes, pixels,

..

Tools ::}::):::::.
.:.·.:.....:.:.:t~~?:~:::·······:::::~:>::::<:::.::
..................<-:.:<:;:>:.: .

group includes appliances (whole document ntmgifs), tools (riii#Wgp§#i#mt things like §lq#t~mt~)?and

:::e:~~ii~I;;;~·~l~~~:ram::~fi;~Sive diSCUSSi~t1iili:jecffi. .;irr ••• ··
..:-:.:- :........ '-:"'>":-:-:':':':':-::~::::::::::::::::':.:.:.: _. ·::·?~F?f~:~::::··

TIlis group contMn$':O~j~<±tsri1\#~::':m~ffilY:"serve to rela te otherwise di~J~ip.f:::·Q9j~ts#ig.afdlessof the
purpose. They includenaViganoIf«links, references, maps), communicatioii"(phoneb66k), and dataflow
(warm/hot links).

Containers

In this group are the objects that hold data and the objects that hold the data holders. The data
holders include documents (documents, drawings, images, stacks, spreadsheets, calendars, notebooks,
scrapbooks, clipboards), annotations, recordings (sounds, animations, video clips, movies, slide shows),
multi-media (may have several physical pieces), stationery, forms, and simulations (maybe this is just
an active document). The holder holders include the desktop, folders, trash can, mailbox, disks (double
grouped?)

Interaction Controls

This last group contains all the objects used for (in)direct manipulation of Pink's virtual reality. They
are all artifacts, i.e. objects that generally do not exist in the real world but which are required by the

• Registeredl Restricted Human Interface Architecture March 15, 1990 1.3=34

One network object, currently the 'phone book', appears on the desktop to represent all attached
networks and network objects. References to network objects can be dragged from the phonebook to the
desktop, folders, etc. to prOVide quick access at later times. The network object cannot be dragged
onto/into a disk, folder, or other container.

Each peripheral attached to the machine or network, e.g. disks, scanners, monitors, etc., is represented
by an object. These objects are normally found within the computer or network objects as appropriate.
These objects can be opened to set configuration and user preference infonnation. (User preference info is
actually stored with the current person object.) Peripheral objects can be moved to the desktop, leaving
a gray place holder behind. The peripherals include: disks, diskette drives, keyboard, mOltse,
monitor(s), scanner, printers, other computers, telephones, etc.

The desktop is essentially the same as the Mac desktop except that it remembers the placement of all
objects on it across reboots.

~:rl~~~;~a~~:o~~~~~::::::~~~.(characters, words), graP:;llil~i'!hnapS' shapes, pixels,

..

Tools ::}::):::::.
.:.·.:.....:.:.:t~~?:~:::·······:::::~:>::::<:::.::
..................<-:.:<:;:>:.: .

group includes appliances (whole document ntmgifs), tools (riii#Wgp§#i#mt things like §lq#t~mt~)?and

:::e:~~ii~I;;;~·~l~~~:ram::~fi;~Sive diSCUSSi~t1iili:jecffi. .;irr ••• ··
..:-:.:- :........ '-:"'>":-:-:':':':':-::~::::::::::::::::':.:.:.: _. ·::·?~F?f~:~::::··

TIlis group contMn$':O~j~<±tsri1\#~::':m~ffilY:"serve to rela te otherwise di~J~ip.f:::·Q9j~ts#ig.afdlessof the
purpose. They includenaViganoIf«links, references, maps), communicatioii"(phoneb66k), and dataflow
(warm/hot links).

Containers

In this group are the objects that hold data and the objects that hold the data holders. The data
holders include documents (documents, drawings, images, stacks, spreadsheets, calendars, notebooks,
scrapbooks, clipboards), annotations, recordings (sounds, animations, video clips, movies, slide shows),
multi-media (may have several physical pieces), stationery, forms, and simulations (maybe this is just
an active document). The holder holders include the desktop, folders, trash can, mailbox, disks (double
grouped?)

Interaction Controls

This last group contains all the objects used for (in)direct manipulation of Pink's virtual reality. They
are all artifacts, i.e. objects that generally do not exist in the real world but which are required by the

• Registeredl Restricted Human Interface Architecture March 15, 1990 1.3=34

Communicate

Navigate
Ideate
Decide
Select
Manipulate

• Observe
• Navigate
• Ideate
• Decide
• Select
• Manipulate
• Communicate

computer to overcome hardware limitations. Ideally they would exist only in places where comparable
real world objects exist or where Pink has extended the real world metaphor. Included are windows
(windows, dialogs, alerts, utility windows, subwindows, window sets, progress indicators), menus (menu
bar, pull-down, pop-up, tear-off, menu title), buttons (single action, continuous action, check box, radio,
command keys, cursor keys), window parts (scrollbars, grow box, zoom box, close box, window splitters),
virtual track ball, etc.

Operations

Regardless of the actual tasks a person performs, all actions can be classified into one of the following
categories:

gather infonnation through the five senses
ascertain current location, navigate in real and symbolic space (of self)
subconscious generation of ideas, alternatives

.-:-:<::::-::<::.:.;., .
.-:·::::\J~:~~~f~?:::::::::::::::·:·· .'.;.;.;.:.

..... ::.:- ··:::I:~\::}::::········

..:::::/t\~:i~!1:~:j~[~:·:·1:.~ll1~;\; _:~;::;:;;::·:

..

{:::::\ :::: .

:-'i.;i:.:;:·:: :-< •• <.

Interaction::::i..::=:::;:;:~:;::::>::·::::::::::-:: .
:r}:;:)):)::)::.··:.:: '.' ::::::::::::::::::;:.' ':::;::::i:~:;:;1;i)I;:ht::::::::::t: .

~~~:~~ ~!jlll~I~.I~~r~t!f~:'~~e:~~;~s~"_~~~:~~;1~g~I~~···~erson-
' .. '. . '.' . '.' .. '. .' - ' .' , ' ' '.'.' '.' ' .'.' . ..'-:::-:.:-. -:.;-:::. '.::::::::::::::::::::::::: ~ '.

Direct

Symbolic
Feedback

M~~~:<:;Bt;ie,press, release, click, double click, drag (p~;~~:,:~ove,release), (press,
hold, release) .
click-on command, type-in command, dialog, spoken command
static display, animation, sound, visual change, completed list

• Registered/ Restricted Human futerface Architecture March 1~, 1990 1.3=3~

Communicate

Navigate
Ideate
Decide
Select
Manipulate

• Observe
• Navigate
• Ideate
• Decide
• Select
• Manipulate
• Communicate

computer to overcome hardware limitations. Ideally they would exist only in places where comparable
real world objects exist or where Pink has extended the real world metaphor. Included are windows
(windows, dialogs, alerts, utility windows, subwindows, window sets, progress indicators), menus (menu
bar, pull-down, pop-up, tear-off, menu title), buttons (single action, continuous action, check box, radio,
command keys, cursor keys), window parts (scrollbars, grow box, zoom box, close box, window splitters),
virtual track ball, etc.

Operations

Regardless of the actual tasks a person performs, all actions can be classified into one of the following
categories:

gather infonnation through the five senses
ascertain current location, navigate in real and symbolic space (of self)
subconscious generation of ideas, alternatives

.-:-:<::::-::<::.:.;., .
.-:·::::\J~:~~~f~?:::::::::::::::·:·· .'.;.;.;.:.

..... ::.:- ··:::I:~\::}::::········

..:::::/t\~:i~!1:~:j~[~:·:·1:.~ll1~;\; _:~;::;:;;::·:

..

{:::::\ :::: .

:-'i.;i:.:;:·:: :-< •• <.

Interaction::::i..::=:::;:;:~:;::::>::·::::::::::-:: .
:r}:;:)):)::)::.··:.:: '.' ::::::::::::::::::;:.' ':::;::::i:~:;:;1;i)I;:ht::::::::::t: .

~~~:~~ ~!jlll~I~.I~~r~t!f~:'~~e:~~;~s~"_~~~:~~;1~g~I~~···~erson-
' .. '. . '.' . '.' .. '. .' - ' .' , ' ' '.'.' '.' ' .'.' . ..'-:::-:.:-. -:.;-:::. '.::::::::::::::::::::::::: ~ '.

Direct

Symbolic
Feedback

M~~~:<:;Bt;ie,press, release, click, double click, drag (p~;~~:,:~ove,release), (press,
hold, release) .
click-on command, type-in command, dialog, spoken command
static display, animation, sound, visual change, completed list

• Registered/ Restricted Human futerface Architecture March 1~, 1990 1.3=3~

...
.<~?~ ..

· :-:.:-:-:-:.:.:.:.:-:.:.:.:.:.:.:.:.

:-:-:-:.:.:-:.:.::: :;=:}}:/:::'

:·:::::\:·:·.··.••..·••:·.·••••.••·.:..•••.:. ·.·u/?/)::::::: ..

:::: .
.. :.:::

.:.:-: :..

·:~j)i:jj:)~)~:::)~tI~))~:~~:

.::)~~~~..::.:i.~;II!lillf'i
"::::::::::;::::::::::':':'" :"'::::':::::::::::.':'::;:::::::::::;:::::::::;:;::= ;.;.:;:;::: :::::::

• Registered / Restricted Run Time System March 15, 1990 2.1.1-1

...
.<~?~ ..

· :-:.:-:-:-:.:.:.:.:-:.:.:.:.:.:.:.:.

:-:-:-:.:.:-:.:.::: :;=:}}:/:::'

:·:::::\:·:·.··.••..·••:·.·••••.••·.:..•••.:. ·.·u/?/)::::::: ..

:::: .
.. :.:::

.:.:-: :..

·:~j)i:jj:)~)~:::)~tI~))~:~~:

.::)~~~~..::.:i.~;II!lillf'i
"::::::::::;::::::::::':':'" :"'::::':::::::::::.':'::;:::::::::::;:::::::::;:;::= ;.;.:;:;::: :::::::

• Registered / Restricted Run Time System March 15, 1990 2.1.1-1

Architecture
The Pink Run Time system will provide Pink with these capabilities

• Shared Libraries of code, providing for small applications, and for
updating the system without breaking applications.

• A storage allocator.

• Semaphores, for use in synchronizing multi-threaded applications.

• Exception handling, provided in conjunction with the C++ language.

• Libraries of classes that may be dynamically accessed during program

Complete

II Registered / Restricted Run Time System March 15, 1990 2.1.1-2

Architecture
The Pink Run Time system will provide Pink with these capabilities

• Shared Libraries of code, providing for small applications, and for
updating the system without breaking applications.

• A storage allocator.

• Semaphores, for use in synchronizing multi-threaded applications.

• Exception handling, provided in conjunction with the C++ language.

• Libraries of classes that may be dynamically accessed during program

Complete

II Registered / Restricted Run Time System March 15, 1990 2.1.1-2

ses

'*Registered /Restricted Utility Classes Thursday, March 1, 1990 2.1.2 - i

ses

'*Registered /Restricted Utility Classes Thursday, March 1, 1990 2.1.2 - i

Utility Classes

I hate data structures. You probably do
dealing \\;th the most common data c:.r...·,'r>r"'·o

you can because will get faster as
classes.

.&Registered. /Restricted Utility Classes Thursday, March 1, 1990 2.1.2-ii

Utility Classes

I hate data structures. You probably do
dealing \\;th the most common data c:.r...·,'r>r"'·o

you can because will get faster as
classes.

.&Registered. /Restricted Utility Classes Thursday, March 1, 1990 2.1.2-ii

Introduction

I hate data structures. You probably do too. Fortunately for you, Pink provides a set of classes for
dealing with the most common data structures you are likely to need. Use these classes whenever
you can because your code will get faster as we make perfonnance enhancem~ntsto these "utility"
classes.

The Utility Classes are roughly divided into two sections: the Collection classes and the CS101
classes. The Collection classes provide a set of classes somewhat equivalent to the collection classes
found in Smalltalk. These classes include sets, bags, dictionaries, stacks, deques, queues, priority
queues, dynamic Arrays, sorted sequences and run arrays. The Collection classes are implemented
using the CS101 classes which are "raw" data structure classes like hash tables, linked lists, heaps,
trees, etc. Most users of the Utility Classes should only use the Collection classes. The choice of
which collection class to use allows you to specify the kind of operations you expect to do on a data
set as well as some hints ~§.w...th~....~~.P.~~.t.~.d ...~i~Jt.9..f..th~ data set. The computer can then chqQ~~:J,be

::::::::::s:Ov:lil~llllllllllf,lt;,;;;;I;W

U

;;"

:~:'~r~;::~i~~~J~tj,se~~;;:'~~t~a~t:~:;I:~7111IPfthe ele~lfillfl:~ collection; I~~.::.: .•••.••.•••.!'!
:::::;:;:::::;::::::::" ::'.:.::~:~:~.:.:::'.::.:::.::.":'::"~":::~'::':".:;":".::.~'{ .. ":,:,.":.:.:.; .:.:.:::<:::;:::::::>\~(:
::::;::::::::.:.»:.:.:-: .:. '::::::::::::;:::::::;:::::::;:::::::::}::::;::;:" :- ..:.:-:::::::::-:«« .

~:~=~f~~!ll«t'fi~~~~it~~~~~:r~~:A:~~;!';I~~~~;:;I~,!::::~es
all maintain the orderofth¢'¢lem~rit~putinto them. Stacks have a poHby::th~t:j;h~rlhst element
added to it is the first element removed. Queues have a policy that the first element added is the
first element removed. Stacks and queues are good choices when the data you are managing follows
one of these policies. Deques are ordered (like stacks and queues) but there is no implicit element
removing policy; therefore, elements can be added at any place in the deque and removed in any
order. Deques, stacks and queues are all ordered by some external (to the elements) procedure. The
individual elements in these collections have no internal notion of order. Operations on stacks,
queues, and deques that involve adding/removing from the beginning or the end are all 0(1).
Operations on stacks, queues, or deques for arbitrary removing/querying are all O(N).

If the elements of the collection have an external notion of ordering based on an index then there are
two collections available for use. Dynamic Arrays allow elements to be associated with an index.
AddinglRetrieving elements to/from the collection at a specific index is 0(1). Growing the array is
very expensive. Run Arrays allow elements to be associated with an index. Run Arrays are very
efficient when there are long runs of the same elements at contiguous index values. All operations
on run arrays are O(logN).

• Registered /Restricted Utility Classes Thursday, March 1, 1990 2.1.2 - 1

Introduction

I hate data structures. You probably do too. Fortunately for you, Pink provides a set of classes for
dealing with the most common data structures you are likely to need. Use these classes whenever
you can because your code will get faster as we make perfonnance enhancem~ntsto these "utility"
classes.

The Utility Classes are roughly divided into two sections: the Collection classes and the CS101
classes. The Collection classes provide a set of classes somewhat equivalent to the collection classes
found in Smalltalk. These classes include sets, bags, dictionaries, stacks, deques, queues, priority
queues, dynamic Arrays, sorted sequences and run arrays. The Collection classes are implemented
using the CS101 classes which are "raw" data structure classes like hash tables, linked lists, heaps,
trees, etc. Most users of the Utility Classes should only use the Collection classes. The choice of
which collection class to use allows you to specify the kind of operations you expect to do on a data
set as well as some hints ~§.w...th~....~~.P.~~.t.~.d ...~i~Jt.9..f..th~ data set. The computer can then chqQ~~:J,be

::::::::::s:Ov:lil~llllllllllf,lt;,;;;;I;W

U

;;"

:~:'~r~;::~i~~~J~tj,se~~;;:'~~t~a~t:~:;I:~7111IPfthe ele~lfillfl:~ collection; I~~.::.: .•••.••.•••.!'!
:::::;:;:::::;::::::::" ::'.:.::~:~:~.:.:::'.::.:::.::.":'::"~":::~'::':".:;":".::.~'{ .. ":,:,.":.:.:.; .:.:.:::<:::;:::::::>\~(:
::::;::::::::.:.»:.:.:-: .:. '::::::::::::;:::::::;:::::::;:::::::::}::::;::;:" :- ..:.:-:::::::::-:«« .

~:~=~f~~!ll«t'fi~~~~it~~~~~:r~~:A:~~;!';I~~~~;:;I~,!::::~es
all maintain the orderofth¢'¢lem~rit~putinto them. Stacks have a poHby::th~t:j;h~rlhst element
added to it is the first element removed. Queues have a policy that the first element added is the
first element removed. Stacks and queues are good choices when the data you are managing follows
one of these policies. Deques are ordered (like stacks and queues) but there is no implicit element
removing policy; therefore, elements can be added at any place in the deque and removed in any
order. Deques, stacks and queues are all ordered by some external (to the elements) procedure. The
individual elements in these collections have no internal notion of order. Operations on stacks,
queues, and deques that involve adding/removing from the beginning or the end are all 0(1).
Operations on stacks, queues, or deques for arbitrary removing/querying are all O(N).

If the elements of the collection have an external notion of ordering based on an index then there are
two collections available for use. Dynamic Arrays allow elements to be associated with an index.
AddinglRetrieving elements to/from the collection at a specific index is 0(1). Growing the array is
very expensive. Run Arrays allow elements to be associated with an index. Run Arrays are very
efficient when there are long runs of the same elements at contiguous index values. All operations
on run arrays are O(logN).

• Registered /Restricted Utility Classes Thursday, March 1, 1990 2.1.2 - 1

If the elements have an internal notion of ordering then there are two choices of collections that you
can use. Priority Queues provide a collection where the elements are only partially ordered based on
some internal notion of ordering. For example, many applications require that elements are
processed in some order; however, not necessarily all at once or in fully sorted order. Examples of
this kind of collection could be found in an event scheduling system where the most urgent element
is always scheduled first. SortedSequences provide a collection where the elements are fully ordered
based on some internal notion of ordering. Of course, operations on sorted sequences are more
expensive than operations on a priority queue. This is because there is some overhead to pay for
maintaining the sorted sequence. Operations on priority queues are all O(logN). Operations 011
Sorted Sequences are also O(logN); however, there is significant overhead in the balancing
mechanism. Sorted Sequences are optimized for access speed at the expense of update speed CLe. it
is assumed that access happens more frequently than add or remove).

Unordered collections have no notion of ordering. Iterating through an unordered collection!~turns

.••••••••.•.•.•.•.•.•.••••••••••.•.•••••.•.• .. •••...•... ...,. . ••••••.:::~.::.~....~..:...~..r.:;.:~..:r:~.:.i::;...\.:~.:.I,;!'tlrjl·
.' \\<)::::\?/::::

···:::::::·.·2:::,:,··.:::•.::::,.: .t:::::::::::::::::::·

• Registered IRestricted Utility Classes Thursday, March 1, 1990 2.1.2 - 2

If the elements have an internal notion of ordering then there are two choices of collections that you
can use. Priority Queues provide a collection where the elements are only partially ordered based on
some internal notion of ordering. For example, many applications require that elements are
processed in some order; however, not necessarily all at once or in fully sorted order. Examples of
this kind of collection could be found in an event scheduling system where the most urgent element
is always scheduled first. SortedSequences provide a collection where the elements are fully ordered
based on some internal notion of ordering. Of course, operations on sorted sequences are more
expensive than operations on a priority queue. This is because there is some overhead to pay for
maintaining the sorted sequence. Operations on priority queues are all O(logN). Operations 011
Sorted Sequences are also O(logN); however, there is significant overhead in the balancing
mechanism. Sorted Sequences are optimized for access speed at the expense of update speed CLe. it
is assumed that access happens more frequently than add or remove).

Unordered collections have no notion of ordering. Iterating through an unordered collection!~turns

.••••••••.•.•.•.•.•.•.••••••••••.•.•••••.•.• .. •••...•... ...,. . ••••••.:::~.::.~....~..:...~..r.:;.:~..:r:~.:.i::;...\.:~.:.I,;!'tlrjl·
.' \\<)::::\?/::::

···:::::::·.·2:::,:,··.:::•.::::,.: .t:::::::::::::::::::·

• Registered IRestricted Utility Classes Thursday, March 1, 1990 2.1.2 - 2

Generic Objects

The class MCollectible defines the generic object class from which all other classes are derived. It
is an abstract class in that many subclasses will redefine some or all of the methods presented below.
MOrderableCollectible should be mixed into objects which might have to be ordered. If you wish
to use the utility classes, your objects should descend from one of these classes.

MCollectible

MCollectible

typedef boolean (MCollectible::* MCollectibleCompareFn) (const MCollectible*);
typedef long (MCollectible::* MCollectibleHashFn) ();

boolean MCollectible::IsSame(const MCollectible* obj)
The default function is a pointer comparison.

long MCollectible::Hash()
Returns a value suitable for use as a hashing probe for this. The default function will simply return
the address of the object. The default function is almost certainly not adequate if you are overriding
IsEqual because you need to make sure that all objects that "are equal" to each other return the

1. Bold type is used for methods which almost always should be overridden.

'*Registered /Restricted Utili ty Classes Thursday, March 1, 1990 2.1.2 - 3

Generic Objects

The class MCollectible defines the generic object class from which all other classes are derived. It
is an abstract class in that many subclasses will redefine some or all of the methods presented below.
MOrderableCollectible should be mixed into objects which might have to be ordered. If you wish
to use the utility classes, your objects should descend from one of these classes.

MCollectible

MCollectible

typedef boolean (MCollectible::* MCollectibleCompareFn) (const MCollectible*);
typedef long (MCollectible::* MCollectibleHashFn) ();

boolean MCollectible::IsSame(const MCollectible* obj)
The default function is a pointer comparison.

long MCollectible::Hash()
Returns a value suitable for use as a hashing probe for this. The default function will simply return
the address of the object. The default function is almost certainly not adequate if you are overriding
IsEqual because you need to make sure that all objects that "are equal" to each other return the

1. Bold type is used for methods which almost always should be overridden.

'*Registered /Restricted Utili ty Classes Thursday, March 1, 1990 2.1.2 - 3

same hash value. For example, a TText object would return a hash value computed using the
characters in the string instead of the address of the string.

boolean MCollectible::IsEqual(const MCollectible* obj)
Returns TRUE if obj is isomorphic to this. The default function will throw you into OpusBug and
give you a nasty message. For example, the IsEqual method for TText objects will do a string
comparison. All of the utility classes allow you to specify what method to use when comparing
objects for insertion, deletion, etc.

MCollectible*MCollectible::Clone() const
This method is declared and defined automatically when using the MCollectibleDeclarationsMacro.
It is always defined as { return new subclassName (*this); }. This provides a general
polymorphic duplication function.

.:.::;.;{~:~:(~:({{:::: ..
...-:.:-:::;.;.: .

Objects

c~~;!~;;:::::iil!~li;~'li!~!~ii;:::
virtual
virtual
inline
inline
inline
inline

typedef

:-:-:-: ::::;::::::.:-:.;.:.: .

.:.::.. .··::.):::::}tr.::t

.::::::::::}::

boolean MCOll~6t~~~i;~~ii~~~fThan(COnst MOrderab;:28i~~¢£iJ,>¥~i;~~~;
Returns TRUE if obj is "greateftba.n" this. The default function will th~~\V::Yoll into OpusBug and
give you a nasty message. For example, the IsGreaterThan method for TText objects will do a
string comparison.

boolean MCollectible::IsLessThan(const MOrderableCollectible* obj)
Returns TRUE if obj is "less than" this. The default function will throw you into OpusBug and give
you a nasty message. For example, the IsLessThan method for TText objects will do a string
comparison.

• Registered/Restricted Utility Classes Thursday, March 1, 1990 2.1.2 - 4

same hash value. For example, a TText object would return a hash value computed using the
characters in the string instead of the address of the string.

boolean MCollectible::IsEqual(const MCollectible* obj)
Returns TRUE if obj is isomorphic to this. The default function will throw you into OpusBug and
give you a nasty message. For example, the IsEqual method for TText objects will do a string
comparison. All of the utility classes allow you to specify what method to use when comparing
objects for insertion, deletion, etc.

MCollectible*MCollectible::Clone() const
This method is declared and defined automatically when using the MCollectibleDeclarationsMacro.
It is always defined as { return new subclassName (*this); }. This provides a general
polymorphic duplication function.

.:.::;.;{~:~:(~:({{:::: ..
...-:.:-:::;.;.: .

Objects

c~~;!~;;:::::iil!~li;~'li!~!~ii;:::
virtual
virtual
inline
inline
inline
inline

typedef

:-:-:-: ::::;::::::.:-:.;.:.: .

.:.::.. .··::.):::::}tr.::t

.::::::::::}::

boolean MCOll~6t~~~i;~~ii~~~fThan(COnst MOrderab;:28i~~¢£iJ,>¥~i;~~~;
Returns TRUE if obj is "greateftba.n" this. The default function will th~~\V::Yoll into OpusBug and
give you a nasty message. For example, the IsGreaterThan method for TText objects will do a
string comparison.

boolean MCollectible::IsLessThan(const MOrderableCollectible* obj)
Returns TRUE if obj is "less than" this. The default function will throw you into OpusBug and give
you a nasty message. For example, the IsLessThan method for TText objects will do a string
comparison.

• Registered/Restricted Utility Classes Thursday, March 1, 1990 2.1.2 - 4

Collection Classes

Collection classes are used to group objects in meaningful ways. The system provides
implementations of many of the collection classes from Smalltalk. Use these classes. They wi 11 get
faster, smaller, taste better, and less filling.

TSet

TRunArray

TCollection

TPriorityQueu

::::::::.:-:::.:::::::;:::::::::-::> .

. :. {(((: ..

testfn) i

Add(MCollectible* obj);
Add(TCollection* collection);
Remove(const MCollectible& obj);
RemoveAll();
DeleteAll()i
Count() const;
Member(const MCollectible& obj) const;
Createlterator() const;

...........
........ .;. .;.>;.>:-::::::::::;:;:::?::;:::;:; '.:.'..

public: ···:·:·:/..:.· .•U·· •••• ••••••••••• ·••••·••.. ·.: .••·/u·n)}}::::..

TCollection(MCoIi~8tIbi~CompareFn
virtual -TCollection();
virtual void
virtual void
virtual MCollectible*
virtual void
virtual void
virtual long
virtual MCollectible*
virtual Tlterator*

TCollection(MCollectibleCompareFn testfn)
Create a new TCollection. All future operations will use testfn for a comparison when needed.

• Registered /Restricted UtiIity Classes Thursday, March 1, 1990 2.1.2 - 5

Collection Classes

Collection classes are used to group objects in meaningful ways. The system provides
implementations of many of the collection classes from Smalltalk. Use these classes. They wi 11 get
faster, smaller, taste better, and less filling.

TSet

TRunArray

TCollection

TPriorityQueu

::::::::.:-:::.:::::::;:::::::::-::> .

. :. {(((: ..

testfn) i

Add(MCollectible* obj);
Add(TCollection* collection);
Remove(const MCollectible& obj);
RemoveAll();
DeleteAll()i
Count() const;
Member(const MCollectible& obj) const;
Createlterator() const;

...........
........ .;. .;.>;.>:-::::::::::;:;:::?::;:::;:; '.:.'..

public: ···:·:·:/..:.· .•U·· •••• ••••••••••• ·••••·••.. ·.: .••·/u·n)}}::::..

TCollection(MCoIi~8tIbi~CompareFn
virtual -TCollection();
virtual void
virtual void
virtual MCollectible*
virtual void
virtual void
virtual long
virtual MCollectible*
virtual Tlterator*

TCollection(MCollectibleCompareFn testfn)
Create a new TCollection. All future operations will use testfn for a comparison when needed.

• Registered /Restricted UtiIity Classes Thursday, March 1, 1990 2.1.2 - 5

virtual -TCollection()
Destroy the mother.

void TCollection::Add(MCollectible* obj)
Add obj to this.

void TCollection::Add(TCollection* collection)
Add all of the objects in collection to this. Essentially equivalent to getting an iterator for the
collection passed in and adding each element in the collection to this.

MCollectible* TCollection::Remove(const MCollectible& obj)
Remove obj from this. Return the object which was actually removed (which if you are using an
IsEqual test function may not be the same as the object passed in only "equal.")

long TCollectionJ&f¢..<?tl,nt () const

TBag ...;::::::::::,;.;-:.:.:::-:.;.; .
..

.~:~::::: ',',',...............•......
:::::::;:::::::;:::; -:.:;:::;:;:;:::;:::::;:::::;

the Hash () methodl'lIldthkf~:s:~~e() or IsEqual () method.2:-::::.:-:.. ..

const long klnitialBagSize;

class TBag: public TCollection
public:

TBag(MCollectibleCompareFn testFn = &MCollectible::lsSame,
long bagSizeGuess=klnitialBagSize);

virtual -TBag();
virtual void AddWithOccurrences(MCollectible* obj, long number);
virtual long OccurrencesOf(const MCollectible* obj) const;
virtual MCollectibleHashFn GetHashFunction (MCollectibleHashFn) const;

2. If you are using an IsEqual TBag, only the first object added that "is equal" to other objects
added is retained by the collection and returned as the result of calls to member, remove, etc.
This can make memory management awkward. Think about this when using an "is equal" bag.

• Registered/Restricted Utility Classes Thursday, March 1, 1990 2.1.2 - 6

virtual -TCollection()
Destroy the mother.

void TCollection::Add(MCollectible* obj)
Add obj to this.

void TCollection::Add(TCollection* collection)
Add all of the objects in collection to this. Essentially equivalent to getting an iterator for the
collection passed in and adding each element in the collection to this.

MCollectible* TCollection::Remove(const MCollectible& obj)
Remove obj from this. Return the object which was actually removed (which if you are using an
IsEqual test function may not be the same as the object passed in only "equal.")

long TCollectionJ&f¢..<?tl,nt () const

TBag ...;::::::::::,;.;-:.:.:::-:.;.; .
..

.~:~::::: ',',',...............•......
:::::::;:::::::;:::; -:.:;:::;:;:;:::;:::::;:::::;

the Hash () methodl'lIldthkf~:s:~~e() or IsEqual () method.2:-::::.:-:.. ..

const long klnitialBagSize;

class TBag: public TCollection
public:

TBag(MCollectibleCompareFn testFn = &MCollectible::lsSame,
long bagSizeGuess=klnitialBagSize);

virtual -TBag();
virtual void AddWithOccurrences(MCollectible* obj, long number);
virtual long OccurrencesOf(const MCollectible* obj) const;
virtual MCollectibleHashFn GetHashFunction (MCollectibleHashFn) const;

2. If you are using an IsEqual TBag, only the first object added that "is equal" to other objects
added is retained by the collection and returned as the result of calls to member, remove, etc.
This can make memory management awkward. Think about this when using an "is equal" bag.

• Registered/Restricted Utility Classes Thursday, March 1, 1990 2.1.2 - 6

virtual void SetHashFunction(MCollectibleHashFn) ;

TBag::TBag(MCollectibleCompareFn testFn, long bagSizeGuess);
Create a bag which can hold at least bagSizeGuess elements. BagSizeGuess-is used to determine
what implementation class to use for bag.

void TBag::AddWithOccurrences(MCollectible* obj, long number);
Add obj to this with number of occurences number.

long TBag::OccurrencesOf(const MCollectible* obj) const;
Return the number of occurences of obj in this. Zero indicates that obj is not in the bag.

TSet

MCollectibleHashFn TBag::GetHashFunction() const

Return the hash function;~~=ri!ltlil.ltI8~e .

.::~:~:?~:?:::::::::::.: ;:;"::::::::::::~:::~:::::::::::-:::::. :.:-::: '.'..

illfllll'\llillltl"iiftiliJ'Jilir,
:-:.:.>:-:

:-:-:-:-:.: .;)~~); :~/::::/:::>~

··;;tff~~tttIr{: :~:::::;:::;n~t:~:f:I~::I:~::::::::;~:~:}:/
cons t long kInit i a lSe t Si ze ; .::~:}}}}::::{):: \:;::: ::::::::::::::;:;:::::::::;;:::;:::f:("· :::::~;:: ..

\ttfttff \U:I::;::~::}:}j:::::::~::j!}~?::::}:: ...:::::::-::. ::r~:/{HW.W.>}:

c~:bS~~T~St:d==~1;ii~$:CatrieOFnn.. ~~11~1f= &MColl::~i~i~;I;;~SEqua 1,i .. ;'··
lon:¥:·::.¥@#·s.4:¢~§B@·~:~H!:!·nffit:[:K1SetSize) ; .::::::::::}:::: .:.;.;..:.;.:.

virtual -TSet () ; ·-:-::::\::.U::::,:.:::::;·W.U:j:···· .
virtual void Difference(const TSet& setl);
virtual void Difference(const TSet& setl, TSet& result);
virtual void Intersection(const TSet& setl);
virtual void Intersection(const TSet& setl, TSet& result);
virtual void Union(const TSet& setl);
virtual void Union(const TSet& setl, TSet& result);
virtual void Xor(const TSet& setl);
virtual void Xor(const TSet& setl, TSet& result);
virtual MCollectibleHashFn GetHashFunction(MCollectibleHashFn) const;
virtual void SetHashFunction(MCollectibleHashFn);

TSet::TSet(MCollectibleCompareFn testFn, long setSizeGuess);
Create a set which can hold at least setSizeGuess elements. SetSizeGuess is used to determine what
implementation class to use for set.

..Registered / Restricted Utility Classes Thursday, March I, 1990 2.1.2 - 7

virtual void SetHashFunction(MCollectibleHashFn) ;

TBag::TBag(MCollectibleCompareFn testFn, long bagSizeGuess);
Create a bag which can hold at least bagSizeGuess elements. BagSizeGuess-is used to determine
what implementation class to use for bag.

void TBag::AddWithOccurrences(MCollectible* obj, long number);
Add obj to this with number of occurences number.

long TBag::OccurrencesOf(const MCollectible* obj) const;
Return the number of occurences of obj in this. Zero indicates that obj is not in the bag.

TSet

MCollectibleHashFn TBag::GetHashFunction() const

Return the hash function;~~=ri!ltlil.ltI8~e .

.::~:~:?~:?:::::::::::.: ;:;"::::::::::::~:::~:::::::::::-:::::. :.:-::: '.'..

illfllll'\llillltl"iiftiliJ'Jilir,
:-:.:.>:-:

:-:-:-:-:.: .;)~~); :~/::::/:::>~

··;;tff~~tttIr{: :~:::::;:::;n~t:~:f:I~::I:~::::::::;~:~:}:/
cons t long kInit i a lSe t Si ze ; .::~:}}}}::::{):: \:;::: ::::::::::::::;:;:::::::::;;:::;:::f:("· :::::~;:: ..

\ttfttff \U:I::;::~::}:}j:::::::~::j!}~?::::}:: ...:::::::-::. ::r~:/{HW.W.>}:

c~:bS~~T~St:d==~1;ii~$:CatrieOFnn.. ~~11~1f= &MColl::~i~i~;I;;~SEqua 1,i .. ;'··
lon:¥:·::.¥@#·s.4:¢~§B@·~:~H!:!·nffit:[:K1SetSize) ; .::::::::::}:::: .:.;.;..:.;.:.

virtual -TSet () ; ·-:-::::\::.U::::,:.:::::;·W.U:j:···· .
virtual void Difference(const TSet& setl);
virtual void Difference(const TSet& setl, TSet& result);
virtual void Intersection(const TSet& setl);
virtual void Intersection(const TSet& setl, TSet& result);
virtual void Union(const TSet& setl);
virtual void Union(const TSet& setl, TSet& result);
virtual void Xor(const TSet& setl);
virtual void Xor(const TSet& setl, TSet& result);
virtual MCollectibleHashFn GetHashFunction(MCollectibleHashFn) const;
virtual void SetHashFunction(MCollectibleHashFn);

TSet::TSet(MCollectibleCompareFn testFn, long setSizeGuess);
Create a set which can hold at least setSizeGuess elements. SetSizeGuess is used to determine what
implementation class to use for set.

..Registered / Restricted Utility Classes Thursday, March I, 1990 2.1.2 - 7

void TSet::Difference(const TSet& setl);
Destructively modify this to contain a set of elements of this that do not appear in set 1.

void TSet::Difference(const TSet& setl, TSet& result);
After this function is called, result will contain a set of elements of this th,at do not appear in
setl.

void TSet::lntersection(const TSet& setl);
Destructively modify this to contain everything that is an element of setl and this.

void TSet::lntersection(const TSet& setl, TSet& result);
After this function is called, result will contain everything that is an element of setl and this.

void TSet::Union(const TSet& setl);
Destructively modify this.W:.:~9.9J~:~J.~J~Y~n1bip:g.Jb.?.tjsan element of setl or this. . :

.·.·.::::::)f~:~:~{:}{:::::::-:·:···

.;·::·:::t:~:;~~~:.:.:::::::·:·:::·:· <.•.:..•:::::.. ~:.:.~: \: •.~..:\:.::..:..:::...•. ·.:mu>:':···
:}::::: :-;.;.:-; .. ,.-.<,'< '

TDictionary

The class TDictionary is a subclass of TCollection. It represents a collection of paired objects
(associations). Because dictionaries are sometimes used to represent a bijective mapping, functions
for retrieving a key given a value are provided along with the usual access functions (however, this
will probably be slow). Objects which are inserted into the TDictionary should override the
Hash () method and the IsSame () or IsEqual () method. These are used internally by the
TDictionary class. Note: Iterators on the TDictionary class return objects of class TAssoc.

const long klnitialDictionarySize;

class TDictionary: public TCollection
public:

TDictionary(MCollectibleCompareFn testFn = &MCollectible: : IsEqual,

• Registered/Restricted. Utility Classes Thursday, March 1, 1990 2.1.2 - 8

void TSet::Difference(const TSet& setl);
Destructively modify this to contain a set of elements of this that do not appear in set 1.

void TSet::Difference(const TSet& setl, TSet& result);
After this function is called, result will contain a set of elements of this th,at do not appear in
setl.

void TSet::lntersection(const TSet& setl);
Destructively modify this to contain everything that is an element of setl and this.

void TSet::lntersection(const TSet& setl, TSet& result);
After this function is called, result will contain everything that is an element of setl and this.

void TSet::Union(const TSet& setl);
Destructively modify this.W:.:~9.9J~:~J.~J~Y~n1bip:g.Jb.?.tjsan element of setl or this. . :

.·.·.::::::)f~:~:~{:}{:::::::-:·:···

.;·::·:::t:~:;~~~:.:.:::::::·:·:::·:· <.•.:..•:::::.. ~:.:.~: \: •.~..:\:.::..:..:::...•. ·.:mu>:':···
:}::::: :-;.;.:-; .. ,.-.<,'< '

TDictionary

The class TDictionary is a subclass of TCollection. It represents a collection of paired objects
(associations). Because dictionaries are sometimes used to represent a bijective mapping, functions
for retrieving a key given a value are provided along with the usual access functions (however, this
will probably be slow). Objects which are inserted into the TDictionary should override the
Hash () method and the IsSame () or IsEqual () method. These are used internally by the
TDictionary class. Note: Iterators on the TDictionary class return objects of class TAssoc.

const long klnitialDictionarySize;

class TDictionary: public TCollection
public:

TDictionary(MCollectibleCompareFn testFn = &MCollectible: : IsEqual,

• Registered/Restricted. Utility Classes Thursday, March 1, 1990 2.1.2 - 8

canst;

key,

Remove(canst MCollectible& ~ey);

DeleteKey(MCollectible* key);
DeleteAllKeys() i

DeleteAllValues();
AddKeyValuePair(const MCallectible*

MCollectible* val,
boolean replace = TRUE) ;

GetHashFunction(MCallectibleHashFn)
SetHashFunction(MCollectibleHashFn) ;

long dictionarySizeGuess=klnitiaIDictionarySize) i

.... TDictionary()i
MCollectible* ValueAt(const MCollectible& key) canst;
const MCollectible* KeyAt(const MCollectible& val) canst;
MCollectible*
MCollectible*
void
void
void

virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual

virtual MCollectibleHashFn
virtual void

.........:.:.:-:-:.;.;-:.:.:.•........;. .

. .

.;:~~~~~\{~ :})\~{{:~::::::::::

Ifreplace=FALSEHletJ.()BI~~<i4~~y~:value pair to the table if there is;n6Mgij.:~~$pilWfkey,valuepair.
Otherwise, if replace=TRUE;>a:d:d"the key, value pair to the hash table. Eifher:·~a:y, return the key
that existed (if any) in the hash table before this call. Proper memory management may involve
checking to see if the key returned is "the same" as the key passed in when replacing key, value
pairs.

void TDictionary::DeleteAlIKeys()
Remove all of the entries in the dictionary. Reset the count to be zero. Call the destructor on every
key in the dictionary.

void TDictionary::DeleteAIIValues()
Remove all of the entries in the dictionary. Reset the count to be zero. Call the destructor on every
value in the hash table. Ifyou have a value which appears more than once, you will be sorry you
used this method because the utility classes will delete the same object more than once. This is not
good.

• Registered/Restricted UtiIity Classes Thursday, March 1, 1990 2.1.2-9

canst;

key,

Remove(canst MCollectible& ~ey);

DeleteKey(MCollectible* key);
DeleteAllKeys() i

DeleteAllValues();
AddKeyValuePair(const MCallectible*

MCollectible* val,
boolean replace = TRUE) ;

GetHashFunction(MCallectibleHashFn)
SetHashFunction(MCollectibleHashFn) ;

long dictionarySizeGuess=klnitiaIDictionarySize) i

.... TDictionary()i
MCollectible* ValueAt(const MCollectible& key) canst;
const MCollectible* KeyAt(const MCollectible& val) canst;
MCollectible*
MCollectible*
void
void
void

virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual

virtual MCollectibleHashFn
virtual void

.........:.:.:-:-:.;.;-:.:.:.•........;. .

. .

.;:~~~~~\{~ :})\~{{:~::::::::::

Ifreplace=FALSEHletJ.()BI~~<i4~~y~:value pair to the table if there is;n6Mgij.:~~$pilWfkey,valuepair.
Otherwise, if replace=TRUE;>a:d:d"the key, value pair to the hash table. Eifher:·~a:y, return the key
that existed (if any) in the hash table before this call. Proper memory management may involve
checking to see if the key returned is "the same" as the key passed in when replacing key, value
pairs.

void TDictionary::DeleteAlIKeys()
Remove all of the entries in the dictionary. Reset the count to be zero. Call the destructor on every
key in the dictionary.

void TDictionary::DeleteAIIValues()
Remove all of the entries in the dictionary. Reset the count to be zero. Call the destructor on every
value in the hash table. Ifyou have a value which appears more than once, you will be sorry you
used this method because the utility classes will delete the same object more than once. This is not
good.

• Registered/Restricted UtiIity Classes Thursday, March 1, 1990 2.1.2-9

MCollectibleHashFn TDictionary::GetHashFunction() const
Return the hash function being used by the hash table.

void TDictionary::SetHashFunction(MCollectibleHashFn)
Set which member function (of the objects in the dictionary) to call as a has~ function. By default,
this is set to &MCollectible: : Hash (which is usually overridden in the objects you are adding to
the hash table). You can use any hash function that you like as long as it has the type signature of
MCollectibleHashFn (which is basically a method taking no parameters and returning a long).
Most of the time, you won't need to do this.

TPriorityQueue

A TPriorityQueue is a subclass OfTCollection which keeps the elements of the collection
partially ordered based oq.:-$Qro.~J).:r:4.~riAgJ\HW:1J.QJ.}.:,:::::J)riorityqueues are often used wheIJ:Y:9~::mW3t

\:.-:.:-.-:.:.:.:.:.:.:.: :::::.;.:.:-~:~:: .

.;::::;:: ;:: :::::::::::::;:;:::::::.:.:

... :«.;.:-:.:::::;:::;::::>

M~::~:~:::t:::,:!::··:.:·::2-:::::

fn) ;

TPriorityQueue::TPriorityQueue(MOrderableCollectibleCompareFn testFn);
Create a new priority queue. Use testFn to determine whether larger objects are removed first or
last. A test of IsLessThan means that larger objects are removed first and smaller objects are
removed last. A test of IsGreaterThan reverses this.

void TPriorityQueue::lnsert(MOrderableCollectible* obj);
Insert obj in this and return it as a result.

MOrderableCollectible* TPriorityQueue::pop();
Remove the object with the "highest" priority from the priority queue and return it.

MOrderableCollectible* TPriorityQueue::Peek() const;
R.eturnthe object with the "highest" priority from the priority queue but don't remove it.

• Registered /Restricted Utility Classes Thursday, March 1, 1990 2.1.2 - 10

MCollectibleHashFn TDictionary::GetHashFunction() const
Return the hash function being used by the hash table.

void TDictionary::SetHashFunction(MCollectibleHashFn)
Set which member function (of the objects in the dictionary) to call as a has~ function. By default,
this is set to &MCollectible: : Hash (which is usually overridden in the objects you are adding to
the hash table). You can use any hash function that you like as long as it has the type signature of
MCollectibleHashFn (which is basically a method taking no parameters and returning a long).
Most of the time, you won't need to do this.

TPriorityQueue

A TPriorityQueue is a subclass OfTCollection which keeps the elements of the collection
partially ordered based oq.:-$Qro.~J).:r:4.~riAgJ\HW:1J.QJ.}.:,:::::J)riorityqueues are often used wheIJ:Y:9~::mW3t

\:.-:.:-.-:.:.:.:.:.:.:.: :::::.;.:.:-~:~:: .

.;::::;:: ;:: :::::::::::::;:;:::::::.:.:

... :«.;.:-:.:::::;:::;::::>

M~::~:~:::t:::,:!::··:.:·::2-:::::

fn) ;

TPriorityQueue::TPriorityQueue(MOrderableCollectibleCompareFn testFn);
Create a new priority queue. Use testFn to determine whether larger objects are removed first or
last. A test of IsLessThan means that larger objects are removed first and smaller objects are
removed last. A test of IsGreaterThan reverses this.

void TPriorityQueue::lnsert(MOrderableCollectible* obj);
Insert obj in this and return it as a result.

MOrderableCollectible* TPriorityQueue::pop();
Remove the object with the "highest" priority from the priority queue and return it.

MOrderableCollectible* TPriorityQueue::Peek() const;
R.eturnthe object with the "highest" priority from the priority queue but don't remove it.

• Registered /Restricted Utility Classes Thursday, March 1, 1990 2.1.2 - 10

MOrderableCollectible* TPriorityQueue::Replace(MOrderableCollectible* abj);
Roughly equivalent to inserting the obj into the priority queue and then removing the object with the
highest prioriy.

MCallectibleCornpareFn TPriorityQueue: :GetEqualityCornparisonFunctian() canst
Return the equality comparison function being used by the priority queue. '

void TPriorityQueue::SetEqualityCornparisonFunction(MCollectibleCornpareFn)
Set which member function to call as the equality comparison function when removing objects from
the queue, checking to see whether a given object is a member, etc. This defaults to IsEqual. Most
of the time you won't want to change this.

TSequence

:l:::~::::sn:~b:.II'll)lll[l~whose elements are ord~~:.;;;;;;l;:F ...

P7t~~Ci:~ :~~~~i~~~~~:: ::~~~~ ~~:~~tM~~~~~.~.df~1111'~~;~;:~~~;
virtua1 ~:)tt::\:::::::::::.

virtual
virtual
virtual
virtual
virtual . :: "

:::<:.:.:.:.:-:.})::=-=:::::;::.:::.: .
::}:::(~~:}~:::::::::::::}:::::::::::::::

:;::::::::::::::::::::::::~~~;{~~~{{:~~~~r~)t: "::/:.:.:::::::::::::::::::::~:::::::::~:::::~:~:: ..
:::~:::~:~:~:}~:~:; :~:~:::~:~:: ::::::.:.-.

MCollectible* TSequence: :After (cori~\~ktm¢pllecti.R+§~\:I\~J#§J.)const······················ d

•

Return the object found after obj in this or::i~t®tl!!tobj is th¥]g~~@~p.jggt.in this or···a6·t.~:r8U:dd..:;:::·:

~~~~:ne~:ei:~~(~liK_ii;~~;~~:~~ii.r"t~~~~;~:;~,iii(~ltCi~n::iS .Jlil;I~~d:
MCollectible *:::±§~qu~l"lS~f.::~lf·.iI¥:~:~}fr:::cons t ".::::::.: .. ...
Return the first objectiriH:.his/<:::::::· ...:::::::::?::::::::::::::::

MCollectible* TSequence::Last() const
Return the last object in this.

void TSequence::Concatenate(TSequence* aCollection)
Concatenate aCollection onto the end of this.

long TSequence::OccurrencesOf(const MCollectible& obj) const
Return the number of times obj is in this.

void TSequence: :Reverse()
this is destructively turned into a collection which contains the same elements as this, but with
the order of the elements reversed.

_Registered/Restricted Utility Classes ~ursd.ay, March 1, 1990 2.1.2 - 11

MOrderableCollectible* TPriorityQueue::Replace(MOrderableCollectible* abj);
Roughly equivalent to inserting the obj into the priority queue and then removing the object with the
highest prioriy.

MCallectibleCornpareFn TPriorityQueue: :GetEqualityCornparisonFunctian() canst
Return the equality comparison function being used by the priority queue. '

void TPriorityQueue::SetEqualityCornparisonFunction(MCollectibleCornpareFn)
Set which member function to call as the equality comparison function when removing objects from
the queue, checking to see whether a given object is a member, etc. This defaults to IsEqual. Most
of the time you won't want to change this.

TSequence

:l:::~::::sn:~b:.II'll)lll[l~whose elements are ord~~:.;;;;;;l;:F ...

P7t~~Ci:~ :~~~~i~~~~~:: ::~~~~ ~~:~~tM~~~~~.~.df~1111'~~;~;:~~~;
virtua1 ~:)tt::\:::::::::::.

virtual
virtual
virtual
virtual
virtual . :: "

:::<:.:.:.:.:-:.})::=-=:::::;::.:::.: .
::}:::(~~:}~:::::::::::::}:::::::::::::::

:;::::::::::::::::::::::::~~~;{~~~{{:~~~~r~)t: "::/:.:.::: ....::::::::::::::::::~:::::::::~:::::~:~:: ..
:::~:::~:~:~:}~:~:; :~:~:::~:~:: ::::::.:.-.

MCollectible* TSequence: :After (cori~\~ktm¢pllecti.R+§~\:I\~J#§J.)const······················ d

•

Return the object found after obj in this or::i~t®tl!!tobj is th¥]g~~@~p.jggt.in this or···a6·t.~:r8U:dd..:;:::·:

~~~~:ne~:ei:~~(~liK_ii;~~;~~:~~ii.r"t~~~~;~:;~,iii(~ltCi~n::iS .Jlil;I~~d:
MCollectible *:::±§~qu~l"lS~f.::~lf·.iI¥:~:~}fr:::cons t ".::::::.:
Return the first objectiriH:.his/<:::::::· ...:::::::::?::::::::::::::::

MCollectible* TSequence::Last() const
Return the last object in this.

void TSequence::Concatenate(TSequence* aCollection)
Concatenate aCollection onto the end of this.

long TSequence::OccurrencesOf(const MCollectible& obj) const
Return the number of times obj is in this.

void TSequence: :Reverse()
this is destructively turned into a collection which contains the same elements as this, but with
the order of the elements reversed.

_Registered/Restricted Utility Classes ~ursd.ay, March 1, 1990 2.1.2 - 11

TSequencelterator* TCollection::Sequencelterator() const
This method returns a new sequence iterator which is suitable for use in iterating over the objects in
the collection. Sequence iterators differ from normal iterators in that they can start at the last object
or the first object and go in either direction. See the special section on iterators on page 35.

TDeque

A TDeque is a subclass of TSequence which is ordered based on the order elements are added to or
removed from the collection. Objects which are inserted into the TDeque should override the ~

IsSame () or IsEqual () method.

class TDeque: public TSequence
public:

~v;J.:'~rft~u;a~l~MCM:~C~~O~;l:UlCe:::~..::::::..:·..:::::.:;.::;o.;;.:~:.:~:.,;.:.:.:\:::•.:::::.::..:b:.::L.:+:.:.::·.::•.:..:•.::
t
.:.:,:.:.::.I:.:.:.::e:.::I.~~:.::i:.::.:..:•.:.:::C.:,/!;S.•::•..:.::I.:::.::.•.::..:p.:"",:.:.:.:.:•..::.:.:.:mP:::.:.:•.:..:I..:.:•...::.::.:.:::.•:...:•...:.:•.:..:~o.::·::.:.:..~::.::•.:::~~.:•.::•..:•...:r..:·::.dffirtol..:.::·.::.::e..:·::E...:·..~l'S::.::·::F...:•.::•..::.:~~.:.::.::..:n..:"'.:.:;.•..:.:r.:LS.::~..:•...·:•.:.:.:.:•..:::.:::.T-.:.::.::t.;:::.:.:.:iO..:.~::.::I.:e::.:.::M...:.:.::<;.::'::~::•.:M.:..:¢...#:·..:•..::•.::t:.:•.:..:e::.:.::.:•.:'.f..l.:F:.•:::~.:::[~::.:.::n:.:,.:..:.:::.[):.:.:,.:~:~~M~~~l:l*eO~~~Jb);l,.e: : I::::;i)~;ii;;~;!,·ii;iM>.

virtua1MCollli.it:~;: ;=~~:;~;:~~); ...;...::..:{\:.:\~l\~~.I.I·~I..I.II..I.I.~,lllr;;li ..
<;:;:::.:-:.:-

virtual void :::n::, AddAfter (const MCollecti~~e&··'e~i;stobj,
::::::::::;:::"

virtual

-:-:.:.:-: :-:. ~.::.:.[.~...j..j:~....~:"~:::~:' ~:\:l:::.
~<{:~r .;.:-:. ::;:;:::::::::::

'.:;:;:;::-:.'.-:'
:.:.:.:;::::::::::::.....•....::::::.:-:<.:.:.:-;.:.:

.:::::;:;::;;::}~~~{{~\::::::::::;:::::::::;: :::::::>:::::::::::;::::;::::.;.: ...:.....

Remove the fir.~#\:9.pj~~~j~this and return i#g~)Ji result. Ret_mNI'tM'r::the col1ectiqH::~~':~:mp'#Y:

~d~~h:D;e~:I_~~~~'II~~i~~~(~~~~~.le& exis t ~j~;~!~t~!~~~i;;~~;~:m~J~~~i;(
void TDeque::AddBefore(const MCollectible& exist, MCollectible* new)
Add the new object before exist in the collection.

void TDeque::AddLast(MCollectible* obj)
Add ob j as the last object in the collection.

void TDeque::AddFirst(MCollectible* obj)
Add obj as the first object in the collection.

TStack

A TStack is subclass of TSequence in which the last item added to the stack is the first item taken
out of the stack (LIFO). Objects which are inserted into the TStack should override the IsSame ()
or IsEqual () method. The iterator for a stack will return objects in the order they would be

.Registered/Restricted Utility Classes Thursday, March 1,1990 2.1.2 - 12

TSequencelterator* TCollection::Sequencelterator() const
This method returns a new sequence iterator which is suitable for use in iterating over the objects in
the collection. Sequence iterators differ from normal iterators in that they can start at the last object
or the first object and go in either direction. See the special section on iterators on page 35.

TDeque

A TDeque is a subclass of TSequence which is ordered based on the order elements are added to or
removed from the collection. Objects which are inserted into the TDeque should override the ~

IsSame () or IsEqual () method.

class TDeque: public TSequence
public:

~v;J.:'~rft~u;a~l~MCM:~C~~O~;l:UlCe:::~..::::::..:·..:::::.:;.::;o.;;.:~:.:~:.,;.:.:.:\:::•.:::::.::..:b:.::L.:+:.:.::·.::•.:..:•.::
t
.:.:,:.:.::.I:.:.:.::e:.::I.~~:.::i:.::.:..:•.:.:::C.:,/!;S.•::•..:.::I.:::.::.•.::..:p.:"",:.:.:.:.:•..::.:.:.:mP:::.:.:•.:..:I..:.:•...::.::.:.:::.•:...:•...:.:•.:..:~o.::·::.:.:..~::.::•.:::~~.:•.::•..:•...:r..:·::.dffirtol..:.::·.::.::e..:·::E...:·..~l'S::.::·::F...:•.::•..::.:~~.:.::.::..:n..:"'.:.:;.•..:.:r.:LS.::~..:•...·:•.:.:.:.:•..:::.:::.T-.:.::.::t.;:::.:.:.:iO..:.~::.::I.:e::.:.::M...:.:.::<;.::'::~::•.:M.:..:¢...#:·..:•..::•.::t:.:•.:..:e::.:.::.:•.:'.f..l.:F:.•:::~.:::[~::.:.::n:.:,.:..:.:::.[):.:.:,.:~:~~M~~~l:l*eO~~~Jb);l,.e: : I::::;i)~;ii;;~;!,·ii;iM>.

virtua1MCollli.it:~;: ;=~~:;~;:~~); ...;...::..:{\:.:\~l\~~.I.I·~I..I.II..I.I.~,lllr;;li ..
<;:;:::.:-:.:-

virtual void :::n::, AddAfter (const MCollecti~~e&··'e~i;stobj,
::::::::::;:::"

virtual

-:-:.:.:-: :-:. ~.::.:.[.~...j..j:~....~:"~:::~:' ~:\:l:::.
~<{:~r .;.:-:. ::;:;:::::::::::

'.:;:;:;::-:.'.-:'
:.:.:.:;::::::::::::.....•....::::::.:-:<.:.:.:-;.:.:

.:::::;:;::;;::}~~~{{~\::::::::::;:::::::::;: :::::::>:::::::::::;::::;::::.;.: ...:.....

Remove the fir.~#\:9.pj~~~j~this and return i#g~)Ji result. Ret_mNI'tM'r::the col1ectiqH::~~':~:mp'#Y:

~d~~h:D;e~:I_~~~~'II~~i~~~(~~~~~.le& exis t ~j~;~!~t~!~~~i;;~~;~:m~J~~~i;(
void TDeque::AddBefore(const MCollectible& exist, MCollectible* new)
Add the new object before exist in the collection.

void TDeque::AddLast(MCollectible* obj)
Add ob j as the last object in the collection.

void TDeque::AddFirst(MCollectible* obj)
Add obj as the first object in the collection.

TStack

A TStack is subclass of TSequence in which the last item added to the stack is the first item taken
out of the stack (LIFO). Objects which are inserted into the TStack should override the IsSame ()
or IsEqual () method. The iterator for a stack will return objects in the order they would be

.Registered/Restricted Utility Classes Thursday, March 1,1990 2.1.2 - 12

returned if repeated Pops were issued to the stack.

class TStack: public TSequence {
public:

TStack(MCollectibleCompareFn testFn &MCollectible::IsSpme);
virtual -TStack();
virtual MCollectible* Pop();
virtual void Push(MCollectible* obj);

TStack::TStack(MCollectibleCompareFn testFn)
Create a new stack.

·{:j~r{
...........

void TStack::Push(MCollectible* obj);
Add the object to the top of...~h.~ §~£.Js.~ - _ _._ _

MCollectible* Tstac¥tllltll~\,!I!I'llltllllll'r
Remove the object on ~;IIIIIIIIIIJ,I[tlfi~

TQueue

A TQueue is a subcla:~$~::Af~$:$:¢~:i#$¢.:jJt which the first item
taken out of the qu~~~!~lmFQ)~~!i!~!!j~Qmi~j!!Wh!~pare inserted

:~~~~i:c~::::~::~~!!ltllli:~ea
TQueue (MCollectibleCompareFn t::~n~tm~(:)=

~~~;~:~ ;::::i[~::::~.. ~~:~ ~~.,::~J'~ ible*

TQueue: : TQueu:¢::O~qQ++$¢:t:@:§+@gqmp~#eFn testFn);
Create a new queUEkY>:::::': '.' ":"::-.::-::'::'::':'::-::.:.:-:-:.:.:.-.,

void TQueue::Insert(MCollectible* obj);
Add an object to the queue.

MCollectible* TQueue::Pop();
Remove the oldest object in the queue (First In, First Out). Return NIL if nothing is in the queue.

TSortedSequence

A TSortedSequence is a subclass of TSequence in which all of the objects in the collection always
remain sorted. New objects will be inserted in sorted order. All objects in the sequence must be
MOrderableCollectibles. There is considerable debate at this point as to whether this class
really should be a subclass of TSequence since it relies on the good nature of the user to supply
MOrderableCollectibles on the way in. Objects which are inserted into the TSortedSequence

• Registered / Restrieted Utility Classes Thursday, Mareh 1, 1990 2.1.2 - 13

returned if repeated Pops were issued to the stack.

class TStack: public TSequence {
public:

TStack(MCollectibleCompareFn testFn &MCollectible::IsSpme);
virtual -TStack();
virtual MCollectible* Pop();
virtual void Push(MCollectible* obj);

TStack::TStack(MCollectibleCompareFn testFn)
Create a new stack.

·{:j~r{
...........

void TStack::Push(MCollectible* obj);
Add the object to the top of...~h.~ §~£.Js.~ - _ _._ _

MCollectible* Tstac¥tllltll~\,!I!I'llltllllll'r
Remove the object on ~;IIIIIIIIIIJ,I[tlfi~

TQueue

A TQueue is a subcla:~$~::Af~$:$:¢~:i#$¢.:jJt which the first item
taken out of the qu~~~!~lmFQ)~~!i!~!!j~Qmi~j!!Wh!~pare inserted

:~~~~i:c~::::~::~~!!ltllli:~ea
TQueue (MCollectibleCompareFn t::~n~tm~(:)=

~~~;~:~ ;::::i[~::::~.. ~~:~ ~~.,::~J'~ ible*

TQueue: : TQueu:¢::O~qQ++$¢:t:@:§+@gqmp~#eFn testFn);
Create a new queUEkY>:::::': '.' ":"::-.::-::'::'::':'::-::.:.:-:-:.:.:.-.,

void TQueue::Insert(MCollectible* obj);
Add an object to the queue.

MCollectible* TQueue::Pop();
Remove the oldest object in the queue (First In, First Out). Return NIL if nothing is in the queue.

TSortedSequence

A TSortedSequence is a subclass of TSequence in which all of the objects in the collection always
remain sorted. New objects will be inserted in sorted order. All objects in the sequence must be
MOrderableCollectibles. There is considerable debate at this point as to whether this class
really should be a subclass of TSequence since it relies on the good nature of the user to supply
MOrderableCollectibles on the way in. Objects which are inserted into the TSortedSequence

• Registered / Restrieted Utility Classes Thursday, Mareh 1, 1990 2.1.2 - 13

should override the IsEqual () f IsLessThan () and IsGreaterThan () methods.

class TSortedSequence: public TSequence {
public:

TSortedSequence(MOrderableCornpareFn testFn
virtual -TSortedSequence()i

&MCollectiple::IsLessThan) ;

TSortedSequence::TSortedSequence(MOrderableCornpareFn testFn);
Create a new sorted sequence. .

TlndexedSequence

A TIndexedSequence is ..(~l::r.tJ:l.P~.tr.~~.t~g.p.~.r~l9:.§.§Jqr. ..conections whose elements are order.~4:<~:I)JLcan

~::::d:::::::::;ll"lllllllt:;i:j;!;;!;}U;
pub1ic ::,:::::::::/

virtual MColl~9:~ible* Fill (MCollectible*
virtual long)::::'::::/. LowBound() consti
virtual
virtual
virtual
virtual

virtual
virtual

virtual boolean
..

..

.. ··:~:~:Itt/::::· .. .;.;.;.:-:-:.:.;.:-:.:::;.:::::.::;::.:::::=:.;:::

~:~ I~~:eo~&~
long TIndexedSequence::LowBound()i
Return the index of the lowest bound in this collection.

long TIndexedSequence::HighBound();
Return the index of the highest bound in this collection.

MCollectible* TIndexedSequence::At(long index) const;
Return the object in this at the index. If index is past the end of this then FAIL.

MCollectible* TIndexedSequence::AtPut(long index, MCollectible* obj) i

Add the obj to this at the index. The object that was previously at this index is returned from
AtPut. If index is past the end of the collection then FAIL and do not add this object to the
collection.

• Registered IRestricted Utility Classes Thursday, March 1, 1990 2.1.2 - 14

should override the IsEqual () f IsLessThan () and IsGreaterThan () methods.

class TSortedSequence: public TSequence {
public:

TSortedSequence(MOrderableCornpareFn testFn
virtual -TSortedSequence()i

&MCollectiple::IsLessThan) ;

TSortedSequence::TSortedSequence(MOrderableCornpareFn testFn);
Create a new sorted sequence. .

TlndexedSequence

A TIndexedSequence is ..(~l::r.tJ:l.P~.tr.~~.t~g.p.~.r~l9:.§.§Jqr. ..conections whose elements are order.~4:<~:I)JLcan

~::::d:::::::::;ll"lllllllt:;i:j;!;;!;}U;
pub1ic ::,:::::::::/

virtual MColl~9:~ible* Fill (MCollectible*
virtual long)::::'::::/. LowBound() consti
virtual
virtual
virtual
virtual

virtual
virtual

virtual boolean
..

..

.. ··:~:~:Itt/::::· .. .;.;.;.:-:-:.:.;.:-:.:::;.:::::.::;::.:::::=:.;:::

~:~ I~~:eo~&~
long TIndexedSequence::LowBound()i
Return the index of the lowest bound in this collection.

long TIndexedSequence::HighBound();
Return the index of the highest bound in this collection.

MCollectible* TIndexedSequence::At(long index) const;
Return the object in this at the index. If index is past the end of this then FAIL.

MCollectible* TIndexedSequence::AtPut(long index, MCollectible* obj) i

Add the obj to this at the index. The object that was previously at this index is returned from
AtPut. If index is past the end of the collection then FAIL and do not add this object to the
collection.

• Registered IRestricted Utility Classes Thursday, March 1, 1990 2.1.2 - 14

boolean TlndexedSequence::Find(const MCollectible* obj, long& findresult,
long start=O, long end=O) ;

If there is an object in this which IsSame or IsEqual (depending on the test function for the indexed
sequence) to obj then return TRUE and set findresult equal to the index of the object. Otherwise
return FALSE. If start or end is specified (as longs), these are used to determine where in the
collection to start and end searching.

MCollectible* TlndexedSequence::Atlnsert(long index, MCollectible* obj);
Insert the obj into the TlndexedSequence at the specified index. Effectively, the indexed sequence
is grown one object. If index is out of the bounds of the TlndexedSequence then FAIL.

-:<..... :.:-::::::::::::::

':"-:;:::-:.:.;.:.:::::::::;:;:::;:::;::.:.;:

0,Grow(long howmuch, long extraspace
Boolean addToTop = TRUE) ;

Compress (long from, long howmuch);
Append(MCollectible* obj);
GrowTo(long maxlndex);

virtual void
virtual MCollectible*
virtual void

void TlndexedSequence::Replace(TlndexedSequence* seq, TlndexedSequence* rep,
long seqstart=O, long thisstart=O,

Search for a subcollectiQ:ifofthis which matches seq. If there is w~($.j,aJI$.4b.ipllectionthen the result

TArray

"-::::(~}}::::::':"
.::::::::;:;::-::-.-

class TArray:;UU~~m~:~@:: .'.:-::.:' co:?::::::::::.: :::::}~\f~r~fltf)\
pub1 i c . ..:-:::{}:::t~::::·· '.' ..::;::::::::::::::::::::::: :::.:.;::.

TArr~ y (~~:~~I~~~i;I~_I£~~~i~~:S:~~s:t~~~~llectib~~lj~~pame,
virtual -TArray(ii
virtual void

virtual void
virtual Boolean

SetAutoGrowFlag(Boolean autoGrow
GetAutoGrowFlag() const;

TRUE) ;

TArray::TArray(MCollectibleCompareFn testFn,
long initialSize, long offset=O)

Create a new array of size initialSize and fill it initially with NIL. The offset of the first element
of the array is offset.

• Registered /Restricted Utility Classes Thursday, March 1, 1990 2.1.2 - 15

boolean TlndexedSequence::Find(const MCollectible* obj, long& findresult,
long start=O, long end=O) ;

If there is an object in this which IsSame or IsEqual (depending on the test function for the indexed
sequence) to obj then return TRUE and set findresult equal to the index of the object. Otherwise
return FALSE. If start or end is specified (as longs), these are used to determine where in the
collection to start and end searching.

MCollectible* TlndexedSequence::Atlnsert(long index, MCollectible* obj);
Insert the obj into the TlndexedSequence at the specified index. Effectively, the indexed sequence
is grown one object. If index is out of the bounds of the TlndexedSequence then FAIL.

-:<..... :.:-::::::::::::::

':"-:;:::-:.:.;.:.:::::::::;:;:::;:::;::.:.;:

0,Grow(long howmuch, long extraspace
Boolean addToTop = TRUE) ;

Compress (long from, long howmuch);
Append(MCollectible* obj);
GrowTo(long maxlndex);

virtual void
virtual MCollectible*
virtual void

void TlndexedSequence::Replace(TlndexedSequence* seq, TlndexedSequence* rep,
long seqstart=O, long thisstart=O,

Search for a subcollectiQ:ifofthis which matches seq. If there is w~($.j,aJI$.4b.ipllectionthen the result

TArray

"-::::(~}}::::::':"
.::::::::;:;::-::-.-

class TArray:;UU~~m~:~@:: .'.:-::.:' co:?::::::::::.: :::::}~\f~r~fltf)\
pub1 i c . ..:-:::{}:::t~::::·· '.' ..::;::::::::::::::::::::::: :::.:.;::.

TArr~ y (~~:~~I~~~i;I~_I£~~~i~~:S:~~s:t~~~~llectib~~lj~~pame,
virtual -TArray(ii
virtual void

virtual void
virtual Boolean

SetAutoGrowFlag(Boolean autoGrow
GetAutoGrowFlag() const;

TRUE) ;

TArray::TArray(MCollectibleCompareFn testFn,
long initialSize, long offset=O)

Create a new array of size initialSize and fill it initially with NIL. The offset of the first element
of the array is offset.

• Registered /Restricted Utility Classes Thursday, March 1, 1990 2.1.2 - 15

void TArray::Grow(long howmuch, long extraspace, Boolean addToTop)
Grow the indexed sequence by howmuch. The additional elements can be inserted at the top of the
array or the bottom depending on the value of the addToTop flag. extraspace is the amount of
extraspace to use as a slush fund for future AtInsert operations to avoid copying the whole array.

void TArray::GrowTo(long index)
Grow the array in whatever direction is necessary to make index a valid index into the array.

void TArray::Compress(long from, long howmany)
Compress (remove) entries from the array beginning at entry from and continuing for howmany
entries.

MCollectible* TArray::Append(MCollectible* obj)

AtCountPurge(long index, long count);
AtCountReplace(long index, long count,

MCollectible* obj);
AtCountInsert(long index, long count,

MCollectible* objt);

class TRunArray: public TIndexedSequence{
public:

TRunArray(MCollectibleCompareFn testFn
long size=l, long offset =0);
virtual -TRunArray();
virtual void
virtual MCollectible*

virtual MCollectible*

&MCollectible::IsSame,

TRunArray::TRunArray(MCollectibleCompareFn testFn,
long size, long offset = 0);

Create a new run array ofsize =1 with offset zero for the first element .

• Registered I Restricted Utility Classes Thursday, March 1, 1990 2.1.2 - 16

void TArray::Grow(long howmuch, long extraspace, Boolean addToTop)
Grow the indexed sequence by howmuch. The additional elements can be inserted at the top of the
array or the bottom depending on the value of the addToTop flag. extraspace is the amount of
extraspace to use as a slush fund for future AtInsert operations to avoid copying the whole array.

void TArray::GrowTo(long index)
Grow the array in whatever direction is necessary to make index a valid index into the array.

void TArray::Compress(long from, long howmany)
Compress (remove) entries from the array beginning at entry from and continuing for howmany
entries.

MCollectible* TArray::Append(MCollectible* obj)

AtCountPurge(long index, long count);
AtCountReplace(long index, long count,

MCollectible* obj);
AtCountInsert(long index, long count,

MCollectible* objt);

class TRunArray: public TIndexedSequence{
public:

TRunArray(MCollectibleCompareFn testFn
long size=l, long offset =0);
virtual -TRunArray();
virtual void
virtual MCollectible*

virtual MCollectible*

&MCollectible::IsSame,

TRunArray::TRunArray(MCollectibleCompareFn testFn,
long size, long offset = 0);

Create a new run array ofsize =1 with offset zero for the first element .

• Registered I Restricted Utility Classes Thursday, March 1, 1990 2.1.2 - 16

MCollectible* TRunArray::AtCountInsert(long index, long count, MCollectible*
obj);
Insert a run of obj, count objects long into the run array at the speCified index. Effectively, the array
is grown by count objects. If index is out of the bounds of the array then return NIL.

void TRunArray::AtCountPurge(long index, long count);
Remove the objects in the run array starting at index and continuing until index+count-l. If either
the upper or lower bounds of the element to be removed set is out of the array bounds then return
NIL and do not perfonn the deletion.

MCollectible* TRunArray::AtCountReplace(long index, long count, MCollectible*
obj);
Loosely equivalent to a call to PurgeAt to remove objects in the run array followed by an InsertAt
to replace objects. Return replacement range is out
Otherwise return obj.

• Registered IRestricted Utility Classes Thursday, March 1, 1990 2.1.2 - 17

MCollectible* TRunArray::AtCountInsert(long index, long count, MCollectible*
obj);
Insert a run of obj, count objects long into the run array at the speCified index. Effectively, the array
is grown by count objects. If index is out of the bounds of the array then return NIL.

void TRunArray::AtCountPurge(long index, long count);
Remove the objects in the run array starting at index and continuing until index+count-l. If either
the upper or lower bounds of the element to be removed set is out of the array bounds then return
NIL and do not perfonn the deletion.

MCollectible* TRunArray::AtCountReplace(long index, long count, MCollectible*
obj);
Loosely equivalent to a call to PurgeAt to remove objects in the run array followed by an InsertAt
to replace objects. Return replacement range is out
Otherwise return obj.

• Registered IRestricted Utility Classes Thursday, March 1, 1990 2.1.2 - 17

Simple Classes

These simple classes' are used in the implementation of many CSIOI classes.

TLink

TAssoc

MCollectible

TEdge

TAssoc

class TAssoc : ::Ry:blic MCollectible
public: ...

TAssoc (); /UHU}:{::::::::::})::::::::::)(:::}::::}:::::::::::::..

TLink

:{:{/: ::::;:;:::;:;::::;:-:::;.:
........................... ','-;. ;:;::::"'::;:::::;:::::;:::::;:::;:::::;:::;:;::::': :::;";:::::;::: ::::::::::::::::>:::::::.

.:::::::::.:':!;!::\' :....... .. ::::;:'. .::::':'.' .:::.:.:.:.::::..:::::::.::::..:.::::.:::..~:.•...:·.::..·::::::.•::.•:.::.•.III,J ·iii;~l~!!!!!l!!.il; ..·il;::;if
~1~1{(r~1tt:::::::~::::;:: .. :·:·:·:·~/:)~;~t~:: ··:::~~rm~J??~Im~~(~:~:::· ::::::::::::::::. :::::::::::::::::::;:':
:::}~:::~:~~:»~/::;:.:: ,',' :-:.:::::::::::........................ "';-::::;::; "\~{::::::::::::':"'" <}~t::::::;····· .

A TLink is primaJily:t.s~4~P::tij~:i~pl({M:entationof linked lists. TYpi~·lM~4,p.~~.~·s#B:teth~esare
owned by some otherHigh~t:I~v~F6bject(e.g. a dictionary) and are usuaI1y?fi6€teffiffied to the user.
Users implementing their own classes might wish to use TLinks in their implementations.

class TLink
public:

TLink();
TLink(TLink* link NIL, MCollectible* obj = NIL);
virtual -TLink();
virtual void SetNext (TLink* link);
virtual TLink* GetNext () ;
virtual void SetValue (MCollectible* obj);
virtual MCollectible* GetValue () ;

• Registered/Restricted Utility Classes Thursday, March 1, 1990 2.1.2 - 18

Simple Classes

These simple classes' are used in the implementation of many CSIOI classes.

TLink

TAssoc

MCollectible

TEdge

TAssoc

class TAssoc : ::Ry:blic MCollectible
public: ...

TAssoc (); /UHU}:{::::::::::})::::::::::)(:::}::::}:::::::::::::..

TLink

:{:{/: ::::;:;:::;:;::::;:-:::;.:
........................... ','-;. ;:;::::"'::;:::::;:::::;:::::;:::;:::::;:::;:;::::': :::;";:::::;::: ::::::::::::::::>:::::::.

.:::::::::.:':!;!::\' :....... .. ::::;:'. .::::':'.' .:::.:.:.:.::::..:::::::.::::..:.::::.:::..~:.•...:·.::..·::::::.•::.•:.::.•.III,J ·iii;~l~!!!!!l!!.il; ..·il;::;if
~1~1{(r~1tt:::::::~::::;:: .. :·:·:·:·~/:)~;~t~:: ··:::~~rm~J??~Im~~(~:~:::· ::::::::::::::::. :::::::::::::::::::;:':
:::}~:::~:~~:»~/::;:.:: ,',' :-:.:::::::::::........................ "';-::::;::; "\~{::::::::::::':"'" <}~t::::::;····· .

A TLink is primaJily:t.s~4~P::tij~:i~pl({M:entationof linked lists. TYpi~·lM~4,p.~~.~·s#B:teth~esare
owned by some otherHigh~t:I~v~F6bject(e.g. a dictionary) and are usuaI1y?fi6€teffiffied to the user.
Users implementing their own classes might wish to use TLinks in their implementations.

class TLink
public:

TLink();
TLink(TLink* link NIL, MCollectible* obj = NIL);
virtual -TLink();
virtual void SetNext (TLink* link);
virtual TLink* GetNext () ;
virtual void SetValue (MCollectible* obj);
virtual MCollectible* GetValue () ;

• Registered/Restricted Utility Classes Thursday, March 1, 1990 2.1.2 - 18

TDoubleLink

A TDoubleLink is pnmarily used in the implementation of doubly linked lists. Typically, these
structures are owned by some other higher level object (e.g. a dictionary) and are usually not
returned to the user. Users implementing their own classes might wish to use TDoubleLinks in
their implementations.

public TLink

NIL) ;link = NIL, MCollectible* obj
-TDoubleLink() ;

void SetPrevious(TLink* link);
TDoubleLink* GetPrevious();

class TDoubleLink
public:

TDoubleLink();
TDoubleLink(TLink*
virtual
virtual
virtual

TEdge

A TEdge is an object
the system. It can be :tn~)u~mt

graph itselfbecause gt'~~P~l::9jOJ~~ts

class TEdge
public:

TEdge();
virtual -TEdge
TEdge(TVertex* from,
TVertex* GetFrom();
TVertex* GetTo();
WeightType GetWeight();
void SetFrom(TVertex*
void (TVertex* v);
void

_Registered/Restricted Utility Classes Thursday, March 1, 1990 2.1.2 - 19

TDoubleLink

A TDoubleLink is pnmarily used in the implementation of doubly linked lists. Typically, these
structures are owned by some other higher level object (e.g. a dictionary) and are usually not
returned to the user. Users implementing their own classes might wish to use TDoubleLinks in
their implementations.

public TLink

NIL) ;link = NIL, MCollectible* obj
-TDoubleLink() ;

void SetPrevious(TLink* link);
TDoubleLink* GetPrevious();

class TDoubleLink
public:

TDoubleLink();
TDoubleLink(TLink*
virtual
virtual
virtual

TEdge

A TEdge is an object
the system. It can be :tn~)u~mt

graph itselfbecause gt'~~P~l::9jOJ~~ts

class TEdge
public:

TEdge();
virtual -TEdge
TEdge(TVertex* from,
TVertex* GetFrom();
TVertex* GetTo();
WeightType GetWeight();
void SetFrom(TVertex*
void (TVertex* v);
void

_Registered/Restricted Utility Classes Thursday, March 1, 1990 2.1.2 - 19

CSIOI Classes

CSIOI classes are classes which implement classic computer science data structures. These include
hash tables, linked lists, trees, graphs, etc. In general, you shouldn't use th~se classes directly - they
are used as implementations for the collection classes. The collection classes isolate you from a
particular implementation used for a collection (which will be a CSIOl class). For example, a set
could be implemented as a linked list, a c-array or a ha,sh table depending on the operations
performed, number of elements, etc. Eventually, the collection classes will be smart about making
these choices for you automatically based on a specification from the user (the size hint is a start in
that direction).

".".".":-:~:: :::::::;::::: " '.'.', .

.......:::::':-" :.::..\.'.'i.:: ~ ~:~ ::' :.' ~") '.:.! ":: ~.... .: ;.:-:<::;::::::;:;:::::::::::: ".: .II'l,jli'filrtlijill
.....:.:.:...:.:.::::;:;:;:::::;:;::::::::::::::::::;:.:;:::

_T_L_i_n...,kr-e_dL_is_t"",;lllllllillllli!tllill'iJl__T_H_e_a_p__J

THashTable

(see page 35) on THashTables return TAssoc objects. You can use the GetKey () and GetValue ()
call on the TAssoc to get what you want.

const long
const long
const long

kDefaultHashTableSize;
kDefaultGrowthRate;
kDefaultRehashThreshold;

class THashTable: public MCollectible
public:

THashTable(MCollectibleCompareFn testFn = &MCollectible: :IsSame,
long tablesize=kDefaultHashTableSize,
long growthrate=kDefaultGrowthRate,
long threshold=kDefaultRehashThreshold);

- virtual -THashTable();

'*Registered /Restricted Utility Classes Thursday, March I, 1990 2.1.2 - 20

CSIOI Classes

CSIOI classes are classes which implement classic computer science data structures. These include
hash tables, linked lists, trees, graphs, etc. In general, you shouldn't use th~se classes directly - they
are used as implementations for the collection classes. The collection classes isolate you from a
particular implementation used for a collection (which will be a CSIOl class). For example, a set
could be implemented as a linked list, a c-array or a ha,sh table depending on the operations
performed, number of elements, etc. Eventually, the collection classes will be smart about making
these choices for you automatically based on a specification from the user (the size hint is a start in
that direction).

".".".":-:~:: :::::::;::::: " '.'.', .

.......:::::':-" :.::..\.'.'i.:: ~ ~:~ ::' :.' ~") '.:.! ":: ~.... .: ;.:-:<::;::::::;:;:::::::::::: ".: .II'l,jli'filrtlijill
.....:.:.:...:.:.::::;:;:;:::::;:;::::::::::::::::::;:.:;:::

_T_L_i_n...,kr-e_dL_is_t"",;lllllllillllli!tllill'iJl__T_H_e_a_p__J

THashTable

(see page 35) on THashTables return TAssoc objects. You can use the GetKey () and GetValue ()
call on the TAssoc to get what you want.

const long
const long
const long

kDefaultHashTableSize;
kDefaultGrowthRate;
kDefaultRehashThreshold;

class THashTable: public MCollectible
public:

THashTable(MCollectibleCompareFn testFn = &MCollectible: :IsSame,
long tablesize=kDefaultHashTableSize,
long growthrate=kDefaultGrowthRate,
long threshold=kDefaultRehashThreshold);

- virtual -THashTable();

'*Registered I Restricted Utility Classes Thursday, March I, 1990 2.1.2 - 20

virtual long
virtual MCollectible*
virtual MColle"ctible*
virtual MCollectible *
virtual void
virtual void
virtual void
virtual void
virtual void
virtual MCollectible*

virtual MCollectible*
virtual long
virtual long
virtual void

Count() const;
Remove(const MCollectible& key);
Delete(MCollectible* key);
Member(const MCollectible& key) canst;
DeleteAll();
DeleteAllKeys() ;
DeleteAllValues();
RemoveAll();
Grow();
Add(const MCollectible* key,

MCollectible* value, boolean replace=TRUE);
Retrieve(const MCollectible* key);
GetGrowthRate() const;
GetRehashThreshold() const;

::"$.~:t:G.;9.w."t."h.R:9t e (long rate) ;

.-:-:.:.-.;:::::::::::::::::::~:~{:~:::::::::::::::::::::

surrogate key. In casessdehttslliis,:use the Delete method ifyou wail:etH~:t-biMl:f~bleto delete the
actual key before returning the value. You could also call the Member method to retrieve the actual
key in the dictionary before removing it.

MCollectible* THashTable::Delete(MCollectible* key)
Delete any entry for the key in the hash table and removes the value from the hash table. Return
the value removed if there was actually an entry to remove or NIL otherwise. If the key used as a
parameter is the same as the key in the hashtable, it is still deleted. Any operations on this deleted
object will cause the usual storage management problems.

MCollectible* THashTable::Member(const MCollectible& key) const
Each object in this is compared to key using the function testFn. Return the object which was found
which IsEqual or IsSame to the object passed as a parameter. Return NIL if no object was found.

void THashTable::RemoveAll()
Remove all of the entries in the hash table. Reset the count to be zero. Ifyou don't have pointers to

• Registered I Restricteci Utility Classes Thursday, March 1, 1990 2.1.2 - 21

virtual long
virtual MCollectible*
virtual MColle"ctible*
virtual MCollectible *
virtual void
virtual void
virtual void
virtual void
virtual void
virtual MCollectible*

virtual MCollectible*
virtual long
virtual long
virtual void

Count() const;
Remove(const MCollectible& key);
Delete(MCollectible* key);
Member(const MCollectible& key) canst;
DeleteAll();
DeleteAllKeys() ;
DeleteAllValues();
RemoveAll();
Grow();
Add(const MCollectible* key,

MCollectible* value, boolean replace=TRUE);
Retrieve(const MCollectible* key);
GetGrowthRate() const;
GetRehashThreshold() const;

::"$.~:t:G.;9.w."t."h.R:9t e (long rate) ;

.-:-:.:.-.;:::::::::::::::::::~:~{:~:::::::::::::::::::::

surrogate key. In casessdehttslliis,:use the Delete method ifyou wail:etH~:t-biMl:f~bleto delete the
actual key before returning the value. You could also call the Member method to retrieve the actual
key in the dictionary before removing it.

MCollectible* THashTable::Delete(MCollectible* key)
Delete any entry for the key in the hash table and removes the value from the hash table. Return
the value removed if there was actually an entry to remove or NIL otherwise. If the key used as a
parameter is the same as the key in the hashtable, it is still deleted. Any operations on this deleted
object will cause the usual storage management problems.

MCollectible* THashTable::Member(const MCollectible& key) const
Each object in this is compared to key using the function testFn. Return the object which was found
which IsEqual or IsSame to the object passed as a parameter. Return NIL if no object was found.

void THashTable::RemoveAll()
Remove all of the entries in the hash table. Reset the count to be zero. Ifyou don't have pointers to

• Registered I Restricteci Utility Classes Thursday, March 1, 1990 2.1.2 - 21

void THashTab'i~:::~·fS$tGt¢:~e·h~~~e:~:..(long rate)
Set the growth rate for thehilsh table.

all of the key, value pairs stored elsewhere in your program, you have a memory leak. You can use
DeleteAll, DeleteAllKeys or DeleteAllValues if you would like the utility classes to destroy
the objects in the hashtable.

void THashTable::DeleteAll()
Remove all of the entries in the hash table. Reset the count to be zero. Call the destructor on every
key and every value in the hash table. Ifyou have a key which also appears as a value or a value
which appears more than once, you will be sorry you used this method because the utility classes will
delete the same object more than once. This is not good.

void THashTable::DeleteAllKeys()
Remove all of the entries in the hash table. Reset the count to be zero. Call the destructor on every
key in the hash table.

~~~;rnT:;es~e.I~.ll~~;~itr;~;ii_':~Thr~:~oldl:t~!il;;~trom0 - lo..o.••.;..i..i·..•.•·..•.·..•.•:•.·..•..•..•.••...•.•...•.. ;:;;
............................... . . ":;'::::::::::::;.

:::::::::::(::::::.. :.:::;:;:::'

void THashTable::SetRehashThreshold(long threshold)
Set the rehash threshold for the hash table.

MCollectibleHashFn THashTable::GetHashFunction() const
Return the hash function being used by the hash table.

void THashTable::SetHashFunction(MCollectibleHashFn)3
Set which member function to call as a hash function. By default, this is set to
&MCollectible: : Hash (which is usually overridden in the objects you are adding to the hash
table). You can use any hash function that you like as long as it has the type signature of
MCollectibleHashFn (which is basically a method taking no parameters and returning a long).

3. DII may not allow you to set the hash function after there are objects in the hash table. This
bug will be fixed shortly by rehashing the table immediately after a SetHashFunction call.

• Registered/Restricted Utility Classes Thursdav, March L 1990

void THashTab'i~:::~·fS$tGt¢:~e·h~~~e:~:..(long rate)
Set the growth rate for thehilsh table.

all of the key, value pairs stored elsewhere in your program, you have a memory leak. You can use
DeleteAll, DeleteAllKeys or DeleteAllValues if you would like the utility classes to destroy
the objects in the hashtable.

void THashTable::DeleteAll()
Remove all of the entries in the hash table. Reset the count to be zero. Call the destructor on every
key and every value in the hash table. Ifyou have a key which also appears as a value or a value
which appears more than once, you will be sorry you used this method because the utility classes will
delete the same object more than once. This is not good.

void THashTable::DeleteAllKeys()
Remove all of the entries in the hash table. Reset the count to be zero. Call the destructor on every
key in the hash table.

~~~;rnT:;es~e.I~.ll~~;~itr;~;ii_':~Thr~:~oldl:t~!il;;~trom0 - lo..o.••.;..i..i·..•.•·..•.·..•.•:•.·..•..•..•.••...•.•...•.. ;:;;
............................... . . ":;'::::::::::::;.

:::::::::::(::::::.. :.:::;:;:::'

void THashTable::SetRehashThreshold(long threshold)
Set the rehash threshold for the hash table.

MCollectibleHashFn THashTable::GetHashFunction() const
Return the hash function being used by the hash table.

void THashTable::SetHashFunction(MCollectibleHashFn)3
Set which member function to call as a hash function. By default, this is set to
&MCollectible: : Hash (which is usually overridden in the objects you are adding to the hash
table). You can use any hash function that you like as long as it has the type signature of
MCollectibleHashFn (which is basically a method taking no parameters and returning a long).

3. DII may not allow you to set the hash function after there are objects in the hash table. This
bug will be fixed shortly by rehashing the table immediately after a SetHashFunction call.

• Registered/Restricted Utility Classes Thursdav, March L 1990

Most of the time, you won't need to do this.

TLinkedList

A linked list object is useful for storing lists of MCollectibles. Linked lists are particularly useful
when storage requirements are unpredictable and extensive manipulation of the structure
(insertions, deletions) is required. Objects which are inserted into the linked list should override the
IsSame () or IsEqual () method depending on what test function is passed into the constructor.

<:::::;::::.:::::::::::-: ..-.

cons¥.# ". t::\:[:::'U:::·:::::

eXisBi.II'I'i1111t;II
.. :-:':':::::':':':-:':':'::::::::::::~:}}:'

&MCollectible::IsSame);

TLink*
TLink*
TLink*
TLink*
TLink*
boolean
boolean

virtual

virtual
virtual
virtual
virtual
virtual
virtual
virtual

virtual

virtual
virtual
virtual
virtual
virtual
virtual
virtual

virtual
virtual
virtual
virtual
virtual
virtual
virtual

-TLinkedList();
:.:.:.:.:-:.;.:.:

ob j, Q.QQ$~:~h::::::::::::::-

MCol$$l;tj,p}e* RemoveLast () ;lir!rtiirfl:111ltlIIY
................................- .

#dfd Rot dlti6 1 firJt~~$~~~):.ast=TRuE;14l..:: :.' .•...:'•• }:................. a..::.::.:::::..::..::::.::..::..::::.:::.::..::.::'·.:;:i::..:.i;:::·· 0 e an U?>.:.::.::.:•.:::::
·::;:~fj}))r}~~~~~~~(: ::::::;:

...... -- ----..... ...(:}}~::::::::::., ',' ','... .. .;,",:-'."-:. ~:f{)~~~~?:

protected:)¥~ill~IU::\::;::;·::·:·;:;::::··;.;.:;.:.::·:::·:;:::'@e:£;'~rs t () ; .::::::=:\:::.::::..: :.:.:-:.:-:.:.:.:

TLin.k<*<:::-:··· GetLast () ; ··-::::;::::t\:: .

void SetFirst(TLink*);
void SetLast(TLink*);
TLink* MakeNewLink(TLink* n = NIL,

MCollectible* v = NIL) const;
FirstLink () ;
LastLink();
Remove(TLink* 1);
RemoveAfter(TLink* 1);
RemoveBefore(TLink* 1);
AddAfter(TLink* 1, MCollectible* obj);
AddBefore(TLink* 1, MCollectible* obj);

class TLinkedList: public MCollectible {
public:

TLinkedList(MCollectibleCompareFn testFn
virtual
virtual
virtual

TLinkedList::TLinkedList(MCollectibleCompareFn testFn);
Create a new linked list and return it as the result. testFn is used by all methods when testing for

• Registered I Restricted Utility Classes Thursday, March I, 1990 2.1.2 - 23

Most of the time, you won't need to do this.

TLinkedList

A linked list object is useful for storing lists of MCollectibles. Linked lists are particularly useful
when storage requirements are unpredictable and extensive manipulation of the structure
(insertions, deletions) is required. Objects which are inserted into the linked list should override the
IsSame () or IsEqual () method depending on what test function is passed into the constructor.

<:::::;::::.:::::::::::-: ..-.

cons¥.# ". t::\:[:::'U:::·:::::

eXisBi.II'I'i1111t;II
.. :-:':':::::':':':-:':':'::::::::::::~:}}:'

&MCollectible::IsSame);

TLink*
TLink*
TLink*
TLink*
TLink*
boolean
boolean

virtual

virtual
virtual
virtual
virtual
virtual
virtual
virtual

virtual

virtual
virtual
virtual
virtual
virtual
virtual
virtual

virtual
virtual
virtual
virtual
virtual
virtual
virtual

-TLinkedList();
:.:.:.:.:-:.;.:.:

ob j, Q.QQ$~:~h::::::::::::::-

MCol$$l;tj,p}e* RemoveLast () ;lir!rtiirfl:111ltlIIY
................................- .

#dfd Rot dlti6 1 firJt~~$~~~):.ast=TRuE;14l..:: :.' .•...:'•• }:................. a..::.::.:::::..::..::::.::..::..::::.:::.::..::.::'·.:;:i::..:.i;:::·· 0 e an U?>.:.::.::.:•.:::::
·::;:~fj}))r}~~~~~~~(: ::::::;:

...... -- ----..... ...(:}}~::::::::::., ',' ','... .. .;,",:-'."-:. ~:f{)~~~~?:

protected:)¥~ill~IU::\::;::;·::·:·;:;::::··;.;.:;.:.::·:::·:;:::'@e:£;'~rs t () ; .::::::=:\:::.::::..: :.:.:-:.:-:.:.:.:

TLin.k<*<:::-:··· GetLast () ; ··-::::;::::t\:: .

void SetFirst(TLink*);
void SetLast(TLink*);
TLink* MakeNewLink(TLink* n = NIL,

MCollectible* v = NIL) const;
FirstLink () ;
LastLink();
Remove(TLink* 1);
RemoveAfter(TLink* 1);
RemoveBefore(TLink* 1);
AddAfter(TLink* 1, MCollectible* obj);
AddBefore(TLink* 1, MCollectible* obj);

class TLinkedList: public MCollectible {
public:

TLinkedList(MCollectibleCompareFn testFn
virtual
virtual
virtual

TLinkedList::TLinkedList(MCollectibleCompareFn testFn);
Create a new linked list and return it as the result. testFn is used by all methods when testing for

• Registered I Restricted Utility Classes Thursday, March I, 1990 2.1.2 - 23

entries which match.

TLinkedList::-TLinkedList();
Destroy the linked list and all the links associated with it; however, the objects in the linked list are
not freed. (The user is responsible for the objects - the system is responsible for the links).

long TLinkedList::Count();
Return the number of elements in the linked list.

MCollectible* LinkedList::Rernove(const MCollectible& obj,
boolean removeAll=FALSE);

Remove the first link which contains obj as the value of its link from the list. If removeAll=TRUE
then remove all links which contain obj as its value. Return the removed object.

MCollectible* LinkedList::RemoveAfter(const MCollectible& obj);

Remove all of the obj¢.~t$ in the list.
?\t

:::::-:.;.:.:-: .

.•:......••..•.•.•...•....••.....•. ;.:-:•• -:... "';"<';-':'.'.

boolean TLinke~~.i.~€·:·::Kadg~i~:;~(const MCollectible& eXi'::~T~:si6'l::>J'
MCollectible* obj);

Add obj before existingObj in the list. If existingObj does not actually exist in the list then return
false; otherwise return true.

void TLinkedList::AddFirst(MCollectible* obj);
Add obj to the front of the list in a newly created link.

void TLinkedList::AddLast(MCollectible* obj);
Add the obj to the end of the list

MCollectible* TLinkedList: :After(const MCollectible& obj) const;
Return the object after the first occurrence of obj in the list. If there is no object after obj then return
NIL.

• Registered/Restricted Utility Classes Thursday, March I, 1990 2.1.2 - 24

entries which match.

TLinkedList::-TLinkedList();
Destroy the linked list and all the links associated with it; however, the objects in the linked list are
not freed. (The user is responsible for the objects - the system is responsible for the links).

long TLinkedList::Count();
Return the number of elements in the linked list.

MCollectible* LinkedList::Rernove(const MCollectible& obj,
boolean removeAll=FALSE);

Remove the first link which contains obj as the value of its link from the list. If removeAll=TRUE
then remove all links which contain obj as its value. Return the removed object.

MCollectible* LinkedList::RemoveAfter(const MCollectible& obj);

Remove all of the obj¢.~t$ in the list.
?\t

:::::-:.;.:.:-: .

.•:......••..•.•.•...•....••.....•. ;.:-:•• -:... "';"<';-':'.'.

boolean TLinke~~.i.~€·:·::Kadg~i~:;~(const MCollectible& eXi'::~T~:si6'l::>J'
MCollectible* obj);

Add obj before existingObj in the list. If existingObj does not actually exist in the list then return
false; otherwise return true.

void TLinkedList::AddFirst(MCollectible* obj);
Add obj to the front of the list in a newly created link.

void TLinkedList::AddLast(MCollectible* obj);
Add the obj to the end of the list

MCollectible* TLinkedList: :After(const MCollectible& obj) const;
Return the object after the first occurrence of obj in the list. If there is no object after obj then return
NIL.

• Registered/Restricted Utility Classes Thursday, March I, 1990 2.1.2 - 24

:::;.:.:-:.:.:-:.:

MCollectible* TLinkedList::Before(const MCollectible& obj) const;
Return the object before the first occurrence of obj in the list. If there is no object before obj then
return NIL.

MCollectible* TLinkedList::First() const;
Return the first object in the list. If there are no objects in the list, return NIt.

MCollectible* TLinkedList::Last() const;
Return the last object in the list. If there are no objects in the list, return NIL.

void TLinkedList::Rotate(boolean firstBecornesLast=TRUE);
If firstBecomesLast=TRUE, the first element in the list becomes the last element, the second
becomes the first, the third becomes the second, and so on. If firstBecomesLast=FALSE, the last
element becomes the first element, the first becomes the second, and so on.

TLink* TLinkedList: :~&~N~w'$:jra~~mni:£iti1i~:ntr:'=NIL, MCollectible* v~:::::::N.:t;:thI::::¢:6:g:§t

Return the first link iri?t.he list. If there are no links in the list r:etuniLNIIJ){'

,".:.:-:-:.:-:.:-:.:.',........::\=?=::::.:.;.:-:-..

?!:::."]:.,, ::=::::::::::.:..:..;:;.;:.:.:.> .
.................. ·::::::::::::::::::::::·/:::::::~r:::;:::·:::::··:::::: .;.:.: .

TLink* TLinkedLi~t:: Remove (TLink* JlliJJiW;;;:i'i';@W;;E;;·

~~~f~~~t~1111iii;ii~i~~~~:~::~i~lli~~E:1IJI~~::~:~
all of the links. Thet~f(rreiif.pser<fuhhtionscache a link reference, the§HhiY?h.:lY~ad<l.nglingpointer.

TLink* LinkedList::RernoveAfter(TLink* 1);
Remove the link after 1. Ifl is the last link in the list or I is not part of the list then return NIL;
otherwise return the deleted link.

TLink* TLinkedList::RernoveBefore(TLink* 1);
Remove the link before 1. Ifl is the first link in the list or I is not part of the list then return NIL;
otherwise return the deleted link.

boolean TLinkedList::AddAfter(TLink* 1, MCollectible* obj);
Add obj after the link 1. Create a new link to contain the obj. Ifl is not in the list then return false;
otherwise return true.

bboolean TLinkedList::AddBefore(TLink* 1, MCol1ectible* obj);
Add obj before the link 1. Create a new link to contain obj. If I is not in the list then return false;

• Registered / Restricted Utility Classes Thursday, March 1, 1990 2.1.2 - 25

:::;.:.:-:.:.:-:.:

MCollectible* TLinkedList::Before(const MCollectible& obj) const;
Return the object before the first occurrence of obj in the list. If there is no object before obj then
return NIL.

MCollectible* TLinkedList::First() const;
Return the first object in the list. If there are no objects in the list, return NIt.

MCollectible* TLinkedList::Last() const;
Return the last object in the list. If there are no objects in the list, return NIL.

void TLinkedList::Rotate(boolean firstBecornesLast=TRUE);
If firstBecomesLast=TRUE, the first element in the list becomes the last element, the second
becomes the first, the third becomes the second, and so on. If firstBecomesLast=FALSE, the last
element becomes the first element, the first becomes the second, and so on.

TLink* TLinkedList: :~&~N~w'$:jra~~mni:£iti1i~:ntr:'=NIL, MCollectible* v~:::::::N.:t;:thI::::¢:6:g:§t

Return the first link iri?t.he list. If there are no links in the list r:etuniLNIIJ){'

,".:.:-:-:.:-:.:-:.:.',........::\=?=::::.:.;.:-:-..

?!:::."]:.,, ::=::::::::::.:..:..;:;.;:.:.:.> .
.................. ·::::::::::::::::::::::·/:::::::~r:::;:::·:::::··:::::: .;.:.: .

TLink* TLinkedLi~t:: Remove (TLink* JlliJJiW;;;:i'i';@W;;E;;·

~~~f~~~t~1111iii;ii~i~~~~:~::~i~lli~~E:1IJI~~::~:~
all of the links. Thet~f(rreiif.pser<fuhhtionscache a link reference, the§HhiY?h.:lY~ad<l.nglingpointer.

TLink* LinkedList::RernoveAfter(TLink* 1);
Remove the link after 1. Ifl is the last link in the list or I is not part of the list then return NIL;
otherwise return the deleted link.

TLink* TLinkedList::RernoveBefore(TLink* 1);
Remove the link before 1. Ifl is the first link in the list or I is not part of the list then return NIL;
otherwise return the deleted link.

boolean TLinkedList::AddAfter(TLink* 1, MCollectible* obj);
Add obj after the link 1. Create a new link to contain the obj. Ifl is not in the list then return false;
otherwise return true.

bboolean TLinkedList::AddBefore(TLink* 1, MCol1ectible* obj);
Add obj before the link 1. Create a new link to contain obj. If I is not in the list then return false;

• Registered / Restricted Utility Classes Thursday, March 1, 1990 2.1.2 - 25

otherwise return true.

TLink* TLinkedList::FirstLink();
Return the first link in the list. If there are no links in the list, return NIL.

TLink* TLinkedList::LastLink();
Return the last link in the list. If there are no links in the list, return NIL.

TDoubleLinkedList

A TDoubleLinkedList object is useful for storing lists ofMCollectibles. TDoubleLinkedLists
are particularly useful when storage requirements are unpredictable and extensive manipulation of
the structure (insertions, deletions) is required. Also, they are much more efficient (in time) than
singly linked lists (TLinke<i.~,t:?,t)~.fo.r..tW9..r.~~~.9.Q.~.! ...First, caching is done to remember wh.iG.h,:xvas

........

virtual
virtual
virtual

..

virtual .. ::"
..... ::::}:::::;: :.:-:-:::::-:.:

virtual ,.. ':-,-:.:-,.,......... . }::(/ :><>:::::
virtu a 1 '\:.:,:), .,:~::;;:~.:~:::::\;~\.\~\::::;\:\:;:\::.::::,: :(::::::,::: .':::\\)t::::'::<:::-:-:-
virtual boolean AddAftNBiYBonst MCcfli;iectible& existingp§j&):::::jn.> ":-'

virtual MCollectible* After(const MCollectible& obj) const;
virtual MCollectible* Before (const MCollectible& obj) const;
virtual MCollectible* First() const;
virtual MCollectible* Last() const;
virtual void Rotate(boolean firstBecomesLast=TRUE);

protected:
virtual TDoubleLink* MakeNewLink(TDoubleLink* previous,

TDoubleLink* next,
MCollectible* value = NIL) const;

4. Unfortunately, this caching can cause some ambiguities when multiple instances of the same
object are in the TDoubleLinkedList. At this point this is not viewed as a problem, only a
feature that people need to be aware of.

'*Registered IRestricted Utility Classes Thursday, March 1, 1990 2.1.2 - 26

otherwise return true.

TLink* TLinkedList::FirstLink();
Return the first link in the list. If there are no links in the list, return NIL.

TLink* TLinkedList::LastLink();
Return the last link in the list. If there are no links in the list, return NIL.

TDoubleLinkedList

A TDoubleLinkedList object is useful for storing lists ofMCollectibles. TDoubleLinkedLists
are particularly useful when storage requirements are unpredictable and extensive manipulation of
the structure (insertions, deletions) is required. Also, they are much more efficient (in time) than
singly linked lists (TLinke<i.~,t:?,t)~.fo.r..tW9..r.~~~.9.Q.~.! ...First, caching is done to remember wh.iG.h,:xvas

........

virtual
virtual
virtual

..

virtual .. ::"
..... ::::}:::::;: :.:-:-:::::-:.:

virtual ,.. ':-,-:.:-,.,......... . }::(/ :><>:::::
virtu a 1 '\:.:,:), .,:~::;;:~.:~:::::\;~\.\~\::::;\:\:;:\::.::::,: :(::::::,::: .':::\\)t::::'::<:::-:-:-
virtual boolean AddAftNBiYBonst MCcfli;iectible& existingp§j&):::::jn.> ":-'

virtual MCollectible* After(const MCollectible& obj) const;
virtual MCollectible* Before (const MCollectible& obj) const;
virtual MCollectible* First() const;
virtual MCollectible* Last() const;
virtual void Rotate(boolean firstBecomesLast=TRUE);

protected:
virtual TDoubleLink* MakeNewLink(TDoubleLink* previous,

TDoubleLink* next,
MCollectible* value = NIL) const;

4. Unfortunately, this caching can cause some ambiguities when multiple instances of the same
object are in the TDoubleLinkedList. At this point this is not viewed as a problem, only a
feature that people need to be aware of.

'*Registered IRestricted Utility Classes Thursday, March 1, 1990 2.1.2 - 26

All of the methods OfTDoubleLinkedList behave like their counterparts in TLinkedList.

TTree

A TTree is an abstract superc1ass used as a basec1ass for binary trees. TTrees provide some
ordering on their members. Objects which are added to trees should be descended from
MOrderableCollectible. Objects which are inserted into the TIree should override the
IsEqual (), IsLessThan () and IsGreaterThan () methods.

class TTree: public
public:

TTree () ;
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual

MCollectible {

";::::..:.:.:.~.:.;.: .:.:.:.....:........•...•.•..:::::::::::.

:':':'."

·.·:·::·::::·:·~::::~~t;:;:::;)j;~~~{···:····:·:-:·

obj) ;

obj)

void TTree::RemoveAll()
Remove all the objects from the tree.

void TTree::DeleteAll()
Delete all the objects from the tree. Also, deallocate (i.e. call the destructor) on each object in the
tree.

MOrderableCollectible* TTree::Member(const MOrderableCollectible& obj) canst
Returns the actual object that is in the tree if the passed in obj "IsEqual" to an object in the tree.
Returns NIL otherwise.

MOrderableCollectible* TTree::First() const
Returns the first object in the tree.

• Registered /Restricted Utility Classes Thursday, March 1, 1990 2.1.2 - 27

All of the methods OfTDoubleLinkedList behave like their counterparts in TLinkedList.

TTree

A TTree is an abstract superc1ass used as a basec1ass for binary trees. TTrees provide some
ordering on their members. Objects which are added to trees should be descended from
MOrderableCollectible. Objects which are inserted into the TIree should override the
IsEqual (), IsLessThan () and IsGreaterThan () methods.

class TTree: public
public:

TTree () ;
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual

MCollectible {

";::::..:.:.:.~.:.;.: .:.:.:.....:........•...•.•..:::::::::::.

:':':'."

·.·:·::·::::·:·~::::~~t;:;:::;)j;~~~{···:····:·:-:·

obj) ;

obj)

void TTree::RemoveAll()
Remove all the objects from the tree.

void TTree::DeleteAll()
Delete all the objects from the tree. Also, deallocate (i.e. call the destructor) on each object in the
tree.

MOrderableCollectible* TTree::Member(const MOrderableCollectible& obj) canst
Returns the actual object that is in the tree if the passed in obj "IsEqual" to an object in the tree.
Returns NIL otherwise.

MOrderableCollectible* TTree::First() const
Returns the first object in the tree.

• Registered IRestricted Utility Classes Thursday, March 1, 1990 2.1.2 - 27

MOrderableCollectible* TTree::Last() const
Returns the last object in the tree.

TBinaryTree

A TBinaryTree is a subclass of tree. Each node in a binary tree can hold only one key object, a
pointer to its left child and a pointer to its right child. Objects which are inserted into the
TBinaryTree should override the IsEqual (), IsLessThan () and IsGreaterThan () methods.
These are used internally by the TBinaryTree class.

class TBinaryTree: pubiic TTree {
public:

TBinaryTree(MOrderableCompareFn fn=&MOrderableCollectible::IsLessThan);
..'-:.:.:. ...

:-:{::::::~::::::):::U}m){::>:.....
.:.'.:.:-:.; ;.:-:-:.:.:.:.;.:.:.

..;.:::::::~:::t:j:::::j::)::·.::::::::::::jI::::::::::/:;: .

•• ;.:.:::=::::::::;:::;:;::.:.:••••••

-:.:;:. :.:.;-:.:<-:-:-:

11~1~ltl~I~lllI1IIlll';;;;';;
c~:!~;~~7:iiIIR;;~;,~~;~;i'il~:~n=~Morder~g';II;~I,tible: :~~~~~~~~an);

.::::::::>:::::::::::::::::::::: :::::::::;::::::::::::;::: ""... ··:·:-:.;:::::~~tC~{:\:::·:·: -:.:.:::.:.•.:;.~:...•.•...•:•.;.: :.:.:.;.'~:•.. ;.~.::.•: {/:: .
........ ',' :-;.,-:::::-:-::::::;:>::::::::::::::::::::::;:;:::::::::::::.:.;...... ..:~~{)}\..:.:.: .

TRedBlackTree::TRedBlackTree(TOrderableCompareFn
testFn=&MOrderableCollectible: :IsLessThan);

Use testFn to determine where in the tree to perform insertion, searches, etc. (A test of IsLessThan
means that ttsmallertt objects will end up to the left of the root and larger objects will end up to the
right. Using a test of IsGreaterThan reverses this).

THeap

A THeap is a data structure which insures that the elements of the heap are always partially ordered
and balanced. Because heas are only partially ordered, they can be more efficient than
RedBlackTrees if the type ofbehavior that you want is to be able to add some objects to the heap and
then remove the largest, then add some more, remove next largest, etc. Objects which are inserted
in.to the THeap should override the IsEqual (), IsLessThan () and IsGreaterThan () methods.

• Registered /Restricted Utili ty Classes Thursday, March 1, 1990 2.1.2 - 28

MOrderableCollectible* TTree::Last() const
Returns the last object in the tree.

TBinaryTree

A TBinaryTree is a subclass of tree. Each node in a binary tree can hold only one key object, a
pointer to its left child and a pointer to its right child. Objects which are inserted into the
TBinaryTree should override the IsEqual (), IsLessThan () and IsGreaterThan () methods.
These are used internally by the TBinaryTree class.

class TBinaryTree: pubiic TTree {
public:

TBinaryTree(MOrderableCompareFn fn=&MOrderableCollectible::IsLessThan);
..'-:.:.:. ...

:-:{::::::~::::::):::U}m){::>:.....
.:.'.:.:-:.; ;.:-:-:.:.:.:.;.:.:.

..;.:::::::~:::t:j:::::j::)::·.::::::::::::jI::::::::::/:;: .

•• ;.:.:::=::::::::;:::;:;::.:.:••••••

-:.:;:. :.:.;-:.:<-:-:-:

11~1~ltl~I~lllI1IIlll';;;;';;
c~:!~;~~7:iiIIR;;~;,~~;~;i'il~:~n=~Morder~g';II;~I,tible: :~~~~~~~~an);

.::::::::>:::::::::::::::::::::: :::::::::;::::::::::::;::: ""... ··:·:-:.;:::::~~tC~{:\:::·:·: -:.:.:::.:.•.:;.~:...•.•...•:•.;.: :.:.:.;.'~:•.. ;.~.::.•: {/:: .
........ ',' :-;.,-:::::-:-::::::;:>::::::::::::::::::::::;:;:::::::::::::.:.;...... ..:~~{)}\..:.:.: .

TRedBlackTree::TRedBlackTree(TOrderableCompareFn
testFn=&MOrderableCollectible: :IsLessThan);

Use testFn to determine where in the tree to perform insertion, searches, etc. (A test of IsLessThan
means that ttsmallertt objects will end up to the left of the root and larger objects will end up to the
right. Using a test of IsGreaterThan reverses this).

THeap

A THeap is a data structure which insures that the elements of the heap are always partially ordered
and balanced. Because heas are only partially ordered, they can be more efficient than
RedBlackTrees if the type ofbehavior that you want is to be able to add some objects to the heap and
then remove the largest, then add some more, remove next largest, etc. Objects which are inserted
in.to the THeap should override the IsEqual (), IsLessThan () and IsGreaterThan () methods.

• Registered IRestricted Utili ty Classes Thursday, March 1, 1990 2.1.2 - 28

const long kInitialHeapSize;

class Heap: public MCollectible
public:

THeap(TOrderableCompareFn testFn=&MOrderableCollectible::IsLessThan,
long heapSize = kInitiaIHeapSize);

virtual -THeap();
virtual MOrderableCollectible*Pop();
virtual MOrderableCollectible*Peek() const;
virtual long Count() const;
virtual void RemoveAII();
virtual void DeleteAII();
virtual void Add(MOrderableCollectible* obj);
virtual MOrde r ab+~:Gp~.l~.Q..ti.:P:J,.:~.t:::"E~9.¥.~Jconst MOrde r ab leCollect ib l~<¥",,::9pj"L;

...<:::::::

virtual
virtual fn) ;

-:.:-:.;.:.:.;.

".:-:.:.:-:-::"

Use testFn to deternP9~;Wb~t1.n~tJ~ggrobjectsare removed fil$.:~::Qt[:[~g~[[~~:~~:test of IsLessThan

......:.:.:.:<.:..

'::::::::::::::::i:~:::[:\jt~t){::::{::::::

=:::.;.:.: :.: .
.. :-:-:;::::<\::.:.;-:«.»> .

':';0:':';';':'::::=::::::::::::::::::::::::::::::-.:: .. :<::::::::x-:::::-:-:··

::::mT:~::~~ii~~li;~~::::::::*J~~h:b j);;::il'lil~l~~,'··.·.·.·.·.·•.. l~;.····
Add b

· h h··· .. ···"::.:}}{{:::..o ~ to t e eap..::::H::::>:::::::::::······::··:,,·:···· . .
.... "..:i:::.:/\:::::(·.··.·.{..:::···" .."

MOrderableCollectible* THeap::Remove(const MOrderableCollectible& obj)
Remove obj from the heap. Return the actual object removed (which may not be the same as the
object passed in only "is equal") or NIL if no object was removed.

MOrderableCollectible* THeap::Member(const MOrderableCollectible& obj) const
Return true if obj is in the heap.

void THeap::RemoveAll()
Remove all the objects from the heap.

void THeap::DeleteAll()
Remove all the objects from the heap. Also, deallocate (i.e. call the destructor) on each object in the
tree.

_Registered/Restricted Utility Classes Thursday, March 1, 1990 2.1.2 - 29

const long kInitialHeapSize;

class Heap: public MCollectible
public:

THeap(TOrderableCompareFn testFn=&MOrderableCollectible::IsLessThan,
long heapSize = kInitiaIHeapSize);

virtual -THeap();
virtual MOrderableCollectible*Pop();
virtual MOrderableCollectible*Peek() const;
virtual long Count() const;
virtual void RemoveAII();
virtual void DeleteAII();
virtual void Add(MOrderableCollectible* obj);
virtual MOrde r ab+~:Gp~.l~.Q..ti.:P:J,.:~.t:::"E~9.¥.~Jconst MOrde r ab leCollect ib l~<¥",,::9pj"L;

...<:::::::

virtual
virtual fn) ;

-:.:-:.;.:.:.;.

".:-:.:.:-:-::"

Use testFn to deternP9~;Wb~t1.n~tJ~ggrobjectsare removed fil$.:~::Qt[:[~g~[[~~:~~:test of IsLessThan

......:.:.:.:<.:..

'::::::::::::::::i:~:::[:\jt~t){::::{::::::

=:::.;.:.: :.: .
.. :-:-:;::::<\::.:.;-:«.»> .

':';0:':';';':'::::=::::::::::::::::::::::::::::::-.:: .. :<::::::::x-:::::-:-:··

::::mT:~::~~ii~~li;~~::::::::*J~~h:b j);;::il'lil~l~~,'··.·.·.·.·.·•.. l~;.····
Add b

· h h··· .. ···"::.:}}{{:::..o ~ to t e eap..::::H::::>:::::::::::······::··:,,·:···· . .
.... "..:i:::.:/\:::::(·.··.·.{..:::···" .."

MOrderableCollectible* THeap::Remove(const MOrderableCollectible& obj)
Remove obj from the heap. Return the actual object removed (which may not be the same as the
object passed in only "is equal") or NIL if no object was removed.

MOrderableCollectible* THeap::Member(const MOrderableCollectible& obj) const
Return true if obj is in the heap.

void THeap::RemoveAll()
Remove all the objects from the heap.

void THeap::DeleteAll()
Remove all the objects from the heap. Also, deallocate (i.e. call the destructor) on each object in the
tree.

_Registered/Restricted Utility Classes Thursday, March 1, 1990 2.1.2 - 29

TRUE) ;

............. .

MCollectibleCompareFn THeap::GetEqualityComparisonFunction() const
Return the equality comparison function being used by the heap.

void THeap::SetEqualityComparisonFunction(MCollectibleCornpareFn)
Set which member function to call as the equality comparison function when, removing objects from
the queue, checking to see whether a given object is a member, etc. This defaults to IsEqual. Most
of the time you won't want to change this.

TGraphs

A TGraph provides an abstract superclass for all graphs. Objects which are inserted into the graph
should override the Hash () method and the IsSame () method. These are used internally by the
graph class.

~~~~~1~~;~:hE:x~!~;;II"11'!~O;vertex 4 ;/g';F;;:i~;;;$11n>'.'.'.·.·
TGraph (const tl?rrgvertices=kExpectedNumberOfVe rs£%tl!lfll;l~r~I;I;;P'

const :t.8ng edges=kExpectedAverageNumberO:~Edges·~·e.:rVertex);
.:/1~~I?~~tf~~~\ir~ttf:\~~(

virtual

virtual TQueue*

virtual void
virtual void

virtua1 bo9J.,~:q.n \i.:i.·.;:.;.:.:.\.:.\i;.t.:\~.:.~::.}\:\:\::n?I;:{t:.......:-:;:;:::;:::::.:: .;.:.:::::::-:::.;.
, ..::::::::.:.::::::;::::., .:::::/::::::::;:::::::;:;::::::::.: .

.........•..............-: •..........:::>;:,::::-:.. ··:t~}~?{:t~:~r:}~:f~{: :::::::;~;~;~;:;;~~~~;~}?}:r
:;::;::;::=;::::::::::........... .. .. ":-:':::::::::::..':::::::::::::::

G h ( ··t· [ t···,·········· ·······1 d) ·::::~~}ffm}t{~~\?~: ;.;-:-:-:<.;.:.:-: .

~r~:re a nCe~~j~~0I1T~t~1Iip~:wm~·· iso~e~u~;d~o~ld contiHri::·~ijy\:'Qgmp7r:~±tV~fbces and
edges, providing a gJ.~ss·:as:tothe~*pected number ofvertices and the"eipMfH~davefagenumber of
edges from each vertex could greatly improve the efficiency of graph operations.

....TGraph();
Delete the graph and all the vertices and edges associated with the graph.

boolean TGraph::AddVertex(MCollectible* vertex, boolean replace);
Add vertex to this. If vertex already exists in the graph and replace =TRUE then delete the old
vertex and add the new vertex.

void TGraph::RemoveVertex(MCollectible* vertex);
Remove vertex from this.

void TGraph::AddEdge(MCollectible* from, MCollectible* to, WeightType weight);
Add the edge to the graph.

'*Registered /Restricted UtiIi ty Classes Thursday, March 1, 1990 2.1.2 - 30

TRUE) ;

............. .

MCollectibleCompareFn THeap::GetEqualityComparisonFunction() const
Return the equality comparison function being used by the heap.

void THeap::SetEqualityComparisonFunction(MCollectibleCornpareFn)
Set which member function to call as the equality comparison function when, removing objects from
the queue, checking to see whether a given object is a member, etc. This defaults to IsEqual. Most
of the time you won't want to change this.

TGraphs

A TGraph provides an abstract superclass for all graphs. Objects which are inserted into the graph
should override the Hash () method and the IsSame () method. These are used internally by the
graph class.

~~~~~1~~;~:hE:x~!~;;II"11'!~O;vertex 4 ;/g';F;;:i~;;;$11n>'.'.'.·.·
TGraph (const tl?rrgvertices=kExpectedNumberOfVe rs£%tl!lfll;l~r~I;I;;P'

const :t.8ng edges=kExpectedAverageNumberO:~Edges·~·e.:rVertex);
.:/1~~I?~~tf~~~\ir~ttf:\~~(

virtual

virtual TQueue*

virtual void
virtual void

virtua1 bo9J.,~:q.n \i.:i.·.;:.;.:.:.\.:.\i;.t.:\~.:.~::.}\:\:\::n?I;:{t:.......:-:;:;:::;:::::.:: .;.:.:::::::-:::.;.
, ..::::::::.:.::::::;::::., .:::::/::::::::;:::::::;:;::::::::.: .

.........•..............-: •..........:::>;:,::::-:.. ··:t~}~?{:t~:~r:}~:f~{: :::::::;~;~;~;:;;~~~~;~}?}:r
:;::;::;::=;::::::::::........... ":-:':::::::::::..':::::::::::::::

G h (··t· [t···,·········· ·······1 d) ·::::~~}ffm}t{~~\?~: ;.;-:-:-:<.;.:.:-: .

~r~:re a nCe~~j~~0I1T~t~1Iip~:wm~·· iso~e~u~;d~o~ld contiHri::·~ijy\:'Qgmp7r:~±tV~fbces and
edges, providing a gJ.~ss·:as:tothe~*pected number ofvertices and the"eipMfH~davefagenumber of
edges from each vertex could greatly improve the efficiency of graph operations.

....TGraph();
Delete the graph and all the vertices and edges associated with the graph.

boolean TGraph::AddVertex(MCollectible* vertex, boolean replace);
Add vertex to this. If vertex already exists in the graph and replace =TRUE then delete the old
vertex and add the new vertex.

void TGraph::RemoveVertex(MCollectible* vertex);
Remove vertex from this.

void TGraph::AddEdge(MCollectible* from, MCollectible* to, WeightType weight);
Add the edge to the graph.

'*Registered I Restricted UtiIi ty Classes Thursday, March 1, 1990 2.1.2 - 30

void TGraph::RemoveEdge(MCollectible* from, MCollectible* to, WeightType
weight) ;
Remove the edge from the graph.

TQueue* TGraph::ShortestPath(MCollectible* vertexl, MCollectible* vertex2);
Return the path in the graph connecting vertexl and vertex2 with the property that the sum of the
weights of the edges is minimized over all such paths. Each RemoveFirst operation on the queue
will remove edges starting at vertexl and moving to vertex2. The user is responsible for freeing this
queue of vertices and edges when it is no longer needed.

void TGraph::DepthFirstEach(TVertexActionFn fn, TQueue* start=NIL);
Iterate over all of the vertices in the graph reachable from the start collection in a depth-first
fashion. Apply fn to each vertex in the graph in this order. If start=NIL then an appropriate
starting set of vertices will be chosen.

".:..:.: :.: .
:.:.>:.:.:«.:-;.;.

j~~f~ iji~~~~~~~; ~~~~; ~;~::::::::;
;.;::::::::::::;=::;::

.-:::;:-\:;::;., :-:-:-:.:-:.:.:-:.'.:-:.:.'

:-:.:-:.:.:.:-:.:.:-....

....... . .
....::::::;::::::-:.:.:.;..

.......... - ..:.:.:-:.: :-:-: .

............•......::;::::::::::::::.:

:;:;:;:::;:;:;:;:;:::::::::;:;=;=::;:::;:::;=;::::=;:;::::::

:;:.:.;::.-.::
:>..... ·:·:·::::::::~:/{f~~)~{:):~:~:~:

.. ;.:.:-:::::;:::::::;::>:.:.••.;.••:.:-:-.:...

TUndirected~1'11I1!ltl"lltli.ll~iitfllik

class TUndirectedGraph:
public:

TUndirecte4Graph(const long
..........

.......•..

virtual TS~t* :· ..:...:.::.::...::~:$¢:6riK~:gtedComponents () ;
virtual TDeque* ConnectedComponents();
virtual TSet* ArticulationPoints();
virtual boolean IsBiconnected();

TUndirectedGraph::TUndirectedGraph(const long vertices, const long edges);
Create a new graph. While the graph which is returned could contain any number of vertices and
edges, providing a guess as to the expected number of vertices and the expected average number of
edges from each vertex could greatly improve the efficiency of graph operations.

-TUndirectedGraph::TUndirectedGraph() ;
Delete the graph and all the vertices and edges associated with the graph. All edges and
vertices are freed.

• Registered /Restricted Utility Classes Thursday, March 1, 1990 2.1.2 - 31

void TGraph::RemoveEdge(MCollectible* from, MCollectible* to, WeightType
weight) ;
Remove the edge from the graph.

TQueue* TGraph::ShortestPath(MCollectible* vertexl, MCollectible* vertex2);
Return the path in the graph connecting vertexl and vertex2 with the property that the sum of the
weights of the edges is minimized over all such paths. Each RemoveFirst operation on the queue
will remove edges starting at vertexl and moving to vertex2. The user is responsible for freeing this
queue of vertices and edges when it is no longer needed.

void TGraph::DepthFirstEach(TVertexActionFn fn, TQueue* start=NIL);
Iterate over all of the vertices in the graph reachable from the start collection in a depth-first
fashion. Apply fn to each vertex in the graph in this order. If start=NIL then an appropriate
starting set of vertices will be chosen.

".:..:.: :.: .
:.:.>:.:.:«.:-;.;.

j~~f~ iji~~~~~~~; ~~~~; ~;~::::::::;
;.;::::::::::::;=::;::

.-:::;:-\:;::;., :-:-:-:.:-:.:.:-:.'.:-:.:.'

:-:.:-:.:.:.:-:.:.:-....

....... . .
....::::::;::::::-:.:.:.;..

.......... - ..:.:.:-:.: :-:-: .

............•......::;::::::::::::::.:

:;:;:;:::;:;:;:;:;:::::::::;:;=;=::;:::;:::;=;::::=;:;::::::

:;:.:.;::.-.::
:>..... ·:·:·::::::::~:/{f~~)~{:):~:~:~:

.. ;.:.:-:::::;:::::::;::>:.:.••.;.••:.:-:-.:...

TUndirected~1'11I1!ltl"lltli.ll~iitfllik

class TUndirectedGraph:
public:

TUndirecte4Graph(const long
..........

.......•..

virtual TS~t* :· ..:...:.::.::...::~:$¢:6riK~:gtedComponents () ;
virtual TDeque* ConnectedComponents();
virtual TSet* ArticulationPoints();
virtual boolean IsBiconnected();

TUndirectedGraph::TUndirectedGraph(const long vertices, const long edges);
Create a new graph. While the graph which is returned could contain any number of vertices and
edges, providing a guess as to the expected number of vertices and the expected average number of
edges from each vertex could greatly improve the efficiency of graph operations.

-TUndirectedGraph::TUndirectedGraph() ;
Delete the graph and all the vertices and edges associated with the graph. All edges and
vertices are freed.

• Registered /Restricted Utility Classes Thursday, March 1, 1990 2.1.2 - 31

TSet* TUndirectedGraph::MinimumSpanningTree();
Return a set of edges which represents a minimum spanning tree of a weighted graph. A minimum
spanning tree is a collection of edges that connects all the vertices such that the sum of the weights
of the edges is at least as small as the sum of the weights of any other collection of edges that
connects all the vertices. (Reallif~: I want to wire a group of cities so that each city can reach each
other city and I want to minimize the amount of wire to use.) The user is responsible for freeing this
set of vertices and edges when it is no longer needed.

boolean TUndirectedGraph::IsConnected();
Return true if this is connected. A graph is connected if there is a path from every vertex in the
graph to every other vertex in the graph.

TSet* TUndirectedGraph::BiconnectedComponents();
Return a collection of biconnected components of this . Each object in the set is itself a graph.
Biconnected components of a graph are sets of vertices mutually accessible via two distinct points.

:::;:;::;:::::;:;:;/:::.::
. :.::::):~~{tt~~j{It~~~}:::·

:-:-:;:«
::::::,:-::::;:;::;:::':':::

...... «~:::::::::::::}}:::::::::::.:.:.. .
.:::.:.:-:-:-:.:.....))111':'" ,-:,:tU:~i[[j[:~i~:[t:,:t\U"1 ..

D · dG :::-:':':':-:-:,1;:;:::-:-:':':-:-:':-:-:-:':':-:-:':-:-:':::: -:.:-:-:.:.:-.... .::.:: :.: ::: :: ::':':.:::':.:::::.;:[:.~.:..:.~j::..:.::j{:::y.. .:.:.::.:.:-:-:.: :- : :::....:::..::.lrecte ~pg~·.:[::-:::::::n·..·.:.:.:.:.:.:.:...n: :::::::::::: ··':;:\[i[[/.:j:.:U:':'::::}::::): ... -...
.. . :<::-:::::::.:::::::::::::::::::;:::::::;.;.::: ," :::::::::::::;;:::}~~\::-.

A TDirectedGra;~:::~fd¥~a~giM:::i:ffi~l';:~entation for a directed graph.:·::::Hbj'g6f:§:\~hifh:~reinserted

into the graph should override the Hash () method and the IsSame () method. These are used
internally by the graph class.

class TDirectedGraph: public TGraph {
public:

TDirectedGraph(const long vertices=kExpectedNumberOfVertices,
const long edges=kExpectedAverageNumberOfEdgesPerVertex);

virtual -TDirectedGraph();
virtual TQueue* TopologicalSort(TQueue* start=NIL);
virtual TSet* StronglyConnectedComponents();
virtual boolean IsStronglyConnected();
virtual boolean IsWeaklyConnected();
virtual boolean IsAcyclic();

• Registered /Restricted Utility Classes Thursday, March 1, 1990 2.1.2-32

TSet* TUndirectedGraph::MinimumSpanningTree();
Return a set of edges which represents a minimum spanning tree of a weighted graph. A minimum
spanning tree is a collection of edges that connects all the vertices such that the sum of the weights
of the edges is at least as small as the sum of the weights of any other collection of edges that
connects all the vertices. (Reallif~: I want to wire a group of cities so that each city can reach each
other city and I want to minimize the amount of wire to use.) The user is responsible for freeing this
set of vertices and edges when it is no longer needed.

boolean TUndirectedGraph::IsConnected();
Return true if this is connected. A graph is connected if there is a path from every vertex in the
graph to every other vertex in the graph.

TSet* TUndirectedGraph::BiconnectedComponents();
Return a collection of biconnected components of this . Each object in the set is itself a graph.
Biconnected components of a graph are sets of vertices mutually accessible via two distinct points.

:::;:;::;:::::;:;:;/:::.::
. :.::::):~~{tt~~j{It~~~}:::·

:-:-:;:«
::::::,:-::::;:;::;:::':':::

...... «~:::::::::::::}}:::::::::::.:.:.. .
.:::.:.:-:-:-:.:.....))111':'" ,-:,:tU:~i[[j[:~i~:[t:,:t\U"1 ..

D · dG :::-:':':':-:-:,1;:;:::-:-:':':-:-:':-:-:-:':':-:-:':-:-:':::: -:.:-:-:.:.:-.... .::.:: :.: ::: :: ::':':.:::':.:::::.;:[:.~.:..:.~j::..:.::j{:::y.. .:.:.::.:.:-:-:.: :- : :::....:::..::.lrecte ~pg~·.:[::-:::::::n·..·.:.:.:.:.:.:.:...n: :::::::::::: ··':;:\[i[[/.:j:.:U:':'::::}::::): ... -...
.. . :<::-:::::::.:::::::::::::::::::;:::::::;.;.::: ," :::::::::::::;;:::}~~\::-.

A TDirectedGra;~:::~fd¥~a~giM:::i:ffi~l';:~entation for a directed graph.:·::::Hbj'g6f:§:\~hifh:~reinserted

into the graph should override the Hash () method and the IsSame () method. These are used
internally by the graph class.

class TDirectedGraph: public TGraph {
public:

TDirectedGraph(const long vertices=kExpectedNumberOfVertices,
const long edges=kExpectedAverageNumberOfEdgesPerVertex);

virtual -TDirectedGraph();
virtual TQueue* TopologicalSort(TQueue* start=NIL);
virtual TSet* StronglyConnectedComponents();
virtual boolean IsStronglyConnected();
virtual boolean IsWeaklyConnected();
virtual boolean IsAcyclic();

• Registered /Restricted Utility Classes Thursday, March 1, 1990 2.1.2-32

TDirectedGraph::TDirectedGraph(const long vertices, const long edges);
Create a new directed graph (digraph). While the graph which is returned could contain any number
of vertices and edges, providing a guess as to the expected number of vertices and the expected
average number of edges from each vertex could greatly improve the efficiency of graph operations.

-TDirectedGraph::TDirectedGraph();
Delete the graph and all the vertices and edges associated with the graph. All edges and
vertices are freed.

TQueue* TDirectedGraph::TopologicalSort(const TQueue* start=NIL);
Return an ordering on this such that no vertex in the ordering is before any vertex that points to it.
Each object in the queue is a vertex. Use the start queue as the vertices to begin the topological sort.
If no start queue is provided then some appropriate set of starting nodes will be chosen. (The
appropriate set of nodes wi.U..c.qQ..~j.§t..9.f...~U ...u.94..~:~.J~fjn-degree zero) Note that there is .n.9::::pq§:$.~ht~way

Return a collection of$'torongly connected components of this. Ef\.:~lj:m~tf:Qijmy{connectedcomponent in

";): ::::.:.;.:- ..
.,. :::::::-:.:-- .
:".:\ :::::::::::::::.:-:.:-:-: ::..:.:: ;..::: ":.:':.'.:':~.:

:-::::>;:::::;: :::}::::

Random Numbers

TRandomNumberGenerator generates a sequence of pseudo random numbers given an initial seed.
Ifno initial seed is specified, the system time is used as a seed. The range of random number values
is [0,2"31-1>.

class TRandomNumberGenerator
public:

TRandomNumberGenerator();
TRandomNumberGenerator(long initialSeed);
-TRandomNumberGenerator();
long Next();
void Reset();

. long First () ;

.&Registered IRestricted Utility Classes Thursday, March I, 1990 2.1.2 - 33

TDirectedGraph::TDirectedGraph(const long vertices, const long edges);
Create a new directed graph (digraph). While the graph which is returned could contain any number
of vertices and edges, providing a guess as to the expected number of vertices and the expected
average number of edges from each vertex could greatly improve the efficiency of graph operations.

-TDirectedGraph::TDirectedGraph();
Delete the graph and all the vertices and edges associated with the graph. All edges and
vertices are freed.

TQueue* TDirectedGraph::TopologicalSort(const TQueue* start=NIL);
Return an ordering on this such that no vertex in the ordering is before any vertex that points to it.
Each object in the queue is a vertex. Use the start queue as the vertices to begin the topological sort.
If no start queue is provided then some appropriate set of starting nodes will be chosen. (The
appropriate set of nodes wi.U..c.qQ..~j.§t..9.f...~U ...u.94..~:~.J~fjn-degree zero) Note that there is .n.9::::pq§:$.~ht~way

Return a collection of$'torongly connected components of this. Ef\.:~lj:m~tf:Qijmy{connectedcomponent in

";): ::::.:.;.:- ..
.,. :::::::-:.:-- .
:".:\ :::::::::::::::.:-:.:-:-: ::..:.:: ;..::: ":.:':.'.:':~.:

:-::::>;:::::;: :::}::::

Random Numbers

TRandomNumberGenerator generates a sequence of pseudo random numbers given an initial seed.
Ifno initial seed is specified, the system time is used as a seed. The range of random number values
is [0,2"31-1>.

class TRandomNumberGenerator
public:

TRandomNumberGenerator();
TRandomNumberGenerator(long initialSeed);
-TRandomNumberGenerator();
long Next();
void Reset();

. long First () ;

.&Registered IRestricted Utility Classes Thursday, March I, 1990 2.1.2 - 33

protected:
long GetSeed();
void SetSeed(long newlnitialSeed)i

} ;

TRandomNumberGenerator::TRandomNurnberGenerator()
Construct a new random number generator. Use the system time as a seed value.

TRandomNurnberGenerator::TRandomNurnberGenerator(long initialSeed)
Construct a new random number generator using initialSeed as the seed.

TRandomNumberGenerator::-TRandomNumberGenerator()
Destroy the random number generator.

• Registered I Restricted Utility Classes Thursday, March 1, 1990 2.1.2 - 34

protected:
long GetSeed();
void SetSeed(long newlnitialSeed)i

} ;

TRandomNumberGenerator::TRandomNurnberGenerator()
Construct a new random number generator. Use the system time as a seed value.

TRandomNurnberGenerator::TRandomNurnberGenerator(long initialSeed)
Construct a new random number generator using initialSeed as the seed.

TRandomNumberGenerator::-TRandomNumberGenerator()
Destroy the random number generator.

• Registered I Restricted Utility Classes Thursday, March 1, 1990 2.1.2 - 34

Advanced Topics

Iterators

Earlier versions of the utility classes included an "Each" mechanism for iterating over the objects ina class. Unfortunately, there are a number of problems with this mechanism (difficult to pass backinformation and no closures in C++) that facilitate the need for a more generic mechanism.

All of the classes described in the document have iterator classes defined for them. An iteratQr for aparticular object will iterate over all of the objects in a class. For example, the TLinkedListIteratorwill iterate over each element in the TLinkedList class. Each call to the iterator will return the nextelement in the class. For example:

TLinkedList alist = new TLinkedList();

~~;:~:~~~::~~:~~,'JII~'Ir'I(lflll1t~II"~kedListlte=ator(
faa = iterato~+$Next();

:-:-:<.-.-.

test)

Tlterator* i Iterator();
MCollectible* e;
boolean done = false;

done = (e->*fn) (some arguments);
e = i->Next () ;

}

delete i;

return done;

Objects in the class will be returned with order preserved if the class contains objects which are fullyordered. For example, linked lists, deques, queues, stacks, binary trees, etc. will return objects "inorder." Hashtables, sets, bags, dictionaries, heaps, priority queues etc. will return objects in somerandom (at least to the user) order.

Operations on the collection itself will invalidate all outstanding iterators on the collection un til theiterator resYncs with the collection. This occurs in the calls First. and Last. Starting with dll

.& Registered/Restricted Utility Classes Thursday, March 1, 1990 2.1.2 - 35

Advanced Topics

Iterators

Earlier versions of the utility classes included an "Each" mechanism for iterating over the objects ina class. Unfortunately, there are a number of problems with this mechanism (difficult to pass backinformation and no closures in C++) that facilitate the need for a more generic mechanism.

All of the classes described in the document have iterator classes defined for them. An iteratQr for aparticular object will iterate over all of the objects in a class. For example, the TLinkedListIteratorwill iterate over each element in the TLinkedList class. Each call to the iterator will return the nextelement in the class. For example:

TLinkedList alist = new TLinkedList();

~~;:~:~~~::~~:~~,'JII~'Ir'I(lflll1t~II"~kedListlte=ator(
faa = iterato~+$Next();

:-:-:<.-.-.

test)

Tlterator* i Iterator();
MCollectible* e;
boolean done = false;

done = (e->*fn) (some arguments);
e = i->Next () ;

}

delete i;

return done;

Objects in the class will be returned with order preserved if the class contains objects which are fullyordered. For example, linked lists, deques, queues, stacks, binary trees, etc. will return objects "inorder." Hashtables, sets, bags, dictionaries, heaps, priority queues etc. will return objects in somerandom (at least to the user) order.

Operations on the collection itself will invalidate all outstanding iterators on the collection un til theiterator resYncs with the collection. This occurs in the calls First. and Last. Starting with dll

.& Registered/Restricted Utility Classes Thursday, March 1, 1990 2.1.2 - 35

Pink, you can remove an element from the collection using a method of the iterator (Remove). This
automatically resyncs the iterator to the collection; however, all other iterators are invalidated just
as if any operation was done to the collection they are tied to.

class Tlterator
public:

Tlterator() ;
virtual -Tlterator()i
virtual MCollectible*
virtual MCollectible*
virtual MCollectible*

Tlterator::Tlterator()
Create a new iterator.

First () ;
Next () i

Remove();

>:.::::.. :.: .
......................

::::;::;.;.: ::.: : .

-:.:-:.:-::~::'.' .:.:.;.: ..:.....::.'.:.' ~.::: :.:.~ :.:".:.~.~.~ ~ :.:.: :.::.~ ~ :.:j,,:{:
}}}>~

Reset the iterator an~::::#itum the first element of the collection. Tliisi·~~Y~cS 'the iterator to the

:.:;::::::;:::;:;:;:;:;:;:;:::::;:;:;:;:::;.;.:.....

......... ::::::::::::::::: .

collection in "back.wal"d~;Q#i~r:fath~Fthanthe usual order. ..:.;.....:..:::::::/:::::::};:.' ...

class TSequencelterator public Tlterator {
public:

TSequencelterator();
virtual -TSequencelterator()i
virtual MCollectible* Last() i

virtual MCollectible* Previous()i

TSequencelterator::TSequencelterator()
Create a new iterator.

TSequencelterator::-TSequencelterator()
Delete the iterator.

• Registered / Restricted Utility Classes Thursday, March 1, 1990 2.1.2 - 36

Pink, you can remove an element from the collection using a method of the iterator (Remove). This
automatically resyncs the iterator to the collection; however, all other iterators are invalidated just
as if any operation was done to the collection they are tied to.

class Tlterator
public:

Tlterator() ;
virtual -Tlterator()i
virtual MCollectible*
virtual MCollectible*
virtual MCollectible*

Tlterator::Tlterator()
Create a new iterator.

First () ;
Next () i

Remove();

>:.::::.. :.: .
......................

::::;::;.;.: ::.: : .

-:.:-:.:-::~::'.' .:.:.;.: ..:.....::.'.:.' ~.::: :.:.~ :.:".:.~.~.~ ~ :.:.: :.::.~ ~ :.:j,,:{:
}}}>~

Reset the iterator an~::::#itum the first element of the collection. Tliisi·~~Y~cS 'the iterator to the

:.:;::::::;:::;:;:;:;:;:;:;:::::;:;:;:;:::;.;.:.....

......... ::::::::::::::::: .

collection in "back.wal"d~;Q#i~r:fath~Fthanthe usual order. ..:.;.....:..:::::::/:::::::};:.' ...

class TSequencelterator public Tlterator {
public:

TSequencelterator();
virtual -TSequencelterator()i
virtual MCollectible* Last() i

virtual MCollectible* Previous()i

TSequencelterator::TSequencelterator()
Create a new iterator.

TSequencelterator::-TSequencelterator()
Delete the iterator.

• Registered / Restricted Utility Classes Thursday, March 1, 1990 2.1.2 - 36

MCollectible*TSequenceIterator::Last()
Return the last object in the collection. This resyncs the iterator to the collection if other operations
on the collection caused the iterator to be invalidated.

MCollectible* TSequenceIterator::Previous()
Retrieve the previous object in the collection and return it. The order that objects are retrieved is in
an order that reflects the "ordered-ness" of the collection (or the lack of ordering on the collection
elements). If the collection has changed Cother than through the use of the Remove method of this
iterator) since the last time First or Last was called, this method will FAIL.

Garbage Collection

The role of automatic storage management in the C++ world is a very controversial issue. In a

~~I~~:~~~~IIIII~~~~~Ii~iii~~~~~:::d
garbage collector woulq:::pe less efficient than, say, a good Lisp or qA"tfgafQii&"collector. Worse, I

~~:ee: ~:~~:t~::~I[~lected CH would fail to deliver the 10"11!!l$~)!~~tmfinancepeople have

..
.:.:-:-:-:.:.:.. ::::::::::::::::{:::>::;::::::....

. :.:.:.:-;...;-:-:::-::::;:::.:..

As it stands now,~~f~~tmii:~li~~~~>~houldtake great care with r~~~:&:6~mffi··ffi~ffi8g,<Illanagement.
In general, the utility classes manage their own memory and never allocate memory that they expect
the user to manage.5 Likewise, objects created by the user and put into collections should be
managed by that user. A common error that many people encounter is the following:

TSet* aSet = new TSet();
TSurrogateTask* aTask = new TSurrogateTask();
aSet->Add(aTask);

...much later ...

5. The major exception to this rule is the member function, Iterator (), which creates a new
iterator on the heap that it expects the user to manage. Ifyou don't need the polymorphism
(that is, you know the type of the collection as something other than TCollection), you can
cre~te an iterator directly as in TDequeIterator anIterator (&aDeque).

'*Registered /Restricted Utility Classes Thursday, March 1, 1990 2.1.2 - 37

MCollectible*TSequenceIterator::Last()
Return the last object in the collection. This resyncs the iterator to the collection if other operations
on the collection caused the iterator to be invalidated.

MCollectible* TSequenceIterator::Previous()
Retrieve the previous object in the collection and return it. The order that objects are retrieved is in
an order that reflects the "ordered-ness" of the collection (or the lack of ordering on the collection
elements). If the collection has changed Cother than through the use of the Remove method of this
iterator) since the last time First or Last was called, this method will FAIL.

Garbage Collection

The role of automatic storage management in the C++ world is a very controversial issue. In a

~~I~~:~~~~IIIII~~~~~Ii~iii~~~~~:::d
garbage collector woulq:::pe less efficient than, say, a good Lisp or qA"tfgafQii&"collector. Worse, I

~~:ee: ~:~~:t~::~I[~lected CH would fail to deliver the 10"11!!l$~)!~~tmfinancepeople have

..
.:.:-:-:-:.:.:.. ::::::::::::::::{:::>::;::::::....

. :.:.:.:-;...;-:-:::-::::;:::.:..

As it stands now,~~f~~tmii:~li~~~~>~houldtake great care with r~~~:&:6~mffi··ffi~ffi8g,<Illanagement.
In general, the utility classes manage their own memory and never allocate memory that they expect
the user to manage.5 Likewise, objects created by the user and put into collections should be
managed by that user. A common error that many people encounter is the following:

TSet* aSet = new TSet();
TSurrogateTask* aTask = new TSurrogateTask();
aSet->Add(aTask);

...much later ...

5. The major exception to this rule is the member function, Iterator (), which creates a new
iterator on the heap that it expects the user to manage. Ifyou don't need the polymorphism
(that is, you know the type of the collection as something other than TCollection), you can
cre~te an iterator directly as in TDequeIterator anIterator (&aDeque).

'*Registered /Restricted Utility Classes Thursday, March 1, 1990 2.1.2 - 37

TSurrogateTask* bTask = new TSurrogateTask()i
II bTask is equal to aTask but not the same object

II The wrong way unless you know bTask is pointer eq to aTask
aSet->Remove(bTask)i
delete bTaski

II The right way in general
TSurrogateTask* someTask = (TSurrogateTask*) aSet->Remove(bTask);
if (someTask != bTask)

delete someTaski
delete bTaski

Dictionaries are slightly more complicated to deal with because you always receive the old value
back from the call to Remove. This means that the pointer to the key is dropped on the floor by the
utility classes. Use the value pair, delete the
value to the caller.

• Registered / Restricted Utility Classes Thursday, March 1, 1990 2.1.2 - 38

TSurrogateTask* bTask = new TSurrogateTask()i
II bTask is equal to aTask but not the same object

II The wrong way unless you know bTask is pointer eq to aTask
aSet->Remove(bTask)i
delete bTaski

II The right way in general
TSurrogateTask* someTask = (TSurrogateTask*) aSet->Remove(bTask);
if (someTask != bTask)

delete someTaski
delete bTaski

Dictionaries are slightly more complicated to deal with because you always receive the old value
back from the call to Remove. This means that the pointer to the key is dropped on the floor by the
utility classes. Use the value pair, delete the
value to the caller.

• Registered / Restricted Utility Classes Thursday, March 1, 1990 2.1.2 - 38

• Registered /Restricted Cheetah Wednesday, March 7,1990 2.1.3 - i• Registered /Restricted Cheetah Wednesday, March 7,1990 2.1.3 - i

cheeetah n. 1. A long-legged, swift running wild cat,
Acinonyxjubatus, of Mrica and southwestern Asia,
that has black spotted, tawny fur and nonretractile
claws and is sometimes trained to pursue game. 2.
Cheap persistent objects for Pink.

}i,!IIIII~II!lrlllllli!!,I'III'hffer
""

\C:i.i:!:::!::!'".C:"::":O·
::":::::::::::::::::::::::":::::::"
:":::::::::::::::::::::::::::::::".
••••• p .

• Registered /Restricted Cheetah Thursday, March 1, 1990 2.1.3-ii

cheeetah n. 1. A long-legged, swift running wild cat,
Acinonyxjubatus, of Mrica and southwestern Asia,
that has black spotted, tawny fur and nonretractile
claws and is sometimes trained to pursue game. 2.
Cheap persistent objects for Pink.

}i,!IIIII~II!lrlllllli!!,I'III'hffer
""

\C:i.i:!:::!::!'".C:"::":O·
::":::::::::::::::::::::::":::::::"
:":::::::::::::::::::::::::::::::".
••••• p .

• Registered /Restricted Cheetah Thursday, March 1, 1990 2.1.3-ii

Introduction

cheetah is a set of classes and protocol for use with C++ in the Pink world for saving and restoring objects
to and from a stream. Objects which descend from the appropriate classes and adhere to the proper
protocol can be "flattened" to a stream (memory, a disk file, the network, etc.) a~d "expanded" on the
other end.

Objects with references to other objects can be flattened and restored easily. Multiple references to the
same object are restored properly. Circular references are also handled in the design of the system. Sets
of objects can be flattened and restored together and repeated references are handled efficiently. cheetah
does not address where objects are stored, how they are found, indexing into a database of objects, at
garbage collection of persistent objects.

Architecture Overview

... :-:.;.:.:-:-:-:<.:-:-:<....-:...

Details

TStream

-:.:-:.:.:-:-:.:-:.:.:-:.;.:.;.:.:.:.:-;.:.:-:....
...............;.:-:.:.:-:-:.:.;.:-:-:-:-: . -'"::.:'::::::::::::::::::::::::::":'

The TStream class provides an abstract protocol for reading and writing data structures. The stream can
be a section of memory, an Opus Message, a disk file or anything else that allows binary representations
of objects to be written to it. TStream is an abstract superclass. Derived classes of TStream should
implement the protocol of TStream. All of the methods in TStream signal exceptions when bad things
happen (for example, end of file is reached). All of the read/write methods use a buffered approach for
reading and writing. Virtual functions are called when the buffer is full or empty at which time your
stream can do whatever processing it needs. If no buffering is desired, the size of the buffer can be set to
zero and your virtual functions will be called at every read or write. This design allows the code for
reading and writing to be inline and efficient (no function calls to write or read from a stream except at
overflow or underflow) while also allowing streams to have some virtual behavior.

'*Registered /Restricted Cheetah Thursday, March 1, 1990 2.1.3-1

Introduction

cheetah is a set of classes and protocol for use with C++ in the Pink world for saving and restoring objects
to and from a stream. Objects which descend from the appropriate classes and adhere to the proper
protocol can be "flattened" to a stream (memory, a disk file, the network, etc.) a~d "expanded" on the
other end.

Objects with references to other objects can be flattened and restored easily. Multiple references to the
same object are restored properly. Circular references are also handled in the design of the system. Sets
of objects can be flattened and restored together and repeated references are handled efficiently. cheetah
does not address where objects are stored, how they are found, indexing into a database of objects, at
garbage collection of persistent objects.

Architecture Overview

... :-:.;.:.:-:-:-:<.:-:-:<....-:...

Details

TStream

-:.:-:.:.:-:-:.:-:.:.:-:.;.:.;.:.:.:.:.;.:.:-:....
...............;.:-:.:.:-:-:.:.;.:-:-:-:-: . -'"::.:'::::::::::::::::::::::::::":'

The TStream class provides an abstract protocol for reading and writing data structures. The stream can
be a section of memory, an Opus Message, a disk file or anything else that allows binary representations
of objects to be written to it. TStream is an abstract superclass. Derived classes of TStream should
implement the protocol of TStream. All of the methods in TStream signal exceptions when bad things
happen (for example, end of file is reached). All of the read/write methods use a buffered approach for
reading and writing. Virtual functions are called when the buffer is full or empty at which time your
stream can do whatever processing it needs. If no buffering is desired, the size of the buffer can be set to
zero and your virtual functions will be called at every read or write. This design allows the code for
reading and writing to be inline and efficient (no function calls to write or read from a stream except at
overflow or underflow) while also allowing streams to have some virtual behavior.

'*Registered /Restricted Cheetah Thursday, March 1, 1990 2.1.3-1

typedef size t StreamPosition;

class TStream : public MCollectible
public:

virtual -TStream();

II Non virtual reads and writes for all the primitive types:
II char, short, long (signed and unsigned), float, extended, double, etc.

.

'.::':':":::.':.....

.·.;.i····.·ii

......:.;.; .

. .
..................

void Reset();
StreamPosition Position();
void Seek(StreamPosition position);
void SeekRelative(StreamPosition amount);
StreamPosition GetLogicalEndOfStream();
StreamPosition GetPhysicalEndOfStream();

"'':':':':;:;';'.
:-:-:.:-:.:::::.::::.

.::::.:.;.::;:;::.;.:-:.:
....:.:-:.:... }<}»~~}{ :.;.

. :..-:.:-:.. .:-:.:-:-:-:::::::;:;::::::> ;':-'.:-:.:-'

virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual

} ;

Overloaded operators for reading (you don't need to override these - in fact, you can't):
TStream& operator«=(char* c, TStream& s);
TStream& operator«=(long& c, TStream& s);
TStream& operator«=(short& c, TStream& s);
TStream& operator«=(char& c, TStream& s);
TStream& operator«=(Boolean& c, TStream& S)i

Overloaded operators for writing (you don't need to override these - in fact, you can't):
TStream& operator»=(const char* c, TStream& s);
TStream& operator»=(const long& c, TStream& S)i

TStream& operator»=(const short& c, TStream& S)i

TStream& operator»=(const char& c, TStream& s);
TStream& operator»=(const Boolean& c, TStream& s);

• Registered/Restricted Cheetah Thursday, March 1, 1990 2.1.3-2

typedef size t StreamPosition;

class TStream : public MCollectible
public:

virtual -TStream();

II Non virtual reads and writes for all the primitive types:
II char, short, long (signed and unsigned), float, extended, double, etc.

.

'.::':':":::.':.....

.·.;.i····.·ii

......:.;.; .

. .
..................

void Reset();
StreamPosition Position();
void Seek(StreamPosition position);
void SeekRelative(StreamPosition amount);
StreamPosition GetLogicalEndOfStream();
StreamPosition GetPhysicalEndOfStream();

"'':':':':;:;';'.
:-:-:.:-:.:::::.::::.

.::::.:.;.::;:;::.;.:-:.:
....:.:-:.:... }<}»~~}{ :.;.

. :..-:.:-:.. .:-:.:-:-:-:::::::;:;::::::> ;':-'.:-:.:-'

virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual

} ;

Overloaded operators for reading (you don't need to override these - in fact, you can't):
TStream& operator«=(char* c, TStream& s);
TStream& operator«=(long& c, TStream& s);
TStream& operator«=(short& c, TStream& s);
TStream& operator«=(char& c, TStream& s);
TStream& operator«=(Boolean& c, TStream& S)i

Overloaded operators for writing (you don't need to override these - in fact, you can't):
TStream& operator»=(const char* c, TStream& s);
TStream& operator»=(const long& c, TStream& S)i

TStream& operator»=(const short& c, TStream& S)i

TStream& operator»=(const char& c, TStream& s);
TStream& operator»=(const Boolean& c, TStream& s);

• Registered/Restricted Cheetah Thursday, March 1, 1990 2.1.3-2

TStream::TStream(void* bufferStart, StrearnPosition howmuch)
You must pass the start of a buffer to use as well as the size of the buffer when creating stream objects.
This buffer will be used for reading and writing. Subclasses will not necessarily export this information
to their clients. To specify no buffering, passing NIL, 0 will work.

void TStream: : Reset ()
Reset the stream. The current position is set to zero.

StreamPosition TStream::Position()
Return the current position of the stream.

void TStream: : Seek (StreamPosition position)
Seek to the specified position. The next read or write will take place from there.

~~(:e~;ti:~:~~:~~llrllllilrr.~et~~x~)reador Wd~:~j;:;!~~;[~~~!#gg
~~~~~~i~~~~~n~S~f7~~if~.?megffiff!~fl1R§gfStream ( )

..;.'-:.:.:.:-:

StreamPosition T$t:#eam: :GetPhysicalEndOfStream()
Return the physical eridof:the:.stream.

. .t":~:::'::':~::j~I:~::~:~\j:I:\\~~:~::~~:r:~::,~j:~~\~~~j:~f~Htt:::::::::.:.

::::::::::::;/::::\:.:~(:;::::::::::::::::

void TStream: : Buf£erEmpty (void*, Stre~osition··coUnt.r :.: . . '.'
This routine is called by cheetah when the spedJl~J,ufferthat-yoll" siipplied does not contain enough

:~~.1!~~E~I!~~i;E~~~i~~ii~'~~~f.h~~'lf~S~i~afl~!~!!lti~e~gth
void TStream :::;:$$:;q9*~¢:*~m(1U~9Af.:~~t::¥l "::::::::::::0,;,;::,::::::/:\\:.:
Teontext * TSt rearn:i@~#¢9lit~i#tyrr' ··:<:::,;::::{}::::::t:?<:·«<::<
Set/Get the context usciiirireadirtgor writing objects to the stream. It is oii1Y:h&~ssary'toset the context
when writing a set of objects which has multiple references to the same objects.

void TStream: : SetDeepFreeze (Boolean)
Boolean TStream::GetDeepFreeze()
Set/Get the udeepFreeze" used in reading or writing objects to the stream. If GetDeepFreeze returns
FALSE, tokens are used to represent the class name. If GetDeepFreeze returns TRUE, strings are used.
When flattening objects which will persist across sessions or machines, GetDeepFreeze should return
TRUE.

void TStream::SetDeferredWriteList(TDeque*)
TDeque* TStream::GetDeferredWriteList() const
This list is used internally by the cheetah system.

.&Registered IRestricted Cheetah Thursday, March I, 1990 2.1.3 - 3

TStream::TStream(void* bufferStart, StrearnPosition howmuch)
You must pass the start of a buffer to use as well as the size of the buffer when creating stream objects.
This buffer will be used for reading and writing. Subclasses will not necessarily export this information
to their clients. To specify no buffering, passing NIL, 0 will work.

void TStream: : Reset ()
Reset the stream. The current position is set to zero.

StreamPosition TStream::Position()
Return the current position of the stream.

void TStream: : Seek (StreamPosition position)
Seek to the specified position. The next read or write will take place from there.

~~(:e~;ti:~:~~:~~llrllllilrr.~et~~x~)reador Wd~:~j;:;!~~;[~~~!#gg
~~~~~~i~~~~~n~S~f7~~if~.?megffiff!~fl1R§gfStream ( )

..;.'-:.:.:.:-:

StreamPosition T$t:#eam: :GetPhysicalEndOfStream()
Return the physical eridof:the:.stream.

. .t":~:::'::':~::j~I:~::~:~\j:I:\\~~:~::~~:r:~::,~j:~~\~~~j:~f~Htt:::::::::.:.

::::::::::::;/::::\:.:~(:;::::::::::::::::

void TStream: : Buf£erEmpty (void*, Stre~osition··coUnt.r :.: . . '.'
This routine is called by cheetah when the spedJl~J,ufferthat-yoll" siipplied does not contain enough

:~~.1!~~E~I!~~i;E~~~i~~ii~'~~~f.h~~'lf~S~i~afl~!~!!lti~e~gth
void TStream :::;:$$:;q9*~¢:*~m(1U~9Af.:~~t::¥l "::::::::::::0,;,;::,::::::/:\\:.:
Teontext * TSt rearn:i@~#¢9lit~i#tyrr' ··:<:::,;::::{}::::::t:?<:·«<::<
Set/Get the context usciiirireadirtgor writing objects to the stream. It is oii1Y:h&~ssary'toset the context
when writing a set of objects which has multiple references to the same objects.

void TStream: : SetDeepFreeze (Boolean)
Boolean TStream::GetDeepFreeze()
Set/Get the udeepFreeze" used in reading or writing objects to the stream. If GetDeepFreeze returns
FALSE, tokens are used to represent the class name. If GetDeepFreeze returns TRUE, strings are used.
When flattening objects which will persist across sessions or machines, GetDeepFreeze should return
TRUE.

void TStream::SetDeferredWriteList(TDeque*)
TDeque* TStream::GetDeferredWriteList() const
This list is used internally by the cheetah system.

.&Registered IRestricted Cheetah Thursday, March I, 1990 2.1.3 - 3

void TStrearn::SetForceFlattenEternalObjects(Boolean)
Boolean TStrearn::GetForceFlattenEternalObjects() const
Set/Get the flag that detennines whether "eternal" objects will be treated as if they were ordinary objects
when writing to the stream. If the flag is true, "eternal" object references are flattened on the stream
much like an ordinary object. If the flag is false, "eternal" object references are noted in the stream and
the "eternal" object is written to where it belongs. More on this in the section on eternal objects.

void* TStrearn::GetBufferStart() const
void TStream: : SetBufferStart (void*)
void TStream::IncrernentBufferStart(StreamPosition)
StreamPosition TStrearn::GetBufferLength() const
void TStream: : SetBufferLength (StreamPosition)
void TStream: :DecrementBufferLength (StreamPosition)
voidTStream::SetBufferWasModified(Boolean rnodified=TRUE)
Boolean TStrearn::GetBufferWasModified() const
These routines perform oP~n~.9..Q.n?...9.n..fu~...£.HIT~.nt.p..Hffgr start pointer and buffer length point.~r.Jh~H:~re

Global Functions

II FlattenPointer two objects with shared parts
TPersistentClassD* d = new TPersistentClassD("rne", "cguy", "bguy", a);
TMernoryStrearn pnewma2(new char[lOO], 100);
TContext tim;
pneuma2->SetContext(&tirn);
FlattenPointer(d, &pneuma2);
FlattenPointer(a, &pneuma2);
pneurna2->SetContext(NIL) ;

Streams also provide information about whether they are ephemeral (in the case of a memory stream) or
more persistent (as in a disk file). A deepFreeze attribute of the stream is set to true if the flattening
should store the object in its most general form; that is, a form which can be resurrected on another CPU
or saved to disk and resurrected. Objects which are simply sent to another team (for example, in an
Opus/2 message) can use a more compact representation. See the examples section for code which saves
si.ngle objects and multiple objects. Note that in any event, the original object is unchanged by the

• Registered I Restricted Cheetah Thursday, March 1, 1990 2.1.3 - 4

void TStrearn::SetForceFlattenEternalObjects(Boolean)
Boolean TStrearn::GetForceFlattenEternalObjects() const
Set/Get the flag that detennines whether "eternal" objects will be treated as if they were ordinary objects
when writing to the stream. If the flag is true, "eternal" object references are flattened on the stream
much like an ordinary object. If the flag is false, "eternal" object references are noted in the stream and
the "eternal" object is written to where it belongs. More on this in the section on eternal objects.

void* TStrearn::GetBufferStart() const
void TStream: : SetBufferStart (void*)
void TStream::IncrernentBufferStart(StreamPosition)
StreamPosition TStrearn::GetBufferLength() const
void TStream: : SetBufferLength (StreamPosition)
void TStream: :DecrementBufferLength (StreamPosition)
voidTStream::SetBufferWasModified(Boolean rnodified=TRUE)
Boolean TStrearn::GetBufferWasModified() const
These routines perform oP~n~.9..Q.n?...9.n..fu~...£.HIT~.nt.p..Hffgr start pointer and buffer length point.~r.Jh~H:~re

Global Functions

II FlattenPointer two objects with shared parts
TPersistentClassD* d = new TPersistentClassD("rne", "cguy", "bguy", a);
TMernoryStrearn pnewma2(new char[lOO], 100);
TContext tim;
pneuma2->SetContext(&tirn);
FlattenPointer(d, &pneuma2);
FlattenPointer(a, &pneuma2);
pneurna2->SetContext(NIL) ;

Streams also provide information about whether they are ephemeral (in the case of a memory stream) or
more persistent (as in a disk file). A deepFreeze attribute of the stream is set to true if the flattening
should store the object in its most general form; that is, a form which can be resurrected on another CPU
or saved to disk and resurrected. Objects which are simply sent to another team (for example, in an
Opus/2 message) can use a more compact representation. See the examples section for code which saves
si.ngle objects and multiple objects. Note that in any event, the original object is unchanged by the

• Registered I Restricted Cheetah Thursday, March 1, 1990 2.1.3 - 4

process of flattening. The stream has the flattened version of the object at the time of the snapshot.

MCollectible* Resurrect(TStream* fromwhere);
The Resurrect function will take the flattened form of an object and create an MCollectible object
from it. The stream which is passed in contains the flattened form of the object. The context which is
passed in is used in the same manner as above. For example, to resurrect the two objects created in the
example above:

II Resurrect a single object
TPersistentClassA* A;
pneurnal->Reset();
A = (TPersistentClassA*) Resurrect(pneumal);

II Resurrect multiple objects from the same stream
TPersistentClassD* D;

~~~:;;~~;~~~~ilIII1I1r'IIIII!J1ll11lt':pneuma2);
A = (TPersis#:~ptkflM!@~fKi)?~)*¥@@f.¥@~gt (pneuma2) ;
pneurna2->Se~99ntext(NIL);

MCollectible

....:.:.::::::<.:.:-:..- ; .

. -.:. ':'::::}}::{:~:~:~::::::} :}}}

:~~~~~:~{~t\)~{tj~}}}~{/::

typedef TokenID ClassName;

GetClassNameAsToken();
GetClassNameAsString() ;

class MCollectible 1

public:
MCollectible();
virtual -MCollectible();
virtual TStreamboperator»=(TStream&
virtual TStreamb operator«=(TStream&
virtual StrearnPosition Size (TContext*

FALSE) ;
virtual ClassName
virtual char*

towhere) ;
towhere) ;
tim = NIL, Boolean deepFreeze

1. This is the part of MCollectible concerned with flattening objects to a stream and resurrecting them
later. For more information about MCollectible, see the Utility Classes document.

.&Registered /Restricted Cheetah Thursday, March 1, 1990 2.1.3 - 5

process of flattening. The stream has the flattened version of the object at the time of the snapshot.

MCollectible* Resurrect(TStream* fromwhere);
The Resurrect function will take the flattened form of an object and create an MCollectible object
from it. The stream which is passed in contains the flattened form of the object. The context which is
passed in is used in the same manner as above. For example, to resurrect the two objects created in the
example above:

II Resurrect a single object
TPersistentClassA* A;
pneurnal->Reset();
A = (TPersistentClassA*) Resurrect(pneumal);

II Resurrect multiple objects from the same stream
TPersistentClassD* D;

~~~:;;~~;~~~~ilIII1I1r'IIIII!J1ll11lt':pneuma2);
A = (TPersis#:~ptkflM!@~fKi)?~)*¥@@f.¥@~gt (pneuma2) ;
pneurna2->Se~99ntext(NIL);

MCollectible

....:.:.::::::<.:.:-:..- ; .

. -.:. ':'::::}}::{:~:~:~::::::} :}}}

:~~~~~:~{~t\)~{tj~}}}~{/::

typedef TokenID ClassName;

GetClassNameAsToken();
GetClassNameAsString() ;

class MCollectible 1

public:
MCollectible();
virtual -MCollectible();
virtual TStreamboperator»=(TStream&
virtual TStreamb operator«=(TStream&
virtual StrearnPosition Size (TContext*

FALSE) ;
virtual ClassName
virtual char*

towhere) ;
towhere) ;
tim = NIL, Boolean deepFreeze

1. This is the part of MCollectible concerned with flattening objects to a stream and resurrecting them
later. For more information about MCollectible, see the Utility Classes document.

.&Registered /Restricted Cheetah Thursday, March 1, 1990 2.1.3 - 5

virtual Boolean StructureDoesNotHaveRepeatedReferences(Boolean
deepFreeze = FALSE);

discussed later with MEternal.
GetObjectID() const;
SetObjectID(ObjectID);
GetPersistentContext() const;
SetPersistentContext(TPersistentContext*);
GetDirty() const;
SetDirty(Boolean dirty = TRUE);

methods will be
ObjectID
void
TPersistentContext*
void
Boolean
void

II These
virtual
virtual
virtual
virtual
virtual
virtual

} ;

Note: When subclassing from MCollectible, include the line:
MCollectibleDeclarationsMacro(myClassName);

in the declaration of your class and the line:

:,:::::,.:::-::: .:: m::j'j}}j:y,:}}

~fu1~;!f{ ~~:!lfi,llr_'~~1ii~~:~~:€:~:~:;\"~~j~~~o:~ilil!;i~;;\\~g
the flatten routine6fth~>m~mP¢rqpjects>Finally, it must flatten its merribet$:jwmS~~Ie::simpledata types
and references to other objeCts. Simple data types are flattened by writing the dafutype to the stream
(using the stream: : Write () member function). References to other objects are flattened by recursively
calling the FlattenPointer routine with the parameters which were passed in. For example, if class C
is descended from classes A and B, has a member object d of class 0, has a member long, a member char,
and a pointer to an E object (e) , its Flat ten routine would look like:

TStream& C::operator»=(TStream* towhere)
{

A::operator»=(towhere) ;
B::operator»=(towhere) ;
d.operator»=(towhere);
fLong »= towhere;
fChar »= towhere;
FlattenPointer(e, towhere);
return towhere;

• Registered /Restricted Cheetah Thursday, March 1, 1990 2.1.3 - 6

virtual Boolean StructureDoesNotHaveRepeatedReferences(Boolean
deepFreeze = FALSE);

discussed later with MEternal.
GetObjectID() const;
SetObjectID(ObjectID);
GetPersistentContext() const;
SetPersistentContext(TPersistentContext*);
GetDirty() const;
SetDirty(Boolean dirty = TRUE);

methods will be
ObjectID
void
TPersistentContext*
void
Boolean
void

II These
virtual
virtual
virtual
virtual
virtual
virtual

} ;

Note: When subclassing from MCollectible, include the line:
MCollectibleDeclarationsMacro(myClassName);

in the declaration of your class and the line:

:,:::::,.:::-::: .:: m::j'j}}j:y,:}}

~fu1~;!f{ ~~:!lfi,llr_'~~1ii~~:~~:€:~:~:;\"~~j~~~o:~ilil!;i~;;\\~g
the flatten routine6fth~>m~mP¢rqpjects>Finally, it must flatten its merribet$:jwmS~~Ie::simpledata types
and references to other objeCts. Simple data types are flattened by writing the dafutype to the stream
(using the stream: : Write () member function). References to other objects are flattened by recursively
calling the FlattenPointer routine with the parameters which were passed in. For example, if class C
is descended from classes A and B, has a member object d of class 0, has a member long, a member char,
and a pointer to an E object (e) , its Flat ten routine would look like:

TStream& C::operator»=(TStream* towhere)
{

A::operator»=(towhere) ;
B::operator»=(towhere) ;
d.operator»=(towhere);
fLong »= towhere;
fChar »= towhere;
FlattenPointer(e, towhere);
return towhere;

• Registered I Restricted Cheetah Thursday, March 1, 1990 2.1.3 - 6

StreamPosition MCollectible::Size(TContext* tim = NIL, Boolean deepFreeze =

FALSE)
This method returns the size that this object will be when it is flattened in the passed in context. This
routine should probably not be overridden except by the most stalwart subclasses. This is a very
expensive method to call because cheetah needs to flatten the object in order to determine its size. If you
are going to be flattening the object anyway, a better way of determining the size is to reserve space in the
stream for the size of the object, flatten the object, note the position, seek back to where the size goes,
compute the size (you know the final position and the initial position), and stream it.

const char* MCollectible::GetClassNameAsString()
Return the name of the class as a string.

ClassName MCollectible::GetClassNameAsToken()
The default version of this routine calls the GetClassNameAsString command, then asks the token
manager for the token that P:).~~~.h'?;>'...!.h.i§s.!?.~.§.~ $.Y.P.f;'!'?,.~s can override this method to cachetl1\J9k~p·

you don't know whetry~Kthisis true, returning false is safer (which,-j!§4"gtm:ly:r is the default).

:.: ::: .

Count () ;
Find (LocalObjectNumber) ;
Add (MCollectible*, Boolean& newentry);
Replace(MCollectible* newobject,

LocalObjectNumber fred);
GetMultipleObjectContext() ;

::::::::::::::::::::::::::::: .

'}':::"::'::,:,:}}\:))):/:
'.' :.;.:.: :.'..\..'.'~;:.'.;.'.' :.:.~ :.: :.:.:.: :.: ~.':.H./ ~ ~:::.:::::-:::::::::::::::::;:::::

····:::::::HHt[}')::::·····
..... .;.:...; .

·-::~~~t~t~{r/tt{r~/:
.;.;::.;.:.;.:.;...•:.: :.:;:.:.:..

"':;:;:;{':::::::::::::::::':'';

··:}~r::;:::::;:::::::::;::::::::::::::::::::

'::::::::::::;:::;:::::::::::::::::::::::::::::;:::'

TRUE) ;

Booleanvirtual

:;~~~~~~;:~llill~;~~~:::~;::~,~!~t;
public: .•:.;·n:,\u··n·;:....mu?:/:::·:····

TContext (Booleanrr&iiflpteObjectContext
virtual -TContext();
virtual long
virtual MCollectible*
virtual LocalObjectNumber
virtual MCollectible*

} ;

• Registered/Restricted Cheetah Thursday, March 1, 1990 2.1.3 - 7

StreamPosition MCollectible::Size(TContext* tim = NIL, Boolean deepFreeze =

FALSE)
This method returns the size that this object will be when it is flattened in the passed in context. This
routine should probably not be overridden except by the most stalwart subclasses. This is a very
expensive method to call because cheetah needs to flatten the object in order to determine its size. If you
are going to be flattening the object anyway, a better way of determining the size is to reserve space in the
stream for the size of the object, flatten the object, note the position, seek back to where the size goes,
compute the size (you know the final position and the initial position), and stream it.

const char* MCollectible::GetClassNameAsString()
Return the name of the class as a string.

ClassName MCollectible::GetClassNameAsToken()
The default version of this routine calls the GetClassNameAsString command, then asks the token
manager for the token that P:).~~~.h'?;>'...!.h.i§s.!?.~.§.~ $.Y.P.f;'!'?,.~s can override this method to cachetl1\J9k~p·

you don't know whetry~Kthisis true, returning false is safer (which,-j!§4"gtm:ly:r is the default).

:.: ::: .

Count () ;
Find (LocalObjectNumber) ;
Add (MCollectible*, Boolean& newentry);
Replace(MCollectible* newobject,

LocalObjectNumber fred);
GetMultipleObjectContext() ;

::::::::::::::::::::::::::::: .

'}':::"::'::,:,:}}\:))):/:
'.' :.;.:.: :.'..\..'.'~;:.'.;.'.' :.:.~ :.: :.:.:.: :.: ~.':.H./ ~ ~:::.:::::-:::::::::::::::::;:::::

····:::::::HHt[}')::::·····
..... .;.:...; .

·-::~~~t~t~{r/tt{r~/:
.;.;::.;.:.;.:.;...•:.: :.:;:.:.:..

"':;:;:;{':::::::::::::::::':'';

··:}~r::;:::::;:::::::::;::::::::::::::::::::

'::::::::::::;:::;:::::::::::::::::::::::::::::;:::'

TRUE) ;

Booleanvirtual

:;~~~~~~;:~llill~;~~~:::~;::~,~!~t;
public: .•:.;·n:,\u··n·;:....mu?:/:::·:····

TContext (Booleanrr&iiflpteObjectContext
virtual -TContext();
virtual long
virtual MCollectible*
virtual LocalObjectNumber
virtual MCollectible*

} ;

• Registered/Restricted Cheetah Thursday, March 1, 1990 2.1.3 - 7

Eternal Objects

The data management .tools in the toolbox provide methods for the rapid retrieval of an arbitrary object
given an arbitrary key. cheetah specifies the external data format for an object. The integration of the
data management tools with cheetah provide for a simple persistent object system in which objects can be
individualy addressed and brought into memory. A TPersistentContext is apool of objects in which
any object can be found and mapped into memory given its object id. Objects which live in a
TPersistentContext have MEternal as a mixin. When FlattenPointer is called on an "eternal"
object, a reference to the eternal object is put in the stream rather than the flattened version of the object
itself. The eternal object (if dirty) is flushed to the TPersistentContext at this time. When
Resurrect is called on a stream which contains a reference to an eternal object, the object is returned. if
already in memory or loaded from the TPersistentContext if not.

Designing a class of objects which mixin MEternal involves a number of additional decisions for the
class designer. First, pointers to ordinary objects probably should not be flattened as part of the ..

5r~;~~~~~iIIt_ri~~~t~iil'j~~~[!~~I~~
...

MEternal
.....:-:.:.:::;.:.:.:.:.:.:.:.:.:.

.......

TPersistentContext, ask the TPersistentContext to delete it.2 Deleting the object in memory has
no effect on the object in the TPersistentContext. If a change is made to an MEternal object and
you would like to have that change reflected in the TPersistentContext, two things must be done.
First, mark the object as dirty using the SetDirty virtual function. Second, either explicitly flush it to
the context by calling the virtual function Add again or implicitly have it flushed by flattening the object
to a stream (or flattening an object that references it).

2. Note that no guarantees are made that deleting an object from a TPersistentContext is safe - that is,
other objects might reference it and will now have a dangling reference. The problems of garbage
collection across pools of persistent objects would be nice but I don't have the time or desire to spend

. the next ten years of my life on a research project.

.&Registered IRestricted Cheetah Thursday, March 1, 1990 2.1.3 - 8

Eternal Objects

The data management .tools in the toolbox provide methods for the rapid retrieval of an arbitrary object
given an arbitrary key. cheetah specifies the external data format for an object. The integration of the
data management tools with cheetah provide for a simple persistent object system in which objects can be
individualy addressed and brought into memory. A TPersistentContext is apool of objects in which
any object can be found and mapped into memory given its object id. Objects which live in a
TPersistentContext have MEternal as a mixin. When FlattenPointer is called on an "eternal"
object, a reference to the eternal object is put in the stream rather than the flattened version of the object
itself. The eternal object (if dirty) is flushed to the TPersistentContext at this time. When
Resurrect is called on a stream which contains a reference to an eternal object, the object is returned. if
already in memory or loaded from the TPersistentContext if not.

Designing a class of objects which mixin MEternal involves a number of additional decisions for the
class designer. First, pointers to ordinary objects probably should not be flattened as part of the ..

5r~;~~~~~iIIt_ri~~~t~iil'j~~~[!~~I~~
...

MEternal
.....:-:.:.:::;.:.:.:.:.:.:.:.:.:.

.......

TPersistentContext, ask the TPersistentContext to delete it.2 Deleting the object in memory has
no effect on the object in the TPersistentContext. If a change is made to an MEternal object and
you would like to have that change reflected in the TPersistentContext, two things must be done.
First, mark the object as dirty using the SetDirty virtual function. Second, either explicitly flush it to
the context by calling the virtual function Add again or implicitly have it flushed by flattening the object
to a stream (or flattening an object that references it).

2. Note that no guarantees are made that deleting an object from a TPersistentContext is safe - that is,
other objects might reference it and will now have a dangling reference. The problems of garbage
collection across pools of persistent objects would be nice but I don't have the time or desire to spend

. the next ten years of my life on a research project.

.&Registered IRestricted Cheetah Thursday, March 1, 1990 2.1.3 - 8

fdefine MEternalMacro() \
virtual ObjectID GetObjectID() const

{ return MEternal::GetObjectID() ;};
virtual void SetObjectID(ObjectIDid)

{ MEternal::SetObjectID(id);}; .
virtual TPersistentContext* GetPersistentContext() const

{ return MEternal::GetPersistentContext();};
virtual void SetPersistentContext(TPersistentContext*

{ MEternal::SetPersistentContext(pc) ;};
virtual Boolean GetDirty() const

{ return MEternal::GetDirtY();}i
virtual void SetDirty(Boolean dirty TRUE)

{ MEternal::SetDirty(dirty);}

\
\
\
\
\
\

pc) \
\

~ \
\
\

class MEternal {
public:

virtual

virtual
virtual

protected:
MEternal(ObjectID

} i

.....................::

A TPersistentContext is a collection of MEternal objects that can be individually accessed and
retrieved. MEternal objects in one context can reference objects in another persistent context. The
retrievel of objects from a Persistent context is via an objectid which is automatically assigned at the time
of insertion. If it is desired, a mapping could be provided from a "name" to an objectid at a higher level
(using the datamanagement tools). Deleting a TPersistentContext only removes it from memory.
Throwing away the file (the "real" Persistent context) will really destroy the persistent context.

class TPersistentContext : public MCollectible
public:

TPersistentContext(char* contextName)i
virtual -TPersistentContext() i

virtual MCollectible* Retrieve(ObjectID)i
virtual void Add(MCollectible*)i
virtual void Rernove(ObjectID)i
virtual void Delete(ObjectID)i

• Registered /Restricted Cheetah Thursday, March 1, 1990 2.1.3 - 9

fdefine MEternalMacro() \
virtual ObjectID GetObjectID() const

{ return MEternal::GetObjectID() ;};
virtual void SetObjectID(ObjectIDid)

{ MEternal::SetObjectID(id);}; .
virtual TPersistentContext* GetPersistentContext() const

{ return MEternal::GetPersistentContext();};
virtual void SetPersistentContext(TPersistentContext*

{ MEternal::SetPersistentContext(pc) ;};
virtual Boolean GetDirty() const

{ return MEternal::GetDirtY();}i
virtual void SetDirty(Boolean dirty TRUE)

{ MEternal::SetDirty(dirty);}

\
\
\
\
\
\

pc) \
\

~ \
\
\

class MEternal {
public:

virtual

virtual
virtual

protected:
MEternal(ObjectID

} i

.....................::

A TPersistentContext is a collection of MEternal objects that can be individually accessed and
retrieved. MEternal objects in one context can reference objects in another persistent context. The
retrievel of objects from a Persistent context is via an objectid which is automatically assigned at the time
of insertion. If it is desired, a mapping could be provided from a "name" to an objectid at a higher level
(using the datamanagement tools). Deleting a TPersistentContext only removes it from memory.
Throwing away the file (the "real" Persistent context) will really destroy the persistent context.

class TPersistentContext : public MCollectible
public:

TPersistentContext(char* contextName)i
virtual -TPersistentContext() i

virtual MCollectible* Retrieve(ObjectID)i
virtual void Add(MCollectible*)i
virtual void Rernove(ObjectID)i
virtual void Delete(ObjectID)i

• Registered /Restricted Cheetah Thursday, March 1, 1990 2.1.3 - 9

virtual
virtual
virtual

Boolean
long
chaz;*

IsEqual(const- MCollectible* obj)i
Hash () i

GetName()i

.............:.: .
...:.....:.:-::....

II These routines are used internally by cheetah
virtual void DeferredAdd(MCollectible* objAsEternal, TDeque*);
virtual void CommitDeferredRequest(TEternalWrapper*);

} ;

TPersistentContext::TPersistentContext(char* contextName)
Create a new persistent context or open an existing persistent context named contextName.

TPersistentContext::-TPersistentContext()
Destroy the object in memory currently that manages the persistent context.

objectID)

class TArnKey : public MCollectibl¢4((pp.blic ME~~)!#.*~ffi:\::::::~::U:::
pub1 i c . }}}:{{{. . : :/:::::.:-:.:.:-:.:.: ..:.:.:.:-:.... . ::: .

~~~~~·;~i~I!lili~!; .s;:~;;;~!1~~~;;;; ;;;;;;"II:I;;~!~\::):'.i'.... .,.i,··i,:'
virtual Boolear{:-:::·:::::-:-: .... ·······IsEqual (const MCollectible* ob·:f):-::;:';:::';:··

virtual long Hash();
const TText& GetText()i

... more virtual functions ...
MCollectibleDeclarationsMacro(TArnKeY)i
MEternalMacro()i

private:
TText fText;
MCollectible* fNextOnei

} i

MCollectibleDefinitionsMacro(TArnKey) i

• Registered/Restricted Cheetah Thursday, March 1, 1990 2.1.3-10

virtual
virtual
virtual

Boolean
long
chaz;*

IsEqual(const- MCollectible* obj)i
Hash () i

GetName()i

.............:.: .
...:.....:.:-::....

II These routines are used internally by cheetah
virtual void DeferredAdd(MCollectible* objAsEternal, TDeque*);
virtual void CommitDeferredRequest(TEternalWrapper*);

} ;

TPersistentContext::TPersistentContext(char* contextName)
Create a new persistent context or open an existing persistent context named contextName.

TPersistentContext::-TPersistentContext()
Destroy the object in memory currently that manages the persistent context.

objectID)

class TArnKey : public MCollectibl¢4((pp.blic ME~~)!#.*~ffi:\::::::~::U:::
pub1 i c . }}}:{{{. . : :/:::::.:-:.:.:-:.:.: ..:.:.:.:-:.... . ::: .

~~~~~·;~i~I!lili~!; .s;:~;;;~!1~~~;;;; ;;;;;;"II:I;;~!~\::):'.i'.... .,.i,··i,:'
virtual Boolear{:-:::·:::::-:-: ·······IsEqual (const MCollectible* ob·:f):-::;:';:::';:··

virtual long Hash();
const TText& GetText()i

... more virtual functions ...
MCollectibleDeclarationsMacro(TArnKeY)i
MEternalMacro()i

private:
TText fText;
MCollectible* fNextOnei

} i

MCollectibleDefinitionsMacro(TArnKey) i

• Registered/Restricted Cheetah Thursday, March 1, 1990 2.1.3-10

TArnKey::TArnKey(const TText& someText, MCollectible* nextOne)
TText(SomeText)

fNextOne = nextOne;
SetDirty();

TArnKey: :-TArnKey()
{

}

TStream& TArnKey::operator»=(TStream& towhere)
{

MCollectible::operator»=(towhere);
MEternal::operator»=(towhere) ;

f Text >>= towhere ;.a::;::::·::i.;::::::::::::j:::::~·.::::::::::::::;;::::]:::::::::::::.::j::::jj:::::::::::[::::ji::::i:~i:~j~ij::m:~:i::;jj:r

~~~~~~n:~:~::::f J[iliJit;liiiiliiflli
i

return fText;

TStream& TArnKey :)@@perator«= (TStream& fromwhere)

{ ":::,,,:::::::

MCollectible: :9P:~#~F.:9};:$67:JJ.romwhere);

g~~~;~~~~:;illlll'tlll(I\lltlt~il~
const TText& TArnKey:: GetText () ··::::{i:::::l'::'!'::~[':'.:II[II;I::[j:·.I[[·lj:

long TArnKey: :Hash ()
{

return fText.Hash();

main ()
{

TArnKey* aKey = new TArnKey("hello");
TArnKey* bKey = new TArnKey("goodbye", aKey);
TPersistentContext someContext("myContext");

someContext.Add(aKey) ;

.someContext.Add{bKey) ;

II aKey added to persistent context. assume
II objID = 1 for this example
II bKey added to persistent context - with
II a reference to aKey. assume objID = 2 for

• Registered /Restricted Cheetah Thursday, March 1, 1990 2.1.3 -11

TArnKey::TArnKey(const TText& someText, MCollectible* nextOne)
TText(SomeText)

fNextOne = nextOne;
SetDirty();

TArnKey: :-TArnKey()
{

}

TStream& TArnKey::operator»=(TStream& towhere)
{

MCollectible::operator»=(towhere);
MEternal::operator»=(towhere) ;

f Text >>= towhere ;.a::;::::·::i.;::::::::::::j:::::~·.::::::::::::::;;::::]:::::::::::::.::j::::jj:::::::::::[::::ji::::i:~i:~j~ij::m:~:i::;jj:r

~~~~~~n:~:~::::f J[iliJit;liiiiliiflli
i

return fText;

TStream& TArnKey :)@@perator«= (TStream& fromwhere)

{ ":::,,,:::::::

MCollectible: :9P:~#~F.:9};:$67:JJ.romwhere);

g~~~;~~~~:;illlll'tlll(I\lltlt~il~
const TText& TArnKey:: GetText () ··::::{i:::::l'::'!'::~[':'.:II[II;I::[j:·.I[[·lj:

long TArnKey: :Hash ()
{

return fText.Hash();

main ()
{

TArnKey* aKey = new TArnKey("hello");
TArnKey* bKey = new TArnKey("goodbye", aKey);
TPersistentContext someContext("myContext");

someContext.Add(aKey) ;

.someContext.Add{bKey) ;

II aKey added to persistent context. assume
II objID = 1 for this example
II bKey added to persistent context - with
II a reference to aKey. assume objID = 2 for

• Registered /Restricted Cheetah Thursday, March 1, 1990 2.1.3 -11

delete aKey;
delete bKey;

TArnKey* retva12

II this example

II Removes in memory versions

sorneContext.Retrieve(2) ;
II Loads in both aKey and bKey and restores
II references properly. Note that aKey was read
II in at this point even though it hasn't
II been referenced in any code. Look at next
II example to see how fNextOne field could ~

II be declared in TArnKey to make aKey loaded
II only when referenced.

And now, another example using a smart pointer to force objects to be demand loaded (rather than all
referenced objects being lo~~;;:wb.~~.)Jb~:HrP.Qt(:b;Q.~·is loaded).;.;;{:::==:tJ::I\:::::::::}W-?:t::/

c~~~~£c:::::::::~llllllltllll'I'::s~stentcont~*~i'lllll~ilIJj~:j~':;;:...,..
TSmartPointer @t¢6llectible* realObject = NIL); ..:::::=:::\:\=?ttF?:::::I:}:::··

virtual
virtual
virtual
virtual
virtual
virtual

/\{{t .

.......

..............................".

,'»:-:-:

p r ivat e : :: :.:::.:.:.:.:.:.:

~~~~~~~~~i~;~II;'ili!!!~~;~~~~i~.Ty
TPe r sist ert=t:OB·ti"€"~xi-K:\)~g~'#$\i]@Een t Context;

} ;

MCollectibleDefinitionsMacro(TSmartPointer);

. ..

j.':.:::;...~.:.:.:.;.=.~.••.:i.: ~.:;. :.:' ::-:-:-:::-:';';':-:"

TSmartPointer::TSmartPointer(ObjectID objID, TPersistentContext* pc)
{

fObjectID = objIO;
fPersistentContext pc;
fRealObject = NIL;

TSmartPointer :.: TSmartPointer (MCollectible* realObject)
{

fRealObject = realObject;
fPersistentContext = fRealObject->GetPersistentContext();

'fObjectID = fRealObject->GetObjectID();

• Registered IRestricted Cheetah Thursday, March 1, 1990 2.1.3-12

delete aKey;
delete bKey;

TArnKey* retva12

II this example

II Removes in memory versions

sorneContext.Retrieve(2) ;
II Loads in both aKey and bKey and restores
II references properly. Note that aKey was read
II in at this point even though it hasn't
II been referenced in any code. Look at next
II example to see how fNextOne field could ~

II be declared in TArnKey to make aKey loaded
II only when referenced.

And now, another example using a smart pointer to force objects to be demand loaded (rather than all
referenced objects being lo~~;;:wb.~~.)Jb~:HrP.Qt(:b;Q.~·is loaded).;.;;{:::==:tJ::I\:::::::::}W-?:t::/

c~~~~£c:::::::::~llllllltllll'I'::s~stentcont~*~i'lllll~ilIJj~:j~':;;:...,..
TSmartPointer @t¢6llectible* realObject = NIL); ..:::::=:::\:\=?ttF?:::::I:}:::··

virtual
virtual
virtual
virtual
virtual
virtual

/\{{t .

.......

..............................".

,'»:-:-: ...........

p r ivat e : . .... :: :.:::.:.:.:.:.:.: ......

~~~~~~~~~i~;~II;'ili!!!~~;~~~~i~.Ty
TPe r sist ert=t:OB·ti"€"~xi-K:\)~g~'#$\i]@Een t Context;

} ;

MCollectibleDefinitionsMacro(TSmartPointer);

. ..

j.':.:::;...~.:.:.:.;.=.~.••.:i.: ~.:;. :.:' ::-:-:-:::-:';';':-:"

TSmartPointer::TSmartPointer(ObjectID objID, TPersistentContext* pc)
{

fObjectID = objIO;
fPersistentContext pc;
fRealObject = NIL;

TSmartPointer :.: TSmartPointer (MCollectible* realObject)
{

fRealObject = realObject;
fPersistentContext = fRealObject->GetPersistentContext();

'fObjectID = fRealObject->GetObjectID();

• Registered IRestricted Cheetah Thursday, March 1, 1990 2.1.3-12

MCollectible* TSmartPointer::operator->()
{

return GetRealObject();

TSmartPointer::operator MCollectible*()
{

return GetRealObject();

void TSmartPointer::operator=(MCollectible* realObject)

kYesEternal »= towhere;

return towhere;

\~U~~?~~It~?~{

~:t~:~:i~~i;i;~9~t=~~~~~>Add (f.R.::.::.:.:e..:..:::.::::::.a::::.:i.:.;:..••..:.·.••.:.·:•.t:••:.·•.•.•.;I;~c t) ;
(Get Ob j eqt.·iR·::~:l.:~:.:··:::~*B(:::t. owhere ;
* (GetPe r s:~@E~*;98##:-~*;:ll):::::::::?'?m::::::Ebwhe re ;

..........................:.:-:.: :':-:-:':-:-',-<:::..-

}

else

MCollectible: : OP.~:t4t;:~:P;'??."= (towhere) ;

SetRealObject(realObject) ;

~:~:~ ~~:~:~:~ ~~~i~lIillilllll!IIII"IJ'f
TStream& TSmartPo£.iier::operator»=(TStream&

TStream& TSmartPointer::operator«=(TStream& fromwhere)
{

MCollectible::operator«=(fromwhere);
unsigned char delimiter = 0;
delimiter «= fromwhere;
if (delimiter == kNotEternal)
{

fRealObject = Resurrect (fromwhere) ;
}

else

fObjectID «= fromwhere;
fPersistentContext = new TPersistentContext();

tiRegistered /Restricted Cheetah Thursday, March 1, 1990 2.1.3 -13

MCollectible* TSmartPointer::operator->()
{

return GetRealObject();

TSmartPointer::operator MCollectible*()
{

return GetRealObject();

void TSmartPointer::operator=(MCollectible* realObject)

kYesEternal »= towhere;

return towhere;

\~U~~?~~It~?~{

~:t~:~:i~~i;i;~9~t=~~~~~>Add (f.R.::.::.:.:e..:..:::.::::::.a::::.:i.:.;:..••..:.·.••.:.·:•.t:••:.·•.•.•.;I;~c t) ;
(Get Ob j eqt.·iR·::~:l.:~:.:··:::~*B(:::t. owhere ;
* (GetPe r s:~@E~*;98##:-~*;:ll):::::::::?'?m::::::Ebwhe re ;

..........................:.:-:.: :':-:-:':-:-',-<:::..-

}

else

MCollectible: : OP.~:t4t;:~:P;'??."= (towhere) ;

SetRealObject(realObject) ;

~:~:~ ~~:~:~:~ ~~~i~lIillilllll!IIII"IJ'f
TStream& TSmartPo£.iier::operator»=(TStream&

TStream& TSmartPointer::operator«=(TStream& fromwhere)
{

MCollectible::operator«=(fromwhere);
unsigned char delimiter = 0;
delimiter «= fromwhere;
if (delimiter == kNotEternal)
{

fRealObject = Resurrect (fromwhere) ;
}

else

fObjectID «= fromwhere;
fPersistentContext = new TPersistentContext();

tiRegistered /Restricted Cheetah Thursday, March 1, 1990 2.1.3 -13

*fPersistentContext «= frornwhere;

return frornwhere;

ObjectID TSrnartPointer::GetObjectID() const
{

if «fRealObject ! = NIL) && (GetPersistentContext () ! = NIL»
return fRealObject->GetObjectID();

else
return fObjectID;

voidTSrnartPointer::SetObjectID(ObjectID objID)
{

OpusBug(nSetPersistentContext inconsistency");

MCollectible* TSrnartPointer::GetRealObject()
{

MCollectible* retval = fRealObject;

if «retval == NIL) && (fPersistentContext != NIL»
{

retval = fPersistentContext->Retrieve(fObjectID);
fRealObject = retval;

r
return retval;

'*Registered IRestricted Cheetah Thursday, March 1,1990 2.1.3 - 14

*fPersistentContext «= frornwhere;

return frornwhere;

ObjectID TSrnartPointer::GetObjectID() const
{

if «fRealObject ! = NIL) && (GetPersistentContext () ! = NIL»
return fRealObject->GetObjectID();

else
return fObjectID;

voidTSrnartPointer::SetObjectID(ObjectID objID)
{

OpusBug(nSetPersistentContext inconsistency");

MCollectible* TSrnartPointer::GetRealObject()
{

MCollectible* retval = fRealObject;

if «retval == NIL) && (fPersistentContext != NIL»
{

retval = fPersistentContext->Retrieve(fObjectID);
fRealObject = retval;

r
return retval;

'*Registered IRestricted Cheetah Thursday, March 1,1990 2.1.3 - 14

voidTSrnartPointer::SetRealObject(MCollectible* realObject)
{

fRealObject = realObject;
if (fRealObject != NIL)
{

fPersistentContext = fRealObject->GetPersistentContext();
fObjectID = fRealObject->GetObjectID();

Now, if TArnKey is declared like:
class TArnKey : public MCollectible, public MEternal {

public:

} ;

• Registered I Restricted Cheetah Thursday, March 1, 1990 2.1.3 -15

voidTSrnartPointer::SetRealObject(MCollectible* realObject)
{

fRealObject = realObject;
if (fRealObject != NIL)
{

fPersistentContext = fRealObject->GetPersistentContext();
fObjectID = fRealObject->GetObjectID();

Now, if TArnKey is declared like:
class TArnKey : public MCollectible, public MEternal {

public:

} ;

• Registered I Restricted Cheetah Thursday, March 1, 1990 2.1.3 -15

Why do the cheetah classes look the way they do?

There are a number of-goals associated with the interface to developers for cheetah capabilities. I shall
present them here in no particular order:

1. Developers should have to write as little boiler plate code as possible (none would be the ideal case). Wi th
proper development system support, all of the boiler plate code could be a'utomatically generated
for any of the schemes presented; however, we can not count on this kind of support. Furthern1ore,
the best the development system could provide is a default solution which would be
reimplemented in all but the simplest classes.

2. The interface presented should not add any appreciable overhead to the overall execution of cheetah. Any
interface chosen should not require a significant amount of speed or space overhead to the
flattening or expansion of an object. What represents a significant amount of space or speed
overhead is certainly open for interpretation.

3. Semantically different operations on the same class or type should look significantly different. cheetah
provides support for flattening and restoring objects of known type as well as flattening and
restoring objects of potentially unknown type. Some believe that flattening an object of unkI1()\:V11

5. The actual implem¢fj#ition of /f:e "flatten" and "expand" operationslE#§Vkt:W1t#.fnetric and it should be

6.

:-:.;.:-:.:.:«.:-......................
.:-::::::;:::;:;:;:::;:;:;:::::::::..... ",' ...

'*Registered /Restricted Cheetah

. :.:.:<.;.:-:.: .; .
"::;::;:;:::':::':':'::::::::::;:::'

.··:\:<H/UH::::::<::·

Thursday, March 1, 1990 2.1.3 - 16

Why do the cheetah classes look the way they do?

There are a number of-goals associated with the interface to developers for cheetah capabilities. I shall
present them here in no particular order:

1. Developers should have to write as little boiler plate code as possible (none would be the ideal case). Wi th
proper development system support, all of the boiler plate code could be a'utomatically generated
for any of the schemes presented; however, we can not count on this kind of support. Furthern1ore,
the best the development system could provide is a default solution which would be
reimplemented in all but the simplest classes.

2. The interface presented should not add any appreciable overhead to the overall execution of cheetah. Any
interface chosen should not require a significant amount of speed or space overhead to the
flattening or expansion of an object. What represents a significant amount of space or speed
overhead is certainly open for interpretation.

3. Semantically different operations on the same class or type should look significantly different. cheetah
provides support for flattening and restoring objects of known type as well as flattening and
restoring objects of potentially unknown type. Some believe that flattening an object of unkI1()\:V11

5. The actual implem¢fj#ition of /f:e "flatten" and "expand" operationslE#§Vkt:W1t#.fnetric and it should be

6.

:-:.;.:-:.:.:«.:-......................
.:-::::::;:::;:;:;:::;:;:;:::::::::..... ",' ...

'*Registered /Restricted Cheetah

. :.:.:<.;.:-:.: .; .
"::;::;:;:::':::':':'::::::::::;:::'

.··:\:<H/UH::::::<::·

Thursday, March 1, 1990 2.1.3 - 16

The Ideal Solution

The ideal solution would satisfy the goals above. Ignoring whether or not this solution could be
implemented in C++, the code to flatten a group of objects might look something like:
{

TToken
TPoint
long
char
MResponder*

aToken;
aPoint;
aLong;
aChar;
aResponder;

II stuff II

.:.:.:.:-:-:.:-:.;.:.:

.........-:.:-:.:.:-:.:.:...:....:. (»~~<{

TMemoryStream aStream;

~~;~~~~;!~gr:il('IIIIIII'ltJ; ~;;;j;i}.({ .

~~~';f~k:~'~~gc~o;::3.~t~~~~~::~e;~:~~~~j~:: "flallen" ~j!IIIII'ltt'I!~~::r class or ~e.
ii~i;;~e a:il111111It,ia'L '
char
MResponder*

Without going int(fth~~~ta11§:9f:~9~...Ui~¥fl~tten methods and expand xrt~tij94~:HI}JJ;li$m<~fuple,the
expand methods are constriid6rsJ/this solution certainly satisfies the goal ofbeings6mewhat nice to look
at. Semantically different operations are distinguishable (FlattenObject vs. FlattenPointer), and
semantically similar operations on different types are performed in the same way. Since I certainly can't
implement this in any known language, we can't make any claims about whether this interface adds any
overhead to the flattening and unflattening process. It certainly doesn't have to. The flatten and expand
methods could be made symmetrical in my mythical language and the developer doesn't have to write
any boiler plate code.

Unfortunately, we can't come close to this in C++; however, this so-called "ideal" solution illustrates a
number of important features of a good solution in C++:

1. The same operator is used to flatten an object of any type to a stream.
2. A different operator is used when flattening pointers to objects of unknown type.
3. Constructors are used when expanding objects of any type from a stream.
4. The sYntax is such that the flattening of multiple objects to a stream could be written as a single

statement if that is desired.

• Registered/Restricted Cheetah Thursday, March 1, 1990 2.1.3 - 17

The Ideal Solution

The ideal solution would satisfy the goals above. Ignoring whether or not this solution could be
implemented in C++, the code to flatten a group of objects might look something like:
{

TToken
TPoint
long
char
MResponder*

aToken;
aPoint;
aLong;
aChar;
aResponder;

II stuff II

.:.:.:.:-:-:.:-:.;.:.:

.........-:.:-:.:.:-:.:.:...:....:. (»~~<{

TMemoryStream aStream;

~~;~~~~;!~gr:il('IIIIIII'ltJ; ~;;;j;i}.({ .

~~~';f~k:~'~~gc~o;::3.~t~~~~~::~e;~:~~~~j~:: "flallen" ~j!IIIII'ltt'I!~~::r class or ~e.
ii~i;;~e a:il111111It,ia'L '
char
MResponder*

Without going int(fth~~~ta11§:9f:~9~...Ui~¥fl~tten methods and expand xrt~tij94~:HI}JJ;li$m<~fuple,the
expand methods are constriid6rsJ/this solution certainly satisfies the goal ofbeings6mewhat nice to look
at. Semantically different operations are distinguishable (FlattenObject vs. FlattenPointer), and
semantically similar operations on different types are performed in the same way. Since I certainly can't
implement this in any known language, we can't make any claims about whether this interface adds any
overhead to the flattening and unflattening process. It certainly doesn't have to. The flatten and expand
methods could be made symmetrical in my mythical language and the developer doesn't have to write
any boiler plate code.

Unfortunately, we can't come close to this in C++; however, this so-called "ideal" solution illustrates a
number of important features of a good solution in C++:

1. The same operator is used to flatten an object of any type to a stream.
2. A different operator is used when flattening pointers to objects of unknown type.
3. Constructors are used when expanding objects of any type from a stream.
4. The sYntax is such that the flattening of multiple objects to a stream could be written as a single

statement if that is desired.

• Registered/Restricted Cheetah Thursday, March 1, 1990 2.1.3 - 17

Bjarne's Rules of the Game

Before examining the. solution space, here is some infonnation about C++ that is absolutely necessary to
know when designing a solution to this problem. Reader: I assume that you know C++ already;
however, I will point out a number of subtle and not so subtle Ufeatures" that are extremely important
when designing a solution (After each point, say to yourself, uThank-you Barney" and bang a large mallet
against your head.):

1. C++ provides for constructors of objects only. Built-in types do not have to be initialized and there
is no syntax that looks like a constructor for initializing built-in types in any event.

2. The operator overloading mechanism in C++ allows binary operations to be overloaded as either
member functions taking one argument (the Uthis" pointer is the first argument) or as a global
functions taking two arguments. This is the only mechanism available which allows an expression
to be written involving built-in types and user defined types and have the expression look the same
independent of the type of the object. An expression, (a » b) will either execute the global
function operator» (A&, B&) or the member function A: : operator» (B&). For built-ins, a
global functions of two arguments is called. For classes, a member function is called. . :<-:<:.:.:.:-:

:: ~~~~itI4'\t?~~~~!i.~;~;:~~~~
5. Objects have ab§§l,}itely no idea what they really are only wl}~f'nty::tHtt¢htlyare. Furthennore,

...........:.:-:.;.:.;.;.:.... ..);\.: ::::::. :~\.::\\\n:\:~\\:\·\.
;.:-:.;.;........... :::;::: .

.. .. :.:.......... :<:l·l.!.:I:l.::.::.::.i".!·.i.. ~.:!::.i:::,..:·.••:·.;.: ,•..:..•.••...:•..1.1.:•...•••....••.:.••..•.1.,I..·.I.!I..\..:: :::;·::::.::.·t.::.\::i:::.·;:
.:.:.:-:..;.:.:.:-;::-:.;.:';-;':';';';':'"

;;;:ii;;'::i};·,...... .. .;1;7 ·\;1!;I!.I.i.~.:.!.::.:·.::.i.:.i.~.i.;:;:.;.j.~.:.:.:.:.l.:.:.i.i: ..!.!.:.:.:.I.!.j.:l.I.t.I.I.I..t.:.~.~.:.:.:..... ..;.:.:.;.::.. .;::::::;::;:;-:::::':::.'?::"
:::/{<.~:.'~~ :::::{:~;} .

..:;:.:;:.;.;. ·····:;.><~~~:/\t::::::::~::::::::·········:::········· ','

• Registered I Restricted Cheetah Thursday, March 1, 1990 2.1.3 - 18

Bjarne's Rules of the Game

Before examining the. solution space, here is some infonnation about C++ that is absolutely necessary to
know when designing a solution to this problem. Reader: I assume that you know C++ already;
however, I will point out a number of subtle and not so subtle Ufeatures" that are extremely important
when designing a solution (After each point, say to yourself, uThank-you Barney" and bang a large mallet
against your head.):

1. C++ provides for constructors of objects only. Built-in types do not have to be initialized and there
is no syntax that looks like a constructor for initializing built-in types in any event.

2. The operator overloading mechanism in C++ allows binary operations to be overloaded as either
member functions taking one argument (the Uthis" pointer is the first argument) or as a global
functions taking two arguments. This is the only mechanism available which allows an expression
to be written involving built-in types and user defined types and have the expression look the same
independent of the type of the object. An expression, (a » b) will either execute the global
function operator» (A&, B&) or the member function A: : operator» (B&). For built-ins, a
global functions of two arguments is called. For classes, a member function is called. . :<-:<:.:.:.:-:

:: ~~~~itI4'\t?~~~~!i.~;~;:~~~~
5. Objects have ab§§l,}itely no idea what they really are only wl}~f'nty::tHtt¢htlyare. Furthennore,

...........:.:-:.;.:.;.;.:.... ..);\.: ::::::. :~\.::\\\n:\:~\\:\·\.
;.:-:.;.;........... :::;::: .

.. .. :.:.......... :<:l·l.!.:I:l.::.::.::.i".!·.i.. ~.:!::.i:::,..:·.••:·.;.: ,•..:..•.••...:•..1.1.:•...•••....••.:.••..•.1.,I..·.I.!I..\..:: :::;·::::.::.·t.::.\::i:::.·;:
.:.:.:-:..;.:.:.:-;::-:.;.:';-;':';';';':'"

;;;:ii;;'::i};·,...... .. .;1;7 ·\;1!;I!.I.i.~.:.!.::.:·.::.i.:.i.~.i.;:;:.;.j.~.:.:.:.:.l.:.:.i.i: ..!.!.:.:.:.I.!.j.:l.I.t.I.I.I..t.:.~.~.:.:.:..... ..;.:.:.;.::.. .;::::::;::;:;-:::::':::.'?::"
:::/{<.~:.. ~~ :::::{:~;} .

..:;:.:;:.;.;. ·····:;.><~~~:/\t::::::::~::::::::·········:::········· ','

• Registered I Restricted Cheetah Thursday, March 1, 1990 2.1.3 - 18

Let's Make A Deal

Now that we know the goals, the ideal solution and the limitations, we should be able to examine the
alternative solutions. I will try to present alternatives in isolation; however, many choices affect other
choices to be madelater because C++ is not symmetrical. Let's start with an apparently easy choice first:
how to flatten objects. .

Flatten

If we want semantically equivalent operations to be expressed identically, independent of the type of the
operands, we are left with exactly one choice in C++ on how to do this. We must use operator -
overloading for flattening objects and built-in types. If we are willing to accept that objects are written to
a stream one way and built-ins are written to a stream in a different way, the code for writing an object to
a stream would be:

anObject->Flatten(aStream) ;

.:.:::.:.;.:.;.;.:.:.:.:.:.:.:.:.:.::::.:
::-:' ..

······:··::·>:·:··::::;:::~t::::::·:·

.::~:f}~:~{/(:}~:~;~:}~::':"

:-:-:.;.:.:.:-:.:-:-:-:;:::.

numbering reflectsthe()rci¢1"m~~th(;f6bjectis actually written to the stream2::$9·~l}§t-e.areanumber of
decisions which we would like to make. First: Should we allow multiple objects to be flattened using
an expression which is written in a single statement? The obvious answer is yes; however, because
we'd like to use constructors to expand objects, and constructors are clearly one per statement (and
because of other reasons which will be explained later), this question is not so easy to answer. We can
enforce the choice that is made by returning or not returning a TStream& as the result of the operation.

The next question is: What operator should we overload for flattening? Unfortunately, we can't answer
this question until we answer the previous question because if we only allow a single object to be
flattened per statement then operators which group right to left would not have the obvious advantage.

3. This operator does not exist in C++ and therefore could not be used. We will reveal the choices for
this operator shortly.

4. If it was a member function of a stream, it would not be extensible in the same way. A global
operator (which couldn't be virtual and therefore wouldn't work for our scheme anyway) would
have to be defined to flatten your object. This operator would no doubt have to be a friend function
so that it could touch your private parts. This is what Barney's stream package does. It's ugly. We're
not doing that. We have high standards. We're Apple.

'*Registered /Restricted Cheetah Thursday, March 1, 1990 2.1.3 - 19

Let's Make A Deal

Now that we know the goals, the ideal solution and the limitations, we should be able to examine the
alternative solutions. I will try to present alternatives in isolation; however, many choices affect other
choices to be madelater because C++ is not symmetrical. Let's start with an apparently easy choice first:
how to flatten objects. .

Flatten

If we want semantically equivalent operations to be expressed identically, independent of the type of the
operands, we are left with exactly one choice in C++ on how to do this. We must use operator -
overloading for flattening objects and built-in types. If we are willing to accept that objects are written to
a stream one way and built-ins are written to a stream in a different way, the code for writing an object to
a stream would be:

anObject->Flatten(aStream) ;

.:.:::.:.;.:.;.;.:.:.:.:.:.:.:.:.:.::::.:
::-:' ..

······:··::·>:·:··::::;:::~t::::::·:·

.::~:f}~:~{/(:}~:~;~:}~::':"

:-:-:.;.:.:.:-:.:-:-:-:;:::.

numbering reflectsthe()rci¢1"m~~th(;f6bjectis actually written to the stream2::$9·~l}§t-e.areanumber of
decisions which we would like to make. First: Should we allow multiple objects to be flattened using
an expression which is written in a single statement? The obvious answer is yes; however, because
we'd like to use constructors to expand objects, and constructors are clearly one per statement (and
because of other reasons which will be explained later), this question is not so easy to answer. We can
enforce the choice that is made by returning or not returning a TStream& as the result of the operation.

The next question is: What operator should we overload for flattening? Unfortunately, we can't answer
this question until we answer the previous question because if we only allow a single object to be
flattened per statement then operators which group right to left would not have the obvious advantage.

3. This operator does not exist in C++ and therefore could not be used. We will reveal the choices for
this operator shortly.

4. If it was a member function of a stream, it would not be extensible in the same way. A global
operator (which couldn't be virtual and therefore wouldn't work for our scheme anyway) would
have to be defined to flatten your object. This operator would no doubt have to be a friend function
so that it could touch your private parts. This is what Barney's stream package does. It's ugly. We're
not doing that. We have high standards. We're Apple.

'*Registered /Restricted Cheetah Thursday, March 1, 1990 2.1.3 - 19

So, let's assume the answer to the previous question and then try to answer this one. If the answer to the
previous question is that we will not allow multiple flattens in a single statement, then basically any
operator is fair game. _We'd probably like to choose one that implies some directionality. Therefore our
choices are the following:

>, >=, », »=, ->, I, I I
I can quickly eliminate some of these choices. Using> or >= is unacceptable since they are already
overloaded for MOrderableCollectible objects. Overloading -> is a very bad idea because it already
has a useful meaning for many of the objects we are talking about. Overloading I or I I has the
advantage that it resembles a Unix pipe and that is something that C++ programmers are familiar wi tho
Overloading» certainly has the best directionality; however, it might confuse C++ programmers ~ho
use Barneys stream package since the functionality is similar but the sYntax would be opposite of
Barneys. Overloading »= has good directionality and it is rarely, if ever, legitimately used; however, it
makes atleast one person in-Pink violently retch to the point of not being able to think clearly because we
are overloading one form of assignment. More importantly, we are overloading assignment in a way that
is counter-intuitive since the thing being "assigned into" is on the right hand side rather than the left.

.............-: ;.;.:- ..: .

Expand

At this point, you are thinking to your self, "Self, these choices weren't so hard. In any event, it looks like
things will be pretty dean." Now it is time to start compromising. It is not possible (even if we wanted
to) to make the "expand" operation look the same independent of what we are expanding for a number
of reasons which will all be explained.

Here is where we need to make our first hard choice. Ideally, one would like to view the process of
expanding like a constructor. The argument to the constructor would be a stream. The constructor
would then use the stream to build the object. Unfortunately, you cannot call virtual functions in a
constructor. This is too great a restriction because some classes require that a virtual function be called to
"add" objects to the class when expanding the class from the flattened form. Furthermore, there are no
constructors for built-in types.

5. When I say unknown type, I really don't mean it. I mean it is definitely of type MCollect ible;
however, we don't know which derived class it is.

• Registered IRestricted Cheetah Thursday, March 1, 1990 2.1.3 - 20

So, let's assume the answer to the previous question and then try to answer this one. If the answer to the
previous question is that we will not allow multiple flattens in a single statement, then basically any
operator is fair game. _We'd probably like to choose one that implies some directionality. Therefore our
choices are the following:

>, >=, », »=, ->, I, I I
I can quickly eliminate some of these choices. Using> or >= is unacceptable since they are already
overloaded for MOrderableCollectible objects. Overloading -> is a very bad idea because it already
has a useful meaning for many of the objects we are talking about. Overloading I or I I has the
advantage that it resembles a Unix pipe and that is something that C++ programmers are familiar wi tho
Overloading» certainly has the best directionality; however, it might confuse C++ programmers ~ho
use Barneys stream package since the functionality is similar but the sYntax would be opposite of
Barneys. Overloading »= has good directionality and it is rarely, if ever, legitimately used; however, it
makes atleast one person in-Pink violently retch to the point of not being able to think clearly because we
are overloading one form of assignment. More importantly, we are overloading assignment in a way that
is counter-intuitive since the thing being "assigned into" is on the right hand side rather than the left.

.............-: ;.;.:- ..: .

Expand

At this point, you are thinking to your self, "Self, these choices weren't so hard. In any event, it looks like
things will be pretty dean." Now it is time to start compromising. It is not possible (even if we wanted
to) to make the "expand" operation look the same independent of what we are expanding for a number
of reasons which will all be explained.

Here is where we need to make our first hard choice. Ideally, one would like to view the process of
expanding like a constructor. The argument to the constructor would be a stream. The constructor
would then use the stream to build the object. Unfortunately, you cannot call virtual functions in a
constructor. This is too great a restriction because some classes require that a virtual function be called to
"add" objects to the class when expanding the class from the flattened form. Furthermore, there are no
constructors for built-in types.

5. When I say unknown type, I really don't mean it. I mean it is definitely of type MCollect ible;
however, we don't know which derived class it is.

• Registered IRestricted Cheetah Thursday, March 1, 1990 2.1.3 - 20

Alternatively, we could provide a constructor which builds an empty, uninitialized object (much like an
uninitialized built-in), and then call an expand function (in our case an operator so the expressions look
the same). So the question is: "Constructors or operator«< method?" The advantage of using an
operator is that we could write code like:
{

long
TToken
char

aLong;
aToken;
aChar;

aChar «< aToken «< aLong «< aStream;

The disadvantage is that we need to provide a distinguished constructor or make the expand method
smart enough to deal with an arbitrarily initialized object. (In my example, I've used the constructor
with no arguments. We might not want to grab this one because of its legitimate uses.) Furthermore, it is
less efficient because now "Y~JW~4:J9::gr9ygt9X:~fJJ¥:t§pucturetwice. Once calling constru~J8F§::~:Df.kf1

long
aLong

TToken

char aChar;
aChar «< aStream;

.:::~~~::::::::::::::::::.:...: .. ····:·:·:·::~·:~:~:~:;:~:~:;:~t~~\(~;~;:··:;::::;.:.:.:.:.:.:::;:~:;:::;{:}~::::"

long a'H6rig'~>:f:81:l9(~'§:$:f~iH{m);
TToken aTokeriliiSt/Eg~m);

char aChar = char (aStream) ;

As usual, there are two choices for how to read back unknown objects. We could provide an overloaded
operator to read objects back in. However, in order to implement this, we would be forced to change the
runtime of C++ to use a scheme which did not move the "this" pointer in an object.6 I will assume that
this is not practical. Therefore, the only choice is to provide some kind of function which performs the
"new" of the object and calls the constructor. The user will have to write the cast back. Therefore, the
code to bring back an MResponder* of unknown derived type would look like:

MResponder* aResponder = (MResponder*) Resurrect(aStream);

6. You'll have to accept my word on this. Basically, the problem is that we need to do a cast back when
reading in an object of unknown type (actually an MCollectible*) if we want to store this object as
anything other than an MCollectible*.The only way to write this cast back is to actually write it
in the code as part of an assignment statement. If we changed the runtime, this cast back would be
unnecessary.

• Registered /Restricted Cheetah Thursday, March 1, 1990 2.1.3 - 21

Alternatively, we could provide a constructor which builds an empty, uninitialized object (much like an
uninitialized built-in), and then call an expand function (in our case an operator so the expressions look
the same). So the question is: "Constructors or operator«< method?" The advantage of using an
operator is that we could write code like:
{

long
TToken
char

aLong;
aToken;
aChar;

aChar «< aToken «< aLong «< aStream;

The disadvantage is that we need to provide a distinguished constructor or make the expand method
smart enough to deal with an arbitrarily initialized object. (In my example, I've used the constructor
with no arguments. We might not want to grab this one because of its legitimate uses.) Furthermore, it is
less efficient because now "Y~JW~4:J9::gr9ygt9X:~fJJ¥:t§pucturetwice. Once calling constru~J8F§::~:Df.kf1

long
aLong

TToken

char aChar;
aChar «< aStream;

.:::~~~::::::::::::::::::.:...: .. ····:·:·:·::~·:~:~:~:;:~:~:;:~t~~\(~;~;:··:;::::;.:.:.:.:.:.:::;:~:;:::;{:}~::::"

long a'H6rig'~>:f:81:l9(~'§:$:f~iH{m);
TToken aTokeriliiSt/Eg~m);

char aChar = char (aStream) ;

As usual, there are two choices for how to read back unknown objects. We could provide an overloaded
operator to read objects back in. However, in order to implement this, we would be forced to change the
runtime of C++ to use a scheme which did not move the "this" pointer in an object.6 I will assume that
this is not practical. Therefore, the only choice is to provide some kind of function which performs the
"new" of the object and calls the constructor. The user will have to write the cast back. Therefore, the
code to bring back an MResponder* of unknown derived type would look like:

MResponder* aResponder = (MResponder*) Resurrect(aStream);

6. You'll have to accept my word on this. Basically, the problem is that we need to do a cast back when
reading in an object of unknown type (actually an MCollectible*) if we want to store this object as
anything other than an MCollectible*.The only way to write this cast back is to actually write it
in the code as part of an assignment statement. If we changed the runtime, this cast back would be
unnecessary.

• Registered /Restricted Cheetah Thursday, March 1, 1990 2.1.3 - 21

What should the name of global function to #resurrect" an object be? When there are static member
functions, this can be a static member of MCollectible. For now that is not possible (because you
would need one MCollectible object to resurrect another one). Because this is our only choice for
expanding an object of unknown type (which many consider to be a semantically different operation than
expanding an object of known type) and our desire for symmetry between flatten methods and expand
methods, we should carefully examine our decision for how we want flattening unknown objects to look.

Implementation of operator«< and operator»>

All user defined types which want to be flattened to a stream to be restored later must implement a
operator«< which takes a TStream& as an argument. Also, they need to implement operator»>
which also take TStream& as an argument (and may also return this depending on whether we allow
more than one flatten per statement). Gasses which want to be flattened to streams via a pointer to an
unknown type, must C1e:scena...t

Let's take a look at a few
class TPoint {

private:
long fX;
long fY;

public:
TPoint () ;
... other
TStrearn&
TStrearn&
... other

} ;

TStrearn& TPoint::operator«<

fX «<
fy «<
return

TStrearn& TPoint::operator»>(TStrearn& aStrearn)

fX »> aStrearn;
fy »> aStrearn;
return aStrearn;

This example illustrates that adding these methods to a class without a vtable does not force this class to
have a vtable and thus adds no overhead to the size of the objects. Reading and writing points to a
stream is trivial as in the following example:
{

II Writing a point
TPoint aPoint(lOO,200);

7. This will make the operator»> a virtual operator. Also, there is one other method which must be
. overridden (to supply the class name) but that is unimportant for our discussion.

• Regis tered I Restricted Cheetah Thursday, March 1, 1990 2.1.3 - 22

What should the name of global function to #resurrect" an object be? When there are static member
functions, this can be a static member of MCollectible. For now that is not possible (because you
would need one MCollectible object to resurrect another one). Because this is our only choice for
expanding an object of unknown type (which many consider to be a semantically different operation than
expanding an object of known type) and our desire for symmetry between flatten methods and expand
methods, we should carefully examine our decision for how we want flattening unknown objects to look.

Implementation of operator«< and operator»>

All user defined types which want to be flattened to a stream to be restored later must implement a
operator«< which takes a TStream& as an argument. Also, they need to implement operator»>
which also take TStream& as an argument (and may also return this depending on whether we allow
more than one flatten per statement). Gasses which want to be flattened to streams via a pointer to an
unknown type, must C1e:scena...t

Let's take a look at a few
class TPoint {

private:
long fX;
long fy;

public:
TPoint () ;
... other
TStrearn&
TStrearn&
... other

} ;

TStrearn& TPoint::operator«<

fX «<
fy «<
return

TStrearn& TPoint::operator»>(TStrearn& aStrearn)

fX »> aStrearn;
fy »> aStrearn;
return aStrearn;

This example illustrates that adding these methods to a class without a vtable does not force this class to
have a vtable and thus adds no overhead to the size of the objects. Reading and writing points to a
stream is trivial as in the following example:
{

II Writing a point
TPoint aPoint(lOO,200);

7. This will make the operator»> a virtual operator. Also, there is one other method which must be
. overridden (to supply the class name) but that is unimportant for our discussion.

• Regis tered /Restricted Cheetah Thursday, March 1, 1990 2.1.3 - 22

aPoint »> aStreami

II Reading a point
TPoint aPointi
aPoint «< aStreami

TView: : operatPI:":>?'~(c:f§P:f~@*rf<···
fThurnbPosition »>'"a:SfJ:eami
return aStreami

Okay, let's look at the implementation of the flatten and expand operations for a slightly more
complicated class:
II Tview's lineage is not entirely knowni however, we do know that it
II is an MCollectible object. This means that there are additional
II methods that we need to implement but they are not important for
II this example (the additional method is GetClassNameAsString. It

~~a~~~~;;::::::::::~iiiiiilliilill!"lIll'fHOOPS') {(':::.:I·~::::c!·.··!~~~:.::I::I}~i}::::}

public: .:;::j;:::;:;:;:.

TScrollbar () i /=:r:J:
. .. other const:r:uctor.s

}; ~~~~:;::r ~~lll'I'lllttlll'~III~t
TStream& TScrollbar:: operator<$.5.MIlMlt.:t~j$&

TView: : operat 0 r<<< (as t ream) ;'
41

11,111[11111111
fThurnbPosition «< aStreami ·::~:}:r:2?I{=:::

return aStreami

Now flattening and expanding TScrollbar objects looks identical to all of the other examples. Note
that the order that objects are flattened should follow the order that they are expanded.

Writing or reading an object that is known to be a TScrollbar but could be a subclass of TScrollbar
is accomplished with the following:
{

II Write out a TScrollbar*
TScrollbar* fOOi
... got foo from somewhere.
FlattenPointer(foo, aStream);

.Registered/Restricted Cheetah Thursday, March 1, 1990 2.1.3-23

aPoint »> aStreami

II Reading a point
TPoint aPointi
aPoint «< aStreami

TView: : operatPI:":>?'~(c:f§P:f~@*rf<···
fThurnbPosition »>'"a:SfJ:eami
return aStreami

Okay, let's look at the implementation of the flatten and expand operations for a slightly more
complicated class:
II Tview's lineage is not entirely knowni however, we do know that it
II is an MCollectible object. This means that there are additional
II methods that we need to implement but they are not important for
II this example (the additional method is GetClassNameAsString. It

~~a~~~~;;::::::::::~iiiiiilliilill!"lIll'fHOOPS') {(':::.:I·~::::c!·.··!~~~:.::I::I}~i}::::}

public: .:;::j;:::;:;:;:.

TScrollbar () i /=:r:J:
. .. other const:r:uctor.s

}; ~~~~:;::r ~~lll'I'lllttlll'~III~t
TStream& TScrollbar:: operator<$.5.MIlMlt.:t~j$&

TView: : operat 0 r<<< (as t ream) ;'
41

11,111[11111111
fThurnbPosition «< aStreami ·::~:}:r:2?I{=:::

return aStreami

Now flattening and expanding TScrollbar objects looks identical to all of the other examples. Note
that the order that objects are flattened should follow the order that they are expanded.

Writing or reading an object that is known to be a TScrollbar but could be a subclass of TScrollbar
is accomplished with the following:
{

II Write out a TScrollbar*
TScrollbar* fOOi
... got foo from somewhere.
FlattenPointer(foo, aStream);

.Registered/Restricted Cheetah Thursday, March 1, 1990 2.1.3-23

II Read in a TScrollbar
TScrollbar* a$crollBar = (TScrollbar*) Resurrect (aStream) i

fInstanceNamei
fSuperTargeti

}
As a final example, let's examine a somewhat complicated class:
class MResponder: public MCollectible, public MCollectible .{

private:
TToken
MResponder*

protected:
MResponder () i

... more constructors
public:

TStream& operator««TStream&)i
TStream& operator»> (TStream&) i

;::roe::&ct::e:::o:no::f,IIIII,tlll,l: aStrearn)
fIns t anceNarne <1s:::{aStream i

fSuperTarget =)~~esponder*) Resurrect (aStream) i

return aStream;\\\(:
.: :-:.;.:.;.;.:-:.:.:-:.;.:.:-:.: ; : .

Expanding an MRe§B:Prlde r from a stream is n9l]~gSsible. :~~~llllll;:~~
~~~~~~."resu~=ji~:;it~,:.:::.:::...:.:.::.:::.f..:..:...:.r.....~1'\ftfeam is

..... .... ..... :::::;:::;::::::::::::: .;.:-:.>:.>

c++ is an ugly language. The design of the operating system of the 90's is being driven by a short,
balding, Scandinavian dude currently residing in New Jersey and working for the the phone company.

I really want to know what you think about what was presented here or maybe you have another scheme
entirely. In any event, my current mode of thinking is to make the following choices:

1. Allow multiple flattens in a single statement; however, discourage its use when writing flatten
methods because if you write your own flatten methods like this then it looks less symmetric with
the constructor. I've waffled on this a bit; however, I think it is legitimate to want to write multiple
flattens in a single statement when flattening objects in the rest of your code. It's quite possible that
symmetry is impossible in these cases anyway since another module, program, etc. could be the one
reading it back in. In that case, you might provide a specification of the format rather than an
actual piece of code. I don't know. I still need your help.

2. Since I'm still waffling on number one, I'm still waffling on the operator to use. I have to admit, I'm
favoring operator»= and operator«= even though it makes one person violently ill. [don't
really like any of the other choices. I'm down on using » because of its current meaning in C++

• Registered I Restricted Cheetah Thursday, March 1, 1990 2.1.3 - 24

II Read in a TScrollbar
TScrollbar* a$crollBar = (TScrollbar*) Resurrect (aStream) i

fInstanceNamei
fSuperTargeti

}
As a final example, let's examine a somewhat complicated class:
class MResponder: public MCollectible, public MCollectible .{

private:
TToken
MResponder*

protected:
MResponder () i

... more constructors
public:

TStream& operator««TStream&)i
TStream& operator»> (TStream&) i

;::roe::&ct::e:::o:no::f,IIIII,tlll,l: aStrearn)
fIns t anceNarne <1s:::{aStream i

fSuperTarget = )~~esponder*) Resurrect (aStream) i

return aStream;\\\(: ....
.: :-:.;.:.;.;.:-:.:.:-:.;.:.:-:.: ; : .

Expanding an MRe§B:Prlde r from a stream is n9l]~gSsible. :~~~llllll;:~~
~~~~~~."resu~=ji~:;it~,:.:::.:::...:.:.::.:::.f..:..:...:.r.....~1'\ftfeam is

..... :::::;:::;::::::::::::: .;.:-:.>:.>

c++ is an ugly language. The design of the operating system of the 90's is being driven by a short,
balding, Scandinavian dude currently residing in New Jersey and working for the the phone company.

I really want to know what you think about what was presented here or maybe you have another scheme
entirely. In any event, my current mode of thinking is to make the following choices:

1. Allow multiple flattens in a single statement; however, discourage its use when writing flatten
methods because if you write your own flatten methods like this then it looks less symmetric with
the constructor. I've waffled on this a bit; however, I think it is legitimate to want to write multiple
flattens in a single statement when flattening objects in the rest of your code. It's quite possible that
symmetry is impossible in these cases anyway since another module, program, etc. could be the one
reading it back in. In that case, you might provide a specification of the format rather than an
actual piece of code. I don't know. I still need your help.

2. Since I'm still waffling on number one, I'm still waffling on the operator to use. I have to admit, I'm
favoring operator»= and operator«= even though it makes one person violently ill. [don't
really like any of the other choices. I'm down on using » because of its current meaning in C++

• Registered /Restricted Cheetah Thursday, March 1, 1990 2.1.3 - 24

which is too close to how we want to use it.
3. Use expand methods because you can't call virtual functions in constructors.
4. Encourage the use of FlattenPointer which will be a static member function eventually.
5. The name of the function to bring back an object is Resurrect.

• Registered/Restricted Cheetah Thursday, March 1, 1990 2.1.3 - 25

which is too close to how we want to use it.
3. Use expand methods because you can't call virtual functions in constructors.
4. Encourage the use of FlattenPointer which will be a static member function eventually.
5. The name of the function to bring back an object is Resurrect.

• Registered/Restricted Cheetah Thursday, March 1, 1990 2.1.3 - 25

c

• Registered I Restricted Credence Classes March 15, 1990 2.1.4-1

c

• Registered I Restricted Credence Classes March 15, 1990 2.1.4-1

Credence ERS

Pink CCR Classes

Cfiades 7{jemeier

:t49209

'* Regis tered / Restric ted Credence Classes March 15, 1990 2.1.4-2

Credence ERS

Pink CCR Classes

Cfiades 7{jemeier

:t49209

'* Regis tered / Restric ted Credence Classes March 15, 1990 2.1.4-2

Introduction

Credence1 provides concurrency control and recovery (commonly called CCR) for the Pink
environment. Concurrency control handles the problem of multiple tasks accessing data at the
same time by making it appear, at least to your task, as if no sharing is occurring. Recovery
addresses the problem of failures that leave data in an inconsistent state by making it appear
that failures never occur. Failures, in this paper, include progran1, power and systen1 failures
but do not include media failures. Most existing CCR software have been cOInponents of specific
progran1s, e.g. a DBMS, for which the CCR design has been tailored. Credence is a set of classes
and protocols that offers·CCR functionality for the extensible data types possible in the Pink
world.

~~5:;~;~,III!III~~~~~:e:~=~~~~;~,'I'I't~~:i~~:~:ed'
~~~~~~:;~r~~~~~1[10~~:I~;~~;:~~n~~t~~~~~~~r:~::::!~ir~l~gll~i~~~~~~~~e

....•..<.:.:.:.;.: ...•
:.:-:.:.:::::::::.:.:.•...

%\j'lll!i!I.I.I.I.I.llllil~ii'·i.\
..... :.;.:.:.:.:.:-:::.; .

:::::::::::::::~:}~:~:::::...
.. ',' ::\{}=::::::.:::::.;.:.:.- ...

...... ' .

.....: " .. -.

while resulting in mOre<c6ricurrency than with mutual exclusion methods·~··· ..

The most common techniques for concurrency control involve acquiring and releasing locks of
some type. A lock is an abstraction such that when you acquire (or set) it, you have access to
some associated object and prevent others from accessing the object until you release the lock. A
task, which is requesting a lock, is blocked until the task gets the lock. Locks usually have a
type, e.g. read and write locks, that reflects which operation you are about. to do. Depending on
the type of the lock, multiple users may be able to concurrently acquire a lock and still preserve
serializabili ty.

1Although the etymology is obvious, convention was elected over Mr. Fogerty's iconoclastic
spelling.

'* Registered/I~estricted Credence Classes March 15, 1990 2.1 A-3

Introduction

Credence1 provides concurrency control and recovery (commonly called CCR) for the Pink
environment. Concurrency control handles the problem of multiple tasks accessing data at the
same time by making it appear, at least to your task, as if no sharing is occurring. Recovery
addresses the problem of failures that leave data in an inconsistent state by making it appear
that failures never occur. Failures, in this paper, include progran1, power and systen1 failures
but do not include media failures. Most existing CCR software have been cOInponents of specific
progran1s, e.g. a DBMS, for which the CCR design has been tailored. Credence is a set of classes
and protocols that offers·CCR functionality for the extensible data types possible in the Pink
world.

~~5:;~;~,III!III~~~~~:e:~=~~~~;~,'I'I't~~:i~~:~:ed'
~~~~~~:;~r~~~~~1[10~~:I~;~~;:~~n~~t~~~~~~~r:~::::!~ir~l~gll~i~~~~~~~~e

....•..<.:.:.:.;.: ...•
:.:-:.:.:::::::::.:.:.•...

%\j'lll!i!I.I.I.I.I.llllil~ii'·i.\
..... :.;.:.:.:.:.:-:::.; .

:::::::::::::::~:}~:~:::::...
.. ',' ::\{}=::::::.:::::.;.:.:.- ...

...... ' .

.....: " .. -.

while resulting in mOre<c6ricurrency than with mutual exclusion methods·~··· ..

The most common techniques for concurrency control involve acquiring and releasing locks of
some type. A lock is an abstraction such that when you acquire (or set) it, you have access to
some associated object and prevent others from accessing the object until you release the lock. A
task, which is requesting a lock, is blocked until the task gets the lock. Locks usually have a
type, e.g. read and write locks, that reflects which operation you are about. to do. Depending on
the type of the lock, multiple users may be able to concurrently acquire a lock and still preserve
serializabili ty.

1Although the etymology is obvious, convention was elected over Mr. Fogerty's iconoclastic
spelling.

'* Registered/I~estricted Credence Classes March 15, 1990 2.1 A-3

Serializability and locks have their limitations.. For some applications, serializability may
not be desired. The syntactic notion of holding locks also n1ay be too restrictive. For instance, an
operation that balances a tree does not change the semantic content of the tree but a lock on a
node or branch of the tree might prevent the tree balancing operation.

You might still be asking, "But what's the difference between locks and semaphores?"
Actually, locks are very similar to sharing semaphores but provide the extra baggage to release
locks in a manner that guarantees recoverability and to handle deadlocks.

Recovery

A

Transactions

Failures can can cause logical inconsistencies in data. These inconsistencies can result when two
or more data items, all dependent on each other in some way, must be written to disk but the
disk hardware can not write all items in one fell swoop. Recovery is a guarantee that failu res

.·::::::::::::}::::::I::jIH():>
:.::::::.:-.",

...... :<\\}~~~~}~):~::-.

..:::}/\jj:j~j~!~jj~j:.~! ~I!I!!ii1\·1;~.·lii~;·;:; ~:~:}:: .

'.:.;.;.:

'::::::;::::::::/j~}Jr~r~~rt{\

i"ll;;l!;!..•·.:..•:.•.:.•.:·.:l:.i•.•:.•:.•·.:.~.:·:••:.•:.·.:•.••.·.:••:.·::.••:·.:.·.:•.:.•..::.·:.•.:.i..•:.•.•.•..•••..:.:.:.: ..···::::{t~:jjj]jj}:::}:··
-.:::;:::::::::;:::::::;:;::::»,. :.:-:-:-:.>..:-:<::::::::::::::-::.:::.:.:::?:;:;:::::::::............... . :.:.: :.;..

Recovery is relan~9.t8:fqnSHg#ijcy:C-6ntrol as seen in the definition<6t:::r~SB:Y~f~1)iH:tY:::<

• A transaction Tl is said to read from transaction T2 if T2 writes some x
which is later read by Tl.

• A transaction Tl is recoverable iff Tl commits after every transaction from
which Tl read has committed.

2My definition of atomic differs slightly from that in most database CCR literature which also
includes serializability as a condition for atomicity.

• Registered / Restricted Credence Classes March 15, 1990 2.1.4-4

Serializability and locks have their limitations.. For some applications, serializability may
not be desired. The syntactic notion of holding locks also n1ay be too restrictive. For instance, an
operation that balances a tree does not change the semantic content of the tree but a lock on a
node or branch of the tree might prevent the tree balancing operation.

You might still be asking, "But what's the difference between locks and semaphores?"
Actually, locks are very similar to sharing semaphores but provide the extra baggage to release
locks in a manner that guarantees recoverability and to handle deadlocks.

Recovery

A

Transactions

Failures can can cause logical inconsistencies in data. These inconsistencies can result when two
or more data items, all dependent on each other in some way, must be written to disk but the
disk hardware can not write all items in one fell swoop. Recovery is a guarantee that failu res

.·::::::::::::}::::::I::jIH():>
:.::::::.:-.",

...... :<\\}~~~~}~):~::-.

..:::}/\jj:j~j~!~jj~j:.~! ~I!I!!ii1\·1;~.·lii~;·;:; ~:~:}:: .

'.:.;.;.:

'::::::;::::::::/j~}Jr~r~~rt{\

i"ll;;l!;!..•·.:..•:.•.:.•.:·.:l:.i•.•:.•:.•·.:.~.:·:••:.•:.·.:•.••.·.:••:.·::.••:·.:.·.:•.:.•..::.·:.•.:.i..•:.•.•.•..•••..:.:.:.: ..···::::{t~:jjj]jj}:::}:··
-.:::;:::::::::;:::::::;:;::::»,. :.:-:-:-:.>..:-:<::::::::::::::-::.:::.:.:::?:;:;:::::::::............... . :.:.: :.;..

Recovery is relan~9.t8:fqnSHg#ijcy:C-6ntrol as seen in the definition<6t:::r~SB:Y~f~1)iH:tY:::<

• A transaction Tl is said to read from transaction T2 if T2 writes some x
which is later read by Tl.

• A transaction Tl is recoverable iff Tl commits after every transaction from
which Tl read has committed.

2My definition of atomic differs slightly from that in most database CCR literature which also
includes serializability as a condition for atomicity.

• Registered / Restricted Credence Classes March 15, 1990 2.1.4-4

The requirement that a transaction commits after every transaction from which it has read is
sufficient for recoverability but can lead to cascading aborts. We can make our implementation
of recovery easier-by requiring: 1) that a transaction only reads from committed transactions;
and 2) that a transaction can only write x after every transaction that previously wrote x has
committed. The first requirement avoids cascading aborts and the second allows before images
to be used in the log. An execution that meets these two additional requiren1ents is said to be
5 t ric t.

Two-Phase Locking

;::::::::::::::::;:::::::.:::::.:.;...-

Two-Phase Locking (2PL) is a protocol for using locks that provides serializable concurrency
control and guarantees strictness. The 2PL protocol involves acquiring and releasing locks in t\NO
phases: locks are acquired during the course of a transaction (the first phase) and released, all
at once, at the end of the transaction (the second phase).

:;:::.:-;.:...:....

•........~ ,',..:.....:. '::;::::::::;:;::;::;:-:.:

Logical Locks

..................

:.:-:-:-:-;.:;: .

done on mt.iHipl~:m#:9~~n~~::f.BI:--tQ~·#:~ffiftransaction.

The most import~~:t:~:~~~:~~:~:~:~~:ofthe lack of distributed transacti~~~:::i~::::t:h~:f::~~;:~~inoperations
might act differently for local files than for files on Appleshare volumes. For instance, we
expect the Pink file system server to work with the transaction system so that a file system
request made from within a transaction, for instance, truncating a file, would only truly truncate
the file when the transaction commits. This might not be possible with network files.

Architecture
Credence provides classes that provide transactions, recovery, and concurrency control. Classes
are available to create transactions, change files in a recoverable manner, and request 2PL
locks. Moreover, Credence provides a framework for recovery and concurrency control that
allows users to modify the default mechanisms without starting from scratch.

'* Registered I Restricted Credence Classes March 15, 1990 2.1.4-5

The requirement that a transaction commits after every transaction from which it has read is
sufficient for recoverability but can lead to cascading aborts. We can make our implementation
of recovery easier-by requiring: 1) that a transaction only reads from committed transactions;
and 2) that a transaction can only write x after every transaction that previously wrote x has
committed. The first requirement avoids cascading aborts and the second allows before images
to be used in the log. An execution that meets these two additional requiren1ents is said to be
5 t ric t.

Two-Phase Locking

;::::::::::::::::;:::::::.:::::.:.;...-

Two-Phase Locking (2PL) is a protocol for using locks that provides serializable concurrency
control and guarantees strictness. The 2PL protocol involves acquiring and releasing locks in t\NO
phases: locks are acquired during the course of a transaction (the first phase) and released, all
at once, at the end of the transaction (the second phase).

:;:::.:-;.:...:....

•........~ ,',..:.....:. '::;::::::::;:;::;::;:-:.:

Logical Locks

..................

:.:-:-:-:-;.:;: .

done on mt.iHipl~:m#:9~~n~~::f.BI:--tQ~·#:~ffiftransaction.

The most import~~:t:~:~~~:~~:~:~:~~:ofthe lack of distributed transacti~~~:::i~::::t:h~:f::~~;:~~inoperations
might act differently for local files than for files on Appleshare volumes. For instance, we
expect the Pink file system server to work with the transaction system so that a file system
request made from within a transaction, for instance, truncating a file, would only truly truncate
the file when the transaction commits. This might not be possible with network files.

Architecture
Credence provides classes that provide transactions, recovery, and concurrency control. Classes
are available to create transactions, change files in a recoverable manner, and request 2PL
locks. Moreover, Credence provides a framework for recovery and concurrency control that
allows users to modify the default mechanisms without starting from scratch.

'* Registered I Restricted Credence Classes March 15, 1990 2.1.4-5

Transactions
Credence provides a class (TIransaction) that allows you to start and end transactions within a
task. There is, at most, one transaction for a task and the transaction is o.nly active for the task
that started it. Methods are available to commit transactions, abort transactions, and find
which transaction, if any, is currently active for the task.

The definition of a transaction involves control flow because, when a transaction aborts, you
typically don't want to perform the remaining operations in the transaction. For this reason"
the transaction class uses C++ exceptions to alter the control flow when a transaction aborts dnd
defines a protocol for handling these exceptions.

Manager passes the>16ck<bbF~ct to the appropriate lock controller. .

Because of the overhead involved, you should not use locks when semaphores will do.

Recovery
Credence provides classes that let you easily access files in a recoverable manner. One concrete
class (TSafeFileSegment) exists that allows you to use memory-mapped files in a normal
fashion and makes changes recoverable with a minimum amount of work. Another concrete
class (TSafeServer) provides a recoverable stream interface to a file that is handled by a
separate team, a data server. You use a data server when you want to share the file between
more than one team, or you don't want to map the file into your address space, or the file is
larger than a team's address space (because the data server will use a pool of buffers to access
the file).

'* Registered / Restricted Credence Classes March 15, 1990 2.1.4-6

Transactions
Credence provides a class (TIransaction) that allows you to start and end transactions within a
task. There is, at most, one transaction for a task and the transaction is o.nly active for the task
that started it. Methods are available to commit transactions, abort transactions, and find
which transaction, if any, is currently active for the task.

The definition of a transaction involves control flow because, when a transaction aborts, you
typically don't want to perform the remaining operations in the transaction. For this reason"
the transaction class uses C++ exceptions to alter the control flow when a transaction aborts dnd
defines a protocol for handling these exceptions.

Manager passes the>16ck<bbF~ct to the appropriate lock controller. .

Because of the overhead involved, you should not use locks when semaphores will do.

Recovery
Credence provides classes that let you easily access files in a recoverable manner. One concrete
class (TSafeFileSegment) exists that allows you to use memory-mapped files in a normal
fashion and makes changes recoverable with a minimum amount of work. Another concrete
class (TSafeServer) provides a recoverable stream interface to a file that is handled by a
separate team, a data server. You use a data server when you want to share the file between
more than one team, or you don't want to map the file into your address space, or the file is
larger than a team's address space (because the data server will use a pool of buffers to access
the file).

'* Registered / Restricted Credence Classes March 15, 1990 2.1.4-6

Credence recovery uses write-ahead logging in which all changes to recoverable objects are first
written in a central, system log. The Credence system provides the facility for recording
changes into the system log and playing back the lock in the event that a transaction aborts or a
system failure occurs. The default type of logging is called physical logging because ilnages of
which bytes changed are saved in the log. Credence Recovery is based on ,two abstract classes:
MRecoverable and TLogRecord.

Any object that is considered recoverable (a disk file) must be an MRecoverable. Any changes to
an MRecoverable results in a log record. The MRecoverable class has a method that outputs the
log record to the log file which must be overridden, thus allowing a subclass to do its own ~

logging. MRecoverable hooks itself into the transaction system so that the transaction system
can notify it of events. MRecoverable has methods that are called when transactions start,
commit, and abort since this information is needed if the class is doing its own logging and can
also be useful for other purposes. MSystemRecoverable is a subclass of MRecoverable tha t uses
the central, system log. The MSystemRecoverable class and the underlying transaction/I<?K ...

;.:.:.:.:.:.;.::;::-:.:::.:.:::.;....

-::;:/~)~~~(- :;~{::\~::::::::- ..
.•.......:::.::::.:..

.....................:.:.:::.:.;.:.:-:.:.:-:.: : "

3The names of these recovery schemes come from whether you need to undo changes by aborted
transactions or redo changes made by committed transactions in order to recover.

'* Registered / Restricted Credence Classes March 15, 1990 2.1.4-7

Credence recovery uses write-ahead logging in which all changes to recoverable objects are first
written in a central, system log. The Credence system provides the facility for recording
changes into the system log and playing back the lock in the event that a transaction aborts or a
system failure occurs. The default type of logging is called physical logging because ilnages of
which bytes changed are saved in the log. Credence Recovery is based on ,two abstract classes:
MRecoverable and TLogRecord.

Any object that is considered recoverable (a disk file) must be an MRecoverable. Any changes to
an MRecoverable results in a log record. The MRecoverable class has a method that outputs the
log record to the log file which must be overridden, thus allowing a subclass to do its own ~

logging. MRecoverable hooks itself into the transaction system so that the transaction system
can notify it of events. MRecoverable has methods that are called when transactions start,
commit, and abort since this information is needed if the class is doing its own logging and can
also be useful for other purposes. MSystemRecoverable is a subclass of MRecoverable tha t uses
the central, system log. The MSystemRecoverable class and the underlying transaction/I<?K ...

;.:.:.:.:.:.;.::;::-:.:::.:.:::.;....

-::;:/~)~~~(- :;~{::\~::::::::- ..
.•.......:::.::::.:..

.....................:.:.:::.:.;.:.:-:.:.:-:.: : "

3The names of these recovery schemes come from whether you need to undo changes by aborted
transactions or redo changes made by committed transactions in order to recover.

'* Registered / Restricted Credence Classes March 15, 1990 2.1.4-7

• Registered / Restricted

TSafeServer

Credence Classes March 15, 1990 2.1.4-8• Registered / Restricted

TSafeServer

Credence Classes March 15, 1990 2.1.4-8

Class Diagram

• You don't need to know these classes unless you want
custom locking or recovery

.:.:.;.:. =::::::;::::::::::
...

.....

TSafeFileSegment

TSafeServer

.& Registered/Restricted Credence Classes March 15, 1990 2.1.4-9

Class Diagram

• You don't need to know these classes unless you want
custom locking or recovery

.:.:.;.:. =::::::;::::::::::
...

.....

TSafeFileSegment

TSafeServer

.& Registered/Restricted Credence Classes March 15, 1990 2.1.4-9

Classes and Methods

TTransaction
A transaction is started by the definition of a ITransaction object. The lnost in1portant methods
that you will use are the following:

• TTransaction - the constructor starts the transaction
• Commit - commits the transaction.
• Abort - aborts the transaction.
• GetActiveTransaction - returns a pointer for the TIransaction active for the

current task.

foo()
{

TRY

ENDTRY

....:;;:;;:::::;::::::::.:... .:.:;.:........ '.' .. ':::::::;::::::::::~:;:::::: ::::::::: :
.<:~:::::::::::: :< :.:.:.:.:.:-:.:.:-? .., .

~~n~:~t!l~rll'_~~~i$.fi~tl'!~;tti~~~~17~~::~~I••~,t ~~ ~~:111J'I::\V
whether a trahsa§99l"t:m~gB.~:m~}atHv·e entering a function, you can<t±sg:@.¢.~f?,~@y~$r&hsactiontofind out. .

A Preview of Exceptions

The design of C++ exceptions still hasn't stabilized but the Credence classes will use something
similar to the following (based on Stroustrup's design at the time 1 wrote this paper).

There will probably be at least one class, ITransactionException, of which an instance is used to
signal an exception associated with transaction errors. The following example shows how you
would use transactions with exceptions.

foo()
{

TTransaction t;

• Registered/Restricted Credence Classes March 15,1990 2.1.4-10

Classes and Methods

TTransaction
A transaction is started by the definition of a ITransaction object. The lnost in1portant methods
that you will use are the following:

• TTransaction - the constructor starts the transaction
• Commit - commits the transaction.
• Abort - aborts the transaction.
• GetActiveTransaction - returns a pointer for the TIransaction active for the

current task.

foo()
{

TRY

ENDTRY

....:;;:;;:::::;::::::::.:... .:.:;.:........ '.' .. ':::::::;::::::::::~:;:::::: ::::::::: :
.<:~:::::::::::: :< :.:.:.:.:.:-:.:.:-? .., .

~~n~:~t!l~rll'_~~~i$.fi~tl'!~;tti~~~~17~~::~~I••~,t ~~ ~~:111J'I::\V
whether a trahsa§99l"t:m~gB.~:m~}atHv·e entering a function, you can<t±sg:@.¢.~f?,~@y~$r&hsactiontofind out. .

A Preview of Exceptions

The design of C++ exceptions still hasn't stabilized but the Credence classes will use something
similar to the following (based on Stroustrup's design at the time 1 wrote this paper).

There will probably be at least one class, ITransactionException, of which an instance is used to
signal an exception associated with transaction errors. The following example shows how you
would use transactions with exceptions.

foo()
{

TTransaction t;

• Registered/Restricted Credence Classes March 15,1990 2.1.4-10

try
{

II transactional operations

t . Commit () ;
}

catch(TTransactionException p)
{

II put code here to execute if the transaction aborts

TSafeFileSegment
The TSafeFileSegment class is used much like a TFileSegment except that changes are atonlic.
You can access a TSafef.U.~$.:~grrM~P"t9j.n7.:sgy':"9I.J.h.r9ugh streaming operations. Any dir~SLshADge

.;;::~:f}:::::::::::::::::::::::::::::::::;::::::::::·
I I change\:::tJJO bytes within a memory-mapped file:-:"::;::":-;:;-;-:;;::::::-:.;-:-

Executions de;:i~:~d--Byeh~:Aiih';~t~nts(or ChangingStream) an~>~h;£"g:~@B8he;g~irsmust be
disjoint, I.e. a ChangingContents (ChangingStream) must be followed by a ChangesDone before
you can invoke another ChangingContents (ChangingStream).

TSafeServer
The TSafeServer allows you to access a file atomically through a data server. You can use the
TSafeServer class when you need to share a recoverable object between teams or you don't want
to map a file into your application's address space. The methods of this class will send read
and write requests to a data server. All access to the file is via TStream operations. You use the
ChangingStream and ChangesDone functions in the same way as for TSafeFileSegnlent. The
server team is launched if one doesn't already exist for the file. The server team will use a pool
of segments to access the file instead of mapping the file completely into the server's address
space if the file is larger than a team's address space.

• Registered / Restricted Credence Classes March 15, 1990 2.1.4-11

try
{

II transactional operations

t . Commit () ;
}

catch(TTransactionException p)
{

II put code here to execute if the transaction aborts

TSafeFileSegment
The TSafeFileSegment class is used much like a TFileSegment except that changes are atonlic.
You can access a TSafef.U.~$.:~grrM~P"t9j.n7.:sgy':"9I.J.h.r9ugh streaming operations. Any dir~SLshADge

.;;::~:f}:::::::::::::::::::::::::::::::::;::::::::::·
I I change\:::tJJO bytes within a memory-mapped file:-:"::;::":-;:;-;-:;;::::::-:.;-:-

Executions de;:i~:~d--Byeh~:Aiih';~t~nts(or ChangingStream) an~>~h;£"g:~@B8he;g~irsmust be
disjoint, I.e. a ChangingContents (ChangingStream) must be followed by a ChangesDone before
you can invoke another ChangingContents (ChangingStream).

TSafeServer
The TSafeServer allows you to access a file atomically through a data server. You can use the
TSafeServer class when you need to share a recoverable object between teams or you don't want
to map a file into your application's address space. The methods of this class will send read
and write requests to a data server. All access to the file is via TStream operations. You use the
ChangingStream and ChangesDone functions in the same way as for TSafeFileSegnlent. The
server team is launched if one doesn't already exist for the file. The server team will use a pool
of segments to access the file instead of mapping the file completely into the server's address
space if the file is larger than a team's address space.

• Registered / Restricted Credence Classes March 15, 1990 2.1.4-11

The data server does not automatically perform concurrency control. However, you can use
TLogicalLock to control concurrent access to a data server. De-coupling locking fron1 data servers
allows greater flexibility in locking while allowing simpler data servers.

Note. I could design a couple more types of servers if demand warrants. For instance, a server
that only handles write requests because the clients have a read-only, shared segment in their
own address space.

TLock and TLogicalLock
The TLock class is an abstract class that provides the framework for lock-based concu rrency
control. The most useful methods of this class are as follows:

:-:-:
::::::::

TSurrog~t~Ti:~~:ction

.'.' :~: ,

~~~~a~7~~iiittill~.l~~ii~;i~lfI~!~a~t7~e:se
:::::'::<:::::::::::::::::::::\::::::>~:~~\ .

EXCEPT
ENDTRY

• SetLock - set (or acquire) the lock.

*~::e~~~;~::ii~j\'Jlll"~~i~::~~~!:;hatpn)Y:~~¢~V4:V~r:ol:Or,g~:l(~:a~ i~~~S
accessed with get~$rtand setter functions. The use of a logical in the following
code: ::/:::=::::

....;.;.;.;.:.

When a TTransaction is instantiated, the object is associated with the task that is running and
communication is set up to the Transaction Manager if such communication hasn't been
established already. The Credence teams, Logger and Lock Manager, deal with these
transactions but don"t want to do the actions mentioned above each time they resurrect a
transaction object. The TSurrogateTransaction class is used for this reason to provide surrogates
for transactions.

• Registered / Restricted Credence Classes March 15, 1990 2.1.4-12

The data server does not automatically perform concurrency control. However, you can use
TLogicalLock to control concurrent access to a data server. De-coupling locking fron1 data servers
allows greater flexibility in locking while allowing simpler data servers.

Note. I could design a couple more types of servers if demand warrants. For instance, a server
that only handles write requests because the clients have a read-only, shared segment in their
own address space.

TLock and TLogicalLock
The TLock class is an abstract class that provides the framework for lock-based concu rrency
control. The most useful methods of this class are as follows:

:-:-:
::::::::

TSurrog~t~Ti:~~:ction

.'.' :~: ,

~~~~a~7~~iiittill~.l~~ii~;i~lfI~!~a~t7~e:se
:::::'::<:::::::::::::::::::::\::::::>~:~~\ .

EXCEPT
ENDTRY

• SetLock - set (or acquire) the lock.

*~::e~~~;~::ii~j\'Jlll"~~i~::~~~!:;hatpn)Y:~~¢~V4:V~r:ol:Or,g~:l(~:a~ i~~~S
accessed with get~$rtand setter functions. The use of a logical in the following
code: ::/:::=::::

....;.;.;.;.:.

When a TTransaction is instantiated, the object is associated with the task that is running and
communication is set up to the Transaction Manager if such communication hasn't been
established already. The Credence teams, Logger and Lock Manager, deal with these
transactions but don"t want to do the actions mentioned above each time they resurrect a
transaction object. The TSurrogateTransaction class is used for this reason to provide surrogates
for transactions.

• Registered / Restricted Credence Classes March 15, 1990 2.1.4-12

TLockController and TLogicalLockController
When a TLock is set, it actually sends a request to the global Lock Manger team. The Lock
Manager determines which subclass of TLockController is needed to contro,l requests for the lock
being requested and instantiates a TLockController if one doesn't already exist.
TLogicalLockController is, naturally, the subclass that handles TLogicalLock requests.

MRecoverable and MSystemRecoverable
As mentioned earlier, MRecoverable is a class that you must mix into any object to which you
want to apply recoverable changes. It has the knowledge to hook into the transaction systenl so
that it can find out about transaction events. You can obtain complete control over logging by

.:.:.; ::.:.:.:.:.;.:.;.;..

............•...:...:.;.:-:.-.:.:::.:.:;:.:.:::::::::::::::.:.:::::::.:::::::.-

·::::::::::::~:~:::~:~:~:~:~~t~~~~~~{~~~\:;:;~;:

;::::~:r:::::::::·:-:::::::::::::::·:-:··-········
..........•.........:.:.:.: :. .

:.:;.•....:.:::.~:•.•.'.::•.:.:::...:.::.~..:::.\.~::.·:,,:.:!:.!:.i:.: ;:...:.:i..:. ~~~l:~~~ :;~~j~~: ~: ~~:: :::

TLogRecord i~>th~a~$tt~¢t:~4.:~ftl~:~;of all log records. If an MR~2g~~f~lJ.l¢m~thdd>~hanges(In
MRecoverable, the method is responsible for instantiating the right kind o(TLogRecord for the
logging scheme in use for that MRecoverable. The only methods of TLogRecord are as follows:

•
•

Undo - undo the changes represented in this log record.
Redo - redo the changes represented in this log record .

TSystemLogRecord is an abstract class that includes enough information in the log record to
work with the system log.

• Registered / Restricted Credence Classes March 15, 1990 2.1.4-D

TLockController and TLogicalLockController
When a TLock is set, it actually sends a request to the global Lock Manger team. The Lock
Manager determines which subclass of TLockController is needed to contro,l requests for the lock
being requested and instantiates a TLockController if one doesn't already exist.
TLogicalLockController is, naturally, the subclass that handles TLogicalLock requests.

MRecoverable and MSystemRecoverable
As mentioned earlier, MRecoverable is a class that you must mix into any object to which you
want to apply recoverable changes. It has the knowledge to hook into the transaction systenl so
that it can find out about transaction events. You can obtain complete control over logging by

.:.:.; ::.:.:.:.:.;.:.;.;..

............•...:...:.;.:-:.-.:.:::.:.:;:.:.:::::::::::::::.:.:::::::.:::::::.-

·::::::::::::~:~:::~:~:~:~:~~t~~~~~~{~~~\:;:;~;:

;::::~:r:::::::::·:-:::::::::::::::·:-:··-········
..........•.........:.:.:.: :. .

:.:;.•....:.:::.~:•.•.'.::•.:.:::...:.::.~..:::.\.~::.·:,,:.:!:.!:.i:.: ;:...:.:i..:. ~~~l:~~~ :;~~j~~: ~: ~~:: :::

TLogRecord i~>th~a~$tt~¢t:~4.:~ftl~:~;of all log records. If an MR~2g~~f~lJ.l¢m~thdd>~hanges(In
MRecoverable, the method is responsible for instantiating the right kind o(TLogRecord for the
logging scheme in use for that MRecoverable. The only methods of TLogRecord are as follows:

•
•

Undo - undo the changes represented in this log record.
Redo - redo the changes represented in this log record .

TSystemLogRecord is an abstract class that includes enough information in the log record to
work with the system log.

• Registered / Restricted Credence Classes March 15, 1990 2.1.4-D

TURLogRecord and TNRLogRecord
The TURLogRecord and TNRLogRecord classes are concrete subclasses of TSystemLogRecord
that support undo/redo and no-undo/redo recovery, respectively. These are used within the
transaction/logging system to implement TSafeFileSegment and TSafeServer.,

More Things You Need to Know
Classes that use locks must be good citizens. You must make sure that all classes accessing
shared data use a common locking scheme. You can use locks in concurrent tasks in a team to
access data in memory. You also use locks by multiple teams to control access to data in a
TSafeServer.

...:-:.;.:
" ..:::::::::;:....:-:.;.:.:.:.:.:-:.

......::: :-:.'-;.:-:-:-:-:.

Anyone using MSyst~mR~gYmi~§t.~j:mn~~@~g~gr~::i~hatthe executions are strict. Executi9n~Jffi~¥Fbe
Mrictiloneoft "iF

.................:-: .
.:~r~~\~({~~~~~~~}{}}{}}~~}~~{::::::::::::-:-...

...;i:.......::~ll,"
.:.:::::::::::=::::;:::}=:;::: .:::::::-:::.:::.:-:.-
:::::::u::t::n::::nj:(:::' " ,}::::::::::::::::'.
....,."",','."'." .. " ::::::::::::::::':'.."",..... -:.:::::::t[~iji:jjr::::··

:::::::::::::::::-:::::::::::.:

• Registered/Restricted Credence Classes March 15, 1990 2.1.4-14

TURLogRecord and TNRLogRecord
The TURLogRecord and TNRLogRecord classes are concrete subclasses of TSystemLogRecord
that support undo/redo and no-undo/redo recovery, respectively. These are used within the
transaction/logging system to implement TSafeFileSegment and TSafeServer.,

More Things You Need to Know
Classes that use locks must be good citizens. You must make sure that all classes accessing
shared data use a common locking scheme. You can use locks in concurrent tasks in a team to
access data in memory. You also use locks by multiple teams to control access to data in a
TSafeServer.

...:-:.;.:
" ..:::::::::;:....:-:.;.:.:.:.:.:-:.

......::: :-:.'-;.:-:-:-:-:.

Anyone using MSyst~mR~gYmi~§t.~j:mn~~@~g~gr~::i~hatthe executions are strict. Executi9n~Jffi~¥Fbe
Mrictiloneoft "iF

.................:-: .
.:~r~~\~({~~~~~~~}{}}{}}~~}~~{::::::::::::-:-...

...;i:.......::~ll,"
.:.:::::::::::=::::;:::}=:;::: .:::::::-:::.:::.:-:.-
:::::::u::t::n::::nj:(:::' " ,}::::::::::::::::'.
....,."",','."'." .. " ::::::::::::::::':'.."",..... -:.:::::::t[~iji:jjr::::··

:::::::::::::::::-:::::::::::.:

• Registered/Restricted Credence Classes March 15, 1990 2.1.4-14

Examples
The first example shows how the locking would work for classic database concurrency control.

II Set lock for record "fred" in the file "My File"
II
foo(const TFile& file)
{

II first, create a lock object (doesn't set it yet)
TLogicalLock myLock(file, 0, kWriteLock);

of mapping a key to a
be used as the lock

II Use a data base index object capable
II record ID value. The record ID will

I I value in tB:7:::::JqQ+s:~J~:::)::8:S*::' .;.:::::::::::::::::.: :::::::::::::::

;~::::::~Illjllll"r //create th~&.iil~!~';;\iW
~It ~:~~~~ (~~Ck //This a<>y bl.(I"IIi~:'lock can be set

".:::.;.:.:.:

....::;:::::;::::::::::-:....

.:-:.:.:-:-:.;" .;.:-:.:-:.
..

.'<:~;J.JE'IfQillg·R::.~~~:~ck () ;
II
t . Corrmi t () ;

TRY

II Set lock on an entire file
II

~::::s:::~;:ii:'::O':'~:'[";'·~O::'::"':':':':l:':-:':.:...L~':'J.·.leLOCk.:{:.:""...:.:,...;;:.,::::,:~;.:,.:.~1,1,II,l;l!
TL04~9.#':4@'¢J< .,.,~:~ ~: ~N;o;;... kWholeFile,... :-:.:.:.:- :.:-:::::::-::::;:;:.;. :.:.:::::..

EXCEPT
error("transaction aborted unexpectedly!");

ENDTRY

The next example shows a member function of some random class that writes to a
TSafeFileSegment.

TRandomClass::WriteRecoverably(TSafeFileSegment& stream)
{

TTransaction t;

" Registered/Restricted Credence Classes March 15, 1990 2.1.4-15

Examples
The first example shows how the locking would work for classic database concurrency control.

II Set lock for record "fred" in the file "My File"
II
foo(const TFile& file)
{

II first, create a lock object (doesn't set it yet)
TLogicalLock myLock(file, 0, kWriteLock);

of mapping a key to a
be used as the lock

II Use a data base index object capable
II record ID value. The record ID will

I I value in tB:7:::::JqQ+s:~J~:::)::8:S*::' .;.:::::::::::::::::.: :::::::::::::::

;~::::::~Illjllll"r //create th~&.iil~!~';;\iW
~It ~:~~~~ (~~Ck //This a<>y bl.(I"IIi~:'lock can be set

".:::.;.:.:.:

....::;:::::;::::::::::-:....

.:-:.:.:-:-:.;" .;.:-:.:-:.
..

.'<:~;J.JE'IfQillg·R::.~~~:~ck () ;
II
t . Corrmi t () ;

TRY

II Set lock on an entire file
II

~::::s:::~;:ii:'::O':'~:'[";'·~O::'::"':':':':l:':-:':.:...L~':'J.·.leLOCk.:{:.:""...:.:,...;;:.,::::,:~;.:,.:.~1,1,II,l;l!
TL04~9.#':4@'¢J< .,.,~:~ ~: ~N;o;;... kWholeFile,... :-:.:.:.:- :.:-:::::::-::::;:;:.;. :.:.:::::..

EXCEPT
error("transaction aborted unexpectedly!");

ENDTRY

The next example shows a member function of some random class that writes to a
TSafeFileSegment.

TRandomClass::WriteRecoverably(TSafeFileSegment& stream)
{

TTransaction t;

" Registered/Restricted Credence Classes March 15, 1990 2.1.4-15

TRY

stream.ChangingStream();
fFoo »= stream;
fBaz »= stream;
stream.ChangesDone();
t. Corrmit () ;

EXCEPT
qprintf ("transaction was aborted\n");

ENDTRY

The next example shows writing to a TSafeServer. (Notice that the operations are identical to
the stream operations using a TSafeFileSegment.)

~RandO~::::~:::3illlllltl'~rver&
TRY}::'::::::::

s.~¥:yer.ChangingStream();
iv6b »= server;

.j~~:;:i:::~t=zH:~fM~fi:;.

void Cance.tYfII:U} ..

:.:::;:::::::;:::::::::::::::-:-:

server)

:«<.:-:
;:::::::::::;}:::::- -:<.:-:-:-:-:-:-;.:-

if·(*~s#RBb:Hf
··::::}TRY':':::':: .:::::::::':',:::{<{::::.::}::::

." .. : :·<:·:·::i.:3:g:eI?f;·~>Abort () ;

EXCEPT
qprintf ("yes, it did abort\n");

ENDTRY

'* Registered/Restricted Credence Classes March 15, 1990 2.1.4-16

TRY

stream.ChangingStream();
fFoo »= stream;
fBaz »= stream;
stream.ChangesDone();
t. Corrmit () ;

EXCEPT
qprintf ("transaction was aborted\n");

ENDTRY

The next example shows writing to a TSafeServer. (Notice that the operations are identical to
the stream operations using a TSafeFileSegment.)

~RandO~::::~:::3illlllltl'~rver&
TRY}::'::::::::

s.~¥:yer.ChangingStream();
iv6b »= server;

.j~~:;:i:::~t=zH:~fM~fi:;.

void Cance.tYfII:U} ..

:.:::;:::::::;:::::::::::::::-:-:

server)

:«<.:-:
;:::::::::::;}:::::- -:<.:-:-:-:-:-:-;.:-

if·(*~s#RBb:Hf
··::::}TRY':':::':: .:::::::::':',:::{<{::::.::}::::

." .. : :·<:·:·::i.:3:g:eI?f;·~>Abort () ;

EXCEPT
qprintf ("yes, it did abort\n");

ENDTRY

'* Registered/Restricted Credence Classes March 15, 1990 2.1.4-16

Preliminary ERS Apple Confidential Thursday, March 1, 1990 Page iPreliminary ERS Apple Confidential Thursday, March 1, 1990 Page i

• Registered / Restricted Rainbow Warrior Thursday, March I, 1990 2.1.5-ii• Registered / Restricted Rainbow Warrior Thursday, March I, 1990 2.1.5-ii

Introduction

The purpose of Rainbow Warrior is to provide an "environment variable" registry and notification
system under Pink. The combination of Rainbow Warrior and the "read-only' resource fork provides a
superset of the services available with the Blue resource manager.

Rainbow Warrior provides facilities for accessing and updating environment variables (both system
environment variables and local environment variables). It also provides facilities for receiving
notification when a change is made to an individual variable or a change is made to any variable
belonging to a particular category. For example, applications using this facility can be notified when new
fonts are installed in the system or additional shared libraries are available. Rainbow Warrior provides a
stack of environment variables "environments" so applications can shadow variables declared in the
global environment with their own definitions. Finally, clients can enumerate all of the environment
variables or all of the environment variables in a particular category.

A mechanism for pre-ehange notification and "voting" for a change to be allowed is being consi<J.~r~9.

ExampIe .•.•.••••••••••... .1~~;11Ir~!!ll!I;!llllljiW
II
II
II

..; : : :-: :.: ;.:

also

II applicationEnvironment of

.: :.»:-:-:->:-:-: .

:::~:::~:::::~: ~ :i~::::::::::::::;::':::.:
I I Query for a particular shared i:$.$#:{~¥:Y :::::::::·:·.:.:::::~t/tJIt:::~:tmt:

TToken category (" SharedLibrary"); ·;::;;;~;~;:;:I::/::t .. :::mt:::tm::r:m:m:m:

~~~:::d~~~~;~~l~li~m~~~:::~~~~~;!i'~:~ironmentj;iji~ii~ (catego.t~j': I;1iance) ;
I I Test for the ··;~¥$g£.·ij#¢.~:;!!!i~:£·:·:::~·:::::~·~rticularshared li~·~:~:f:Y3::·??)«
Boolean exists =e·n-JlfbfuDent->Member (category, instance);

II Check for the user name
TToken userNameCategory("User Name");

II The returned TToken object belongs to you.
TText* userName = (TText*) environment->Retrieve(userNameCategory);

II Add an environment variable to the "application environment." This shadows
II any definition of the same environment variable found in another
II "TEnvironment" further in the "environment stack." Note that there are
II atleast two other "environments" below the "application environment" in the
II environment stack: the "user environment" and the "system environment."
TToken userShoeSize("Shoe Size");
T~ollectibleLong shoeSize(9);
applicationEnvironment->Add(userShoeSize, &shoeSize);

'*Registered /Restricted Rainbow Warrior Thursday, March 1, 1990 2.1.5 -1

Introduction

The purpose of Rainbow Warrior is to provide an "environment variable" registry and notification
system under Pink. The combination of Rainbow Warrior and the "read-only' resource fork provides a
superset of the services available with the Blue resource manager.

Rainbow Warrior provides facilities for accessing and updating environment variables (both system
environment variables and local environment variables). It also provides facilities for receiving
notification when a change is made to an individual variable or a change is made to any variable
belonging to a particular category. For example, applications using this facility can be notified when new
fonts are installed in the system or additional shared libraries are available. Rainbow Warrior provides a
stack of environment variables "environments" so applications can shadow variables declared in the
global environment with their own definitions. Finally, clients can enumerate all of the environment
variables or all of the environment variables in a particular category.

A mechanism for pre-ehange notification and "voting" for a change to be allowed is being consi<J.~r~9.

ExampIe .•.•.••••••••••... .1~~;11Ir~!!ll!I;!llllljiW
II
II
II

..; : : :-: :.: ;.:

also

II applicationEnvironment of

.: :.»:-:-:->:-:-: .

:::~:::~:::::~: ~ :i~::::::::::::::;::':::.:
I I Query for a particular shared i:$.$#:{~¥:Y :::::::::·:·.:.:::::~t/tJIt:::~:tmt:

TToken category (" SharedLibrary"); ·;::;;;~;~;:;:I::/::t .. :::mt:::tm::r:m:m:m:

~~~:::d~~~~;~~l~li~m~~~:::~~~~~;!i'~:~ironmentj;iji~ii~ (catego.t~j': I;1iance) ;
I I Test for the ··;~¥$g£.·ij#¢.~:;!!!i~:£·:·:::~·:::::~·~rticularshared li~·~:~:f:Y3::·??)«
Boolean exists =e·n-JlfbfuDent->Member (category, instance);

II Check for the user name
TToken userNameCategory("User Name");

II The returned TToken object belongs to you.
TText* userName = (TText*) environment->Retrieve(userNameCategory);

II Add an environment variable to the "application environment." This shadows
II any definition of the same environment variable found in another
II "TEnvironment" further in the "environment stack." Note that there are
II atleast two other "environments" below the "application environment" in the
II environment stack: the "user environment" and the "system environment."
TToken userShoeSize("Shoe Size");
T~ollectibleLong shoeSize(9);
applicationEnvironment->Add(userShoeSize, &shoeSize);

'*Registered /Restricted Rainbow Warrior Thursday, March 1, 1990 2.1.5 -1

II Add an environment variable that is has a category and instance name
TToken category(~SharedLibrarY")i

TToken instance(~MySharedLibrarY")i

TSharedLibrary* lib = new TSharedLibrary(....)i
applicationEnvironment->Add(category, instance, lib)i

II Get an iterator to iterate over all of the sharedLibraries.
Tlterator* anIterator = environment->Createlterator(~SharedLibrary");

TToken* nextLibrary = (TToken*) anlterator->First()i
while (nextLibrary != NIL)

II Do something - could retrieve the value associated with this,
II etc.
II The ~nextLibrary" text object belongs to you

~R:eXqul:teL~s'bt~:nXor~tL~~f'b~rc(:;;a:::.::::::""'::::::::'~:'::":"·:~';:.":·'••:.:.:.::..;."..:;.•:...:j•.•.•.•:..:••:.:.k.""':l::..••:..•.::••: •...:~~::•.•.::.:•.••..l.•::n.•..:.:.:•••.:.[:•.::.:•.•:.:••:•.••:•.:.•..·.!.:.·.!•..•.:.•.•l:n
l:)..•:..:.•.••.:.~.:•..:.:.·..:.•:j:i.•.:.~:!n•.:·..:.·j.:•.:•..n:.""":.:·:i..•:.·:·:..:·.~.::.tj~.••.::.::;+.:l...•..:t;.,.,:.:·..:••.;.~:.:.::..••..:..~.••.:·......:l.:.·•.:.•.•.:·.•::.I..:r::.:••..:•...::.•.:.:.!..::.•.j.:~.:':·.::I:l:i.·t..::::.·.:•.·:.:..I::.:·.!..:I.::.o.:."",:•.:·.i.:I.:·:j.:•.:.·.~.:.~.:.•.:.·.i:••::.I.~.:.:.:.::.-."~:.:'::"::'::'·'.'.-r.-;:~:~.·:i..••:.'.:•.:·r:'g~e~:F~t~s() m

i

ade to ;:;Mjj,,?i •• ;;@F
~ ~ shared libr:r~esg~~UW = =v~. Q ~n~n ~/;;J'lll,,'ij";F

....:.....:. ';':::-:"

Classes

TEnvironment

................
. , .

Applications will typM~tr>,..H~:~:~~ny:fr8~entStackwhich provides·-:~::gh~~~W~X~g·m~hanismas well
as the functionality of a TEnvI:fo~ent. All values returned by TEnvironme~rare:<:·()nsidered"newed"
objects and should be managed by the caller.

class TEnvironment : public MCollectible
public:

TEnvironment(char* fileName l) i

TEnvironment()i
virtual -TEnvironment()i
virtual Boolean Add(const TToken& category,

const TToken& instance,
const MCollectible* value,
Boolean replace = TRUE,
const TToken* replaceDetails);

virtual Boolean Add(const TToken& category,

L Of course, we will be using whatever class the file system provides for representing a file .

.&Registered I Restricted Rainbow Warrior Thursday, March 1, 1990 2.1.5 - 2

II Add an environment variable that is has a category and instance name
TToken category(~SharedLibrarY")i

TToken instance(~MySharedLibrarY")i

TSharedLibrary* lib = new TSharedLibrary(....)i
applicationEnvironment->Add(category, instance, lib)i

II Get an iterator to iterate over all of the sharedLibraries.
Tlterator* anIterator = environment->Createlterator(~SharedLibrary");

TToken* nextLibrary = (TToken*) anlterator->First()i
while (nextLibrary != NIL)

II Do something - could retrieve the value associated with this,
II etc.
II The ~nextLibrary" text object belongs to you

~R:eXqul:teL~s'bt~:nXor~tL~~f'b~rc(:;;a:::.::::::""'::::::::'~:'::":"·:~';:.":·'••:.:.:.::..;."..:;.•:...:j•.•.•.•:..:••:.:.k.""':l::..••:..•.::••: •...:~~::•.•.::.:•.••..l.•::n.•..:.:.:•••.:.[:•.::.:•.•:.:••:•.••:•.:.•..·.!.:.·.!•..•.:.•.•l:n
l:)..•:..:.•.••.:.~.:•..:.:.·..:.•:j:i.•.:.~:!n•.:·..:.·j.:•.:•..n:.""":.:·:i..•:.·:·:..:·.~.::.tj~.••.::.::;+.:l...•..:t;.,.,:.:·..:••.;.~:.:.::..••..:..~.••.:·......:l.:.·•.:.•.•.:·.•::.I..:r::.:••..:•...::.•.:.:.!..::.•.j.:~.:':·.::I:l:i.·t..::::.·.:•.·:.:..I::.:·.!..:I.::.o.:."",:•.:·.i.:I.:·:j.:•.:.·.~.:.~.:.•.:.·.i:••::.I.~.:.:.:.::.-."~:.:'::"::'::'·'.'.-r.-;:~:~.·:i..••:.'.:•.:·r:'g~e~:F~t~s() m

i

ade to ;:;Mjj,,?i •• ;;@F
~ ~ shared libr:r~esg~~UW = =v~. Q ~n~n ~/;;J'lll,,'ij";F

....:.....:. ';':::-:"

Classes

TEnvironment

................
. , .

Applications will typM~tr>,..H~:~:~~ny:fr8~entStackwhich provides·-:~::gh~~~W~X~g·m~hanismas well
as the functionality of a TEnvI:fo~ent. All values returned by TEnvironme~rare:<:·()nsidered"newed"
objects and should be managed by the caller.

class TEnvironment : public MCollectible
public:

TEnvironment(char* fileName l) i

TEnvironment()i
virtual -TEnvironment()i
virtual Boolean Add(const TToken& category,

const TToken& instance,
const MCollectible* value,
Boolean replace = TRUE,
const TToken* replaceDetails);

virtual Boolean Add(const TToken& category,

L Of course, we will be using whatever class the file system provides for representing a file .

.&Registered I Restricted Rainbow Warrior Thursday, March 1, 1990 2.1.5 - 2

void
void

Boolean
Boolean

void

Boolean

Boolean
Boolean

virtual
virtual

virtual
virtual

virtual

virtual

virtual
virtual

const'MCollectible* value,
Boolean replace = TRUE,
const TToken* replaceDetails);

Remove(const TToken& category,
const TToken& instance);

virtual void Remove(const TToken& category};
virtual MCollectible* Retrieve(const TToken& category) const;
virtual MCollectible* Retrieve(const TToken& category,

const TToken& instance) const;
Member(const TToken& category) const;
Member(const TToken& category,

const TToken& instance) const;
Members(const TToken& category,

TCollection& result) const;
virtual void NotifyOn(const TNotificationSpecification&);
virtual
virtual
virtual

} ;

.-:;:::::::::::

TEnvironmentStack:::::;;:
.:-:.:.:-:.:.

:::;::::::::: :-:-:.;.:-:-:::::;:..... ::::::::::}}}~

class TEnvironmentStack : public ,~t<::::::m::::HHm:t;~!I~;:HHH: ::;:::;:;:;:;;;:;: t,::'::::::::::>

virtual MC6TleCtibie* Retrieve (const TToken& cate'g'dry/:'
const TToken& instance) const;

Member(const TToken& category) const;
Member(const TToken& category,

const TToken& instance) const;
NotifyOn(const TNotificationSpecification&);
NotifyOff(const TNotificationSpecification&);

virtual
virtual
virtual
virtual
virtual

void
const TEnvironment*
const TEnvironment*
TIterator*
void

Push (TEnvironment*) ;
Pop () ;
Peek () ;
CreateEnvironmentIterator () ,const;
StartHere(const TEnvironment*) const;

} ;

• Registered /Restricted Rainbow Warrior Thursday, March I, 1990 2.1.5 - 3

void
void

Boolean
Boolean

void

Boolean

Boolean
Boolean

virtual
virtual

virtual
virtual

virtual

virtual

virtual
virtual

const'MCollectible* value,
Boolean replace = TRUE,
const TToken* replaceDetails);

Remove(const TToken& category,
const TToken& instance);

virtual void Remove(const TToken& category};
virtual MCollectible* Retrieve(const TToken& category) const;
virtual MCollectible* Retrieve(const TToken& category,

const TToken& instance) const;
Member(const TToken& category) const;
Member(const TToken& category,

const TToken& instance) const;
Members(const TToken& category,

TCollection& result) const;
virtual void NotifyOn(const TNotificationSpecification&);
virtual
virtual
virtual

} ;

.-:;:::::::::::

TEnvironmentStack:::::;;:
.:-:.:.:-:.:.

:::;::::::::: :-:-:.;.:-:-:::::;:..... ::::::::::}}}~

class TEnvironmentStack : public ,~t<::::::m::::HHm:t;~!I~;:HHH: ::;:::;:;:;:;;;:;: t,::'::::::::::>

virtual MC6TleCtibie* Retrieve (const TToken& cate'g'dry/:'
const TToken& instance) const;

Member(const TToken& category) const;
Member(const TToken& category,

const TToken& instance) const;
NotifyOn(const TNotificationSpecification&);
NotifyOff(const TNotificationSpecification&);

virtual
virtual
virtual
virtual
virtual

void
const TEnvironment*
const TEnvironment*
TIterator*
void

Push (TEnvironment*) ;
Pop () ;
Peek () ;
CreateEnvironmentIterator () ,const;
StartHere(const TEnvironment*) const;

} ;

• Registered /Restricted Rainbow Warrior Thursday, March I, 1990 2.1.5 - 3

TNotificationSpecification

TNotificationSpecification is an abstract class that contains the protocol for describing when and
how client receive notification when environment variables change. TNotific::ationSpecification
subclasses will override the Not ify methods to do the actual notification dispatching. For example, a
subclass of TNotificationSpecification could supply notification using Opus Ire messages, post
events to an event receiver task or send a packet on the network.

The TNotificationSpecification encapsulates information which describes when notification will
occur. You can request notification based on a particular category (all changes involving the category
FONTS); a particular category and operation (all additions to the category FONTS); a particular ca tegory
and instance (all changes involving FONT Helvetica13); or a particular category, instance and
operation (whenever SHARED LIBRARY GoodStuff is updated).

virtual
virtual

virtual
virtual
virtual

} ;

TMessageTaskNotification

TMessageTaskNotification is a notification specification which will perform notification by using an
TNotificationMessage (a kind of MKerneJ.Message) send to an MMessageTask. The
TNotificationMessage can be queried to find out what category (and instance) changed as well as the
nature of the change (update, addition or removal).

class TMessageTaskNotification : public TNotificationSpecification
public:

TMessageTaskNotification(const MMessageTask& who,
const TToken& category,
const TToken& instance,

• Registered /Restricted Rainbow Warrior Thursday, March 1, 1990 2.1.5 - 4

TNotificationSpecification

TNotificationSpecification is an abstract class that contains the protocol for describing when and
how client receive notification when environment variables change. TNotific::ationSpecification
subclasses will override the Not ify methods to do the actual notification dispatching. For example, a
subclass of TNotificationSpecification could supply notification using Opus Ire messages, post
events to an event receiver task or send a packet on the network.

The TNotificationSpecification encapsulates information which describes when notification will
occur. You can request notification based on a particular category (all changes involving the category
FONTS); a particular category and operation (all additions to the category FONTS); a particular ca tegory
and instance (all changes involving FONT Helvetica13); or a particular category, instance and
operation (whenever SHARED LIBRARY GoodStuff is updated).

virtual
virtual

virtual
virtual
virtual

} ;

TMessageTaskNotification

TMessageTaskNotification is a notification specification which will perform notification by using an
TNotificationMessage (a kind of MKerneJ.Message) send to an MMessageTask. The
TNotificationMessage can be queried to find out what category (and instance) changed as well as the
nature of the change (update, addition or removal).

class TMessageTaskNotification : public TNotificationSpecification
public:

TMessageTaskNotification(const MMessageTask& who,
const TToken& category,
const TToken& instance,

• Registered /Restricted Rainbow Warrior Thursday, March 1, 1990 2.1.5 - 4

NotificationKind = kAll);
TMessageTaskNotification(const MMessageTask& who,

const TToken& category,
const TToken& instance,
NotificationKind = kAll);

virtual TMessageTaskNotification();
override void Notify(const TToken& category,

NotificationKind kind);
override void Notify(const TToken& category,

const TToken& instance,
NotificationKind kind) ;

} ;

TNotificationMessage
.:.:.::::::::::. ;.:::::::-:.:.:.:.:-:::-:.;.:.:

::::::::::.... :.:.:-:.:.;....
..

It

..
..... ..

insta,nce,

.:/::~:~}:::~.:-:.:.:.:.:::::::::.:.:.:.:.:.:.:.:.:.:.:.
:::::~~~/t~\::::::::::·~:~:::~:::::::::::

.:.:-:-:.:.>;,:.:.;.;-:.:.;:.::-:<.:.:-:.:.:- .:.:.:.:.:.....;.:-:.:.:.:.:

::::::(::::::::: :...:.":.~.. :.:.:.~.:.~.:...:.•.....~ ~.:...:•. :.:.:.•.~.:.:...:.•.:...•::::.
::.: 1.:~ :.:=.'~..•: -.;.:.j .•.:.:.: :.' ::~ ..•.: ..)".. ::::::::=::::::::::::::::::.:

:.:.:.:.:.:.:.:-:.::: .:::~t~~\:: ..

} ;

'*Registered / Restricted Rainbow Warrior Thursday, March 1, 1990 2.1.5 - 5

NotificationKind = kAll);
TMessageTaskNotification(const MMessageTask& who,

const TToken& category,
const TToken& instance,
NotificationKind = kAll);

virtual TMessageTaskNotification();
override void Notify(const TToken& category,

NotificationKind kind);
override void Notify(const TToken& category,

const TToken& instance,
NotificationKind kind) ;

} ;

TNotificationMessage
.:.:.::::::::::. ;.:::::::-:.:.:.:.:-:::-:.;.:.:

::::::::::.... :.:.:-:.:.;....
..

It

..
..... ..

insta,nce,

.:/::~:~}:::~.:-:.:.:.:.:::::::::.:.:.:.:.:.:.:.:.:.:.:.
:::::~~~/t~\::::::::::·~:~:::~:::::::::::

.:.:-:-:.:.>;,:.:.;.;-:.:.;:.::-:<.:.:-:.:.:- .:.:.:.:.:.....;.:-:.:.:.:.:

::::::(::::::::: :...:.":.~.. :.:.:.~.:.~.:...:.•.....~ ~.:...:•. :.:.:.•.~.:.:...:.•.:...•::::.
::.: 1.:~ :.:=.'~..•: -.;.:.j .•.:.:.: :.' ::~ ..•.: ..)".. ::::::::=::::::::::::::::::.:

:.:.:.:.:.:.:.:-:.::: .:::~t~~\:: ..

} ;

'*Registered / Restricted Rainbow Warrior Thursday, March 1, 1990 2.1.5 - 5

M. Davis
L. Collins

R. Sonnenschein

.. Registered/Restricted International Utilities March 1, 1990 2.1.6-i

M. Davis
L. Collins

R. Sonnenschein

.. Registered/Restricted International Utilities March 1, 1990 2.1.6-i

Contents

Introduction 1
Configuration.. '.' 1

Localization Objects 1
Human Interface 2
Presentation Languages : 2
TLocale 3

Input 4
Keyboards 4

Creating and Modifying a Keyboard Mapping 6
Using a Keyboard Mapping 6
Viewing/Editing A Keyboard 7

Keyboard Transli teraters 7
Input Methods 8

......:.; .. .;

Numbers ~<~~~:~G~#w~m;.#@~~L~~~·~·~ ~·~:~:i:~2Ndww.aL:·~~ 22

Unicode 24
Background 24
Alternative Standards 25
Methods & Status 25
Design 26
The Unicode Repertoire 26

Future Expansion and Character Registration 28
Code Assignment 30
Details 32

Paragraph/Line Separators 32
Specific Characters 32
Ordering of Character Sequences 32

Sample Code Pages 33

'* Registered/Restricted International Utilities March 1, 1990 2.1.6-ii

Contents

Introduction 1
Configuration.. '.' 1

Localization Objects 1
Human Interface 2
Presentation Languages : 2
TLocale 3

Input 4
Keyboards 4

Creating and Modifying a Keyboard Mapping 6
Using a Keyboard Mapping 6
Viewing/Editing A Keyboard 7

Keyboard Transli teraters 7
Input Methods 8

......:.; .. .;

Numbers ~<~~~:~G~#w~m;.#@~~L~~~·~·~ ~·~:~:i:~2Ndww.aL:·~~ 22

Unicode 24
Background 24
Alternative Standards 25
Methods & Status 25
Design 26
The Unicode Repertoire 26

Future Expansion and Character Registration 28
Code Assignment 30
Details 32

Paragraph/Line Separators 32
Specific Characters 32
Ordering of Character Sequences 32

Sample Code Pages 33

'* Registered/Restricted International Utilities March 1, 1990 2.1.6-ii

Introduction
Pink will be the first operating system that fundamentally integrates features necessary for
support of native languages worldwide. It starts with the character encoding, which supports
scripts and symbols for all languages and typesetting requirements, and extends throughout the
toolbox, even up to the development environment (which is traditionally only a 7-bit
environment).

Pink provides high-quality layout of text in any language; layout which satisfies the large
majority of typographical requirements and can be extended to meet others. Pink also includes
other crucial language-sensitive features: text comparison and searching, keyboard mappings,
inline input (integrating ideographic text input), etc. It also provides country- or region-specific
features such as time and number conversions, and calendar, time zone and daylight-savings
support.

.:.:-:.:::::::.:-
'':<:;:;:::;:: :::::::;:::}::}:::

For the purposes of locali~ti~~:'thereare a number of relationships which c~'i{:~:~rganized
into a hierarchy. A script is a writing system consisting of a number of symbols and conventions
for associating them. Examples are Roman (Latin), Cyrillic, Greek, etc.

Ea~h script can be used to represent a number of natural languages (for localization purposes,
wherever one natural language is written in two scripts we will refer to them as two different
languages: one example is Serbian and Croatian, which are essentially the same language, but
one is written with Cyrillic and the other with the Roman script). In some cases a script is only
used by one language (Japanese), while in others it is used by scores (English, French,
German,...).

Each language has a number of regions in which the language is used, regions which have
different localizations (these correspond to country-eodes on the Mac). Examples are the U.S.

1 . Whenever installed objects are selected, changed, added or deleted, the toolbox will need
to synchronize applications and servers.

'* Registered / Restricted International Utilities March 1, 1990 2.1.6-1

Introduction
Pink will be the first operating system that fundamentally integrates features necessary for
support of native languages worldwide. It starts with the character encoding, which supports
scripts and symbols for all languages and typesetting requirements, and extends throughout the
toolbox, even up to the development environment (which is traditionally only a 7-bit
environment).

Pink provides high-quality layout of text in any language; layout which satisfies the large
majority of typographical requirements and can be extended to meet others. Pink also includes
other crucial language-sensitive features: text comparison and searching, keyboard mappings,
inline input (integrating ideographic text input), etc. It also provides country- or region-specific
features such as time and number conversions, and calendar, time zone and daylight-savings
support.

.:.:-:.:::::::.:-
'':<:;:;:::;:: :::::::;:::}::}:::

For the purposes of locali~ti~~:'thereare a number of relationships which c~'i{:~:~rganized
into a hierarchy. A script is a writing system consisting of a number of symbols and conventions
for associating them. Examples are Roman (Latin), Cyrillic, Greek, etc.

Ea~h script can be used to represent a number of natural languages (for localization purposes,
wherever one natural language is written in two scripts we will refer to them as two different
languages: one example is Serbian and Croatian, which are essentially the same language, but
one is written with Cyrillic and the other with the Roman script). In some cases a script is only
used by one language (Japanese), while in others it is used by scores (English, French,
German,...).

Each language has a number of regions in which the language is used, regions which have
different localizations (these correspond to country-eodes on the Mac). Examples are the U.S.

1 . Whenever installed objects are selected, changed, added or deleted, the toolbox will need
to synchronize applications and servers.

'* Registered / Restricted International Utilities March 1, 1990 2.1.6-1

and U.K., or French, French Canadian, French Belgian, French Swiss, etc. Generally our
products are localized to a particular region when we ship them: sometimes applications can be
localized to just a language, however, if the differences among the regions of a language are not
present in the application.

A locale is a part of a region that shares common time and date characteristics; For example,
California and Oregon are part of the same zone, while Arizona and New Mexico are not (even
though they are in the same time zone, Arizona does not have the same daylight savings as
New Mexico). Users will generally personalize their systems by configuring their system
differently from the shipping system for their region.

Human Interface
The exact ways in which the human interface is expressed and the system configUration
methods implemented is not yet well defined. Most of the international interface elements are

Application programs are able to handle many different languages in documents
simultaneously. In a word processing program, for example, the user can enter French and
Gennan words into the same document: with Pink Unicode text, this will be transparent for non
Roman scripts as well.

However, besides the languages that the user has entered into a document, each application
uses a particular language in the menus, dialogs and other user interface elements for
presentation of infonnation to the user. This is the language that the application is localized
for, and which we will call the presentation language.

One of the major advantages of the Macintosh was the ability for well-behaved applications
to be localized into any number of languages, changing the interface text without recoding or
even access to the source code. This localization. of the presentation language often involves
changing the other interface elements: since the length and content of text strings varies
dramatically, elements of dialogs and menus often need rearrangement. Programmers also make

• Registered/Restricted International Utilities March 1, 1990 2.1.6-2

and U.K., or French, French Canadian, French Belgian, French Swiss, etc. Generally our
products are localized to a particular region when we ship them: sometimes applications can be
localized to just a language, however, if the differences among the regions of a language are not
present in the application.

A locale is a part of a region that shares common time and date characteristics; For example,
California and Oregon are part of the same zone, while Arizona and New Mexico are not (even
though they are in the same time zone, Arizona does not have the same daylight savings as
New Mexico). Users will generally personalize their systems by configuring their system
differently from the shipping system for their region.

Human Interface
The exact ways in which the human interface is expressed and the system configUration
methods implemented is not yet well defined. Most of the international interface elements are

Application programs are able to handle many different languages in documents
simultaneously. In a word processing program, for example, the user can enter French and
Gennan words into the same document: with Pink Unicode text, this will be transparent for non
Roman scripts as well.

However, besides the languages that the user has entered into a document, each application
uses a particular language in the menus, dialogs and other user interface elements for
presentation of infonnation to the user. This is the language that the application is localized
for, and which we will call the presentation language.

One of the major advantages of the Macintosh was the ability for well-behaved applications
to be localized into any number of languages, changing the interface text without recoding or
even access to the source code. This localization. of the presentation language often involves
changing the other interface elements: since the length and content of text strings varies
dramatically, elements of dialogs and menus often need rearrangement. Programmers also make

• Registered/Restricted International Utilities March 1, 1990 2.1.6-2

use of routines such as ParamText, that allow localizers to arbitrarily change the order and
context of items in dynamically composed strings.

On the Blue Macintosh, there is only one presentation language for an application and for the
system as a whole (e.g. system messages, the Finder presentation language, desk accessories,
control panel modules, etc.) Applications can change their own presentation languages (and a
few do), but there is no system support and no uniformity in interface for doing this.

The ability to change presentation languages is important for two reasons. First, allowing
applications and the system to have multiple presentation languages allows both us and our
developers to ship one product within a range of different countries, just as the same manual can
contain several different languages for use in several different countries. Secondly, in many
markets there is a requirement(in some cases governmental) for different people having
different native languages to be able use the same product. These reasons are especially
important in Europe, where the language support issues are crucial.

§a~J~~~~:~ll'I.~~¥t~~f~~i~~'::t
~~r:~;~~~r~~:n~~e;~.b:~a~~h~~:~~:~;:;:~~~~;~i~;~~:n~:~t.~III~~:f::~:~~~y
choice being in the re~p~!iy..~..1.anguage).Applications will also l}~yg::q~tijsf:~!~kess to lists of

~~~~~r:~;:.e~11.~:;~:C:ds:~~i;;lftt~;h~~~:s-:~i~?iIlIlJ:~:e~:~:(~'III~t···
environment. Fdf:'ffi~f:~;:~~i,~yJ~t:~n~~ating%B$$~slveversions of a pi§g.M~::;t,~re are MP¥r.%#1P,tS
that automatican}(·~f:~TI§Ji,J.~¢<~g~n~~9.~J::§~pngs~··For example, if strin~f;lf.@1:·1p·::~~;:;}.0Engl~$.lj/::};·

version and a 2.0 Ehgt~h.Y~B§jQij··matcfC then the scripts will automaHdil1y..·.W#.t1~l~t¢:sfHl1g
#24 in the French 2.0 version bY'using the 1.0 French version. In addition, the"abiHty to annotate
strings with explanations that are not visible to the user, but can be seen by localizers will be
extremely helpful.

For multiple languages within the same program, the development environment should also
make sure that the translations stay in sYnc: if I add a string in the English version, then some
string needs to be added to the French, and the localizers need to be able to find out what it is.

TLocale
Access to the international objects is through the Rainbow Warrior environments mechanism.
By using this, for example, a programmer can iterate through all of the keyboards available on
the system, or iterate through all of the number formats. One of the accessable objects is a
TLocale. Each TLocale contains a set of international objects that are associated with a
particular region (e.g. "Britain", "US", "Schwytz", "Paris", "Texas").

The TLocale mechanism allows users to change between different sets of international
configurations with one choice. It also allows a set of objects to be packaged as one entity for

• Registered/Restricted International Utilities March 1, 1990 2.1.6-3

use of routines such as ParamText, that allow localizers to arbitrarily change the order and
context of items in dynamically composed strings.

On the Blue Macintosh, there is only one presentation language for an application and for the
system as a whole (e.g. system messages, the Finder presentation language, desk accessories,
control panel modules, etc.) Applications can change their own presentation languages (and a
few do), but there is no system support and no uniformity in interface for doing this.

The ability to change presentation languages is important for two reasons. First, allowing
applications and the system to have multiple presentation languages allows both us and our
developers to ship one product within a range of different countries, just as the same manual can
contain several different languages for use in several different countries. Secondly, in many
markets there is a requirement(in some cases governmental) for different people having
different native languages to be able use the same product. These reasons are especially
important in Europe, where the language support issues are crucial.

§a~J~~~~:~ll'I.~~¥t~~f~~i~~'::t
~~r:~;~~~r~~:n~~e;~.b:~a~~h~~:~~:~;:;:~~~~;~i~;~~:n~:~t.~III~~:f::~:~~~y
choice being in the re~p~!iy..~..1.anguage).Applications will also l}~yg::q~tijsf:~!~kess to lists of

~~~~~r:~;:.e~11.~:;~:C:ds:~~i;;lftt~;h~~~:s-:~i~?iIlIlJ:~:e~:~:(~'III~t···
environment. Fdf:'ffi~f:~;:~~i,~yJ~t:~n~~ating%B$$~slveversions of a pi§g.M~::;t,~re are MP¥r.%#1P,tS
that automatican}(·~f:~TI§Ji,J.~¢<~g~n~~9.~J::§~pngs~··For example, if strin~f;lf.@1:·1p·::~~;:;}.0Engl~$.lj/::};·

version and a 2.0 Ehgt~h.Y~B§jQij··matcfC then the scripts will automaHdil1y..·.W#.t1~l~t¢:sfHl1g
#24 in the French 2.0 version bY'using the 1.0 French version. In addition, the"abiHty to annotate
strings with explanations that are not visible to the user, but can be seen by localizers will be
extremely helpful.

For multiple languages within the same program, the development environment should also
make sure that the translations stay in sYnc: if I add a string in the English version, then some
string needs to be added to the French, and the localizers need to be able to find out what it is.

TLocale
Access to the international objects is through the Rainbow Warrior environments mechanism.
By using this, for example, a programmer can iterate through all of the keyboards available on
the system, or iterate through all of the number formats. One of the accessable objects is a
TLocale. Each TLocale contains a set of international objects that are associated with a
particular region (e.g. "Britain", "US", "Schwytz", "Paris", "Texas").

The TLocale mechanism allows users to change between different sets of international
configurations with one choice. It also allows a set of objects to be packaged as one entity for

• Registered/Restricted International Utilities March 1, 1990 2.1.6-3

installation: adding Japanese to a system can add one or more Japanese TLocales, including the
necessary keyboards, input methods, calendars, fonts, et cetera.

For each language the're is a preferred TLocale. This allows programs to determine a choice of
iterns such as SPelling checker based on language. For circumstances where no language or
TLocale has been chosen, there is always a system default TLocale. A style-run of text that has
no associated language is assumed to be in the language of the system TLocale, for example.

Methods are provided for creating a new TLocale, iterating through the objects in a TLocale,
changing the preferred TLocale for a language, and for changing the contents of a TLocale <e.g.
changing the"American" keyboard mapping from "Querty' to "Dvorak"). The capabilities
provided by these methods will be provided to users by a view.

To use each of the international objects, applications will commonly access the system TLocale
through Rainbow Warrior. They will then select the particular type of international object

....:;:::::tf{~~.:~..:.\.:.:.:\.\\:~I::::m/:tt}
.•.......:::;:;::-:Input ...:-:.::::;:::;:)\//!{:::::?,.::::'"

..::::::::::ttII\~/{:~:~;{t:::::::· ..

"." :;:::::::::;::::::

KeYboardsil~l!t';;;;;';;i,fi1;1;t';;';i) .··.······.;1;, ·.
A KeyMap cont...:~:·.·.::::·.:i:·:...:.:n:·:.:.:.·;.:.·::::::.:~:.:.:.::::::::.:.::..::~::.:.:..~.:..: :.:.::::..~:..:::::.·::.:.:.•.::·.~::.-::·:··::..:.·::a::·.·:.:P...Ping from virtua:.::..~·..·::::.:.:.:.:..1:.:.·.::~::::·:e·.:.·.:.:::.:·y:.::::::s to text.2 \;liili;;l;lii~·;;i:wri··.·~ ~:~ ~:;t::l~ ~ .-::;::;:::::::::::::::~:::::::;::::::::::::::::::::. .::.:...:::.:....:..::::.:::::.:::....::.:..::::..::..:.. ::..:.::::.:.::::.:.:..:.::...::.'::".:.:.::..:.:::...::....::.::..:..:

":::;:;:::::::::;:::;:::::;:::::::::;:::::;::::::.

;E~~~&!fil'1III~~!~;:~~!~~~~::i1~~!!{fii:;:~!;~~'
keycode mappings. '" .

Note: transliteraters will be used to provide the functionality of Hdead keys" on the Macintosh.

2 There is also a mapping between the hardward codes emitted from the hardware and the
so-called virtual keycodes. To see a discussion of this, consult the Toolbox.

.. Registered/Restricted International Utilities March 1, 1990 2.1.6-4

installation: adding Japanese to a system can add one or more Japanese TLocales, including the
necessary keyboards, input methods, calendars, fonts, et cetera.

For each language the're is a preferred TLocale. This allows programs to determine a choice of
iterns such as SPelling checker based on language. For circumstances where no language or
TLocale has been chosen, there is always a system default TLocale. A style-run of text that has
no associated language is assumed to be in the language of the system TLocale, for example.

Methods are provided for creating a new TLocale, iterating through the objects in a TLocale,
changing the preferred TLocale for a language, and for changing the contents of a TLocale <e.g.
changing the"American" keyboard mapping from "Querty' to "Dvorak"). The capabilities
provided by these methods will be provided to users by a view.

To use each of the international objects, applications will commonly access the system TLocale
through Rainbow Warrior. They will then select the particular type of international object

....:;:::::tf{~~.:~..:.\.:.:.:\.\\:~I::::m/:tt}
.•.......:::;:;::-:Input ...:-:.::::;:::;:)\//!{:::::?,.::::'"

..::::::::::ttII\~/{:~:~;{t:::::::· ..

"." :;:::::::::;::::::

KeYboardsil~l!t';;;;;';;i,fi1;1;t';;';i) .··.······.;1;, ·.
A KeyMap cont...:~:·.·.::::·.:i:·:...:.:n:·:.:.:.·;.:.·::::::.:~:.:.:.::::::::.:.::..::~::.:.:..~.:..: :.:.::::..~:..:::::.·::.:.:.•.::·.~::.-::·:··::..:.·::a::·.·:.:P...Ping from virtua:.::..~·..·::::.:.:.:.:..1:.:.·.::~::::·:e·.:.·.:.:::.:·y:.::::::s to text.2 \;liili;;l;lii~·;;i:wri··.·~ ~:~ ~:;t::l~ ~ .-::;::;:::::::::::::::~:::::::;::::::::::::::::::::. .::.:...:::.:....:..::::.:::::.:::....::.:..::::..::..:.. ::..:.::::.:.::::.:.:..:.::...::.'::".:.:.::..:.:::...::....::.::..:..:

":::;:;:::::::::;:::;:::::;:::::::::;:::::;::::::.

;E~~~&!fil'1III~~!~;:~~!~~~~::i1~~!!{fii:;:~!;~~'
keycode mappings. '" .

Note: transliteraters will be used to provide the functionality of Hdead keys" on the Macintosh.

2 There is also a mapping between the hardward codes emitted from the hardware and the
so-called virtual keycodes. To see a discussion of this, consult the Toolbox.

.. Registered/Restricted International Utilities March 1, 1990 2.1.6-4

I Keyboard I
I I

HW Id Key Code

Keyboard
Server

HW Id Key Code Modifier Set

->:.:-:.:-:.:-:.

.

:.::.::.:::

..

:.:::.:::::.:..:::..::'::.:~.:;: :;.:.:.1..:.:::.:::..:•.:::·.•..·::.·•...:.:··•.::·.:.:.:.··.:.•!..:!.:.·.:•..:.:.·:••.·:.·.:.::i.:··•..··.•·:

1
:.:••:.•.:••.:••.:.:.:••:•.:8••.:

1
:..

1

:•••:•.•..••..••·.:ty.·.·.i:•.•.··.:!:··'.::·.:··•..:.:.::••l··:·..·.:.i.:!e:.:.:.:·.:.·.:···.: .•·.a::·.::•.::.::·::.·.:··.:.•·.:T·:.·..i:··.·.•.·.:•..··!::••:e:::'.••..•i:.:.!:.:.x·...•.•\::;.:.i~::••.t•.~.:.·:l:•.:•..•..•i::.·i.:.:.••::•••.::I.:!.:.::•..:.••..:!!.:i•.: .•:·•.:.'.:.:••.:·.!.:·:.!I:!'T:W·:ralnn~~otrmer .d2WW.ini;~;::;·· .
l' /j;1[lr'~llllljli;!II;:·····

::.::.::..::.:..::.::,' L.-.-__L_i_s_t_~}\::::=:::::::::-:- :::::::::':::::- -:-::;:}:;::::::::::: .

. ::::}}~{::::::::;:-:-:
........ . - .

::.:.,.,:-....:- ~.::U::.:::.:·.==.
Keybo~~I:~:?r

SerVer)::"

IKeyMap2 I ...
The system TLocale's keyboard is used by default on the shipping system. Note that from the
Mac hardware we can determine the type of keyboards connected (standard, extended, ISO,
etc.) but we cannot determine the configuration of letters used on the keycaps (English, French,
German), so users have to select the default keyboard mappings manually.3

According to the current ToolBox model, the choice of modifier keys is fixed, and limited to the
current Mac set of 8 modifiers: shift, option, command, caps-lock, control, right-shift, right
option, right-eommand: we expect this to change to at least 16 modifiers.

3 There is undoubtedly a good reason the hardware folks had for this; we are probably
saving hundreds of cents per keyboard by not having different hardward ids for different
keycap plastics.

• Registered/Restricted International Utilities March 1, 1990 2.1.6-5

I Keyboard I
I I

HW Id Key Code

Keyboard
Server

HW Id Key Code Modifier Set

->:.:-:.:-:.:-:.

.

:.::.::.:::

..

:.:::.:::::.:..:::..::'::.:~.:;: :;.:.:.1..:.:::.:::..:•.:::·.•..·::.·•...:.:··•.::·.:.:.:.··.:.•!..:!.:.·.:•..:.:.·:••.·:.·.:.::i.:··•..··.•·:

1
:.:••:.•.:••.:••.:.:.:••:•.:8••.:

1
:..

1

:•••:•.•..••..••·.:ty.·.·.i:•.•.··.:!:··'.::·.:··•..:.:.::••l··:·..·.:.i.:!e:.:.:.:·.:.·.:···.: .•·.a::·.::•.::.::·::.·.:··.:.•·.:T·:.·..i:··.·.•.·.:•..··!::••:e:::'.••..•i:.:.!:.:.x·...•.•\::;.:.i~::••.t•.~.:.·:l:•.:•..•..•i::.·i.:.:.••::•••.::I.:!.:.::•..:.••..:!!.:i•.: .•:·•.:.'.:.:••.:·.!.:·:.!I:!'T:W·:ralnn~~otrmer .d2WW.ini;~;::;·· .
l' /j;1[lr'~llllljli;!II;:·····

::.::.::..::.:..::.::,' L.-.-__L_i_s_t_~}\::::=:::::::::-:- :::::::::':::::- -:-::;:}:;::::::::::: .

. ::::}}~{::::::::;:-:-:
........ . - .

::.:.,.,:-....:- ~.::U::.:::.:·.==.
Keybo~~I:~:?r

SerVer)::"

IKeyMap2 I ...
The system TLocale's keyboard is used by default on the shipping system. Note that from the
Mac hardware we can determine the type of keyboards connected (standard, extended, ISO,
etc.) but we cannot determine the configuration of letters used on the keycaps (English, French,
German), so users have to select the default keyboard mappings manually.3

According to the current ToolBox model, the choice of modifier keys is fixed, and limited to the
current Mac set of 8 modifiers: shift, option, command, caps-lock, control, right-shift, right
option, right-eommand: we expect this to change to at least 16 modifiers.

3 There is undoubtedly a good reason the hardware folks had for this; we are probably
saving hundreds of cents per keyboard by not having different hardward ids for different
keycap plastics.

• Registered/Restricted International Utilities March 1, 1990 2.1.6-5

The user interface for choosing keyboards and displaying them is not yet well defined. Two
points are clear: there should be visible feedback as to the current keyboard, and there must be
a fast upower-key" me-thod of choosing keyboards (in addition to a Control-Panel style
interface), since in many cases keyboards are switched very often. The keycaps-equivalent
should allow type-through, so that the user can type (or click) characters on the keycaps
keyboard and have the characters pass through to the next layer. Keyboards must also be
switched synchronously: on the Mac the keyboard switching can lag behind key input, so that
keys are mapped incorrectly.

Creating and Modifying a Keyboard Mapping
To create a KeyMap, the programmer specifies a default language. He then adds mappings to a
KeyMap by successively specifying the following:

a) a virtual keycode

}-[:~-\::::_:_::-:-·.·[~[:::::::::::~:::I:~·~:·::~ _.

Secondly, command keys will be treated differently. On the Mac, command keys are not
sensitive to shift, but are sensitive to caps-lock: just the reverse of what should be done. The
menu manager also up-shifts and strips diacriticals when matching command-keys, eliminating
the possibility of distinguishing between X a, X A and X A. We will let application and
menu manager easily determine what a key would have been without particular modifiers, so
that it can determine that the user hit X-o.'= Q (Command-shift-option-Q), without having
to know that it happens to be X (E on the current keyboard.

Command keys also use a different mapping on the Mac than non-eommand keys; but this is only
so that there are no command-dead-key combinations. This difference is not necessary in Pink.
In addition, command keys need to be relatively constant: it would be very disturbing for users to
have them change depending on the current keyboard (e.g. if I have a dingbats keyboard, I do

.& Registered/Restricted International Utilities March 1, 1990 2.1.6-6

The user interface for choosing keyboards and displaying them is not yet well defined. Two
points are clear: there should be visible feedback as to the current keyboard, and there must be
a fast upower-key" me-thod of choosing keyboards (in addition to a Control-Panel style
interface), since in many cases keyboards are switched very often. The keycaps-equivalent
should allow type-through, so that the user can type (or click) characters on the keycaps
keyboard and have the characters pass through to the next layer. Keyboards must also be
switched synchronously: on the Mac the keyboard switching can lag behind key input, so that
keys are mapped incorrectly.

Creating and Modifying a Keyboard Mapping
To create a KeyMap, the programmer specifies a default language. He then adds mappings to a
KeyMap by successively specifying the following:

a) a virtual keycode

}-[:~-\::::_:_::-:-·.·[~[:::::::::::~:::I:~·~:·::~ _.

Secondly, command keys will be treated differently. On the Mac, command keys are not
sensitive to shift, but are sensitive to caps-lock: just the reverse of what should be done. The
menu manager also up-shifts and strips diacriticals when matching command-keys, eliminating
the possibility of distinguishing between X a, X A and X A. We will let application and
menu manager easily determine what a key would have been without particular modifiers, so
that it can determine that the user hit X-o.'= Q (Command-shift-option-Q), without having
to know that it happens to be X (E on the current keyboard.

Command keys also use a different mapping on the Mac than non-eommand keys; but this is only
so that there are no command-dead-key combinations. This difference is not necessary in Pink.
In addition, command keys need to be relatively constant: it would be very disturbing for users to
have them change depending on the current keyboard (e.g. if I have a dingbats keyboard, I do

.& Registered/Restricted International Utilities March 1, 1990 2.1.6-6

not want to get X 1r instead of X A). To support this, users will be able to select their command
keyboard separately from their current keyboard.4

The text classes will allow users to associate keyboards with fonts or styles, so that they can be
automatically switched if the user desires. That is, when I click down in some Symbol text, I
would like to automatically get the symbol keyboard, when I click down in som~ Russian text, I
would like to get a Russian keyboard, etc. We will provide utilities for use by the text classes
and applications to find a keyboard that contains a given character so that this can be done.

Viewing/Editing A Keyboard
There will be the equivalent of the keycaps desk accessory to allow users to view the current
keyboard. Multiple keycaps can be open at the same time. A check box will allow the keyboard
to type through to the next frontmost window.

In addition, an extra command/button will allow the keys to be edited. The editing paradigm
will be that a key can be set:pY:np!§~~Dg#~9.!@~~pgtQnJl:taggingtext onto the key positio9.~::::}N§H(JIt::}

c)

DisplayDeadkey state

d) Customizable order. ':':':':':':::':':::-:'.:.:.:-:-:.:
:::;::::: {:~:}}r~:~:~~ ::~:}~: ~:~ :~: ::::::::.

...............................

Keyboard Transliteraters ':::-:.:-:::::::;::;::::::::::::;:: \?{y::; ;.:::;:;:;:::::::::;:::;:;:; :.;;.;. '.' ;-:.:-;.;.;.:.:-:;.:.;.:.'.;

produces e). . ·-::;:)\:::::-: i:i:/-::: ..

Dead-Key Example:

Key

b
option-u
a
d

<none>
<umlaut>
<none>
<none>

b
b
ba
bad

4 Certain command-keys will need to be reserved for the use of keyboard switching, input
methods and transliterations. Since these keys are very frequent when entering text, they
need to be easily accessable. On the Mac, we use various combinations of X-space with
other modifier combinations ..0., ""'=', and A..

• Registered/Restricted International Utilities March 1, 1990 2.1.6-7

not want to get X 1r instead of X A). To support this, users will be able to select their command
keyboard separately from their current keyboard.4

The text classes will allow users to associate keyboards with fonts or styles, so that they can be
automatically switched if the user desires. That is, when I click down in some Symbol text, I
would like to automatically get the symbol keyboard, when I click down in som~ Russian text, I
would like to get a Russian keyboard, etc. We will provide utilities for use by the text classes
and applications to find a keyboard that contains a given character so that this can be done.

Viewing/Editing A Keyboard
There will be the equivalent of the keycaps desk accessory to allow users to view the current
keyboard. Multiple keycaps can be open at the same time. A check box will allow the keyboard
to type through to the next frontmost window.

In addition, an extra command/button will allow the keys to be edited. The editing paradigm
will be that a key can be set:pY:np!§~~Dg#~9.!@~~pgtQnJl:taggingtext onto the key positio9.~::::}N§H(JIt::}

c)

DisplayDeadkey state

d) Customizable order. ':':':':':':::':':::-:'.:.:.:-:-:.:
:::;::::: {:~:}}r~:~:~~ ::~:}~: ~:~ :~: ::::::::.

...............................

Keyboard Transliteraters ':::-:.:-:::::::;::;::::::::::::;:: \?{y::; ;.:::;:;:;:::::::::;:::;:;:; :.;;.;. '.' ;-:.:-;.;.;.:.:-:;.:.;.:.'.;

produces e). . ·-::;:)\:::::-: i:i:/-::: ..

Dead-Key Example:

Key

b
option-u
a
d

<none>
<umlaut>
<none>
<none>

b
b
ba
bad

4 Certain command-keys will need to be reserved for the use of keyboard switching, input
methods and transliterations. Since these keys are very frequent when entering text, they
need to be easily accessable. On the Mac, we use various combinations of X-space with
other modifier combinations ..0., ""'=', and A..

• Registered/Restricted International Utilities March 1, 1990 2.1.6-7

In Pink, this modal mechanism is replaced by the use of transliteraters. When the application
inserts characters froII:\ a keyboard into some text, then it will call the list of transliteraters
associated with that keyboard (and then the input method for the keyboard-see below). An
accent transliterater can provide the same functionalityas dead keys, in the following way.
When the user types an accent, for example, the keyboard will generate a spacing accent,which
is entered into the text stream. When the user next types a base character, then it is entered into
the text. However, the text classes (or applications that don't use the text classes) will then
call the keyboard's transliterater, which will replace the accent and base character by an
accented character.

Transliterater Example:

Key Pre-transliterate Display

b b b

;ption-u ijllllllllt(lllllll'lllli .,'Ulliil;;;:iHi@iU

Transliteraters can perfqW' many other functions: for example, theys!.'III~~:::c quotes
C':) by right- and lefth~A9 quotes (",',',"). They can also be used t9)B§ffPtnt:g~neralscript

:.:.:.',:. :.»'«.:-:.;.:-".

":':~}::::n:t\r{}mm:m:mU
)}?~:::::::::::::::::::::::::::::::::, :,".:."-:.:.:.:.:-:.:.; ~?~{))(~j::::~~:

The number of EnglishWdrds.isd~()"HYioolarge to represent on a keyboard;M:F~rhtiffit:>(N()f

different methods arise to input characters.

The most popular of these allows the user to type in characters in a phonetic transcription,
which is automatically translated into ideograms (other methods-including handwriting
analysis-are also possible, and can be used in addition).Let's suppose that we wanted to enter
the ideographic sentence:

The artificiallogographs in this example are the in the following table. We also include real
chinese logographs for comparison.

• Registered/Restricted International Utilities

Chinese ~~o~aPh

March 1, 1990 2.1.6-8

In Pink, this modal mechanism is replaced by the use of transliteraters. When the application
inserts characters froII:\ a keyboard into some text, then it will call the list of transliteraters
associated with that keyboard (and then the input method for the keyboard-see below). An
accent transliterater can provide the same functionalityas dead keys, in the following way.
When the user types an accent, for example, the keyboard will generate a spacing accent,which
is entered into the text stream. When the user next types a base character, then it is entered into
the text. However, the text classes (or applications that don't use the text classes) will then
call the keyboard's transliterater, which will replace the accent and base character by an
accented character.

Transliterater Example:

Key Pre-transliterate Display

b b b

;ption-u ijllllllllt(lllllll'lllli .,'Ulliil;;;:iHi@iU

Transliteraters can perfqW' many other functions: for example, theys!.'III~~:::c quotes
C':) by right- and lefth~A9 quotes (",',',"). They can also be used t9)B§ffPtnt:g~neralscript

:.:.:.',:. :.»'«.:-:.;.:-".

":':~}::::n:t\r{}mm:m:mU
)}?~:::::::::::::::::::::::::::::::::, :,".:."-:.:.:.:.:-:.:.; ~?~{))(~j::::~~:

The number of EnglishWdrds.isd~()"HYioolarge to represent on a keyboard;M:F~rhtiffit:>(N()f

different methods arise to input characters.

The most popular of these allows the user to type in characters in a phonetic transcription,
which is automatically translated into ideograms (other methods-including handwriting
analysis-are also possible, and can be used in addition).Let's suppose that we wanted to enter
the ideographic sentence:

The artificiallogographs in this example are the in the following table. We also include real
chinese logographs for comparison.

• Registered/Restricted International Utilities

Chinese ~~o~aPh

March 1, 1990 2.1.6-8

~o
neighbor

~~~
(man/house) (side/dwell)

ro read .1.-:1:

n..~

~
she/her

~~

~
address ffutd:

(ground/location)

..:-:::.:::;..;...: ..:;;....
... , .. :::::;.;:;::::::;.::::::::::::::::::;..

A·nei hbor·red

1
Type-In

u

un

una

una

una b

una bu

una

unavburr

una burre

una burred

We would type our desired sentence in phonetically as: unayburredhurudres (remember that
there are no spaces!). As we type, the input method parses the text grammatically, and
converts phrases to the corr~§P9H9.J.pgj4:~ggrf:H¥L&~JWas it can). Since there may be a

of renderings, the proce1ji!'I;III~Ir•...:;.::.:)•..•.r..:;.:•...::.r.;:.].::;..:;.••!..fl•....::.•.;.r..::.·.'.'..•·.w.:~•.•..:.::•.•.:.•,..f.::•..i;...•..i.WPe;.:..f..••.:::r. in.
.:.:.:.:.:.:.:.:.:.:-:-:.:.:.:.:.:.:.:-:.:.:.:.:.:.:

una burredhur A·nei hbor·red·her

una burredhurudres A·nei hbor·read·her·a ·dress

Even once the sentence is complete, the ideograms are not correct. It requires additional
knowledge beyond syntax to get a correct result, since syntactically both the forms:

D~l.·Noun·Verb·ln. Object· Del.·Noun e.g. "A neighbor read hera book", and

Det.·Noun·Verb·Pos. Pronoun· Noun e.g. "A neighbor read her address"

.. Registered/Restricted International Utilities March I, 1990 2.1.6-9

~o
neighbor

~~~
(man/house) (side/dwell)

ro read .1.-:1:

n..~

~
she/her

~~

~
address ffutd:

(ground/location)

..:-:::.:::;..;...: ..:;;....
... , .. :::::;.;:;::::::;.::::::::::::::::::;..

A·nei hbor·red

1
Type-In

u

un

una

una

una b

una bu

una

unavburr

una burre

una burred

We would type our desired sentence in phonetically as: unayburredhurudres (remember that
there are no spaces!). As we type, the input method parses the text grammatically, and
converts phrases to the corr~§P9H9.J.pgj4:~ggrf:H¥L&~JWas it can). Since there may be a

of renderings, the proce1ji!'I;III~Ir•...:;.::.:)•..•.r..:;.:•...::.r.;:.].::;..:;.••!..fl•....::.•.;.r..::.·.'.'..•·.w.:~•.•..:.::•.•.:.•,..f.::•..i;...•..i.WPe;.:..f..••.:::r. in.
.:.:.:.:.:.:.:.:.:.:-:-:.:.:.:.:.:.:.:-:.:.:.:.:.:.:

una burredhur A·nei hbor·red·her

una burredhurudres A·nei hbor·read·her·a ·dress

Even once the sentence is complete, the ideograms are not correct. It requires additional
knowledge beyond syntax to get a correct result, since syntactically both the forms:

D~l.·Noun·Verb·ln. Object· Del.·Noun e.g. "A neighbor read hera book", and

Det.·Noun·Verb·Pos. Pronoun· Noun e.g. "A neighbor read her address"

.. Registered/Restricted International Utilities March I, 1990 2.1.6-9

are syntactically correct. So, the user needs to be able to modify the transscription by choosing
alternative renderings.

With current technology, this is done by either modifying the phrase or segment length (in this

case, indicating that udres is one word), or by selecting an alternative ideogram <e.g. manually

choosing ID instead of c:J). '
Unfortunately, most sentences are much more complex than this--especially in Japanese-and
have many more alternative phrase lengths and alternative readings. The number of
homophones (ideograms with the same pronunciation) in Japanese and Chinese are very large:
up to one hundred readings for the same symbol! Even when alternatives are chosen, the input
method uses its knowledge of the grammatical structure of the sentence to filter out
inappropriate options; otherwise the user would be swamped. (The user can choose to see all
options for unusual readings.)

Interface ,}:/::::::
....

•

•
• unconverted text (generally phonetic),

• untransliterated text (generally Roman).

The figure shows how Japanese inline input might look while in progress. The sentence being
input, called the active input area, is outlined with a solid line. Notice that it starts in the
middle of the first line and ends in the middle of the second line. The text outside of the active
input area does not participate in the conversion process. The phrases which have already been
converted, and the un-eonverted input are outlined with dotted lines. The un-eonverted
phonetic input is followed by a single romaji letter. The insertion point is after the romaji
letter.

• Registered/Restricted International Utilities March 1, 1990 2.1.6-10

are syntactically correct. So, the user needs to be able to modify the transscription by choosing
alternative renderings.

With current technology, this is done by either modifying the phrase or segment length (in this

case, indicating that udres is one word), or by selecting an alternative ideogram <e.g. manually

choosing ID instead of c:J). '
Unfortunately, most sentences are much more complex than this--especially in Japanese-and
have many more alternative phrase lengths and alternative readings. The number of
homophones (ideograms with the same pronunciation) in Japanese and Chinese are very large:
up to one hundred readings for the same symbol! Even when alternatives are chosen, the input
method uses its knowledge of the grammatical structure of the sentence to filter out
inappropriate options; otherwise the user would be swamped. (The user can choose to see all
options for unusual readings.)

Interface ,}:/::::::
....

•

•
• unconverted text (generally phonetic),

• untransliterated text (generally Roman).

The figure shows how Japanese inline input might look while in progress. The sentence being
input, called the active input area, is outlined with a solid line. Notice that it starts in the
middle of the first line and ends in the middle of the second line. The text outside of the active
input area does not participate in the conversion process. The phrases which have already been
converted, and the un-eonverted input are outlined with dotted lines. The un-eonverted
phonetic input is followed by a single romaji letter. The insertion point is after the romaji
letter.

• Registered/Restricted International Utilities March 1, 1990 2.1.6-10

Transcribed
phonetics

Untransliterated
roman

.:~:.:.:.::::::: :;:::::::::;:;::::::::",":::::::::::.

The user can displ~~Mt~fri~:t~:!l1bffi6phgri~~for a segment by double-eli~kfri~.::6ij:.~ij¢~gfuJ~t,or
by typing some sequence of commands, like the enter key. Alternatives can be selected either by
changing to the next homophone in-place, or by bringing up a floating window displaying all
homophones, from which the user would then choose the correct homophone.

Text editing within the active input area cannot be the same as text editing elsewhere in the
application window because of the special actions the user needs to perform on the active text.
The distinctive visual appearance of the active input area indicates to the user that this is the
case.

Different levels of functionality could be supported by different inpu t methods. For example if
the user were to delete a character from the middle of a segment, the information that an input
method maintains to process the active input area could become invalid. On the other hand,
most input methods will probably allow the user to freely edit the un-eonverted input. Less
sophisticated input methods might wait until the whole sentence is typed before doing any
segmentation, while other input methods might generate segments "on the fly". Some input
m~thodsmight decide to IIdrop" segments off the front of the active input area as the user types
in order to limit the amount of internal storage needed.

• Registered/Restricted International Utilities March 1, 1990 2.1.6-11

Transcribed
phonetics

Untransliterated
roman

.:~:.:.:.::::::: :;:::::::::;:;::::::::",":::::::::::.

The user can displ~~Mt~fri~:t~:!l1bffi6phgri~~for a segment by double-eli~kfri~.::6ij:.~ij¢~gfuJ~t,or
by typing some sequence of commands, like the enter key. Alternatives can be selected either by
changing to the next homophone in-place, or by bringing up a floating window displaying all
homophones, from which the user would then choose the correct homophone.

Text editing within the active input area cannot be the same as text editing elsewhere in the
application window because of the special actions the user needs to perform on the active text.
The distinctive visual appearance of the active input area indicates to the user that this is the
case.

Different levels of functionality could be supported by different inpu t methods. For example if
the user were to delete a character from the middle of a segment, the information that an input
method maintains to process the active input area could become invalid. On the other hand,
most input methods will probably allow the user to freely edit the un-eonverted input. Less
sophisticated input methods might wait until the whole sentence is typed before doing any
segmentation, while other input methods might generate segments "on the fly". Some input
m~thodsmight decide to IIdrop" segments off the front of the active input area as the user types
in order to limit the amount of internal storage needed.

• Registered/Restricted International Utilities March 1, 1990 2.1.6-11

The user can request that the un-eonverted input be converted by some keyboard command. It
probably makes sen~ to have the command be a modification of the command that requests
alternate homophones for a segment.

The user can indicate that conversion is complete by some command like return or enter. When
this is done the distinctive visual appearance of the active input area and the" active segment
would be removed and the caret would be placed after the newly converted text.5

In summary, users need to be able to perfonn the following actions on the active input area:

• Type in

• Change the transcription method or the input method

• Change the length of a segment

• Choose another homophone for a segment

.-:·:::~~:t~)r\\~~f~((-··...
.......•... ".:.:::;:;:::.:.

···.·.·.:.:.:.;.·-:.:-/~:::f::::::::::····

..;:::::j~~j)j:~j~~j!I:~:![~·~.llll··!:·l.~!!~~··:I:}~?::.,

the dictionaries used by the method. For exampl~;;::~sers will·p.nel:i·~t~i:;:~nnew phrascidnto····.··:->
dictionaries: a user may indicate a phonetic ~~y.:i~e result P~ryts~;-;:~p.~;~he grammatical . :

deactivation); only theappHCaHon knows where characters are on the screen';';~hdhow to alter
their visual appearance: when the user uses the mouse to indicate a particular segment, only
the application can do the mapping between mouse position and character positions.

Given this division of knowledge, the input service must be able to request the following
functions from the application:

5 To contrast this with the current situation in Blue, the majority of applications there
depend upon a floating conversion window which pops up with any keystroke. This
window supports the same range of features that we discussed above, but the lack of
integration causes a number of human interface problems. It would be like having to bring
up a dialog every time you wanted to enter some text into a document: it is very modal and
quite distracting.

A number of applications on the Mac and on other machines have already incorporated
inline input methods.

• Registered/Restricted International Utilities March 1, 1990 2.1.6-12

The user can request that the un-eonverted input be converted by some keyboard command. It
probably makes sen~ to have the command be a modification of the command that requests
alternate homophones for a segment.

The user can indicate that conversion is complete by some command like return or enter. When
this is done the distinctive visual appearance of the active input area and the" active segment
would be removed and the caret would be placed after the newly converted text.5

In summary, users need to be able to perfonn the following actions on the active input area:

• Type in

• Change the transcription method or the input method

• Change the length of a segment

• Choose another homophone for a segment

.-:·:::~~:t~)r\\~~f~((-··...
.......•... ".:.:::;:;:::.:.

···.·.·.:.:.:.;.·-:.:-/~:::f::::::::::····

..;:::::j~~j)j:~j~~j!I:~:![~·~.llll··!:·l.~!!~~··:I:}~?::.,

the dictionaries used by the method. For exampl~;;::~sers will·p.nel:i·~t~i:;:~nnew phrascidnto····.··:->
dictionaries: a user may indicate a phonetic ~~y.:i~e result P~ryts~;-;:~p.~;~he grammatical . :

deactivation); only theappHCaHon knows where characters are on the screen';';~hdhow to alter
their visual appearance: when the user uses the mouse to indicate a particular segment, only
the application can do the mapping between mouse position and character positions.

Given this division of knowledge, the input service must be able to request the following
functions from the application:

5 To contrast this with the current situation in Blue, the majority of applications there
depend upon a floating conversion window which pops up with any keystroke. This
window supports the same range of features that we discussed above, but the lack of
integration causes a number of human interface problems. It would be like having to bring
up a dialog every time you wanted to enter some text into a document: it is very modal and
quite distracting.

A number of applications on the Mac and on other machines have already incorporated
inline input methods.

• Registered/Restricted International Utilities March 1, 1990 2.1.6-12

• Replace the text in the active input area or in segments

• Change the segmentation in the active input area

• Change the active input area (e.g. change active text to inactive)

The application needs to keep the appearance of the screen consonant with the text and
segmentation structure required by the input method, including sPeCial highlighting for visual
feedback of this structure.

User Font Editing
Unfortunately, the set of ideographs in use on Asian systems is not a closed set. For example,
obscure variants of characters are used for personal names; and, unaccountably, people wish to
be able to type in their own names (as many people in Pink have graciously pointed out, this
would all be much easier if they just used English).

.. :.:.:-:.:.;.:.: fr\/(~\>
..... :::::}~:}::....., ...

Text Analysis \;¥i!;!;1.;0i ;,1'llf;;11 .;;;i.i
Text analysis classes provide for pattern subst~t#tion,translite~tio~~·.·~aractertranscOdingjo

character pro~lf:P~t':mB!A::&()undariesand ..t::.::..e....:...:...::.:.x...;.:.:.:...:.~:::.:.~:::...~:::.i.~:F611ation. -::})}::::::::::::::::::::.........-:.::-:.:: :::,:.::::..::.:.::.0'.::..:....:...../'." '. ·:;;(}/?t?~.~.~.:.~??(?: :.:.:.:.:-:-:
....:.;.::::.:.>={::::.:.:.:-:-:.:.:.;.:::. .:.:-:.:.:.;.:. ::::::::::}::::::::::::'

Pattern SU[)S:ti.t.ut1.Q!n!·[·::::-:·:·j·:[:· .. :.:. . .. -:::::::::j:t:tt:::::··-:·:-:-:-·:-:·:::::·:-:.;;.;.;.:::::::':-:'.. . ..

Applications often:-~'i~H'f8'~f~~rii:'28:~;sedmessages to the user, wher~:::~:::Rt.1ffifkf·8f§:~i~gsare
concatenated. However, simple concatenation neglects the fact that different elements of a
sentence are presented in different orders in different languages. To avoid this, the application
should use substitution within a string, where the order and context can be localized to fit a
particular language.6 For example, a filename and disk names would be substituted within the
text "Copying file from sourceDisk to targetDisk". In another language, the order of the
element of this sentence might be: "Onto targetDisk from sourceDisk file to-copy". Pattern
substitution can cover most cases where messages must be composed from dynamic elements?

6

7

On the Blue Mac, this roughly corresponds to ParamText, which is limited to use with
dialogs and unstyled text. '

Although pattern substitution goes a long way towards satisfying the requirements of
composing messages in different languages, a full solution would take the grammar of the

'* Registered/Restricted International Utilities March 1, 1990 2.1.6-13

• Replace the text in the active input area or in segments

• Change the segmentation in the active input area

• Change the active input area (e.g. change active text to inactive)

The application needs to keep the appearance of the screen consonant with the text and
segmentation structure required by the input method, including sPeCial highlighting for visual
feedback of this structure.

User Font Editing
Unfortunately, the set of ideographs in use on Asian systems is not a closed set. For example,
obscure variants of characters are used for personal names; and, unaccountably, people wish to
be able to type in their own names (as many people in Pink have graciously pointed out, this
would all be much easier if they just used English).

.. :.:.:-:.:.;.:.: fr\/(~\>
..... :::::}~:}::....., ...

Text Analysis \;¥i!;!;1.;0i ;,1'llf;;11 .;;;i.i
Text analysis classes provide for pattern subst~t#tion,translite~tio~~·.·~aractertranscOdingjo

character pro~lf:P~t':mB!A::&()undariesand ..t::.::..e....:...:...::.:.x...;.:.:.:...:.~:::.:.~:::...~:::.i.~:F611ation. -::})}::::::::::::::::::::.........-:.::-:.:: :::,:.::::..::.:.::.0'.::..:....:...../'." '. ·:;;(}/?t?~.~.~.:.~??(?: :.:.:.:.:-:-:
....:.;.::::.:.>={::::.:.:.:-:-:.:.:.;.:::. .:.:-:.:.:.;.:. ::::::::::}::::::::::::'

Pattern SU[)S:ti.t.ut1.Q!n!·[·::::-:·:·j·:[:· .. :.:. . .. -:::::::::j:t:tt:::::··-:·:-:-:-·:-:·:::::·:-:.;;.;.;.:::::::':-:'.. . ..

Applications often:-~'i~H'f8'~f~~rii:'28:~;sedmessages to the user, wher~:::~:::Rt.1ffifkf·8f§:~i~gsare
concatenated. However, simple concatenation neglects the fact that different elements of a
sentence are presented in different orders in different languages. To avoid this, the application
should use substitution within a string, where the order and context can be localized to fit a
particular language.6 For example, a filename and disk names would be substituted within the
text "Copying file from sourceDisk to targetDisk". In another language, the order of the
element of this sentence might be: "Onto targetDisk from sourceDisk file to-copy". Pattern
substitution can cover most cases where messages must be composed from dynamic elements?

6

7

On the Blue Mac, this roughly corresponds to ParamText, which is limited to use with
dialogs and unstyled text. '

Although pattern substitution goes a long way towards satisfying the requirements of
composing messages in different languages, a full solution would take the grammar of the

'* Registered/Restricted International Utilities March 1, 1990 2.1.6-13

Since use of styled text will be universal in the interface, we propose using special styles (or
even icons?) to repre~nt the replaced elements, instead of special symbols ("0, "I,... , "9 are used
on the Mac). That is, rather than type in special characters, in order to form a pattern the user
would select the text and mark it as variable (meaning that it will be replaced in pattern
substitution.

If there is this special style, then a pattern could be preprocessed to determine the locations of
the elements to be replaced. The contents of the style could indicate formatting options for
numbers and other generated elements. The style would have to be non-merging: two adjacent
runs having that style should not merge internally.

Text Service Management
As far as we understand from the System Architect, text services such as spelling checking,
hyphenation, grammar checking, translation aids, lexicons, root extraction and noise word

•

. ~::p::t:n::: same symbol "r'·ll~I~IIIIIIl;i;!!iiilil;'lt~II;!lt~;:~ii

A ITransliterater object is used to perform transliterations. The transliteration is be composed
of a set of context-sensitive rules, which are designed so that knowledgeable non-programmers
can edit them reasonably for localization.

Examples of rules:

cho

sentence into account, substituting different text when the replaced elements have
different number, gender, etc.

The forms of agreement are not easy to predict for your average programmer: for example,
some languages have three different numbers: singular, dual and plural. Even English
originally had this: instead of just two first-person pronouns me and us, there were me,
unc, and US, where unc meant the two of us. We will not attempt a ILfull solution" in Pink
1.0.

• Registered/Restricted International Utilities March 1, 1990 2.1.6-14

Since use of styled text will be universal in the interface, we propose using special styles (or
even icons?) to repre~nt the replaced elements, instead of special symbols ("0, "I,... , "9 are used
on the Mac). That is, rather than type in special characters, in order to form a pattern the user
would select the text and mark it as variable (meaning that it will be replaced in pattern
substitution.

If there is this special style, then a pattern could be preprocessed to determine the locations of
the elements to be replaced. The contents of the style could indicate formatting options for
numbers and other generated elements. The style would have to be non-merging: two adjacent
runs having that style should not merge internally.

Text Service Management
As far as we understand from the System Architect, text services such as spelling checking,
hyphenation, grammar checking, translation aids, lexicons, root extraction and noise word

•

. ~::p::t:n::: same symbol "r'·ll~I~IIIIIIl;i;!!iiilil;'lt~II;!lt~;:~ii

A ITransliterater object is used to perform transliterations. The transliteration is be composed
of a set of context-sensitive rules, which are designed so that knowledgeable non-programmers
can edit them reasonably for localization.

Examples of rules:

cho

sentence into account, substituting different text when the replaced elements have
different number, gender, etc.

The forms of agreement are not easy to predict for your average programmer: for example,
some languages have three different numbers: singular, dual and plural. Even English
originally had this: instead of just two first-person pronouns me and us, there were me,
unc, and US, where unc meant the two of us. We will not attempt a ILfull solution" in Pink
1.0.

• Registered/Restricted International Utilities March 1, 1990 2.1.6-14

t[t]

to

Using these rules, chotto can be transliterated into 1::> J: "'J C.
Transliteration may be dependent not only on script but also on language. It is also inherently an
n x n problem: expecting to transliterate from Russian to Hindi by using a series of Cyrillic
Roman and Roman-Hindi transliterations is doomed to failure, since the transcriptions used to
represent non-Roman letters will vary depending on the script being represented: in some cases
th will represent the sound found in thick, while in others it is an asperated t.

Transliteration can be used not only for inter-script transliterations, but also for intra-script
transformations, such as for accents (replacing dead-key behavior-see Keyboards), or to
change generic quotes ('book') to directed quotes ('book'), or even glossary-style behavior.8

They are also used for langu~g~~gs.p.~9.S~.~.4:K.?Y.:shas converting text from upper to low~r. ..:-:.:--::::::::.::-

:=i~~1;~:~~£1:~~i\laI11111~~~:~~~t{~~~~Will.!~~!;)
~:::~::;h~::::~i~:;i.,l~fll"it 4tl;,[11'lllil'IIIJ~i.···
A TIranscoding conve~~mmPmF99~ to aforeign character enc~illjl~llrBlue) and back.
Note that individual cnarictiiH¢odeMsnhtdd.not be converted in::i$B.lifi6hnsafuetimes one

equivalent string, however. .:::::.}}?}~:~:~::.:.: :~~~~:~:~.: :::?)r~~~~~}}:itt~~{: :~:::::::<.:.:.:.:.;.:-:. :.:.:.:.:.- .
"}{?:::::::::.:.:.:.:-: :~;:-:::;;...... . .

~:e;~i~:e~~i~::~~it~:~~:;~~~:~r'~~:rc~~:e~!lltll:t::~~~~:I~'~r>
converting the d~PP9j.rq:::p~Ww~nPink and ~Jg~¥fs up to higher·t~¥gp~*¥:9Iasses. . .

The Blue charact~t::~~¢li~gi·~~:··g~h~;§J~R:H~4~nts to distinguish ·i~¢::~¢~.:·:\'Yhencony~l"~*g:.t~
from foreign encodin~Miit()p~:i,Bn~~·fi.$~·Qffohtnumbers and text startsCatq"W·:~p.pli~.1J1gt6de
conversion can use thislrifofmatiofltOcode sets for characters such as "r" iri'lheSyTriootfont.
When UniChars are converted to a foreign encoding, a similar list of font numbers and text
starts can be generated.

When the foreign character encoding uses in-line character set shifts (such as ISO 8859, which
uses escape sequences to shift), then the font specifications are neither used nor produced.

Note: the main interface differences between Transcoding and Transliterating are that
transcoding converts to an arbitrary byte-stream instead of another TBaseText object.

8

9 .

Whereby abbreviations can be automatically expanded as you type. For example,
whenever I type "SANE." a transliterater could convert that text to "Standard Apple
Numerics Environment."

True title text requires use of a title-filter text service in order to eliminate particles.
Otherwise the titled text will appear as: UWith The Important. Words Capitalized."

• Registered/Restricted International Utilities' March 1, 1990 2.1.6-15

t[t]

to

Using these rules, chotto can be transliterated into 1::> J: "'J C.
Transliteration may be dependent not only on script but also on language. It is also inherently an
n x n problem: expecting to transliterate from Russian to Hindi by using a series of Cyrillic
Roman and Roman-Hindi transliterations is doomed to failure, since the transcriptions used to
represent non-Roman letters will vary depending on the script being represented: in some cases
th will represent the sound found in thick, while in others it is an asperated t.

Transliteration can be used not only for inter-script transliterations, but also for intra-script
transformations, such as for accents (replacing dead-key behavior-see Keyboards), or to
change generic quotes ('book') to directed quotes ('book'), or even glossary-style behavior.8

They are also used for langu~g~~gs.p.~9.S~.~.4:K.?Y.:shas converting text from upper to low~r. ..:-:.:--::::::::.::-

:=i~~1;~:~~£1:~~i\laI11111~~~:~~~t{~~~~Will.!~~!;)
~:::~::;h~::::~i~:;i.,l~fll"it 4tl;,[11'lllil'IIIJ~i.···
A TIranscoding conve~~mmPmF99~ to aforeign character enc~illjl~llrBlue) and back.
Note that individual cnarictiiH¢odeMsnhtdd.not be converted in::i$B.lifi6hnsafuetimes one

equivalent string, however. .:::::.}}?}~:~:~::.:.: :~~~~:~:~.: :::?)r~~~~~}}:itt~~{: :~:::::::<.:.:.:.:.;.:-:. :.:.:.:.:.- .
"}{?:::::::::.:.:.:.:-: :~;:-:::;;...... . .

~:e;~i~:e~~i~::~~it~:~~:;~~~:~r'~~:rc~~:e~!lltll:t::~~~~:I~'~r>
converting the d~PP9j.rq:::p~Ww~nPink and ~Jg~¥fs up to higher·t~¥gp~*¥:9Iasses. . .

The Blue charact~t::~~¢li~gi·~~:··g~h~;§J~R:H~4~nts to distinguish ·i~¢::~¢~.:·:\'Yhencony~l"~*g:.t~
from foreign encodin~Miit()p~:i,Bn~~·fi.$~·Qffohtnumbers and text startsCatq"W·:~p.pli~.1J1gt6de
conversion can use thislrifofmatiofltOcode sets for characters such as "r" iri'lheSyTriootfont.
When UniChars are converted to a foreign encoding, a similar list of font numbers and text
starts can be generated.

When the foreign character encoding uses in-line character set shifts (such as ISO 8859, which
uses escape sequences to shift), then the font specifications are neither used nor produced.

Note: the main interface differences between Transcoding and Transliterating are that
transcoding converts to an arbitrary byte-stream instead of another TBaseText object.

8

9 .

Whereby abbreviations can be automatically expanded as you type. For example,
whenever I type "SANE." a transliterater could convert that text to "Standard Apple
Numerics Environment."

True title text requires use of a title-filter text service in order to eliminate particles.
Otherwise the titled text will appear as: UWith The Important. Words Capitalized."

• Registered/Restricted International Utilities' March 1, 1990 2.1.6-15

Character Prop~rties

Additionally, a number of global character properties are accessable, indicating which classes
(in the non-OOP sense) characters belong to. These properties are independent of language, but
might be installed with particular languages. That is, the properties for an Ethiopian letter
might not be available unless the Ethiopian language is installed. The properties include such
items as:

1. classifications: letters, diacritical marks, digits, whitespace, etc.

2. directions: character direction, run direction (for use in layout)

<It is an open issue where there ought to be a single table for the system, or that there is a
collection of modular tables, where the installation of a language may add a new table.>

Word Boundaries
;.;.:-:.

;.:.:::::::~::;::::::::)~:~:~:>}:::'

~:~:~~~:}(~); ~~: ~;~~~: ~:~::::: ~:: :::'
-:;:::;::;:::;:/::::::-.:::::

<:::::::::<:-.....

Wrap: IAJU.SUA.dpiQ()O~(j():lre-leducation lis I(clearly) lenougtl~::f>\H\:U::':./:::::>::>::::

To use the standard word iteratof, you will use ask TLocale for a wordmap object. Once you have
it, you will create a word iterator from it. You will then provide the text and offset that you
are starting from, and whether to use the previous or following word if that offset is on a
boundary. You can then call Current to the get the word break around that offset, or Next,
Previous, and Nth to get successive word breaks. Nth(O) is equivalent to Current; Nth(l) is
equivalent to Next, and Nth(-l} is equivalent to Previous. First will reset the current word to
the first word in the text, while Last will reset it to the last. So, to get the 3rd word, call First,
then Nth(3); for the third from the end, call Last, then Nth(-3).ll

10

11,

Unicode does have specific periods as well as the generic period: if an abbreviation
period is used, then there is no ambiguity.

We could add utility routines to do NthFrornStart and NthBeforeEnd if people thought
them useful.

• Registered/Restricted International Utilities March 1, 1990 2.1.6-16

Character Prop~rties

Additionally, a number of global character properties are accessable, indicating which classes
(in the non-OOP sense) characters belong to. These properties are independent of language, but
might be installed with particular languages. That is, the properties for an Ethiopian letter
might not be available unless the Ethiopian language is installed. The properties include such
items as:

1. classifications: letters, diacritical marks, digits, whitespace, etc.

2. directions: character direction, run direction (for use in layout)

<It is an open issue where there ought to be a single table for the system, or that there is a
collection of modular tables, where the installation of a language may add a new table.>

Word Boundaries
;.;.:-:.

;.:.:::::::~::;::::::::)~:~:~:>}:::'

~:~:~~~:}(~); ~~: ~;~~~: ~:~::::: ~:: :::'
-:;:::;::;:::;:/::::::-.:::::

<:::::::::<:-.....

Wrap: IAJU.SUA.dpiQ()O~(j():lre-leducation lis I(clearly) lenougtl~::f>\H\:U::':./:::::>::>::::

To use the standard word iteratof, you will use ask TLocale for a wordmap object. Once you have
it, you will create a word iterator from it. You will then provide the text and offset that you
are starting from, and whether to use the previous or following word if that offset is on a
boundary. You can then call Current to the get the word break around that offset, or Next,
Previous, and Nth to get successive word breaks. Nth(O) is equivalent to Current; Nth(l) is
equivalent to Next, and Nth(-l} is equivalent to Previous. First will reset the current word to
the first word in the text, while Last will reset it to the last. So, to get the 3rd word, call First,
then Nth(3); for the third from the end, call Last, then Nth(-3).ll

10

11,

Unicode does have specific periods as well as the generic period: if an abbreviation
period is used, then there is no ambiguity.

We could add utility routines to do NthFrornStart and NthBeforeEnd if people thought
them useful.

• Registered/Restricted International Utilities March 1, 1990 2.1.6-16

In addition, calls will be provided for doing language-sensitive intelligent cut & paste.
Intellegent cut & paste ensures that cutting a word preserves word-breaks and minimizes spaces,
while pasting will insure word breaks around a pasted word. For Roman and many other scripts
this involves inserting or deleting spaces where needed: other scripts may not use spaces the
same way.

Open issue: we could support sentence selection using essentially the same mechanisms. In
general sentences are not as clearly distinguishable in some languages (such as English, etc.)
because of ambiguities between sentence period and abbreviation period, but it would be more
international than what MS Word does now, for example.

Text Collation
Text collation ordering includes provision for a number of very significant features required for
proper comparison and sorting of text.

~~I~g~;;~lltJII{rllf"
e) ignored charact.¢t~{(ax< a-x < a-xy).

orde~n,;~o~ :~fL,~l~,;~;~~~~~~~~~~:::~~~,qWisecomp~'II!!~: .• /)j;;.
The standard coUater does nat include the ~apability for dictionarY~l:$sed. collation, ~hicK.

::'m~:'e:h~r~~~I'~I~~iYlt[iIW~~:,:~~d~:~C::~~~:~~~~~!II~~~'i~ft~~!f.F
This behavior, however, c6uldbe subclassed. . .

Creating a Collation
The programmer can append a new string to a TCollater, in which case it is ordered after the
very last string. The programmer must specify if it is a weak ordering ("a" < "A"), and whether
the string has expanding characters ("a" < "~" /"e"). Null ($0000) is a special character,
which is inserted in a TCollation at creation time. It is always ignorable, and any character
only weakly greater than it will also be ignorable. Any character not in the TCollater will be
ordered strongly before all other character codes.

For example, we could build a new TCollater as follows:
Add Result

<a

<a
< m/e

=>

=>

=>

null «a

null «a <a
null « a < a < m/e

• Registered/Restricted International Utilities March 1, 1990 2.1.6-17

In addition, calls will be provided for doing language-sensitive intelligent cut & paste.
Intellegent cut & paste ensures that cutting a word preserves word-breaks and minimizes spaces,
while pasting will insure word breaks around a pasted word. For Roman and many other scripts
this involves inserting or deleting spaces where needed: other scripts may not use spaces the
same way.

Open issue: we could support sentence selection using essentially the same mechanisms. In
general sentences are not as clearly distinguishable in some languages (such as English, etc.)
because of ambiguities between sentence period and abbreviation period, but it would be more
international than what MS Word does now, for example.

Text Collation
Text collation ordering includes provision for a number of very significant features required for
proper comparison and sorting of text.

~~I~g~;;~lltJII{rllf"
e) ignored charact.¢t~{(ax< a-x < a-xy).

orde~n,;~o~ :~fL,~l~,;~;~~~~~~~~~~:::~~~,qWisecomp~'II!!~: .• /)j;;.
The standard coUater does nat include the ~apability for dictionarY~l:$sed. collation, ~hicK.

::'m~:'e:h~r~~~I'~I~~iYlt[iIW~~:,:~~d~:~C::~~~:~~~~~!II~~~'i~ft~~!f.F
This behavior, however, c6uldbe subclassed. . .

Creating a Collation
The programmer can append a new string to a TCollater, in which case it is ordered after the
very last string. The programmer must specify if it is a weak ordering ("a" < "A"), and whether
the string has expanding characters ("a" < "~" /"e"). Null ($0000) is a special character,
which is inserted in a TCollation at creation time. It is always ignorable, and any character
only weakly greater than it will also be ignorable. Any character not in the TCollater will be
ordered strongly before all other character codes.

For example, we could build a new TCollater as follows:
Add Result

<a

<a
< m/e

=>

=>

=>

null «a

null «a <a
null « a < a < m/e

• Registered/Restricted International Utilities March 1, 1990 2.1.6-17

<A
«b

<B
«c

<C

«ch

< cH

<CH

Using a TCollater

=>

=>

=>

=>

=>

=>

=>

=>

null « a < a< rete < A

null « a < a< rete < A « b

null « a < a< rete < A « b < B·

null « a < a< rete < A « b < B « c

null « a < a< rete < A « b < B «c < C

null « a < a < rete < A « b < B « c < C « ch

null « a < a< fEte < A « b < B « c < C «ch < cH

null « a < a< rete < A « b < B«c < C «ch < cH < CH

To use the standard collation, you will ask the environments mechanism for your TLocale, then
ask the TLocale for a TCollater. In simple comparison, the TCollater takes two strings and
compares them. If the user.....?J}.PP.u.~~.Jh.~ ...lwQ..pp.t!.Q.p.9:L.text indices, then the method will r~tH:l.Ik::::':::::'::::

•
. .;-:-:::::::;::> .

•

;:;:::::::::;::::: :-:;:::::::.:-:-'. ':'. ..;:;:;:;:::;:;:::::;: :-:-:.:-:-:-:.:.:.:;:;:::::;:;:;:;::.','.:.:.:.:.:::.:.:::.'.....','.'.','...',.... ','.... .;.;;:.:;:;::::::;.;.' \t :::::::::~:~~~~~~t~~)(:::··

Searching ::·~\;-:.:::.:\\.:~:··\·j:t!:~:\:·:!:!·:···:[t·\·:::.·l~l[\[.! » :.:::::.>.:::{:\\~\:~~\~~(}~::::... :.:.:.:.::::.'.:::.'::\?>:'
<::;:-:-:.:<-:.. -: ;.:-.-:-:::::::-:;:::::::\: :-:«.:-'-:-:::::::::;:;:;:. '';':':'::::;}:;:::::;:::;:::;:'' ;."."-:.;.:-:-:.;

Clients could als~\ls(h~.X<sgtl~t~t:\·P.t?tL~:~guageCollaterfor searching,··fHiFit·:J§".-i:l:9Xp.pHfu.i~edfor
that. We will offer routinesf8F"faster searching, but this will probably not extend to inclusion
of features such as wildcards or regular expressions. Unfortunately, a simpleminded
application of faster algorithms such as Boyer-Moore can preclude certain language features
such as grouPed, expanding and ignorable characters, so we are still investigating to see how
these algorithms can be modified to account for these features. Whenever those language
features are not in use, then we will use a 'fast path'.

Units
A Unit can associate unit quantities and their textual representation in a given language, and
perform conversions to other units. Both plain and abbreviated forms can be included. For
example, meter can map to "meter", "metre" or the Greek, Cyrillic, etc. equivalent; USDollar
can map to "$" or "$US", etc. A TLocale can also specify the default units for a given measure:
English vs. Metric, the default currency, etc.

• Registered/Restricted International Utilities March 1, 1990 2.1.6-18

<A
«b

<B
«c

<C

«ch

< cH

<CH

Using a TCollater

=>

=>

=>

=>

=>

=>

=>

=>

null « a < a< rete < A

null « a < a< rete < A « b

null « a < a< rete < A « b < B·

null « a < a< rete < A « b < B « c

null « a < a< rete < A « b < B «c < C

null « a < a < rete < A « b < B « c < C « ch

null « a < a< fEte < A « b < B « c < C «ch < cH

null « a < a< rete < A « b < B«c < C «ch < cH < CH

To use the standard collation, you will ask the environments mechanism for your TLocale, then
ask the TLocale for a TCollater. In simple comparison, the TCollater takes two strings and
compares them. If the user.....?J}.PP.u.~~.Jh.~ ...lwQ..pp.t!.Q.p.9:L.text indices, then the method will r~tH:l.Ik::::':::::'::::

•
. .;-:-:::::::;::> .

•

;:;:::::::::;::::: :-:;:::::::.:-:-'. ':'. ..;:;:;:;:::;:;:::::;: :-:-:.:-:-:-:.:.:.:;:;:::::;:;:;:;::.','.:.:.:.:.:::.:.:::.'.....','.'.','...',.... ','.... .;.;;:.:;:;::::::;.;.' \t :::::::::~:~~~~~~t~~)(:::··

Searching ::·~\;-:.:::.:\\.:~:··\·j:t!:~:\:·:!:!·:···:[t·\·:::.·l~l[\[.! » :.:::::.>.:::{:\\~\:~~\~~(}~::::... :.:.:.:.::::.'.:::.'::\?>:'
<::;:-:-:.:<-:.. -: ;.:-.-:-:::::::-:;:::::::\: :-:«.:-'-:-:::::::::;:;:;:. '';':':'::::;}:;:::::;:::;:::;:'' ;."."-:.;.:-:-:.;

Clients could als~\ls(h~.X<sgtl~t~t:\·P.t?tL~:~guageCollaterfor searching,··fHiFit·:J§".-i:l:9Xp.pHfu.i~edfor
that. We will offer routinesf8F"faster searching, but this will probably not extend to inclusion
of features such as wildcards or regular expressions. Unfortunately, a simpleminded
application of faster algorithms such as Boyer-Moore can preclude certain language features
such as grouPed, expanding and ignorable characters, so we are still investigating to see how
these algorithms can be modified to account for these features. Whenever those language
features are not in use, then we will use a 'fast path'.

Units
A Unit can associate unit quantities and their textual representation in a given language, and
perform conversions to other units. Both plain and abbreviated forms can be included. For
example, meter can map to "meter", "metre" or the Greek, Cyrillic, etc. equivalent; USDollar
can map to "$" or "$US", etc. A TLocale can also specify the default units for a given measure:
English vs. Metric, the default currency, etc.

• Registered/Restricted International Utilities March 1, 1990 2.1.6-18

In terms of conversions, units generally fall into three categories: simple units such as feet or
meters, predictable units such as times or dates12, and volatile units such as currency rates or
Apple stock prices. We will initially support time and date conversions, and perhaps some
degree of simple unit conversions: volatile conversions are not exactly high on our priority list.

Time
Time and date are special units, and require more support. The basic system time is measured in
seconds since an arbitrary base date (e.g. 00:00:00 Jan 1, 1904 on the Mac13) and require a
dynamic range of approximately 1013 seconds before and after the present (a comp-64-bit
two's-eomplement integer-is used on the Mad. See the Toolbox time routines for more
information.

Time zones, Calendars and DateTimeFormats are used to convert this form into specific human
measurements (see below).

.........:.:.:.:.:.:.:::;:::::::::::::::.:::.:-:.:.

Civil Dates

"Thanksgiving", the client can find the firsf..m;~:..of the c~Ytl)~~ti::;~t~~tthe TIime.· :: ..;..... .

Planning Year'.:.:::::.:.:.'.:::,:: ;"';':';';';': :.:.;.;.;.:.' "::::"",,:... ::::::::::::;::-:.::-:-:.:-:-:.:.:-:.:-:-:-:-:-:.:-:-:. ::::::::::::::.... .-:.:.:~:::::-::?=:::-:.:.:.:-:<-:-:.; ...

A planning year is a coile<:t16iFb¥,'citifdates and work-week information tl~;r~~ri':l:kU;~dfor
project planning. Planning years can be created or edited by users and applications. Planning
years will return the number of workdays between any two TTimes, and also allow iteration
through workdays.

12

13

Strictly speaking this is not true, since with some lunar calendars still in use, the date
depends on the visible phases of the moon. With bad weather, the month in a particular
location can start as much as three days later. We do handle this as a special case.

The choice of origin is not particularly important, and will be hidden by the Toolbox
classes.

• Registered/Restricted International Utilities March 1, 1990 2.1.6-19

In terms of conversions, units generally fall into three categories: simple units such as feet or
meters, predictable units such as times or dates12, and volatile units such as currency rates or
Apple stock prices. We will initially support time and date conversions, and perhaps some
degree of simple unit conversions: volatile conversions are not exactly high on our priority list.

Time
Time and date are special units, and require more support. The basic system time is measured in
seconds since an arbitrary base date (e.g. 00:00:00 Jan 1, 1904 on the Mac13) and require a
dynamic range of approximately 1013 seconds before and after the present (a comp-64-bit
two's-eomplement integer-is used on the Mad. See the Toolbox time routines for more
information.

Time zones, Calendars and DateTimeFormats are used to convert this form into specific human
measurements (see below).

.........:.:.:.:.:.:.:::;:::::::::::::::.:::.:-:.:.

Civil Dates

"Thanksgiving", the client can find the firsf..m;~:..of the c~Ytl)~~ti::;~t~~tthe TIime.· :: ..;..... .

Planning Year'.:.:::::.:.:.'.:::,:: ;"';':';';';': :.:.;.;.;.:.' "::::"",,:... ::::::::::::;::-:.::-:-:.:-:-:.:.:-:.:-:-:-:-:-:.:-:-:. ::::::::::::::.... .-:.:.:~:::::-::?=:::-:.:.:.:-:<-:-:.; ...

A planning year is a coile<:t16iFb¥,'citifdates and work-week information tl~;r~~ri':l:kU;~dfor
project planning. Planning years can be created or edited by users and applications. Planning
years will return the number of workdays between any two TTimes, and also allow iteration
through workdays.

12

13

Strictly speaking this is not true, since with some lunar calendars still in use, the date
depends on the visible phases of the moon. With bad weather, the month in a particular
location can start as much as three days later. We do handle this as a special case.

The choice of origin is not particularly important, and will be hidden by the Toolbox
classes.

• Registered/Restricted International Utilities March 1, 1990 2.1.6-19

Time Zones
A TDaylightZone maps from a GMT14 datetime to a local datetime and back. TDaylightZones
are of finer granularity than regular time zones, since any two locations are in the same zone just
in case they currently have the same daylight-savings periods, and have had' the same in the
past. For example, Arizona and Colorado have different zones, even though they are in the
same time zone, because Arizona does not have daylight-savings time. Zones internally use a
collection of civil dates to find the starting and ending dates for daylight savings time. This
functionality provided by zones is a superset of the UNIX time zone mechanism, and is also
table-driven.

In addition, zones also contain geographic information which allows us to provide a direct
manipulation interface for choosing zones. The human interface for setting the clock time
should encourage users to set their location, since otherwise date stamps on files and network

Calendars also retQim the·ran.ge·:(maximu~'~#d:Ininimum valuesrfq.r:~~Y·m:ven field i~an.· .'

~~~in~~:~:~~!I~f~Ii'lr.rll~:~;:J:~~~~~~ ~Z~'JI~'~10~ilr~;he
month upward in the dat"e ilDec29, 1989" results in uJan 29, 1989". When toggling, other fields
remain unaffected, where possible-toggling the month upward in the date uJan 29, 1989" from
January to February cannot be done without changing the day of the month.

14

15

Greenwich Mean Time. Actually, we will be using UTC2 (Coordinated Universal Time) in
our standard calendar calculations. UTC2 adds leap seconds during some years to account
for variations between Universal Time and International Atomic Time (TAl). UTC2
includes corrections for Chandler wobble and for seasonal changes in the Earth's rotation
rate.

Some systems have time servers to make sure that computers share the same time
(hopefully our OS will have this servke). One problem with these systems is that users
can't easily set their own clock to something different than the net time. By using a
different standard time offset, this can be done.

• Registered/Restricted International Utilities March 1, 1990 2.1.6-20

Time Zones
A TDaylightZone maps from a GMT14 datetime to a local datetime and back. TDaylightZones
are of finer granularity than regular time zones, since any two locations are in the same zone just
in case they currently have the same daylight-savings periods, and have had' the same in the
past. For example, Arizona and Colorado have different zones, even though they are in the
same time zone, because Arizona does not have daylight-savings time. Zones internally use a
collection of civil dates to find the starting and ending dates for daylight savings time. This
functionality provided by zones is a superset of the UNIX time zone mechanism, and is also
table-driven.

In addition, zones also contain geographic information which allows us to provide a direct
manipulation interface for choosing zones. The human interface for setting the clock time
should encourage users to set their location, since otherwise date stamps on files and network

Calendars also retQim the·ran.ge·:(maximu~'~#d:Ininimum valuesrfq.r:~~Y·m:ven field i~an.· .'

~~~in~~:~:~~!I~f~Ii'lr.rll~:~;:J:~~~~~~ ~Z~'JI~'~10~ilr~;he
month upward in the dat"e ilDec29, 1989" results in uJan 29, 1989". When toggling, other fields
remain unaffected, where possible-toggling the month upward in the date uJan 29, 1989" from
January to February cannot be done without changing the day of the month.

14

15

Greenwich Mean Time. Actually, we will be using UTC2 (Coordinated Universal Time) in
our standard calendar calculations. UTC2 adds leap seconds during some years to account
for variations between Universal Time and International Atomic Time (TAl). UTC2
includes corrections for Chandler wobble and for seasonal changes in the Earth's rotation
rate.

Some systems have time servers to make sure that computers share the same time
(hopefully our OS will have this servke). One problem with these systems is that users
can't easily set their own clock to something different than the net time. By using a
different standard time offset, this can be done.

• Registered/Restricted International Utilities March 1, 1990 2.1.6-20

The field ranges and toggling can be used in the human interface for setting dates and times <e.g.
toggling as in the Alarm Clock). A view will be provided for editing time (there are two
important variants: absolute and elapsed time).

Calendars are not table-driven, but they may require some persistant data storage for efficiency
<e.g. the Arabic Lunar calendar on the Mac has to compute sunset and phases of the moon, so it
uses a persistant caching mechanism). Calendars are not specific to language: language-specific
formatting is handled by the DateTimeFormat.

Calendars must be set with the current location. Different fields of the calendar can then be
gotten and set. The calendar keeps information as to the sequence that fields were set in.
Whenever a field is gotten from the calendar, then the information in the calendar is
validated. Any of the fields may change in value: the most recently set fields have priority.

For example, suppose that we set the dayOfW'eek field, then the year, month and day, then
get the dayOfWeek. The dayOfW'eek field will be altered to be consistent with the year,
month and day, since theY:W§f:~:::~tJ~~~rf:U:::W~:J8§D:::~tthe dayOfW'eek and weekOfYeaL::::::::::::}}}::::':::::::\

:::;:::::::~:~:~:~:~:~:::::::: ::::::::.".:-:.

can be specified::::: '::::.:;::»:::::::::::<::::::::';::::}:<:::::::::::::::::}:::::::.. '.' .'.::::-:.)~:::::::::::::: ::-: ::;.....

1. numeric (~fht~rlijU$;ritiffi~Pf~~ts:plain, zero padded, ordi~~1§~··6h~lid~:[~.g.koman
Numerals], <length>; see NumberFormats)

2. text (plain, abbreviated).

The formatted fields are substituted into a text date pattern using pattern substitution. If no
date field text is available, then numbers will be used. (The follOWing example illustrates the
substitution, but is not necessarily the method we will use. The substitution pattern will contain
some data indicating options on the field format):

-hour:minute ampm zone on dayOfWeek, month day, year zone era
number-only, mod 12, one-based
number-only, zero padded

Pattern:
hour.
minute:
arnpn:
zore: abbreviated
dayOfWeek:
month: abbreviated

. day: ordinal

'* Registered/Restricted International Utilities March I, 1990 2.1.6-21

The field ranges and toggling can be used in the human interface for setting dates and times <e.g.
toggling as in the Alarm Clock). A view will be provided for editing time (there are two
important variants: absolute and elapsed time).

Calendars are not table-driven, but they may require some persistant data storage for efficiency
<e.g. the Arabic Lunar calendar on the Mac has to compute sunset and phases of the moon, so it
uses a persistant caching mechanism). Calendars are not specific to language: language-specific
formatting is handled by the DateTimeFormat.

Calendars must be set with the current location. Different fields of the calendar can then be
gotten and set. The calendar keeps information as to the sequence that fields were set in.
Whenever a field is gotten from the calendar, then the information in the calendar is
validated. Any of the fields may change in value: the most recently set fields have priority.

For example, suppose that we set the dayOfW'eek field, then the year, month and day, then
get the dayOfWeek. The dayOfW'eek field will be altered to be consistent with the year,
month and day, since theY:W§f:~:::~tJ~~~rf:U:::W~:J8§D:::~tthe dayOfW'eek and weekOfYeaL::::::::::::}}}::::':::::::\

:::;:::::::~:~:~:~:~:~:::::::: ::::::::.".:-:.

can be specified::::: '::::.:;::»:::::::::::<::::::::';::::}:<:::::::::::::::::}:::::::.. '.' .'.::::-:.)~:::::::::::::: ::-: ::;.....

1. numeric (~fht~rlijU$;ritiffi~Pf~~ts:plain, zero padded, ordi~~1§~··6h~lid~:[~.g.koman
Numerals], <length>; see NumberFormats)

2. text (plain, abbreviated).

The formatted fields are substituted into a text date pattern using pattern substitution. If no
date field text is available, then numbers will be used. (The follOWing example illustrates the
substitution, but is not necessarily the method we will use. The substitution pattern will contain
some data indicating options on the field format):

-hour:minute ampm zone on dayOfWeek, month day, year zone era
number-only, mod 12, one-based
number-only, zero padded

Pattern:
hour.
minute:
ampn:
zore: abbreviated
dayOfWeek:
month: abbreviated

. day: ordinal

'* Registered/Restricted International Utilities March I, 1990 2.1.6-21

year:
era: abbreviated
Date: 1,493,527,842.000 seconds
Result: -10:08 am PST on Sunday, Oct. 13th , 1958 A.O:

A newly-ereated format will have simple numerical mappings and a default p~ttern based on
the system language. Additional text names and abbreviated text names can be added for any
field values, and the pattern can be changed. The text is of type TStyledText for generality.
(Note: the field text might be common to many different patterns, but this model forces them to
be stored separately. An alternative architecture breaks patterns and DateTimeFields into
separate entities, with the latter shared).

DateTimeFormats will also scan text for date and time, matching against a specific pattern.
The scan will stop at the end of the text, end of the pattern or first inappropriate element. The
length used by the scan will be returned, as well as any fields found. The scanning will match
exactly if possible. Otherwise heuristics will be used, including:

...........

·::::::;::~~::+n:\:t;;~~;:/:;;~::·:···· ..
....

Numbers -:-:.:-::;::::
::::::;:;:::: .

.; :.: :.:.:.:-:::::::::::.:-:.;. .
\~()~:}:::::::::::::::::

Number formats include integers, decimals, outline numbers <e.g. Roman numerals, letter
numerals), and ordinals (lst, 2nd,...). We will provide both formatting and scanning of numbers
based on local conventions <e.g. 5,280.0 vs. 5280,0). A superset of the functionality on the Mac is
provided, whereby pattern matching allows users to get Excel-style functionality while being
compatible internationally. Number formatting will also include outline numbers, such as
Roman numerals, lettering, etc., and their equivalents in different languages. In general, these
will be code based, although tables of localized number components (decimal separator, etc.)
will be available.

Number scanning will provide not only for the standard Western numerals (decimal 0..9), but
also for more unusual systems such as Chinese numbers and outline numbers. Not that in Unicode
that the numbers that have significantly different shapes in different scripts have different
codes: this is accounted for in both scanning and formatting.

The formatting process first involves producing a number format pattern. This is done by using a
lo~lized NumberComponents object to convert a text string as might be supplied by the user,
such as "###,###.00" to a NurnberPattern. This NumberPattern can also be converted back to a

• Registered/Restricted International Utilities March 1, 1990 2.1.6-22

year:
era: abbreviated
Date: 1,493,527,842.000 seconds
Result: -10:08 am PST on Sunday, Oct. 13th , 1958 A.O:

A newly-ereated format will have simple numerical mappings and a default p~ttern based on
the system language. Additional text names and abbreviated text names can be added for any
field values, and the pattern can be changed. The text is of type TStyledText for generality.
(Note: the field text might be common to many different patterns, but this model forces them to
be stored separately. An alternative architecture breaks patterns and DateTimeFields into
separate entities, with the latter shared).

DateTimeFormats will also scan text for date and time, matching against a specific pattern.
The scan will stop at the end of the text, end of the pattern or first inappropriate element. The
length used by the scan will be returned, as well as any fields found. The scanning will match
exactly if possible. Otherwise heuristics will be used, including:

...........

·::::::;::~~::+n:\:t;;~~;:/:;;~::·:···· ..
....

Numbers -:-:.:-::;::::
::::::;:;:::: .

.; :.: :.:.:.:-:::::::::::.:-:.;. .
\~()~:}:::::::::::::::::

Number formats include integers, decimals, outline numbers <e.g. Roman numerals, letter
numerals), and ordinals (lst, 2nd,...). We will provide both formatting and scanning of numbers
based on local conventions <e.g. 5,280.0 vs. 5280,0). A superset of the functionality on the Mac is
provided, whereby pattern matching allows users to get Excel-style functionality while being
compatible internationally. Number formatting will also include outline numbers, such as
Roman numerals, lettering, etc., and their equivalents in different languages. In general, these
will be code based, although tables of localized number components (decimal separator, etc.)
will be available.

Number scanning will provide not only for the standard Western numerals (decimal 0..9), but
also for more unusual systems such as Chinese numbers and outline numbers. Not that in Unicode
that the numbers that have significantly different shapes in different scripts have different
codes: this is accounted for in both scanning and formatting.

The formatting process first involves producing a number format pattern. This is done by using a
lo~lized NumberComponents object to convert a text string as might be supplied by the user,
such as "###,###.00" to a NurnberPattern. This NumberPattern can also be converted back to a

• Registered/Restricted International Utilities March 1, 1990 2.1.6-22

text string using a NumberComponents, which may be different. For example, converting the
above NumberPattern using a French NumberComponents will result in "###.###,00".
NumberPatterns may have multiple parts, allowing different formats for positive numbers,
negative numbers, zero, positive infinity, negative infinity and NANs (as on the Mac, we will
be depending on SANE conversion routines internally).

Text Fonnat NumberPattern

##,###.00;(##,###.00)

."':::::':::::::{%~{n{:::))\
":::::;:::::: .. :." :~{{::.::~;~;~;:;:;:::;::::::::

...... .. . ~@})j~j\)}/
I::U\:~u·r~[::\~.f:.~::)~:[~.\::.:~.:~:.::.\:..:~}.~onnatted Tex:t=:::::{:::::::
............... ::::>:>':<-::::;':::::::::::.:~'.:~.{{/:::::::::::::

::::~~~~~:::~:~:;::;:\)\%) .. ::::::::::::<

':'::;<::.:::..;,::.14,:'::::.:.,4.1::,:.::::..:.:.:.:4:.::.::::.:.:4.:.:.:._(~3::,4:56~.7~).44<:4.{}4J:::\ :..:::::.....:.::..:::.::.::.:.:..•:.•:::..:.:::.:.:•.:.:... ~:..:...::.•.\.l·:
NumberConi~.:.:::.:.:.::n:.·::.·.::·.·.·e.::::·.:.·::n.·:::::::·:::·.t·:·.::::~....::.·::.:::::.·.::~::::...:::.':. ::::::{)}}~:~ .:::}'::::::::::>:}~>

..........-:-:.::::::::::::: ...

-3456.7

Extended::•......:.:....:::........•...
::::::?=:::::::;:;:::;::;::::----------- :-:.:::::::::::::::::

(French) (English:

NumberPattern

-3456.7

NumberPattern

(3.456,7)

Fonnatted Text Extended

• Registered/Restricted International Utilities March 1, 1990 2.1.6-23

text string using a NumberComponents, which may be different. For example, converting the
above NumberPattern using a French NumberComponents will result in "###.###,00".
NumberPatterns may have multiple parts, allowing different formats for positive numbers,
negative numbers, zero, positive infinity, negative infinity and NANs (as on the Mac, we will
be depending on SANE conversion routines internally).

Text Fonnat NumberPattern

##,###.00;(##,###.00)

."':::::':::::::{%~{n{:::))\
":::::;:::::: .. :." :~{{::.::~;~;~;:;:;:::;::::::::

...... .. . ~@})j~j\)}/
I::U\:~u·r~[::\~.f:.~::)~:[~.\::.:~.:~:.::.\:..:~}.~onnatted Tex:t=:::::{:::::::
............... ::::>:>':<-::::;':::::::::::.:~'.:~.{{/:::::::::::::

::::~~~~~:::~:~:;::;:\)\%) .. ::::::::::::<

':'::;<::.:::..;,::.14,:'::::.:.,4.1::,:.::::..:.:.:.:4:.::.::::.:.:4.:.:.:._(~3::,4:56~.7~).44<:4.{}4J:::\ :..:::::.....:.::..:::.::.::.:.:..•:.•:::..:.:::.:.:•.:.:... ~:..:...::.•.\.l·:
NumberConi~.:.:::.:.:.::n:.·::.·.::·.·.·e.::::·.:.·::n.·:::::::·:::·.t·:·.::::~....::.·::.:::::.·.::~::::...:::.':. ::::::{)}}~:~ .:::}'::::::::::>:}~>

..........-:-:.::::::::::::: ...

-3456.7

Extended::•......:.:....:::........•...
::::::?=:::::::;:;:::;::;::::----------- :-:.:::::::::::::::::

(French) (English:

NumberPattern

-3456.7

NumberPattern

(3.456,7)

Fonnatted Text Extended

• Registered/Restricted International Utilities March 1, 1990 2.1.6-23

•

Unicode
This document discusses issues and design considerations involved in the allocation of character
codes for the standard Apple sixteen-bit character set (Unicode). This charact~r set is designed
to be an efficient, internal process code. It is also a foundation for conversions to and from
different interchange formats (MS DOS, current Macintosh, ISO 8859, etc.).

Background
The Unicode project at Apple began as a quest to remedy the most serious flaw in the
architecture of multilingual text handling on the Macintosh: the overloading of the font
mechanism to encode character semantics and properties and the use of multiple, inconsistent
character encodings based on conflicting national standards. Unicode envisioned a uniform
method of character identification that would be more efficient and general than the .

\:} :.:.::::.-:-: .
.......::::::::::::::::::>:-:.:.: .

S~;;;~t!~rdll!i*i;,rf~;~~n~et:~~f~~~~I!I~I.~~~f~~~~~ilt
preferable to the more::comple,trun-Iength encodings or mixed 8/16 bit co(l~·~nhat·are in
current use on many machines. Text compression is important, but need not be defined by the
character code standard. There are many different ways to compress text depending on the
particular application.

16 The initial release of Unicode will contain approximately 25,000 characters of all the
world's major scripts, including some 18,000 unique Han characters defined by industry
standards in China, Japan, Korea, and Taiwan. This is more than sufficient for modern
communication, including such classical languages as Greek, Hebrew, Latin, Pali,
Sanskrit, and literary Chinese that may· be required by literate non-specialists. Obsolete
scripts such as cuneiform, runes, hieroglyphs and additional Han characters used in more
specialized research will be added as required.

• Registered/Restricted International Utilities March 1, 1990 2.1.6-24

•

Unicode
This document discusses issues and design considerations involved in the allocation of character
codes for the standard Apple sixteen-bit character set (Unicode). This charact~r set is designed
to be an efficient, internal process code. It is also a foundation for conversions to and from
different interchange formats (MS DOS, current Macintosh, ISO 8859, etc.).

Background
The Unicode project at Apple began as a quest to remedy the most serious flaw in the
architecture of multilingual text handling on the Macintosh: the overloading of the font
mechanism to encode character semantics and properties and the use of multiple, inconsistent
character encodings based on conflicting national standards. Unicode envisioned a uniform
method of character identification that would be more efficient and general than the .

\:} :.:.::::.-:-: .
.......::::::::::::::::::>:-:.:.: .

S~;;;~t!~rdll!i*i;,rf~;~~n~et:~~f~~~~I!I~I.~~~f~~~~~ilt
preferable to the more::comple,trun-Iength encodings or mixed 8/16 bit co(l~·~nhat·are in
current use on many machines. Text compression is important, but need not be defined by the
character code standard. There are many different ways to compress text depending on the
particular application.

16 The initial release of Unicode will contain approximately 25,000 characters of all the
world's major scripts, including some 18,000 unique Han characters defined by industry
standards in China, Japan, Korea, and Taiwan. This is more than sufficient for modern
communication, including such classical languages as Greek, Hebrew, Latin, Pali,
Sanskrit, and literary Chinese that may· be required by literate non-specialists. Obsolete
scripts such as cuneiform, runes, hieroglyphs and additional Han characters used in more
specialized research will be added as required.

• Registered/Restricted International Utilities March 1, 1990 2.1.6-24

Alternative Standards
Not wanting to duplicate effort, we also considered the efforts of other companies and
international standards bodies in the development of a universal character code set. There is
currently one other general multibyte character encoding under development, ISO DP 10646.

The main difference in goals between the Unicode and ISO DP 10646 is that the latter is
designed to maximize transmissibility by current products, while Unicode is designed to serve
as an efficient 16-bit internal process code for current and future products.

The heart of DP 10646 is the two-byte "Basic Multilingual Plane" (BMP). To maximize
transmissibility, DP 10646 reduces the space for graphic characters in the BMP by 29,055 codes
to avoid conflict with 8-bit control codes. The remaining graphic character space is further
reduced by separately encoding the Han characters (Chinese, Japanese, and Korean
logographs) by language, so that 22,594 cells are allotted for the approximately 10,050 unique

:;~~~~~l~;B~:~~.ltli;••#l_,l:;~e~~;~;n~~:~:~~~~~~~ill~I
extensions to the GB and Jt§::~W#9~9§tQf.rlB:t~erreduces the BMP by ~~§~Wi:tigtp}3'36

:~:~:rc:::;cepol~I,I;!I'_Il'"""l!cters.But asaresWMliITII~::DP 10646

due on June 1, and>'firia.l~~~~:~~·a~lfcharacter repertoire and codes. AddinQn#~:sJi~I-4~terswill
be added in subsequent versions ofUnicode. .

We are also active in the ANSI X3L2 multi-byte character encoding committee which is the US
national body dealing with ISO 10646. Our goals in that effort are to:

• ensure that Unicode will meet the conventions of an international standard,

• influence the 10646 design in the direction of Unicode (failing that, ensure that the 10646
design does not preclude transcoding with Unicode),

17

18

Xerox is also very active in the area of multilingual operating systems (though not in
terms of units), and had realized that their character encoding methods could also be
significantly improved.

Xerox has been particularly helpful in the design of Unicode and in printing the draft
Unicode charts.

• Registered/Restricted International Utilities March 1, 1990 2.1.6-25

Alternative Standards
Not wanting to duplicate effort, we also considered the efforts of other companies and
international standards bodies in the development of a universal character code set. There is
currently one other general multibyte character encoding under development, ISO DP 10646.

The main difference in goals between the Unicode and ISO DP 10646 is that the latter is
designed to maximize transmissibility by current products, while Unicode is designed to serve
as an efficient 16-bit internal process code for current and future products.

The heart of DP 10646 is the two-byte "Basic Multilingual Plane" (BMP). To maximize
transmissibility, DP 10646 reduces the space for graphic characters in the BMP by 29,055 codes
to avoid conflict with 8-bit control codes. The remaining graphic character space is further
reduced by separately encoding the Han characters (Chinese, Japanese, and Korean
logographs) by language, so that 22,594 cells are allotted for the approximately 10,050 unique

:;~~~~~l~;B~:~~.ltli;••#l_,l:;~e~~;~;n~~:~:~~~~~~~ill~I
extensions to the GB and Jt§::~W#9~9§tQf.rlB:t~erreduces the BMP by ~~§~Wi:tigtp}3'36

:~:~:rc:::;cepol~I,I;!I'_Il'"""l!cters.But asaresWMliITII~::DP 10646

due on June 1, and>'firia.l~~~~:~~·a~lfcharacter repertoire and codes. AddinQn#~:sJi~I-4~terswill
be added in subsequent versions ofUnicode. .

We are also active in the ANSI X3L2 multi-byte character encoding committee which is the US
national body dealing with ISO 10646. Our goals in that effort are to:

• ensure that Unicode will meet the conventions of an international standard,

• influence the 10646 design in the direction of Unicode (failing that, ensure that the 10646
design does not preclude transcoding with Unicode),

17

18

Xerox is also very active in the area of multilingual operating systems (though not in
terms of units), and had realized that their character encoding methods could also be
significantly improved.

Xerox has been particularly helpful in the design of Unicode and in printing the draft
Unicode charts.

• Registered/Restricted International Utilities March 1, 1990 2.1.6-25

• encourage other countries and companies to consider the advantages of the Unicode
approach over 10646.

We were able to get approval from the ANSI X3L2 for including the major Unicode principles
within 10646 (Document X3L2I89-195: "Proposed Modifications to ISO DP 10646", a U.S.
National Body Position). The principal motivation for the ANSI support of this proposal was
to avoid two, separate multi-byte standards. The initial international reception for this
change, however, has not been promising.

Design
Developing a character set consists of two steps: selecting the repertoire of characters to go into
the set and assigning codes to the repertoire. Many coding standards have run into problems
because they attempt to mix formatting codes, compression methods, or glyph encodings into
their standard.

\t~~{~~~~\II·.}.;~~.j·.~j:.{.:j·.~~.jl~.[.~~~.i.~~.~i~.~:.:~.~~.;~ :::::;:::::::::
~»\>?

·\l::::::!:::l:::j.~:::·.~i:::j::!::::':·':::::::·:'H :::::>::::::::::::::::L•.:.
........ :.;.: -: .

text for shift sequences to determine character boundaries or encoding. The elimination of
the requirement for shift sequences also permits efficient random access of characters.

Unicode is no different from any other binary data and can be compressed to reduce storage,
transformed for transmission over 7 bit or 8 bit lines, or transcoded to and from other
character encodings. There are many algorithms available for performing compression and
transformation (e.g. Unix btoa which converts 32 bits to five 7-bit ASCII characters):
Unicode itself does not currently specify any particular methods.

• Full Encoding. Unicode reserves room for a limited number of control codes; aside from these
it uses the full 16-bit range to represent over 65,000 graphic characters.

• Complete Encoding. Unicode provides character codes for characters used in the computing
and the publishing industry around the world. It draws from a base of national and
international character encodings, including: ANSI 239.47-1985 (bibliographic Roman),
ISO 5426-1983 (bibliographic Roman), ISO 5427 (bibliographic Cyrillic), ISO 5428-1964
(bibliographic Greek), ISO 6438 (extended Roman for African languages), ISO 6861

• Registered/Restricted International Utilities March 1, 1990 2.1.6-26

• encourage other countries and companies to consider the advantages of the Unicode
approach over 10646.

We were able to get approval from the ANSI X3L2 for including the major Unicode principles
within 10646 (Document X3L2I89-195: "Proposed Modifications to ISO DP 10646", a U.S.
National Body Position). The principal motivation for the ANSI support of this proposal was
to avoid two, separate multi-byte standards. The initial international reception for this
change, however, has not been promising.

Design
Developing a character set consists of two steps: selecting the repertoire of characters to go into
the set and assigning codes to the repertoire. Many coding standards have run into problems
because they attempt to mix formatting codes, compression methods, or glyph encodings into
their standard.

\t~~{~~~~\II·.}.;~~.j·.~j:.{.:j·.~~.jl~.[.~~~.i.~~.~i~.~:.:~.~~.;~ :::::;:::::::::
~»\>?

·\l::::::!:::l:::j.~:::·.~i:::j::!::::':·':::::::·:'H :::::>::::::::::::::::L•.:.
........ :.;.: -: .

text for shift sequences to determine character boundaries or encoding. The elimination of
the requirement for shift sequences also permits efficient random access of characters.

Unicode is no different from any other binary data and can be compressed to reduce storage,
transformed for transmission over 7 bit or 8 bit lines, or transcoded to and from other
character encodings. There are many algorithms available for performing compression and
transformation (e.g. Unix btoa which converts 32 bits to five 7-bit ASCII characters):
Unicode itself does not currently specify any particular methods.

• Full Encoding. Unicode reserves room for a limited number of control codes; aside from these
it uses the full 16-bit range to represent over 65,000 graphic characters.

• Complete Encoding. Unicode provides character codes for characters used in the computing
and the publishing industry around the world. It draws from a base of national and
international character encodings, including: ANSI 239.47-1985 (bibliographic Roman),
ISO 5426-1983 (bibliographic Roman), ISO 5427 (bibliographic Cyrillic), ISO 5428-1964
(bibliographic Greek), ISO 6438 (extended Roman for African languages), ISO 6861

• Registered/Restricted International Utilities March 1, 1990 2.1.6-26

(Glagolitic, Old Cyrillic, and Romanian CYrillic), ISO 6862 (mathematical symbols), ISO
6937 <Western European Roman script), ISO 8859/1-8 (8-bit sets for all European Roman,
Greek, Cyrillic, Arabic, and Hebrew), ISCII (India), GB 2312-80 (China), JIS X 0208
(Japan), KS C 5601-87 (Korea), and CNS 11643 (Taiwan). It also includes de facto company
standards, such as the Fujutsu extensions to JIS.

• Preservation of Base Distinctions. For ease of transcoding, Unicode preserves differences
found in the base standard encodings mentioned above. For example, Greek "Omicron" (0) is
distinguished from English "Oh" (0) because they are distinguished in ISO 8859/7.

• Pure Character Encoding. Other than what is required to preserve base distinctions,
Unicode does not attempt to encode features such as language, font, size, positioning,
glyphs, et cetera. For example, it does not preserve language as a part of character
encoding: Chinese "zi" (~), Japanese fIji" (~) and Korean "ja" (~) are all represented as
the same character code, as are French "i grecque" (Y), German "ypsilon" (Y), and English
"wye" (Y). .' .

• Common Characte~~<t.frim6d~::;~~ouragesthe borrowing of characters f~;~::6n~~;~~riptsand
avoids duplication except in the following cases:

a. Operators and well-known constants borrowed from Greek (e.g. 1t or "pi", and Lor
"summation") and other scripts are allocated separate character codes. However, this
is not true for Greek letters used as variables.

b. Apparent style variants19 with specific usages (e.g. the script form "~JJ in the
International Phonetic Alphabet, which represents a low, back unrounded vowel) are
assigned separate character codes.

• Han Unification. From the above, it follows that Unicode does not define separate codes for
the Han characters (hanzi, kanji, hanja) used in Chinese, Japanese, and Korean. In unifying
Han characters, Unicode follows these rules:

19. As noted above, for each script we assume a single font family and style to represent the
archetypical shape of a character. A style variant is any departure from this base shape.

• Registered/Restricted International Utilities March 1, 1990 2.1.6-27

a. The initial repertoire is based on the four major standards for Han characters: GB 2312
80 (China: 6,763 characters), JIS X 0208 (Japan: 6,349 characters), KS C 5601-87 (Korea:
4,888 characters), and CNS 11643 (Taiwan: 13,051 characters), and the approximately
5,000 characters of the proposed extensions to the JIS standard.

b. Character identity is preserved over the combined standards. Where variant forms are
given separate codes within one standard, they are also kept separate within
Unicode.20 This guarantees that there will always be a mapping between Unicode and
target national standards.

c. In determining whether or not to unify variant forms across standards, Unicode follows
the guidelines published by JIS.21 Where these guidelines suggest that two forms
constitute a trivial (wazukana) difference, Unicode assigns a single code. Otherwise,
separate codes are assigned.

• Digraphs. Unicode provides digraphs such as Dutch IT for compatibility with existing

::::::::;:::::;:::::::::;:;:::::;::::::::;::::;:::::::;::::::...:;:::::::::;:;:::;::.::::::....
...........:-:-:.:;=::::::::::::::•.•:.::::::::;•..•...

. .. ,'.:.;.'
::::::::.:::::::::::::::::::::::::.:.:.:.>'-: .:.:.:.:.:.:.:-:.:.;.:-:-:.; :.;.:.', .'.:::::::-:::::::::::;:::.-

20

21

22

For example, JIS assigns six characters (23-85, 49-88, 49-89, 49-90, 49-91, 78-63) for
variants of the character ken usword.u Unicode preserves all of these.

These guidelines are found in the Japan Industrial Standard Touhou koukan you kanji
fugoukei (Code of the Japanese (sic) Graphic Character Set for Information Interchange)
C 6226-1983. §3.4 Kanji no itaiji no toriatsukai (The handling of variant Han characters).
Though written with Japanese usage in mind, they are general enough to be applied
across all three languages.

Many of the symbol characters, such as the Roman numerals, have been added only
because they exist in some standard.

.& Registered/Restricted International Utilities March 1, 1990 2.1.6-28

Unicode Codespace Allocation

0000

lFFF
2000

2FFF
3000

3FFF
4000

4FFF
5000

FFFF

ALPHABETS (8 K)

SYMBOLS (4 K)

FUTURE EXPANSION

Alphabets, Syllabaries, IPA, etc.

Punctuation, Math, Technical, Dingbats, etc.

User area. Can be transmitt.y:.4A{'l.1~Y>PYprivateagreement. . :::::::{:::::::: :.:.:.;.:;:;::" .
''.:.::::;:~:;:;:;~;:;~~;~~~~:::; :.:.' .

Spill over from alphabetic or Han zones as require

assigned Unicodes 1111111111'1 reservedfor future assignment

m private, never assigned

* FFFF is permanently reserved as an application
specific sentinel value (e.g missing character, etc.) .

• Registered/Restricted International Utilities March 1, 1990 2.1.6-29

Code Assignment
Unicode is divided into five zones: Alphabetic and other scripts having relatively small
character sets, Symbols, User characters, Auxiliary characters for Chinese, Japanese, and
Korean, and Han characters. The alphabetic zone covers alphabetic or syllabic scripts such as
Roman, Cyrillic, Greek, Arabic, Devanagari, Thai, etc. The symbol zone includes a large
variety of characters for punctuation, mathematics, chemistry, dingbats, etc. The user zone
(about 4,000 code points) is used for defining user- or vendor-specific graphic characters. The
Chinese, Japanese, and Korean auxiliary characters include punctuation, symbols, kana,
zhuyinfuhao, and single and composite hangul. The Han characters subset provides for over
44,000 logographic characters common to Chinese, Japanese and Korean. Unicode Draft 1
currently covers the complete repertoire of 16,400 unique Han characters defined in the GB,
CNS, JIS and KSC standards. Unicode version 1.0 will extend coverage to include ...

0._:.;:;:;::::::~::::::::;:::::::

•

ti Registered/Restricted International Utilities March 1, 1990 2.1.6-30

Section Start Code No. AssiQ11ed

Alphabets

CJKAux.

Control 0000 ~ 32
Roman 0020 1 437
Phonetic 025 a i 72
Modifier Letters 02BO 1 ' 39
Diacritics a3aO! 60
Greek 0370 1 125
Cyrillic a4 aa 188
Georgian 0500 39
Annenian 0530! 83
Hebrew 0590 i 85
Arabic a600 1 167
Ethiopian 070 a 352
Devanagari a9aa 100
Sen~aJi:::::::::::::::: ::::-::. ::::::::; a98 0 84 '.':':'::::-:-:-:':-
G:urroij(bi'H:::Imm:{':{f::ttHtttHtmJt }/ aA aa 67:::

:-::-: :=ComponentS 2220<281::-:

Mathematics Operators 22 4a 174
Miscellaneous 23 aa 64
Control Character Pictures 236 a 45
Arrows 23AO 72
Geometric Shapes 2 4 aa 65
Basic Dingbats 2 4 6a 119
Mosaics 250 a 189
Borders 25CO 21
Fonns 2600 117
ClK Symbols 4000 50
Hiragana 4040 88
Katakana 40AO 87
Zhuyin Fuhao 4100 38
Hangul Letters 413 a 94
Parenthesized Letters 4300 88

• Registered/Restricted International Utilities March 1, 1990 2.1.6-31

Encircled Letters 4380 t 98
SQuared Units 4400 ! 175
Hangul Syllables 4500 i 2609

Han Han Logographs 5000 I 18,000

Details
The following are particular points about the design of Unicode that specify details that are
necessary to determine correct use and interchange.

Paragraph/Line Separators
Unicode does not specify a particular character for a paragraph separator or a line separator (a
line separator causes a line break <e.g. J .•......:.-:::::::

::..•..:::::•.•::•• ::•. ::•.:::.•.:..::
":':-:::::-:::::;::;::::

......................... .H.::.:·:::::::::.::~::mU:

··::\:\:j:j:r.:~.:·.!::1::·1::1.:··:1:1:1:: ..·.::::·!::::: ..'.:.:.:....
:::::::::;:;:::::\:;::::::.:.:.:.::.

Unicode text is stdf.&1.·::it\·~$.il"\~I¢:Y(l~gi#.iiW::brder in the backing store. ·ijs~~~f,·:~r:p~sl99.!b~tote
order is based on the cltr6nologIcafOrder in which text is spoken. English ana:ffeb~W'strings

are shown below first as they would be ordered first in logical order, then in display order.

23 We will probably not use these in Pink to control direction, although we will interpret
them properly if we receive interchanged text that includes them.

• Registered/Restricted International Utilities March 1, 1990 2.1.6-32 .

o 1 2 3

o 1 2 3 ... 16

c.

The Heavens and the Earth

E~i~:f:!~~:rii;~it'ill'f~~;~1if~[~~~i,!~~~~;:'i
~~!~~r~:~~±:~~f:~~;~~~~i:~;;SF~~I!:~~il!iil~:£i:~~u~~t

a.

b.

- . ..
........•..... ...

before the characterstnat they logically follow in the backing store... ·..

Sample Code Pages
The following are sample pages of the Unicode code charts. They are followed by a sample
page of the Han character cross-reference. The cross reference is in radical-stroke order, with
the characters from each of the four base Han standards listed together. The numbers
underneath each character are the code points in the respective base standards.

• Registered/Restricted International Utilities March 1, 1990 2.1.6-33

Unicode 00 Hex Draft of 2/15

Control ASCII Mise. Latin1

000 001 002 003 004 005 006 007 008 009 OOA OOB OOC 000 OOE OaF

o NUL OLE :~

6

o

ili
::'

.ll.!- t 0" 4

III t Y2'"2

31~ i p.4

& I n

f

;Nft: 0

D a 0
;x:

:~r: A

< ± A N a n

> ¢ '2

A ,.9:\u:
...,<:<';">:':::::" 1;:::::.::::::::

1:::::::::::::<::::"

t

+,..

00

%0}

p

q

DEL v'

J

o

a

n

m

z

y

Q

::.;.; ·.r

A

o

M

N

@ p

?

1

9 I

o

f ilillllill!," t!rill

8 H x'tl;i~Ilt'lllllt ""'/
n -=:- :\{:\@@IJ?@E u\:::\:\\.E\:\·:\\\~·\\:\:\ ...\l·\::\\:f::l\<i:q<:\:\<·:

)\:@\mnX?tf}\ {:: ::::»x'/:

>

/

*

RS

GS

FS

ESC

sua

so

S!

LF

E

o CR

B

C FF

F

SOH OCI

2 "sn< OC2

3 En< OC3 #

4 EDT OC4 1

5 ENQ NAK %

6 ACK SYN &

7' eEL ETB

~ 8S CAN (

9 HT E1'l

A

• Registered / Restricted International Uti lities March 1, 1990 2.1.6-34

Unicode 03 Hex Draft of 1/27

Generic Diacritical Marks Greek

030 031 032 033 034 035 036 037 038 039 03A 038 03C 030 03E 03F

0
.. ". IT

...
8 ~l U IT

- "

". ~
'. A P p tT 1}a.... "J -

2 : B p <; T ill"1- -

3
.... .. r ~.... .

4
.. f t

.... '. : f:1. q.....•.

5
.... ~ E q.... '0' q>

6
.... ~
....

7
..... ~"
....

8
..... ,.. ,...."

'_0
'-' ',' {).•::: tV

9
, -/ ,'.,

.... .-:-::~ W.... '.'

Cl
A .:::1

....

8
.. :......J

1\..

c ."
'0 M a....

e' ;;

D
N (U fv G.. "

E " ,
~IQ

: 'T
~ W T'...•.: ... 11.. -

F ~" .-.
'Q a '719 ;-.... . - 0

.& Registered / Restricted International Utilities March 1, 1990 2.1.6-35

Unicode 0 5 Hex

Georgian Armenian Hebrew

050 051 052 053 054 OSS 056 057 058 059 OSA 058 OSC 050 05E OSF

o
h r ~)

J 3 U 2 8 ill 6. g o

..r

o

i1

1 ..•~.
I----

--+--
-+--+

~-t--
+-_

+_-_+
-+~

I____
+~~

2 0 ~

30M

4 C!? U

9

L f} L n.

Dan lu U tu u o 11

E 5 o
n '1

F Q d 4 S
n

• Registered/Restricted International Utilities March 1, 1990 2.1.6-36

Unicode 04 Hex

Cyrillic Extended Cyril1ic

040 041 042 043 044 045 046 047 048 049 04A 048 04C 040 04E 04F

H 3 H 3

K M h M b K

~I5 c;l~::::t

K T ee

K l' ~

K Y ~

k y ~

hh ~

C)

f~
-.
C)

:1 ~<..:;;

~ w

ill

a p Cd \tr \ r 1(¥ r

6 c e w t ~ (x ¥.

B FjF Bitt X

r FIF ~tl X.

5

IIIII

I 3 q

try

A P

I)K U

J

y 0100 £0 Y

it 6 C

SEX

T:> B T

IJ IT H II f{ r,I

Ih K "h::);l.··:::.:::~::·::·::L:m:::~t::.
:::::::::::

1i JI ht'.\

" Registered / Restricted International Utilities March 1, 1990 2.1.6-37

Unicode 20 Hex Draft of 2/15

General Punctuation Supers. & Subs Number Forms Currency

200 201 202 203 204 205 206 207 208 209 20A 208 20C 200 20E 20F

0
..... 0 ~ 0 I CD <£bo_

o

" 0 II ID fZ11

2 ", 7- III @» G;III
~:::::~:~:~:~{:~:::::~:~: ::::~:~{:~:~:~:~r~~~ /: it~

3 \\\\\\\\\\m~\\\\\\\\\::' IV{::{:~:~:::f~:
::::::::;::::::::::::::::

4
..

" .V,...

5 .e. w- I VI
"

s

6 .8Ir .. ~ VIIs

7 .,.. " vm

8
....

~ IX--..... a

9 '1 , Q' 9 X,1:)00 9

A '1' * XI/.

8 1-

~
1 XII.:s- a

~~C ~
3 La

0 !! q s C ca

E N8 ~ D d8

F "--- « n .!. M m

• Registered / Restricted International Utilities March 1, 1990 2.1.6-38

Unicode 2 2 Hex Draft of 2/15

OCR Parts Mathematics Operators

220 221 222 223 224 225 226 227 228 229 22A 228 22C 220 22E 22F

r 3

l:J @ H-

l:J CD 1It-

~ EB ¥-
... -:.:-:-::::

«

>

«

»

II

u

-

:::

1: f ~ ~ ~ 0 ~
I- I

I - -. < $ E @ F==

{- :;t:: ::a:: > * :3 G ~=

u

(I V +
I ~ c /

l L

"/
•

J

1

r

l

J'

y

111

• Registered / Restricted International Utilities March 1, 1990 2.1.6-39

Unicode 40 Hex Draft of 2/12

elK Symbols Hiragana Katakana'

400 401 402 403 404 405 406 407 408 409 40A 408 40C 400 40E 40F

o [/ ~

,] I,' 6~ -f- / '\

7 0 TI 15

8 ((~

4 ~ (

~ tf ~ ~ b
::;"

III

II

(

[

T \

--

»
«

o

8

A

5 ~

2

3 1/

c r

9)

o J)

E W

F < t.:. Lt h h J\

• Registered/Restricted International Utilities March 1, 1990 2.1.6-40

Unicode 4 1 Hex Draft of 2/12

Bopomofo Hangul Elements CJKMini User Space

410 411 412 413 414 415 416 417 418 419 41A 418 41C 410 41E 41F

o

< o 1=
o
o

a::.

~I

~ lrl

2.0 ,.Act

Q:t ~ -I

a.A L:::.

[(

y

T

c

F r \.

o « -t!-

E "7 97

B "3 ~

A

9

7 n P

5 ? ? L \,-jk:mr A
.:::::{/:: ..

4

8

2

3

• Registered/Restricted International Utilities March 1, 1990 2.1.6-41

Unicode 43 Hex Draft of 2/12

CJK Parenthesized CJK Encircled

430 431 432 433 434 435 436 437 438 439 43A 438 43C 430 43E 43F

o (7) (1-) (,) (c~)

1 (l') (I)) (\..) (eJ.)

(-) (J=D (§)

(~ W &i)

@ @ ® ®

© 9 @ @ .. :-::::I::tJt:ttt:

@",Ij l\t,);l ti;
@/0dfUIIJijY® ®

2 (7) (x) (c:) (08 (3 (71<) ~ @ ®

3 W (JL1 (a) ("H:;llrlllllfllllll,jlll~ ®
4 (:t) (7) (0) ('!)~U;'1.1 '.lUi'lli;i\I'lfifH·®. OJ

.;:;:;:;:;:::'
'.;.;.:.:-:.:-:..

5 (-}J) ('7) (~) (ogll (tl (±) @ (2)i~11 111111111> ® @

® ® ®

(t~ G.t)

(8) ~(y.)

C (-=-)

o (*)

E (~

F (I,)

6 (~) (A) ,11'111Iilll,II(11 ® illlillilaltf:;I;ljI;lIIi1til,
7 (7) (0) ;1'IIIIIJU\111 Illill ® ;;1111111;1111 @'IIIIII' ".~±F--+--~~~4+.-+--+-~~~~: ~:; ::: :::: ;:w":::;;II[I,~ .: :;':I:jl~:!;Ili
A .-(_0_)+---+-_(~.,.;;;;;;;;); ,ifGtJ (rn (M)II;~II\·\:]:~:~@~_::::f\'IIHt®j~"11:.::.:. :::_::::::1·:/:::::':,iLi';
B V~ "~l!l~ ·"",;~I ;t~ I",;; l;ll- : 0 ~;;;t~;,® ~'i i01'

(-.) HU::Q :-- H'l$)<.::·:iXi:{HI::':::::·:::/:::;::::::- p\ ... ~; ::::;::::: ?)~:H· :::irA:::::-<I~..... I \.:::r <. :::::\l:~: }~:: >:::\ftl:-:- 'd .:::::7 'Ci:J 't.!)I 'lJj

(Ilf) OJ} @9:fJ @@)<I>

EY ~ @ @ 0

• Registered/Restricted International Utilities March 1, 1990 2.1.6-42

Unicode 44 Hex Draft of 2/12

CJK Squared Japanese CJK Squared Latin Abbreviations

440 441 442 443 444 445 446 447 448 449 44A 448 44C 440 44E 44F

o tia
:/

:f--f
:..- t-

.10
J- }v

pA Hz ps kn 1m

7JV
77

ii:..
'7 nA kHz ns tvlQ In

p.g em rad mW KK Tel

p.F mm CPa

a.m.p.S

p.m

mt

THz

CHz mmJ

KB

MB

nF

kA

GB

~cal

.. pF

7 JI., 1\of r'\. :..- '1
fio '/ .A I\-I\!

-t-
fj

;t
/..

;t:/
t-a

7:/
r'\.7

A

B

C

o

6

5

8

7

9

3

2

4

E i17
71-

7 a 1<- r'\.- ,I-

-.i- t:+:"'· :Ii mg km rad/s kW kM \Vb

F r- /',- r'\.- ,I- Ij
A 7 9 t-:..- kg

• Registered/Restricted International Utilities March 1, 1990 2.1.6-43

no
z::...

4265

~
5244

~l
146

Z
4387

ill
6905

~
6711

W
9302

KS

lS'U

4810

;;U;:
f'i]

2212

1821

~
2<80

$L

4')80

Z
411'J

JL
2269

*J012

~~
4811

JTS

&
D-18l

12
0-166

-t
O-lZO

401)

Q3

&
"5£4

Bi.gS

7 :1::

4 ::H
h

Y-
7l4~

J1
SOU

KS

r~
161 'J

)
4608

X

93

l570

Z~04

J1S

~:.
0-76

)
S61S

±.
$487

Ilffi
:U57

¥
)OS7

2014

fff
l-lZ'H

X
C~40

JJ
A444

~
1\4"011

*A6EA

IVYI8

BigS

'(
.... 4')8

R

stft
A8Cl

3 ;i::

6~~

(4]) fill

2 ffl)

7673

4802

KS

7K ZJs
3011 '6710

J06~

28U

7J
0'32

2716 6H8

T
lS')O

-t

1:.

0-41

40~

)A
20SZ

*2211

~
2210

fJfJ
32flG

J:
4147

7J
4582

T
4134

3t
5341

JT
S6CI2.

S027

"0J
"4FE

13-
AS42

li
AS43

itt
"540

T
.... 45')

;J:
....4')6

IT
C~6

~
C94D

]]
C'H,)

L
.... 4')7

AHO

GigS

l:EI

)] -ffi)

1. 9')0.7. . t li Registered I Restricted International Utilities

0-)8'50

~ ~
DC4!: o-Je~7

~ J11 @
6667 znl 6146

Marcl\ ill) ~99O: liD 2.1.6-45

JIS KS

~
1805

@
0-38872

xa:
7790

'0 ~q

ili J±
1781 54 JJ

Jg ill
3164 5212

rt ~
1609 6081

~
0-38893

)]I ~
4702 5407

j1[~
3234 6406

i1I J*
3414 6560

ill mi
3644 8755

~ ~
3809 8166

".6-
~xIs.

3751 5218

'~ ~d:.
J.s J.e.
3404 8067

.....=. "'-=-

Je ill
3911 7847

~ ~
)564 8579

~ ~
7144 4419

ill! ill77., sen

~ '*kt:
778) 4739

jj1 ~
7186 6546

~
71ee

~ *7185 8168

~
1-6941

~
BJ1C

lli.
01E1

iff
B310

ill!
07£3

i!
07£4

·:0::······1
8311

~
Bno 2SG8

IT! if
8)13 1-3)12

illI jJfr
B375 4237

!~!~~j~~i:i:1~:::~:1·:.11:1:~1:1.111:.i··.:11i~i!ii1ii11m)::::;::.. if

.... 'i;i,llllllll~i
··i.il~~:::::ll\!:I·!!!I!!~I!!!\:.;:·

:::eJ:le:::;.:·· . :::lt53():,":

~.~;} ~:~:~';":::-;:~/.:~/
:Bj.?'~:::: '';';:::::'l!zJlii::"

\\ i~::::::~~: ::::H·~
:::::::\:: :~t: .:::':::i;S)66

::I·m.:·::~i:·";.:':}::!

KS BigS ill

~ 7~ irk
5862 01£2

~ ift
66')1 07£5

i@
01£6

ili!! ~~
4228 2161

JOO
6946

~
,c;r

~
!ln8 194'.l

iE1
0-38821

~
0-38837

BigS GB JIS

ill ill jg
ADA.2.)840 3"7

~ it izE
/<D7" QII6 2950

ill m ill
AD1C «86 7115

iEI iEl i0.
AD7£ 6~ 1174

fE it iE
0085 6937 0-38801

ilE 1f£. illi
/<DIU 6938 0-)87115

ilm iW ill!
AD18 6')40 1864

iii "'L., iiiJ8..
ADA4 6')42 0-38791

~
0)"0

i1E
2803

J!
4901

it!
4923

itt Jtt ill:
B06E 17)7 77')4

~ ~ ~ ~
B067 JS~ 4434 5827

~ J! J1!.. ~
B066 J610 U53 702~

ffi ~ ~ ~
03EC 4242 0-)8844 4633

~ it ~ E
B065 045 3387 6574

~ ~ Jtt ~
BOGB «51 3808 5217

il! ill il! ~
B068 4S4.J 3464 1760

ffii ~ ~ ~
BObe 5523 3641 8558

@ & ~ ~
B060 6')43 11110 '.l311

1ft ii -~
.Ef

03EF 6~4 0-38841

International Utiliti~s

6g

111111111'111111";
03EO

lli
0)"1

i!
03EE

BigS ill JIS KS

62] JitffIS
3~ if if. i£ tt

"881 5156 1710 7370

4~ ~
CD02

36
COOO

0-38735

1& iL1
COCC 0-38755

II II
COCD 0-38737

~ ~
COC~- 0-38747

i1:
7173

jg
1957

kE
271:5

itt
2988

ii
3..3U

ill
4605

",-

Jlf
5222

:.."

~ Jli:
AM"O <254

it[
MEl

illl
AA££

IT
c:oo:

it
COOl 6935

5~ mt ~
OOBJ 0-3&783

~ i9.
00B6 0-38717

il§
0084

~
4406

~
7777

"'h ~)1'
6939)886

~
6')41

@ im i!!! ;m
/\IHO lIH 7716 7872

i1s i! ~ ~
I\I)(\I 113Z)71 '.l 8287

1990.2. fit Registered/Restricted

• Registered/Restricted Tokens March 15, 1990 2.1.7 - 1

Architecture
Tokens are fast strings. A token is an object that has a unique id, one id per string. The token server
guarantees that two identical strings will return the same unique id. Tokens are useful for sending
strings within your application, or across applications on the same machine. Tokens are streamable, and
will do the right thing - either streaming the unique id if the stream is a local stream, or streaming the
string if the stream is across the network, or to the deep freeze.

The system maintains a Token Server that performs the work of token issuance. The application
framework maintains a local cache so that second and further token requests for the same string do ~not

incur IPC overhead. I

Tokens may be static objects. They have been designed not to go to the Token Server until the first time
they are used.

There are definitely P~~f~s where tokens are either the wrong soluR9P~:~gt~:ijr~:~gterkill.The server

Usage
"::::::::::::::::::::::::::::;::::::::::}:::::::::::::::::"

II fill in eventName
II perform comparison with static

static TToken mouseDown("MouseDown");
TToken eventName;
event->GetEventName(eventName) ;
if (eventName == mouseDown)

• Registered/Restricted Tokens March 15, 1990 2.1.7 - 2

Making Whoopee

The J\jllllll«n
;:\)~/

.::::::::::::::.

• Registered/Restricted Application Framework March 15, 1990 2.2.1 - 1

The Class Hierarchy
The class hierarchy for· the application framework is substantial, and looks like this. Notice that most
objects descend from MCollectible, making it possible to use them with the collection classes.

:.:-:-:.

::::::::::::.;:;: ~::)~~~t/\}~:~::

.:.::::::..:::.::.:.:.:.:::::.:.:::::::::::::::::::~: ~: ~:~:::...;..;.:::-:.:.:-:.:.: .

TIoken
TTracker

[

TStdMouseTracker
J--- TWlndowOragger
L- TWindowSlzer

TMuItiClickTracker
TEventaueue
TModifierKeys
TRespondHook
TDeviceManager
TGrafPort

L-TLayerPort
~ TviewPort

MColiectible
MResponder

'-==-- TGraphicApplication
(MMessageTa k)----r=- lVlew

TLayer
TScroller
TTitieBar

I lWindoidTitieBar
"'--- TMenuTitleBar

lWindow

t=:: ~tdWindow ...:-.:'::::))/)::::;:.......

TButton eL TMefiili!iif:.i:jHf)}:::::·

I~-

••••• !;•••••••••••••••••••••••• ; ilt---------/TDeviceEvent .;::::;::::.:.:;:;:.:::;:::::.:- ::::;;;:::::::.:
..::/\I:\ff:·:::·· TPositi·<M~tD~ire~Event
:.:::::::;:;:;:::.. I ··:::::::::[:[jkrM6.0$e Event'·:·:::"·::::;;::::)}::::);:-...................,. ~:::r~v:tnt i;; ...·... i •.••••••· .••.••••••••••••••••••••.•••...•...

.....--- TOeviceAttachedEvent
~-- TOeviceRemovedEvent

• Regis tered / Restricted Application Framework March 15, 1990 2.2.1 - 2

The most important classes are TGraphicApplication from which your application must descend, TView
and its subclasses which allow you to subdivide the screen into logical drawing areas, TViewPort which
you use to draw into a. view, and TEvent and TDeviceEvent which are created either by external events,
or may be created by you to send messages to yourself or other applications.

The Visual Hierarchy
The visual hierarchy describes all the visible objects, or views, that the application framework knows
about. The visual hierarchy is built around the idea of enclosures. Everything that you see on the screen
belongs to - is enclosed by - another visual entity. Every enclosure is a subclass of the view class. ~

At the top of the visual hierarchy is the desktop. The desktop encloses all of the windows in your
application, as well as those in all other applications that are running simultaneously. Each window
encloses one or more views, and views can enclose other views. This is a typical visual hierarchy. [Note:
we should think about maIqHKth~.:s!.~:~!s.t9R:~t:Y~.~!Y.:.Bl~%.. That way we can encapsulate layer S.'X.iJf:h~Bg
protocol into view method~J~!!9J.~wggmJ~p.Jmy'yqrratherthan hard coding it into?:9m~::t.9mbthation

of the event and layer reltllllltlll1lll,~IIII,r .
.)tnt Desktop

....:.:.:.;.;.:.:-:-;.:....

Visual, or positional, events, work their way down the visual hierarchy, from the desktop to the active
window, to the appropriate view. Views can handle positional events because they are responders.
When you click in a view, the application framework uses the visual hierarchy to determine which view
the mouse went down in, and tells it to respond to the ''MouseDown'' event. If the view has a mouse
down handler it will respond to the event, if not, each successive enclosing view gets a chance to respond
to the event until one some view responds.

• Registered/Restricted Application Framework March 15, 1990 2.2.1 - 3

The Layer Server
The desktop is managed by the layer server, a system service that subdivides screen real estate into
layers. Each layer is owned by an application. Your application may decide to place every window in a
separate layer, or place multiple windows in a single layer (a la MultiFinder). The default behavior for
Pink will be to place every window in a separate layer and use another mechanism to allow the user to
group windows into logical projects or rooms (to use Xerox's term). [The layer server would need to be
extended to support grouping.]

The layer server model has been designed to support a multi-processor system - all screen real estate
changes must be made through the layer server. UPdate events that are caused by inter-layer changes are
the responsibility of the layer server and are transmitted to an application through the event server, just
like other external event such as mouse and keyboard events. Intra-layer view updates are handled by
the view system within your application's address space, and local uPdate events are posted to the event
queue. You as an application writer will never have to deal with update events from either the layer

:}~{{:

:':~:~:':':":::.:.:::::~:~:~:~:~:::}:;:;:;.:;:.-

..::::.-.... ~~it~f/:~t:~:~:{~:~:: ...

'-':':':':::::'.'-:-'.'

-:.:-: : .

positional, it goe5:tQtl'l~ffl-t'g#:§..:"Jf9H.t}¥ppliditionis responsible for setHng-l1\¢:"t~HWh.JfJQ¢object that the
target points to doesri'twant~g:respOnd to the event, the event is passed t6'itS::ne.xtresp6hder.

If the event is a positional event, the application framework uses the visual hierarchy to pass the event to
the view in which the event occurred. If that view does not want to handle the event, every enclosing
view is given a chance at the event until either some view responds to the event, or no view responds. If
no view responds the application object does not get a chance to respond to the event [should it?].

If the event is responder specific, the event is delivered directly to a particular responder regardless of
either the target, or if the event is positional, the view the event occured in. The object that is the specific
target of the event may decide to either respond to the event, or pass the event to its next responder.

In the following diagram the target points to a view whose next responder is a document. If the view
can't handle the event, e.g. a mouse down, it passes the event to the document. If the document can't
handle the event it gets passed to the application.

• Registered/Restricted Application Framework March 15, 1990 2.2.1 - 4

Events

Events are also used·t8;:g~iMt£tiiWth~control of standard interface objects·~';';::F6P~*~fu~1~;instead of
calling the window's Close () method directly, the close box sends the event "Close" to its next
responder. No matter how many levels of responder the close box actually is from the window, the
window will eventually receive the "Close" event, and close itself. All user interface components will
respond to well documented events so that it will be possible to wire together the interface using a NeXT
like interface construction kit. When designing your application you should consider where the use of
events can help make a component reusable, thereby making your application more extensible.

Another use of events is for synchronization within your own application. If you have multiple threads
that want to perform actions on the same object, instead of wrapping that object in semaphores you can
post an event to yourself and be guaranteed that the event will be distributed in the application
framework's main thread.

Flow of Control

• Registered/Restricted Application Framework March 15, 1990 2.2.1 - 5

The standard flow of an event from an input device to the correct responder in your program is shown in
the following diagram.

,.------your application object-------,

PostEvent(event~--~

the event is sent ba¢I<~9t1W·9~yg*"f9t::p;#.rismogrification.If the everifp~§~¢:§:::~~<~)(pr¢.§$interestcheck,
any objects that have<tegist¢t¢4as:everit filters are given first crack at theeveht~::;f:1j¢m6stcommon, and
typically only, event filter is the application menu bar which looks at every event to check for menu
commands. All events that were not used by a filter are sent to the surrogate that created the event,
allowing that surrogate to distribute the event as it wants. Most surrogates will just use the default logic
- positional events are sent to the view in which they occured, non-positional events use the target, and
responder specific events are sent to the indicated responder.

Event distribution is guaranteed to be sYnchronous, i.e. the application framework always distributes
events in its main thread.

The application framework gives sYnchronous control to your application under two other conditions
when you are tracking, and when you have requested idler time. If your application is tracking an input
device, like the mouse, you are given time periodically (at a frequency of your choosing), until the
tracking completes. The tracking framework allows for tracking multiple input devices simultaneously,
and for distributing events while tracking is occuring. Tracking time is given SYnchronously rather than
asynchronously because it would be very diffiCult, if not impossible, for you to properly synchronize
rn.ultiple devices tracking, or to handle eventsasYnchronously while tracking. Idler time is given only
when your application has been idle for a short amount of time, Le. no events have been distributed, and

• Registered/Restricted Application Framework March 15, 1990 2.2.1 - 6

no tracking is occurring.

Event DistrIbution
As described in the UFlow Of Control" section, above, there are three types of events, positional, non
positional, and responder specific events. The application framework takes care of getting these events
to the proper responders - positional events go to view that they occurred in, non-positional events go
to the target, and responder specific events go to the indicated responder.

It is possible to bind a particular input device directly to a responder by using the
TInputDevice: : SetSpecificTarget () method, such that all events created by that device go
directly to that responder. This should only be done in circumstances where the user cannot possibly
become confused. A game is one example, where multiple mice or keyboards are view specific. Another
example might be the use of a DataGlove, where all input from the glove is directed to the window with
the architectural drawing, Jh~r~ky}M19}yiHgJJW:Jl§~Jg.manipulate the scene even though is

~~::::::::inding a:;iIIIIIIJrlfIllllff';
The primary goal of th¢.j~}t(~rirdis:tfibtH16tfsys:te:rli{lsto allow new eV(~~:~1l:!~?Jm
handled. There are twq}Ways this is accomplished. One is by
mask. Using strings ~~QWs a completely unbounded name
all events to their sur#qg~Y~§J9tq.~stribution.New devices nughtMr:~

.............

.:'.' ::~:~:~:~::..:.:.:.:.. .:':::::.:-:..'.
:;:::::::;:::;:::::::;:;:::;:;::-\:;.: :.;.:-:-:.;.: :'. ..::::;=;:::::::::;;:.-

.. ::;:: :::;:;:;:::;:;:;:; '.'.' '.'.' '-:::'.-:.:: :.' :.'.~ ::' :.:.~.:.~ ..~.~.. ~:' ~::'.:., ~.:~.:..:~.; :11:~[;:~:'::: ,:::.,
'::::.:-:.:.:-:-:-".' '-:.'.".:-:.'.:-:-:.;.'';';':-:-:':';';':':':::-:::::;:

• Registered/Restricted Application Framework March 15, 1990 2.2.1 - 7

Graphic Application

Architecture
Every graphical program must create a subclass of TGraphicApplication and create only one instance of
this class. The application is the highest level in the responder chain. It is the only responder without a
next responder.

The application thread is typically the main thread, and while this is preferred, it is not required. The
application object instantiates several supporting objects, including the event queue, tracker and idler
queues, source manager, and application menu bar, along with one light-weight thread, the event
receiver task.

Any responder in your application can request that it be given periodic time when the system has been
idle for a small amount of time. The application framework senses when the system has blocked for a
small amount of time-Le., no events have been distributed, and no trackers have been given time-and
looks in the idler queue to see if there are any idlers3.

1. To keep a reference to an event you must call the event's Clone () method, you must not keep
a ptr to it since the application framework deletes each event after it has been distributed. See the chapter
If???" for more information.

2. This works now, but we have yet to see whether this is something that is both useful and
understandable. It may be disconcerting to have certain events distributed during tracking, e.g. closing a
window with a keyboard command at the same time that you are dragging the window.

3. It is possible to supply behavior equivalent to the idler queue by creating a thread, but threads
require synchronization, and it is often useful to be able to get time synchronously, when you can be sure
that no events are being distributed. Consider blinking the text cursor-if the blinking ishandled as a
separate thread, it is necessary to SYnchronize the blinking with incoming keystrokes, using semaphores,

• Registered/Restricted Application Framework March 15, 1990 2.2.1- 8

Application State

When an application is launched it mayor may not require an interface. For example, the Finder might
launch an application just to perform text retrieval, to make a print request, or to grab data from a link.
In these cases there is no need for an interface.

[I don't know what's going to happen here yet, but I know it should be something ...]

Priorities

When an application is started, it is given a preset priority by the application framework. This priority
has been carefully tuned to provide optimal system performance, particularly in regards to user tasks

Class Diagr~i!. .

: ~i:;:ge of Ih:tl"~'lltllrlll'lllllJ.I~, ..
. .=::::.:.:.

Writing the main program

In your C++ main () function, you must first instantiate an application object. After instantiation you tell
the application to start running by calling its Start () (a method of MMessageTask).

main ()
{

II Create application object, and start it running

TMyApplication app();
app. Start () ;

II see header file for any parameters
II method of MMessageTask()

so that, for example, the cursor positioning code doesn't interfere with the character insertion code.

'* Registered I Restricted Application Framework March 15, 1990 2.2.1 - 9

II If we get here then the user has quit the app.

return 0;

Your application object

II for C runtime clean-up

Your application object will be a subclass of TGraphicApplication4, and will look something like this:

TMyApplication :: TGraphicApplication {

} ;

protected:
virtual void

virtual }y§'id

Main(TMemory &);

AboutToQuit() ;

...-:.:-:.; .
................:: :.;.:-:.: .

void TGraphicApplication::BecomeActiveApp()

If you want to be notified when your application becomes active, or front-most, you should override this
method. You must call the inherited BecomeActiveApp ().

void TGraphicApplication::ResignActiveApp()

If you want to be notified when your application becomes inactive, or no longer front-most, you should
override this method. You must call the inherited Res ignAct iveApp ().

"4. Applications that do not need a user interface, e.g. pure servers, may descend from
TApplication instead.

• Registered/Restricted Application Framework March 15, 1990 2.2.1 - 10

Methods y~u May Want To Call
void TGraphicApplication::RegisterEventFilter(MEventFilter *);

Objects, like the menu bar, that want to get first crack at each event before it is, distributed, may register
as an event filter. After each event is pulled off the event queue, but before it is distributed, all registered
MEventFilter's are passed the event by calling MEventFilter: : CheckForCommand (). The menu bar
gets first crack, and all other MEventFilter's are given a chance in the order in which they were registered.
If any of the calls to MEventFilter: : CheckForCommand () return TRUE, no other MEventFilter's-are
checked and the event is not distributed.

void TGraphicApplication::UnregisterEventFilter(MEventFilter *);

.:.:-:.:.;.:-:.::.:

.:.;::.:::::::::;:;:.;.:::.:::::;:::::;:::::::::::::::::::::::::;:::::;:::;:::;::.;....

static TEventQueue* const;

..::::;.:-;.;.:-:.:.;.:.;.: .

::::::::::

static TWin~~!~t~:##~§.#~:"TGraphi9Rtm~l'ication::GettlttI3~~:~.~t () con:::,~,:·:::'::,>:::::::
.............-:.:.;.;. . '-:0:':':':-:':-:':::'; .

This static membihfffit-itti9rtal1qws:'~'ny\)bj&tin your application to g~t=ai1:,ji¢t.~J9rtq:t~~WtHaow list for
all windows that resideiRsep$rid:e:layers. This is a read only iterator makih'git4mpossible for you to
manipulate the window list - you must use the view system to manipulate the window list.

This iterator is protected by a semaphore so that the window list will not be changed while you iterate.
You must hold the iterator for as short a time as possible since all view changes are blocked until you
delete the iterator. Additionally, only one iterator is available at a time so I don't have to go through
semaphore machinations, you will receive a NIL iterator if one is already outstanding.

• Registered/Restricted Application Framework March 15, 1990 2.2.1 -11

Event. Tracker and Idler Queues

Architecture

Events may be placed in the event queue from either an external source, such as an input device, or any
object within your application. External events come via the event server, and are posted to the event
queue by the event receiver task which calls TEventQueue : : PostEvent (). If your application wishes
to post an event to itself, it may use either TEventQueue: : PostEvent () , or
TEventQueue: : PostEventTo (). If you wish to post an event to another application you may use

..:::.....

.-;;;. .;.::;\:.: :.:.:.-;.:.:.;;:.:.:

Idlers installed in the idler queue are much l~~~:~t.;~ckersin t:h.~~i:~~I~f;i:iveperiodic tlm~(;;:t~cl,i:~it.ference

~:b~in~~liiii~1~;~1;~~i~t;!$;~lil!!~~r~~:11~i~~~I~~~el~ke
...........:..«.:.:::.:.::::::::::::::::::::::::::::~:::::::.:.:-:.:.- ., -.....:-::::::~::::::::::::::::.. ..:::::-:-:.:-:.:-:.:.:.:-:.:.;.:.:.:::.:. -.:.;.:.:.;.:.:-:::::::::::;:-:.:.:::-:."

Events, trackers:alMj'::i~t¢.ts:al"~:;:~tl::giy¢rt/tfme synchronously, from Y8tif::~p~li:S~tigf\'s:maiNthread. This
means that sYnchionizationisitrtileeessary if you only perform actions ba5ed;@)anjritoming event, at
track continue time, or when an idler gets time.

Class Diagram
See first page of this chapter.

.& Registered/Restricted Application Framework March 15, 1990 2.2.1 - 12

Usage

Event Queue

The event queue is instantiated by the application framework, you never create .one. You may get a
pointer to the event queue by calling TGraphicApplication: : GetEventQueue (), a static member
function of TGraphicApplication. Events that are received from the event server are automatically placed
in the event queue by the event receiver task which calls TEventQueue: : PostEvent (). All event
queue calls are protected by semaphores, so you can call them at any time, from any task.

You may post an event to yourself using either PostEvent () or PostEventTo (), or to another
application using PostEventToApp (). There are several calls allowing you to peek at and get the next
event.

Tracker Queue /:~~:·:::f::
}~:~:::::::::

Idler Queue
......:-:-:.;.:-:.:.:-:.:.:-:-:<;::::.:- <:::::::::::::::}~{{{{::::::::':::::'".

~ill
be received, afterthe::$Y~~~m9~.P~¢lf:idlefor a small amount of time : :.::.:.:.:;:::::.-:-:....-:::.

Methods you may want to override
You cannot override the event queue, and the tracker and idler queues are inaccessible, so you're out of
luck here.

'* Registered/Restricted Application Framework March 15, 1990 2.2.1 -13

Methods you may want to call

Event Queue

You may want to call a lot of the methods in TEventQueue. Refer to the 411 documentation for details.

Tracker Queue and Idler Queue

Neither class is accessible. You add a tracker to the tracker queue by calling its StartTracking ()
method. You add a responder to the idler queue by calling its InstallAsldler () method.

• Registered / Restricted Application Framework March 15, 1990 2.2.1-14

Events

Architecture
Events are strings - the mouse creates "MouseUp", "MouseDown" and "MouseMoved" events, the
keyboard creates "KeyUp", "KeyDown", "AutoKey", "ModKeyUp" and "ModKeyDown" events. _
Strings are used to allow for an unbounded name space, since new input devices may require more event
names than we can possibly reserve in a bitmask.

Using strings for events has two useful side affects. One, events can come from user scripts as well as
input devices, since most responders respond to events regardless of which device created it. Two, the

.'.:.:.:;:::::::::.".

it.

Class Diagram
See first page of this chapter.

Usage

......;... :.:.:.:-:.:.:-:::::::::;::: .
..:.:::-:<::::::::::::::::::::::,::::,.:.:-:.:.;.
::::::::::::::::)::;:::7:::::::::::""';"

::::::::.::"':.:.:':'..:':::,,:{
::;:::~:~:~:~:~:~:::::~:~~:: ;<

......

You may create your own events at any time, and either send them directly to the responder chain by
calling any responder's Respond () method, or post them your application's event queue using
PostEvent () or PostEventTo (), or post them to another application using PostEventToApp () .

Posting an event to yourself is a useful method of synchronization. Any thread can post an event, and
then the application framework will distribute the events sYnchronously, in the framework's main thread.

There are several TEvent subclasses that you may find useful- TEventWithBoolean, TEventWithLong,
TEventWithPoint, TEventWithEvent. These allow you to package an event with another value that you
can then send. For example, the event "MoveTo" requires a point, so you would create a
TEventWithPoint, and ''DragSelf'' requires a mouse event, so you would create a TEventWithEvent.

Methods you may want to override

'* Registered/Restricted Application Framework March 15, 1990 2.2.1 -15

You will rarely subclass from the event classes unless you are writing your own source, e.g. a dri:ver for a
new input device. In that case you should subclass from whatever event most closely resembles the event
that your device produces. For example, if you have a new type of keyboard, that adds pressure
information, then you might subclass from TKeyEvent. If you have a DataGlove, you may either subclass
from TMouseEvent because your events are also positional, or you may instead want to subclass directly
from TPositionalEvent (you may in fact want to create an abstract class TIDPositionalEvent that
subclasses from TPositionaIEvent).

Methods you may want to call
This is completely event specific. See the 411 documentation for details.

'* Registered / Restricted Application Framework March 15, 1990 2.2.1 - 16

Devices and the Device Manager

Architecture
The design of devices and the device manager allows new and unusual input devices, both physical and
logical, to be easily designed, automatically attached, and immediately usable by every application. ~See
the paper U A Design for Supporting New Input Devices" by Michael Chen and Frank Leahy for
background information.

The device manager contains references to all devices that are attached to the system. You can query the
device manager to see what devices are attached, and get a pointer to a particular device based on its
class and name.::::.:-:.

·:·:::::::{~~r~tf~??~~{::::;:::;: :.;.

:.:-:-:.;.;.:.:.::.:.:..... :.:.:.;.:.:.;....... }::::::::;:>: ...

...:::::::-::.:::::::-:-:::::-:-::::.... :.:-:.:.:.:.:.:.:.:.: ·:;~::~:~[:i:!!i;::::::::::::}::::::n:::::::{: -::::::-::-:.:.::- :-.:

~~j:~~:~~~~g~t.~f~Rliil!~!~~i:~i!:~irll'i~;~~il~~~1C:
surrogate that allow5theapplidifidrito access the device from within the appHcatihitaddress space.
Typically only the tracker framework will have cause to call device methods, but if you need information
from a device at other than event time, you can query it directly after getting its surrogate from the device
manager.

The following diagram, taken from a previous section, shows the use of surrogate devices. The
surrogates are given the events created by their "real" devices, and they distribute them. The default
logic is that positional events use the view hierarchy, non-positional events use the target, and responder
specific events go to the indicated responder. It is impossible to predict what types of new input devices
and events will appear, and how they should be distributed in an application, we have designed the
event distribution mechanism to let the surrogate device decide how to distribute its events.

• Registered/Restricted Application Framework March 15, 1990 2.2.1 - 17

Event
Server

no interest => transmog .

PostEvent(event~--~

....------your application object------.

;:::::::::::::::/::::::::.:-:....
:.,::.:::::.:::::::;:::::::.;.:::.::: ::.:::::.:::::.:-:...:.;....

.. :.:-:-::::::::;:;:::::::::;:::::;
::::~~j{~~@rm{%%{mt\

·-::::::::~:t::::::::~::::::::::·::::::

'.'

:H?t:':-:·\U ::::)::::::)
..

Usage

Device Manager

/

Functions provided by the device manager are - attaching and detaching devices, setting the system
target, expressing and removing interest in a device class.

The application framework handles attaching and detaching devices and setting the system target, you
should have no reason to intercept or override these functions.

The application framework expresses interest in the two ubiquitous devices - the mouse and the
keyboard - so you don't have to. If you want to get events from other devices you have to specifically
express interest in those devices. Any object in your application may call Expresslnterest () or

'* Registered/Restricted Application Framework March 15, 1990 2.2.1 - 18

RemoveInterest () to express or remove interest in a particular device, so that your application
does/does not receive it's events. If your application does not express interest in a particular device, all
of its events will be transmogrified before your application receives them. If the device can't
transmogrify its events the events will not be distributed; this is done so you don't get flooded with
events from new devices that your application doesn't support.

Other than expressing interest, you should never have to query the device manager directly. Whenever
an event needs to be distributed the application framework handles all calls to the device manager. If
you are writing a program that wants to track the mouse at all times, even when the mouse is up (e.g.
Jack Palevich's program Neko), you could find the primary mouse by calling
TGraphicApplication::GetDeviceManager()->IsAttached(TToken("Mouse"),
TToken("Primary"») ;

Devices

Devices

and non-POsitiOri~~}t~~·t:g§§J~q~l'.yqp\~RBW~::6verridethis method. .)\:::;:::.::::: ::.•. :,-:.. :mj.:\\\\\::U.:::·:

The standard non-;~:;ffi(jhii·di~:&:il;~;i~nmethod is as follows:··::::: :}

1. If the event is NIL, don't distribute anything.
2. Call GetBoundTracker () to see if the device is currently tracking. If it is tracking, call

theTracker->HandleEvent (event) to give the tracker the event. This allows the tracker to
get the event immediately, rather than having to wait until the next time the tracker is scheduled.

3. If the device is not tracking, see if this is a responder specific event by calling
GetDistributeEventTo (). If a specific responder has been defined distribute the event to it.

4. If there is no specific responder, see if there is a specific target for the device by calling
GetSpecificTarget (). If there is a specific target distribute the event to it.

5. If there is no specific target, get the standard target by calling GetStandardTarget () .
GetStandardTarget () uses the system target, getting it by calling
TDeviceManager::GetTarget().

6. Once a target has been determined, call target->Respond (event, TRUE). This call returns a
Boolean indicating whether anyone responded to the event.

• Registered/Restricted Application Framework March 15, 1990 2.2.1 - 19

7. If the event is not responded to by the target, call TransmogrifyEvent (event) , asking the
device to transmogrify the event. If the event is transmogrified call
target->Respond (transmogrifiedEvent, TRUE). Keep transmogrifying the event until
either the event cannot be transmogrified, or until someone responds.

The standard positional distribution method is the same as for non-positional events, except for steps 4

and 5. In step 4, GetStandardTarget () uses the layer id in the positional event to determine which
layer's view hierarchy to begin traversing. If there is no layer id, it uses the window list to determine
which window the event was under. In step 5, target->RespondPositionally (event, TRUE) is
called instead of Respond (event, TRUE).

void TDevice::updateEvent (TEvent &)

This only needs to be overridden if the device produces trackable events. For example, the keY1JQ~I<i

An interesting side-aff¢.$.fof having an UpdateEvent () call, ratherln$i.rFij:1J.QWhg trackers to query the

::::::;:::::::.:-:.:.:.:.:::.;.:.:....:.:.:.
{\t~~ .. . -; .

:::~:::~:~~~~~}{:~~~:~~:~~::;:::: ::::::

".:::::-:.:.:.:.:.:
....::;::::.:::.;.::;:;:;:;::::::.:::.:.:..

.................:.:.::>.;.:.:.:-~.: < .

::::::::::::::<:~:~:~;~~~:;~~~~~:;j~\;jlj;;;:::

.:.:.:-:.:-:-:::::-;:::;::;:::::::::::::;:::.

.:)i\i:\jj:~::j:}/
TEvent* TDey~§~·.r:;:@#.:~#·~ffi:9grifyEv1~~:::(:TEvent *event'}:\\~l::·\:·.:;j\:1::\~j:j~:!:.:!:-:·::jt

Attempt to transirt6gl"ify":~:*~~~lli':'::It:if:i~ni6ttransmogrified,delete th~:::~4~~~),:J~:~<:l[:~ttlrn.N±L.If the
event can be transmogrified/perform the transmogification, either in place>6fbycreating a new event.
Call TEvent : : SetDeviceClass IsActingLike () to set the correct device class for the newly
transmogrified event.

Return the transmogrified event as the return value. This allows you to either modify the original event,
or to create a new event to be returned.

void TDevice::AppDidActivate()

After the application becomes the front app, it calls this method for every device in the device manager.
Override this method if your device needs to know that the application was activated. You do not need
to call the inherited method.

void TDevice::AppDidDeactive()

• Registered/Restricted Application Framework March 15, 1990 2.2.1- 20

After the application resigns as the front app, it calls this method for every device in the device manager.
Override this method if your device needs to know that the application was deactivated. You do not
need to call the inherited method.

Boolean TDevice::IsUserVisible()

Some day, some how, some one, will write a desk accessory to display the names of the input devices
attached to the system, and let you change them. Obviously only those devices that are user visible
should be displayed.

Methods You May Want To Call

;;;;;;~~:~~~'111111"lilll'[TToken &de~:;~ilii~II~~~!j~:::en
See if there is a device With class deviceClass and name deviceNari@}:XRefuir{it if there is, return NIL

TDevice*

Boolean
const;

void TDevic.~~~#:~::::i:I~:~#*lk~(const
const;

(\\{::::-:-:-:-

TToke:;~II!III~ass, .illl.. id:Vices)
. ·:·:::::::H:n~:::::\>::::<:<

Return in devices all devices that match the class deviceClass.

void TDeviceManager: :Get~~ttached(constTProperties &withThisPropertyList,
TSet &devices) const;

Return in devices all devices that satisfy all of the properties in the property sheet
withThisPropertyList Currently unimplemented.

Devices

See the individual device for methods you may be interested in.

'* Registered/Restricted Application Framework March 15, 1990 2.2.1 - 21

Writing New Device Objects
The simplest device is TLayerDevice, the logical device used by the layer server to distribute layer update
events. You should look at this code first, and then the mouse and keyboard code for more information.
Trust me, it's easy. .

There are three pieces of code that need to be written before a new physical input device can be attached
to an application. One, the ISR, orInterrupt~rviceRoutine, is a small stub of C or assembly code that
passes information to the Access Manager. Two, the AccessManager is a C++ object that does not run at
interrupt time, but when combined with the ISR is equivalent to a device driver on the Macintosh.
Writing an ISR and Access Manager is completely out of my league, and personally I'd be appalled if I
ever had to get anywhere near that stuff. See the Opus Spec for writing such things.

The third piece of code, the device surrogate object, which descends from TlnputDevice, exists in the
application's address space, and insulates the application framework from having to talk to the

~~!~~f~1:~:~}}jlllllff~~i~~E~n~l~1~~al

• Registered/Restricted Application Framework March 15, 1990 2.2.1 - 22

Responders

Architecture
MResponder is an abstract class that implements the ability to receive and handle events. Any object in
your application that responds to events from either within or without your application should descend
from MResponder. You generally won't need to subclass from MResponder directly because most of the
classes that you will want to subclass from are already subclasses of MResponder.

Caveat emptor. The responder architecture assumes that you are using it from the main thread of the
application framework, and is not protected by semaphores to stop you from doing something stupid. Of

......:.;.:::::;:-:.: .

Because of C++ compile time limitations, every handler function must be of the same type. Every handler
takes a TEvent * as a parameter. Inside the handler function you must cast the TEvent * parameter to
whatever object you uknowH it is, e.g. to a TMouseEvent * in the mouse down handler. Unfortunately
without run-time type checking it is impossible to be sure that the stimulus is actually the object that you
think it is, and so the type cast is unsafe.

Class Diagram
See first page of this chapter.

Usage

• Registered/Restricted Application Framework March 15, 1990 2.2.1 - 23

There are five macros that you must use when defining a new responder subclass. In your class
declaration must include the ResponderDeclarationsMacro () like this:

class TMyClassName : public TMyClassesParentsName

ResponderDeclarationsMacro()

public:
II your stuff here

protected:
II more of your stuff here

private:
II even more of your stuff here

} ;

. :.:::::..
. '.::::::::::::::::::::::::~:~:::~:~:~:::::::~:~:):~:~:~:~:~:::~:~::::: :::::::::.:::::.:.::::::::::>:.:::.:::::::::::::::."

ReSPo~#~~#9P.A~t.ructorBeginMa¢'#~{k)
ReSpo#~~Hs89P~#::#¥FtorEndMa.~i~e:jH::-

::::7:::::::::::::=:::::::::;:::::: _,"::.::::::::::>:::;=::::::::.:_:._.

The three paramters to the ResponderDefinitionsMacro () are
• your class's name
• your superclass's name - if you are using multiple inheritance then this must be the class that

descends from MResponder
• ExecuteMyResponse(stimulus) / / this must be typed exactly like this, capitals and all

The last macro, RegisterResponseMacro () is used to associate handlers with event messages. This
macro must be used in between the ResponderConstructorBeginMacro () and
ResponderConstructorEndMacro () macros. To associate three different handlers with incoming
events, you would write the following:

ResponderConstructorBeginMacro()
RegisterResponseMacro{TWindow, "MouseDownu

, HandleMouseDown)
RegisterResponseMacro{TWindow, "Close", HandleClose)
RegisterResponseMacro{TWindow, "ZoomU

, HandleZoom)

• Registered/Restricted Application Framework March 15, 1990 2.2.1- 24

ResponderConstructorEndMacro()

The three parameters to RegisterResponseMacro () are
• your new classl s name
• the string you want to respond to
• the name of the handler function

The handler function must be a MResponderResponseFn which is defined as

typedef Boolean (MResponder::* MResponderResponseFn) (TEvent *);

meaning your handler declarations would look like

Boolean TMySubClassName::HandleMouseDown(TEvent *event};
Boolean TMySubClassName::HandleClose(TEvent *event};

Whe:O::::aT::::rCf:)liifllll.~:::~ c:t~::~E~ent * R~mm~!i;i~;Z~:::~er

Methods

void

void MResponder: :willingToResignTa~4~#.::t:j:

void MRespon~ft;:g~qomeTarget() ill11'I1
f

void MResPori~;~:!~I.:~!~~iiAw~:f~.~~Jl.-:-::::::t:~::::j~~}//
mff~::;:::"

void MResponder:>ip~#A#*Y~#.~T~fget()

void MResponder: :ActivateTarget()

".;;:";:}:-:.;.:.:.;.,

.:.::;:~:>~~~~~~~~j~~~: ~ ~~;: ~:~:::: ::::.;::::':

• Registered/Restricted Application Framework March 151 1990 2.2.1 - 25

Methods You May Want To Call
See the Usage section for a description of the four responder macros that you must use.

void MResponder::IsEnabled()

Call this to find out if the responder is enabled. If it is disabled it will not respond to any events, nor will
it pass events on to its next responder.

void MResponder::SetResponderNa.me(const TToken &)

It is possible for you to name any or all of your responders. Once named you can look them up by name
and class. See MResponder: : GetResponderFromClassAndName ().

static MResponder* ~.~p.9.~.4~.;..; ...;...c~g.t..~.~P9B.g.erFromclassAndNa.me (const TToken.

The Respon:~iltl.9~k
.:·:::::::;:::;~:::::~:::::~:~:~:~:~:~~~~tt~t~:~:~}:::::::::::::;:':'"

....: ::<::.:::.:::::.:.:.: : .
"-:';:;:;:;:>:;::::::<:::::::;:;:::"

• Registered/Restricted Application Framework March 15, 1990 2.2.1 - 26

Target

Architecture
Every layer in your application has its own layer target. When a layer switch occurs, the layer manager
sets the system target to be equal to the new front layer's target. Before the layer switch occurs, the _
system target is told to deactivate, and the target is temporarily set to the application. After the layer
switch has occured, the newly-front most layer's target is told to activate, and the system target is set
equal to it.

The target is set by calling SetTarget () on any view in the layer (it's a view method). If the layer is

The target is automati(#~ny changed every time the user creates a targ~t:mi*-g~p'g event. The most

Usage

Whenever a layer switch occurs the following actions take place:

• System target's DeactivateTarget () method is called.
• System target is changed by the view system.
• New system target's ActivateTarget () method is called.

You might use this to perform inactive hiliting on text or graphic selections. For example instead of
hiliting selected text you could put an outline around it to show that it is selected but not active.

Setting and Getting a Layer's Target

• Registered/Restricted Application Framework March 15, 1990 2.2.1- 27

Each layer keeps track of its own target. You can get it by calling GetTarget () on any view in the layer,
and set it by calling SetTarget () on any view in the layer.

The view system changes the target whenever a mouse down (or any target changing event) occurs.
When such an event occurs the following actions take place (assume that the lay~r that the view is in is
already front most):

• User clicks in a view
• The view's WantToBecomeTarget () method is called
• If the view want's to become the target, call SetTarget (this) on the view.
• SetTarget () calls the current target's WillingToResignTarget () method.
• If the current target is willing to resign, call the current target's ResignTarget () method, then

the new target's BecomeTarget () method, and finally set the system target.

See the chapter 9~:.:~~~::·t,~tg~t:Techanismfor 2Bj:~triformation.
....... :::::::>::::::{:::::=:=::::; :.:.:.:::::::::::::::. ..·}:~tit~~::::··

void MRespon~;#jW$$+$#.gWpg$:~:~gi#ra·rget()

..:.;.:.:.:
..........

.<::::::.:. .

...:::::;::::}: .

"",<"",',. i.i.•.:,.•..:.••••'.•••••.•••. i. .
....-:.;. ..:::::.:-:-:-..;.;. .

.:::::>:<::.:-:.:-..:.:- .
.. :::::.:.:.:::::-:::::::-::: :..

..;-:.:-:- .. :.:-:.:-:-:-:-:.:.:.:-:.:.; ..«.;. :-.. '-:':-:':':':-:'»:-:-:':-:':':-:-:':-.. , : ,.. ' - ,., .

Before the target is:~~~:~~~dT~H~:8td:::t~~~~tis first asked if it is willing to ;;~i':::tH~t~fg~:L::~he default
behavior is to return TRUE. Override this method if you want to want to do some checking before
releasing the target. This could be used, for example, to perfonn edit checking before allowing the target
to change. You do not have to call the inherited method.

void MResponder::BecomeTarget()

Override this so that your responder object gets informed when it becomes the target. You do not have to
call the inherited method.

void MResponder::ResignTarget()

Override this so that your responder object gets informed when it is no longer the target. You do not
have to call the inherited method.

v9id MResponder::DeactivateTarget()

.. Registered/Restricted Application Framework March 15, 1990 2.2.1 - 28

Override this method if the responder can be a target, and you want to know when it is deactivated.
Deactivation occurs when the layer in which the target is placed is no longer the front most layer. You do
not have to call the inherited method.

void MResponder: :ActivateTarget()

Override this method if the responder can be a target, and you want to know when it is activated.
Activation occurs when the layer in which the target is placed is becomes the front most layer. You do
not have to call the inherited method.

.& Registered/Restricted Application Framework March 15, 1990 2.2.1 - 29

Usage

Trackers

Architecture
Trackers are objects that receive time while the user is tracking a user interface object. Tracking typically
involves an input device such as a mouse, but may result from a user script.

When an event occurs, the responder that handles the event decides whether tracking is required, and if
so creates a tracker object. After instantiation, the tracker object is told to StartTr a eking () ,
whereupon the application framework places the tracker on a tracker queue. Once on the queue the
tracker receives time sYnchronously, Le. within the application framework's main thread. All trackers on

~~~~;~~~~~:~~~~IIIII'l(~~~~~~~~~~lli.!~~:~;~:~g
tracker's get time. When:::~h event arrives from a device that is current.btR@n1g:::tr~cked,it is given directly
to the tracker. The tracJ@t'looks at the event and decides if it is a traf¥~N9.Pmpl~fion event. If it is a

;~::el~:~~::::t~::I.ki~ii~~~;~:~~~:~:I~S:~:~;:'h:llllllt~o%:re:~~~ca::t:~:~()
...:.:.:::.::::::::;.:.: .

.' :?::~:)?~~~~~t:/:::::::..

..................... :-:.:-:.:: }::;:::::::::;:::"-:
.... ?f}~I~~%@f~If~{~): «,:", :::.::.:::::: ........ t::;:::::::::::;::::::'
::/tj~mHtri{{t~~~I~::::~:~::: .:.:.:-:.:.:.:-: ..
-.:.:.:.;.: :x::::::;:-:·::::;·:::::::.

.:::::::::::::::::::::::. ....:...•.:•.. :>::::::::::::::::
.:::::::::::::::::::::: ..:;~~~;}}}(\::::::;:;::: ...

,:::::::;:}:::=::::' :.:::;'.':'.':.::'.... ':':'. "<::::::::::::::::::::::'"

'.'..:.:.. . . .. ..:f{}~~~~~::;:., ..:?~.j ':~':: ~.:':.:.:~i.:~.~.:.~~.:.: j;.:~~.~ ".;~ ;.:~.r.j.~f.: ~.~ ~j.~ '.:~.~ ~.I~ :.::.:~.,t
::::::::::;::::::::::::::: :.-.:.:.:.;.:.; :}::::::;:::::}~\., _.:-:::(}(~~::::." .

When one of youf·p~#9J~f$)~~~M~~:~~l~~#Fthatshould be tracked;:Ji:dH'::~Y:J~itherin§·t##~i~:nta tracker
object and call its Statt]t:~¢19ttm)m~ID6d;orif MTracker has been mixedir(~g:~h9p'j®t)'Y6timayjust call
its StartTrackingO meth6d~>Aftef'sfurtingtracking, you should set a flag in the::6bjecfbeing tracked so
that the event handler will not allow tracking to occur with another input device until tracking has
completed.

There are four tracker methods that get called by the tracking framework - TrackFirstTime () ,
TrackFirstContinue (), TrackLastTime (). TrackFirstTime () is called with the originating
event, and you will probably want to record whatever initial state is important to you.
TrackContinue () is the work horse routine, and will get called either periodically, or whenever a still
tracking event occurs, such as a "MouseMoved" event. TrackLas t Time () is called when the tracking
completion event is received. .

The calls TraekFirstTime () and TrackContinue () both return a tracker. Typically the return value
is the current tracker, but it is possible to return a different tracker, allowing you the flexibility to switch
trackers in midstream. This has interesting and powerful consequences. If you are tracking multiple
objects, say a hierarchical menu, or are connecting blocks together with a wiring tool, each object knows
how to track itself. You don't want to try to build the tracking of every possible object into one tracker, it

• Registered/Restricted Application Framework March 15, 1990 2.2.1 - 30



is much better to pass the tracker "baton" from object to object, allowing each to track itself (polymorphic
tracking!). To do this requires a tracker passing protocol. Such a protocol is fairly simple, and is
documented below.

The tracking framework handles several things for you. First and most importantly, after the call to
TrackFirstTime () and between each call to TrackContinue (), the framework calls the initiating
event's UpdateEvent () method. This forces the device that created the event to update the information
in the event to the current state, e.g. the current location of the device's cursor. Your tracker should never
query the device directly because there is no guarantee that what you want to ask is available. For
example, it is easy to mimic mouse events with a script or the keyboard, and if you assumed that the
device that created the "MouseUp" event was a mouse you could cause a run-time error.

Another important task that the tracking framework handles is tracking completion. While tracking, all
events created by the device being tracked are sent directly to the tracker, by calling its HandleEvent ()
method. HandleEvent () decides whether the event should cause tracking to stop. If tracking should
stop, HandleEvent () call§::::I:f:~9:fJ~:?::§J~::I+m€t(L::wHhJhecompletion event, and sets the ph'3.:§.~J9::.::::::\.:

The class TStdMouselticker implements the standard mouse trac~grmQ~l.)~YiQid:nits HandleEventO. It
looks at the incomingJ~Y~9ib~B9jUt~~a still tracking event like "MQij~:Miqymf~l' it calls TrackContinueO
and returns. If the ey¢.p~j$:JkrM§'~H~¢.gp.K)JcallsTrackLastTimeVW4.@"pitoo;iJb¢ device from the tracker so

.... .. ..

:.:.: ~{:::::::::<""-:"

..
.....

.. :::::::::}}~{{:::::'-:-:'"
......

........ ~:/:~)f;}(U/<
.........:.;.:.:.;-:-:.:<-:.....

::::::tro:eJ:i;;i;~:~;;:1~~__!:a~: ::tVy::tnJlI'r~?rm anYi~jiitjJiting.
You should only que~)/th~~;hi~ritYpa;ameterfor information. Because it is:J£:~y::iSPdk:vt~~s to synthesize
events from other devices <e.g. mouse events by a DataGlove), and because user scripts will also be able
to synthesize events, you must be very careful to verify the real type of device before querying it. Asking
a user script for its cursor location could have runtime consequences.

The return value from this method is a TTracker*. Typically you will return this. If you want to change
the tracker, you may return any other tracker. You are responsible for deciding whether to delete the
current tracker, or whether you should maintain a reference to the current tracker in the new tracker so
control can be returned quickly rather than having to ask an object to reinstantiate the tracker.

If you return another tracker, it is your responsibility to determine whether the tracker's
TrackerFirstTime () method needs to be called, and if so to call it.

5. Trackers that are mix-ins to other objects probably shouldn't be deleted, but those that are
created on the fly probably should. The method DeleteOnCompletion () returns FALSE by default, if
your tracker should be deleted upon completion, you should return TRUE.

'* Registered/Restricted Application Framework March 15, 1990 2.2.1 - 31



TTracker* TTracker::TrackContinue(const TEvent &event)

You must override this method. Unlike MacApp, which has three methods - TrackConstrain (),
TrackFeedback () and TrackContinue () - here there is only one, TrackContinue (). Many
people had a hard time deciding how to split their tracking code into the three methods, so we make one
call, and let you either do all your tracking there, or you can add methods like TrackConstrain () and
TrackFeedback () if that makes sense in your case.

You should only query the event parameter for information. Because it is easy for devices to sYnthesize
events from other devices <e.g. mouse events by a DataGlove), and because user scripts will also be able
to synthesize events, you must be very careful to verify the real tyPe of device before querying it. Asking
a user script for its cursor location could have runtime consequences.

The return value from this.~~~.h9..9..J~.~.':I.:'..!E.?.s.~.~.E.~ ..~......Iypically you will return this. If youw'ln~JR~range

... :-:.:. .:.;.:-:::::-:

..:-:.;.:.:.:-:.'-'. ..:·.:~.~~ ..;~·.{.:~·.:t.;~.~~:.:~.}. ... ..... .:-:.:.:.:.::;:::::;:;:::;:::::::::;<.;.

void TTrac~~;:E:8:}t~¥:i~~yent(const.::t##¥knt &event) '\:::::[f~:~:::::ff}m~~:::::m:\
............. "":'-':"'-':-'.::::::::::::::::::::::;::;::::-;., -.-:::::::::::::::::::::., -.:::;:.;:::::::: )}~::::::

:::::::::;:::;:;:::::::
.;.:.;....

This method is called whenever an event from the device being tracked is distributed from the event
queue. You should look at the event name, and decide if this is a tracking continue event or a tracking
completion event. Your code should look something like this:

void TStdMouseTracker::HandleEvent(const TEvent &event)
{

static TToken eventCornpletionNarne{~MouseUp");

static TToken eventContinueNarne(~MouseMoved");

TToken eventNarne;
event.GetString(eventNarne) ;
if (eventNarne == eventCornpletionNarne)

II Stop the tracking
TrackLastTirne{event) ;

• Registered/Restricted Application Framework March 15, 1990 2.2.1 - 32



II Unbind the source here so that no more events get sent here.
event.GetSource()->UnbindTracker(this) ;

II This tells the tracker queue that it should remove the tracker
II from the queue rather than giving it any more time.
SetPhase(kTrackCompleted) ;

}

else if (eventName == eventContinueName)
{

II Keep tracking on MouseMoved event
TrackContinue{event);

}

else

void

~;;~;;~ilIIIlIllIllIl1l1ll1ll1'~::HandleEvent
.;.:.:.:.:.:.;.

got an eve.nt/:\;;e Ua6W, t..........................;.;.;.:.

"':::;:;:::;:;:::::;:;::: :::::::;:::.....
......... .;;;:::;:;:;:;:::::;:;:;::::;.

.....-:.:.:.;;;:;:: :-: .

. .

....<;:;::.;.:.;.;.:.:-:.; .; - .

..::::::: :.: .

..:.:.::;::::.:-: ...:.....

:':':-:':;::-:-:.:.;.:-.- ..
.... :....-;.;.;..-:-:<::;.:-: ....

This sets the view the tracker is currently tracking in. This should only be set by the tracker.

void TTracker::GetFrequency(TTime &time) const;

This gets the current tracker frequency. This method has no meaning for trackers that are based on
tracking continue events such as the TStdMouseTracker.

void TTracker::SetFrequency(const TTime &time);

This changes the tracking frequency after the next time the tracker gets time. Of course this method has
no meaning for trackers that are based on tracking continue events such as the TStdMouseTracker.

• Registered / Restricted Application Framework March 15, 1990 2.2.1 - 33



TrackPhase TTracker::GetPhase() const;

There is really no reason to ever call this since you know the phase by which tracker method is called,
TrackFirstTimeO, TrackContinueO or TrackLastTimeO. The tracking framework calls this to see if the
tracker should be placed back on the tracking queue.

void TTracker::SetPhase(TrachPhase phase);

This should only be called inside HandleEventO. Calling it at any other time could have interesting
consequences.

Tracker Passing Protocol

E~~i~oF~f~~es~~:~~~jil.'llllll~;:~~~~!~~~~:i~~]~jij\fh~ri
You will need to create a :*~NI~i;iP~~!#g~~pt9~§'f*Mrfhis protocol is not supp~M#@kpyHheapplication

~:~~:~:~ia~~thc~:I~hfs:~lg~:hTiribn=:pr6l6c6riif6bserved.A descri~:~~llil'lllllllll~rprotocois is the best

When a tracker is chan~lif~l:w:Pr§Y~.~us tracker is not deleted by th!!:~IIIIII!I!fi~:~ework.You might
want to keep a pointer:J9.;]lj¢~i;pt#.mQHW![~wJ5.er so that you can ret'*ftn~r#t@Qij@ffuturetime, rather than

Hierarchical Menus
:::;::~;.;:~::::::}}~{{:}~{:~::: .

.:-::::;:::::;:;:;:;:;::.:-:.:.:.: .

TakeTracker ().::::m~t:lj§'9c::.Thedrop down me6Hj~19bksat the mQH~::pq~Pt~:'~nd if the pot,nt:t§i:~n~·:~ij~<
menu, returns a :ft.a¢R¢'H:}tb.g~:menu bar returI"l$.iiU\~{newtracker fra6£:j$i~w.it~i¢kContinu$.i]:")~·::m¢tbod,and
tracking continu~:·i,:N·~~:-:W~#~~~\N9~ceth.ftJl.1~:~fuenubar has no id~~:::&9:W:~!9.\trackinsiq~'~'4F:QP:aown
menu, it is the me~9~§t~~P9n~~9jliW'JR:·tr~$~::nself.This allows new men,i~§:t,g;:~use<.i~:9rqpdown
menus without haVirtg:tQ$fmp:$.:~b~::meriubar's tracking methods.::<::::~::nUHm:::{>··q· '" .q

If the drop down menu has an item with a hierarchical item, it would display the hierarchical menu when
the item was selected. As soon as the mouse leaves the drop down menu, it first calls the hierarchical
menu's TakeTracker () method, and if that returns NIL, calls the menu bar's TakeTracker () method.
It continues to call the TakeTracker () methods until either one of them returns a tracker (indicating
that the mouse entered that menu), or the mouse goes back into the menu.

Multi-Column Page Views

Mouse down in a view which creates a tracker, and start it tracking. If the tracker leaves the view, ask the
super view to TakeTracker (). The super view is presumably some kind of page view, which has
pointers to all columns on the page. The page view asks each column to TakeTracker (). If none of
them respond then the mouse must be either off the page [auto scroll?] or in between the columns. As
soon as the mouse enters one of the columns it returns a tracker from the TakeTracker () call, which
becomes the new tracker.

• Registered/Restricted Application Framework March 15, 1990 2.2.1 - 34



Connecting Blocks with a Wiring Tool

Same as for a multi-eolumn page view. Start tracking with the first block, then when the mouse leaves
the block ask the super view to TakeTracker (). The super view will in turns call each of the other
block's TakeTracker () method. When one of them returns a tracker you know the mouse has entered
it and you can continue tracking with it

• Registered/Restricted Application Framework March 15, 1990 2.2.1 - 35



Views

Architecture

~ TGraphicApplicalion

Content View

gle-level window system. Second, a simp1~::Y!~m::~~m~::~ore pr~m¥:~tf~J?RjW;t~:~han a wind9:wt~~~:m9§n}9t
have a structure region, title bar, close box, 6(:i9.)'h~r~~graphic aqR~'~~t:~gs just an are~j~:rS!A:P~)

1:;~~~a~~~i:;ti~~t~~:~lr~~~~~~~~~~~n~r~~Ii.lT"I~r~~~~~'I:III~ltc~~:i:~~kl'~i~r.i;l~i~~C~-

~f{jJi~ff~.~ii1~~l~~i'!;f~¥~l!II~:~!~~llf~~:~:-
........:.: :-:::-:::::::::;:::::::::::-: . .

Because of the preemptive nature of Opus/2, there are multiple resources which need to be synchronized
for concurrent access by competing tasks. These are the View System itself, the layer, and the graphic de
vice being drawn on. Although there is at most one view system per Opus/2 team, it still needs to be
shared among multiple tasks (threads) on that team. In order to protect the developer from having to do
a lot of explicit concurrency control, the View System may normally only be used from the main thread of
the application framework (a.k.a. the interface task), the same thread that distributes events, and which
gives time to trackers and idlers. Any task may draw in a view, but only the interface task can modify
view attributes, such as size or position, or create and delete views.

• Registered/Restricted Application Framework March 15, 1990 2.2.1 - 36



Any task other than the interface task which wants to accomplish these ends can do so by posting an
event to the application's event queue. The responder which receives the event (which could be a view,
since views are resporiders) can make any call it wants, since responders execute in the interface task.

The layer itself is SYnchronized separately. The visible region part of the layer iI)formation must always
be up to date to prevent an application from drawing on an incorrect portion of the screen. The interface
with the Layer Server is carefully controlled inside the View System to prevent an errant application from
keeping the layer semaphore and locking up the whole system.

Finally, the Albert graphics system SYnchronizes access to the frame buffer on a device by device basis;
the Toolbox is not involved. -

Usage

Types of Views

.:.:.:-:-:.:.:.

....:.....;...

The other option is to allocate a 1ViewPort into which you may draw asynchronously. A view port is a
descendant of the TGrafPort class defined by Albert. Every view port is associated with exactly one view
and exactly one task. A view can have many viewports associated with it, however, and a task can also
have multiple viewports at once. Once the view port is allocated, the owning task can draw in the view
whenever it wants, although the developer must SYnchronize simultaneous drawing to the same view.
[???]

The view port can be used either for animation or to process updates in background. The latter is accom
plished by overriding TView: : RefreshInterior () to return FALSE, which indicates that the update
was not performed synchronously. When the application is ready to start processing the update (e.g.
after creating the task to perform the update), it calls the view port's BeginUpdate () method; when
drawing is completed, EndUpdate () must be called.

• Registered/Restricted Application Framework March 15, 1990 2.2.1 - 37



Building View Hierarchies

When designing the contents of a window it is useful to break the window down into logical
subdivisions. For instance in a page layout program, or word processor, there are columns and pictures
along with user interface controls such as scroll bars. In a dialog box there are areas with editable text,
areas of scrolling items, areas of static pictures and text, and user interface items such as check boxes and
buttons. Using the TView class it is possible to match your logical subdivision with a physical
subdivision.

The benefits of matching the physical to the logical is that the handler's for each of the separate items in a
window can be self-contained. Check boxes can handle their own checking and unchecking. Buttons
know how to click themselves, text boxes know how to edit the text entered in them, and a dialog box can
impose an order on top of all of these items, for instance tabbing properly between them.

There will be cases where Y().tl..C:(;l~.~.s.?fu~ ..IY.~~.\y'.C:.~(;l.??.9irectly, but more likely you will want tc.>... §HPflass

~~£~~;;I::£=rf..:.::.a.:..:.l•..r.m£.•·.r•..11111l11'~~~~f~~~:0!~~~~~~f:iii!~Jt·~~i;~m
Unreso1ved ~i§ueS;;illill;III'IIII!,i~III;¥N
There are still someJ.ffi~~~glYj;\i:l;j!il\];!'WLinthe architecture oft~~iillll.~. These include:

·~:~f~:~1.i.r.i.,.F.••.•~.h.:.:..::a.•~....t.·o..eg:.':'.~.:..~~.I..~.:~~:~no~~~~~IJ~:~::~~_illlll;~~:~~1:;R~lilli~- as
::"'''':::::'::;':';;' ;.:;........ .. . ......;:;~~:;::::l:~I:?:/·· ··\::;\::;·:.::::·:1:::·:::[j::~::j::::::::::·:~::::::.:::::;:. ';:::...:"':..

• The perfomiit~~~·:()f:tl{~:~Yn#P:r9q~i.~tMh mechanisms we have·';bhp~¢~h\'i.ll havet.b:·~¢.··dlrefully
measured to eI1.sutet'llfl.t#Ij~:9.V:~fhead is acceptable.:·::::::::::t ::>;::::>.... ··

• Support for networked views.

Class Diagram

'* Registered/Restricted Application Framework March 15, 1990 2.2.1- 38



( MPrintable ) ( TViewPort )

TView

Methods You Mallat"'ltl,lf
void Refre~~ackground(TGrafPort*);

.:::::::::::::.

Boolean

void

void

void

Boolean

void

void

Boolean

void

Refr~$h.Se.,l.f(TSeed, TGrafPort *);
.......................:::::.......................•..........

IsVisible() const;

SetVisible();

MResponder* GetTarget();

void

void

void

void

SetTarget();

ContainerToSelf(TGPoint &) const;

SelfToContainer(TGPoint &) const

GlobalToSelf(TGPoint &);

• Registered / Restricted Application Framework March 15, 1990 2.2.1 - 39



void

Boolean

Boolean

void

TGPoint

void

TGPoint

void

void

void

void

void

void

void

void

void

void

TView*

TView*

Boolean

void

//void

Boolean

TView*

void
&newLoc) ;

void

SelfToGlobal{TGPoint &);

Contains{const TGPoint &) const;

ContainslnSelf(const TGPoint &) const;

GetBoundary{TArea &);

GetLocation() const;

SetLocation(const TGPoint &);

GetSize() const;

SetSize(const TGPoint &);

:::~'illlll"II'iIF
AddV~~,Before(TView*view,

SendToBack(TView *);

SendBack(TView *);

/:~~~I#~~~~:.();

SetDrawClipped(Boolean);

InvalidateClipped(const TArea &);

IsSubView(const TView *);

FindSubView(const TGPoint &);

SubViewMoved(TView *view, const TGPoint &oldLoc, const TGPoint

SubViewChangedBoundary(TView *);

• Registered/Restricted Application Framework March 15, 1990 2.2.1 - 40



void SubViewChangedvisibility(TView *);

• Registered/Restricted Application Framework March 15, 1990 2.2.1 - 41



Windows

Architecture
Windows are views that appear on the Pink desktop. Typically each window appears in a separate layer,
but it is possible to place several windows in a single layer.

Windows know how to drag, grow, and size themselves, responding to a variety of events such as
"Move", "Drag", "Zoom", and "SetAppearance". Every window has a title, but need not have a title bar,
allowing windows to be found by name.

It is inside the contentn:~wthat you will place the views used by Y9HN!ppY§#6n. If you have a simple

See first page of this chapter.

Usage

Parameters to the 'Wirid()~~;'$,¢PiWttlltt6f:~liowyou to:
• Place the window in aseparate layer or not
• Use the standard title bar or not
• Place the window into one of six layers
• Place the window either front or back most amongst other windows in the layer

If you do not place a window in a separate layer, you must place it inside some visible view to make it
visible. You may either place it directly in an existing layer, or you may place it in any other visible view,
e.g. another window.

If you choose not to use the standard title bar, you may either display the window without a title bar, or
provide your own title bar.

By default, new window's are placed in the document layer. Supplied window subclasses, e.g. menus,
menu bars and windoids will place themselves in their correct layers, so you will typically have no need
to override the LayerKind parameter. The kinds of layers in their order of appearance (from top to
bottom) are:

• Menu Bar Layer

• Registered/Restricted Application Framework March 15, 1990 2.2.1 - 42



• Menu Layer
• Alert Layer
• Tom-off Menu Layer
• Windoid Layer
• Document Layer
• Desktop Layer

Methods You Have To Call
void TWindow: :Init()

Because of C++ limitations, it is impossible to correctly set up several window parameters correctly until
after the constructor has been called. After creating a window you must call the Init () method to allow
the window to properly initialize itself. A window will not become visible until after its Ini t P.~~thod

hMasbeetenhCoalldeds. You:.:::...::::.:....::..::~....:!:...:!".:i.:.·•..:.::x•.:·..:.·..::.·::.·.::.··..:.·.:!:.·:·.:·..:·I.:..::.•".:.:I...:••!.:...:•.:••:.:,:•.I:••:•..:.ai.•:;..••.:·.:•.\.:.:·:i:·.::·..:·.:I.:.:~.:..••.:·.::.:.•.:.I.:••.•..:••..::..••..:!...:.·.·.:•.•..:·.•.:.::.:·x..:.!.::.~.i•.:!...:.•.::·.:..:·..:IA...:I..:·.:..:·.:.:••.:·:.·...:·.:..:.l.:•..:·:••:·.::•.•..:.!...:·.~i..•..:••:..!.::.•.::.•.~::.:::.•.:..:•.:••:~::•..:•..::.:.:::·.:!..:i.:I:.:·.:.:j.:.:••·.:.,.i.:!.:·.:~.!.::·.:.:·.:.:·..::.!:.:~•...:I:.:.I..:pr.·.:!.I...:J.:..••..:·.:i.::.I.:·.!..:.•:!.:..:.·.::!.~..:j.n.:!..:.:..·.:;.:.j::.•.:·:::J..:'.~.::.·:•.:•.•.~ioJfverrl-de ... ,}$);.. #.:;!jij;;,·;;;;
xn J¥YLX~dtt;t'I;I~lll;I;I!I!jii

TContentFrame* T~;¥dow::CreateContentFrame();

:-:.:.:....
:.:."

M th d ·V:::·::-:::::··.1\.··:-::.:.<.II'-:.:·:> ...·.-:··.:·-::TA¥:::::::···· t Telle 0 S .lOu:.J;Y:.l.ay::vvan 0 a
.... :-:: ..::.:.:.:::.:::::.: :::::.:.....:-:: •.•.•:.):.):.-m::/>::.

'':<:::;::::;~:~:;~}~::::::::::'.: -::: ;»:. ..

TContentFrame* TWindow::GetContentFrame() const;

This call allows you to get the current content frame. Along with SetContentFrarne () it is possible to
change content frames on the fly <though why you would want to do this is not immediately obvious).

void TWindow::SetContentFrame(TContentFrame *contentFrame);

If the new contentFrarne is NIL do nothing. If there is a current content frame, all subviews, if any, are
removed, and added to the new content frame, the current content frame is deleted, and the new
contentFrarne is installed.

TView* TWindow::GetContentView() const;

Get the current content view, if any. The content view is owned by your application.

• Registered/Restricted Application Framework March 15, 1990 2.2.1 - 43



void TWindow::SetContentView(TView *contentView);

Removes the current content view, if any, from the content frame, and installs the new contentView.
Does not delete the current content view.

void TWindow::GetTitle(TText &title) const;

Return the current title in title.

void TWindow::SetTitle(const TText &title);

Set the title to title.

void TWindow::SetSizeUsingContentFrame(const TGPoint &contentFrameSize);

Set the size of the window .....r\T"\f"£~T"\f" frame to be

'* Registered/Restricted Application Framework March 15, 1990 2.2.1 - 44



Menus

Architecture
Menus are just windows that reside in a menu layer. The menu layer is below the menu bar layer, but
above the alert layer.

Menus have pre-defined trackers that make it easy for you to specify Pink style menus, both textual and
graphical.

'* Registered/Restricted Application Framework March 15, 1990 2.2.1 - 45



Controls·

Architecture
To be filled in later.

• Registered/Restricted Application Framework March 15, 1990 2.2.1 - 46





" Registered/ Restricted Cher March 15, 1990 2.2.2-1





CHER ERS: The Next Generation
Arnold Schaeffer

x8117
Larry Rosenstein

x8123

Cher is the Document Architecture for
Pink. Its main goal is to raise the base
level of Pink applications by enabling
several new features such as multi-level
Undo, hypermedia linking, annota tions,
real-time collaboration, and content
based retrieval.

Although many of these fSgJy.:W:?::?fe
available in existing:M:~ghMQ.s}Ftlp:plica-

• Registered/ Restricted Cher March 15, 1990 2.2.2-2





Introduction

Cher is the Docun1ent Architecture for Pink. Its main goal is to raise the base level of Pink applications by
enabling several new features such as multi-level Undo, hypermedia linking, annotations, real-time
collaboration, and content-based retrieval.

Most of these features are available in some existing Macintosh application. Unfortunately, these are iso
lated cases, because there is no system-level support for thern.1 This lessens their impact because it re
duces the synergy between applications. For example, only a few applications support multi-level Undo,
so users can't count on having this feature available. -

In addition, the lack of system support for these features limits their implementation. For example, there
are applications that allow users to annotate static representations (pictures) of any document, but not the
"live" docun1ent itself. The content-based retrieval applications have trouble accessing the contentsof

........::.:::.:.:-:::.:.::::::::::::::::::::::\:~:~:~:~; .

.:-:.:-:.:.;.;.:.

C ~Zi.p~~~j!£ij.i~~~~e!~~Ef~~~~~J~!'~II~~ii'~!~l~~~~:::
the implementation) and the large bandwidth required to transmit all drawing operations from

one machine to another.3

Screen sharing is an example of simultaneous, real-time collaboration. Cher provides support for a
different kind of real-time collaboration. This operates at the level of changes to the document, rather
than changes to the screen. Potentially, this will be more efficient because the amount of data needed to
specify a document change is usually less than the amount needed to update the screen.

Cher does not specify any synchronization between collaborators. One possibility is no synchronization

1. System 7 does add some support for these features.
2. Again, System 7 will fix some of these problems. In particular, a retrieval program should be able to send an

AppleEvent to the Finder and open the found document(s).
3. Since this form of collaboration is implemented in the graphics system, it is beyond the scope of Cher. Pink will

probably support screen/window sharing in its graphics system.

'* Registered/Restricted Cher March 15, 1990 2.2.2-3



("free-for-all"), in which the participants would be able to make changes at any time. The participants
would be forced to adopt some ad hoc conventions to prevent chaos, but these wouldn't be imposed by
the system.

It is likely, however, that the user interface above Cher will implement some kind of protocol for passing
control from one user to another. For example, there would be one person who' "has the Hoor" and can
pass control to another collaborator.

Alternatively, each user could attempt to acquire a network semaphore when she started to pull down a
menu or modify the document. This provides synchronization without any explicit user action.

It is also useful to have asynchronous (Le., non real-time) collaboration. One form of this is the ability to
annotate a document. Cher provides low-level support for annotations through its linking mechanism
(described below).

The straightforw~;d::::~for.Cher's 10w-leveIJ!:Q¥~hgmechanis~::.~:~:::~~::;'W~~users to cre~t~'::l:i:::~::~;~twcen
documents, navl!mt.e· t~o.$e tinks, transfer qaptatross them, etc. ···<·r·:~:··::r::\::"·.·:· .:' '.' .' ::: ..

.:;;;;;;;~;:;:'::':':'.... ..•.......•. ....• :':':':-:<"."." .:-:.<~;(({}~::::::. "::::~:~:~:>::::~:}::::::::.. :-:«.:.:-:-:.;-:.::>-:>.;.;:;:..:.-

This isn't the onl)lti~'t9r!~ilj~J:ih§'w~:V@E::::':Weexpect that links will b;:::tSijij.:.!§:..~mPl~111~hF8ther
application features. lri'theseteafures, the fact that links are created and man"l'pbtHed" will be transparent
to the user.

For example, Intermedia uses the low-level linking mechanism to implement an annotation facility. The
user selects a part of the document and chooses Create Annotation. Intermedia creates a link between the
selection and an annotation document, and transfers the selected part of the document to the annotation.
The user can modify the annotation to suggest a change to the document.

If the author decides to incorporate the suggested changes, she can choose the Incorporate Annotation
command. This simply transfers the proposed change across the link into the document. Neither the au
thor nor the annotator is aware that linking is involved.

4. The design of linking is heavily influenced by the lntermedia project.(Meyrowitz 1986J

5. If the user changes something within the anchQr, then the expected thing happens; the text associated with the
anchor changes.

'* Registered / Restricted Cher March 15, 1990 2.2.2-4



Another transparent use of linking could be to simulate the functionality of the System 7 Publication
Manager. Suppose a tiser wants to incorporate a drawing to a word processor document. She can select
the drawing and choose the "Publish" command, select a position in the word processor document, and
choose "Subscribe.,,6 This would create a link between the drawing and the wor.d processor document.
The system would attach an attribute to the link to indicate the publish! subscribe nature of the link.
Note that the existence of the link is invisible to the user.

Once the link is in place, the system can provide a command that opens the publishing document or any
subscriber. The system can automatically push the data across the link when the published document
changes?

This kind of annotation implemented in Intermedia uses separate documents and windows for the anno
tations. An alternative is to use a kind of marginal note. This is already planned for Hoops, and is being

E

.........-:-:':-:-" ..·.:::.::::::::?:::{j::\~::\::j:t:j\j:I\\:U: ::::::::?nn::>:><:

~toO~ctrhmeat~te~dh~u~nad~rg:.l:·~.:.'~.C.s·:.l.:.::S.~.:.m.).:.e:·f•.::...;.:...;.:.:.~p.••. :.:.;..mmt.:c.h...::.i.a.::.:...L.l.....~...:....dd.t.. ;S~.e~~~:~;~1;1;~:r~:i'II.lt~~~;~1;e
ajlff~t_~~s~~

t:U :OJ '" W:B: ..::::iUfr::::·· ··::::)~:IJ::::::::tr::~::::::::. .. ::.:::::::::::: ::F::::::::::::'
. "::::::: ..:::::?(~:~.:.:... .·.::::~t~tr~:::·· .::::::::::::::::~:~.:::: .::::::::::::::::::})~{~~:~~::::..,

Another benefit~jf·m~lti.l~Y¢t:4P~B·:I$::·~~¢"t~~:g;~dreliability. If every ~bmm~n~::t?-:S'l}'tA,:lh~Hitis possible
to replay those commandsirithe:evtiitt'of an application or system crash.t:h.'ef::WHLuselhe concurrency
control and recovery classes (Credence) to save command objects in a robust manner.

Note that Cher maintains a linear list of command objects. This means that undo returns the document to
some previous state. In theory, it is possible to enhance the undo model to allow the user to selectively
undo commands (Le., undo a Cut command but keep all subsequent commands intact).

The problem is that commands are not independent of one another. A command that copies a shape is

6. I'm just guessing at the current interface in System 7.
7. To integrate a Pink application with a System 7 application (running under the Blue Adapter) we would write J

Pink program that manages the System 7 publication files, and allow the Pink application to link to the publica
tion file.

8. Thanks to Rob Chandhok for pointing this out.
9. This isn't the only place where a good navigation mechanism is required. We will also need a way to visualize
_ the set of explicit links between documents, for example.

• Registered / Restricted Cher March 15, 1990 2.2.2-5



dependent on the command that first created the shape. These dependencies would complicate the user
interface to undo, as well as the underlying implementation.

The best solution is to integrate the undo and scripting mechanisms, for example to automatically create a
script of everything that is done. The user can then edit the script to ren10ve arbitrary command, rear
range command, etc. and execute the script. This gives users the maximum tlexibility and contro1. l0

R
is for Retrieval, Content-based. Increasingly, users have more and n10re infonT'lation available 011

their computers. Local hard disks are getting larger, and there are many CD-ROMs available that
contain hundreds of megabytes of data.

It is impossible to browse through this data without some assistance from the systeln. In the Macintosh,
the only standard tool is Find File, which located document based on their natne. System 7 will provide a
faster version of this integrated within the Finder. Third party developers now provide tools tha t go be
yond Find File and search for documents based on their content. The linking mechanism provid~<:iby

Cher can be used to naviooJj:::frn#ff#1¢j~§jijmiuKt§:ihother, but requires that someon~::::he§JM%yt61tslyset

up tile links. Jtltltlllll[llll~ll[tlllltl['I"illfld;l!;;ii1j;~;;}····.

·::::::::::::::···::::::(~~tt~t:.:~~.ff~( ''':::. ::::.:.:.:..': .
~:~:{»~::::::::::::::<-::;.: .

..': ';':-::::::::::::::-.. .:}~{{:}~:~r ;::~~)?)~~:~:~:/{{}::::~~;~;~;::~~. :::;:::::;:;:>::::::::::;:;:::::::::::::;:::::::::.:

We would lik~:::~~.:~ffYi.i:9.·lt~l.genericquery fqtij~~hd so that if a\~$tf:::§§g$.:]rstall a new:r~:t:f:i~*~:I;;:¢11gine
she d oesn' t haYWJPlni.$.fWM2iW~yy. t~on t-en?:::::~{~i~i~i~li}/;:" ·;::::~:mf~ttrt/?~::·:·· .:':.:<:\:~;::~.:::::)\.;:::<:'

....::.:.:: ::::':: ':::.: .::::;:-:;::.::;.:.;::::::;:;::;:::;::;::::;::;::;:::::. ::::::::::::::::.::::::.;., ':'::~::::::::i':':' .::::...:... :.:::.:::. .. ..' ;.:.::;:::::::::. ..
........ ' ' ;.:-:-:-:-:.:-..;.:.;.;.;.>..»:.:.»>..<;>:."

Concepts

Writing an application that works with Cher requires a slightly different perspective than writing 'an ex
isting Macintosh application. For example, implementing sticky selections generally requires a different
irnplen1entation for low-level data structures. This section describes some of the concepts of Cher, in
order to give you an understanding of what is involved and how you approach a Pink application vs. a

10. Of course, the specification of selections in the scripting language must be sufficiently robust to allow this kind
of editing. Otherwise, the user will have to do more work than just rearranging items in the script.

11. At least they made the effort to do this. The NeXT requires that the user explicitly index documents in its Digital
Librarian.

'* Registered/Restricted Cher March 15, 1990 2.2.2-6



MacApp application.

Models, Views, & Presentations

Unlike MacApp, Cher defines an architecture for managing a document's data. The architecture doesn't
define actual data formats (either in memory or on disk), but rather defines the protocol between various
objects in the application.

The principal object is the Model. A model contains the actual data of the document. Most Pink develop
ers will create an application-specific model class, although it is likely that Pink will include some stan
dard lnodel subclasses.

~E~~{~~~rll'1[q~:;s;2:;E~:~l'I~~~~!stE~~i"I:~:~%~:~lliiii~if;
:.:.:.:::.:.:.:.: .. :.:.:::::: :.;.;:.::: ....':..... .-:;:;};:;::;:;;::., .::;:::::::\}\{}(::::::::;=:::;::

~o~~~an~;~~~~~_lf~III"i~~I'~~~: ::;::~~t~o~::~~~~II'jfu~~;;x~d~I~~~e:~~~·e
view needs to computelfMappropnate line breaks. If there are 2 views thaf't~qciHe>thesame set of line
breaks (e.g., the text is displayed in a split window), then the natural place for them is in the presentation
object.13

Commands & Document Saving

Like MacApp, Cher uses the concept of a command object in its framework for Undo. (As described in
the next section, command objects are also central to the collaboration features of Cher.)

Unlike MacApp, Cher saves more than just the last command object created. This provides the user with
the ability to Undo (or Redo) many changes to the document. Given enough disk space, it will be possi-

12. This is also the only one currently implemented. We probably will implement alternatives in the future.
13. They can't be stored in the model, because line breaks are relevant only to the view. Also, there might be other

views of the text with different margins that require different line breaks.

" Registered / Restricted Cher March IS, 1990 2.2.2-7



ble to undo back to a blank document.

[n addition to providing multi-level undo, saving "all" command objects enhances application reliability.
Cher will periodically (in the background) save command objects to disk, using the Pink concurrency
control and recovery (CCR) facility. The result is that if the application or system crashes, the user
shouldn't lose more than the last few commands. The command objects will be part of the user's docu
ment, so the system will automatically "replay" those commands when the docul1l.ent is opened.a

Today, users save document more often then they want, because they are afraid of crashes tha t wou lei
lose the entire document. Under Pink, these kinds of saves won't be necessar~. The only time when_the
user needs to save is when she has a complete, new version of the document. 5

For the most part, Cher's multi-level undo doesn't make implementing con1mand object any more diffi
cult. One difference is that applications won't be able to "get away" with non-undoable conU11ands.
Many of the current Macintosh applications when it comes to undo. Most will not undo a comlnarl~i such
as Find and Change All, be.£~B:*bl9.J#g§p@mrn#mWAAYJng a duplicate of the document. ...g:~h9t§J~9H~+
undo command that are "~~~yt::Iq~Jtiji::gW~tp.nq~iJj~rself(e.g., font change conlI,1W:9.9.!§::.t:hJj.ageMaker).

Cher also provides a framework for "long running commands." These are commands that are likely to
take a long time and should be run in the background. We don't expect that the user will be able to make
additional changes while a command is running, although individual applications can support this if
they choose to. For the most part, the user will be limited to operations that don't change the document,
including scrolling, window resizing, and switching to other applications.

There are still synchronization issues, however, because refreshing the window may require access to the
model. Cher maintains a semaphore for each model to control access to it. By default, all cOInnland ob-

14. Applications can take advantage of this facil~ty to speed up saving. It is possible to specify a change limit for a
document. If the user makes fewer changes than the limit, then Cher will save only the new command objects. If
the user makes only one change to a document, the document could be saved simply by writing out the new
command object.

15. Although, it may be difficult to change peoples' habits about saVing..

• Registered/Restricted Cher March 15, 1990 2.2.2-8



jects run in a separate task and Cher acquires exclusive access to the model semaphore before running the
command. Interface-related tasks that require access to the model acquire the semaphore shared.

This normally forces the interface to block while a command is running; although Pink will allow users to
switch applications under these circumstances. A command objects can, however, copy data out of the
model and release the semaphore, which will unblock the user interface. When the command needs to
store data back into the model it will reacquire the semaphore and make the change. The command ob
ject can make multiple small changes to the model so that the user can incrementally see the affects of the
command.16

Real-time Collaboration

-:.:.:.;.:.:-...................... .:-:.; :-:-:.:-:-:::::::::?::;:::::-:.-,-.
:::.::::::::::::::.::::-:::::.:::::::::::::::::::-:.:.> -................••.............-.....

=J~~~:;~~:::)111.'~~lpf~~~~~:dO::i~I~~~::f~~e~~1~~jll.l~;~~~: ~~lI~rl~_!~:~~~
changed by the¢9m~:ng·(f9@~Ef!H~£h:::J11i~:lmplementationstrat:eg){:~~ijn::possiblein8h~!:.:.j)U{most
cases, this require:m~~f·a.ff~¢~§·9n1},...~n~:·9eslg·nof the selection objects (see.·p~1§w),· .

. .-:.:-:-;.:.... -:.....................

Selections & Anchors

The Cher architecture includes the concept of a selection object, which is not part of the MacApp fralne
work. In MacApp, the concept of a selection is folded into the view class.

Cher uses selection objects to manipulate data in the document. The result is that most of the standard

16. Currently, semaphores in Pink are fair with respect to readers and writers. If a reader task acquires a semaphore
shared and a writer attempts to acquire the semaphore exclusively (and blocks), then subsequent readers will
also block. This guarantees that the writer will get a chance to makes its change. To properly handle commands,
however, we need an "unfair" form of semaphore that will give the user interface priority over the background
command object.

'* Registered I Restricted Cher March 15, 1990 2.2.2-9



editing commands (Copy, Paste, Push Data, etc.) can be implemented to call method of the selection. This
means that developers don't have to implement these command objects, but can simply use the classes
defined in Cher.

Like command objects, selection objects must be independent of the specific model object to which they
refer. That's because selection objects are distributed to each collaborator. Therefore, developers must
implen1ent selection objects as specifications of the selection, rather than with pointers into the IT\Odel.

In the case of a text model, one possible selection specification is a pair of character offsets. In a struc
tured graphics model, each shape must be assigned a unique id, and the selection specification is a set of
unique ids. -

Anchor objects are very similar to selection objects in that they refer to part of the model. The difference
is that anchors must be resilient to editing changes, since by definition, an anchor is a sticky selection. An
anchor object contains a selection object, so it is usually advantageous to make all selection objects sticky,

and use an instance of the :BBBnm.?t~eJ~t~~!S~iMHB~f~~~:~rthe anchor· ..-::::::::{tt}:~::::/U::;»)::::::::

The implementation of gAllllllll.IIIIIIIIII·IIIIII:j:!bove is sticky. The impJw}i~nt~fj~:~:"oftext selec

~::;;~~j~:~~~ not.:~~~'lllt.I"ltlr.!fhtbefore the sel::;~illtlii~1~tharacter offsets
There are a couple of ~pp'roachesfor implementing text anchors. F.:~t.~m:~n#.:\:t#Qf.H~1could maintain a collec
tion of markers that RB~:9t::!Y:HNn}.r.~text. The anchor would be ~::##~qR!l\~~::::~~atrefers to a marker.
When the text was cD~\#.g~gl:~ff.~:\:~PFt9P:ti?:.~emarkers would be .B@gijJmlpg#Jhe anchors would remain

created. At convenient times, the history caJ-1]~i:\fBqgenseda~g~::ln£::gPSn9rsperrnanent:lY::M:P~:g~~~.>:?

Cher does not specify how anchors are repre~tll;lt the use~I;lllllust be select~ii~~~~~~j~ince

~~~~;fE~;~lltii'~~~~~~::~;~ft~~~£~~~;~ll11}~~~f:~: ~~~!-~~~t~;t
: ':::-:-:-;"';"::::::;:-:::::::::::::: :-:-:"-:.:.'-:-:.:-::::::::::::::;:::::: ~///~/ ..,. ..:::;}:::::::::>::::::::.:. ::::.:.

......... ..<::::-::::>:;:::::::::=....-:.....

Linking

To create a link between two anchors, the user must specify the anchors. The situation is similar to copy
ing and pasting data (the user needs to specify a source and destination), so one way to do this is to main
tain a kind of "linkboard," analogous to the clipboard. The Start Link command would create an anchor
out of the current selection and place the anchor on the linkboard. The Complete Link command would
also create an anchor, and then create a link between the new anchor and the one on the linkboard. It is
possible to choose Complete Link several times, in order to create several links that share a comn10n an
chor.

In Pink we are investigating extensions to the current Macintosh clipboard model. Two of these exten
sions are to support more than one item on the clipboard (as in the Scrapbook) and to support more direct

17. This is the approach used by Intermedia .

• Registered / Restricted Cher March 15, 1990 2.2.2-10

manipulation (dragging items to the clipboard as an alternative to Copy). We expect that the linking user
interface will closely match the copy and paste interface.

It is also possible for an application to create links programmatically: \Ve expect that most of the "inter
esting" uses of linking will fall into this category. For example, annotations can be attached to the affect
ed parts of the doculnent with links. Scripts can also refer to parts of a docuinent with links.

There is only one kind of link in Cher. It is bidirectional, and supports both navigation (finding the other
end of the link) and data transfer. Links also have properties, which applications can use classify links
and to restrict how links are used.

For example, there could be properties that specify what the user can do with a link. It might be desir
able to allow certain users only to pull data from a spreadsheet and not navigate to the spreadsheet or
push data into it.

References

Meyrowitz 198§·:::: .
:::::::::~:::~:~:~:r~~:i

Morris et. al. 1988:«Jifh<M6#i§>'6k~i~ Kaufer, Chris Neuwirth, Ravind~i::Ch~hgih6k,::::~~The'Work in
Preparation' (PREP) Editor: Support for Co-Authoring and COtnmenting." A Pro
posal to the National Science Foundation. November 13, 1988.

• Registeredl Restricted Cher March 15, 1990 2.2.2-11

} ;

Classes

This section of the document contains class and member function descriptions. In the interest of keeping
this document to a manageable size, certain conventions are followed. All classes have virtual
destructors. If the destructor does anything n10re than release storage, it is discussed; othen-vise, nothing
is said. Many of the classes have getters and setters which simply do field accesses. These methods are
listed in the class declaration but are not discussed in detail. .

Unfortunately, class descriptions do not fully describe the connections between all of the objects.
Example programs, such as TurboPinkDrawII® augn1ent the docun1entation greatly.

Entitys

A TEntityID is a class which provides a name for a finder entity that is capable of responding to at least
a minimal set of event messages which we will define (including "Launch"). This class will encapsulC1te

class TEntityID

public: .:.:.:.:.:::.::
TEntityID (lc#~:9.: uniqueID, const TText& name);

virtual
virtual

protected:
virtual
virtual

.. iiil\!.;.• :::::::::::::::::::::::.:::::':':..
.:.:.:.:....:.:.:.:::.:::::::.;.:.:... ;.:

Type 0 escrip tionS i;;;lHWjl1!!:;ii;;li
m
i·

For example, suppose we wish to cut a piece of animation frOiTI one document to another document. Part
of the cut and paste process involves negotiating what types each document can understand. A
document might know how to deal with an object as a baseclass but not know about the derived class.
For example, suppose there is an abstraCt baseclass in the systen1 for animation, TAnirnation. There
l1"light also be a class for pictures, TP ict ure, that everybody knows about. The document containing
the data might publish a list of type descriptions that looked like:

TTypeDescription(TToken("TMyAnimation U
), kAbstractOrConcrete)

TTypeDescription(TToken("TAnimation U
), kAbstractOnly)

TTypeDescription(TToken("TPicture U
), kConcreteOnly)

The use of a type when only the abstract baseclass is known usually involves loading code fron1 a shared
library (see page 13).

enurn TypeKind { kAbstractOnly, kAbstractOrConcrete, kConcreteOnly };

• Registered/Restricted Cher March 15, 1990 2.2.2 - 12

class TTypeDescription : public MCollectible
public:

TTypeDescription(const TToken&, TypeKind theKind kConcreteOnly) ;

virtual
virtual

virtual
virtual

} ;

Setcctions

const TToken&
TypeKind

void
void

GetTypeName() const;
GetTypeKind() const;

SetTypeName(const TToken&);
SetTypeKind(TypeKind theKind kConcreteOnly) ;

Before perforn1ing an operation on an object or group of objects, the user must select it to distinguish it
from other objects. This is .~.l1g.~.I1JlS..Ci.s.(;!.e.C?t~9.~~...T~~~~ ..are classes in CHER to represent a sele<:.t.Jgn;:::The

would refer to a range/I140, 155] of characters instead of containingJn~mp.~OO:n;paractersin the selection

virtual
virtual

virtual
virtual
virtual
virtual

virtual
virtual

protected:

void
void

TDocumentSelection*
TDocumentSelection*
MCollectible*
MCollectible*

void
TModel*

GetCopyOfData(
const TTypeDescription* t = NIL)

GetTypes(TDeque& theTypes) const;
ChooseType(

const TDeque& theChoices,
TDeque& theChosenTypes) const;

AcceptData(const TDeque& theData);
AcceptData(MCollectible* theData);
GetSelectionDataForUndo() const;
GetSelectionDataForExchange(

const TTypeDescription* t = NIL)

SetModel(TModel* theModel);
GetModel() const;

const;

const;

cRegistered/Restricted Cher March 15, 1990 2.2.2 -13

} ;

MSelectable(TModel* theModel NIL) ;

MCollectible* MSelec~able: : GetCopyOfData (
const TTypeDescriptiori* theType) const

Given a type description object, this method should return a copy of the data described by the sclecti()n.
For example, in a text editor, if the selection is a range of characters, this method will return a n object t 11,1 t

contains those characters (a TText object). If called with NIL, return the data in your native type (If

called with NIL, it means you are cutting and pasting between the same application or you are sa ving the
old data for undo.).

void MSelectable: :GetTypes(TDeque& theTypes) const
Fill in the supplied deque with a list of type description this selection is capable of publishing its data in.
You are encouraged to publish in as many types as you can.

void MSelectable: :ChooseType(const TDeque& theChoices,

From the deque of choice~~l··~III~l~~j[I~.r.!~llt~OI~k;~~fe~~i)ve~~7:fn for.th:~?::§9.!~¢.t{gii::::::)i[i:::some
of the choices require thq:)f§jj?K#.%$.h~tijf.tlmt~W}M1t]~fadvisableto make n10re .QHTm@§Wp.h6ice and save a

.•...:.:.:.:.::::;:;:;}}:;::::.:....

»:-:-:-:.;.:-: :::::::}::;::::::-:::

........ .:.:-:.:-:.:. :-:.:- .. ' .
;.:::::..;.:.:::::::::::::::::::::.::::; :.... :-:-:-: ;.:;::::;:;::-:<-: .

:-:-;.:.:.:.:.:.:.:.:.:.:.: :.::~::.;.: , :.:.;:::::~:~:::~:~:~:~{:~..... :::;::::{:}:::::::::::-::":':' -.
:;:;::::;::::::::::::;:;:: .;:;:;:::::;::::::::::::::::::::::::::::::.;.:-:....... ..- _ .

;~~ ~~~
TDocumentSelection

The class, TDocumentSelection, should be used as a base class when applications are creating classes
which represent the different kinds of selections supported in the application.

class TDocurnentSelection : public MCollectible, public MSelectable
public:

virtual TAnchor* Stickify() const;
virtual TDocumentSelection* Duplicate() const;

protected:
TDocumentSelection();

} ;

• Registered/Restricted Cher March 15, 1990 2.2.2 - 14

TAnchor* TDocumentSelection::Stickify() const
Create a new anchor using the doculnent selection specified in this as the specification for the anchor.

TDocumentSelection* TDocumentSelection: :Duplicate() const
This routine provides a polymorphic clone capability to all selections. You must override this 111cthod
until the Utility Classes provide similar functionality. The typical way to overri~e this method is:

return new TMyType(*this);

Anchors & Links

Anchors are typically "sticky" docUInent selections. By sticky, we mean that the anchor is resistent to
editing changes in a document. When creating their own kinds of anchors, applications n1ust use great
c[\re to insure that the inforn1ation encapsulated in their subclass is enough to find the document selection
independent of any change to the document. For exan1ple, a docun1ent selection in a text docut11ent is
typically a range of characters. An anchor representing that selection needs more information bCC:(1l1se

"following" them, pusm:pg data from one sticky selection to the othey@fj?:ijH~~n~fdata.
........;... . : :.:-: :.: .

TBaseAnchor
.....:::.;:::::; :.:.:.: .

TSurrogateAnchor

The TSurrogateAnchor provides the class which represents a surrogate for an actual anchor in the
system. TSurrogateAnchors are relatively cheap to pass around and can be turned into a real anchor
using a m.ethod of TModel (assuming, of course, that this is a surrogate for an anchor in your 1110del. If
not, using the anchor as a surrogate is the only way to use it).

class TSurrogateAnchor : pUblic TBaseAnchor
public:

TSurrogateAnchor(const TBaseAnchor&);
TSurrogateAnchor();
virtual -TSurrogateAnchor();

• Registered/Restricted Cher March 15, 1990 2.2.2 - 15

TAnchor

The TAnchor class is an abstract baseclass which defines the protocol all anchors follow. Anchors contain
a TDocumentSelection and are MSelectable objects. All nlethods of MSelectable are delegated to the
embedded TDocumentSelection. They can be overridden if this is not the proper behavior. Subclasses of
TAnchor should override methods to implement specific behavior for their kind of TAnchor. Subclasses
should contain whatever inforInation is necessary to find the appropriate "selection" independent of any
editing changes to the document (or insure that the embedded document selection is resistent to editing
changes).

: public TBaseAnchor, public MSelectable {class TAnchor
public:

virtual
virtual
virtual

virtual
virtual

void
const TTirne&
void

Touch() ;
GetModifyDate() const;
SetModifyDate(const TTime& modifydate);

virtual
virtual
virtual
virtual

protected:
TAnchor(

} ;

.....:.:.:.::::;=;.:.:.:.;.:.:.:-:-:.:.:::::.:.: .

. ... :-:-:-:-:-:-:-:-:;:

void TAnchor: : Touch ()
Shorthand for SetModifyData (TTime: :Now ()) ;

void TAnchor::SetDocurnentSelection(const TDocumentSelection&)
Set the embedded document selection to the passed in selection. The old embedded selection is deleted
and the passed in selection is copied.

const TDocurnentSelection& TAnchor: :GetDocumentSelection() const
Return a reference to the embedded selection.

voidTAnchor: :Follow(const THyperLink& theLink)
Override this method to implement your follow behavior. The TFollowedCommand will call this lnethod
on the followed anchor before posting the follow stimulus. The default method brings all of the
document's presentations to the front using the following code:

• Registered/Restricted Cher March 15, 1990 2.2.2 - 16

Tlterator* anIterator = GetModel()->GetPresentationIterator();

TPresentation* aPresentation = (TPresentation*) anIterator->First();
while (aPresentation != NIL)
{

aPresentation->GetView()->GetLayer()->GetSystemLayer()->BringToFront();
aPresentation = (TPresentation*) anIterator->Next();

}

delete anIterator;

void TAnchor: : Receive (const TDeque& theData)
This l1"lcthod is called when data is pushed or pulled into the anchor. The default implenlenta tion is:

ClearData() ;
TDocumentSelection* retval = AcceptData(theData);
if (retval != NIL)

delete ret val;

0) ;long uid

-. :':':':':':-'", ..:::::}~{:~;:::.,

C l;USbSl iTcH:Ypetjj:::i:~~~~~;i~:~~liF'Bib le
THyperLink(const:.O:/$S.Ur:fOgateAnchor& here,

const TSurrogateAnchor& there,

THyperLink

!v·~o' :l.~d~:!T'~A~n~c:n:Jo1r:C.:'~C~l~ee:.,r.f.YD:.f~altlfal(l)IIIII"';~~~1t~~~~~ilO:~::~~I'lilltjJ't~I~:~~~::i;thod

~..... .;-;::.;.: : : ::.:..

This rn.ethod is called}?y~:Receive when data is pushed or pulled iI}:~ft~h"~\#.#f:t@f. This is part of the

;:':;:':':':':::-:':.::;::..-
..

·!'li1Ir'1111111;lll;
'';':-:'

:-:.:.'.:.:.:.:.:.:-:
...

..... :~~ji~~;:;:~ ~ ~~~~~:~:~~~:~{::::::: :::::.:
..:::::;:::{):::.;.:..... -.-

virtual
virtual
virtual
virtual

const TSurrogateAnchor&
const TSurrogateAnchor&
unsigned long
void

GetHere() const;
GetThere() const;
GetUniqueID() const;
SetUniqueID(unsigned long);

} ;

Models, Documents, and Model Servers

Three classes in CHER represent a superset of the functionality available in MacApp. The main class that
application writers should concern themselves with is TModel. Subclasses of TModel will contain all of
the "document" data. TModel objects provide change notification to interested presentations. The
TModel baseclass provides very little functionality; however, it does provide protocol which all models
arc expected to implement.

.& Registered/Restricted Cher March 15, 1990 2.2.2 - 17

Unlike TModel, TModelServer provides a great deal of behavior for talking to other models <1nd model
servers. TModelServer subclasses act as a global controller to the n1odel's data. It coordin(ltcs the
application of command objects to all collaborators accessing the document. Only one method of
TModelServer typically needs to be overridden.

TDocument subclasses act as a kind of local controller to the model's data. Again, very little overridding
is necessary in TDocun1ent.

TModel

The TModel class is the object to which command objects are applied. It contains all of the data in a
document, all of the links and all of the anchors. The TModel class provides a change notification service
so interested presentations are notified when changes occur to the model. The model defines protocol for
saving and restoring all of the data associated with the model.

class TModel
public:

virtual

NIL) ;
virtual

p:#,:$)W¥.hMM:ioX$ n) ;
::::::;:;:;:;:::::::::;>....

virtual

.;.:-:.:.;.;.: -.

::::::}}}:\:/){){{:?\\?t~t}:::::::::.:.. cons t TT0 ke n:6:t*H~:\iH@:~~:ij:~ed = 1'1 I L) ;

void
void
TIterator*

',:-:.;.:-:-

G:,;~~llb r I t erator ()i'~~;~i';'i i' .,.

vi rtua {t:::::~:::#~:$d·--:::':· .. ::::::::::::::::::::::>:: j:{$:ett~ e ndingC1 i pboa rdD a t-:;'!rtmq9:!.:t:@gt:),,):?·M~f*:.F:r··
virtual MC8iie.bt;il::)j%~:*::'··GetPendingClipboardData (...

const TTypeDescription* theType = NIL);

virtual
virtual
virtual

virtual
virtual

virtual const
virtual void

virtual void

virtual void
virtual void
virtual void

} ;

TDocurnentSelection* GetDocurnentSelection() const;
SetDocurnentSelection(

const TDocurnentSelection*);
EstablishDocurnentSelection(

const TDocumentSelection* newSelection,
const TDocurnentSelection* oldSelection = NIL);

Acquire() ;
AcquireShared() ;
Release() ;

.. Registered / Restricted Cher March 15, 1990 2.2.2-18

voidTModel: :RegisterClient(TPresentation* whoToNotify,
const TToken* whatChanged)

Call this method to register a presentation to receive change notification. If the token is NIL, all chclngcs
will be notified. If the token is non-NIL then only notification stimuli which match the wha tChanged
token will be sent.

void TModel: :CancelRegistration(TPresentation& whoToNotify,
const TToken* whatChanged)

Cancel change notification for a specific presentation. The whatChanqed variable should match the
wl1atChanged in a previous RegisterClient.

voidTModel::Changed(TStimulus* changeStimulus)
Call this method to force change notification to occur. The change stimulus is propagated to all interested
presentations via the normal responder/event mechanism. The stimulus should be put on the heap. It
will be managed by the system.

~~~~Objcctin

Return the model ~~yer object in your address space or NIL if .~~!~~~~~~:j:~}B;~)~{

:~rr~~~r:::::::}})~{:~ .. ~: :..
.........:.:.:.:.:.:.:::::::::::::.:.:.:.:.:.

j:~~ j:t~j~~~ j~@j :-:.:.:.:.:.:.: .: : .
.::;::::::::.::::::::::::::::;:::: :.:-:.:.:. ::(:::::::~:?{{rtJtr~: _ .

~~J~{~~ei~~l~ihilt~:t~i~~i~~:i"'~~~~l~;c\~lllil~\~~~~hOO:l~c~~~1:ii;i~~:CI.
.........................:.: .... ....::::::::::::::. ....:;:;:;:;:::;::::::.. ..::::;:;:;:;::::::: ::.:.:::. i\Uj«:;;;:::};;::·::::

g~eCnh~ ~;u~~~!~~~~~~~~~'~~W~~~~fr~~~ ;~~~~:~~~~e~~~ha~~~~'~18g~i¢a~~hg~:: asurrogate
for. Of course, this onlyworks for anchors in your own document. SurrogateAnchors in other
dOCUl11ents will not be found and the call will return NIL.

Tlterator* TModel::GetAnchorIterator() const
Return an iterator which the application must manage. This iterator will iterate through all of the
anchors.

void TModel: :SetPendingClipboardData(MCollectible*)
The current (very temporary) implementation of the clipboard uses two methods which you must
override to store away the current contents of the clipboard during a cut or copy operation. The systern
w1l1 remember which document (model) contains the current clipboard data. Your
Set PendingC 1 ipboa rdDa ta routine should discard the old clipboard da ta and store the passed in
data. It will always be in your native type. The corresponding Getter (below) will return the data in
multiple types .

• I\(,~lstcred / Restricted Cher Ma reh 15, 1L)(lO 2.2.2 - 1°



MCollectible* TModel: : GetPendingClipboardData (
const TTypeDescription* theType)

Return the pending clipboard data (previously stashed away with-SetPendingClipboa rdDa ta) using
theType as the retutn type.

const TDocumentSelection* TModel::GetDocumentSelection() const
Return what the model thinks the current document selection is.

voidTModel::SetDocumentSelection(const TDocumentSelection*)
Set the document selection to a copy of the passed in selection.

voidTModel::EstablishDocumentSelection(const TDocumentSelection* newOne,
const TDocumentSelection* oldSelection)

EstablishDocumentSelection is called by many C01l1mand objects to set the selection after they arc
complete to establish the new selection (e.g. after a TReplaceSelectionCommand). The defaul t code
for Est ab1 i s hDo c umen t ..$.e.J...e.c.t.i.on...is.:............................................................ :<.:::::;:;::::>

i f (0 1dS e 1e c t ion f:;·:·:[1!W:]·B~~::1[!:!~::::1!::~[~~::~:::~~~~~~:1~1:[111~1!11![~!!11)!~~~!~~:1~111[j:l;jl!:lli:;~~:~:j~r .. .··:·::·::::<:){/:t?:,:::: ....

TDO::::::::::::ii;lillllllliIJill[:);'"
if (theSe 1e c t i o:n:[:[:::J·:··_····N·~I'L··)·························· .

newSelectior{:UW theSelection->Duplicate () ;
::\~}{

void TModel: : Release ()
ReleClse the model semaphore.

TModelServer

TModelServer is an abstract superclass which implements much of the global behavior associated with
applying commands to a document. It controls the collaboration (if there is one), it talks to the desktop
manager and other system services to accomplish linking and data exchange. The model server object
logs command objects to disk to add to the reliability of your program. There are many lliethods of the
model server; however, only one is necessary to get started with CHER.

class TModelServer : public MServer, public MEventSource
protected:

TModelServer(const char* theModel);
virtual TModel* DoMakeModel(TModelServer* theModel) 0:

• Registered/Restricted Cher March 15, 1990 2.2.2 - 20



virtual
virtual
virtual
virtual
virtual
virtual

I;

TModel* TModelServer: : DoMakeModel (TModelServer* theModel)
Override this method to make the kind of model associated with your document. The usual override for
this method is: . J

return new TMyModel();

TDocument

TDocument is an abstract superclass which acts as a kind of local controller to the model's data. The
TDocument object applys commands to the model and assists presentations in finding the approprllltc
model for querying. Command objects are applied in a separate thread. This allows user interface stuff
to be going on at the same time command objects are applied. Long running commands should explicitly
release the n10del semaphore when appropriate (see TCommands).

c lpaUSbS~v f.;rDt:tO~uCaaaU~lmenVBvt~o O~::l.....::.::..:..::a:...::I:P'::."']."':'.a:.•.•:•.:.u:•.••..:.:r..•••..•.•..•.

P

:•.•:.•.:•.•.:•••.:.••..:•.:•.l.:•.••::••..:.::.••..:••.•::.~..:•••..:••.:;.•.:•.•.:;.••::.•.c•.:.:.:•.•.:••.:.••:••:•..::..:•.::.•.:~.••..:.••..:•.•M.:•..:.••.:.••..:.:•..••..:.•..: •..:.~•..:•..: •.::.:::••:.•.•~.:..:•••..:.••::•...: •..:.••..: •.s•.:.::••..:••..:•.•!.:..:p•..:.••..::••:••..::•..:•.•.:•.•.:a..:••;..:...:.j.:..:•.::n.:.:.•..:•.:r.-..s~.:;.••..d:.•.•..:.IiIi.:,r:.::.•.:a'=~.•••.:•••.•.•~•..•.•.:rD:.~.~:•.[.:.:••:~:.~;."t.;.•:.••: .•.:wli:..:f:t..•.j.~..p:~B;~e)10f;iCoCUrme:Q:uOt.;dt(~(~)C,.l ient ...•.......~~.l;f
.... ..~. :I:'~ :l;;;;j:;:==".!o;,I' .... ... A*iil{li.Il:(lli~)li·'

"-:.:.:-:.:-",'

vo:f.\~t
Tt·#k{e.+..~

protected:
TDocument(const TText&
virtual void
virtual TModel*
virtual MBaseTask*

:::{~\~~~:~I)~~:\:\~:~~~):~:::~:::mf:f}:\
......... ·'·:·:-:·:-:·:·:·:·:·:·:·:·x-:<-:·:-:·'·-·",

F ALS E ) :·~·:":\·::·:;·:·:·:::j:::::::\~:::r:::U:m:H::::
o; mmrmmft :.:-:-:-:.:.;.:-:-:.....:-
TEntitYI ti~a\)::... :yr:::'

.............:-;.:-:.:.:...:

} ;

0;

TDocument: :TDocument(const TText& name, Boolean useLocalCache)
Create a new document. Methods that are overridden in your subclass of TDocument control the kind of
model server created and the kind of model created. If you are collaborating and you are not the
"collaboration server," (Le. you don't have a model server on your machine) then set useLocalCache to
true to force a local copy of the model on your machine. The name that is passed in is the "entity" name
of the document.

void TDocument: : StartTheDocument ()
Most of the real work in document creation doesn't happen until this lnethod is called. This is to get
around the problem of calling virtual functions in constructors (thanks, Barney). The first thing that
happens at startup is finding the model server. This is accomplished by calling FindModelServer. If
there is to be a local cache, DoMakeCachedModel is called. Then DoMakeQueryModel is called. Finally,
DoMakeP resenta t ions is called.

• Registered/ Restricted Cher March 15, 1990 2.2.2 - 21



TModel* TDocument: : DoMakeCachedModel (const TEntityID& eid)
The cached model is the model to apply command objects to in your address space. If the model server
(and its associated model) are not in your address space (i.e. you are collaborating), you will probably
vvant to have a cached model (If you don't have a cached model and you are collaborating, you must
have a query model. See below). Typically, this is overridden to:

return new TMyModel(eid);

void TDocument: : DoMakeQueryModel (const TEntityID&)
The query model is the model your presentations will use when querying the model. Typically, this will
be the model server's model if you are not collaborating or the cached l110del if you are collaborating. If
these defaults are okay, then do not override this method. Alternatively, you could define a "query"
model whichsupported the protocol of your normal model but comn1unicated with the nlodel server to

fulfill any requests.

void TDocument: :DoMakePresentations()
Override this method to create the presentations associated with the document. These presentations

.................: :-: .
..::::::~)/~\~}:;:;~~;.;r:~·:·:·;·:·:·:·:···· ",

If

Presentations .>:-::>:::.;
:-:::.;.:.:.:.:-:.;...

.:.:.:.:.:-:-:.:.::;:::::::;::::
..

... .:.:..<::::::::::::::::::-:.:..•.•.

MResponder*

SetView(TView* theView);
GetView() const;
SetModel(TModel* theDocument);
GetModel() const;
ModelChanged(

TModel* theModel,
TStimulus* theChange);

GetResponder(
TModel* theModel = NIL,
TStimulus* theChange = NIL);

public MCollectible {

void
TView*
void
TModel*
void

virtual

class TPresentation
public:

virtual
virtual
virtual
virtual
virtual

protected:
TPresentation(TView* theView = NIL, TModel* theModel NIL) ;

) ;

.. Registered/Restricted Cher March 15, 1990 2.2.2 - 22



void TPresentation: :ModelChanged(TModel* ~heModel, TStimulus* theChange)
\Nhen the model changes, this method is called. The default implementation for this lnethod is:

(GetResponder()")->Respond(theChange, TRUE);

MResponder* TPresentation: :GetResponder(TModel* theModel,
TStimulus* theChange)

This is called by the default ModelChanged implementation to return what responder should be sent this
notification. The default implementation of this method is:

return GetView();

The CherApp

This class is a ten1porary class until CHER is integrated with the normal Pink Release.

} ;

.:-:::::; .....

CHER will provide the basic command objects for: cut; copy; paste; selection; starting links; completing
links; following links; pushing data on a link; pulling data on a link; adding anchors to a document; and
add ing links to a document. It should not be necessary to override any of these command objects.
Implementing the selection protocol will be enough to get all of these comn1ands to work. The result of a
comn1and usually involves posting a stimulus to all of the interested presentations. The kind of stin1ulus
posted by these command objects will be discussed with each command.

Many commands built into CHER have both a local effect and a global effect. For example, the cut
command has the local effect of ren10ving the current selection from the document. The cut COlnmand
has the global effect of adding the current selection to the clipboard. Only the local effect of a command
is undoable in the application that the command was done. The global effect is undoable in the global
context (i.e. by going to the clipboard in this case). Almost all commands that developers will write
themselves will only have a local effect. To implement this behavior, the HandleDo method of a
command will do the global effect (with the help of the model server) and as the last statement of the
HandleDo method do a return TOtherCommand->HandleDo ();.

«Registered/Restricted Cher March 15, 1990 2.2.2 - 23



All command objects save the selection before the comn1and is executed and restore the selection after an
Undo by calling the model's EstablishSelection method.

TCommand

class TCommand : public MCollectible {
public:

enum Flattenlntensity {kEverything, kDoOnly }

public:
virtual
virtual
virtual

TComrnand*
TCommand*
TComrnand*

Do(TModel* theModel);
Undo(TModel* theModel);
Redo(TModel* theModel);

virtual
virtual

virtual
virtual

virtual
virtual

virtual
virtual

virtual

void SetDocument(TDocument*);

~;;i~,llillllllllllll!;;~;~~:t ;

protected:
TComrnand(const

} ;

:: ::[H··:·::···:::::::x.::::::::<

:.:. :.:.:.:.:.;. ;.:-:.:-:-:.".
:::::::;::::::: -.

:-:<-:<.>:-:

-:-:-:.»:-:
-, .

TCommand* TCommand: :Do(TModel* theModel)
This n1ethod contains the machinery for "doing" the command. Eventually it calls the HandleDo method
vvhich you should override.

TCommand* TCommand: : Undo (TModel* theModel)
This I11ethod contains the machinery for "undoing" the command. Eventually it calls the HandleUndo
method which you should override.

TCommand* TCommand: : Redo (TModel* theModel)
This method contains the machinery for "redoing" the command. Eventually it calls the HandleRedo
method which you should override. .

.. Registered/Restricted Cher March 15, 1990 2.2.2 - 24



void TCommand: :SetDocumentSelection(const .TDocumentSelection*)
Set the selection that this con1mand object will apply to.

const TDocumentSelection* TCommand::GetDocumentSelection() const
Return the selection that this command object will apply to.

void TCommand: :SetFlattenlntensity(Flattenlntensity)
CHER will log command objects to the disk to add reliability to your application in case of extTaordinZ1ry
f<'1ilures. Logging these con1mand objects only involves logging the "do" part of the cOlnmand. The
flatten intensity is set to kDoOnly when logging command objects and kEverything at other tin1es.
Your opera tor»= routine should check the flatten intensity using GetF la t tenlntens i:.::" when
flattening. Your operator«= routine should be able to expand an object flattened \vith an:- intensity.

FlattenlntensityTCommand: :GetFlattenlntensity() const
Return the current flatten intensity.

~our

'::::;:::::

Boolean Tcomm~rid~·:f·q!1:~·g9~4F¥Y¥t~:ridieDo( ) ":»:,:.:'[:j',:::::'(::.:::>:/./:':'><
If your command objedd6es'Wtthal1ge state during HandleDo (other than savrng>tit1do infom1ation),
then an optimization can be made during collaboration. If the command objects changes (or one of the
embedded objects changes) then this should return TRUE.

TCommandGroup

A con1mand group is used to group a set of con1mand objects that should be viewed as an indivisible unit
for the purpose of do, undo, and redo. An example of when a command group is created is aiter the user
issues a complete link command. Eventually, this turns int.o a group of comn1ands: TNewAnc:J.or &
TNewLink. . .

class TCommandGroup
public:

TCommandGroup() ;
virtual void
virtual void

public TCommand

AddFirst(TCommand*) ;
AddLast(TCommand*) ;

CRegistered/Restricted Cher March 15, 1990 2.2.2 - 25



} ;

virtual TCornmand* Remove(const TCornmand&);

void TCornmandGroup: :AddFirst (TCornmand*)
Add the passed in command as the first command in the group.

void TCommandGroup: : AddLast (TCommand*)
Add the passed in command as the last command in the group.

TComrnand* TCommandGroup::Remove(const TComrnand&)
Remove the command that IsEqual to the passed in com.mand.

TSelectCommalld

The TSelectCommand should be issued when changing changing selections in the document if you W,1IH

:::::Ot:::::::::;~\'lllllf'~;~~l~~~Sttl~~1~1:~e~~:COl1clusion
public: ...:.:.:::::':::::

TselectComrn~##(const TDocumentSelection&
} ; .:~,:::::(\::::::;:;;:.:.:.........•.

~::~;;;~;;~!I'I'III'JI'li~~rent
TCutComrnand into a TReplaceSeTe'c#:$@if¢tH#ffl~nd.

c~aU:sliTcc:utCommand : public Tc:::!t',lIt~'
); TCutCO~:::.( ....,:,.:.::.nst TDocumentS~ljil,i}:on&);

.:.:::;.:-;.:-:.:.:-:.:.:.:.:.;.:.:.,.. .:::::;:;. ..:.:-:.;.;.:-..:.:.:.:-:-:-:.................. :.;.:.;.... ..::::::::::::::::::.'

......;.:.:::::::::::;:::::;:::;:::;:::... ..::::::::::::::::::.'

TC0 pyC0 mmang(:HHH://:)(:·:;;·····.;·;;;;:.;·:.;·:·:·;.:::::::. ::::::::::)iii!::::iJf?:··
.........................-:.;.:->:-: .

.-:::::::;:: :-:.:.:::.:::;:::::-:::::::::.:::::-:::.:.:::::-:::::::::::::::-:::::-:::::::::;:;::::::;.:.,.

class TCopyCommand : public TCommand {
public:

TCopyCommand(const TDocumentSelection&);
} ;

TPasteCommand

The TPasteCommand replaces the current selection with the "top" of the clipboard. This is acconlplished
by turning. the paste command into a TReplaceSelection command.

class TPasteCommand : public TCommand {
public:

TPasteCommand(const TDocumentSelection&);

.. Registered/Restricted Cher March 15, 1990 2.2.2 - 26



} ;

TReplaceSelectionCommand

The TReplaceSelectionCommand replaces the data specified by a selection OT anchor ,,vith datil
encapsulated in the command object. The command object contains a TDeque of TTypeDescription,

rvICollectible* pairs which should be used when replacing the selection's data. A
TDocumentSelectionStimulus with the token "DocumentSelectionContentsChanged" is issued
as a result of this command. After this stin1ulus is posted, the model method,
EstablishDocumentSelection, is called if the act of replacing the selection caused a new selection to
be created. You will typically never create a TReplaceSelectionCommand yourself. CHER creates this
con1mand object as a result of cut, paste, push, pull, etc.

class TReplaceSelectionCommand : public TCommand

vi rt u a 1 v 0 i.d.·:.:::.::::.:.:.:.':::.~.:: AddDa t a ( ·::::~::t:t~t~tJ::::{{:>:::::···:-
.;:::~:~:~:~:~:~:~:~:~:~:~:::::::::::::~:~:~:~:~:~:~:::::::"

const TTypeDescriptiont.:;:;:·.. ·· : -:.;..

virtual
) ;

TNewAnchorCommand
.......:::....

cia s s TNe wAri(;i:f:WU:C9mm~'tW,f?::;:: ::PYJ?:-+:i.#Ittcomma nd

pub1 i c : .<:::::.:<:««»i:~:~:i~i:;~i:~;i;\~~)i~~[)()\yi/}~(t)::-:-0 ..
TNewAnchorCommaiidX'fA:hchor* anAnchor);
virtual TAnchor* GetAnchor() const;

} ;

TNewLinkCommand

The TNewLinkCommand is issued whenever a new link is created. A TCompleteLinkCommand becomes
a TCommandGroup with TNewLinkCommands embedded in it after the global effect of TCompleteLink
is done. After the TNewLinkCommand is done or redone, a THyperLinkStimulus with the token
"AddLink" is posted. If the TNewLinkCommand is undone, a THyperLinkStimulus with the token
"RemoveLink" is posted to all interested presentations.

class TNewLinkCommand : public TCommand (
public:

TNewLinkCommand(const THyperLink& aLink);
virtual const THyperLink& GetLink() const;

«Registered I Restricted Cher March 15, 1990 2.2.2 - 27



} ;

TS tartLinkCommand

The TStartLinkCommand has the global effect of putting a new anchor on the "link board" and the 10Gl1 .

effect of adding a new anchor to the docunlent. The local effect is accomplished by CHER issuing a
TNewAnchorCorrmand.

class TStartLinkCommand : public TCommand (
public:

TStartLinkCommand(const TDocumentSelection&);
virtual TAnchor* GetAnchor() const;

} ;

of posting a
).lthasthe

using the

class TComplete~$#:kS;9rw.:[l<3.nd : public TCommand
pub1 i c : :;.:;;::;:;:L::;::~::;::::U:>::{~~U:::~~:~::::~:I:Ut:::/}::::::;.'

} ;

TPushDataCommand

The TPushDataCommand has the (possibly) l~qBMg¢aleffect~!'III~I~~~!r:;~
cOlllmand to the <:l~:~HJpation anchor. All type .ffi)¢:gqHation is

.:::::::::::::::::::{:::\:):::::::.:.. .:{{:tr::?·
class TPushd.~£~di..hd..: public ..:1!:¢.§fumand

pub1 i c : :::::::::.::?t:::::::::<:::::.::· ..: :;·.:::):::Y.: ..::::::::{}?:::.... , ,. . .. '.';':-:':- :}})::: .

TPUShD~~~!~~~~~~li~€%K~~~or& sourceAnchor,

const TSurrogateAnchor& destinationAnchor);
virtual const TSurrogateAnchor& GetSourceAnchor() const;
virtual const TSurrogateAnchor& GetDestinationAnchor() const;

i~~,~~~:f~~;il~illllllllltI~t~}~~~I~F~SibIY)n"n:;;:l:,~"',
appropriate comman~:~:A~jects(TNewAnchor and TNewLink).

..........

} ;

TTickleCommand

The TTickleCommand command could be called the pull conlmand. It is a conlmand object which tells
the other anchor to push data to me. This is accomplished by forcing the other side of the link to issue a
TPushDataCommand.

class TTickleCommand
public:

TTickleCommand(

public TCommand {

• Regis tered I Restricted Cher March 15, 1990 2.2.2 - 2S



const TSurrogateAnchor& sourceAnchor,
const TSurrogateAnchor& reply);

virtual const TSurrogateAnchor& GetSourceAnchor() const;
virtual const TSurrogateAnchor& GetReplyAnchor() const;

} ;

TFollowCommand

The TFollowCornmand will "follow" a link. This involves posting a TFollo\vedCornmand to the
docu111ent containing the other side of the link.

class TFollowCommand : public TCommand
public:

TFollowCornmand(const THyperLink& theLink);

The TFollowedcorrun~l~ is posted to the document containing th~g4~'IIIIII;~:~:~r in alink. The
"there" side of the TIiS.d?::~.rLinkembedded in the TFollowedComm~!~gM§::tP'@gestinationanchor. The

public TStirnulus {

} ;

'::;:::::::::::::;:::;:;::....:...:.:::::::::::::;::::::
.::~::::::::~::::::::{ ·:)I:f:::::::;:::::::::::::-:·:····.;······

......... . . ?~{:~~f)::' :.;.:.:.: ,,". ::::: :- .

~~~:i~~~~~~~t~IIIIII'~~f~~:~R~:~~1~E~~~~~ ~;~~:~!'tilt~~:~~~;:~I~i1r~~?t The
..;:::::>}>::»>~:::~~~:><»»«~:~::~~~/}}><::>:::::

c las s TSurroga t ~Ag2Ms:fg£l:irt~:.i.:~s

public:
TSurrogateAnchorStirnulus(

const TToken& theStirnulus,
const TSurrogateAnchor& theAnchor,
TModel* theModel);

Stimuli

virtual
virtual

const TSurrogateAnchor& GetSurrogateAnchor() const;
TModel* GetModel() const;

} ;

class THyperLinkStirnulus public TStirnulus {
public:

THyperLinkStirnulus(
const TToken& theStimulus,
const THyperLink&,
TModel* theModel);

CRegistered/Restricted Cher March 15, 1990 2.2.2 - 29

virtual
virtual

const THyperLink&
TModel*

GetHyperLink() const;
GetModel() const;

} ;

class TDocurnentSelectionStirnulus public TStirnulus {
public:

TDocurnentSelectiohStirnulus(
const TToken& theStirnulus,
const TDocurnentSelection*);

virtual const TDocurnentSelection* GetDocurnentSelection() const;
} ;

con##{TDocurnentSelection*
coq:$.:~r TDocurnentSelect ion *

<??\~::'. . .

....:
):::::::::..... :::::::-.

,', '':':':-:-:-:':'':'::::: }~ :.:~:.:~~.~...• :::'::'::""""""
~:::~~i:~mi:\~:\:jU:::~

. . . . -: .:~/:::::::.:.... '.:'.:." .. :.':'.::::,':' :.·.·.:.~..::·:~.~.·:.:.·:~~::·.:.·~::·:r.~.t~~::::.'':.:::::;:::;:::::::::.,

..~;~:~:~:: :~:~ :~:~:~: ~<~;::~:~~~~}~~~~~;~j~j ::~;:;~;~)?{::.: ..

} ;

class TDualDocurnentSelectionStirnulus : public TStirnulus {
public:

TDualD~~~gniifllllllll'I'fil';f
virtual
virtual

.. Registered/Restricted Cher March 15, 1990 2.2.2 - 30

ESP

• Registered I Restricted Event Server Wednesday, March 7, 1990 2.2.3- i

.:.;.:-:-:-:.:

.::::lj.:.·.·~.ll!···ll.i·j.·.;·j ..:!j.:.lj;:[j~[{[[[if\:(~j~:;j~:~tj~:j;;~i~i\:[\tt:}::: ..

• Registered/Restricted Event Server

.-:::.:<{:~:~~~~~:{/~}>::::::::-::::-:.:". ...:'...
.......:-:-:-:::::::: ..- .

Wednesday, March 7, 1990 2.2.3- ii

Introduction

The Event Server is primarily concerned with receiving events from the various devices attached to the
system and distributing them using some well known protocol to applications in the system. There are a
number of design goals for the Event Server presented here in no particular order. First, it nlust be
reliable and it nlust not block because of a runaway application. It should not be possible for an ill-be
haved application to take down the user's means of communicating with the systenl. Second, it should
allow for events to be generated by previously unknown devices in a reasonable way. And, finally, it
should be very easy for the developer of device drivers and applications to use. All of the external
interface should hide any implenlentation details such as the use of Opus/2 messages, shared nlemory,
and so on.

Overview

~~t~~~::~~~ti~~r;~~l'~~t~~~~~ei~::::;Sti~::~~~~~~~~~a:je~~,~,illl~'!:r:~ra~~li~~;~O~~~~:~~

Event $~N?r::~tQr.ts up and
regist~r~··:I~§§·tf·:Witttlb.~Name .

;~~~~~,:~~~~o.aI11'~ti.~q99b·:·j:.::i··:::~:::?~:kO;";e--yb';;";;o--a--r~d
find it. . .

Event Server queries the Name
Server to find the Layer Server. It
will need to communicate with
this dude later.

When devices start up, they
register themselves with the
Event Server. Event Server

....-:.:::•....: : - .

Laser -.1"
>~,

Layer Server

Figure 1 - What happens at startup time.

• Registered/Restricted Event Server Wednesday, March 7,1990 2.2.3- 1

Once the Event Server has started up, it blocks on events to be posted by the devices attached to the
system and then distributes these events to the proper applications. The Event Server does not believe
that applications will be well behaved and thus takes necessary and adequate precautions against an evil
application from taking over the machine.

When the user presses the mouse button (refer to Figure 2), an event is generated by the mouse driver
and this event is sent to the Event Server using the DistributeEvent method. The Event Server re
ceives the event, realizes that this event is a positional event and is to be distributed based on the
application "under" the device. The Event Server queries the Layer Server to determine which task is

The user presses the mouse
button down and the mouse
driver generates an event and
passes it to the event seNer.

Mouse

Name Server

.·.·.:.::~:):::::::;:::::::~:?~:~:~:r:::·:··.
..::::;:::;=::;:::::::::;:::;:::;:;:;:::::::::;.....

. .
\}::::::;:; .:.:-:.;.:-:-:.; ::: .
':::::::::;:;::; :::::::::\:::::::::::=::::;:;:::.:::-:-

..
...... .

':::::::::::::~:}~{:>;.:<::-:::-: :~f<~;;;;;;;;;;;;:"'" ··:::;~~~;~t\;:)\}~{::::;..·' .

responsible for rece~~h~:¥,&~~fg:~~ll:thiin~:yer and then sends the event ohq:o{t:§.~:~RRli9~H8h.The Pink
Event and Message Systemls'responsible for making sure that the proper MR~··~:ponderobject will
receive the event.

In the case of a keyboard event (refer to Figure 3), the event is quickly passed onto the application
because the surrogate LayerServer has cached the information concerning which application is the target
of the keyboard.

«Registered / Restricted Event Server Wednesday, March 7,1990 2.2.3- 2

The user presses a key on the
keyboard and the keyboard
driver passes this information to
the event seNer.

The Event SeNer has cached
who the target of the
keyboard is (that is, which
task will receive the event).
The keyboard event is then
sent to the application.

Keyboard

Event Server

Name Server

Laser '~'"
"'I'

Layer Server

Classes

................:.;.;....

TEventServer

The TEventServer object is an abstract baseclass which encapsulates the protocol for talking to the real
Event Server. The TEventServer object lives in your address space and talks to the real Event Server
which lives in its own address space. This saves the application framework writer from having to know
about the nasty details about Opus/2 Ire messages. It also insulates us so that future changes can easily
be made to this protocol when porting the code to other architectures that allow messages of different
sizes or different synchronization methods.

class TEventServer : public MServer, public MClient {
public:

virtual -TEventServer();
virtual void Main(TMemory& startupInfo);

protected:
TEventServer(char* myprogramnarne,

• Registered / Restricted Event Server Wednesday, March 7,1990 2.2.3- 3

const TTaskSchedule& theExecutionCategory kServerTask,
size_t aStackSize = kDefaultStackSize) ;

virtual void NewEvent();
virtual void HandleNextEvent(TOSEvent*, TOSExtendedEvent*) 0;
virtual TOSEvent* AllocateTOSEvent();

} ;

TEventServer: :TEventServer(char*, const TTaskSchedule&, size_t aStackSize)
Create the TEventServer object. Since this is an abstract superclass, the constructor can only be called
by a subclass. You nlust override the HandleNextEvent () method to get this object to do anything.
Remember, because a TEventServer is a MTask, your particular subclass l11USt be started after it IS
created (by calling the virtual function Start ()).

TEventServer::-TEventServer()
Destroy the TEventServer object.

:.:.:.:.:-

.. ; ;;; ;;~ :;:";; .~..j'~"'~;j.~ ~.~l.~ ~ .::;:;:::::...;.::.::::::;~:~:~::.:.: .•.,

This method receives/th(~rnexteventfrom the EventServer and c~n$4h:en{aridleNextEventroutine

::::::;:
,\})}::: ~t<:::::::::>·::·:-

TOSEvent * TEventServer:: AllocateTOSE#E:Wit () :::;:)T:::::~::~;:;;~:\:\~~[\I:\j\j\I:~)(:~: }}:W::}: ~/»:::::::i~;:.:.·.

:::~::7~:i:~iilr.B;..;.•;.l..•.;•.I;N.em..••.••.•.t.•.I~~~~~::~::~:~i'lt!;~i~~:~r: :~'lfll~o7:::~~::~i~II!ll~:~ to

..:::;:::::::\\}/ .;.;.:-:.: ';':-:"';'.-:' '}~::::; :~< '".
MEventSou

··r<:::c>:;e:>·;.:.;.:;;.·:;·.:::.·.:···.·;·':.:.:..»:::;:;;;;:;;';'; ;:.;;:;:.;.;... ''';:;::;;;;;;;:::;;;;;:;;;;;:;;;;;;.:;:..,
:.::::::::::~::: ~: ~:::::: :::::::::. ' ...

All devices that will be generating events should be subclasses of MEventSource. Devices use these
methods to register themselves with the EventServer and to post events.

class MEventSource : public MClient {
public:

virtual -MEventSource();

protected:
MEventSource() ;
virtual void RegisterDevice(DeviceClass, DeviceName,

Boolean async = FALSE);
virtual void DistributeEvent(TOSEvent&, TOSExtendedEvent* e = NIL,

Boolean async = FALSE);
virtual void PostEvent(TOSEvent&, TOSExtendedEvent* e = NIL,

.. Regis tered / Res tricted Even t Server Wednesday, March 7, 1990 2.2.3- 4

Boolean a~ync = FALSE);
virtual void PostEventToTask(const TSurrogateTask&, TOSEvent&,

TOSExtendedEvent* e = NIL, Boolean async
virtual void PostEventToLayer(const TSurrogateLayer&, TOSEvent&,

TOSExtendedEvent* e = NIL, Boolean async
} ;

MEventSource: :MEventSource()
Create a new MEventSource surrogate object. This object is used by the device driver for all
comn1unication with the Event Server.

MEventSource: :MEventSource()
Destroy the MEventSource surrogate object.

FALSE) ;

FALSE) ;

void MEventSource::DistributeEvent(TOSEvent&, TOSExtendedEvent*, .

~~ :
.:-:::::':::::" Bo0 lean async) .:::};~~;~:i:;~r~:i~::~t~~:~:f~~::::?~~:(:~:

Devices which want tg?n~y~.anevent posted nonpositionally sh0Y.J9JS~U:J,:mjffiethodwhen they have an

....:.:.:-:.:.:.:.:.:.

void

~~~~~!h:~~~n~iili~~~~~c~~~ili;t~~~I;~:~~~~~f~11"f~I~;!~~~~~!I~~!~I!~tuse
.. .:;::::::::::::::::;:., "::::::::;:::::::::::::::::::::::::::::::;::::::. }}?\{.}:.}~j.~.~~.~:.':.~~.~:.'~:.'~~.)/'

::::: ."... . ..::::=:::=;=::;:::::., "::::::::::::::::::::::::::::::::~:}}~\

Th~dm~t~d~t~§I~I~I~.~1~1~'lr~~~~~te;~h~~ ~:~i~ter ~h:~~!t~~·.gf'!1"r4i~~~Bi·~·~~n tS.
DeviceClass and Devic:eName::arehOth'token ids. Use the token manager ld":gebtnese?Ai1 exarnple
device class would be the token id for "Mouse." An example device name would be the token id for
"Primary."

The TOSEvent Components

There are a number of classes (actually structs) which are used to represent the TOSEvent. Only the
header is repeated here as the classes only provide methods for getting, setting, flattening and expanding.

II Typedefs
typedef TokenID
typedef TokenID

DeviceClass;
DeviceName;

II Temporary until we have the real time stuff

• Registered / Res tricted Event Server Wednesday, March 7,1990 2.2.3- 5



typedef HardwareTime
typedef short
typedef TokenID

EventTime;
VirtualKey;
WellKnownEvent;

class TModifier
private:

unsigned char fBits;
public:

TModifier() ;
void SetOptionKey(Boolean on= TRUE);
void SetCapsLockKey(Boolean on= TRUE);
void SetShiftKey(Boolean on= TRUE);
void SetCommandKey(Boolean on= TRUE) ;
void SetControlKey(Boolean on= TRUE) ;

~~~!~;~ ~~j~~giilllllllltlt!III'I""} ; .;.:-:.:::::::.

.:.·::;::;~:~~~tfff{})\;;:
.......................

<;::.:.:::-::::;:::;:.:: :;:;::::;>.:.......
..'-:':::: ':':':;}:-:-:'"

'". :}f)~:~ :;::::;::::;:-::-:.:>.;. .

>:;:::: .. :.::.:..~.>;~<~~:>::>:::.\)}}:.::::::::::~:::::: ~:~\t::~ ~:~:: ~~:; :~::::'
... ..;:;:::;:;:});:;: ~~/::>~?('

} ;
.......

..:::::::::.-. :::-..::} : .
;:;::;:::::::::;:.::::-:: ~:»:~::::::::::::::::::::::-.-::.

.. .. .:;::::::~:::.<;:)~@<:\\:\:::::{>: ..
cIassT0 SEV:.:::.:.o:>::..:..:..::..:.::..:::n.:::...:::....:...:::.~:.:..:.·.:.:.::.·.:·.::: :::: ::.:.:.::.:.1.::·.::.:·.::.:.:.:r.::.:..:::.::.:..::-.::.:: \::\:.:-. '\:::::::::::::::::;:::::::::::::::::::::::::::'.. ::::.::::::)

~ :~ * ··::\::::::.I:::.::.:::.·::.:.:r:::;::::::::::::·· :-:.:.:':::-:-:-:.:-:- .
pub1 i c : ":::::::::::::::.;:::.:...... :-:-:.:.:.:.;-:.;.. :-:;':';'." ::-:::-:-::~:~:)?:~f\.· :-:,>:-:-:-:-:-:.:::-:.,

TOSEvent (f:{\:-:::::::-:-:-:··· ~:« ::.:.:-:-:.:. ;::;:::::: ..::::::: ...::::.:::,:.;;:>.: :':-:::::!/\\\\\\<;:: ..)(::::"
TOSEvent (wellKh8whE;~@rit}>g:t~nt); .::':::::::::::: : ..

TOSEvent(DeviceClass realDevice, DeviceName deviceName, TGPoint where,
TModifier modifiers, WellKnownEvent event);

TOSEvent(DeviceClass dclass, DeviceName dname, WellKnownEvent event);
TOSEvent(DeviceClass realDevice, DeviceName deviceName,

TModifier modifiers, VirtualKey key,WellKnownEvent event);
TOSEvent(WellKnownEvent event, const TSurrogateLayer& newLayer,

const TSurrogateLayer& oldLayer);
TOSEvent(WellKnownEvent event, const TSurrogateLayer& newLayer);
TOSEvent(DeviceClass dclass, DeviceName dname, WellKnownEvent event,

LayerID aLayer);
TOSEvent(WellKnownEvent event, LayerID aLayer~;

}::::?~:~.,

class TwellKnowrj$%{q~.~ffects

PU!:~rl:Know~:~:~!!i!!iii~I~'~lean
Boolean
void
Boolean
void
Boolean
void
Boolean

DeviceClass
DeviceClass
DeviceName

GetActualDevice() const;
GetActingLike() const;
GetDeviceName() const;

• Registered/Restricted Event Server Wednesday, March 7, 1990 2.2.3- 6

} ;

EventTime
void
TGPoint
TModifier
VirtualKey
WellKnownEvent
TWellKnownSideEffects
void
void
LayerID
void
void
void
void
void
void
void
void
void
void

TStream&
TStream&

GetWhen() const;
GetWhen(TTime& aTime) const;
GetWhere() const;
GetModifiers() const;
GetKey() const;
GetEventType() const;
GetSideEffects() const;;
GetNewSurrogateLayer(TSurrogateLayer&) const;
GetOldSurrogateLayer(TSurrogateLayer&) const;
GetLayerID() const;
SetLayerID(LayerID) ;
SetActualDevice(DeviceClass dev);
SetActingLike(DeviceClass dev);
SetDeviceName(DeviceName dname);
SetWhen(EventTime when);

TOSEvent (or ~~~~~~~~B~l~l~SSfor e:;jl'~~fficreate your o~'i~i~~~~events.i)i

class TOSExtJfi~~8.~Y~n~::':·:E::.":·':m·:\'·:.. :<.::.;...••..>•• >.:::::.
public: <::::;:,:::::::::::::::::::».>

TOSExtendedEvent() ;
virtual -TOSExtendedEvent();

virtual TStream&
virtual TStream&

} ;

operator»=(TStream& towhere) const;
operator«=(TStream& towhere);

• Registered/Restricted Even t Server Wednesday, March 7, 1990 2.2.3- 7

il'lllllllllll'"
,.;.::;::::::::

)<~~j:~':':'" ~:?::::::::::;':':':: ... ::.;

• Registered/Restricted Scripting March 15, 1990 2.2.4-i

Introduction.' .. 1
Purpose 1
Objectives : .. 1
Strategy , '" 2

Features " '" 3
Visual Scripting Language : 3
Automatic Task Recognition and Completion. .. 3
Explicit Scripting by Demonstration 5
Effective Visual Metaphor 5
F1exible Script Modification 9

Implementation Overview -.. 10
Scripts. 10
Scripting Server 12
Script Application. .. 15
Task Recognition Engine. .. 15

Application Scenarios. 17
Task Automation. 17
Interactive Examples. 18
Procedural 18
Application 18

Dependencies. 19
Selection Sets. 19
Command 19
End-User 19
User Interface. . . 20

'* Registered/Restricted Scripting March 15, 1990 2.2.4-ii

Introduction
The Pink scripting system is designed to give end-users the ability to automate
their complex or repetitive tasks in a way that is easy to use, universally avail
able, and effective.

Purpose

End-User Task Encapsulation

Repetitive actions are tedious. Complex actions are difficult to remember and
are error-prone. Computers can be good at performing complex or repetitive
tasks. However, they must be programmed. Unfortunately, this is not an option

.,:.:::::::):;:;::: :;::;:;::::::::::.;:::::::::;:;:::::':':'

address the progra.*g~~D~~dsof e*gHi~~n?~~p.sefew have:::~n~'A~~~~W
skills or desire to wri~t~:§mp!~. In the::B~~::9t:Ii:nmrTalk,most q~~y)t::¥~$"we
programmers and regYJ~tWiJiseothet'Bt9gr~~*glanguages P14nt:W:iw8r!<
[Nicol 89]. \~:'l~:~:~l,ii~:jjjlllj~~f ::::t::~j:l::·[,·.[:::::::.i::::j:~:·:::I:::Hn :::;:){::'•.:.::.•.:?:.:::?:: ..•••••.

......... ··.I,r'iiil~~J~~:g~~~lti;~~I'l.t~~{~~~
The primary purpose of the Pink scripting system is to provide these end-users a
way to encapsulate their complex, repetitive, or procedural tasks. As such, it
completes the set of programming systems necessary to satisfy the needs of the
entire range of user types.

Objectives

The Pink Scripting System will be easy to use, universally available, and effective
in its ability to automate end-user tasks.

Easy to Use

The Pink Scripting System will be easy and fun to use by end-users. It will be
easy to enable, easy to disable, and easy to begin and control script execution. It

• Registered/Restricted Scripting March 15, 1990 2.2.4-1

will be a tool that truly facilitates end-user tasks without getting in the way.

The Pink Scripting System will not require much additional skill or knowledge.
Additional skills may be required, however, for advanced features such as the
ability to modify or parametrize a script.

The Pink scripting system will employ a visual metaphor that is effective in dis
tinguishing the script, its subject or task, and its parameters, and that facilitates
editing, execution, and debugging.

Universally Available

The Pink Scripting System will be automatically available to users within and
among all applications. It will require little additional effort for application de
velopers to enable the base functionality. Enabling some advanced features may
require additional developer effort.

Strategy:....:::...:.;.:::.:.:.:.;..:.....

:.:.:-:-:-:.:.:-:.:-:.

::::::::::;::)::.

• Registered/Restricted Scripting March 15, 1990

>:.:-:.;.;.;

.:.:.:.:.:.:.; ~~~~~~~~~ ~r:~~~~~: :::::

2.2.4-2

Features
The Pink scripting system will feature a visual scripting language, automatic task
recognition and completion, explicit scripting by demonstration, an effective vi
sual metaphor, and flexible script modification.

Visual Scripting Language

One of the most important aspects of the Pink scripting system is the program
ming language used to record scripts. This language will determine, in large
part, what programming constructs and operations are possible and how easy
the system is to use.

• It does not require abstract linear thinking. This, according to Nonnan
Cousins, " .. .is the most difficult work in the entire range of human effort...".
Scripting by demonstration gives users immediate visual feedback by em
ploying familiar operations.

• It is extensible. As new applications and new operations become available to
users, these operations may be used in scripts.

Automatic Task Recognition and Completion

The Pink scripting system will attempt to recognize repetitive tasks within an ap
plication as the user is perfonning them. As the user continues to perform the
task, the system will give visual feedback to demonstrate that it is anticipating
the user's actions. The user will then have the option of having the task
completed automatically. This feature has been prototyped in HyperCard by

• Registered/Restricted Scripting March 15, 1990 2.2.4-3

D

Allen Cypher [Cypher 89] and studied by the Apple Human Interface Group
[Karimi 89].

Task Recognition

The Pink scripting system will constantly monitor the aGtions that are currently
being performed by the user. As it does this, it vliIl attempt to recognize a repeti
tive task that could be completed automatically. r
This task recognition process must accommodate the following situations:1

-
• Mistakes. Users will make mistakes while performing a complex sequence of

operations. They will either undo these mistakes or will in some way correct
the errant operation. The scripting system must be able to disregard these
mistakes as it is looking for repetitive command sequences.

":syStem/'This could be a color or some other form ofhi'ghlighfing. Users will also
be able to look at the automatically-generated script while the system is antici
pating user actions.

Task Completion

After the user is confident that the the system understands the repetitive task
being performed, either through the anticipation feedback or by inspecting the
proposed script, the user may request that the task be completed automatically.

Users will have the ability to control the speed of playback and display options.
They will have the option to undo everything the system did, if necessary.

1. Many of these situations are research topics that have not yet been worked out. As such, this list represents
. ideals that may not be met in the initial implementation.

• Registered/Restricted Scripting March 15, 1990 2.2.4-4

Explicit Scripting by Demonstration

In addition to automatic task recognition, the Pink scripting system will feature
an explicit, user-initiated scripting capability.

The Pink scripting system will allow users to explicitly create a new script by
performing a series of operations while the system records their actions. This se
ries of actions, or script, will be stored for subsequent invocation or modification.

Users will have the ability to restart or disable the recording session. They will
have the option to abort the recording and undo all operations performed since
the recording began. This will help give users the confidence to try scripting
and the tools necessary to restore the system state if they change their mind.

Effective Visual M~.~.~.P.!:..?E ;.;.;.:-; ;.;.;.;.;.;.;.;.;.;.;.;.;.;-:.;.;.;.;.;.;.;.'.;.:.:.:-'
Tlji"1111~~~~I~t,IJ!'~I!~lijl'~:feature a visual metaphor f..9F:~~9~~~nK~f;~~dedit-
iQgN~9ip$§{l~m~§::Y!§#:!krr@lphorhas not yet been sel~9:¥gp*t@f'willinclude the

;ij'!!!!!!!!!!!icklYgetareaso9~~I~~ill~~~::mg of what tile
.::I:j}{· script does. The user objects that will b~r9P!fi.~~j)lPon or are parameters to

.;::;::::;:;:;;·:: the script will be readily apparent A;¢.9mp~m§::sngerstandingof the script

munication with a coI#pgMitJs a pro~:9*~:iyij)#.1.~~~p~or for assist:~Dg::Wi:~::tljimWng

and learning processe~::9#9W:nanbein:g~:UMfm~tf~f#ntexamplesQf::Yj§H~r·pt9:.
gramming systems are}lllWfabrik Proghi1jJff.#ngmWtlp~ronment [LudBi1WH~$jkwmch

..•···.···.·.···II£~~l~~iJ¥!?~;;;;~!\fi~~~:Zyil~ll'=ig~~
::·:··::··;:·:~11~:i;0,j~d.~infeff~;2~ for the Pink scripting syste;fu:h~$·:n9tY§~·Bfi:~b.:sklected.

'Pr~~hteabeloware several possibilities: storyboards/films,> and comics.

Storyboard Visual Metaphor

A story board is a collection of cards or pages, each describing one scene of a
movie or play. It places the characters in the scene and describes their dialog or
interaction.

With a storyboard visual metaphor, each frame could represent a discrete step in
a script. A set of steps in a script (i.e. a procedure or subprogram) could be rep
resented by an act. The entire storyboard could represent the screenplay or
scenario. A program could list the players (Le. applications and objects) and give a
synopsis of the play.

Each frame would have an area at the top that shows where the scene takes place
and who the players are. At the bottom is the dialog, which could be used to ex
plain what is happening or to specify details such as the file being operated

• Registered/Restricted Scripting March 15, 1990 2.2.4-5

• ~~

~ :
!II

~ ~

upon, etc.

During script execution, the scene currently being executed could scroll by.

Film Visual Metaphor

With a film visual metaphor, each frame could represent a discrete step in a
script. A set of steps in a script (Le. a procedure or subprogram) could be repre
sented by a scene. The entire script could be represented by a movie.

Users could be shown several frames at once and would be able to browse
through the scenes in order to get an understanding of what the script does.
Script editing would be very much like splicing film.

During script execution the frame would scroll by, as in a real projector. All
frames except the current one would be dimmed.

j'lfll'~~::o~tsound fits in ve1;iI!l~il~{bW~g~i~ be

o
"".,:::::::::::::::;:::::::::::

.....;.;.;
".;.;.:.:-:.;.".................

".

"."

• Panel sizes indicate relative importance or time requirements.

• Lettering style reflects the nature and emotion of the speech.

• A wavy-edged or scalloped panel border indicates past time. This might be
useful to illustrate the environment or preconditions. Other border styles,
such as a jagged edge, can indicate sound, emotion, or thought.

A comic strip construction tool called The Comic Strip Factory is available for the
Macintosh from The Pacific BitWorks. This may be a useful tool for prototyping
this type of user interface.

This option would be looked upon with glee by the Japanese and the young-at
heart but may turn off corporate America.

• Registered/Restricted Scripting March 15, 1990 2.2.4-6

Object Visualization

The objects that are used or operated upon at each step of a script will have a vi
sual representation or icon associated with them. These icons will be displayed
to the user when inspecting and editing scripts.

The visual representation will be determined by the referenced object. The object
will also be responsible for the granularity of the representation in order to r_e
duce "icon overload." For example, a standard document icon might represent a
character, word, paragraph, and chapter in addition to the entire document.
Even so, these additional details will.be available to the user as necessary.

Figure 1:

::::::::::::::::::::::::::/·):fflnt~tip.t step w9H~9.::~applyto that objecCtwt:l!~gtl:ll:1anone obj¢,¢~j~:~lected,the
<t::}(:Hn·:::.·iA1.lrt~:t,·:~nPt:§~~fMWbuldapply to each seled~g::ppi§ffit(in turWU:UF::::/::::::::'

... >::::::;:::;:;::::::-:....-:

The Selection

Figure 3: The "current selection" icon

Scripts may also reference a selection set. A selection set references other objects,
either explicitly or through a user-specified pattern or filter. If the selection set
contains one object, the current script step would apply to that object. If the se
lection set contains more than one object, the current script step would apply to
each object, in tum.

2. These and subsequent icons are for the purposes of illustration only. The actual icons have not yet been deter
mined.

« Registered/Restricted Scripting March 15, 1990 2.2.4-7

My Selection Set

Figure 4: A specific selection set document

.;.>:- :: ..>:.-:-:.:-:-: ..
:-:.:.:-:-:-:.;-:-:-:-:.. .:<.; .•..

Trash

D£;I
My Document

Selection sets may also reference selection sets that must be supplied as a p-aram
eter when the script is invoked. Users (or perhaps previously-executed scripts)
would be responsible for specifying objects that belong in this selection set before
the script can continue execution. The user interface for specifying these objects
will be the same as when constructing a selection set document. This unspecified
selection set can be named in the script so that it may be referenced in m9r.e than

t::::::1~1
.f))/"

..

~:}~:}r

)lltllllr'I(lli(~;on
.................

......
.... .:.:.;.:-:
:::::;:;:;:;:;:::;:::::;:::::::;:;:::;:;:;:; :::~)::.:;.

::::::::}}~:~:~::::::::: . '.-.-."
...........:.;.:-:.; :- :-..;. ..;-:.:-;.:-:-;.;.:.:.:.;.:.: .

:....-:-:-::::::::;:::\:::::::;:::.:.:. :.:-:.:-:-:.:.:.:.. :-:.·::::···:::::}t~{:;::··

Figure 6: An example script step using nounlverb syntax

«Registered/Restricted Scripting March 15, 1990 2.2.4-8

Figure 7 illustrates this operation using a declarative style: the same two nouns
plus one preposition, in.

My Document Trash

Figure 7: An example script step using noun/preposition syntax

::}=::::::: :;:::::;::::::::::::::::::::::::::::.;.:.-
.·H}·(ttl:::}:::::::::>

..:::-:.:-:;:-:.:-:-: : .

··:<{t~~Iff{·········:·: ","

The style of operation visualization that will be used in the Pink scripting system
hasY~..~}9.. ..p.~ 9.~~~r..~.t~.~.9.~ Th~!.~ is also a good potential for using aniIl1~~.~9n;.to il-

FlexibIe Script ~;~IIJl'III'ijfi1;ltrlllll;ll;il;;;::::+;;W'
)!9Wers will have the ability to modify scripts on¢i::)~lj~.MJ1~yebeen recorded. This

JiJpight be to correct mistakes made during tI:1¢j)ffi8§tg~~1n~HJrocessor to further cus
)Uj:)!PJ:Ilize or specialize the script. There are s.:fY!t~;k~8P~):modificationoperations

•

:::::/·;·!:~;.!!;)..·~!1!:.·~·:!'::; :U.?:\::::::::::.. ..::.: ..:'::::'::':':'.:':'::.:..:'..:~..:~::.:::::.:::::::.·::.:[.:.:·.i.::.::.l;j~r.:.:.: :.:.:.: :.~:~:~:~:~:~:~~ ~:;t:·::~~~~~~}:::::;·
...:...:-:.::::::::::::::::::::::::::::::

'* Registered/Restricted Scripting March 15, 1990 2.2.4-9

Implementation Overview
The Pink scripting system implementation will include a script object to repre
sent scripts and their behavior; a script server providing recording and playback
capabilities; a script application that will support the script modification and
playback features; and a task recognition engine to support the automatic task
recognition and completion feature.

Scripts

There are two primary classes that are used to describe scripts: TScriptSt~p
and TScript. The purpose of TScriptStep is to encapsulate the information
necessary to describe an individual script step. The purpose of TScript is to
collect these script steps and to provide an interface to the recording and play
back capabilities of the scripting server (see page 12).

;11,111
1

1111111,11'1111""" scQps
r-::~~~A

clas:';:::;PtSt"Pi~lt.li ~111mllllllilllf;~ ········."C::· .
enum ActionCo.Qe.;}}}~{ \:t):H:~~:::mf~fflm::}~,:gndo, kRedo ifjj-.:U: " ., ..

............ ,.. TScriptStep JlllgateTask~'i:£~I.i~~rver, ··:t·
•..•::::::.••.:.:.•..:.:............. .-...•••••::-:-:.. ~~~~.::.::•.n:.:••..••;:::•.:..~.:••• :•.:.::•.:::.::•.:.:~..::::.::::•.•::.•••:.iJ:t...I!!~~~~c~:~'liiit;.li,111111•.•...........................•.....
:::;::::::::.:......... .-::}:;=::::;:::::::::;=:}: :-:-:.;.' .::::::;:;::::;:::::::::;:::::::::::;:;::-'

..... :':'::::::::':::':":":::::: ",>::::jkl~ib&i£tActionCode GetA8ti.g.A:I:.().. ;.:•• :•• :.: .• ::;-:-:.•:,/.y>"
":':::"::•• :'.·:--.".:-···,':'.·.:,vttMikr:-·~oid SetActio-ncq4.~:V~~pW~6riC6de);

virtual TSurrogateTask*
virtual void

GetModelServer () ;
SetModelServer(TSurrogateTask*);

virtual TCommand*
virtual void

GetCommand () ;
SetCommand(TCommand*);

} ;

Script steps consist of an action code (kDo, kUnda, kRedo), a pointer to the appli
cable model server4, and the command to perform in the case of a kDo action
code.

3. This class definition and those that follow are abbreviated to include only important public member functions.
4. A model server provides a standard interface to documents see the CHER documents by Arnold Schaeffer and

Larry Rosenstein. This will eventually be a TEntityID instead of a pointer to the actual model server.

'* Registered/Restricted Scripting March 15, 1990 2.2.4-10

Add(TScriptStep*);
Remove(TScriptStep*);
GetIterator() const;

class TScript : public MColl~ctible {
public:'

virtual void
virtual TScriptStep*
virtual TIterator*

virtual void
virtual void
virtual Boolean
virtual void

virtual void
virtual void

StartRecording();
StopRecording();
NowRecording();
RecordStep();

Play () ;
Play(TScriptStep&);

protected:
virtual TScriptStepReceiver* MakeScriptStepReceiver();

};li~i,ill~lliltli.,rent* MakeScriPtin::::;;;;';;;;;:}}i;;
~_.lIlllijl'.~;:~:;d~:e~~;til~lf~~~~~;~~e~::r~f
.$.gipt steps and using the recording and play1?:~9J§AAF@pm:tiesare described in

..

::::;.
\J~~}?I}:~:tt~:){~:~:}~:::::·
':~:~:~:~:~:~:;:}}~{:::::::::;::::::::"::""""'"
...<;:::::::;:....•-;.:.:;::;::-:.:.: :-:.: .
\:::;::: :::::::::::::.:::::-:-:- .

Add adds a script step tgWffi~:~¢ndof a sqi.pMUR%m§Y~ removes tN;f~p§st:(~~9$tep

.:..K~~~~~~~fa~5e::~i'~~re~~~~~Ot!~liltr\u;~~:i5\~elilll~!'.

. :.:.:-;.;.:.:.:-:-:-:.:-:.;.:...:-:.:-:<-:.:-:-:.:.:.:.:....-;.:-:':-;-:':-:-, .-:::::::::.:::;:.:.:.' :-:-:.:-: .{f){){(?::;:::;:-:
::U:::mt~)::«:0%·:@¥.@i~~:t=::::::J19Y¥:£Re first script step ··:t9):Mi~:m~f.1d.

........ -: :::::::-:.::::>:::-:::::~::::::::<:::::::::::::::?=::::::::::::::::-:.:-........ . . :::::::::::-. ...:/.:« .

······4§dfi~ft:):<:)}:·::·· theScript; ...•.:\\\/:::.:::::::}(::::<:.....

TIterator* anIterator = theScript.GetIterator();

TScriptStep* aStep = (TScriptStep*) anIterator->First();
theScript.Remove(aStep);
theScript.Add(aStep);

Recording

The process of recording a sequence of commands involves creating a script ob
ject and using the recording-related member functions. StartRecording es
tablishes a connection to the scripting server and starts receiving script steps as
they are perfonned by the user (see page 12). StopRecording infonns the
scripting server to stop transmitting. NowRecording returns a boolean value in
dicating whether recording is currently in progress.

5. More flexible manipulation member functions may be necessary.

• Registered/Restricted Scripting March 15, 1990 2.2.4-11

Internally, member function RecordStep is called when a new script step is re
ceived from the Scripting Server. The default behavior of this function is to sim
ply call Add. This function is provided for the convenience of subclassers.

II Example: Create a script and start recording script steps.

TScript theScript;
theScript.StartRecording();

theScript.StopRecording();

Playback

Member function P lay with no arguments causes the entire script to be executed
or played back. Play with a specific script step argument causes only that step

/!:Jcript theScript;

)?~~4·

.):~:}:f.?eScript. Play () ;

11Illllltl!t\i\st
TIterator*

;:;:;:::::::;-:..

Commands

Scripting Se:X:7~
.-:-:.:.:.;-:."-:-:.:-"

o .. '----_.....

Rgure 9: Script recording process

• Registered/Restricted Scripting March 15, 1990 2.2.4-12

Commands

The script playback engine facilitates script playback by sending commands to
the corresponding model server(s).

~ ----II...~ 1-----11...,--0
'----_....I

Figure 10: Script playback process

Class TScriptingClient provides the primary interface to the recording and
playback capabilities of the scripting server. This is lower-level interface than

w'" virtual void Startf.I'I~:;~surrogateTaSk&
-:~;::;~:~::?::::::::::::.::... virtual void ~t.II'I"I!~~p(~~~:~:~~:eTaSk&

)({{...... :::::;:::::::::::::::::::::::}:::::::........ .;;:ft::m:::M;i#.it.pt.StepReceiver) ;

jlll'lllltl\'tlllllal'llill';;~RWiR';.
:;::::-: '-:-:-:.;.:.:-:.:.;.:.

class TScriptStePRe,*;!~¥N:PUblidjBlli;jliI(,;;;;

,i;; PUblTvi~rt:ruiPatlStveo:.;.:..~..:.•·•..~.~.,•.••.·.I"i'r (TScriptt1~g®ll~ ~ NIL); ;;;\

~n/){::::::: ..;:)..;:» ..:::,:::.::)):~ ~j~~]~.fY & startu:g~P:~8'~'@0:»
...... -: :..:-:.:-::.:::. ;H)::::;:t.:trtua:l:::::V~Uf:t;::·· ReC'~~Y~~~'p::(TScript$:t.;;=fu?:~tf/:·

::;)/:)Un:·:·:}·;:··)::;:;::;:::;:::;::::::::>'..»:>: ::-:: . <>;::::::=:

.... ::<:>:::::::::::::::::::;·.;../C:-::
This class receives script steps from the scripting server as the user performs
them. RecieveStep is called with each script step, in turn. The default behav
ior of this function is to call RecordStep for the script that was specified on the
constructor, if any. Subclassers may wish to override ReceiveStep to do some
thing else.

The scripting server uses an instance of class TScriptStepTransmitter inter
nally to transmit script steps to a script step receiver.

class TScriptStepTransrnitter : public MClient
public:

TScriptStepTransrnitter(TSurrogateTask* theScriptStepReceiver);'

• Registered/Restricted

} ;

virtual void'

Scripting

Transrnit(TScriptStep&);

March 15, 1990 2.2.4-13

virtual void

The constructor establishes a connection to the specified script step receiver and
Transmit sends the specified script step.

Receiving Script Steps

Class TScriptStepReceiver is used to ask the scripting manager to start
sending script steps as they are performed by the user. This class calls function
MakeScriptingClient in its constructor to establish a connection to the script
ing server and calls function StartTransmitting to initiate the transmit
ting of script steps. Function ReceiveStep is called to receive each script step
the scripting server transmits. Function StopTransmitting is called in its de
structor.

II Example: Subclass TScriptStepReceiver to override member
II function ReceiveStep to do something interesting and start

I /}fi/:r.ecijrvfn~f:::iBflit{:~t~.ps from the scripting manager:~:{:::::{::}t:::::::::::::::n:Ut/::?

:::

:::.:::.::..::..C.:.:i:.::•.•: •.:..i.:.•:j.!:·.•:l..:•.ll..lf.~.I.•I." public TscriPt:;il_~;~~!,~;;i\ ...
TScrip.#.§t.~g*9.~iver(};

Rec~dM§t:i.inill$friptStep*} ;

:-:-:-:-:-:-: ..

......
.:.:- .;.;.: :.: : .

::::::::::::::::;:::::::

:.:-:.:-:-:-: ··::::~:::::::::::f}:;:::::::;::::::::: _. :::::::;<:»:.:--.:.-
-::::::}~:~. ... :>:::::::::::::::::;:;:::;:;::::-.

·:::::;::::::::·:··:::·;:>;iiif~2:::-:- Send a script to the scripting '~:'~:fJ~f: :t6t~:i:~~back.

TScript
TScriptingClient

theScript;
theScriptingServer;

theScriptingServer.Play(theScript);

II Example: Send a script step to the scripting server for playback.

TScript
TScriptingClient

theScript;
theScriptingServer;

Tlterator* anlterator = theScript.Getlterator();
TScriptStep* aStep = (TScriptStep*) anlterator->First(};
theScriptingServer.Play(*aStep);

• Registered/Restricted Scripting March 15, 1990 2.2.4-14

Script Application

The purpose of the script application is to provide a user interface for recording,
inspecting, editing, and playing back script objects.

Figure 11: Script user interface

11ri'1'111'!~::::::t::~::t:!ill!~~::::~::::~
/mm=e recording process and for those that hav~:~:~@~¢'9t4ih~dpreviously. It is

.trUUs interface the user will see when a script~~fgp~P.~fr?·

.~~:.11;!11:!·limi.~:.Pt::i.PP~~f:~tion will have a flexibl¢l~i~~~'!~~::II~~I~~k options. Included will

..........•... ~~)~(~{::::::::::.;.»:.:.:::::::::

:::Umt:~rt:r::~~~~:::::}:I:tI::? .:::::::.::;.;::;::::::::::;:::/:y:}:::;}}

The user interface for 'tp~§::~Rplication:~~:~y~~~J9]fflj~petennined ~Rf:~H?~J~(lsed

:~~::::: on one of the visual.::m.:.:.:::.: ::::.:..::e.:.::.::.•:;:::~•...:..:•.:.:••.:..::!...••:•.~.I'rs propos;:~;%~~in thisdOC~~r;)i
Task Reco g;ll!~~g~ij::B~ngin e .::....:::::Cit::tt>:::::::::::/))UUnUf/H?

::::::::;:::::::::::::::: ·::::~:~:~r~~~tt~f~~:r···::::::::.···· .

:<jH:iH::-i{;;:i;r::j,h~:;~#rPB~·:9t:)·tm~:;t~~:~ recogni tion engine iJ\6·~*,f~~~Rt.to re<:9Ii£@;if&:;etitive
P:::.t~~¥.-$~$~~h¢>4sefis performing them. This is to stiPF8tH.Jt:W:e4tpmatic task recog-

niti6ri'and completion feature (see page 3). .. :.:::: .

r===m-----1 1ReCOg.nitionl_~ --I""~
UJJ EngIne~

Script Steps

Figure 12: Task recognition process

The task recognition engine receives script steps from the scripting server. It
compares this command object with recent command objects it has processed
and attempts to detect a pattern. For example, applying the same sequence of
commands to each document in a folder, or each card in a stack. This pattern of

• Registered/Restricted Scripting March 15, 1990 2.2.4-15

command objects becomes a script that has been implicitly constructed.

When the task recognition engine detects a repetitive command object pattern, it
will highlight the user actions that cause the next command object to occur. This
feedback will demonstrate that the system is anticipating the next user action and
has potentially constructed a script to perfonn the task..

The task recognition engine will include options to save the implicitly-generated
script and to begin execution of the script in order to complete the user's task.

• Registered/Restricted Scripting March 15, 1990 2.2.4-16

Application Scenarios
There are several applications or uses for this scripting technology. These in
clude task automation, interactive examples, procedural annotations, and appli
cation customization. These are determined, in part, on how and where a partic
ular script is made available to an end-user. These options include implicit
scripts, document scripts, embedded scripts, annotation scripts, and bag-on-the
side scripts.

Task Automation

Implicit Scripts

Some scripts are generated implicitly by the scripting system and may be in-

..

:.:-:.;.:-:.:-:-:.;. ~:::::::::: ::::::::::::

Another example use q()jj:)S#Jpt docu~~:.~~):mJf§~~p through" a::pt§¢'~Ht~.<=per-

.<:::AJf~;::~h~userindicates that the step is comple;;,::~h~\i~~t>~~uld close the
rolodex, open an invoice program, and ask the user to enter the billing rate
for this client, and then pause.

• Other steps might include setting up file folders, printing a "welcome" letter
with a personalized message, adding a reminder in an alarm program, and
so on. Some of these steps the script could perform automatically and others
it might pause while they are completed by the user?

Another example use of a script document is to retrieve electronic mail messages
from a remote system. The steps involved might be:

• Lauch a communication program
• Open a connection to the remote system

6. Thanks to Frank Leahy for this scenario.
7. It would be nice if the user could perform the steps in a random order, much like a check list.

• Registered/Restricted Scripting March 15, 1990 2.2.4-17

• Logon
• Open a file to receive the email messages
• Send the commands necessary to retrieve the messages
• Log off
• Close the connection
• Quit the communication program

Interactive Examples

Embedded Scripts

Scripts may be embedded in a document to perform some action. This embed
ded script could be invoked on one of several conditions. For example, the script
could be selected and invoked at the option of the user. Or, it could be invoked

"':::::::-::::::~<;:;:;::.:.
-:':-:".':-:-:-:<';':-:':-;-:-:';'"-:';'>:'"

Bag-on-the-side Scripts

Scripts may also be used to enhance or customize the features of an application.
These scripts are similar to embedded scripts as described above, but are at
tached to an application menu or button instead of a document. This script
might be defined to apply to the current selection.

An example use of this feature is to change a drawing tool to a pre-defined con
figuration in a paint program. The script could set the tool pattern, color, size,
shape, enable the grid, disable mirroring, and so on.

• Registered/Restricted Scripting March 15, 1990 2.2.4-18

•

Dependencies
There are several dependencies suggested by this system. Many of these depen
dencies regard selection sets, command objects, end-user objects, and user inter
face issues.

Selection Sets

Scripts must have some method of referring to a persistent set of selections.
These selections may be anchors (sticky selections) or may be normal selections.
The script will be applied to each selection in the set, in turn.8 Some require
ments for selection sets are:

• Users must have a way to specify the selections included in the selection set.

.. ..::::~:~:}}~;/?t~:~:}~:::t:{}~:: .

),:::':::t:::::::::::p§gr.~must have a way to indicate a ~~~~ijpry:<~m::~~at must be specified by

..:.:.:.:.:.;.: :'::::::::::;:::::;.;.

';!;~~liilllllll';~'F

:.;.:-:.:.:.~.:-:-: -:.
...

an icon or a string.}:JiW::will be dis·pl.#:Y@'WiJp¢ user when tj;:t$.tffl9.·ti.9.g.qr ed-
..... :UU::UC':':-j':-j'::::,:::>.iting a script. ·){ttr:':: ·:':'~f:::m:rmf::::::::::mrm::}·)::n:'::::.::.:::

;··;i~~)(_(i1~~~~f1!~:~ k;~i~i:::~!II~I~\;~o~~~~'~~:~~ne
>:::>.:.:·j:~:PP,f:pacllis to keep a record of the applicable:eri(hij~r~~tidnsthat caused

the command object to be invoked.

• During the task recognition process (see page 4), identical commands that
are being applied to different objects must be compared in order to deter
mine the iteration pattern. One approach is to require command objects to
provide comparison and iteration functions to the scripting system.

End-User Objects

End-user objects are things that end-users can manipulate. Included are desktop
objects such as applications or documents, a paragraph of text within a docu
ment, a graphic in a drawing program, and so on. Some requirements for end
user objects are:

8. It is not yet clear whether the entire script or just the current script step (which might be an invocation of another
script or sub-script) should be applied to each selection in the set.

• Registered / Restricted Scripting March 15, 1990 2.2.4-19

• End-user objects must know what command they support. The scripting
system will use this information during script editing and to provide
diagnostics.

User Interface

There must be a standard way of indicating an anticipated user action. This
could be a color or some other form of highlighting.

During the script recording process, users could be asked to clarify their intent.
For example, when they make a selection, the system could ask whether they
meant that particular object, the object at that location, etc. The acceptable level
of "intrusion" must be determined.

::;;:::;::::::::.."::::.

:.;-:.;-:.:-:.......

Bag-on-the-side scripts require that the user be able to attach a script to an
application's user interface. This could be on a menu or a custom button. This

~jlllllII11Itl!'libilio/has yet to~ dete=ined.

......:.: ,: .

::;::::::;::::

• Registered/Restricted Scripting March 15, 1990 2.2.4-20

Cypher 89

Eisner 85

Halbert 84

Karimi 89

Ludolph 88

Myers 88

Nicol 89

Norman 88

Shu 88

Smith 75

Allen Cypher, Smart Macros, Apple Computer, Inc., Intelligent Applications Group, May
1989.

Wil Eisner, Comics and Sequential Art, Poorhouse Press, 1985.

Daniel C. Halbert, Programming by Example, Xerox Corporation, Office Systems Division,
Palo Alto, CA, Report No. OSD-T8402, December 1984.

Shifteh Karimi, Eager: A User Study, Apple Computer, Inc., Human Interface Group, No
vember 1989.

Frank Ludolph, Yu-Ying Chow, Dan Ingalls, Scott Wallace, Ken Doyle, The Fabrik Pra
gramming Environment, 1988 IEEE Workshop on Visual Languages, 1988.

Brad A. Myers, Creating User Interfaces by Demonstration, Academic Press, Inc., 1988.

Anne Nicol, Survey on User Programming, The Human Interface Group, Apple Computer,
Inc., July 1989.

. .

Donald A.mQrmii1l1.m~::g~ylgml!j9.1!~'verydayThings, Basic Books,

~:s:5111111Ifl~O:r:::~:cientific "';';:::::';::c';';:::r:';:ea:::::::::t'ive Thought,

Ph. D. g~~~rtation, Stanford University, 1975.

............

.:.:.:.:.:.:.:-:.- - :.;.:.:-::.:.:-:.:.: .

• Registered/Restricted Scripting March 15, 1990 2.2.4-21

Party

• Registered/ Restricted Collaboration Toolkit March 15, 1990 2.25-1

Donner Party·

Because collaboration isn't all
sweetness and light.

Sometimes it's dead serious.

Jack ''Too Damn Fat" Palevich
x4-4738 AppleLink: PALEVICHl

til Registered/Restricted Collaboration Toolkit March 15, 1990 2.25-2

What
.
15 Collaboration?

"collaborate - To work together, esp. in a
joint intellectual effort."

- The American Heritage Dictionary

Collaboration is what people do when they work together to achieve a common goal. Most
kinds of work require a great deal of collaboration. People's work days are made up of periods
of individual work, interspersed with meetings, mail, phone calls, chance encounters, and
other forms of collaboration.

'-:.:.:-:;:-:.:

::::.!:::::::> People working together on the same
:t?/:::;:::;::·:::different times.

.. :.;.:.:.....:.

• Post-it Notes
• Classroom Administration
• Desktop Sharing
• Document Sharing
• Shared Whiteboard
• Group Decision Support System
• Network Administration
• Version control, undo
• Mail
• Personal AppleShare

Long-term

Centralized All the work is d6h€.m3ifthe same

Distributed The work is done J.1~·II~~ral

ii: ••••••••••••·.·:\\.......i;mll1ptW
Some exampiJ.1<.i~~$:9f:$g11~l!t~~~g~:Xthichwill be possible in

• Registered/ Restricted Collaboration Toolkit March IS, 1990 2.2.5-3

To date personal computers have primarily enhanced people's individual work. Collaborative
activities are still carried out pretty much by hand. For example, while people use word
processors to writ.e documents, the resulting documents are usually passed around in printed
form. People scribble comments on the margins of the documents, then return them to the author.
The author collates the comments, then laboriously edits them into the original document. The
document is printed a second time, and the process repeats itself.

Pink is going to change this, because collaboration is built into the very fabric of Pink. Pink
provides an environment in which people can collaborate with ease while retaining their
privacy, their dignity, and their sanity.

Uses of Collaboration
Collaboration is something people already do. They just don't get much help from their
computers. Pink is gomg::tQ:::support:both::t:eaiHim~ and long-term collaboration. .::.::::t:I::t{:::m:mt~}:){::::

:::::::5 ofreal-t~'III!lfI1fll'I'J"'>
Remote access

Micro meetings

.::::::;::::::::::::::::: :.;::< - - - :.;.;.:: .Examples ofj6ri~~I~~~\i~lf~~8ht'
..,....;.;.;.;.:...:-:::::::::::;:::::;:::::::.:.;.

';':'.
....:- ..:-:::.:-:.:-:.:.;.

.<:::?~~\\ Ik/:i:>::::::::-:-:.· ,.;

Example

Document review comments

HyperText links

Source code sharing

1I am thinking of HOOPS here.

Description

People type review comments into the original document. The
author can accept or reject their suggested changes. It the
author accepts their change, the system automatically
updates the document.

Groups of documents can be hyperlinked together.

Large software projects are easier to create & maintain

because of automatic version control. 1

" Registered / Restricted Collaboration Toolkit March 15, 1990 225-4

Why a To~lkit?

"Intuitions about collaborative work seem to be
uniformly incorrect."

- Tom Erickson, Human Interface
Review

If collaboration is such a great idea, why not just implement a universal collaboration
application and be done with it? Well, unfortunately, there seem to be almost as many kinds of
collaborative applications as there are people writing them. This is because people work

AtisItI11jl"lll;,t
iP

'

• :::::::::::~::&r~p.his~ and event architecture which.::~HPpgf§~~#9Vaboration

•

• Leaving a voice mail ~~~gewhen t~.e~p'i'fY9u'vecalled isawaY.~f.Qm·

;;ti;~~~i~~oan~Jh;:s~lt~7't~:l;'I~III~7a:i~:leser~ii~i~

F/~:~:,;~~..•.r.•..•..•..·.i.••.'I..:.::•.t...:.:.:.•.::.:.:.l.:.·...:....s...:.... from acc....e...:..::.:'.s.::.:.r.:'s.::;.:.;.;,jifb1list to mailiiig;~!f~l'!!t!.~:.t ...•..•.•...•.•. /.;;;.
:::»)~~~.:~~~~~~~:::::

• Registered/Restricted Collaboration Toolkit March 15, 1990 225-5

How Collaboration is Built into Every PinkApplication
Pink builds support for distributed collaboration into all of the code used to implement the Pink
user interface. This means that every Pink application can, by default, be used in a
collaboration between several people.
How is this done? It's done by modifYing the traditional user-interface loop to include multiple
users. The parts of the Pink system which enable this to happen are:

• The Document Architecture (Cher)• The Event Server
• The Graphics Library (Albert)

.. '.
:-...... ::~..'.::•... :"'~':".~.'.:.~.::<}~~}: }}:){{:~

real-time collaboration called desktop sharing. In desktop sharing users give others access to
their entire desktop. This allows the group to share essentially all applications, whether or
not the applications use the Cher document architecture.

2When I wrote MeerKat, my Blue screen sharing program, I asked ~'\pple engineers what applications
they use. It turns out that engineers use text editors, program shL;..Ai:, and drawing programs. First level
managers use presentation software and spreadsheets. Se<:opd-level mangers use AppleLink. (Of
course everyone uses the Finder.)
3-rwo to twelve people. It takes two to tango, and twelve people make up a jury.4Continuing the food analogy, the Finder is the bread & cereal group, desk accessories af(~ ':'f'
vegetables, and games could be the desert.

• Regis tered / Restricted Collaboration Toolkit

Desktop level collaboration gives the group access to the entire desktop of the shared machine.
This is especially useful for the remote-assistance scenario, where one user is trying to debug
another user's machine.

Real-time Collaboration
Real-time collaboration in Pink is based on the "what-you-see-is-what-I-see" model. This
means that each collaborating user sees, as much as possible, the same display as all the
others. This gives the group the illusion of actually sharing the same physical document.

Of course it is not always possible to attain this ideal. For example, consider the following
case: One user has a color display and another user has a monochrome display. The two users
are sharing the same document, and the document happens to have a color picture. The color

:~eu~oo

which flowers are~lected. Another technique would be to
not present on all j5.:(::~he machines. In this case, since color

........
.................... :.:-:.>.... :.:.:::.:::::::::-::: ...

• Registered/ Restricted Collaboration Toolkit March 15,1990 2.25-7

Desktop Sharing

In order to understand how desktop sharing is implemented, it is necessary to understand the
human interface loop. This loop is what binds the users and the applications together. The
loop begins when the application makes drawing calls to Albert. Albert tells each of its
GDevices to draw. The GDevices then draw in their associated frame buffers. The user sees the
display, and moves the mouse. The mouse notifies the event server. The event server sends a
stimuli to the application, and the loop is complete.

...........:-:.;.:.;. '.;.:;:::::;:;.;:.:-;"';

::::::)}:::: :.;-:-:<;;:;:;:. :::::::::::<::::<:

.:-: .
:.;.:-:-:-:.: ::::::;:;:;:::;:;: :::;::::;:::;::::::::::::

..............:-:.:-:.;.:::-:.:.:.:.: .

.;-:-:.:;.. :-: .

Albert

The Application

.::::::{t~~~~J::··

...........;<-:.'.:.:-:-:-: -:.;.:.;...

• Registered/Restricted Collaboration Toolkit March 15, 1990 2.25~

In order to allow multiple users to access the same application, we have to splice into the
human interface loop. By splicing into the loop at the level of the dotted line, we can provide
desktop sharing without affecting the application at all, and with only minor modifications to
Albert and the Event Server: .

IGDevice I

Remote
Desktop

1\
The Application

/

The User

Document Sharing

When the application is written to use Cher, it can be used in real-time document-based
collaboration. This is because Cher cleanly separates the data (called the Model) from the
commands which modify the data. To share a document we run copies of the application on
each user's machine. Each user's machine acquires a cached model, which contains a copy of
the original data. When a user does something, their action is encapsulated into a command
object. The command objects are sent to the mpdel server. The model server distributes the
command to all of the other collaborators. ·In this way all of the models are kept in sYnc.6

Slike my MeerKat and Farallon's Timbuktu.

6See the Cher Document Architecture for more details.

• Registered/Restricted Collaboration Toolkit March 1S, 1990 2.25-9

Model

ModelServer

Document

Presentation

View

Model

ModelServer

/
Document

Presentation

Cached Model

/
Document

Presentation

:.:.:::::::.::::;:::::;:;:::;:;

• Defining a line by clicking and dragging
• Scrolling a window
• Typing text

Tracking is divided up into three phases:

1) The start, where tracking begins.
2) The middle, where tracking continues.
3) The finish, where tracking ends.

The middle phase lasts as long as the user is performing the action. It is during the middle
phase that the rubber-banding of the line occurs.

'* Registered/ Restricted Collaboration Toolkit March 15, 1990 2.25-10

To faithfully reproduce tracking across the network, it is necessary to transmit the start phase,
as much of the middle phase as possible, and the finish phase. The middle phase can be
transmitted asynchronously, using protocols which do not guarantee delivery of information.
This is because lost parts of the middle phase do not affect the outcome of the tracking, and the
remote users are usually more interested in viewing the current state of the. tracking than its
exact history.

The Whiteboard

....
..... ::::::::::}}~?::- ..

........,

By default, Pink applications are not aware that they are being controlled by multiple users.
Whiteboard is an experimental Cher-based application which is directly aware of multiple
users. Whiteboard is designed to assist small groups in their collaborative efforts. It acts as a
cross between a white-board and a bulletin-board. A Whiteboard document is a shared space
where users can jot dO\\9}:Jl.w~rJ9AA:§tJ~~jPf:;~J;1.:iBggefds and documents for one another~,~~L*ili?i~~~:L

::::~:::::::::;:::iII!lIIIlIlI~lIl1llllllll!~~:~:~:::.r~~ard'Jay
grow over time. Tti:gJirst generation whiteboard will be little
As editing functioQ~'hyis added to it, it should become sornetffiJ1
Finally, it should ~#'~·}:l:P:.~.s..aprototype distributed COlTIolonenl

7Cognoter was written at Xerox PARC.
-.

• Regis tered / Restricted Collaboration Toolkit March IS, 1990 2.2.5-11

A Collaboration Toolbox
This section describes the objects, classes and servers which support collaboration. Taken as a
whole, this is the Collaboration Toolkit. The careful reader will note th3:t many of the things
described here are actually implemented by other parts of the Pink system.

Some of the following items are very concrete - they describe things which are already
implemented. Other items are more abstract - they are place holders provided to stimulate
discussion.S

Users as first class objects

The TPerson class gives Pink programs a way to deal with individuals. TPerson objects con~Cl.in,

~~c~~~::~~~~:~~j~ll'llt'llI11111"11\"utparticular human reings.9..Thi~1s!~_ti6h
.:::::tmb
~111~~~~:~~e~i;~~Omizations

.:-:.:.:.:-:.:.:::::.
:.;.:.:.:.:.:.:::::::::::::::::::~:::::::::::::: :::::::'.-.

.. H:,~:fU::::)

Groups a~.Jgst class objects nmH:}}:{/ \}:t}}::~:::::::::\:::::::::::t::::::::::: :/:::::},//:=::=::::::::::•....

~~:s~~'III~'liiii~'~;:~;~~::;~;~~li~~I:::~~iIJ~)
It might be useful t~'~ff8~<~~'upsof other network objects, like printer p'~~i~'~~~rverpools.

Network Shareable Resources

Network shareable resources are things which can be shared over the network. These include
hardware resources, like printers, and software resources, like data bases. Pink provides the
basic technology to allow these resources to be shared. Hardware resources can be shared via
the network-transparent client & server classes. Software resources can be shared either via
servers or via copying.

S If something in this list doesn't jibe with your expectations, please tell me. Jack Palevich' (x4-473S)

9It seems likely that the TPerson, TPeople, and TNetworkShareableObject classes will all be subclasses of
the NetComm TIdentity class.

• Registered/Restricted Collaboration Toolkit March 15, 1990 2.2.5-12

Some typical shareable hardware resources are:

•. Computers
• Printers
• Video equipment
• Modems

Some typical shareable software resources are:

• Data bases
• File systems
• Fonts
• Applications

Butlers

•

::::::}~:{{\:~~
";"::::::}~:",::':':':':':':':':'

.............:.;.:.:.:. "."

-::::::::::::::::::::::::::~~~~r{~f:~:" ..
:::} .. :;)::::::::}::::::::.:

• Registered/ Restricted Collaboration Toolkit March 15, 1990 2.25-13

The Address Book

Pink will have a way for both programs and users to find the objects used in collaboration. This
will be something like today's Chooser, only much better. The exact details and capabilities
are not yet detennined. In general, the following kinds of ideas are being considered:

• The user-interface should look something like the one used to manipulate
files & folders.

• It should be possible to browse the space of all entities.
• It should be possible to search for entities.
• Once an entity is found, it should be possible to cache an alias to the entity

in a private address book.
• Interesting infonnation will be associated with an entity. It will be

possible to view this infonnation and use it as a key for sorting and

Contact Logs

:-:-'-:-:.:.:.:;:;::::::;::::::::::::::::<::.:
..........:.. .;.:.:.;-:-:::.:-::;:::>..... .:-::::;:;:::::::::;::::::: .;.::;::-:-:- .

There are a numb~;:~l:figJ~i:::~:~~~ need to be resolved. Many of thes~·-:~·;~-:·p8Hcyissues. We
will have to conduct user tests, surveys, and other experiments to decide upon the right
policies.

Sharing Resources
Resources are things, like documents, fonts, and applications, which are used during a
collaboration. While the data in a document must be shared, it is necessary to ensure that all
users have the right fonts and applications.

10Apple Distributed Authentication Server

• Registered/Restricted Collaboration Toolkit March 15, 1990 2.2.5-14

It's easy to detennine which resources are needed for a collaboration, and it's easy to check if
each collaborator has the necessary resources. The issue is what do when some users lack the
necessary resources.

One policy is to force users to provide their own copies of the needed resources.

Alternatively, it is possible to borrow the needed resources for the duration of the
collaboration.11 12 Borrowing raises many questions:

11 In the case of fonts, this is very similar to what is done when a document is printed on a printer: any
fonts the printer doesn't already have are downloaded to the printer along with the document.
I2The USA project investigated sending both instance variables and methods across networks. It will be
interesting to see how applicable their work is to this problem.

• Registered/Restricted Collaboration Toolkit March 15, 1990 2.2.5-15

Some strategies for working around differences in hardware are listed below:

• Virtual memory (although this could lead to thrashing)
• Scaling and/or scrolling when viewing a large screen from a small one
• Gray scale (or Black & white dithering) substituted for color
• Dropping frames from an animation
• Representative frame substituted for video
• Degradation of sound (Stereo to Mono, sampling rate reduction, delays)
• Placeholder objects (Rectangle which says ILl am a pipe")
• Distributing the results of a computation rather than duplicating the

computation on each machine.

Internationalization
Collaboration adds a new dimension to internationalization issues. This is because the

)~:I~:~:t

setup time from the receive·rs:·······
In some situations real-time sharing will be impractical. In these situations we can fall back to
another mode of sharing: facsimile transmission. Users can collaborate by mailing each other
screens, windows, and documents.

Leaving and rejoining a real-time collaboration
It takes some effort on part of the users and their machines to establish a real-time
collaboration session. It would be nice to save the state of a session so that the users can continue
long-term collaboration and resume real-time collaboration.

• Registered/Restricted Collaboration Toolkit March IS, 1990 2.2.5-16

We have to decide what should happen if a machine or network involved in a collaboration
should fail. In general it should be possible for the surviving collaborators to continue the real
time collaboration.

If the network is partitioned, it is possible that two independent groups of. collaborators will
result. Under the Cher document architecture, at most one group will have access to the model
server. That's the group which can continue the real-time collaboration.

A user who is cut off from the model server could have the option of saving the cached model.
This would create a new branch of the document.

Human Interface Issues
There are a number of hmna.n..inteda.ce...i.ssue.s...r.e.lated to collaboration.

::=;-~~:::I(IIIII:sues
.:::::::::}:"

The only way to.F9§9Ixy:
....;.;.;.:.:::.;.:.:.

....:;::::~:~:~:~::::::::::}~::::~::.:.:.:.:.:.: ...

.........
.. :-:::.::::::;::::::::::::::::::::::-:.

........

:~TJJ;~.'llllii!h~~::tor;:;~.~::~~~~~~~.~f~;X~~e~eOn~e:jlli~tit
let the user cIi99:~~'W~~m~r::m':~9$fYPM?:FHot? ::::-:':":::::::::':': :::,:::,::,:::.::.:::'.:::.'.':,:::: :,:.'.':::.'::"::'.'::.:',:': :::.:,::'..::.::':..'::.:.. :.' ,.,.:,:.::,:::':::.::'.:::::::>::::::::':'-'"-:':":;:::::::::;:::;:::::::;:;:::;:;:;:;:;:;:;:::::;:;:::;::::.;....

Access control lists

We need to allow selective access to documents, files, applications, and all other shareable
resources. Whatever style of access control is decided upon, it should be consistent across as
many different kinds of shareable resources as possible.

13The Apple Mail project is experimenting with the idea of "keys". A key provides authorized access to a
service. Keys are icons which can be put on the desktop, stored in folders, given to other users, and thrown
away. Just having a key is sufficient for using a service - you don't have to drag keys into locks.

• Registered/Restricted Collaboration Toolkit March 15, 1990 2.25-17

People, group, & resources look & feel

People, groups, and other shareable resources should all be some sort of icons. People should
look like little head&shoulder photographs of themselves. (What about Islamic countries,
where they disapprove of representational art? Do they use ID Photos in -their passports?)
Groups should look like containers.

Shareable resources should be found and manipulated in the Finder.

Versions and branches of documents

When people work o'n a document over time, they create versions and branches. The major issues
raised by versions are actually orthogonal to collaboration, and so fall outside the scope of this
document. The H00p..$..pr9.i~.~t}§.J9.:.!s.tng.J.hg..1~:?:.g.:pn this issue. Collaboration raises t~~-:.J§%g~}?f

....:.:::{~{:~:~~~:}~:~\)::::.: .

....-:.:.;.;.; .

faces so that the user can tell the state of't!:iW:femote mous~il?~tf~.if:~nd tell which point~F·······:·····

...... ::::;:::::;:; -:'::::::::::::;:::;:/:::;

}:::j(;.\.\:....\::.\\:):>

remote users' poiriief'moveffi.:ehls will be required. At the very least the"p61ritefbelonging to the
user who is in control should be clearly visible to all collaborators.

Butler look & feel

Butlers mediate between users and the outside world. The word ''butler'' conjures up a middle
aged formal servant. This might not be the best user interface. It isn't entirely clear if an
anthropomorphic agent is required at all. Prototyping and user testing is required here.

14Annette tells me that only programmers call these things "cursors".

• Registered/ Restricted Collaboration Toolkit March 15, 1990 2.2.5-18

Turn Taking

As far as the ordinary Pink application is concerned, there is only one thread of control. The
real-time collaborators take turns being the ureal" user.

There are many ways of taking turns. We must decide upon one which is low-overhead, but
which isn't confusing. It may be necessary to offer a range of tum-taking policies, so that the
users can choose the one which best fits their needs. Some possible policies are:

• Free-for-all
• Robert's Rules of Order
• Teacher & Students
• Baton Passing

Calling meetin~~:llllltllllijlllfllillllll~';I",;,"E".
There must bea:al.'II.I::O~~::: shareabl~Jd'illlY:'

•• :.:...:.:::.::.:...~..:.:.:.::::.no~.:.:.·.·.:.:.'.l:::l:otiwfYl.inngg tthheemmttoharetstPOhenmdeeting's OCCurring....::.:.{.t:::.[~.[:.:~::::.:[.::.::.j:.·I[:~:.~:.:::: ~:[:[::::r::::
. ·:::~~tr~:r\f~~{~}t{:~~rt{

.J}:~j~~:~:i[~m::::::[::j:~~::~[~:~:j~i[:[::~::~::[:~~~:~:1~~:~::::ll::j~::~~~::::1:j:tjt:;;::.;:.. :::::::::::.....

....

'--:':':-'':':':':::::::::;::::;:::;::::::-:':'" .

provided bYU'ti~·:~~J~ph9:q~::~y.~tem. qBfj::y.J~ have ISDN built'lQ~g::2:P:r·:£pmputers, .1·f:Wlm.k~::{~ven
easier to us€Ffn~·.·t:~1§pnBP~:::§Y§~~mD~8I~jid collaboration. .:<:::::::;:;:>~::: .

....

Voice digitizers,~~~h:~~:F~f:~Hg~;'s MacRecorder may be good for an~6:t~H6h~::Krid::~oice-mail,
but unless they can be used continuously in real-time they are not useful for real-time
collaboration.

Video conferencing is harder to provide, because of processing and network bandwidth
limitations. Never-the-Iess, we are already seeing experimental local-area-video-networks
being installed to provide vide<H:onferencing and to aid production of multi-media documents.
Where these video networks are available it makes sense to use them for real-time
collaboration.

Unsynchronized vs. synchronized views

Document sharing allows different users to view different parts of the same document. But once
users are looking at different things, they may find it hard to return to a common ground. We
will have to experiment with unsynchronized views to see if people can understand them.

'* Registered/Restricted Collaboration Toolkit March 15, 1990 2.2.5-19

Window Frames

When a document window is shared between several collaborators, we want to have some
visual indication that it is shared. One suggestion is to put the user's faces in the title bar.

Inter-operability
"No man is an island, entire of itself; every

man is a piece of the continent"

-John Donne

Pink users will need to collaborate with people who do not have Pink machines. We must make
this as easy as possible.

......:.:-:.:.:::::::::::::::::::::::::~:::::: :::.: ::.;.:::.::
...................,..:.::.:.:.:-:.:... ;.:.:-:....

A user of another brand of
computer (e.g. VAX, Cray)

;.:-: .
.;:;:;:;:;:: ;':-:-;':-:':':'.'

What about different processor architectures?

..................<;:::-:.: : .

Pink is designed to run on many different processor architectures. This means that Pink
collaboration has to work between users who are using different processors.

Desktop sharing is easy between different processor architectures, because only the data is
transmitted.

'* Registered/Restricted Collaboration Toolkit March 15, 1990 2.25-20

Document sharing is easy if versions of the same application are available for each
architecture. Application borrowing is harder, because application binary files usually are
targeted to a single processor architecture. Application borrowing would still be possible if
applications were distributed in AppLex15 style intermediate code.

Support for other styles of collaboration
Pink is designed primarily for the "knowledge worker". For that reason, the user interface
supplied with Pink supports peer-to-peer collaboration. There are many other types of
collaboration, and Pink should allow them as well. By keeping the lower-level classes as
policy-free as possible, it should be possible for third-party developers to support other styles
of collaboration.

~~~~:S:a~~~~t~~~I~fs.I~~rii.llill.~i~::~~b:s~~7';:~7a;:,o~r\~~,~.lf~g~ej!

::I~:lft::::::::
i
illiiiB'BI;solutions·j;'@W!!!iiW

i

···

Teacher /Student i The teacher can completely rea~411.~1'11:::t's machine.
....

Area Associate / Group

More than one User per
Machine

...
... - . ..

.:-:.-.:.:<;::::;:.

...................•;-::::::..
":;::::::::::=::;:;:::;:::;:;::::: r/~))<~?~ })}:. .. . :-:....... :.;-:::::.:::::::.::::::::::::}~{::::

Public Compul~~· •••.··.··............II!~:!::~~s~~~~~:~~~~~':::~l.~"\.~r~l~~l~~~~~t
up a Pink machine so that certain activities (such as deleting
applications) are restricted.

15AppLex is Wayne LoofboUITow'S experimental processor-independent object code. At the moment
Applex programs run at about 1/4 to 1/2 the speed of native code.

• Registered/Restricted Collaboration Toolkit March 15, 1990 2.2.5-21



Dependencies on other Projects
"You've got to have friends."

-Bette Midler

Collaboration works in Pink as a result of cooperation between a great many independently
developed pieces of hardware and software. One of the reasons for writing this chapter is to
bring all the interdependencies out into the open. With all of the pieces laid out, it is less
likely that some vital capability will go unimplemented until the last moment. With all the
issues enumerated, it is less likely that some vital issue will go unresolved.1 6

screen is also drawn on the remote screen.

Font borrowing is accomplished in collusion with Albert's font manager.

16If you're an implementor of one of the projects mentioned here, and you don't think your project will
supply the listed capabilities, please say so! If we're assuming too much, now is the time to tell us, so we
can figure out what to do about it.

• Registen~d / Res tricted Collaboration Toolkit March 15, 1990 2.2.5-22



Multiple pointers greatly enhance the utility of real-time collaboration.17 Each user controls
one or more pointers. Even if only one user can edit the document at a time, the other users still
need to be able to point and gesture. In addition, it should be possible to adorn pointers.
Adornment adds information to the pointer image. The two major adornments we need are:

• Drop shadows to indicate remote mouse-button state.
• Little pictures which indicate pointer ownership.

It is worth noting, in passing, that screen sharing technology is very similar to screen recording_
and playback. This means that it should be very easy to support "video-tape" style help.

NetComm

The network is the maGiihanrteL6fiBhiffiUBiclUibh between Pink machines. ~~~i~$.~~~l@~,~~i:~.:~:
the quality network ~t~;g;;j~)li~!ifl!lli!i!g!ii!ii~~haboration.Some specific ~l

:l,!!~g!!~~!;~~~:~r'SJ",","r\ror\lC'
:.!iL~;:ti::~~~~~~COIS
,~:!::[:~!tt~~ag§'~'-:~Y!:::~t9¥:{~er

::~:~: COlla~~~:!~f~!~~~'I(,!,and
::~:::e;e:t<Of the running apPlidt"~lrJ'i!!

"Best Effor@:"*=~m9"~~:~r?9lf:~rgwill requ~E!i:f.~lnges to the

tracking sys.~~m::"rf:iII:~~~~;[~~:mts;:::?T":;~~nedto extend it in

··.R.e1l:l'lBt.~:.thMkifig
• Simu"itaneous tracking feedback in multiple views
• Tracking across view boundaries
• Tracking with more than one input device at the same time

Hopefully all of these features can be added in a clean, understandable fashion.

17Dan Venolia's Toy Box program is a compelling example of multiple pointers. It is a 3D collaborative
environment. Each user has a 3D pointing device they use to create and manipulate blocks. All users are
creating blocks in the same space, and all of the users can see each other's pointers and blocks. Two
users can cooperate to change the size of a block by grabbing at opposite corners of the block and pulling.

.& Registered/Restricted Collaboration Toolkit March 15, 1990 2.2.5-23



Finder

The Finder provides all the user interface for starting collaborations. Specific features include
support for:

• Finding other users
• Starting collaborations
• Rejoining collaborations
• Browsing Versions

Related Non-Pink efforts

Apple Mail

AppleShare

Diet Coke

Spider

.:-:.:.:.;...:-:.:.:-:::.:.:-:.:.: .
....... ..

.' ...:
:.::'~:.•~::.••:.'.'.'.: ••..:....~.• ~.' •.•.... ~.:.• ~.:.: ~.:~.\.:":<::::.:;:.:.;.:.;.;.:- :-:-:.:.:.::: .

-.:.;.:.:.:.:.::::::::.;':,:-:':':

BIiPVerts .....•::)):::-:\:::: ;;::::..:.:•.•;.;;.:;:.~;.:.::::::::: /:./~:g:n:~;:~¥~d mail & documenHt~~Bi~&t :':.:'.':.::.::.':.1:1.:'.:.1:.1:.::.'::-:':;;::'
.........:.:...:-...... .... "':-:-:';':':-.

<:':::::::?H··::\.,··:::-,,:.:.·;::::.:.;·:,·"C8i1aborative componen.t docurnen.t~fth~t¢.¢.ft.li-{!. :K1Glti-cas t
network protocols.

Newton

Chorus

Medley A collaborative HyperMedia editing concept system.

I81f your project isn't on this list, it's because I haven't heard of you. Please drop me a line at
PALEVICH1 or x4-4738.

'* Registered/Restricted Collaboration Toolkit March 15, 1990 2.2.5-24



Depender:-cies on hardware
So far we have discussed how collaborative software. Several hardware projects have the
potential to greatly aid collaboration, too:

Project

Sound I/O and Signal
Processing

Telephone interface

Fax interface

Video I/O

Fast networks

'* Registered/ Restricted

Application

Voice-conferencing

Audio Notes

Voice transmission

Answering machines

Collaboration Toolkit March 15, 1990 2.2.5-25





• Registered / Restricted Laser March 15, 1990 2.3.1-1





Laser

Architecture

The Pink Layer Server
Larry Rosenstein
MIS 77·A x4-8123

The function of the Layer Server is to divide the available screen area among all the applications that are
running. You can think of it as a system-level window manager. (The View Systen1 would be the appli
cation-level window manager, since it manages the screen space within an application's layer.)

ing on a layer bringsiftotl1(fftonf6FHs category of layers. (Note that the:'ia'yet;<H&:esti6fI1ecessarily C0l11e
to the very front of the layer list; layers in other categories might still obscure it.)

It is also possible to programmatically bring a layer to the front of its category. (See the description
below.)

Each layer contains a TSurrogateTask object, which is the task that "owns" the layer. The owner of a
layer is the task that receives events for the layer. These events include mouse down/up, key down/up,
and activate/deacti vate events.

Key events are special because the keyboard (and similar devices) are non-positional. (In this paper,
"keyboard" refers to all kinds of non-positional devices.) The target of keyboard events is determined by
the state of the system, rather than the state of the input device. The Layer Server keeps track of the layer
tha t gets these events.

• Registered/ Restricted· Laser March 15, 1990 2.3.1-2



The algorithm the Layer Server uses to determine the keyboard event layer is very simple, but seen1S towork for the typical cases. This is one area in which we need additional thought. (See Open Issues at theend of the paper.).

Only two kinds of layers can receive keyboard events: docun1ent layers and floating windoids.Document layers always receive keyboard events, while windoids may receive keyboard events. Whenthe client creates a layer it specifies whether it can handle keyboard events. Internally, this flag is forcedto TRUE for document layers, and FALSE for all other layers except windoids.

The Layer Server maintains the keyboard event layer using the following rules:
• If a layer is created or made visible, and it handles keyboard events, and it is in front of the current keyboard event layer, then it becomes the keyboard event layer.

• 1£ the user clicks in a layer, and that layer handles keyboard events then it becomes the key-

.............:.:.:-:-:.....
:::::::::~:~: :: ~:::.::::::::::::::.:;;:. ':::::::::: :: ::' .

.....::.:.:.:.:::.::;.;:::;::::;:::::-:;..:.:.

The Layer Server arbitrates between layers by computing a visible region for each layer. Clients are responsible for getting the visible region and clipping all their drawing to at least that region. TLayerAIias(and TSystemLayer) maintain a seed to indicate when the visible region has changed. Clients can use thisto take action only in the event of a change in the layer's visible region.

Since the Layer Server accepts requests from many clients, there must be some concurrency control toprevent anyone client from using an out-of-date visible region. (The effect of this would be allow one application to trash the windows of another application.)

To implement concurrency control, the Layer Server creates a global drawing semaphore. When theLayer Server needs to update the visible region of any layer, it acquires the semaphore in exclusive mode.

.& Registered/Restricted Laser March 15, 1990 2.3.1-3



Clients, using a method of TLayerAlias or TSystemLayer, acquire the semaphore in shared mode before
retrieving the visible region, and therefore before drawing.

This protocol ensures that the Layer Server will not start recomputing visible regions until all its clients
are through drawing, and that no client will begin drawing until all the visible regions are in a consistent
state.

Client Interface

Global Types

.......:-:::.:.:-:.:- -: -: .

. ::.:.}~:??

...;.:-:<-:.:- .
.;::::;:::::::::::::::::::::::::::::::::;::.:.: .

La::::~::a:~:::~:;~'I'\lllllfl~Yenerv~~ k;::a:~~I~il:~:~a~!:: t:at is

never assigned. (Unles§~@N~6tirse::HWPc6uriteF\vHl~psaround, which h9~t#!~yN¥~ih'tbe a problem.)
.:-:-:.:.:-:-:.

...

t ypede f enU~f.lllil'tI~III';I';\
kDe s k t opLaye;rim{Dttf¥¥bMt~ind;

"::::~~~rmfffIffjffl

:':';':':-:':::::::::::'
............••........ :::::::::::::;:::;:;:::::;:::::::;>:

.';., .. ~::: ..... ".;.;.;.;.;.;.>:-:. .:tIrt~~~? ";:::"::::::;::::::::::::::::;: .....
typede f e~gm;· ··X.J@r@W:~@¢)qno s t Laygit~i~~!~~~}kNewFron tmo s '~~~ri~i~I:~"'!;';~'!'\ LayerPo $)#t1::t9nj?·

................................. . :.:::::::::.. ..:.:.:-:.:-:.:-............. . .
. . . . .. '.'.' . :-:-:-:-::::::::::::::::::::::::::::::::;:::::::::~:::::; .

TSystemLayer

TSystemLayer is the client's interface to the actual layers. The lifetime of the object matches the lifetime
of the layer on the screen.

TSystemLayer(const TWorkRegion& itsExtent,
TEventServer& anEventServer,
const TSurrogateLayer& behindLayer,

• Registered/Restricted Laser March IS, 1990 2.3.1-4



Boolean handlesNonPositionalEvents TRUE,
Boolean isVisible = TRUE);

TSystemLayer(const TWorkRegion& itsExtent,
TEventServer& anEventServer,
LayerPosition itsPosition,
LayerKind itsKind,
Boolean handlesNonPositionalEvents TRUE,
Boolean isVisible = TRUE) ;

Create a TSysten1Layer, which results in creating a physical layer.

:::}::::::::}:
..

................................

.. mn

Parameters:
itsExtent The desired extent of the layer.
anEventServer The "owner" of the layer; the task that receives the layer's events.

:.:~:~:{:~~:~~:H:~:\:\:::\:m::::I)j}::::::::

isVisible
:-:-:.:.:-:.:."

.:::;;:;:;:;:::

":::-;-:-:-:':<':-:';':::::::;:;:::;:::;}:::., ... {(? <..<.:-:-:.:-:.:.;)).~:.:j~.{~\\}
::\~«:::::

Destroy a TSystem4..yer, which also destroys ili.~.:physicallaye~.::.::·>::·:.:-··:·.·i:<. :::::::::::-::::::

i1iii:·······•..••••. G..•.•..•.•.:.·e.:.:.·.·:.t.:.::.:.:.;L.:::.·;.::~.•..::.::.:.:Y.:.:.::..:.::.~."..:.:'."..r.:::.:.l.:..: :..:D: :.~.:...;..):.:.:.::.:.::..:..:.::..:h.:..~..::.~I!~~·{:lil!111"llllli;l: ·.·.·i:······
~:~~:~~::::l:!ll!!:~!:!!:!!·!:!:!;:::: IsVa lid ()" coris t ; "::::::::::::::::: :::}::::}::::.;.;.;.;.; ..

Get the unique 10 associate with the layer. This may be useful for creating another object (e.g., TSurro
gateLayer), or if you want to pass the LayerID to another task. IsValid returns True iff the Layer ID is not
klnvalidLayerID

void GetOwnerTask(TSurrogateTask& ownerTask);

Copy the task owning the layer into ownerTask.

void
void
void

Hide() ;
SetVisibility(Boolean makeVisible);
Show () ;

• Registered I Restricted Laser March 15, 1990 2.3.1-5



These n1ethods hide and show a layer. Hide and Show simply expand to calling SetVisibility.

void SetExtent(const TWorkRegion&, Boolean addToUpdate);

Set the extent of the layer. addToUpdate specifies whether any new area belonging to the layer should be
added to the update region of the layer. (Clients might pass False if they planned on in1n1ediately
updating the new area.)

void
Boolean
void

AcquireDrawingSemaphore() const;
DrawingWaiters() ~onst;

ReleaseDrawingSemaphore() const;

void

":::=;:;=:::::=:=::::::;::::::::::: ::::; ::~:::~ :~:::::::::::::~~~:;:::::::::::::;:;:~{::;:. ;':;:,".....', .....:.:.:.:.:.:.:::::.:::::;:::-:.:.:.:.:.'
·t??t?/t} :-:-:.:-:.:.:.: ::}:~:}:::::::::::::<:~:}} :::..~~iii::.i :::::;:::;:::;:::::;:::::: .. -

Boolea~;;ii>~tViSRegionseJi"i!:d& viSR::~;ljillil;:!>.
Set ViSRegionsJi;i~~~~~!*~f9tm~jf§:~ svisible region. TR~~~l;ts as av~t~j9B\ihmber for
the visible regioll~Y6M<9*nH~·~lj!§J;~n:t6·determineif the visible regidrt:h~§.·f~~ng~q3#h6tsince the last
time you checked. YOti"rrlilsfcalfAcquireDrawingSemaphore before befon~·geHfRg:mevisible region, to
ensure that the Layer Server isn't in the process of recomputing a new set of visible regions.

operator TLayerAlias() const;

Create a TLayerAlias object from the TSystemLayer. A TLayerAlias provides a way to refer to a layer and
fully manipulate it without affecting whether the layer is destroyed or not. A TLayerAlias object can be
flattened and resurrected, while a TSysternLayer object cannot.2

1. If necessary, we can make clearing the update region an option to the call.
2. The reason is that you don't want to have two insances of TSystemLayer that refer to the same physical layer.

Perhaps this is not a useful restrictions, in which case, we might be able to eliminate the TLayerALias class.

• Registered / Restricted Laser March 15, 1990 2.3.1-6



operator LayerID() const;

Return the LayerID 9£ the layer. This is a convenience3 operator so that you can pass a TSystemLayer to
functions that take a LayerID.

operator TSurrogateLayer{) const;

Create a TSurrogateLayer from the TSystemLayer.

long
Boolean

Hash() const;
IsEqual·(const MCollectible* otherLayer) const;

Overriden methods from MCollectible..

TLayerAlias;;"llllflllltlllllflll'
,.:::::::::::::.

.. "':':';':-:';':-:':-:':':-:';::::;:::;:':-::::-::"

cons d:::::w@~·¥~:~ffi+:f.~~/$:';:::::::::::;::::::::::::::::\{:.:~ ..::.::..::.{>..:..
'-::}{\ :.:<:::::::::::;:::::::: ::::\::::::;::::::::::::;::::::->:-:.;.:.

Assign one inst~:iicMQ·nl';~Y~f:~~~s.H!tfilnother.
.:.:... .«.:.:-:.' .... :-:.:-;.:. ,." .......

....:-:-:.;...

void SetLayerID(LayerID itsLayerID);

Get and set the unique 10 associated with the object.

TStream&
TStream&

operator»=(TStream&) const;
operator«=(TStream&) ;

Flatten and unflatten operators.

3. In truth, it's a convenience for me. I can writ~ methods that take a LayerlD, and you can pass a TSystemLaycr or
other kind of layer object. I don't need to overload the methods to take both a LayerlD and layer objects .

• Registered I Restricted Laser March 15, 1990 2.3.1-7



TS.urrogateLayer

TSurrogateLayer provides a simple reference to a layer. You cannot manipulate-the layer, but you can ac
cess some of its attributes.

The interfaces below list only the method ot TLayerAlias that aren't in TSystemLayer.

TSurrogateLayer(const TSurrogateLayer& otherLayer);
TSurrogateLayer(LayerID itsLayerID = kInvalidLayerID);

:::::::;::::::
::::::::::;:::}=:::=;:;:;

.. - ..

Create a TSurrogateLayer ff:9:q}dV}'9#wrJ~~B4:gJJ~Y§r:gpject,or from a Layer unique 1D.
····::~:::::::::)f:·:::::::· ::::::;}=::::;:-:.;.

;.;.;<:;::.;

La ye rID .:-:.... ...:.:' /:::}:::-:.,.

Boo1 e an;.;;iii;lllllli~.i:i;t

..
....

/l:.jj~:ij!j~l·:l~j·l;~:j.l.:!!:;j:~~I).!·:I·j!:[;···,·.:~··!!.·I:ij;I!!·.;:!·!j!1;11:.:!j!ii1jijit\\::;:..

void

void
....

Get and set the unique 1D associated with the o}Jj~¢.W? T..·;..:[:·i!::::::j::~iji[[j:ji:i~[;~i:~:fi:iii:;!r

.::

..::·.::.~:::.::·.::1.:·.::.:;.::.:::~.:.j::~.:~.:::~.i.::·:~..:::;.:~·.:::;.~.i.·li:f· :.:.:.:.:.:-:::.:.:.: :::::}:{f:ttt:... \fr~?\:\::;::::::::~~~r'
. ... .:.;.:;:::::::::;:::.:.:::-::

TS t r e ariW;{\{:}: ::::::.%?:P~#~:t 0 r >>= (T S~:#4¥%&) cons t ; ··:t~~::i~:::i::::;:j:::~~::t::::-='::~:?
TSt re afu~\ ... ::n:--:8B:~·f.'.i·~:g:F:S'~:Y:Jw$.~l~H~·~m&) ; ..:;;:::\::;:::..::::.....:.:.;.;.;.;..

-.-:.:.:-0'
':-:':':':-:':':-:':":":::::::::::::::::::::":":":':'::::::::;:::::;:>:::::::;::::::::::::::::::::::...,.

Flatten and unflatten<6petatotS/:/?<::::··

long
Boolean

Hash() const;
IsEqual(const MCollectible* otherLayer) const;

rnherited methods from MCollectible.

operator LayerID() const;

Return the LayerID of the layer. This is a convenience operator so that you can pass a TSurrogateLayer to
functions that take a LayerID.

'* Registered/ Restricted Laser March IS, 1990 2.3.1-8



TSllrrogate~ayerServer

TSurrogateLayerServer provides access to several global functions of the Layer Server. These are func
tions that apply to the layers as a group, rather than an individual layer.

Boolean HandlePositionalEvent(const TGPoint& location,
TSurrogateLayer& clickedLayer,
Boolean& causedLayerSwitch,
TSurrogateLayer& oldFrontLayer,
Boolean& causedFocusSwitch);

Boolean

Boolean

=/::::;::>:""
.............:.:-:-:.:-:-::::::::.....

::::::::{:~:}::~:::::::: :-:-"::.:.::::.::.

...:::-:.:.::::"';\::":.',:.:::..:::,:::..:::.:..,:"::::::':":'::';::}}/::;: :./::}\

Information Caching

.:.:.:-:-:-:-:-:.:.:,',

.»:-:.:.:-:-;.;.'

The client interface to the Layer Server caches some information locally, in order to avoid sending re
quests to the Layer Server.

First, TSystemLayer, TLayerAlias, and TSurrogateLayer all maintain the owning task of the layer in the
client object. If you create an object by supplying only the layer 1D (not possible with TSysten1Layer),
then the client object records the fact that the task is unknown. The first time GetOwnerTask is called, the
client object will send a request to the Layer Server to get the task. The cached task is also invalidated if
you change the layer 1D of the object.

Second, TSystemLayer and TLayerAlias cache the layer's visible region in the client object. Unlike the
owner task, the visible region is modified by the Layer Server asynchronously from its client. When the

.& Registered/ Restricted Laser March 15, 1990 2.3.1-9



Layer Server changes a visible region, it updates a shared seed associated with the layer. The client
obj<:.'Cts exan\ine the seed to determine if the cached region is still valid. If it isn't then the object sends a
request to the Layer Server to get the latest region.

Clients of the Layer Server can also test the visible region seed. This is useful when a change in the visi
ble regions requires some response from the client. For example, the View SysteITl recomputes each
view's visible region when the layer's visible region changes.

Finally, TSurrogateLayerServer caches the layer that currently handles keyboard events. Again, the Layer
Server updates a shared seed when this layer changes, and TSurrogateLayerServer only sends a req.uest
to the Layer Server when the cache is out-of-date.

•

•:::::::::::::;:;::0::::::::::: .',-:.::-:.;.:.:.:.:-.' ..•.........•......

;~;;~:;~:~;;~'I'IIJllilbuilt
If the Layer Server has to have t~:';~'r'"tlliia yer
ren tly uses right? \~~{:;:~:~:11;1:1:1:1:;11I1;:}

.:-:-:.;.:-:-:.:-;->.

..

.. ...
':::::::::;:::::;::::::;:::;:;:::::::::::::;::::;::;::::::::::::

in

c Registered I Restricted Laser March 15, 1990 2.3.1-10





• Registered /Restricted

hies:

Graphics Introd uction March 15, 1990 2.3.2-1





Apple Inside Albert

Architecture for Albert,
the Pink Graphics System

Version:
Version 0.17, March 15, 1990, Pink Release 1oOd11, Section 2.3.2
Copyright © 1989, 1999mAPB1£$;9mR91tf.~n9}tF%~M~· Rights Reserved. ...;;.;.:-;;~:~:::::~;:-::;:: .

g~~jJ: and~j"~''''I_f~ns,GrawortS':,;'~lillll~i;f;i;'
~~~~~:ard .1!111?,~:~~~7d;:~~~~~S) i*rilllllllllii1:~:;AM'<;""

Albert Emeriti:
Gerard Schutten, Laurie Girand

Pink Architect:
David Goldsmith

• Registered /Restricted Graphics Introduction March 15, 1990 2.3.2-2

Inside Albert 0.17 / Introduction

The Albert Graphics Architecture
Albert is the combined 2D and 3D graphics system developed in conjunction with the Pink system
architecture. Albert accommodates the complexity of the current Macintosh hardware environment and
provides additional extensibility and flexibility. By nature Albert is object-oriented. It uses a floatin'g
point number system to provide precision, range, and accuracy. It is device and resolution independent.
It surpasses most of the combined functionality of Color QuickDraw, PostScript™, and Renderman™.

This section reviews the Albert architecture, beginning with Albert's numeric system and both the 20
and 3D coordinate systems, in particular showing how the two relate to one another. With that
established, we list the geometries available in Albert, followed by the transformation matrix classes.
We next provide a brief description of bundles, which are collections of graphical attributes, including
paint, color, styles, and shading methods. The descriptions of geometries, transformations, and bundles
set the stage for an introductory discussion of imaging with Albert, including a small example.

Numbers

"+y

Figure 1. The 20 coordinate system in Albert

• Registered / Restricted Graphics Introduction March 15, 1990 2.3.2-3

II ArrbeJr~ '* Apple Confidential

In Color QuickDraw a rectangle drawn from the values (1,1,4,3) would enclose exactly six pixels, as
shown in Figure 2. Since all the original Macintosh displays had pixel sizes measuring 1/72 of an inch
square, the area enclosed would be that of a rectangle measuring 3/72" in width and 2/72" in height.
Albert assumes that a value of 1.0 will measure a distance of 1/72", but it does not assume that such a
value will span exactly one pixel. In anticipation of new, higher resolution devices, Albert has been
designed to be resolution independent. The Albert result for the same rectangle on a higher resolution
screen (144 dpi) is shown in Figure 3. Note that although 144 dpi is convenient for this illustration, the
resolution is not limited to multiples of 72.

(5.0,5.0)

+x
.~.-..'~ ~~ ~ .,.
.,..1.*'~$~$ *I~

}:: .

::\Hl~l\:\\\:·\\\:.\:\·~:\!!\\\:::l·\m\):l:\j·:·.::C>:::~::·>:>:·>:

The coordin~i@~~i.iM,'ii§FJb systems is also used by A:~~ill~~i~iy~~~;;fdi~:tes along the X
axis lie to the righf bf:tnE(-:6dgin, positive coordinates along the Y····aJds:Ire ·above the origin, and
positive coordinates along the Z axis lie towards the viewer. The coordinate system is illustrated in
Figure 4.

Z
Figure 4. The Albert default 3D coordinate system.

• Registered I Restricted Graphics Introduction March 15, 1990 2.3.2-4

Inside Albert 0.17 / Introduction

The 3D coordinate system is at odds to the 20 coordinate system in two ways. First, positive values for
Y lie above the origin, not below. Second, the origin is positioned by default in the center of windows,
not in the upper left comer. Both differences reflect the preferences of most 3D developers. [In practice,
the inconsistency between the orientations of the 2D and 3D coordinate systems has not caused any
major problems. By contrast, a prototype which placed the 2D origin at the bottom left did cause major
headaches. Comments on this inconsistency are welcome, now. As time goes on, changes will become
harder to make, so write early, and often.]

The Integration of 2D and 3D

Camera

Composite Image

Figure 5. How Albert integrates 2D and 3D imaging

2D Image

.& Registered / Restricted Graphics Introduction March 15, 1990 2.3.2-5

II Anbert • Apple Confidential

Points

Albert bases most" of its geometric objects upon points. Every primitive can be constructed from points,
and every primitive, other than the rectangle and the box, can be arbitrarily transformed to produce a
valid geometric object of the same type.

Albert provides four types of points. The simplest is the 20 point, called TGPoint. It consists of two
GCoordinate values, one for the x position and one for the y position. The 30 point, called TGPoint3D,
has a value for the z position as well. 30 points are not derived from 20 points. To do so would imply
that the two are directly related. They are not. It is quite true that a 2D point can be generated from a
3D point, but the process involves an explicit process of projection. Such projection requires additional
information to be properly done. Specifically it requires a 3D matrix. It is not sufficient to simply
assume that the z value can be set to some constant. This will, in general, give the wrong result.

......:.:.:.:.:.;...... ~?~fft:~::~::·:: ..

';:::=:;::::{;\:::::H:'QQtlii:l~HFQhm:::%:::::::::::::::::::IU::};·t.,ines
·;:::::::::::::::U·:mte;fl:.u:r::::::t:::> .. .;.:.:::;::.:::.-: .

:-:.;.:-:.:.:-:::\:~:::::::::-: ...
...

.-----..;,;;;;;;;o~ .

~--..............~;:.:::=:));:~-----,~~.
Rectangfes: .::::::::::;;2::::::;:; Ovals': <><::::::;:;:.

...: .

...-- """,,"."""""".. '""""'",,,,"~ :,:-:

.. :·:-;.:·\}{{f~{fr~ ~}{11··Plain

Bold

.:.:-:;:;:;:::::;:;:.:.:: .

j.':":':':'::'::.:.'~:.:.:.:.'.:.:;.'.:.:..:.~;:;j;..:..;.:.. :;:.:....=.!.·; ..:.:::·.::.::.W.:.::ta:lt.':-:'::::::::::::::::::::::::::::::..-

RoundRects Arcs
(Wedges)

Polygons Areas
(Regions)

Figure 6. Geometric primitives inherited from Color QuickDraw

Albert extends Color QuickDraw's set of primitives by adding a curve primitive and a path primitive.
Examples of these new primitives are shown in Figure 7.

• Registered /Restricted Graphics Introduction March 15, 1990 2.3.2-6

Inside Albert 0.17 / Introduction

Curves Paths
Figure 7. New geometric primitives provided by Albert

Albert actually provides three flavors of curves, as shown in Figure 8. Quadratic Bezier splines are
familiar to users of MacDraw II® (Claris), while cubic Bezier splines are familiar to_users of
PostScript™ (Adobe). A nurb is a powerful specification for arbitrary curves of great complexity. The
name derives from the acronYm NURBS, which in tum stands for Non-Uniform Rational B-Spline.

SweepsPolynetSurfacesMesh

3D Lines

::::}::::~:~ Figure 8. Curves provided

~1~~~~,t:~~~llllllll""ll1i,::awto 3D~.~~~~I~[~I~[

Figure 9. New 3D geometric primitives provided by Albert

Transformations

The most interesting way to manipulate a point is to transform it. 2D points are transformed using a 3x3
matrix, called TMatrix. Transformation involves a matrix multiplication, illustrated below in Figure
10 for a simple translation by 3 in x and 4 in y. The non-rational point, TGPoint, is assumed to have a
third value of 1.0. The rational point, TGRPoint, uses its w value as the third value, and for some
transformations will use the full 3x3 matrix, as illustrated gratuitously in Figure 11.

• Registered / Restricted Graphics Introduction March 15, 1990 23.2-7

II All~ll"~ • Apple Confidential

1 0 0

o 1 0

341
= ~X+3) (y+4) ~

Figure 10. The transformation (translation) of a TGPoint.

[x y wJ
200

o 3 0

o 0 4

= [(2x) (3y) .(4w)J

..... :.:...:.:.:.:.:.:-:-:.:.:.:-:<.:.:-:.:.:..... ...::::::::::~;\~){{;::::::::::::<:::::>

However, if you ha(i"~tarted with a TGPolygon in the form of a star, ~'~d"'~ished to place a series of
stars around the perimeter of a circle, it would be tedious to precalculate the points for each of the star
polygons. The easiest approach would be to create a single polygonal star and move it around the circle
by manipulating a TMattix. In this sense the polygonal star serves as a stencil, and the stencil is
manipulated by using a matrix transformation.

Of the various 20 geometric primitives found in Albert, the rectangle, called TGRect behaves slightly
differently. A rectangle is constructed from just two 2D points. The points are insufficient to specify any
arbitrarily transfonned rectangle. Instead the points define the top left and bottom right corners of a
rectangle which lies orthogonal to the coordinate plane. If you wish to image a rotated rectangle you
must use a transformation. As before, you can treat a rectangle as though it is a stencil. When a rotation
is applied to the rectangle it behaves as though a stencil matching the orthogonal rectangle has been
rotated to the new orientation before the rectangle is used (for example, drawn). This process is
illustra ted in Figure 12.

'* Registered / Restricted Graphics Introduction March 15, 1990 2.3.2-8

~-\

d Afm ~ x

y

Inside Albert 0.17 I Introduction

I·· I~ ...-x

y

.:-:.....:...:.:

.;-;.;":,;.;.;:::::.:-::".,

'.:.:.:.:.:.:.:.:.;:;::::::::::::::~:;::::.

But a rectangl;>i~re~iIY··:Jtfi~i··!:£A:::~:~:~~lerated polygon. To that end::::X1~:ft:pt8Videsa special way to
construct a rectangular polygon which can, because it is a polygon, be manipulated in a general way.
Note that some 3x3 transformations, for example perspective transfonnations, will cause a rectangle to
lose its rectangularity.

The box primitive, called TGBox3D, has properties exactly analogous to the rectangle primitive.

Text, Glyphs, and GlyphRuns

Albert supports text at the most primitive level, i.e., painting charact~rs on the screen. With the
ability to paint international text and symbols, the term "character" is inappropriate; what is
normally described as a IJcharacte~' may actually be made up of several distinctly separate pieces of
area-enclosing geometry, called glyphs. For example, an accented character like 'e' could be made from
two separate glyphs, one for the 'e' and one for the ", accent.

More sophisticated textual functions, such as kerning, editing, composing characters from composi te

'* Registered / Restricted Graphics Introduction March 15, 1990 2.3.2-9

II AUbert - Apple Confidential

glyphs, laying out words, lines, and paragraphs, etc., are performed at a higher level by clients of
Albert. This is because line layout and editing functions are an especially broad, complex, interactive
application of text, which is beyond the scope of Albert. Albert's responsibility is to be able to display
text in any font, size, orientation, and style, as quickly and as easily as possible. To accomplish this,
Albert text is divided into two areas, font management and glyph display. .

Glyphs

The typical Albert user is primarily concerned about displaying glyphs. Fortunately, displaying
glyphs is entirely consistent with the display of other Albert primitives. A glyph is simply another
type of area-enclosing geometry. Glyphs are defined in outline form; that is, the glyphs are defined in
terms of the curves that fbrm the shape boundaries. This is in contrast to a bitmap form, in which the
glyph is chopped into rectangles that represent the pixels of a raster image. The outline form can be
scaled or rotated accurately, while the bitmap form is only useful at a specific size on a specific
resolution graphics device.

~~~~7~e;~~O:~h:'II"ltll'I'f~~:;~e~e~:i~:tp~~!.n
~Irin

Figure 13. A comparison of an outline glyph and a bitmap glyph

Glyph Runs

Since text is most commonly displayed as a string of characters, Albert's basic text object is not a single
glyph, but a collection of glyphs called a glyph run. The glyph run contains three types of information
which completely determine the text's geometry. The first bit of information is a font descriptor,
which includes information such as type face, point size, and style. The second piece is an array of
glyph codes which index into the font. The third type of information provides for positioning in the
form of an origin and an orientation for each character in the string. Orientation is recorded as a text
path. The most common paths, such as horizontal or vertical, are recognized and handled as optimized
special. cases. However, Albert also allows you to place glyphs along arbitrary paths, where the
arbitrary path is represented by the geometric primitive called TGPath.

• Registered/Restricted Graphics Introduction March 15, 1990 2.3.2-10



Inside Albert 0.17 I Introduction

Font Descriptors

The font descriptor (the TFont class) is the Albert client's connection to Pink's font mechanism; it
contains the font name, base point size, and style information so that, given a glyph code, Albert can
compute the exact glyph to be displayed. .

Albert will support at least two font formats, namely bitmap fonts and TrueType (Bass) outline fonts. If
a font is requested for which, on a particular raster device, a preferred bitmap form is available, Albert
will substitute the bitmap fonn for the outline fonn. Albert will not attempt to modify a bitmap form
into one of a different resolution or style. If the bitmap does not match the font descriptor precisely it
will not be used.

A similar problem may arise in the event that data is imported from another system and a font is
requested which is not available. Albert will not perform automatic font substitution, but will check
for font substitution infonnation stored in user preference information.

Bundles
:.:.:.:.:.:.:-"..:.:-: .

~= ~~~
several interesting kinds:bfpaint, but certainly the most interesting·Ts::'colorfcalled a Teolor. In the
process of trying to standardize colors the graphics industries seem to have created a huge quantity of
color spaces. Each of these can be derived from Teolor, and many of them are predefined by Albert.
These will be listed later, in the chapter describing bundles.

Some paints use more than one color. A pattern, for example, could include an arbitrary number of colors.
Or a paint might be created which would use an image as a pattern. A ramp, from one color to another,
is yet another interesting kind of paint. Transfer modes, including blending, also fall into the category
of paint. But paints don't even have to involve color at all. A paint could be designed to write bits into
a mask plane on a device which supports live video. The effect of using such a paint would be to cause
live video to appear whereever the paint was used.

2D Attributes

Some attributes are specific to 2D primitives. For example, there are a few 20 primitives which
enclose area: rectangles, ellipses, round rectangles, polygons, glyphs, and areas. Each of these can be

'* Registered /Restricted Graphics Introduction March 15, 1990 2.3.2-11



II Albert '* Apple Confidential

either filled, or framed, or both, and which is done as a property of the GrafBundle. Several
properties affect how all 2D objects are rendered. Line styles, endcap styles, and join styles can affect
most 20 primitives. A line style object, called a TLineStyle, can be used to control dashing, whether
the pen is centered, inset, or outset, and it specifies a pen width. An endcap style object, called ,a
TEndCapStyle, can be used to control the form of endcaps on open-ended geometries such as lines and
curves. A join style object, called a TJoinStyle, can be used to control the form of joins on objects which
have joins, such as rectangles, polygons, or polylines.

3D Attributes

With a sufficiently powerful 2D system it is possible to create images with many of the characteristics
of 3D images. The problem is, it's hard, not very intuitive, and if anything simple detail changes you
may have a lot of work to do. The goal of most 3D imaging is to create a somewhat photorealistic
picture of one or more interesting objects. The real power of this approach comes from modeling. If
models can be turned }.!.l..~g..,..~SS.Y.T~ ..~.~".,p!S.~~t~.~.!. .....n~,~.!\ the problem has been reduced to<?.n~:pf:creating

.......:.;.::::::;::::::;:;:;:::::::;.:.:.....

...... . :-: .

Graphl·c Db)·ects :.:.:.:.:.::.: :::-:.: :,..... ::.:.: ;::::::\:::;:::;:;:::;::;:-:.:

·::~:!.!j,.:::: ..::::::~.:·;::::[![:~:l:::~::i:il::~.·[iii:::' :':':.::. ... ::::-::::::;:=::=:::::::.

TGLine. ....:-::::::::::;:::::=:::::::::::::::::;::::::::::::::::::::::... " ....:::=.:::::.::=:=.::::.:.::.

---)
TReet TLine

( MCollectible ) ( MColiectible

( TGRect ) ( TGUne

Figure 15. The class structures for IReet and TLine

• Registered / Restricted Graphics Introd uction March IS, 1990 2.3.2-12



Inside Albert 0.17 I Introduction

Because graphic objects group geometry and graphic attributes, each one can be described as a small
picture. But since each graphic object descends from MCollectible, they can themselves be placed in a
collection, in this case a graphic collection called a TGroup. r This section could not be finished prior to
the publication deadline. Please refer to the next section, 2.3.3, which is included in this release and
which describes graphic objects in greater detail. J

Images

GrafPorts

The Image object, called Tlmage, contains a graphics device which serves as an offscreen frame buffer.
It can be manipulated as an MGraphic. You can also create a port based upon a Tlmage and draw to it
just as you might draw to the desktop~ [This section could not be finished prior to the publication
deadline. Section 2.3.8, which describes Albert's handling of images in greater detail, will be
forthcoming. J

GrafPorts, GrJIIIIIIIIII["~s

GrafDevices

Regions
:-:-:-':-::-::::-::-:'-:'::::,:,:-,<{})::,:\}}},::... :-:-:.:.:-:." ..:':..... .... ':.. ~::.':"::.~:.:::.'::'::."::."':.::::'::.'.::.:....::... :.:::.:.:.:..:: .. ::.:::.: .....::...::::~:::>::::::;::.;.:- ..:...... :.: -:,'.;.:.:-:-:-':: -::: -:.::: -:::::::::::::::::::::-:::-:::::::<::;::::::~<.'.' ,

.........

Regions provide a mechanism by which Albert and the View system can share a limited resource such
as the desktop. Each ViewPort (GrafPort) built upon the desktop contains a Region which defines how
much area it has reserved on the desktop GrafDevice.

The TGrafRegion class is also an abstract class. GrafRegions can be added, subtracted, intersected, or
exclusively complemented (exclusive or'ed, but how the heck do you say that in English?). GrafRegions
are created by GrafDevices, because only GrafDevices know which sort of GrafRegion will be
appropriate. For example, the TFrameBuffer GrafDevice creates a GrafRegion of type
TRegionFrameBuffer.

• Registered / Restricted Graphics Introduction March 15, 1990 2.3.2-13



II Albert • Apple Confidential

Architectural Principles

In the process of creating Albert, we spoke with a great many graphics experts at Apple, most of whom
are acknowledged on our cover page. From these discussions we developed a series of Albert Principl~s.

These are not offered as being original to Albert, but rather are included here because they are
fundamental to the Albert architecture.

The Principle of Simplification

To quote Alan Kay, "simple things should be simple. Complex things should be possible." The goal is
to have a simple process, such as drawing a line, to be a trivial process. You don't have to initialize
anything, or start up the graphics system. Just get a GrafPort and draw a line.

..:.::;:;=::;.:-:.:.;.:.;.:.::;.;.;.:.:::: :-:.:-:.:.:.:.:.:-: .

l\I)~})(ft?~f~~~~:~~fffrf\f~tI{~/::~::::::....

. :::::::::;::;:::::
...... ~:}}}~/.

;.:.;.;.;.:-:-:-: ::::::»? ::::}}=::::::::::::::-: -: .

The PrincipIe of Inversion';,jj'l:l!I!I!'~' ..;;lt

YourApplication ::MainO

TRectangle Rectangle ( 40, 40 );

Rectangle.Move ( 30, 30 );
Rectangle.Draw ();

Figure 16. A common object-oriented programming example.

While this approach makes for a nice example, it is clear that the authors haven't actually tried to do
much with it. They certainly didn't try to accommodate a hardware platform as robust as the current
Macintosh. The problem can be stated simply: how does the rectangle from Figure 16 understand how to

'* Registered /Restricted Graphics Introduction March 15, 1990 2.3.2-14



Inside Albert 0.17 / Introduction

draw itself in an environment far more complex than the one for which it was originally designed? The
authors have presumed a static environment, where the process of drawing a rectangle never varies.
This can be easily thwarted in the Macintosh environment by simply adding another monitor to the
desktop. Of course, the rectangle object could be designed to understand multiple monitors. But then
what about graphics accelerators, or video, or the neat new graphics hardware announced tomorrow? .

It becomes clear that the most interesting object in the Macintosh hardware model is the graphics
device, not the geometries. Regardless of what type of hardware it is, a graphics device isn't
interesting unless it can draw geometries such as the rectangle. Exactly how that occurs is important to
the graphics device, but not to the rectangle. Therefore the foundation of imaging in Albert looks,
although not exactly, like the example code shown in Figure 17.

YourApplication ::MainO

TRectangl:e-·····R€fctan·gi:e:···'···t······4-:O 40);

~~,jilillilillllll~~~angle);
..... Figure 17. The foundation of imagj.~lllIr

..............

which will be described later in great~f]~~m!Q!gW:shown~!t!:m:~rg!!l~~f:; ----:::::::::::::::::::::::::{::;::":::::::.
..:.: :.:................................ . ' , ,..... ::::{:.?:::::::[::::::.:~!::::\\'\./.::

:::~~r~~~~mm~~~~f~~~~f}j: ·:j~~I~:~:~:~:~~~~f~%mm~~IFf~~UHm· :.:-:.:.;: ;:.:.;.:-:.
• ";:}}:;=;:::::::::::}:;:: .... :::::::::}::::::::::::::::::::}~:::~:::::::::::: :::::::::;::::::::::::::::::.:..;.:.;.;-:.:.;.:1 YourApplicalion::M~~~f .·nii!ili!>;li if

0

1.•. !::.!III!~~~~~;i~;~~~;l,;'jj!f!~ ~~1~:~~~~l(~;i!~:~...(5.:::::.,::.::::0::..:.,:.. ::..::.,.,...:.'.:..•:,.,:,::,...5::::,..:..:..0.••.,•.,1, :~~~~l~:~.;~o••.:.··
::R~q~~·#~~~·.~b'f!tl>( Port) ; «::::::::::::.;

o~ ~o

TRect::Draw ( TGrafPort* Port)

Port->Draw ( this );

TGrafPort::Draw { const TGRect& Rectangle}

fDevice->Render ( Rectangle, fGrafState );

Figure 18. The three imaging layers of Albert

.& Registered /Restricted Graphics Introd uction March IS, 1990 2.3.2-15



II AUbert '* Apple Confidential

In Figure 18, the imaging call denoted by "Rectangle.Draw(Port)" is the preferred imaging layer. As
will be described .later, the TRect object actually includes more than just geometry, so the model
portrayed above is somewhat simplified from the real model. In fact.. the geometry portion of TRect .is
a separate base class called TGRect. However, the figure serves to illustrate the inversion from a TRect
which knows how to draw itself (given a TGrafPort "where" parameter) to a TGrafPort which knows
how to draw a TGRect. The TGrafPort adds certain pieces of information to the imaging process (for
example.. window positioning> and passes the call to the graphics device upon which it was built.. a
field fDevice of type TGra.fDevice.

The Principle of Justification

All of which leads to the principle of justification. In the examples above an extra imaging layer snuck
into the discussion, namely that of the TGrafPort. The principle of justification demands that each

.......:.;.;-:-:.;.:.;.:.:-;.;-.....
...<::::::~:~t}r~~~~~j}t{}~:):::;::-:·:·

.:.:::.;.::.::::;::;:::::;.;.;.;.;.;....

,,:.:-:.:-'';.:-:.:.
-:-::::::::;=;::.;::::.;.:.; .

grafport, cal1e~:·~·1tVie·wEort,which .~~pW::synchronizatioil':.:~~h~~ior:so the wini1'owingsystem can
function corre~tly~n a mUlti-tasking.e~~ronment. .....:.(::.;.><:::.::.=:...:. . :" . . ..

•.::;::::::-:.:- .:<. ,.:...:.:;::::" .••.•..•.• ',' .•....•.•.•..•.•.•...•.•. '.':-:.'';

The grafdevice i~"YetH~s)a:t::'th~::::hottomof the hierarchy. Your a'!';pH8£W6ri::St\ould not make calls
directly to a grafdevice. But then, you should not be making calls directly to a grafport, either. The
grafdevice layer provides Albert's contract with both internal and external developers of graphics
devices. The graphics device developer need implement a fixed number of imaging calls in order to
accommodate the full range of Albert's graphics capabilities.

The Principle of Localization

Which leads us to the Principle of Localization. The key to imaging with Albert is that at the time of
an imaging call to a grafdevice, such as the Render (Rectangle, fGrafState) call in Figure 18, all
information relating to the imaging process has been localized in the parameters to the call, the
geometry in Rectangle and everything else (color, style, shading.. transformation, and clipping) in
fGrafState .

• Registered /Restricted Graphics Introduction March 15, 1990 2.3.2-16



Inside Albert 0.17 / Introduction

Perhaps one of the most important lessons we learned from QuickDraw (actually, from our esteemed
colleagues who made QuickDraw print) is that it is important to gather all of the information used in
the imaging process into one place at the time of the imaging call. In QuickDraw the classic problem is
one of developers making modifications to the data structures of a grafPOrt without using access
methods. The change in state· thus does not get recorded in a manner that the graphics system can
accommodate it.

In Albert, the problem of hidden change is defeated in two ways. First, there is no equivalent to
QuickDraw's SetPort(grafPort) call. All imaging references a specific grafport. In fact, Albert
maintains no global state whatsoever. There is still room for developers to get into trouble. They could,
for example, discover ways to change fields in Albert's various graphical attribute objects without
using access methods. Albert solves this problem by ignoring such changes.

Principle of Abstraction

..::::}=:::::;:::::::::.:.:.:.: .

Principle of Declaration

So, in principle, it's better not to know what's going on behind the curtain. Which creates a bit of a
. problem, because traditionally Macintosh developers like to peek in on what's going on back there. The

trouble is, it won't always be possible to look. If your application is trying to be clever and check up on
all grafdevices in the world and do the best thing for each one, you are guaranteed to encounter a
situation you haven't anticipated, meaning TWhizzyGrafDevice which was announced a couple of
days after your application went final. At best, your application won't draw properly. At worst, it
will crash or fail in some way.

'* Registered / Restricted Graphics Introduction March 15, 1990 23.2-17



II Albert • Apple Confidential

The solution to this dilemma is to rearrange your thinking on what you're trYing to do. In general, you
have a particular goal in mind, and the motivation for peeking behind the curtain comes from wanting
to do the right thing in each particular case. The problem can be turned around, though. Suppose you
state, in some predefined way, what your goal is. For example, you wish to draw a rectangle which ~as

lines inset from the actual perimeter of the geometry and which all appear to be the same thickness.
The temptation is to check up on the device resolution, anticipate out how rounding will occur, and
specify the appropriate line thickness for each part of the rectangle in order to get the appropriate
result. Unfortunately, it turns out that TWhizzyGrafDevice is a graphics accelerator of unknown
composition, and it doesn't make its resolution available, perhaps because the concept of resolution has
no meaning to the device.

What you really want to 'be able to do is to declare your goal for a particular imaging call, and allow
the device to achieve your result by whatever means it has available. Albert supports this
methodology by providing a flexible and extensible set of graphical attributes. However,
determination of the initial set of available declarations is also one of the most challengtngproblems

;~:::Pleof 0;1111"'1111"'1'" .J;!lfll~1flllllli;;;;:!;;iS>
In the early stage~H9if the QD2 project (now called Skia) Cary q~AA~{~l\9.HJ~ruceLeak created a map of

:U,::::::):):::::::::):>
.:::::;::::::::;:::::;:;::::::::;:;::::; "::;:;:;:;:;:;:;:;:::;:;:;:::;:;:;:::;::::: .

GrafRegion which reserves space on each device as necessary. If, as is likely to be the case, the window
occupies space on only one device, the GrafRegion will understand and remember this information.
When an imaging call occurs, the GrafCluster first makes a trivial check to see if there is any
possibility of drawing to a device by asking the GrafRegion if any space has been reserved. If not, the
imaging call is never made to that device.

One trick we use to make decisions only once involves arranging the decision tree such that decisions are
made at the proper time. In general, the proper time is determined by minimizing calculations for the
most frequent imaging calls. For the Macintosh system these calls involve simple geometry, including
text, rectangles, lines, and copied images (although not necessarily in that order). The most common
graphical attribute is color, in particular solid colors, especially black and white. The most common
transformation is a simple translation, such as the screen offset of a window. The most common clipping
is unclipped. The decision tree is established with these frequencies in mind. The most frequent cases
are checked first. '

• Registered /Restricted Graphics lntrod uction March IS, 1990 2.3.2-18



Inside Albert 0.17 / Introduction

Consider our implementation of the frame buffer GrafDevice. If a rectangle is being imaged, the
GrafRegion of the GrafPort in use is asked whether the rectangle is clipped. If not, the flow of control
passes to a routine which optimizes the unclippped case. No further consideration is made for clipping
along that path.. If the rectangle is being clipped, a different path is taken which reads the
GrafRegion structure to produce the correctly clipped result. The clipping descision is made exactly
once, and is made by the entity which understands clipping, namely the Gr~fRegion.

Principle of Acceleration

Another way to achieve optimal result is by using accelerated forms. For example, a rectangle could be
expressed as a polygon, and could be imaged correctly in all cases. Rectangles, however, are imaged
frequently, and can be handled in simpler, faster ways than general polygons will allow. Recognizing
this, we offer rectangles as a separate primitive in Albert.

We handle curves in a slightly different way. Albert offers three flavors of curves, namely quadratic

~w~~r~~~~II'II~t~;:~~j[:iii.i!r.~S;~~~?SIf
..........
-'"';'.':-:':'

.:::::::;:;::::::.:.:

::::;::::::> ....:-: :::::::~:}:?::::::.::::::.

'-:-:.:.:.:.:.:-:.:.:. :::::~r:f~:;""
-.;.::.:.:::.:.:.::::::::::::::.:.:::.:::.:.:::::\:~ :~:~::. t}~~ ::::::;:::::~::

PrincipIe of Procrastination co:::::::::::::::::::::::: t!::j[.:>:!!!:!~!II!:!I:lllll!j!l.I·I.i!i·~:·l:l![:>: :..;>;;:..::.::.;:;:::....:.;;:.;:.:.;..... :::..

S;~:~~~III,t;l~ii;if~J~_,!~~~ ~~;~~!&'I_:~F~;~~iJ~I,!~t;~~IE;:
primitive, calledTq.l\f~~EY'§t)ylrlight·arrangefor a geometric objeCFttt.¢gn§j~tpf~eintersectionof two
compiex closed curves~ . Rather than performing the intersection, we recoh.fbbth curves and the logical
operation of intersection in the Area's data structure. If your next operation happens to overlay both
curves with a rectangular area, we can simply remove both curves as well as their logical operation,
having never done the complicated intersection calculation.

Principle of Perfection

We can do better than that, though. If in fact we never perform the intersection we can produce a more
accurate result. Take for example two interesting shapes, a complex curve resembling a flower and one
composed of concentric rings.

'* Registered / Restricted GraphiCS Introduction March 15, 1990 2.3.2-19



II Anbert '* Apple Confidential

--+ --

Figure 19. Addition of two TGArea objects to create a more complex form.

The addition of these two objects creates an interesting geometric form, but calculating the precise
geometric form can be expensive and tricky. However, rendering each form independently is a well
characterized process. If we delay the intersection process until rendering time, we can deal with a
much simpler problem. In the case of a frame buffer we can deal with discrete pixels. In the example

.::::::~::::::;::;:::::::::::::::::::::::::;:.:.,

Principle of.:~llli~.II~il~~:j:I:U~~t:::':::.:.. ... :.:.:.:.:-:.:.:-:.: .

':-:::::;:::;:::::':::;::::;':':
::::.:::::;:;:;:;=::;:::::::::::::;:::;

Principle of Precision .:: .:.::-::: )):::/:~:::::.::::: ..:::..::.:
..... ..

plane is exhausted afteFBhlY"21 pages. .. .......

Two 32-bit solutions were considered, namely fixed point integer (16.16) and single precision floating
point. The first has improved resolution with sub-pixel accuracy but has no more range than Color
QuickDraw. The second offers much improved range, but precision varies significantly depending upon
which part of the coordinate plane is used.

After much pontification of this problem our favorite numerics expert recommended 64-bit double
precision. Although a tad bit on the heavy side at 8 bytes, double provides the best balance among
precision, range, and size. It also allows us to provide rendering of higher order primitives such as nurbs
and nurb surfaces and to create well-behaved matrix classes.

Principle of Indiscretion

In this case, indiscretion means non-discrete. The Principle of Indiscretion means simply "use higher

• Registered / Restricted Graphics Introduction March 15, 1990 2.3.2-20



Inside Albert 0.17 / Introduction

order descriptions of geometry whenever possible," A quadratic Bezier spline, for example, can be
described in a number of ways. A series of short, connected line segments which follow the curve can give
excellent results on some graphics devices. However, if the resolution of the graphics device is greatly
increased, it will at some point exceed the resolution used to select the line segments themselves. At
such a point the intersections of the line segments will become visible, as illustrated in Figure 20

A better approach is to represent the quadratic Bezier spline as three control points. Even if the
rendering technique involves the creation of short line segments, if the process of creating the line
segments can be delayed until the resolution of the device is known, we can be assured that the
resolution used to create the line segments will be sufficient to produce the correct imaging result.

This approach is even. more important to 3D imaging. The analogous problem involves the
representation of 3D surfaces. The less preferable solution involves using a series of small, connected 3D
polygons to describe them. At high resolutions the edges of the polygons appear. Consequently, a
number of polygon shading techniques have been devised in order to smooth away the edges and make

the suriaces appeaj;~;II;I;11111'IIIIJlrll~JI)'f' __.-.'T------:

-:.:-:.:.:.:.:.

.:.:.:.::::::~:::.:.:

Figure 20.

across the surfacetOprOducEfthedesired result.

Principle of Integration

Albert was designed to integrate the 3D system with the 20 system. It isn't always possible to
maintain consistency between the two worlds because imaging in each is fundamentally unique. For
example, the most popular choices for orientation of coordinate systems in the two worlds do not match.
Points and transformations, while somewhat related, are used in different ways in 3D as compared to
20. And, perhaps most importantly, the goals for each kind of imaging are quite dissimilar.

But there are a great many things we can do to integrate the two environments. First and foremost, you
don't have to make any special calls to start up the 3D system. It's there and ready to go as soon as you
get a GrafPort for drawing, just like the 2D system. Because each system uses the same numerics,
conversions between 20 and 3D data structures can be done in a straightforward manner. Objects, such as
colors, are shared between the two worlds. Naming conventions, and the kinds of calls made to image
each type of object, are consistent.

• Registered / Restricted Graphics Introduction March 15, 1990 2.3.2-21



II Albert • Apple Confidential

Principle of. Organization

The Principle of Organization states that "display lists are a bad idea. There shall be no display lists
in Albert." Well, maybe one or two. The basic problem with display lists, especially those at the
device level, is that writers of most interesting applications will want to organize graphical data
according to the particular needs of the problem being addressed. If the system maintains its own
display list it pretty much guarantees that two copies of the data will be maintained at the same time.
Silicon Graphics went down this road for awhile, then turned around and came back when it proved
untenable. -

However, the preferred imaging layer of Albert sure looks a lot like a display list. It is hierarchical,
has groups and instances, and can be imaged with a single call. But here's a secret, just between you and
Albert. Don't tell anyone else. The top layer of Albert is optional. The top layer of Albert is called

~~~i~~illllflli!;!1~rg~:~ii(I,~~~~~~~i;}~~~j
.:::::;>:;::::::.:-:<.-....

. : .. .

:::':::::}<:':::'"

Princip~::~:::g~.:'J2*:~~nsion>:!::?:·::.::::..::::·:::·:::::.::::.
:<:::;:::;:::::::::::::::::;.:.; .. -:~::::::::::::. :.;:;.; -:-:.' -: -:

provided you can relaie"the data in some way to the standard structures. In the event that your
structure is imaged to a standard GrafDevice, the conventional information will be used. But, if your
structure is imaged on your special, extended GrafDevice, you'll get whatever result you had in mind.

You don't have to implement an entire frame buffer to make· this work. You simply have to derive a
frame buffer from one of ours. In the render method for paths and areas you will first check the data
structure to see if it is yours. If not, pass it up to the parent render method for processing. But if it is your
special structure, you can image it in your own special way, or perhaps do a bit of processing and use
standard calls to do the imaging. You get a new type of frame buffer for the cost of implementing part of
a single routine.

.. Registered / Restricted Graphics Introduction March 15, 1990 2.3.2-22

• Registered / Restricted Graphic Objects

hies:

March 15, 1990 2.3.3-1

• Registered / Restricted

nsert
Graphic Obj

here

Graphic Objects March 15, 1990 2.3.3-2

• Bundles:

............ [\11
...... :.•.•.~.::i::.::.•.:·.:..:.•..::.•.::.•·.:.;:.:.:.:..:.:.:.17\.•.....;:.:.::.::.: :::.:: :.:.:.: .:~}\\\/;: :XJ

Imaging With Graphic Objects [described by Roger Spreen]

As described under the Principle of Inversion, Albert supports the concept of a graphic object layer so
that you can declare and render graphics in an intuitive, object-oriented fashion, irrespective of the
device-centered layers underneath. This concept assures that your task of actually putting graphics on
the screen is as simple as possible: usability is of prime importance.

It is important to understand that you can use any of the different "IayersH of Albert and still achieve
exactly the same results on your graphic device. These '1ayers" are simply sets of classes and methods
which provide you with a slightly different paradigm for managing your graphics. For most standard
graphics applications, the Graphic Object layer will maximize your convenience and minimize your
development time in building an application.

The Components of a Graphic Object

~~;E:E~?Ee7~1J.\11111~::rr1~ili~F:;a~~~:e;.~~~t1~~-~~!:=o:~~e~;
. . ,..:::::~t~j~~i~f~~~~~jj~~j\ff:j~:I::~::·~~~:fI~::J::::::/

· Geometry: qfll!!I';f'!~''''~!;Shape, e.g. lines qf!tiEg~~?
· Transforms: .~jilrary matrix transformations, most qfd~IIII!I~t:ffine transformations like

:::::::::::::::::::
:-:.:.-.:.:::::::::::::::.:.:.:

~"V ~01;;')!< § .,i;;

(H··:···:·:(;~ffi¢ttY:·::·:::::....:/:... Transforms ··<·:::::::V:::::::::H:BundLesm"::::::: .
..................

.;.:-:-:.:-".:-»>:-:'"

Graphic Object

Figure 1. Components of a Graphic Object class

.. Registered / Restricted Graphic Objects March 15, 1990 2.3.3-3

Advantages of the Graphic Objects

Primarily, the Graphic Objects offer you convenience. Albert can leverage object-oriented programming
to encapsulate the three components together, eliminating the need for you to manage all the pieces
yourself. Furthermore, just by forming a simple collection of Graphic Objects, you can have "Display
List" functionality which is still device-independent. (For convenience, the Graphic Object class
includes two built-in collections: a simple grouping object and a hierarchical grouping object.) Thus, a
collection of Graphic Objects can serve a similar purpose as QuickDraw's "Picture." Similarly, the
Graphic Objects can also be used to transport graphics from one application to another. One additional
advantage of using a collection of Graphic Objects as a clipboard medium is that it can easily be edited.

The generic nature of theobjects in this layer means that you can write routines that handle Graphic
Objects without knowing their internal details. Existing applications that handle Graphic Objects
generically (such as in a display list, or from the clipboard) will automatically be able to handle new,
custom Graphic Objects that are placed in the system.

Taxonomy o;-::rn:~::::~E~p~icObject Layer
:~~~l~{(:~:~~f~:~:~~t~;~~frttt?t~~{?}::::::::·:

.....::::::: .
}:::::;::::::::::::::;::::.
.:-:-:-:-::> ' .

GraPh,\;ii~!II~~Ii.n~;!ll'i"kp:::::~lil~II~I'.,...:---.;::~.•.•• :.....................} ..
,,-.;,::,:><::::::::::::::::::::)):::::::::,:::::.;--- - MCollectihle:

(MPersistent)

MGraphic:: Methodl0
MGraphic :: Method20

Geometric Behavior (optional) --:>~ (An approprialeGeometric ClasS)

Custom Behavior (optional) ---~:>-~ Graphic Object :: CustomMethodl0 .
Graphic Object :: CustomMethod20

Figure 2. Graphic Object class structure

'* Registered / Restricted Graphic Objects March 15, 1990 2.3.3-4

The complete set of Graphic Object classes is listed below (along with the geometric class it is derived
from, if any). Note that there is no Graphic Object point, since Albert does not render upoints" per se;
depending on the resolution and characteristics of the output device, a upoint" could be of arbitrary size
and shape. Is a "point" square, rectangular, oval, or round? Thus, to render what we think of as a
"point" or umarker," it is necessary to render some specific geometric shape at a specific, devic;e
independent size. However, it is obvious that "points" are a useful con~ept in a graphics system, so
throughout Albert, and more specifically, throughout the Graphic Object classes, the Geometric class
TGPoint is used for specifying coordinate data.

Line-oriented 2D classes

• TLine:
• TAre:
• TCurve:

A line segment formed by 2 endpoints (TGLine).
An arc defined by 3 points (TGArc).
A general purpose approximating spline curve; depending on the number of
control points given, this can be a Quadratic Bezier curve, Cubic Bezier

~~ ~ cr~~
• TRect .::::::::": Your classic rectangle, defined by:)m:~{#pp§\tfleftand lower-right corner

.::::::::::::::

;.;.;.:::;::;.:.:....

.........;.:.:.:-:-;.:-

:-:-:-:.:-:.:.:-:-::::....

':::::::::':::i:;:I:I::I:;:::::~:~:~:::JJ\
:?~:::::: ::::::::":.:.;.:;"," .:-:::.::~:} r~: ~: ~ :~:

:-:-:-:-:.;.:.:-:- ;.:.;.",'.:-:.:-:

• TSurfaee3D:

• TPolyNet3D:

Line-oriented 3D classes

• TLine3D:
• TPolyLine3D:
• TPalli3.D<::-:·. ..:.:::::-:::::::::: .

............. ')~~.·.:.~.·.:I..~.~.::{~i~~if~~~ii~:~:~::.:.:.·.:.· .
.:::;:;:::;:;::::::::-::::>:.;.;.:-:.:-: - .

Su -i.:.··""::···::·:.··~.::.:·,:···:.::··.:··:.··:.::.:··.·::.:···:··:.··:.::·:r:··,::•. -l'·::··~.:·:'-:·'.·n·.:·:··:.. :·::.t:.:.e··'·:,:.:··d:.::':':·:':'··::::'::!"l::·.-:.::::.D·.··:.::.::::Classes :::::iHJttt:ttmt::: ::-:-:.:.::::::::.::::::::::.:::-:.:
IT"«~~·~v. T~. :J: - ·:;:t{..r.~~..~~.~~.~~.~~.~~.~j./.~~.r.~ ..~.~..~.~.. ~.~.'., :~?/:}}}}:::::::.:.:.: ·::::::::::}r~/::·· ..

":::::::::-:::::::::::::::::::::::::::::::::::::.::: :.:.•...•..: .•:: •.....•.·.::.•. :•.A:·.:::.•:.:..•.·.n·.·:.·.:.·.··.:.•g··.··2t:··;:·r··;ec:::···· tanP11lar pn·sm (TGBox3D). .. :..:~.:::.:::.:::.~::.::.:~:: :::...•..•:::::::: ::.•::...•:.:.:::.:: :.. ': •...:.:.:.~?:::::::.::::}:::: ..•TBox3Dr;:;:L.: rt u 0-

• TPolygon3D:·······X·polygon with an arbitrary number of 3D vertices. (TGPolyNet3D).
• TPolyMesh3D: A set of connected, 4-sided polygons formed by 3D vertices that

topologically form an array, thus yielding a "patchwork quilt" of polygons
(TGPolyMesh3D).
A set of connected polygons formed by an arbitrary number of 3D vertices
(TGPolyNet3D).
An approximating-spline surface formed by a mesh of 3D control vertices
(TGSurface3D).

Image classes

• T1mage: A 2-dimensional array of pixel values, a.k.a. "Pixmap" (no geometric
equivalent).

'* Registered / Restricted Graphic Objects March 15, 1990 2.3.3-5

Graphic Collection Classes

• TGroup:
• TInstance:

A simple list of other Graphic Object objects.
A reference to a single Graphic Object object, along with a unique
transformation matrix.

Graphic Object Methods

By virtue of descending from the MCollectible and MPersistent classes, a Graphic Object can be used
with the various collection classes, and it can be "streamed" to provide a basic storage, retrieval, and
communication mechanism. By virtue of being a descendant of MGraphic, a Graphic Object gains 4
additional capabilities: Rendering, Transformations, Bundles, and Hit Detection.

The key method '~f~:Gtiphi@:t)bJ~t,whether 20 or 3D, is "Draw (port)"; thus, you
simply tell the object where to draw itself. All the remaining information need by Albert is contained
within the Graphic Object.

object.Draw(&port2)i~~--~

object.Draw(&portl)i

o
o TGrafPort portl,

o
o
o
oTGraphicobject

Figure 4. Rendering a Graphic Object

Ii Registered / Restricted Graphic Objects March 15, 1990 2.3.3-6

Since a Graphic Object and a GrafPort both contain transformations and bundles, it is important to
understand the interactions between the two during the "Draw ()" process: the Graphic Object sends its
geometry into the' GrafPort to be rendered there. If the Graphic Object has a bundle, it sends that into
the GrafPort, and its values take precedence over those of the GrafPort's bundle. The GrafPort's bundle
is used only to provide defaults for values that the object's bundle does nQt specify. Thus, if you leave
values unspecified in an object's bundle, you are relying on whomever sets up the GrafPort's bundle
values to "do the right thing." The Graphic Object's geometry is additionally transformed by the
GrafPort's transform (via post-eoncatenation). This makes it simple to transform all objects in a
GrafPort, so that a GrafPort can, for example, translate everything rendered inside itself to achieve a
scrolling effect, or for another example, scale everything to achieve a zoom-in effect.

This generic "Draw" ability makes it simple to handle all Graphic Objects generically. For example,
an application can simply keep a list of all such objects, and can render them all with a simple loop:

...... :::-:-:-:'>.'-

an architectural issue under discussion. ')})){))' \t:}::)~}:::}~t:t::)}}:::: ..:':
..

:.~.:.:~~.'.:.:.::~:.~~:::.;.~..:..':~~.:':~,::,:,~.,.:~:.~.:.:::r .,:.:::::::::::::;:::::::,:::::,:::::::::::>:::::.> >::::-::::::'::::::<:(:::< ...
r--:----4444~~------44$2-_---.1·:::·:4.$::::::r:::}{}}}{>}/:

o~ MG#~P~~¢.~:·&+£.ansform (co.rl\§J~):··TMatrix&

~ MG##iih#$;r;~~~~~:~,r0IP!,'!Wg;.s t

O~ MGr~ph.i.9f.;W;?A~~~:t:.~:l:::;onst TGPoint&);
O~ MGraphic:::-:s8gi~>(constTGPoint& scale,
O~

O~
O~ MGraphic::Translate3D(const TGPoint3D&);
oi MGraphic::Scale3D(const TGPoint3D& scale);
O~

Figure 6. Transformation methods

~o
iO
io
~O
~O

) ~O
'10
~O
~o
~o

~o

A TMatrix represents only a 3x3 transformation matrix, which is insufficient for 3D graphics. Thus, the
TMatrix3D supports a fu1l4x4 transformation. There is no danger in calling "Transform()" on a 3D
object, or "Transform3D () " on a 2D object; matrix elements will be discarded or added as necessary.
For details on creating transformation matrices, see the appropriate chapter.

Since most transformations tend to perform translation and scaling, the MGraphic class supports these
methods explicitly, which saves the trouble of having to work with matrices. With "Scale () ," the
first TGPoint gives the X and Y scaling, and the 2nd TGPoint indicates the point about which the

.& Registered / Restricted Graphic Objects March IS, 1990 23.3-7

scaling should occur. Just as with the liT rans f 0 rrn () " method, there exist equivalent 3D forms of
Translate and Scale (and again, it is safe to mix these calls with 2D graphics or vice-versa):

Bundles

Because a bundle is simply placed inside it, the MGraphic class only needs to provide "Get" and "Set"
methods. For details on creating and modifying bundles, see the appropriate chapter.

:1 void MGraphic::SetBundle(TBundle*);
o~ TObjectBundle* MGraphic::GetBundle();
0=

Figure 7. Bundle methods

Every Graphic Obj~Ktanaid in by returning geometric informag~:@(ip.p.#.l:lneobject in its rendered state.

~::t:~n%:n~. flavi~~.::O~. geometric information: boundin%:~::~.~!~II.!li.II':i:%olumes,intersections, and

.::~:~:/f~:~/:~:}~:}~:\{~:~t~~:~(tr}::::::::::::-:..... ::..:'.:::::':.:"':~'::'~..::~...:~;.::',,::,:::.,:~':~.:..:::::."::":~'~.:":~::::'~:'..:::'.~.:~.'.:~.:~.:.:;.::.':.:::~:.::':..::::.:..:~:.::.::.'.:~.~.:.::....::..:~.::.. :~.. :~:.~::.::...:~:..::.::;...:::~.:..:'~.::.::.'::.:"::';'::":~':::".{
.:}~?t?)~~~~t??~~~~??tt~~tt~f}{{~((~:):::-: ..

Boolean

Boolean ::::.::::::::::::::;:;:::;::;:::;:::::;:;:;:;

'::~:~:~:~:}~{:}~{{: :.:.:)?f{?f~~t}~~\f\~:;:::::;...:-:.:--.;'" -

Object's Bundlea:r~p~9'Mi:I1~t~"iPpr6priatein this calculation. (F6i<'$.R::·gRWs~~..s~etBounds () returns
the bounding rectangle::thafrepresents only the Z-axis projection; i.e.,'fr:getsthe (X,Y,Z) bounds and
then eliminates the Z value.}. "Get Bounds 3D () " returns the smallest 3D Box (aligned along the
coordinate axes) that completely encloses the object.

"Intersects () " indicates whether the given rectangle intersects any point on the Graphic Object.
(For area-enclosing Graphic Objects, this includes any point inside the area.)

"Contains () " indicates whether the given rectangle is completely contained by the Graphic Object.
(Note that "Contains" has not yet been implemented for line-oriented Graphic Objects.)

• Registered / Restricted Graphic Objects March 15, 1990 2.3.3-8

,,,,,,,,,,,
-----------------,

object.Intersects(rl) == TRUE
object.Contains(rl) == FALSE

object.Intersects(r2) == TRUE
object.Contains(r2) == TRUE

:::::::::::::~~:: :~:~:~:~:~:~:~:::: :::~:::: ::':::::':-:

.:.:.:•....:...:.....:...:....

...••.•:::::::=:•..••....•.•..•......

:::}::::::::
.:-:.:.:.;.:::::::::}:::::::::::.:.:-..,

....;-:..;.;.:.:.:::.:.:.. :::::)~:::?: ,

II cursor was over

:~
O~

~!
O~
O~
Oi
Oi
O~ if
oi
O~
O~

:~

~~ ~~ Pk~ng
..,::::::::::::::~::.;.:.:-'.:.:.:.:.

Text at the Albert level means simply the painting of characters on the screen, with no editing or fancy
layout facilities. Actually, with the ability to paint International text and symbols, the term
"character" is inappropriate. What is normally thought of as a "character" may actually be made up
of several distinctly separate pieces of area-enclosing geometry, called glyphs.

For the purpose of rendering text, Albert treats glyphs as any other piece of area-enclosing geometry.
Since text is most commonly displayed as a string of glyphs, Albert supports a collection of these glyphs
in a "run of glyphs," or "glyph run." The geometric class is TGGlyphRun, and following the normal
Albert naming convention, the Graphic Object class is a TGlyphRun. As with any Graphic Object, it has
a Bundle that determines its colors, etc., and it is rendered simply with "Draw ()." For more details on
this class and on Font Management, see the appropriate chapter.

• Registered I Restricted Graphic Objects March 15, 1990 2.3.3-9

The TGroup Collection

Albert supports two commonly-used types of udisplay listU collections; by making these collections
Graphic Objects themselves, they can be rendered, hit-tested, or transformed in exactly the same ways
as described above.

The TGroup class is a simple array-style list of graphic objects. It offers methods for inserting and
removing items from the list, much like the functionality of the underlying Pink Toolbox TDeque
classes. The more complex methods use a TGroupIterator facility.

g~ // Adding to the list

o~
o~ void Add (MGraphic* newObject);:1 void AddFirst(MGraphic* newObject);
o~ void AddLast (MGraphic* newObject);

il ;;~;:::;j'tljltllll'II~~iC* ...)it;;:';;;~~·······
01 MGraph~W~j' RemoveFirst (); // return:b:h:;;t4111IJ~~~i'

// returns J:llilllpr:,::,::"c'k

Since the
display

Simple TGroup

Figu;:j::itil:·II~II·hp

a Graphic ObjJ1111~contain

...>:}::t~j~11~i~1~j~~J:~:;:>.

- 10
jo
10
jo

I~
jo

.. ~o

jo
jo
10
jo
10
jo
10
jo
jo
10
jo
jo
10
10
jo
jo
jo
10

Hierarchical TGroup

TLine

TPolygon

TArc

TGroup TEllipse

Rendered Result:
TGroup.Draw(port);

Figure 12. Using TGroups to make a hierarchical display list

'* Registered / Restricted Graphic Objects March 15, 1990 2.3.3-10

TGroup Met~ods

In general, a TGroup method recursively calls the same method of all the children. Thus, if one TGroup
contains another, the hierarchy will be traversed in a depth-first search manner.

• GetBounds:

• Intersects:

recursively gets the bounding box of all control points
from its children, and returns the bounding box that
encloses all the children's bounds.

recursively calls Intersect for each child, and returns
TRUE as soon as any child reports TRUE.

• Contains: gets the bounding box of the TGroup (see GetBounds),
d TRUE· f h . 1 . . d

• Draw: .:'r,';::;::-..;.:.:.:.:....
......

. -:.:.::.;.;.:-:.:.:.:.:-:-:.:.;.:-:.;.:-:.: }r~ ;:::::::-:.;.:.;.:.:.:..
......... '\j:;ti:I:::~i:::'~:~:~]j:j::t::mIJ)

:::",}}}:,:::.... }:~J~]I::I/:' .:.::.:..:.:..:::.:.:.:.::..:.:.:..:..;:.:.:::::~.. :.:.~:.:·.~·.~~~ t.:.~:.:·.~:..:.;:.::.:j:.:m:} ·)H:.;\;.:~:.:~jl~~~~~\i~l~j~:j[i:i~~~~:InstanC4tSi):;::!::':·;··:::!·!.i;"-.)(} ::::::::::::::::::::::. . -:-:-:-:-:.;.:-:.;.;..

::~~~~~;"~~ljlll~I'~~~::;;~~:' ~:~i~~~:tt;I'~~~'I';~;w~~,a:t i~i::
render that child n~peaf&fI'y;::as many times as it appears in the list.UR16fHihaiely, that child will be
rendered repeatedly at the same location, on top of itself, over and over; after all, there's nothing that
distinguishes one reference to that child from another.

Thus, an additional class is offered that can distinguish the multiple references: the TInstance class. A
Tlnstance is a collection class that holds only one child, but also includes a transformation matrix
(TMatrix) that is applied to the child when rendering it. This is performed by:

1. Pushing the GrafPort's internal matrix stack to save the current matrix.
2. Pre-concatenating the TInstance's matrix onto the GrafPort's matrix.
3. Rendering the child (which may be a TGroup or another TInstance!).
4. Popping the GrafPort's matrix stack to restore the previous matrix.

Notice that by using the matrix stack, it allows recursive rendering of TGroups and Tlnstances. You only
need to worry about the appropriate transform in the specific Tlnstance, and the rendering process of
Draw () will manage the recursion.

.. Registered /Restricted Graphic Objects March IS, 1990 2.3.3-11

TInstancel

Translate

Tlmage

TGroup

TInstance2 Tlnstance3

.....;.;.;.::::;:-:.:.:.:.:.:.:.;..: .

/ 2

~~~~~:~Z~l~.i~~.;::be tightly tied to aJlrC

image'I~III~rdaspecifi~~~~!I~~~hice at a
:;:~~e~~~II_J~~~i.~~a*;~;,f~I'fr.~~~ei~~e;-~~~~~lillll;ft~~5i~;~lrl_f{;i~;s~::~~~
between diff~t~n:t:::.t¢$91Hg~:"n~::::~:BqU~Ihplingparameters. Albett:'j?f:ft¥~9~s s~y~r-~l.pask facilities such
that an Image·can}b.~.:9i~PUil&J~d:::oIr·anydevice in the system in a maniW#.1m.tl.1~~·l$.thinsparent to you.. By
default, you need not worry about the resolution or color palette of a spedfic device; Albert simply
displays the image at the highest quality the device can achieve, using whatever color matching
techniques are necessary. Shrinking, stretching, rotation, warping, etc., are all functions which Albert
will also support in order to make image processing more accessible to developers.

Albert supports images with the TImage class, which is just another Graphic Object. Thus, images can
be rendered with the standard "DrawO" method. However, because of the potential complexity of an
image, there are a number of additional parameters and concepts required to set up a Tlmage; for more
details, see the appropriate chapter.

• Registered / Restricted Graphic Objects March 15, 1990 2.3.3-12



:::::::.:.:.:...:-:.:::.;.::;:;::::.:-:.:...::.:.:.: .
....:.;.:.:.:.:~::}::.::::.:::.: ....: .

;;::'.:;;;;;:;:; !.l·.·!.:.:.• ·.:~.j.:.•·.f.:.·.r.:.::.i.!:.:·.::.;l.·..:!.·.!".:.:.·.;:.!.:!..t.:::.:::.::·
; .

i Regis tered / Res tricted Print and Imaging Overview 15 March, 1990 2.4.1 - i





The Outer Limits
Printing Architecture Overview

Bayles Holt
Ryoji Watanabe

Jay Patel
Mahi deSilva

i Registered; Restncted Print and Imaging OVerview b Ma rch, 1990 2.4.1-ii





Table of Contents

Printing and Imaging Architecture Overview

The Outer Limits .i i
Table of Contents .i i i
Table of Figures .i v
I. Introduction 1

Goals 1
II. Architecture and Overview 2

Printing Services 2
Color 2
Scanning 4

Scanning Model 4
Scan Devices 4. .

III.

IV.

TI'rintJob 16
Support Classes 18

Media Classes 18
Trays and Bins 19

Printer Classes 23
Printer Addresses 23
Printer Attributes 23
Device Access 24
Logical Printer 24

V. Examples 24
Setting up a Printable MGraphic 24

Paging 25
Printing 25

i Registered/Restricted Print and Imaging Overview b March, 1990 2.4.1 - iii





Table of Figures

Figure 1. The Printing architecture is specifically targeted for future systems, not the
least of which is Jaguar 1
Figure 2. An example of the color model.. 3
Figure 3. All the components of printing 6
Figure 4. An MPrintable 7
Figure 5. A TPrintJob 7
Figure 6. The MPrintable class 12
Figure 7. A generic document model 14
Figure 8. The Spreadsheet Model 15
Figure 9. The stack model 15
Figure 10. The TPileModel 16
Figure 11. The class 16
Figure 12.
Figure 13. Possible
Figure 14. Stacking
Figure 15.
Figure 16. The ·l~in.tje.t]

i Registered; Restricted print and tmaging OVerview 1~ March, 1990 2.4.1- iv





I. Introduction
This document gives a brief overview of the printing architecture. Printing"as far as this
architecture is concerned, also includes scanning, plus other forms of multi-media, specifically
video, cameras, frame grabbers, film recorders, plotters, and VCRs. In addition, because
animation is a major component of the Pink environment, the Printing architecture provides
some facilities for printing frames in an animated sequence and for synchronizing sound with
the animation. The printing architectUre is viewed as a low level platform for video, multi
media and animation uses.

:::::::::;:;:::::::::":';:-"':

Goals

:':':':':'=:::::::::::'.

.:.:.: .:-:.:.:.

:-:'::.}}?:::=::;::::::::::-:'

The major goals regarding printing in the new system are to produce a printing model that
surpasses the capabilities found in any other environment including the original Macintosh.
Known restrictions, that have plagued other models, have been removed and replaced with a
more flexible model that allows expansion and growth, and adds additional facilities that
make development easier, faster, and more secure, while at the same time providing
consistency, device independence, and ease of use.

In summary, some of the services provided by the Printing and Imaging architecture are:

• Inclusion of multi-media and scanning facilities in the basic architecture.

1 Objects such asTImages may have a specified sampling resolution, but this is a different
animal. There is no overall implicit resolution in the graphic model.

i Registered/Restricted Frint and Imaging OVerview 15 Ma reh, 1990 204.1- 1



• Support for other non-standard devices such as plotters, video recorders, and milling
machines.

• Automatic, high quality, device specific, 'WYSIWYG', including color matching.
• User and application parameterization of all printing and imaging functions.
• Automatic, overloadable device control for each printer, such as page ordering, bin

selection, and so forth.
• Variable page sizes within a single document and support for custom paper sizes.
• Arbitrary page ranges with automatic collation.
• Automatic (client modifiable) printer specific optimizations.
• User alterable queues for background printing and remote spooling for all devices.
• Access to accounting and use-tracking as might be needed in specific printer

installations.
• Provide sub-document page reordering, collation, and job redirection, both before and

after a job has been spooled.

II. Archite.¢tUre and Overview
.;.:-:.:.:::::;::.:.:.;...•.....•....

•
•
•
•

Color
At the core of the printing architecture is the graphics model and at the core of the graphics
model is the color model. The graphics model is documented heavily elsewhere but we will say
a few words about color here.

i Registered} Restricted Pnnt and Imaging OVerview 15 March, 1990 2<4.1-2



While true perc~ptual color fidelity may not be truly achieveable without full environmental
control, the imaging architecture does attempt to provide some degree of color consistency
through color matching between devices. The color model is ultimately based on a central CrE
coordinate color space, internal to the system, into which all devices may be mapped. Each
device connected to the system is characterized by its color gamut and a transformation map
that specifies the range of color available on the device. Any color data being passed between
a device and the system is mapped from one to the other through this transformation. In this
manner, any two devices can be color matched by at most two transformations, one to get from
one device to the system color space and the other to get from the system color space to the
second device.

A number of alternative color spaces are also supported such as the well known RCB, HSV,
HLS, CMY, Luv, and so forth. Some of these spaces, without a formal color specification (like
RCB) simply use the intuitive approach. There are also a standard set of transformations
available to provide conversion from one color space toanother... .

......'.'';.:.:.:.:.::::::::-~.:-:.", '.',....:-.. ".'

I~I =Calm Matching rranSformation;,,14KI ••
. .;.:::.::::: .

Figure 2. An example of the color model used by the printing and scanning
architecture.

Now that we have examined the color model, lets look at two other major components of the
printing and imaging architecture, scanning and printing. We will present a brief summary of
scanning, but the primary focus of the rest of this document will be printing.

i Registeredl Restricted Print and Imaging OVerview 15 Ma rch, 1990 24.1-3



Scanning2 .

Scanning is defined as the process of inserting infonnation into a document from some source
external to the processor that is not generated directly by the user. Input data can be in the form
of images, characters, video, Albert Graphics or any collection of these.

Scanning Model

Conceptually, scanning is simply the process of adding content obtained from an external scanner
to a document. The data of interest may optionally be saved in secondary storage for later use
as well. Scanned information may be processed or filtered before it is placed in a document if
desired. The filtering and processing step may be augmented by the application, by third
parties or the user herself.

The types of preproc~~~ff~Y~~91·~f~gn~d9W.We image processing , compression,..~ae~l;
recognition, feature ~~~~9~~)J~~~irS.9\f.9#!V~)1mereis always a color matching .£ilt:~r..av.ai1able

........-:.:.:-:.;.: .

Scan DeVI·ces ... :::::::::::::;" :':::::::::::'::::':::':::::
:.:.:::::::;:::-:::;:::::::::;:.::::> .

......;.:.:.:.;.;.;.;.;.;.:.:.;.;.

Like printers". scanning:devices are user.~~~table, but unlik({ pt$}~~g~. several differ,ent:.
scanners tA"YJ?~fm~:~tI9Ntsinglep~g~)ifthe same time. ""':}}}}}':::::::::;:':::::;' .. >}::::::::t(:

....: :: :::.;.:;.,'::::::::::::::.................. :.::::::':.;.:.:.;.,:,:,;:::., ··;:,;:,:j:j;%%tr<::;:;':;::....::;,:::::::::::;:;::::::;.·
............... :.:.:.: , .' .. '.' '.' ..:.:.;.;...: :::;:::;::::.. ..:::::::,).~:..~.~.:..~:'..~:~.~.~.~.~~.~:.. ~ <~:.~.:: ..::.: ::::::<:..;.•:m:::=))::;.:..
.......::::::;:::::::.:::::::::::::::.:::::::

2 All the details about the scanning mechanism are described in a separate section entitled
"Scanning".
3 Special patterns such as 45• lines, full page circular rings, diamonds, proprietary dots and so
forth can all be added directly to the image iself. The results of this operation when printed
are much more favorable and the whole mechanism is more device independent.

i Registered I Restricted Pnnt and Imaging OVerview 15 March, 1990 204:1- 4



Scan Image Links

Because input images typically run in very large sizes (up to 240 MegaBytes or more depending
on size, resolution and quality requirements), input fragments are not stored more than once.
Images are not copied in totality into every place they occur, rather an image reference or tag is
attached to the relevant data before it is attached to the document or application where it is
used. With printing in particular, when images are encountered in a document being printed, a
link4 to the image in question is placed in the spool file rather than including the entire image
itself.

Printing
Now let's talk about the Printing model. .....

:.:>.;. .•:.-.:•..:.: .

.:.:.: ...:.:..... :.:-:-:....
:;::::::~:~: ~:~: ~:~:::~:~:~:~~~~~~::::.,

.:.:<-:.:.;.:-:.:.:.:.:
:.:<.:.:.:-;.:-:.;.:.:

4 These links should not be confused with shared document links as they are not the same thing.
The links described here are more low-level and invisible to the ordinary user.

i RegIsteredl Restricted Print and Imaging OVerview 1j March, 1990 2A.1-5



Application
or

Document

Printing
Classes

Print Server

Intermediate

illi1liililililtiiiilllllti,lorage

Printer
Team

Despooler
Imaging
Engine

Server and then prinffi it on a given Prin'\®~i;~;1 {li~i;~!!I!lllr!;i~ .. ·;!;i;i'

US~ii€~ii~1iii~~t~~~:~~f~!~~~l,;;~i,~~~,
dialogs are minimaIcind>have very few built-in functions already in them'bUfllie first two may
be augmented by the application if desired. All are necessarily device dependent.

There will be more about the user interface to printing as the Pink Human Interfaces become
more mature and well defined.

Printing Devices

We must say a word about Print Devices. Graphic input-output devices may be divided into two
categories, Primary and Secondary. The deferred printing model is intended for Secondary
types of devices as defined below. Primary devices are handled more directly and usually by
other means than printing.

Primary devices are:

• Always there, that is, always attached to the machine, for example the monitor.

i Registered/ Restricted print and Imaging OVerview 15 March, 1990 2401-6



• Fast and responsive and are most likely used interactively.
• Typically "near', meaning within the client's own address space.

Secondary devices are:

• Intermittent or dynamically connected; not always on-line.
• There may be many such devices from which one or two are chosen periodically by the

user or application.
• May be slow and probably not used interactively.
• Okay to be "far", or outside the client's address space in other processes or teams,

maybe even physically remote.

The deferred printing model can be thought of as a way of wrapping up a Primary device and
converting it into a Secondary device. This will become more clear as we talk about Albert
Graphics and Printing Classes.

pr;;~:~;;;II"I(llrtl~n:ed:o~o:~~;.II'~~~;~:"Of
an Albert metaP1~F::in explaining these classes and how they .4@"I~~r~.1:~:::~:f~:.:::t:::

AmliWt".....-.. {{»;:~
;.:.:-:.:-:.:-

. -.-

---------,.;;.;..,..,- : .

T...Document

Figure 4. An MPrintable represents something that can be printed. It can be mixed with
anything that can be drawn in order to make it printable.

(__TPrin_·t_Job_J

Figure 5. A TPrintJob contains everything about a printing session that a document needs to
print. Like a TGrafPort, it contains the state of printing in bundles called TPrintSettings and
TJobSettings, somewhat like TBundles in Albert Graphics.

i Registeredl Restricted Print and Imaging OVerview 15 March, 1990 204:1-7



We assume that. the reader is familiar with Albert Graphics to some extent because we will
draw an analogy between the graphic and printing interfaces:

In Albert, an MGraphic is something that knows how to draw. In printing, there is an
equivalent class that knows how to print called MPrintable.

In Albert, a TGrafPort is the object through which all drawing operations are sent. In printing,
a TPrintJob is is the object through which all printing operations are sent.

In graphics an MGraphic is "drawn" into a TGrafPort, in printing an MPrintable is "printed"
into a TPrintJob.

It should be noted that this analogy should not be taken too literally. It is not necessary, for
example, to mix MPrintable with every object you ever intend to print. The metaphor is to show
how they are to be used.

~::~~ef:j'II\I'l~~:~:l.!-P!:~~

During the priI-\tirig:pf~>~~fp~gesare drawn by an application, th'~::'difu::~ilig:d~~tedis
spooled into an intermediate file, or piped directly through memory, to a specific Printer Team.
The application is not aware of what actually happens to the data. This is usually of no
consequence to the application except that a printable object's drawing routines may be called
more than once during the printing session. If this is a problem for the application and the
application is not able to handle multiple draWing calls without undue burden, it may create a
TPrintJob that only calls drawing routines once. In any case, multiple draw routine calls will
almost never occur in practice except under low disk space conditions.

5 This method of background printing should not be confused with the deferred printing or
background printing model as provided by the printing architecture. Whether or not the
application calls the PrintPage member function in a background task is up to the application.
The actual physical printing of the document on the printer always occurs in the background.

i Registered I Restneted Pnnt a nd Imaging OVerview 15 March, 1990 24.1- 8



({ {/{?t~t
....... -

The Print Server'

Now let's talk about the Print Server.

At the commencement of a print job, the Print Server is notified of the pending job. The Print
Server has the responsibility of coordinating all print jobs and to make sure they get printed on
the proper printer. The Print Server dispatches a Printer Team to print each print job. If
printers are busy, it makes a queue for the job and waits until the printer is free.

The Print Server is not connected in any of the data paths and does not directly receive nor
transmit any printing data. It does not interact with the application in any way other than
through the Printing Classes. The main service of the Print Server is to dispatch print jobs to
printers and to maintain a list of jobs and printers for its clients. The Print Server also allows a
user, through a separate user interface, to interrogate the status of any printer or any print job,
to redirect print jobs to different printers, or to reprint completed jobs. It also functions as the

Pri::::
r

::~;ililillr: {~I.JtJl'I~!lii,;,;;~::;tti;i;'."".' .

~:~yT=~~I~::ti~~~~~~~tj~t~~d~e:::!=~~I~llr~i'~:~~~fiC
device. They ar~myery printer specific and correspond to the :g~~~:]?@~V:Driver in the
classical Macin~§~lV::Jj9:W~Y~I,t.?ecause they are independeg~~::~~~g:~h¢Y;:are extensible and
very flexible. ]h~Y:Am:t~n9#f.t~~~~H~ive printer processiI)g\:~*=fkp;§Yg~~a wi~~.yariety of

............................

~~:~ti~~o:e~~~~~~~ ~~~e~~~Iilr:s oper~~U~g:!~[:ffl}IF:~xcept that nq.:nY9::~~~§r{
.... ::\:.:~:·.: ..·:.l!:l:!:l!l::::~~;:~!:··::l~l:~:·!.!·~\·:!j:. ::::. ::.::::.::: ::::.

III. Wlil'~~llg.~~ an~..;~.::.:!!.:..:.:.IJi It D O~III(llil·;I~
..............., ..-....................... ..::;.:.: :.;. .

Now thatw~tt~yi·*g~Aij*~l#A4~$tandingof the overall println:g::"~f¢m;~~ture~*~y~llFtalk
about how itft:ilid:ipli§-:.:~:~onpresentssome user scenarios and·deS¢#.p¢.$:l)PW.printing
works from the perspective of the application and the user.······ .

6 The Print Server is documented in greater detail in a separate section entitled "The Print
Server".
7 For more information about the Printer Team and its classes please refer to the separate
section entitled "Printer Teams". Printer Teams for special purposes or specific devices can be
designed by third party developers as described in that section.

i Registered I Restricted Print and Imaging OVerview 15 March, 1990 24.1- 9



Printing Services

Creating Documents and Assigning Printers

For the purposes of printing, a document is defined as anything that can be printed. Usually it
is partitioned into several pieces that correspond to pages, but this is not a rigid rule. A
document may be assigned several properties, or settings, such as page dimensions, media
preferences, orientation, imageable area, initial printer type, media size and perhaps output _
requirements (stapling, collation, and so forth); these may correspond to some intended target
printer, or not, depending on the application. The application or user has complete flexibility
to alter or specify any desired media format, whether it exists or not.

Pages within a document may be assigned diverse properties that are unrelated to the rest of

~f.l!E.III'~~t;jl~~~~~Itfji~:i
::t::::~:~:j~m::::i::%\::::}::::~:::~:::::~\::~j::::Im::?::/::::::::::-",

::::::::;:~:::: . .. , .

::::::::::::::: :.:-:::::::::;:::;:::::::::::::::::.:

Dynamis.II~IF9perti es \j~liliii;il,11111'; .i! •••••••••••••••••.••......
~!~~:!I~f~.II_t!~::'g~lrr:o;~~~~~~!'ll~~y;llt!~~·
conditions. Examples6fthese settings are: number of copies, section and 'pagehinge
alternatives, destination (another opportunity to choose a printer), collation, input and output
bin selections,..and background notification. User authentication or verification can also be
performed at this time.

During this phase the application may use the PrintDialog method prOVided by the system or
provide its own.

Printer Selection

The printing architecture allows printers to be chosen by a user and attached to a document.
The chosen printer can be set by default for the entire system or it can be directed to a specific
document. In fact, different printers can be set for every page of a document.

i Registered! Restricted Print and Imaging OVerview 15 Ma rch, 1990 2:4.1-10



A printer may be selected as either the current system printer or as the printer for a specific
document. The target printer for a document may be chosen at creation time or any time up to its
actual printing.

The currently chosen printer is available to a client in the MPrintable class. ' When a printable
object is constructed, a default printer is provided for that object (the current system printer).
Subsequently, the default printer may be replaced or changed by the client or the user through
the PrinterSelection dialog.

Printers can also be selected on a page by page basis. This service may be necessary where
certain pages of a document require certain features of a specific printer. Printing a single
document to multiple printers is treated as multiple jobs as far as the printing architecture is
concerned, but the client need only instantiate one TPrintJob and doesn't have to worry about
which pages go on which printer. Printing to multiple printers can be temporarily disabled
when printing draft copies.

not specify this ey.~ty...t:ip:le printing occurs, either, since these p~#~~~mt.#'j*:aybe set in a

Other Services

Another service provided by printing is job accounting or transaction logging. This service may
be augmented by a Printer Team, an application, or remote printer application. Please note
that there are no security measures built into the printing architecture and none are planned,
but the ability to monitor printer acquisition and usage is allowed.

Multimedia
The buzz word of the day is multimedia. While it is not the intent of this architecture to
implement a full multimedia toolkit or application framework, it does prOVide a multimedia
input and output interface integral to the system upon which an application toolkit can be built.
By virtue of the developer Printer and Scanner Team mechanisms, third parties are able to
couple their own devices into the system using a standard interface, without having to design

i Registered I Restricted Print and tmaging OVerview 15 March, 1990 24.1-11



one from scratch and without having to integrate it into every new application that comes
along.

How does sound fit into the scan and print architectures?

User Interface Samples
These will be included at a later time.

IV. Print Classes and Objects

::::::;.;.:~:: ;:;::::::: :::::::::;:::

Figure 6. The MPrlhtable class and some of its descendants.

MPrintable is designed to provide a complete printing framework where very little work needs
to be provided by its clients. Or it may be treated as an extensible architecture where many of
its services are overridden to obtain exactly the printing model desired. The default model is
described first and then in more detail how it may be modified for greater flexibility.

The MPrintable base class may be applied to whole documents, single pages, individual
graphics or to anything in between. Any object that descends from MGraphic may be printed as
a document in its own right, provided it is mixed with MPrintable. As new components or pages
are added to a printable object, they too may be made printable simply by mixing them with an
~fPrintableand adding them to the superstructure. Because each component has an MPrintable
object associated with it, each one may have options that vary from component to component.
There may be any number of MPrintables associated with a document, one for the entire
document, or one or more for each page.

class MPrintable : public MCollectible {

i Registered/Restricted Pnnt and Imaging OVerview 15 March, 1990 204.1 - 12



} ;

public:
MPrintable();

virtual -MPrintable();
virtual void Print(TPrintJob& printJob) o·,

The easiest way to make a printable thing is to create an MGraphic, add MPrintable to it, and
use the draw methods of the MGraphic to print. This can be done manually if desired, using the
MPrintable from above, or clients may use the MViewlsPrintable class which can be mixed
with any TView to make views printable. You don't need to override the Print method because 
the printing system provides one that should be reasonable enough to use. The class does all the
work.

class MViewlsPrintable : public MPrintable {
private:

publ ic: TVi e;:0·~!1!.·1~::·:·:: ..I:.:·[j·::·j::!j)~[:j·I·)00~jjijlj'~jlil~:lll:~~lljljlll?'

::~iIlIIIlIJllllliliJ1itiiliJlt!:~~:~~:~o:~:WToprint);
} ;

......:.:.:.:.::>:::;:::-::::;:::::::;:::::;:;::;::::}}=::;:.:."
":::.:.:::-:.:::::::::-::>:::.;.:::::;:::::;:;:::::::;:::::::;>:.-.-

...·.::::::::·:·::::::::::::·:·:·:·::~:~:f:.·.·

········:······:~;}\;i{:::.:.: : .

i Registered I Restricted Print and lmaging OVerview 15 March, 1990 204.1-13



D
D
D

•••

,-,'.:.",;.".:-:,"-:-:.:.:.:.;.:-:.:.:.:..;.:-:-:.>:-:-:-:.:-:.:-:.;.

TPage

T...Document

":':-:::':::':::::::-:';':':-:':':':';':';':':':':':'.

";':':::;:;:';'::;:::::\.
.:-:<.;.;:;:;:::::;:;:::::;:>:;::::::..:.....

i Registered/ Restricted Print and Imagmg OVerview 15 March, 1990 24.1-14



T...SpreadsheetModei

T...Document

>:.:.:

::::;:;:;::;:;:;::::::: :~\{ir~/:::::::}::::

In the Stack model pages are uniform in sizeandany number in length. In contrast to the Spreadsheet model
the pages have no metric relationship to each other and each page is positioned at the logical origin.

Figure 9. The stack model requires only one MPrintable to represent the entire document.

i Registered! Restricted Print and Imagmg OVerview 15 March, 1990 204.1-15



Pile Model

This model is somewhat similar to the Stack Model except that the pages may have varying
sizes and different orientations, and all the pages are stuffed into a sequence.

T...PileModel

T...Document

Are iliere Oilier~efault modcls we shoulJllte?illllll~1-!ll~lli;I!~.:?i

TP~~::~r'!~~':j~j~fj.!I:~ting~ TPrintJ:~::!r~il~;'~.i~..\9.•fg~~~t::
job based on the·printP~etersforeach page. It has many of the same::IM9:pgr:tiesof the
familiar PrintRecord from classic Macintosh printing. There is really no interaction from the
client required for this class except that the application that is doing the printing must
instantiate one of these. (We could do this automatically but we may provide other services in
the future which dictate that the application do this.)

( TI'rintJob )
Figure 11. The TPrintJob class.

1PrintJob corresponds to one printing session and exists only for the duration of one job. All the
paraphernalia required for a printing session, its state parameters, grafport, and document
information, is handled by this class and every print job must have a TI'rintJob associated with
it.

class TPrintJob {
private:

TPrintSettings* fDefaultPrintSettings;

i Registered/Restricted Print a nd Imaging OVerview b Ma rch, 1990 2.4.1 - 16



public:

~JobSettings* fDefaultJobSettings;

// This will eventually be used for printing animation frame 'sequences as well
void PrintPage(MGraphic& graphic, TPageSettings& pageSettings);
void PrintPage(MGraphic& graphic);

Get/SetDefaultPageSettings();
Get/SetDefaultJobSettings();

} ;

The fundamental member function within a TPrintJob is PrintPageO. The graphic that is
passed to it packages the entire graphical content of the page inside its #.DrawO" call; that is,
asking this graphic to draw will result in it drawing everything on the page. Note that a ..

area,
.:,:-:.:.;.:;::::.:-:.:.

::::::::::::::::::}}<:::-: .

:::::::::::::::::;:;:::::}::::.:::::.:.: :. .

TSet:::{ fSet t i ngs; .{:;~~::;:I~:;~:~/ // Addi t i ~:~~~:::jl~~;f,'%R:::"~e fined se t~;;*·*=;.:::::::·~·.·::))::
::::=::::::;?\tL :: :::::::::":- .. ..:<.::-:-._. US)}:::-

publi c: :.:.:~·:\:::·::i\::::?::<::/: .~.::.: ....::::.~(:\.. .. TP ri'i!j:\\:~~~~~:::" () ··:<:lm\:,\,\·::·:~:j\:l\·\·~·\[:\:{[:~t. };;::--:;:?;::.;)\ '.:.:-:«.

..... .<::::::::::::~::::::::::::::: ':':::~:'d~t#iht~~ t t ~~: 5 ( ~ ; ":::::::<:-:.:,:.:::::"=:==::'!:::_--:::::':<::_:)::<:. _...

/* More Stuff */
} ;

Here is what TPrintJob does. Associated with a TPrintJob is a TGrafPort that is like the classic
Macintosh GrafPort, but it is hidden from the client. When TPrintJob::PrintPage is passed a
graphic, it tells the graphic to draw itself into this private port (possibly multiple times, for
instance, to do banding).

The private printing port is a standard Albert TGrafport. However, it is connected to a special
#spooling" TGrafDevice called a TRecordingGrafDevice. This TRecordingGrafDevice is
associated with a TSegment, the classical "spool file". Rendering calls to the TGrafPort are
encoded and written to this TSegment.

• Registered! Restricted Print and lffiaging OVerview b March, 1990 2A1 - 17



TGrafDevice

Figure 12. TRecordingGrafDevice.

:.»>:-:-:.''; .
........-:.:<::::::.:.:.:. .

Media Classes

Media is the term used to specify what a document page will be printed on. Media is
characterized by a size metric, an ID, and a human readable name. The name is localizable,
that is, it may be altered for local languages where appropriate. The identification token
serves to distinguish every media type from every other, even if the name has been localized.
Real printers have at least one, and perhaps many, media types and one class associated with
each type. Printers are allowed to have any number of media types. (See Printer classes
below.)

C__TM_edi_'aT_ype_)

Matching media types between different printers is done first by IDand then by size.

i Registered/ Restricted Pnnt and Imaging OVerview 15 Ma rch, 1990 24.1-18



TMedia may be subclassed to provide more detailed specifications to the document, such as film
type, gamma index, tone reproduction curve, and so forth.

Trays and Bins

Oosely associated with media type is the input tray, or source of the media; and the output
bin, or page destination. Notice that the word "tray" is used to designate input sources and the
word "bin" to designate output destinations. A tray or bin may be logical entities, meaning that
they do not have to represent actual hardware on the printer. For example, two types or two
sizes of paper may actually originate from the same physical tray, but logically they are
treated as two trays.

The number of ttaYs~\~~i2i~~iii: is:;:i:
o:::2and~de::~e~~y

a specific Printer T~~~::·R~fe.~Jlf~~~s.~:~~~::9.ynamicallyaltered to ch~g:~..~h~.riumber and
type of trays or bins:t~a~I?~~:te:;;~¢¥t::4:¢~sor field upgrades. J1i:~)ita,ppfugof trays to

:-:-:-:-:-:-:.'

.................:.::: .
:::::::::::::::::::;:::)::::::;::::::::::::

orientation oftheiW~gg9W.mij:page,since this definition is meaningmssJikwm¥(contexts.
Media orientation isdefmed with respect to the direction of travel of the media through the
printer and how it lands in the output bin. Image orientation is superimposed over the possible
media orientations to generate eight possible configurations. This allows the user to see exactly
how the image will appear with respect to the media as it is placed in the printer input tray
which is really what she wants to know anyway.

Iconically, orientation may be represented as shown in the following figure.

i Registered/ Restricted Print and rmaging Overview 15 March, 1990 204.1- 19



.:::::::::.:.: .
WideUp,

t ¥pede f enu~::~~k:.:::rder Face...:l.::.::e:.:••:•.:.::s.:.•.•:•.::.•••::.::.s.:••::•••::•••:.:;:••.•::.:>..~.:••.::.•:.::••.•:•••..•••..It;n.

~~~~t~~f~~~t::::::::::::~::;/::: .:.:.;.:.:.;.:.;:;::::::::::.
......:.:.;.;.:.:.:-:.;.;-: .. :::::::::::::::::;:;:;:::::;::

..:-:-c.:.:.::::::: :..::::::::}?: :::::,::;;:;:l::;::)::.:):\:::i::U:(::;:::··
..:... :.;.:-:.:... :.;. .. :.: ;. .. :.:.

..... - .

.>::::::::.:;.....;.....: ...•.......•.......•.

tlilillillillll.!. ~ik
'.:.:.:' .

......:::::.: .
.:-:.:.;.:-:.....

....
:::::}}}=;:;> f)~/::<:~:>
. .

.. '.'

.: :.: "'';';' \{{~{::::::::::::::::::::.;::

."
':':-:-:-:': ..

i Registered/ Restricted Print and tmaging OVerview 15 Mareh, 1990 24.1- 20

"~~~;!~~"'~I.~u~):::llll\lllilliil~';
':::>~:~:~:~:~:::::::::::::::;:::::::::::;::::::::::::::::.

::::;:::::::;:::::::::-:.:-..:.:-: .

applies to the m()sfrecenUy':pnnted side of the current page as it faces'Irit64he:eafliest printed
side of the previous page. Face-out is just the opposite, the earliest printed side of the current
page faces against the last printed side of the previous page.

When duplex or double sided printing is available, it is important to maintain the page order
between the two opposing faces. A duplex tray therefore has a sequence associated with each
page of media it delivers. This must specify how the second face must be printed in
relationship to the first face. For example, it could be immediately following the first face or
after all first faces have been printed.

(TDuplexOrdering J

i Registered! Restricted Print and Imaging Overview 1~ March, 1990 24.1- 21

a b

::::::::::::::::::::::::;:;::::::::::::"

When a document is created the media size and format for each page are specified either by
the application or the user. At print time each page of the document is matched with the
appropriate input tray and the proper destination bin. The criterion for matching document
pages to input trays is media size, type, and whether or not manual intervention is required.
For bins the criterion for selection is collation, finishing needs such as stapling or binding, or
whether a specific address is required such as a mailbox. The ultimate selection can of course be
manually overridden.

i Registered/ Restricted Print and Imaging OVerview IS March, 1990 24.1- 22

Printer Classes

(MPrinterAccess TDeviceChannel

Figure 16. The Printer Class which represents the chosen printer for a document.

Printer Attributes

The class that represents a real printer type is a generalization of many printer characteristics.
Printers are a conglomeration of several other classes; a GrafDevice, media, and Tray and

iF~:f~;f@.t.:.e..:..::.:.:~...:a:~:e.d:~.:.:d•.:.;::•.:r.::•.•:.p.:••..b.::•.•.••::p.clw.nn:•.•.::.a.:•.:.:.·:~·.:••.•:.oo.•:.:••..:!::.•.•:.:t:.:•.:

1

.•·.e
a

::•.::•.

c
:.l..•:::r•..:~.e:•.•:••.:•.~.:.•:.•..n.••.:..•.•:d.:)•.:•.:•.o.::••.•.:.~.•.:.••:•.:~•.::.••::••.•:.•:.•:•.p•.:.•S..:.~::•..•.:.:•.h.••::..~•..•..:•...•:~.~.:.:..:..a.:.•.••....••:.s.••.•:••.•:.t.~.:.:.i•.:••.:.C.::M.•.••:.:.••.•.:.:~...••::••..•:.::•..:.•.~.:.•.•v:.••:•.:•.•u..•.~.:.:.•.•~..•·:•.:.••::·.y.•:::•..c.:•.••::•.l:••..~:•.:.:.•:::•.t.:..:.;.:.:.•:.•.••::r.:•.:•.l.~.;.;::t~~~~~~=f;;;r~;~.'~\

Printer Addresse~I?4tdilffl"!~ii!I!/'
Every printer ha~::i~~r?-ddressassociated with it that defines it:~ii~·I~~i~~~·:ji,6~ation. This

...•.:.:.:::::~:)::::::~:~::::::::::.: ..
...

long PrinterID () ; II u'riMi¥itW~~t: every l:H#¥M~#n~&Wt\n the worl¥}}:~:} ::/:{~::\:=::::::::.::.
TNarne& Location (TNarne&) ; / / ArBt~~~t~~~it~jtex-t de~¢ii~a¥jB¥~t*b&I~ical locatiq(f :::::}=:::=:::::=:=::::::;::::::;::::

'::<:;::::::-:.: :-:'»>.'.,.,:...

In addition to addresses, printers also have attributes.

class MPrinterAttributes : public TPrinterAddress, public TTrayOptions,
public TBinOptions {
protected:

long Version(); II Returns the version number of this class
TPrinterAddress& Address(TPrinterAddress& address);
Point& Resolution(Point& DeviceResolution); II Pixels/in2
TDuplexity DoubleSidedPrinting(); II one or two sided printing
Scan FieldofScan(); II Direction, Raster, vector_
Cardinal FieldDepth(); II Bits per pixel per color
GraphicModel ImagingModel(); II QuickDraw, Albert, PostScript, raw __
ColorModel ColorModel(); II noColor, monochrome, spotColor, full Color__
Color Background(); II white v~. black_ Default background color
ColorTable ColorMatching(); II Color gamut of device

i Registeredl Restricted Print and Imaging OVerview 15 March, 1990 24.1- 23

} i

The attributes class is a mixin that provides device information about the attributes of a
specific printer. Normally the application does not access these attributes since all
information necessary to format a document is either accounted for in printing or is provided by
other means. All of these properties are mentioned here for completeness.

Device Access

Device Access refers to a users privilege to acquire and use a printer for printing. In most cases
users are always given access, but in a controlled environment where monitoring or charge
accounting is required, access may be logged through this class.

V. Exa!III~;.;\.,.

Setting J';llmiill'~ll;~~raphic

Password,

fIdentitYi

virtual

} ;

} ;

class

Access to printing devices is controlled by MAccess, a mixin provided to coordinate access to a

~;i~~~I.\'~ltf;~~~~;~~eVices
class MAccess {)::\:n\~{
public:

To accomplish printing, the client creates a MGraphic from which she desires to obtain hard
copy. This may be an ordinary window view or some other combination of MGraphics. One
possible example is a view created from a 1View class and an MViewlsPrintable as follows.

class TPictureView : public TView, public MViewlsPrintable (
public:

TPictureViewO : TView(TGPoint(1400, 1400), TGPoint(O.O, 0.0)),
MViewlsPrintable(this) {}

virtual -TPictureView() {}
virtual void DrawSelf(TGrafPort *port);

} ;

In this example, the only thing the application has to provide is the DrawSelf method which
is just the same stuff that the view draws. The same draWing routine that draws to the view
can be used to print.

i Registered/ Restricted Print and Imaging OVerview 15 March, 1990 24.1- 24

Paging

:.:-:-:.;-:-:-:-:-:-:-:-:.:.:' .
. .

This example does not take into account the paging model for the view. Normally, the view
may be associated with a single page, part of a page or many pages depending upon the model
the client has in mind. In this example, paging is not taken into account, but the view could
represent a single page, or any number of pages with the same print settings. If the view is not
the same size as the output page on the physical printer, printing will still be performed,
however the page to document wysiwyg correspondence cannot be guaranteed. The client has
three choices for the output format when this occurs, the final output can be scaled, tiled, or
clipped. The clients choice can be registered by setting TPuntOptions in TPrintSettings by
calling SetPuntChoice with an argument of kPrintTiled, kPrintClipped or kPrintScaled. The
default choice is kPrintClipped.

Scaling forces the view to be scaled to the output size of the page, while tiling causes the pages
to be partitioned into a uniform grid the size of the printable area, similar to MacDraw.

~!i~~illl'J,r.fz:~ii;:'~~·
-

To do the actuiililililtlilill\:omethmg like:

~:;r;iilll"llil'illlif'

Printing

i Registered! Restricted Print and tmaging OVerview 15 Ma rch, 1990 2:4.1 - 25

une Outer

i Registered/ Restricted The Print Server 15 March, 1990 2.42- i

The Print Server

":":":" .. ::::::{:;.~.: .

....................... :}::::::::::: .

:-:-:-:-;....-:<.:-:-:.. -; ..

j~j;:;:;~::~i~:~::::~~~:~~;:;:;:::::::::~:;:::::·:::··",

Bayles Holt
Ryoji Watanabe

Jay Patel
Mahi deSil va

• Registered/ Restricted The Print Server 15 March, 1990 2.4.2 - ii

Table of Contents

The Print Server

The Print Server .i i
Table of Contents .i i i
Table of Figures .i v
I. Introduction 1
II. Architecture and Overview 2 _

Printer, Printer Teams, and Print Job Lists 3
Print Job Queue 3
Print Job Dispatch ; 4

III. How It Works 5
...5

IV.

v.

i Registered/Restricted The Print Server 15 March, 1990 2.4.2 - iii

Table of Figures

Figure 1. The Primary Print Server class 1
Figure 2. The Print Server client class 1
Figure 3. The Three Queues maintained by the Print Server 2
Figure 4. The Print Server provides a list of Printers and Printer Teams 3
Figure 5. The Print Server provides a list of print jobs .4
Figure 6. The Print Server dispatches new print jobs to individual Printer Teams ~ .5

i Registered / Restricted The Print Server 15 March, 1990 24.2-iv

I. Introduction
The contents of this section are best understood if the overall printing architecture is already
understood. Please refer to the uPrinting and Imaging Architecture Overviewu section.

We begin by referring directly to the Print Server class, a subclass of MServer, and to its client
MClient.

MServer

:::j.~~~i1j~j:j~1j:~i:~:1::ijj11j~:ji~j~~jjj~1~1i:i: ::ij:: :::j:j~~:~j11:jjj11~~j1i1:~~1:j:w.jrrv er

;;!lllililllllitiliiiim:;t::rnonly
;.:.::::::::::: in the Print Server itself.

:::::::':':-:':';':"':':':

«.:-:-.<::-:-:.:-:-:.:.>: -..

::·:}·:·:··:.·:·jI:~.:·:ji~:I:::::::?::::::·

:::::::;:::::;: m??~:>~:~{:~::::
...............-:.:.:.:.:.:.:.:....:.:-: .

~!IJ!!!i=m'."'~:-:':'i!!>:-:'i!!:-:':m':-=.lJ=.lJ~..~..;:~~~?~~~\}~I~~~~~~~~~~~:

.........•.•.•.•.•.......•.•.................... ... i~1~~f~~!~i!fjllllllli; •.
":::::::::::::::::::":::"::::-'::::<:\::::::::::::::::: . . :..... :-:.:.::::::;::::., ··:::~~r~~t~:)~{:::::::::\~::·.

Even then,lf@§t~tfpAql#9.il$mW~1l}ti6fdirectly instantiate a TPriri~tY.M~n.tqla§s$ilid~ this
is handled aut6matie:a.l.ly~py::priritfug.However, the structure and opet~iH<mWillbe:described

here so that clients can appreciate how the Print Server functions.

The Print Server is relatively transparent to most applications. Most of its services are
provided through upper level classes or from other services in the system, however, it is
possible to communiciate directly with the server if need be.

The Print Server performs five basic functions.

• Provides a hierarchical list of available printers accessible to the system.

• Provides a list of Printer Teams that are dedicated to specific types of printers.

• Provides a client alterable list of print jobs for each printer.

• Queues print jobs for dispatch to each Printer Team (and eventually to specific
printers).

i Registered/Restricted the Print server 15 March, 1990 242-1

• Displays the print job queues for the user to access. This is the only foreground activity
peformed by the Print Server.

The sequence and priority of the items in the print job queue can be arbitrarily altered or
reordered. Some items can be frozen or made to require a password and authentication before
alterations are allowed. Clients making such restriction on queued items must be authenticated
before regaining access. Restricted items can also be prevented from being processed until
authentication is provided.

The queues created by the Print Server inherit from the basic deque and collectible classes.

II.

The Print Server is a stand alone team of tasks that is initiated by the system at startup time or
by any application that accesses printing services. When the Print Server is first invoked, it
goes through a flurry of activity checking for consistency among all the printers, Printer Teams,
and queued print jobs, after which it settles down to leisurely replys to requests for services.

If for some reason, such as a power failure or emergency shut-down, print jobs are left
unprocessed, these are found by the Print Server at system startup and returned to the
appropriate queue for processing. If the job cannot be processed for any reason, the user is
notified and the job deleted.

The services provided by the Print Server, as outlined above, may be grouped into three
categories:

• supplying lists of printers, Printer Teams, and print jobs.
• providing a user interface through which clients may alter job queues.
• dispatching print jobs to idle printers.

i Registered/Restricted I he Print server 15 March, 1990 24.2-2

WeIll examine each of these categories a little more in the following sections:

Printer, Printer Teams, and Print Job Lists

r

Print Server

----------- \

---..............

i Registered/ Restricted I he Pnnt server 15 March, 1990 204.2- 3

Print Server

----R

...:.:::::::~:(t/mr~~~)~~I~~it~}~:~:~:}:
-:.-:-:.:-:.:.'.:...

I
I
I
I

'--It~ ---'...........-...-.........-...-....-......... "-'--........-......-.. -..,.....
••-.4 __~_ ___..~ -........., ~ _.....
••-.._._ -......,.. Mt ___..-... -........ -....-. -.........-.. -.........~ ---

:~:~:~:~~~2m!~~~:~:~':~:~:m~

1Ii~~=mI

:-:-:-:-:->:-:-..... .; .
.":':::':::;::~::::: ~::: ~:~::: ~ ~ ~~ ~: ~;~ ~ ~:\ ~:~::> }}~{::::::::: :.:./.'

'';':':';':';'':.:.......•.....................................

....:.:.:.:::::::::::::::;:;:;::::: .
•...:-:-:.:.:.:.....
::;:::;:::::::::::::;:;:::::::;:::::;:':::::'". :.:.:.:.:-:.:.:..: .

\!'11,~!11!!1!!(
.......:-:-:-:-:.:.:-:.;........
.............................

• Registered/ Restricted Ihe Print server 1j March, 1990 204.2-4

~~
~

"Print Job Notification is
sent to the Server:.: R · t sa
~ ;;;;;11;1 .;•.;.:;:•..•.;.:~.:.:••:.;..:•••..:.;.;;•.:...:•.;...:'•.:.:.:~•..:'...:•..~•...:..:~•.:.:••.:.:_..:•.::•.:.:...:••....:•....:•.:.::.::..:~.:·....;>:;••.: .•.:i.::;.:!•....::!..::•...:•...•...::•..:~::..:r•...:.:..;••:::..:•.•.:.::...;~.;...;•.I::..:,.:•...:....;•.:...:n..:i::.~...:~.:...:•...:i.!•...:.·:I.::.:....:•.:.:.:.>....: ..:.::.:...:'•.:.:;.:~•..:.:.:•..•...:.:.••...;:•.:.:.:•...•...;.:•..::••...::..~•...;.;•..~.:Jifrver'i/;;;;';

Pr
',nt Jobs are .::::.:::.·.._::.;:::~;:..:! :·::.~..:.·:i.: ;;·:l.~..::·.::··.;..:::••._.;::.:: ::•..::.:I:.:•.::I.:~.•.~..:!·.•.:·.:..:·.::.~..::.:I.:.::::.•.::·:.:..::·.:1::1..:.:.:1: ..:.:.:.:.;.:.:.:.:.:.: .

..::::tu::::]:!~:~!!·!I~llll~l!:.[;:!·i·l·! ..~!::··:m/::::.,
dispatched to inmvidual ~ ~i:"'\,<~

prjnterTeams.:,.·.•,.• ,)).;~i~+, ~',')',t{:~i:'··· N" ..

:::::::::::::::::}<:: .

III. How It Works.

Printing
The primary purpose of the Print Server is to dispatch print jobs to the correct printer. It does
this by invoking Printer Teams, giving them a scheduled print job and assigning them to a
specific printer. It performs coordination between all printers, printing jobs, and printer queues.
It also functions as the master switcher for choosing between printers. It is not connected in any
of the data paths as it does not directly receive nor transmit any printing data. It does not
interact with the application in any way other than through the printing interface.

To see how a job gets queued through the Print Server, we will run through a sample scenario
beginning with the user in the application.

i RegIstered I Restricted 1he Print server b March, 1990 242-5

The user initiates a printing job in the application (by clicking OK in a Print dialog). The
application begins the printing process by calling the Print member function in the printable
class object. During printing, notification is automatically sent tb the Print Server that a job is
ready for printer queueing. The Print Server takes the job and dispatches it to the appropriate
printer, invoking a Printer Team if one does not currently exist. The job may 'either be processed
immediately or queued for later printing, depending on the nature of the job, the availability of
the required printer, how many pages, the number of copies, the availability of system
resources, and the capabilities of the printer. If the queues are full and all printers are busy,
the printing application thread may be blocked until a printer becomes available or a queue
slot is opened up. This normally never occurs unless disk space is used up.

Other Services

IV.
.....•.•.;.:.:.;.;.:.;.;.:.;..:.: .

.:.:.;.:.:.:.:.:-: ::.........................•............. :.:-:-:-:.:-:-:.:-:-:.:-;.:.:::-:.:.:.:-:.:-:.:.;.;.' .

Since the operati§#pf':t}jij:,~tm:~::~veris totally client driven and'-:aml~:::~tyt~s~r~~ached
by member functi6ndillS,'th(fbest way to describe its operation is to desmoe'itS'member
functions.

class TPrintServerClient: public MClient {

public:
TPrintServerClient();

virtual void Hello ();
II The next member function will undoubtedly change
virtual void PrintAJob(TJobToPrint, •..);
virtual void PrintDialog();
virtual void SetupDialog();
virtual void MonitorDialog();
virtual void PrintAbort(.. ~);

virtual void PrintAbort(...);
virtual void AbortAll () ;
virtual void PrintReschedule(TJobToPrint, ...);
virtual void* GetSystemPrinter();
virtual void* GetDefaultPrinter ();

i Registered I Restricted 't he Print server 15 March, 1990 242-6

} ;

Class Overview
There are two ways to activate the Print Server, either print or instantiate a
TPrintServerClient class object and call any of its member functions. If it is not already
activated, the Print Server will be created, initialized and started. The request will then be
communicated to the server for processing. If the Print Server is being invoked for the first time
there will be an initial delay while the Print Server goes through its initialization process.
Under some conditions this could take several seconds.

The TJobToDo

TPrintServerCiiel1.:t:::G~tS:Y~t~fuP·rinterreturns the chosen printer s~ciiMtFbY'thk\.lserhas
specified for general system printing.

TPrintServerClient::GetDefaultPrinter takes the given job on the given printer and places it
in the queue of newprinter at new position. If new is zero it appends to the end of the queue.

v. Examples
To activate the server from an application during normal printing, do nothing. Activation will
occur automatically.

Other services may be obtained with code something like the following:

TPrintServerClient TellTheServer;

TellTheServer.Hello(); II Make sure she's running

i Registered; Restrictea fhe Pnnt server 15 March, 1990 242-7

II Create or TJobToPrint (from a TPrintJob, maybe) and pass it to the server
TellTheServer.PrintRequest(TPrintJob);
1*

*1

Actually an empty TJobToPrint or any subclass
can be passed as a job to the Print Server.
All that is required is that the Printer Team for the
printer in question be able to understand and decipher it.

TellTheServer.MonitorDialog(); II Show the user what we just did

TellTheServer.AbortAll(); II Then kill it just for spite

i Registered; Restricted I he Print Server 15 March, 1990 242-8

i Registered I Restricted Printer rea ms 15 March, 1990 2.43- i

Printer Teams

Bayles Holt
Ryoji Watanabe

Jay Patel
Mahi deSilva

.:.:.-.:-:.........

i Registered/Restricted Printer Teams 1,:, March, 1990 2.43 - ii

Table of Contents

Printer Teams

Printer Teams .i i
Table of Contents .iii
Table of Figures .i v
I. Introduction 1
II. Architecture and Overview 1

''What You See Is What You Get" 2
Single Printer Team Interface 2
User Dialogs 2
Printer Selection 2

Ill. How it Works 2
IV. Classes 4

v.

i Registered/ Restricted Printer reams 15 March, 1990 2.43 - iii

Table of Figures

Figure 1. Printer Teams 1
Figure 2. Several Printer Teams can all be operating at once .3
Figure 3. Several Printer Teams operating at once .4
Figure 4. The Printer Team Class 4
Figure 5. Printer Teams drive printer devices .5
Figure 6. TRecordingGrafDevice 6

i RegIstered I RestrIcted Printer Teams 15 March, 1990 2.43 - iv

I. Introduc'tion
Printer Teams are comprised of two components, a mini-application that drives printers and a
shared library resource that prOVides user dialogs for that printer. When we say "Printer
Team" we usually mean both, or it is obvious from the context which component we are referring
to. If there are any ambiguities we will try to explicitly say which piece we mean.

The "Team" portion is an autonomous team that executes in its own address space and controls a ~

specific printer. The shared library portion supports dialogs and other user interface services,
which are executed in the address space of the application.

In colloquial terms a Printer Team is like a classical print driver, but it has the added
characteristic of being a completely autonomous application, made up of any number of

.:.;.:.:.:.:.;.:. :;:;:;:::;:::::::::::::=;:::;::::;::::::::

Figure 1. Printer Teams drive printers. From the overall
architecture, we focus on the Printer Team portion.

i Registered/ Restricted Printer Teams 15 March, 1990 2403 -1

Printer Teams are like classical printer drivers. Each one can drive only one specific type of
printer. Because they are autonomous teams, however, any number of them can be operating at
once, even for the same type of printer. A Printer Team of that type is instantiated for each
physical printer being used.

A Printer Team receives its all its commands and instructions from the Print Server. When it is
activated, it receives a single print job, which is usually contained in a Spool File created
earlier by a document application. It processes the job, prints it on the device assigned to it and
goes back to sleep.

"What You See Is What You Get"
A Printer Team is responsible for reproducing as closely as possible what was intended by the
document application. This specifically means "WYSIWYG" fonts, graphicS and color .d"d

':':':':';':-:::'.-

... ' .;.:.:.:-:.;.:.;.:.:.:.:-:.:-:.:.:::::::::::.:.:::-:.:.-.

Printer Selection

. }}\:::::-"..

.........:.:-:.:.;.;. .

The Printer Team also prOVides a selection framework, a way for users and applications to
choose a printer. These are implemented as shared libraries and are used exclusively by the
Print Server. The Printer Team selection package includes such things as personal icon,
selection parameters, access protocol, and hardware connection.

There will be a bunch more stuff on this to be announced.

III. How it Works
To understand how a Printer Team functions, we will present a simple printing scenario and
describe what the Printer Team does within this process.

i Registered / Restricted Pnnter Teams 15 March, 1990 24.3 -2

Suppose a user wishes to create a new document in some application. First she probably has in
mind some particular type of printer for which the final printout is being targeted. The chosen
printer is attached to the document by choosing PageSetup in the context of the current system
printer or selecting a printer as a template for the document. The user then builds the document.

When the document is completed, the user asks for the document to be printed. This is done in
some iconic manner through a Print dialog, for example, which accesses the intended Printer
Team, or by dragging and dropping the document on the intended printer icon. The print
parameters may be modified directly by the application or through the Print dialog if the user
invoked it.

When the user has made her printing choice selections the document is spooled to disk and the
Print Server is notified of a completed print job. The Print Server catalogs the request, attaches
it to the appropriate queue and activates the Proper Printer Team to process the job. The
Printer Team receives the streamed print job through a TRecordingGrafDevice and converts it to

:-:::::::.:::-:.·:{:ttI;t~;~;~;::~:::)::~:~~t~(~?·

Figure 2. Several Printer Teams can all be operating
at once, supporting a number of different printers.

i Registered} Restncted Pnnter reams 15 March, 1990 2:4:3 -3

"Application Documents

OoctJment assigned
to print on an Ink Je"'"""-- ,1

Printer, currently
scheduled to be
"Jim's Printer"

Oo~t

sc~~for
"Officifpanter",
~:~::::»:

IV. Classes

~~I~
-:::.... Ill~ Print Job Paths

Named Physical
Printers

"Jim's Printer"

·:·;·:·:\?t(:>.:;=;=::·:::-:·:····

Figure 4. The Printer Team Class.

TDeviceChannel

:-;.:-:-:.;-:-:.

...... -:.....

A device channel is a standard interface for performing I/O between a Printer Team and an
actual device.

i Registered/ Restricted Printer leams 15 March, 1990 24.3 -4

The device channel is designed to provide a uniform output mechanism for talking to devices. It
is designed to allow developers to simulate devices or create virtual devices for preexisting
Printer Teams. This makes printing extremely flexible and customizable for almost any
conceivable printing application. By this means, Printer Teams can be relatively small and few
in number and where the major part of the intelligence is housed. The device specifics can then
reside in the TDeviceChannel which can be easily subclassed and modified.

Standard Device Interface

Spooler
.:.;. -......................................•........"

:-:.:.;-

............................

~~e~~~~_I:f~~~r~fl~:JI't~~E~e:~;yd~~,.ll;::n~:~i~~~.i~···
initializatio@t:]lF~O<;J:~~~:·gt~#~~lJ~J9:t::~ding and receiving pla.mHY~a data berw~l1'Whe
Printer Teanf$lg:thijti.~V:t~;::1F~·:WqUfrychannel is used for checkirig§t#m~}lIlci:~¢¢~s\<'"

asynchronously.<TheAti:¢tj#6.i+Channe1 also operates asynchronously,btitQ1My.tgaoort certain
operations, or to alter the state or physical configuration of the printing device. Initialization
simply initializes the device.

class TDeviceChannel
public:

/* The Data Channel */
virtual size t
virtual size t

/* The Inquiry Channel */
virtual size t
virtual size t

/* The Attention Channel */
virtual void
virtual Boolean
virtual Boolean

Wri~e(const void* p,long Count);
Read(void* p,long Count);

RequestStatus(const void* p,long Count);
RequestAccess(const void* p,long Count);

Abert ();
Pat.:se ();
Resume();

i Registered; Restricted Printer Teams 15 March, 1990 24.3-5

} ;

/* The Control Channel */
virtual Boolean

/* Sound Channel */

SendCommand(const void* p,long Amount);

fPrinterAttributes;
fColorMatch;

A developer may override an existing TDeviceChannel by implementing member functions for
all four streams of the channel. The supplied routines are in essence a simulation of a real
device but can actually do anything as long as the simulation does not alter Printer Team
operation.

TPrinterTeam

~:~::e:~jltlllJiJTeam.
private : :::::::::::::::

TPrintSe#.#.Wngs

TRGBCo1 &i:i:if

TRecordj±\g9rafDevice

Figure 6. TRecordingGrafDevice is
the class used to reproduce aprint
job.

i Registered/ Restricted Printer rearns 15 March, 1990 24.3-6

This class essentially makes up the print job received from the Print Server. To ILdespool", the
TRecordingGrafDevice is passed to the Printer Team. The Printer Team does this by playing
back the TRecordingGrafDevice object itself. A TRecordingGrafDevice has a place to plug in a
real printer TGrafDevice to have the recording played into. The Printer Te<3;ffi supplies
aTGrafDevice which knows how to play on its own specific type of device.

v. Examples
The Printer Teams primary purpose in life is to sleep. When it is awakened it works only to get
back to sleep.

The Printer Team is awakened by some unknown entity, usually the Print Server but that's not
important. The Printer Team goes through whatever initialization incantation it needs and

~~~~:~~.::.:.:..:r.:d:::se..:,.:..•..:e:~.::.:._.::..:!:•.;•...:_q_.:g..:•..:..:•.~..::.::•...:.~._.:•••...::••.:.:·:.·.:.:•.••..::l:·.:e:•.:·.:.:••·:.:.~•..:.•::.::::•.:.:•.•:..:ti.•>..: :r.:.:,:.·.:..:••..:.:.On•...:•..:••...::·:..:.•:.t.:.:g.:¢k:••;:.:••:.::~_.::••...:•.:••:•...:a.:.:••:••.::•.:.':.:••.:.:!..:•.J.:.:~::.:.O:•.::•••...:.:.:::._:•.:..:.•..•b..:.:••::.~.:••.::..:••:..:._.~;:•...:.:••:ke::.•..:::..:0.••.:•.•':.::•...:••.:••:••...:••.pP..:..:••.•.::•.:::~•...:.:••.:.•.•.:;•...:ri::I•...:••O:.:..:•...:i•...:,.•:..:..:.:.ce:•.:~::'•...:.::..:•...:••:.:~::•..•.:.:.s••..:.•.••..:•...:••:.::s:•.::•..:i.;•.::n:..:.:.:.:.::.::•.::fr.•..::..:•.-::•.::.·:•.::.>.:i_••..••.re~:,~:; ~erth;~~::~Srl;~eiJ~t&t
// initialize an~#iicantate for anything special the Printedflilllili~,J:~
II do to the Pr~ij~~r for startup.

.:.:.;.:.:.:-:.: :·:-:·:::(ft::::::.:.

~~;:~.~I:~H:~~5;,~:~~1ITv.i.!.:_ •.o.;..~:;.'.•:·•.•_i~~~;1111
:-:':':"<;:;>:-:;:::-::::::"" .•

As the da~)~~::st~~t:~~At:··~~·:Pnn1~g:.iP~·sent to the device o~Jf.,:~:=:~tl4wd TDeyi~~qlj~hel.

When the da:~~hth~~gM~:'~!:;:~, the Printer Team must then n:illY::ffi~··.f~~erof the
status of the document printing process. To register job completion, the client does something
like:

II Notify the Server
printer.JobComplete();

II Then loop back and do another job

If there are no more print jobs for the Printer Team to pz:.ocess, the team just sleeps until one is
received. ~. .

i Registered/ Restricted Printer Tea InS 15 March, 1990 2:43-7





• Registered/ Restricted Inner Space March 15, 1990 2.4.4-1





• Registered I Restricted Inner Space March 15, 1990 2.4.4-2





Introduc.tion

In 1450, Johann Gutenberg introduced Europe to the printing press and changed the world1. In
the 1980's, Macintosh helped make desktop publishing a reality2. We've become very good at
creating hardcopy. We've become too good: we are surrounded by much useful graphic and
textual information that is available to us only in hardcopy form. Even if a piece of
information has an accessible digitized form inside the computer, once it is printed out and
annotated with a pen it has new information existing only on that hardcopy. When there is a
need to interface this information back into the computer, for the typical user today the only ~

available interface devices are the keyboard and the mouse3.

Of course we can't save the world overnight. It may take up an entire week. The first
in1portant and reasonable step is to handle the scanning of images. The desktop scanner is our
n10del scanning device'.. t:1~~~,~(~~~ ..<J.~~~?:l~.~.~ ..~~.~d hence our task) will concentrate on t~.i.?L>}y~

~~:n~::;bj;iiilllIIIIIIJf,rvhere it is realistic. ",,;.;;!II}l;i)}

;~i.~il~II!~Of the important new diM~ry~~~~tl~t;gf.t~i~~f~f:;
• Maidng'i}"design that is extensible or applicable to oth~~:kIhds of multimedia

input.

Purpose of this document
This is the first description of a scanning architecture for Pink. One of the primary goals of this
document, therefore, is to warn you about what we are scheming and to invite you to becon1e a
critic. But please, no hitting.

1An ERS that begins like this can't be all that bad... [By the way, my original opening went
like this: "The interface between the computer and the hardcopy world is so one-sided that it
makes me sick."]
2It's turned into a commercial: Run for your lives!
3Plagiarism is not enough: We need computer-aided plagiarism (C.A.PJ.

• Registered I Restricted Inner Space March 15, 1990 2.4.4-3



User's Model of Scanning
Of course, we have the whole user interface worked out already. Unfortunately, it is top
s€cJrefc (yeah ... that's the ticket). So we will have to resort to describing things with
analogies using elements of the current classic Macintosh interface (declassified circa 1985) ...

But to get serious just for one moment: The purpose of this section is to describe the spectrum of
functionality that our design provides and to give a general idea of some envisioned user
interactions. To give the description some concreteness, we will freely talk in terms of classic
Macintosh user interface elements, but these particulars are the least important part of what
we want to say.

Some User Scenarios

it into a scrapbook for safe keeping unfifs~~(iciesit in tl1¢.:pajNf$.h~i{willwrite later;.·::Sh€<.:;:::::.:·:;::
repeats this process to end up with a dozert::~mages in her:scrapp~g;·.::. . .":'" . :..

Scanning Tool Scrapbook Document

Fig. 1. "Scanning comes firsf' model

(She figures she only has 5 pages of text to write now.) She is all finished with scanning the
library books, but she defers returning them until the next day because Late Night with David
Letterman is starting...

4How to present the multitude of scanning parameters (like dpi, bit depth, etc.) to a range of
users spanning a wide range of expertise is a nontrivial user interface problem.

• Registered/Restricted Inner Space March 15, 1990 2.4.4-4



Meet TypicaL User B. He is in the same art class and has the same paper to wri teo To his
surprise, all the relevant art books (yes, the ones with the nice pictures) in the library are
checked out by a person who signed with the name "Typical User A" (no relation to hin1).
Armed with imagination, he creates the text part of the document leaving blank areas for
where the images will go. He is so confident that he puts captions on those areas and has text
flow around them. The next night, it is his turn with the library books. For him, the scanning
process goes like this:

Like Typical User A, he brings up our familiar friend, the Scanning Tool. He also brings up the
document that contains the blank areas where the images will be placed. Of course he could just
scan the images without considering the geometry of their destinations in the document; the _
document can do whatever scaling, clippin~, or reformating necessary to accommodate them.
But he wants to scan it right the first time (for one thing, reforrnating is out of the question
because he wants to preserve his precious page count).

The Scanning Tool has a preview area with a manipulable selection that indicates the "area of

of course he can tr:'::lj.e wanted}} and do a real scan. The real iw:~g~~~~g:~~~~t:g~:gnbe pushed back over

.........................::::.:.:.: ..•:.:

.. P·«·<··:::PIg·.· 2. "Document comes first" moder;.;.·«::····

Sit is always going to be true that one is going to get the best results by scanning with the
ultimate destination in mind (i.e. avoid unnecessary image processing runs like scaling). There
is a human interface problem here as to how to make users aware of this fact of life. One
possibility is to present an analogy between taking photographs and scanning: if a person has a
lousy photograph, it is already occurs to him naturally that the best remedy may be to take the
rhotograph over.

Part of the CHER document architecture.

• Registered / Restricted Inner Space March 15, 1990 2.4.4-5



Nothing precludes the hybrid case where a user has determined the geometries of the scanned
image and the destination independently, Le. a situation where you have, on the one hand, a
scanned image of.one size and shape sitting in the Scanning Tool ready to be sent somewhere
and, on the other hand, a document with a graphic selection of a different size that is ready to
receive the image. When you pass the image from the Scanning Tool to the document's
selection, the image replaces the selection in the document in the same way it always works
when you paste over a selection. What the document does in order to deal with a difference in
geometries of the old graphic and the new image is up to the application.

Summary of these user scenarios:

Clipboard
Cut/Paste Path

Scanner
Hardware

Here's a diagram :~~9:wing the entire design.

• Users always go to the same facility to scan: the system Scanning Tool (there
is no "Scan" command in each application).

• The Scanning Tool can be used independently of any destination document of
the images.

• Scanning that is dependent in reasonable ways on the destination of the

Archit e ct~lllllrIJlllf'~ in a natural way {:~t:){{:t~.)\}\

Fig. 3. Hieroglyphics

Let's decipher this diagram:

i Registered / Restricted Inner Space March 15, 1990 2.4.4-6



The Scanning Tool is an application ("Tool") supplied by system software that is used to control
scanning hardware and produce scanned images. Producing scanned images is all that the
Scanning Tool does, so it is very good at it. Although we do not preclude developers introducing
specialized Scanning Tools (see Developer's Role below), the suggested model has the user
typically turning to the "system" Scanning Tool. See the "Scanning Tool" section below for n10re
details about it. .

The user scenarios above described how the Scanning Tool interacts with a docun1ent across a
link (or cut!paste). This part of the design is built on top of the CHER document architecture
nlost of the functionality we are getting here is built into CHER and we get it for free.
Although we've drawn two paths between the Scanning Tool and the document, data sending 
via clipboard and data sending via link are very similar. (The scrapbook mentioned in the user
scenarios can be considered just another kind of document?) We will happily incorporate into
our model future innovations in CHER and the general Pink user interface elements that will go
with it.

• Control of scanning and image parameters.
• Control for initiating scanning operations.
• Graphical and direct-manipulation control of output image geometry.
• Capability for dealing with destination image constraints provided to the

Scanning Tool by example with a blank image passed backward to it from
the destination.

• Shows relevant system and scanning status infonnation.

We discuss each of these in more detail next.

7Note that the document architecture demigods speculate that the Pink clipboard may be
capable of holding more than one scrap- it may be more like a scrapbook and make the
scrapbook unnecessary.
8you have my word on it.

c Regis tered / Restricted lnner Space March 15, 1990 2.4.4-7



For scanning and image parameters, we can list the following:

•. Resolution, i.e. "dots per inch".
• Bit depth and halftoning/dithering9
• Color model (e.g. grey scale vs color)
• Transparency? - Here's a new one. Since "matte" is paFt of the Albert

graphics mode!,...
• Output image size, location, shape (Le. it can be non-rectangular), scaling,

clipping.
• Brightness and contrast.
• Filtering, e.g. sharpen, blur.

What will definitely NOT be on this list is a choice of "image file format"10 .

Presenting a multitude of abstract concepts like "resolution", "bit depth", etc. is going to be a
nontrivial human interface problem. One way to handle this is to have a HyperCard-like.

({:~ /::::)??}~{:::::::.

image. There:afem~y::~~;ngW~fi~FScanningTool can do with this irif(#m!~~9r:P·FQ.riristance,
there may be a "novker.r.::fu6de where these parameters are hidden. In thE{case, the tool may
choose the parameters based on the blank image. In a "power user" mode where these
parameters are visible and manipulable, the blank image may supply the default settings for
the parameters.

Status information relevant to scanning include memory (disk) space on the system and an
indication whether or not scanning is under way.

90igitizing at low bit depths and halftoning/dithering so long before printing (or displaying)
time can easily lead to lousy. results, so it will be discouraged. However, this functionality will
exist for low-memory situations (which should be rarer in the Pink virtual memory
environment) and expert users who know what they are getting into.
10There are two independent reasons for this: 1) How the image will be "stored" is relegated to
the documents receiving the images. 2) The "file format" problem in general will be solved by
Pink.

• Registered / Restricted Inner Space March 15, 1990 2.4.4-8



Open Issues
Here are some thing we need to attack.

Economical passing of images. Passing an image over a link or to/from the,clipboard
semantically involves copying the image. In the 98% of cases where the Scanning Tool is used
to scan a single image that is immediately passed to a single destination document (and the
Scanning Tool immediately throws away its "copy" of the image), we do not want to incur a
copy operation in taking the image from the Scanning Tool to the document.

Multiple scanning devices. How will we handle multiple scanning devices attached to a single
system? One Scanning Tool for several devices? One to one? Several to one? If we choose to
have one (or a few) Scanning Tools for many devices, we will probably implement "personality
modules" for Scanner Teams: these are bundles of information that go with each specific
Scanner Team (and its associated hardware) that describes anything special about it. One
thing is for sure: This i.~..~....?tmP.~.~F. ..p'~g.P..~~P} ....~.h~D....§.h~ring printing devices because simultClD5~9M:?
use of a scanner is imP9@~Rl~f:~~fm!mW!mf!!!H~HWpooling"mechanism. ..-:.::::=:)=::::}~=~==:~/::::::::.... :.:-:-:.:.

Devel0 p e~;jll;IJjlllll~lf,l1Jilfl'f' ...........: .

..........:.:...:;::::}:.:::.:-::..;.:.:.:-:

S . 1- ,';':::::a:~:({~S/<::\';" • T 1 .::..•.:·::; .•:::::i:•...~:...•:..:!::;:.:.:[.:•.:::~.~.•:.~.·::.·:::::::·::...~.:·..:..:I.llF ;l~l:,!l!i~ll;;~ll:
PeCla lZ"ri--' ·c····a···"'nnlng 00 S -:.:.=::.=.:::::.: :::::: :..:: :=..::::::::: ::.:.:::::: ::::::.: ::::.:::.:::..'::'..::.::::.'::,,:,:;

:::==~%:<:)C:;:=L.:;::::::=:-:==::=:::- ..

~i~~~~~~~r~~~~~I~~iTi~i~1.nf~~~!~!:r~~~~ :~l~h~i~~~~~~li'~~~~~~ljjl~:
interface to the d6cumeJi~js.base<:ronCHER and is equally invariant»>W~:h()~tli'atsuch
applications are similar in character to the systeln Scanning Tool in being small utility
programs that do just the scanning task (and does it well) and not other tasks that can be
separated from it12, and that it makes its result available to other application via link or
cut/paste. We would call such applications "specialized" Scanning Tools.

The various classes that we invent to implement the system Scanning Tool can be made
available to developers for use in creating their specialized tools. For instance, the preview
window and controls may be something that developers may want to simply- "drop in" to their
own interfaces.

11 Making a paint program accept scanned images will truly take zero effort; making the Alarm
Clock DA take scanned images will take some work, even in the Pink system.
12But since we can't prevent Microsoft from entering the game,...

i Registered / Restricted Inner Space March 15, 1990 2.4.4-9



Scanning Hardware Developer
To interface a scanning device to the Pink System, the hardware vendor will create a Scanning
Team to go with it. For most mainstream devices, this will probably involve subclassing the
classes used to implement a "~eneric" Scanning Team (provided by system,software). Creating a
Scanner Team should be easy 3.

Optical Character Recognition
In the case of scanned images, from a document's point of view, a Scanning Tool just appears as
just another source of images- it could just as well be another document providing a "cut" in1age.
Similarly, the result of an OCR scan is made available to a doculnent as just another piece of
text (or object-oriented graphic).

software OCR en~:p'# might be made part of the Scanning Tool;§§:::~n~tltli@;beused on any
image that the Sq#.n:ning Tool scans. A lower level or hard~;#.:t~Ji#$~4JgCRcapability might be

.<:::<::;:::::;:;: ....

::::::::{:::;::j{:::::;:::=:::: :.: ... ;«)....;. . .\\(:\:\:.::.~;;:;::.;::;:·;;:;:::.l.:.~.:.:.:.~.:.;l;:\;~:::.:.::.:.j;I.;.·;~;::::\;.::i.:.~...;::::.·.::.:.~;I:~:;::::.::.~.::.:.:.;.. .;:;;::;;.;;;;;:: . ... . ..

M u 1t i::':11·::q::~a:l:·:·:1:::):: ::. }:::::::(?t{;:::·· ..;.:;.:.;.;.;..;.;.;.;;.;.:.;;.;.;..):\::\\:;:;.:.;;.:;'.
':-:':':::::'::;::::'"

Our design can ·~~i~f~1iY::-~hf6~;;·ssany source of still images. Besi~e~··;.thJ:::d;~gktopscanner and
the fax, the still video camera and video frame grabber are two more examples. With an
expansion of our domain to include entities that deal with time and sound, we can think about
an interface to video sources like the camcorder.

There are several properties of our design that we believe should be part of interfaces to other
forms of multimedia input:

• The user has one (or a small number) of small "tools" to control the input.
• The interface to the document (CHER link or cut/paste) is one that is widely

used by applications.

13Nay, it should be fun.
14There are some fundamental differences: Running a "preview scan" is impossible (although it
is possible to have a fax inbox tool that allows you to cut out just the interesting part of a
received image and throw the rest away), choices concerning resolution, dpi, color model, image
size and shape are more concrete.

• Regis tered / Restricted inner Space March 15, 1990 2.4.4- 10



• Applications do little (no) work to interface to the world of the input media
source.

Clearly our design can be extended or applied to any form of multimedia input where the input
information can be packaged (or "recorded") into a static data object. We might summarize our
general design as one that addresses the "media-to-elipboard conversion" probleul.

We recognize that there are multimedia sources where it is less appropriate to package the
information into a static recording and where the infonnation may better be described as a
"continuous signal"15. Clearly, in such a case our model is not fit or needs a fundamental
extension.

Acknowledgements

'.:-:::::-:.;.-

Arn Schaeffer ang:·:l@..rt.Y:J~9§E?nsteinis bringing to the world

15Imagine a "TV Channel 4" object that I can paste (or somehow connect) into my document and
watch the current broadcast of David Letterman in.
160bject-oriented programming tip #11: Step 1: Subclass. Step 2: Take credit.
17See previous note.
18Just kidding- never mind.

• Registered/Restricted Inner Space March 15, 1990 2.4.4-11



David Letterman's '1f@[p) T®ffil Reasons to Scan

10. Scanning is non-pollutionary
9. What else are you going to do with that 300 gigabyte disk?
8. 300 dpi... 150 dpi. .. 72 dpi... You decide!
7. If we keep 'printing' without balancing it with 'scanning', then the
universe gains a net accumulation of positively charged massless Q
quarks. We wouldn't want that now, would we?
6. It's (almost) as fun as a Xerox machine, but no one has gotten the
idea of charging you to use it yet.
5. It will NEVER run out of toner.
4. In many states (and, in fact, in most nations in the European
Common Market and Scandinavia), a picture is still worth a thousand
words. :::::::??~:?~:::::\~/?}?:)/<\tt~I~~I:~I:tt::t?tbt:~:~/

t%:~:~ll'ltflill~'~1
}i~i~~:~:}r{rrr{jtIIIHI~{tttrtttrirtrtrr( iIi

o

• Registered/Restricted Inner Space March 15, 1990 2.4.4-12



)lll1lltlltpervice
;;fll;lll\Illlrtlltllltlll\rLrAfjt1i

• Registered/Restricted Timing Services March 15, 1990 2.5.1-1





Timing Services
Shinzo Watanabe, Patrick Ross, Deb Orton, Dan Chernikoff, Lee Bolton, Matthew
Denman, Steve Milne

; I • ~

i'lji,;i,li)....

:t~ -...i"""""'_""__
...... ..." ..........

• Registered/Restricted Timing Services March 15, 1990 2.5.1-2





Time Interv-al Services

Introduction
This document describes the timing services to be provided by Pink. There are four main
components to the timing services, time (TTime), alanns (TAlarm, and TPeriodicAlarm), Date/Time
services, and clocks (TClock and TRootClock).

Terminology
Time is a moment or period in some unit of TTime, such as seconds, milliseconds, etc.

Time stamping refers to tr..~.':lC:~C?~.C?r~~.i~K':l~i.~~ ..~~..stamp, or mark, a piece of data. This isy~~fY.1

..,:-:.:::::.:::::.:::::}:::::

-.;.:.:-:.:-:

:::[:·::::.·::•. ·:.:::1::::. ~{{(~~(~}::::~:::::::>::::::.:.::

.. ..
.:::::: ::\i:~:~:~: ~::;::~::::::

.:-:-:-:. .:-:.:.:.:.:-:-:-:.:.:-;.;
..

.-:':-:-:':-:-:

.;.;.>".;.:-:. :.:.:-:-:-:-:-:-:.;.;.

.... . .. {::.... '\\::[:[j::::~:~:~[j):j:::[::::[::~[::j::~:[: ::::::::::::::;.::.;::::::::::::::

representation ofHme:iri:manyHifferent units, that can be used across·diffef.~nf:time:·bases.Time
units can also be converted to other time units. It is therefore possible to describe time in units of
seconds, milliseconds, microseconds, days, SMPTE frames, samples and more.

Time Interval Model

Time objects provide a convenient way to specify an instance or amount of time and provide a
mechanism for performing arithmetic operations on various time objects. Conversions between units
(perhaps seconds to video frames) are also provided. Clocks are available for use as a time base, with
the hardware clock being the most common (and default) clock. The time object (TTime) is
subclassed to provide time in a variety of units (e.g. TMicroseconds, TSeconds, mays, TSamples,
TSMPTE, etc.)

TTime

Methods for General Consumption

• Registered/Restricted Timing Services March 15, 1990 2.5.1-3



Now CREATES a TTime object with the current time. It is a static member function ofTTime.
SetToNow fills in the object with the current time.
Delay blocks the task for the specified amount of time.

Methods used in Implementation
GetTime and SetTime set and get the TDoubleLong representation of lime.
ConvertTime convert from the hardware representation of time.

TSeconds
(A Sample of the ITime Subclasses.)

Methods for General Consumption
Operator double converts a TSeconds object to a double. Accuracy may be lost.

...:.:.:.;';'~'..:~:::::::::~:~:~:}:::.: .
.:.:::::::::::::::::::::::::::::::::::::::::::'"

..:-:-:-:.;.:.:
:-:.:-: .

Alarm Services

:::::::::::::: ~:~; ~:::::::::::::::::::

..:::::;::::''::''::::.::::}}\:' >:.:- .... ,:- .. ::..• (\/::}{::)}:,..
........ :.;::::-:.:.:-:.:-:-:-:-:.:-:.; ;. .

A task that wants to make use of the alarm services first queries a clock to get the current time. To set
an alarm notification, the application does some arithmetic to determine the time at which it wants
the notification to occur, and then creates an alarm object (TAlarm). The task to receive the alarm is
specified when the alann (TAlarm) is created. Once the alarm is set, the task goes on with its regular
processing. Eventually, the task to receive the alarm does a WaitForAlarm call (in the case of an
MMessageTask) or a Receive call to receive the message associated with the alarm notification. If the
notification has not yet occurred, the task will block in the WaitForAlarm/Receive. When the alarm
eventually goes off, the clock will send an alarm message (TAlannMessage) to the specified task.
The body of the message will contain the alarm handler object by the task which set the alarm,
identification for the clock, and the time of the clock when the alarm went off.

Note that tasks can set alarms whose notification messages are received by other tasks, and a task can
cancel any alarm if it knows the original alarm (TAlarm). If the task that sets an alarm is terminated,
that alarm is not canceled and will still cause an alarm notification message to be sent to ~he specified
task at the appropriate time. Also, if an alarm is set for a time that is in the past, the notification

.& Registered/Restricted Timing Services March 15, 1990 2.5.1-4



message will be sent immediately.

TAlarm

Methods for General Consumption
The Constructor creates an alarm object and enables it at the specified time for the specified
task.
Equality Operator copies the alarm identifier to the new object. No alarm is enabled (or dis
abled).
Disable clears the alarm.

Methods for Extending/Changing Behavior
GetAlarmID returns the alarm identifier.
SetAlarmID sets the alarm identifier.

:~::~::lIJ'.':o•..:•.:.::·.··.:.:·•....:.·::••ln.':;":.:•.••.:.•••.:.::1:..•:.:.••.:.

5

..••:..:••:•..:1:..:u.:.·.·..:••..:·••..: .•::.•..:·•.:.·.••.:m·..:.·..:•••.:.:.•·.:·..::•.:.:..:1.:•.;•.:.••..:0·.:•.•..:;1..:•..:~..:1..:;.ti..:.••:.:.·..:.·•..::i.:"...•.•..':••.:·.o..::..:[.:;.:·::·:•.:•...:·.·.:n·.:·.:;.:•..·i.:.i:.:..:••..:.·.:•..::••:·:.:•••.:.·.••..: ..:.·•..:.!•..:.:i.:·•.:•..••..: .•.:.·..:
I.:•.:.1:.·.:..:•...:.i•..:..:••.··::.·•..:.:.•.:;·..:•.;.::.·....:.:••.·:.:••i..:.:.::•..:~•..:...••.:'...:••.::.·•..fJ!i' ........:1' ...ii··__ ___ _ __ ~_{l:lltlllll'lil~!llF

SetAutomatically:p:estroyed determines if the object delet~§j::1~~MfJ~f#.¢t'"thealarm has been

Interval Timing Model

These objects provide a mechanism for drift-free timing of intervals. This class is based on the time
objects described above. A mechanism for starting and stopping the stopwatch, as well as resetting
and getting a ulap time", are provided.

Periodic Timing Model

The periodic alanns inherit from the basic alarm object (TAlarm) and export a similar interface.
These alanns operate given a start time and a period. Alarms are then generated from the start time
and continue to be generated after the given period until the alarm is canceled. Periodic alarms take
advantage of light-weight tasks (TAlarmTask) to generate the repeating alarms.

TPeriodicAlarm
This class implements an alarm that automatically fires at theStartTime and then again after

• Registered/Restricted Timing Services March 15, 1990 2.5.1-5



the specified repeat period until the alarm is disabled or destroyed. This class uses a light
weight task to implement the periodic alarm (TAlarmTask).

Methods for General Consumption
The Constructor creates and enables the first alarm.
The Stream Operators read and write the alarm id to the stream.
Disable clears the alarm..
SetRepeatPeriod changes the repeat period.
GetRepeatPeriod returns the repeat period.
Assignment Operator copies the alarm identifier to the new object.

Methods used in Implementation
GetAlarmID returns an alarm identifier.
SetAlarmID returns an alarm identifier.

Clocks

external sourcesuch.~$·~.·MIOrC16ckcoming from an Apple MIDI iriteffac~i:$MPTE:code coming
from a videotape recorder, or even from an audio object such as a speaker (TSpeaker).

A clock measures the passage of time in fixed units (TIime). Clocks can run at uneven intervals, can
speed up and slow down, and can even run backwards (e.g., all of these things will happen when a
root clock is synchronized to a videotape unit that is shuttling forwards and backwards).

There are two types of clocks: a clock (TClock) and a root clock (TRootClock). A clock is used to
represent a local~m~ base which can be used for setting alarms, and getting the time. Root clocks are
used to synchronize to a source; such as the hardware timer, SMPTE, or someone's private software
counter. One example, is the sound clock which is synchronized to a speaker (TSpeaker). The
speaker can set a root clock's time every time samples are played. When a root clock is being set or
controlled by a given source, it is said to be synchronized to the source.

~
TRootClock

" Registered/Restricted

~
TClock

Timing Services March 15, 1990 2.5.1-6



A clock can be connected to any other clock through a linear function. One of the clocks is the
master, the other is the subordinate clock. The master clock can itself be controlled by another clock.
In this manner, a chain of clocks can be connected with a defined relationship. A clock can only have
its value changed by other clocks. Only a root clock may have its value controlled directly. This is
how a new time base can be created and implemented. A clock must be connected (directly or
indirectly) to a root clock in order to provide its functionality. Pink will provide some built-in root
clocks such as: MIDI clock, sound clock, and the hardware clock.

It is possible then to define a relationship where alarms are set on different clocks all based on the
same root clock. For example, three video clips that are played repeatedly, while synchronized to a
sound and where the first video clip is to cycle once per sound; the second clip twice per sound; and
the third clip four times per sound. The following clocks would be needed, and would need to be
connected by the following functions: clock A in a 1:1 relationship with the root clock, clock B in a
2:1 relationship with the root clock, and clock C in a 2:1 relationship with clock B.

...
..-:':';' .:.:-:.:-:.:.:-:.;.....

B

:.:.:.:<.:.:-:-:-:. ";.;.;.:.;.:.':-:-:.:.:-:- '.-.

2:1 "
C

The abstract relationship between time, alarms, and clocks allows for users to define timing in their
own units regardless of their time base. For example, it is possible to write an animation sequence
where different characters move at different rates. This may be controlled by setting Alarms in units
of milliseconds, and SMPTE time code. This application could run on any pink machine, and could
be controlled by any clock, be it a SMPTE clock, hardware clock, or sound clock. This allows for the
user to control the synchronization of the animation with other applications.

TClock has methods to get and set its value (the current time), stop the clock, start the clock, and to
connect to other clocks. A single TClock may have to be accessible to many teams, probably through
the use of CHER. A TRootClock has methods to update its value; this in turn causes the values of all
of it's subordinate clocks to be updated. TRootClocks can also be made accessible to many teams
through the use of CHER.

• Registered/Restricted Timing Services March 15, 1990 2.5.1-7



MCommonClock

MCommonClock is a mixin class that provides it's derived classes with a common interface for
certain clock functionality, such as stopping and starting the clock; changing, getting and setting the
direction; and getting the current time. MCommonOock should be used by ,any Clock related classes
that need this functionality, with the same interface. MCommonClock is used by TRootClock and
TClock, and should be used in any new clock designs. This class can be accessed simultaneously by
multiple tasks.

Methods for General Consumption

GetDirection returns a DirectionState that contains the direction that the clock is pointing in.
DirectionState has two possible values, kForwards, and kBackwards. kForwards means that the
clock's value is increasing (time is moving forward). kBackwards means that the clock's value is
decreasing (time is moving backwards).

called when necessAt¥; Clocks will usually run uninterrupted frQrrf¢.-¢n§tm¥Mion to destruction.
Clocks start runningi::f;hen they are constructed, and can only 9:~~:ij~gpp~g:::pjlaMCommonClock::Stop

to 0 and 0 to -ooare:c{)ri$14~~btWdnd. If the clock was going backw(ird~{(tl1~.he)a<vatue being 4)
then the time 6 to 00 are considered "behind", and 4 to -00 are considered "ahead".
operator== compares the time of the clock with a TTime and returns TRUE if the clock is at the same
time as theTime and FALSE if the times are different.

Methods used by TAlarm

Always use TAlarm and TPeriodicAlarm to set alarms. Don't call these member functions direct
ly.

Now returns the current time of the clock.
AddAlarm adds and sets analarm to go off at the specified time.
AddPeriodicAlarm adds and sets a alarm to go off periodically.
Remove removes an alarm.
RemoveAll removes all of the alarms for that clock.

• Registered/Restricted Timing Services March 15, 1990 2.5.1-8



TClock

TClock provides atimebase for setting alarms and timestamping. A TOock must be connected to a
TRootClock (directly or inderectly through connections to other clocks that are connected to one).
This alows clocks to run in a specifcly defined relationship to each other, and to be able to add
alarms, and do timestamping thru a common interface. When a TClock is created it is automatically
connected to the system's THardwareClock (which is a specific TRootClock).

Methods for General Consumption
-

SetFunction sets the function that describes the relationship between the clock and it's master clock.
The function must be a linear function, where f(x) = ax + b where 'b' is the offset and 'a' is the ratio.
SetFunction effects the time for the TClock, and therefore should only be called when the relationship
between the connected clocks changes, and upon initial connection. An Example: If a TClock is
being connected to another clock who's current time is 9, and I want my time to start at 0, and run

TRootCI::~~'."'."'..'..ii{........... .";il1Iiti,,r ·i!"lil~filliljii
TRootClock inhefltsfrgm.:.t#&Q:.9#cfSCk. TRootClock implem~rtt§::~m~~rogpastth~~otherclocks can
connect too. To implem¢ht:fthe::Hmebase, TR09tClock's SetTime meth6tftsk:Ml¢dtoAriitialize the time
for the clock. Then MoveToTimePlus or MoveToTime are called to update the time for the
TRootClock. TRootClock is used to be the master of all other clocks connected to it. It is used by
TClocks to connect to get different time bases. For example, a hardware clock, MIDI Clock, or Sound
Clock, could all be implemented using a TRootOock. TOocks would be used to connect to it, set
alarms and do other timing functions. TRootClock always expects to be used with at least one
TClock connected to it. TRootClock is controlled by what ever device is providing the interface for
the timing base. For instance, a TRootClock could be driven by a animation application that wanted a
time base of it's own which it controlled it's own frame rate with. Alarms could then be set for
TClocks that where connected to the TRootClock.
Probably only one class will call TRootClock's methods.

Methods for General Consumption

MoveToTimePlus moves the time of the TRootClock from it's current setting to it's current setting
offset by the value of a TTime in the root clocks direction. If the plusTime is negative the direction of
the clock changes. This call is used to update a TRootClock to a specific time from the current time,
all of the functionality of the clock is performed as if the clock was moved thru time to the new value.

• Registered/Restricted Timing Services March 15, 1990 2.5.1-9



All alarms between the current setting and the new setting will go off. For example if the clock is at 0
moving backwards, and a plusTime of -3 is provided, the direction is changed and the time is moved
to 3 (the clock will be moving forwards).
MoveToTime moves the time for the root clock to a new TIime. This call is used to update a root
clock to a specific time, all of the functionality of the clock is performed as the clock is moved thru
time to the new value. If the newTime is in the opposite direction of the TRootClock's direction, the
dirction of the TRootClock is Changed. All alarms that were added for the time between the current
setting and the new setting will go off.
SetTime sets the time of the root clock to a new TIime, and removes all alarms set for that root clock
by any of it's subordinates. This call should only be made when it is necessary that the RootClock is
set to a specific time, or needs to be reset or initialized. This call is not to be made to update the time
for the clock.
GetResolution returns the resolution of the clock. This call should be used to help detennine how
accurate a clock is.
SetResolution is used to set the resolution of a clock. The resolution is the largest amount of time
that the clock may move through at one time. This call should be made to set the resolution which
can provide useful infqrm~#~¥rjn:::q~~~rmin~~gjhg::accuracyof a clock. :.::{::::::::ttH:::Hn:::tU::::::::::::::

Jil,lfillllllllllit,lllli;1 .
Date/Til11liji.!?ervices

.:;:;=;=;=::;:;:;:;:::;:;:::;:;:::;:;:;:;:;:;:::;::=;:;:;=;:::::::;:::::::::;::::.:....

Date/Time Model

'.:.;.: ....
" ,-, .

TDateTlem":::::::':'e':":
« .;..: .:< :-:-:.:-:-:-:.:-:.:-:.: .

Constants
kJulianOriginDate number of seconds since January 1st, 4713 BC at noon.
kMacOriginDate number of seconds since January 1st, 1941 AD at midnight.
kModifiedJulianOriginDate the modified Julian date.
kUnixOriginDate number of seconds since January 1st, 1970 AD at midnight
kDosOriginDate number of seconds since January 1st, 1980 AD at midnight

Methods for General Consumption
SetToToday fills the object with the current date.
Today is a static member function which CREATES an object containing the current date.
operator double convert to a double containing the number of seconds.
operator TDoubleLong convert to a TDoubleLong containing the number of seconds.

Methods used in Implementation

• Registered/Restricted Timing Services March 15, 1990 2.5.1-10



HardwareToJulian convert from hardware representation to the Julian date.
SetHardware initialize the hardware to the specified date.

TDateSeconds
This object exports all the TDoubleLong operators and provides conversions between itself and
the built in type "double". There are also conversion operators for TTime objects.

Notes
A little known, but highly useful method is provided called TwiddleMMUO. This method allows
unrestrained twiddling of the MMU (Memory Management Unit> and is included as part of the alarm interface
because the as weenies found it alarming. Twiddling the MMU is especially useful when frustration levels are
high and productivity low or when you have nothing better to do.

• Registered/Restricted Timing Services March 15, 1990 2.5.1-11





ii, ... _.::.:::::.: ..::.:.:..:_:: ..:..:....:....::..::...:...::..::_.::..:..::.~.:::~:.::i::.~.::~::.j,: •.:;..•.Illl,I
I

'':::::::::::;:::;:::;:::'" :;:;:;:::::::;:;:;=:({({: .
-':::::::::::::;::::::>: -"-: :.:-:.:< : :-:-:.:.:.:.:-:..:-:.•.•

.. .; :.:-:.:.:-:-:-:.:«.:.:.:.:-::::; -.:-:.:-:.;.:.'
................................... : :.. .:.. -:-:.:-:-:-:-:-:.:->:.:.:-:.;.:.:.

. : :-:.:.:-:-:<.:.:.:-:.::::;::::.:- .

• Registered/ Restricted Time Ports and Sequences March 15, 1990 2.5.2-1





Time Ports and Sequences
Matthew Denman, Steve Milne

r the Hontie 0 Dik Browne
-- -~. __ ._--_ .._._,-----_.....--~

i Registered/ Restricted Time Ports and Sequences March 15, 1990 2.52-2





Architecture

Time Ports and Sequences are used to help control the flow of time-related data. Examples of time-related data
are 1) MIDI (Musical Instrument Digital Interface) data, which is used to control music synthesizers; 2) a series
of frames in an animation; or 3) any data that is ordered in time.

Time Data

Tilne data (TTimeData) is a class that consists of two important objects - a time stan1p and a chunk of data. The
timestamp is a TTime object. The data is a TMemory object. TTimeData has methods to create, modify and
compare time data. Time data can be used to hold MIDI commands, other non-MIDI representa tions of n1usical
data, points of interest in an animation, or any other time-related data. The data part of a time data object
n1ust be understandable on its own. It must be intelligible even if interleaved with other data of the same type.
For example, you cannot use the data to represent a MIDI command with free running status.

Time Data Ports

Input Time Data Ports

....-:.:.: ...::...::;::.:.:::.;.: ...:.:...: ....

::::::::::/::::.:::::::::.:-:.:.:-:.-

An Output port in ongt:eams~g:::wnt~::·g6weIHputport in another team. T6U.tp~~[i.m~J.?9rth~§fGI1ctionsfor using
a clock, and writing time d'ala:::Ti'fiM"aata may be written to an output port b)/~1'::Bt82kfhgHwrite,or a non
blocking write. The blocking write will block the task until the time data has been received by all of the input
ports it is to be sent to.

Time ports can be connected to each other over a variety of different teams. There can be multiple connections
from one output port going to many different input ports. There may also be many output ports that are all
connected to one input port. Data flows from one port to another when an output port is written to. That data is
then transmitted to any input port it is connected to. The teams that own those input ports can then read the
data.

An Example - MIDI

MIDI data needs to have its time preserved by a time stamp, so that the rhythm information is retained. The
MIDI data also needs to be sent at the appropriate time. A user may want to have MIDI shared between
multiple teams.

• Registered/Restricted Time Ports and Sequences March 15, 1990 2.5.2-3



EJ :I"--"W'---..

I I ~~~i II-_===z(o

..........:::....-:.-MIDI

,

In the above diagram, the MIDI port uses the serial port hardware to communicate with an external music
synthesizer. Both teams A and Breceive any data coming in from the MIDI port. This data is time stamped for
them by the clock used with their input ports. Team B is·also receiving data from Team A's output port. This
data will also be time stamped by Team B's clock. Team B is sent data from it's output port to the MIDI Port's
input port. This data is sent when Team B's clock is equal to the time stamp for the data to be sent. Team A is
also sending data when it's oumMtRQ~t::~J:QQ~A).~Y§:iti.§.J~m~to be sent. Team A's data is sent t9:J?:9th::J.)~~m Band

~:::~:;.~:::;ort:;I~\'lllllllt'I'IIIIlI";;;illl~I\~~'~lilll,~ili:i;!!n
In MIDI applications, it is .¢..~irable to visually connect time ports togeth¢N\9.[~nigt\#igraphicaleditor. Such an
editor is supplied with th¢:J01DI Management Tools currently provid~9fR}t:§pp~gUorthe Macintosh. This
editor, called PatchBaynWmmgraphically depicts applications and thej:~tlMJ§kntWWports. End users can patch

Sequences

:::;:;:::;:;:;:::::::::::::;:;:::;:-: .

:;:/()j}?f/~~~~~:·· .. ::::::::;:;::::.
\~~~~~\~rtt):·.·:-:· .....··..···· ::.:::,:; .. ;.::::.:::: ... >:::::\}.~.~.:.:.:.:... ;;:.~;.:.;;.::.:::~[[:~:jI:):':··

.:;}:;::::::::~:

';"':::':::;:;:':::::::':::::;:::::::;::::::::;;::::: ..;..-:.;.:-:.:.:.:-:.:.:.:-:-:.:-:.:. .

Pink provides a MIDI Driver that works with the Apple MIDI Interface and compatible Interfaces. This
driver has two data ports, one for input one for output. Time data objects that contain a MIDI command for the
data can be written to the input port, and will be sent to the MIDI Interface. MIDI information coming in from
the MIDI interface will be packaged into time data objects as whole MIDI commands, and will be time stamped
using the MIDI clock provided with Pink. Multiple output ports may be connected to the MIDI input port, and
the MIDI output port may be connected to multiple input ports.

i Registeredl Restricted Time Ports and sequences March 15, 1990 25.2-4



Classes

TTimeData

ITimeData is the main object used with TimeDataPorts, it is the object that is passed between data ports.
[t contains two parts: a time stamp (TIime), and a chunk of data (TMemory). Jt has methods for getting
md setting the time and data. It also has methods for comparing it to other TIimeData objects. It should
::>e used whenever use of data ports is desirable.

0.:-:.:-:-:::::::: •....•.........

virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual

} ;

=lass TTimeData: public TTime, public TMemory{
public:

MPersistentMacro(TTirneData};
TTimeData() ;
TTimeData(const TTimeData& aTirneData);
-TTirneData();

void SetTirne(const TTirne& theTirne);

~!!~~gt!IIIIIII'llrll'~;::;;;;;;;;;;
.:~::::::::::::'

Boolean TTimeData::operator< (TTirneData& aTimeData);
Compares the time of the object with the time of aTimeData object. It returns TRUE if it is less than the
'aTimeData' .

Boolean TTimeData::operator== (TTimeData& aTirneData);
Compares the time of the object with the time of aTimeData object. It returns TRUE if the two times are
the same.

MTimeDataPort

MTimeDataPort is a mixin class used to provide common functionality for the different kinds of time data
ports. It has methods for flushing events and getting and setting clocks.

class MTimeDataPort{

i Registered / Restricted Time Ports and Sequences March 15, 1990 2.5.2-5



public:
MPersistentMacro(MTimeDataPort);

MTimeDataPort() ;
virtual -MTirneDataPort();
virtual void SetClock(const TClock& portsClock);
virtual cons~ TClock& GetClock();
virtual void Flush();

} ;

void MTirneDataPort::SetClock(const TClock& portsClock);
Causes the portsClock to be used by the data pan for all of it's timing needs.

const TClock& MTimeDataPort::GetClock();
Returns the clock that is being used by the data port.·

void MTimeDataPort::Flush();
Discards all TTimeData objects .t:h.~.~... ~.~.e. ... ~.~.r!~.m~y' ...p'~j.p.g buffered.

.:.:.:.:.;.;.:-::.•...•<.; .

;~;;::::::~~::]Iilillil~~:~~t I

TTimeData objects areR.~n~r~d when
have arrived at .:}:~:BMl:[l:~~fM:~:]MiF:::hot been

. "::;::":::":}'.,

a
read

} ;

virtual
virtual const TTimeData&
virtual Boolean
vi rtua1 v9:ih4::::::::::

;.:.;.::::::::;:::;.:::;::::.: .. ..
';':':';':':':':';':::::::-::;':';':::::':':';':';":':':':',

available TTimeData. tt<8ri<d:::Ts.Undt::<ifumediately available, it blocks
port is using a clock the TTimeData object is time stamped with the
clock isn't being used a time stamp of zero is usecL

.....::;.

ahdUJ~iijhl:)l Jefetenct to the next
the·t·~:Sk::<tiriin;:61'lg::is available. If the
clocks value when it is read. If a

Boolean PollTimeData(const TTimeData& readTimeData);
PollTimeData is a non blocking read of the port. h will put a reference to the next available TTimeData in
readTimeData if one is available. If one is not immediately available, PollTimeData returns FALSE; it
returns TRUE if one was available, and is now referred to in readTimeData. If the port is using a clock
the TTimeData object is time stamped with the clocks value when it is read. If a clock isn't being used a
time stamp of zero is used.

TInputTimeDataPort

TOutputTimeDataPort descends from MTimeDataPon and is used for outputting TIimeData objects from a
team "to the TlnputTimeDataPort of another team. It provides two methods for writing TIimeData obiects;

i Registered/ Restricted Time Ports and Sequences March 15, 1990 2.5.2-6



a non blocking write (SendTimeData) and a blocking (WriteTimeData). Most users will want to use
SendTimeData.

class TOutputTimeDataPort: public MTimeDataPort{
public:

MPersistentMacro(TOutputTimeDataPort) ;
TOutputTimeDataPort() ;

virtual -TOutputTimeDataPort();
virtual void WriteTimeData(TTimeData& output); II Blocking.
virtual void SendTimeData(TTimeData& output);

} ;

.~:~:~:~~~:~~~:~:~; ~:~:~:::::;::::::::::.:.:.. ,...... :-..:-:.;.:.;.............................. . .•.
.................
.............: .

void WriteTimeData(TTimeData& output);
\VriteTimeData is a blocking write of the TTimeData output object. Output is either sent immediately if
there is no clock being used, or. is buffered until the time of the TTimeData object is equal to or less than
that of the clock being used. When the data is sent, it is sent to all of the TlnputTimeDataPorts that the
TOutputTimeDataPort is connected to. The current task is blocked until the TTimeData object has been
read by all of the TlnputTimeDataPorts that it was sent to. This method should be used only when writing

either sent
object is equal

·::~:;::::::%::jj:I:;~::·:j[:::jj:i:::::::!:·:~::::::·:.
:::::::::;:::::?::;:::':::::-:-:"';'

:.:.:.:-:.:-:.:: <-:-:-:.;.:-:..:.:.;.;.:-: ~:}\::::::::::::>-
t~r .',' ::::::{}:}I:~:~:~:~:~::::::::::

.. ?:.:. ~': ~.~: :._::._~~.~ :.:j.~~ :.:~.j.t.:.j.~.j =.: ~.~...~-.:.j{;r:-:.:.:.:.:.:.:.:.:.:.:.:.:. ;.:::::::::;:::::;::
::::::::;:::::::::::::::::. ......:::::::::::;::::::;::::}::::::::::::::::.:.:...
:;:::::::::;:;::::::::::,- .::::::=.:.:.;.:.:.•••.•...

.{)~~)}~~{ .):.~~:..~:::~.:...~..:.~.:.~.:.: ..~.~.. :.~.:.::.~.:...~:::.~::::::.~..:::~.:.:.~I~..r.~.~.~.~~.~.i(f~~..:::::}:;:::;::::::'
;::{{:~:}~/ ·\@}I~jt?f~I~{::::~:;::~~::

.-:;::::tj~j:1j~~~j:Jf:::··

• Registered/ Restricted Time Ports and Sequences March 15, 1990 2.5.2-7





• Registered/Restricted Sound March 15, 1990 2.6-1





Pink Sound Tools

Steve Milne
Matt Denman

Mike Dilts
Bill Aspromonte

With help from:
Jim Nichols,

Mark Lentczner, Eric Anderson,
the Pink Team. and many others.

• Registered/Restricted Sound March 15, 1990 2.6-2





Introduction

The Pink Sound Tools allow developers to build applications using audio, music, speech, and telephony.
The tools consist of a set of C++ class definitions and various hardware specific implementations for
those classes.

This section describes the architecture of the sound tools. The meaning of the word "architecture" refers
to the design philosophy and a high-level description of the various objects, how they relate to each
other, and what they accomplish. The programmer's view of the tools is the main focus of this section.

2. Standard Application Programmer Interface (APl). Developers need a standard API for audio, speech,
and telephony so their applications will work across a wide variety of different sound hardware plat
forms. We need to provide for hardware independence. A phone answering application, for example,
shouldn't have to concern itself with what type of phone system the user's computer is connected to. The
tools should allow the application to work with any phone system as long as the customer purchases the
appropriate hardware and object libraries.

3. Simplicity. Sound is a new technology for many developers. The tools have to be easy for developers
to use, or they won't use sound at all. To borrow an overused but apt maxim, "Simple things should be
simple, difficult things possible."

4. Generality. Because sound in personal computing is so new, it is impossible for us as toolsmiths to
predict exactly what the big applications for sound will be. Therefore design must emphasize generality
and flexibility, so developers can create applications we didn't think of.

5: Extensibility. Developers will want to add new functions to our tools. Luckily, extensibility can be ac-

It Registered/Restricted Sound March 15, 1990 2.6-3



complished easily with C++ by subclassing objects.

6. Scalability. A given sound application should run across the widest possible variety of machines. This
is difficult with sound, due to its real-time nature. A speech recognition algorithm that consumes 90% of
a RISC processor's CPU time will not run on a Mac SE/30. Other algorithms can be degraded, however.
For example, when mixing multiple sounds together, some sounds could be dropped. Where possible,
we must provide graceful degradation.

7. Synchronization. Often sound playback is most useful when combined with animation or video. We
must provide a means for SYnchronizing sound to other system functions and visa versa. The sound tools
use the Pink Timer Tools (chapter 2.5) as a basis for synchronization.

8. Standard interface for sound. We need to provide a standard user interface for recording, editing, and
playing sounds. Such an interface would define the way that users edit sound, much like TextEdi t did for
text on the Macintosh. An editor can also be used by developers to create and edit sounds.

•:=::::::;::::::•••.

.................. ·::::~~:?~~:?:::r:::;::: .;<.;-: >:-:-: .
..:-:-:.;.:-:.:.: : :: .. :-:-:-:..«.» ..:-:.:-:.:-::::.;.:-::;.::;:;:;:> .;::::.::>:-:.:::;:;}:::.... ..::::{~:-:-:.;.;:;.;.;.; ..- .;.. . .

Sound Effects (2.6·~4)::'dl¥:H~~~:~~~..$mhtr~ffects library that will have to::M:~ljJ.Rl1~9-WJ.tl+piI1k.

11 Registered/Restricted Sound March 15, 1990 2.6-4



c Registered / Restricted Audio Objects March IS, 1990 2.6.1-1





Architecture

Audio objects are the heart of the Pink sound tools. Audio objects generate, process, or consume audio
data. All audio objects are descendants of the C++ class, MAudio. An audio object can have N audio
input ports and M audio output ports. .

N audio input ports

N~O

MAudio

M audio output ports

M ~ 0

Audio objects can be connected together by connecting their ports. This is analogous to using patchcords
to connect audio components together in the real world. In the illustration below, an audio object,

:::::':'::::;:- TSimpleSound
;~:{{:~::

............;.:.:.::::;.;.;.;.:.:-:.:.:.:.:.:.:.....

Voice Aiff{Otlitt8ft::::::<--

If\Mo> ~g
TSimpleSound ITelephoneSet

TSimpleSound both records and plays voice
annotations. The telephone handset is used
for input and output.

TSimpleSound

One sound plays the greeting. The other
records a message.

• Registered/Restricted Audio Objects March 15, 1990 2.6.1-2



Music Synthesis

lift';; HI!. ~V1: 1.JllI.JlL .. ,
TSampler TReverb TSpeaker

Reverb is added to a sampling synthesizer be
fore it is played through the speaker.

Multi media soundtrack Remote Voice Access

TTelephone Line

TSpeaker

;:;;:~~~tml:::ifmm;;~;~ ~ ~;~~ ~ ;;;::::;.

SimpIicit~i;;I........... .........i:ij[I!!;I::llil!lll:. ......ljirir;:.r::.···.·••···

functions that are neededOfteft«-:'One such object, TSampledSound, is a singleohj&fu.seful for recording
and playing sound. TSampledSound conceptually contains a TMicrophone, a TSimpleSound, and a
TSpeaker.

R. hi"." l_..r-r1tr" ..... ,\JVvv ~~
TMicrophone TSimpleSound

TSampledSound

Playing a sound then becomes as simple as:

TSarnpledSound
beep. Play ();

beep("/Sounds/~eepN); II Instantiate a beep sound.
II Tell it to play.

'* Registered I Restricted Audio Objects March 15, 1990 2.6.1-3



Connecting Audio Objects
Audio objects are connected together by connecting one of the output ports of one audio object to an
input port of another.

Audio Audio
Object ..... ... Object...

A B

The connection is unidirectional. In the above illustration, audio flows from audio object A to audio ob
ject B. Audio object A is said to be the producer, while audio object B is the consumer.

Audio Ports ..:.:::::::::::::/\{HfU{:·m:t:::/
....

.:.:.::::;.;.:. ·:·:·:~m{{~ :~~ ~~~~::::: :::

':~.~.'.~.~.~ '.~.~.~.~.~.~~.~ :.:~ ~..~:.:.~:.:.~'.:~~.: ~ ~.~ ;.'~:.:~: :'.:.?~~~~??~~).).~ ~:.::.~~'./.; ~'.~~ ~.~.~~.~ ~.~~.~~.~~.~ ~.~~ ~.~.{.~~.~ :.: ,:.,:.,:.:.: :::::::>m:::::::-:-.)........ . :<::: ::::::::::~):::;..- _.,

TSimp1e Soun d a ; \{~t~f:t~{:: ·:::::::/:t??r:~:~~:~~~:~~:::~~):}\:::: ... :":::.'.::::::~:::::::::::::::::.':::::::::::::.::.•:::.:.~..:::•..::.:.•.:::::::••..:::::.~::::. ::}?::::::::.,,:.TSpe a k e r .........:.... b ; ..:..::..:'::.:.::.::.;.:;..:~:..:::.:.::..:::)...:.'..::...:..::.':~.:.~..:'.:~.:: ..:~.';...::.::;.:".:;:':..::·.::.~..j~~r .:::::;:;::':::::::::::............................... :::::\}::=::\:,"... \{~~r~~It(~;;;;~;\~)~~~j;;;;~;;; :;~~~}~:>}~<{
....;-::::::::::: ...-..... .:-:.:-:.:.:.:-:-:.:.:-:-:;:;:.:-:.:.;::........... ::::::{:::>:::::::

a. Getou~i~~;;~;;;~~utput") .~~ii'bo (b. GetInpti~!;~:;~r~Input") ); .;?
The MAudio::GeRwitplitl:lBr~(l~:~~i~~~:·~i{~udiOobject's output portli~t·'l9P~Bpfqf:tli~:.r(kluestedport.
It returns a TAudioPonifamatcrHsf6und, otherwise it generates an excepHoi#:MAudi'O'::GetInputPortO
does the same for an audio object's input port list. Both of these functions are overloaded to accept
TIoken objects also.

TAudioPort::DisconnectO is used to disconnect ports.

Audio Types

Each audio port has an audio type associated with it. The C++ class TAudioType is used to represent
audio types. Audio type specifies what the fonnat of the audio data is. An audio type consist of three
fields, data format, sample width, and sample rate.

Data format specifies the type of samples - offset binary, linear, or floating point. Sample width deter
mines how many bits are in each sample. Sample rate measures the number of samples per second.
Typical audio types are listed below:

• Registered/Restricted Audio Objects March 15, 1990 2.6.1-4



Audio Type

Data fonnat Sample Width Sample Rate Description
(bits) (samples/sec)

Offset Binary 8 22,254.54 Native to'Macintosh

Linear 16 44,100 Used by CD players,
integer DSPs.

Float 32 48000 Native to RISC,
floating point DSPs

When an audio output port is connected to an audio input port, the audio types must match. Otherwise,

. .....~.:.:.:.:.;.:.:.:-: ....

.....;.:.:.: ...:.:.:-:
-:.:.:-:.:-:.:-:-:.;.: .....

navigating around instreams·bfaudio.·······

Defining an abstract base class for audio players has the benefit of making it possible to play any object
polymorphically, as long as it descends from MAudioPlayer. For example, it is possible play each sound
in a list of pointers to MAudioPlayers without caring if the sound is a sampled sound, synthesized musi
cal note, sound effect, or segment of synthesized speech.

The most important member functions of MAudioPlayer are PlayO, which starts playback, and StopO,
which stops playback. GetPosition 0 returns a TTime containing the current play pointer into the sound.
This is analogous to the value of the tape counter on a tape recorder. GetPosition can be called after
StopO to determine where playback stopped. Another function, SetPlayRangeO, takes two TTime objects
as parameters. It restricts playback to the range in the sound between the two TTime objects. These four
functions - PlayO, StopO, GetPositionO, and SetPlayRangeO - can be used to implement the familiar tape
recorder-style functions - play, stop, pause, resume, skip, fast forward, and rewind - as well as more ad
vanced features needed in sound editors such as playing a highlighted segment.

Another member function is PlayPrepareO, which performs time consuming playback initialization, such

• Registered/Restricted Audio Objects March 15, 1990 2.6.1-5



as paging in the first few seconds of a sound off of the disk. Calling PlayPrepareO before PlayO guaran
tees that when PlayO is eventually called, playback will commence with minimal latency.

WaitO causes a process to block until playback is finished. GetClockO returns a TClock that is synchro
nized to the sound's playback. This clock's offset is zero when the sound starts playing. The clock ad
vances at the same rate as sound playback. This clock can be used for synchronizing events to playback
of the sound.

Time Units

:}:::::::::::::::::::-::>'...

ro-----o.,;o;.;:::::·.::::::::.:..·:\:.l.:·\:.·.i:.·.::::::.::.::.;:.\:.;::. \\\}:>:/:.
\Ii:I\:::;:\:I,:::J S ! .....

'.~T~ m_e_....Jme

":;:;::::::::::::::::::::::::::::::

Simulaneous Playback

Examples:

time time time

Play me 0 time units after s starts. Play me 0 time units after s finishes. Play me T time units after s starts.

MAudioPlayer defines a member function, PlayWhenO, to handle this:

enum RelativeTo { kStart, kEnd };

PlayWhen(MAudioPlayer& s, TTime t, RelativeTo startOrFinish);

Audio Player /Recorders
An audio player/recorder is an audio player which can also record audio. The C++ class

'* Registered/Restricted Audio Objects March 15, 1990 2.6.1~



MAudioPlayerRecorder represents an audio player/recorder. It descends from MAudioPlayer.
TSimpleSound, which plays and records sound files, is an example of an MAudioPlayerRecorder.
MAudioPlayerRecorder has a RecordO method to initiate recording. Recording normally starts at the be
ginning of the sound. SetRecordRange can be used to selectively record into a portion of the sound.
RecordPrepareO perfonns time consuming preparation prior to recording, if any.

Recording nonnally causes audio to be inserted into the existing sound. ReplaceWhenRecording 0 can be
called to cause audio data to be recorded over instead of inserted. Audio player /recorders that support
multiple channels of sound will often use the replace feature, as sound needs to be recorded into one
channel while maintaining synchrony with the other channels. InsertWhenRecordingO) resets recording
back to inserting instead of replacing.

System Objects

Future Dire.ctions

Degradation

When there isn't enough CPU time to process all of the audio objects on a system, we need to degrade
gracefully. There are a number of schemes for doing this. Each will be discussed here.

Least Recently Used Algorithm

A method used in music SYnthesizers is to stop playing the oldest note when there are more notes than
the system can handle. This works well because the oldest note has usually decayed the most in ampli
tude and can be dropped without notice.

In Pink, we could drop the oldest sound when we run out of CPU time. A usound" in our case would be
a playing audio player. Precedence would have to be given to audio player/recorders which are record
ing, as interrupting recording is generally more offensive than interrupting playback.

Priorities

• Registered / Restricted Audio Objects March 15, 1990 2.6.1-7



With this scheme, each audio object has a member function to set and get a priority. Priorities are floating
point values that range from 0 ( lowest priority) to 1.0 (highest priority). When the system runs out of
real-time, it will drop objects with lower priorities until real-time is reestablished. All objects at the same
priority are dropped at once, so the developer can group objects together that should be dropped togeth
er. As real time becomes available, audio objects are added back in in reverse order.

One problem with this scheme is determining what to do with dangling audio inputs and outpu ts to ob
jects as they are dropped. One solution is to only attach priorities only audio producers, such as audio
players and microphone objects. As these objects are dropped, all objects that they feed would be
dropped too, unless they were still being fed by some other object.

::::::::.....:.:.:-:.
........ :.:-:.:.:-:-:.:.;.:."

.'.:-:-:::.:.:.:-:.-.:.
....• :..«< .

grade to seven voices;>sixyQj9~~:MFtheway down to one voice. The mosfseve~¢.gegradationlevel
would be to drop the object all together.

Non Real-Time Operation

Normally, audio objects are run in real-time or, if the system doesn't have enough CPU time, they are
dropped. Sometimes it is desirable to run objectsin non-real-time. An example would be non-real-time
signal processing, where complicated sounds are synthesized and stored on disk instead of played
through a speaker. Member functions can be added to MAudio to set and clear a real time flag. When in
non-real time mode, the object is executed at a low priority in the background. It is never dropped.

Smart Connections

A future enhancement would be to add a new function, TAudioPort::SmartConnectO, which will auto
matically insert a converter for the caller if the audio data types don't match. This form of weak type
checking could make programming easier, but it hides computationally expensive converters from the

• Registered/Restricted Audio Objects March 15, 1990 2.6.1-8



programmer, which may not be ideal for programmers interested in predicting real-time response.

Audio Groups

Sometimes it is desirable to create audio objects that are composed of other audio objects. In the illustra
tion below, a new instance of an audio object, anAveryFisherHall, has been created using instances of
TReverb and TEqualizer.

aTReverb aTEqualizer

added to the group'sj;t~P1ponentlist, new input and output ports.9if~tRt~~~M~hdthe ports are connected
.:- ,.............

:(:::::::;:}::::;:.:.:;;::.:::..::.:::.....:::-...;:~:::::=: ...:.:::.:....

~~:~~~~~~~~~~~~~~~j\r;:::

times of these sounds<dlnb(fspecified by their respective PlayWhenO funcfibrisY:Tneplay group's PlayO
method can then be called to fire off the whole shebang.

Writing New Audio Objects
It is expected that most users of the Pink Sound Tools will use existing audio objects, and not create their
own. Creating new audio objects involves a specialized knowledge of sound and signal processing. This
section is for those readers who would like to create their own audio objects.

Processing Audio

Connections between audio objects are implemented using buffers of audio data. Each connection, or
"patchcord" has a buffer associated with it. Every audio object has a RunO member function which
reads data from its input buffers, processes it, and writes the result to its output buffers. The size of the

• Registered/Restricted Audio Objects March 15, 1990 2.6.1-9



buffers is variable but small, from 1 to 1000 milliseconds worth of data. This amount of time is called a
frame.

input buffer(s)

one frame
of audio

Run()

output buffer(s)

An audio object is either active or inactive. Active objects are producing or processing sound. Inactive ob
jects are silent. A sound file player, for example, is inactive until it is told to play, at which point it be-

:~:i:a:::e;e:~et:::::~~illillllll't:::e::i::i~t:7:1~::t~::~;i§illf!~;;~:~:

~tf1~~g~fi~ftllf!!~'!!~Tr::!~:~~I~~i~~ill~r;r~!~~~~::!ng

Application Team

Sound Processing
Task

·-;:\~jI~jj~::j~~::~:~:~i~:~~:·~.:[[:::::
..................

auaMfd~ha from

.)T~8~9phone

audio data to
speaker

:m:~:~:~~~:~::~~~::.~::.:
:.:-:.:.;.

The sound server has internal buffers for input and output audio. These buffers are shared so that they
can be accessed by the sound processing task. The output buffers are used for playback. They are filled
by the sound processing tasks and emptied by the hardware. The sound server sends a message to the
sound processing tasks requesting more data when the output buffers are nearing empty. Recording
works in reverse. The sound server sends a message to the sound processing tasks requesting that they
consume more data when the input buffers are nearing full.

Interface for Writing Audio Objects

MAudio has public and protected member functions which are used specifically for processing sound.
These member functions are only used by those who wish to modify existing or write new audio objects.
The member functions are divided into two categories, 1) signal processing and 2) activating and deacti-

• Registered / Restricted Audio Objects March 15, 1990 2.6.1-10



vating.

Signal Processing

The RunO member function performs the actual signal processing. For a sound .file player, that means
getting audio from the sound file and writing it to the output buffer. For a reverberator it means taking
samples from the input buffer, processing them to add reverb, and writing the result to the output buffer.
RunO is almost always overridden when writing a new audio object. Because it is processing anywhere
from 22,254 to 48,000 samples a second, RunO should be coded to execute as efficiently as possible. RunO
can call protected member functions GetInputBuffersO and GetOutputBuffersO to get its input and out-
put buffer lists, respectively. -

A RunPrepareO member function can be overridden to perform time consuming preparation prior the
RunO. Typically this is used for caching pointers to input and output buffers so RunO doesn't always
have to spend time figuring out where its buffers are. RunPrepareO is called much less frequently than

............. ;.:-:::.:.;.:.::::::::::.:.'

.:.:.;.:.:-:.;.

Activating and J4~~'activating
;.:.;..- .

ject that can play wdtild:deS¢~ridJf.6rirMAudioPlayerand would not have'ttfw6ttY'abotit calling
ActivateMeO directly.

Protected member function DeactivateMe() is called when a server object wants to deactivate. For exam
ple, a MAudioPlayer would call this when it has finished playing a sound.

Hardware Independence

Hardware independence is achieved by providing new implementations of existing audio objects. Often,
it is desirable to extend an object as well as create a new implementation. Extension is accomplished by
subclassing audio objects. Let's illustrate this with an example.

There are many different types of telephone systems in use today - analog, Integrated Digital Services
Network (ISDN), and private.branch exchanges (PBXs) such as Rolm, Northern Telecom, AT&T, and
IRteCom. None of these systems are hardware compatible with each other, so all will require different

• Registered / Restricted Audio Objects March 15, 1990 2.6.1-11



hardware interfaces to our personal computers.

Our goal is to provide a stable, standard programmer interface for dealing with telephones - regardless of
the particular telephone system. We do this by defining an object that is an abstraction for the phone sys
tem, TTelephoneLine. We define member functions common to all phone systems, such as a means to
make a call and answer the phone.

Now, let's say a developer wants to create an object for a particular phone system, lets say ISDN. The de
veloper creates a subclass of TTelephoneLine, say TISDNLine. The developer overrides the functions de
fined in TTelephoneLine so that the implementation uses the ISDN hardware. Existing telephone appli
cations defined using TTelephoneLine will work with the new TISDNLine object.

abstract base class

...:-:::;:;:::::.:.,
::;:::;:::;:::}::: ::::.:.:.

..

TISONLine
.·:;:::}f{ff?t{})f\~:~:}}}~:;\:::::..:..

Class Hierarchy

Note: All Objec~.;;~end from McOl1ectible.....:..;~.•.•;..I.t.,il..I\;j'·
:::~ ~ ~~:::::: :::;:::;:::::::::::

·«::.::~:~ddiO <;:;. ',,::;;;;;;;; /:;::;;.:. ... :'~;:~1l'j:jili~!!~:{?;:"
...........:-:.;.:.::>:-:::-:::::::::::::::-:::::::::..

... :':-:': ..
.::})}~::::::: :-:.:.:.:.:-:-:-:.:.:

MAudioPlayer

TAudioGroup

. .. ..•:.:.:-:-:-:-:-:-:.:- .

MAudioPlayerRecorder

TAudioPlayGroup

TConverter

• Registered/Restricted Audio Objects March 15, 1990 2.6.1-12



( TAudioPort J

( TAudiOTypeJ

TSoundSamples

• Registered/Restricted Audio Objects March 15, 1990 2.6.1-13



............ .. f.~~ :.:j:.t.~ i.)=.}.! i. ~~.).·~t.~f:.:.:::.:-: :.:-: .

.....
.-:.:::.;.:.::::<: j~ ~~j::::::::::::~:: ;:::::~:: :.: :::: :~::::::::: ..:.....

"'~;~;~~~~~~~rt)~~~;~;{~/~~}r~~t

·\!~i~j!i~·:~~~~j!!!,·:!:·!·:·:!·!l:]ii·!·i:·.!\.
...::;::::::.:.:.::: .

..

::::!i!i:::l::{:ili!l::
. .....

• Registered/Restricted Sound, Speech, & Telephony March 15, 1990 2.6.2-1





Introduction
An important feature of the audio objects are that they provide a stablel standard application program
mer interface for audio, speech, telephony, and music applications. The Pink Sound Tools define a set
audio objects to do the most common sound and speech operations. The definition of the public member
functions of these classes is the application programmer interface. This section describes those classes.

Audio
This section describes classes for playing, recording, and processing sounds. Unless otherwise noted, all
of these objects descend directly from MAudio.

III ,.VVVo

TSampledSound

It

....:.:.:.:;:;;.:::::::::;:::;:::.

. ;...;.;-:.:-:::.:.:-:.:-:.:.. -:

TSpeaker

TMicrophone

:-:.:.:-:-:.:.:.:.:.:-:-:.:.".

.... ::::::'::'>:':":':':'>: ::'.:::::::m-:.'.::m::n::::::::(('
::.:.:::.m.:.·...•:...:·.. ·.·..••.•. •.••:·.5:·:.·.·.:.··.•... :.:.n.::::.'.:::·.::..e:.. ·:· .. ·: ..:a..:..:..:.k:... er ':::::::::::;:{'}}}}}}:{. .... :::.::.>:::.»: ....: .....

:::::':::':::::::::::::':' ro. ..,.,::::.::.:•••:}::., ··:::::tij~:.:~.·.j::.:~:.j:::.j~.::.·.::.:.:::.j:.r.:\j::.::: ..':.}. .::::':::':':"""::':'\}}'"::;:::::>::::::::;::::::::}}: . ~f~I~~~~:):··

··:::::::'::"'I'Spg~e.-t·p{~Y~lUUHo data on the computer spedkeW:.:mjrf'S?Q:l)f.lY~:-8fh{ortwo in
. :ptitS:(mori'cfbrstereo). It has a SetVolumeO functiOIl'J6f=eacnchannel. Many in

stances of TSpeaker can exist, either in one task or in different tasks and teams.
The output of each TSpeaker is summed and played out on the system speaker.

TMicrophone

TMicrophone records audio from a microphone or line input. Both built-in micro
phones (a la Elsie) or external microphones (Farallon Macrecorder) can be accom
modated. TMicrophone has one output.

'* Registered/Restricted Sound, Speech, & Telephony March 15, 1990 2.6.2-2



I" I,Vvvo

TSimpleSound

TConverter

TMixer

TSimpleSound

TSimpleSound is identical to TSampledSound except that it does not have a built
in speaker and microphone. Instead, it has one output qnd one input which can
be connected to any other audio object.

TConverter

TConverter converts its input to another audio type and outputs the same audio
data but in a different fonnat. It has one input and one output. The constructor
for TConverter is passed parameters to specify what conversion should ta~~ place.

.i_lllllIJII,lflll'"

o
TGain

TSplitter

• Registered / Restricted Sound, Speech, & Telephony March 15, 1990 2.6.2-3



Audio Processing

TReverb

TReverb

TEqualizer

I~I

TReverb causes its input to sound like it is in a large room or hall. It adds a
pleasing effect to music and sound effects. TReverb has one input and one out
put. It has a SetMixO function to determine the ratio of processed to unproc
essed sound. It has a SetRoomSizeO function to set the size of the room being
emulated.

TEqualizer

}11,llltll~~:~i~~~~:~t~SI7~~7~~~~~II"'~!!~'!~;·o;t

• Registered/Restricted Sound, Speech, & Telephony

........... ..'.".

...

March 15, 1990

:.:-:.:.;.:.:.:.:-:.:.
.:.::::::::::;:;:::::::::::::;:::::

2.6.2-4



Class Hierarchy

MAudio

:::::::::::::;:;:::::;:-

TMicrophone

TSample.dSound
.....::::::;::::::::::::;:::::::::::;:::;:::::::::;:::::

MAudioPlayerRecorder

TAutom.::~I~{nControl

::::::::··I!!·!I:o!;::1:1:::lil::\:0:!1:!:;111:111:
0

1:::::loiolll:!i::o·:jilo:!o:ol:::."::::~

• Registered / Restricted Sound, Speech, & Telephony March 15, 1990 2.6.2-5



Speech

This section describes classes for speech processing.

Text-to-Speech Synthesis

A Text-to-Speech synthesizer converts text into speech. There are a variety of classes associated with this
process, the simplest being ITextToSpeechSynthesizer.

lTextToSpeechSynthesizer

~~i
AU}}: spoken. It can use application specific Bf:9PHA8#.9.9Pdictionaries to help it

.: :::;:::::;::::::: ::::;:;::;:::::::::;:: :::::::::::;;:;::::-: .

)i!:i:ii~iii~iiii:ii)iii)ji:iii:)i:jil:jiiiii!:iiiiii·jjii~:·::)~:~ij~:·i!j!~.!i·:jll~~::!i!)i::)i)i!:}t\::.". })?}::::;:::::":"

...................................................................................

~::::::;~~:l;rl;~;:~::Ot::::::]J~::::i: ::~!Ii:::v:~ya~::;i~;~;;~::e-
representation ~t,Q·~~·~pl,~g~J:~~tip~i9:ti.?§Fhowspeech sounds cdItfMp9BB~ngto th~:9n@tliir'text are to
be realized in corifeXp@¢pgmH!§fJljis:phase of processing is a list ofth.~::IMl§iti9MlYC1lnantsof the re
quired phonemes, or dlldph6nes~aI6ngwith control parameters specifying tne:p.1:tcnarid'duration of each
item.

The final step consists of accessing pre-stored digital data corresponding to each pair of allophones, mod
ifying their pitch and duration in accordance with the control parameters included in the allophone
stream, concatenating the resulting sound segments into a buffer of continuous audio data, and playing
the buffer as a sampled sound.

Pink Sound Tools will support the use of multiple synthetic voices. These voices will differ in such fea
tures as speaking rate, speaking style, baseline pitch, and pitch range, as well as in the language each
voice is designed to speak and the actual digital data used to play out allophones.

The following diagram illustrates the relationships between these different elements.

• Registered / Restricted Sound, Speech, & Telephony March 15, 1990 2.6.2-6



PhonemesText

Exception
Dictionaries

Text-to-Phoneme
Converter t----_~

Allophones Sound

The classes described below provide alternat¢.:;R.:and exit P9in~..:a~·:tffifbeginning and e~d. Q,f ~ach
phase of processing. Each class is used intern¥UY.·9YffTextTo$.~'ij?Yn~.hesizer. " ..' .

phoneme specificati6ri;:C¢t$¢tS¢0tft:putO produces a compact, coded representijJiOIlstihable for efficient
storage. The class also has functions which set the characteristics of the synthesized voice which affect
application of the text-to-phoneme conversion rules, and functions which permit addition and deletion of
customized pronunciation dictionaries to augment the built-in exception dictionary.
TIextToPhonemeConverter might be used to facilitate the process of creating a new custom dictionary,
since it could be invoked. to produce a first-pass transcription of problematic words which would then be
edited and corrected.

TPhonemeToAllophoneConverter

TPhonemeToAllophoneConverter is an abstraction for the second phase in the process of generating
speech from arbitrary text. It is not an audio object. It has a SetInputO function which takes in pho
nemes to be converted to allophones. It has two output functions: GetVerboseOutputO produces a hu
man-readable but redundant allophone specification; GetTerseOutputO produces a compact, coded rep
resentation suitable for efficient storage. The class also has functions which set the characteristics of the
synthesized voice which affect application of the phoneme-to-allophone conversion rules.

• Registered / Restricted Sound, Speech, & Telephony March IS, 1990 2.6.2-7



TAllophoneToSpeechSynthesizer

ToAllophoneToSpeechSynthesizer is an abstraction for the final phase in the process of generating speech
from arbitrary text. It inherits from MAudioPlayer. It has one audio output. It has a SetInputO function
which takes in allophones and their associated control parameters. When PlayO is called, these allo
phones are spoken. The class also has functions which identify the data tables from which segments are
to be extracted for concatenation and which specify other global voice characteristics which affect the syn
thesis process.

TPhonemeToSpeechSynthesizer

..:-:.::::~:~:)?:::: "::";':':"
",:.:<."

TPhonemeToSpeechSynthesizer is an abstraction which subsumes the second and third phases in the pro
cess of generating speech from arbitrary text. It inherits from MAudioPlayer. It has one audio output. It
has a SetInputO function which takes in phonemes to be converted. to speech. When PlayO is called, these
phonemes are spoken. The class also has functions which specify global voice characteristics which af-

TVoiceDefinition is a q~~$.S which contains a variety of information n~mijig:lt.ftp'especific characteristics

~~l~~~:~~C:c~s~~~tfl~:I_~kt::~;~;~r~~~i~e~~~~c~p~~~~u1¥111(lif~~~:so:~~~t~~~ss:~~ch

Speech ~'I'I~~~?nAJ;1111,f;
;:·:·::::::::\:...::i::·;·:;:\::i:j:\;ii:l::ii:I:~:~s:~&\~t6'gnizer

TSpeechRecognizer

···<::TS~hRecognizeris an abstraction for a speech"~:~~6;{~~r. It inherits from
TAudio. It has one audio input. It has RecordO and StopO functions to start
and stop recognizing, respectively. It can send events when specific words or
phrases have been recognized. There are likely to be many subclasses of
TSpeechRecognizer, each tailored to specific speech algorithms. The definition
of TSpeechRecognizer should be generic enough, however, that it can provide
a stable interface for applications that use speech recognition.

• Registered / Restricted Sound, Speech, & Telephony March 15, 1990 2.6.2-8



Speech Rec~rdingand Playback

TVoiceCoder

~
nA'VV fV

~
TVoice.Coder

TVoiceCoder is a descendant of TSimpleSound. It has one input and one out
put. It overrides RecordO so that when recording, it removes silence from the
audio signal, thus saving disk space if you know the signal will only contain
voice. It can change the rate of playback without changing pitch. It can store
the voice in a highly compressed form suitable only for speech. This object is
useful for phone answering and voice mail applications.

Class Hierar~l~ltllllll"lltll'J'

TPhonemeToSpeechSynthesizer

TSpeechRecognizer

CTTextToPhonemeConverter J
C TPhonemeToAllophoneConverterJ
C TVoiceDefinition J

'* Registered/Restricted Sound, Speech, & Telephony March 15, 1990 2.6.2-9



Telephony

This section describes classes for building telephone-based applications. Unless otherwise noted, all of
these objects descend directly from MAudio.

TTelephoneSet

TTelephoneSet

TTelephoneLine

TTelephoneSet represents a local telephone attached to the computer. It can
be recorded from and played to. Many instances of it can exist. It can send
events to a task when the handset goes on and off hook and when buttons are

i.~II!ltllltlt'lf ...... iiiiij,;;:;i<W";·,

iirTIelephoneLine represents the phone line.gt.llil~::~entral office or
BI::.~~~~:~~: ~~~

::::::::::::::::::::::::::::::::::::::::{:::~{:::::::::
;:::::::;::::;:::::::;:::::::

:.:::.,-:.:-::::::~:?:::::.: :-:.:-:;:;:;:::::::.:<;:.:-

:.;.:-:-:.;.:.:." :\\\~;~~~;~~~;~:::::~:.~:: .-.

::::;:::::;:::::::;:::::;::::=;:;:: . .. ::;:::::::::<:

mT~~~III.1 ~
......... :::::::::::::::... -. :.:.:-:.:. .:.:.:.:::::;::::;::::;::::::;: ....

'.:.'<:::::>::;::::;:/;:{ ".. .' .. ,....

TDTMFGenerator

TToneGenerator generates Dual Tone Multi Frequency tones(DTMF, com
monly known as Touch Tones). It descends from MAudioPlayer. It has one
audio output.

• Registered/Restricted Sound, Speech, & Telephony March 15, 1990 2.6.2-10



TModem

TModem

TModem converts audio data into digital data. It has one audio input and one
audio output. It has functions for setting equalization, call progress monitor
ing, and configuration. TModem must be designed i.n conjunction with net
working to see how it fits into their world.

Class Hierarchy

MAudio

'* Registered/Restricted Sound, Speech, & Telephony March 15, 1990 2.6.2-11



Music

This section describes classes that can be used for music synthesis. Of course, all of the objects found in
the Audio chapter can be used for musical purposes too.

TSampler

~
~
TSampler

TSampler is a descendant of TSimpleSound and inherits all of its functions. It has
new features that make it useful for music, however. It has one (mono) or two
(stereo) outputs and one or two inputs. It can play sounds at an arbitrary pitch.

'* Registered/Restricted Sound, Speech, & Telephony March 15, 1990 2.6.2-12





• Registered / Restricted Editors March 15, 1990 2.6.3-1





Editors
The Pink Sound Tools will provide editors for editing sounds and graphically connecting audio objects.
All of these editors are built from objects that any application can create and use directly. The editors
serve two purposes, 1) to give developers tools to create sounds and connectio~sof audio objects for use
in their programs, and 2) to provide a standard interface for end users for doing the same.

Sound Editor
A sound editor gives developers a means to create and edit sounds played by the audio object classes. It
also provides a standard user interface for creating and editing sounds for voice annotation, voice mail,
sounds for presentations, and the like.

The simpl~stway to record and play sounds is by using a sound palette. The sound palette re~mpJes

the controls on a standa.:.:r.::.:::.:.::::d:::....:.::.I.:..•.:..•:...•.:..•:::•...::••.:.I.:•.•:.•:a..:•.•.•.•...•:.•::.

B

....•..:•.•..•...:.:.•..:e:••:..•:••:.:.•....•.:.•:•.:t.:•..:•.•.e.::••..•.:.•.:.•.:.•:p..:.:•.::•...o.:.I.:.•.:.•.:.::.••..'.:.•.:.:..I:

d

::.•.:.•:•..•:•.:.•:•.:

e

.:.•::.•:.•.::.:i.:.•:;~::..•...•..:•.:..•..:.:•...•...•::.•:.:.~.:•....•.:•...•.:.•...•:.:.•::.I:••.:.•.:•.:...•.:.•...:•••:•.·:•.•:•..•.•.•.•.:..•!.::I:.•:I.:.I:.•.:.:'.:.••.,1/~ "'- II "'-"'-I,}.i;i,);;"·
?i ~ ... r-r-At,ililll'llllllliiljll;iJ'

When the fast forward and rewind buttons are eliminated, the play button always plays from the begin
ning of the sound, and the record button deletes the existing sound and makes a fresh recording.

TSoundEdit is a C++ object which displays a visual representation of the sound. This object would al
ways be used in conjunction with a TSoundPalette object to give the user visual control over editing the
sound. Functions are provided to follow the mouse for dragging and selecting, query the view for the se
lection bounds, change the size of the view, scroll, and zoom in and out. Applications are encouraged to
use TSoundEdit and TSoundPalette together if they require precision editing of the sound. We will pro
vide a sound editor application, based upon TSoundEdit and TSoundPalette, which developers and users
alike can use to create and edit sounds. The editor, in a prototype Pink window, is shown in this illus
tration:

.& Registered/Restricted Editors March 15, 1990 2.6.3-2



0 Sound Edilnr

.. b bzzs -....... .. - . ... bzzs rl •• ".,

... ... ...
_,.e • <Jt'A .... .... -

...... bzzs ..+.=4 ..
I~~ [I • ~ • ~ ~ ~ ~~I (0:28 ci~il

Audio Obje:§\~l(Editor
::::::;:;:;:::;:::::::::::.:.:.:-: .

".:.:-:.:.:.: .
//:}~:~:~~f~~({:~:~::::::·· .
........;..... :;:::::\::::};:

::~::~~[::~IIj:::~::r:::\)Htt(.~::.: ...:..:·:...•.:.....i....:.:.[.j•. ~.~.:::.·.: •.••.•.•• : ..:...:.•.•.:::.:..•.:.::..•:.:::::.:::..::.::::.:::...::.:..::.:.:...:::::.:.:.::.:.•::......•:.::.:..:::.:::..:.:.:.::.:.::....::;.:;:.:..;:..::.~.;..;.:::~..:~~;:::~.~~::·.:.i~j{)::::··".;.:.:-:.;.:.:-:.:-:.;." :.:-:.»»:

-.::}::;: -:.:-: .:-:.. -:-:::::::-: .

....;..:::-~:>\.\.: ::.:.: ..:::.:::.;:..:.::::; ~.:: :. ::;:::;:::;:::::;:::::::::::::::::::::::;: ~: ~;::;::: ;;;:::::::::::::.:.' .'

'* Registered/Restricted Editors March 15, 1990 2.6.3-3



· ........

. .
.,..... . ...
.:-:::.:.:.; .
:::::.::::::::.'::', .

:-:.::;:;:;:::::;:;;::;::::::::;::;.;.: ....

::~~~I!:~:~:;?:?:~:<~~:~:~ >{{{IU -:-:.:-:-:.:.: ;.;..
":::;::::::::::::::::::::':': .. , -.--,',::::::::::::::::::::::>:::?? .':: :.: :;:}~.~:.:~.:.\.~~.·:;.·:.:.:;:.~I~):::··

....... ,- " -.-,".:::::-:-::::::::::::::<:::::::::::::::::-:

.. Registered/Restricted. Sound Effects March 15, 1990 2.6.4-1





Sound Effects Library

Sounds are difficult to create from scratch. It takes a great deal of experience, knowledge, and patience
to record or synthesize sounds. Recording sounds from movies, television, and even sound effects
records can violate U.s. and international copyright laws.

We want all developers, most of whom are unfamiliar with sound, to be able to add sound feedback to
their programs. End users will want sounds to use in sound track presentations or dramatic voice mes
sages. The Pink Sound Tools will include a sound effects library to be used by both developers and end
users. The sounds can be used in conjunction with the Pink Sound Tools without violating any copyright
laws.

The size of the library need not be large. Anywhere from 50 to 200 sounds should be sufficient. The
point of providing the library is to developers and end-users sounds to start playing with. Third
party developers can extend the It should be possible for a third party developer to make a busi-
ness out of providing '::>LH"'~l"'~:"

• Registered / Restricted Sound Effects March 15, 1990 2.6.4-2





";:::::::;:::::::;:::::;::::::::::::::::.:.::;::.:::.::::::::

","'\1\!'\""'" Sty1e ::.:.•.:.~..••.~~•..!.:.'.).:,.l."na811111;;~:~!:!!:;')
~r!i!i!!!!:!;;;i;i;b"" ......,.",Aby ·";111!illf~lllllllh.;i;iill?

.-:::::<:".: ~ ..•.~ :.: ::. ~ :.:..~ '.: :.'.~ :. ~::.:.".•.':.: •.:.•:.•.•..:.•..:.....•...•.::':":: :,;",: :.~ .•.. :.::'::.:'.: ::. :.~::.: :.:.'.:.:.'.~.' ~.'::.::.:.'.::~.:•..~.' •.:.' :.: ::...•..••...'..:.'.: :.' :.:·.~.•l.~.' ~:.::::::mt :::::;::-.., ''.':-:.:-:.::.::. ... ::.. :: .. : :.:: .
....::::::::~:}}/~~}~::::::::::::::::::::::::::::::::::::::: ;:::::' ..

• ~BisteTedlJqstric.tu{ • 'Base 'T~t Cfasses • March. 15, 1990 • 2.7.1 . i





fiSE TE T
CLASSES

:t>:::·:·: Version for 5i8 Pink Three
.::;:;:::;:;:::'

.:::~:::~:::;:::~:;:::;. .' '... ::'.-:':' .: .., ..' Rogt2r Wt2bstt2r

Pink. The co1l6@tidfi::::!:bf
various typeg d~I:I.~I't. <,_I"'"'rlt'i:,~t'

.:::::-.« >t?:\:< tiona! charactcr.$.~I~::::::hnd

';111..·...·.·........•.•. !~i~~~.~ ...:i~~~.~I~iw and back.

<::«:··::·18.·:::te*f\:~1~sses in this document do ~:-:;;;::i':::::-::::::::-:-:·:-:<·:

support renderif18 or measurif18 text: they
are for manipulati08 text in memory only.

~ppfe 1?Jgistertd/l\?strUted 'Bast ty~t Classes 2.7.1 . ii





Introduction ThflOry Of Opflration
The classes described in this document manipulate The base text classes implement styled and un-

:haracter and style data, arid are the basis for the text styled text in a way that attempts to choose a storage
ayout classes (please refer to the ZZI'ext ERS). The scheme that is appropriate for the manner in which the
:lasses described in this paper represent the lowest text is being used. The decision about which scheme is
evel string manipulation available under Pink, replac- appropriate is made dynamically, and may change
ng functionality such as strlen and strcat. Even the many times during the life ofa text object.
:oncept of "length" is maintained in an implementa- Two classes of particular interest within the base
jon-specific manner (length, for example, is defined to text hierarchy are TTextand TStyledText. TText and its
Je the number of characters, or sixteen bit entities in descendants, such as TStyledText, toggle between
:he string, not the number of bytes). using an array of (currently uncompressed) sixteen-bit

Note that t.he root of the text hierarchy, characters and a recursive run array of arrays of sixteen-
TBaseText, has no fields and a protected constructor. bit characters, depending on the length of the string.
The TText class implements the protocol defined in For strings less than a certtain number of bytes long,

without all of the obvioris>tb~t:(::Ond:fdfureof these InsertAt and DeleteATffitilib&).The only extra pain
classes (eventually) will be compression into fewer bits, the client programmer must incur is be to make sure
probably eight, whenever possible. Note that this is these insertion and deletion methods are called from
not currently implemented. It is worthwhile to note the newly derived class.
that if the text being represented is a random col1ec- Another goal is to support an unbounded set of
tion of characters with no common language, script, or styles, including user-defined styles. This will (hopeful-
other restricting attribute that the overhead for this is ly) allow someone to create a special effect in some
a one-node run array that identifies the run as sixteen- program such as LetraStudio and name the result, and
bit data. A goal of the implementation is to minimize then export the entire style specification to other pro-
the storage required regardless of the composition of grams. This would allow text not actually entered (i.e.,
the text being stored, while also minimizing access typed in) within the scope of the program directly sup-
times to textual elements (e.g., characters, substrings, porting the "special effects" to nonetheless make use
styles, etc.). of them, even for newly entered text. The style scheme

For more information about higher-level faciliti.es, is open: styles define their data. Only style names are
please refer to the Line Layout Manager ERS and the implemented in the base protocol.
ZZI'ext ERS.

• ~gisteret[/l\f.strictd • ZZ7"~t Layou.t ani 'Editing Cfasst5 • Marm 15, 1990 • 2.7.1 ·1



TStyl'lSczt
TBaseText is an abstract base class from which all

of the text storage management classes are derived. It
has no fields and its constructors are protected.

At present, this class supports the minimal text
manipulation set of functions. It is our belief that any
other functionality, such as string concatenation, can
be achieved through a trivial combination of the meth
ods provided. Please see the Open Q;testions section at
the end of this document.

This class implements a named, expandable set of
"styles" for a given run of text. In this context, even
font changes are considered "styles." A client specifies
a style as a TStyle object and may add or remove it
from the set of styles managed by this class. Query
methods are also provided to determine the contents
ofa style set.

Note that style sets are reference counted. Style
sets are often transient entities in style runs, ap.d to
protect them from being deleted automatically by
methods in the Utility Classes, all constructors have an
auto increment parameter, which defaults to true
(which means that the reference count field should be

TText is the general-purpose text class. It may be initialized to one). Clients that do not o.\Tc:nige the

,'.-:<'
..:.;.;.:.:.:.;.; .

TStylQ
This class implem~:ri@:i.ri~¢4:~f6~gffV( a style)

for text. The name may either be text object or a
token. In the case of a text object, the name is first to
kenized and then stored in the name field. As an exam
ple, consider a style named "bold." Somewhere on the
system there will likely be a clearing house for standard
styles names (and other items), so the token for bold
should be well-known (this is under investigation).

N. B. The method IsEqual is provided, and re
turns true if the style names match. It is the reponsibil
ity of the client to implement IsSame to do the right
thing if two styles are equal.

TToken boldStyleName(PartialChar *) "Bold");
TStyle* boldStyle = new TStyle(boldStyleName);

/ / Ditto for the other two styles...

MBaSflRun
This class implements basic functionality needed

to manipulate runs of information. It has one field of
class TRunArray .and provides methods to find the
previous run, the next run, and the length of a run
from an index. It also has two methods, DolnsertBefore
and DoDeleteAt that are called to keep the runs in
synch with other data.

• 1\?gisterea/l{f..stmtd • ZZ'Te:tt Layout ana'Eaiting Cfasses • 'Mareli 15, 1990 • 2.7.1 ·2



MSqarchTClxt

This class supports basic text searching on an ob
ject in the TBaseText hierarchy. There are a good.
many language-dependent features that have yet to be
thrashed out (what does "case sensitive" mean, for ex
ample, and who will implement it), so only basic,
hopefully fast, searching will be supported for now in
this class. In addition, the careful reader will realize
that the international group has yet to be involved in
this; arguably a bug.

This class implements runs ofstyle sets. Each node
in the run array is of class TStyleSet, the expandable
style set from above. This class manages the mainte
nance of runs of style sets as text is added to or re
moved from the text with which a style run is associat
ed (it is normally used as in TStyledText, see below).

The method SetStylelnRange is additive. That is, it
performs a union of the styles in the set specified in the
call with all style sets encountered in the range given.
In the example below, if the run of [italic] is set in the
middle of a long run of [bold], there will be a run of
[bold] followed by a run of [bold, italic], followed by
another run of [bold]. This is contrasted with another

~;::;:::~~jlllitrtli"';f'

Bold

Before SetStylelnRange (itaficStyle)

Italic -----t....~

Bold

After SetStylelnRange (italicStyle)

• 1Vgisttrti/Pv.strUtti • zzt[t~...t Layout ana 'Eaiting CfasstS • '.Morefi 15, 1990 • 2.7.1 ·3



ExamplQs
Creation of text objects 1$ accomplished as follows:

TText* someText = new TText (l'artiaIChar *) "Hi there.");

TText someMoreText = TText ( (l'artialChar *) "Hello world.");

The nth character of a string can be referenced by:
UniChar c = somaMoreText (n] ;

But note that...
someMoreText[n] = c; / / ... is not supported. Use InsertText instead.

Text from one text object may be inserted into another one:
someText->InsertText(somaMoreText, 5, someMoreText->Length(»;

...which results in all of the text in someMoreText being inserted before the first "e" In "Hi there." In

D::':~i~~:~~;:;~IIIII~'
·/\t(

Data may be extracted frqijl::a text object in any ofseveral ways. The in the type of data they
return. In the first exar:#.M~r:I?~gi.~:Gh~r* data is returned

someText->ExtractText (0, sorreText->Lengt~:mM:jIjl!j~ext);

const1~~I~~~II~;ri

TStyleSet* ssl = new' Tsty.leSettf;

To actually fill up a style set with styles, the client must call AddStyleToSet for each style to be included.

ss->AddStyleToSet(pst};

TStyledText* text = new TStyledText( (PartialChar *) "Sanple Text");

Selections simply maintain a pair of indices, and are used frequently to specifY the extent over which a change
such as a style run is to be applied.

TTextSelection aRange(O, 3);

text->SetStyleInRange(ss, aRange);

• 'R.Jgisteru{~trUtetf • ZZrr'e:tJ Layout ani 'Etfiting c£asses • 'Mardi 15, 1990 • 2.7.1 ·4



Opeln QUelstions
• What types ofoperator overloading do users wish to see? We believe that assignment and indexing

would be useful, and are included in this specification. Are there some others (concatenation, auto-in
crement, etc.)?

• What should I do about discontiguous selections?

• What should we do about comparisons? There are "degrees of matchingness" specified in the
International Specification; how are we going to integrate this into the text stuff? Do we define be
havior that includes some matching on the clients of a TBaseText object, or do we handle just text
comparisons?

II 'RJ,gisterei!J?Jstmtu[ • ZZTe;ct Layout arui 'Eiiting Cfasses • '.Mar-eli 1~ 1990 • 2.7.1 ·5



Inheritance

Reference

,,,,,

UniChar* Data

~

~!;j!~~j ~1:t;S~~ated t
by Clients

~W1mmi*:~~~:4~~*~~f.NW:*.I

::

MCollectible

,~:wt~=?~::~~~;~:~~··

1111111

TDictionary

TFancyStorageNode m...1 TTextStorageNode

lillllllll.1 -·~III"~f•
TRunArray

.....

TBaseT¢*-t::::::::::[:::::::::::::::

MOrderable
Collectible

.~O":~.-

TFancyTextStorag.~::::::?.............;...

.1,1~'I'!I'~I;~1~11';I!:rii
i

Base Text Classes Family Tree

TIextStorage

UniChar* Data

TCheapTextStorage

"I~I'I

•

f
;:-,

~
~
\.C
<:::l

•

~
~
'-

•

~

~a
f
~

~

~
('0>

;:t
t=:>...,
~.

.'~
~.

('0>

~
~.
~
~



·::::::::;:;::::::::::t~~t?:~::-:·:···· ....
.-:::::::::~}HH!~~~H~(:::::·:·· .
.....:.;.:.:.:.:.:.:.:.:.:.:::::.;..

:.:.:.:.:-:-:.:.:.:.;.:.:.:::.:::::::::.:.:
..::;:::::;:::::::::::::::::::;:;:::;::::.,

\1;1111111111111
..:::::;=::::::;:::;:;:::::::; ,:-::::

..:-:-:.:.; : ;...:::::;:::;:::::::::-.

........................:;:.:.:-: ..

.......:.:.:.:.;.:-:.;.:- -:-:.:.::;.;-:.:-:..

• ~gisterealRJstrU;ted • ZZ'TeXj Layou.t and f£diting Cfasses • 'Jv{arc!i 15, 1990 • 2.7.2 . i





.:-:-:.:-: .

~~j[:~:)~~~~~:.:.~:\~:~:)~:~:: :~::::::::.:
.<;:-.-:

Versi~n for Big Pink Three

Rogczr Wczbstczr
x48115

5l.ppft 'l(fgisterd/'R.!-strictu£ zzrr~t Layou.t ana'Editing Cfasses 2.7.2 . ii





Tablcz of Contcznts
Introduction................•...........................................

Philosophy 1

The Model. : . . . . . .. 1

Theory of Operation 2

List of Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4

Class Taxonomy 6

Class Hierarchy Diagram 8

Views, Galleys, and Text Relationships Diagram 8

Sample Inheritance Diagram 9

f:~;jl"~lrlllf'llt'I":~::::::::::::::::::·.:::·.:·.:·:·:·:· 11

»»:-:-:.'

n extLitieI .

TParse.i.Jn:tttitMi:l:b::~:::<::o"'" .

2~~~,r~llllit,,:iiH:':':"
~::::::~f;~:~T~xt"·'·:·'·'·:·:·:.?;~~tlllilif.:.· :.

}::Tg4jm~t~~~ij~YTexl. . . . . . . . . . . ..d:~.::~::~l[~~:~~;·. . . . . . . . . . . . :.::~.l ~l!:~·:~··l.~!lt.li~~lill~l~·~i·:I:{::
)~G.~ll~&M~h~~t.:::~:::~&:~::\::~::~::~::~::~::~::t~[:!~!][!j:::~~:~:" >.~:@?EGl\\·

~~ditt~Xt$~l~brl~n~I<~!~!!lli:i~·illi·:·.:::~::::m.:::~:::::" ::::;\:::\::):\;::~::::~:::<::":::~:::+:>:::<::::~....,

Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Open Questions 15

5Ippft. 'lVgisterd/R.fStrUtei ZZry~tLayout ami 'Editing Classes 2.7.2 . iii





Philosophy

Introdaction

ZZText controls the appearance of text,
specifically the layout of text (on a page, for exam
ple). One aspect of ZZText that permeates this en
tire document is a particular philosophy concerning
text formatting: fast formatting results in poor
quality, and good quality formatting is not fast.
However, a good text processor supports both
goals (fast and good). To get good text, the model
must allow the specification of sufficient constraints
on the text such that they satisfy the most demand
ing user. Less demanding users need not constrain
the text as completely as more particular users.

The belief that good and fast are, for practical
p~rposes, mutually exclusive, has led to the

consideration of a two-pass approach to formatting.
The first pass is the fast pass, and is defined as the

This document is the ERS for ZZText, the text pass that can keep up with a fast typist. The second
formatting system for Pink. In its final form, this pass is the good pass, and is defined as the pass that
ERS will represent the services available to clients makes the Seybolds happy. The second pass consists
wishing to support text manipulation. ZZText of potentially more than one actual pass through
embodies sophisticated text handling features cur- the text.
rently available on the most expensive and powerful The part of the second pass that is concerned
publishing-oriented systems. In addition, ZZText with optimizing line breaks within a paragraph is
provides a simple interface for basic on-screen text based on Knuth's TeX method for breaking para-
entry, facilitating dialogue box input, etc. This doc- graphs into lines. In addition, this algorithm is re-
ument will not contain a precise description of the stricted to languages that have "words," or some
methods in the various classes that ZZText reasonable substitute. Some languages have no
comprises; that information is part of the header determinable word breaks, or they are very difficult
files for the text classes. to define (e.g., Thai), and for these cases the algo-

A successful implementation of ZZText rithm cannot be used. Most modem languages lend
.;::::::::::;:;:::::::::;:;: ..:.....:.:..

:i{)\~{:~::I~~lI~~i:::~J~tr~; :«.:.: ',"

nism by which lines may be generated and arran~~t! ThQ I.II~\;!: ...···;;;i

°e~sl~a:ree;c~VI:l~e~on:ttsi:~O~fi.:.:.••.·~.·.•:•.::~e..:J5.:':•.••.::.·.•:.:•.:•.I.:·.::::b::.

n

:·.:.·.::.:
ili:.::.:•.

V

:•.•.•:.:..•:•.•.:O:•. :.•:•.:.e.e:z.:··.:•.I.•:.:•.:•..:~.•:.:•.:•.:~:•.::.:.:•.•.•.:.•:_.m..:.·.:::.rn.:.~:ea.:.:;:•..;.:.;;;::Xt:t..:aI':f.;;;..::.:.::.:m.:::n.::::;;;:.::a..•:..::.~:..:e.n:::es::O:..::..:d.:..:C::.f._h:.m.:..th.a.:.:.:.:.:e.:::.:ct.l:.a.:.l.:.:;.:.:o.r.e~..:.l..n..:t.:..:.:::l:.::::~:::..F.;:..e.:.:Y9::.~.~lr This;@i~Biifficilsses bom thii
i
ffi6a@Jiiihsome

Ul u~ ~:~=i..:.{ ' ¥E~;gO;~~11,i~~~'I(~~1~~~£~~
will aid potential clients o(ZZText with respect to
customization and utilization. ZZText is a set of
classes that supports text editing, formatting, and
page layout. The actual text component of a ZZ
Text object is represented by one of the base text
classes, normally TStyledText. Paragraphs are struc
tures in a layer superimposed over the text that
constitutes each paragraph.

Note that all internal measurements in ZZText
are in printer's points and fractions thereof. There
are 72.27 points per inch. Note also that a "units
conversion class" is provided: TMeasure.

The model of the text managed by ZZText is
an extension of the classes described in the Base
Text Classes ERS. ZZText adds to this base-level
functionality the concepts of paragraphs, lines, for-

• ZZf£~t Layou.t aru£ t£aiting CfasSlS • • 2.7.2 . 1



matting, views of the text, text flows, and classes to related to such editing changes. This class supportS
support pagination. multiple discontiguous selections (although such

ZZText does not implement any "user views" functionality may not be implemented in the first
or presentations of the text. ZZText does not create version of ZZText), tracks the insertion point, and
windows, and does not directly support multiple cooperates in the handling of commands (yet to be
views of a text object (yet). ZZText does not direct- defined). Other types of editing changes (margins,
ly support even a single view of text, from the user)s etc.) are supported by other aspects of the ZZText
perspective. ZZText supports ITextView objects and classes.
through them provides an off-screen drawing ZZText provides a text manipulation environ-
feature. Text view objects provide the "mold" into ment that supportS sufficient control over the
which text is "poured," and conceptually they form appearance of text that almost any desired typo-
part of the mode~ not a true view of the model. graphic effect can be achieved. The controls pr<;)vid-
TTextView objects may be linked together to direct ed by ZZText allow hanging punctuation, drop
the flow of text, and may be contained within an capital letters opening a paragraph, etc. If there is
object ofclass TPageView. something that ZZText does not support, a client

ZZText manages "flows" of text. Such flows has only to add new properties and override some

Galleys are peers, linkeq?i9gether allowing ZZText text in a dialogij~]j).g;~~~~~~~:j:~::I:~?

to manage more than 9PsrIhis is not the same as a One ryp$~:~~~~gf:[:~::mn~nality that ZZText will

.... .. .... .' .:}::::;:::::::::::::::.:-:.,

... ))\>~{::::::

ObJ'eAct usclil~n·hg::~::L..~.··::.:::·:.:·;.:+:·:~.·.~.:.::..l~::.·.·::.::.:.·:.·:·.·~a::::.::;.:.::::l·.::;.S.'::.:.·..:m:

tan
;.:.:..•.•.......:+.:. +tiaptreOgara:.'E::·.•. ;:::m:::d.::::::.::.:::.:.;.:.·}~..t:•.n:.::::.(dj.•.·.::g.. :;::.·.::.::·:.·.l:.•·.r.n.;e.::;.:G.·::::.·e..;:.;;at·:hlleoyd~S.exAt

lar semantics fod;~~::i?~~Eij,::9i$L:Eh~.~:::9H§Rer ~~~uu ~ 1H m

grouping device:::::thP::ZZTexf::upamgmpli;;:::::iS:"'suit TEditableGal1iYWi¥.~(9.fJ.jf;ct wil1h~y¢Mfttain defauIt
able for many' Jd:.~·:·::i¢j::.:.:i::;~rif~~:h cl~ characteristics, indITffi#i:::/~.. p~J';lgaph style sheet
TParagraphs a protocol-onlydass. As an example, specifying a font, style, e'tc'~~ as well as certain de-
the paragraph classes could be used in an MPW- fault behavior. The default behavior of an editable
style editor to implement lines. text object will include keystroke handling, selec-

ZZText paragraphs generally refer to a style rion, cut, copy, paste, etc.
sheet (a.k.a. a property sheet) to determine their A client of ZZText also should establish a view
characteristics, such as indentation, margins, default (which must inherit from TTextView) in which to fit
font family and style, etc. This separation of para- and display the text, though ZZText will manage
graphs and the properties associated with them text and keep it "unformatted" if no such view is
makes the paragraph object a more general and provided. Also, at this stage in initialization, a client
much lighter weight object than a fully loaded para- should establish a "page view" ifone is desired.
graph would otherwise be. Also, it allows many Note that ZZText supports but does not re-
paragraphs to share the same properties. quire views of the text. If one or more views are

To support the editing of text with respect to defined for the text, those views will determine how
insertions and deletions such as copy and paste the text is broken, otherwise the text will remain
commands, the class TEditableText defines behavior unformatted. Also note that this mechanism should

• zzrr~.t Layout aruf 'Eaiting CfasstS • Mardi. 15, 1990 • 2.7.2 ·2



not be confused with a scheme to show more than
one view of the same text (still being designed).

In addition, a mechanism will be provided al
lowing text to be broken into lines to determine its
height, etc., without requiring that views or lines
be instantiated.

For ZZText to handle multiple independent
galleys and their attendant views, ZZText introduc
es the concept of a Galley Manager. The purpose of
this object is to determine which galley in a multi
ple-galley text arrangement (such as a newspaper or
magazine) is the "active" one, which galleys are
current and that need updating, etc.

Typically, the classes that a client deals with de
pend on the level of sophistication of the applica
tion for which text is being used. The "dialogue
box" case requires the creation of a single object of
class ITextView and a single object of class
TEditahleSimpleText. For more complex applica
tions, a client will likely uSe one or more objects of
class ITextView (possibly linked together), option
ally one or more objects of class TPage View, one
object of class TEditableGalleyText per article or
text flow, and one object of class TGalleyManager
to manage multiple independent text flows -( this
one is optional if there is only one text flow, but
recommended) .

.........
.:{::::;:::: .".:-:.:.;.".:.:.

including text processors and any \UW?I}iUJ
applicatiog.r.equiring complex text :::::II::r:f/
ad0I"I1IB~9tXmWJiple paragraph styles~:#t9J~

:;:.:.~.:::;:;...::::::;:;:~:::::::~':::;:;:::?':::;:::-:-:':::::;.. .-:.;::{t!r.~l!.~:..I~:~~!~~~~t}:··
-.:;:;::::::::}=::::::::-:-., .:-". ::::::<~:~:~:?~?:~:~:?:::: .

::::::::::::::::::::::::~:~:\~~~/:::::::::::.. :.: ...:.:

• ZZiJ'(.;(t Layout ani 'Editing Cfassu • ?daren. 15, 1990 • 2.7.2·3



List of FeatarC2S

FczGwrcz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Probable Pass

General Pagination
Force page break. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . Both
Prevent page break. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Both
Force column break. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Both
Group objects
Separate objects
River detection and avoidance?

General Editing
Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . First
Multiple Selections? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. First
Typing '. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. First

F0 nt and style chan g~~\?~:':'::'::';'::':'::':'::':':::':'::':'::':'::':':.:.::.:.::.:.:::.:.:::.:.::.:.:::.:.::-:.::.:.::.:. . . . . . . . . . . . . . :.:::{~~~::~::~t:~:~~~:j::~\~k:~:jJC:·~ . . . . . . .. First

Widow and orphan cqp;#-ol. <~:j~~~[I\:~\jl\I:::~:j~~~:j::~j::t. . . . . . . .. Second
Number ofallowaq!~:::~dowand orphan lines A::f::~N::l]:l:kl::~Ir. . . . . . . . .. Second

Depth (last line) ma.#.9.~€f§W~!~P¥W~~(all lines) matching ?::::fI::If:j~:::\:::~:I:1:II~I::j/

Device-depend~:riFth~tt~t:$p~drigy:~:::·:··.. . . . . . . . . . . . . . . . . . . . ...··~:::::::::;:m~:t::··~:.\~:.:"C:-:~:.;.mU.U<>~;:... Both?
Marginal notes and illustrations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Second
Running headers and footers ? Second

Variables, such as page number, date, etc. Both
Multiple columns *. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Both
Figures (probably a client-implemented feature). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Both?

Placement: exactly with text
At top of page
At bottom of page
On a figures page
Anywhere on a page
Maintenance ofsequence relative to mention in text
Placement on facing pages

Illustrations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Both?
See list above for figures

Tables (Not at first) Both

• zzrr~t Layout and t£diting CUlsses • 'Mardi 15, 1990 • 2.1.2 - 4



Equations, fonnulas (Not at first). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Both
Cross-references (Not at first) " Second
Bibliographical references (Not at first). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Second
Tracking* ' " Second
Kerning (Line layout and ZZText) * Both*
Margins and gutters *. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Both

Left and right-hand pages ' Both
Gutters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Both

Paragraph Justification*
Left* Both
Right* '. . . . . . . . . . . . . . . .. Both
Center*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Both-
Middle quadding* ' Both
Last line quadding options* , . . . . . . . . . . . . . . . . . . . .. Both
Justified*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Both
Optical alignment* (Line layout) Second

~~;:¥~;~:jl'I'lll'llllll~i:::::i<i::·:::i·:i<":":":":"""""·" ." .::.:.:..:.: ie~~;
Ladder suppression (~hth)*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Second

La:;:e::;:;;:~I~~::". """""".""""."".".."""""." ."."."... Second

Various leader options* ~:::~M]:::tM:l .

.:.; .•.. ~;;; .. ;;:;\.... . . :..:.. :.-:.-:.:~ ../.t.:r.:~.:j:.::f.I~!I;III;
................:-:-..;-:..-:-:::.:-::::::.:::::::::::::::::;.:-:-:...;.

......:->:.:.:-:-:-:-:.:.:.:-:.;-:-:-:...:-:::::::::.:..• ~:::::::::::::;\/::.

;.:.:.:.:.:.:::::::::::::::::::~:~:~:~:~:~::~~:~~~::~::~::::::':"-'

• zzrr~t Layout ani 'Eaiting Classes • 'Mardr. 15, 1990 • 2.7.2 ·5



Class Taxonomy

Class ttamv . Dvsc:ription

TStyledText From the Base Text Classes, this is the class that manages the actual
text and styles associated with a ZZText object.

TAdjustedText Implements automatic index adjustment to account for movement
through text (due to insertions, deletions, arrow keys, etc.).

TPropenies Repository for infonnation controlling the appearance of text in a
paragraph, such as indentation, flush parameters, etc.

1Tabs Specification class for tab stops. This class support all of the stan-
dard types of tabs, and the TPropenies class contains a pointer
to an object of this class. The full definition of this class re
quires more discussion with the International Group.

TChangelnjo Class that holds change information supporting incremental up-
dates and interruptable drawing.

.....

:-::::::::}}?))})
....;.::;.;.:.:-:•......;.;.; .

:::::::;:::::::;:::;:;:>
..'-:.;.;.:- .....

..<.:-:::::::::::;::~;;;;:~;~;:;:;:;~;~;;;:;;;;;~;;;;:;;;;;;;;:;;;;)falifien. Such returns force a new 'lln¢~j~;~#q<~~~l~\iriH~na:enta
'::::-':::-:-::-::::::::::::::::::::::::::::::::llon of the new line. No run array is r2:ifi.Htea::::tdt::paragraph

maintenance, but only one property sheet is allowed for all of
the text in a TEditableSimpleText object.

TEditableGalleyText Companion class to TGalJeyText and TEditableText. This repre-
sents the "standard" ZZText text editing object.

TEditableFancyGalleyText....Class identical to the one above, but automatically starts a back
ground task to accomplish fancy fonnatting, including para
graph line break optimization.

TGalleyManager Class that handles multiple, independent instances of TEditable-
GalleyTextobjects. Supports multiple flows of text, such as arti
cles in a newsletter.

TTextLine Component of a fonnatted paragraph. A light-weight object used
to render the text ofa paragraph.

TTextElement This class is used to stored infonnation about a paragraph that has
been "decomposed" into the atoms it comprises. This structure
is used to cache infonnation such as the widths of elements
within a paragraph. Such objects are also the basis of Knuth
style text formatting and greatly speed the processing of text

• zzrr~t Layout aru£ f£iiting Classes • :Mardi. 15, 1990 • 2.7.2 ·6



with Knuth's algorithm as a fair amount of time spent format
ting text in TeX is allocated to parsing the input. Both fast and
high quality text formatting algorithms can make use of this
concept. Also, by isolating the intelligence required to decom
pose paragraphs into words in an object such as a parser (see
below), internationalization is simpler.

TParser Class whose function it is to tokenize the text associated with a
paragraph. For English, this amounts to breaking the text into
words (and punctuation, if hanging punctuation is desired).

MI'rackable Mix-in for views supporting tracking protocol. This class provides
common protocol for all views that may become trackers (for
"handing-off" of tracking in multiple view situations, etc.).
This class should be mixed in to any view that may participate
in tracking the mouse.

TTextTracker Class used to track the mouse around multiple text views. An ob-
ject of this class keeps a pointer to the view that created it, and
calls methods in that view as tracking proceeds. Whenever this

:::::::::::::::::::::::::::::::::::::::J;~f.l.:cf:r~~:::risW::$~¥St·up its tracker status and another vieww~S§::::

.:::::=::;=:;:::.....

a page, it :4Wqj)mr require i#.#:f/if/p#9A\~l!iect be instant#M#!Wf'Bl~m:::::}

page refer6p~#~~m~:a ITextVt~#f9Pji~~jj~m~ybe nil. L:-:-:-:-:.:-:-:.;:;:\::~~~~(\::;:;::::::~:::···

about direct manipulation of text. For the sake of this ERS, I
assume that there will be, at a minimum, some type of "on,"
"off," and "dim" highlighting protocol, and that it may be up
to ZZText to define the protocol for blinking the insertion
point.

ITextCommand Base command object for text editing. Undefined for now, but
will likely descend from TCommand or something similar. The
exact definition of this class will wait, pending work by Arn and
Larry in the areas of undo, redo, and voodoo.

TCutTextCommand,
TCopyTextCommand,
TPasteTextCommand,
TStyleCommand,
TFormatCommand,
TlnsertTextCommand Refined command objects base on ITextCommand (above), im-

plementing the various text commands. These classes will sup
port the Pink "clipboard."

'* 'l<f-gisterd/R.t.striad • zzrr~t Layout aruf tELiting Cfasses • 'J,{arcft. 15, 1990 • 2.7.2· 7



TPageView

MBaseTextView

TContainerView* ..

TView*

1111l'illl
I
I
I
I
I,

-,'

TEditableText

C~angelnfO )

" ~
" I, \

// /C TIracklnfo ) \
: ' . \

I \
I I
I I
I I
I I
I \
I I
I ,
I I
I I. .
I I, .

\ .
\ ~

" '.
I

TEditable
SimpleText

···;~,~;·;·;,·~:,;·~·w;s:~:,-:~~~,:;~~:-;~:-:·:"·,,,~,,··

TAdjustedText

C~~xt~lenl~nt )-'{~,~r.~rs:. )"", ~. u"l'" , @

,/u.u.mu...u.uu...u...u......u~'~: uCTr~)
, \

" \

" ",,' / " :::-:....... ...
\
\

" .'1...........:ii~i!:;t(ijJ~,i;f\lrli'li!ifi
}.at ._._.~._.~.~.}._ •.•).:.r..

I
I
I
I
I
I
I
I
I
I
I
I
I.
\.

I.
I
\
\,,

I
I,,

\
\.

I,,.,
I,,,

\
\
\

I,
\,,,

•

•

f
;::-.

~
......
\.C

~

~
~

~
~....

t
~
~.

~
~

.'~
~

~

~
~.

~

ZZText Classes Familv Tree

Reference

Inheritanceo I
* Class nOl.defined in Elite "ill
::::~:(::;::::~:::::~:::::::*:.::~:~::::~:::.:::~:.::~.;.$~:::;.:~~~:::~ w-~:::.:=!<:::~m

TGalleyManager !:::::::-:-::- .....

...............................................0::

•

~
~
N

c.:.



This is some styled text in a galley object. lIText within a galley object may be styled, and galleys contain paragraph information .
~ .

~
~.

~
~.

~

•

~
~.....
$
~.....

l
~
~.

F
~

•

~
~

~....
t2
<::)

•

Styles
. ,'.:.;.:;::::</::-:.

TGall~~~~~~i!:i:lli;lil!iii;!::

re:~si:~:i::~ii~J~~.~}~~~~;j
~ect. j :))klever take text to'l .

~ext within a gal- ! \.~~SIY, ~ill
~ey object may be 1

~tyled, and galleys j
~ontain paragraph l
1nformation. 1

~hiS is some!
1---- !

The text in this

1 • _

~ - - - - - - - -

Notes: Multiple"Vfews of the same text would be
implemented at the user view level.

Page views descend from TContainerView,
but the links between TIextViews is independent
of all TView and TContainerView information.

~
:"
N

I..D
Views, Calleys, and Text



This class implements behavior allowing a view
to be linked to views logically "before" it and
"after" it. Both TPage Vuw and TTextView descend
from this class. Conceptually, a descendant of this
class may represent either a column of text or a
page consisting of columns of text (but not both
simultaneously). Linked objects of class TTextView
are analogous to columns, while objects of class
TPage View are pages, or groups of columns.

One area requiring great flexibility when han
dling text is what to do when text hits the edge of
the view, whether the edge is a side or the bottom.
In order to provide the greatest functionality and
flexibility, ZZText supports two concepts: the

gular. Also note that this has nothing to do \vith
text that gets pushed into a new region as a result of
an insert if that region already exists. If an
"overflow" region is available (the is a view in the
chain following the current viewl), then the current
view is not grown and text is "flowed" into the
available region.

For text processors, the default behavior \vill
likely be not to grow or stretch a view when it is
overrun, but to put the overflow text into the next
view in the chain of views. This behavior is auto
matic if the pointers to the stretch limit and grow
limit rectangles are both nil. There is a subclass of
TTextView called TStretchableTextView that
implements the stretching and growing behavior.

Strfltch Umit

"--- ...1.-....J...--- Grow Umit

Diagram ofStretch and Grow Limits

This is some sample text.
Here is some more sample
text, which is not as nice as
the first sample text but still
better than about ninety
nine percent of other sam
ple text. Honest.

• ZZry~t Layout aJUf'Etliting Cfasses • :MareN. 15, 1990 • 2.7.2· 10



:layout

This class is a container view for objects princi
pally of class TTextView. Its chief purpose is to
group objects of class TTextView together in a way
that allows computation of such typographic re
finements as matching colUmn depth, overleaf page
depth matching, etc. Note that this class is a sub
class of TContainerView, rather than TView. This is
a result of the notion that pages are simply view ob
jects that clip clements to their boundaries. In an
application such as MacDraw, this is not necessarily
the case.

TTC2xtLinfZ

This class is essentially identical to its superclass
(TTextView) except that this class implements the
strech and grow protocol described above. Note
that stretching and growing is not the default be
haviour of TTextView, though the paragraph classes
always attempt to stretch a view before overrunning
it, if there is no next view in the chain.

on how it will look. In addition to the properties of
a text view, other views may define a relationship to
this view. This allows such functionality as automat
ic adjustment of the origins and sizes of views when
footnotes are added, as well as aligning baselines in
adjacent views.

Lines belong to paragraphs (which generate
them), but are used to present the text given a par
ticular view. Normally, a view neither creates nor
deletes lines (this is done by paragraph objects ex
clusively). However, it is desirable to maintain lines
without necessarily maintaining paragraphs. For this
purpose, views may occasionally manage line objects
directly (they never create them, though they may
delete them some time after the paragraph that gen
erated a particular line has been deleted).

. .....

..............

If there is a shape .:#~giP9:f::W:S:JS~ is fitted into the line is Ji.~}~W~~~[J#fw:e view but not the first in

TGPoint sizeAB(200, 145);
TGPoint sizec (415, 200);

~E~g~j;~mil~~~:~t~xtView(s izeAB. lJIIII;
loeatioAAFi)}t,):::::,:·::··· ..;:;:;:;:;:;,;,;;:;;:

TT tVi w* rNl;\l;;;;:::~::::;;:1T~xtVie ( izeAB ..;:;;:;::;;::::::::.' '::::~:::r:)[njf:::n::m:r)I:': :.::;.:::::::;.>':::;:(:::::.;:.
ex 1oeea t iorii)%:::[:::p:'",;:-.·i::!:!·(;:··::···:·:::·::::::..::::::::::;::::.:::.:;:::,?~:::):jjj~}r:'::·· "::::':':'::::::::':':':::';:.:::.:::::.;., <\{,:::::::)::::::::':.:'

TTeX\V:e:Wt*iO~~~~r::.:,j· ••.·•.~..•..e.i.w.••'.•. :'.d.T..•·.1.•·.•e.;.t.•..i..t.:.v.••.•..J~~.:(:~[~tNP/:·· TPars ~·:r:mm:)··~··:~):i.:lii, ••i·i:···:}:,::::::
. .-:<:::;::::::::::-;.;.:.: .

a View->SetNext (bViewfY::::': . ;::.:::::::: .
bView->SetPrevious (aView) ; This class is responsible for decomposing the
bView->SetNext (eView) ; text of a paragraph into "words." In early versions
eView->SetPrevious (bView) ; of ZZText, this will support only languages with

relatively easy-to-recognize word delimiters (like
English and spaces). It also recognizes punctuation.
The interesting thing about this class is that it is in
cremental. That is, given an arbitrary insertion or
deletion (or combination), this class performs the
minimum work necessary to restore the target para
graph to a state of full tokenization.

This method is extremely fast, and has two
positive results: the tokenized paragraph can be re
formatted much faster in the simple case (adding up
widths until the line overflows) as only a few addi
tions are needed per line. In addition, since Knuth's
paragraph breaking algorithm uses tokens, the para
graph is already in a handy state for "optimization."

TStrC2tchablflTC2xtViC2W

• ZZ'[~t Layout and f£aiting CfasstS • '.Mardi 15, 1990 • 2.7.2 . 11



terruptable, it is normally the responsibility of the
client's code to disable formatting/drawing until
the critical section has been updated. Note that the
interface for controlling interruptability, etc. is pan
ofother classes, such as TEditableText.

TPropflrticzs .
The properties of a paragraph that control the

way a paragraph looks are not stored with the para
graph. Instead, they are stored in a paragraph prop
erty sheet, one of which may suffice for many para
graphs.

Rather than attempt to implement all of the
This class implements text tokens for format- properties that any client could ever envision (an

ting. Basically, tokens are words (in languages that impossible task), there is instead an extensible prop-
have the concept of a word; p.9.~p.l~ ~.;~~'p'g9.v..$..j.g::: erty mechanism provided that allows the sc::t9fpara-

The incremental aspect of this class is carried
one step further: it can split a paragraph into two
paragraphs by retokenizing the affected text and
then moving tokens following the paragraph break
into a list ofobjects for the new paragraph. In addi
tion, a parser also may join together the token lists
of two paragraphs that become one as a result of a
deletion. This is analogous to the split case: the text
is retokenized and the tokens from the second para
graph are added to the list for the first. The second
paragraph is then deleted normally.

<Minimum line sp;iiWg¥*:..{~!.;##ipdtiJ.5>:nuitiplier' *
<nlJturalline spacing') +""liiJding constant' < «maxi
mum line spacing'

This class implements a cache of information
needed by the pagination methods. It docs all
records-keeping required by the incremental refor
matting code. Among the elements kept track of by
this class are the index ofwhere reformatting should
resume following suspension to handle user input,
the range of text affected, whether or not the refor
matting process is interruptable, etc.

This class also remembers where drawing was
suspended when lines are being drawn into a
TTextView. Again, this occurs as a result of user
input interrupting the reformatting code. Note that
both the reformatting process "'na the redrawing
process are incremental and interruptable. If the
change affects the document in a way that is not in-

Note also that the arithmetic for calculating an
unconstrained line spacing value is a first-order
polynomial (of the form y = mx + b), where x is the
natural line spacing derived from the height of the
tallest font on the line (e.g., ten points), b is the
leading value (e.g., two points), and m is the line
spacing multiplier (e.g., 1.2). For this example, y
would be 14 points(y = 1.2 x 10 + 2).

• zzrre~t lAyou.t and'Eaiting CWsses • • 2.7.2 . 12



TParagraph TFancyParagraph

Clients will note that this class is derived from
two classes representing styled text and runs of
paragraphs. The implementation of this class is
roughly similar to the implementation of style runs
(please refer to the diagram).

TGallflyTflxt

A protocol-only class defining the basic
behavior of paragraphs in ZZText (note the pro
tected constructor in the class declaration).

This object has nothing to do with calculating
minimal updates for painting text as it is typed; that
behavior is implemented in class TSimpleParagraph,
the superclass of this class. The chief function of
this class is to provide a' "beautification" method
that may be invoked on demand, or automatically
via some "beautification process."

This class supports a relatively light-weight The superclass provides a fast, first-fit algorithm
paragraph with respect to the number of member (stuff text until there's too much, then stretch the
fields. "Simple" is somewhat euphemistic, as this sp~ces to justify, with no hyphenation) to give the
class implements all protocol for breaking a para- user an idea how the paragraph will look. Some
graph into lines, albeit simplistically (hence the time later, the beautification method is invoked
name). The basic algorithm for line breaking is first when it will not interfere with the user, and a new
to make sure that the token list is up-to-date by in- "optimum fit" set of line breaks for the paragraph is
crementally retokenizing the paragraph to calculated. The new line information is substituted

.......;::: ..
.',;",:-:.:.:.'

:::::}}frl\t~~}:;::::::::::::::::
..................:-:-:;:::::::-:.:.:- -

Choosing a long <pme:.maY::::H::sult in some where the next chacicterWiWBli.nserted). The style
delay. The interaction between this class and at this index is the old one, not the new style estab-
ITextView represents the most complex area ofZZ- lished for typing. This class compensates for this
Text, chiefly by virtue of the fact that these two condition, and others, including deletions and using
classes account for most of the code in ZZText arrow keys.
(scrolling, painting, measuring, etc.). Clients should not normally deal with this class

In general, the formatting process generates directly, or even be aware of its existence. This de-
lines as atomic units. As lines are generated and as scription is included for completeness.
the last character position directly affected by an ed-
iting change is passed, new lines are compared
against old lines to determine when new lines are
no longer being generated. When this occurs (lines
have "re-synchronized"), formatting stops. If a cli
ent should choose to override this behavior, ex
treme caution is advised. Even if you know what
you're doing it is easy to get this wrong.

TSimplflParagraph

• zzrr~t Layout aru£ 'Edit:iJtg Classes • • 2.7.2 . 13



It probably will be true that the algorithm for
removing tokenized paragraphs from the tokenized
paragraphs list will never "un-tokenize" a paragraph
that is also on the ugly paragraphs list.

This is the class used by TEditableGalleyText to
implement storage and run maintenance.
Specifically, this class implements runs representing
paragraphs (complex paragraphs-not the "fake"
ones used in class TEditableSimpleText). This class
controls the number of paragraphs that may be to
kenized at one time, as well as maintaining the list
of paragraphs that have not been "beautified."

same TProperties object. In reality, there is only one
paragraph (just the appearance of multiple para
graphs) in this class.

TEditableSimpleText should be used in cases
where the text is relatively short (dialogues, etc.)
and minimal formatting is required. This class is not
recommended for button, labels, etc. (it's too ex
pensive).

TEdilablflGallczyTczxt

TEditableFancyGalleyText text(firstView);

sizeStyle = new TPointslO();
text.TypingStyle()->AddStyleToSet(sizeStyle);

THangCountStyle hang(l);

...and that's it. The client has the option to
specify a different default typing style (the system
default style will be used in the absence of a client
specified style), and the default property sheet may
~ changed arbitrarily. For example...

This class implements a relatively lightweight
editable text object. This type of text object should
be used in the text edit fields of a dialogue box, for
example. Paragraphs are not supported directly by
this class, as they are implemented in classes that de
rive from TGalleyText, and this class has as its foun
dation an object of class TAdjustedText. Note that
this class give the appearance of simple paragraphs
by indenting the first line following a carriage re
turn. At most one line in each pseudo-paragraph
may be indented (note that TEditableGalleyText
supports multiple line indentation, including hang-
ing indentation). .

. All "paragraphs" in the text backing up an ob
ject of class TEditableSimpleText must share the

This class and TEditableFancyGalleyText are the
principal classes used to manipulate single flows of
text through one or more views (derived from class
TTextView). This class insures that all paragraphs af-

This is essentially a protocol and support class fected by an editing change are updated before con-

~!~6~[~~f~IIIII,!i§;)f~r~f~iili!~~~:::;
deletions. l%mm(:;:::::::::::::::;:::::::::::::::::::::::::::::::::::::::::::::;:::::::::::::::::::::::;:;:::::::::::::::::::;::: a line, and only \yijiij:::MMt,¢.@t:directly affected by the

TEditableText mainijijf.is the typing style. This editing chang<;:d,:#t~tJ?'#'~ijt:tipdated. For example, if
style controls the appeam#ce of text as it is typed, if ten characte;~~:~i:~:wPi9.##idthe resulting change af-
appropriate. In additio#.:¥¢.QP:~~Ji9r:tSare made auto- fects two mi4.gf.ft]OO~m:[~ a twenty-line paragraph,
matically to sense con@ii§#.~[~[~i.~~::M:[4¢J~pp'g to the formatting:m:[:Wmmmj#§#tlje interruptable until both

~~~~~ft~~iii~:if;£ij¥~~I~'~~;lll'l;~f§1tli'li~~
TryToFinishFon#.##imfH$mMmF-thod must ~J?:i#.F gation (ch#~ijg~::~::)4PiUing) will qQ~~.~::~:#.#.~ilrily be
ridden in subcl3M~?:@t#.ll?:~?:~if~~~GffM~!rext) draw immediijWtf#:§*-~ are flagg¢4r~}~jije:eding to
to determine ifany::(q~@#g9*:~9P'g:ierhains. be drawn," and::i#gtij~t::P3SS tll,fqHg~(the views dur-

TEditablC2Sirilp
iilt;;rt ing i#:ti:~n~:~~~!~!'~~:f10w (through

one or many views), this class is recommended. To
use this class, establish an initial view (or views,
please refer to the code fragment in the TTextView
section) and do the following ...

TEditablflTflxt

• zzrr~t Layout ana'Eaiting Cf.asses • 'Mardi 15, 1990 • 2.7.2 - 14

THangAmountStyle amount(24.0);
text.DefaultProperties()->AddProperty (hang);
text .DefaultProperties () ->AddProperty (amount);

...sets the default type size to ten points and
sets indentation at a third of an inch for the first line
in each paragraph.

Open Questions
• Tracking, selection and auto-scrolling?

• What about a system-level style manager?

TGallflyManagflf
This class manages multiple text flows, such as

the articles in a newspaper. For the sake of discus
sion, the "active galley" is the one with the blinking
insertion point; the one into which non-positional
events will be directed. The principle role of this
class is simply to maintain a list of objects of class
TEditableGalkyText, and to remember which galley
is the active one. :{::: :::::::::······:-::::::/:::::::::::::::·:-\\}}:)::f:::::<::::}:::{:::t~ {/f

t~~~~~~~~o~)~:~!~j.I'.III~t
TEditTflxtSql:i2ction

This class is a:jllll~llill~:.i·I.lill~:·:·::!~WK4#.#.%lf.ction
~~e~~e~d~~e :;~:IIII~II'lllli~: ..
g~n~~~it~f:T;~~~!ff'i!~I·jlll.llli:·i:::~~:::
(multiple, discontiguous selections ife:Wijp_f:q~t~::r

~t~~)~gh exactly how they will be used is-:::~~·:I~I~:ll:·:~~.II!1

All objects of class have at least one obje6Mgftmm~
class TEditTextSelection in a list of selections. TRk:{{(

~~~:: ~~ied~~~~~~~~:~lf~~~\:;~111
than at its head<'fP#·E*###.~f:!.ign in the selectioti/fflP
is automatically ####1fiJ/l1iH#JK·mrget for aJl.]J~#.Yi/o

sitional events. Th~·:t~1'l~~~.:m~~·~¢~~91,jHpbject
may not be deletdliStha~·g##¢y¥:##:meChanism
would not know ifits rargefhas::bediremoved.

ExamplflS
This section ~llbe.~~written eventually.

• One item not covered in this document is
how background tasks that have completed
updating a part of the document (e.g., a para
graph) will synchronize the update of the dis
play with the current user activity. Later. -

• Headers, footers, footnotes, table of contents,
etc. The specification of these will come fol
lowing some more discussion with the Jane
Folks. For some things, (table of cOIgents),
some type ofactive value m<:.sJHP:~:mJ:iy.::be a
good idea. . ..-:::;::::::::::.:.:.:::.:::::::-:.:-:.:- .

..::::::::;=;:::::;:::::;:;:::::::::;::::::::....
:.:.:.:.::::;:{.;-::):::::.:.-

• Commands aI14::@¢,!~~~[.. what do they
look like in t.h~1~mKl@Qgrammingmodel?

• Readingt~llllli!.II:{:text ... will be covered

soon:~::~jii·I:lli!lllllil·ililili!·\ljilii~II·I·l:li:11111·lil·?::'-

~ .lt~II~~~~:e~~~llf~'lllt~~~~~
until ili:eroom'Jeft over was ::zero{:=:::·::·····

• zzrrqt Layout aru£ f£aiting Cfasse.s • Marc1i 15, 1990 • 2.7.2 ·15





• Registered/Restricted Line Layout March IS, 1990 2.7.3-i





1. Overview............................................................................................... 1

What Line Layout is ; 1

What Line Layout isn't : 1

Why use Line Layout 1

2. Where Line Layout Fits into the System 2

Graphic System (Albert) 2

Low-level Toolbox 2

Fonts ~ 2

3.

. ... .;.:.:.:-:.:::::.;.:.:.:.:.:::-:.:::-:.:.:::-:::::..

4.

5.

TStyledText 10

TCaretPlace _ 10

TlnsertionPoint 10

TI..ayout 10

6. How To Use Line Layout. 11

Setting Up a TLayout _ 11

DisplaYing text _ 11

Highlighting _ 12

• Registered / Restricted Line Layout March 15, 1990 2.7.3-ii



Hit-testing and Carets 13

Measurement 14

Justification 15

Line Breaking 15

7. System Defined Styles 16

Graphical Styles: .' 16

Styles that Affect Glyph Determination: 16

Styles that Affect Glyph Positions: 17

8.

9.

':':<':-:-:':-:';':-."....................................:.....:-:.:-:::-:::::::::::::;:::

TLayout s~{f :.:.L.:~~:.:~~~:~:..~:~~:.. ~ :~.~~:~~:~:;~;~~:~:~:~:~~~~;:.~:.:.:.~ 23

Fixed Point instead of GCoordinates 23

Appendix A- Concepts 24

Ligatures, accented fonns and accent ligatures 24

Applied marks 24

Contextual forms 25

Automatic Kerning 26

Automatic Cross-Stream Kerning : 26

Optical Alignment 26

• Registered / Restricted Line Layout March 15, 1990 2.7.3-iii



Hanging Punctuation 28

Baselines 28

Character Reordering : 29

Split Carets 30

Glyph Metrics 32

Appendix B - Application Design Requirements 34

Paragraphs, Tabs, and Rulers 34

Multi-Columns Pages 34

Font Archite~t:are i:~~~t~mm~imm~~tt~~~ " 36
;:::::;::::;:;:;=;:::;:;=::;:;:;:::;:;::::::::::';';".

:.;.:-:.::-:-:.:-:.:.:.:.; , ....................

Line Breaki~g : :.: ·.~.: ~:.:.:::~:::::~:?::.:~: ..:.:;:.::.. ~..:::~ 38

Device Dependency 39

• Registered / Restricted Line Layout March 15, 1990 2.7.3-iv





1. Overview

What Line Layout is
Line Layout is an extensible set of objects used to display single lines of fully styled text. Besides
displaYing text, Line Layout also provides methods that aid in the measurement, selection,
positioning, and highlighting of characters. Line Layout is for the rare programmer who wants to
write a text formatter. The avarage Pink application programmer should not use Line Layout, but
should use 'higher level' objects such as ZZText objects for text display and editing.

A rich set of typographical formatting controls are handled automatically by Line Layout. The
typographical control supported by Line Layout is a superset of the controls provided by high
end programs available on the Macintosh.

. '.

distinction neede(M~stJwnql.~.~rabicscripts correctly when mi7~mm~:~t:n::nBPtArabicscripts.

What Lilllllillllll'fll~i;

services dea,g~~~~·:!~~~·I~~;~ons. .....{::~:Jj~ij~11~;~ff~::::· ··:~\it::::j~j~::.:)j::::i::;;;;:~:::~::;:.: :...:::.::::"'. ::::;::/:i:::::::'
. • -:.:.:.:-.. :-:::-:-:.:<:::::::::::::;:::<::::::::::.: ~. ••.. ' :::::::~::;:::::., '::::~~f\f{~It\t~}:: .
. :.:.:-:-:::::<::::::::::::::.::}~.:::::::}::::::::::: ;:;:::::::::;:::::::::;:::::; :«.:-: :>:;::::::-' ..

The reason an application should use Line Layout is that it hides the complex details required to
support foreign languages and high quality typography. An application programmer using Line
Layout and following a few simple guidelines should be able to create foreign versions of an
application with little or no code changes.

Also, the toolbox internally uses Line Layout to display text in everything from dialogs to
window headers. The standard text editor is also written on top of Line Layout. Applications that
implement their own layout algorithms risk having a different and possibly incompatible human
interface.

• Registered/Restricted Line Layout March 15, 1990 2.7.3-1



2. Where Line Layout Fits into the System
Line Layout sits on top of the Graphics and Font system, and on top of the low level toolbox.
These systems have no textual interfaces and are not dependent upon Line Layout. The following
is a brief description of the pieces of the system that fit together to get text to' display.

Graphic System (Albert)
Line Layout sits on top of the graphic system. Communication is one way, Line Layout instructs
the graphic system to draw or highlight objects. Line Layout does not use the graphic system to
obtain character information, including hit-testing informationI-Line Layout does its own hit
testing.

Fonts

~~~:>:::::-:-:':-" .
....

Line Layout

F
o
N
T
S

Low-Level ToolBox:
includes styled text and collection classes.

Graphics System

. Figure 2.1

1 Hit-testing is the process of mapping a mouse or cursor position to an object. Normally after
an object is l1it', infonnation is visually passed back to the user indicating that the object can
be manipulated.

'* Registered / Restricted Line Layout March 15, 1990 2.7.3-2

3. Important Concepts
This section deals with concepts that are fundamental to Line Layout and to this document.
Appendix A contains a glossary of other concepts that are also important but are more commonly
understood and are not as fundamental to the understanding of this document.

Characters, Glyphs and Unicodes
A character is an abstract object having a single and unique semantic or phonetic meaning.
Glyphs represent graphical apPearance of characters. For example, the glyphs A, A, A represent
the character A.

f!fi:~:?jiJ~II.m1~~ii~S~5iita~~iE~;s··
Glyphs do not hav~·iii:LtO-lrelationship to characters: dePendigg~~~~!:I~II:llli,~::agiven character
may be represent¢4q?Y:P.:Q~t9T.mpreglyphs (i could be repre~nt~~:PM¥p~#~f·),and two or more
characters can di~RmY~!i::~::~~~g!~::g~y:p!t.(fand i could be repri1#}~gg]?:y:::I}~The ~?J:l~extof a

F0 nts1;;t11ijJiiiilllr~tl[III!lli ••••••••••.......•.•••••••...••.•••.•~..•..•.••..........
A font is a cQl1~9P~.glyphs that gener¥lll~e some eleritl~.q~~.iistency in tl~~f[
appearance§::~~~g~·::§~qf~/:Qt§.:troke thick~:~iltPonts aIso contairV9:~n~r~:~ilifQrma tion su¢hm~§bMnkh

~:~~:~~~I~fll~Khl~~;lq~I~,~!)I&ms.Within a font, e,;ary~ql.!~.:.S~.~~i,,\~!~lla 16-

A complex font is a font that contains information associating some glyph IDs with certain
combinations of characters and rules. For example, there may be some information in a font that
associates the glyph ID $lADl (which hapPens to have the apPearance 'fi') with the combination
of the two characters $0066 ('10wer-ease f" semantic) followed by $0069 ("lower-ease i"
semantic). Any font that contains no such associative information is called a simple font. The
glyphs in a complex font divide into two classes: rendering fonns, for which combination rules
apPear; and character glyphs, which have a one-to-one correspondence with character codes.
Rendering forms include ligatures, applied marks, and contextual forms.

Fonts provide Line Layout with the information needed to make typographic and script
formatting decisions without a user's explicit involvement. This contrasts with traditional
systems where a user must make an explicit decision on a font by font basis-as a result users
settle for low quality output because the burden is too great.

The Bass outline font documentation provides more information about the structure of fonts.

• Registered/Restricted Line Layout March IS, 1990 2.7.3-3

Styled Text
Line Layout makes heavy use of Styled Text objects. The application programmer must
understand how to use Styled Text before he can use Line Layout.

The styled text object is the collection of characters (also known as the backing store) that
comprise the text for display by Line Layout. All editing of text object is an application's
responsibility. An application is also responsible for passing a text object to line Layout for
display. The characters in a text object should always be phonetically ordered as appropriate for_
the language represented by the characters. Line Layout will display characters in their correct
visual order if the characters are phonetically ordered-the next section shows why the two
orders are different.

A text offset (or character offset) is an index between characters in a text object. A text index is.~~e

..
.:.:-:-:<.;.:-:-

... ' ..

2 This phonetic ordering facilitates many processes upon a text object including text input and
parsing.

• Registered / Restricted Line Layout March 15, 1990 2.7.3-4

Character Ordering vs Line Direction Script Ordering

Assume that characters typed in as ABCD appear as DCBA-as characters might
in a script that flows from right-to-left. Also assume that the characters efqh
appear as efgh-as they nonnally do in a Roman script. The ordering of these
characters within a script is refered to as the character ordering.

Character Ordering

Assume characters typed in as:

~ appear as:

Ielf '11;ifi\I;I;tjjli~iijllll' ~ Ielf 1,:tf\;I"~tllllllll~ii;[;IK}t
~~:a~~:I~~l~f~:~~~:~:::~:~x~Pl~~~:b~irllr,~~:~~er
DCBAefgh or ~f.ghDCBA. The correct ordering depen(~gfMmBh¥pif the user
intended. Thi~:~·~Q!g\l.!:tY::i§...r.esolved in line layout by .~qgmg~:l~:~~ip¥ direction

::::~:::::::: ::::::;:::~:~:~:~:~:~~~:::::::::

Highlighing the contiguous characters CDef in the text
string yields the logical, but strange and correct results
shown below. This is known as discontinuous highlighting.

Figure 3.1

• Registered / Restricted Line Layout March 15, 1990 2.7.3-5

4. Features of Line Layout.
This section descnbes the various Line Layout features that are visible to an end user. The major
part of Line Layout's work is the construction of layouts that describe the appearance of a line of
text. To construct a layout, Line Layout needs not only a source of text, but also style information
and other options that affect a line's appearance. Four classes of features act together to transform
the appearance characters into glyphs, and act to position glyphs. This section list these features
by their class type. These class types are: Graphical Features, Layout Features that Affect
Character to Glyph Mappings, Layout Features that Affect Glyph Positions and Glyph
Adornments.

One important thing to keep in mind: the layout features described below are mandatory for
international text, which has many attributes that low-quality English text never needs. While
these features are optional for English, they are vital to the correct rendering of text in many other
languages.

Appendix A proviq¢$::additional detailed information for many ~~~pm~F~~~~¢.4here. The actual

•

• :T:exX:::.:t..::.:::.:;:.:.t.:'I~.O..r~.j:.;n.:ii.O.:.b:::::.:.r::..e.:.::.::..::..:::::::::..:s.::::.:::i.::.

t

.::.::: ..:..

Y

:::.::.::..:..:

1

..:::::e:::..:: :.: d.:.:.:.:.::: ..w.ith any c.o::I.::.O:.:••: .•:.:::.:••::r::..:.::::::::..:•.:..::..•.::••:.:..::•..:•.•••.:..•.•:.:.:•••:.••::!.•·I.!I!I';::':"~l~ll~~!I[l~1
A u§ijr:~Q~!;~~*~·(n::~9ymjffiF~i~e, including fractional"$i~#:.::::::::::::::...

,'.:.
::::::::;::~::::::':::
:::::}:::;::;: .:-:.'.:'.'

::::;::::;::::;::: ::;::::-:-:-:.: .
:::::::::\:::::;;::::::::;>::::>"

.'';':':';':;:-:-

....:.. :::::::::::::::::::::>:::::::::::::::::::::::::::::~:~:~{:::::::;::.:-: ..., ."::':::{({~~~~{::::::::::::::::::::::-:'

The graphic feature set WIll be expanded to include outlined characters, bOid"dlaracters, all your
favorite Macintosh character styles, and more.

Layout Features that Affect Glyph Mappings
The following features affect character code to glyph code mappings:

• Font

Text specifies a font for display. If a font is not available, appropriate defaults specified
by the application or the system will be chosen. Fonts are specified by their name rather
than by an 1D number as on the Macintosh. Outlining and shadow effects are a function
of the graphic system and are currently only specifiable as a separate font.

• Registered / Restricted Line Layout March 15, 1990 2.7.3-6

•

•

•

•

Line Layout will display a missing glyph sYmbol for a character when a font does not
have a glyph for that character. In the future we may provide an alternate user interface
for missing characters; one where we try to find missing characters by dYnamically
scanning a font hierarchy until a missing character is found. However, Line Layout
would need support from the font cache and/or font manager before: such an interface
could be implemented. An editor should use a similar font substitution mechanism to
style text appropriately. This would allow a user to type any SYmbol or character without
switching fonts.

Ligatures

Fonts can instruct Line Layout to display sets of characters as a single glyph. For
example, an 'A' followed by an 'IV in some fonts will display as an 'A'. More commonly
fonts display 'f' and 'i', and 'f' and 'I' with ligatures, but character pairs like these are best
display using contextual fOnTIS (described below.)

~~~~Eif'II'~!~~:~=t:~1illl!f~~;;~e
{}}\.

Context1~~.liil~!~:~.\:.~:~\::~~::~;~~~~~~:~~~~\:\::\:~:~U~t\t::::.... . .....:.:-:'::::::::::-:.:..:..

Current Macintosh users must rri~6qi~~yJypea c6nr~t!~tt9IDi, for exampl~:·8P~9:fif§1}lH

~::~::,~::~~a~~~e;e%t~~~:lIat:~~:~:I_II~~~~~~~rll_11'

altltliEr~:;i~j!~;;~r:;E:.j'~!i~f:~,t~:~~11~~t
Reo;d~f~h~::···::······H)/{::•.•.••............:.:.... ..::::::::}::.::::{::::::::::::::..

.-...... .. .... .: (I\.\.~!~~U~ti>:«~«-·-<······-·-···
.. '.'<'-'~-:'.-" "," . ",

Line Layout automatically reorders characters, per a font's instructions, for characters in
lndic languages. For example, a word typed in as 'hello' may display as 'ehllo' in some
scripts. Current systems force users to type the characters according to their visual
appearance as opposed to their spelling.

Layout Features that Affect Glyph Positions
The following features affect the placement of glyphs:

• Super/Subscript Positions

Superscripts and subscripts are relative to the baseline and proportional to the font size.
For vertical text the baseline is usually down the center of characters, and
super/ subscripts are to the right and left of the baseline.

• Registered / Restricted Line Layout March 15, 1990 2.7.3-7



• Letterspacing

Letterspacing is for moving pairs of characters closer together or farther apart. The
amount of movement is proportional to the font size of the characters that contain a
letterspacing style. Letterspacing is also known as manual kerning.

• Kerning

Kerning automatically shift pairs of characters closer together or farther apart. The pairs
can shift in both the horizontal and vertical directions. The behavior of the shifting is
identical with letterspacing and super/subscripts-the difference being the kerning
amount is from a font and the letterspacing and super/subscript amount is from a user.

•

•

•

•

Tracking

Character widths·~~n·.~~Pf.:~9~J?ES9.~~F~ctedby applying a tracking value to.a ..
character. Thi~ Y~~~j~=:~::·~~~p~~~r:~EP~~¥.~ to the width of characters. A font,.'~eRending

:::~JII~IIII~~;c~~~:S:::~;ii,illll'i'j;*~c~ng
This is the.l~pi1ity to ignore white space for purposes of4lJffimM]:@measurement on either
end of a 1~9~Mft~t~t:~~r§m9tmmming allows space ch~#.§t.it~~\~9~8mg into a margin. In a

:-:.:::::~::::::::::;
..

Line L.~Y9H~ also can add extensioJ!'I~~I~betweenc~I~~~III~IILrsivescript;[:!~~:::\:,··::::;\il:··;:i;:i:;::;H.'
spegf~i9:J?}<~4pnt.This functionaH\§f:\l,:~fknown as Ka~g~~:~9rJn§ertion Justif~~m?:r(·:·::.:#:: .

~~1~1ij~~'ili~~.:~:.,:;;~;~#bar commolliy U~;III~I;: ::.~.tS.fJ;i······· ..
Overh;ri~rigPM¢~ti6riY6Ptical alignment ..... .;.:.'.'" .

These features allow characters specified by a font to 'hang' into the margins. Optical
alignment gives the illusion of characters being flush with the margin while they really
hang over the margin. Overhanging punctuation such as quotes allows punctuation to
hang into the margins. This allows text to appear flush left or right from line to line, wi th
or without punctuation.

• Character Direction

Character direction allows characters typed in as ABC to be displayed as CBA. A
character's Unicode determines its character direction. A user can override a character's
default direction.

• Registered / Restricted Line Layout March 15, 1990 2.7.3-8



• Run Direction

Run direction controls the relative ordering of a blocks of characters. A block or run is
defined as a sequence of characters all with the same Character Direction. A character's
Unicode determines its run direction. Line Layout uses Run direction when mixed scripts
such as Arabic and English are on a single line. Users can override a character's default
Run direction-this is necessary in Arabic and Hebrew because sometimes Line Layout
cannot format a line as a user wishes because the correct formatting is ambiguous.

Glyph Adornments
An adornment is a graphic applied over a run of glyphs. Adornments do not affect the placement
of characters. Adornments are extensible-ie, new adornment styles can be added to text the
addition of a new adorn:p:.':~!:..~...~.~y.1~.!?y. ..~.~...~p.pEs~.ti.9.!l. This following lists the standard set

ado~m~:::::::lIIIIJlilll~:edfor leXL M .:-:::,/:((}~·/:m:~:::·r:::::mH}~?~::}
to ignore sp~q~s and can be set to draw about a line's ba~;eUli¢#).1
baseline of:~h~ glyph-which is useful for glyphs that
The width::·~n~:P9§~:t~9n..9.funderlines are separately

·:~::::.1111'll~.
·::::::::~::i:~~~::!~'~ffl,

....•.•••••••.•.•.•.•.•.•.. , ... ··.·,",...............)tt;~IJI~ii

.::~:~:~:::}}~<::::::.:::::::: .. :::::::::::::::::::::::::}::: ",". ..
......... ::::-: :- : : -:-:.:.:.:...:.:.:-:.:.;. :::.
....:-.. :'::::::::::::::::::::::::::::::::::::::::}~:~:?~:~:~: :{:=:::;::y:;::::::::.:-:-: .

'* Registered/Restricted Line Layout March 15, 1990 2.7.3-9



5. Objects for Displaying and Hit-testing Text
The following is the set of objects needed by an application to display, highlight, and hit-test text.
Two of these objects, TCaretPlace and TlnsertionPoint, are used only for hit-testing.

TStyledText
As stated before, a styled text object is used by Line Layout as a source of characters for display.
The Style runs in a styled text object also control many of Line Layout's features.

TCaretPlace

...........

..' .
'.:.:.:.;.;.: :':-:';-:';';'::-;':-:"

TLayout
TLayout is the object that computes glyphs from characters and then positions glyphs. A TLayout
can format, display, highlight, and hit-test text. A TLayout also handles typographic and script
specific contextual formatting constraints that are either specified with the characters, determined
from a font, or defaulted by the system.

3

4

5

A caret is a graphical indicator between characters in a stream of text. On the Macintosh a
text caret appears as a blinking vertical bar. It is also known as the 'insertion point'.

A TextIndex is a zero based 'array index' into a text class used to extract a character at the
index.

A character side indicates if a hit ocurred before or after a character.

• Registered/Restricted Line Layout March 15, 1990 2.7.3-10



6. How To Use Line Layout
This section describes how to use a TLayout object to display, highlight and hit-test characters.
Note that in future versions of this documnet more examples will be added.

Setting Up a TLayout
Through the TLayout::SetText call, an application provides a TLayout with styled text, a style set
of line specific information, justification information, white space trimming choices and an origin.

A TLayout operates on a TStyledText object. Normally text will have a font, point size and maybe
language styles specified. The complete set of possible styles are documented in the separate
section System Defined Styles-most of these styles are of little interest to the average user. If text

:::::::::::
:-:.:-:-:.:.::;:::::::::<::::::::::::-:-:- : .

... :::::::>~~~::::: ~::::::: ::::::::::
...............-:.:-..:.;.:::::::::-:- ...-:....

The TLayo&~~lii~~~;i~~!iimWl,.~dessepet#.~ij:t~·olean paramet~;~:lt~~:II~f~p1ling whit~·:$pig~:-!::(:
trimming. In:::tn~:·!tlmM:~n(§~.ppq!I!~~?maybespecified with the··s~tY~~::m~~~:§pecifi~%~~tie,:.~itection,
or perhaps as a>sep.. ar.•.••.:a.·.••.•.·t..•:•.e.•.•....·•.:.:.••.s..•·.•·.·.h.•·..•.. :.:.i·.·.:.:..1:·.e:..•.:· ..:·.•~.•:.:.::.::.:::{}\ .. '.'" ..........•••. ::::}<~:>.::, .?!:J:: .....:-::::::;:;:;::::-:.:-:-:...::-..; ..

Displaying text
To draw a line of text an application must create a TLayout using the parameters described
above. Then, all an application has to do is call TLayout::Draw and pass a port. For replicating a
string, it is very fast to redraw the string by changing the origin on a TLayout and calling
TLayout::Draw. This is faster than calling TLayout::SetText multiple times.

EXAMPLE: The code below can be used to display an array of Unicodes in
24 point Helvetica.

tifndef LINELAYOUT
t include <LineLayout.h>
tendif

TLayout layout;

• Registered/Restricted Line Layout March 15, 1990 2.7.3-11



TFillBundle white(Oxffff, Oxffff, Oxffff);

void
OrawString(TGrafPort* port, TGPoint &ppoint, UniChar* text, unsigned long len)

//Create the styled text object.
TStyledText styledText(text, len)
TTextSelection text range;

//Style the text
textrange.SetRange«unsigned long)O, styledText.Length(»;
TPointSizeStyle size(24);
TFontStyle font("Helvetica");
TStyleSet styles;
styles.AddStyleToSet(&font);
styles.AddStyleToSet(&size);
styledText. SetStylelnRange (&styles, range);

} ;

//initialize the layout with the text.

liiltilifill'l::i::::!

'.~.'.'.'.'.'.'

l~&§ut.Draw(port);
.....

"::::::::::::::::::::::::::::::::::.:-:.:.:
.:::::::::::::::::::~;~:~:~::::::::::::::::::::::;:;:;:;~~:~~~:~~:::::::::::::'::':'"

.:-:.:-:-:.............. .
-:.:.:=:::;:;:::;:::::;:::;:::::::;::}:::.:.,

Highlighting ..................::;::::::::::::-:.:.:-
:-:-:.::::::;:;:::.:.:-:: .

:-:.:-:-:-:.:-:: :;:::::::::::::;::::

~~~:~~~~~i;l.~~: ~~:~~~::~I'dda~~~~~!I!!r7;~f~~~~llt~~!I~t
TextOffsetS:=~f,H¥f~ffiBW?:9~;r.~~. ~E~::M~P~lty computed througr(:H1!:=PfRSess of hit-~~*pitgtr8hit-

~e::~~:;:~.llim*tI.T~~::~:~~;~~:~~fc~e~~~d~~~~'~~l'gMriJll~:~h~~d
recommend double buf{enng. Double buffering is a graphic technique where'entire objects are
displayed into an offscreen bitmap and then the bitmap is displayed to the screen-without
clearing the screen first.

Note that re-highlighting an area to give the affect of de-highlight glyphs will not work because
highlighting is not always an invertible function. When deselecting text, an application must
redraw a line and re-highlight glyphs as needed.

Note that Discontinuous highlighting can occur when a user selects a partial line of text when the
line has glyphs that flow in opposite character directions-as is nonnal in Arabic. This will
happen when the selection is of a contiguous range of characters in the text backing and when the
glyphs associated with the characters are discontinuously ordered on the display. Using the
nonnal point!shift-extend algorithms an application will get discontinuous highlighting free.

• Registered / Restricted Line Layout March 15, 1990 2.7.3-12

The next section describes an interface that applications can use to give the appearence of
contiguous highlightings when a user selects text with a mouse-as opposed to using a find
command to select text.

Hit-testing and Carets
TLayout provides methods to hit-test glyphs and determine the TInsertionPoints associated with
a "hit" glyph. A TLayout also provides methods used to determine the number and look of carets
associated with a TlnsertionPoint. The following is a description of how an application should
use a TLayout to hit-test and draw carets.

To map between a TGPoint (usually computed from a mouse position) and a TInsertionPoint, an
application should call TLayout::lnsertionPointFromPosition. An application can then determine

~~r~~~g~~~illlll!£~~~::~!;:S~iiljjl~!~~i
TextRangeFromPos~tjQhreturns the range of backing store in the s.:W!~gm:¢~U~:bject associated

GetCaretAngieAreaFromPosition7-This routine is for changing the angle of the mouse
"IBeam" pointer to match the slope of text it is over. This user interface makes it easier for
clients to select italic text.

Contiguous highlighting of discontinuous text is a feature where an application can give the user
the appearance that text selected with a mouse is contiguous though its backing may really be
discontinuous. Users seem to prefer this interface as opposed to showing a discontinuous
selection. A TLayout will provide the additional routine below to help applications implement
contiguous highlighting if they so wish.

6

. 7

Currently these bad behaviors can be observed on the Macintosh with pre-system 6.0.7
TextEdit in Arabic or Hebrew.

Routines indented in this document are not available yet and are only proposed interfaces.

• Registered / Restricted Line Layout March 15, 1990 2.7.3-13

TextRangeListBetweenTextOffsets--This routine computes the discontinuous text
selection associated with the positions of two TextOffset on a line.

Measurement
Different parts of an application are interested in different types of line measurements. What
follows is a description of the different measunnents available through a TLayout.

To find the minimum rectangle required to display a line, an application should use the method
TLayout::BoundingBox. A BoundingBox is useful to determine what will need to be updated if a
line is redrawn. A bounding box always includes all trimmed white space on either end of a line.

To measure text for line breaks, an application should tum off justification and leave white spaces
"untrimmed." An application can then compute a line break by creating a TLayout for an entire

T~i~~;~~W~~tIndeX-SimilwloTeXtRangeF~I;i!;~iiGiVenate~~~~,~::;:xt
rarig~J~::£§mPHt,~mIN~J9~!n~Fcan be used to compute:::~~tQnf£pdes tha~gl1.i.mpJ6 fonn
a sirigle.:·gly.p~M~Y)~~i,~~Jfufreturned text range, insertiori::po~~f#'¢~n>~99mPutedand
an applicatioriCanus~fthoseinsertion points for positioning thErSlrtgh~glyphassociated
with the text range at some point. Applications need this functionality to align text to a
decimal tab stop. An application can also use this routine to implement backspace code
that backspaces over glyphs instead of characters.

A TLayout assumes that the text between tab stops is a discrete unit. Applications must handle
the positioning of text at tab stops themselves. To do this an application needs to use a separate
TLayout for each segment of text between each tab stop and a line's endpoints. Then the
application must position each TLayout segment independently. The computations for
positioning the segments are similar to the computations to position an entire line.

8 Linebreaks possibilities can be determined using a the TWordBreak class and a hyphenation
dictionary.

• Registered/Restricted Line Layout March 15, 1990 2.7.3-14

Finally the method TLayout::GlyphlnfoFromPosition is for special purpose use to allow an
embedded graphic within text to take the mouse tracker when the embedded graphic is selected.
The section on extending the system will talk more about this. For most applications this method
may be of little use.

Justification
A TLayout is passed justification information through the SetText interface. A target width and
default justification parameters can be specified in the SetText call. The target width does not
include trimmed white space on either end of the line. The remainder of the justification
parameters come from a justification style in the styled text object and are not final yet. However
these parameters will control how much space can stretch, if Kashidas should be inserted, and
maximum amounts other characters can stretch.

The current implemen~i~~~:::~~::¥.j~~~mit!~j1~1~.~utstretches spaces

~~~l~~~;:'de:II'l;iliilllli space among all the Ch(l~.9.:swt§)?:n{the

Line BreaIs~fg

• Registered / Restricted Line Layout March 15, 1990 2.7.3-15



7. System Defined Styles
Line Layout directly implements the styles listed in this section. Other text styles not listed here
include styles for line height, paragraph line breaking parameters for starters and are
implemented by higher level system objects.

Please note that this section is not complete because all styles are not yet defined.

Graphical Styles:
• Text Color

TTextColorStyle is the style used for setting color on text. In the future this will be
re laced with a s Ie common to text and a hies-as soon as a hie ob·ects can ..

• Text Size

•

•

Font

Ligatures and contextual fonns have different levels of effect that a user can choose from:

•

•

The suppress level means no support (i.e. inhibit the layout feature). This might
be harsher than expected: in Arabic, for instance, a value of suppress for the
ligature feature would inhibit the formation of the usuallam-alif ligature. This
setting should therefore only be used if the user wants to see something
approaching the naked, unvarnished text source.

The mandatory level means to support only mandatory instances of the
partieular feature. For example, during rendering of Roman characters, Line
Layout might only use anchor points in composing an leI for an leI followed by a
1'1 in the text source if the "accent anchoring" feature level is at least mandatory.
Roman kerning, on the other hand, might never be mandatory, and therefore a
value of normal or higher might be needed to enable kerning.

" Registered/Restricted Line Layout March 15, 1990 2.7.3-16



• The normal level means to support "normal" instances of a feature. In Arabic
ligaturing, for example, this level is required to get most of the normally used
ligatures (such as "initiallam-mim"), assuming the font supports them. This is
also the level that most font manufacturers will use for Roman kerning.

• The optional level means to support any and all instances of a feature that the
font supports. For example, an "a" followed by an "e" in English text might
cause an I/~" ligature to be used if the ligaturing level is optional. The italic 'st'
and 'ck' ligatures are similarly optional. Variant appearances of certain Chinese
characters might be selected with a forms feature level of optional.

• The fifth option is default. Associated with each layout feature there exists a
global default value. These defaults will usually be "mandatory."

•

•

................................
:-:-:.:.:.:.;.:.:

• Sup~tf§gp$fm;pl:~n9 Letterspa£:mg;;Positions ··::\:l~j;:·:.:~.j.. ~.::.!.:.::.:;.::.·:.:.~..:.:..:.:;\.:.::.::.j;.::.:·.:.·..~:::.:.;.:.:;:l;:::. ::/;:;:\?@>:.: :':':':':':':':':':':':':':':':::':<:{{j:\~?\ .. :{~fff1~~::::·· :':':-. .:::::::::::.::::::::::::::::::}}:: .
TCh~{t~8~:~#$~.i.:##·§·1S:$~:~!:$.~dfies super/ subscripts anlBtitit~::~:~::~:p¥:r<:~ti~~ge"H£point
size. ....:-:::::::??::::::::::::::::::...:... .

• Kerning

- No interface yet.

• Tracking

- No interface yet.

• White Space Trimming

- No interface yet.

• Justification

- No interface yet.

'* Registered/Restricted Line Layout March 15, 1990 2.7.3-17



• Overhanging punctuation/Optical alignment

- No interface yet.

Glyph Adornment Styles.
• Underline

TUnderlineStyle is for specifying an underline, its position relative to a line of
characters baseline, its thickness, and its color.

• Strikethrough

TStrikeThroughStyle is for specifying a strikeout line, its position relative to a line of
characters

• Overbar

• Registered/Restricted Line Layout March 15, 1990 2.7.3-18



8. Extending the system
An application can extend Line Layout with application specific features and new style types.
These section describes how to do that. However, an application programmer first needs to know
about a few more system objects and how TLayouts and these extra objects interact. Extending
the system is straightforward once the fundamentals are understood.

This section is not for the casual programmer who uses Line Layout to display and edit text
strings. It is for the brave who what to extend line layout to display new object types.

Additional Objects
These following objects are for understanding how a TLayout displays and positions character~..

::::::;:::::::::.: .
.;.::::}:::::::: :.:::;:;:::::::: ."

.. :<:::::::::::::;:;:::;:::::::>...

TFont

:.:.:. :}~:~{~}{{:?~~)~~:~:~:~:::::::::
:-:.:.:::::.:.:.:::::.:.:.:

............:-:-:.:-:.::::: -.-

. . .
-:.:«,,«<"..:,:.:.

....... :-:.:.:-:-:-: .

9

........................ . .

An application can subclass a TLayoutGraphic and embed complex structures into a line of text.
These structures can include pictures, graphics, and buttons. These structures themselves can
contain lines of text.

A glyph metric is infonnation about a glyph's geometry. A glyph's width, height and
bounding box is an example of a glyph metric. A glyph itself is a collection of curves, or
perhaps a bitmap, that is used to draw itself.

10 A fine point: A TLayoutGraphic actually acts like a font subclass and I would like to actually
make it a subclass. However, a restriction preventing a font object to be initialized from
another font prevents this.

• Registered/Restricted Line Layout March 15, 1990 2.7.3-19



What TLayout does
A TLayout manages a complex interaction among different objects and object types. A TLayout
determines glyphs and their positions by controlling the communication among TStyledText,
TStyle, TFont and TLayoutGraphic objects and itself.

A TLayout first handles the "bidirectional" reordering of character codes obtained from a styled
text object. The reordered character codes are then broken into style runs and the style runs are
then associated with a TLayoutGraphic.

Characters are mapped to font-specific glyph codes using the font associated with the
TLayoutGraphic. The mappings can be one-to-one, many-to-one, and many-to-many -the more
complex mappings result from ligature and contextual form rules. Character rearrangement, for
use b Indic seri ts and s cified b a font is done at the same time as the character rna in s....

::0;:::::;::::"

A TLayout and ~M~H~f~PPJs.;.~()getherdetermine the posit~gn::~M:ghfi?fWWTheTLayoutGraphic

TLayoutGr~pmq::i:t@4h~if?:D'leobjects uS~9r9~fermine the text :a9!§~Jp~~¢l<) and und~rUQ~PI-#:J~tt

either the TI4Y9YlBr~Pn~s~H~tdtW.:~:tt~~::~Ffuselvescan apply c6t9@~t::m1gerlinest(t~lj~::·m*~(: the
responsibility:l~:'~~~~~~~::0~gpg:::~~~rrC' ";;:;:::::/:):~::":-:::::::::'::'i:)::):(>::::::::::'::'::.: .

• Registered / Restricted Line Layout March 15, 1990 2.7.3-20



TLayolltGraphic A

The time is fiveJillL.

t
TLayout

~...... ..._ TLayoutGraphic B

tt

.......----1........... TLayolltGraphic C

t~
Font A

Adding),"I!llllllafi\i~re 8.1

text. Secondly, a client may want to embecrofij~objects iliili~ft#~:~cl1 as a buttonorPa'graphlc~

A TLayou.t is flexible enough to provide ~~JXpesof exte~o~~t::;·.::'::·:~.;·· .':.' :.:::'

E~;;:2f;II'~I!iEa::f~;i(.t'!h~r~~=~'I":~i~~I~eo~~llltJ'~w
.'<:::::::r({?~\ _. ..... .. .

Adding a new style type, such as boxed text, is easy. To implement a new style an application
must create a new TStyle for a box, create a TLayoutGraphic subclass that knows about the box
style, and subclass a TLayout to allocate the new TLayoutGraphic subclass.

Subclassing a TLayout to allocate a TLayoutGraphicis done by replacing the
AcquireLayoutGraphic and ReleaseAlILayoutGraphics methods. We recommend that an
application initialize its TLayoutGraphic subclass from one obtained by calling
TLayoutGraphic::AcquireLayoutGraphic.

A subclassed TLayoutGraphic must be modified to use the new style type. If the new style will
not affect default character metrics then the application is free to modify the DrawGlyphs,
HighlightGlyphs, or AdomGlyphs methods as it sees fit. By the way, the AdornGlyphs method is
call.ed by DrawGlyphs to add graphical elements to a glyph that do not come from a font-like
underlines. If metric information will be changed then the Glyphlnfo, and the GlyphAdornlnfo

• Registered/Restricted Line Layout March 15, 1990 2.7.3-21



methods need to be modified. The info method must be changes if widths or bounding box
information chan~esas a result of the new style.

Adding Embedded Graphics

Adding a button (or other graphic) to text is not much more complicated than adding a new style.
The difference is that a TLayoutGraphic needs to draw a button rather than asking a font to draw
a glyph. Also the TLayout::AcquireLayoutGraphic method must be modified to create the
appropriate TLayoutGraphic. The TLayout::AcquireLayoutGraphic method can determine if text
is text or actually a button by looking at the style associated with the text. Two notes of caution:
First, an embedded graphic object or button must be backed by a single Unicode. Second, a NIL
TFont should be returned by the TLayout::Font method.

Finally, a button may need to take the mouse when a point down occurs over it. To 'push' the

~::::%:h:=~f;:~~4r(III~'11~1111.t~1Ii:~:o~~di~:~~=1~i~t~~~tea
button by checking tlj~j~~~f~~ttl~j~i~9i~~j~mmttheTlnsertionPoint oblta..}I~.:trs~~:::
position. Once it ha~:~p.Hi!~!ffi1~!§e)]njt:\~~I£]1~toccurred on a L"..... ~~AI••··

can be obtained from~~:91~Frlliy6uHtGlyphlrtf6FfumPositionme'th()Q..d::!

hand the mouse tr~¢.~er to a tracker associated with the button.
/r~:}:'

{):fI .

;.:-:-.....

.:::~::::::;} .}~:~:~:~:~:~:~:;.;...
...:::::::::::::::::::::::::;::::::::::::::::::::....

..... :.....:.'.:.;.:.:-.. :.:.:.:.:-:.;.: .. ::.:::;:::.:::::::::::::::::::.::;::::.:....
.....:-:.:.:.;.:.:.:-:.;.>:::;:::::;:;:::.:.:::-:<;:::::::::::;::::;.;.....

• Registered/Restricted Line Layout' March 15, 1990 2.7.3-22



9. Performance Issues

Caching of Information By a Client
A TLayout cannot take advantage of information obtained from previous lines. However, an
application can. One set of objects that can be reused over and over again are TLayoutCraphic
objects.

The method AcquireLayoutGraphic can be used to cache TLayoutGraphic objects between lines.
By recognizing that a TLayoutGraphic can be reused from line to line, a client can speed up
Performance by overriding the AcquireLayoutGraphic and ReleaseAllLayoutGraphic methods.
To recognize if a TLayoutGraphic can be reused, an appliction needs to check if the parameters
used to construct a TLaY().~.~G.~~p.h.is ..!.~p~i;)...~!.':£h.~.~ged from line to line. This kind of
optimization cannot ~::g9n!]?'jKittmiY4#f.~]~jn~fbedone by a client. ..><:::::::::){}:::::Htt:::::::,·,···· ..

Size J11111~'!11111'1'~11,"IIIJliIlJlj' ,;;;..

and punctuation.<should.#otBvefnang.

Fixed Point instead of GCoordinates
Currently TLayouts work with CCoordinates ~xcLusively.These are big suckersll and a layout
uses a lot of them. Not only are they big, but they are slow to compute with. We may gain some
speed and can reduce the size of a TLayout by using a smaller numeric type. Of course to use a
smaller type efficiently, the path of glyph metrics from fonts though the graphic system need to
use the smaller type. Otherwise too much time may be sPent converting between types.

. 11 The TCPoint for a single glyph is 20 bytes. A TCPoint is made up of two CCoordinates.

• Registered/Restricted Line Layout March 15, 1990 2.7.3-23



Appendix A- Concepts
This appendix provides a more detailed description, with examples, of some Line Layout features
described in Chapter 4. The features described in this appendix are:

• Ligatures, accented forms and accent ligatures,

• applied marks,

• contextual forms,

• automatic kerning,

• automatic cross-stream kerning,

•

•

•

•

•

•

::.:::)1111111111111'1"
·:?)r~·

characte~:::lrderi:~,

::~lllfIJill\"IIIIJit,j\

.......... ·::·::}i.}){::···:····
.................::~: ....

...:.::.:-: .

;::~:e[nt_ll_il8j~~~;;~~i";fonns. Multiple i'1II!_IL.themsel~!~~~!W
... .............•. :::::::::::. ..;::::::~::::::::::::::::: :::::::;:>.

Applied marks
An applied mark is a glyph that is composited dynamically with another glyph. The recipient
glyph is called the baseform, and a baseform can have one or more marks applied to it. For

example, Polish uses Roman script with some additional glyphs such as ' 3 '. If this glyph does
not exist as a rendering form in the font, it could be created by dynamically composing the
baseform 's' and the applied mark "'. The composition process will ensure that marks are placed
properly with respect to the baseform.

Applied marks are aligned by anchor points. A glyph object associates a base glyph anchor point
with each applied mark. Each applied mark has a single distinguished anchor point. This anchor
point is lined up with the associated base glyph anchor point for rendering. For example:

• Registered/Restricted Line Layout March 15, 1990 2.7.3-24



III

Figure A-l

M6(fiM}~~p~"

FiII{I~"

A Roman font rifuritif~¢mt~t!¢~~tdMh8~se to support either contextu·~Ff6tm$J?r.ng~trif~§"to
present the appearance· ofacombined 'fi'glyph...··.... · .

• Registered / Restricted Line Layout March 15, 1990 2.7.3-25



Font has ligature:

If + i => fil
Font has contextual forms:

If + i => f + i => fil

Automatic Cross-Stream Kerning

>;.::::::;:::}:::::::-:.:-:.;.:. ..:
::::::}::::;:::: -:;:::::::;:-..;.:- .

Cross-stream kerning allows the automatic movement of glyphs perpendicular to the line
orientation of the text. This means glyphs move vertically in horizontal lines. Cross-stream
kerning is driven via font tables to determine how much to shift glyphs. For example, a hyphen
between two capital letters should be raised to reflect the centers of those glyphs:

X-y Vs. X-y
Figure 5 - Cross-Stream Kerning Example.

• Registered/Restricted Line Layout March 15, 1990 2.7.3-26



Optical Alignment
Without additional information, glyphs may seem to line up incorrectly on the right and left
margins. This is accounted for by two factors. First, glyph advance-widths contain a certain
amount of extra white space to account for the normal inter-glyph spacing.

up correc y: . .. ..,'.;:~:".:.:.; '

Figure A-7

..................

This same effect happens on the right and left edges of lines. In both of the following example, the
center 0 lines up with the H's, in the sense that the leftmost black edge of the H is even with the
leftmost black edge of the 0; this is shown by the line on the right. However, the letters do not
appear to align correctly because of optical effects, as you see by looking at the words on the left.

" Registered / Restricted Line Layout March 15, 1990 2.7.3-27



Hotel .
Other .
Hotel .

fIotel .. ·
pther .
tHotel .

Figure A-8

Hanging ljl:hctuation
.:.:.:.:-:.:-:.:."

:-'-:.:.:-:.;.:.:.:-'
.....

...
..........:-::::::=::::::::::::::.:::.:.:-:...:.

.: :-:.:-:-:-:.:.:.:.::;::-:-:.;.:- .
····················:·:::::::·.::~:r:~::::::::::::·:·:::.

-.:.:.;.:.:.:.:.:.:::::::.:.:.;.:

:::::::::'):::~::::::::~:~j:::I:I:::::\::m::::~:::

A font determ~~~~whichglyphs overhang::~I;Jhow mJt.~~:::·.:.:i:·:l.::\:::::\:::::::::·:.:.:::·:·l:
··::::\;~i~it~;~;:~:~:~::.:.:.:.:.·... }~rI~ff? \~fI~fffmr?:t~~j:~}\:~~:::::.

Baseli"~ll;j;jjl;jlk ..•.•..:::::.::..::.::.:.,..:.:.:.:.:.:.:.::.:.i.:.i:\.:.ljl~lW
.:-:.:-:.:-:-:-:.:-:-:.:::-:-:.:.'-:. , .

":::::::::::::::::::::::::::::::::::::::;::::::::::::::;::::::::;:::::::::::,:::::::::::::::::::,::::::::.... ..:.::::::::::,::::::::::::::::::::::::::.:: :.::::::.:::,:::::::::.:::::):::

The baseline ofa:charil<:t.~j$~l::linErthatdefines the position of the charii:aer:~wj~;respectto other
characters. The importance of the baseline is illustrated by different sizes of characters; where it
shows a stable point, out from which the characters grow. This is also the case with other scripts:
the ascent portion of a character grows upwards from the baseline, while the descent portion of
the character grows downwards. However, there can be dramatic differences in the general
proportions of characters with reference to the baseline. If we were to take the naIve approach to
glyph placement, we would end up with something like figure 10.

• Registered/Restricted Line Layout March 15, 1990 2.7.3-28



AJA" ~ ..~.. ....B..·.................................... ·..·..··..····..8······ ....... .........................

en
Figure A-10

In this figure, the baselines within a script match correctly, but the relationship between different

~r~~{~~~~~'I.'!I'}i~~§:~~ij!!~:~;;

computed bYi·!n:.~pp~j,$~Jion-theuser in~~f.fif~for this may:~i!#19.~;}t~!H!i:::, .::':::::;\:,,::::??/\/

~~~te~::~~~J.~lij.jf~.~!a~~:~~~I~ ~~aI~~~!Iij1~~t~~~1ii~:en
quary a paragraph'i6f:ahlridic::tjaseline shift rule. A 12 point ''Roman'i·:p'afagraphdh1. then decree
that all Indic baselines within the paragraph should shift up 9 points. If a paragraph wanted to
produce something like figure 10 it could return O.

The protocal between Line Layout and a text editor is simple. The hard part is letting the
paragraph determine the shift amount. One possible mechanism is for a paragraph to have a user
settable default paragraph baseline and a baseline rule. The baseline rule, when asked for a shift
amount, can detect if the request is for a baseline other than the default paragraph baseline and
can return the appropiate shift amount.

The default baseline rule could compute the shift amount from some 'user settable' template
character associated with the line, paragraph, or document. From this template character the
baseline rule can associate all possible baselines with a shift amount.

• Registered/Restricted Line Layout March IS, 1990 2.7.3-29

Character, Reordering
A given text object may include parts that are rendered in opposite directions. For example,
Arabic letters print right-to-Ieft, while Arabic numerals and Roman scriptprint left to right. A
direction streak is a series of characters, next to each other in a text object, which belong have the
same dominant rendering direction-Ieft-to-right or right-to-Ieft.

A single line of text with streaks running in opposite directions can be formatted in two different
ways depending upon the dominant line/paragraph direction. Figure 9 shows the possibilities-:
in this example line direc~on is refered to as run succession.

Order of characters in the string: (~ =space)

.:-:-:.»:-:.:.:-:.:
,- :.:<.:-;.:.;

.... ;.:-:.:.;.:-:.:.:.;.'.

.....................................

Split Ca:r~tS···%···:U·:/(::::

Because of character reordering, ambiguities occur when mapping between text offsets (or
insertion points) and the visual location of text offsets. As a result, the user must sometimes be
presented with multiple carets. Specifically two carets are needed for right-to-Ieft and for Indic
scripts. Figure 10 shows by example why multiple carets are needed for right-to-Ieft scripts. For
right-to-Ieft scripts the split carets can suggest where the next left-to-right or right-to-Ieft
character will appear.

• Registered/Restricted Line Layout March 15, 1990 2.7.3-30

Multiple Caret Example

Assume that when a user types ABCD it appears as DCBA. Also assume that
when a user types 1234 it appears as 1234. Now assume that the user types
ABC234 and it appears as CBA234.

2 131 41

Order in which characters are typed.

Figure A-14

Because the concept of multiple carets is complicated, an alternate description of the need for
multiple carets follows:

While displaying a line of text, characters/glyphs get sorted into visual positions. In some
scripts, this sorting causes the visual order to have little relation to the Utyped-in" order. In
others words, characters can get scrambled around on the screen when you type, however
the system remembers the order in which they were typed.

A text offset points '~tween" characters in their backing (or typed-in) order. For example: In
the word 'Hello', the text offset of 1 is between the 'H' and 'e'. When displaying a caret in this
case, only one caret appears between the 'H' and 'e'. Split carets occur when characters that
were typed-in next to each other get visually reordered relative to each other when
displayed. So for example, if the word 'Hello' displays as 'eHllo', one caret will appear before
the 'e' and one caret will appear after the 'H'.

.& Registered/Restricted Line Layout March 15, 1990 2.7.3-31

Glyph Me~rics

Figure 15 gives an overview of the graphic information that should be supplied by the Font
Manager on a per-glyph basis. Some features in the diagram are only important for certain
directions of text; the vertical advance width and origin, and the top and bottom optical
boundaries are used if the run succession indicates vertical text, while the corresponding
horizontal advance width and origin, and the left and right optical boundaries are only used if
the run succession indicates horizontal text. Anchor points are only used to place applied marks,
while the black bounds are only used for heuristic placement of accents when there is insufficient
anchor point information.

:::::::::::::::::::;.
'.'."

..............
::-:.::::;::.:.::::::;::::;::::;.:.:.; .

.:.;.:.;.;.;.;.; .
:-:.:-:.:-:.:-:.:.:-:-:.:.:-:.;"

A number of these features are optional: if they are not supplied, then the Font Manager will have
to make due with the information it has. For example, if the right and left optical boundaries are
not included, then theY:-:§h9JtJsL9.:~f(;p:~Jt~9.:.Jh;~.:PEtg1.n.andadvance width. If the vertical

;::~:;~t~:~~lflrI1l111'IJ'tto the nUdpoint of the S:?::;rt:}~~mf::~tid>th~

• Registered/Restricted Line Layout March 15, 1990 2.7.3-32

" Registered/Restricted Line Layout March 15, 1990 2.7.3-33

Appendix B - Application Design Requirements
Line Layout and the base Text Gasses carry out the hard part required to make text international
within an application. However, an application needs to implement a few features to make text
entirely international. This Appendix lists the minimal requirements an application should
follow.

Paragraphs, Tabs, and Rulers.
Applications need to let users choose a paragraph's line direction style and applications need to
handle tabs and rulers according to the line direction. The choices for line direction are:

•

•

Horizontal. ..

ff~ft~~jlll'I'~~~~~!E~~iil1ft~~I~:
................. '>;::::;;::'::~:~:::-:::::<:::-:"':':"""

... :::::~~;':'::}:::':':~::

:':':':;:':-:::;:;:::;.:;::.-.

::i.••.l.~~~~~\~ nush~n ..g.h.::.t.:.:..:.[l.;,'l'}#ght lines·'ijl~ilrJllllll'll;;••••• ,;):HII•••·
.... -:.:.:-,-:«-:-:-:-:.,-:.;.:::;:-:<::-:::;:::::::::::::::: '.'

A par~gf~ph/~dili~dif&tig~is almost always vertical in a v~~titM.:::iHifuri.TJ~t and tabs
within a vertical line flow from top-to-botton. Successive lines can flow from either left
to-right or right-to-Ieft. Rulers and tabs need to behave accordingly. Also, vertical lines
are almost always top flush.

Multi-Columns Pages.
A text-chain is a contiguous stream of text that is part of the same letter, same story or same
article. Examples include: Traditional word processors where the text that flows between
columns is in a single chain, page layout programs where the text in a single story is in a single
chain, and terminal emulators where the text in the log file is in a single chain.

A text-ehain direction determines the placement of columns-for most applications the term
column direction can be used for text-ehain direction. Applications should flow columns across a

'* Registered / Restricted Line Layout March 15, 1990 2.7.3-34

page from right-ta-Ieft if its associated text chain is right-to-Ieft and from top-to-bottom on a page
if its associated text chain is top-to-bottom.

A text-ehain direction can also limit a user's choice of a paragraph's line direction. For example
an application likely wants to deal with only horiwntal paragraphs in a horizontal chain and
only vertical paragraphs in a vertical chain. A text-ehain may simultaneously contain paragraphs
with right-to-Ieft and left-ta-right line direction settings. A single text chain usually does not
contain both horizontal and vertical lines.

An application with a single column may not need a text-ehain direction, but still might want one
to use for defaulting a paragraph's line direction and flushness.

Documents and Page Numbers.

-:-:.:.:.:-:-:.;-:.:
.:.:.:.:.:.:.:.:.:-:-

:;:;::;:::::.:::.:....

~~~ ~~~:~:~~~~~ ::~ ~~~~~::~ ~:~:~:~ ::::'
. :-:-:.:- .

.......:-:;:::;:.:.:.:

... ;:::::;::::;:::::;:::::.;.,
....;.::;:::;:::: :.;.:-:.;.:-:.:.:-'.:-:.

...":-:-:"..... .....

Applications need to l~t·.f~~lti~fll.~~l~iljl~~~s from front to back or backt9::JrBn~~·.A.h!H~~:::/

~~~~2~~!:jI'III.I,~~r~~~~~::~~jii11'1r;~~;tsome
Also users need to :§P¢cify page numbers using alternate number~#g~:~Y§~~m$./andpatterns. The

.::~:~:~:~:~:~:~:~:~:~:~:~:~:~:~:~:~~~:~.:.:

.:-: .::~::: ,",.

.:.:-::::::::;:::;::::::.
-:.;.;-:.

..

:::::::::::{/?t . .
::;:;:::;:::::;:;:::::::-.-:-" :-:.-.-,"' '::::::::::}}>~:}~{::::-:;." .:.:.: :..::::~:~t~II~~::::··

:::;:;:::::;:;=::;::::::::::::-::-::-.:- "" :.~:::::::::::~:::~:::::::?_. ;,:"./ .:-:.:.:.:-:::::::;:::;.'

'* Registered/Restricted Line Layout March 15, 1990 2.7.3-35

Appendix C - Unsatisfied External Requirements
This section lists the areas of the system that depend upon Line Layout, or that Line Layout
depends upon which are currently undefined. Until these areas are defined and implemented the
promiss of Line Layout will not be fulfilled.

Font Architecture
The entire font mechanism is missing. Below I've listed only the most critical missing portions
related to Line Layout.

Missing Fonts and Missing Glyphs

Line Layout provid~~:~:16'fcitf~~ctionalitybut it lacks user interface. Th~::Jniiri~f~:~ser interface
is application-specific, but we need to provide a standard presentation of the style information
used to control Line Layout.

Additionally, we need to investigate the use of contiguous selection of bi-directional text-see the
section on highlighting. The implications of contiguous selection is not well understood. We need
to look specifically at cutting text, copYing text, pasting text, searching text, and replacing text.

Passing Application specific text styles
How should the system handle styled text where some styles may not be understood by other
systems? This is the same problem occurs when passing any object to another system. Because we
do not pass the methods that operated on the object with the object, we may not know how to use
an object. We need a set of standard rules for dealing with unknown objects.

• Registered/Restricted Line Layout March 15, 1990 2.7.3-36

Validation of Line Breaks by an Editor
Applications must be sensitive to configuration changes that can force the recomputation of line
breaks. For example, font defaults that may differ from system to system will often cause
different line breaks for a single document displayed on two different systems. This will usually
result in the document paginating differently on both systems. For some users the new line
breaks can be unacceptable and an application might have to query a user for advice.

It is worse than described above because many things can affect line breaks. A wide range of
dynamic and static configuration changes within a system and between systems can effect line
breaks. For example, it can get real sticky when an embedded graphic, within a line of text, is
dynamically linked such that when a change occurs the graphic cannot redraw itself before the
linebreak is recalculated. Forward reference to a page number is another example.

....•...:-:::-:-: >:-:-:.:-:-:.:-:-:.:-;..

'* Registered/Restricted Line Layout March 15, 1990

;.:.~...:.~... [:~:.:~::..:~::~..:i.·.::·~... ':..:.~:. ~.:.t:.~..:.::::':':•....•.:.::.....:.:~::.. :.:.~.• '. :.:: -: .

/::\·'.1::·.

2.7.3-37

Appendix D - Open Architectural Issues

Styles
Many standard text styles are undefined. These undefined styles fall into two classes:

The first class of styles are those where the lower level system architecture required to define
'algorithmic' styles do not exist. This set of styles includes graphic and font styles like outlfume _
and bold. Currently the interface into the graphic and font system for these styles have not been
defined. Line Layout will support these styles as soon as they are defined and as soon as the
methods for selecting the styles are define.

The second class of s les are those st les where we have not had the time to et around to .

..... :-...:::::<;:::::::-:.:.;.:-: :-: ,..

t):}~:~:~:(t{~~{I{tt~tt:· ::::.:::::::::::::::::::::::::::;::::::::::.:.:.:.-

::i·::::::::ll,::···j::ll:·l·::::::I::.l~:·l.:l:.;I:I:l·rl -:: -:-::/:u::::.n:::HU%)::::):

LI"ne B¢g'4rT:;:I:~np" .::}))\:{<\}:::::::::::::::. . .
:;::!i.::.:.:.;·.:::.:::.:F::.:;·:;.:.·.·.: :.·.::~.:·.;:.:·.i.:.:.i.;:.!K.·:.:.·i·.~.;:.:.; ..·.:.··..: ::.'.;;.·;.::.:~O.... . :::;:::;:;:;::::::::::::

«<':::::::::::" .:;:::::::::;::::::::., <::\:[:~::\l:::::~\:l::[\l:::\ll:::·~I@::.

~~~~a~
pieces, does not aI'ways'\vofk.·One reason the algorithm fails is that thecnaraCterf6 glyph
mapping indirectly depends on the characters that are on the line.

Also, an application, using an incremental line break algorithm, cannot compute the glyphs
which may overhang a line at a particular breakpoint. Glyphs that can overhang include
punctuation and trimmed white space. The reason the incremental algorithm can't work is that it
assumes glyphs are laid in the same direction as the characters in the text backing. This is not
true, and as a result line end calculations may be made using the wrong glyphs.

Finally, hyphenation of words can cause character metric changes and in certain languages cause
spelling changes. For example, take the word 'office'. The 'Hi' might ligate into a single glyph. If
we break the word into two pieces, like between the two fs because of hyphenation, the width of
the two pieces (ignoring the width of the hyphen) may not equal the width of the whole word!

In most cases, even with these failures of an incremental algorithm, the line breaks computed by
an application will be close enough. This is because an error will usually cause an application's

'* Registered/Restricted Line Layout March 15, 1990 2.7.3-38



calculation to be off by a small amount and the error will usually be on the side of creating
shorter rather than longer lines.

To compute an accurate break point, an application must recompute an entire line for each
possible break point and pick the line with the 'best' width. The problem with this approach is
that this is slow: Currently we do not have a fast and accurate algorithm to solve the problem.
More importantly, if we did have a faster algorithm it is not clear how it will affect ZZText's
Knuthian line breaking algorithm.

Finally Line Layout currently does not handle soft hyphens at the ends of lines. It lets a font
choose to display hyphens or not. Line Layout needs to directly handle hyphens. Line Layout
must convert soft hyphens to real Unicode hyphens--or NULL Unicode characters depending on
context-before a Unicode to glyph mapping and before character reordering and rearrangement.

•.<;:;..•.•..

:-:-:.:-:-:.: . -.-

"ii

• Registered/Restricted Line Layout March 15, 1990 2.7.3-39





Data
.....•...:.;.:.:-....
:.:.:.:.:.:.:-:.:.:.:.:::-:;.:;:.::~:-:.:.:.:.

«Registered/Restricted Psycho Killer Wednesday, March 7,1990 2.8.1 - i





• Regis tered / Restricted Psycho Killer Thursday, March I, 1990 2.8.1 - ii





Introduction

The Psycho Killer project provides classes which aid in the management of data in the Pink world.
Transactions and logging will be fully supported when the Credence classes are available.

Architectural Overview

Psycho Killer provides classes which aid in the management of disk based data in the Pink world.
Classes are provided for managing objects on disk (like the Chunk Manager) and for finding (indexirg)
those objects. Psycho Killer will use the Credence classes to support transactions and logging.

Psycho Killer provides classes which associate a key with a value. In this respect, all of the classes
resemble the TDictionary class found in the Utility Classes. The simplest of these classes associates a
fixed-key with an arbitrary (heterogeneous) value. For example, a class roughly equivalent to the Chunk

~~~F£~~~{r~~~ll[ll\'~~~~f~iiiii·!!~~:::·all

manager for managirigthev.~U.tes~:<Afthis time, the interface for the individhilf:partsIS sHll up in the air;
however, a usefull class, TDiskDictionary, is presented.

Classes

TDiskDictionary1

A TDiskDictionary is used for the storage of objects on the disk. It works like a TDict ionary. You
can have arbitrary keys and arbitrary values. Objects which are placed in disk dictionaries should
override the IsEqual () method and the Hash () method.2 The interface presented here was meant as

1. For all the algorithm widget heads out there, a TDiskDictionary uses a directoryless dynamic
hash table for its index. It also uses a spiral storage scheme to improve the utilization of all of
the buckets and cut down on overflow buckets.

2. It is very important that your Hash () method returns hash values which are uniformly
distributed over the values that can be represented in a long. If your hash function does not

• Registered I Restricted Psycho Killer Thursday, March 1, 1990 2.8.1 - 1

an approachable (working) first version.

MCollectible

fileName);
TDiskDictionary() ;
Add(MCollectible* key, MCollectible* value,

Boolean replace=TRUE);
Remove(const MCollectible& key);
Member(const MCollectible& key) const;
Retrieve(const MCollectible& key) const;
Commit() ;
Iterator() ;

void

Boolean
Boolean
MCollectible*
void'
TIterator*

virtual
virtual
virtual
virtual
virtual

class TDiskDictionary : public
public:

TDiskDictionary(char*
virtual
virtual

TDiskDictionary: ;}fJ.fiskDictionary ()

\{}} , ..

::;:::::::::;:; ::;:;::{;}>:;:;::;::;::;::.....
<:}:~{ :;:;:;:;:;:;:::::::;::;::::;:::;:::"
:/:};:::: ::::::::::::::::::;:::<:»:-:.,.

MColIec t ib:$.g\~\:{)$~&i::: c ons t \:!··.:;:··,·"·\/::://)r(
..;.:.:.:.:.:-:.:.:.;.................. :-:-:::-:<»~:~;;?:::::.:::~.:-:-

·<~{{~}\t:~:~:~::::· .::::~::::::::::::: .
.::-:-:::::::::::: :,:::":::::\:::=:,: ·-::::::t\:::U:U\\\\::::\:\:::::::·· =::::=:=::: ..\?: ...

MCo11ect ib1e * ·:..rfD±.#.Mp.l#t:$·$.·6.·~¥y:y: Re t r i eve (cons t MCo11e ct'IB1~:·~:.:=' ~~y;:::.:;·;g·b:~s t
Retrieve a record from thediskdktionary using the passed-in key. Return the value associated with this
key or NIL if no value is found.

void TDiskDictionary::Commit()
Commit all changes since the last Commit operation to the disk dictionary.

void TDiskDictionary::SetDestroyFileOnDelete(Boolean doIt = FALSE)
Normally, deleting the disk dictionary object in memory does not actually destroy the data on the disk.
Setting the destroy file on delete flag will cause the disk files to be deleted. This routine is not
implemented for dl1.

TIterator* TDiskDictionary: :Iterator()
Return an iterator for iterating over all of the objects in the disk dictionary. The values returned from the

currently do that, a simple technique is to use the result ofyour existing hash method as a seed
to a TRandomNumberGenerator and grab the next random number.

• Regis tered /Restricted Psycho Killer Thursday, March 1, 1990 2.8.1-2

iterator's Next () & First () routine are TAssocs where the key, value pair in the TAssoc
corresponds to the key, value pair in the disk dictionary. This routine is not implemented for d 11.

Example Code .
This is some example code for adding key, value pairs to the disk dictionary and querying the disk
dictionary for the values.

sampleroutine ()
{

II Create a new disk dictionary.
TDiskDictionary* myDictionary = new TDiskDictionary(narndb") ;

TCollectibleLong key1(11);

~~~~~~~~:~~~~~~illll!lllllllrllrllftll"r
TCollectibleL~n1:'value3 (102456) ;

II Delete the object in
delete myDictionary;

II Checking to see 'If various keys are in the dictionary.
Boolean found = myDictionary->Member (TCollectibleLong (11) );
qprintf("ll was found as a key in the dictionary = %d\n", found);

found = myDictionary->Member(TCol1ectibleLong(1001»;
qprintf("lOOl was found as a key in the dictionary = %d\nn, found);

found = myDictionary->Member(TCollectibleLong(S»;
qprintf(nS was found as a key in the dictionary = %d\n", found);

found = myDictionary->Member (TCollectibleLong (69) );
qprintf("69 was found as a key in the dictionary = %d\n", found);

II Retrieving a value given a key
TCollectibleLong* someLong = (TCollectibleLong*)

• Registered I Restricted Psycho Killer Thursday, March 1, 1990 2.8.1 - 3



myDictionary->Retrieve(TCollectibleLong(ll)) ;
qprintf ("Value associated with 11 is: %d\n", someLong->GetValue () ) ;
delete someLo.ng i

someLong = (TCollectibleLong*)
myDictionary->Retrieve(TCollectibleLong(75)) ;

qprintf(UValue associated with 75 is: %d\n tt
, someLong->GetValue());

delete someLongi
delete myDictionarYi

• Registered I Restricted Psycho Killer Thursday, March 1,1990 2.8.1 - 4



• Registered/Restricted Pluto March 15, 1990 2.8.2-1





.. -':':';'.

.~::::::~::::::::~~:;:::.:: .·:-:··-:·::;:;::/:;:::)(\t\::::-::.·.

.....................................................•........•.....................................

IIIlllllllIll::;,;;;~~li~ 1uta
:tl\rchitectural

.& Registered/Restricted Pluto March 15, 1990 2.8.2-2





Introduction
Pluto is the file management software for the Pink system. This document presents a discussion
of the architecture of Pluto, and of the capabilities that Pluto affords to its 'clients.

Goals
The goals of the Pluto architecture are to support the functional requirements of the Pink system
with respect to file management, and at the same time to maintain a high degree of reliability
and a high level of performance. Pink is a highly-leveraged, integrated software system, in
which, in order to deliver the best experience to the user, all of the components must work
together well. Functionality and reliability requirements are often at odds with performanc~.p

::::::;::::{ -:.;.'

Bluto Seroer.>:TI'l~:P~:hk{r;~;~nal AppleShare service [5] will i~~1:~:ih&:IN:6h;'exampleof
a Remote File System Agent, a software component that offers file service from the
local machine to a network. Remote File System Agents rely on Pluto for local file
service, which they then export to their network.

High Degree of Reliability

The file systems available under Pluto will implement their on-disk structures so that they are
recoverable; that is, so that they can be reverted to an earlier consistent state in the event of an
unexpected failure. There will be no need for a separate scavenging utility, like Disk First Aid .

.& Registered/Restricted Pluto March 15, 1990 2.8.2-3



High Level of Performance

Pluto provides various classes of service intended to deliver perfonnance to different kinds of
clients. Control over file system policies, like those for disk space allocati9n and data
buffering, is made available through the client interface, for those clients that reject the
default policies.

Heterogeneous File Systems

The greatest functional requirement of the Pink system is the need to support a mix of
heterogeneous file systems. Media written by other file systems, and network file service
offered by other systems, can be imported into the Pink System through the Pluto guest file
system facility. The heterogeneity of guest file systems is masked for basic file system .

Pluto Interface

between client and server.

'* Registered/Restricted Pluto March lS, 1990 2.8.2-4



Application

volume. Flush ()

Pluto Interface

fssClient.FlushVolume(whichVolume)

........................................... " .0 .••..•••-.:................................. ••• . '.

Application perfonns operation
on a surrogate object

In terface layer translates
operation into a system-level
request to the appropriate File
System Server

M~sage_b~~liiil!lfllillill~lllf;i'
Fig~mf1. Relationship Between Application

.. :-:-:.:.:-:.: .:-:-:-:-:-:.:-:-:-: -.... ..•...- .

Figure 2. Relationship Between Clienfand File System Server

The Pluto Interface is designed for the file systems of the next decade; all file sizes and offsets
are expressed in 64-bit quantities, allowing for a maximum size of 18 billion gigabytes, and all
symbolic names are expressed using Unicode [7], the international 16-bit character set. The
interface also makes regular use of the polymorphism of objects to build in extensibility. For
example, lock types are expressed as objects, allowing for a new file system to introduce a new
type of lock without necessitating a change in the interface.

til Registered / Restricted Pluto March 15, 1990 2.8.2-5



The salient concepts supported in the Pluto Interface are file system objects (volumes,
directories, file groups, files, and reference files); access control; logical names; user-defined
properties; property queries; memory-mapped and byte-stream access methods; file-level and
record-level locking; and user-defined file Content Servers.

Adapters
Opus/2 is a system kernel on which different operating system environments can be constructed.
The software that implements a particular operating system environment is known as an
Adapter. As far as the file system is concerned, the role of the Adapter is to "adapt" the Pluto
Interface to the host interface of the operating system environment. Figure 3 depicts a foreign
program obtaining file service through an Adapter.

error == Flu~}lVq:l.:·{V9J.n.~.me, volrefnurn)

Pluto InterfJltiilj

f ssclil;ij~~~hV~i~:j~~~hY9~.,IIJ17

Message-based request

Figure 3. Relationship Between Application, Adapter, and Pluto Interface

• Registered/Restricted Pluto March 15, 1990 2.8.2-6



File System Server
A File System Server is responsible for managing a set of volumes of a homogeneous format, for
example, a set of HFS volumes or a set of High Sierra File System volumes: A File System
Server is an implementation of a particular file system, and, hence, by having different servers
available in the system, different file systems are supported simultaneously. This situation is
depicted in Figure 4.

Client Application

.......:.:::::.:-:.:.:-:.:.:.:.:.:.:.:-:.:.:.:.:.;.;.:.

MS~~~~::"!~t~~:\;;:
Systel:j";R§f-¥~r-:::": "":<::<

:.:.;":~:~»:- ...~>:•.' .. :-. ,,;,0,. • • •.... :•..:••.••••".......... >:-:.....:-:••"•••• :•••••:-:=:

Figure 4. Application Using Multiple File Systems

~:~:~:::::::::~:~:~:~:::~:i:::~~::~:::::::~:::~::::::::::

ISc1;j~!~lgj0High
Si~rFA:m~*e::Systenl.
Ser-ve:F::<""

.& Regis tered / Restricted Pluto March 15, 1990 2.8.2-7



Each File System Server is responsible for delivering a standard set of services. This set of
services is defined by the Pluto Interface. In this light, each File System Server can be thought
of as an adapter that adapts the services of the specific file system to the services described by
the Pluto Interface. This scheme accommodates both local and remote file access. A File
System Server for local volumes, that is, volumes on devices directly attached to the computer,
will express each Pluto operation in terms of the on-disk structures of the specific file system,
whereas a File System Server for a remote volume will express each Pluto operation in terms of
the network protocol used to communicate with the network file server.

Any File System Server is free to implement second-tier operations in addition to the standarc!
operations of the Pluto Interface. Second-tier operations are made available to client programs
by introducing subclasses of existing classes in the Pluto Interface.

Some examples of local file systems are HFS, MFS, ProDOS, High Sierra, MS-DOS, OS/2
HPFS, and A/UX, while some examples of remote file systems are AppleShare, PC-NET

~:::::~N~~illllll'lfl'I"I!{ ·::;;!·ii;\\;t;D'

;;v:~~~:~:c~e~;S~~.fi~::t:en;~~:~::'i::l:r,:e~~e:r~~l'~I"!::;;;~~~v~~:t~~v .

...............
::;:::::::::::::-:.; :.:-:.:.:.:.:-:.:-:.

:-...<.:::.:.:.:.;....
......... :-:.:.;.:.;.;.;:::;.:-:.:.;.:.;.:.:: .... \::::}::}}}

··:;:..i:··j~::i:i;·;!;!·:··~1·:1;~;lj~·~I:!:I~i:l·l:1·ill~:!l (/:::::.:::::::::.:.: ::::)::::::::.::::::.. :

Pluto I-;~!w:}:§:ystem

~x~~~~ni-J.~I~t(Ii';:~~~ir;:'p7.::~~~t~::~~llllijt~~i~:C~~J~~~111;~:s,
and access cohtiB.l#{f9~~j99.>:%~rldlhat will support the storage-:Ht:@£gg:Jinq§p~r~>files.
Concomitantly, a ne·w<VersfOh"·of the Apple Filing Protocol (AFP) will be:=aesigned to directly
support the Pluto· Interface. These new file systems will be the native file systems for Pink
machines, and, because they support the Pluto Interface directly, will afford the best
performance and reliability of any file systems available for the Pink system.

Guest File Systems
File systems other than the native file systems are referred to as guest file systems. Guest file
systems support volumes created by non-Pink host machines. Such volumes are referred to as
guest volumes. The on-disk structures of a guest volume may not be capable of directly storing
certain infonnation necessary to support the Pluto Interface. When this happens, the
information must be stored in a meta-structure, like a file. This file contains whatever
additional file system information is necessary to make the guest file system look like a native
Pluto file system, and is referred to as the Pluto Database.

• Registered /Restricted Pluto March 15, 1990 2.8.2-8



The discussion so far has related to the on-disk data structures of a local file system, but the
same line of reasoning can be followed with respect to remote file systems. When there is no
direct support in a' remote file system's protocol for the storage of a particular piece of
information, that infonnation must be stored in a Pluto Database on the remote volume.

Since the Pluto Database is accessed using client-level mechanisms, the integrity of the
database is difficult to guarantee. Apart from the obvious data-loss problem should the
database file be overwritten or expunged, there is also the problem of consistency to consider;
whenever a guest volume is shared with non-Pink systems, the infonnation stored in the Pluto
Database can become inconsistent with the actual state of the volume.

..:-:-:-:-:.: »:-: .

'.-.::: :;:::::::~?~~:~:~:~:~:;';:;:;.: ... :.:.'.

Various implementation techniques can be brought to bear to improve reliability, like on-the
fly consistency checking and replication of the infonnation in the database, but they all impose
a penalty on the overall performance of the file system. Each guest file system implements a
file model for the benef.i.t.g.f....H.§....£J.~.~nt~-! ....~.~4...!.h.~..J.9.gical distance from that file model toth~
Pluto model detennl·ne~·.:::.:t::.~::a:..::::::.:::.c..}·os·:::.:::::.~.:j.:A.A.::.::t·::b.::::::n::::::s::::·.·t·~:;#h.::n:::.::~+:~~.::.:~.t.::..:j..:::.:::.·::.:· :. :'::':':'. w :l:lSoi· ~ ~: u:.t: "':<-J. .g;U-1V: -::::.:.:::::::::::::::::::::::::::.,

Remote file systems .~iii~ijilltllllllllhen high-level operatjQ~iili*;d;rectory
search based on a prq~#Yhl~~rYl#inffiiFJ!i¥.J~*~uted at the network #~~:~~tymtbecausethe
filing protocol cann9~::~ipH@~fthlfb:rMfMi8fe:::tffsuch cases, ratherJn~:~jm~gmHngthe

.........

File systlll;~IIII~IIII~work

;::~?i~i~~~;~i~::~~~ ~:~~\~~{~~~~::: ~:::~:::::::::

~~:~:\~:il~~~.r.•...•••.f.•••r..t.:..•..e.v.::.:.m.:.::.i.::..r.. ;.::..:.os~=:~t~~.~:.::.;e..:.:i..i~.'p'~ to redUC~~III!,llllrtegrating ~!!!~~i>
:.:-:« .. .:-:...:.:-....:::::::::::...... ":::::-:-:'

Remo te·<::Pl1e.·::.l.ceess:::::::::;::;:-

Customers can integrate a Pink machine into their pre-existing distributed and network file
systems once a File System Server has been developed for their file system.

Pluto supports an import-export, or remote-mount, model of remote file access. Volumes can be
imported individually from remote file systems that export a collection of directory trees, like
TOPS and RFS. Distributed file systems, like Sprite, that implement a network-global
directory tree can be imported as a single volume.

Directory trees can be exported from the local machine to a network with the help of a Remote
File System Agent for that network. The Agent represents remote clients who wish to access
file system resources on the local machine. Remote File System Agents are clients of Pluto, and
are not, therefore, a part of the Pluto architecture; however, they rely heavily on Pluto
services.

• Registered/Restricted Pluto March 15, 1990 2.8.2-9



The import-export model allows the user to explicitly control the nature and the extent of file
sharing, and to control the consumption of local resources.

Volumes on the Desktop
From the user's perspective, the desktop is populated with objects that can be opened through
direct manipulation. One object might be a local volume, which can be opened to reveal the file
system objects in the root directory. Another object might be an AppleTalk network or an NFS
network, either of which could be opened to reveal the next semantic level (zones in the case of
AppleTalk and domains in the case of NFS). Authentication might be required when a
protected object is opened, for example, opening an AppleShare server would require
authentication before the volumes within it could be viewed. Whether the user has to type a
password at that moment is determined by the policy for caching authentication information
locally. . ...

::::::::::t(t:\:}~:~:t)::}::::::;::::::

A volume mountd~t~H6n:ffiiiY:failbecause of access control restricti;'rik:~~g6d~t~dwith the
volume itself; for example, if the volume is protected by a password. Such a failure will raise
an exception to be handled by the software trying the mount operation.

File System Objects

Surrogate Objects
Most of the file system objects defined by the Pluto Interface classes are surrogate objects. A file
object held by a client, for example, is a surrogate for the real file stored on disk. A surrogate
object is a description of the real object, used to identify the real object to other system functions.
Holding a surrogate object is the equivalent of holding a name. When the real object is deleted,
the surrogate object will be invalidated, and operations performed against it will fail.

'* Registered/Restricted Pluto March 15, 1990 2.8.2-10



Volumes
A volume object (1Volume) represents a mounted volume. Volume objects are acquired by
interacting with a seminal object (TFileSystem) that represents the total file system (i.e., the
aggregate of File System Servers). The seminal object can return volume objects in three ways.
First, in exchange for a mount descriptor object (TMountDescriptor). A mount descriptor
encapsulates the file-system-dependent information necessary to establish a connection to a
volume. The mount descriptor might contain information like a password object, an object
representing the storage provider (e.g., local device or network session), or a file system type
object (e.g., NFS or AppleShare). Second, in exchange for a volume name. Third, indirectly
through a volume iterator, which can be used to obtain a surrogate object for each mounted
volume.

can, however, return a geometry object th~f9~~nbes the:S1gij~c.~rifparameters ofihe····>·:·······

~;fi~i~ii~li~!:~~~I~~s:~:l~~~,jl~:;:t::~lllf:
feature will nq~·~:~mp!~ffi~9~m=::·f:9r:#iEF'first release of Pluto, th6Ugl}~: .•. ::-:::.::__ ___ :<.>t:·::-·«::-::

.'.:.: -:-:.~. :-:-: . -.' ..

Directories
Every volume stores a hierarchy of directories. File system objects stored within the hierarchy
of directories can be discovered by searching from a given directory; the directory object is asked
to look up the object based on a symbolic path name relative to itself. If the object is located, a
surrogate for it is returned. A description of symbolic path name objects can be found in the
section on Naming.

A directory object can supply an iterator that will enumerate the file system objects contained
in the directory. Using a property expression as a filter, the iteration can be set up so that only
objects of interest are returned (see the discussion of Properties).

.. Registered / Restricted Pluto March 15, 1990 2.8.2-11



File Groups

A file group is a directory subtree rooted at a distinguished direCtory known as the parent of the
file group. A file group affords a tighter bundling of file system objects than can be achieved
using the normal directory mechanism, and is intended to represent a single entity to the file
system client. For example, the access control list of the file group parent overrides the access
control lists associated with any of the file system objects in the group.

File groups can be nested; the interior file groups are considered to be part of the outermost file_
group until they are extracted. Any member of a file group can return a surrogate object for the
parent of the file group. The file group parent can be asked to return information about the file
group itself, like its aggregate size. Operations like these will be very fast in the Pluto File
System, but will be more expensive on guest file systems <e.g., computing the size of a file group
might require traversingJ.h~.$r.9.~.P~.~ .

File groups will be uJlllllllllrl'trlf~-fork files are used in th~Me%~t~~W~g~~~~)

::::::;::::::::

Fi Ies .:;:::m::::~:::.

.:::::::::j:::::::1j::~:~j:j:::::~~::::f:~~j~~:::::::.:]~:[~:~~.~:::~\:~:~1:::::~~I1H<::;::.;:..

capability for access·fOfhe:file.·For local file systems, changes in the acces$":cohtrol information
associated with a file will not revoke existing file handles. Remote File System Agents may
want to recheck permissions on every access; so this behavior may be provided as an attribu te of
a handle.

'* Registered/Restricted Pluto March 15, 1990 2.8.2-12



Shared

Exclusive Read

Exclusive Write

Protected Read

Protected Write

multiple readers and multiple writers

single reader

single writer

multiple readers or one writer

multiple readers and one writer

read-write; deny none

read; deny read-write

read-write; deny read-write

read; deny write

read-write; deny write

~=~~~ ~~~
~::rf~~llh~~~;~'rl~:.Becausefile handles are owned b:r~IIII;;I,sks on ateam can
Another type of lH~~~]1!n9.J~~~;:,-?gl9:kqlfilehandle, can be shar#:9.?:pg~¥t*f:§Jteams. A global file

:;:::::/:

as a junk heap::fQt:#~fu~.f~t4#q.i:M>NJemporaryfile object can be;;pjM~@rJr.9mOQEfpl@gr~hn to
another (e.g., fr6ffi~()m.p~1,~r.·tq~Hnker). The secondary storage ass()d~1le.4o:o:wi,~n.:t~mp6raryfiles
is reclaimed when the system restarts. ° ••• 0.·

Various performance optimizations are made for temporary files. Since temporary files are not
permanent, storage allocation and data write-back are perfonned in a lazy manner, in the

hopes that the file will be destroyed before the actual work must take place." In addition,
when temporary files are allocated in a sparse manner, the file allocation on disk is actually
done sequentially, relying on the virtual memory page tables to preserve the correct order of the
file pages. This strategy greatly reduces the cost of sparse temporary files on guest volumes
that do not support sparse files. Sparse temporary files will become more common once the
Opus/2 kernel begins to make use of copy-on-write segments.

.. A c1ose-and-delete operation allows the same optimization to be made for permanent files.

• Registered/Restricted Pluto March 15, 1990 2.8.2-13



.....-:.;.:::-:.:..

Immutable Files

A file can be made immutable; once this is done, the file can never again be written. An
immutable file can be read (copied) or deleted.

Reference Files
A reference file is a file system object that is actually a reference to another file system object.
Reference files are used by the Pluto File System to implement symbolic links. Reference files,
as a general mechanism, can be used to implement other kinds of references, like auto-mount
points that are references to remote volumes, or "caching" references to remote files tha t, when
opened, copy a version of the remote file onto a local disk.

Reference files introdt+:*-~:[~*~:~t.I\[I~:~~g*~[:Pt~cessing to the regular name pr~§~~\h@~:d6WJ
by a File System Sery~N~:4mpl.~mint~P.9n:l1fm).~::~indsof reference files meI.}~~9nm:::~(K'e is up to

N a ming ,:::::::::::::;'

.......................•...............................................:.:.:.:.:.:..... .)))f}~?" ':::;;:;-:';::::;::::;:;:;:::\{ ::> ..... ..

Path N Clmg$:~::::::\::\~~\:,~:::'~:~::::\\:t~>::,:, "::::::::::::;::::::,, ·\{::::::~.jl~:\!1~:~1:.·1.1.[··:!··.I.·1.:::::::/~;;':;:::::;::::::

A SymboliC~~i~I~~~~iIB~ji~'!~::Ugh the hierarchy otai~.~!~~.9\1~~ig~HZ:lume,
starting at a parnctilardirectt)ry." Path names are always interprete(r:f~taHV:e:td:anexisting
volume and directory; volume names do not appear in path names. Path names are represented
as an array of textual strings. Adapters are responsible for parsing host path names into this
canonical form. A distinguished entry is used in the canonical path name to indicate the
immediate parent directory.

Adapters can participate in path name interpretation by performing separate directory look-up
operations on each component of a path name, rather than passing the entire path name to the
File System Server for interpretation. The UNIX Adapter would do this for programs that
have set their root directories to something other than the global root directory.

• Registered/Restricted Pluto March 15, 1990 2.8.2-14



Path name interpretation is typically performed once in order to acquire a surrogate object, and
then further opera~ionsare expressed in terms of the surrogate object. Since path name
interpretation is not performed on every operation, verification of the access permissions on
ancestor directories is also not performed. This is usually acceptable, but if a local file system
is being exported by a Remote File System Agent, such bypassing of directory-level access
control might not be tolerable. Whether path access permissions are checked for every
operation on a surrogate file system object should be an attribute of the object.

Pluto does not support the notion of a working directory. Oients can acquire and hold surrogate
objects for any directories of interest.

Add Names

Additional names can ~;.;"~:§§Jgn~".JW;";.~J~~;~;~~:.JRr}~"Jilesystem object in a particular direc~9TYc:;::"

Logical N;~IJhes

the low-level identifier "sU"pplied by the host file system implementingth~;ha:tll.edobject.

Logical names will be cheap in the Pluto File System, but supporting them in guest file systems
will be more expensive. For this reason, every file system object is not created with a logical
name. A logical name for an object must be constructed explicitly. A file system object can have
at most one logical name at any given time.

File Logical Names
The logical name of a file or directory can be used to uniquely identify that object in the context
of a volume. A globally unique identifier for a file or directory can be constructed by combining
its logical name with the logical name of the volume on which it is stored. Note that such an
identifier does not support migration of the file or directory away from its home volume.

• Registered / Restrictcd Pluto March 15, 1990 2.8.2-15



Volume ~ogical Names
The logical name of a volume encapsulates a file system identifier that selects the File System
Server for the volume. A volume can be found based on its logical name; Bluto will extend this
search capability over the network.

Properties
A property is a named, typed value associated with a file system object. The value of a
property can have a built-in type or a class type. All file system objects have member functions
(MFileSystemProperties) to retrieve and set the values of properties associated with them.
Properties are named using textual strings. Since all properties are typed, an exception is raised

Property .=J1~pressions

..........:... :.:.:-:::::::::::::::;:::::::::::::.:.:.... ",:

file server). TheritiffiootUjt:@rifext switches between client and servefls4hen>rntni"Inized.

Note that some queries will be very expensive to process; however, if a query can be optimized,
the File System Server has the best advantage.

System-Defined Properties
System-defined properties are those properties of file system objects known to the managing
File System Server. These properties are generally stored in the on-disk structure of the file
system. There is a mandatory set of system-defined properties that all File System Servers
must support.

• Registered/Restricted Pluto March 15, 1990 2.8.2-16



When a file system object is copied across heterogeneous volumes, it is often desirable to
preserve the system-defined properties of the originating file system. Pluto supports this by
maintaining a per':volume lightweight database of properties. The size of an individual
property will be limited (less than two kilobytes), allowing for optimizations in the access
method implementation.

The system-defined property database is also used to make existing on-disk structures
extensible, since new attributes can be added at any time.

User-Defined Properties

Protection

Policy
::;:-:::::::::::::::::::::;: .:-:<.:.:--.:.;.:.;.:.

:.:.:.:-:-:-:.;.,'.-.. - : .
.........

File Service Domain
When discussing protection across heterogeneous file systems, it is convenient to introduce the
concept of a File Service Domain, an autonomous administrative environment with its own
implementation of file service, name service (for exported resources), and authentication
service. An AppleShare File Server is a good example of a File Service Domain, as it
implements its own authentication database (containing user, group, and password information)
and naming database (containing information about exported directories). Another example
would be an NFS network in which a Yellow Pages name service provides a common
authentication database and naming database.

Similar behavior is anticipated when A/UX volumes are mounted under the Blue Macintosh operating
system.

• Registered/Restricted Pluto March 15, 1990 2.8.2-17



Authentication
In order to access resources in a particular File Service Domain, a client must be authenticated in
that domain. Authentication is the process of ensuring that a client is authentic, and should
therefore be granted the access rights associated with its identity. Authentication is based on
the client's ability to produce information proving its identity, and on the server's ability to
determine that the information presented has not been forged. The information supplied by a
client is referred to as its credentials. Credentials are ultimately tied to some human user who
has, at some point, demonstrated his own identity, usually by tendering a password <though ~

other mechanisms can be employed, like magnetic card keys). Credentials contain, at a
minimum, a unique identifier for the user within the domain in question.

The user will identify himself to the File Service Domain containing the resources in which he

:::;:::::::/:=::; :::;\/:~:;:;::::::::::::.

...... :::::::{?:::::-:::-:-:

N etwork::~utle:ntication . ::::::;.:: .
'.':- -:;:.:.:-::>: :=::::::::::;:::::::::;:;::" ::;:::;:::;:::::::;::.- :-:.;.:

;:}}}(;~;;;;;;;;;:;:::;:::::::}{::: , ..::;:{))f?::·· ::: -:.: :::::::::::~::::.

involves protecting Hie:cre<lehtials, generally by encrypting them with"i(k~ykh6wnonly to the
Authentication Server and the server to be contacted (the server's private key). In this way,
the server presented with a set of credentials can determine if they were issued by the trusted
Authentication Server. When a client requests credentials for a particular server, the reply
from the Authentication Server is encrypted using the client's private key; so only the client
can extract the credentials from the reply. The client's private key is a reduced form of the
password supplied by the user. The reply contains another encryption key, the session key,
which can be used. for secure communication once the session between the client and server has
been established. The session key is replicated in the credentials, so that it can be safely
passed along to the server. To prevent replay of captured credentials, and to authenticate the
client, the server can issue challenges that require the client to demonstrate knowledge of the
shared session key.

• Registered/Restricted Pluto March 15, 1990 2.8.2-18



The scheme just described relies on conventional encryption, using a single private key. A
similar level of protection can be provided by schemes that use public-key encryption, where
public keys are used to encrypt messages sent to clients or servers that can decipher them using a
private key.

Local Authentication

When credentials are to be communicated only within the bounds of a single machine, they can
be safeguarded by the operating system kernel, relying on the hardware protection boundary ,
implemented by the user-supervisor trap mechanism. This obviously works when the file
system is implemented as a part of the kernel. When the file system is implemented outside of
the kernel, the IPC service provided by the kernel must be made secure. This can be done by
having the kernel stamp messages with an non-forgeable identifier, from which the user on
whose behalf the client-is ..e.xe.culing ..can..he....de.duc.ed, or by using a scheme like that describ~dJQf:

information be·storeqq~t.~:.~r;yo.lumebasis. For example, a volume@ulg.··~~t~fl$POrted from
one File Service DomaIn to' another, disjoint domain in which the user moVing the volume is
unknown and cannot be authenticated. If normal, protected access is to be enforced, the volume
itself must contain the necessary authentication information. In this case, the volume
implements its own degenerate File Service Domain.

The area of authentication, and the Local Authentication Service in particular, is one where
more design work is necessary for the Pink system. Human interface concerns will, no doubt,
guide this work. The Pluto architecture provides mechanisms that are general enough to
accommodate whatever system design is adopted.

• Registered/Restricted Pluto March 15, 1990 2.8.2-19



Authentication for Remote File Access

Remote file access requires authentication between the File System Server, as an agent of the
client, and a Network File Server. Remember that, for connection-based n~twork file servers, a
preestablished session is handed off to the File System Server. If this session is not
multiplexed across multiple clients, then credentials are implicit in the session (this is the case
for AFP). If the session is multiplexed, that is, it has been established from machine-to
machine rather than from client-to-server, then credentials must be associated with each client
sharing the session (this is the case for RFS). If the network file server is datagram- or RPC- ~

based, then credentials must accompany every rendezvous.

The credentials for clients accessing remote file systems should come from the Local
Authentication Service. If multiple users can be represented by teams executing concurrently,
then credentials must be grouped by user. A client team executing on the behalf of a partiC:lJ.:l~T

f;I~}~:~~~~J~J!Jt~III'E~f~;:::f:~~iliii"iP!!~~~~)
Whether a File Sy§~m Server retrieves credentials from the L9¢.ij~:m§igt.ij¢iHicationService or
gets them directly~::~t6mthe client is not central to the design..::,:gt%!~n§~lW~re opaque to Pluto;
they come as the.Ym:~f~Jnnn:Jh.~.authorizationservice of thtt)p~rt~i#l~t4!ileService Domain,

:.;.:-:.:->:-.............
.......... ....
'::::::::::::::::::::::}~:~:~:?~;<;:::::::::;:.:.:.

-.. :, ..::::::::;:;::::-:::;::::,.
......:.:.:.:.:.:-:.::;:..;. ...

-:.:::<:::: <;~(:}::::};::::::::.:.

::.:.:.:.:-::::-;.: ;:;:;:;::;)::; ..; ;-:... . ..-:.;.::=:. Yf?i{)

Access'<\1P.·:.:...A.::'.:.·•.• ·.:.:.'::.·n.:.'.'.:.:.•. :.:.:.:.~.:.:.:.:.•. ·r:.:.:.:.'.:·:·.:.A.:.:.::.• :.:.:.:::.•..1.·.·.·.: :.::: :.::.: .....:::::::<:::::~::C}:,:::::·· ··::::::U\UU::::i:::i:\:::::'k:::':·::::::':::: ....
'~.\81. .. :L: ~1 :::::::)}~::::::::.: ..., .. :- ..:-:-:.:-:-:.;......::::;:;:::::;:;-:.:-... '.:-'"

.....:-:::::::;:::::::::;:-:<;> .

From the point of view of Pluto, the credentials do not so much identify the client as they
identify the client's title to a particular set of access permissions. A permission is the right to
perform a particular operation on a file system object. In Pluto, an individual permission is
represented by an object. Permission objects can be collected together into a set of permissions
(TPerrnissionSet). A set of permissions can be associated with a principal, which is an object
that represents an accountable entity, like a user or a group of users. A list of (principal,
permission set) tuples can describe the access allowed to a particular file system object, and is
called an access control list.

Access Control List

The Pluto Interface permits an access control list to be associated with any file system object.
Individual File System Servers may impose greater restrictions; for example, the Pluto File
System does not permit access control lists on individual files.

" Registered/Restricted Pluto March 15, 1990 2.8.2-20



A principal object encapsulates a user or group identification that can be tested against the user
identification in the credentials of a client. For some file systems like NFS or Andrew [10], the
credential object wbuld contain a list of the groups to which the user belongs. For other file
systems, the credentials would contain only the user identification, and the Authentication
Server would need to be consulted for information about group memberships., In the fonner
approach, changes in group membership are not apparent until the credentials are invalidated
or expire. In the latter approach, since protected file operations may require an interaction
with the Authentication Server, response-time bounds on those operations become hard to
assess. The nature of credentials for the native Pluto file system, and for the Pink system in
general, has not yet been determined. This aspect also has an effect on the human interface anq
the feel of the system.

Since a principal named in an access control list is an opaque object, it could be a key or a
password as easily as it could be the identifier of a user or group. Any client quoting the
password would be grat:'~~.. t.l1.~ ..~~.()~i~.~.~'p~.~.~~ions. Such an approach has been adopted~~

\\\\t\ ;"":0:':':. :::?::.::' .. :: ~:~:::/: ._ .

PIuto Pelttll.S§i&!~$:!:::!~{:,!,,:::~,:::,::,:··:·j·:ij!!.!j': ::::::·:::·:·:1jit
jt:::::··

The Pluto permissions relate to the current AppleShare permissions as follows: the
AppleShare see-files and see-folders permissions have been folded together (in practice, they
are rarely set independently), a new permission has been introduced to control delete and
rename operations (as suggested in the preliminary ideas published for AFP++ [12]), and a new
permission has been added to control modification of the access control list itself.

• Registered/Restricted Pluto March 15, 1990 2.8.2-21



This last permission has been included to allow a separation of access control mechanism, as
reflected in the Pluto Interface, from access control policy. No notion of file or directory
ownership is visible in the Pluto Interface. The mechanism for access control is a set of
permissions associated with a principal by way of an access control list. One permission is
permission to modify the access control information itself. A particular File System Server
might implement the policy that only one principal, the owner of the protected file system
object, can have this permission at anyone time. Another File System Server might implement
an ownerless policy, like that of the Andrew file system.

Likewise, no notion of groups or a primary group is visible in the Pluto Interface. The access
control list mechanism allows for any number of principals (groups) to have access permissions
to a particular file system object. Restricting the number of groups, or distinguishing a
particular group, represents a policy.

When an ownership policy is in effect, each file or directory would likely have an owner .

~~~~~:;~:~;t~:i(iJf.illl.f~~:~e~~~p policy '~::!;;I~l!~ii"i~;ljl$&F!

~;I~~:~n~~~:t~Jt'lf~li.~.111'System Serv:;;tfiillIJ;1r-~IP6 change in the

Delete (Rename) Files

::::~:~~"'t'('I!'Jfll'll
\t~~Ii

Read

Write

Delete (Rename)

Modify Access Control List

.... :.....:.:;:.....
::::;;:::;:::::::;:.;.>..:....

:::::::::::::::\:::;:;::::::::::.

". 40 : ••• : .~.::>. :::x·.·.. ' -:..'f:*.....~ : ,,' .

Figure 6. Pluto File System Permissions

• Registered/Restricted Pluto March 15, 1990 2.8.2-22

Inhibitory Flags

Many file systems support inhibitory flags as a supplement to the regular access control
mechanisms. These flags can be set or cleared by any client with pennission to modify the
properties of the protected object; so, for example, a setting a write-inhibit flag does not afford
the same degree of protection as withholding general write pennission. However, inhibitory
flags are quite useful in preventing accidents, and in controlling access at a gross level. The
native Pluto File System will support, at least, write, rename, and delete inhibitory flags on
all file system objects.

Degree of Protec,tion
....

integrity of the fil~:::§Y§ttm::.\~':illbemaintained, is good enoug!t:'m1::Rmy~pI~:~verydayprograms
from avoiding acs~§i?:::fPijm?V!~mAA2r.s.An "everyday" progr~m~K9#~!tp1atdoes not set out to

.... .:.:.:-:-:.:.:

~0.£."e'sS ·::::::::::::::':'::::::\\:::::~j~~:j:~:1:;:~:1.~.~~:~:::):·./.::·.::.::.::.:\.:.• ~.:.i.i.:.:.i.:.:.::'.:.':':':'::::::•. ::-:x:::::::: ..D at a ..' ".: ·\/:.:::.::..:·.·:::-::·.:.:..:.::r.r.:.··.:.:.:..:.:.·::.::::.:I.::.:'.::.?':':':."::; :.:. "">:" :;:.::.. ,.">", .
.:.: -:: :.:::::::-:::::::::::/::.::. ·::::~\t:mI:::f?~):mII:m::: :.:-:.::.-:::.::.

mapped into lheYiItU~lj1*ffi9:ty'p:f::a;a~amand its contents accessefftnt9Bghn~f~¢.~#:esl6
virtual memory addfesses):sec6hd; any file can be opened as a stream ana::ns:rontents copied to
or from the virtual address space of a team through read and write calls against the stream
object.

No record- or text-oriented access methods are supported. These can easily be implemented
through objects that are clients of the Pluto access methods. Similarly, device independence, or
the ability to perform I/O without knowing the nature of the source or sink of the data (e.g., a
file on disk, a serial line, or a network session) is implemented at a layer above the Pluto
Interface. The Pluto access methods deal strictly with files on block-structured devices.

There are several ways a client can use the two basic access methods provided by Pluto.

First, a client can map a file into its virtual address space (TSegment) and access the segment
directly.

.& Registered/Restricted Pluto March 15, 1990 2.8.2-23

Second, a client can use the stream operations of the segment object to copy data to and from the
mapped file. This approach combines the streaming (copy) model of access with the inherent
efficiency of memory-mapped files for handling small, unaligned data transfers.

Third, a client can use the stream operations of a Pluto file stream object (TFileStream) to copy
data to and from a file that is not mapped into its own address space. In this case, the file may
or may not be buffered by the Opus/2 Virtual Memory Manager, at the discretion of the client.
Buffering is helpful for servicing small transfers from extremely large files, for which the
overhead of memory-mapping is too great. To a real-time client attempting to move bulk data
directly from a file into its own address space, buffering reduces the performance of the transfer.

Content Server

".:.;.:.:.:.:.
.:;.:-:.::::::;"

{ttl

.......
':':::':{{:~::{::;:::;:::::::;:::;:::;'"

~;~~~~~~I~~~~~~(:::;:::::::::::"<:;;~;\~;;:~~::~;;:::':-:.:.' ..::::t?t~~::::··
..:,::::{{/:::.:- :-:.:-::-:.:-:~ ..:~:.:~:.:~:.:j:.\.:i~.·~.~t.:::.·Ii:f~)::··

~: ~:::~:: :::~~~:~>:~:~~~~}:~~~:~~~~~~~~~j~~{
.-:.:.:-:-:-..;.> :.:-:.:.:«.:.:-:-:-:-:-:.:-:.:.:.:-.««.;.:...: .

'.'-'",::::::.::::~.:. ~:~:~: :j:~:~:;~~~;~;~;~~: ;:~:;:;:::~
::;::;}:::::: .:.;.;.;.

:«.:::.:::::::::.:.:-: .
.:-:.:-:.:-:.;.:-:.:::;:::-:::-:::
............ :-:.:-:-:::::::::-:.:-.-:-: .

...:-:-:.:.,.;.:-:;." '.:.:.:-:.:-:.;.:.:-:
:-:-:-:.;.:::::::::::;:

• Registered/Restricted Pluto March 15, 1990 2.8.2-24

Opus/2

Send request to read data from
file at offset into real memory
frames

Content Server

Receive request

Call Opus/2 to map real
memory frames into new
virtual memory segment

Move data to / from new virtual
memory segment

Oose segment

Reply

.....- :.:.: :.:.:.:.:.:::::.. :::::;::::: {:::::::::::::;::
.::::::::::::::::: ::::::::::::::::}:.

• Registered/Restricted Pluto March 15, 1990 2.8.2-25

Opus/2 Content Server

Send request for block map of
file on logical device

Build page table based on
block map

~:x
;~
.;.

~

Receive request I
~:

~;:;ly with block map for the I
~.

.,< :".< : : : :.: :.".".,..:.:.:«.: :.~

Disk Access ~.9::n~g§i: j
...:.:.:.:-: ;.:.:.:-:.;. .

. :........... . :.:..

Fi~'::if~!I'lor
111;[111

1'.. :.:;:::::::.:-: .

A client can in~~~~f~~:fd~'fgffi\e~:~~~ntServer when opening a file, the server
will either manage the contents of the file or simply require notification Content Server
operations are taking place. The Credence software makes use of the notification service to
implement ~ts write-ahead log protocol. This relationship is shown in Figure 9.

• Regis tered / Restricted Pluto March 15, 1990 2.8.2-26

Opus(2

Send request to read data
from file at offset into real
memory frames

File System Server

Receive request

Send notification to registered
Content Server for the file

Credence Content Server

Receive notification I11essage

Flush log records

Reply

':-:--"'~:--':-:-:-)o:':':-:':':':-:-••:.:.:-. :-:~:.:.:.:-:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:::.:.:.:::.:.::;.:.:.:.::;.:::.:.:.;.;

File

Figure 9.

{{:Transfer data between
? memory and disk

Pluto does not implement a separate logical buffering mechanism for file data, but rather
cooperates with the Opus/2 Virtual Memory Manager to manage the contents of real memory.

An open file may have caching enabled or disabled. When caching is disabled, the data of the
file can be accessed only by using a Pluto stream object. Each read or write request goes to the
Content Server for the file and the data is moved between the backing storage and the virtual
memory of the client. When caching is enabled, the data of the file can be accessed through a
Pluto stream object or by memory-mapping the file. When access is through a Pluto stream
object, each read or write request generates a system call to the Opus/2 kernel.

The Opus/2 Virtual Memory Manager maintains a cache directory that describes what data
from cached open files are present in real memory. The cache is filled by going to the Content
Server for the file being accessed at the time the cache miss occurs. Cache misses can happen
because of page faults (memory-mapped access) or because of read requests (stream access); the
Content Server does not distinguish between these two types of access.

• Registered/Restricted Pluto March 15, 1990 2.8.2-27

The Virtual Memory Manager, because it has dominion over the global cache, can institute
policies that improve overall system performance, like deferring the copying of data to new
frames as cache hits accrue to clients reading shared open files (Le., a copy-on-write strategy).

Because there is a single shared cache for all file data, the consistency of shared file access is
maintained for all clients executing on the local machine, regardless of what access method
they are using.

Remote Data Access

iii::::)::::}::?::::::;'

":<:::::{~{~~{)::;::::::::::::::::::::::::::::::

•
•

Maintaining the consistency of shared file access for clients on different machines is the
responsibility of each Remote File System Server. The File System Server must implement the
cache consistency protocol of the particular remote file system that it serves. To this end, the
Opus/2 kernel provides the following o~rations on the local file cache:

:::j:~\::~:I:i:jji::::::::~i:~:::i:~~)j:II:I:Ij:~::j:::::~t:iI:i:::t:Ii)\j)Iiiii~::1:j~iIi:~:r·

.:;;:::;:::::::"
:-:.:-:.:.;.:-:

.......
:::::; :::::::::::::~:~:::~:::::::}\:::::':':';';':-:-:':-:" .

Final.~ii;;·}d;l:;ljiP·

Anyone interested in having a copy of the complete Pluto Interface specification should request
one from me. I can be reached by AppleLink at "MCFALL" and by QuickMail at "Crimson
Permanent Assurance Co.:PINKTEAM:Chris McFall."

• Registered/Restricted Pluto March 15, 1990 2.8.2-28

Class Hierarchy of File System Objects

MFileSystemProperties

TFileHandle

ITempFileHandIe

• Registered / Restricted Pluto March 15, 1990 2.8.2-29

References
[1] Bolton, L., D. Chernikoff, C. McFall, C. Moeller, and D. Orton. Opus/2: Memory, tasks,

and IPC. Internal Document, Apple Computer, Inc., March 1990.
[2] Spiegel, J., et. al. Valhalla: Pink Finder. Internal Document, Apple Computer, Inc.,

March 1990.

[3] Spiegel, J., et. al. Odin: Desktop services. Internal Document, Apple Computer, Inc.,
March 1990.

[4] Neimeier, C. Credence: Concurrency control and recovery. Internal Document, Apple
Computer, Inc., March 1990.

[51 ~::~ ~99~~ut~~il,illl'.I!;_"ntemal Document, APple~:;t~::if,1;j[~;!)
[6]

[7]

[8]

[9]

[10]

[11]

[12]

'* Registered/Restricted Pluto March 15, 1990 2.8.2-30

• Registered/Restricted Bluto March 15, 1990 2.8.3-1

The Pink AppleS11are Team'
Greg Burns x4-S46S

1.0dS
March IS, 1990

'* Registered/Restricted Bluto March 15, 1990 2.8.3-2

Introduction
Sluto is Personal AppleShare for Pink. Personal AppleShare allows a Pink user to share files
with other Pink and non-Pink systems. Bluto will support existing AFP ser.vers and clients, and
introduce support for Pink file system capabilities. This section presents an overview of Bluto,
its features, and its place in the Pink file system architecture.

Goals

•

•

•

• Pink Personal AppleShare aims to provide transparent ren10te file system access.
As such it is a fundamental building block of the Pink systen1, aiming to provide the
user with the same experience no matter what file system is being used for storage,

4 ••••••••••••• .;.:- •••_.:················.·

..

:-:<.:-:.:.:.;.:-:-:

.......... \!il!']!!!tI!ll,!;~I. ..···••·••·•·•·••·1;···
.-::::~I:t~~~~·:I~II~f~::::·· .:;::::::}{?:::: ..

Arch i feG:tu:r:~::·:::::::::::n:: ::-:-:-:.:-:.::;;;.:.:.:

Personal AppleShare consists of an AppleShare client and server. Both are Pink teams which
will always be launched at system startup time. The client packages local file system requests
into network AFP requests. The server handles network AFP requests, dispatching them to the
Pink file system. The relationship between the Pink file system and Bluto is shown in figure 1.

Note that the Pink file system client could send its requests directly across the network to the
Pink file system server, thus bypassing Bluto. We chose not to follow this design, as use of the
Bluto client and server allows network performance optimizations to be made on the client side,
and provides for cOlTIpatibility with existing clients and servers; allowing remote access to
heterogeneous systems.

" Regis tered / Restricted Bluto March 15, 1990 2.8.3-3

Cfit;nt

Application

Pluto
Interface

Bfuto Client

LocalFS
Server

Bluto
Client

Bfuto Server

Bluto
Server

Pluto
Interface

Cfeint System

Figure 1. The Pink file system and Bluto.

Server System

The Client;illlll'llllllllllffl'/~~

:::/::':;:;:;:;:;:;:;:-:';".;.:.:' ';:;':';"::,

................ ,' ',... :::::::::::::::::::~:::{/::::: '{{:::

The Slw.:.lv.:~:.'1JIIIillw, -::::..:.::.:.::.:.:!::.J.·:.~i.::.:,.lljli;]();;;!;,]., ..·.:.•·.I;·.I.·•.•.:..·l..;..:.··.••.··l.·.·.·•..:·.;.i..... ') . .
... ::::::}~~\} "" ~ ~ ::::: :.;.:-:.:.:.:-:.:.' :-.« ::.:.:-:.;.:.; .

The Bluto se·fv.¢f(mii{:h~h:~t~::fj:ii:Jl1~::::~ystem requests from the ne:tWW!¥·:·B§~D:g-:~rrn:Blue AFP
versions 1.1, 2.0,and2;lwilFbEtiinplemented, thus supporting Blue 6.(j;--1:b~:ana-:c6ntinuing to
support the Apple II and AppleShare PC. In addition, AFP k.O will be introduced.

The server manages one or more local volumes. Volumes may be local disk volumes, CD-ROM
volumes, or exported sub-directories. The Bluto server is a client of the Pink file system,
making use of file system caching, access control, properties, etc. The ability of Bluto to serve
HFS, High Sierra, etc. is dependent upon Pink support for these file systems.

It is a goal of the Bluto server to not maintain any parallel data structures.

• Registered / Restricted Bluto March 15, 1990 2.8.3-4

Features

User Illterface
Both the Bluto client and server require a variety of local services in order to im.plement
Personal AppleShare. Among these are interaction with the Pink Finder, the Pink File system,
the Pink Browser, the Pink Address Book, and the Pink Network Manager. Both Bluto client_
and server will also interface with a local authentication service for obtaining and verifying
remote credentials. To a large degree, these Pink services will determine the user's experience
of both the network and local file systems; the features that follow help to define the
requirements of Bluto.

Startup

Shutdown

The user wilfb~:ab:l~t,g.§~:~.:.~tv~F:parametersand explicitly enabm9di~p~¢~t1$fMFiI1gfrom a
preferences or other such dIalog. The latter will not shutdown the server,'it will only disable
sharing.

Volumes
The Pink file system is hierarchical, with the topmost level being a collection of volumes.
Volumes may be physical volumes, such as a hard disk or CD-ROM, or network volumes. Bluto
allows sharing of a directory sub-tree at any level in the hierarchy as a network volulne. All or
part of a volume can be shared.

The Pink file system also maintains file system privileges. The act of sharing a volume or sub
directory will be integrated with the finder interface. Sharing volumes and directories will be
identical operations on both the local file system, Pluto, and remote file systems, BIuto.

.& Regis tered / Restricted Bluto March 15, 1990 2.8.3-5

The client will make a distinction between explicitly mounted volumes and volumes mounted
via links. Auto-mounted volumes will be expired after a period of inactivity.

We would like to remove the limitations imposed by having AppleShare volumes appear as
individual icons on the desktop. We expect links and authentication to re?ult in an increase in
the nunlber of volunles mounted. One possible solution is to permit browsing of volumes and/or
servers as an extension of directory browsing.

Accessing a volume through a file link (via desktop object or document link) should be
completely transparent, with the authentication services performing the necessary user ~

verification. Since Inany volumes may be mounted indirectly through links, we expect that such
mounts will timeout andunmount after a period of inactivity. This should not result in any
visual change to the user, and remounting the volume on subsequent activity should be
transparent.

.. ..

..:::::::tt\::::j\j]j~::~\::::~:::::l:::~\t?/::::

Client
Pink
Blue
ProDOS
MS-DOS

........•........

There is no explicit support (or lack of support) for case-sensitivity. This attribute of file
naming is server specific. Case-insensitivity is the preferred behavior, and the Bluto server
will be case-insensitive.

Users & Authentication
Users and groups will be managed by the local address book and authentication service. This
functionality has been separated from AppleShare, since these users, groups, and
authentication will be used by services other than Bluto.

" Registered/Restricted Bluto March 15, 1990 2.8.3-6

The address book should include a mechanism for accessing users and groups on ADAS, as well
as allowing the user to create new users and groups which may not be in the ADAS database.
The Bluto server will use these local users and groups in addition to the ADAS lists when
checking access rights.

The local authentication service will be the system's point of contact with 'any network
authentication services, Apple or otherwise. The user n1ay have accounts on systen1s which do
not use the authentication server. We would still like to have transparent mounting of these
volumes, and expect the local authentication service to handle multiple authentication
domains and storage of passwords.

The Bluto client and server will use the authentication service to establish authenticated
sessions. This service should provide, or allow the incorporation of new authentication
methods: e.g. Kerberos, Apple Random Number Exchange, etc.

The Pink file ~:~if~ffi,:~ha:·::ih.8~:·i~IZ:~~:"·will support access control lists of
protecting file system objects. The advantage of access control list are their flexibility:
directories can be shared with one or more users or groups. This lifts the constraints in1posed by
the protection bitmaps used in Blue.

.. . :-".:.:.'.;.;.:

Autho:·~.··.:.:.".~.·:·.~.:::.·:.·:.:.·.~·.=:.·.:.:·.:.·.t.:.::.•.:l:·.··.z.:.:.•.<'\:.:.:.'..~.).:.·.::.:: ..I.:.:.:.:i.:.::.•.:.:.<.'.'.::.::.::.::.:=::
:l::J.;;LJ.U l: XJ·:L:~ \@ftr~::::'

Figure 2.

Bluto sa4~11111111Il'llfI::::n
.:::"},,,,:. Service

~~~~~~:ll!!~'H<:}:

Although the local file system will allow support for volumes with file level protection, Bluto
will continue to provide protection only at the directory level. This 'protected container'
paradigm is easier to work with, as users typically keep a mental map of where their
files/ folders are located, and their protections. Supporting file level protections would greatly
increase the size of this mental map, making the system more difficult to use. AFP k.O will
provide support for file level protection for servers implemented in foreign environments.

The semantics of users and groups are not defined by Bluto or the file system. The definition
depends upon where the users and groups are defined - locally, in ADAS, or on a remote third
party system. Our goal is for the local and. ADAS users and groups to have sin1ilar semantics
(e.g. groups of groups, administration privileges, etc).

• Registered I Restricted muto March 15, 1990 2.8.3-7



The rights for file objects are kept on the local file" system, by Pluto.

Existing AFP 2.1 .servers are easily presented by the access control list interface. Updating
these privileges will be inconsistent for the user, since adding of additional shared users and
groups is not permitted under AFP 2.1.

Object sharing and access rights should be well integrated with the Pink system. In particular,
other objects which may have remote accessors (Remote Access, Collaboration, whatever.)
should use the san1e permission model and interface. We must also handle the case where a
foreign file system defines object protection capabilities not supported by the local file system
or Bluto. There must be a consistent way to extend the access privileges user interface withouf
sacrificing the consistency of the user interface.

Properties

~~~~a~~~s~~~o;.~~1111\'!1111'~~~~;~e::a~:~i~:.orAF~~:~j:~i~;w;i~j;;;;
Caching :.:-:-:.:.:-:.'

"""

.:::::::?::::

:::::::::::::;::: ;:;:::::;}:::::;:::.::"
... : :.:«:::::;::::::-:.:.....:....
...<:: -:.:-:-:-:-

....... :::...:..-:..

When a non-write-shared file is subsequently opened for write, the server initiates a callback
sequence. Each client which has the file open is notified that the file is open for write, and all
cached data must be flushed. Clients are notified sequentially to avoid dependency on
specialized network features. Non-write-shared operations may be continued by outstanding
clients until all clients have been notified. The open for write does not succeed until all non
write-shared clients have acknowledged the callback or timed-out.

There are no periodic cache-consistency probes. There is no explicit support in AppleShare for
whole-file caching, due to its inefficiency on first use and on small I/O, and its requirement of a
local disk.

• Registered I Restricted Bluta March 15, 1990 2.8.3-8

Bluto will use a delayed-write policy, where blocks are written back to disk 30 seconds after
being modified. This cuts write-back traffic by 20-30% [Nels88J. There will be no write
through on close.. Internal version numbers will be used to verify consistency of data still in
cache when a file is reopened. If the network connection is lost, the client is notified that the
volume is no longer mounted, and its cache is flushed. The delayed-write flushing n1inilnizcs
loss of data to blocks modified in the last 30 seconds.

This caching schen1e requires a stateful server architecture such as AppleShare. AFP k.D will
include support for write-sharing notification. On previous versions of AFP, only files opened
with a Deny Write mode will be cached, since there is no explicit support for cache callbacks._

Note that caching cannot be disabled for memory-mapped files. A mapped file is, by
definition, always cached. The only way to ensure consistency for mapped files is to lock a page
before reading it. For mapped files, the Bluto client will flush a page from the client's cache
immediately (atomically) after it is locked. . .

~~~~~r :;~~~170:1iiltlllll'~:~~;~~~g~~~~::~~11i~iil'~I~'~';::~t~:~

......;.:.:-:.:.;... ':';-:;::;:;::::::.:-."

Recovere::?ili ty )~~.)???tmmmttmmmn:::
:.:.:.;.:.:.:-:.:.;.;.;<-:.: .

:::::::::::::::::~::.:.~:~:~:;;~:;:~:~:~:~:~;~:~;:::
....................................
..:::;.;:}::::::::::;::;::::::....

Support for log files will be limited to explicitly disabling caching when opening a file.
Caching will then be disabled for the client, and optionally by the server (server cache
disabling is server implementation dependent). Bluto also pro\;;des support for forcing any
file's cached blocks to be written to the server's disk. This is a synchronous flush, and can be
used to guarantee that log files have been written to disk.

It should be noted that disabling client caching, and flushing of server cache blocks, will
increase server load and degrade overall system performance.

Links

Volumes have a fixed identifier associated with them at creation time. Bluto will allow a
volume identifier to be seen without server access.

.& Registered / Restricted I3luto \-1arch 15, 1990 2.8.3-9



AFP k.O will support the assignment and lookup of immutable volume and file names.

AFP Protocol:
Each AppleShare server encapsulates the file system objects on the remote system, and exports
a set of operations on these objects. This set of operations is defined by the AFP network
protocol.

For AFP k.O, the model of network encapsulation is being changed to parallel the classes and_
methods defined by the Pink file system. Classes remotely accessible are similar to the ones
defined by Bluto. Instantiations of these classes may be located or created, accessed via class
methods, and destroyed.

For those familiar with AMP, Apple's Network Management Protocol, the approach is ."~EY.

•

•

•

• ...•........
;':':':-:-:':':-:':'.'

.. .;.:-:-:<.:.:-:-:.: :.:-:.:-:-:-:,.--:,",

•

•

•

•

•

•

The protocol will transport independent, and should run over ASP, ADSP, ASDSP,
or TCP.

Cache callbacks for shared write files will be added.

Lock callbacks for shared files will be added.

File and volumes sizes will be increased to 8-byte words.

Flat volumes will be dropped in APP k.O.

.& Registered/Restricted Bluto March 15, 1990 2.8.3-10



Desktop Database
Bluto will in1plement the desktop database calls for compatibility with AFP 1.1, 2.0, and 2.1.

Network requirements

them

::-:-:-:.:.....
:-:.:.:.:-".:.:.:-:.:.:. .............

Network block si#~Wwill be 4K bytes, although we may
speed networks. . : . ' '.: .

Summ ~~III~'l'lIJllllllllrltal..
Bluto provides Personal AppteSit~rMmn~~:@oot~gfor

~~~~:n~:a~~~~~Sfe:~:~~:e:~~~~~i'!lIii highly

Bluto will continue to use ASP as its primary transport protocol. In addition, AppleShare will
run over connection-oriented streams protocols such as ADSP or TCP. ADSP allows us to use
larger block sizes than ASP, and has a better retransmission algorithn1, but its retransll1ission of
data uses more network bandwidth. Our ideal protocol is ASP with adaptive retransn1ission
and larger block sizes. ASP gives us finer control over the transactions associated with one file,
so that a file's response.. ~.0:~~.a.~.~~.~.s.ti.~~ ..~.a.~ ..~.~..~.~.~~d by the client. This could allow us
the protocol retransnV§~~~9:9~j::!ij~t:i!frgK$~~~~mgnjasedon whether the file ~~'~::;8rm?m8}r

:it:~e::rtf~:::~c:r4IilIilllilli.~e:: without
any way. ::':::::':::::::':':::":::::':':::::'::::::::::::::":::::;'::::::::::"::':"",::::::::::;,:::::::;:;:::::::::::::::,::'::::::

"'::::::;;:::

• Registered IRestricted Bluto March 15, 1990 2.8.3-11

References

[Lazo86] E. D. Lazowska, J. Zahorjan, D. Cheriton, W. Zwaenepoel. File Access
Performance of Diskless Workstations. ACM Transactions on, Computer Systems
4(3):238-268, August, 1986.

[Nels88J M. N. Nelson, B. B. Welch, J. K. Ousterhout. Caching in the Sprite Network File
System. ACM Transactions on Computer Systems 6(1):134-154, February, 1988.

lSaty85] M. Satyanarayanan, J. H. Howard, D. A. Nichols, R. N. Sidebotham, A. Z.
Spector, M. r West. The ITC Distributed File System: Principles and Design. In
Proceedings of the 10th Symposium on Operating Systems Principles. Decen1ber 1
4, 1985. ACM,25-34.

::::::.:::::.:::::/:::::::::...............•..

-:...:.:.:.:.:::::::{';::;:::;.:.:.:.:..,....

. :::.: >}}}~{{:}~:~ :.;.:;::::;:;: :.:-:.:.:.:.:' ;.:.:.;.;.:..
'<:;::::::;;::::::::;:;:::;:::::;:::::::::::

..... - .. - :: ..:.:::::;:::::::::::;:::::::;::::::';'

:o:~II'1111'~:~~:::~{g8:ith and ~
Interry~r::Document, Fifth Revision, March 1989.

[Srin89]

[Venk89]

.& Registered/Restricted Bluto March 15, 1990 2.8.3-12

Opus/2

illl'J"~f~s,
.}i~~I~f
:::~:{~{\::::::.:.:.:.:.: ,

• Registered/Restricted Opus/2 March 15, 1990 2.9.1-1

Memory, Tasks, and IPC
Lee Bolton, Dan Chernikoff, Chris McFall, Chris Moeller, Deb Orton

Opus/2

• Registered/Restricted Opus/2 March 15, 1990 2.9.1-2

Overview of Kernel Services

The kernel provides a basic set of services for its clients based on a few key abstractions. The
abstractions and the general nature of the services available for each are described briefly below.
Kernel services always have a defined scope within which they are valid. In this document we
distinguish between local services, which execute on a single kernel and remote services, which can
execute on different kernels separated by a bus. All kernel services are encapsulated in objects, which
are either "real" or "surrogate". Real objects represent entities or services that a task or team has
directly invoked; surrogate objects represent entities or services on other tasks or teams.

.".:.:.:.:.:-:.:.:.:.:-:
...... ::::(~<{{'

:///??(:-:-:-:.:-".:-:.

A task is an execution entity in an address space. Put another way, a task is a thread of execution.
Tasks are the entities in the system that accomplish work; they are the units of scheduling and
execution in the system~ Traditional operating systems such as UNIX allow only one task to be
executing in an address space at a time; in fact, the task and theaddress space are sYnonymous. It
should be possible, however, to have more than one thread of execution in an address space at any
given time. Having multiple tasks executing in a common address space has several advantages:
sharing data is easy, context switch time can be reduced, and task creation time can be faster. The
collection of multiple tasks in an address space is called a team, because the tasks will generally be
cooperating in a concurrent fashion to implement an application or service.

The process management interfaces of the kernel allow programs to create multiple tasks in an
address space, to create entirely new teams of tasks in new address spaces, to get information about
tasks and teams,and to destroy tasks or entire teams dynamically. Additional services allow tasks to
adjust scheduling priorities to reflect the urgency they have in execution. The scope of the process

• Registered/Restricted Opus/2 March 15, 1990 2.9.1-3

management services is local- tasks and teams are managed only in the local domain.

Interprocess Communication

In order for tasks on a team or for tasks on different teams to work together, some form of
communication must be possible. The shared address space of tasks on a single team provides one
means for tasks to communicate, but tasks executing concurrently or in parallel will generally need to
synchronize their activities as well as communicate. Interprocess communication allows tasks to
send and receive messages in a controlled and synchronized fashion. IPC models vary widely among
different operating systems.

The kernel provides a synchronous model of IPC with short, fixed-length messages. A task can send
a message to another task and is automatically blocked until the receiving task has sent a reply

.::~;~;~~i;~~~~:: .:;:{lff}ffm{r~l}ft:··

The interprocess c.9mmHP:t.S~.?g!, interfaces of the kernel allo~:~~~:::~~§i):~~g~:§.ypchronouslyor
asynchronously ~99:::i)m~~~g~:::~~t:~PRt~ertask, to receive a.~g~::~t9Wany task or from a specific

Exception Handling ..·:::::/.:;::.:::::::::::::::::r/'::::'~::·':·
\::;::}::}}}}} ::::::::::;:::::~:::~::~::::)))))::J~:~~~:: ;:;')(''::::::::':;:::; .:-:::.

One of the goals of Pink is to allow develol~~':lr~reate roBi~t:'~PPt~:¢~:~ons that corr~~fI,Y:·#~:~~i~:
error conditi9:!@(:::Wh~.operatingsystem (k~m~t:and runtime:~::j~~9W$:::~M::programmet#:f@#tt9Vwha t

:~~~i~~~~~11111;it;~r~~;~i;'~!~0~~::r::~~It~II~;0.::..::r. exeeptI:::::!lpg to the
::.::;:::;:;:;:::::;:::::;:;:;:;::. :.::;:;-:-:-:. :::::;:::;:;::::.:-,.:-:.:.:.:.;.:.,

The software ~*~Pf~9#h#~4J~ng,rtMa~isupported by the runtime sysMm):~#:J:?~~.p'Htheexception
model provided by theC;::+"1anguage. The hardware exception handlingmodelprovided by the
kernel is based on tasks and IPC. By packaging a hardware exception as an IPC transaction with a
handling task, an easily understo?d mechanism for dealing with hardware exceptions is achieved.

The hardware exception handling interfaces of the kernel in particular allow a task to identify itself as
a hardware exception handler for a team and to get and set task state information as a means of
handling exceptional conditions. The scope of the hardware exception handling services is local
hardware exception handling tasks must be local to the kernel of the task incurring a hardware
exception.

Format of this document

The following four sections of this document present the services available in each of the major areas
highlighted above. Each section follows the same general format. A section begins with a

• Registered/Restricted Opus/2 March 15, 1990 2.9.1-4

presentation of the tenninology associated with the area being discussed. This provides a common
ground for the remainder of the discussion and ensures that the reader has a clear idea of what the
terms are being used to convey. A section then continues with a detailed description of the model for
the services of the area being presented. A section ends with diagrams of the class hierarchies
involved in the particular area being presented.

Much of the work in this specification is based on several other systems described in the literature. [n
particular, the Thoth system from Waterloo, the V-Kernel from Stanford, the XMS system fronl BNR,
and the Mach system from Carnegie-Mellon have had a great influence on the shape of this design.

• Registered/Restricted Opus/2 March 15, 1990 2.9.1-5

Memory Management

Terminology

Memory management refers to a mechanism in which the stream of logical addresses generated by the
processor is translated into physical addresses, which can be used to access real memory. The logical
address space of a task (executing program) is the set of addresses that it can legitimately access. The
physiCilI address space of the system is the set of addresses that can be used to access the RAM that~

exists in the machine; the physical address space is also sometimes used to control the I/O devices
connected to the machine. The memory management mechanism is provided by a hardware Memory
Management Unit (MMU). The major function of an MMU is to implement the translation operation
described above. Along with address translation, the MMU can perform certain checks on the type of
memory access being requested..,by.the...pr.ocessor.•.....These checks can implement different k.inds.of

;;~;~;;~s;ll1lll~~;;~;t:;~;\~.i.li!~~~~~:;;::~I
system. In such a syM¢m, the logical address space of a task is SOI1}¢.~*~\\f@ned the virtual add ress
space, and the phYs.~§~t address space of the system is sometimes.::,¢.~ng~\\:~[:Wfmory. Since the virtual
space is larger tha#::tr.~r.~almemory in the system, the operating:\§Y~t~m\:gghonly allow pieces of a
task's address sp~B~::;~rl·oo:,f~Mll:m~p1Oryat a time. As new:::Bi,~i~iWf~~ll~\:~ddress space are required

methods. :::.:::;.:...:'.:;:.:::::::::...::::.:.:.:.:::::.:::::.::::::·:·:·:i::::···...::::::::::::::::--:.,:.:::,::;;:;::::; ::~,~~:;:::[l~:jj~:~~/,:::·· ·::':\:i::\:I::·~::[!:.·::'·[.:::··::::::::.. ::';.::..:::/...:::}::.::.:: ..

There are seve;arp~ge;ij~~.MMU~~···availableas separate parts or i~'Mgt~:ti..:·.%rj~hpt8~essorsthat
are very cost-effective. These MMU's typically have an address translation cache that contains some
number of the most recently used virtual-to-real translations. If a translation is needed that is not in
the cache, page tables in memory must be searched, and the necessary entry loaded into thecache.
This searching is either done explicitly by software after a signal from the MMU, or it is done
automatically by the MMU itself. Strictly speaking, context switch time is very low because only a
single MMU register (a pointer to the page table) must be loaded. However, the true overhead for
this kind of translation process is difficult to measure. After a context switch, a task will incur a
number of translation cache misses until its locality is effectively covered again.

Memory Management Services

The set of memory management services provided by the kernel must be able to support the range of
possible MMU and system architectures that will exist in the Macintosh family of machines. In all of
the memory architectures currently envisioned, the MMU provides a page-based model for the

• Registered/Restricted Opus/2 March 15, 1990 2.9.1-6

address space. The MMU's differ mainly in their specific parameters and their specific operations.
Examples of differences in parameters include page size and structure of the address space <e.g.,
number of levels and granularity at each level); examples of differences in operations include
translation cache flushing and address validation. For details on a specific MMU, such as the
Motorola MC68030 or MC88200, the reader should consult the appropriate reference manual. The
memory management services provided by the kernel are defined to operate in the local and remote
domains - memory can be managed and controlled within a single kernel or between kernels on a
bus.

Kernel Memory Management Model

The address space of a task is the set of all addresses that the task could attempt to access. On all
currently envisioned architectures, the address space is accessed by 32-bit addresses and is four
Gigabytes in size. The ~m9y.r.t.9t..!.h.~t.?p~.s~ ...~y~~.!~!?le for user applications varies with thep.~n~fplar

::;~n~t(::::::"[lll.1f(lltmedcontiguous regiR~Rti;~~f;:~:::;:~at
can be mapPed into ~:~1:~§~r$~~!ggr~~~~~~P~f!t~~ffP~:~pamespace for segm~n!~:!n~mmmS"'the same as the
name space of the p#1f.Nl1(tsY'gt(dlt:·:·:Us]Bg·:~r:srnglename space allo.w#::~gm;vtgto be shared by

::/{:::::::::::::::::::}~:}}{~t~:::~:::::

~:~:~:~:a~~e:;~~:;s:~~~;~~:I~IIs;~;~lli.~t~o:~~':';ell~I'~~~
remains in thes)'st~m(usually on backing $!QIi~:::afterit is d~~ij::~~ng::AAn be opened:~na?~q;~s$~d

A segment can be creat~<or'openedfor private access or shared access.A:<pri't~t~segmentis
accessible only to the address space in which it is created or opened; a shared segment is accessible
across multiple address spaces (TSharedSegment). Subclasses of the shared segment are provided
(TServerSegment, TClientSegment) to support a "server/client" model of shared memory: the server
creates the segment and allows clients to open and use the segment A segment can also be created or
opened so that it can be accessed in a read-only or read-write fashion. An attempt to do a memory
write in a read-only segment will generate an access fault hardware exception in the offending task; a
read-write segment can be referenced by both memory reads and writes. In some implementations, it
may be possible for different tasks to map the same shared segment with different characteristics in
their address spaces as they choose (e.g., at different locations with different sizes and different access
pennissions).

When a segment is mapPed into a task's address space, a segment identifier is returned in an object
(1'Segment). This object containing the identifier can be used to refer to the segment in other kernel
interfaces. Note that the segment identifier, and therefore the segment object, only has meaning
within the team that makes the call mapping the segment. .

• Registered/Restricted Opus/2 March 15, 1990 2.9.1-7

A task can only legitimately access those portions of its address space where segments have been
created or opened; attempts to reference memory where a segment is not defined are improper.
With an MMU, an improper memory reference will cause an hardware exception, which the kernel
will handle as needed. Such a hardware exception can either be forwarded to some other task for
handling, or it can cause the task generating the exception to be terminated.

The pages of a newly created segment are zero-filled when they are first accessed. When a segment is
subsequently opened, the specified size may be different than the size of the backing store associated
with the segment. If the specified size is smaller than the backing store, only that portion of the ~

backing store covered by the size of the segrnent in the address space can be affected by memory read
and write operations. If the specified size of the segment is greater than the backing store, additional
pages are zero-filled and allocated to the backing store as they are referenced.

When a task begins eX~HH8IkJhtJftmt1::wJUjnlH:wizeits address space with several pr.~jttnrW#
segments (e.g., a stac~mmmij:M:~::gl9M~H!~~~f~grnent, and one or more code segmSf~M{ffiddnional

.......
...

bitmap displayof.the.·~0Q.:f~wstets:bfa device. As with a normal segrtMntW¥"pijysidlfsegrnent can be
mapped anywhere in the virtual address space. References to these pages in the virtual address
space are mapped directly to the physical addresses associated with the segment and affect the
associated physical resource in a hardware-specific fashion.

The virtual address spaces of all the tasks running in the system will generally exceed the amount of
real memory available on the machine. The virtual memory manager will thus treat the physical
memory as a cache for the most frequently used pages of the executing tasks. General page
placement and replacement algorithms attempt to approximate this set of pages by observing the
referencing patterns of the running tasks. The approximation, however, can sometimes lag behind
the executing tasks, causing additional page faults. This lagging can often be mitigated through the
memory management advice facility, in which a task informs the kernel of its intended use of the
address space (TMemory). In this way, the memory manager can often have the data required by a
task in real memory before actually being faulted for it by the task.

In a virtual memory environment, it is sometimes necessary for certain clients to have more explicit
control over portions of the virtual address space, especially with respect to the paging that is

" Registered/Restricted Opus/2 March 15, 1990 2.9.1-8

nonnally transparent to applications. A service is provided that allows control operations to be
applied to sets of pages in the address space (TMemory). These operations include locking a set of
pages in memory, preventing them from being paged; freezing a set of pages in memory, preventing
them from moving; flushing a set of pages to backing store, ensuring consistency of data; and
changing the access protection (i.e., read-only or read-write) on a set of pages:

Memory Management Classes

TStream

• Registered/Restricted Opus/2 March 15, 1990 2.9.1-9

Process Management

Terminology

A process is an instance of the execution of a program. A process can be thought of as an activity that
is underway. Every process has an associated identifier, state, priority, and context (processor and
memory management state infonnation). Multitasking refers to a system that allows multiple
processes to be underway at the same time. In the strictest sense, the term multitasking implies
nothing about the management of physical memory. A multitasking system can be built that allows
only one process to reside in memory at a given time, with a process swap being performed on every
context switch. Informally, multitasking is often equated with multiprogramming, which refers to a
system that allows multiple programs to be co-resident in memory, either wholly or partially, as a

.:::..•....; :.:.: :.;.:.
.... -:.:;:::::::::;:::::::.;..

. - ...
:<::;:::::::::::::::::.» : .

for the involuntary removaf6f a task from a processor. By reallocating the p"rocessor at regular
intervals, preemption can be used as a mechanism to provide fair sharing of the processor. This
approach is known as time-slicing. Preemption can also be used as a mechanism for guaranteeing
responsiveness, by reassigning the processor whenever a task of higher priority than the current one
becomes ready to execute.

Process Management Services

The process management services are based on the model of lightweight tasks on a team. The tasks
on a team generally cooperate in the performance of some activity. This type of model seems
particularly appropriate to the kinds of hardware architectures and client programs that are
anticipated in the future. The process management services provided by the kernel are defined to
operate in the local domain - tasks and teams are managed and controlled within a single kernel.

" Registered/Restricted Opus/2 March 15, 1990 2.9.1-10

Process Management Model

Creation of a new team requires the creation and initialization of an address ,space for the team. As
part of this initialization, several segments are created or opened in the address space. These include
a segment for the program code being executed by the team, one or more segments for the shared
library code and data that the program may require, a segment for the static global data of the
program, and a segment for the stack of the root task. All other portions of the team address space
are initially undefined.

The set of all team root tasks is organized hierarchically according to the parent-child relationship.
The individual tasks within a team are also organized hierarchically according to creation. The
destruction of a task on a team causes the destruction of all subordinate tasks on the team. A tean1 is
destroyed when the rootJask.of.theJea.m..is.d.es.troyed. The destruction of a root task bringS..alliJut the
destruction of all root t~l$mt:hijIh¢h~¢:~lJ~::~~~:a~scendentfrom that task. .-:-:::,{::::/},:;/::::;:;:UJ:Y::}}:

:.:-:::::.:::::::{:}:::::.....
.. :.:.:-::.::::::-:.:....

....... -.:-:.:-:.:-:.;.:.;.:.:.:.:-:-:;:.:;:::::::::-:-:-:.:-: t.:.r.~:.:.:.r.~.j.:~.·.~.j.~.j\.(.:.::.:.j·.:~:.·i.::............... "<:::;:::::::;:;:;::;::::;:::-:::.:.:;:::;:;::::;:.:.

the task. A task'sstaC:k.l$:aI1ocatoowl1en the task is created and reclalme<lNvnen:the:Hlsk terminates.
The stack is initially s~~if~:l1.d·canbe occasionally overflowed in the cour~~·:~f~·~ecution. When this
happens the operating system automatically allocates the additional memory required to
accommodate the stack. A task's stack is not allowed to grow beyond the size specified when the task
is created. A task is aborted if additional stack space can not be allocated when required.

Tasks can request resources from the operating system, but those resources are considered to be
owned by the team. When a task is destroyed, resources acquired by that task, such as open
segments, are not reclaimed, but remain the shared property of the team. Since major resources need
not be allocated or reclaimed, the creation and destruction of individual tasks is quite fast. However,
because the destruction of a task causes the destruction of all tasks in its sub-tree, the overall task
destruction time is a function of the complexity of the hierarchy beneath it. Also if the task has allo
cated some team global resources those resources can be lost if the task dies without releasing them.

Scheduling of tasks for processor resources' is preemptive and based on the priority ordering of
eligible tasks. The tasks running on the available processors are always the highest priority tasks that
are ready to execute. A priority is an integer in the range 0 to 255, with 255 being the lowest, least

• Registered/Restricted Opus/2 March 15, 1990 2.9.1-11

urgent priority, and 0 being the highest, most urgent priority. Every team has a team base priority, and
each task on the team has a relative priority with respect to the team base priority. The absolute
priority of a task is calculated by adding the task's relative priority to the team base priority. The
relative priority of a task can be positive or negative. The team base priority reflects the urgency of a
team with respect to other teams in the system; the task relative priority reflects the priority of a task
with respect to other tasks on the same team. Figure 2.9.1-1 shows an example of task and team
priorities. Note that it is possible for tasks on different teams to have absolute priorities that overlap.

Figure 2.9.1-1. Task and Team Priorities

The assignment of task priorities should not be used by programmers as a mechanism to serialize and
synchronize the execution of tasks. Interprocess communication or some other explicit
synchronization service should be used instead. A task's priority represents the importance of the
work being done by the task in relation to other work going on in the system; it can be thought of as
a reflection of the percentage of processor cycles that should be allotted to the task.

A subset of the highest priorities will be reserved for use by the kernel and operating system. Some
portion of the remaining priorities may be reserved for a class of scheduling in which execution is
time-sliced to equitably share the processor among compute-bound tasks. Still another portion of the
remaining priorities may be reserved for scheduling tasks with "real-time" requirements. While the

• Registered/Restricted Opus/2 March 15, 1990 2.9.1-12

kernel currently provides preemptive priority-based scheduling as its only scheduling policy, other
policies (e.g., deadline or time-slot) can be implemented through servers that provide whatever
model is desired by the various application clients of the system..

Currently, the scheduling urgency of a given task is specified by an object (subclass of
TTaskSchedule) representing the category to which the task should belong. These categories
encapsulate the relative and base priorities described above. Priorities may not be set explicitly, but
only through the use of task scheduling objects. Possible categories include animation
(TTaskSchdeule::kAnimationTask), user interface (TTaskSchedule::kUserInterfaceTask), mouse/curso r
tracking (TTaskSchedule::kCursorTrackingTask), CPU-bound (ITaskSchedule::kCPUBoundTask}, and
servers (TTaskSchdeule::kServerTask).

The tasks on a team cooperate in the performance of some activity. Since the team address space is
shared among several tasks, synchronization of accesses to data structures becomes essential.

~~~~;~!~II"f.~;g1g~~~~i~lji-~!~::
In teams that contajnJiflultiple tasks, graceful shutdown may be cqmFn!~mwb@i shared resources are

• Registered/Restricted Opus/2

..................................

.-.;.:::::::;::::::;:::

March 15, 1990

...
....•.

2.9.1-13



Process Management Classes

TUserInterface

MCollectible

TTaskSchedule

MKemelObject

TAnimation

TCPUBound

Sche(Irilirie:::e~·t~::g~iy

Hierarchy

Task and Team
Hierarchy:.;.;.;.;.:.;.:.;.:.:.:.:.:.;.;.:.:.:.:.:.:.;.:.:.:.;.;.:.;.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:

;:1"I\llIlili[iil!llIt'lttltt~j~tj~·}t.::}:IiIiI:;' ~_...--~

• Registered/Restricted Opus/2 March 15, 1990 2.9.1-14



Death Notification
Hierarchy

TKernelMessage

TDeathMessage

.. Registered/ Restricted

MTask MMessage
.;.;.;.:.:.:.:.:.:.:.)).jspatcher
"::::::~:r:~:~:r~:{f'

Opus/2 March 15, 1990 2.9.1-15



Interprocess Communication

Terminology

The kernel provides a task model based on concurrently executing lightweight tasks. In order for
these tasks to work together, a mechanism must be provided to allow communication and
synchronization between them. Communication means passing information from one task to another,
either in the form of short control messages or of large chunks of data or address space.
Synchronization allows two or more tasks to access shared resources (such as shared memory, CPU
cycles, I/O, etc.) safely and in a controlled, predictable manner. This function of communication and
SYnchronization between execution entities is commonly called Interprocess Communication,
abbreviated IPC. We will adhere to this nomenclature to be consistent with the rest of the literature,

:::nc:o::~t::::e:li:.i.tllrir::::ec::~:::s:::::::i~ii~~::,i::~s iI)

~~~;~:~~:£:~:rl!~!!!!!!!!~;~:~;~~:~Iiil\il!:~m:::€~~;:t
.............

system to ensure that the messages are hanqi:q~:~~9. the desl~i,\ij~~9nj~§~]nthe order tN#)'f~rg;:fflS~~yed

basically a set ofmles:desCribiitgwhat a task's name is composed of,wHibfhirnes<are valid, and how
to relate a name to a specific task and vice versa. The set of all possible valid names under a given
naming scheme is called a name space. An IPC model may require more than one name space- for
example, it may need a name space to identify tasks locally and another to identify tasks uniquely
across a group of machines networked together.

When talking about providing a task identifier to name a task, issues of uniqueness must be addressed.
If task identifiers are integers assigned in ascending order and represented by a fixed number of bits,
then at some point in time a maximum value will be reached, and the task identifiers will start being
assigned from the beginning values again. This could cause identity problems, so the kernel must be
careful to insure that a task identifier is not reused too quickly after its last use. For any given name
space, the period of time between reuse of an identifier is called its T-stability (from David Cheriton's
V-kernel work). Obviously, it is desirable to have as large a T-stable period as possible - preferably
on the order of years, not hours.

" Registered/Restricted Opus/2 March 15, 1990 2.9.1-16

IPC between two tasks can sometimes be categorized as a client-server relationship. The client task
requests some action or service from a server task. The server task satisfies the request, sometimes
responding with information or a status message. This exchange is called a transaction. If the
response gets lost somehow (e.g., if the client and server are separated by an unreliable network), it
may be possible for the client to just reissue the request, provided no ill effects will arise if the server
performs the same request more than once. Such a reissuable request is termed idempotent.

Interprocess Communication Services

The purpose of kernel IPC is to provide SYnchronization and control between lightweight tasks
within a single address space or across multiple address spaces. It is a programming tool (in the
same sense that a subr0l.:l~~~.~~~.~..i~~.p'~.~g.r~~~.~Ktool) used to resolve the issues of concu~~~.msy

~=:s:r~7;!~itlllll,[fJ~:~l;:~~;~E~i~llil~!!!~~S~s
protection is the addti§*!)§P#gtM~~i~~I~mlm~t:~RfO;.ywant to extend its~W~%~§::wultipleaddress

~;~:t~;~~~:p1~~~!~~::~~~~!!~~~~oo~=i:~~a~llill'l:i:~:ea~~O::e~;~:Ple
CPU. In all these c.~s it is appropriate to use kernel IPC for sy#@t9:m~~~~9n and control. The SCO~2

....•..0::::::::::: "':~:::;::-:':'

~a~:~~f:r:~~~~~~ ~::::~:~~~~~'III ~fl~;.lr.~i;:s~~~~a~~lf~'\t'l~nd
information. The kernel IPC model provid~~(§MnchronousjM~g~]m~$ingfor sync:1}:t9·9:~"g9JlnG

~!~~!~~~llti.E~!::~:;f.~~~~~:;~II\~~e~£~~jll;I~:~tin
specify to recg{Y¢:~.fu¢$~g~·JrQm::.~pqnwutar task or any task; thal:'#W:~:J~~ may esm;pJi:$t:Mf·
one-to-one or mariy.2.t9W~~.J~rY~t,::styte)method of interaction witf(6tb~~Fm~¥-§,:<T9¢.t~Nsno facility
for one-to-many (br()adcast>6:f:hlany-to-many transactions. . .

In addition to the message-passing primitives, the kernel provides the means for local or remote tasks
to move data between their virtual address spaces via sections (TSection and TSurrogateSection). Tr.,,·o
types of sections are defined: pennanent, which are created and destroyed by explicit calls, and
temporary, which are specified implicitly in the message header and are automatically closed at the
end of the transaction. Access to another task's (temporary or permanent) section is allowed only in
the context of a transaction, also called a rendezvous. Message objects may be reused in subsequent
transactions, but rendezvous-sPecific information for past transactions is lost.

All task objects contain task identifiers. Surrogate task objects are used to refer to other tasks via their
task identifier.

• Registered/Restricted Opus/2 March 15, 1990 2.9.1-17

Rendezvous

When a message is sent, a rendezvous is initiated between the sender and the receiver. The
rendezvous is finished when the receiver replies to the message. Each rendezvous is given an
identifier that is unique within the task identifier name domain and only meaningful in the interval
between the send and reply and kept by the message. For synchronous rendezvous, the rendezvous
identifier is the same as the sender's task identifier. For asynchronous rendezvous, it is a unique
identifier for each send. A rendezvous defines a message, a temporary section (if any), legal access to
permanent sections, a source task, and a target task. While two tasks are in rendezvous, the receiver
can access the portions of the sender's address space that have been opened as permanent or
temporary sections.

Sender Side

",...........
-::.:.:::::.:::..........• .;:::: .

Receiver SijlilililJjlil;llllli,litllllih;,

........«.;.;-:.:-:.:-:::;: .
.:<.:.:.:.:-:.:-:. {({:::):/:;::::

::~::;:..·.:i·,'i.·!i.:i.··~.:;11::1·1·:··11.·:!!!·I.1li·i:··11:.!i!!m .: :;\\;..<} '<::.:':::::.,::

M
n· ::}::::;:::::::::::>::>:-:-

essageJ/asslng ::;;;::",:,:,;::,:",:::::t:,:':::;::t:::::::?: :;::.:.::,,::~,:,=;:,,:'.::.:::.::.:;.::..::.'.::.".::,":.t.::.t?<
.}.}~{{:,~:,~:,~:.:::::::::::::::::::.:-. :::::::::::::::::::::;>'.'... ··;:~~\?~t{:}}~;~:~:}}}~:~· .::::::::::::;.::;::<:;.;.:- .

.::::}:::::;;:; .. ".:::::::::;:::::;:::::::;:::::::::;::::::::::.:::

asynchronou~:JRsN~tgn$~¢~:t9nW~~::Pt9y~ped using AsyncSend /ReceW1¢,!N&~ply/ Re<:eiy~tqMld a
one-way asyncht6ngy.~~rqt,r~psatti6'nis provided using OneWaySerta4~§R~ty¢!,geplY.All three
sets of IPC interactioI1shave"been designed so that a server task can do a ReceIve followed by a
Reply and not have to worry whether the client task used Send, AsyncSend, or OneWaySend. ll1is
should simplify the design of servers that want to be able to handle both synchronous and
asynchronous requests. There is also an AsyncReceive call that implements a non-blocking receive
facility, and a ReceiveSpecific call that allows the receiver to select which message to receive based
on sender or rendezvous identifier. Both these receive calls can be used anywhere Receive can.

Synchronous (Blocking)

A synchronous rendezvous is initiated using Send. Send suspends the task until the message is
received and replied to. A sending task in this 'state is said to be send-blocked. A task receiving a
message using Receive or ReceiveSpecific is suspended until a message is available. A task in this
state is said to be receive-blocked. The two communicating tasks will synchronize their execution, or
rendezvous, in order to pass a message. During the rendezvous, the message is copied from the
sending task's data area into the receiving task's data area without intermediate buffering. The

• Registered/Restricted Opus/2 March 15, 1990 2.9.1-18

receiving task becomes ready, but the sending task remains suspended until the receiving task sends
a corresponding reply message using Reply. A sending task in this state is said to be awaiting reply. If
a task has more than one task send~blockedon it when it does a receive, it will rendezvous with the
task whose message has the most urgent priority (priority is specified in the message header). When
a task dies, all other tasks that are blocked on that task (Le., receiv~blocked, send-blocked, or
awaiting reply) are unblocked and allowed to execute. An aborted ReceiveSpecific or Send will
generate a toolbox exception. Figure 2.9.1-2 below illustrates a SYnchronous IPC rendezvous. The
shaded portion of each task arrow indicates the time period the task is blocked.

Task A TaskB

Receive

".-:':-:':-:':':':-

:::::::::::::;:::::::~:~:~::.,

(additionally freeing upan)d<.emel resources consumed by the rendezvous).-the reply message is
queued on the originating task's incoming message queue until the originator does a receive to pick
up the message. If an ASYncSend is done to a non-existent task identifier (or the task dies before
receiving the message from its incoming message queue), the kernel will reflect the message back to
the originator, queuing it on the sender's incoming message queue. When the originator does a
receive, the receiver task will be invalid. Figure 2.9.1-3 illustrates an aSYnchronous request-reply
rendezvous.

• Registered/Restricted Opus/2 March 15, 1990 2.9.1-19

Task A TaskB

RsyncSend

Receive

Receive

Reply

Figure 2.9.1-3. Request-Reply Pair Rendezvous

.:.::; ...:.....:::..:..... :..

.:-:.:;::::::::::;:::;::;:::;:::;:.:.: r.·.).t.~:.·.·.~.·!:..:.·.~.~.:.j:·.~..:..
....;.:.::::::;:::;:;:::::::;:;:;:::

..
::::::::::;::::: .
.:.:.:-:-::;::.:. »:-:.:-:.: ;.:-:-:-: .
:-:::::.:-:::.;.;. ;.:.:.:.:-::::;:::::::~ ::::':-:.;.'-:.'

:.: ...;.:-::::::::::::::::::::;::::-:;:::.:.;.....

:-:-:.;.:-:.

There are two major differences between ASYncSend and OneWaySend. The first is that a
OneWaySend is not guaranteed to be reliable: the sender receives no indication that the message was
or was not delivered successfully. In the case of ASYncSend, the sender will receive a toolbox
exception if delivery is not possible. The second difference is that while sections may be sent with
both OneWaySends and ASYncSends, in the case of OneWaySends special handling occurs. For a
OneWaySend the sender relinquishes ownership of the section, and deallocation of the memory is
handled by the message object (after the receiver does a reply or immediately if the receiver no longer
exists). Sections passed in a OneWaySend may not be referenced by the sending task after the
OneWaySend is initiated. A light-weight task (TOneWaySendTask) is used to clean up the section
associated with the OneWaySend and offers the convenience of sending a section and not having to
worry about its deallocation.

• Registered/Restricted Opus/2 March 15, 1990 2.9.1-20

Message Forwarding

A receiving task can use Forward to forward a message to another task, possibly altering the text of
the message first. The effect of a forward is the same as if the sending task had originally sent to the
forwarded-to task. A task can determine if the message just received was forwarded by issuing the
Forwarder call. In the case of a message being forwarded more than once, the Forwarder is the last
task to forward this call.

For example, in Figure 2.9.1-5 Task A sends message m to Task B, who forwards the message to_ Task
C. Task C's receive call returns Task A as the sender, and a Forwarded call would return Task Bas
the forwarding task. When Task C does a reply, the reply message is sent to Task A, whose send
returns Task C as the replier.

Reply(m)'::::::::::::::::::::':':::::~:.~::::::::':"

access permissions can be granted to the receiving task. Data transfer is accomplished by the
receiving task doing a method call to get a surrogate section object (TSurrogateSection) from the
message, and then performing Reads and Writes to the surrogate or using the stream interface.
Access to the section is terminated when the rendezvous ends. It should be noted that sections
provide a mechanism for copYing data between address spaces. To share data without copYing,
memory management segments should be used.

There are two kinds of sections: permanent and temporary. Both kinds can be accessed using Read
and Write. Pennanent sections are created by specifYing "kPermanent" for the permanence parameter
to the constructor, and can be accessed by any task that is in rendezvous with the task that the section
belongs to, subject to the read/write permissions assigned to the section when it is created.
Temporary sections are created by specifYing "kTemporary" for the permanence parameter in the
constructor and doing a Send, AsyncSend, or OneWaySend to another task. (Remember, in the case
of a OneWaySend, the section is no longer available to the sending task!) The section is automatically
closed when the rendezvous tenninates and isaccessible only by the task the caller is in rendezvous
with. For all three types of sends, a rendezvous is defined to exist until the message is replied to.

.& Registered/Restricted Opus/2 March IS, 1990 2.9.1-21

A task may have multiple sections active (one temporary section and several permanent sections) at
any given time. Permanent sections may not overlap each other. A temporary section may overlap a
permanent section, in which case its access rights will take precedence. To facilitate connecting to
systems with different hardware architectures (different byte orderings, siz~ of addresses, byte versus
word addressing, etc.>, the standard stream operation Seek is used to position the stream at an offset
to the beginning of the data, before subsequent reads and writes.

A temporary section is associated with a message (TKemeIMessage), exists only during the lifetime of
the message (send/receive/reply), and is identified by the message's rendezvous identifier (ston~d

inside the message object). Each outstanding AsyncSend can have a temporary section defined. The
receiving task may access the temporary section and any of the permanent sections defined by the
originator of the message data through Read and Write (or stream operations) on section surrogates
(TSurrogateSection). Note that to get the surrogate for a permanent section to the receiver, the sender

....
:·:<::{r~:~~~::::::::::::::;:::<:· .

-:.:-:.:.:-:.:.:::::-".:.'.

···:<:::::::;:;:~:;:;)t~~t~~/~~::;;::::-··

.:..:::~f1~~:~jjj~~~~~!~::j::~~j~:1~~~:::~jI::::{:::::.

Naming

\~<:}~:~ .;.:.:-:.:.;.;.;.: -:<.:->:-:-:-:-:-:.
:-:;>:-:.:-:.:-:

..•: :.;.:.:.; :::: :-;•..; ,. :.;.:-:-:<;::;::::;:-:::::;:::.:-: _;. .

underlying hardware"HoW~Wf'informationabout whether a task ideriHtMf.i~;:-16dHorremote, and
the values of the various components, will be available through library calls implemented above the
kernel. In addition, the kernel guarantees that task identifiers will not be reused for a time interval on
the order of years (i.e., the T-stability of kernel task identifiers exceeds one year).

Tasks make their task identifiers known to other tasks by registering a name with some name service.
This name service is not implemented in the kernel and thus is not in the scope of this section.
However, for bootstrapping purposes, the task identifier of the local name server will be made
known to all tasks in the system in some manner.

• Registered/Restricted Opus/2 March 15, 1990 2.9.1-22

Interprocess Communication Classes

Messa2"e
Hierarchy

• Registered/Restricted

TMemory

Opus/2 March 15, 1990 2.9.1-23

Exception Handling

Terminology

A software exception is an error or status condition detected by program code, such as out of memory,
file not found, and other application-specific conditions. A hardware exception is a hardware-related
condition caused by the execution of a task, such as a floating point exception caused by dividing by
zero, an addressing error caused by a pointer referencing an address outside the bounds of the team's
address space, an illegal instruction, and so on. The default action in such cases is for the task to be
terminated with an error indication. However, these errors often are recoverable. A means must be
provided for the excepp.9H:J9}i¥t9:lHghtkx::~::4@,§jgpatedhandler that can fix whatever ~~nt:WF8Qg

~~~~;;~executi:illltllilllJrme clean-up code and~:::;;ii'~ri~;1'~t;pj%vfde

Exception ::laiialin·g······S·ei~vIces

Exception Handling Model I;I,\;I'? \,~III;~iI1l:fl~~ ..••.~;Ii •••.•.•.•••••••••••••••••••••••.•.....
;:::;t~~;}fI~{\j~ ;.:-:.:.:. .:;:;:;:;:;:;:;=;:/' '\j{rf~}/?J{}){:

:~;:c~~~fiillir.~l'/IJ~!~~~~:n~~: e~C~a~~~'flli;;:~~~~~I'm~e:~~ed
The same task thatdetects:softwa-re errors, via the C++ exception meehiHHsh#usuilUY processes
them. There can be deviations to this rule in that a programmer may choose, during development, to
have all or some specific software exceptions sent to a debugging task. A designated exception
handler task usually processes hardware exceptions. There are categories of exception types defined
to help the programmer: individual (ErrorTyPe), all software, all hardware, and all exceptions. The
name space for exceptions includes all software and hardware exceptions. The default behavior of an
uncaught exception is task tennination.

Some exceptions can be designated as conditional, which means that if a handler is specified, the
exception is sent to it. Otherwise, control returns in-line with no error handling. The only hardware
exceptions that should be specified as conditional are those where returning control without
modifYing the task state cannot cause the exception to recur (e.g., Trap instructions).

• Registered/Restricted Opus/2 . March 15, 1990 2.9.1-24



Inline Exception Handling Model

Pink will implement the C++ exception mechanism when BjarneStroustrup's proposal is available.
Both hardware and software exceptions can participate in the C++ mechani~m and return control to
the thread in-line. A task can specify that particular hardware exceptions are to be treated as C++
exceptions and can provide, optionally, a function to run to process the exception. The function can
raise an exception or return. There is a default in-line function provided that will raise a C++
exception.

Task Exception Handling Model

A task can register itself as the exception handler for exceptions in another task or team. The

2~;gE~~f~tl'II_;g~r~~~~f~:~i~iii!~~~~~trs
message to be sent f.t9f#!!tlji!i#§~~!l~W!~p!!ji*=i~mR#·handlertask. The m§$$ig~!M~Bbesthe exception
that occurred and qtmrs'ThEtaaaress"'sp~icEtorHletask as a tempor~rY:::~if.t:mnf:\?the state of a task that

control, by deregistering or tenninating, tf\~4¥~¥10UShanqJ§fi~~Qg!:theexceptioP.i?lj~bqJ#.W.4t:the

~~f~~fliilii~~~r~k~E~~;~~!llef~~~~itll,s~ai~k
conditional in;.c.(t<:t$k6.rJ~rrW:'i '.. ::::;:-:!;}t:::::/· ":.:.:.'::::::::::::':"::=::::<:::; .,«::;:::-::::::=::'

........•:- .

The handler calls Re<:~i~~:«~; WaitForMessage if two or more message cl~~'~~:~:~~tobe received) to
get the exception message (TExceptionMessage). The message identifies itself as an exception
message, indicates the exception type, and specifies the task that was running when the exception
occurred. The message also includes other infonnation that may aid in recovering from the exception
(e.g., the accessed address, the value of the program counter, etc.). The handler task can repeatedly
do WaitForMessage and Reply calls to handle multiple exceptions. If the exception handler doesn't
want to process the exception, it can do a Refer call to cause the exception to be passed on to the next
handler in the chain.

When the handler task receives an exception message, it must either kill the offending task with a
Destroy call, fix whatever went wrong and cause the task to resume execution by replying, or refer
the exception on to the next exception handler in the chain. If the handler chooses to remedy the
problem, the handler can manipulate the task's state (TTaskState) through the exception message's
GetTaskState and SetTaskState calls and manipulate memory with Read and Write calls to the
surrogate section (the entire address space of the task is available to the exception handler while they
are in rendezvous). If the tasks are on the same team, the handler can also directly manipulate the

• Registered I Restricted Opus/2 March 15, 1990 2.9.1-25



memory of the task that caused the exception. After the handler task remedies the problem it does a
Reply, causing the offending task to resume execution.

For a hardware exception it is important that the handler task either remedy the problem that caused
the exception, kill the offending task, or refer the exception on. Otherwise, the error will recur, creat
ing an infinite loop. The onus is on the programmer to insure a correct resolution. If the handler task
itself triggers an exception that it was registered to handle, both the handler and the original errant
task are terminated.

Where possible, a machine independent class (THardwareException) wraps hardware exceptio!1s.
However, some hardware exceptions are highly machine dependent, so the task state and relevant
exception data differs from machine to machine. For each machine configuration a definition file
describes the machine specific classes for the machine state records, possible exception types, and
exception message information.

".:.>:-:-:.:.:-:-:.;.:-: ...

<::t!::::::t:::::~::::::::.:.::<:::..:< .
..:::.: ....:-:-:.:.

·~ttL:;:; ::::::::::::::::::;.;... ""
:)~I~[~~~~rHandler
\.. :\~\~{{}::::::;:::::::::'--:::::: ~

Exce
PtionJllllltll"f

• Registered/Restricted Opus/2 March 15, 1990 2.9.1-26



-:.:.;-:.:.:-:.:.:.;.;.:-:.:.:.:.:-:<.:-:-:.:.:.:.>:.:.:.:.:.:-:.:.:.:-:.:-:<.:-:.;.:-:.:-:.:.:.:.-."

(4) The ess~ritidlPfiri~iple.

.lli,llllllllI1Itllllflllfll'lt

(2) Cure-All.

(3) ~sS~,~I~ril,~~~~[iJJ~~~~ ts.·-vt::!1::~~::a:::::A'::b0.n
,:,:,:,:::::::::::::;::.>::,:,;:.;:: :.

(5) The Pink 10 System.

'* Registered/Restricted Elixir 10 System March IS, 1990 2.9.2-1





• Registered/Restricted Elixir 10 System March 15, 1990 2.9.2-2





Elixir 10 System

Introduction
The Elixir 10 System is a machine-independent 10 model for the movement of data between
the hardware attached to the system and the software within the system. While the Elixir
10 System has the most machine-dependent code of the Pink system, it is based on an
architecture the allows it to be ported to different hardware architectures as well as different
configurations.

Architecture

minimum, the ROM would>contain just enough code to boot using another d"iHa'>sOurce. The other
end of the spectrum would contain the entire Pink system in the ROM.

The primary goal of the Elixir 10 System spawns a set of secondary goals. These are: reduced
complexity and time to create a new device driver; automatic configuration of most, if not all
devices; the reuse of most 10 code whenever possible. Most 10 policy issues regarding nearly all
tradeoffs are architectural pushed down to the lowest level possible. Network services are
integrated from the start as opposed to grafted on later.

The function of the 10 driver has changed significantly with the advent of the Elixir 10
System. The classical 10 driver does very little functionally, but often must fight the system if
it wants to do anything non-standard. 10 policy issues are dictated to the classic 10 driver by
the rest of the 10 system (request queuing, device allocation, access policy, etc). Most classic 10
drivers are forced into some "standard interface" form like open, close,control, etc of the classic
Macintosh. That was the old way.

'* Registered/Restricted Elixir 10 System March 15, 1990 2.9.2-3



The Elixir 10 System tries to create "standard inte'rfaces" only when and where they make
sense. Standardized interfaces should only be used to give good value for their constraining
abstraction. An example of a very useful standard interface is the one between the file system
and the mass storage devices. By abstrating away all of the messy details, the file system may
use very diverse devices like hard disk, CD ROMs, tapes, MO disks, floppies, etc.

Each type of 10 device is likely to have differences in how it is to be accessed. Some devices
can't be shared (printers) while others can (networks). Printers can give the illusion of being
shared by spooling output to disk. Cards found on expansion buses may have many devices with
different access policy issues. Clearly device access policy can't be correctly predicted for all
devices today. Therefore the Elixir 10 System tries not to make 10 policy. Any device access 
policy that we would impose today would most likely be incorrect some day in the future. The
Elixir 10 System solves this issue by moving as much of the policy issues down to our new
drivers. The functional role of our new drivers has been expanded from just the simple data
movement and control of a device to also include the definition of access policy of the deV:.i~.~~ ....

·:::::~~t>~?:>~{:::::::· .. :,,>:::::::::,:,::::::::::::::>

·:·:::::::(:::·,:i:::C;.:.·:.····· .

Configuration Access Managers

10 devices can be attached to a system via many diverse hardware paths. Some are built in on
the motherboard, some are attached to buses (ADB, NuBus, SCSI, BLT), while others are a
mixture of both, a NuBus card with a SCSI chip on it. A simplifying abstraction is to view
these different hardware configurations as a hardware hierarchy. Viewing the hardware as a
hierarchy infers we should naturally view the software for these devices as a hierarchy. The
hierarchical view of software fits nicely in restricting the scope of knowledge to obvious layers
of the hierarchy. By limiting the scope of knowledge we can easily push 10 policy issues to the
lowest levels of the hierarchy.

• Registered/Restricted Elixir 10 System March 15, 1990 2.9.2-4



Configuration Access Managers are responsible for a collection of devices. The obvious example
of this type of access manager would be the ADB access manager and its interrupt code. Besides
providing all of the simplifying abstractions of the bus (interrupt decode, read access, etc), the
ADB access manager will also be charged with the configuration of the devices on the ADB bus.
When any bus access manager is started up, it would have the responsibility to find all the
devices on the bus. After the devices have been found and identified, the given bus access
manager would make the policy decision to spawn the appropriate access manager or just record
that the device was found but not linked with an access manager.

'';';-:':-:':-:<';':- :-:-:.;.....•

The second type of configuration access manager would be found on expansion cards (NuBus, BLT,
etc). This type of access manager would most likely know exactly what devices are on its card,
the exception being the case of another bus on its expansion card. This model of configuration
access managers can be applied recursively for the bus found on an expansion card. The use of
software hierarchy to manage an arbitrary hardware hierarchy allows the Elixir 10 System to

....:::;:;:;::::::: ;.;:~~~~~;\j:::?:~:::::::::::::::
...........:«<;:::;:;:::-....

......... ... ::;:::::::::~::.; .;.' .

FrameW 0 rk s :.::::t~)j~~~~jjjjj~j~·~lljl!i.\..jll~.~:::\~\\~\/t::::.:.

.:::::::::::::::::;:::{:::\~}:~:~:~:~::::::::::::.::::

we are consi~~~.:.:..•.a.:: re..:.:.,:.:..M.. :.::: ass Storage, Nulll;Video, and ~1~~!l~;'i ::::::: .
.::t~~}t~~?:· ··\t.:~:.·}~~~.~~.t.~.~~:.:~:..~:.·.~.~.~.:..~.~.\~.:j..r:~:~:·

.:.:::::::~ti~iji[;:i~;?~::::··
.::::~:~:~: ~:~:~:~ :~:~:~:~ :::::~:::::::~ ~ ~:: ~:: ~~j~::;~ ~~i~ j~ ;i\jHt;~j~j~;F~Ht :.:.,':':::::l~j:i:: ::~fr;:::::""

.& Registered / Restricted Elixir 10 System March 15, 1990 2.9.2-5





Pink Booting Overview

Introduction
Designing the boot of the Pink system is one of those good news, bad news, stories. The good
news is we get to use object oriented frameworks to solve a really messy set of problems. The bad
news is a question: what comes first, the boot of the system or support for object oriented
frameworks? The usc of object oriented frameworks has created many circular dependencies
with regard to booting.

A comprehensive design of booting will take several months to complete. This document will
give a simple overview of how we plan to boot the Pink system. A key part of this overview is

a list of design goals anfH1%:1:n::illl:f0:J:lli:[:tiI:::::rr::t:J::::rIIEJj( .... :::::\{>:::?}\::::::::::::::::

Clearly our design m~~t ~citY~.:.~~e:qm~$fpf~#~~~~fliirculardependencies. With some...vgry
helpful input from AIidy.. ~e~~.~S~~~··:~~:.q~~¥m:~q~tlined below should ad~f~ ~O:~tb"f these

~~l~::~io~~t:!v~~st~lcl~l~~'?%!~\~f~"~II"'I~~:~.ie~~r~oa:~~et~i.Tltl~~;f:r~ith a
..:-:.:.:.

Booting G:I\~:.!?
"':-:';::::::::::::::\~){)/\~{f: .

Pink, as we do todaj?»>:···············.. ········ .. ··· - .

The use of a local area network as a boot device makes a great deal of sense in many of our
markets. It should be much easier to achieve this goal if we integrate it into the booting design
right from the start. Therefore, booting from multiple data sources will be a design goal.

Third party developers will need to join the booting fun, but not at the expense of the user's ease
of use. This is a hard issue because of the tradeoffs. If we constrain our developers too much, we
lose interesting applications. If we open it up too much, the user may get confused. Simplicity
and expansion with third party access will be another design goal.

" Registered /Restricted Elixir Booting March 15, 1990 2.92.1-1



The Pink Booting Sequence
The figure below gives a simple block diagram of how the Pink system will be booted. There
are three major sources of execution: the ROM Start Code, the Boot Memory Image, and the
servers found in the Pink file system. .

Pink Booting Overview

.,:::::: ~: ~: ~:::::::::::::.:.:.:

iii I.I.·••••••••••••••••••••••!I.B~~~~ start up scripts

ROM Only

The Start Code

The Pink start code design is clearly a descendant of the Blue start code design. Our start code is
austere compared to the Blue code. The universal ROM idea for a family of design centers is
also embraced by the Pink code. Our simplified start code will contain:

• Memory configuration information.
• Diagnostics for memory, 10 chips, etc.
• System feature configuration.
• Default configuration of some motherboard hardware (VIAs, etc).

'* Registered / Restricted Elixir Booting March 15, 1990 2.9.2.1-2



Boot Source Selection

The details on how to select a boot source has yet to be worked out. The selection criteria will
be based on ra hardware configuration and some sort of state infonnation (PRAM?). Example,
in the current Macintosh booting from a floppy has presidents over booting from a hard disk.
Once the selection process is complete the ROM based ra code selected will read in the boot
memory image.

The Boot Memory, Image

Step 1:

Step 4:

Servers bound to the shared library

Shared Li~:~!.i~111;jlil1Ililil\
TOOlbq~~~I~I.j.:~I~II·:?::··

The Boot Memory Image is the key to resolving the object oriented circular dependencies. The
boot image contains: the Opus kernel, the Pink file system, the Progenitor Set of toolbox servers
bound to a shared library, and a collection of memory resident files that the file system has
access to.

The Progenitor Set of toolbox servers are linked with their shared libraries to create a single
memory image. This memory image contains enough toolbox servers such that all circular
dependencies have been resolved. The complete set of toolbox servers required is not known at
this time. This same image could be mapped into many address spaces. By selecting the correct
starting PC, that address space becomes the given toolbox server. (Neat trick. You can thank
Andy Share My Library Heninger for it)!

1& Registered / Restricted Elixir Booting March 15, 1990 2.9.2.1-3



Another new feature of the boot image involves the file system. This trick allows third parties
to add to the boot image, but not be statically linked to our shared library. The Elixir 10
System also plans on using this feature. The details on how this works is still not defined, but
roughly it goes as follows. A magic attribute (folder?) is defined to be the boot image attribute.
When a new file is added to this attribute set, the boot image is automatically updated to
contain this new file. Once the file system is started up, but before the backing store servers
have been started, these boot files are memory resident. Using standard file system access
methods, any server in the Progenitor Set can access these files via the file system. A simple
idea, but somewhat harder to implement.

The last new feature is called the Conductor. The Conductor is the task who's job it is to
sequence through all the remaining parts of the boot process. How the Conductor knows the
sequence is still undefined at this time.

Now that we have defined all of the services, lets see how it works.

..·:·:;::::;:::~r~~:~:)~:}}~~~~~:~:::;;:·······

AtlJlil~I'~II~;l;j\?'

..... :-
-,.:<;:::::: ..:.:.:.: ..•..

:.;.: .:-:;::;:::;<.:-:.:.: ' .

-:.;.>:-:.:<
..

..........

.:.:.:.:-:-: -: .:-: -:. :.:- ~ .

..... ;:::;:::;::::::;}::;,-
:::>:-:

::::{\::;:; .
...... :::-:-:...;.;.

.......: ': :::::<::;:;:: >~: ::..:<:.<?:}::::.::::: .

• Registered / Restricted Elixir Booting March 15, 1990 2.9.2.1-4



KT-22

'* Registered / Restricted KT-22 March 6, 1990 2.9.2.2-1





KT-22

Mass Storage I/O
Bob Otis

x4483

Skiing KT-22 is like I/O - everybody wants to get through it quickly regardless
of the obstacles placed in front of them. Sometimes they are both painful
experiences.

.& Registered / Restricted KT-22 March 6, 1990 2.92.2-2





Overview
The purpose of this document is to set a direction for Pink's Mass Storage I/O Model. My
definition of Mass Storage is; all devices that are used for permanent storage of data. Some
examples would be hard disk drives, floppy drives, and Magneto Optical drives.

Pink's Mass Storage I/O model interacts with Pluto ( for file I/O), Opus/2 (for page faults) and
any other task that needs information from this type of device. The key components of this
model are Device Access Managers and Bus Access Managers. The roles of each of these areas is
defined below.

The following topics will be discussed in this document:

•
•
•
•
• .111111'

•••• :-:.:.:;:::•• 0 ••

Major Sy~~~:m Components
";:;:;:;:::;:;:;"

....::\?::.

:i~(~t••il~~~~~~~~~~:~~;.I/O.\}i
• lriteHJCe->with the Bus Access Managers.
• Interface with the DeskTop Objects.

The responsibilities of the Bus Access Managers are the following:

•
•
•
•

Interface with the Device Access Managers.
Handle hardware specific characteristics.
Handle device interface characteristics, such as SCSI protocol.
Manage different sources of hardware; NuBus cards and Direct Slot Cards.

The responsibilities of the Interrupt service routines are as follows:

•
•

Handle hardware interrupts
Perform any I/O required.

More detail can be found for each of the areas throughout this document.

'* Registered / Restricted KT-22 March 6, 1990 2.9.2.2-3



Mass Storage has at least three clients all with different needs. The three clients I will
describe here are the kernel (Memory manager), Pluto and the Finder.

The kernel needs the I/O model to handle page faults as fus.t as possible. The interface to the
kernel will be a frequently used for swapping memory in and out of the sysfem. Pluto's interface
will be used for standard file I/O and all other normal interface to mass storage devices;
Format,Verify, Eject and others.

• Registered / Restricted KT-22 March 6, 1990 2.9.2.2-4



Mass Storage I/O

'* Registered / Restricted KT-22 March 6, 1990 2.9.2.2-5



Volume vs Physical Device'
To understand the Pink Mass Storage model the relationship between the "Volume" and the
physical device must be explained. There is not a one to one mapping between the "Volume"
and the physical devices. Normally, many 'Volumes" will be on one phy~ical device as shown
below.

In the Macintosh world today SCSI devices are divided into different partitions for different
operating systems. To the different file systems involved this looks like multiple 'Volumes",
but to the Device Access Manager, this is one physical device. It is beyond the scope of this
document to describe the.partitioning in detail.

One Device Multiple Volumes

.fltll'f~artition Map

The other relationship between "Volume" and physical devices is one "Volume" that maps to
multiple devices. As shown below, this relationship between volume and devices is hidden
from the Macintosh file system of today. If this relationship was available to the file system
or a data base system the devices could be used more efficiently by evenly distributing the data
across the different devices. One goal of the Device Access Manager framework is to make this
information available to it's clients

.& Registered / Restricted KT-22 March 6, 1990 2.9.2.2-6



One Volume Multiple devices

8
8

Device
'::~.., ..

Managers

. ;.:.:.:.:.;.::::::::;:-

The SCSI Manager has taken the first step by hiding the hardware implementation from the
SCSI driver writers. This allows hardware changes to the SCSI port without modification to
the driver. However, the SCSI driver writers still have to worry about what calls to make to
the SCSI Manager. With the advantages of the object oriented paradigm, the file system
interface to the Device Access Manager and the underlying hardware manager interface will be
hidden, unless the Device Access Manager has a great need to add to the file system interface.

The Device Access Manager writers (Pink's equivalent to driver writers) will only have to
concern themselves with device specific software. For example: The SCSI Device Access
Manager Framework will contain member functions that allow all of the cornman SCSI
commands to be sent to the device. If a new command or modification of an existing command is
needed, the necessary member functions will need to be added or overriden.

" Registered / Restricted KT-22 March 6, 1990 2.9.2.2-7



Goals

When a project begins it is important to define the goals and objectives. This section describes
the goals and objectives of the Mass Storage Framework. Below is a summary of the goals
followed by a more detailed description of each one: .

• To make writing mass storage device access managers easy
• To use the Object-Oriented paradigm
• To use Pink Toolbox wherever possible
• To be Fast and Efficient
• To hide device specific characteristics
• To aid (not add) to the real time characteristics of Pink
• To support all of Pluto's needs
• To allow a fast I/O path for page faults from the kernel
•
•

.::::::.:;:::::::-:;:::.;.:.....;.:..

......•.. ::::;> .

The purpose of6~vit~<~:t8k§tM~nagersare to manage device specifi:2:di:M~~e:Mri~tics,allowing
the file system and kernel to be device independent. All non essential device information will
be controlled by the device access manager. Some device specific information will be available
to allow better utilization of the device.

Pink has been defined as a real time system. The Mass Storage Framework is a key part of
making this work. The framework will export as many functions as possible to allow real time
access to mass storage devices.

One client of any device driver is the file system. The Mass Storage Framework will export all
services that Pluto requires.

Another client is the Memory Manager to service page faults. This requires that a special I/O
path is made available to the kernel.

• Registered / R-estricted KT-22 March 6, 1990 2.9.2.2-8



The Finder group has indicated that they will model the real world on the desktop. In order to
accomplish this, se~ices will be exported from the framework that allow some measurement of
activity to be displayed. The resolution of that activity is still to be defined.

Since Pink is to be Apple's OS of the 90's, the Mass Storage Framework must prepare for the
changes in mass storage devices. This will require support of larger and faster devices. Today
80 megabytes is a standard size on Apple's mid-range computers. By 1995 it's anybody's guess
what will be the standard. Today Magneto Optical devices are available with up to 150
megabytes per side as well as a 1 gigabyte 5 1/4" full high disk drives.

Architecture
This section describes a set of Base classes that are subclasses of MTask. These classes can be
combined with a device interface class, such as MSCSIDevice to create a mass storage device
access manager. The pytmQ$.~:@:t~:m~~FW4~~:t!AA~~Fisto give a framework for all Ma§.?:::§M?t9.:g~;::::U?

. ;';'::>:':-:':':'

:::\~:: :.;.;.;.:.:.;.;.:.::: :.;'::":.'::::".
":':':':':':::'::::::;:::::;:::::::

;:;p~~~: ~;s: ~~~rs~:~~~:~:~i~e~n~~:I,111:~ ~:a:1tlllll.~~~C~i~ ~:~11I'1IR

;~~f:t~~?J.l1i~~~~;:;~I~~f~:;i;~~'tll[; ~::~:e~~t~!!~i~I····
...............................;.:...... ::::::::::::::::::::., ·:-::~~tmtt)t{;~:~·· ..

-.:::::.:.:::.: ~{:;:~:»\iLY({))}}it)f\/~ :.:-:.::;:::: :-:.:-:-:.:.:.' ',' :-:'. .-:.: .: .
. ..... .

..
.:<::::::::. «-:.:-:-:.:.:-:.:-".:"'

• Registered. / Restricted KT-22 March 6, 1990 2.9.22-9



Class Di~gram (TMassStorage)

Class

Mass Storage Bus Access Managers

Overview
The Mass Storage Bus Access Managers are policy makers for a specific mass storage bus type.
Mass Storage Bus Access Manager is an OPUS/2 team that is responsible for detennining the
boot policy as well as the access policy for device access managers. Each bus access managers is
responsible for managing access to a hardware chip and the mass storage devices attached to it.

.. Registered/Restricted KT-22 March 6, 1990 2.9.2.2-10



For example, the SCSI Bus Access Manager is responsible for the NCR5380 SCSI interface chip
and all of the SCSI devices attached to the SCSI Bus.

Each bus access manager consists of two functional areas; The configuration manager and the
access manager. Below are the fesponsibilities of the configuration manager:

• Launching the Access Manager
• Scanning the appropriate bus for attached devices
• Identifying the device types, sizes
• Locating and launching the associated device access manager (If available)

The responsibilities of the access manager are as follows:

Issues

•
•
•

Manage all access to a specific hardware on the mother board
Hide t~~ :ha~pw~~::t:~PJ~~~tionfrom the Device Access Ma~age.:r:s." ."":iiiiilli,li,;l9tOCOIof ilie bUS •••i ..;.;: .... . ..

.....;.
..

.& Registered / Restricted KT-22 March 6, 1990 2.9.2.2-11





illllillipf Lov
:::::::::{:'

..
..

...-.:.:.:.:-:-::-:.:.> .

• RegisteredIRestricted Funnel of Love March 6. 1990 2.9.2.3-1





p=mv ~

::::::::
..........

9{u6us In

~ pixel rate = 10
8
bits/sec

t rate = 10\itslsec

9{u6us Out

• Reg istered/Restricted Funnel of Love March 6, 1990 2.9.2.3-2





Architecture

Design Philosophy

The basic philosophy of the Nubus I/O Framework design is this: make Nubus easy for the
programmer to understand and use. Currently, using the Blue Slot Manager, the programmer will not
get very far without understanding an entity called the sResource (short for Slot Resource). Also
fundamental to the Blue Slot Manager are the Slot Parameter block and the SExec Block - both'
being large structures filled with fields such as seFiIlerl, seFiller2, spMisc, and sp Key.

The "naive" programmer may wonder what in the world all of this has to do with Nubus, the Nubus
cards that he is interested in, and the Nubus card's Rom and Ram. This "naive" user is absolutely

>:-:.:-:.:-:-:-::::::::::::::}:;:::::::::::":-:-:.-.:

Nubus but aresIQ~~lP(\~~~gn:~~~~:;::l9%ihlplesof this would be a (TB#~JM:~~Thil1g}{lD9'~::=::;>
(TMAeseDirectS10t):.= :CU:::<:::}:::::::··:::::{::«{:::::>;»>

Client Overview

An example of a client that uses the Nubus and Nubus card classes to access card information
is the (Nubus Access manager). This access manager, a team, walks the Nubus slots to
determine which cards are resident in the system.

A client that is only interested in the slot Resources that are on Nubus, and not the
particular physical layout of Nubus cards, may want to simply use the Nubus base class to
provide access to the collection of total slot Resources that are on all of the cards.

• RcgistcredlRestrictcd Funnel of Love March 6. 1990 2.9.2.3-3



The Physic.al Nubus World

In a sense, the Nubus I/O Framework is meant to model the physical world of Nubus. In some cases,
the real world is so terribly abhorrent that we must attempt to shield the user from the details of
Nubus's wretched persona. In other cases, the "real" or physical world of Nubus is a perfect model
for the software interfaces. One of the design goals of the Nubus I/O Framework is to model the
physical in the cases where such as model will be intuitively easy to use, and to provide higher
levels of abstraction where the physical world lacks clarity.

For example, our machines have Nubus slots, and Nubus cards go in those slots. Our computers may
have anywhere from zero to sixteen Nubus slots (the zero case not being especially interesting). The
class definitions for the Nubus Framework will allow users to address the Nubus as a whole as well

ei Registered/Restricted Funnel of Love March 6. 1990 2.9.2.3-4



Clients of the Nubus Framework

The prospective clients of the Nubus Framework are mainly system software components.
Applications will most likely use device drivers that are loaded of the Nubus cards, for the most
part. The software components most likely to use the Nubus 110 Framework are:

• The boot system code,
• device drivers, and
• low level system utilities.

.:.:-:-:-:::-:;: .

\/ :.;.:-:.:.:-:.;.: :::::}}.}:::::::::::::

Class

The boot code, for example, will need to walk the slots on Nubus and decide which cards he needs
access to immediately. In the case of a typical local boot, the video cards may have their drivers

~~~~~~~~t::'~O~~~~~~~~~::eril::~e~.r~~~::C~III;I'~~~~!r:::o~~~~~~;k
stored in the declaration:Rom.:slot Resources on its own card. Th~hNt1b.UstENrmeworkwill allow the
card to access these::~:ijAA~.mr~~:;\~fi~:]~~:::thf~\informationto configqt~::)~~~f;:l:j:j~:)]::?

.•.:.:.::-:;;::::=::::::::.:.:.:::::::;::::.:....

Resources. :;:~:;:::)Jf:I::::? :;::;:;;;::::::;:;::::::::?::~:~;;:::::::::j~:r::.;:
:ttttmmtt \:;:):}:::::::rmmtt::{::}}:::

..:.i.l.]:.:..t.:..!..·.! [.::.!.l....~..:·.i.!:jjr::' ····::;:;:::~:::;;·;;~:j;{::::::::·::L::::·:.:::.:·
:.:::::::::::~:::~:::::::::::::::::::::::::::::::.... . ..::~~~~:~:;:::::::::~:}(.:::::: .Il:llli:litiiio:ns ::::/:::::{::::::. ::::::i:r::;:::jI:::f::\::::\t:
.. <:",<,,:, .: '::. :.:: :': :.: :./:::/.:.:.:::.:,::::::::::::«:::::::(Jiiji11~ii!}~::::·· '::::::\\:h?tHt::

"." -:<::':::'::::::::::::::::::::::}}}}~ :->:::<-:~~t)}:~;:::::·· .:.:.;.:~~::: .. ::::::::::::..,:(::::::.

Class definitions and~~~~:DIAGRAMS!will be supplied in the near futur'~~:::::::"<:>::'

• Registered/Restricted Funnel of Love March 6. 1990 2.9.2.3-5

• Regis tered / Restricted Rob Lowe March 22, 1990 2.9.2.4-1

Rob Lowe
Video Framework

Video star extraordinaire, Rob Lowe, is the mascot for the Pink Video Framework.
Rob, the ultra-talented star of many a megabuck Hollywood production - as well
as his own, highly rated, home-made videos - breaths new life into the -old shop
worn term: Video Framework.

March 22, 1990
Jeff Zias

x44131

• Registered / Restricted Rob Lowe March 22, 1990 2.9.2.4-2

Architecture

Philosophy of the Design

The general philosophy of the Video driver design is the following:

The Pink Video drivers will provide an architecturally sound framework for the processing of
specialized video calls to control the display of colors, animation, and other user modifiable video
parameters.

The current Blue video device drivers provide the standard Open, Close, Status, and Control call
interfaces. All of the different active video configuration calls are packed into the Control
interface. The Pink vide().. g.r.iy.~r.~~.g!...D9.tJq.mRJ.h.~ active calls into one large call..::-:-:-:-:<

The standard Vi;;:~~~'[tililll[,~e~:i:et'<;i;:i;;:;m~d~

:.:.:.:.:.:...

.. :;:~~~~~[~:~~~:~:: ::~: :~~~.: ·:·~:~:~:~:~:~:~t:::::::::::::::::::::::::·

Architectu.ri:I~~:.I;I£;i;·~iL-':'...

The Video Frameworkd~gg:~'hd\'tssubclasses provide a higher level inte'a~:~~::t~:-the video device
drivers - Access Managers and ISRs - that actually access the hardware.

Eventually, much of the functionality at the interface level of the Video Framework will be
incorporated into the Albert graphical interfaces. For instance, a Pink Palette Manager maybe the
higher level interface for SetNewColors (color table modification) type calls.

• Registered/Restricted Rob Lowe March 22, 1990 2.9.2.4-3

System Requirements

The Pink Video drivers will be required to provide the following features:

• Ability to easily develop new objects or Access Managers for new Video hard ware.
• Architectural foundation for implementing new animation methods.
• Object oriented framework that shields the user (the application and device

driver programmer's) from needing to have any intimate knowledge of the vIdeo
card's internal design.

• Reasonably fast, high-performance system.
• Hardware independent architecture.

• th~;[:@~lette Manager,
• Cg1§! pickers,

Major System Components

The primary components of the Video driv~~ltlll~;

~ij!ljllljl'ii~,i~~~jil~!~
The Video Driver:F;~~~W:b:f~;::i:~:::~~::"headerfiles, class descriptions, and application level
interface to Video driver control. The Video framework will provide a generalized interface that
may be subclassed in order to provide more device specific interfaces.

Information Flow of the Video Framework.

Pictured below is a proposed model for the implementation of the Video framework from a system
component point of view. Keeping in mind that each task switch and each message can be fairly
expensive, one of the primary design goals, speed, can possibly be increased by minimizing the
number of IPC messages sent.

• Regis tered / Restricted Rob Lowe March 22, 1990 2.9.2.4-4

The cursor code is a special client of the Video Framework. The cursor code, for performance reasons,
may need to be closely coupled with the Video Framework's internal design. As seen in the diagram
below, the cursor code may need to run off the video interrupts and be ready to draw the cursor from
either the system kernel level or from a client task's address space. For more information on cursors,
see Don Marsh's cursor design document.

Applications

.Registered / Restricted Rob Lowe March 22, 1990 2.9.2.4-5

.. :::.::·:::::t:t<~I\\~\~\::~\m:I:tn::::~{:::
:{;::::~~~:}~;~:r~?~~:}:::':'

............-.....;<;:-:-:.;.:.:-

......................•;.:.:-:.:-;-:-:.;.:.:<.: .

• Registered/Restricted The Plumbing March 15, 1990 2.10.2-1

The Plumbing

(or, everything you wanted to know about a communications architecture but were afraid
to ask...)

Andy Atkins
(camel trainer)

x492/S

• Registered/Restricted The PI umbing March 15, 1990 2.10.2-2

This section of the Big Pink binder will introduce the roles of messages and pipes in the new
communications architecture. The purpose here is to help you understand the issues and
solutions without getting into the grunge of the implementation. The 411 class descriptions will
play that role.

This document assumes that you are already familiar with identities and clients/servers as
described in Murf's Pathfinder document on naming and locator services and Deb Ortons's
Scream document on the clients and servers classes.

Introduction
When it carne time to integrate networking with the rest of Pink, we had to deal with a number
of (possibly contradictory) goals. They were:

·~:::::c::~11II11'.IIIIl~:t::~;=;~;~~r~~ne::~~1;'i;i;r
that aPPlijl1ll1jllllllllllltrefault.dti;11t:li;i!,I[~!lif"
·r=~;;~I~~:~~11~~~~~~;:~~:~~~~~ill'i!:1~~:r

·~~~~ijIT;!;~~i~I(lf~i)ll~i:~r;EiC:i~::il:l~!I~~i
and the device-driver folks "\vere grappling with the complexities of naffiin~{aswellas trying
to bridge high-level toolbox access with the low-level mechanics.

So the question was, how can we merge all these worlds and still provide the fastest possible
performance? We decided that the place to do this is at the message level. Only upon
instantiation of a message does the user need to know who it is they want to talk to. From that
point on, the user just plugs and chugs as usual, regardless of the fact that "who" they want to
talk to is a process on their local machine or a server on a remote machine.

• Registered/Restricted The Plumbing March 15, 1990 2.10.2-3

Architectural Abstract
Given this motivation, the Pink Team decided that Pink really needed a generalized
communication architecture. The purpose of this architecture is to provided a consistent yet
extensible framework for all data communications in the Pink operating system, not just those
confined to IPC or those across the network. This goal is achieved by the use of abstract objects
that represent the basic building blocks of data communications.

Messages and Pipes

These building blocks are:

.....

~~~II~IIII~:~:t~~:~:~:~::ti~~i~~lli~1tiilfr!;··
opening and dosing the pipe, keeping track of the pipe's status, and storing
ephemeral information specific to the pipe.

• Messages - A unit of data that is sent through the pipe. A user will be able to
stream infonnation into and out of the message, and call send, reply, and
forward methods. A message will actually be an abstract class definition,
where its subclasses will implement the actual methods. For instance, an IPC
based message will mix-in the message definition with the TMemory class.
On the other hand, a network-based message will mix-in the message
definition with the TNetMemory class and provide semantics for creating
network data lists.

• Registered/Restricted The PIurnbing March 15, 1990 2.10.2-4



Architecture
The idea of messages and pipes has its roots in Deb Orton's original architecture for IPC
messages. Her IPC wrappers (TKemeIMessage) were built on the notion of a transaction, where
one end creates and sends a request, the other end receives the request, and 'then replies, with
the requestor finally getting the reply. This paradigm fit in great with what the network
needed to do with ATP transactions.

So in defining a generic message interface, we needed to abstract the data storage and data
transport. With that, both network and IPC transactions were able to support similar sets of 
send-receive semantics while hiding the details of data storage and transport.

First step to Nirvana

1~h~~~:~~:~~~~~~\.rll'.t~~;~~:!~~:~~::~iiil!~~~~i~
~:::s~!>~uinsla::;f&~iXKeme1MessagwWmChhappens IO,:;~iI11~lll;th TMemory and
~~~~~~~:h:e~~t:::li'itm;k~~::~;e:~;:~~h;~::~~p~~ ~91~.~lijl.~~~e ~~:~~~:ough
(transactions). Ini~lj!iBi.~¥:ft~f!~:!iIH~:i~!!§~.~tingan WC c0I1:n~m~g!tJlj~!!P~:m~::me)H?:J1b~:J}tedto

...
....

-.- .. "." :::::::-::::::::::: .

the beauty ab6~iti:~11tf\js.~$:J~~t:::fl1~:.R~Faoesn'thave to change dR~{~gt,#-:9t~?d~tr¢g#:#jt~ssof
who or where Fredi$<.$lJ§gt*1ass::imple.mentations of a pipe, and atr:su:pq~$hnpiementations

of a message, abide by the base class' abstract method interface. qq •.

Beyond transactions

We found that this architecture scales nicely to include communications that are not
transaction-based. Say, for instance, a user wants to stream to the other side without having to
worry about the notion of a transaction. The bytes just "magically" appear at the other end. The
messaging semantics already described are transaction-based, so we needed to define another
set of classes for a stream-based system.

To be able to easily include packet or datagram'communications, communications with local
hardware devices, and anything else that requires getting bytes from the toolbox to some lower
level entity, is certainly a big goal of this communications architecture.

• Registered/Restricted The Plumbing March IS, 1990 2.10.2-5

The Big Picture
So this brings us to the architecture as it stands today. Figure 2 illustrates the current abstract
base class hierarchy.

The TPipe tree defines the abstract base classes for all pipes. The TPipeDataUnit tree defines
the set of commands that can be perfonned on a unit of data bound for the pipe or received from
the pipe. Notice that the two hierarchies are rather parallel. This was done on purpose to
reflect the fact that a particular unit of data is explicitly bound to the pipe that created it.

Here's a quick run down on each of the classes in the hierarchy:

• TPipe/TPipeDataUnit - These are the grandaddy base classes. A TPipe
knows how to add and delete its attributes as well as "opening" and "closing"
itself. A TPip.~,Q.~.§.YnitJSD.9.:W.§....hp.w"JQ",,~lter the attributes of itself and keeps·::~:::~"JlliJ.i: the base classes for~!!@;iA?il~i~:;li('Y
~~e:~~~~li'~II!'~M"!.;-:;;;:s:;;:s~~~'11111!~~~ated

.........................

..... .:.;.:-:-:-:.:.;.;.:.:

.. ,':j:.:::: :.:-:-:-,:...:::,;::.::-:'

TPipeDataUnit

Figure 2. Abstract Base Classes

• Registered/Restricted The Plumbing March 15, 1990 2.10.2-6

unreliable!) communications. A user can have one TDatagramPipe per entity
and multiple packets.

Pipes

Given the above hierarchy, all pipe implementations share the characteristics defined in the
abstract superclass, TPipe. Pipes always represents the communication link. Though a pipe may
be implemented as an object containing a surrogate task (in the case of IPC), a network service
(in the case of networking), or as a file access mechanism (in the case of the Finder), they all ~

have the following properties:

• An identity object can return a new pipe. Any identity, be it a connection
oriented or connectionless identity, will have methods that can create a pipe.

Since pi~' are dYnamic in nature (for instance, a usytjm"yj~:iprnY certain
attribu~~§Fto the pipe), the identity representing th~~:j:m~mnNyrhavechanged

."-:.:.:-:-:.:.:.:.: ;.:-:.:-:-:-:.:-:-:-:
................................... :~:~:::~:~:~~mmmmmm}tf~: .:-:.;.;.:.:. :::::::::::::::::::::

Onlybyq{)il1g~)(,t9.~#:weguarantee an explicit binding betW~n:.!h~pip¢::artd
the messages ifrecognizes. See the section below on "Pipe DataUriits" for
more on this.

Pipe Data Units

Pipe data units, an abstraction of what we've been calling "messages" up to now, allow a user to
send and receive data through a given pipe. As mentioned above, these data units are
explicitly bound to the pipe it uses. The abstract superclasses (TPipeDataUnit and its
immediate subclasses) outline the base set of methods that need to be supported by all concrete
implementations (such as TMessage). That way, classes such as MClient and MServer can use
any and all messages regardless of its specific implementation.

• Registered/Restricted The PIumbing March 15, 1990 2.10.2-7

Data units must support some form of getting and Setting attributes on the fly. These attributes
in turn temporarily modify the pipe only for the duration of that message. A pipe data unit
must also support'some form of sending and receiving, but exactly how that is done is up to the
abstract subclasses.

Concrete Implementations
From the abstract hierarchy, we were able to design a bunch of concrete classes to solve the
communication needs for IPC and the network. Again, the communication archi tecture is very
scalable, so as future communication needs arise, we hope that they fit nicely into this
architecture's abstract framework.

....;..-:-:-:;:.;

.-:.:-:-:-:-:-:-:-: .. '';. :.:.:.:. ~

...:::::~{-:.;...,

.::;::::::;::.:::::-::>:<::.:-: .

Transacti
0 nj1;{fl1ji!i;lil'ID!;'I~,il\lfil;Ji!lilll;!~f,.1;i;!;!!;1;M9:

To date, only concret¢:JmR1~~nJ~n§p:M§*~~t~~;9rHTansactionsusing IPC an.qJij~:::9:¢:M#ofk. The

Example

·:~~}ttffI{(

TP ipEf:@EMY€!j:g*tm>:fn@nY.¥::#:t~;K;GetP ipe () ;
se rye r'p fpe:;qR~:f1H;J.:::.?r;:;;:;:::·········

TMessage& reques't = serverPipe.GetMessage();
serverPipe.Receive~equest(request);

The client also needs to create a pipe, where one of the attributes of the pipe is the name and
address of the server it wants to talk to. Once the client opens the pipe, it can then stream out
the request and block on the reply.

TIdentity clientld = PB.GetId(attribute clientList);
TPipe clientPipe = clientld.MakePipe()i
clientPipe.Open();
TMessage& request = clientPipe.GetMsg()i
TMessage& reply = clientPipe.GetMsg();
data »= request;
request.Send(replY)i

The server gets the request, then replies. All the while, the client is blocked until the reply
arrives. (There are other ways to do this. The client could have posted an asynchronous request
and fetched the reply later, for instance.)

• Registered/Restricted The Plumbing March 15, 1990 2.10.2-8

:::::::::::::':'::~~:::::::~:~:~;~:~:::::~:::::::

Finally, the client can stream out the reply.

returned data «= reply;

Connection-Oriented Streams
While the stream implementation is still on the drawing board, it is definitely a service
needed by the network. Protocols such as ADSP and TCP suggest the use of a stream service
interface. Not only that, but I think that we'll discover needs for local stream services, where
the exchange of information between processes is not transaction-based.

• Registered/Restricted The Plumbing March 15, 1990 2.10.2-9

Imagine, if you will, a mechanism by which one process can simply streams into an object, and
automatically, the bytes appear in an object in another process' address space (much like pipes
work in UNIX). There is no need to call a Send method or a Receive method; the buffers are
flushed and filled automatically. (This could be implemented by having the processes stream
into a shared memory object that's mapped into both address spaces.)

At any rate, the communication architecture scales to include the concept of a connection
oriented stream. The TChannel and TStreamPipe objects act as front ends to services that are
either network-based or local. Subclassed from TPipeDataUnit, TChannel is the object into
which you stream, while TStreamPipe, subclassed from TPipe, provides the stream transport. ~

TChannel, however, is somewhat different from its sister TMessage. A streaming pipe really
has no concept of a message or a transaction, so really, there is no way you can have many
outstanding messages. Instead, there needs to be a single point of entry through which you can
stream. Not only that, but streams often support several "channels" multiplexed across the

same connection, wher~:j~s!t:m.~li~Emrwi~j~Mhiquekind of data. For~~i~ns:Ita~~n~~c~e;'~:&~Ji::~?fi;+{//

;~~:~~:7h:~~~liliillll~I';~~sa~1c~~::!I~nt

)j~:~~~:~::i:~
................:-:.:.

Figure 4: Connection-Griented Streams Hierarchy

• Registered/ Restricted The Plumbing March 15, 1990 2.10.2-10

Figure 4 illustrates this class hierarchy.

Datagrams
The construction of an unreliable datagram interface can also benefit from the communications
architecture. The network definitely needs a datagram service interface, and (who knows?)
there may be other devices or mechanisms that can use this interface too.

Not surprisingly, TDatagramPipe inherits from TPipe to provide the unreliable datagram
service. TPacket functions as the object that contains a packet of data. There can be many
packets for any given TDatagramPipe. Since there is neither the notion of a connection or a
transaction, packets can be sent and received through the pipe in an essential ad-hoc manner.

~i~2i!~~"'11'J~~~~i~~~~}irJlli';~~f;;;~~OI~~~
........;...;..... . ..

:.:-:-:.;.:-:.:-:.: :.:.
.........:.:.:.; :.:::::::::::: ..:\:;::::}::::::::

::;::::.:::.~.:::-:-:: ..""

~~;~~~~~~~~~~~~~~~}~~i[i~J~~;imfii~i=~'

::::[:1]1\::::1:1::;;\;:;:::-:.... :::

:::=::::.:Hi./?/ .

~'I~ilG1I~'ll1~I'~~~:~~~~~~::~~°:J_I~;~~@~~);··
belong asyetarioth~t'tYPeof pipe, or as some entity that uses::pfpesan"cr'··
client/servers?

• Pipe Creation - With all the discussion going on with "desktop objects" and
"phone books", it is still unclear how these pipes will get created, and who's
responsible for creating the identities from which the pipes are derived.

• Death Notification- It is still unclear how we are going to add death
notification of the pipe architecture.

• Registered/Restricted The Plumbing March 15, 1990 2.10.2-11

• Registered/Restricted Server /Client March 15, 1990 2.10.3-1

Server jClieIlt Services
Deb Orton and Irazu de Colorado

• Registered/Restricted Server / CI ient March 15, 1990 2.10.3-2

Server/Client Model
The server client ~lasses are intended for use in cases where two separate entities need to cOI11.muni
cate (and possibly exchange data or objects) using request-based transactions. These entities l11ay or
may not be on the same team, 111ay or may not use IPC (Inter Process Communication) and may even
be on separate CPU's connected through some network. There will usually-be only one instance of
any server and multiple instances of the associated client. Client and server objects nlay be inter
mixed with other objects and even with different subclasses of themselves (i.e. a single object may be
a client of 1110re than one server, and a server may be a client of some other server). The exception to
this is that any given object nlay only inherit or contain ONE server. No mechanisI11 is currently pro
vided for handling multiple servers in a single object.

Clients are not ll1ulti-threaded and by default are not nlulti-thread safe. Servers are also not multi
threaded and process requests one by one. Asynchronous handling of requests nlay be accomplished
by spinning up a light-weight task to process a given request in parallel.

• Registered / Restricted Server /Clicnt March 15, 1990 2.10.3-3

Servers
The server object is a light-weight task that blocks waiting for a request to arrive, processes the
request, and then goes back to waiting for another request. Requests may be handled asynchro
nously by spawning a task to handle the request. Mechanisms are provided for handling excep
tional circumstances (client died, out of a resource etc.). Very basic servers consist of a method
for each request the server may handle and registration of those methods in the constructor.
Complex servers may also do special exception handling, spawn light-weight tasks to do asyn
chronous processing and even communicate with another server.

Servers on the same team as their client(s) communicate via IPC (TServerlVlessage), but do'not
copy section information via kernel calls, rather reading and writing is done by directly touch ing
the appropriate addresses. Servers on separate teams from their clients communicate via lPC,
sections and possibly segments (TServerSegment). Servers and clients on separate machines
communicate via network transactions.

MServer

Methods for General Consumption:
The Constructor creates a server object. This can be done either as a task or as a team. (See
the Wrapper's documentation for more information on tasks and teams.)
RegisterRequest must be called from witin a sub-classes' constructor (or some initialized. It
registers the method name as a possible request for that server. Two flavors are provided. One
registers the request to be handled synchronously (by the server itself); the other registers the
request to be handled by a server helper task.
GetDataStream returns a pointer to a data stream to be read or written. The data stream is
NOT part of the message text and may generate a section to be sent with the message. This

• Registered/Restricted Server /Client March 15, 1990 2.10.3-4

stream mayor may not be copied by setting the "buffered" flag. If buffering is FALSE, then
every read and write will generate a kernel call to preform the operation. If"buffered" is TRUE,
then the stream is copied into the current address space and reads and writes do not generate
kernel calls. This stream grows auton1atically, as needed.
GetMessageStrcam returns a pointer to a message stream which may.be read or written. The
message stream is part of the message text and is COPIED with the message when sent or re
turned. This stream is fixed length (approximately 120 bytes).
Stream Operators write and read the task object piece of the server.
HaltServer tells the server to exit. Call this method when you want to shut down the server.

Methods for Getting Information:
GetCurrentRendezvousID returns the rendezvous identifier associated with a message and
its sender/forwarder. RendezvousID's are unique numbers system-wide.
GetCurrentClient returns a surrogate task object representing the current client task .

....::;::::::::::::::::::::::=::::::::.:-:.:

By default the
.,::::~::::::::::::::::;::::::::::::::::::::::~:~:~:~:~:~::.'

MServerHelverTask

Methods for General Consumption:
The Constructor creates a server helper task object. This task object sits in a loop waiting for
reqeusts to be forwarded by the server. By default, there is only one task per request type and
subsequest reqeusts are queued for the helper task.
GetDataStream returns a pointer to a data stream to be read or written. The data stream is
NOT part of the message text and generates a section to be sent with the message. This stream
mayor may not be copied by setting the "buffered" flag. If buffering is FALSE then every read
and write will generate a kernel call to preform the operation. If "buffered" is TRUE, then the
strean1 is copied into the current address space and reads and writes do not generate kernel
calls. .
GetMessageStream returns a pointer to a message stream which may be read or written. The

• Registered/Restricted Server /Client March 15, 1990 2.10.3-5

message stream is part of the message text and is COPIED with the message when sent or re
turned.
HandleServerRcquest should be overridden to implement the handling of the request.

Methods Used for Implementation:
HandleServerMcssage implements the helpers main loop. It sits waiting for a request to come
in, processes the request and then goes back to sleep waiting for another request.

.& Registered/Restricted Server /Client March 15, 1990 2.10.3-()

Cliertts
A client object may be mixed-in, be a private base class or simply a member of an object. Simple
clients need only specify the request, package any data, and send it to the server. Complex cli
ents may communicate with more than one server, generate asynchronous requests, or communi
cate through shared memory (TClientSegment). Each task should have its own client for any
needed server, or the applications programmer will need to provide concurrency control within
the client object. Mechanisms are provided for handling exceptional situations (the server died,
out of needed resource, etc.). By default, clients start their respective servers in a separate ad
dress space if they are not currently running when the client sends its first request.

Clients communicating to servers in the same address space provide some optimization for infor
mation transfer. Clients on the same machine, but in different address spaces communicate via
IPC and sections (TSections) u and possible shared memory (TServerSegment and TClientSeg
ment). Clients on separate machines from their servers communicate via network transactions.

StreamOpe#~·~Qr~"W##tfMj~t¢'U¢'9.##ifOrmationto and from
SendRequesttW~:§:9fflg::r~~HJ¢sehrtheserver and waits for a
message stream maYhe:sent.
AsyncSendRequest fires off a request to the server and then continues. Th.e.reponse must be
handled at a later time by calling WaitForResponse or CheckForResponse.
OneWaySendRequest fires off a request to the server and contines. If a section needs to be
sent with the request then OneWaySendRequest will return a new segment for the programmer
to use.
GetDataStream returns a pointer to a data stream to be read or written. The data stream is
NOT part of the message text and may generate a section to be sent with the message. The data
stream is grown automatically, as needed.
GetMessageStream returns a pointer to a message stream which may be read or written. The
message stream is part of the message text and is COPIED with the message when sent Or re
turned. The message stream. is fixed length (approximately 120 bytes.)
CheckForResponse checks if there is any response fromt the server waiting to be processed.
\VaitForResponse blocks until a response from the server arrives.
ShutDownServer sends a request to the server to shut itself down .

• Registered/Restricted Server /Client March 15,1990 2.10.3-7

Methods for Getting Information:
GetServer returns a surrogate task representing the server object.
GetServerName returns the filename of the server.
IsServerKno\vn returns whether or not the server task is known.
GetCurrentRendezvousID returns the current rendezvous ID.

Methods for Extending Behayior:
HandleServerDied what to do if the server dies.
FindTheServer how to locate the server (by default it uses the nameserver). If the server is
not found, then this guy calls StartTheServer.
StartTheServer how to start the server. OVERRIDE this guy if you wan t to start the server 8S

a task (not as a team), You will need to create your server object and then start him up.
SetRequestPriority sets the priority for a request.
SetiGetDeleteServerOnFree tells to client if the server object (may be a surrogate) needs to be

If not,

........:.;. . ..

.........-:.:.:.;.;.:...:::::::::::::::;:-:-....

............... -.::.:::::.;.> <::::::;:::;:;:::::>: .
;.;::::;:::::::::::;:::.:::-:.:.:.

...............................
.~;;I!lii: ~; ~: .-.:-:.:.:.;.:.:.:.:.: .;.:.:.:.:.....

• Registered/Restricted Server /Client March 15,1990 2.10.3-8

ServerMessages
The server message object (TServerMessage) provides communication and transfer of data be
tween the Server and the Client. It provides a protocol for transactions between servers and cli
ents. Specific implementations of this class may allow communication across networks, via IPC
or possibly through shared memory. '

The server message inherits from the basic message object (TMessage) and adds some server/cl i
ent specific protocol. Server and client objects are unaware of the transport mechanism used to
handle their requests and responses and operate only on the protocol defined by toe server~mes
sage object. Any special "magic" to move transactions across networks, etc. is implemented in a
subclass adhering to the server message protocol.

This class is still in the design and prototype stage to support transparent networking and is
subject to change.

••••••••••••••• I......................... .•••.•••.?}}::::}:4;±:~?;:essage

TServerMessage

Methods for General Consumption:
The Constructor creates a message object for the server and client to use.
The Stream Operators write the message information to and from a stream.
GetDataStream returns the section associated with the message.
GetMessageStream returns the available portion of the message text (the piece not reserved for
server/client communication information).
GetSurrogateDataStream returns the surrogate section associated with the stream.
Reply handles copying the data stream into the message (if possible) and writing any unbuffered
su rrogate sections back to the real section.
Reset resets the message and all associated streams.

• Registered/Restricted Server /Client March 15, 1990 2.10.3-9

PackData is available to clients and servers to facilitate the packing of a request and its data.

IVTethods Used for Implementation:
UseDefaultRequest looks at a flag in the message to see if a request is being passed.
SetDefaultRequest sets at a flag in the message to signify that no request ,is being passed.
GetUserStart returns the starting address of the message available to the user.
GetUserLength returns the length of the message available to the user.
Gctl\'1essageLength Returns the number of bytes available in the message text.
GctRequestLength returns the length in bytes of the request id.
PackRequest and UnpackRequest are used internally to pack and unpack the request id.
Sig-nalNeedBiggerSection generate an exception stating that the section is too small for the
response.
HandleNeedBiggerSection handle the exception that the section is too small for the response.
HandleDatalnMessage what to do if the data stream has been packed in the message.
SmartOneWaySend cre.?:.tg.~....~..D.~..W.. qJJ..t~l ...~tr~.q,.mi.fJhe old one is used for the one way se.n.4:~::::::::::::::

..........

«Registered/Restricted Server /Client March 15, 1990 2.10.3-10

Example
Suppose I wish to build a random number server. The purpose of this random number server is to
generate a pseudo random number for a client and also to allow a client to set the seed used for the
number generation. This will be accomplished by building the following objects:

1. TRandom
This is an abstract superclass that defines the protocol for the random num

ber generator. Both the server and client objects inherit from it and adhere to the
interfaces defined here.

2. TRandomServer
Only one instance of this guy is created (during startup of the system or some

such). He registers himself with the global name server and then goes to sleep wait
ing for a request. There are three methods to handle the 3 possible requests:
SetSeed, GetRandomNumber, and SetSeedAndGetRandonlNunlbcr. When a

•.:.: ..•..~~ ~.~.. _~ ~.'.: ~.._~ ~_t_· ..'.' ' '.' '..
:::-:::-:::::::::::::::;:::::-:':::".;.-

.;:.::::::::::::.:.:.:.:.:::::::::::::::::;:::.:.:. . ;.:.:.:-:.:-:.:.:-:-: .

.. Registered/Restricted

.... :. ..>;... ;..... :.>:.:...;...:-..:...:.:...:..-: ...

Server /Client March 15, 1990 2.10.3-11

II Registered/Restricted RedEye March 15, 1990 2.10.4-1

II Registered/Restricted

by
Jim Mathis

Red Eye March 15, 1990 2.10.4-2

Overview
RedEye provides electronic messaging interconnection with the AppleMail system being
developed for System 7. Since AppleMail for Blue is currently a few weeks away from Alpha,
it is difficult to exactly define what it will look like on Pink. However, we expect the
following to be true:

• The existing Blue AppleMail software will probably not be able to run

inside the Blue Adapter, requiring a rewrite for Pink. l

• Pink will initially support only the message client software and depend on
the Blue implementation of the message server (running in a separate
machine) for store-and-forward routing.

• RedEye will be integrated into the Pink Finder framework in much the .

·,;II'Irtll~:~~::::~~~'ili.'~f~:::
• /4~Yogram-to-program message communicatiq~mffiU)#@[@ppportedin addition

/tHb the user-level EMail functions../}:ttr~}:~})t:tH:tr:::·

·)·::::::::iJj~<R~r~9A~t.Gateways built for Blue ~j!~:::pr~lklM)::~ot work with RedEye.

............:-:-:
"':':':::::-:-:': .,::::::.::::::::,.-

Architecture

Store-and-Forward Networking
The foundation of electronic mail is a reliable delivery service that typically has
characteristics different from other types of reliable transport protocols. The most important
distinction is the time-frame over which the data is delivered. To allow for the
interconnection of different mail systems, an intermediate store-and-forward step is often
required; the time it take to complete delivery to data to the destination can range from
seconds (for machines sharing a direct network connection) to perhaps tens of days. During this
time, the sender machine may crash or be powered-off or otherwise lose memory state.

1With the Blue Adapter effort restaffed, we will explore the possibility of
running NuFinder extensions within the Blue Adapter as an avenue for quick
delivery of AppleMail capability for Pink.

'* Registered / Restricted RedEye March IS, 1990 2.10.4-3

The non-immediate delivery of data has a variety of benefits that can outweigh the
inconvenience of the time delay involved. When time is not important, data can often be
transmitted at off-peak hours for lower communication charges. Simple economics may
prohibit full-time network connection between users, particularly between users geographically
distant. Interconnection with other messaging systems often go through gateways that add
delay. For personal computers users, particularly users of portable machines, there may never
be a time when both the sender and recipient machines are powered-on and connected to the
network; the store-and-forward of data by a third-party agent would thus be required.

Messaging in, Pink
The ability for a program to create, send, and receive store-and-forward messages will be
provided by extensions (subclasses) to the client/server framework described earlier.

RedEye will provide for the development of Personal Gateways to handle access to foreign
mail systems in a manner similar to that used in 20/20. The development of a Personal
Gateway for RedEye will also entail the construction of directory naming class objects that will
be called by PathFinder and the Phonebook. The PhoneBook always acts as a central
repository of naming and addressing information in Pink independent of the lower-layer
networking or communication protocols involved.

Open Issues
Since RedEye is in such an early specification state, there are many open issues to be resolved.
This section attempts to list the non-obvious issues that need to be considered:

1) Overall, how can mail and messaging be better integrated into the Pink to provide user
functions not possible under Blue?

• Regis tef(~d / Res tricted RedEye March 15, 1990 2.10.4-4

2) What is the interaction between RedEye and the Pink Scripting system? How much
scripted manipulation of the user-level mail messages should be provided?

3) What extensions might be required for mailing large video images when running on a
Jaguar?

4) Can Cher use messaging to maintain shared documents between two or more users that
do not have a direct network connection?

• Registered/Restricted RedEye March 15, 1990 2.10.4-5

• Registered/Restricted Babel Fish March 15, 1990 2.11.1-1

BabelFish

Brain

Energy Absorption
Filter

.:::::::-::::::::::;::::::::-;:;::-:;:;:::=:;::-::::::>. . '.' .' :=.::=..:::;:::::j:::}::" .:<[? . .
... "." : :.:-..:-:-:-:.:-:<.:-.<::::::::;::;: '::::::~?:~~}{r}}\::::-

compiled by
Andy Atkins

Jim Mathis - Program Lead
Andy Atkins
Anne Muller
Jim Murphy
Mike Quinn

• Registered/Restricted BabelFish March 15, 1990 2.11.1-2

The BabelFish project is responsible for providing easy-to-use, flexible, and extensible network
objects on Pink. BabelFish's higher layers provide a collection of network wrappers where
applications and other services can easily and unifonnly plug into the network. The lower
layers implement multiple protocols and links within Pink's object-oriented framework while
providing the hooks and abstract classes for future protocol/link implementations.

This document will provide an overview of the BabelFish architecture. For more detailed
descriptions, please review the BabelFish ERS (coming soon to a store near you) and the 411
documentation. This document assumes that you are already familiar with messages and pipes,
as described in the Big Pink The Plumbin~ document. It also assumes that you are familiar with
identities, as described in the Valhalla and Pathfinder documents.

..•.........•....:::::::;:;:::::::;:;:::::;:::;:;:::::::::;.

::::::::::::::::::::'::~((::::-:-:-"'-"""'"

:~i~:~~}t~i;I ~{:::::}::::::::::::::::::::::::::

• Simplicity:

.:.::;~.::;:;:;:;:·····:.:;i·::::;:.: .:::::.:::::::: ...;.:::::.:...:::,.::.mt.;;:.d.::..:.:....::...~:.:e.::::j::.r.eilipi~'l:pen:::·krsAupslinwgl.oIIUp!flrro!.i.:::~..::.•.:;.:.:~.•.].:..:::.·~:.,,·.~.·.i.:..;:~.i.·:t:.•:i.:.:.:.i..·::.i..:·.·.•::.;:·...•:.•.i:.i.•.kl:,.:·:·:·.·..i.••:~.·.i.••.;.:.:..·.::.·.·:..:..::abl.ll.ty for: ..:::.:.·::.:.:.;•....:...:..:··.·::.:.::..:.•:.::.::....•:••:.:•....:•.•.;...:....q.:::..,:::..:~... :.:::.:...:::... :.:.::...:..:~:.::~:.:::::::...:::.::::
.:imi:r:1!~~pU#}Mi:im!::m}::: :::J;,UuUx.· U:l~

....·••··•·••·•·•·.· ••···.····.·;;;;;;\:\~~r~~e:~~:~ t~u~~~!'II~t~~;i~~i~i?
unsuitable. q ••••••. q .•••..

• Extensibility: The API will be buHt upon an abstract framework
which will allow developers to include new
types of networking services that were not
originally anticipated.

All of the goals mentioned above can be achieved by using the techniques of object-oriented
programming and by providing an abstract calling interface for developers of applications that
will be using networking services.

• Registered/Restricted BabelFish March 15, 1990 2.11.1-3

~fE1rWO[Rl~

W~#\~~fED

User Space

Figure 1: Network Object Organization

User Space

.:.:-:.:-:-:..':-: -:.:-:-:.:. :-:.:.:.:.;.:- .': .:- .. ~ .

•
...:-:

lii~llili~l
.

• Registered / Restricted BabelFish March 15, 1990 2.11.1-4

Architectural Overview
The network architecture is functionally split into two separate pieces. As illustrated in Figure
I, most applications communicate with the network wrappers. Existing in the application's
address space, the wrappers provide a single consistent interface to the network while hiding
the peculiarities of the protocol machinery. In using pipes, identities, and messages, the
application may not even know that it is using the network.

The protocol and link layer machinery, however, exists within the network team where they
can be shared across all applications. The wrappers communicate with the network team using
network requests constructed in a shared memory address space. Applications using the network
are protected from each other since the network manager allocates a separate distinct shared
memory segment for each user of the network. This manager also has the responsibility for
multiplexing outbound messages to the appropriate protocol module and inbound messages to

:::::h:::.:...::.:e.....:..:.:....:•.::....:iffi:.::.::.:.:;::·.:.:..:~..:;•..:.:;:.·.••.:.••.•J?.:.i.:••..::o:•.:.:::;:••...::.:••:.~.:.;:.~...:..:~:.:.::~.••:.:.•:·.•:.:.::.•::.:.:.:•.·.:~.o.•:::•.::•.:•.:.:•.::••:.;:~:::.:.:.·.:.·:.::.t..•:·.:•.:.:a.:·:.:.:·•.•.::o.:.:•.:::.~.:.:~:.:.di.:••.~..:··:••.:.:::·•.:::c.:::.:i.•::.:.:•..•:.:.·.::·.::::~.Q.•;.:.·.•:.:.;.:••:.i..:·..••.:..~:·.:•.:·.::·.:l:•.:::.:s:··.:::•••.::.·..:.s.:•.:•.:~.•..•.••.:..:s:•.•..:•.:~.:·.:••:..:::~...•i..:••:••:...:.:·.:.i..:•.~.::.·.:••..~:.:.:.•.:•..::.:.::•.:•..::.:i.:~.::•.:••..:••.:•.:·.:•.·.:.::.:::.:•.•.i•...:...:•.:.:.:•.•.:'.•.·.:.••:.:i.·::::·.:•.••..:•.••..:'..:•.':••.: •.:••: .•:.::.•:.:.:••.: •.:.:•.:.::.:.:•.: .••.:.::..:••.•:•.:•.•.:•.••:••.: .•:.:.:•.:••.:••:.:•..: •.:.:•..•..:•.:.::..•.:•.:•..:.::••.::•.,":;!;:!';; \7·····

............... ...d;'III!III·.lllrw··

-:.:.:-:-".:.".:.":-:<.:.".;

.{/\?}~{::::::::::::.:.: ..

Service and Protoco1A utonomlli';11111 ';11,;111'1;./\'1111.1;;\\

~:~~~_ii~~i~j~t~11~~~~1~~~~~llil[~~III!::s
ask the wrapperstoprqy~qfhl:ri/lristantiatedchannel to which to stre:ain{:aY.9pingso, the
application does not lock itself into a particular protocol. In fact, the application may later on
specify a different protocol while still interfacing with the same set of pipe and message
methods. In practice, however, the protocol used in accessing a remote service will generally be
stored in the identity object.

The second service provided by the network wrappers is to prepare all outgoing packets for the
network team. With its knowledge of protocols and the configuration information provided by
an identity, the network wrappers can automatically create network requests and add in the
appropriate attributes.

The application does not instantiate the network wrappers directly, but instead uses the
methods provided by a phone book or desktop object to create identities. In tum, these identities
dictate the behavior of the network-based messages and pipes. A network pipe constructor, for
instance, creates the appropriate subclass of the protocol wrapper object and sets up the protocol
path in the network team, all based on attributes in the identity.

'* Registered/Restricted. I3abelFish March 15, 1990 2.11.1-5

One of the driving forces in our design was to have the low level classes stand as an autonomous
implementation of networking under Pink. Meaning, the network team serves the network
wrappers but is not dependent on the wrappers. That way, the Blue network adapter or
"critical" network applications have the ability to access the network via a special object
(called the network team service interface) in the low level classes as just .another client.
Though this option may deliver faster throughput, the user of this object must do a lot of grungy
preparation (such as instantiating the appropriate class of protocols and links) and fill in all
the protocol-specific attributes of a network request. Because of these drawbacks, we believe
that most applications will access the network via the network wrappers.

Network Requests and DataLists

The BabelFish architecture is centered around the network request object (TNetworkRequest),
which acts much like ~....~.~HS~.~f.9..rE~:?.~.~.~.~P~~~.~....~avel the network. Just like a suitcas~~..:U:>::::::::::

sports compartments t9tHi#.Hf~~!:~ntP~H~~;::~m§nPation(called attributes). Attr~.qHM~~:::~OO~#d~:r::

i~~~~~:iii'!~!!~~~~i~iiilll~~JI;1~~i.It
that the network/:~~j~:J19tPy~rwhelmedby a huge and P9~§tRJ.YHl.rrf:~¢vantattribute list.

........

.:::::=?::::::::::::::::::::::;:

In the sections that follow, we will briefly outline the abstract hierarchy that makes up the
network wrappers and the network team. We will also summarize the data flow that takes
place in both the wrappers and the team.

Interface Classes

The interface classes encompass those classes that are accessible to objects outside the network
team. These classes are:

lIn fact, the TDataList class descends from TNetworkRequest.

• Registered/Restricted BabelFish March 15, 1990 2.11.1-6

• TPipe: The TPipe class defines the object through which
an application can submit data to the wrappers
and receive data from the wrappers.

• TPipeDataUnit: The TPipeDataUnit class encapsulates the user
data for the wrappers.

• 1NetworkRequest: The 1NetworkRequest class implements the
semantically-tagged parameter blocks used to
process all network requests. It is the object wi th
which the wrappers build data to send to the
network and receive data from the network.

...:.....:.....:.:-:-:;...
..

:«.:.:-:.:."

• TAttribute: The TAttribute class implements an 'attribute'. It

.::.::::-:;;':; TNumericAttribute, T&t:HUi~~Qna$Attribute,
.:.::::;:::;::::::.. TIextAttribute, TT~~iq!Y4'tpbute,etc.).

:~~Ir\:?\:)f~:::::r~t~·?)f\tt(t~:::::::-:·

.....

djJ!:;!~:~~"llll~~~::~:::!~!~l~
... /~I~~~r~::::"'::::::?::::::::: .

." :~;j\~;1m~j~~;::::::::.::: -. - "::::.: .

.-.:-:-:-:-:.:;:

«.:::::::.:-: -.

The goal of the high level network wrappers is to provide a standard common interface to all
networking services. This goal is accomplished by separating the interface for acquiring
networking services from the implementation of that service. By separating the service
interface from a specific protocol implementation, a client application will not have to special
case each different type of protocol the application may be using or limit that application to be
able to use only one protocol.

The wrappers accomplish this by implementing a service interface based on the pipe and
message architecture. Though its service interface may be pipes and messages, underneath, it
requires several classes for configuration, inbound message caching, and protocol management. In
fact, the configuration classes help separate the pipe service from the protocol it uses by
dYnamically binding the protocol object with the pipe at connection-ereation time.

The following is a brief description of each of the classes that are a part of the high level
wrappers:

• Registered/Restricted BabelFish March 15, 1990 2.11.1-7

• TProtocol:

• TWrapperTask

• TDataList

The TProtocol class is where pipes and messages
interface with the protocol machinery
(affectionately called "where the rubber meets
the road"). It is the responsibility of the
TProtocol class to build into the network request
the appropriate attributes and commands given
the protocol involved.

The TWrapperTask class helps the pipe manage
inbound message from the network that have not
yet been requested by the pipe's user. We need to
internally queue inbound packets so that we don't
tie up the network team's precious resources.

This class implements the object which is passed
from layer to layer to propagate requests.

The protocol/link layer classes contain the code that implements the protocols and link
connections. Listed below are brief descriptions of those classes specific to the protocol/link
layer classes:

• lNetLayer This is the parent class of all network layer
implementations.

'* Registered/Restricted BabelFish March 15, 1990 2.11.1-8

• TLinkLayer

• TDatagramLayer

• TTransactionLayer

• TStreamLayer

This is the parent class for link layer
implementations. It is a subclass of TNetLayer.

This class defines the generic interface to a
packet-oriented datagram layer..

This class defines the generic interface to a
transaction-oriented layer.

This class defines the generic interface to a
stream-oriented layer. It has semantics for both
transaction and stream data transfers, as well as
connection establishment.

~il~~:c~~~O~jJ~irli~;~t~~n~;;g~n~a~~~7n~~~::~f\1Jl~I~~~~;~~e;:~i~~;'
-:.;.:;::::;:•............

. ":"':':/:'::::"':':':::':'::- .

.. :.;.;.:.:.:.:<::;:;:::;::;::::;:-:-:-:-:-:-:

:::;:;:::;:;:::;:::;:::::::::::::;:;:::::;:;:;:::::::;::::::. ·.:~.~t.:~.:.:.:.·:.·:.~~:.:{.:><:}:
':::::::::::::::::::;:;:;:;:::::::=:=:::=::;:;=;::::::::::::::

The scenario that folIo ws illustrates data'::gqifwithin th~~~in~~m9t¥iiwrappers. .::-:::::-:::::::1.!t;.~\.:·::::::::·:.:.:<

W rappell~I~~II~t~2n :.:::.~.: ..::.:.·:.:;..:.:~::.~:.:~.:;.l';jl'l;; \1;~iijl.I.I .••.I\.;t;I.;.i.•.!.!.:.:.:.:.... ill>
...... ::::::::::;:;::::::::::::;:-:-:-:.-.:.-

As already C(N~~t~di"~:~ij~::'~ltim¢riF6~The Plumbing, identities~:t~ll~::pi'~~i~J:1~lji~~create
the pipe data units~:Tfhif::way~:lhereis an explicit binding between thEtid.@iitltY;'the pipe (a
dynamic representation of the identity), and the data unit (the messages recognized by the
pipe).

Say, for instance, we have a situation where a client on one machine wants to send a request to a
server on another machine. The service interface is transaction-oriented, and the underlying
protocol is ATP.

Before the client can send the request, the server needs to set itself up. The first thing the server
has to do is get an identity (however that will be done), and ask the identity to create a pipe.

/* PB is a reference to the phone book */
Tldentity serverld = PB.Getld(attribute serverList);
TPipe serverPipe = serverId.GetPipe();

• Registered/Restricted BabelFish March 15, 1990 2.11.1-9

When the server asks the identity to get a pipe (via the GetPipe method), the identity is
actually instantiating a pipe behind the scenes. It knows what type of pipe to instantiate based
on the type of service requested in the identity. In turn, the pipe temporarily instantiates a
configuration object (TConfig) to help it configure itself. The reason the configuration object is a
separate class is because many different types of pipes (TNetPipe, TNetStream, etc.) all need
to go through the same configuration sequence.

The configuration object does a number of things, among them, choose the appropriate protocol
object (TProtocoD to create. It also constructs a protocol path for the network team service
interface (TNetService) that forces the network team to set up the appropriate protocols, links,
and bind objects. See the following section for more on the network team. Finally, the
configuration object instantiates a wrapper task (TWrapperTask) to manage data from the
network that has not yet been requested by the user.

Once th~;;;:~;;::~III"lil".lillllf~~::~ the pipe and postarece...i..:v-:::::e\:·~((U:H:~:ijjjj::::IU:f«:
serverPipe Jljl~t0~j1ill~B~!t:~~:~Bljl!~~j~I!!~~~/

In this particular c~$¢.rthe··Open·me·thod··ge"tS··thewrappers to po:$.~AKU:

network team. Th~/jf§eceiveRequest call blocks the server until
network. ::::-:-:-:.:-::

.......;.;.;.;.:. :-:-:-:.:':';'.-

The client also I}.:~·~§::;~t~~:~¢::~::jj,tm~::::Whereone of the
address of the ~Btth{iFW~lttiH&litkrtdl::::::..

Once the client opens the pipe, it can the:llf out the ~l.~~~~j:·~l \(FPlOCl<.

TMe.~:;$.:~;g:~:~:;:::i:~qw~st = clientPiP~:]I~I;~sg () ;
TMe.$.)~j~fJ~:~::}#~t#8<::87. clientP ip'~j9.ijiMsg () ;
da t:~:::::$:igJHiMtW~j#F)::::::::::::::::::-:-:.:.:-::::::::::::::(}:IJ:::=:"
requ~~$.:#··1·~·%#~(#~g~¥)·::f:::~~:·::::::I:::jI:::::~)::)::: ..

When the client a~~>::th~:::~;;·pPers to instantiate the request and reply messages (via the
GetMsg method), the wrappers allocate a shared-memory area. The reason for this is that the
network team has the ability to read this data without copying the data into its own local
address space or relYing on a send-with-section from the wrappers.

Once the client sends the request, the message packages its data into a network request and
submits itself to the associated pipe. The pipe in turn hands the message to its protocol object so
that it has a chance to insert protocol-specific attributes and commands. In this example, the
request is synchronous, so the wrappers simply submit the network request to the network team
service interface and block on the reply. If the user's send request were asynchronous, however,
the wrappers would spawn a task to do the submission.

Eventually, the server gets the request, then replies.

request data «= request;
request.Reset();
reply data »= request;

• Registered / Restricted BabelFish March 15, 1990 2.11.1-10

request. Reply () ;

Notice that the server streams the response into the same message that contained the request.
The reason for this is that the network request object associated with the request contains
information specifically identifYing the request. If the server were to streaIJ;1 the reply out to a
separate message, this identifying information would be lost, and the network service wouldn't
know to which request this reply matched.

Finally, the client can stream out the reply.

returned data «= reply;

Network Team Operation

socket/protocoltype listener

::<'::::::-:"

J~~9J:9§Q~ .-:::::::;::.:::::::: ::::::::.-:-:::::::L:i]w:WEQUIVALENT

~:::::!:F::j!j::jj::j:j:::::.::unn.::protocolhandler

DDP:

NBP:

ATP:

PAP workstation:

PAP Server.

ASP workstation:

ASP server:

illegal command - can't
listen for NBP

ATPGetRequest

PAPRead

PAPRead

CetAttention

CetASPRequest

illegal command - can't send
through NBP

ATPSendRequest

PAPWrite

PapWrite

ASPCommand/ ASPWrite

ASPRespond/ ASPWriteReply

Table 1: Listen and Send Command Equivalents

• Registered / Restricted BabelFish March 15, 1990 2.11.1-11

COMMAND

Pause

PauseClients

PausePaci<ets

Resume

ResumeGients

ResumePackets

GetRoundTripTime

CancelRequest

ResumePackets

GetLocalStat5

GetROConfig

OwnerQuery

DEFINITION

The protocols stops processing any user request and incoming packets.

The protocols stops processing any user request

The protocols stops processing any incoming packets.

The protocols resumes processing user requests and incoming packets.

The protocols resumes processing user requests.

The protocols resumes processing incoming packets.

Handle 'Echo'-type functionality. If the layer does not know how to do this, it
passes the request to the next lowest layer. This allows the highest-possible
layer to do timing in order to better simulate real operating conditions.

to the

Returns the local configuration for addresse9:::Pfu~~#/@W~ndsthe request

to the next 1ayer for it to process. ,,/t)l[~~j~~::::j~::::~.~:::[.:·:\::\::.~:~::\::[:::::?:

Each protocol in the path examines theXa.:gM#'jl.:\~~fii@~lrequest, and if it is

CancelRequest
~'Iil.{request b1111ii!11it', TNetwO'kR11\i'~1

~--------------~~~

Nonnally, the first thing that must be done is to listen on a channel. At least two attributes are
required for this command: channel and listener. If the format of the channel is known, you add
the channel attribute and attempt to open the channel. If it is not, you create a channel
attribute, which is a template for the channel the Protocol should allocate. In the latter case,
the channel will be added to the TDataList for future use. The AppleTalkprotocol equivalents
for the Listen command are illustrated in table 1.

It must be noted that the use of the template channel is not always legal. ALAP, for instance,
cannot dynamically create a channel. (Oh, I suppose it could, but currently it's not defined that
way!).

• Registered / Restricted BabelFish March 15, 1990 2.11.1-12

Sending and Receiving

The Send command can then be used to send a packet (or packets). For connection-oriented
protocols, a channel to send on may not need to be specified. The TNetService object may imply
the channel. This is true, for instance, for PAP workstation and ASP workstation. It is also not
required for ATP (since ATP is 'authorized' to create its own channel), but it is optional. ASP
server and PAP server, however, require the channel attribute that was received via the
incoming request in order to match the response with the appropriate request. Send requests
also require an address to send to, as well as a TMemory object containing the data to send.
Table 1 above suggests the Send command equivalents for some of the AppleTalk protocols.

The ASPRespond/ ASPWriteReply duplicity above can easily be resolved by the channel
information from the corresponding incoming request. Unfortunately, the ASP workstation
duplicity is not so easily resolved. This is handled by creating two new commands:

'SendReques~and '~III!III,lllllitfor tra~ction/conn~tion ; ..

COMMAN:§[:~[:j:[~:~~~::jI~jj~:Ij~:j:~:::~:::~:::~:::~::~~:::::j:~:t~::::f~::~mmllilill~1

Free the channel for others to listen on

Prevent achannel from being listened~~),>.jn~f:i~h/;!r cli~t.1N(4~:'··not accept incoming packets :. ::::::::>:::: .

Releas~~:~~~~:.,.::;:}}:::::::::::::::::{\::::: Free the channel for others to jililli.~M~::::.::~::::[:[[j~:~.:j~:1:j::::j~~:/·
I~~"""""~ ~~~~-:-~,.......--~~~;;:e~~~--~~~

.~.BI~): ..packets from as~tj:I.~I:~[~[j~::::::::;:j::~~:~l:I:::;jj~:~jj::~:::[:jj':i[[~:[:[:~i~::[:i].]:::[.i.:::::~~:::::.

~:[lilf:I&~t (channel ma~~m:lf::jru:.::ill0:pe Speeiiied)t:[·::~~:::l~.j[:j[.:

CancelListen·:········:·:·::::::::::::::::~:::It[I~~i~::t:::ji::iji:iiji:i~ ..::jij;t~t0jiijiii~jl: request

ReleaseOlannel:

CancelSend:

ListenForRequests: Receive requests on the specified channel
SendRequest: Send arequest and get the reply
SendReply: Send areply to an incoming request
CancelListenForRequests: Cancel alisten request
CancelSendRequest: Cancels outstanding request
CancelSendReply: Cancels outstanding reply .

Table 4: TTransactionLayer commands

• Registered / Restricted BabelFish March 15, 1990 2.11.1-13

COMMAND

RegisterName:

DeRegisterName:

Confirm:

Lookup:

EnumerateDomains:

GetConfiguration:

DEFINITION

Registers a name.

De-registers a name.

Confirms a name at a specified address I channel. or looks up a single name

Looks up a set of names based on criterion in the 1NetworkRequest In the
absence of any other information, the domain your machine is located in is
searched. If a list of Domains is included in the dataUst, the list of Domains
will be searched.

Returns a set of Domain attributes which are the domains available on the
network. For hierarchical domains, you may specify the top level domains, and
this will enumerate domains 1 level deeper.

Returns configuration information, including information on whether domains
exist, and whether they are hierarchical or flat.

...... , ' ' ' , .

D 1
- ·tl··::::::::.::::::::.:::::::::::::::::· .. ·

e Iverau es
The BabelFish project plans to ship the entire AppleTalk stack with the first release of Pink.
We will allow the AppleTalk stack to be multi-homed. The protocols included in this are:

• LocalTalk, EtherTalk, and TokenTalk
• DDP
• ATP
• ADSP and ASDSP (secure ADSP)
• ASP

Services included in BabelFish include wrapper integration with the message and pipe
architecture. We also plan on shipping an additional network toolbox to better support clients
such as AppleShare and collaboration.

• Registered I Restricted BabelFish March 15, 1990 2.11.1-14

COMMAND DEFINITION

CreateConnection: Establishes a connection with a specified. address (and an
optionally-specified. channel).

ListenForConnection: Usten for a connection request

RefuseConnection: Refuses a connection request

AcceptConnection: Accepts a connection request

OoseConnection: lOoses the specified. connection

Listen: Usten for incoming data on a connection

Cance*¥~en: Cancel a listen request

Send a reply to a read request

~~~~~~request which will cause data to be sent

IUsten for incoming requestsListenForRequests:

Send:

Cancel~~:Li:st:::::::::::::::::::::::::::::::::::::::::::::::::::;;::::::::::::;::::::::;:::::::;::::::cancel an outstanding datalist
.::::::;:::;:;: !

• Pho~~:B60k!(.p4it1tfltiJi~fYY\Ne needed a way to create, loc:at-€~>QtPd,at€~;,.:;<:·::::·
authenticate; and search for identities. Think of Pathfinder as
machinery behind the Chooser in Pink.

Can~~':::::~;JtI:[~f~:~~~:t.:.: Cancel a listen for reqt;J:::.::..~:.::..:.::.·{$'.:..:~.·: :.:.;..~.:~.::.:.:.::.:~.:..!.~..;.~~.':.: ::.:~.:.!.~~.:~.:.i:.:.t.:!.·:.::.:·.::.::.:·.i.~:.:_.::.:.~:.:j.: ·.~.~.:1ir.::.:.:}::::::::: :::::::::=:{:::}:::.:.:.: ~i:<---- "'-'I

~MillillI0IMiJtiI0.![ii!:!~.~j!!i!!;:i!!i!!i1;!![!@~:::::. Cancel a listen

iii11iJtllll!l;f.llil'1t'I'~aYer

One our wish list, we hope to implemenfmQRllf, time

'!If;fljrlf
ProjeG.t~iii:::i!ii!i:":§:.~ 0 ciatedA.Ith
The projec~jiill!III~~l1;:~{lBtHjj~~fJ!~

......:.:-..:- ..: ;.;.>:.;.;.:-:.:-:-:.:.:- .;.;::-:;::::: :->:.:.;.:-:.:

• Messages and Pipes (The Plumbing> - The Plumbing defines the wrappers'
interface to the user of the network. Messages and pipes are absolutely
necessary if the network is to fit into Pink seamlessly.

• Collaboration on Pink - One of our stated goals from the beginning was to
make collaboration a default behavior in Pink. To this end, we are extremely
interested in collaboration and intend to implement some of the ideas in
ShareBoard on Pink. This will hopefUlly help drive the design of services
built around networking.

• AppleShare - AppleShare is one·of our biggest clients, and just as with
collaboration, we hope AppleShare will help drive the design of network
service too.

.. Registered / Restricted BabelFish March IS, 1990 2.11.1-15



• Network Blue Adapter (Scorpion) - Scorpion will certainly exercise the
network team's interface and provide valuable input to the continued
maintenance of the protocol and utility classes.

• A-Rose on Pink (Coral Dawn) - Here again, a valuable client of the network
team.

'* Registered/Restricted BabelFish March 15, 1990 2.11.1-16



• Registered/Restricted CoralDawn March 15, 1990 2.11.2-1





• Registered/Restricted CoralDawn March 15, 1990 2.11.2-2





A/ROSE .Is
A/ROSE is a real-tin1c kernel running on 68000-based smart NuBus cards. A/ROSE is a small
kernel with task scheduling. A/ROSE is a fast kernel with fixed length IPC messages for
delivering events. A/ROSE is a helpful kernel with procedures for moving data across the
NuBus. A/ROSE is a friendly kernel with memory management. A/ROSE is a collection of user
tasks called managers. These managers provide high level services including naming, inter
card communication, and dynamic task downloading support.

A/ROSE is an access manager on the main logic board. The access manager provides a subset of
services found in the A/ROSE real-time kernel. Opus tasks use the access manager services to
work with A/ROSE tasks running on smart NuBus cards.

...............
}\»?~::::

....

The access manager moves data across the NuBus on behalf of tasks on the main logic board.

Interface Classes
A/ROSE is a set of interface classes between Opus tasks and the A/ROSE access manager.

A/ROSE IPC messages can be created using the interface classes; A/ROSE IPC messages can be
deleted. A/ROSE IPC messages can be sent using the interface classes; A/ROSE IPC messages
can be received. These IPC messages are for event delivery.

• Registered / Restricted CoralDawn March 15, 1990 2.11.2-3



The interface classes have methods for moving data across the NuBus. Yes, yes, I know. Only
tasks within the same team as the A/ROSE access manager can actually move data across the
NuBus. The interface classes really get the data to the access manager and request that the
data be moved.

Support Classes for Downloading Tasks
A/ROSE is a set of support classes for downloading tasks to smart NuBus cards.

The support classes find out what cards are in what NuBus slots.

The support classes determine if A/ROSE is running on the smart NuBus card in a given slot.

Now can ~:J,Jyone tell me what AI
......•.. '.;.....

I bet you can!

The support classes download A/ROSE to a smart NuBus card.

:::::::::::::::.~ill'llllit': :~:r:::::: asumr!

• Registered/Restricted CoralDawn March 15, 1990 2.11.2-4



NuBus Card 1 NuBus Card 2

User Tas emote emote

4 System System
Manaoer Manaoer

User Tas Name Name
3 Manager Manager

User Tas User Tas User Tas User Tas
2 1 1 2

User Task
4

NuBus Card 3

• Registered/Restricted CoralDawn March IS, 1990 2.11.2-5





• .Registered/ Restricted Valhalla March 15, 1990 3.1- 1





Joel Spiegel
Steve Horowitz
George Norman

Karl B. Young

• Registered / Restricted Valhalla March 15, 1990 3.1- 2





Contents

About this Document

Valhalla Project Mission

Introduction

Thor Product Description

Odin Product Description

........................................................................................................... page 4

........................................................................................................... page 5

........................................................................................................... page 6

............................................................................................................ page 8

........................................................................................................... page 15

• Registered / Restricted Valhalla March IS, 1990 3.1- 3





About this document

This document provides a description of the current state of the Valhalla project. It is meant for anyone
interested in the direction and current status of Valhalla. Readers should be falniliar with the Pink project
in general. They should also be familiar with the history of the Macintosh and Macintosh Finders.

This is a working docurnent. It describes what is currently known about the project. It will be updated
every four to six weeks.

What is in this document?

• The Valhalla proje~.t...~.~~.~.i.?Il,.~~i.~~y'.9..~~~.~~~~.s the motivation for the Valhalla proje~.~.:-:
:~;~~~~~~~ ~~~~~~~~~l~

:.:-:

..

These are i¢$~:ij$4:::m¢lpw.

,- .
•. :.::::::~:}::::::::::::-::..<..

.....................•: :-- :- .

which manipulates-:Bbj@Sts"'(5:nthe desktop. Under Pink, this includE!'s:::&lfappHcations which wish
to create or modify documents.

• Registered/Restricted Valhalla March 15, 1990 3.1- 4



The Valhalla proj eet mission

Valhalla will translate Pink core technologies into concrete end user and developer benefits. The result
will be a personal computer environn1ent which is perceived as easier to learn, easier to use, and more
effective to use than any other systen1 available. .

The mission of the Valhalla project is to 111ake Pink the most compelling and productive environment
available to personal cOlnputer users in the 1990's.

• Registered/ Restricted Valhalla March 15, 1990 3.1- 5



•

Intro duction

Valhalla is the Pink equivalent of the Macintosh Finder. ft provides thc means by which people conlrol
and interact with their Pink SystClns. Like the Macintosh Findcr, Valhalla supports an interfacc which is
strongly rooted in real world mctaphors and is visually oriented. Valhalla is actually made up of two
In.ain parts, Thor and Odin.

Thor

Thor is a set of user interface programs which provide end users direct access to objects in the
lnetaphorical world. It is the Pink analog of the Macintosh Finder. Thor allows pcople to control and usc
their systen1s and the information on them.

. :.;.:.:.: .

:::::::::/:{:;:;~;~~~~~~~jt~J::t}::...

.":'::::::::::::::::::::~{:~:r::~;:{:::::::::::::::
',' ..-:.:-::;:;:;:;::::.:::.::>:-:.....: .....

... ::':';'::::::::::::::;:;':.
':};::;:::::;:::;:::::::::;:;:::::::::;:':":;::::;

....................................................... ........•.•••....•... .:<::::.::::::::::::::::.:::::;:;::::.:.:-:.:.;.-

~~Ys~st:~~f~lltl~l~r.'ll1i~l~~faJic:::~:~~~~~ It{~lr'II~lfl~;~~if;;~)~II~'i~~t!~::~~li~~
Thor and Odin are partners in these functions. Odin provides the underlying machinery for then1. Thor
delivers user level control. It is an explicit goal that the functionality exported via Thor map directly to
core functions of Odin.

Anyone who uses a personal computer must deal with these two issues. The degree to which they are
made transparent, or at least simple, has a tremendous impact on people's perceptions of the machine.
The sin1plicity of performing these tasks is a key criterion which must be met in order for Valhalla to be
considered cost effective and easy to use.

The strategic significance of Valhalla

Today's Macintosh Finders present the friendliest and most productive personal computing
environments available today. Despite the success of our current Finders, two situations make it

• Registered / Restricted Valhalla March 15, 1990 3.1- G



::::;:::;:::;:;:::;:;:;:::;:;::: :.:.:.::.;.,........................ , :.;.;.:.-::.;'"

What Valhalla is not

in1perative that we develop a replacem.ent for today's Finders. These are:

• New system software on classic Macintosh hardware. Pink will deliver, through software, a number
of new technologies to our users. This will alter the entire OS and toolbox interface on the Macintosh.
Porting NewFinder to a system with radically different underlying semantic~ is not reasonable. We
111ust present the new Pink capabilities in a coherent manner in the Pink user interface.

• Next generation hardware platforms. Jaguar will use Pink as its system software. Its user interface
shell must run effectively in the Pink environment. In addition Jaguar will provide hardware support
for new features such as multin1edia input and presentation. This requires a user interface fraIne-work
which can integrate these concepts effectively.

Valhalla represents the next generation of Finder technology at Apple. It is a significant evolutionary
step. Like its predecessors!...g.......i.?.p..?.?..~.g ...9.n..~...~~t.Q.f...r.~.~l.:»,orld n1etaphors. Users can have a C9.D.f~T9Jg:~nd

.;.:-:.:.:.: .
.....•;.:...:.;.:::::.::::;:::;:;.;.;.:.;.

;::;:\:.,:.: :[:::-:UUt:}

................ :.:.:-:.:-:.:-:.:-:.:.

.\ t.;.:::: ;::~::;:~;: ~::.'.~.~.::~ ~:: ~:.:.:':;.~':; ~:~':~:~ ::'.:...~.'.:.~::.'.::~'::.~.':::.:..:.::: ':: ::: ':: :::':: ::::::::: ~:~.~:::: .. ':::::::::::.:: '.-:.,_:: :.<-: '.:.':-:. :-..: ..-.::::::;:;:;:::;:::;:::,,- : ;. .: ::-:-:.;.:.:..

.. ;:;::-:'" ... ,::::::::::::::::::::::;:::;:::::::::., ·::::~~t}}~;:;:~:?:::::;;:::\:.:..· . '.'
.. ....;.:-:-:-:.:-:.;... ..:<.;.:::;:;::;.:., ":::::;::;:;:::::;:::' ':-:<:>:-:;::;;;:::}::::;:;':-

':':-:':':':':-:-:':";:;:::':::::::::':::;:;:-:::-::;:::::::::;::;:::::::: ..
.. :.... ::-:.::;.;:::::;:;:::;::<:::}::::::::;:::>:-...

'* Registered/ Restricted Valhalla March 15, 1990 3.1- 7



Thor Product Description

Thor is a set of programs which create the user environment on Pink systenls. Thor presents a consistent
user model based on the Desktop metaphor. It allows people to manage their systems and the
information on them.

Who are Thor's customers?

This is really the Sal11e as asking who are Pink's customers? Anyone who uses a standard Pink system
will use Thor. This includes end users in business and education. It also includes developers.
This is an extremely broad subject. It is covered in more detail in other Pink user interface dOCUl11ents as

::~sC:::::~::;~;~;.~&tnaf~~ristiCSin ~nd These cq~~ili(flil'~::;::;~:h level, or gc"cral
benefits. /lmi,il;:I~'ijl;t~j'~lillllt~lf;llj.tlib.· ..·····:;tlliiiitt
•

..:.:-..:.. -::::::::::::::;::;:::::::.....

• Effective to us;.:bk§pii~:8~iRg::~Hri:;le to use, Thor is not limited to ci:cii:ag·:gi:ffi:pmfhfi\gs. It will be
straightforward to specify sequences of operations as well as operations on groups of objects.

Each of these is regarded as a desirable attribute for a PC. We know of no system available today which
is perceived as having all four of these characteristics. Although the Macintosh comes close, it is
currently considered weak in terms of the "effective to use" characteristic.

What specific benefits will Thor provide?

From a user's point of view, this is like asking what are the benefits of Pink? Thus, we present a list of
key perceived benefits, whether or not they are unique to Thor. Many, in fact, are derived directly from
simply existing in the Pink environment. Also ,some of these benefits are already found to son1e extent
in the Macintosh Finder. These are still listed as key benefits of Thor either because they are critical to the
oyerall user experience, or because Thor takes them significantly further than the Finder.

c Registered/Restricted Valhalla March 15, 1990 3.1- 8



Easy to set up a Pink system.

This is the first problenl faced by the owner of any computer system. Since Thor is our standard
interface, it should handle this task. If Pink systems come preinstalied, this task will be simplified, but
not eliIninatcd. Users will be able to add and configure new hardware easily within the standard
framework.

C0111parison with current Macintosh:

WIth our new installer, systenl installation on current Macintosh systems is fairly straightforward. ~Thc
greatest shortcoming of the current scheme is that it requires learning a program, the Installer, which is
distinct fron1 the world users normally operate in. This will not be the case with Thor.

:-:.:.:-:::.:.:

Comparison witly:fiprrent Macintosh:
.:{~~?:~:>::::::~:::/::::;:::::"'::";'...':':::""';

.... .. ~~?/r\

...;.:-;.:.:-:.}::;::.;.:.:.:-.. :-: .
\.:>~{} ., , .

~: ~:~::~~:\~~)~~~ :~:~:::::~::::;::::

Easy to find things.

Thor provides a variety of ways to find things. These include manual searching, as well as searching by
attribute, by association and by content. Users may select those most appropriate nlethod for the task at
hand.

Comparison with current Macintosh:

Our original Finder supported only manual searching. Other techniques are added by things like Find
File and ON Location. NewFinder adds the ability to find by attribute and by association. Point by
point, here are the key differences between NewFinder and Thor.

• Registered/Restricted Valhalla March 15, 1990 3.1- 9



• Content - Thor will be the the first Apple environment to present this ability to users in an
integrated manner. Users can, using normal Thor techniques, find docun1ents containing specific
words or objects anywhere on the Desktop.

• Association - Thor will handle this using a concept called Cross-references. These are sin1ilar to
NewFinder Aliases. Unlike Aliases, Cross-references can be bidirectional and of varying
strengths. In addition, the Thor concept of association will be integrated with the document level

hypertext linking mechanisms in Pink.
• Attribute - Thor does this much like NewFinder. Thor is, however, somewhat 1110re tlexible than

NewFinder.
• Manual searching - Thor does this just like Finder and NewFinder.

Reduces fear and intimidation - increases fun:

Fear of damaging the system or of losing data is a great source of stress for many users. Thor presents a
very safe world to our users. Requested operations either succeed or abort gracefully. The world is never
left in an inconsistent state. Furthermore, as many operations as possible are trivially undone. This
opens the door to stress free exploration of the system.

People do not enjoy looking up solutions to their problems in manuals. Many will often suffer a great
deal before picking up a manual. Thor provides easy, online, help at all times.

Comparison with current Macintosh:

• Registered/Restricted Valhalla March 15, 1990 3.1- 10



Once again. Today's Macintosh does a very fine job. Compared to other systems currently available, it is
low stress and high fun to use. There is, however, room for improvement. Thor adds multi level undo.
Transaction based operations are also new to Thor.

Apple's Human Interface Group has developed promising designs for several ~inds of help. NewFinder
will implen1ent only "what is" help. Thor, as a standard Pink application, will iIYtplemcnt at least "what
is" and "how do I" help.

No wasted time due to unnecessary waiting(ban the watch):

On many systems, users must wait for a specified operation to finish before they can do anything else.
Thor rectifies this problem. It always returns control of the system to the user as soon as possible.
Whenever possible, time consuming operations are carried out by the system while the user is free to

Specify operatio~~::Bri::~flnif~~ygroups of objects:

Although you will often want to perform an operation on groups of things in the saIne place, there are
times when you may wish to use other criteria. For example, you may wish to copy all of your letters on a
particular subject to a floppy disk, regardless of where they exist in the system. Thor will allow you to do
this.

Comparison with current Macintosh:

This ability is not currently a\'ailable on Macintosh. Although it should be possible (within limits) under
NewFinder, we do not expect it to be available when 7.0 is released.

A customizable environment:

.& Registered/Restricted Valhalla March 15, 1990 3.1-11



Many people with to customize their systen1S in many ways. Sometinles this is simply a matter of
personal preference. Sometilnes it is necessary due to physical handicaps. Thor is designed to allow
many details of the interface be modified, supplemented or even completely replaced. Increasi ng or de
creasing the significance of any specific nledia such as sound or graphical display is easily accomplished.

Con1parison vvith current Macintosh:

To our knowledge, Thor accomplishes this to a unique degree.

Natural environlnent for sharing:

The ability to share computer based resources with coworkers is usually not a natural part of most
systems. Thor will allow sharing of all desktop objects ill a simple and effective manner. This includes

~::::::::::::::~il"II'I'I"l!jtowardthis ~V"H.,;,;",;~,;;;
the file system and the::~ystelnas a whole. Thor will do for all CH ..,n>r~.

Appleshare does for fH@§t In addition, Thor will provide a
ling access to your systeh'rf.$:xes.o:urces.

Allows work ~4111\111'ltl!ll"i:ion:
Thor's extensibility allows you t(f:W&t#@j#ft~fi~:~'-:i\~sof

::::::i:::i::::::::~:::~::::~I,ilwthe
To our knowledg~,}hi~ facility is unique to Thl'll"l:

.-.:::::: ~.::~:::-~.~. . .. -- ·:I?ttt~~~::--

What featJ~~~I~~~i~~RPr9¥!,fr~ese b
........................................................................; -:.;.:..

This section diSCU~:s:·th~·:~~~::~{hilimt·~~:~:~::logyfeatures which will help us user benefits.
For each feature, we describe what the feature is, where the feature is derived from and what key benefits
it helps provide.

Extensive use of metaphor

Metaphors allow people to formulate useful mental models of the system n10re quickly. The Thor user
interface is firmly rooted in a consistent set of commonly known metaphors. Objects visible to users all
make sense in this metaphorical world.

The Inetaphors made visible through Thor are actually implemented in the Odin libraries.

Use of metaphor helps make Thor easy to understand. This helps with benefits related to ease of learning
and ease of use. It makes the system understandable enough that set up and configuration should not be
i1).timidating.

'* Registered/ Restricted Valhalla March 15, 1990 3.1- 12



Iconic interface

Thor uses icons to represent objects in the metaphorical world. Icons help make the metaphorical world
concrete. They' are responsible for providing users with a concise and accurate, view of the work. Thor
icons can incorporate anin1ation, video, etc to to accomplish their jobs.

The underlying mechanisms for implementing iconic user interface elements are provided by the Odin
class libraries. In addition, Odin provides specific iconic views of the basic objects in the system. These
are also used by Thor.

With even the most basic understanding of the underlying metaphors, icons can help people find and
organize information. As a user's knowledge grows, the icons can convey tremendous infonnation about
the state of the systen1. By providing timely and accurate information about the state of the system, the

Users explore and cha~*g¢:theirworld by directly manipulating the iq~B§jifp.~p.h.Mepresentspecific objects.

::::~:~:~:~:~::::};::::::::::::;:::::':"':

Fast/orthogonal context switch

..
:::::::::::::::~:~:~:~:::::::::~:~::::::::::::::.:...,

';':-:-:':-," .; ..................

...... :- ...-:-:.:.:-:.::;::.:-:<-:.:.:-.._...

There is no concept of application layers, etc. A shift of focus does not imply alot of baggage. Under the
model of direct manipulation, only the thing being manipulated and those things naturally attached to it
should be affected.

This feature is principally inherited directly from various parts of the Pink application framework.

This feature helps reduce confusion and stress. It also reinforces the feeling of direct manipulation «<is
it really part of direct manipulation?»>

Multitasking

From a user perspective, this is the ability to have more than one thing actually happening at once.
Simple examples include background printing and copying.

• Registered I Restricted Valhalla March 15, 1990 3.1- 13



The principle benefit Thor derives from using Pink's multitasking abilities is that it can always return
control of the system ~o the user as quickly as possible.

Thor derives its nlultitasking features both directly from the Pink application environnlent and by using
the Odin libraries which are intrinsically nlu!titasking.

Fast feedback

When the world can change, or when it does change, Thor makes this imnlediately visible to the user by
changing the state of icons. This feature is derived from Pink's multitasking model as well as the services
provided by the Odin libraries. This feedback is needed to reduce fear and intimidation. It also helps
users learn by exploring.

Online help

Scripting

. :.:.:.;- .
..-:.::::~~~)~{ ::.: .

..... }::;::;::;::::-..,

.':':-: ·:)t}~.:.:.:/~:::::}::··

Hyper...media links

...<::-.-:.:- ..:.....•..:•...
:...:.:.~ .::::::::::::::::::::::':.::.

This is the ability to find objects based on their contents. This ability is principally derived froll1 CHER.
Some aspects may also be implemented in the Odin libraries. This feature is principally of benefit in the
area of finding and organizing.

Extensible

Thor support s the ability to add new kinds of views for existing objects. Furthermore, it even allows the
addition of new kinds of objects. This feature is derived from use of the Odin libraries as well as the
general shared library feature of Pink. Thor's extensibility allows user's to customize their machines.

Support for alternative presentations

'* Registered I Restricted Valhalla March 15, 1990 3.1- 14



Users can run other progralns which present alternative or supplemental views of the metaphorical
world. Thor's operation is not disrupted by this. Thor will continue to reflect accurately the state of the
world when alternative lneans are used to lnanipulate objects. This is directly derived frOll1 using the
Odin libraries. This feature is an aid in letting users customize theirs systems.

Network compatible

Thor desktop objects can be shared over the network. In addition, Thor provides browsing abilities on the
network. This is a function of Pink's fundamental networking abilities plus its general client/ scrvcr~
modeL Network compatibility helps userS share information using Thor.

'* Registered/Restricted Valhalla March 15, 1990 3.1- 15



Odin Product Description

Odin is part of Valhalla. It is a set of class libraries written in C++. The classes which make up Odin fall
into two groups. These are:

• Desktop classes. These classes represent the desktop objects on the system. They provide a
conlplete model of the desktop and the things you can do on it.

• Presentation classes. These classes allow users to manage the desktop world through direct
manipulation. They provide operations for displaying and managing desktop objects.

Who are Odin's customers?

":::::::=::::;::::::::;::: ..............:-.-:<.:-;.:.;.:-:.: :.:.;.:.;.:-:.; .
.:::::;:::;:;:;:;::::;:::::::::;:::::::::::.

NewFinder supports a notion of Finder extensions. Finder extensions are a special class of program.
Extension authors have the ability to blend in as part of the NewFinder interface. Odin lets any
application author do this simply instantiating appropriate Odin classes. These are architecturally
compatible with the rest of Pink.

Alternate user interfaces are easily supported.

All of the semantics of desktop objects are separate from the user interface classes. You can extend these
easily to produce entirely new, yet compatible, presentations of the desktop world. These presentations
can be graphical views or they may even be acoustic presentations. You can use your new classes to
supplement the standard interface or to provide alternative views of the world.

~omparisonwith current Macintosh:

II Registered I Restricted Valhalla March 15, 1990 3.1- 16



The interface and semantics of the Blue/NewFinder desktop world are very tightly coupled. Odin makes
a clean split between them. The standard Odin user interface components can be completely replaced. In
addition, supplen1ental interface classes can be added. The basic desktop services are unaffected by this.
NewFinder does not support this ability.

The desktop is always consistent.

Odin is responsible for the consistency of the desktop world. Most of the overhead of coordinating access
to the desktop is handled by Odin.

COillparison with current Macintosh:

Blue, even under NewFinder is principally a file based world. Odin pushes the user uletaphor down to

::::~::~r~~:nW:~I~'I'lllflttlltt,,~r,t9j;;;@H;;

.;.: :-:.:.:-:.:-:-: ::::=:}:;:"
.......

................«<.:->;.>

..... ::.:::<-:: ..:::::::::::::::::::::>~{~<}~{:::::::>::-: ....

All Odin services are provided by well defined classes. All of Pink is based on an object oriented
architecture. Odin fits in with this architecture. The object oriented design of Odin Frovides a clean m.odel
for understanding, using and extending both the desktop and user interface classes-

Shared libraries.

Shared libraries allow one program to take advantage of classes introduced by another progran1. Shared
libraries are a basic part of Pink. Shared libraries provide the basis for extending th.e desktop world. They
are also used for allowing arbitrary applications to use both the desktop and user interface classes.

Client/Server model.

• Registered / Restricted Valhalla March 15, 1990 3.1- 17



This allows, among other things, one team to coordinate and service requests from a number of other
teams. This is a standard part of the Pink toolbox architecture. The client/server model provides the basis
for implementing the Odin Desktop services. This provides a framework for guaranteeing consistency of
the world model.

Concurrency control and recovery

In a nutshell, this guarantees that desktop operations appear to happen in a sensible order and that each
either succeeds or aborts with no visible side effects. This is achieved through user of the Pink Credence
classes. This feature is crucial to guaranteeing consistency of the Odin desktop world.

Change notification for clients.

Odin will notify clients
This mechanisn1

'* Registered / Restricted Valhalla March 15, 1990 3.1- 18





.:.::::::~:}

.':':':':':':-: .. :-:.:.:-:.:.;.... ...........
.:::::::::::;:;:;:::::::::::;::::::::::;::::::::::;:::::;:::::::::::::::::::;::::.;....

::::::~:::: ::::::::::::::::::;::::::::-;.'

·:·:·::::~:~/:?~{:<~t::::::::::::-·;· .. :.;.:-'.:... -:.:::::::::.:::-:::::::.:::::::::::.:::::::-:::-:::.;.:.:.:-:....

···.···.····~·······.···.· ·· ···.i...... . «l;t!!I;~~~·rJ~~~'qlllil!!llili!i.;.
:::::::::::::::::::::::;:::::~::::::::;:::::;:::::::::?::::::::::::::::::~:;:::::::::::::::::::

'* Registered/ Restricted Thor User Interface March 15, 1990 3.1.1- 1





Contents
About this Document

Introduction

The Thor Desktop Metaphor

Things in the Desktop World

Disks & Disk Drives

Folders

Cross-References

Documents

Stationery

Applications

Appliances

Tools

• Registered/ Restricted Thor User Interface March 15, 1990

page 3

page 4

page 5

page 6

page 8

page 9

12

page 13

page 14

page 15

16

3.1.1- 2





About this document
This document is intended for anyone interested in the user interface of the Pink version of the Finder
(Valhalla). It will also be of interest to people who want to know how Pink in general will deal with
aspects of system configuration and organization. Readers should be familiar with the Pink project in
general. They should also be familiar with the user interface presented by current Macintosh Finders.

This is a working document. It describes what is currently known about the project. It will be updated
as needed.

Related documents

There are two other documents which describe various aspects of Valhalla. These are described below.

• Valhalla Project Overview
~pro~ctwhkh

document is 0K:OO:terest to anyone who wishes to write an
objects. Und~~:}?:ink, this includes all applications which

• Registered / Restricted Thor User Interface March 15, 1990 3.1.1- 3



Introduction
Thor is the collective name for all applications within the Valhalla project which deal with aspects
of user interface for the Pink Finder. These programs present the system and the things it contains in an
easy to grasp manner. Using Thor, you can manage your system and the information on it. Thor also
allows you to easily install and configure software and hardware as well as organize and find
information on your system. Thor is the Pink equivalent of the Finder and its associated desk
accessories and utilities on the Macintosh.

Thor is built upon the services provided by Odin (see related documents). Thor uses these services for
both manipulation and display of desktop objects.

Components of Thor

The fundamental component of Thor is the Mjolnir application. This application is responsible for the
overall presentation and manipula tion of the desktop objects to be described later. Other components of

education level, rea$,Qijable corrected vision and normal hand/eye <:;9.QI4.Wjijfm?No previous computer
experience is need¢.p.:Jo use Thor effectively. Thor is, however, e~pi§Ay:J1~~gnedto allow parts to be

.& Registered I Restricted Thor User Interface March 15/ 1990 3.1.1- 4



Thor Desktop Metaphor
Overview

Thor is designed to let normal people take advantage of the power of modem computers without having
to become computer experts. We accomplish this by relying on the common knowledge we share about
things in the real wbrld. The world presented to users by Thor is that of an artificial desktop world.
This desktop world attempts to present objects and behaviors such as those you would find in an office or
on a desktop. By using the familiar metaphor of a desktop, users of Thor can easily manipulate the
things they find on their computer as they would items in the real world.

The desktop world contains things which we refer to as objects. Each object has a set of attributes
which describe the object. In addition, each object has a set of operations you can perform on it.. These
have been crafted with two goals in mind. First, each has an important role to play in making your
system useful. Second, each bears enough resemblance to some real world counterpart that you should
find it reasonably understandable.

. : .
... :::::;::::.:;:.:<::-:.....:...

Exam:l:~:.;;~;:......... ... ....:...:...::.:.:...~.:.:.~~::.~;::..f..;.•.•:••..IIJ'jl:!i11.i.i.:•...•·..••~:·.·..••..•:.,.·:..••..•.•·:~.•••..·.••.•..•.•'•..:•.:••.·..••1.•:.•·.•....•:.1:'.•••:.•.:•..•::.~::: ...: 'li ..;·rw
:. ~wrhhE:6a.....tt··:.t.cr.:.·.•:O.:::l:.•:.•.·:tikas:...!.::.. ·.:.::.::·.·.·:~.•cd.t.:.·.·.:oe.:a:.•.:.dn··.te.:.•. ::.:.•:t·.:-:ai:t.·:·m..:.••.•.·.. ::.:er~.:·.·.:~.::::.·.:.:1.....:..::1j:...•s~:.:•.·.: .:{:'. .. . /:~~f~.t.t~:};·· ..:-:::~?:::::::::::::::::::::-:-::::~::.. ...

:::::::::::}::;: :.:..<::. :::;::<:::::'::" ...::;:::::;:;.;.;:::;:;:;:<::<,-

• WhereHisiKtts:tbrtta·lli'ef}::::···:/ .::.:::>:.,.. .

• How many'fhiHg:s'Tt'tbntains (if it's a container):<:::':'::;:::'::-:::< ..
• Who is using it now

In addition to these attributes, certain types of desktop objects have the ability to contain other
desktop objects. Folders, for example, can contain other folders, documents, etc. Thor allows you to
inspect and use the contents of any container. You can use containers to organize your desktop.

• Registered I Restricted Thor User Interface March 15, 1990 3.1.1- 5



Things in the Desktop World

Disks & Disk Drives
Disks and disk drives are separate entities in the Valhalla desktop world. Disk drives are objects on
the desktop which directly map to their real world counterparts connected to the computer. Disks, on
the other hand, appear as separate objects on the desktop. Disks can be inserted into, or ejected from,
disk drives. Disks provide storage for other types of desktop objects such as folders and documents. In
addition to giving you space, disks help you to organize other objects on your desktop.

An important attribute of disks is that you need some sort of device to use and access the information on
them. In order to use a floppy disk, you need a floppy disk drive. In order to use a CD ROM disk, you
need a CD ROM player of the appropriate type. Of course, if you don't have a given disk drive
connected to your computer then a disk of that type could never show up on the desktop.

Use of Disks & Disk Drives

Specific kinds of Disk Drives

................................
:-::::::::::::: ..

There are two basic kinds of disk drives you will see on almost all Pink systems. These are Fixed Disk
Drives and Removable Disk Drives.

Removable Disk Drives

Removable Disk Drive is the name which decribes floppy disks or any type of disk with removable
media. The icon for a Removable Disk Drive always shows whether or not the drive contains a disk.

Fixed Disk Drives

Fixed Disk Drive is just a fancy name for a hard disk. However, the name tends to convey the
functionality quite well. Fixed Disk Drives are just like Removable Disk Drives with disks
permanently inserted. The disks cannot be ejected or otherwise removed under normal circumstances.
Thus, a Fixed Disk Drive always contains the same disk.

• Registered! Restricted Thor User Interface March 15, 1990 3.1.1- 6



Thor Disks & Disk Drives vs. Macintosh Finder Disks & Disk Drives

Thor disks are som'ewhat different than Finder disks. Finder disks represent both media and drives all
rolled into one. This is the source of much real confusion and a number of theoretical user interface
problems. Thor makes a distinction between disks and disk drives because, after all, they are two
separate things. Thor disks simply represent the storage medium itself. Disk' drives represent the
hardware you use to access disks.

'* Registered/Restricted Thor User Interface March 15, 1990 3.1.1- 7



Folders

You use folders to organize the things you store on disks. Their behavior, not surprisingly, is similar to
real folders. They can contain documents, other folders, etc. They are a bit more flexible than real
world folders, however, in that you can put many kinds of things into them. In addition a folder can
store any number of things. It is limited only by the amount of space left on the disk it is stored on.

Appearance of Folders

Folder icons look like folders in the real world. When opened, the folder representation will be
changed to reflect this.

Use of Folders

........
.::::::::::::;"

;::::?::. :':':':':'::~:::::::"""""""""'"

.::::;({: ....
.:::;:;:::::;:;:::::;:;::;::,;.:.::
;:;:::::::::::::.:.

::}::;:::(~i!!}~~>::~::..... .. ;';-;-;'. ..;:::::::::::::{;;.,
::::::::::::::::::::::>:::::::::::::: ...'...... . .'.' .;.....;'.' ;:'.::;:...:...~.:...jI;';...:~.:.;.::;:.:;.:~f~)j:ii/:::;;'

'.;.;.:,' ':-'<::':-::::::::';:::::::::::::::::: :.:-:.: .
.................<.:.>:-:-:.:-:.:.:-:-:.:->..:-:-:.:-: :.:.:..•

.& Registered / Restricted Thor User Interface March 15, 1990 3.1.1- 8



Cross-References

Cross-references in Thor are used to tie things together. By creating a cross-reference to something, you
can always find it by using the cross-reference. Cross-references are very much like real world cross
reference cards. They are explicitly not the thing itself - they merely point you to the thing of interest.

Appearance of Cross-References

All cross-references will have a distinct appearance. Each, however, will have enough visual
SImilarities to the thing it points to that you can recognize what it points at.

Use of Cross-References

.. :.:-:.:-:-:-:-:.:-:.;-:-:.

:I:j·::· ::.:::::.::::)~HFj:::t)

.;.:-:-:::::::-:.:.: .:.:.:.:.:.:-:.:-:-:.:."
.;.:.;.:.:-:::.:.:.",

:-: ..

You can make a cross-reference to any desktop object. Once you have done this, you can put the cross
reference wherever you want. Whenever you run across the cross-reference, you can use it to get at the

Thor Cross-Re.:i~:~encesvs. Macintosh Finder Cro:slll~)I!~~~es
.':':':':':':':':-:-:':' /~~?(;}}?\{{:~:~;:::::::::::-: ....

.-.................•....

..
:-:.:<;:;

.-::.::.';::..::'-:-:.:.::', ::::-:::::::::::::::::=:::(}\.:-: ',::.::.:-::::::... ':?~J~J~/::"

• Registered / Restricted Thor User Interface March 15, 1990 3.1.1- 9



Documents

Documents are analogous to real documents or forms. Things like spreadsheets, letters and drawings are
examples of documents. Documents contain application specific information. They nonnally also contain.
some information which Thor can understand and display for you (such as cr~ss-references). In order to
create a new document you must have appropriate stationery for the type of document you wish to
create. It will always be possible to get a new piece of stationery by opening up the desired
application. In order to edit a document, you must have the application which knows how to work
with that document.

Appearance of Documents

All documents have the same basic appearance. They have an outline which looks like a page with one
comer turned down. Within this framework, each kind of document has its own custom appearance.

"Get Info", you wqU?e shown information about the document.1]M:::wlk#.@lp'de Cross-references, or

User Dossiers :-:-:.:.:.:;::::::::::::...........................: .
::::::::::::;:<::::.:; ' ..

describes the\w*¢Il(li~~t:8f..~@~::$.)Wt~ffi:/it can adapt to that personl-s:~ptf:;~~nFes~J.J$¢:1'...Rossier' s are
also used for cotftroUif)g·9.i¢¢¢.Ss\ptivileges and for authentication. ThEf'POS$.jpwJyexists that
application preferences will also be kept in a User Dossier.

Address Books

Address Books help you to find and access resources external to your system. They help in keeping track
of often used remote devices such as printers or disks. They can also be used to store addresses of remote
systems and networks.

Projects

Project documents allow you to tie documents together in arbitrary ways without moving or altering the
documents themselves. Imagine that your normal way of working involves dividing the world into a set
of folders based on document type. One folder contains letters, one drawings and another scanned
images. Now you need to do a project involving a few images, a drawing and a letter. You can create a
Project by Simply dragging a cross-reference for each document into a new Project. Now you can open
them all at once by opening the Project. You never need to actually move the documents themselves.
This approach allows you to include the same document in multiple projects. It also allows you to leave
the original documents wherever you want them.

• Registered / Restricted Thor User Interface March 15, 1990 3.1.1- 10



Viewers

Viewers let you look at the world from different perspectives. You use them to create lists of things
based on what you consider important. You might be interested in everything on a disk which contains
the word Udragon" and was written over a year ago. A viewer will compile a list of such things for you.

The entries in a viewer list are actually cross-references. You can use these to get at the actual desktop
objects to which they refer.

The possibility of combining folders and Viewers will be explored.

Thor Documents vs. Macintosh Finder Documents

Thor documents serve the same function as Finder and NuFinder Documents. Unlike older Finders,
however, Thor can document since documents can
desktop objects.

• Registered/ Restricted Thor User Interface March 1S, 1990 3.1.1- 11



Stationery
Stationery provides a convenient and natural way to create documents. You will have a piece of
stationery for each kind of document available on your system. The kinds of documents available are
determined by the applications on your system.

You can make custom stationery from any document. This lets you have different standard documents of
the same type available. For example, you might want to make stationery for your company
letterhead. This saves you the trouble of recreating your letterhead every time you write a letter.

Appearance of Stationery

Stationery looks like a pad of paper. The topmost sheet will always look like the icon of the type of
document the stationery creates.

Use of Stationery

................:.-.:.;...:....:::::::::::::;:::::::::::;:::::;:::::::;:::;:::::;::::-:....

-.;.:.:.:.;.:.;.;.;-:.;.:.:.;.;.:.;.:.:.:.:.;.:.:;:.:.
.:.::::::::::::::;:;:::;:::::;=::;:::;:;:::;:::::;:;:;:;

":::::::':';':':-:-:':':':':':-:::';::::::::::::;:::

..
",:-:.:.»:-:.:-:.; ;::::::.; :-:- .

..

• Registered/Restricted Thor User Interface March 15, 1990 3.1.1- 12



Applications
Applications allow you to edit documents. In general, you merely need to put the application
somewhere in your desktop world. In some cases, you may be able to customize the behavior of some
applications by opening them up and changing specific options.

Appearance of Applications

Applications will have custom designed presentations just as today's Macintosh applications have
custom designed icons.

Use of Applications,

You do not normally use applications directly. The presence of a given application gives your system the
ability to edit specific kinds of documents.

:::;::::;:::::::::::::::::::::::::::::::=:::::::::::::::::::.

.& Registered/ Restricted Thor User Interface

,;-:,:-:,:-:-:,:,;,".
.. ::;::;:::;:-::.:>:-:-'"

March 15, 1990

::-::::: :-:-:-:-:-:-:.;.:-:.".:-:.'
..•.......•...........................

/:i:::i.! .. :...::.:.: ..
:::::::-:::.:::::::::;:::::::::::: ~~:~~::::

-.::::::::.:::::::::::':::::::::::::::'

3.1.1- 13



Appliances
Appliances in Thor are analogous to appliances in the real world such as those you would find in your
kitchen. In the real world appliances give you a certain way to process things. For example, a toaster
"processes" toast. In Thor, they give you standard ways of performing certain tasks. For example, you
use appliances to print documents or to destroy documents.

The key distinguishing feature of appliances is that they actively process documents instead of editing
the contents. This processing may alter the document, it may result in hardcopy output, or it may result
in a new document being produced. The exact results depend on the specific appliance.

Appearance of Appliances

Appliances look like what they represent. The Trash looks like a trash can and printers look like real
printers.

The Trash

~~~;;:t:gi:!~:;f~:~~~td;~f::~h~r~~~:~il':;~~~~ill1:l~erestedm. w~~~'i-~~~~f~'w
The Trash ~~.i;~~!~1~f:H~:::I@:~same as t::,~::::I,~h in Finder and N~i~~~+I·l:·L ::::;:>:::::::::::::.;;:;;:;:: ...

................. . .. ·::::~~~~r~~t:~:}\:::::;.

Printers :::::::::;::::):·j::.j::.j:{,::\::::<::X:::: :.:::::\\:::::.::::::.::::::/:t:;::·:·· ..:::::::::::;::;:::::::::::;::::::::::.... .::.::.::<:::::::::;:'<'
............

Not surprisingly, you:'tisifPnnters to print documents. To print a document,'yoG::~iffipfy drop it on a
Printer. The Printer will print the document and put it back where you took it from.

Thor Appliances vs. Macintosh Finder Appliances

Appliances are analogous to NuFinder Grinders.

• Registeredl Restricted Thor User Interface March 15, 1990 3.1.1- 14

Tools

Tools are like little utensils. They have no associated document types and they do not process
documents. They are used to perform certain small, well-defined tasks. Tools may have state which is
saved between uses.

Appearance of Tools

Tools look like the kind of thing they represent.

Use of Tools

To use a tool, you open it up and use it directly. Each kind of tool will present an interface which is
appropriate for what it does.

Calculator

Tools take the place of a number of old Desk Accessories. They are meant to serve much the same
function: to be quickly accessible and used for simple tasks.

.& Registered/Restricted Thor User Interface March 15, 1990 3.1.1- IS

Components

Components in Thor are parts of other things. Applications, for example can contain several different
components such as a spell checker or fonts. The key aspect of components is that they have no
functionality in and of themselves. They are only useful when they are inserte,d into some other kind of
desktop object which can make use of them. Thor has no way to look inside of components. This is in
contrast to other kinds of objects where Thor can normally show you what they contain. In general, you
won't need or want to deal with Components.

Appearance of Components

Components will look like little black boxes. They will normally appear within applications when
they are opened. They can, however, live anywhere in the desktop world.

Use of Components

::::::;:::~\III~llf~:::::::~iliin
Components are siII1(~~ito raw files (unknown document types)
concept to represe~tlhem under Thor since Thor documents are
are documents undmU[mder.

• Registered/ Restricted Thor User Interface March 15, 1990 3.1.1- 16

It Registered/Restricted Odin

.... :.:::::::::::::::;:::::::::::::.:..::::.:.:-:.....

March 15, 1990

.......::.-...

'.:!::::::.:':;:!... !.:::.. '.'.:::.:.:::' ::::::~~;~:?:~:~:~:::~::::~;::~::.:.:
::::::::::\~~~{: ~:~: ::~:~::: ~
........;.;.:.:-:.:.:.:.:...:...

3.1.2-1

Contents

About this document. .. 3

Introduction and Overview 4

Operations on Desktop Objects 6

Presenting the Desktop Object. ~.. 10

How the Magic Happens. .. 11

• Registered/Restricted Odin March 15, 1990 3.1.2-2

About this document

This document describes Odin, the suite of classes and methods which allow all Pink applications to deal
with desktop objects. Through the interface described herein, any action represE?nted by the Finder appli
cations (collectively called Thor) can also be accomplished from any application. In fact, Thor will be
using these same classes to do its job.

This document will give the developer of a Pink application enough background to use and understand
desktop objects. We do not list nor discuss actual method calls, except as examples. Nevertheless, r~ad
ers should be familiar with th~ Pink project and C++ in general.

This is a working document. It describes what is ciIrrently known about the project. It will be updated as
needed.

..•.:-:.: .:.: - .
-'.:.:::~::::::::::::::::.:.:.:-::::: :.: .

:.;.::;: ..

Basic con-

Related Documents

• Thor User Interface Specification, describes the Thor user interface. This includes a description of
objects on the desktop and how they are manipulated by the user. This document is of interest to
anyone who wants to understand the user view of Valhalla in detaiL

• Valhalla Construction Manual, contains the "secret wisdom" of Valhalla. This includes detailed
architectural and implementation infonnation. It is of interest to those who are involved in
building or reviewing Valhalla as a whole.

• Registered / Restricted Odin March 15, 1990 3.1.2-3

Introduction and Overview

According to Norse mythology, Odin is the great magician/warrior of Valhalla, the one who orchestrates.
the battles of myriad brave warriors, and who conjures up the necessary magic for their success in war
fare. Together with his son Thor-the greatest of all warriors-Odin sees to the continued success and
welfare of the North countries.

In the Pink system, the Odin libraries and servers provide the necessary magic for all applications to suc
cessfully manipulate desktop objects. Odin orchestrates the communication between applications ~nd
desktop objects, coordinates multiple requests to the same objects, and allows for simple and consistent
presentation to the user. Together with the collection of applications that make up the Finder (known as
Thor), Odin has the stewardship and responsibility for the desktop metaphor and the desktop world.

Benefits of Odin

:.:.:.:.;.:-:.'. ~:~}//}}"

'.:::.::}:::::::::::::::::.:.:...'·:::i::::::·::::\;:::::;::('::)(:::::::::::n:t::}::::::::::~::::::r;::::" ·.;::::::::::::::::::::::::{:::,:t::::.:..::::/\\(:::>}:::..
From the develop·e?Kp~#:~wm:E·Y~MilnlcHonsthat the user performs to deskt9R:9P.~t$..have a direct corol
lary in Odin's interface tothe'se'same objects. All file system operations are expressed in terms of desktop
objects, and their effects are immediately reflected in that arena. No longer does the developer have to
think in one mode (the File System) while presenting another (the Desktop World). In addition, the stan
dard presentation of each object is previously defined and available for use by the application.
Reinventing the user interface is no longer necessary.

Overview of Desktop Objects

We use the term "desktop objects" to generally describe anything that the user can move around. The
term makes sense historically as any object which the Finder manipulated can be placed on the desktop.
In Pink, the definition still holds, but the emphasis has shifted from the Finder to all applications that
show any manipulable objects to the user.

Desktop objects in Odin reflect the attributes and contents of the real "thing", such as the trash, a
document or a disk. They model the behavior of the desktop object. All information about a desktop ob
ject obtained through the Odin interface will map to some concrete attribute of the real object. These 3t-

• Registered/Restricted Odin March 15, 1990 3.1.2-4

tributes run the spectrum from very concrete (geographic location, say, of a printer) to much less concrete
(color of a document ~hen presented on a monitor). Any changes to these attributes made through Odin
will make a real change to the desktop object that is represented.

Each desktop object can be thought of as a potential container of other desktop objects. This is familiar to
users of the current Finder, especially in the case of folders and disks. This concept now extends to all
desktop objects. Even documents may contain, say, a cross-reference to another document, or a special
ized spelling database that can be dragged to other documents.

The corollary to "containership" is that every desktop object is contained by another desktop object: We
get around an infinite hierarchy by having one exception: the Desktop itself. We define the Desktop to
be a "desktop object" but with the key exception that it does not have a container (or home) itself. This,
of course, implies that the Desktop itself cannot be contained by other desktop objects.

..:.:....
::::::·:·::::::::~:}::r~t~~~~/:~::::::·:·:·:·:·:·

\}::;:;:::•..:•..................

;.:-:.:

{::.: ..

.:...:.....:.....:.:...:-:.:;:.:...:-:.:.:.

• Registered/Restricted Odin March 15, 1990 3.1.2-5

Operations on Desktop Objects
When dealing with desktop objects through Odin, there are some basic concepts and rules which must be
understood. These "desktop axioms" provide a framework for operations on desktop objects. They deal
with how desktop objects deal with those who make requests of desktop objects; concurrency, and the
side effects of operations.

The desktop axioms are listed below.

• Any task can make a request of a desktop object. The corollary to this is that multiple tasks may
be making concurrent requests of a single desktop object.

• The requesting task blocks until its request completes. If a particular application wishes to n1ake
concurrent requests to objects, then it is necessary to spawn multiple tasks.

• At completion, a ~l!ltllill'_i~r failed. If it succeeded, t9ffiJ~lij~iiJ~;~~ed

• A valid key is q~~ivered as a result of a successful acquire.

•

•

•

.. :::::::~:~:::~:rt))f~~)

•

~~~~~~~p~
......;.:::::::::;::::::>:.. -:- .....

There are many operationswhfChdesktop objects may perform. They are descRfMdin detail in the head
er files for the Odin classes themselves. Below we list some of the general operations available to all
desktop objects, Le., the methods supported by the most abstract desktop object.

•

•
•
•

•
•

•
•

AcquirelRelease-Before any change can be made to a desktop object, it must be acquired.
Acquire will return an "acquire key" by which side-affecting operations may be authorized. It is
not possible for anyone else to acquire an object until the particular key is released.
LocklUnlock-Make a desktop object write protected or not.
Move-Move a desktop object to a new position within its container.
Dispose-Dispose of a desktop object completely (note: this is not the same as moving a desktop
object to the Trash object).
GetContents-Get the contents of this desktop object.
GetContainer-Return the container in which I reside. This will succeed for all desktop objects,
except the Desktop itself.
GetName/SetName-Get or set the name of the desktop object.
GetComments/SetComments-Get or set the comments associated with a desktop object.

• Registered/Restricted Odin March 15, 1990 3.1.2-6



• AddDependentJRemoveDependent-An application may add a dependent task to a desktop ob
ject. Whenever an attribute of the desktop object changes, the task is then notified of the change.
Dependents may be added based upon particular attributes..

• GetAttributes/SetAttributes-Get or set the specific attributes associated with a desktop object.

Besides the operations available to abstract desktop objects, specific operations may be added by classes
derived from desktop objects. As examples, a document may be moved from one container to another
(within the same disk), a disk may be unmounted, a disk drive may eject a removable disk.

Sample Odin Classes

Odin defines classes which represent real desktop objects and make them accessible from all applications.
The desktop object instance which we manipulate within an application is a representation (or "surro
gate") of the real desktop object (say, the disk or document). This implies that any change to a desktop

TDesktop theDesktop;

The desktop can then be used to find out about other objects (disks, etc.) that may be contained in the
desktop. In the future, it may be that the application framework will provide other default desktop ob
jects. For instance, an application which opens a document may be provided with the desktop object that
represents that document.

Once you have an instance of a desktop object, you can query it for information about itself, its container,
and the objects it contains. For instance, we can query the desktop what objects it contains.

TDesktopObjectSet theContentsi
theDesktop.GetContents(theContents) i

The set of desktop objects returned by GetContents is a snapshot of the contents at the time the call was
made. Since other applications (or even other tasks within the same application) could be updating the

.. Registered / Restricted Odin March 15, 1990 3.1.2-7



one
object here

contents as soon as the GetContents call is done, there is no guarantee that theContents is eternally accu
rate.

Assuming a relatively stable world, the following would allow a recursive descent through every desktop
object in a system.

void descend(TDesktopObject& thisObject)
{

II This is the point at which you would do something to the objec~

II say, print its name, whatever
DoSomethingTo(thisObject);

II get ready to descend

~~~:~~~~~~41ii"lltiii'liill;;j;ttS);

....:.:.:.:.;.
';':-:':-:':':':'.'

Wh i leCt~$.M~4.:t4X~$:~~$.K~9POb j ect))

{ .:::j:::\~~~:m~~::I{mtt~:~If:::~:~II~I:I:f::II:~II~:~It::::...

.....
TDesktop theDesktop; :.:::;:: :.:.:.:.: .

descend (theDe s ktop) ; illllI11!;;<li@M;;;;,:'s .
Creating a Ne.~:.::.B$~ktop Object"'''','\!jI~!'l!I;;!'!,lj .

.. .{~tftJt '::.~.~ =.:~.I..~.~ ".: :.:.-.:.j ':: :::.~..:.::~.:.:':::~.:.,..~..~_.~.:::~':::~.:.'-:: ::-':: ::'.~.':: -:~',:,,~ :..~.:.~".: ~.'.: :." .:.~.: ~..: '.:. . .:::::::::::::::::::::::/;" .:.:.:.:.:.:.:.:.:.:.' .:: .

~~:~;o;~~j;~'.~I.I~~~~~:vi~!~::~:e:~~i~~~~1'1ft~~~eati~~~!~t€IY new
....:.:.:::.:::::::.:.:...::::::.:::..;::: ...:::::.:;:.:::::::::::::::::::::::.:::::. t~:::::::;:;:::::;:;:;::::-·· .: :.:::::.:.:::::::::::::::.:.;.;.;.:....

In order to create a ~~W\:Msk:t6p;Hbjk~'Cit is necessary to provide enough iAn.Hiri~fitiH~8::thatthe new ob
ject may safely live in its new home. Therefore, it is at least necessary to specify the desktop object in
which the new object will live. Most objects also expect a name or other specification so that it can be cre
ated unambiguously.

The actual creation takes place within the application by specifying all the necessary information to a con
structor of the type of object you wish to create.

II create a new folder in parentObject with the name "New Folder"
TDTFolder newFolder (parentObject, TText("New Folder"»;

II create a new text document on the desktop with the name "Read Me"
TDTDocument newDocument(theDesktop, TText("Read Me"), DocType(kTextDoc»;

II connect a new hard disk to the desktop by specifying SCSI port
TDTFixedDiskDrive newDisk(theDesktop, IOSCSIPort(kSCSI5»);

" RegisteredlRestricted Odin March 15, 1990 3.1.2-8

It is not possible to create an "abstract" desktop object directly. There is no constructor, say, for creating a
generic Space User which would be specified more concretely later.

Desktop Objects in the Application

In order for a desktop object instance to be useful, they must be lightweight and easily replicated. Once
you are given an instance of a desktop object class, you can access it, duplicate it, and transform it into
more or less abstract classes. All these instances will still refer to the same Ureal" desktop object. Since
these classes are very lightweight, there is little penalty for the duplicate versions.

II we are given "anObject" of type TDesktopObject

TDTDisk aDis~:lpbject2)i I I make it a 4t.[~\~:*\$£~:gption if not a disk)

.............•.......

general collection classes,th~y:hHu..rn copies of the items collected within thent:::::Uili'ke:rashion, the
TDesktopObjectSet will dispose of any storage associated with its contents when the set itself is deleted.
Any instance of desktop object garnered from the set before its destruction is still valid, however.

• Registered I Restricted Odin March 15, 1990 3.1.2-9

Presenting the Desktop Object
The presentation classes will ultimately exist as a shared library accessible to any pink application.
Applications will make use of the presentation server as a means to decide what type of presentation
class to instantiate. An application will give the presentation server certain user information, attributes
and characteristics which the presentation server will use to make a decision about what type of
presentation class to pass back.

The application will be able to specify arbitrary attributes for use in the process of selecting a presenta-
tion. The presentation server will then pass back some sort of identity which will specify a given ~

presentation from the global presentation database. The application can then instantiate a presentation of
this type. If the presentation server passes back more than one type of presentation identity then the
application can pass back each of the types which it was given along with some more information to
allow the presentation server to narrow the choices down to a single one.

fgr~~rJ~~1~1~~~IICllt~~f~;~~1~iiit~~f~~~~:~
server would then pas~(J~j<:k the identity of a presentation which spegJ~~m@:m¥:¥.:!ffi9nlyrepresentation of

:::°a::::~ation wou!itii~Jln~mfi~jit~l9gbject of the new preJtillll!:d the user would see

:-:':-.:-:-:-:.:.:.:.:.:-:.:.:.:.:::::::

::::::::::::::::::::::::~:: ::::::::.:.::::,.,'::::::::::::::: ,',::., <-:<. :.:.:.:.'
......-:.:.;.: .

··::::::>::U:<'::\:.:·.H/'.:?UI

::::::::::;:;::\::::::::",

<.:.:-:. }}~:}~:~ :.;.:.:-....:.

.. Registered/Restricted. Odin March 15, 1990 3.1.2-10

How the Magic Happens

Throughout this document we have emphasized that the Odin classes create instances which refer to the
desktop object, but are not the object itself. This section goes into more detail a~ to how this magic is car
ried out. NOTE: It is not necessary to know or understand this section in order to use the Odin classes.

There exists on each system a "desktop server" whose job it is to manage the requests made to desktop
objects. Every request that is made by an application to an instance of an Odin object gets forwarded to
the desktop server.

For each item that can appear on the desktop there is a specific central desktop object within the desktop
server that provides the information about that item. These desktop objects provide the real link between
the "real thing"-a disk, a file, a printer-and the information returned to applications. Central desktop
objects are not generally cQqfgp)~4.:.w.HhJl9:Wjn..fm:m.9Jionabout the object is presented, but".~..~....:'~:-:.:~.~

~~~~~~~~~~~t:~::c~~~lllllllrl.i'I';:d~~~· d~~:~~ desktop
Apgl~t~tion World 1

........... ::::':::"':::':.., +..H----~

1i:~;~I~~~iqi'!!:::Objects in the aPl;WliUii8Rwclrld
:g~tJ9t::W~#:g~Mf'the "real" objectjn the central d~5ktj~p::W()'tNh< ?,

While each request is made synchronously at its' sOurce, the desktop server must be able to handle multi
ple requests asynchronously in order to serve multiple tasks and teams. Therefore, each request that
comes to the desktop server gets handed off to a separate task, which then makes the request of the ap
propriate central desktop object. When the results of the request are known, the task replies back to the
application with the results.

.& Registered/Restricted Odin March 15, 1990 3.1.2-11





i Registered/Restricted Mood Indigo March 15, 1990 3.2.1-1





Mood Indigo
The Blue Adapter

by
Rick Daley, Phil Goldman, and Rick Holzgrafe

• Registered IRestricted Mood Indigo March 15, 1990 3.2.1-2





Introduction
The Blue Adapter is a crucial piece in the Pink system. It will allow Pink users to run most of the
large base of Blue applications, as long as the target machine is a Macintosh with a 68xxx-family CPU
(as in every Macintosh shipped to date). It will also support many INITs, FKEYs, DAs, and CDEVs.
The adapter may not support Blue code that must run at interrupt time in order to function correctly.
It therefore may not run some drivers nor applications that depend on such code. -

The adapter is not a window onto an underlying Blue system and/or ROM. Rather, it is an
emulation of the Blue application execution environment. Therefore, features added to Blue must be
explicitly added to the adapter as well; they will not magically appear.

~~~~~l~dl~~~~~~J~lillllt~lllll'~i~~fti;ri:~:~~~~~\~~:~{~J'~li~,"f~~:t~~ea
Blue system"ilillililll,Illltlilfllllrilll!'V ,,{it:;;;!'
Architec~e .{tiiltll'!I~~JllllllliI?

to MultiFinder when they are willing to '''suriehder the CFU(~·. ~ultiFinder treats thigH: ...)U:-.:..:o.:
"unblock-and-run" message as a token whi~l\lt.·passes to each ':Bl~e:ap:p task in turru . ::Tt:»:::::

fg~~ifll1ii~~i;~I~~£~~~~~~~!lI'!:4ff~~II~~1~ies
new features frorriBystem<7~0::a:·ria1aterBlue releases should be easy fdadd;:::::::::>: --.-::.: ..

We currently assume that the important Blue applications will be 32-bit clean by the time the Blue
Adapter ships. If not, there are options we can pursue. (It might be possible to run 24-bit applications
along with 32-bit ones, by running all the 24-bit applications in the first 16M, never showing them
addresses ~ 16M, and handling the faults caused when they put garbage in the high byte of
dereferenced pointers by giving them the access from the stripPed address.)

There is a limited amount of protection that can be provided in one address space. Applications can
have their particular heaps protected, but the rest of the space (including the Blue "low memory"
image, the system heap, and temporary memory) cannot. There would be a loss of efficiency, since
the access levels on the heaps must be changed at every switch. The adapter itself will be more
complex and thus more difficult to extend. A better solution might be to have 256 shared areas that
represent the same 24-bit world.

• Registered/Restricted Mood Indigo March 15, 1990 3.2.1-3

Implementation Issues

Extensions
The following are services that the Blue Adapter may provide, but which are not critical to the
adapter's success:

•
•

•

•

Run INITs when the adapter is launched.
Support accessto memory-mapped hardware, either by actually mapping in the I/O
memory space, or by trapping exceptions and simulating the access in software.
Support all the private MultiFinder calls, to support SADE and shady third-party stuff
<e.g. Suitcase).
Create a wrapper to allow some Blue drivers <e.g. video and SCSI disk drivers) to work
with the Opus I/O model.

•

•

~n:::~::~!II'IIIIIIII'~:lue Adapter lie~jhi[itll~f~:~:~~::::;~:y
other part of the Wrlk project it is critically dependent on other p~nWQf::~Y~1emsoftware, Pink and
Blue alike. Ther~t.We the strategy for implementation is depeB:q¥n~::f@(:~n~$e external factors. Worse

•

<.:-:-:.'.:

... :::::::::::::::;:;:::};::::

besupPQf:t~q$y:th(radapter. We must not only follow thes(n:i~v~loprrients, but also
advise the developers. The System 7.0 IPC interface is an example of such evolution,
where advice from the Pink team is helping to shape Blue development for future Pink
compatibility.

External Dependencies

The Blue Adapter is a high-level Pink application. Like any such application, it has dependencies on
the services provided by the Pink system.

The adapter needs the following kernel level services:

• A timely method for receiving A-line exceptions.
• Emulation of privileged instructions.
• Reception of bus errors, in some form, for exception handling.
• A method to map in ROM and screen memory.

• Registered/Restricted Mood Indigo March 15, 1990 3.2.1-4

•
•

A timer service, to support the Retrace Manager and the Time Manager.
A way to synchronize with the hardware, most obviously the vertical retrace of the
monitors.

The following services provided by the Pink Toolbox (shared libraries or servers) are necessary so
that the adapters can share common resources at this leveL

•
•
•
•
•

A method to get cursor coordinates, button state, and keyboard map.
A method to reserve space on the virtual screen for windows.
A method to lock the entire virtual screen for out-of-window drawing.
An HFS server.
A method to construct the low memory that applications expect to see: VCB queue, FCB
table, WDCB table, etc.

c Registered / Restricted Mood Indigo March 15, 1990 3.2.1-5

• Registered/Restricted Scorpion March 15, 1990 3.2.2-1

Coping with Dr. StrangeBlue

or

H0 W.!rfllllllllll"'J'~tvoe st0

tit Registered/Restricted Scorpion March 15, 1990 3.2.2-2

Why Read This?
This document is an introduction to the capabilities and features of the Blue Adapter N&C
extensions and their ramifications for non-Pink N&C products. It is inten9.ed that this
document provoke discussions about the services that must be provided by the Blue Adapter to
support key, existing N&C products that will not be rewritten for the first Pink release and
hopefully to head-off any design/implementation decisions that would doom a key product to
not work under the Blue Adapter, and thus, under Pink. As new N&C products are planned and
designed, it is important that consideration be given as to how the product functionality can be
provided under Pink.

What .
IS Dr. StrangeBlue?

Why do I care?
...- :.:-:.:-:.:.:.:.::::::::::::::::::::::::::::::;..

The Blue Adapter ailows::us:'to'rewrite only a portion of our product bas~f3:;:Pi~1<.andplan for
the gradual migration of all N&C products to native Pink. In theory, all of the MCP-based
products, Comm Toolbox tools, and actual network applications should run unmodified on the
Blue Adapter; that leaves reimplementation of only driver-level code, which is a substantial
effort in its own right.

In practice, the transition won't be quite that easy. The Blue Adapter will support the defined
Inside Macintosh interfaces. Unfortunately, to get many N&C products to function at all or
with acceptable performance, it is necessary to use system-level knowledge that is not
standardized in Inside Macintosh and that heavily depends on the actual underlying Blue
.implementation. One of the biggest challenges of the Blue Adapter effort will be to find those
hidden assumptions and to accurately emulate the implementation of Blue.

• Registered/Restricted Scorpion March 15, 1990 322-3

What should work?

Details ... Details ...
The exact details of the Blue functions (documented otherwise) faithfully emulated in the Blue
Adapter will evolve as the Blue Adapter code is completed. At this early stage, it is
impossible to give a definitive definition for what will and won't work urider the Blue
Adapter. This section provides the current knowledge about how to code a product to be binary
compatible with the Blue Adapter.

What absolut~lywon't work!

Pink operates in 32-bit addressing mode. 1 All code that works under the Blue Adapter must be
32-bit clean. Luckily, most products will be tested for 32-bit cleanliness as a part of moving to
System 7.0. . .

........ .:-:.:.;.:.:.

·:tiiiii~I.:.llllllil::iiiiii: ..il~i·lliiillliillili··i!~' ::::::::::::::::::::::::/::i·:iii:::.::o."-::./

§2;~::111\'iii:ii4~;:1~~:a~~~'I~:::2~=~f~I~!ik
The Communicationt&;~~:;;;be usable with the Blue AdaPter.Th~~ri;~~~;~;;::te to
the Tool Managers is yet to be determined. Tools that adhere to the published interfaces
should work unchanged.

The A/Rose IPC manager will be usable from within the Blue Adapter. Software that directly
accesses NuBus card memory without going though A/Rose will not work.

The VBL manager will be emulated for applications that require timing.

lEarly Pink systems attempted to run in both 24-bit and 32-bit mode. The time
it took the PMMU to switch betwee'n modes at interrupt level caused the
LocalTalk see to overrun with resulting loss of AppleTalk packets .

• Registered/Restricted Scorpion March 15, 1990 3.22-4

Functional Overview

Function/Interface Call Calls Supported Notes and Limitations

.MPP Driver writeDDP, closeSkt, openSkt,
loadNBP, confirmName,
lookupName, removeName,
registerName, killNBP,
setSelfSend, unloadNBP

Full AppleTalk support
except for direct access to
LocalTalk LAP (Le.,
writeLAP, attachPH,
detachPH).

None.

access&f&yatI'~CtHlessages

sent via A/Rose IPC.

.:

.:;..:.:~.:.j::!.':;:.:.:.~•..•:'•..'.:~.:•.:'!.•.:.:.:·.··..~:!:·•.:...•..l.•.::i.:.·.::•. ; .•:;:'W•.:.secu•..~...•:::.::•.•...:...·:;.:.·::::;.1:.'.::J:.l:~:.·.:~.::I.·•..i:l..~.::•.·:.·•.:S~...:.:':•.':l:ll:.•:.....~II.T.,ll~;;
·-::~tttJ~f~~\trIt~tt~\.

relRspCB, closeATPSkt,
addRespoDse, sendResponse,
~j~g!~gmg~~@RW£P:~TPSkt,
~!i~n9t3!bl~~hmTCB,

il:I~~.~IIII~I~j~llj~I.~nGetReq

HjjkrlS€smBtWdbseSession,
abortOS, getParms, closeAl1,
userWrite, userCommand,

::t:::I:::::::nr:U:H}?{t\:;dJ~:::~~ta tus

LAP Manager

ADSP Driver

.XPP Driver

.ATP Driver

.ENET Driver

TokenRing

A/Rose TBD

.ipp Driver (MacTCP) None Requires Pink TCP/IP module.

• Registered / Restricted Scorpion March 15, 1990 3.2.2-5

Function/Interface Call Calls SuppJrted Notes and Limitations

Serial Driver TBD Depends o~ Pink suppJrt for
see handling & mode
control.

Comm Toolbox Manager TBD Scope of CI'B manager
changes unknown at this time.

Serial Tool All Cornm Toolbox connection
tools should work under the
Blue Adapter without
change.

No tools chang~~flri!¥'gfaHon

testin:::::~:j~mil~~II]~::::::}}::::;".

Open

LATTool

MacTCPTool

ADSP Tool

~j]~.:[I~,}rcp/IP module.
I~------"""";';'~---f------------~

............ :;>:.:-:

• Registered / Restricted Scorpion March 15, 1990 322-6

::::::::::::::::::::::)}:: :-:..-: .

':::::~:;:~:){~~;:.:::::}(?::::::::: . ..: ~ ~ - .
':':::::'::::::;:::::::;:;:::::;:;:;:;:;:;:::::::::::;:;:::::::;::.::...~.:.~ ...::.._:.::~:....:.~'.;'.~:.-.:.~:.;·.;·.;:~_~._:.::.•.·.~·.~.{f:::::··
:':':::':':':::;::":-:::::::'::::::::::::::::::::::::::::::

'-:':::':-:::-:':::::':-:::;:':::::::::::::::::':':':;:::::::::::;:;::::;:::::::::::;::::::::::::/::.:.,

'::::::;:::::::::::::::::::::::::::'.......................;.....-....
.. ::~:::::tr}~:::::t~»;{;:~::

:.~.-.:.:.:.:.::;:;:::::::::::;:;:::::::;:;:;:::;:::::::;::::

::::::::::::::::::::::::::::::::.....

..........;.:-:.:.:-.-: .

• Registered/Restricted Jane March 15, 1990 3.3-1

Jane

An Advanced Word Processor
by Margie Kaptanoglu, Ann Greyson, Jeff Hokit

Overview

Jane is an easy-to-use advanced word processor designed to address the writing needs of professional
writers and academicians. Two examples in the former category of writer include novelists and technical
writers; some examples of the latter are a student writing his/her dissertation or a professor producing a
work of research. The focu§.:2fJ~HW-:~§.}9.:-eH9.lY.J.h.~J?2.~erof the computer to facilitate the writiQKPI:gcess,

~:~no~~:~;~~~ ~: ~~I!I_tlllriIJ~::;:;~~~ ~~:;~~~c{~;~~;:lilfl~~~!:~l~-
consists of some combinaJi9nJMJn~::t9UBWlPg~:Jq9.tj!?tions,not all of which a.:Hfp~d9fihedby the author:

•

.. ;.: : .

•

•

· E~2:i~E~;~~£~~~~!fll~Ei~:••i~:~::;:~lill.t:

takes place on a paPercQPy8t:-~g.a6ctiffient. Authors soliciting feedback'g¢l\¢.r~HY:.gi$fributepaper cop
ies of their document and askthe reader to scribble in the margins. Even indivIdual authoring is not al
ways entirely electronic; many writers still type in a draft of their document, print it out and mark it up
on paper, and then enter the changes on the computer. Ideally, Jane will make all aspects of producing a
document so simple to do on a computer thatthe use of paper will be limited to printing out the final ver
sion of the document. There are many ways in which the tasks writers have been performing on paper
can be made much easier by a computer, and we list some examples of how Jane will do this below:

• Editing capabilities such as delete, insert, cut and paste have always made editing simpler on
a computer than on paper. Through the use of direct manipulation, Jane makes editing even
easier by allowing users to simply grab a selection of text and move it anywhere in the docu
ment.

• Paper users have always been able to look at non-eonsecutive pages of a document at the
same time (and as many pages as they like). This is an area in which word processors have
traditionally fallen short. Jane proVides this functionality by allowing the user to open as
many views of a document (or of many documents) as desired. Jane also lets the user zoom
in to, or out from, a document. Zooming in allows the user to read or edit some text at a larg-

• Registered/Restricted Jane March 15, 1990 3.3-2

er point size than it is written in; this is use'ful since text formatted in a small point size is
often difficult to read on the monitor. Zooming out lets the reader view a larger portion of
the document at one time.

• Tasks which are extremely tedious on paper, such as indeces, glossaries, bibliographies,
footnotes, endnotes, headers, footers, tables of contents, page-num1;>ering, and references, are
generated and maintained automatically within Jane. We are aware that many of these fea
tures are currently offered by other word processors, but in Jane we will make their usage
more consistent and easy to learn. We also plan to automate such features as indeces and ta
bles of contents to a greater degree than existing word processors have done.

• Co-authoring requires that it be possible to break a document into sections which each author
can work on separately. Most word processors require that a document be a single file in
order to be able to generate page numbers, table of contents, and so on. Jane allows the user
to break up a document into separate units (which could be considered chapters or sections,
for example), while still maintaining knowledge of the document as a whole. This makes au
tomatic page-l~\~,~~,tipg"eP9.:"gfu~t,9.:,QS.Y.:ment-widefeatures possible across secti9.H§~:::::::::::

•

•

-:.;.;-:.:-:-:-:-:.;.;<

This is the section which answers the question 'Why a word processor for Pink?" Our answers are:

• Writing is one of the most basic functions performed on a computer, and therefore any new
system needs a word processor.

• Word processing is a major area in which we can show v.rhat is better about Pink. Annotation
and collaboration are two areas which have barely been touched by existing word processors.
In supplying these features, Jane will show off some of the best of Pink and set an example
for future Pink applications to follow.

• The successful development of a "real" (Le., shippable) application on the Pink platform will
verify that Pink is indeed a viable system.

• Registered/Restricted Jane March 15, 1990 3.3-3

User Interface

As stated in the overview, one of the major goals of Jane is to simplify the writing process by making the
word processor easier to use. To accomplish this goal, some improvements need to be made to the user
interface model. An example of this is our use of direct manipulation text, described below. Moreover,
entirely new interface designs are necessary for features which have not been offered before, such as the
book metaphor, collaboration, and all types of linking. Designs for some of these new features, which
will affect all applications, not just Jane, are currently being investigated by the Pink Human Interface
team, as well as by the Jane team. See future versions of this ERS and the Human Interface Architecture
for descriptions of how Pink plans to solve these problems.

Guidelines

• Use directjii~nipulationactions wherever it contribute?:Jg~11.¥f~§¥:6fuse.

: ~~~~~u1r.[~_:;~l'~:!~:;~~~d;~llll.h~~e:~~~~:ble.
•
•
•
•

:::j~n::I:::::j:j:j:::::::~:jj:::i:::::j:::'::::':::'L

lllll!llililllllllll ';<2 2 ;,;

~~1:~o:'~h~1Irl~I~~~;;~f21j~;~~:~~~J:411~t~~~~~:~.e.:.:.l1..b.••.i...li~11~:ti.s
.. -, ..; .;.:...:.;.;.:::;:-::::::::::::: .;.:.;.:.;... -':::'>::;:::::;:::;:;:::;::::;':':-:':';"

Direct manipulad&K~~~t&Y<:#1$~:1~:.tb~:t6t16wingway. When the user IT{ik¢$::~:::~1~9H9n:'qfMh:t,a small
handle appears on the leffsideBt'the selection. The user may then click on·ihhfHa.nClle;and while hold
ing down the mouse, drag the selection to a new location within the text. When the mouse is released,
the dragged text is inserted at the new location. While the text is being dragged, a small caret is shown
underneath the selection, indicating where the selection will be inserted if it is dropped. When the select
ed text is first "picked up", a blank area is left where it was. No reformatting of the text occurs until the
selection is released. The text may be dropped in the blank area, in which case it is simply restored to its
original location. When the text selection is longer than twenty characters, the selection is shown truncat
ed when it is picked up, with an ellipses at the end. The selection is drawn opaque, with highlighting,
and with a see-through shadow. This gives the text the appearance of having been picked up; it looks as
though it's hovering slightly above the page. A sample is shown on the next page. The word nmaUer" is
the selection being dragged.

• Registered/Restricted Jane March 15, 1990 3.3-4

It·s not E2 question of where he gri ps i t J

~\~vae=~~~~: it•• ~~~ghho\;~tiOS ...
.....

one-pound coconut. Look! To maintain a

Program Description

What follows is a partial description of the basic features of Jane. The motivation for our design choices
has been to select the methods which will best support the writing process as described in our overview,

Pages and Views
.............:-:<-:.:-:-:.:.;-:-:.:-:.:.:.:.;.....

other could be side-by-side pages; one could be zoomed in, the other could be at 100%. Editing changes
made on pages two or three which affect pages eight or nine cause the view of pages eight or nine to be
updated as well. Updates are as smart as possible, to avoid too much screen redraw.

Zooming in and out is supported. This includes manual zooming (zoom to 50%, 200%, etc.> as well as au
tomatic zooming (make this page fit within this view, for example).

Like typical Macintosh word processors, ,..,hen a document is first created the user is presented wi th the
representation of a blank sheet of paper, page one. The user may immediately begin typing. As the user
types and fills a page, subsequent pages are generated automatically.

1. See Text, section 2.7.

• Registered/Restricted Jane March 15, 1990 3.3-5

Rulers

Jane provides "real world" rulers, as in MacDraw II, along the top and left sides of a document. These
rulers may be shown or hidden, as the user desires. When the mouse is held down anywhere within the
document, its position is shown within the rulers by some small indicator (like the gray lines drawn in
MacDraw ID. These rulers will aid the user in laying out pictures, lining up columns, positioning tabs,
and so on. These rulers do NOT contain information in them about tab and margin settings, or anything
else, as MacWrite rulers do.

Jane also provides something similar to MacWrite rulers, which we will call forn1atting bars. These con
tain the tab settings, the left and right margins, paragraph indentation settings, and column settings. For
matting bars can be inserted on a per-line basis. All of its settings can be changed using a direct manipu
lation action (grabbing the margin indicator and dragging it, throwing a tab away, and so on). There will

~e~~:::f~;I~~:A:~O..:::.::...l.P::.u:,...~:(•..•<;!;;:..•.m:t.•:··.k:•.;.:.J:~•.:f.::J.:•..•.i.;n..i.:••.:n.g.•:..•I:•.;F.•:g.•;~.•:l.'•..•..t:i.ili•..•..::~.••:..•:•.ID.e•.•.,:~•.:••.•..•.•.•.n.r.••..;•....•..•:u.t.•.•.•;~.a.m.•••..••.•.:i.n...i.•..•.n.~.••..•f:.~.•.•.I.:be.•1:•..:•.:.:.•·.•.··.••...·i..~:;•.;~.•;;.f.f•..;.:.?•.~.:i:..;:~•..a....•:·•.;r.'~~~~:~:~~:~~~~~ ~:~:~~ill~~if~ir:;hin
Sidebars' Ai;,;'!i1Iil,iirl

iiW
'

Jane makes it easy fort!~;m~Ri~Piftures or text within tlwlllll~:ols are provided for

:{{{ :::;::::::: .. ({::;:::;::=:

drawn on top of one another, and may be opaqHfLRt::$ee-throu:m¥:::::11}![:grg~rof the shap~~'::m~y:J?'~modi-

~;~;;~;~~;Siiilli~~~~;~t~:;;~~7n~s;i~flll,~.~::~jljl~~
other types of dati)m#Y}j~.P~$~~g:·~~·::@:::H:.. ··:::::.;:;:;:::::)i:::::::::::«<:·

Shapes come with small handles at their bottom right comers. The user can grab the handle and drag it
to another shape. This binds the two shapes in the sense that any text overflowing from the first shape
will flow into the connected shape. A line from the bottom right corner of one shape to the top left corner
of another is used to indicate which shapes are connected to which other shapes.

Searching

Search and replace functions are provided by Jane. These functions can be used for finding and replacing
text attributes as well as for text. For example, executing a command such as "replace all selected 12
point Monaco text with 14 point Times text" is possible.

The ability to leave bookmarks within the document is supported. The user can make any selection (text,
~aphics, or imported data) and "mark" it. We have not yet decided how the user will access these
marks. Some possibilities include text markers as in MPW, iconic markers shown along the scrol1bar (en-

.& Registered/Restricted Jane March 15, 1990 3.3-6

abling the user to simply click an icon and jump to the'marked data), and a sort of "live" table ofcontents
in which all marks are listed as text or pictures, and the user may select from among them to go to the
marked data.

The user may also traverse his/her document by specifying the page number t<;> jump to. The current
page number and number of pages in the document are always displayed in the view.

Linking

Jane provides the capability to link related items in a document, or between documents. To create a link
the user specifies its start and end (although once the link is constructed it is bi-directionaD. Jane under
stands two different kinds of links, which we will refer to as navigational links and hot links. Navigation
allinks allow the user to select a linked item (at either end) and traverse that link to the other end. In

.................:;:
::;::>:::<::;:;:;:;;;=/:::::::::::: .-

....

causes the Tuffyl12¢iJ;m¢p:~-'S9~~~lWAg:lh~rchartto open up. This is taW~M~~flhaI1J9r%~#gJhe user to re
turn to the Finder aridsearchJOftnEtd6cument in which s/he created the<:6ngtniikcnart> The user can
now edit the chart in the Tuffy window, and then push the data to the other end of the link, so that the
modified chart automatically replaces the older version of the chart in the Jane document.

Links are represented by an icon, which could vary in appearance according to the type of link. We may
want the icon to clearly differentiate between navigational links and hot links. We may also want to dif
ferentiate between further subclasses of links, such as the examples we gave above for navigational links.
This an open issue which needs to be solved at a system-wide level. In Jane it is also possible to hide the
link icons, if so desired.

• Registered /Restricted Jane March 15, 1990 3.3-7

The Book Model

Jane supports the idea of a '1>o0k". A book is a kind of folder containing files representing various parts
of a document. These include the chapters or sections of the document, the table·of contents, the index,
the bibliography, and the glossary. The advantage of maintaining separate sections is to enable different
authors to work on the same document at the same time. In addition, the various parts of the document
have knowledge of each other; whenever one section changes in some way that affects the document as a
whole, the other sections are notified and updated appropriately. An example of this is automatic page
numbering between sections of the document.

Collaboration

¥~iiiil:f~~~ill'IIII~§;~i§~~t.'!~~~~~~~t:;all
please, but the contents:QKthe original document are not affected by th.:~::&iH9.t§@jp6difications(unless the
author applies those ch,inges, as described under Markup, below). R~y~~w;~r§:~m~yread the document

:~ee:~:~~y~O~~~~~&1~t~~gt:,~~~~t~~~:~~P:h~n~~]AIIIII~~~n~~~~~~;;'~~~::l~n-

Notes

Notes are savedi~jliiii9~'~P9P\l¥hq'!!:ed them, and w~_\l!!.~lis also an~~~~~;§Ubject
(title?) field, whidVfuiist~ijll.~:.Jf(PY::thtH'6tecreator if it is to be used~HJ11~?4.~rI1.Wyfp¢#6penup
notes selectively (by doubh.fdickirig:6h·their icons), or may look at a grourF8ftloffis}sudtas all notes
written by one individual, or all notes written on a certain date, or all notes falling under a certain subject
heading. The manner in which notes are displayed on the screen or printed is a user preference. The user
may choose to display them in the document margin, or in individual views, or altogether in a single
notes window. Notes may also be selectively printed,according to author, date, or subject.

Markup

When a document is checked out by an editor, a copy of the document is created for the editor to modify
as s/he pleases. When the editor checks the document back in, his/her version is saved along with the
original document. The editor's name or some other identifier is saved with the editor's version of the
document. When the author then checks out his/her document, s/he may also view the version created
by the editor. In addition, the author may request Jane to automatically generate a marked up overlay to
be-viewed on top of the original document. The marked up overlay indicates changes made by the editor

.& Registered /Restricted Jane March 15, 1990 3.3-8

in his/her version of the document. Deletions are shown by a cross-out line. Insertions of just a few
characters are shown above the insertion point; larger insertions are indicated by a note icon, which can
be opened to read the "insertion. Style changes are highlighted in the editor's highlight color. Each
marked up overlay is color-eoded. The colors are selected automatically, in order to insure that each
editor's color is unique. This enables the author to view multiple overlays at the, same time, and still be
able to differentiate one editor from another.

The real power of this model lies in enabling the author to selectively apply changes made by the editor
to the original document. In other words, the author may select a change mark on an overlay and execute
a "Do It" command. The original document is modified in the way indicated by the change mark. ~

Change marks can also be applied more automatically; the author can simply execute a command to
make all the indicated changes of a given editor. This results in the editor's copy simply replacing the
original document. It is also possible to apply a class of changes automatically, such as all font changes,
for example.

.. - ' :-:.:. :-:::::::::;};.:.,

.. :::::;:::::;:;:::::::::::::::::::::::;:;::::::'::: :::.:::::::::::::::::::::::::::::::::::.:....

2. See CHER, section 2.2.2.

3. See Line Layout, section 2.7.3.

4. See Scripting, section 2.2.5.

"

;::::::::::::::}:::::;:;
.,

:-:.:-:-:.:.:-::.;<.

........ -.- :;::::::-:-:-:-:

,'.
'.'

• Registered/Restricted Jane March 15, 1990 3.3-9

Project Dependencies

•

•

•

•

•

•

•

The scope of the project needs to be kept within reasonable bounds. Jane is a very ambi
tious proposal for a word processor, and it may be that we are hoping to accomplish too
much with only three people on the team. If this turns out to be the case, it may be necessary
to trim some of the features we hoPe to offer.

Cooperation between the Jane team and other Pink groups. It is essential to the succe?s of
Pink that the Jane team provide feedback on every part of the Pink system which is exercised
by Jane. Jane, in tum, cannot succeed without other groups in Pink being responsive to that
feedback.

• Registered/Restricted Jane March 15, 1990 3.3-10

Current Status

We have written a prototype demonstrating some aspects of Jane using MacApp. Most importantly, this
prototype demonstrates direct manipulation text. A selection of text may be gra,bbed (by a handle pro
vided on the left side of the selection) and dragged to a new location within thetext. This prototype has
been user-tested to determine the feasability of direct manipulation text. Based on the results of the user
testing, we have decided to go ahead with the plan to implement direct manipulation text, with some
minor changes to the interface.

We have written a very simple prototype in Pink which allows the user to draw shapes and enter text into
them. The most interesting thing about this prototype is that it uses CHER, the document architecture
model. Thanks to CHER, different views of the same document can be displayed at the same time, such
that a change (for example, a newly drawn shape) which is made in one view causes all of the document
views to be updated to refl~_~J.~.~.!l~~jt:\f,qr~~~.i:9.t:\~...Y~imited undo/redo is also supported

~i~~~i~ii~i:~,IIIII"~E~~eand :))6WI::=U}}:=}

:::}:;:::::"
-:.;.:.:.;.:.:.
',:.:.:.:-:.:..... -:.:-:-:.;.

:.:-:.:.;.:-:-:.:.:.:.:...•.

• Registered/Restricted Jane March 15, 1990 3.3-11

" Registered / Restricted Tuffy March 15, 1990 3.4-1

By Dave Anderson and Cindy Frost

« Registered / Restricted Tuffy March 15, 1990 3.4-2

Introduction

This paper is a proposal for a data graphing application to be developed on the Pink system.
Many of the ideas embodied in this paper originated from an earlier proposal for Tuffy \Nritten
by Amy Goldsmith. We have attempted to integrate her ideas with our OWil when writing this
proposal.

Tuffy was inspired by Edward R. Tufte's book The Visual Displav of Quantitative Information
[Tufte 83]. In his book, Tufte discusses the power of data graphics to reveal information and rela-~

tionships in data that would otherwise go unnoticed by the casual observer. He presents exam
ples of tnany excellent graphics, along with many graphics that provide either inadequate and
/ or inaccurate presentations of data.

Tufte cites several sour.<:~~..f<?r..~~~.l~<:~.9.(g~~p~i~~~ sophistication and integrity prevalent il;..90.H

g~:~~:~~lt~::~gT;~illlllllll.~~~V~:~i;~::::lfc=r;~~aa:~:~;;i~\i~M~!k}

~~~f:~~~,a;e °b~K:~llr_illl"'lIll::::~~~~:o~~:%~;g1.1_~I~~~:~~h an
application that br~ngWtR~rpH:W:~fltr2t~ml~nhlei·estingand sophis~l:@~~~~jjgt~pfncsto the
individuals with tJi'i}understanding of the data. Tuffy is just s~.sn1:~Jt1gppn~tion.

:-:.::;;:-:::.:

existing applications, we discovered thaf:~:¥i!j::~nemost g~i}~alj:jmErR99cts,like Cric§~~Rr~P~?fX~
leidoGraph and spreadsheets, place signif!g!#~Wmitatiori$::gn1)~a~))§1@~j19fthe data set:~:}li}~~ttm¥(t

ering users with little or"Iloartistic skill to create sophisticated, accurate ana· a:esthetically pleas
ing graphics.

Goals

The primary goal of any graphing application is to allow its users to produce alternative
presentations of quantitative information in the form of graphs and charts. Tuffy goes beyond
this by attempting to aid the user in producing graphs and charts which conform to Tufte's prin
ciples for high quality data graphics, and in choosing the optimum presentation for a particular
set of data. Tuffy will attempt to determine reasonable alternatives for presenting the data and
present those to the user. The user must be able to quickly and easily compare the various pre
sentations to determine which is most suitable for the data. Ideally, the user will discover new
ways of presenting the data.

c Registered / Restricted Tuffy March 15, 1990 3.4-3



Tuffy will not linut the user to a predefined set of graph formats, but will provide the user with a
graph editing tool, allowing the creation of customized data graphics to best present a given data
set. These tools must be easy enough to use that even users with little or no artistic skill can cre
ate graphics which are compelling, and which provide accurate, revealing presentations of the
data.

Tuffy's main emphasis is on the presentation of quantitative information. Tuffy should not be
concerned with the acquisition or Inanipulation of data but should. be dedicated solely to the
generation of clear and understandable data graphics. By maintaining a focus on the presenta
tion of the data, we believe Tuffy can provide a complete set of tools to help ensure the highest ~

quality data graphics. While Tuffy should ensure that the presentation accurately reflects the
data, it should not be burdened with the accuracy of the data itself. This can be better left to the
applications with intinlate knowledge of the data being dealt with.

Our charter is not only to create a great application but also to help shape the Pink system and

.;:!:!::.~:.'~':::.-:-:-:-:.....

presentation and will aliow the replacement of the data entry application with more sophisticated
spreadsheet or statistics applications in the future. It will also provide the added benefit of ilU

posing a design which incorporates adequate support for data sharing between applications,
proving the validity of the concept for Tuffy, and Pink applications in general.

We also intend to follow this philosophy when developing the graphing capabilities of Tuffy.
For example, graph format editing capabilities could be viewed as a tool separate from the the
tool which manages multiple graph views on a document. Again the interaction between the two
comes from sharing a common document model. [n this case, the graph format descri ption
model. Users will be allowed to work with the graphing tools which are of interest to them with
out additional clutter produced by unused tools. This split will also allow for the easy replace
ment of individual tools, such as replacing a simplistic drawing tool with a more powerful one.

This is the direction we intend to take with Tuffy and believe it is a direction worth considering
for all Pink applications. The realization of such a philosophy requires powerful tools for the

c Registered / Restricted Tuffy March 15, 1990 3.4-4



sharing of information between applications. We are relying on the Pink Toolbox to supply such
tools.

Capabilities

In this section we present the capabilities which Tuffy must provide in order to accomplish the
above stated goals. Tuffy must provide support for producing a set of standard data graphics as
well as custom graphics defined by the user. At all times Tuffy must provide adequate feedback
on the quality of the graphic being created. Tuffy will allow multiple simultaneous views on the
same data to allow easy comparison of the different graph fonnats, aiding the user in choosing
the format which best presents the data.

Graphs will be con1posed from a set of graphing elements which include data plots, data points,

Documenf:::"·:Links

Graph Views

new view d~:"n9t#f~~"~~:W"ng~q:'QPiJ)fthedata, but rather jusr~l:p.f.fm~hy'iew0llt,n~"g;#hf

Changes in tfh:~d(lt~~t¢r~f:l~t,gifM{fomaticallyin the view. Operlirtg:lnMJ.Jip~~.~@¢'Ws\vil1 be a
very quick and simpletasl(""allowing the user to easily compare differentgriiphs of the sanle data.
Providing a good metaphor for handling multiple views on the data will be important. It must be
Inade clear to the user where the real data actually exists( e.g the difference between and docu
ment window and a view window must be clear ).

View Control

Graph size and view size are independent. The Graph may extend horizontally and vertically
beyond the extent of the view with support for scrolling. The view may be zoomed in for de
tailed work and zoomed out to gain perspective on a large graph.

View Composition

" Registered / Restricted Tuffy March 15, 1990 3.4-5



Graph views are conlposed of a collection of graphing elements. A simple line graph, for exan\
pIe, could be composed of a line plot, an X axis, Y axis, legend and text labels. A single view
may contain multiple instances of a single element type. For example, several Y variables could
be plotted in a line graph simply by including an individual Y plot for each variable in the graph.
Additionally, an individual Y axis for each variable could be included to al~ow different ranges
for each variable (similar to the double-Y plots found in sonle packages). Additional text
elell1ents could be added, etc.

View Gallery

A gallery of standard graph views will be provided. These will include, at a minimum, 20 scat
ter, line, area, bar, column and pie and 30 scatter, line, column and bar. In addition new custom
views may be created by the user and added to the gallery of standard views. The gallery cou Id

Backgrounds

Graph backgrounds may be any graphic the user desires and may in fact be multiple graphics
overlayed. A typical background would be a map over which various data points or paths nlay
be plotted.

Data Plots

Tuffy will provide all of the standard types of plots found in existing applications along with sev
eral new ones unique to Tuffy. Basic 20 plots types include scatter, line, area, bar, colU111n, area
and box-plots. Additional 2D plots will exist for plotting additional dimensions to the data.

c Registered / Restricted Tuffy March 15, 1990 3.4-6



These include intensity varied and labeled plot points. As many plots as desired may be over
layed on a single graph simply by including additional plot elements for the graph.

Tuffy will take advantage of the 3D graphics capabilities provided by Albert, to provide 3D scat
ter, line and column graphs. Allowing various viewpoints and perspectiv~son the 3D graphs
should be made straight-forward by Albert. Good methods will need to be developed for user
manipulation of 3D views. The methods developed should be common to all Pink applications.
A likely candidate is Michael Chen's virtual sphere controller.

NOTE: We need to consider plots of both discrete and continuous data. Plottng continuous functions may
provide support for the curve-fitting functions found in other applications today.

.:.:-:-:.:-:.:.:-: .....
:-.:::::::::;:::;:;:;:;:;:::

Plotting Elements

many patterns. Jrmfy will also support import of objects from:~fWn~Wp!Qgrams to be used as

Axes

Axis Lin:e:mm:::m::t::m: ::::::::::::::::::::::::::::::\:" :::::::::{}}:::.,

The axis line~~ii~~s·:fh~:·fkh~~:::~:;::t~eaxis. The axis' range and the rangEtBlfhggr~phdimension
it represents are independent. (e.g. if the total X domain of a graph is (0, 100) the axis range
could be limited to the actual range of the data points, say (6 ,88». Limiting the length of the axis
line to the range for the data provides additional information about the data (lninin1um and max
imum values), thereby improving the data-ink ratio. See p149[Tufte 83].

Tick Marks

Axis tick marks may be any of the elements used for plotting data points. Tuffy will provide
major and minor tick marks with major tick marks tied to the axis labels. The use of the plotting
elements for tick marks will allow additional dimensions of the data to be presented as variations
in tick marks are well as data points. Anexample of this can be seen on p44[Tufte 83].

& Registered / Restricted Tuffy March 15, 1990 3.4-7



Tick marks may be spaced at even intervals, logarithmic intervals, or they can follow the actual
data points. Tick n1arks defined as the latter, along with the lack of an axis line, would create the
distribution axis-of Tufte's dash-dot-dash plot on p133 [Tufte 83).

Labels

Axis labels will be standard text objects which will allow for wrapping of individual labels.
Their range and increment n1ay be generated automatically by Tuffy or specified by the user.

Grids

Grids provide the same position options associated with axis tick marks allowing spacing at even

Text

Sta tisiii;:iii~l~i~;lii>tli;'\;iJlfi'I~IIIWYt;!!ii]il;I!II;il;:;!It....
We are currentlYli1:V~gtigaHHg\~hichof the capabilities provided byc{i~WF~MHgH~sapplica
tions could be provided by a separate Pink statistics application (or perhaps as part of a spread
sheet or other program), and which capabilities are so closely tied to the plotting of the data that
they must be contained in Tuffy itself. For example, can curve fitting be supported by Tuffy
without building in specific curve-fit functions? We will probably at least need to provide sup
port for error bars and the indication of mean value and standard deviation for data sets.

Drawing Tools
A minimal set of drawing tools will be included to allow the user to add text and basic 2D and 3D
geometric shapes to the data graphics. Complex drawings can be imported from more powerful
drawing applications to be used as backgrounds, data points or adornments to the graph.

C Registered/Restricted Tuffy March 15, 1990 3.4-8



Graphing Tools

A set of graphing tools will be included to allow the user to select, add, delete and m.anipulate the
graphing elements provided by Tuffy. This includes direct manipulation of the data points
themselves. /

Graphic Databases (maps)

Tuffy will support graphic databases which can define collections of graphical objects for which
data values may be used to control the shade, shape or color of each object. An ~xampleof a
graphic for which this applies is on pp17-19[Tufte831. This graphic presents cancer rates for all
counties in the United States as gray shades for the counties on a U.s. map.

Printing

..............: -:.;,:.:-:.:.:-:.:-0

Tuffy will pr~~id~t&~dBg~k··:f8::~h~;'~·seron the quality of the graphi·~:::8J:iH~::.8ttiliMa:.::)~small sta-
tus window will be available at all times with more detailed information available at the users re
quest. The measures are those presented by Tufte in his "Theory on Data Graphics". It would be
desirable to present the measures for each of a group of graphs to allow the user to easily com
pare between them. Perhaps

Data-ink ratio

This is the simple ratio of ink used to represent data to the total ink used to print the graphic. It
can be used to aid users in following Tufte's principle of data-ink maximization. Tufte suggests
that maximizing the data ink ratio is beneficial to all quantitative graphics. Tuffy will provide the
user with the value of the data ink ratio for a graphic as well as ranges which are considered
acceptable. Additionally Tuffy will highlight redundant data-ink and non data-ink to make it
easier for the user to identify areas of the graphic which may be removed without loss of infor-

~ Registered I Restricted Tuffy March 15, 1990 3.4-9



tnatiol1.

Data Density

The data density is the number of data points per unit area in a graphic. Tufte suggests that
many graphics are way too sparse and can be shrunk considerably to improve the data density,
leaving room for other information on the page.Tuffy will provide this ratio for a graphic along
with ranges indicating whether graphics are too sparse, acceptable or too dense. Tuffy could also
suggest a size for the graphic which provides an optimal data density.

Graphic Proportions

'.:-:-:
:::::::::::;,..:.:.:.,.

Numeric Data entry :::)::::/·H-··:-:-:-:·:-·· :::::::::::::

N umeric dat~7BHY will be supported thlll;: spread~~I!lllliliface. The u~~f~ijl~~i~le
to create c9~Mm:#$.:pfu:1.~ta which can be p!gt~#d by the grapH~:#.g:~PPl,~g~tion. The fq1:t&\Rt·ti)g:).(

fea tures Y\f.~~.~.::.:p..::..;;:.;~.;:::::§Bl?B9rfrft ::_::.{.:.:.:~.~:j..~i.·:~.:.~1~:::}:::::·· ":::::::::::::{:::::::f::~:Imn::m: ..-
.. ' ,'.. . ,',',:.:::::::::::.:.:.:....... . ··::::~~~~~~t~~?f~~~{~~{:~:>.::;.:::::::::::::<:>:.:.:-' ' '." ','

~:i~i0;~;d~J~eli~I'I[~~!wif{H;iW ";;/'i '
Entry data values and categories text directly into spreadsheet cells
Specify units and display formats for column data. This will likely be accomplish through a
dialog box brought up by perhaps double-clicking the column header.
Control the display width of columns by dragging column separator lines.
Selection of columns
Multi-cell selection including noncontiguous cell
Delete, cut, copy and paste of cell selections
Hypertext links between cells
Eternal undo of commands
Wann links to data in other application documents

Variable and Graph Format Selection

Select variables for plotting (from spreadsheet or other graph)

& Registered / Restricted Tuffy March 15, 1990 3.4-10



Select graph format for plotting from gallery
Associate variables with plots
Determination of graph fonnat alternatives and the presentation of those alternatives
Data Variable/Graph Variable associations (choosing variables for X, Y. etc)

Graph Format Determination from Document Data

Tuffy will attempt to determine reasonable graph fonnats for the selected document data. Some
of the criteria which will be used to make this determination are as follows:

Variable count
Variable range
Data point count
Variable type or units

Graph Views ......:.;.:.:.:.:-:.:.:.:.:-

Graph quality measurements

Axis control
Select axis type (log, semi-log, distribution, quartile)
Set ranges
Set increments
Select element for tick marks
Attach variable to tick mark elements
Select grid types
Attach to specific plot

Plotting element control
Marker style selection
Marker color selection
Attach variables to plotting element attributes, e.g. shade or color
Specification of overlay handling

Direct manipulation of data

-' Registered / Restricted Tuffy March 15, 1990 3.4-11



View detail information on data point
Adjust data point directly
Add new data points

Manipulation of other graph elements such as those created by the user

Graph Format Creation

Standard a.nd Custom gra.ph element parts bins (similar to Constructor in HOOPS)
Adding elements to graph
Connecting elements such as plots and axes
Customizing elements and saving in custom parts bin
Creation of stationery to allow reuse of graph formats

Printing/Saving

Issues

...-:.;.:::::::::::: .
:·:·:·:::::::::::::r:}::::){:;::}::;:::;::::::

.....:::.:::::::;:::::::::.:

.. :'" .. .;.:.:-: .:::~~~~}~(?\):{:~ .
.......... -. ::-::::::::::::::::":'., ....:.;...:.;.. :;:;:::;::;}:::::;:;:"

Due to the firiUg:+¢§giir9.~~:·~·y~:a~HM:f;rthis project we need to deterrtWH~:.h9N,,:mft8hhf the capa-
bilities must be induded'tocreate a "compelling" application. . .

Bibliography

Tufte 83 Tufte, Edward R., "The Visual Display of Quantitative Information", Graphics Press, Connecti
cut, 1983.

C Registered / Restricted Tuffy March 15, 1990 3.4-12



· , .

"':.: :'.:::::".::..::..~.:;.::}:::?::\'_::::':'::_'.: ~.:.:.:.: :.:.: ,..
..................: :.:-..

......:.. .;.:-:-:.:.:::::.:::.:.:::::::::::::::;:::::: :::::::::::::::::::;: .;.:.:-:.:.:.: .

• Registered / Restricted hevps March 15, 1990 3.5





External Reference Specification

DANCE2
PETER.MAC
PARRISH
SMITH.DAN
TOM.TAYLOR
THOMAS3
HOLLY.T
YOU

Apple Confidential

§i'rt~~~s~11j!}W·
:g~y~/~jJnUird
:J6hKbance

Peter McInerney
Jeff Parrish
Dan Smith (Project Leader>
Tom Taylor
Jim Thomas
Holly Thomason
Lawrence You

• Registered /Restrieted hmps March 15, 1990 3.5-i





Table of Contents

Motivation _ 3.5-1
What is hoops? 3.5-1
Why hoops? 3.5-3
Design Principles ~ 3.5-6
What hoops is not 3.5-8

The Foundation _ 3.5-9
Representation of Programs 3.5-9

.:.:::::-:.:.:.:.:::-:::::::::::::::::;::::....

Configur.~~ggs · ¥f~~f~f@~~~M~@;f· u~s@W~mM~@.m~· .. ·· 3.5-49
The Buildl?ihtess J~LgMtMtMEa MmMCkMamL 3.5-51

.... }::::::::::.::::: Importingiil'd Exporting:j~j~M~~~~~m~~mm:~····················.~~.f:.·.i.·i8~;;:..i~.8.·.····. 3.5-53
:)::::::::: :::::::::::::::::. Collaoot.~H16n jm&lm~:mm, UmDMMmUt 3.5-54

,!ii~i,it~~~~j!~!::__ _..___.__.--::~~Iir~l ·.t..••.*,_ _~±~;~lli;ijlj:i:.: 3.5-56
"-:.-.:-:.: ::::::::::::::::-:-: >... .::-: .•... :.:.-.:-•..•..

".":-"."-::,:,:-:-»>:«<-:-:<.:-:.:-:.:.:.:-:.:,.-:«.:-:-:.:,:-:....

...::.::::::::::::{<:C:~r\s tructor :::~:~.::~~:=:.: 3.5-61
The Foundation 3.5-62
The Constructor Human Interface 3.5-68
Constructor Details 3.5-74

Dependencies on Pink _ 3.5-81

Dependencies on CompTech _ 3.5-84

Glossary _ 3.5-85

Color Figures _ ~ 3.5-89

• Registered IRestricted hWps ~1arch 15, 1990 3.5-ii





Features

Initial Clients

Host
Architectures

Motivation

What is hwps?

Tomorrow is the most important thing in life. Comes into us at midnight very clean.
It's perfect when it arrives and puts itself in our hands. It hopes we've learned
something from yesterday.

- John Wayne

..;.-.-.'.

The primary clients of hoops are Apple internal system developers and Pink
application develoPers. Because of the object-oriented nature of the Pink tool
box, the needs of these groups are in many cases closer than in the past.
Secondary clients include any other internal or external programmers develop
ing for the Pink environment.

hoops is being built upon, and tightly integrated with, the Pink system. It is
designed to be portable to different hardware platforms running the Pink sys
tem software.

• Registered/Restricted hmps March 15, 1990 3.5-1



Hardware
Requirements

In addition to the Pink minimum hardware configuration, hoops is expected to
require no less than:

• Memory - 4 MH.
• Disk space - 40 MH.
• Screen size -12" diagonal.

• Registered/Restricted hlDps March 15, 1990 35-2



Strategic
Significance

Limitations of
Present Tools

"::::::::: .

Whyhmps?

...a winning strategy is like a pound balanced against an ounce..
- Sun Tzu

The purpose of hoops and Pink is to ensure that the next generation of innova
tive software gets developed on Apple computers, by providing a platform so
attractive that developers will choose us instead of our competition. Pink pro
vides the foundation for innovative software; hoops provides the toolS to facili-
'tate its creation. Both are needed to create a programming environment that
will attract the developers needed for our success.

For some five years Apple has enjoyed a significant strategic advantage: the
:::::=::::::::::::Macintosh::has::b.een::the::com uter of choice for the develo mentofinnovative

A basic premise behind the Macintosh toolbox was that, by supplying a power
ful integrated library, we would provide our developers with the leverage nec
essary to create great applications. This principle was further extended by
MacApp, and will be carried to unprecedented lengths by the Pink toolbox.
There is, however, a potential downside in this wealth of available power. In
order for developers to use the appropriate pieces of Pink toolbox functional
ity, they must be able to find them and easily learn how to use them.

In fact, programming a Macintosh has always been considered a difficult task,
compared with the more traditional environments on our competitor's ma
chines. Part of the difficulty has been the amount of information that is needed
before you start. Inside Macintosh has many chapters, all of which seem to as
sume that all other chapters have been read. For a printed document, Inside

• Registered/Restricted hmps March 15, 1990 35-3



Programming
for Humans

Macintosh is mostly very good. It is the printed medium itself that is inade
quate to the task.

Many other programmer tools are based on program representations that are
essentially electronic paper. These representations inherit many of the prob
lems of their printed ancestors, including poor cross-referencing and naviga
tion aids. hoops must provide much more powerful and direct data access be
cause Pink will be an order of magnitude larger than the original Macintosh.
hoops addresses these needs by providing tools to manage and navigate all the
data associated with a programming project, including documentation, source
and resources. Furthermore, object-oriented programming imposes unique
representational and navigational demands on a development environment.
hoops is designed to meet those demands.

:::::::;:; .

The needs of the individual are placed very high in the order of implementa
tion of hoops, because if we do not attract individuals, and enable them to learn
the new Pink system, we will almost certainly fail to attract larger groups.
When Pink first ships, Apple will be in a position much like when the
Macintosh first appeared. Almost none of our outside developers will have

1. This is in contrast to traditional environments which often have ways of perform
ing actions that are more for the convenience of the tools in the environment than
for the programmer, e.g. ordering program elements in such a way as to allow
single pass compilers. This was often necessary because these methods evolved
in times when the resources available for the individual programmer were much
poorer.

• Registered/Restricted hmps March 15, 1990 35-4



knowledge of, or experience wi th this totally new system, and one of our first
priorities must be to attract and educate them. hoops will play an important
part in the success of this approach.

hoops provides the means to make the Pink toolbox accessible and comprehen
sible, and allows programmers to apply the same organizational techniques to
their own programs. Developers will benefit because programs of the com
plexity of current applications will be more easily written, understood, and
maintained. Also, hoops will make possible programs whose creation is be-
yond the capabilities of existing tools. ~

As a program gets large, the development environment can significantly im
pact an individual's ability to deal with it. Innovative software comes from in
novative individuals, even when these individuals are working in teams. We

"'M1l1'11111~iil;F"
..;.:-:-:.:-:-:

;i;;!;iiiji4:~:'1::e:I:;:~~~~~n: :~:~.I.lr~~~::S~;f a~~e: ::~;~_

:.:.:.:::;:::::::-:- .

.:.:.:.:.:;:. . . :<.~::.:..:.

;.;.:-:-:: . . . . ..... '.' .'.:.::'::.'.::'.:.:.:.'::~:~.~.:.:.~.,.:::..:!:: .:.:.:..:::.:!:!.i:: :.~,'.,:<-::::;:::;:: :::::}:::;:;:

:.I.: ~., :.,~.: :." :.' :,:,;.:.~,;.:: :,::...i ::::::::::::::::::::;:::.,
;::::::::::::::::::::::::

::::::::::::::.-

• Registered /Restricted haJps March 15, 1990 35-5



Design Principles

Conceptual
Simplicity

Our life is frittered away by detail... Simplify, simplify
- Henry David Thoreau

Rather than appearing as a disparate collection of tools tacked on after the
event, hoops will be a natural extension of the Pink system and an exemplary
Pink application. hoops unifies and simplifies program components, while
presenting a coherent unified face.

Efficiency The world is a dirty place but I wouldn't want to dust it.
- apologies to Steven Wright

Unobtrusiveness 211t1J~~h:~~!n~~~lljjj,,1'~~~r=;
/¥{~ never do anything well till we cease to think ak9#tjJf@jff#.iVzer of doing it.

.".:.".:;:.:.;.:-:- .

Direct
Manipulation

Recognition
Versus Recall

..:;:::;::::.:.:.;.::::;:::::::::::;:::.

.·:<:M:'bf{;:is:::th~;'~hing you forget with.
- Alexander Chase

Humans can recognize a far greater body of knowledge than they can directly
recall. This is seen in the fact that most of us have much larger reading than
writing vocabularies. hoops will provide electronic aids to shift the burden of
recall from the programmer to the environment wherever possible.

Extensibility One never notices what has been done; one can only see what remains to be done...
- Marie Curie

hoops will be built with extensibility always in mind. ooops will be a multilin
gual environment, so wherever possible hoops will provide general purpose

• Registered / Restricted hmps March 15, 1990 35-6



mechanisms that can be specialized as required. We can expect to get some
things wrong and miss some functionality altogether, so we need to make it
possible to correct our mistakes and repair our oversights. In addition, we
want to make it possible for developers to exercise their ingenuity by enhanc
ing hoops. The key to extensibility lies in an object-oriented design and imple
mentation. Thus, modifying or extending hoops will involve exactly the same
process that is used to create Pink applications. The object-oriented design will
permit extensions ranging from simple behavior modifications to the addition
of new tools and support for new languages.

• Registered/Restricted hmps March 15, 1990 35-7



It isn't MPW
or UNIX

It isn't All
Things to All
People

What hmps is not

Change is not made without inconvenience, even from worse to better.
- Richard Hooker

hoops is not a port of MPW or UNIX development tools. The way programs
are represented and manipulated in hoops differs fundamentally from these
traditional environments. In order to provide an increase in representational
power and to support an interactive, incremental hoops environment, we have
moved away from the view of program source as undifferentiated text in a col
lection of files. This means that many traditional ways of dQing things have
been replaced or modified. In many cases, the old mechanisms are redundant
or supplanted by mechanisms that are more intelligent about the structure of a

• Registered/Restricted hCDps March 15, 1990 3.5-8



The Foundation

foun • da • tion n. 1. that on which something is founded. 2. the
basis or ground of anything. 3. the natural or prepared ground or
base on which some structure rests. 4. the lowest division of a
building, wall, or the like, usually of masonry and partly or wholly
below the surface of the ground. -Syn. 3. See base.

The foundation of hoops consists of three parts, all of which provide an archi
tecture from which a diverse set of concrete features can be produced. The first

.................P~!..9..f..~.~...!g.~~q?.!i.Qn ...!.~ a representation of the semantic elem~.,}~91pro-

illl,IIIII!l;ilt~!i~~;~~I.~1~~~~~~
..........

.............
:::::::::;~{

..-.:.:.:.:.: .

;.:.: ...

.:;:;:::::::::: ::::}::::::~:~{:}}::::: ..

Compoi~;i:!~:;!l:::···

···\Fm·••·...~·_~~~~~:,so~~:::~'~~;~~I~f~c~~::~s.2
"":::':':::::C6decomponents represent those parts of a i>fogram'Written in a pro

gramming language. Organizational components are used to arrange other
components into user-defined groupings, so as to organize a large number of
components. Resource components represent archived instances of objects,
such as windows, menus, dialogs, and so on. A full description of resource
components can be found in the uConstructor" chapter of this document. The
others will be fully described shortly.

2. We use "resource" for lack of a better term, so don't read too much into it. Any
suggestions for another term?

.. Registered/Restricted hmps March 15, 1990 3.5-9



Properties

Components have properties. Properties are the attributes or characteristics of
components. Examples of properties include source code, object code, and de
scriptions (documentation). A property can be intrinsic or derived. An intrinsic
property is one whose value is stored as part of a component. A derived prop
erty is one that can be derived or created from the intrinsic properties of the
component itself, or from the properties of other components.

All components, regardless of type, have at least four properties: a description,
a set of clients, a set of references, and a container. The description of a com
ponent is represented as a Pink text object and therefore capable of including
non-textual data as pennitted by the Pink text system. The clients are a set of
references to the users of a component. The references are a set of references to
th~:.:~Qm: ... ne.nts.:-thatate.:.used· this com nent. The container is..a::f.efe:r~nce

"'-:-;"';':':-:-:::: .

:.:.:.:.: .
..•.......................; .

Code
Components

Components form a natural basis for versioning. Ideally hoops maintains
enough information to recreate every version of every property of every com
ponent. However, given the limitations of disk space, the user will have to
control the amount of information maintained, by archiving or discarding
changes beyond a particular date. Furthermore, it may be possible to choose
the properties for which version information is maintained.

As stated above, code components represent those parts of a program that have
source code and possibly object code. Code components are considered to be
either atomic or a collection. Atomic components are the smallest program ele-

• Registered /Restricted hwps March 15, 1990 35-10



ments understood by hoops, and are indivisible. Collection components pro
vide a means of grouping atomic components together, thus treating the group
as a whole. Many languages have such a grouping construct; Apple Pascal has
the unit, and Modula-2 has the module.

A representative set of the kinds of code components expected to ship with
hoops is shown below:

............

Atomic
constants
type definitions
variables
routines
macros

ii~lll;i'I'llItl"lll'f~~nents
.,:.: .:.:.:.

Collection
classes
modules

..:::::::~:~:~;~;:::::::::<;~:::::::;...
.. ::·:.:·:::}U/::··:/:>···:).::·::;·

There are two kinds of collection components: classes and modules. All atomic
code components (except the file) reside in either a class or a module. A class
contains only those components defined to be part of that class (i.e., its data
members and member functions). A module contains a set of related, non-ob
ject-oriented code. Like the members of a class, the components of a module
can be designated as public or private with respect to the module. This leads
to an interface for the module, much like one would create with a header file in
a conventional environment. As was the case for atomic components, it may be
useful to define additional kinds of collection components as new languages

3. For a definition of C++ scoping terminology, see Section 3.9 of c++ Primer by
Stanley B. Lippman.

• Registered/Restricted hlDps March 15, 1990 3.5-11



are added to hoops. For example, a unit component might be added to more
fully support Apple Pascal.

The File Component

The File component deserves additional explanation.. It represents a stream of
text, like an MPW text file. It is atomic and therefore indivisible. Like other
atomic components, hoops does not maintain any knowledge of the contents,of
a file.4

The basis of components, of course, is to do away with text files as the means of
representing programs. Both the class and module component effectively re-

::;::t>:·:·

Interface

..:/{::~:::::::::~:~':'.

)I/::~:~n::(:::?.~~ interface or signa.~~:bfthe compone~t~..~f.~~~ part of the compgnent that
::~::::::::::~:~::::::::::::::;:::::;~~::l1~t:~~:y?other.SRmponents. .-::::::::::::??:::::::::::=:::::::=;::::: . :.:.:::::::::::::::;::::::....

.. .':": :.... ···.·:::·:··...:/}))::::::::::::::::t::::?::::U::}:::::·· ..:<{:::~:::.::~:::::::::~:~:::~:~::::~\::.::::=::::::::::::: ..
:::::::(>:~~~~~~~ti6n/·:::::::\:::n·::::::::::H)::::::(..:)::::':

The source code for the component's implementation, excluding its interface or
signature. This applies primarily to routines.

Object code

The unlinked object code for the component. There is the need to maintain
object code for different build configurations <e.g., production, debug, opti
mized, non-optimized, etc).

4. The expected capabilities of files are similar to those for MPW text files.
5. An example may be the description of "generic classes" in section 7.3.5 of The

C++ Programming Language by Bjarne Stroustrup.

• Registered /Restricted hCDps March 15, 1990 35-12



Container

The component's container, for scoping purposes. For atomic components
(other than a file) the container is either a module or a class.6

PublicJPrivate

Whether or not the component is private to the module or class in which it is
defined. In a module, a private component is equivalent to a static function, or
any other declaration that is not included in a header file. A public component
is a non-static function, or other component whose interface is included in a
header file. In a class, the public/private/protected attribute of a member
function or data member is as defined in the C++ class.

g~:;:~~~;~!liji;I.'~~¥i;fff~:i'I!~~~r;E~:£-
.,..;.':'::.:. driver, or any other executable entitx:t~~~J)ythe operating system.

-.:. }~{{{:::::::
-:.:.:.:<.;.:.:.:.:.;.

..
..

~ ~~~{rj~\~~~~:f ~~~;;~~~~~~~ ~:~~;: ;:;:: ::::.~:: ':
::}=:::::::::::::::>:.:::.:.:

:-:.:-:.:.;.:.:.;.:< :.:.>:.::.:.:.:-:-:.:-:-:-:

.......:.:........... @J!I'114MhDataset
CJl Data Elements ·Ql:ci.Jf~·.·::··19'fRowDataSet

[g TTuffyDocument

[g TValuelterator

CJl Views...

CJl Flies...

Q) Application...

QSpreadsheet...

Figure 1. The structural decomposition of an application.

6. A file cannot be the container of another component because the file itself is an
atomic component.

• Registered/Restricted hmps March 15, 1990 35-13



Because libraries may contain other libraries, a hierarchical structure of a pro
gram is possible. An example is shown in Figure 1 above. It shows a possible

.organization of SmallTuffy, the PinkMania sample application. The Q)
symbols represent libraries. In this example, the Tuffy application itself is
separated into five libraries: Graphic Elements, Data Elements, Views, Files,
and Application. The Pink Interface library, shown as a dimmed image,
represents a library used by Tuffy, but not actually contained in Tuffy. The
Data Elements library has been expanded to show that it contains three
libraries of its own. Similarly, the Cells library has been expanded to show that
it contains five classes. Tuffy itself is an application project. Hence its SYmbol,

~, is different.

• Registered/Restricted hmps March 15, 1990 35-14



Presentation of Programs
The presentation of a program is the way in which the properties of compo-,
nents are shown to, and manipulated by the user:. hoops provides an extremely
flexible way of creating a variety of presentations of a particular program or
part thereof. It is based on a set of independent viewers that can be connected
to each other in various ways.

A viewer displays a property of a component. An editor is the combination of a
viewer and one or more transformers, which are tools that change the value of a

. component's property. A viewer has an input, which is essentially a list of
(usually one) components. A viewer has an output, which is also a list of
(usually one) components. The output of a viewer is typically whatever is se
lected in the view. The out ut of one viewer can serve as the inutto another

Figure 2. A sample hoops source code browser which exhibits many of the
same characteristics as a Smalltalk system browser.

• Registered/Restricted hWps March 15, 1990 35-15



To show how this works, consider the browser in Figure 2 above? The
browser contains three panes, or rectangular areas that accept viewers. In the
top-left pane is a class hierarchy viewer, showing a class hierarchy in outline
form. Its output (the selected class) is fed to the input of the top-right pane. It
contains an interface viewer that shows the interface of the class TUnk. The
output of the interface viewer is the selected member of the class, which is fed
to the input of the implementation editor. In the example, the member
function GetNext has been selected in the interface viewer: It is sent as the
input to the implementation viewer, which in tum displays the implementation
for GetNext.

hoops will, of course, come with a set of flassembled" browsers ready for use.
However, we can neither anticipate the needs of every user, nor their personal
styles. For example, some people like multipane browsers, while others prefer

.......;::.:::.:::-:::.;.: : .

7. This window is purely fictional and may not actually appear in hoops. Any
similarity to actual windows, living or dead, is purely coincidental.

8. A further advantage over hard wiring the user interface is that it allows consider
able flexibility in the design and implementation of hoops itself.

• Registered /Restricted hevps March 15, 1990 35-16



..:-:<-:; .

The hmps Object-Oriented Framework
We're not in Kansas anymore.

- Greyhound bus driver after crossing the state border into Oklahonia

There are two basic ways of extending hoops. The first technique may be better
tenned Ucustomization" rather than extension. It involves making new and
unique combinations of an existing set of raw materials <e.g., the viewers and
browsers supplied with hoops). In MPW this is accomplished by writing
scripts. In hoops, this is largely accomplished by creating new browsers. (See
the uDynamic Browsers" section of this document.)

The second kind of extension is accomplished by adding to, or modifying the
raw materials themselves; in other words, by adding new tools or changing the

;i:I!;III"tlll~~ff~~1ifj~~it~~{~~~
.:::::::::::::. by subclassing the appropriate hooIm::n!w~r::.eworkclasses.

.......

..
:-:;".

:::::::::::::::::::::::::::::":::::: ::::::::::::::::}:::::::::.: <::::::::::::::::::;::.. ..:.::;:::::::::?:::::::::;:::.•:.:.:..

Tool Clas:ses':::::'::«:::/'I'Jj~:'#:@rBaSsescan be thought of as de{lmijg:.l$~I:l.Jh~k,m.as()ftools that make
:::. ':'::::;::::':uplWops, and specific implementations of thosittools~Forexample, a kind of

tool might be an editor, of which hoops might include specific implementations
for C++ and Pascal source code. An independent tool builder could add a new
editor by subdassing one of the hoops editor classes. Ideally, all of hoops is
implemented in this fashion, including the compilers, linker, editors, and 50 on.

To allow for a broad range of extensions, the framework will provide abstrac
tions for different kinds of tools, from which the programmer can produce spe
cific kinds of tools. Fundamentally all tools belong to one of the following
three categories:

9. For the purpose of this discussion, the term "tool" is used more broadly than in
MPW, encompassing all the capabilities of hoops, including editors for example.

'* Registered I Restricted hmps March 15, 1990 35-17



Viewers

Viewers represent a view of some data, as described in the "Presentation of
Programs" section. Viewers are generally responsible for the visual presenta
tion of some data, and for handling mouse clicks, selections, and other opera
tions that change the presentation (as opposed to the data being presented).
For some kinds of data, there may be several viewers, each presenting a differ
ent view of the same data.

Transformers

Transformers are tools that change a property of a component. Transformers

.-:':':-:';':':

.}/rf
.........; .
. . . . . . . . . . . . .

il;II~'lflllilll'lijtt;ih,. .""",' .

:-:-:.;.:-:.; ... ··\~~rf}>:::::::::::::

~}} :-:':':-::::::::<::;:.:):::::::::"
.."

itsetf.';portunately, the Pink run-time system providesexacHy such a feature,
called dynamic classes, which allows classes to be added to an existing applica
tion at run-time. The details of dynamic classes are still undetennined, but the
basic idea is that dYnamic classes are deposited in known locations to the sys
tem or an application, so that they can be found by applications that need
them. Thus, when hoops starts up it would obtain access to all of the dynamic
classes available to it, thereby making them part of hoops.

Given that hoops remains unchanged in this scenario, it follows that the only
means of communication between hoops and the dynamic classes is via a pre
defined interface or protocol. This implies that the only kinds of extensions to

• Registered/Restricted hmps March 15, 1990 3.5-18



hoops are those permitted by the interface or protocol. 10 1bis is one of the rea
sons why it is important that the Environment Framework provide a good set
of abstractions from which a broad range of tools or components can be built.

Once new tools and classes are made accessible to hoops, there still exists the
problem of making them accessible to the user. A command-line interface,
such as MPW's, solves this problem to a great degree because the user can
simply type in the name of a tool to invoke it. Assuming that we don't want a
command-line interface, we need an alternative. For viewers and editors this
is done by using hoops' Ndynamic browser" capabilities (see uThe hoops
Human InterfaceNsection), which permit assembly of any combination of
editors and viewers known to hoops. For other tools, we can associate them
with the kind of data on which they operate. For example, the Count tool
operates on data that can be represented as a text stream. The advantage of

/:::{{{~:pnt~PPf9m*E!!j:tMt}'S91scan be made available in a manner.

i~ifllll.la~b~:~can be represented ilie

....-
,,:.:.;.:.:<.:

...•..:....
.':-:':'>:':-:

"'--:'»:':-:'."
.:-:.::::;:;:;:::::::::::;:: ..,:. ;:;::::{::::::;...::::::::::;:::::,.,

!;~;;:: . :.:.:.:._t~:.i..::~:.~.:i:.i:..IIIIJ"·
.-:-:- ;.:.:.:.:...;.:-:.:.:.:-:--.:::::-:;:-::.::::::.::::::::::::::::::::::::: ':"::-:::::::;=:

......-:....-:.:-:.:.:-:.;.:-:<.:-:-:-:.:-;..••

10. Upon initial examination, this may appear to be a difficult if not impossible task.
However, similar mechanisms already exist on the Macintosh. For example, all
windows and controls are implemented via "definition procedures," pennitting
the addition of new windows and controls without changing the Window or
Control Managers. Similarly, ResEdit has the "picker" mechanism for adding
new resource editors to ResEdit without changing ResEdit itself. Both the
Toolbox and ResEdit have invented a dynamic linking mechanism to suit their
specific needs. Dynamic classes, on the other hand, are a system-wide solution
available to all Pink applications.

• Registered I Restricted haJps March 15, 1990 3.5-19



The haps Human Interface

No more command-line interpreters. Ever.

This chapter describes our current thoughts on the hoops human interface.
Oearly this section of the ERS is subject to great change. In addition to reading
this section of the ERS, you may wish to view the hoops prototype. You should
also bear in mind that because hoops is a Pink application, its human interface
is directly affected by the Pink human interface currently under development.

. ","...

,', ,,:,::~:~~:t::~::::ttH:}/{:::::}:::

..:.:~:;:~:~:~:~:~:::::::~:~:~:~:::::::::::::::.:.,

•
•

:;;:::;:;:::::::::::;:;:;:::;:;:::;'
.::::::;::::::::;:::::::::::::::::::.;.:.:.

:,/,/~:,:",:",,, ,.,':, The human int~,~:':Willbe extensible~::':::~iitSt~:-it'willpennit ili.~ qteatlon of
:',':','::':,' :'~ ne:WE~~e,arr~ng~ments within browser'5~~nd'f~~new connections be-

····.....·.i··.·IIirll'!:~:t1s;:S~:=I: ~~~7n:~Jlt~~~i~~~~:::;I~-
the interface will be capable of supporting the addition of new tools (Le.,
viewers) to hoops.

11. The term "pane" is used. more liberally in this document than in the Macintosh
Human Interface Guidelines.

• Registered/Restricted hmps March 15, 1990 35-20



Browsers

Panes

Viewers

Human Interface Elements

This section describes the fundamental elements of the hoops human interf<;lce;
a number of which are shown in Figure 3. This is subject to change pending
the definition of the Pink human interface. '

.................................. Icon bar

Pane

A pane is a rectangular subdivision of a browser in which a viewer is dis
played. A pane has three important parts: an optional icon bar (defined be
low) along the top; an optional vertical sidebar on the left side of the pane, in
dicating the kind of view displayed in it; and the content portion of the pane,
which displays a viewer. The icon bar and vertical strip are color coded ac
cording to the view installed. The presence of horizontal and vertical scroll
bars depends on the pane's viewer.

Viewers were discussed in the Foundation section of this document. Their
purpose is to display a property (or properties) of a component. Viewers are
installed in panes. A pane displays one viewer at a time. A sampling of the
viewers is provided below. New viewers can be added to hoops by using the
Environment Framework, as described in "The Foundation."

• Registered I Restricted hmps March 15, 1990 3.5-21



The Main
Menus

Selection
Specific Menus

The Icon Bar

The main menus are used for commands that affect the entire environment or
project, and for generic commands that apply to most selections. Examples of
commands that affect the entire project might include the setting of certain op
tions, or opening an empty browser. Cut, Copy, Paste and Print are examples
of generic commands.

For any given selection in a view, there is a set of commands or operations that
apply specifically to that selection. The set of commands or operations differs
for each kind of selection, and includes those things that are sensible for the
given selection. For example, the operations for a selected class might include
spawning a class ancestry or class descendancy view, while the operations for a
selected module would not, because the module has no relation to class hierar
chies.

• Registered/Restricted hCDps March 15, 1990 35-22



Program
Organization
Viewers

.At?
......-:-:-:-:.;.:.:-:.:.;.:

A hmps Viewer Sampler
In this section we show what a number of hoops viewers might look like, and,
how they might operate. This set is intended to~ representative rather than
exhaustive. For example, hoops will also provide viewers that will display in
formation such as "who implements method X" and "who references method
X", although these viewers are not shown below.12

Q PInk Interface...

QI Graphic Elements...

-f
OJ OataSets...

01 cell....
01 Spf'Eladslheet•.~;(::::::}}}~::

......:.::::::::::::::::::::;:;:;:;::::::::.:.

.:":.::
~_......_-----------------------_....~ ::-I.:.. \.<J

Figure 4b. A view of the Tuffy application's contents as a hierarchical
structure in outline form.

12. These examples of views are shown with IIgrayed out ll panes in order to both
give a context for the view and to clearly differentiate the view (the dark part)
from its enclosing pane. In real life, the panes and their views are equally dark.

• Registered I Restricted haJps March 15, 1990 35-23



Component Mod1rlcatlon Date ModIficatIon

Interface, ImplementatIon

ImplementatIon

Interface. descrIption

implementatIon

Purpose

Input

Output

Operations

(g TOataSet Thu, Dec 7, 1989 4:29 PM

{g TRowOata5et Thu. Dec 7, 1989 4:28 PM

QI DataSets Thu. Dec 7. 1989 4:20 PM

(g TRow Thu, Dec 7. 1989 4:20 PM

(g TScatterPlot Thu. Dec 7. 1989 3:57 PM

(g TPlot Wed. Dec 6. 1989 1252 PM

(g TColumnDataSet Wed, Dec 6. 1989 11:48 AM

~ TTuffyDocument Tue, Dec 5, 1989 10:38 AM

{g TValuetterator Tue. Dec 5. 1989 10:30 AM___--------------------------.....,...4.:.... ~.. -·;···.r~~~: ..~

""::::<::)ijJl1~gr~pmdini'nd outline views, double-clicking:::a:#qgg$J¢Qlf~xpandsor
coI1apses'its subtree. Node reordering within a subtree is accomplished by
dragging the node's icon until it appears in the the desired location with re
spect to other nodes in the subtree.

A node is renamed by clicking its name and changing it directly, as one would
change the name of a file in the Finder.

Given a selected node, a new viewer of the same type can be spawned in a new
. browser, allowing browsing of the subtree whose root is the selected node. It is

possible to search for nodes of a given name.

Any browser capable of accepting the selected comPOnent(s) as its input can be
opened. In that case, the selected comPOnent(s) becomes the new browser's
input.

• Registered/Restricted hmps March 15, 1990 35-24



........................................................................................................................................................................................
Description
Viewer

:::::::::::~::::::: Overridden so that if the collectible (a Teell) IJI !
has a column number that matches the - - - - f- :'

dataset's fColumn, and the input cell matches - - - i 1r000'
the one referred to by the dataset, return I
true. This should be more direct than . : : - - - - -
scanning th~ whole collection, as Member I I I i
may otherwise do. ..........

~-----------------------------,~ -.." ..
. .. ', : ~ .. :: .. ::

Operations

Purpose

Input

Output

Selection

Figure s. A description viewer.

ii~ii!lllllllll~:::;of a component's

......:.:.:.-

:-::.::-:. Selected text in the description.

".:.:.:,;.:.;.:.; -:...;.:-:.;.-.:-:-:.:-........................................

• Registered / Restricted hWps March 15, 1990 3.5-25



Version History
Viewer

version author modification date description

4:15 PM
2:32 PM
2:02 PM
3:13 PM
9:38AM
1:32 PM

Thu, Dec 7,1989
Wed, Dec G, 1989
Wed, Dec G. 1989
Mon, Dec 4, 1989
Fri, Dec 1,1989
Tue. Nov 28, 1989

Curt
Dave
Dave
Dave
Dave
Dave

G
PinkMania
4
3
2
1

addf;Xi GetOutOfHereO
changed AtO. HighBoundO...
changed MemberO
added MemberO
changed - TRowDataSet
new class

.:' .:.~~

:'-:--------------------------~>.

Figure 6. A modification date viewer displaying information about a
single component's versions.

Purpose

Input

Output

The Display

..
.:.:-:-:-:-:.:.:-:-:.;.;.;.

.. ...

'.:.:-:.:-:.:.

Selection Techniques Selecting anywhere in the line selects that version. Multiple versions can be
selected by dragging through multiple lines, or by extending the existing selec
tion.

Operations Any browser capable of accepting the selected component(s} as its input can be
opened, in which case the selected component(s) becomes the new browser's
input.

• Registered /Restricted hmps March 15, 1990 35-26



Class Ancestry
Viewer

~MKernelObject~~MBaseTask~~MTaskr
~TGraphTask

~ MCollectible~~ TGraphic

Figure 7. A class ancestry viewer displaying a view ofTGraphTask's an-

Purpose

Input

Output

)Hnnh:}}::::::::::::::f.\ny'.~ingleclass component.

tl~II;ll~'lllil.I.ljt

:::::\\\i{::: :-::.::::::::::::::::::...:.:....:.:....
. :::::-:.::::;::::::::::.:-.

. -: :.:.:-;.:..
..

• Registered IRestricted hmps March 15, 1990 35-27



Class
Descendency
Viewer

Purpose

[
rg rAxisX

[g TAxis --~>-~
rg TAxisY

~ TMarkerRectangle

[g TMarkerOval

rg TMarkerPlus

rg TMarkerTriangle

rg TMarkerOiamond

::.:.;:::;0":::::.:.:.:.:.;.:.:.
•...:;:;:;;:;:::::;:;:;:;:;:;:;:;:;:;:::;::>::::::::::;::;::}=:::::::: .

Input

Output ...:; ...•~•.•.••••••••••••••••..•...

Operations ·::<:Giv~iF~·::~I&t;dclass or classes, any browser or t~~{'&p~bI~:6f~~ceptinga
class or classes as input can be opened. Other operations are being considered
such as: modifying the class hierarchy, deriving new classes, etc..

• Registered/Restricted hmps March 15, 1990 35-28



Interface Viewer II'miiiij'~i:i'iSi··iiijliii·i.'liii'fjiili.·jiii~fj~j;jj:/\
..;,',:,.:,' TRowOataSet

class TRowOataSet: public TOataSet

.;...:.:.;.:.:.:.::.:-:-;:;::::::;:::.::;;....

Member" ".' . "'. . .
....:-:.....:.::-:::::-:.::..:::.:-.....At

... . .

Figure 9b. An interface viewer displaying an abstract definition of the
TRowDataSet class.

Purpose To display and pennit editing of the interface of a component.

Input Any module or class component.

Output Any selected component(s) in the interface.

Selection Techniques Any single component, or set of components can be selected from the class or
module.

Operations Given a selected component or components, any browser or tool capable of ac
cepting the component(s) as input can be opened.

'* Registered/Restricted hmps March 15, 1990 35-29



Implementation
Viewer

Purpose

Input

Output

Operations

Selected text.

RowNumber row - «(Teell*) col) -> GetAowNumO;
MCollectible* item;

_lflll\1I\111

• Registered / Restricted hmps March 15, 1990 35-30



link a6,fSFFF8
movem.l d7/a3/a4,-(sp)
movea.l SOOOC{a6),a4
movea.l S0008{a6),a3

Object Code
Viewer

Purpose

Input

Output

Selection Techniques

Operations:::::: co:::::::::::::::

~><\\\/{?n : .
"::::.::::=::::::::::.::;:::::::::::;::::::::;:;=:=:::::::~:~:~:}~:~

• Registered/Restricted hmps

move.l
Movea.l
movea.l
move. II

ext.l
add.l
llIove.l
llIovea.l
Movea.l
Movea.l
jsr

a4,-$0004{a6)
-$0004 (a6), aO
(aO). aO
$OOBO{aO),dO
dO
-$0004(a6),dO
dO,-(sp)
-$0004(a6),aO
(aO),aO
$00B4(aO)
(aO)

March 15, 1990 3.5-31



Pane Layout.

Viewer/Pane
Association

Dynamic Browsers
While hoops provides a set of "assembled" browsers, a powerful feature of
hoops is that the user can change the layout of any browser. Furthermore, by
saving those changes the user can modify existing kinds of browsers, or add
entirely new kinds of browsers to the interface. This gives the interface a
tremendous amount of flexibility and extensibility.

The feature of hoops that allows such flexibility is the treatment of viewers a~nd

panes as independent entities that can be connected to each other. In a nut
shell, browsers consist of one or more rectangular areas called panes, each of
which displays a viewer, and are connected so as to "drive" each other. The
'1ayout" of a browser describes the number and location of the panes, their as
sociated viewers, and the connections between the panes. By changing .......

.....

Connections O<:::::::j

Between Panes ° <:>'i:ripHffOHs:::Vi.ewer. Likewise, the output of its viewero:beCOmesthe output of
the pane. This extra level of indirection allows the pane's viewer to change
without breaking the connections established among panes.

The output of a pane can be connected to the input of another, thereby connect
ing panes together. This is done with a wiring tool similar to Constructor's.
These connections are "hot", causing the panes to "drive" each other dynami
cally. When the output of one pane changes, it changes the input of the panes
connected to it, thereby changing the data displayed in those panes. For ex
ample, consider a two-pane browser which connects a pane containing an
interface viewer and a pane containing an implementation editor. By changing
the selected component in the interface viewer, its implementation is immedi
ately displayed in the implementation editor.

• Registered /Restricted hmps March 15, 1990 35-32



The output of one pane can be connected to the inputs of several panes, in
which case the same input ""drives" several panes. This makes it possible to
produce different displays of the same input, all of which change when the in
put changes. The output of several panes can be connected to the input of a .
single pane. This allows for viewers that combine the properties of multiple
components (say, for a comparison tool).

-.:-:-:.:::::::::-:::::<:::::::::::<:::::::::::-:::::.:::
"':<:".;:>:::::;:<:::::;:;:;:;:;:;:::::::::::;:;:;::::,"

• Registered/Restricted hwps March 15, 1990 3.5-33



Syntax and
Semantic
Awareness

Source Code Editing
The hoops source code browser (which consists of an interface editor and im
plementation editor) differs dramatically from the text editors found in most
development environments, including MPW. A goal of the hoops editors (and
of all views in hoops) is to produce more readable and expressive representa
tions of programs.

In hoops, the text processing is much more like text processing in a word pro-~

cessor. This means there will be little or no disruption in moving documenta
tion between the hoops environment and a more sophisticated page layout
program, for example. Some layout information may change but the basic
stylistic and graphic content will be unchanged.

..
,".:-:.:-:-:.:-:.:.:. .-..

...-:.:.:-:-:.;.:.:-:.; .
....

The implementation editor is divided into different regions, as shown in Figure
12. Across the top of the pane is the interface region. It remains anchored and
is not affected by scrolling. The interface contains the name of the component
being edited in large letters, the component's interface, and the component's
description. The area below the interface region is vertically divided into two
regions. On the left is the margin and on the right is the main body. The di
viding line between these two regions can be moved by the user. The margin
only contains comments. The margin scrolls with the main body, and marginal
comments act as though attached to the corresponding text in the main body
(this is described more fully below). The main body may contain both com
ments and code.

• Registered/Restricted hQJps March 15, 1990 35-34



Mf:.glnal comment

~rlptlon

.'
Interface·······

....•.....

TRowDataSet::Member
:.... MColledible·TRowDataSet::Member( const MColledible·col) canst

........ ~jjjiliIj~~E!~mjmgj\Iffi§~j[iliit;e!:~[itt~[[[][[jtjj[ij[i[iI\i:[[j[jt[~~:[:::~[\::[i[[ii:[[ii[[

.'
..... RowNumber row"" ({TeeII·) col) -> GetRowNumO:

MColledible· item;

Main body

;11'"111Itlllillt'lll,r
::;::::::::::::

.:.:-:::::;:.:. ....
'.-.:-:.;.:.:.:..;.:-:.:-:-:.:-

~~~~ a

.....;:::::::::.;.:.. ments in a graYJis¥ground. Fill~~~~li9~stinctionis ~J~'BB§;H?l~; key-

..••••. i~;.;ti ;; ;It..,;~;~~g~~~~J'=t~:~~~'~liil'~:~~~;il"~~i!:~;~:, to
::HW///:>:)/::=:: ::::::::JnMsp.:t:Hs~m~¥9ra processors do for pr6~ii:i:i::::I::m::::::::::..;.::···;,·:··,;,;,;····:·:::··

···;':::··:·::·:::··:;':;:::::::·:·:::tt:t~·f~~~tant to point out that the visu::t;iji~:':61:Vi~weasourcecode is inde-

pendent of the source code itself, and in fact is a function of viewing the code.
Therefore, it is possible for different hoops users to view the same code, but
with different styles.

The set of visual styles associated with a programming language is defined in a
style sheet. The user can define his own unique style sheet, perhaps based on a
set of hoops-supplied style sheets. As mentioned, newly entered text remains
as plain text and is not formatted according to the style sheet until after it has
been successfully compiled.

• Registered I Restricted hmps March 15, 1990 3.5-35

Comments

Text And
Selection
Dynamics

hoops provides for three flavorS of language-independent comments.13 These
are private comment blocks, marginal comments and descriptions. Oanguage
dependent comments can of course be used, but do not share the advantages of
the language-independent comments.)

Private comment blocks appear interspersed with blocks of source code, as
shown in Figure 12. They are considered to be a single, connected set of word
wrapped lines, and may include pictures or other information, as permitted by
the Pink text system. Private comments are considered to be part of a compo
nent's implementation, and thus are not accessible to a user unless he has ac:
cess to the component's implementation (Le., source code).

Marginal comments are confined to the margin region of the view. Each
marginal comment is also a set of connected, word-wrapped lines, associated

:::::::::::::;:;::.; .

:: .: :. plock in the main body:p:fJhe source maY;·~Yi~·a·singlemarginafcomment at-
::((~:/:::: :... :~ched to it. The star~#g::Positionof the ~~:.ljdPe:k. js determined. py wm~hever

i!I''"lll~)IIl~li~~~:~~~~;:jSII~.;:~;.i~~~!'per of
·C6ffiffientS, both the block and marginal varieties, behav~::as>subtextsof the
code. Marginal comments are treated for the purpose of selection as being at
tached to the beginning of their associated main body. Thus a selection started

13. These are permanent comments. Temporarily commenting a section of code is
independently accomplished using the conditional mechanism provided by
hoops. By separating the permanent and temporary commenting facilities, it is
possible to comment out code while still retaining its code character and associ
ated. layout.

14. We will use a fairly simple line splitting algorithm for code similar to ones used
in many pretty printers, and also allow for soft returns for fine tuning. Baecker
shows what can be done with even a very simple algorithm.

15. A block usually corresponds to a statement for code, and a paragraph for com
ments. A block only contains one carriage return at the end, even when
wrapped, and might have been called a 1ine'.

• Registered/Restricted hmps March 15, 1990 3.5-36

in code and carried across a comment block will select the entire comment
block, and any marginal comments that are attached to selected blocks. A se
lection started inside a comment block and extended past the end of the com
ment will select the whole of the comment.

Typing in the main body of the source behaves dynamically in a familiar way
with text wrapping at margins and carriage returns starting new blocks.16

Block commenting is switched on and off by the same command key (which
also inserts a carriage return, so that code and comment blocks will always
consist of whole blocks). Marginal comments may be entered and exited using
the mousei or by using the arrow keys (remembering that the margins are
treated as text at the beginning of a block).

Cut and Paste

..:.:.: .
.".:-:.:.:-:.:.

The treatment of comments as subtexts means that a selection may consist of

:::::::::::::::::....::.:.: ..}.:\}){::
.....:.....:.:.:.:::.:-:

....
.... ..

.. ::::: :sentation of a..pmgram, along witKp~~:andrapid navigatlonaftools. Some
::·::::::·:::dd.. . :··0£ the th~n~ ygii" will be able to do witn.Ybur.source in hppps have no good
i!il••rntation. For example h~!!irksgq~iffiikemuch sense

Printing

16. Think of paragraphs in a word processor.
17. A comment could contain text which looked like code but it would not have been

parsed. by the compiler.
18. Text in the code does not get tokenized until the compiler has had a go at it.
19. And in any case if the marginal comment was required. it could be separately

copied.

'* Registered / Restricted hmps March 15, 1990 3.5-37

Getting From
Place To Place

References

Navigation
In hoops, your program consists of a collection of various components which
are themselves related in various ways. In the general case a component has a
source representation that is usually text in some langUage. There are two
types of navigation to consider: local and global (or inter-component versus intra-component). In a conventional file-based system local navigation corre
sponds roughly to navigating within a file, whereas global navigation corre
sponds to locating and opening files in the Finder or with standard file.

Local navigation of a piece of flat text is done in the same way as today, usingscrolling and searching. Of course in hoops even flat text need not be really
flat. For example there may be hypertext links in the documentation, and pos
sibly outliner-like text #folding". Remember though that the need t() ..§f!pJt~nd

>:-:.:-:.:-:- .

In addition to the use-to-definition capability, other navigation tools may be
invoked on the selected component. These tools will build a component list
that will be shown in a browser much like the class editor, except that the com
ponents listed in the top pane need not belong to the same class. The currently
planned tools are "References to" and '1mplementations of". For example, if a
member function is selected, the user may ask to see a list of the places where
this member function is referenced, or a list of classes in which this member
function is defined. The results will be shown in a component list browser that
has two panes. The upper pane will list the answers to the query. The bottom
pane will show the implementation of the selected item. For example, if the
'1mplementations of" tool is invoked on the selection of this->OrawO, all classes
that implement Draw would be displayed in a component list browser. The
items in the list can be filtered, by selecting an icon in the icon bar, to show

• Registered/Restricted hCDps March 15, 1990 3.5-38

more or less information based on type compatibility, base classes, or derived
classes.

The state of these browsers may be saved (and probably annotated) for future
reference.

• Registered/Restricted hWps March 15, 1990 35-39

User Scenario

To help visualize the way in which hoops is used, we will go through a small
user scenario. Suppose there has just been a major reorg~nization(which never
happens at Apple) and you have been assigned to work on the Tuffy team
(Tuffy is a charting/graphing application under development in the Pink Ap
plication Group).

You decide to browse through the program to try and understand how it all ,
works. When you open the Tuffy project, you see a tree view of the compo
nents that make up the entire project (Figure 13). The tree view shows that
Tuffy is composed of 5 libraries: Graphic Elements, Data Elements, Views,
Files, and Application. The Tuffy project also references the Pink Interface li
brary. (This project organization has been created by the Tuffy team. hggp?:::<

,111'lilf:~:s~~~~~~~~iillijJ'ijfiay

.. ru :.;.:.; .
......... .::::::

.:.:.:.:.::::.:::;:;=;=::.::::::::::::::::.;.

Figure 13. A first level structural ovetview of the Tuffy application.

Being new to the Tuffy project, you decide to explore the Data Elements
Library, so you double-dick its icon. Then you decide to look at the Cells li
brary, so you double-click its icon. Oicking Cells causes the tree view to ex
pand and show the contents. The Cells library contains 5 component classes,
as shown in Figure 14. There are a number of questions you might have about
the classes in the Cells library. For example, you might want to look at class
definitions, examine class hierarchies, or see how the classes are used in the
project. These (and other) operations are available from a context-sensitive
menu. Whenever you make a selection in hoops, you may invoke a menu that
will contain operations that are applicable to that selection.

• Registered/Restricted hmps March 15, 1990 35-40

Q) Data Elements

lJ DataSets...

1
[g TDataSet

[g TColumnDataSet~

Ql Cells [g TRowDSIaSeI

. [g TTuffyDocument

[g TValuelterator

.•••• .·.···i;t~~,~::;;~':,'~411:~::h~I:~.1_1I!~o:~~~~ea~li1ir: ~:'c~.s
.~!!lfi._f~:7~: ~;:~~n Men\.¥0~i:: imPle1il~~~ls shown in

At this point, since you completely understand the TRowDataSet class, you
could make a change to Member, and then accept the change and run the pro
gram by clicking the run icon. This would rebuild all components in need of
rebuilding. (If you changed only the body of Member, and not its interface, then
only Member would need rebuilding.) Or alternatively, you could continue to
browse using Member as the starting point. Looking at the implementation,
you see that IsEqual is used, and you would like to know what other functions
call IsEqual. You select IsEqual, and invoke the selection-specific menu20, which
now lists items such as "Implementations of" and uReferences to". Selecting
"References to" brings up a browser that lists all functions that call1sEqual.
Using this new browser, you can navigate to other classes and member

20. If you're asking yourself, "what is a selection-speeific menu?", look back on
page 22.

• Registered /Restricted hmps March 15, 1990 3.5-41

functions. In this manner, you may explore interactions between the compo
nents in the entire Project.

'-:.:.:<-:«:;:
:::::::::::::;:: :'. ".:." .

OJ DataSets...

~ .i·Sm-ii'
~ TColumnOataSet

-_._------:- ..:-:--.:,.»:,.:-:-:--_..-.._~-.-.--~--~----~~~~~
:::::;:;::::::::.-:-:-

iliilll!ljjli\;;~ft;~;;:i~ll;~~;~.!~~~I~he
'ffie::oomporient descriptions in the Tuffy project withotiFoperrlng interface or
implementation viewers on each component. SupPOSe that hoops does not
provide such a browser. You will need to construct the browser yourself. To
do this, you could open an "empty" browser, split it into two panes, install an
organization viewer and a description viewer, and then connect them together.
You now have a new browser that displays the descriptions corresponding to
the selection in the organization tree. Using this browser is no different than
using browsers that come with hoops, and in fact could be saved as part of your
hoops user interface. Figure 15 shows how your constructed browser might
look after selecting the TDataSet class.

'* Registered /Restricted hmps March 15, 1990 35-42

Program Management

Projects

Your Program is
Your Project

In hoops, Program Management is meant to cover all aspects of data associated
with a programming project, including documentation, source, objectcode and
dependency information, and how this information is used to control the build
'ing of actual programs. Thus program management in hoops covers topics that
were handled separately by Projector, make and the C preprocessor in MPW.

Projects A hoops project corresponds to all the information associated wit1':9?:n~tructing

iI111IRI_.,::y'::~~~:~:~;~~~~~tt1f!j=~~~~%:X-
i~~~wurr~h~~

/[{::{:" Multiple projects may be opened at th:~Jmm~:)!mfWandyou will be able to
'.:.:.:-:.:.;.'

::~:~~~~~~~~?~~~~~~{:;:::::::;:::::::::.::: ...:.:...,."

...... . :.
..

............ , .

. .

···:··::::recf(y incorporated in the program image. Embedd&flibraries are pieces of
code that become physically part of the program image.

References to shared libraries will cause rebuilds when the library interfaces
change, but not when it's only the library's object code that changes.
References to embedded libraries will also cause rebuilds when the object code
of the library changes.23

21. Although this may result in some context-sensitive information (such as object
code) being lost.

22. It may also be necessary to allow mixtures of shared and embedded.
23. Within a single project any references during any rebuild are to a specific version

of a referenced project so rebuilds are deterministic even when circular refer
ences exist among projects.

• Registered/Restricted hWps March 15,1990 35-43

Stationery
hoops follows the Pink model of stationery pads as the starting point of work.
This works very well, since in the Pink environment, program projects always
start with some framework which depends on the type of program24 being
constructed. For example, a Pink application always starts with the application
framework. A program that conforms to the application framework but which
does nothing is the empty application and is ultimately the starting point from
which all applications come. This is what results when an empty application is
llpeeled off" the application stationery pad. This empty application will be
fully documented as to how it is expected to be specialized, and serves one of
the roles that sample applications do in todays world.25

....-:.;.:.:-: .
-:-::::;:::::: .

..-:.;.:-:-:.>:-:-:.:<:;:::::::::..:-> .
.....:-::..:::::::: - .

24. Programs are applications, libraries or any other executable entities.
25. This does not completely do away with the idea of sample programs since these

demonstrate ways of adding more functionality.
26. See the next section.

• Registered / Restricted hmps March 15, 1990 35-44

Publishing

Publishing Is
Not Just
Copying

While you are developing a program, hoops will be cooperating with the Pink
runtime so that you don't have to undergo a full load and dynamic relink of
your program27 after each rebuild. Because of the way hoops accomplishes this,
and also because of the requirements of incremental compiling and linking, the
object code of your program may not be always packed or arranged most
optimally. Also your program as far as hoops is concerned consists of ev
erything, including source, that you have been using to construct it. ~

What this means is that hoops needs to be able to publish a program. When this
happens hoops will rearrange and re1ink all the object code, and strip out any
private data associated with the program. Thus hoops provides an automatic

Private data ;,jilllllllll~~g~g~it!~'f~~§~~il1
:::::~::::::;::- implementation hidden. In still othe~Aiwj~~y§p]]paywish to make some source

':'::::::~~~~}i?{~I)fi~:~:~:::'::':::"::;:':::::::'::::;::::::.:.-, ..

..... ::==\{::;:;:::;::;:;':;
.......;.::::::-: :.:-: .

:-:.:.::-:.:::::::::::::::::;:::::::.:::::.;.:.

"-:.:-:

.:.;.;

..
":::::::;::?:::}:;:;:;:

27. With the Pink ROM libraries for example.
28. We are not addressing the specifics of whether the developer interfaces to the

Pink libraries are actually part of the ROM image or are physically separate and
only conceptually integrated.

'* Registered/Restricted hmps March 15, 1990 3.5-45

Conditionals
Are System
Supported

Conditionals
Are Just
Liberated
Comments

• Registered/Restricted

Conditionals
In traditional environments, providing for conditional compilation is usually
handled by written instructions to the compiler. These are in the fonn of some
meta-eompiler-language.29 This means that conditionals can only be known to
the environment in a very limited way.

hoops needs to have much more knowledge and control over conditionals in
order to track dependencies and correctly automate the build process.
Furthennore the traditional approach leads to a multitude of individual solu
tions, one per language, in a multilanguage environment.

hoops provides environmentally supported conditionals, via a direct manipula
tion interface. The hoops approach is uniformly applied across alllan~~g~~in

'peri<fertcy-'mechanism. When a condition is true the condItIonal text is visible
to the compiler, and when the condition is false it is hidden. The visibility for
the programmer is also controllable. Each conditional can be enabled or dis
abled much like enabling or disabling a font style. It is possible to view the
source with any number of conditions enabled, including all and none.

Conditionals can have different style attributes attached to them. For example
it may be that a common condition such as Udebug' might be associated with
red text (or background) and that when code is being viewed withdebug' en
abled, all the debugging code would appear as red.30 Figure 16 shows some

29. Preprocessor instructions in the case of C and C++.
30. "1 see red, I see red, I see red" - Tim Finn. Sorry, I couldn't help myself.

hmps March 15, 1990 35-46

code with conditional debugging code (unfortunately not in red), with the flags
appearing in the margins.

~ili~~ili~@?imillmm ~ilig_1t~~~~~1~!~]@ili~mmEmmm~~~ill~~ilimm@~Itlli
RowNumber row .. coI->GetRowNum();

~~mK&WMHill@f ~11li'1111~ljl~I~~lllii1J~~I~J~~j~~l~J~~I~~~~~~~

1!l11'1111I1I1":-~j~)\lem)
retum (NIL);

.,-:.:.:,:::::.. li_I3.I:==========illllL:=========Eillll~~ ~

•....•....,•...••:;: >::::;:::::::.:.

Adding New
Conditions

Switching
Conditions

You can switch the state of a condition at the component level and also globally
at the program level. You can also affect a collection of components, for ex
ample, a complete library. The rule for this is that switching the state of a
condition causes that condition to be set to the same state for all contained
components.

• Registered IRestricted hmps March 15, 1990 3.5-47

Building
Different
Configurations

Making a change to the value of a condition on a component is considered a
change by the dependency mechanism, and will trigger a recompile for that
component on the next rebuild, provided its state has changed from the last re
build. If the state is the same as at last rebuild then that component is not re
compiled even if the state has been changed many times.between the two re
builds.

• Registered /Restricted hmps March 15, 1990 3.5-48

Versions and
Configurations

Configurations
Each component may have any number of versions. A version of a component
corresponds approximately to a saved version of.a file in a traditional system.
A big difference is that hoops keeps all old versions (at least until you decide to
remove them, or run out of space). A version corresponds to the state of a
component at a particular well-defined time.

The set of versions of components that go to make up the state of your project
.at any given time is called a configuration.31 hoops records the configuration of
your project (usually automatically), and this can be thought of as a snapshot
of the entire project's state at a particular point in time.

.It;;I;_'~i~\li.j~~:~a:~~~::;~rn~t~~;~iil1rh:~:ts
.Jlj;I'lill,••I~!7-~:~,f~~:;'jil,,~:~~a~~a~~gfUI

:.:::-:-:.:.:.- .

~~~~~~~~

i~=:$.'*"
::::::::::.lfC--_.r-.

......
...........:-:-:-::: :..-:..•... -.

. ". ':':::::'::::::::':::~:::::~:~:::~:~::<{:}~:~:>?}>::::;. ...
..... ;.. ;,::c::·;':;':::::::::::::::::;::::Figure 17. Configuration· threads for cI i ffpT'1pfif;:'ht:Iilt1F~:

In the model being described you never directly save or delete a version of an
arbitrary component. Rather you always deal with a configuration.32 A ver
sion of a component is never saved without saving the configuration in which

31. There is another broader usage of configuration, namely a set of rules that can be
used to describe a set of configurations in the above sense. Expect terminology
(and even concepts) to change in this area.

32. In addition to manipulating configurations of versions, whatever Pink provides
for versions, including the human interface for manipulating them, will be what
you'll get in hoops.

• Registered IRestricted hevps March 15, 1990 35-49



that version exists. Of course if you change just a single component and then
save the configuration, this is much like saving a version of the component.33

Figure 17 shows a project that initially consists of three components (what they
are doesn't matter). These are version 1 of each of components A, Band C
which together fonn Configuration 1 of the project. A and B are both changed
to version 2. Configuration 2 then consists of version 2 of A and B and version
1 of C. Configuration 4 shows how it is possible to add a new component and
revert a component to an earlier version.

You may inspect the version history of an individual component. You may
even choose to revert to an older version of the component. This results in a
new configuration, but of course since configurations are saved this leaves the
previous configuration accessible. Since you may only work on one configura-

:-:.;.:-:.:.:.;.:.:.:.:.

...

....:.

..;-:.':::::.; :.: ::::::::: :.::.:. :·:·:·;·::)::~r::t\}?;}~{::::::::··· ··:::::::::{:{:{mr~:::}r:...... \'.:. :<:;,:::::.~:/:::(:::::}:::-:.'
'-:-:::::':::-:.:.:.:<:-.:.:::.:::.:,::::::::::.: .....:-;.;.:-:..... . ..•••..

Undo

Configurations
and Branches

33. hoops does not actually resave all the different components in your project if they
haven't changed. hoops does save the changed components and the configura
tion information that allows the correct set of versions to be accessed when re
quired.

34. Changed components have generated new versions which are recorded in the
new configuration.

.& Registered /Restricted hCDps March 15, 1990 35-50



Automated
Builds

How?

The Build Process
hoops is an incremental system. The level of granularity of an increment is the
component. This is somewhat similar to a traditional file-based. system, where
the increment size is the file. Of course hoops is also nothing like a file-based
system, because all the information necessary to track and control dependen
cies is stored as an integral part of each component. hoops is not continuously
rebuilding, but only rebuilds when asked to, exactly like a traditional system.
The difference lies in the amount of work that occurs at rebuild time.,

hoops will do its best to minimize the amount of reprocessing after any changes
have been made in the program source or in persistent objects associated with
the program. Thus changing the implementation of a function will result in an

}}>}::::~::::::

times, for example if the change has been just to the implementation of a func
tion, this will not be necessary. If a change has been made to an interface of a
component that is used elsewhere in the project, then, unless appropriate edit
ing changes have been made already to the component's clients, compilation
will just result in compilation errors in the clients.

If all changed or dependent components compile correctly, then hoops will au
tomatically relink any code that has changed. Once again the stored depen
dencies are used to minimize the amount of new work done by the linker.

35. Of course you will usually have edited all these users anyway to avoid generat
ing errors.

36. And of course inline getters and setters break encapsulation all over the place.
37. Although, for example, hoops will know when a change is just to a comment and

will avoid rebuilds in this case.

• Registered/Restricted hmps March 15, 1990 35-51



Error Reporting In the best of all possible worlds you would never make mistakes, and so
would not need to consider how to handle inconsistent and incomplete pro

. jects.38 However at least some of us live in something short of utopia and so
need to consider errors. .

You might for example reference a variable or function that does not already
exist or is not visible from your source. You will sometimes make syntax er
rors, and sometimes you will forget to update clients of a function whose inter
face you have just changed. When you try to build a program with errors,
hoops will mark your source at the location of the error, so that you never have
to match errors to files and line numbers. You can think of these error markers
as being sticky, something like markers in MPW.39 You will be able to access a
list of all current errors and navigate directly to the location of any error. You
will be able to validate errors individually so that they are removed from the

~lillllllll"rru=nt e~rs is mrnpletely

.:.:.;.:-:.:.:::":":"::..::}".,

'.':.:-:-:':' ..
..... :.: .

38. It has been noted that this would not actually be the best of all possible worlds,
since it implies that we have to leave our projects in a consistent state before
leaving work each day.

39. The exact appearance of error markers has yet to be determined, but you will
have direct access to the corresponding error message (without having to match
error ID numbers to lists in some book).

40. Of course its up to you whether you actually correct them.

• Registered/Restricted hmps March 15, 1990 35-52



Importing

Exporting

Importing and Exporting
hoops will provide at least a simple form of source code importation. Since
hoops represents programs in a database, code produced in other environments
must be imported into the database. The easiest way to import source is to
convert the text files into hoops file components. Since there is an exact map
ping from a text file to a file component (the only difference being that the file
is an operating system object, while the component is a hoops object), it is not
necessary to modify the source code in any way. Of course, file components
make only limited use of many hoops features, so it would be nice to convert
source code into program components of finer granularity. Unfortunately, this
may not be possible for all cases without programmer modification. The
problem is that it may not be possible to map all external source files into hoops

!lljl!!llllll.;;i~:~~it'i!~~~~~f~!~

:<.:-:-:.:.:.:.;.:~r:··
......

....••.•..........:..<:-..•::::::<::<::;:;::::::::;=:=:::::: .:.:.:
.:. ::'::::';:'.:.:::.:::::;:::::::;:::;:::~:.::::'::~: ~:~: ::::~:~:~:);: ~~~~~~r~~{}: .:.:::···~~:)::Uf~·:··

.......:->::::;:::;::;:::::::;::::::;:;;::;:::;:;::::-:....

41. In particular, certain uses of the C++ preprocessor.
42. Assuming they support the same version of C++ we do.

I~ : _:-> ..
::::::::::::-:-:::-::;:::

• Registered IRestricted hmps March 15, 1990 3.5-53



What Is
Collaboration?

Collaboration
Collaboration in the hoops context means support for team programming. We
want teams of programmers to be able to work on the same project with hoops
keeping track of who is changing what, while making sure that changes don't
get lost or out of synchronization. This certainly implies that a master version
of a project is kept somewhere. A user may have the illusion that they are di
rectly accessing the information over a network but almost certainly they will
be mostly using a local copy of the information. Sometimes they will want to
actually disconnect from direct connection with the master copy but still con~
tinue to work on the project remotely.

Pink Itself Is
Collaborative

hoops intends to make heavy use of the basic facilities in Pink to accomplish its
aid for team programming. This will be done in a way that should be trans-

.:-:.=::::::::;::.:.:.;.•.•....••..;•..•.•.•...•

":-:';':'::::::::::::;:;:}::;:;:;:-:':::-:- ....

... ' a collection component sffi)ijtd gain contiafofmf~t~·usubcomPOnellt&~~···

. ::.: .:': .:.' :··.:·However does this impl}f~)iat if someone:h~~f~~tf:o.iof a single "suocompp-

I~lr;lliliiii~~:::=n~~fo~~li~[~jil"4~eSO'
..,,:.::":::::;:;:::::::;::::;:::::;:::{::::;::: ::::::::::;:;:;:;::::::::::::::::"."

Users sharing work should be able to communicate with each other. Again this
is expected to be a system-wide Pink service and hoops will use whatever sys
tem model is decided upon.

43. There may be many files in a document, or many documents in a file. The later
case is the one most relevant to the hoops model of a programming project.

44. In Projector the level of granularity is the file, even when the unit of change is
much smaller. This has the disadvantage of locking up much greater portions of
a collaborative project than are necessary whenever a change is being made.

It Registered /Restricted hmps March 15, 1990 35-54



But Won't It Be
Hard?

We want gaining write control to be much more direct than is possible in
Projector for example. For example we want an individual user to gain the ad
vantages of a versioning system without having to be concerned with collabo
ration.45 We also want users in shared projects to work as much as possible as
individuals, becoming aware of the collaborative.nature of their work only
when hoops cannot automatically "do the right thing' or where explicit choices
need to be made. It should be possible to see the lock state of a component at
all times in a joint project shared over a network, and it should be possible to
just start making changes in a component if it is not locked, without having to
go through a question and answer interface. hoops should take care ()f locking

. the component and transmitting the new lock state to other users. Only when
a changed component is being "checked in" is there need for a user to be ex
plicitly reminded of what is occurring and to back out of changes if desired.

~~~~~~oW:,llllltll~:;:::~~:alt~~f~~~::~~:k
:::\\/ write control and to lock these until th~tPt§iffi\::~$.xrtheckedin". This will prob-

:=\:m:i} ably not work well in practice howeYifj:mnl::~~::t&]uirestoo much fore-knowl-
...::::::::.: edge on the user's part. Thus we n.~::~ntj~&W)iuser to take write control of a

.:-:.:-..
:::::::

.... ::::::}~:~ .:.:-:.;.»:.:-:.:.:-:

45. In Projector these two functions are mixed.
46. Of course the first user to "check in" cannot know about the other users unless

they explicitly requested write control.

'* Registered/Restricted hmps March 15, 1990 3.5-55

Inspecting

Debugging

Debugging in hoops is accomplished using many parts of the entire system
rather than invoking a special debugger. Support for inspecting data, control
ling program flow, monitoring progress, etc., is integrated into the environ
ment to simplify the process. These functions are performed by pointing and
clicking. Typing is used only for entering new data. In addition to the stan
dard debugging features, hoops takes advantage of its knowledge of program
structure to support program analysis tools not typically found in other envi
ronments.

Inspecting program data is a major strength of the hoops environment. The

a1£L~l~:€~~Eili~~;~~

TSurrogateTask
TLocaISemaphore
TVIeW
TCachedSeed
TUpdateRegion
TSeed
TSeedRegion
Boolean
B()Ok}an

fCurrentTask
fUISemaphore
fCurrentView
MewValid
fUpdateRegion
fOirtyVaJid
fOirtyRegion
fUpdating ... true
f1nterior - true

:.:-:-:-:.:.:.:.:.:-:<.:.".
::::<::::::::-:-:-.. ,-:

Figure 18. Two inspectors: one showing the contents of the user's stack;
the other, the contents of an instance of a lViewPort which was referenced
on the stack.

• Registered/Restricted hlVps March 15, 1990 35-56

Another method uses more of a browser approach to data display (see Figure
19). Separate panes showing stack, stack frame, source, etc., are connected to
gether to provide a POint-and-click method of displaying the appropriate vari-
ables. .

point 23
index 14

....:.:..:::::.;.: ;. .

::::::::::.:.i::J)i~ii:I:mnt::::·....

:-:.:.;.:.; -.. :.:::::::::.:.:.'.;.:.-.:-:

.......:.:. ({:::::::::::::::;:;.:::::.:::

:-:.;.:.:-::>:::::::::::::::::::.:.:.
:;:;:;:::::;::::::::::::::;:::::::

Figure 19. A stack. browser. Separate panes display the stack, stack frame
variables, and the source context for the selected stack frame.

Also under consideration is a technique which displays the values of scalar
variables directly in the source adjacent to their use or declaration. Structured
variables, such as C structs or objects, are displayed by selecting them or their
reference in the source and then invoking a "Get Info" tool to show their values
in a separate browser.

Still another method uses what we're calling a Data Connectivity Browser. This
tool initially displays a browser with a rectangular graphic representing the
stack. The graphic contains a vertical list of the current stack frames and can be

• Registered / Restricted. hmps March 15, 1990 3S·S7

Control Flow

Debugging
Language

Analysis
Features

moved about and placed anywhere within the browser. A frame in the stack
object can be double-clicked to expand in place, revealing the names and val
ues of function parameters and local variables. Variables which are pointers
can be doubie-clicked to produce additional rectangular graphics in the same
browser, displaying the contents of the objects pointed a.t. A line with an arrow
is drawn from the pointers to the new graphiCS showing the connections. All
new graphics thus created can also be repositioned for a more pleasing display.
Double-dicking a pointer that is currently displaying its contents removes that
graphic (and any that it was pointing to) from the display. Appropriate
navigating tools such as zoom in/out are provided to assist in dealing with ~

large amounts of data displayed.

The hoops environment supports various types of breakpoints, stepping, and
tracing. Breakpoints are set by pointing at the source location where the break

'\}:::::::. '.:-:::::::;:::::.:.
:.;.:;:::::-:.:.:{\{ :-::;::::::::\{i((::;:::::

............-: ..<:>:::::;:<•.•.•..•;.:.•.•...•......

···:Th~:h~p~::~;~temwill not provide a separate debug~~~::i~ri~~ge.Actions
such as inspecting, setting breakpoints, gathering statistics, etc. are performed
using the mouse. Occasionally, however, a more sophisticated form of debug
ging, such as automatically taking some special action every time a breakpoint
is hit, is useful. To achieve this type of functionality the user will write break
point action code in the source language. This code is compiled independently
of the source, but in the same context of the breakpoint and executed when the
breakpoint is hit.

Beyond basic debugging features, hoops provides facilities for gathering and
displaying additional program statistics. Some items currently being consid
ered include the display of sizes, both source and code, frequency of execution
information for detecting heavily used code, and instruction execution times
over some range of source.

• Registered/Restricted March IS, 1990 35-58

Machine-Level
Access

Graphical displays of system and program infonnation will also be provided.
Some of these displays may include team/task hierarchy diagram, heap usage,
message traffic, performance information, etc. There are many other possibili
ties given the hoops architecture.

Even with the greatest symbolic debugging facilities, it is still necessary at
times to deal with the program at the machine level. hoops provides displaYing
of assembly language for any function and will allow the setting of break
points, stepping, etc., at this level as well. Displays of registers and uninter
preted memory will also be possible.

Remote
Debugging

While the value of this feature is clearly understood, little work has been done
in this area to date. Whether this capability exists in the initial release of hoops
or not, some of the architecture to support remote debugging will be in place.

il;~'lil&'_iEt~~~1:'7.;:~ifl!!!~~~=~:-

~~~n :~g
:oO.;.;.:.::::: acted upon when InspectIng, settingiijr:~~IP9.}n!$, traCIng, etc. The more dlffi-

.:::::;:;U:::::::::;Um::n:HH¢:~~t:PP'~§._~nclude: monitoring m~§jg~:::~!~ftf.Pntrolling several executing

~:~::t~~ilt'tt~:~~~~lillli~eb~~~~lI'ifl';~:
might do indu~n~l.iminatingcoq~b?#:;:YJ.n,-plesknown ng~::¢E*{f¢¢~thefinal

:;:::;:::,,{\;::;:;: : result, moving;:!nYihi.ant code out·:qtJ~p~r9?:mbiningCOm9!t£9f.le, reusing
:::.:::.....:;::?? .... :;:}H:::H:;Ht~gj~.~er~.~n9~~ea to variables whei+:m~Hy~pleis no Iq#~tJ1~ed,etc.

.. ·······:·:·:·:···:·:·~>::::::::::::;~~::~::}i):::: :}:::<{{~~:~::::.:., -:::::::::::::::;:;:;:;:;:::::. ....

;'·;'oO:;'··:·::M~PI"irig::i~om source to code and vice v~:~oOril-.lm9ifficiiH~ven some of the
... optimizations mentioned. One-to-many mappings are possible at times and

hoops will need to inform the user when this is the case. Stepping though a
routine may be on a larger than single statement granularity at times, and this
will also have to be represented clearly.

Inspecting the values of variables, locals in particular, can be somewhat tricky
also. One problem is that the value of the variable may not always be available
at any location within the routine. In these cases hoops will inform the user of
this fact rather than give incorrect information.

ModifYing the values of variables in optimized code, again locals in particular,
is especially problematic, and at times not possible. Unless specifically de
clared as volatile, the compiler "remembers" values assigned to variables and
may use the "known" value later in the code without rereading the variable. A

• Registered/Restricted hlDps March IS, 1990 35-59



change in that value ~'behind the compiler's back" could produce erroneous
program results.

Fine granularity source level debugging with an optimizing compiler is gener
ally an unsolved problem. A number of ideas are being considered for dealing
with these problems. Disabling optimizations during development may allevi
ate some of the problems. Since hoops is an incremental system, another ap
proach when encountering problems with the optimizer is to just add diagnos
tic code and recompile the function in question, especially if we are able to link
the altered routine into the running program.

• Registered/Restricted hmps March 15, 1990 35-60



What Is
Constructor?

Constructor

Constructor is the user interface design portion of hoops. It is used to create
user interfaces for Pink applications <e.g. windows, menus, dialogs, alerts}. In
Pink, it provides many of the same capabilities that ResEdit and MacApp's
ViewEdit provide for the Blue world. Constructor provides three essential ca
pabilities within hoops: general resource editing, user interface layout,and test
ing, and inter-object communication.

Within hoops, Constructor allows the user to edit icons, internationalize text
messages, or to edit any other Pink resource.47 In addition, Constructor is
used for user interface layout. Examples include setting the on-screen location

ililII1i1lr••rf~~rr~~~~::,r:::':~I.~l~::;ra~~i-
:~:::Imt~[I~jI:pmfYf:!,~!~:s~~1_91wj~pfresources called Par~:::R~!~!:::~~mprprovideorganized

il'llt;i11t;1~W'i".'j~~=~:~:~~~tlllli~f~~~~~::~npaths
;::::::::::::::

.:;:::::::;:::"

.;.:.:-:.:-:
'-:.;.:

...............:-:-:;:;::: ....
:-:.:.;.:.:.;.:.: ;::){?((:)<::':':"';

:;:{::=;: ::::~:::::;::::::::::::::::::::::::::::::::-:-: ...:., ..

What .:::::::::::... There are many985 of probl~J.m::!m!!~:¥P9.structoris simply@@~.9#signed to

C t £:::::":y:: address. The l~g!ffi.~.)dassis that::Q.IJP.#!:1r~rn1Suser progra~.p'..gp.···.f:e..·••.·t\.:v.:ironment.ons ru.ciot.:'.ls}::: .... .... . ..

Not "'~~;i!i!i!iii~!rEi::~~~!t;Ii~;ii.~~g::~~-
..'ronment than can be expected of an end-user. " ..

When creating an application's user interface, no source code will be produced
by Constructor. This avoids a major problem encountered in current prototyp
ing environments: once source code is generated, further changes must be
made to either the source code or the prototype, but not both. Thus, Constructor
should not be confused with "one-way" prototyping environments like Proto
typer, AppMaker or even some aspects of the Ne)(TfM User Interface Builder
which convert application prototypes into source code, but cannot propagate
source code changes back into the prototype.

47. We consciously use the term resource here as a reminder that these entities are, in
fact, the Pink equivalent of today's Blue resources. Pink resources are essentially
just object instances stored on disk, or persistent objects.

• Registered/Restricted hmps March 15, 1990 35-61



Representation
of Resource
Elements

..:.:;:;:;:::;:::::::::::;

The Foundation

Many of hoops' powerful features are possible because the source code that
makes up a project is understood to be a series of interconnected components
and properties. hoops understands the resources (windows, dialogs, alerts,
menus, icons, etc.) that make up an application's user interface48 as a series of
interconnected resource components and their associated properties. Resource
components are a specialized type of hoops component designed to manage
information about Pink resources.

Resource Components

::::'.:::~'::':-~".:. : C{}IU;triictor:is.d~sign&r to manipulate resot.i~~·.C~ricresou~ce:C()mpo-

···········.I.,.~~ma;,:::~ro~i~o:~~~'i~1f~rjlylf~~~=~~r
allows the on-screen location and appearance of user interface components to
be modified and tested.

The resource components designed in Constructor are eventually stored as
persistent object resources within a fork of a finished application. Either hoops
or, more likely, the Pink Toolbox will provide some sort of "Resource Manag
er" for instantiating and flattening these persistent objects. This is analogous to
the way MacApp (along with the Resource Manager) provides for instantiating
and flattening view resources today. Often a set of related resources must be

48. User interface in a broad sense-essentially all of the flattened object equivalents
to the "classic" resources in the Blue world.

• Registered/Restricted hlDps March 15, 1990 35-62



instantiated together. Constructor can bundle together such resources into a
Resource Group.

Resource Component Properties

Resource components have many of the same properties as code components
(some with slightly different interpretations), plus several additional property
types:

Generic Properties

Clients Components that explicitly reference this object.

.::

: ..:::t.:(::.::::•..•:•..f:•.:.••:•.:~:l:.·.••.:i:,.:.•.·.•.•••..••·:.••.1::·.:•.•.·]:::.•·1..•••.••..:[..i.•.•~..•lnet.I.!l..;t..I,..r.~•..,•..r.ll..i:.r!.i.•.•..•:.·.:·:••.•..•::.••.·:[•..•••:.••.·1:.:•.:••::.·.•i.:.·!:.•.•:..•••..j.•..•:••:.·.:.•.;•..••..•:·:!•..•••..•:1:••:.•;..•.1.•.;:••...1:1.•.••..•

1

.::.1:.:.]::••..'.:.·.i:'iJ~;,ponents that are expIi~lI01&!jP~;this ob-
'- ~~ Resource group s~.II{I:;:~ject.

.:::{:!!!i:i!i!!!!!:!!i!!~i!::!!!!!ii!!!:i:::i!!ii!::::;:;:'

Additional Properties

Actions

:::::::::::::::::::::::~:~:::::~:~:~:~:~~~:~:::::::::::

Responses

:::::::::!:.-:)n::)::?·:=:·::.::::: ...::··:·:':'·<'=:::-:<.:-:.::.<.:<::::<tj:ijj!}):::==:·
..... ·:=:;);\S¢.tl.ij~ti·::·::-:··

Targets

Connections

Superview

Subviews

The list ~j!:.i~~.:~nd their da~:::.WtMta con
nectable cohlP§tWn!!pbject undet~f:##:g§~::W::<:

...:::::................................ ..:-:..:::;..-:.....................•....
.....<:::::::::-::: .... - .:.;.

Senders of mes~:g~::tgt:~h~~:9~jm=U:::
-:.:-:.::::::::: : .

Targets of messages sent by this object.

The list of connections (message paths) originating
from a connectable component object.

Superview, if any, of a view-derived component.

Ust of subviews, if any, of a view-derived component.

Exactly how these properties are managed and manipulated will not be dis
cussed in the ERS. However, the above information is presented to further
elaborate hoops' underlying component model and how it is used by
Constructor.

'* Registered/Restricted hmps March 15, 1990 35-63



Presentation of
Resource
Elements

Constructor manages two different types of collections of resource data:
Resource Groups, a collection of related resources typically found in applications

. and libraries, and Parts Bins, a library-like mechanism for organized storage
and retrieval of reusable resource components.

Parts

:-:;::-':';".:
:.:-:::::::::-:;.:-:.:-.....

............

D utllity ....1000.....

o Plain Oialo<j

Basically, a part is just another name for a Pink resource, both basic building ~

block resources <e.g. icons, text messages, controls, scrollers, windows, menu
items), as well as resource assemblies designed and saved by the user <e.g. OK
button, standard Edit menu, Save Changes alert). We find it convenient to use
the the term part when referring to the resources found in a Parts Bin, so as to

):::::~j::j(

illli'l\::':"".::.::: :- :-.. ...::::.:..::: ::::::::~.:.:..:..~:~::.:::..~::.:..~:.:.~.~..~..~j~.,;il"l~~~f ,/':::;.::::::::::::::;;:/::::::::::::::.:.:. . .
-:-:-::;...... . . :::::::::~:})})}}~{:}~\.:::::::.:. ..-

····;.·:«::))·..%:.::.·~~ ..·pii't~gi·~ ~ .
j\~1it.~ttm~~~~~f.&~m .
jj~~lm:~~il?#1.{.$ .

r.&~a .K,%t~f.~~¥]~~i~

1~~~!l111;:f@J1mf~

t~f:~~*~iJl~~m~E~t1~
!1§~§;~~11:1tw~.I]

tti1t~Wgj~~~~11

#~%1.r~:mt{f:%tj~W

Figure 20. A Parts Bin browser and a drawer's contents.

'* Registered /Restricted hlDps March 15, 1990 3.5-64



hoops will ship with a Standard Parts Bin containing a useful set of Menus,
Windows, Dialogs, Alerts, Controls, etc., so our users won't have to create their
user interfaces from scratch. This standard Parts Bin will also aid in maintain
ing consistent user interface elements between applications <e.g. a consistent
look for common dialogs such as "Page Setup", or whatever common dialogs
are appropriate to Pink).

Resource Groups

Constructor also manages Resource Groups-<ollections of related resource
components that are instantiated or revitalized as a group. Some applications
will contain only a single Resource Group, while other applications will find it

..........

Figure 21. A resource group browser. The upper pane displays a view of
all the resources in a group. The lower pane is where editing of those re
sources is accomplished.

Constructor provides a default Resource Group Browser (Figure 21) consisting
of a navigational view (the upper pane) and an editing view (the lower pane).

• Registered /Restricted hmps March 15, 1990 3.5-65



The navigational view contains an iconic representation of all the highest level
objects in the Resource Group (referring to menus, menu bars and windows--

. as opposed to the individual menu items and controls they will contain). The
editing view contains the objects currently being inspected or manipulated.
Which objects actually appear in the editing view at any given moment is de
termined by the item(s) selected in the navigational view. In the editing view,
objects or collections of objects will appear and, as far as possible, function just
as they will in the running application.

The application stationery included with hoops will contain one or more
Resource Groups which can be used as a starting point for a new application's
user interface.

:::;::::;::::::::.:.:::

~:}~{)} ... ',' :.... "" ...

.' :.~:::::.:::::::;:~::::::: ::::. . :-:-:.:-:-:<::::-:.:.:.:.> .

Aclih6dS·:·.er displays a life-size (perhaps scalable)·~~i'~~:(;(o·neor more of
the user interface components in a particular Resource Group. Most layout
and editing operations take place within the confines of a Canvas viewer. To
add new items, the user can drag the desired part from a Drawer viewer onto a
Canvas viewer, or into another object visible in the Canvas viewer. As many of
the editing and manipulation operations as possible will be available through
direct manipulation (including size, location, font characteristics, titles, colors,
menu item arrangement, etc.). Those operations not well suited to a direct ma
nipulation interface will be available through some sort of object editor/in
spector window, as is done in ViewEdit. Connections between objects
(described later) are also made within a Canvas viewer.

• Registered/Restricted hCDps March 15, 1990 35-66



Constructor is Always Available

Resource-related browsers are opened in the same way that any other hoops
browser is opened. In addition, class components can be converted into Parts
Bin parts with one of the selection-specific commands from the source viewers.

• Registered / Restricted hIDpS March 15, 1990 35-67



The Constructor Human Interface

In this section we show what a number of hoops viewers specific to Constructor
might look like, and how they might operate. This set is intended to be repre-
sentative rather than exhaustive. .

Cabinet Viewer A Cabinet viewer displays the drawers contained in a Parts Bin.

JI.~l~{lllill1.i~ill~~.

i'.flll.!III~.

Purpose

Input

Output

Selection Techniqu~:g:

Operations

\~~ ......

araw~t>puiisopens the drawer (sending it as an outputt>selecting the body of
a drawer allows the drawer to be repositioned within the cabinet.

Oicking a drawer pull, opens the drawer if closed or closes the drawer if al
ready open.

An empty, untitled drawer is always present at the bottom (or right) of the
Cabinet viewer. Renaming this drawer creates a new Untitled drawer.
Drawers can be deleted with the Oear or Cut commands or with an as yet un
determined gesture.

Drawers are renamed by selecting their title and editing as in the Finder.

'* Registered / Restricted hmps March 15, 1990 35-68



Drawers can be rearranged by dragging a drawer to a new location within the
Cabinet viewer.

Drawers can be moved or copied between Parts Bins via Cut, Copy, and Paste,
or via direct manipulation by dragging a drawer .from one Cabinet viewer to
another.

Dropping a part (resource component) onto a Drawer adds the part to this cat
egory (and if necessary copies it into the Parts Bin).

Resizing a Cabinet viewer forces the drawer positions to be reallocated to fit
the new view size.

• Registered/Restricted hwps March 15, 1990 3.5-69



Drawer Viewer A Drawer viewer displays the parts contained in a Parts Bin Drawer. Parts
corresponding to both atomic components and collection components are
shown. Individual components within a collection are not shown; instead, col
lection components can be manipulated as a whole. These parts are repre
sented by small icons which are specified by the user.

D NoGrow Window

...........:..<;:;>.. '.;.:-:.:.

Purpose

.::::;:::::::: ::::
.: :.: :-:.:.;.;.;.:.::::;::
; ; :..:-:.:.:.:-:.:.:..

Input

Output

: ::.: ..:-: .

Selection Techniques

Operations

Parts are selected by clicking their icons. Clicking the title of a part allows the
title to be edited.

Parts can be moved or copied between drawers by dragging or via Cut, Copy
and Paste. Similarly, parts can be copied between Parts Bins. Parts are added
to a Resource Group by dragging the part onto the appropriate Group or
Canvas viewer. Parts are renamed by selecting their titles and editing as in the
Finder.

Oass components can be converted into Parts Bin parts via a special menu
command within a source code viewer. Comments or other descriptive infor
mation can also be associated with any of the parts in a Parts Bin, and can be
viewed in a Description Viewer.

11 Registered/Restricted hmps March 15, 1990 . 35-70



G·roup Viewer A Group viewer displays the resource components contained in a Resource
Group. Both atomic components and collection components are shown.
Individual components within a collection are not shown; instead, collection
components can are manipulated as a whole. Resource components are repre
sented by small icons (copied from a Parts Bin along \Vith the object).

~ Application D WindoW' DAboutBox

t!1 EditMenu t!1 fileMenu (0 r.rc £4.1) MenuBar :
L..- ~.: :;~:

....:-:::::::}::::::::::::::::-:-:

...;,::::{:?~~~~~:: ::::: .;.:.:.:.:.:.:-:.-...

Purpose

Input

Output

Operations

.:.:.:.:.....:::::::::::::::=::::.: :::::::::.:.

A Resource Group.

Resource compqn~nt§icanbe sayf9::ij~::P!ft§jna Parts Bin·:py:gr~ggt.ngthem to

l';'t~I~~;~~~(~~:;:;;~I(;t;I~~ea~~:!JII"~gapart
:-:::::···:·:·:::·:··ed.~:~:·or other descriptive informati~~::~kA:ll~.d~t~\Vithany of the

resources in a Resource Group, and can be viewed in a Description Viewer.

• Registered/Restricted March 15, 1990 35-71



Canvas Viewer A Canvas viewer displays a life-size (potentially scalable) view of one or more
of the user interface components in a particular Resource Group. Most layout

. and editing operations take place within the confines of a Canvas viewer.
Non-user interface components (non-view, like strings or icons) are displayed
in iconic form. .

Window

Selection Technique~/\

:.>:.:.;.:-:

.;::::::::;;. :::::::;:;} ;.;.'

··:::::::::·::;·:::·~:t::::~:;:::~:~:::::::::~·:··::··:;:::.

IIIlIlllilllif"!
.:t?~~~:

;:~:::::~:::~:~:~:~:::}~:~:~:~:~:~:~::{:~t:~:~:~:~::::0"' .

:~::::~::iIj:::::~m::j:::1:li:i1I::::::::::::~::ljlm

'.:.:-:.:-:.:. :::::;.
:':"':':::::::::::::::::::::;:

.:.:::::::::::::.:-:.:.:.:.:-:.:.:-:.;.....

lected it can be moved, resized, or edited, as appropriate.

Output

Input

Purpose

Operations View Hierarchy Manipulation

Modify View Layout

View Editing/Inspecting

Menu Layout/Editing

Connection Editing

Resource components can be added to a Resource Group by dragging a part
from the appropriate Parts Bin Drawer view into a Canvas viewer.

• Registered / Rest·ricted haJps March 15, 1990 35-72



Resource components can be saved as parts in a Parts Bin by dragging them to
the appropriate Parts Bin Browser views.

ToollIcon Palette Functions

There are several different operations that can be perfonned within the Canvas
viewer. including Edit, Constrain, Connect, Inspect and Test. There are also
several layers (constraints and connections) that can be revealed. Switching
between these operations will most likely be done through an icon bar associ
ated with the Canvas viewer.

.'.:.:.:.:.: :::;:::::::::::::::::;:::::;.::....

...::~:::~:~{:~:::::::::: •..

..;:)~{

.-:.:.:.; . ....

-::::::::::::,;" our latest ideas, it conveys much o(@iW~(~tt:Q![:~onstructor.If you're inter-
..

.........;.:.:-:.....

..............

""

{}{{\~t '.' .
<:::::::::::::::::::::;:::;:;:::::: .

.... .;<.:-:. :.:-::::::::;::::::::.,
........-:-: :.:-:-:.;.:.:->;:::::: .:.;.:-:.:-:.;.:•.

• Registered/Restricted hCDpS March 15, 1990 35-73



Extensibility

Constructor Details

Much of this section is currently incomplete or unspecified. Many of
Constructor's capabilities are based on, as yet, unspecified features of the Pink
Toolbox.

An essential aspect of Constructor is its ability to cope with new resource and
user interface classes-classes created by the user, or supplied to the user by a
third party. In order to perform its basic tasks, Constructor relies on the fact
that each user interface class contains a set of basic editing methods (Draw, ~

Grow, Move, Edit) or that this functionality is provided in some sort of
ushadow class" whose name (i.e. TButton and its evil twin TButtonEditor) can
be found in a dictionary maintained in the Parts Bin. These methods might be
included at a sufficiently low level in the class hierarchy (TView) or as a default

illall:]~~;~~.ji~~~;;:;

<:;:;:::::;::-:..::-:.

@;@{W II!l.[.•·•.·•.I.•..1.••..•.)•.•.•..~•.•.•.•·).•.•.•.•·'.•...•.•••.•..l.~!.•.·.!.••..•:..••.•·i:•.•.••.·;...•.•'.1.:...•.••.•.•·.• ·,·Ii··

.:.:.::,..::.:,..;:'.;:.:::;:..::::;: ..:1:.:;..::..:.:::..;•.:.;::..;•.•.:.·..:1.::.:·..:•.::;:.·.;:;·;: ..:i·.:;; ;•.:;::..;i.i;:.;·:.·::.;;:i.:·.. ::.:..;:.;~.;:.:;!.:.·.:.:..::.r:.:..;:::.;·.e..:.:.:..;· ..::f.::..:;:.:~:•.:; :.;:.b.:.;:..: : ::~;..;.:.;.;i.:.;cated p..::arts..:.:.:••:.;::::•••: •••; •••:•••••:;••:.;.:::•••::•••:; •••::.:.:: •••::••::.::.:•••:.:••:·.:•••llll);f ..,'"...........................•.............··;:t\\:~~:·~j:·l!··ll·!··[:::.l!~·:!······:::.:::: .: :.:.:.::.:: {.;{?}.

··)I••L'~'l~~1~~:,r~:~~:~.n~~~~~:~r~.e~~iirtff~!i:~~~of
this standard Parts Bin is yet to be determined.

hoops and Pink will also ship with various application templates or stationery.
We envision that this stationery will include a standard set of resources and
Resource Groups. Although the exact contents and organization of these re
sources is yet to be determined, we expect it to include at least the Application,
some sort of document window, an about box, a menu bar, and several stan
dard menus.

Canvas View
Editing &
Inspecting

Constructor also provides editing capabilities for resource components. For
general resource components this will involve a series of resource type specific
editors (strings, icons, fonts, etc.). For user interface components this will in
clude setting font and color characteristics, adornments (a hi MacApp), win
dow positioning, view resizing (with respect to its superview), etc. The POten-

'* Registered/Restricted hWps March 15, 1990 35-74



tial complexity of this area becomes clear if one imagines combining the re
source editors from ResEdit with the view editors from ViewEdit.

Editing General Resources

Constructor is able to edit essentially any type of resource that might be pro
duced by the Pink system and applications. For common resource types
(strings, icons, bitmaps, etc.) Constructor will contain a specific editor for each
resource type. Unfamiliar resource types may either be edited in some generic
raw (hex?) fonnat or may be displayed read-only.

j,lllltt,I.I.:b:::::::diffd~~.~~~~:::::::W edit·
.~.l'\;IDti;i~'I.'.'tll~:~~Si:::;::~~~kt"'.i~~e.:,c::::~:~%~~

):::;:}:::. such as setting the font or color charag#.n$t(f.$~iWJ~fbeperformed in a familiar
):::I:t way without resorting to special di~~9g!J.j;:~:t9t:j~~mple, to change the font size

::~~~~~~I.~~~.II"r~~~~:~;.tl~~If~~i~;ef;se
accessible throum¥#~rpublic inteff!~t~~{lij::~ inheritanc~p~~::iy§~~in the pre-

:~;;;;;li!i~~~I~z;i!~!I(t~;g~I'1fE~;~
.... ·.::.i;;.;:··.:~~1ftar:t6omuch information. In additloriYt@rn9Bt)iilgi:{j.flIlfonnation with

... ······the ancestry of the object often leads to commonlYmodified attributes being
scattered about the dialog.

As a solution to this problem, Constructor allows the editing dialog to have
two fonns, essentially a short and long fonn. In the long form the user is pre
sented with total control over the object, whereas in the short fonn only the
most commonly used (determined by decree) editing controls are available
(Figure 26).

Object Editors

One, as yet unresolved, question is whether the actual code for an object editor
lives in the object itself, or in a separate ushadow class". We currently believe

• Registered/Restricted hmps March 15, 1990 35-75



that objects will have to have some sort of "being-edited" state so they can re
spond differently to mouse-clicks, etc., when being edited. An example of
these behaviors is that normally when the user clicks the title of a check box, it
toggles the state of the box just as if the click had occurred in the box. In
"editing-mode" however, we would like to have a click ~n the title of the check
box mean that the title should be edited.. This specialized knowledge about the
internal structure of an item would seem to favor having the editing code de
fined as a part of the class itself. There are other issues to consider in deciding
where this code should reside. If a "shadow-dass" is used, Constructor must
manage the extra baggage when copying parts from one Parts Bin to another.
However, if the editing code lives in the class, then the author must provide the
editing capability-it cannot be added or modified by the user.

[screen Size ~
~~

( R~et Wi ndo'W )

Figure 26. An example of an editing dialog for the window object dis
played in the canvas viewer.

• Registered/Restricted hcvps March 15, 1990 35-76



View Layout Details

Constructor will allow view location and size to be directly manipulated. In
addition, the view hierarchy will be easily modified and traversed. The details
of this are yet to be determined.

Constraint-Based View Resizing Details

.The Pink Toolbox provides a powerful, but as yet undetermined, constraint
based view resizing mechanism. Constructor must provide a convenient user
interface for specifying these constraints. The current Constructor mockups
are based on springs, which allow for resizing, and fixed-size turnbuckles.49

:::::::::::{=b:·;.···
..::::::::::::::::::::::;::::::;:::::....

Connection Editing Details

To allow simple messages to be sent between objects, the Pink Toolbox pro
vides Responders (objects capable of perfonning an action in response to a
message) and Stimulators (objects that send a message to a Responder as the
result of some internal state change-possibly triggered by the user).
Constructor allows the user to make connections between such objects and to
specify both the message trigger and its content. An example of making a con-

49. Similar to the model presented in Building User Interfaces by Direct Manipulation,
Cardelli, L., Proc. ACM SIGGRAPH Symposium on User Interface Software,
pp152-166, October 17-19, 1988.

• Registered/Restricted hmps March IS, 1990 35-77



Connections

nection can be seen in Color FigUre 2 at the end of this document. This figure
shows the connection inspector window, which is used to view or modify con

. nections.

This section explains the connections between objects produced by
Constructor, as well as the gory details of the underlYing' source code. At pre
sent, most of what follows is unimplemented in Pink. In several discussions
with David Goldsmith and Frank Leahy we have agreed on this general archi
tecture as satisfying the needs of both Pink and Constructor.

Responders

In the current Pink architecture, objects that can respond to messages (text or

...•.....................;.;.:.:.;..........•.

. ,..... . .

·········· .. ·5··········:.;,;.::.;.:1:···························· -.:.:-:.:-:::::.:.;.:.:.:.:-:.:.::::-.·';';:';</\ .. qm~~tQj;s::}::::::::·· ::::::::::::::::::;:;:::;:;::::.; .

Responders are only half the picture though. For Constructor, we need an
equally flexible way to have objects send messages to arbitrary targets in re
sponse to some internal state change. For instance when an OK Button is
clicked it should be able to send a message. In MacApp this message is sent up
the view hierarchy, via the method DoChoiceO, to the document and finally to
the application. Somewhere along the way someone will take an appropriate
action. While sufficient for many situations, this architecture does not support
the communication necessary for the style of user interface programming
Constructor needs to support (e.g. dependency graphs). Code must be written
to implement the message network.

What we need is the following: each user interface component has a predeter
mined set of conditions under which it may send a message to another object.

• Registered/Restricted hwps March 15, 1990 35-78



Examples of these conditions include: being clicked, on a keystroke, while the
mouse is over, and various tyPeS of state changes <e.g. from empty to contain
ing text, or dimmed to highlighted>. Let's call all objects with this capability
Stimulators, since objects other than user interface components may want this
capability as well.

OutputPorts

In the definition of a Stimulator, there will be a list or array of OutputPorts, one
for each of the conditions under which the object will want to send a message.
An OutputPort contains a pointer to the target for the message, if any, which
must be derived from MResponder, and a pointer-to-member-function which
points to the s~ficmethod in the target object that should handle.the mes-,tlllllllllllll':ortmight look 1i~~&~f~'lllll!~~il,i~;ll;i;;;i;;;;;{..··..'·'.'.'.'

:ttt{··················t:yp·e"dEtf·····a·c)oTe·inf····"f~tR:e sponder: : *Act i onP.~lJ#.:9.##{/i's t irnulus & msg);
.:.:-:.:-:.:.:.
..

.~:~:::~:~::::., class TOutputPort : public ...
.;;//;}: MResponder* fTarget;

...::;::.·:;;:;:;:;:;:::::~,~:;:i::.;i::· ...;..:::i:.:j:::~:::,:~:\:::::±):0:~,~:~:~MF fAct i on; Pt rToMernbe r dec1

".:::;:.:-:-:-:;:::::::; .-

..•.:.:.:.:.=;:;:;:::::;:;::::.:.: .

i~f~;i~\~~/{~~ :::~:::::~:}t~~~~;:;;;·:.;.:.;..
:::::::::::::~:~:~~~~~~~ ~~~~

;; ~ ~:~:);;I~I ~;~~~~~I~~~) ~~~~i~i ~\

.,::::' .. . ':;':::.:::.j:::;'!:.:::.:!::::.::::::::::-:.:.:.:.:.. // I 11 \l::.:.:~.r.::.it·.:r.J.!.:I::·.::a:.::.:.: .• ~.:f.:::.~.~:..'.:u.f.i:.!:.~:!i:!l· 0 n1y 1•

.• ••••.••.• :-:-:-:-:.:.'.:-:-:.:.:.:-:-:.:.:-:.::::;:::::.. ..;::::::::::::'.':;::.:.:-:.:.:-:.:.:-: ~ +;. #:.+.v
<::::::::::;:.::::.;. ;.::;.:;:.:::-:::::::::.:::,:, ·······:··:·;.;.;;;::;.:·1·· ..\:::::::;.;.:.:::.:.:.:.:. :;.;.: .;.;.:.;.;.:.;.: .

. './:::::::::.:.:::::.::::::::::::::: ::::::::::::::::::. )~Bi:' .e (S t i 11Down (» { ..:.:::.:::::,?::::}:::::::)}::.; .;.:.;:.::::.;:.:.:;.: .
.......... " " :.:-.-:..-:-:.:.:-....... TBoo leanS t imulus msg (Mou·s:¢9y~#~*f.~:9~:?J:~:i::~~:~:?:::::::·

fSti11DownOutput. Send (rnsg) ;..; .... pppp

}

if (Re1easedOverButton(» (
TStirnu1us msg;
fClickedOutput.Send(msg);

} ;

Pointer-to-members are used, instead of the usual token-based messages for in
creased performance.50

so. This pointer-to-member based implementation is not required. Token-based
messages could be used if performance is not an issue.

'* Registered /Restricted hmps March 15, 1990 35-79



. Connecting Objects with Constructor

. - - .. ..

.:.:::.}:.:::.;.::
..

-::::::::::-:-:::.:.: ..... :.:... :-

....:.;.:-:.:.:.:.:-:-
.....:.:-:- .

...........................-:-:-:-:-:-:-:-:.:::::.:.:.:.:-:::::::-:...

When the user draws a connection between two objects (described in the
Canvas Viewer Human Interface section above), Constructor will have to check
that the message sender is in fact a Stimulator and that the target object is a
Responder. In addition to message source and destination, the connections, or
rather the messages sent via the connection, have an associated type. Using the
message type, Constructor can make certain that OutputPorts which send a _
message of type TTextStirnulus (or a subclass) are only ever connected to mes
sage handlers that expect to receive messages of type TIextStimulus (or a su
perclass). The names and types of the sender's TOutputPorts and the names
and types of the target's message handlers will be maintained by hoops since
these are properties of connectable components. Constructor can enforcethi.s

..::::::~tj[~~~j!~~j~~···il!I~:··~:::~:[;:::::[}~/:::·

'.' .

ilf!ltlll,ilillll"t
.(:~:~;~:~:~:~:~:rt;fr~:~~:t~ff}~~~~}~:~~~:~:~~t~~}~~~~t~;~~)f~t~tttt:tII~:::.

.........•. ..........:.:.:.::;.:- -:.:.:-:-:::::-: .
..

;)ff@i/~fi>/:::::::~~:}~{:~~~:::::::~~::::::::.;..
:.:.:.:.:.:.:- .

.. . ':::::::;:;<:;:;:>;:;:;:::::.:~\\( :::::~~~~~~\:~:~:~:~:~ftt~jt{~~:;::::··

• Registered /Restrieted hmps March 15, 1990 3.5-80



De}2endencies on Pink

hoops is a Pink
Application

It is important to remember that hoops will be one of the first, and possibly for
quite a long time, one of the largest Pink applications. This means that hoops is
critically dependent on parts of Pink being ready and available, and capable of
handling certain loads.51 The development environment we want would take
much longer and require much greater manpower to accomplish, if t~e entire
program was being implemented from scratch. Fortunately this is far from the
ease because hoops is being implemented on and in Pink.52

People associated with Pink have always been flexible and willing to help. In
fact we would like to think that all of Pink is engaged in the creati0l'l()f hoops.

\:::: .....

Text /.j;~'::~! :::=::::::::::::{:~::"<r:=::::=::
..................... :::::::~:~:){{:::~~:y~{>~:?~

;.: ::::::::::~~~UIi~~~~~~~~~IW~~~fH~k :::::::'::

cialized overriclj#g[)gf standard faq~~tt§~m:):~~expect to u~##Z41J&.*t:.~hd Jane
/L: >:.. capabilities p~tm~:%.uchas delivet%1:~:::):~M'::##;nembertha~":~N§:Ai1~!rtsunlimited

.=:.«:<:::::::::=:=::.::: )}~:·:·:·:~::[::::<ffi%k.~i.~:r:J¥~~>graphics and intem~~9~~:::~~pportand~Bm::::::"""
..........- - "," : ;...; ::::::::::::::.::::.::...:::::::::..::=::~:::.= .. :-:::::.:~:;:::::;:::::::;:::. ..:.;.;.; :-:-::::;:;:::;:;::.-. " " -..:::::?::::::::::::::::/::::: .

.;<-:.:- :-:-:-.-: :- ... «:::::::::::::: :-:-:.; :.:- .

Versions

We expect to use the versioning facilities supplied by Pink. The Program man
agement chapter of this document describes the sort of capability we think we

51. To provide the right degree of contrast, try to imagine MPW editing built on top
of Blue TextEdit.

52. hoops will be used to implement hoops from the earliest possible opportunity.
53. Pinkos, don't take this as a promise that hoops won't cause you to change both

your working habits, and your designs. This will most certainly happen, but
always bearing in mind our common goal of producing a working environment
that we ourselves, as designers, artists, authors, and programmers would want.
We apologize if this sounds like hype. Ideals need to be lofty so that they do not
chop the heads off results.

• Registered / Restricted hmps March IS, 1990 3.5-81



need, but we are fl~xible in this area and believe that a powerful, standard
scheme is important.

Collaboration

hoops will follow the Pink model of collaboration and we expect most of the
hard design and implementation work will be done by Pink.54 There is a
limited description of what we think we need in the Program management
chapter. A very important thing (remembering that "us means you"), is to be
able to take our work home.

Undo

.::::::::::::::::::::: :}:~~ft::. .:: :.: ::.':..:•.. ~.~:•...;.:.~:•.:.. [::.~:~:.::.•.•.::..:::.•::.•. :::::/.:::::-.
.-:::::::~::>::-:<-» >}:::;;.... '-::::::>~(>:::::::::::::::.:::..... "

·WEtit~:·~~:~~ularly dependent here since our user iriterlaceisbeing designed
alongside the rest of Pink's. hoops is a very early Pink application but we still
want it to exemplify the Pink human interface.

Finder and File system

like every other Pink application, hoops will be dependent on the Finder and
the File system. However hoops requires special services with regard to
launching applications, among other things.

54. Thanks Am, Lany, Jack, and Mrs. Calabash (wherever you are).

• Registered /Restricted hmps March 15, 1990 3.5-82



Dynamic libraries

These are crucial. The design and extensibility of hoops depends on them.

as and Network

In order to debug programs in the most powerful and straightforward way,
hoops will need certain run-time and network facilities.

Resource Manager

hoops relies on the Pink Toolbox's ability to save and restore flattened objects
:::::::::::::::::with::embedde(l:pginters. This also includes the ability to flatten::pginters to

;lllll;lll~lllfi!Em;~~~~~~iij,·!~~~~~~~~me

...................;.:;:::::: ..
:::::::::::::::::::::::;::::::::::::~::::::::::::::::::.:::.:.

'* Registered/Restricted hlDps March 15, 1990 35-83



Who Said
Anything About
Compilers?

Dependencies on CompTech

The observant reader will have noticed that this document assumes the exis
tence of at least one compiler. The observant and astute reader will have no
ticed that this compiler is being asked to do some mildly unusual things.

It almost goes without saying that hoops needs the compiler(s) developed by _
the Compiler Technology team. In order to provide the incremental system
envisaged, it is necessary for the compilers and the rest of the environment to
communicate much more fully than has been usual in the Past. Language sen
sitivity in the editor for example, will rely on information created by the com
piler. Conversely the compiler will rely on symbol and dependency informa-

iAllll(;:;~~~~ll"~'Il11."'O:::l~h
'::~:}~:~:\':"'"

• Registered /Restricted hmps March 15, 1990 35-84



ATOMIC COMPONENT

BROWSER

BROWSER CONSTRUCTION

KIT

C++

Glossary

a component that is not further subdivided into smaller components.

a loosely used term to describe a window which has two or more panes.

an archaic term used to describe the technique for creating views that interact
with each other, or uconnect" to each other.

a really swell programming language.

CABINET VIEWER ... .... ~ y'~~w of ~~~~~.~.~9.~~iningthe resources in the parts bin. :<.:<

~~ft~ 1 .~

CLASS COMPONENT}:"'" a collection component that rep~)I.'f'Object-Oriented

COLLECTION COMPONENT

. : - .

COMMENT Bioc],,::

COMPONENT

CONFIGURAnON

a named object that represents a semantic element of a program. All data in
a project is represented as components. Examples of components include
classes, functions, type definitions, and libraries. See also atomic component,
code component, collection component, connectable component,
organizational component, resource component, and user interface
component.

a set of versions of components that make up the state of a project at a given
time.

• Registered/Restricted hWps March 15, 1990 3.5-85



CONNECTABLE COMPONENT a resource component that descends from MResponder and/or MStimulator
and has the ability to send and/or receive message to/from other
connectable components.

CONNECTION a metaphor that represents the trigger and message sent, from one
connectable component to another.

CONSTRUCTOR that part of hoops used to create the resources of a program, most
importantly, the user interface of a Pink program. See also canvas viewer,
cabinet viewer, drawer viewer, resource group, parts bin, and resources.

CUSTOMIZATION the act of creating new and unique combinations of the existing set of tools in
hoops. See also extension.

DAVE AND TOM

DERIVED PROPERTY

DESCRIPTION

DRAWER VIEWER

DYNAMIC CLASS

EDITOR

...::..:...:;...-::-:..
.::::;:;:::;:::.:.:::::;:::::;::::::::::::.:.:.:.:.:.:-:':':'=:':::':':"
::.;.::::;::::::::::::.:-:.:.:-:-:.;-:.:-:-:.; .

ENVIRONMENT FRAMiWq~H

EXPORT

EXTENSION

FILE COMPONENT

GROUP VIEWER

the act of converting one or more hoops components into a form external
from a project, such as an operating system file.

the act of adding new and unique tools to hoops.

a component that represents a stream of text, as in an MPW text file, though
it is not saved as an operating system file.

a view of the top-level resources in a particular resource group.

• Registered / Restricted hlDps March 15, 1990 35-86



HOOPS

IMPORT

INTRINSIC PROPERTY

MACRO

MARGINAL COMMENT

MESSAGE

MODULE

NAVIGATION

human-oriented object programming system. Sometimes incorrectly referred
to as the heretical object-oriented programming system.

the act of converting source code from an external source into one or more
hoops components.

a property whose value is stored as part of a component.

mutants to be avoided at all costs.

a comment placed in the margin area of source code.

a Pink message (TStimulus) that contains data to be sent between resource
components in response to a stimulus.

ORGANIZATIONAL .:.:;;y.:. a component whose purpose is to ~rr~WM?~li~::components into a group.
COMPONENT

OUTPUT PORT

PANE

PART

PARTS BIN :.;::::-:-: .
.. ".::::::~::.:.;.:.' .:.

:.H::::H:):::::::
-.....

PROJECT

PRIVATE CoM¥#Rf:·~t~

::::::::>·:?:::'th~:~·~rcecode, object code, documentati~~:::~rid:::f~f~t&i:·ciataof a software
development effort, represented as a wholly independent entity to hoops.

PROPERlY

PROTOCOL

a characteristic or attribute of a component. Components can have any
number of properties, depending on the component's type. Examples of
properties are source code, object code, interface, or description. See also
derived property and intrinsic property.

the set of member functions of a class that defines how other parts of a
program communicate with a class and its subclasses. By having a protocol,
it is possible to add new subclasses without changing the other parts of the
program, because the subclasses respect the protocol.

• Registered/Restricted hmps March 15, 1990 35-87



RESOURCE a flattened object stored in a fork of an application.

RESOURCE COMPONENT the hoops representation of a resource.

RESOURCE GROUP a collection of related resources that are instantiated or ~evitalizedas a
group.

SELECfION-SPECIFIC MENUS A set of commands or operations that apply specifically to a given selection
in a view. One example of a selection-specific menu is the pop-up menu
used in the current hoops mock-up.

STIMULATOR a connectable component that sends a message in response to a state change
(Le. a character was typed, the button was clicked, etc.). See also output port.

SlYLESHEET

TOM AND DAVE

TOOL

TRANSFORMER

TRANSLATOR

USER INTERFACE

COMPONENT

VERSION

VIEWEoIT

VIEWER

a technique for associating a visual style with the syntactic elements o~ ;.;:-;

.:.:.-.:.:.:<:-: .;·····:·:-:-:::::7::::::::::::·::>:·:·

..........:-:<;:::::::.;.:.:.:-.-:.:- - .

'::::::':::::::::::::::::::=::::::::::"

a tool that displays a proPerty of a component.

• Registered/Restricted hmps March IS, 1990 3.5-88



I

~I

TRowOataSet
class TRowOataSet: public TOataSet

private:
RowNumber tRow:

J
return (Nil):

Color Figure L Source code browser. nus browser consists of two connected views: an
interface view and an implementation view. Comments are shown with a gray background.

c Registered / Restricted hmps March 15, 1990 35-89



r n t erp Ianet fl ry Con 1I e r tor

F==~......~..........~~I~I.lfIJII1_1'11'lj.~~,~
l\wiiilwindov DAboutBox ~ AppleMenu

~ Calcl

11111

Color Figure 2. uWiring'" a connection between two objects in Constructor's Canvas view.

. c Registered/Restricted hlDpS March 15, 1990 35-90



• Registered / Restricted

Doell

Online Documentation March 15, 1990 3.6-1





Online Technical Documentation for

• Registered / Restricted Online Documentation March 15, 1990 3.6-2





General plan
The Developer Technical Publications group, reporting to Trish Eastman; and Scott Knaster,
reporting to Doug Brent, are working on creating technical documentation that Pink developers
will use to write software. A large part of this documentation will exist online and will be
available to developers in the Uheat of battle" - that is, directly from HOOPS, the Pink
development system. This paper describes the preliminary plan for putting Pink technical _
information online.

The complete Pink technical documentation suite is described in another document in this
binder, but here's a brief description of the parts. There will be an overview of Pink
capabilities, designed for people who will evaluate whether to use Pink. We expect th~s<.Ydll

",-.":-:.-.;.:.:.:-:-:<;:.:::::.:::::::::::::::::::::::.;.:;::.; .

The online descri~~i~:::~~:::~:h;·heartof our project. We've already st~~:::::~ritingthem.
Eventually, they'll be displayed in HOOPS (and maybe elsewhere, as well). Until HOOPS is
born, you'll be able to read online descriptions with Mouser, 411, and HyperCard. The
appearance of online descriptions in HOOPS depends on the design of HOOPS itself, and
probably the Component Editor in particular (if that's still a valid name for a place in
HOOPS).

Online books are the more interesting (= harder) part of the project. Officially, we're just
investigating this part of the project. That's because we'll have paper versions of the
documents· to fall back on in case we can't complete a online book in time. As a minimum, we
expect to have online a version of each book that's functionally the same as the paper version.

• Registered / Restricted Online Documentation March 15, 1990 3.6-3



Our idea for online books is this: imagine HyperCard, except that (1) the metaphor is not an
index card, but a book, and (2) it's done in the Pink application engine, so it has CHER and
everything else that's Pink. We think that using a book metaphor is a good idea. Everybody
knows how to use books in a linear fashion, and many people know how to use tables of contents
and indices - sort of a "manual hypertext". A book provides a comfortabl~, linear frame of
reference for users, which they can use sometimes (by reading linearly) and abandon other times
(by following links).

Our online books will look like books on the screen, complete with (optional) page numbers. But
they'll be magical books, because they'll include hyperlinks, sound, animation, content
browsing, fold-out pictures, annotation, and other Pink goodies. Of course, online books can be
also be used in a completely linear fashion, and can even be turned into paper books
automatically by removing the multimedia and hypertext features. In fact, existing OCR
technology could provide developers with the ability to automatically create online books out
of paper books (although without any hypertext or multimedia additions, of course). The .....

~?z~~Ei~i'lIll1~:%~~~i~~iit,~!~~~~;;~s
.::}~{:;::

................- .

.. ... .-.... :;::}}::;::;:: f?/\)
\\~;\~~\\\\\\~\\\\\j\\\\j\\\~\.\: ;·::·:i:\:n\.. n\~\«

display them in Hyper<:ard»V:ia a 411-reader XCMD that exists no~. WEtillS6may be able to
integrate our online description prototypes into the HOOPS SuperCard prototype.

We'll also use HyperCard 2.0 to create prototype online books. Depending on the progress and
direction of Jane, we may be able to use Jane as a base for prototypes at some point. We don't
know who will actually create and maintain these prototypes yet.

Of course, we'll test the prototypes on real people (probably PUG members as well as Pink
people) and we'll check the readings on the electrodes we'll attach to their heads.

tit Registered / Restricted Online Documentation March 15, 1990 3.6-4



:::.:.:.:-:.:-;.:-:.:-:.;.;.;.;.:.>:.;.;-:.:-;.; .
:}\~:~;:::::::::::::::::::::::;::::::::::::::::::;::-:

~~}:{:~{::::::;~:::::::::~:;::::~~::::::::::.::::::

'.' :::;::::::U~f}}~:::>
.. :-::;::::::::::::::::::::::;;;:-:-:.:-:.: :-: .
-:::.;::::-:-:::::.:;<:::;;: .
:-.::-::::::;:;::-:::-;-: :;:-:-:.:-:-:.:.:-:

'* Registered / Restricted Don Quixote March 15, 1990 3.7-1





,
,f,~..

Don Quixote
The Pink UNIX Adapter

Geoff Peck

Don Quixote and Sancho Panza
drawing by Pablo Picasso, 1955

• Registered I Restricted Don Quixote March 15/ 1990 3.7-2





Introduction
Don Quixote, the UNIX adapter for Pink, allows end users to run standard UNIX software on a
Pink Macintosh while simultaneously running Pink and Blue applications.. End users will be
able to exchange information between the three "worlds" in several ways - at the minimum,
cut and paste and limited inter-system file access will be implemented. Since UNIX is a
essentially a text-based system, Don Quixote will allow reading and writing of unformatted
Pink text files from the UNIX environment. UNIX programs will be able to access Pink files,
and a UNIX developer might choose to write code which can decode one or more non-text Pink ~

file formats. Don Quixote will not perform such translations automatically. Blue text files
will also be accessible to UNIX applications through a similar mechanism.

..::: : .

.;.;.:<.;.:.:-:-:.:.:.:.:.;-:-:.:." ....

Developing Don Quixote also will help ensure that Pink contains the required facilities for

.....
-:.:.:.;.:-:.:.;.•.....

Descr i 1111'i!IIJltJi'lillli!~IJ.[h,

rather, it is::~.::f:~H~~~gmp1~~~ty::~:~qor"the rest of us" whq:::~~Dl:~~.meor a.H:·9t:~n~::::::··

capabilities or~.I;0.J0H~{qBm·~::waH(thedifficulties associated wHli::~::..~~~r8tM·9-WNIX .

Strategy
The strategy for Don Quixote is quite different from the path being taken by the "traditional"
UNIX workstation vendors (SUN, HP, DEC, etc.), by our own A/UX group, or by NeXT. These
companies are taking a complex system and putting "pretty wrappers" on top of it to make it
nicer looking and easier to use. Both NeXT and A/OX are using this approach to attempt to tum
a relatively traditional UNIX workstation into a personal computer. The "wrapper" approach
does not address the fundamental problem - the complexity of UNIX.

Don Quixote is an entirely new environment, built on top of Opus/2, which provides the
facilities of UNIX without the complexity. This is done by building a new system which
conforms to relevant standard interfaces, but does not have the complex internal and
administrative structure of UNIX. The benefit to the user is that Don Quixote will have many
fewer "moving parts" than a traditional UNIX.

• Registered / Restricted Don Quixote March 15, 1990 3.7-3



Don Quixote is an integral part of the Pink software release. It should be packaged at no
additional charge with every Pink system. By virtue of the number of installed machines in
the high-end Macintosh market (68020 processor or greater), the introduction of Pink with Don
Quixote will immediately change the installed-base balance in the UNIX marketplace.
Current UNIX software vendors will be strongly encouraged to ensure that their programs work
under Don Quixote, simply due to the sheer number of Macintoshes which run Don Quixote. Don
Quixote must provide a high degree of compatibility with industry standards in order to reduce
the investment and time required by UNIX program developers. Availability of many UNIX
packages in addition to the well-established base of Macintosh applications will immediately
establish the Macintosh as the system of choice for many customers who require UNIX-based
solutions. '

Don Quixote, like the rest of standard Macintosh system software, is solely Apple"7developed
code. In certain cases, we may elect to include with Don Quixote some code which is available
to the public, such as GNU software from the Free Software Foundation. If Don Quixote were to

and possibly source cOde""changes, in order to run under Don Quixote. Since" bon Quixote supports
execution of most standard UNIX programs, however, this development will be able to be done
using standard UNIX tools. This eliminates the need for UNIX developers to learn a new
development environment, which has been identified as a major stumbling block to moving
UNIX software to the Macintosh.

Standard UNIX utilities or their equivalent will be available for use with Don Quixote,
packaged as several functional groups. A minimal set of utilities will be included with the
basic distribution included with Pink. Others will be available separately through standard
Apple system software distribution channels - from public distribution sources, or for a nominal
charge from Apple and/or dealers. This type of packaging permits a typical office
environment Pink system to run much UNIX software with relatively little disk overhead or
added complexity. Users who require additional UNIX facilities would load them when
required, and would use more disk space."

• Registered / Restricted Don Quixote March IS, 1990 3.7-4



Tactics
Producing a UNIX work-alike while simplifying the system isa challenging but achievable
task. The first stage is identifying the appropriate standard or combination of standards with
which to guide the effort - the federal information processing standard FIPS 141, IEEE's
POSIX standard, AT&T's System V release 4, OSF/1, and/or X\OPEN. The standards each
include system call interfaces, library interfaces, and a standard program suite. Many of the
standards include optional features, which will be evaluated to see how useful they will be vs.
how much complexity they add.

The result of the standards effort will be a single document which specifies the interfaces and
programs which Don Quixote will support, and provides an initial cut at how the system will
be split up into packages. After the standards document has been finalized, several
implementation specifications can be developed. One implementation specification will ....

~~~~h;:l:~~lltll'~~~~~~il;'~~~~~~
source. .>:.:.:....... .::.:..

<::;::::::::::
:::::::::::::::

• Registered / Restricted Don Quixote March 15, 1990 3.7-5

I
I

I

Don Quixote interface code
and local static data

I
I

'- Don Quixote
server teams

1-------

Stack

I-- -
for~~lllll!lljlll'ft

d:::::~:::Beap

• terminal emulation
• file system interfaces
• process creation, etc.

lllllllllllll!'

allows the ad~p·~~1"·tgj?#>:Y:iR~!:@JhlFvirtualenvironment for one::Q~:]m9t~:~ggfflWf.Wkes,
managing themlifa:mahh~F:attterentfrom that of Opus teams. . :::::::::::::>:::.:.:::.: .

'* Registered / Restricted Don Quixote March 15, 1990 3.7-6

(J)

c.>
(J)
(J)

c.>u
o
l-<
0...

><
~

Z
::J

Opus/2

..
"::::.:.:< ... "

.:.;-:-:.; :-:-:.:.:.:- t~>?}~<{

:.:-:.:.:

Why is th~9frmiii~t1\~~1~r....t0;~ ..;;0~"!;~:' around a "reat't~;~,
"Real" UNIX<~ygt~m$h~v¢::~·:titifub~:~·of pieces which could be re-deMgrt¢.4·..tt1-ttlll.ffiU2h. more
automatically and safely"~·Thefile system, for example, could be replaced·by one which is
crash-resilient, thus eliminating file-system checking (jsck) and the resulting delays and
confusion. The UNIX-to-UNIX transfer facility (uucp) can be re-engineered to keep its
information in a single database, rather than dozens of small control files which are scattered
in several places in the file system hierarchy, and a simple administrative interface for this
single database could be devised.

UNIX systems typically fail to operate in an expected manner when anyone of dozens of small
control files or programs are slightly incorrect or are out of place. One could envision a system
which attempts to fix these files automatically, but such a system glued on top of an existing
UNIX is simply adding a layer of complexity, which mayor may not function properly
depending on the user's particular environment.

• Registered / Restricted Don Quixote March 15, 1990 3.7-7

A "real" UNIX will always, fundamentally, have -quite a few pieces which may need to be
adjusted by a IIwizard". Even if the IIwrappers" can allow a non-eomputer-guru user to set up a
system in a standard manner, configuration changes usually are needed for a given work
environment which must be performed by a "wizard". Such changes will frequently cause the
"wrappers" to no longer work.

Why should Apple have two UNIX products, A/UX and Don Quixote?

Don Quixote and A/UX address two separate markets. Don Quixote provides UNIX capability
for the user who occasionally wishes to run one or more UNIX programs on his or her Macintosh.
A/UX provides full UNIX capability for the user who requires it, as well as the capability to'
run occasional Macintosh programs. Neither product meets the needs of the users of the other
product.

Apple's software distribution for the Macintosh works well because little or no channel support

Will Don Quixote compete with Pink for users? For developers? What· -will be the impact on
users?

UNIX applications and Macintosh applications are currently typically complementary, rather
than competitive. Don Quixote will allow that symbiosis to continue, on a single machine. For
users, then Don Quixote expands the computing opportunities, rather than forcing them to make
a choice between Don Quixote and Pink.

It is possible that some developers will prefer to develop software for Apple's machines in the
Don Quixote environment rather than the Pink environment. The availability of a UNIX-style
development environment (both tools and programming environment) is likely to make the
perceived cost of entry to application development on a Macintosh much lower. Don Quixote
therefore may encourage many applications to be written for Pink-based Apple products that
otherwise would not be written.

• Registered / Restricted Don Quixote March 15, 1990 3.7-8

Alternatives
Here are several of the alternative implementation architectures which were considered:

Direct execution solutions

1) An Apple-developed adapter which can directly execute UNIX binaries which comply
with the System V Release 4 applications binary interface (ABI).

2) An Apple-develOPed adapter which can directly execute UNIX binaries which are
compiled specifically for this adapter.

Library-based solutions

3) An Apple-developed library which allows most UNIX source programs to be compiled and
linked to execute in the Pink environment.

4)

find it extremelydUfi:ct.llFf8'aHract UNIX software vendors and sometIlliJ¥UN1:x-users to
Pink. There are a number of products which tried the library-based approach, the most notable
of which were Apollo Computers early UNIX offerings and the various adapters which
allowed UNIX programs to run under DEC's VMS. None of these met with market success.

• Registered/ Restricted Don Quixote March 15, 1990 3.7-9

The alternatives involving AT&T code may require somewhat less development time than the
fully Apple-developed altematives; I would estimate this savings at no more than 30% of the
development cost. These alternatives would require Apple to purchase an AT&T UNIX license
for each system we ship with Don Quixote, or would require us to package Don Quixote as a
separately licensed product. I believe that it is very important for us to offer Don Quixote to our
customers on the same basis as we do other Macintosh system software - '~undled," at no
additional cost to the user. Thus, Apple would have to pay AT&T for a UNIX license for each
and every Macintosh which exists and is capable of running Don Quixote at the time of product
introduction, as well as to pay AT&T a royalty for each system produced after that point. This
would be a multi-million dollar expense. (Currently, $50 per system is the least expensive
UNIX license; even if it could be negotiated down to $20 per system, the up-front payment to
AT&T would be in excess of $20 million!)

The several library-based alternatives (3, 4, and 7) suffer from several specific technical
problems:

1) §f~~:~,"il"ll~i~£:E~fJiiil!t~~::::~':::··to
~~';;:~:;~~I~~:~t1:t~~t~~e~~~;~,~~t~~;I~~~~~1~IBIJ~::~!o~~~~~~ludes

2)

3)

Then, the remaining question is whether to use the System V Release 4 ABI standard or to go
with a standard of our own (Pink-only UNIX binaries, or A/UX binaries, for example).

Appendix A - System Call List
Following is a consolidated list of system calls obtained from the POSIX Standard (Portable
Operating System Interface for Computer Environments, IEEE 1003.1) and the current 4.3BSD
Berkeley UNIX system running on AppleVAX. This list needs to be reconciled with other
relevant standards, particularly AT&T's System V Release 4. A similar list needs to be
generated for library routines.

• Registered/ Restricted Don Quixote March 15, 1990 3.7-10

The third column indicates the relevant section number in the POSIX specification or, in the
case of Berkeley-only system calls, "B/" followed by an indication of the class of system call.
The fourth column contains working notes on the system call's origin and whether or not the call
should be implemented in Don Quixote:

P =privileged call, not implemented in Don Quixote
C = in 4BSD compatibility library, implemented in Don Quixote
+ = added to POSIX; not in 4BSD, implemented in Don Quixote
? =not in POSIX, in 4BSD, may be implemented in Don Quixote
x =not in Don Quixote

execve
wait
waitpid
exit

exit
kill
sigsetops
sigaction
sigprocm3.sk
sigpending
sigsuspend
alarm
pause
sleep
3a. 4BSD
brk
killpg
profil
ptrace
sigblock
sigpa.use

3. Process Primitives
fork create a new process

execute a file (also 5 other variants)
wait for process termination

;i;I'(I_l~~;1~:~sdel,

:{:i·:::.:i·::~~:r~n~~:a~ignalS
:)))t:$qA~~:J.~:...:signal after specified

:il,rll"'ii~:group

block signals ···::::~~~:tttttI1wmIIt~:

atomically relea$~i(n?!§9.~~d

inte rrupt ':::~~:~~:j[~:::I~I::I:~::;:::r
sigreturn return from signal \:/(()111/
sigsetmask set current signal :~:$.~I/

:~~~~Ck :: :::;:;.:::::::.)::::=):::::~t::~~ o~i~~:l s;~4.~.I[:~k
vfork .::::::?~{{:~~~~~ {?~~/i~p~w:J!. new proces~t~*i}~:a virtual

:~tp~:oc~':Jl1~:i:·i·:~~~f~lhl~¥~m:#_:f:~::·cation
getegid ·:-:-:-:-:-::/$.~#·~t#~@H.v.e::··groupid
geteuidqgeteff~'ctiveuser id
getgid get real group identity
getuid get real user identity
setgid set group id
setuid set user id
getgroups get supplementary group access list
cuserid get user name
get login get user name
getpgrp get process group identification
setsid create session and set process group id
setpgid set process group id for job control
getppid get parent process id
uname system name
time get system time
times get process times
getenv environment access
ctermid generate terminal pathname
sysconf get configurable system variables
4a. 4BSD Process Environment
getdtablesize get descriptor table size

3.1.1
3.1.2
3.2.1

+

2.2
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.3.7
3.4.1 C
3.4.2 +
3.4.3 C

?

:/::=::::::::=:::::/l.1.1
4.2.1
4.2.1
4.2.1
4.2.1
4.2.2
4.2.2
4.2.3
4.2.4 +
4.2.4
4.3.1
4.3.2
4.3.3 +
4.4.1 +
4.4.1
4.5.1 C
4.5.2 C
4.6.1 C

4.7.1 +
4.8.1 +

B/Proc

• Registered/ Restricted Don Quixote March 15, 1990 3.7-11

B/IO
B/IO
B/IO
B/IO
B/IO
BIIO

B/Socket
B/Socket
B/Socket
B/Socket
B/Socket
B/Socket
B/Socket

B/Proc
B/Proc
B/Proc
B/Proc
B/Proc
B/Proc
B/Proc
B/Proc
B/Proc
B/Proc ?

?
?
?
?

+

x
x
?

c

+
+

c
c
c

&4)1
:~:/2;~1

.. ::.:-:: :-:.;.;.:-:-:. 6;:~· 2 • 1
6.3.1
6.4.1
6.4.2
6.5.2
6.5.3

getpagesize get system page size
getpriority get/set program scheduling priority
getrlimit control maximum system resource consumption
getrusage get information about resource utilization
gettimeofday get/set date and time
setgroups set group access list
setpgrp set process group
setregid set real and effective group 10
setreuid set real and effective user IO's
syscall indirect system call
5. Files and Directories
closedir close directory for reading 5.1.2 -
opendir open directory for reading 5.1.2
readdir read entry from directory 5.1.2
rewinddir position to read from start of directory 5.1.2
chdir change current working directory 5.2.1
getcwd get working directory pathname (BSD: getwd) 5.2.2

~~e:t o~:9.:::::f:::::::::f:~l~:::;;;::;:;::. .::::::{::::t:::::::$.:[~ij:rjI/::

~i: :.:.::.::j:l:l:..•:.:•.•.~.roa.m.cr~.:r.ejla~viie;i~[dilr;~e!~c:jltLo[ry~'~el~init~;ry'~e an existing one ".;;;;;{l: ~: ~
~~lllij!t~i~~:h:::::O~o:in~~ame;'!i'!,jfJllI11l'll,i!I';'0W !ti
fstat ::::::::::I::f::~!P::I#f!~;:%~AAi}H.. from open descript9f.HH:tI:IIm::::tt:::m:jI'· 5.6.2
access -:.;.:.::::::::::::::::.: :.:.:.;.:.: .
chrrod
chown
utime
fpathconf
pathconf
Sa. 4BSD Files
ioctl
chroot
readlink tt::)::;:,:::::::::::r:/:::::::::)iI:\:::

~~~:~e. ~~c:~l~~l~~'II~~~~ed l~',Jlli!ll'lll
~:Inpu1ili;i:;1ii;~Ei~~;::~;!!fcomunicatio~;lPl'
dup2··dupl1····t········ ·<r················ t ·::\t::::·.::::::::(}\\/·
close -::~~~~t.4i~:.~6ff~~~or ::,:::
read .·:f:~d::::irtptit··· .... ....
write write output
fcntl file control
Iseek move read/write pointer
6a. 4BSD Input and Output Primitives
flock 'apply or remove an advisory lock on an open file
fsync synchronize a file's in-core state with that on disk
mknod make a special file
roc>unt mount or reroc>ve file system
select synchronous I/O multiplexing
sync update super-block
6b. 4BSD Network and Interprocess Communication (Sockets)
accept accept a connection on a socket
bind bind a name to a socket
connect initiate a connection on a socket
getpeername get name of connected peer
getsockname get socket name
getsockopt get and set options on sockets
listen listen for connections on a socket

• Registered I Restricted Don Quixote March 15, 1990 3.7-12



recv
send
shutdown
socket
socketpair
7. Devi.ce
tcgetattr
tcsetattr
tcdrain
tcsendbreak
tcflow
tcflush
tcgetpgrp
tcsetpgrp
7a. 4BSD
vhangup
XX. 4BSD
reboot
setquota
adjtime

swapon
acct
gethostid
gethostname
getitimer
quota

.......................:..-:.:.:.:..-:.:-:-:.:-:.:.:<.:.:-:.:-:;:::..•"

wi Registered/ Restricted Don Quixote March 15, 1990

B/Socket
B/Socket
B/Socket
B/Socket
B/Socket

7.2.1
7.2.1
7.2.2
7.2.2
7.2.2
7.2.2 -
7.2.3
7.2.4

B/Dev ?

?
P

B/Admin p

B/Admin P
B/Admin P
B/Admin ?
B/Admin ?
B/Admin ?
B/Admin P

3.7-13





• Registered / Restricted , Technical Documentation March 15, 1990 4.1-1





Pink Documentation Suite Plan

Draft
© Apple Computer, Inc. 1990

• Registered/Restricted Technical Documentation March IS, 1990 4.1-2





Goals
The goals of the Technical Publications Pink documentation suite are to provide

•
•

• a complete description of all developer-accessible parts of the Pink system
multiple entry points and varying treatments of the information corresponding to
the skill levels and learning styles of all developers
navigational assistance so that readers can find the information they need without
becoming bewildered or wondering how to get started

The sheer volume of the information that we must provide will require us to use innovative
technologies, including online delivery systems and creative ways of presenting access to the
information.

Scope

:.:.;.:::::::::::::::::::::::::::::::::;::.

. - -.. ..
Application· Ertgffi.~::{:::::<::=:::::::::::··

:.::::::~:>::::}}~:;::/::::..
.:-:.:...:-:. ....

Application
Document
Event
View
Command

Text
Graphics
OPerating System Utilities
OPerating System Services
Network Services
Sound
Imaging
Scripting

• Registered / Restricted Technical Documentation March IS, 1990 4.1-3



Pink documentation model
The documentation model strives to meet its goals while also delivering documentation when
Pink ships. Since there are never enough resources and since Pink is still under development, we
have designed a model that allows us to begin with the most critical and stable information,.
ensuring that we provide enough information to allow developers to get started. After the first
customer shipments, we will continue to add information about less critical and late-developing ,
features and to update particular components of the suite individually as required.

Our model provides

•
•

•
•

.::::::~~~ii~:::~:::::::::~::::: :::~:i~~~~~;~ i~~:~:;~;·;:;·

.. . \?/~:>:::::::::::>:
:::~:~:>::::::::\:;:: '..,..
... :.:.:;:.:.:. :}~:~(:}~::<::::-::::: ..

...

.............................. . .....
. . :.. .:.:.;.;.;.:-:.:.:-:.:-:. ;:.:::::::;:::-:."

• Registered/Restricted

........-:.: .

Technical Documentation March 15, 1990 4.1-4



The Pink Documentation SUite

lntroducti on to Pin k

I
I

I
I

\
\

\
\

\
\
\

\
\

\

\
\
\
\
\
\
\
\
\
\
\
\
\

The Pi nk.~~III~111l

I

I

I
I

I
I

I
I

I
J

I
I I

I I
f J

I I

I
I

I

A more complete description of the suite elements follows:

• The Introduction to Pink advises programmers and programming managers of the
advantages of object-oriented programming in general and the Pink system in
particular.

• The Pink Foundation describes in detail the concepts of the Pink system and the
interrelationships of the families of classes. This manual, used in conjunction with the
online reference, is aimed at the type of programmer who likes to learn the concepts
and understand the model before starting to work.

• How to Write a Pink Application describes how to write a Pink application using the
HOOPS development system. This manual is directed toward programmers who like
to learn by doing. The eventual goal of this product is to be an interactive online tool.

• Registered /Restricted Technical Documentation March 15, 1990 4.1-5



However, if the online tool to produce this product is not available at the first
customer ship of Pink, it will debut as a paper document.

• The Online Class and Method Reference provides descriptions of all the Pink classes and
the methods that pertain to them. As our online tools become more powerful, we
plan to add animations, code samples, and other interactive features to these
descriptions. For plain vanilla applications, the developer will need only the online
reference used in conjunction with either the tutorial or the foundation manual. The
online reference will be developed first using an interim tool to search and display ,
the information.

• The Focus Library consists of a series of definitive descriptions, which correspond to
elements in the Application Engine and the Object Toolbox. In addition, there will be
some focus books that do not correspond to such elements but which cover specific

•

•
•

Schedj~i;;~il~;II;~.';;;.;;i;l;W,llr;f? \;I\I~ifl-lll\;'lii!l·.;i;';jj)
At the present ti~~W~:d6.:ri6Ph~V~:·detailedschedules. Initially, we pi~fCfg:pf6dti~?:::

• Descriptions for many classes and methods
• A working draft of the Pink Foundation manual started in the form of an architectural

overview document which is currently being written
• A start on the Online Glossary
• Detailed document design for the Introduction to Pink
• Detailed document design for the Operating System Kernel focus book (which will

serve as a prototype document design for other focus books as well)

We will publish firmer plans when we have evaluated our initial efforts.

• Registered /Restricted Technical Documentation March 15, 1990 4.1~



Risks and concerns
We have identified the following issues that put our plans and schedules at risk. We will be
monitoring these issues during the following months.

Staffing

We have not yet determined exactly how many writers we will have, who they will be, or when
they will join us. Who they are is important since the learning curve is going to be very steep. We
are looking for experienced people, but since this is new technology there will still be lots to

We have not Yll,~i~~entified the online tool for the Onlinec~;.I,'i!~=e or the Haw to

:::;i:~t:~:Jl.5RiM~~;;~,t::a::~:~::~°rj~llI1B;;~~~ J::::~es~d.!:2:r

.::::::::::;:;:;:}}:::::::::::::.;.:.:-:-:.:.::: .

:::::::::::::::::::::::::::::.:.:.:.:.:.~\::-:.: ,-

..... . :::(//...•.... :.:-:.:.:-;.:-:-:-:.;< .

H 0 q~illl~ieeility i®l\%tw;il~III,IIIIII!!i;:;.. ... :~·ii······
How to~i(~it¥~ii~j~#tl!!~:ely dependent on fi~~Im!ng av¥~ii;' .

.. ......:.:-:-:.:-:-: .

Pink progress

And, of course, we are gated by the progressof Pink itself for the completion of the Pink
Foundation, the Online Class and Method Reference, the nutshells, and the Human Interface Guidelines.

'* Registered /Restricted Technical Documentation March 15, 1990 4.1-7



Attachment A: Summary of Products
Product Content Audience

Introduction
to Pink

Introduction to OOP and Pink
and programmers
learning

Programming managers

Pink Foundation

How to Write a
Pink Application
Using HOOPS

Overview of architecture;
information for people who

;;;I,IIIIII'~~
::::::::;:::::'

Programmers learning

:-::::::::::: ~~~~)f~)~~ ~:: ~: ~:::::;:
..

Online Class and ::;::~~:~::::W Descriptions of
Method Reference

Focus Library

Human Interface
Guidelines

Online Glossa'Y:::::>:-::::: .
:::::::::;:::::::;::~::::~:~~~~~~?~:~:~~f:::,:-·

:::t?::~:~:::::::-··· ..
;::::.::.':'.:.<'.:.':.':••";:;:::::;':.::.::.::.::.': ::/{}{::;::::••.•
::~:~;~:~:~:~:~:::~:::~:::::::::~:::::::::::~:~:~:::::~~:::::::::::::;:::::::: .. - ::.;.;::.: :. . .

...... :... ,':" :;:\:: ::::::::::::::::~:}::::::::::::~:~:~:~:~}ft~~::::::··

·-::::::::/)\:-:: ..;!·:·.:!n-:.::::.:.::: ••• ::.::::::::::\~{:::::::::::::::::: ....

• Registered/Restricted Technical Documentation March 15, 1990 4.1-8



Attachment B: Currently Identified Focus Library
Application Engine

Application
Document
Views
Events
Commands
Failure Handling

Object Toolbox

Text
Graphics
Operating ~uc::tan'\C::.

Utilities
Network
Sound
Imaging
Scripting
Help
Building Block

Networking books

TBD

Other

Runtime (memory management>
File System
Debugging

• Registered /Restricted Technical Documentation March 15, 1990 4.1-9




	1.1 Project Goals
	1.2 System Architecture
	1.3 Human Interface
	2.1 System Foundation
	2.2 Application Framework
	2.3 Graphics
	2.4 Printing
	2.5 Time
	2.6 Sound
	2.7 Text
	2.8 Files/Storage
	2.9 OS Services
	2.10 Communications Services
	2.11 Network Services
	3.1 Finder
	3.2 Blue Adapter
	3.3 Jane
	3.4 Tuffy
	3.5 Hoops
	3.6 Online Documentation
	3.7 UNIX Adapter
	4.1 Technical Documentation



