Big Pink #3
March 15, 1990

Big Pink #3 Table of Contents

1. Overview
1.1. Pink Project Goals
1.2. Pink System Architecture
1.3. Pink Human Interface

2. System Objects
2.1. System Foundation
2.1.1. No Way (The Pink Run Time System)

‘& Recovery)
‘Variables)

3. Graphlcs
2.3.1. Laser (Layer Se
2.3.2. Graphics Introducti

2.3.3. Graphic Objects

2.6.1. Audio Objects
2.6.2. Sound, Speech, and Telephony
2.6.3. Editors
2.6.4. Sound Effects
2.7. Text
2.7.1. Base Text Classes (Text Storage & Style Management)
2.7.2. ZZText (Text Formating & Editing Classes)
2.7.3. Text (Line Layout)

% Registered /Restricted Table of Contents March 15, 1950



Big Pink #3
March 15, 1990

2.8. Files/Storage
2.8.1. Psychokiller (Data Management)
2.8.2. Pluto (File System)
2.8.3. Bluto (Pink Personal AppleShare)
2.9. OS Services
2.9.1. Opus/2 (Memory, Tasks, & IPC)
2.9.2. Elixir (The Pink I/O System)
2.9.2.1. Pink Booting Overview
2.9.2.2. KT-22(Mass Storage 1/0)
2.9.2.3. Funnel of Love (NuBus I/O Framework)
2.9.2.4. Rob Lowe(Video Framework)

3.2. Blue Adapter
3.2.1. Mood Indigo (The
3.2.2. Scorpion (N&C Blue

Jane (An Advanced Word Proc

Tuffy (Pink Graphing Applicatio

Human-Oriented Obj

3.3.
3.4.
3.5.
3.6.
3.7.

4. Project Iss
4.1. Technical Do

®& Registered /Restricted Table of Contents March 15, 1990



& Registered/Restricted  Pink System Architecture Monday, March 26, 1990 1.2-i



€ Registered/Restricted  Pink System Architecture Monday, March 26, 1990 1.2-ii



David Goldsmith

€ Registered /Restricted ~ Pink System Architecture Monday, March 26, 1990 1.2-iii



& Registered/Restricted ~ Pink System Architecture Monday, March 26, 1990 1.2-iv



8 D 2R e g o e Lals (o o VAUA AR PURURTPIPRPU |

2. Architectural Goals. . ..o ittt it ittt ieeeieeteeeeeaanaasesenaaneanaaaanal
2.1. Flexibility and Expandability. ... ccovrriiiiiiiiiiiiiiiiiiioiiiiiinisiteensnsneeenneneaaaa 1
2Ry a3 T 1 U |
2.3, P oI OIMaANC. o vttt ee it eenenoesvosscososososossssssosssasacacosssoasasassansesssnancnns 2
2., RODUSHI®SS. c et e eeeeteeesacenasessssaosonesosssesssaososssssascasoossnsoscsosssssnsssnne 2

2.5. Empower Developers e eettereesrerteenaaaeaanany

2.6. Support the Interfac
2.7. A Global System. .

3. Architectural P
3.1. Al Interfacesﬂ;}r
3.2. Manage Comn

3.3. Leverage Where Possible.... eeees

3.4. Frameworks Protect Subsystems from
3.5. Let Resources Find You...............

4. Architectural (

4.1. The Opus/2 K

4.2. The Run Time ENVITOMIENL. « .« « v v nutnennenn e et tan e e e eaneaneaaeeaneaneeeans . 8
43. The Foundation Classes. . .. .vutiiieieerinenuiisiierassessasssssssssssoscsssssscassnecenesd
4.4. “Operating System” Services. v ..iviiniiiiisiieiersiiseeeesesssscenerensnsasceessseessss 10
4.5. The Graphics System. ... .ottt it iiieiiietitseneerensseeracennneeneensss 11
4.6. ApPlication SUPPOIt. c ottt iiiiiiieeetittieitieteittiie e eaaeeas 12
4.7. Text and International. .. .o coiieiiiniiiiiii ittt iiiitiiiiieriiiiiiieearenneasaae... 14
4.9. Time, Sound, and Animation. . ....iiiiiiieiirtiiiiiieeeeererneriierretsnscecsennsosensass 16

4.10. Networking and Communications. . ccooviiiii ittt iiiiiiiiiiiiiieiiiinsieanennneneana. 16

€ Registered/Restricted  Pink System Architecture Monday, March 26, 1990 1.2-v



4.11. The Desktop and FINder. .. ..o iutiiuiitiiiiiiiierineeeanieiieaneentorenneneeneanaanann,s 17

4.12. Adapters.....ceevveiiinnn.. Cetecaieesateraniecarenons Seeteseeteteitaataeeeetieneteans 18

& Registered / Restricted ~ Pink System Architecture Monday, March 26, 1990 1.2-vi



Introduction

Pink is Apple’s new system software architecture. It draws on the strengths of Macintosh, but also
introduces a new programming model and architecture designed to open up new opportunities for Apple
and third party developers. This document gives an overview of the architecture of the Pink system.

Architectural Goals

Pink has several important architectural goals which are crucial to meeting the project goals of opening
new opportunities for Apple and developers.

Flexibility and Expandability

tunities because of the curre
ns which were made b
of the system. These a5
violate the assumpti _
tions are spread throughout the system, and asily changed.

Apple sometimes has dif;
architecture. This is partl
team, which are deeply &
to add some new syste
built. Worse, these assu

Pink aims to be more le.an
easily change and ex}

to grow to deal wit

d expandable than the current Blu
ink will need this flexibil

to enable Apple to more
like Jaguar, and

No system is infini}
and sooner or later those constr:
the system and to ease the burden

The key to such flexibility is careful manager
assumptions must underlie every engineerin
you must, and to isolate such assumptions wh
Pink achieves this.ebjective through the use of

There are two ~hi lients deal
with an object tha rf; ' i

know. Implementati len. The second aspect is type inheri:
the level of information they 'must know. Base classes provide the minimum pr
object; derived classes provide extra information for those who need to know.

deal only with
col for dealing with an

Objects, of course, are not enough. Pink cannot meet its goal of flexibility without care and diligence on
the part of all designers.

Portability

Apple does not currently have the option of moving its system software to another hardware platform.
This is because it is written almost entirely in 68000 assembly language, driven by the need to fit in small
amounts of memory (ROM and RAM). Although memory will never be free, our hardware has grown to
the point where Apple can afford to trade off some memory consumption for the ability to run on plat-
forms other than the 68000. Having this ability lets Apple take maximum advantage of competition
among microprocessor vendors. This enables us to introduce important new products like Jaguar. Con-
sidering the agony of developing a complete suite of system software, the company’s best interests de-
mand we not tie Pink to a specific processor architecture.

& Registered/Restricted ~ Pink System Architecture Monday, March 26, 1990 1.2-1



“The only reasonable numbers are one and infinity.” Thus, portability means more than portability to
Jaguar. There will be other machines beyond Jaguar. Some day, the company might even want to run
Pink on something really obscure, like an Intel processor (“bite your tongue!”).

To meet this goal in Pink, all but the most performance critical code is being written in a processor- and
system-independent fashion. There will be code in Pink which varies from implementation to implemen-
tation, but it must be carefully controlled. Note that “portable” does not mean “least common denomina-
tor”. Every platform will have distinguishing features which Pink can and must take advantage of. Parts
of the system may change significantly from platform to platform Again, the key is management of as-
sumptions to give the most flexibility possible.

Performance
Like any large system, Pink carries the risk of madequate performance. The processor hasn’t been de-

signed which can’t be brought to its knee, n to this goal. Pink must perform well
class machines, to the poingwhéré tsersy 've that they are losing something,

II

Robustness

Anyone who uses the
eral lack of reliability ir
ments and system files

) must notice the gen-
n-reproducibly, docu-

of time (especiall
r current systems. Applications crash ran
corrupted, and disks even get trashed.

The problem is not t
party developers a
is very easy forap
Macintosh human
makes no allowance for the hutna
errors that engineers make. In addi
don’t place the user’s data at risk.

ineers, or the thlrd

An example illustrates why architecture place:
Any system which supports so-called unsafe
Pascal, etc., but n
programmers (1i¢
Macintosh, this
contains importa
length of time be :
ded in several thousan pplications: the architecture prevents a solution.
Pink solves this problem by eliminating low memory from the address space. The first N (currently 16
megabytes) locations of the address space simply don’t exist, and any reference results in an immediate
error. This is just one example of how an architecture can plan ahead for programmer errors.

Empower Developers

In addition to goals motivated by Apple’s needs, Pink has the goal of making it easier for developers to
build great applications. There are two thrusts to this goal: first, to allow the developer to concentrate on
their application domain by removing much of the boilerplate code associated with developing a Macin-
tosh application. Second, to raise the ante for applications by introducing major new system-wide fea-
tures which enhance applications.

Saving a file is an excellent example of the fu'st area. There are more than twenty steps to follow to correct-
ly save a file in a way that is AppleShare friendly, deals with disk full, handles errors, works around Poor
Man's Search Path, etc. These steps are documented in twenty different places. MacApp solves the prob-

® Registered/Restricted ~ Pink System Architecture Monday, March 26, 1990 1.2-2



lem by dealing with the issue itself, asking the developer only to provide the data to be saved. Pink takes
the same approach.

Examples of the second area are linking, provided by CHER, and the Albert 2D/3D graphics system.
CHER empowers developers first by providing lots of default functionality to every application, and sec-
ond by allowing applications to build on top of what CHER provides. Albert empowers developers by
giving them an extremely rich (but non-fattening) graphics system with more capabilities than anything
else in the industry. Developers don’t use transformation matrices, anti-aliasing, and 3D in their applica-
tions today because there would be no time left for the application after implementing all those capabili-
ties. If it’s built in, people use it.

Support the Interface

The Macintosh has a well defined human interface, and a set of human interface design principles, but al-
most no system support for implementing those principles. Consequently, developers must make a major
effort to support those prin¢
tion is a cornerstone of the
tosh applications could exi
windows, pull-down m

Pink directly supports t
the human interface e
nipulation, so that it i
fully integrate an ap ]

A Global System
The Macintosh is one of
world. Unfortunately, it aimed too lo
support for non-European languages was
tion, the problems caused by not including th
from writing truly global applications.

deal with
ultiple nat

Pink is a world wide system from the ground
are capable of s
once.

Architectural Pr1nc1p

This section discusses some techniques which are not goals themselves, but are intended to help us reach
the goals discussed above.

All Interfaces through Objects

In order to get the most flexibility we can (by hiding as many assumptions as possible), the only client in-
terface to services is through classes and objects of those classes. Among other things, this means that the
following (usually important) concepts should never be part of an interface: messages, file formats, data
formats, IPC. Note that these are all services themselves which can be used in the implementation of other
services, but that they should never be part of that service’s interface.

For example, you may well implement a service using the Scream client/server classes, but that fact
should be completely hidden from the clients of that service. After all, you may want to change to an im-
plementation based on shared memory and libraries instead of messages and servers, and the client
doesn’t need to care. Part of the problem with the Macintosh architecture is that interfaces are defined at
too low a level (“the parameter block is laid out like this”, “send a message which has these bytes in this

¥ Registered/Restricted ~ Pink System Architecture Monday, March 26, 1990 1.2-3



order”, etc.).

Just using objects isn’t enough; the objects must be designed correctly. Objects in Pink are defined in

terms of the abstraction being presented to the client, not the implementation. It's quite easy to spill your
implementation’s guts through a class interface. The key is to design the class thinking about it from the
client’s point of view. What are the entities being dealt with? What do I need to know about them? What
operations can [ perform on them? These are the key object design questions.

Manage Commonality through Inheritance

Commonality in software systems has traditionally been managed by commonality of 1mplementat10n
For example, UNIX' systems manage devices by making everything look like a block device or a charac-
ter device. Device specific features are glued on through extensions. The Macintosh architecture uses the
same approach: devices all support the same small set of calls, except that there are usually 1,897,422 vari-
ants of the control call to handle the specific attributes of a device.

defines an abstraction an ich is com-
t base class, declaring the
¢ features unique to thes
ed, yieldin vely more refined p

: base classes, thus supporting more than ogi

Type inheritance providg
mon to many objects. S
they implement the co
stract base classes ca
can inherit from mul

The benefit to clien
abstract base class
details to change

only deal with the level
yes independent of the

should be dealt with by has-a'ret
relationship), or protected interface
the same base class.

An example of these techniques applied to th
TMassStorage defines the concept of a block
concept of a devi e SCSI bus. Finally,
The file systemi
inherit from
other abstract t
formance disk . . 5
MNubusDevice. In each case, clients deal only w1th the protocol they care abott, and unnecessary detail
is hidden. Similarly, a video NuBus card would be a TVideoDevice and an MNubusDevice.

Leverage Where Possible

Using an existing object rather than inventing a new one is a good way to achieve several Pink goals. Less
code means a smaller memory footprint, which yields better performance. Fewer classes means less for
the developer to learn. Less to implement means fewer bugs, leading to a more robust system. It also

means we get done faster, leading to bigger profit sharmg checks (this is an implicit Pink goal not men-
tioned above).

For example, Pink has a set of collection classes which implement common data structures from Comput-
er Science (note capital letters), such as stacks, sets, trees, etc. Pink uses these classes heavily to avoid
reinventing the wheel. Similarly, the many building block classes Pink provides allow the developer to
concentrate on his or her application rather than reinventing common tools.

1. I don't care whose trademark it is. So there.

€ Registered/Restricted  Pink System Architecture Monday, March 26, 1990 1.2-4



Sometimes this requires battling habits learned in previous lives. For example, the AppleTalk datagram
protocol (DDP) has a concept of a socket. A machine may have up to 256 sockets, which are mostly allo-
cated dynamically. The first inclination might be to use a bit vector to keep track of which socket numbers
have been allocated. This leads to a fair amount of custom code. If you look more closely at the applica-
tion, however, you notice that first, there is only one such data structure per CPU, and second, perfor-
mance is not a critical issue. Instead of building a custom data structure, the existing classes TSet and
TCollectibleLong could be used to implement a set of integers, which is precisely what a bit vector is.

Naturally, leverage does not mean “one size fits all” (TProcrustes?). In another context, speed or space
performance may demand that a custom data structure be used. That’s OK. As Einstein said, “Everything
should be as simple as possible, but no simpler.”

Frameworks Protect Subsystems from Each Other

Use of objects and inheritance help 1solate chents from assumpnons and unneeded details, but what
about developers implementizg: s, Ot

tions about the objects, bu
the idea of frameworks.

The Lisa Toolkit and Ma
classes, among them T
client from the system a
tion hiding goes bot
used by developers.
oper and the system:
veloper deals with ¢

A the client; the informa-
pp system, and parts are

e same time as they hide the details of th
of the classes’ interfaces are used

Let’s recycle an earlier exarnipt
defines two methods in its protoco
TDocument.Save in response to the Save
resents the abstraction of a File menu Save ¢
method when creating his or her own subclas:
document. This is only one of the twenty or so
veloper cares abou hich varies from appl icat g pro-

protected from the details of:s
veloper is protected from the details of documents which are irrelevant. The TDocament framework class
has interfaces which go both ways: one for clients, and another for subclasses (of course, these can over-
lap somewhat).

Pink uses frameworks extensively. In addition to the MacApp application and document frameworks,
Pink adds: a client/server framework, a graphics device framework, a concurrency control and recovery
framework, several frameworks for implementing different kinds of device drivers (NuBus, SCSI, video,
disk, etc.), a text editing framework, a framework for file systems, and more. This structuring technique
made MacApp possible, and it’s an important part of Pink.

Let Resources Find You

Traditionally, programs have names of resources or collections of resources hard wired into them, and go
out looking for these resources. Yet programs do not usually need to know this information, and fre-
quently it’s only used to put up a list for the user to choose from. Needless to say, having many different
programs write their own code to find things and then to put them up in lists for the user to choose is not
in keeping with the Pink principle of hiding assumptions and information.

& Registered/Restricted  Pink System Architecture Monday, March 26, 1990 1.2-5



Pink instead takes the approach that code should wait for resources to find it, rather than looking for re-
sources. A form of this happens today on the Macintosh. The file system does not know about all possible
devices which can act as disks, and go out looking for them. If it did, it would be impossible to create
things like tape disks or NuBus disks, simply because the file system would have contained the (unneces-
sary) assumption that, say, only SCSI disks can contain file systems. Instead, the Macintosh file system
waits for resources to find it through the drive queue data structure. Anything ¢an declare itself to be ca-
pable of holding a file system by inserting an entry in the drive queue.

Pink takes this idea as an architectural principle, and takes it one step further. First, resources should reg-
ister themselves with services; services should not go out looking for resources. This is a “bottom up” ap-
proach rather than the traditional “top down"” approach. Second, whenever possible resources should
register themselves on the desktop, and services should be told what resources to use via choices from the
desktop, so that users have to remember only one way to “choose” things.

Here is one example of these principles in actlon At boot time, the SCSI software must enumerate he de-
vices attached to the syst for each device. However, this is t
SCSI devices need to be e stic purposes, or if live attach
lowed). From this point ¢ ftware, is responsible fo
sources it represents.

access to the re-

T to select it for format-
file system, to allow the
es on the desktop to allow

itself on the desktop as a raw device, to ajlt
contained volumes, it would also register
The file s stem would in turn register
that in each case the g

A 5CSIdisk would regi
ting or partitioning. I
volumes to be moun
the user to select theg
formation. The file
tape, SCSI, NuBus,
source is selected &
Similar techniqu

This architecture solves several problems
increases flexibility. For example, the Apples
the SCSI chain. A Pink scanning application
whether it was on SCSI, Nubus, or whatever

Second, since r
This prevents t
way, network 1
in a third place and

Naturally, some things don’t fit this model. Although fonts need to be manipulated on the desktop, I
doubt users would like to select them this way when writing a document. Thus, some resources may
need to be registered in more than one place and presented in more than one way.

Architectural Overview and Issues

This section gives a broad overview of the architecture of the system. It’s supposed to be a complete
synopsis, but will probably only approach that goal asymptotically. As I discuss each functional area, I
will also enumerate the open issues and coming attractions.

The Opus/2 Kernel

Any view of the Pink architecture must start with the fundamentals of the programming model and envi-
ronment. The foundation of that environment is the Opus/2 Kernel.

¥ Registered/Restricted  Pink System Architecture Monday, March 26, 1990 1.2-6



Opus is an operating system kernel which provides a small set of powerful abstractions. It follows in the
same spirit of previous such kernels, like Stanford University’s V and Carnegie Mellon University’s
Mach. The design goal of Opus is to abstract away the variations of machine architecture while at the
same time remaining small, leaving as much as possible to code running outside the kernel.

The primary abstractions that Opus provides are:

* Multiple, independent virtual address spaces. Each address space is associated with a team (see
below).

« Multiple mapped segments” within an address space. Each segment has a corresponding backing

store, which may be a file on disk, part of the physical address space, or anything else. Segments are

usually demand paged, unless otherwise requested. Segments can be mapped into more than one

virtual address space simultaneously, allowing communication via shared memory.

¢ Multiple threads of ex
lection of tasks in an ad
the entire address sp
sor Pink is running o
scheduling system. E:

with each other syn

* A facility for load
On most processé
mode as the ke

A set of classes provides the interface t
responding kernel resources. The entire Pi
handlers and the kernel itself, all Pink code is'e
of one or more teams. Shared memory and IPC

In Pink, there is
services and 1/Q
cations are also
driver can’t be pa

ion between system

Opus Issues

¢ Currently, access to shared memory is synchronized via semaphores implemented in library code.
This function is likely to migrate into the Opus kernel, and may be replaced by a model of monitors
and conditions.

¢ Certain real time applications such as sound, video, and human interface do not work well with a pri-
ority based scheduler. The system scheduling model is likely to expand to support real time require-
ments, by including concepts like deadlines or periodic scheduling (this may be in the kernel or lay-
ered on top).

» Currently, segments which do not correspond to physical address space must be backed by disk files.
This will be changed to support segments backed by other stores, as well as segments (such as caches)
which do not have backing store at all. On a related note, the interface for segments is currently closely

- tied to the file system. It will become more independent in the future.

2. OK, so it’s a horrid name. So sue me.
3. An archaic acronym, for Inter Process Communication.

€ Registered/Restricted ~ Pink System Architecture Monday, March 26, 1990 1.2-7



 Currently, IPC, semaphores, and paging do not take priorities into account (i.e., the queuing is “fair”).
This is probably not appropriate for an interactive, real time system. We will experiment with these is-
sues to find the right approach.

 Several clients need “copy on write” functionality for segments. This will be provided by a “lazy eval-
uation” copy function. ‘

The Run Time Environment

The Pink run time system builds a programming model on top of the abstractions of the Opus/2 kernel.
This programming model is designed to support the classic Algol family of languages: C, Pascal, Fortran,
and so on. In addition, the run time supports an object programming model based on the semantics of

C++. Finally, there is a set of features specific to Pink.

Shared Libraries and Classes

One of the most importa
functions and global dat
teams which reference th:
variables. Shared libra
ed. This may cause oth
braries supplied by Ap

ed libraries. A shared libra
rticular team. The cod

'when a library is load-
 provided via shared li-

This does not mean t S i ies. lecture allows an indefinite
number of shared 1 g

“system software”
run time mechanis;

Shared libraries are normally mapped:
ROM. Unlike the Macintosh, there is no d
support ROM, shared libraries can be patch
function is exported from the library.

In addition to the normal statxc references wh

classes, and fung : i : ibrary
be loaded by n, ' ; : e. This
capability grea wer of in-
heritance.

Language Support

The Pink run time also has the following features:

* Standard C, C++ (minus AT&T’s task package), and SANE (including complex) libraries.
* Fast semaphores for synchronization of shared memory.

* Very fast storage allocation which is safe for use by multiple tasks. This is not a relocating storage allo-
cator like the Macintosh; allocated blocks don’t move unless requested.

¢ Support for a software exception handling model. This model is based on termination semantics (like
CLU, Ada, and MacApp), and will support the semantics being developed for C++. All unusual condi-
tions in Pink are expressed through this mechanism rather than through error codes.

» Support for debuggers and handling of hardware (processor) exceptions.

€ Registered/Restricted  Pink System Architecture Monday, March 26, 1990 1.2-8



Run Time Issues

The Foundation Class

The load files used for shared library files are currently Blue application (resource) files. These will be
replaced by a native load file format when the Compiler Technology project (CompTech) compiler be-
comes available (this compiler is being built by the Class group).

The design for how shared libraries are located is not complete. There will be “published” shared li-
braries for everyone to use, but how library searching is handled when a developer doesn’t want to
globally publish one is not clear yet.

The virtual function tables used for virtual function calls are currently constructed at compile time and
live in the global data for a library. This means 1) new virtual functions cannot be added without
recompiling clients, and 2) virtual function tables are not shared between teams. When the CompTech
compiler is available, virtual tables will be constructed dynamically by the run time system, alleviating
both these problems.

As mentioned in the ke

The exception handli
time, and will be in fi

that direction over

Pink provides a larg ral utili : ed.widely throughout

the system. They inc

A set of collecti : des a
set of high level classes
for those needing finer control (hash‘f
structures are provided, such as directed i fren-
cy control.

s higher or arbitrary pr

A framework for concurrency control and recovery (Credence). These classes allow shared data to be
updated in a way which guarantees its integrity. They can be used to prevent data from becoming cor-
rupted due to software crashes or some hardware crashes. These will be used by the Pink file system
and other components; Pink will have no “Disk First Aid” like applications.

A class which allows objects to be stored in files and retrieved by keys, which may themselves be
objects (PsychoKiller).

A class which allows short unique identifiers to be assigned to entities in an extensible fashion
(Tokens).

A set of classes for implementing client/server relationships (Scream). This is widely used throughout
the system to implement classes which do their work by communicating with servers.

< Registered/Restricted ~ Pink System Architecture Monday, March 26, 1990 1.2-9



Foundation Issues
» Itis not clear there are resources to implement any of the proposed SANE extensions.
“Operating System” Services

Many of the services that traditionally would be provided by an operating system are instead implement-

ed via shared libraries and server teams under Pink. These services include: i

e A set of framework classes and servers for implementing device drivers. These include frameworks for
SCSI, Nubus (or other expansion schemes), mass storage devices, video, serial devices, and ADB. In
each case, new kinds of devices can be added by deriving new classes from one or more of the base
classes supplied by Appl TS will not need to write their own inte de
but can instead use tha

* A set of client classes {Pluto). These will
provide a common in : i i 've system,
: ving new classes
Tt new features such as
trol for local volumes
of the Macintosh data and

large volumes, full
(as opposed to only
resource forks).

e A mechanism f i 0 ations
discussed abow

¢ An event server for coordinating evé
also enforces the fundamentals of the u
system.

A layer server Wthh arbitrates screen real

“OS” Issues

* Itis not clear yet wheth vidual devices will be controlled by separ
devices may be controlled by objects operating within shared teams.

or whether some

* The functions provided by Rainbow Warrior overlap somewhat with those provided by the Desktop;
they need to be coordinated.

» There is a major missing component, namely security and authentication services. This is necessary to
guarantee the security of the local file system. Access to the file system, to certain hardware resources
(such as mass storage devices), and to certain OS features (loading ISRs, creating physical segments)
must be authenticated if the local file system is to have any more security than it does today. A recent
survey stated that around sixty percent of all Macintoshes were used by two or more people, so this
seems like a good idea. This issue must be resolved soon. A related issue is how to deal with people as
objects in the system; this is needed for collaboration as well as authentication.

* Another area which we must consider is system reliability. If Pink systems will be used as servers, we
~ may need some or all of the following features: storing information redundantly to protect against
media failures (including disk mirroring), logging of soft and hard errors to spot potential problems,

® Registered/Restricted ~ Pink System Architecture Monday, March 26, 1990 1.2-10



some measure of fault recovery. Do we want to do these? Also for servers, we may want to allow vol-
umes to span multiple physical disks.

 Currently there is no strategy for dealing with power management, an important issue when running
on future Pink-capable battery-powered machines. The key requirement is to be able to tell that the
machine is “idle”, i.e., no useful work is going on, so that it may be put to sleep. Since many teams and
tasks will be running even in the idle state, we need to put a framework in place for extracting this in-
formation.

» The system boot sequence has not been designed yet. Pink may or may not be in ROM, but we will
probably design a boot sequence capable of dealing with either eventuality (if only to aid during de-
velopment) and of booting over the network. This work will commence shortly.

» Rainbow Warrior provides a change notification facility, as do CHER and some other components.
These need to be unified, or at least be expressed using a common set of base classes.

The Graphics System

ng capabilities for
pt™, and Render-

The Albert graphics syst
Pink. It surpasses most o

D and 3D rendering

* Alarge set of 2D prin 2 i nes),
rectangles, round rectangles, polygot s ing. ec-

e Rendering of text integrated with the rest o imitiv éo—
metric area. Fonts and glyph rendering are i
techniques can be supported: initially, True

¢ An extensibl ;
thicknesses, j ng ing. New'k in ues can
be added by dev op:

* A large set of 3D primitives: lines, polylines, and curves; boxes, polygons, meshes, polynets, boxes,
swept and extruded shapes, and 3D spline surfaces. 3D geometric collections: paths and surfaces.

* An extensible 3D rendering and viewing model that includes camera and light source modeling and
many shading techniques. New kinds of rendering techniques can be added by developers, similar to
programmable shaders in Renderman.

* An extensible 2D modeling framework which can tag objects with rendering attributes and transfor-
mations, and includes the ability to create nested groups.

¢ An extensible 3D modeling framework which includes support for sweep and extrusion.

A graphics output device model which is extensible to support many different rendering techniques,
_including standard frame buffers, graphics accelerators, and spooling of graphics for printing.

& Registered/Restricted  Pink System Architecture Monday, March 26, 1990 1.2-11



Albert implements all these capabilities with a small set of abstract classes, among them MGraphic (the
abstract class for modeling), TGrafBundle (object rendering attributes), several geometric classes,
TGrafDevice (an abstract output device), TGrafPort (graphics context for rendering), and TMatrix and
TMatrix3D (transformation matrices).

Albert Issues

¢ Itis not clear how to handle developer supplied extended rendering classes (e.g., for shading) when
sending graphics output to a graphics accelerator or other external rendering engine, or when putting
graphic objects into a document which may be transferred to another system. .

« Still to be defined is the architecture for handling buffering, compositing, sprites, and animation. This
is needed to support the mouse cursor, and dragging of objects in front of other, animating objects. It
would also speed window dragging and handling of updates by obviating the need for redrawing
windows in all cases.

¢ The architecture for tex

ned. Font raster caching

* The architecture for d CLUT output devic defined.

Application Support

Pink contains severa g applications. These are
the Application fra : -ument framework, which
supports the Pink d¢ ipti he system
script facility. The

ich are directly concerned

The Application Framewor

° as

10se com-
ponents to be

* A view system whic partitions the display of an application into self-contained components. Views
are similar to windows, except that they form a hierarchy rather than a simple collection. They also
provide a framework for managing interaction.

* A set of user interface components (windows, buttons, menus, scroll bars, etc.) built on the foundation
and extensible by third parties. This also includes views for common presentation techniques such as
tables of items and collections of graphics.

* A framework for tracking user interface actions which includes standard support for tracking the
mouse, for handling double clicks, and for dragging elements within views, between views, and be-
tween windows. The dragging framework also provides a means for a dragged element to
communicate with other elements it is dragged over.

The two primary building blocks of the application framework are the responder, which is an object that
can receive events, and the view, which is an object that can contain graphics and receive positionally di-
rected events (such as from a mouse). Views are also responders; they are a subclass.

€ Registered/Restricted  Pink System Architecture Monday, March 26, 1990 1.2-12



Events are usually routed to responders in three ways. Non-positional events, such as keystrokes, are sent
to a specific responder associated with the current frontmost layer; this responder is called the target. Po-
sitional events, such as mouse button down, are routed through the view hierarchy to the view which
was under the mouse when the event occurred. Finally, events can be routed directly to a specified re-
sponder.

In addition to receiving events through the event distribution mechanism, responders can receive input
directly from other responders. This is done through output ports, which connect output from one re-
sponder to the input of another. Thus, responders can be hooked together in different configurations
without having to write code to do so. This is essential to a user interface construction capability, like that
being planned for the Hoops development environment (Pink’s native development environment, also
being built by the Class group).

Views can be thought of as virtual paper, and the view hierarchy as a mechanism for arranging those pa-
pers to make a coherent interface. Each view has, at a nummum a container (the view within w
pears when displayed), a pg
mation relative to its cont
bitrary Albert area). View!
MGraphic). When displ
views in front of them.

The tracking framew
tracker encapsulates ¢
mouse tracking and d

based on the tracker object, which repre:
f the interaction. Standard

The Document Fr

The Pink document framework : ; t the
standard Pink document model. In

 Collaboration: every Pink document built _ multaneous al col-
laboration between users on that docume ) i-
ther on one machine or across a network, a '
Annotations allews.users to communicate

so provxde

¢ Multi-level undo: like MacApp, CHER provides a framework for implementing undo. Unlike
MacApp, CHER’s undo is multi-level; users can undo back as far as system resources permit. User ac-
tions are logged using Pink’s recovery features, so users need not save to preserve their work from
crashes.

e Content based retrieval: CHER provides a framework for indexing and content searching, to allow
documents to be located by content.

CHER is at the heart of Pink applications because Pink has a document-centered user model: users deal
with documents, not with applications. CHER provides a subclass of the application framework which
knows how to deal with documents and knows how to integrate with the desktop. Applications are in-
voked whenever necessary to perform services in a manner transparent to the end user.

® Registered/Restricted  Pink System Architecture Monday, March 26, 1990 1.2-13



The Scripting System.
Pink provides a system which allows end users to automate repetitive tasks. It has the following features:

* Scripts can be recorded, and the system watches to try to discern repetitive actions. The system uses
these to try to generalize the actions the user has just performed.

* Scripts are represented in a visual fashion similar to storyboards or film clips, to make them more ac-
cessible than textual languages.

* Scripts are universal; the scripting framework is integrated with the document framework, making it
easy for all actions taken by the user to be recorded and played back.

Application Support Issue:

which need to
is may become
for sprites must be
waits Albert support.
ant to add some kind of
tions. Something like the

e Much of the view syst ut. There are synchronizati

be resolved, additiona;
the default), support
integrated when ava
Support must be ads
framework for aut

“boxes and glue”

| ol sereenbuffering of views, and
le. Palette management for support of CL

¢ The event handl € . TiC frame-
work has not yel '
built yet, and the

¢ The synchronization issues between th:
updating, and documents have not been'

» There is another kind of collaboration beyo
opposed to document) level. This is similar

* Help support will be integral to the application framework, but we are waiting for a human interface
design before designing the software.

* Work on the scripting system is just underway, and many issues remain to be resolved.
Text and International

Initially, support for text on the Macintosh consisted of TextEdit (32K characters, plain text) and the Inter-
national utilities (Roman languages). Since then, the Script Manager has been added to support non-Ro-
man languages, and TextEdit has been extended to support multiple fonts and styles. Unfortunately, be-
cause there is no support for sophisticated text editing and because the Script Manager is not integrated,
every developer who wishes to support text must write their own editor, and most skimp on non-essen-
tial features. Very few use the Script Manager because of the effort involved, and many do not implement
all of the Macintosh human interface (the word processor I'm using to write this does not support “intelli-
gent” cut and paste).

€ Registered/Restricted  Pink System Architecture Monday, March 26, 1990 1.2-14



Pink provides extensive support for sophisticated text editing. It includes a text editing framework which
supports arbitrary length text and an extensible set of styles. The text system supports sophisticated
typographic controls, text flow across blocks, high quality line breaking, and more. The framework is in-
tended to provide a highly functional base level of text support in Pink, as well as a toolkit for construc-
tion of high end text applications (word processors and page layout programs). The goal is to prevent de-
velopers from having to reinvent the wheel so they can concentrate on providing distinguishing features.
The text framework can be overridden to provide such features (like footnotes or indices).

The text framework works closely with the international classes so that all text manipulation is fully inter-
national by default. Pink uses a 16 bit character set (Unicode) and is capable of handling multiple scripts
with different writing directions and input techniques. Because of the integration between text and inter-
national software, input of complex scripts such as Japanese can be done inline while editing. Pink text
can take advantage of such sophisticated options as automatic kerning, ligatures, contextual forms, and
optical alignment. Pink will support simultaneous use of multiple scripts within documents, and will be
able to switch the “system” languag,

topers to build
atting, text parsing,
much more control
les, local rules (such

In addition to text editing;
worldwide applications.
and text searching can a
over configuration; the
as time zones), numbe

1 be able to choose from }nultiple languag
ats, and so on.

Text and Intermatio
¢ Implementation i

e There are no Ba 3
Indeed, there are no Bass Unicod

* There are some problems to be resolved
same issue as above for Albert custom bun
chine?).

ing out irrelevant word e
mobile”, for example.

Printing

The Pink printing system is composed of several pieces which work together to provide a flexible and ex-
tensible system. These are:

* A framework for objects which can be printed, which helps them deal with pagination, page size, and
other printer attributes. This framework has a set of useful defaults which allow most applications to
print with very little work.

¢ A set of classes for characterizing printer attributes and print jobs. This includes user interface classes
for presenting a standard human interface to select such attributes.

* A framework for building print drivers, which lets developers define new kinds of printers with new
-capabilities. This is similar to the application, document, and other frameworks in Pink: developers
need only define the unique behavior of their particular printer.

€ Registered /Restricted  Pink System Architecture Monday, March 26, 1990 1.2-15



* A spooling architecture which will do all printing in the background.

* An architecture for dealing with scanners. This consists of a set of classes for use with CHER to allow
images to be input into applications, plus a desktop scanner object (a driver).

Printing Issues

¢ We would like to support multimedia output (sound, animation, video) in the printing architecture.
This is still under investigation.

Time, Sound, and Animation
Pink has a set of classes dedicated to timing and time-dependent media. These include:
* Classes for getting the current Julian date and time. Pink uses Universal Time (a.k.a. Greenwich Mean

Time) internally. Cale ut and output are handled by the In#s
software.

* A setof classes for ti
of timing informatio
TTime objects repr
formactionsata g

represents a source
t advance in real time.
arms can be used to per-

mmportant class is TCl
different rates; clogk
timing information relative to specific cl
time or periodically.

€S, processors,
nes, speakers,

other sound objects.

* A set of classes for dealing with time-s¢

Issues
* The use of UT internally impli it findi time

zone. Also, ¥ k ti i > existi NTP),
but no one i

(responders and output ports), the sound classes, and the time sequenced data.classes The common
ground needs to be determined (if there is any) and shared as a set of abstract base classes.

* The animation and video architecture has not been defined yet.

Networking and Communications

The Pink networking classes provide:

* A framework for implementing a wide variety of networking protocols. In some cases, these protocols
can be mixed and matched.

* Support for simultaneous connection to multiple networks (“multi-home”).

* A class which represents a network resource, which can also instantiate transaction or streaming con-
nections to that resource, independent of the network protocols used.

& Registered/Restricted  Pink System Architecture Monday, March 26, 1990 1.2-16



* A networking and communication component to the Blue Adapter, which emulates native Blue net-
working services by calls on Pink network services.

e A set of classes for accessing the capabilities of MCP cards which utilize the A/Rose kernel, to enable
use of the many NuBus cards which use the MCP platform.

N&C Issues

 There is currently no equivalent to the Communications Toolbox defined. Something on the order of a
TSerialConnection desktop object seems necessary to allow configuration of native Pink software.
using serial connections.

» There are human interface problems involved in mix and match protocols and multiple networks.

The Desktop and Finder

t nook and
¢ Pink desktop is
g that is going on in
expansion cards

In order to meet its goal o
cranny, Pink assigns the
not just a window onto
the “world” inside the c
and ports), networks r

on and physical metaphor intg
lobal role than is true
or the presentation 9

Pink also separates t i nt to the Macintosh Find-
er) from the underl i : i bjects on the

desktop map directk i
desktop objects: co i 7 o ing and
using desktop obj

What desktop operations mean for indi
deriving classes from the abstract base cla
tion of such concrete classes which can be use
volumes, folders, NuBus cards, etc.). Also nat
classing any of the classes Apple supplies.

fi'a document, and is hande
ument), or explicitly (e. printer into a “socket” in a win t the efault printer
for a document). The conn tween desktop objects and potential users e ob)ects is made
using the dragging and type negotiation protocol defined in the Pink application framework: a target can
accept a desktop object if the protocol determines that they have a “language” (a type, representing a pro-
tocol) in common.

Developers will also deal with the desktop by creating desktop objects of their own: the example given in
the principles section was of a TMassStorage object creating a desktop object to represent the raw device,
and of the File System creating a desktop object to represent the volume or volumes on such a device. Be-
cause objects find the desktop, rather than vice versa, the mapping of resources into desktop objects can
vary widely across system components and over time.

In order to increase the consistency of the metaphor, Pink discards some components of the Blue inter-
face. Like Lisa, Pink uses a document metaphor; applications are only resources that need be present to
enable certain kinds of documents to be opened and manipulated. The user opens a document, and does
not (consciously) “run” an application. Similarly, Pink discards some File menu commands: New, stan-
dard file, Save, and Quit.

€ Registered/Restricted  Pink System Architecture Monday, March 26, 1990 1.2-17



New documents are made by copying stationery (the application itself could serve as default stationery to
avoid the Lisa problem of throwing all your stationery away). Documents are saved automatically; rever-
sion is handled by multiple level undo and “snapshots” of document versions. Standard File functions
are handled by the Finder; users will not miss Standard File as long as all the shortcuts (and speed) it pro- |
vides are in the Finder too. Quit is superfluous since users work on documents, not in applications. Each
document will appear separately, rather than all documents of a given type being lumped together if
more than one is open. When and how application code runs is determined by the system, not the user.

Finally, the Pink desktop will reduce the distinction between desktop objects and data. Desktop objects
can be dragged into containers, and in Pink selections can be dragged between documents. We would
also like to be able to drag selections into containers (perhaps creating new documents) and desktop
objects into windows and documents (as in the printer selection example above).

Desktop Issues
¢ Ideally, file system ope;

ceptable from a perfo
tem to notify the desk

e desktop to ensure consistenc

* The handy-dandy
though the type ne

* Oneadvantage of
enced users. Na
enced users lea
depths on video
cdev, click on if
pervasively as our user intétf:

ple. metaphors in today’s Macintos,
ile:ar the Chooser can be

be done.

* The design of the desktop classes depends
sign of the general Pink human interface.

{custom) im
well. This is

* The pervasiveness o p means that it will permeate every corner o ,and thus affect the
design of many components of Pink. However, the desktop classes are only now being designed and
implemented.

* Once the desktop classes are available, there are an awful lot of desktop objects and utilties which
need to be designed and implemented. All functions that are currently handled by Chooser, Control
Panel, HD SC Setup, Font/DA Mover, ad nauseum, must be built. This is a lot of work.

Adapters

Pink is designed to allow foreign operating environments to be emulated concurrently with native Pink
applications. These emulators are known as adapters. There are two currently being planned:

* The Blue adapter will allow Pink to run existing Macintosh applications and some subset of other Blue
software (probably DAs, cdevs, and some INITs). The technology used will be very similar to that in
" A/UX2.0; the major difference is that unlike A /UX, Pink has a native video architecture and cannot
use the Blue model unchanged. In addition, some measure of data exchange between the two worlds

€ Registered/Restricted  Pink System Architecture Monday, March 26, 1990 1.2-18



will be possible: at least clipboard and file import/export, and possibly some connection with CHER.

» The UNIX adapter will allow some subset of applications written for UNIX to run under Pink. The set
of applications which run depends on what UNIX applications, and thus what UNIX features, we con-
sider important to emulate. The goal is to let applications which use standard System V, BSD, or
POSIX interfaces to run, and also to support such common UNIX accouterments as X. It may even be
possible to support one of the application binary interface (ABI) UNIX standards and thus run existing
binaries, but given the projected installed base of Pink this may not be necessary.

Adapter Issues

* The technique for handling graphics in the Blue adapter has not been decided. Allowing QuickDraw
to continue to draw to the screen guarantees pixel perfection, and the Layer Server was designed to
allow multiple rendering systems. However, this doesn’t work well on devices which are not a
multiple of 72 DP], and it breaks down completely for graphics accelerators Under Pmk a graphics
accelerator card will be ¢
transforms (like rotati

e How much software b
tainly, probably som
disk drivers (by far t
any means. Rewri

is not guaranteed by
make this much easier.

ot to mention the r ment it) have

e The requirements,
not yet been nail

& Registered/Restricted  Pink System Architecture Monday, March 26, 1990 1.2-19






Pink Human Intertace

€ Registered/Restricted Human Interface Architecture March 15, 1990 1.3-1






Pink Human Interface

- WHENBVER (T
SEEMS THAT
PLACE, HOBRES. ) T TAKE A

e Simplifies what is
* Adds what's new

¢ Restores the fun

Lee Honigberg
Frank Ludolph
Annette Wagner

& Registered/Restricted Human Intertace Architecture March'15, 1990 1.3-2






Table Of Contents

INEEOAUCHON . eeeeeieeececeeeeiasnasccneesssseeesosssncassssnasssnnesssessssasssssessansnssasssnnassssanesasssndassaseasessesssan
Extending the Macintosh Design Prnciples ... ieierreniiinninnniisiisieininniiianianiiniind
Metaphors from the real world 5
It works the way you do.
Direct Manipulation ......... eeeeeeteerettete e ——————————_ eeeerenanes eeeeeeeeee it 6 i
See-and-Point (instead of remember-and-type).....covceeiieeeiiniicinii 6
Feedback and Dialog....cccceccenee eereeeeren et te e et e bt et e aas st ae e errree e nsre e rateens 6
User Control.....cceeeeeieeenenns e teeeeeateeeenateetaee e nte e e bt eebbe et s e s s aRs et e s e rr et e e st breeeraaes 7

Safety (a.k.a. Forgiveness)..........

Aesthetic Integ
Funto Use......

Post-its...
Filling Out Forms.......
Groups of People........... oo
Collaboration............... R

Project ListS......cccc.... rverrees .
Print SROP .evrrvrieieeneneeiiiennaes

New Coql

Operations.
Interaction..

& Registered/Restricted Human Interface Architecture March 15, 1990 15-3






Introduction

Pink continues the Apple tradition of innovative, attractive, easy and fun-to-use human interfaces.
The Pink Human Interface also has the following goals:

* Similar in style and appearance to the current Macintosh interface but more refined and
attractive.

Integrates and simplifies existing Macintosh interface features where appropriate.
Avails users of new technologies in Pink.

Designed to support groups of users, yet retains its focus on the individual.

Run on existing hardware, but designed for the attachment of additional interface peripherals.

e & o o

arts. The first section is a description of the Pink human interface

interface for some parts of Pink. The sect

This document consists of thr
design principles. This i
describes the architecture

® Registered/Restricted Human Interface Architecture March 15, 1950 134



Extending the Macintosh Design Principles

The user interface design principles enumerated and detailed in the book "Human Interface Guidelines:
The Apple Desktop Interface” will be applied to the Pink user interface. Experience and changing
technology suggest that some modifications are needed. Pink also adds two additional guidelines: "It
works the way you do" and "Fun to Use."

Each of the guidelines is reviewed below. The boldface sentence at the start of each section summarizes
the book's definition. : :

Metaphors from the real world

Use concrete metaphor hat users have a set of expecta to

computer environments.

K User Interface is
rt and so it is perfect
alizing to the physical
nhancements with less

Lisa and Macintosh us
the physical world. T
to the extent that th
world metaphor it
degradation of the i

Pink will layer th
paper' world) on
workshops, and e
exist side-by-si
physical world.

The use of a metaphor does not imply“th fations. The
be extended when clearly appropriate. ™

familiar and plausible.

It works the way you do

A new guideli
supported usé
How do peopl ; :
rather than planhir nce. They experiment and tryout:; 2y have good/poor
memories. They are slop, They organize things one way some ;& different way other
times. People sometimes work alone, sometimes in groups. Some things are private, others are
(sometimes) shared. Some things are worked on alone, some by several people.

ld tag line from .

Supporting flexible working styles is not the same as giving users a zillion options. While large
numbers of options theoretically support extensive personalization, they also increase complexity.

The Pink Human interface extends Blue to include user-centered mechanisms to support projects,
sharing, network access, and communication.

® Registered/ Restricted Human Interface Architecture March'15, 1930 1.3-5



Direct Manipulation

Users should be able to manually interact with the metaphor rather than having to 'talk’ to it via the
keyboard.

The most important factor affecting the quality of direct manipulation in Pink is the physical
similarity of manipulations in Pink to their real world counterparts. It is best to maintain a direct
correspondence between the real world and Pink's virtual world. For example, moving something in
Pink should always be done by the user moving the mouse, rolling a track ball, or other comparable
physical displacement movement.

The limited capabilities of the hardware may make the implementation of a physically corresponding
action impossible and require the creation of controls in order to support a needed operation. These
controls should, when possible, simulate real world controls that are used in similar situation

Pink is designed to ma St i .g. st d, and
track ball, that are mor

Users select actions fr i ildn't have to remember

is easier to
recognize what's the: ulanon of
menus, buttons, ; i is, large

that cannot be (easxly) included via dire
objects in the system and invoked manually

-step tasks.

However, on-line hel; titute for good interface design.

Feedback and Dialog

Keep the user informed by providing immediate feedback.

Feedback and dialogs are the way the computer shows the user what is going on inside itself and across
the network. Feedback must be immediate for direct manipulation interactions to work well. Long
tasks, which can potentially run concurrently, will use animated feedback to indicate actual progress
and anticipated completion when possible rather than a "time is passing” wristwatch. (How long do
you look at the watch before deciding that something is wrong?)

Pink's multi-tasking will allow users to do other things while long tasks proceed. Feedback and abort
mechanisms for these ongoing tasks must be accessible but not disruptive.

& Registered/ Restricted Human Interface Architecture March 15, 1990 1.3-6



User Control
The user, not the computer, initiates and controls all actions.

Under Blue users must sit and wait for a long operation, e.g. initializing a disk, to finish. The only
thing they can do is to cancel the operation by typing CMD-PERIOD (if supported). Users are also
arbitrarily interrupted by network related tasks (mail applications are notorious for this). In Pink,
users will be able to immediately select and use objects that are not part of the long operation.

The user, not the computer, controls the positioning of the pointer, icons, windows, and scrollable
content. When it is necessary for the computer to scroll to bring the selection into view during an
operation, it is best done in a way that helps users to quickly reorient themselves by minimizing change
and/or maximizing the surrounding context.

Pink extends the concept,
bureaucratic, system-ce
the delegation of a few
on the network are del

by maintaining a user-centric view r
While system security requiremens
trators, in general ownership;

Forgiveness provi nk extends the single level

undo in Blue to a .

comlete le
Blue so less effort and understanding is req
that standard interface elements will be mor

provide a toolbox of basic interface elements that can be combined to support future functionality.

Many applications in Blue have added invisible commands to the interface, usually in the form of
modified mouse-clicks, using the COMMAND, OPTION, and SHIFT keys. Pink assigns standard meanings to
these keys, e.g. 'constrain’ or 'do".

Perceived Stability

Users feel more comfortable in an environment that only responds to their actions rather than changing
randomly.

Whereas Blue initially supported a single thread of execution, the user's process, and was more recently
extended to include background tasks such as printing and mail, Pink must provide users with a sense of
stability in a heavily multi-tasked environment.

® KRegistered/ Restricted Human Interface Architecture March 15, 1990 1.3-7



WYSIWYG

There should be no significant difference between what the user sees on the screen and what eventually
gets printed. '

Pink's resolution-independent, anti-aliased graphics (Albert), and better display hardware will
enable the appearance of a document on the screen to correspond even more closely with the printed
appearance than in Blue.

Pink also extends WYSIWYG to include sound, video, and animations that can both be manipulated on
the machine and output in the form of a recording to video and audio tape.

Aesthetic Integrity

Visually inconsistent dis

bit, sixteen color

Objects in Pink will ha ]
' ‘may assume 24-bit

provides the design b
color.

windows and common
d not be considered the
Certain aspects, e.g. the
performance

2 1/2 D, front-light model. These two pi

Work is proceeding
f the current state of developmy

interface objects are:
finished product. (
transparent drop s
reasons.

rrer" to tr
: ound buttem

ound button

of button "Hunan Sexver" to false
on"Hunan Servex"

of background button "Rollydex" to true
e of background button " Rollydex' to false

& Registered / Restricted Human Interface Architecture March 15, 1990 1.3-8



Avant Garde
Basel

Bookman Vi
Boston ;

Cairo

Fun to Use

The Lisa and Macintosh User Interfaces wi
demonstration were virtually compelled to
many of which are embodied in the other gui

* visible . what can be/was

* efficien

* very res

* obvious

* safety

* sense of co , machine responds rather than prompts

* novel stimulation " “pleasant, entertaining, unexpected feedback, e.g. animation
* improved results the computer-based end product is demonstrably better

On the negative side, anything that requires extra time and effort will be irritating. This means that
many things that make games interesting, e.g. non-obvious strategies and high failure rates, are
inappropriate in Pink.

The only way that developers can tell if their products are enjoyable to use is to watch all kinds of
people use them. User test, user test, user test!

® Registered/Restricted Human Interface Architecture March 15, 1990 13-9



A Pink Interface Proposal

This document attempts to describe how the Pink system will look to the user. The purpose of the
design is to give us something to criticize. It should function as a "strawman” — an early plan set up
with the intention that it should be knocked down.

Describing a user interface is tricky business. My approach will be to begin with the existing Macintosh
interface and pare it down to a simple core. The next step is to add (hopefully) clear and simple
interface parts to represent the functionality that was stripped away as well as the new functionality
that defines Pink. In other words, the design requirements are:

1) Clean up the old stuff
2) Provide an int

collaboration or multitasking)

st, I am
only by the
alt with given the
some large scale

y behind the design presente

A few comments migh
plex interface is ultimat

extremely wary of tryi
implementation. It's ju
flexibility of a Macint
design is necessary to
chunks of the system

Second, this design i e simplest interface given
the two design req . iticizi stion we begin
with is "What can '

Third, this design ; : é ” § Pink 3
or elsewhere. That's o ; .

Finally, what you are reading represents:
with "****, take the menu command names:

With all that in mind, please read on.

€ menu.

Picture if yo -
. The plan

Pretend for justa soser, the Control Panel, and
is to add the functiona ned in these elements today in a cle y given a clear
and simple Finder to start from. Similarly, get rid of standard-file. (Bear w n this...) Get rid of
everything in the system folder except two files -- "System" and "Finder". (And just to be complete, get
rid of the Finder menu items "Get Privileges" and "Set Startup™.)

Add to this minimalist system two features from NuFinder: Keyboard Navigation and the "Find..."
menu command. Keyboard Navigation allows the user to type the first few letters of a filename to jump
to and select that icon in the frontmost Finder window in a manner similar to the scrolling list in the
Standard File Open Dialog (the arrow keys also work). The "Find... / Find Next" menu commands very
quickly search all mounted volumes for a filename, opening any necessary windows and selecting
matching files. These features are needed because the Finder is going to be used to represent lots of new
kinds of information, and the better it is at finding, the easier that will be.

& Registered/ Restricted Human Interface Architecture March 15, 1990 1.3-10



The New Layering Model

Menubar

The menubar stays at the top of the screen. It might be a user preference to place redundant menubars at
the top of each topmost monitor on a multiple monitor system. :

Document Layers

The first change is to the window layering scheme. Instead of MultiFinder's one layer per application,
the rule is one layer per document. In addition, each Finder window acts as if it were in it's own layer.
So a possible window ordering from front to back might be:

Excel Document "My Budget"
Finder Fold

. So if the user clicks on

d only that window):
’ t is "My Budget", then

indow, it comes to the front; immedia

"Release Notes", an on.

A document win hen.it.becomes frontmost.
Satellite window:
the document thi

are ordered wit

The Windows Menu

| palette in
d/Replac

Under a menu labeled "Windows" (or perk . :
side of the menubar) is a list comprised : ' : open
documents (arranged alphabetically). If th : ‘
"Hide" command. The "Hide" command : i : ultiFi ides

My Budget
My Novel

Hide "Letter to Mom"

Like the current Apple menu, small icons appear next to each item in the list of documents to convey
more information and a check mark indicates the frontmost document.

&€ Registered / Kestricted Human Interface Architecture March 15, 1990 1.3-11



The Apple Menu

The Apple Menu contains the "About” menu command followed by a list of tools and documents to which
the user wants quick access. The mechanism for customizing the Apple Menu is described later in the
document. For the moment, the Apple Menu might look like this:

About Excel...
Alarm Clock
Calculator
Puzzle

Random Thoughts
Doodles

cate type. Note that the docu

Again, small icons appe;
y open. When a document i

Thoughts" and "Doodles
open, it's name remains

Fast Switch

Choosing "Finder" fropithe Windows menu brings all the Finder
equivalent would be nice, since this will be a fairly common ¢

background preflig ation so that the user coul der windows to the front
almost instantaneo; savaitable, prepare the
bitmaps for the Fig '

quickly, without

and speed of this

Placing icons on the desktop in the current sy
under other windows. Second, given a file
disk that file is actually stored. We can solv.
rules for opening document windows so that

The New Doc tion Scheme

Stationery

New documents are created using the long familiar stationery pad. Double clicking on a stationery pad
results in a quick animation to show an untitled document sliding off the stationery pad. This icon
immediately opens into window named "untitled". The user can name the document by choosing
"Rename" from the File Menu. (An option in the naming dialog makes this document into a stationery
pad itself.)

The user can also name the document by going back to the Finder while the document is open, selecting
the icon, and typing a new name. Just as the titlebar in a Finder window changes dynamically to reflect
a new name as it is typed, the titlebar in a document window changes dynamically to reflect the new
document name as it is typed. The rule is that an open document window is always in sync with its
finder icon. If the user moves the icon of an open document into a different folder, the document is
simply now in the new folder.

& Kegistered/ Kestricted Human Interface Architecture March 15,1990  1.3-12



There continues to be a "new" command in the File menu of applications. It creates a new untitled
document from the stationery pad that was used to create the current document. Double clicking on an
application icon will open a window containing, among other things, a default stationery pad that
cannot be deleted.

Versions

Document saving is handled quite differently than it is in the current system. Documents are always
saved to disk to within an operation or two. It's as if the user were constantly hitting command-S.
Multiple level undo and versions will (hopefully) replace the back tracking allowed by "Revert to
Saved" in the current model.:

Undo and Redo step back and forth through the operations in a single document. What exactly is
defined as an operation is left up to the application, but Apple should offer suggestions at some point
about questions like "does selection count as an operal hese
questions is through expe

At any time while edi
("Checkpoint," from the

each version. A ver,
select a past versiof

1)
2)
3)

Get Info Box and onto the desktop, I think it
windows (which contain only named icons a
windows (which contam other information

old version"
ing it up

“create a real
the Get Info Bo

(Version hlstory y u command "Get Version
Box" instead of overloadmg.:;the-ah‘eady full Get Info Box.)

(***Does the user get the undo history for old versions?)
Summary - The File Menu

Suppose the user had just opened a document from a stationery pad labeled "Pink Letterhead.” The
File Menu would look like this:

New "Pink Letterhead"
Rename "Untitled"”
Close "Untitled"
Checkpoint

Previous Checkpoint
Print

® Registered/ Restricted ‘Human interface Architecture March 15,1990  1.3-13



Tools - Applications Without Documents

There are some icons the user will open which do not yield documents. Call these things tools. Into this
class will fall the desk accessories and control panels of today. The rule is: there are no mysterious
chunks of code that don't open into a window.

Multitasking

To understand what multitasking will do to the system, join me in the following thought experinrent.
Picture a simple animation application. There are two squares in a window. The user selects one and
chooses "Spin". The square starts spinning. Then the user selects the other square and chooses "Spin”.
Now both squares are spinning -- voila — multitasking. This is the kind of stuff my mother could
understand. What is it about this scenario that makes it so easy to grasp? There are multiple tasks, or
activities, going on sim ly b ch is confined to a single object. The rule, then, for
multitasking is this:

ONE OBJE

What is an object? In g
three documents, each
one thing at a time.
document. So the ari
with the spinning s
assume that the obj

user could see, say,
ocument is only doing
tasking objects within a
ty of multitasking objects
ocus of this discussion, so

ent or a tool. This m
e doing something. But, like the spinning squa
epending on the application, there may als
tion application above is introducing a f

However, what goes on inside documé

What does all t der.
always be able t:
always always always
dialogs in the current system wi
alerts will be associated with documenis
connected with the document to whick:
switching to a different layer. Finally, th
busy and this will appear in the icon, in t
document names appearing in the Windows m

that win
or close

Mouse-ah

jow commands on a docun
alculating. Three things
nus are always accessible).

A somewhat se
consider a sprea
command in the File menii (remember,

me

1) Disable it. The "Close" command (and almost every command) is grayed out.

2) Leave it enabled without command queueing. When chosen, the "Close” command would
cancel the recalculation (reverting the document its state before the recalc) and immediately
close the window.

3) Leave it enabled with command queueing. When chosen, the "Close" command would close
the window after the recalculation is done.

In the spirit of making decisions, assume that the rule is this: whenever possible leave a menu command
enabled with queueing (3), and when that can't be done, disable the command (1).

Status Window

The “System Status” tool opens to show a list of currently busy documents and tools and what each one is
doing.” A task would be listed in "System Status" only if it is going to take longer than a second or two.
[If possible, some indication of estimated time remaining would be nice.

€ Registered/Restricted Human Interface Architecture March 15,1990 1.3-14



* %%

Cancelling a Background Task

Any task can be cancelled from the "System Status” tool. Also, the task in the frontmost document or
tool window can be cancelled using command-period. Lastly, the user can select the icon for a busy
document or tool and cancel the task, again using command-period. What happens to queued commands
when the current task is cancelled? They get cancelled also. Cancelling always returns an object to its
non-busy state.

Transparent Multitasking

Finally, some parts of the system may use multitasking but never tell the user. For example, the Finder
windows preflighting described above would probably be done using a separate task, but the user will
never know about it. The rule is: behind th ses of multitasking are never noticeab

(Of course -- if they we behind the scenes, would the

Examples
Copying files - ***
Printing - ***

Formatting disks

Notificatio

* %%

The Network

On the right side of the desktop, beneath i i con
labeled "Network.' ini and
"File Servers" : : i ork
behaves simil ' i ive. 1 d, not
moved to the ) rrang i i change
the view but ¢ ; ' ; is that
all network th ypen from the

Network icon is getenmn ay people and equipment are connected eal'world. The user
can't drag a printer from inside the Network icon to the trash and forever lose that printer. The user
can't move a fileserver from one zone to another. Network things would get a different "look" than
ordinary file system objects to convey they fact that they cannot be edited.

Note: The following scheme is based on the assumptions that zones are a fact of life.
Copying Network Things

Since the Network works like a read only disk drive, dragging a network thing out of a network window
makes a copy of that thing. So I can drag a person, a printer, or a file server to the desktop or to any of
my own folders. The copies of network things work just like network things found inside the Network
icon.

® Registered/Restricted Human Interface Architecture March 15, 1990 ~ 1.3-15



People

Within the "People" folder, organized by zones, are icons for other users on the network. Double
clicking a person gives useful information about that person such as their phone number or office
location. People icons don't do much by themselves, but are used in other parts of the interface (such as
mail) to refer to other users. See Figure 1.

&€ File Edit Uiew Special

] = Crimson Permanent ==

Network B D
D Dave

Cindy

People

Crimson Perman

£ Etherknott

Printers

Printers

Printers are alsk i , { rs as
icons or sorted nd. Wi ; i ‘might

The user can print a' docuny yy-dragging its icon to a printer. The document icon goes through some
quick animation with the printer icon, then the document goes back to where it was dragged from and
the print dialog appears. The print dialog, like most good Pink dialogs, should be non-modal. With
the fast switch to the Finder described earlier, printing by dragging documents to printers should be
fairly painless, but some mechanism for printing from within a document is still necessary. This
requires defining a default printer. For more details on how that is done, see "Print Shop" below.

Double clicking on a printer opens a window showing printer status.

File Servers

Once again arranged by zones, icons for file servers appear inside the Network icon. Call these icons
“server stubs." Double~clicking on a server stub mounts that server. Server stubs work very much like
Quick Mount documents on the Mac today. Although it would be nice to just open the fileserver's
window directly from the stub icon (instead of mounting the server), this leads to several gotcha's that
are best avoided at this point. No doubt there is a better solution than the one proposed here (a

& Registered/Restricted Human Interface Architecture March 15, 1990 1.3-16



mysterious chunk of code which doesn't open into a window). Like people and printers, the user can
drag a server stub out of the network icon and leave it on my desktop or put it inside a finder window.

Double-licking on a server stub brings up a password dialog box for file servers with controlled access.

Other Kinds of Network Things

Other devices on the network also appear inside the Network icon.
***How do they work?
Modems

Scanners

Direct Manipula

The traditional menu S
addition, these editin i i st users are familiar
with dragging the se]
that selected text car
spreadsheet cells, s
rule is: dragging mag

porthole of any other document which ury
clipboard icon into the porthole of second ¢
object can be placed as usual. If the user
another document, the clipboard icon rem
the user can leave as many i i they

appropriate to sar y when the user is dr;g

&€ Registered/Restricted Human Interface Architecture March 15,1990~ 1.3-17



Texnt Bc

Jiustice:|§

We the people, in order to
form a more perfect union,
establish ,insure
domestic tranquility,
provide for the common
defense, promote the general
welfare

=== Drawing B

Clipboards

Linking

Scripting

* % %

History W

*** Connection to SystemSta

Post-its

Post-its or annotations are kept very very simple. An "Attach Note" command is added to the standard
edit menu. The user can attach an annotation to any selection. A small standard icon appears in the
document. Double clicking on it brings up a window. There are buttons to record and playback sound, and
a simple type-in text field. The text field would be limited in powers to approximately that of
TeachText.

Filling Out Forms

The designs for the next few pieces of the interface apply a new technique to expand the use of direct
manipulation. In the current Finder, direct manipulation (or dragging) of icons representing files has
two characteristics which make it successful: First, it always works. The user doesn't have to know
any special rules about where dropping an icon is allowed and where it isn't. Second, placement of icons

& Registered /Restricted Human Interface Architecture March 15,1990 1.3-18



by direct manipulation always means the same thing -- where a file is stored. In fact, the place where
this meaning is overloaded is exactly the place where users get confused. The System Folder in the
current model has all kinds of additional semantics and as a result it has become somewhat of a
sinkhole in the Macintosh interface.

It's time for a new widget. If dragging icons from the Finder is going to be used to represent some of the
new functionality of Pink, users need to know when that dragging is appropriate, which icons go where,
and what the dragging represents. The mechanism for all this is called (for lack of a better name)
“filling out forms". The idea is that in order to complete a task which involves something represented
by an icon in the Finder, the user drags the icon into the appropriate blank space on a form. The outline
shape of a blank space in a form matches the outline shape of the kind of icon that goes in that space.
Most forms have the magical property that there is always a blank space available. When an icon is
dragged into an existing blank space, that space is filled and the eternal blank space moves over one.

In addition to indicating when dragging is appropriate, forms are the mechanism for referencing things
represented by Finder i gged into a form, the thing it represent; igved to
the form nor is it copie ed in blank is a reference to the:
in blanks is the only ¥ things. There is no genera
System 7.0. :

:_f\
=5
=
5

&

mmand as in

¢ series of interface

Fill-in-the-blank formy
works through the i
this section also . us

An Example

e-mail across th user, th o refer

to at least two

1) the recipients of the mail nt
2) any files to be enclosed with t

The user double-clicks on the mail stationers
successively drags people to the recipient bla
to the enclosure; k (shaped like the out

place and a « ;
type-in text f shows what the form would
enclosure had been plugg; licking "Send" would send the mail. Closing
allow the user to save this document or discard it, just like any document.

document would

Notice that dragging a person or file into the mail form is not the same as dragging an icon into a folder.
Dragging an icon into a blank on a form is a reference to the real thing in the file system or the network.
So the icon for the enclosed file "Budget Doc" does not represent a copy of that file, but a reference to
that file.

€ Registered/ Restricted Human Interface Architecture March 15, 1990 1.3-19



€ File Edit Uiew Special K

Untitled Mail

Mail Stationery

Budget Doc

Re: [ Budgets

Here is the plan...

Favorite People

O D

Dave Heidi Thomas

Figure 4

® Registered/Restricted Human Interface Architecture March 15,1990 1.3-20



Summary
The blank on a form tells the user three things, and these hold true for all blanks on all forms:

1) that an icon of a particularly kind can be dropped here.

2) that dropping an icon here has semantics other than the standard Finder semantic of
rearranging my file system. The semantics are stated right there on the form, probably as
text. This should visually distinguish a window containing a form from a standard blank
background finder window.

3) that the icon being dropped here is not being moved or copied but referenced.

Details

How does the user remove something from a form?
Drag it to the trash, or i

window.

form and onto the deskto
eference, and since fo
out of a form onto the,g

Can the user dragan ic
No. Since being in a f
references are allowed
windows.

nly place where
into Finder

Can the user drag ani¢en out of one form and into another?

Yes.

Can the user rena
No. :

Can the user get*from i 1 e real
thing?
Say no, for now.

What happens when there isn't room on the
Solve this problem in the same way as Find

or (perhaps) different views of forms are
windows. :

Where exactly:
Inside docum

& Registered /Restricted Human Intertace Architecture March 15, 1950 1.3-21



Groups of People

Opening the Group stationery pad gives a form similar to Figure 5. The user successively drags in
people icons to create a group. Click on the close box, select the untitled group document, and name it.
Group icons resemble people icons, and can be dragged into any blank that is expecting people (including
the group form itself — groups of groups). Groups are first order objects just like people, so the user can
duplicate them, mail them around, etc.

(] == Untitled Group == .

Group Members:

Collaboration

Three kinds of colla

There is no design yet forth the

Y
document for checking in and che
There is no design yet for whole screen sh

To begin a same-time same-document col
(perhaps stationery, so collaborations could b
and the people to:collaborate with and click ; :
documents if t t already open and 1f1E; ested
user decides ion i ’ » '

computer. Th
Quickmail or thes
the phone as well.

Once the collaboration has started, how should pointer passing work? This is undetermined at this
point. Experimentation is the only way to find out.

&€ Registered/Kestricted ‘Human Interface Architecture March 15, 1990  1.3-22



Notably and intentionally missing are any control enforcing mechanisms. Everyone in a collaboration is
on equal footing, and there is no access privilege scheme. If a user is afraid that collaborators will mess
up a document, then that user can make a copy of the document before entering the collaboration. Also
intentionally missing is any kind of whiteboard. If users want to share a drawmg space, then they can
open a draw or paint document.

[ =—=—=—==== Untitled Collaboration

Collaborators:

Documents to Share:

Coames ]

Figure 6

Project Lists

Projects are a means fo
file system. Projects could be .
satisfy the needs that resulted in ali 7.0.

Fill out a form. Connection to Projector style ration?

* % %

Users would dr: 15 the printer
that is used by the Print ommand from within a document. It may lenseto set a default
color printer, a default black and white printer, a default legal size paper printer, etc.

*** Where to put page setup options and what is the relationship between documents, page setups, and
printers?

All the Other Stuff Now Found in the System Folder

The plan is to have no magic places in the file system. Instead of moving a screen dimmer INIT to the
system folder and restarting in order to get it to work, the user would double click on the screen dimmer
icon to open a control panel with an on/off switch and perhaps some other controls. Switch the screen
dimmer on and close the control panel. In other words, the two rules are:

1) It doesn't matter where the user puts an icon.
2) Every icon opens into something.

® Registered /Restricted ‘Human Interface Architecture March 15,1990  1.3-23



However, when icons can be grouped together with some higher meaning, then the device to use is the
previously mentioned "Fill in the Blank".

Here are some examples:

How might the user customize the Apple menu to contain the Calculator, Alarm
Clock, and nothing else?
Double click on the "Apple Menu Shop" icon and fill in the blanks. See Figure 7.

How might the user preview the font "Galliard" (a la Keycaps)? -
Double click on the icon labelled "Galliard" to open a window showing the font
mapped onto the keyboard.

How might the user add the font "Galliard" to the system?
Double click on the "Font Shop" icon and add "Galliard" to the system fonts form
by dragging in th: sforGalliard: :

Caleulator Alarm Clock

g : he framework
described above withoutreverting to that completely fuzzy state of mind in*which none of the interface
is defined and everything depends on everything else. Which is also to say that these are the pieces
which I haven't thought much about except to suggest that they sure would be nice. Everything in this
section deserves a "***" for lack of content. With that in mind, here is a grocery list of new interface
things:

Mail

Outgoing
See Figure 4 and the description above (in the section describing forms).

This represents the simplest case. Other fields, like "CC:", might be revealed using the progressive
disclosure device described below under "New Widgets for Applications.” Since mail forms originate
from a stationery pad, there should be a mechanism for creating custom letterheads.

& Registered/Restricted Human Interface Architecture March 15,1990 1.3-24



Incoming

Add a mailbox icon on the right edge of the desktop. The icon changes appearance when mail arrives.
Double clicking on the icon opens a window containing incoming mail.

Personal AppleShare

Users would open a File Sharing tool and drag in people (or groups) and file system objects to be shared
(a disk volume, a folder, or just an individual document could be shared). Those people would then see a

server stub in their Network icon.
* % %

New Widgets For Applications

Here are some user int at is

traditionally considere

le provides to applications in a

Progressive Discl

Progressive disclosur;
mailbox flag in the
would have a stan
version and the co

the name for the technique of hiding com

rm Clock DA is the perennial example of p

W1dget to put in dialog boxes so the us:
ok :

beginning users. The
closure. Applications
itch between the simplest

powerful f i came a
standard data type.. ‘ '

Standard Pickers
The current system has a standard color roving that
provides a standard font and style picker.

m across windows wo;

] use lots
rototype for an example o ‘

of direct manip

Standard Sound Recor ing and Playback Interface
Standard (and Replaceable) Dictionary and Thesaurus
Provide a mechanism and interface so that the same dictionary can be used across all applications.
Dialog Layout Rules

Decide on some set of rules for the size, spacing, and arrangement of buttons in dialogs and give
developers the tools that make it easy to follow those rules.

Content Based Document Retrieval and Filtering

Fill out a form using a graphical query language.

& Kegistered/Restricted Human Interface Architecture March 15,1990 1.3-25



Smart Icon Cleanup

Take a better guess at what the user is trying to place in rows and columns. Make sure icon names don't
overlap. .

Smart Window Placement and Dragging

It seems as if there is some set of rules for usually doing the right thing when dragging windows. For
example, if there is only one document from an application open, then it probably makes sense to
maintain the relative positions of satellite windows when the document window is moved.

System-wide tiling or stacking of document windows might be done through a universal menu command
in the Windows menu

Better Error MessE

Notice if the user is repe; - message and provide mg

Replace the inside of an document icon with a reduced version of

Preferences

It is unclear as to
a document, or wi

Help

Bubble help and/or procedural help.

Backup

Connection to

Quiz
If this was at all a coherent description of a reasonable approach, thenlngen a problem, you, the
reader, should be able to see a solution which fits the model. And your solution should be similar to
mine.

So here is the problem:

Design an interface for starting the Screen Sharing collaboration. The user needs to connect to one other
user. (Don't worry about all the pointer passing conventions once the connection is made.) Design the

interface for making the connection and ending the connection.

See Figure 8 for the answer I was looking for.

& Registered/ Restricted Human Interface Architecture March 15,1990  1.3-26



[ = Screen Sharing Tool ==

Users to see my_screen:

grasmeseneen ot ot

[—

| cConnect || pisconnect |

Double click on the "Screen Sharing
Tool" to get this window. Drag in a user
and click "Connect.”

Figure 8

& Kegistered/Kestricted ‘Human Interface Architecture March 15, 1990 1.3-27



The Architecture of the User Interface

[The following has not been widely reviewed and the reader may find it incomplete andfor
idiosyncratic. Reader’s comments are appreciated.]

The architecture of the Pink Human Interface lays the foundation for everything involved with the
user's interaction with the Macintosh. Based on a real world metaphor, enhancements to the original
Lisa/Macintosh architecture, and an extended “every-user” model, the Pink Human Interface
Architecture is a broader and more general architecture that supports current useful extensions to Blue,
anticipated Pink extensions, and, hopefully, most future unexpected extensions.

The Pink Human Interface Architecture provides a systematic basis for designing all user interactions
with the machine. Without. a. clear comprehensive architecture, an interface will be:cluttered,
inconsistent, and disorg;

basic elements of the Pin

nterface, object,
eractions supported
ts and their operations,
igner's guidelines for the
“of user testing - much of
awman.

This section contains
operation, and intera
in Pink. While it is

sary first step. Also, it does not provide .
e to be developed over time and involve
implied from the architecture and the f

interface - that will,
that model can be ¢;

Object

Objects are the | . resent
things in the wo '
the objects are the made-up things
scrollbars.

There are four characteristics that descri
interface. All objects have, in varying degr
and Macintosh/Blue defined objects that co :
the objects rather.than the characteristi . i inds , e.g.

Behavior

Behavior is what things do, how they act. All objects appear to the user to have behavior. Even
documents that have no code in them exhibit behavior when they are moved about (Finder code) or
opened up and edited (application code).

Lisa and the early Macintosh considered only one kind of behavior, built-in. Experience and technology
show that there are more aspects of behavior that need to be considered:

& Kegistered/Restricted Human Interface Architecture March 15, 1990 1.3-78



built-in non-modifiable, except via preferences, comes with an object
system-based -uses system-supplied behavior when possible or overrides with built-in.
component non-modifiable functionality that can be added to an object {(may have
preferences)
¢ script user-modifiable functionality that can be added to'an object (may have
preferences)
dependent may vary by user, time, situation, editing vs. run
cooperating  the behavior of one object may trigger the behavior of another
external behavior that is applied to other objects, e.g. move and delete; all the above are
‘internal’ .
A task denotes the execution of some initial behavior and the behaviors it triggers. The current Pink
position is that an object can only exhibit one behavior at a time, i.e. one task per object. The
consequences of this position are under consideration.

Content

Content is the informati
text characters, graphi

composition of other objects ic objects are
s, and behavioral comp

While the Lisa and the early Macintosh considered many of the aspe veral were not.

¢ object relativ g. size and creation date
¢ behavioral erences, scripts, components, and
¢ user task b
. presentatio te, and color
* view-specif
* app-specifi
* system-supported™ itk
¢ kind text, grap
* organization  sequence, par. g, spatial
¢ medium paper (page, sheet ulti-media
¢ dynamic changes with time, s
¢ shared multi-task access, acc
¢ versions multiple snapshots are
Connectio

Connections i o
between the objec simplest connection is sequential: lists, cells in a
spreadsheet, frames i ence, sound samples in a recording. C nother simple
form of connection e.g. documents in a folder or pictures in a document. More complex forms may require
computational support e.g. cross references, picture-to-text (to keep them on the same page),
spreadsheet formulas, and filters.

onnections

Objects are responsible for supporting connections from the outside to internal objects. The connection
may be maintained by either unique id or attribute matching as appropriate.

A connection may be represented by a concrete object {(explicit) or not (implicit). Examples of explicit
connections include links, aliases, annotations, and filters. Examples of implicit connections include the
document to app (document type), cross reference look up, and containment of documents in folders.
Explicit connections are objects in their own right and can have their own content, behavior, and
interface.

Lisa and the early Macintosh supported only a few implicit connections: containment (disks and folders
contain folders and documents), sequence, spatial, and document-to-application. The early Mac also

& Registered/ Restricted Human Interface Architecture March 15, 1990  1.3-29



supported name-to-object and the newest versions support aliases and warm-links. The various aspects
of a connection include:

o destination identification of the referenced object

¢ fan-out can there be more than one destination

» computation the destination may be computed at look up
* kind an optional link type

Other items that might be associated with links, e.g. direction and behavior, are actually parts of
explicit connection objects. .

Interface

Interface is that part of an object that people and other objects deal with. Each Pink object has a
concrete visual interfac bj h her representations as well, e.g. audible, printed,

storage, etc. The various ¢ include:

-« external visual ers, lines, and pixels. Car jects are shown

 external audible;

external other . but tactile might be

generally ignoring smell, temperature
used for the visually impaired.
for transmission and storage

external elec
external ope
identificatio
internal

Operations

Operations are the computer commands th
with operations and what they consist of, but
there may be more than one interaction to
examples.) Interaction is covered in the next

We can use person-to- o
1 English, but I assum
edge of Latin, German, an
manipulation also il model since we can describe anything

actual interaction is qualitatively different.

A command is directed to the agent that is to perform the action. In the real world this is done by
naming the agent or by getting the agent's attention and addressing him/her directly. The latter is
what we do when we select a window. The former depends on a naming scheme which Pink will
probably address via the ‘forms' mechanism described in the strawman section above.

The next part is the naming of the action to be performed. Pink uses the old stand-bys of menus, buttons,
and controls to do this and also provides a textual form that is used in scripts and message boxes (if the
latter is supported).

There may be a subject of the action, e.g. the document to be discarded. This is the roll played by the
selection, if any. :

Finally, one or more phrases may be included that specialize the action to this situation. Direct
manipulation interactions may allow for the equivalent of a single phrase, e.g. the destination of a

& Registered/Restricted Human Interface Architecture March 15,1990 1.3-30



move. Complex phrase structures, e.g. printing instructions, are represented by dialog boxes. Dialog
boxes can be tedious, specially when the defaults are correct, so Pink is considering mechanisms that
support ‘prepackaged' command-dialog sets. '

Interaction

Interactions are the way a person and machine communicate. This section deals with the syntax of that
communication, not the content. The syntax of the content was dealt with in the previous section; the
symantics of the content are contained in the Taxonomy section below. X
People interact with the world, including people, in two distinct ways: symbolically and directly.
Symbols are representations of something else, and each symbol's meaning must be agreed upon by its
users. Written and spoken languages are symbolic. Direct interaction deals with way people
manipulate tangible objects in the physical world, things that we can touch, see, smell, and hear.

Pink inherits from Lisa
(menu selection and b
AppleScript.

glation, manually-initiated symbelic in on
typed-in symbolic interacti yperCard and

A very good unders
around them is essen,
irritating, slow, tedioi

teract both symbolica ctly with the world
to Pink. A poor understanding will likely res nterface that is, at best,
tc. A companion paper on the every-us

Symbolic
The model of sy. 2d in the
Operations secti tons

and textually in the fors
Direct Manipulation

The most important factor affecting the ™
similarity of manipulations in Pink to f ¢
accomplished through the matching of p man
channels they in

‘designed or mismatch
The existence of a contro

justification for its use
In the real world the hands (plural) and fingers are used:

to point out objects of interest,

to grab objects,

to position and rotate objects in six ways,

to sense an object's temperature, texture, shape, and size, and
to apply varying amounts of pressure with different fingers.

e o o ¢ o

When incorporating direct manipulation into Pink, it is best to maintain a direct correspondence of
action between the real world and Pink's virtual world. For example, moving something in Pink should
always be done by the user moving the mouse, rolling a track ball, or other comparable physical
movement. The limited capabilities of the hardware, e.g the mouse, may make the implementation of
comparable actions impossible and require the creation of artifacts in order to support a needed
operation. :

& Registered/ Restricted Human Interface Architecture March 15,1990 1.3-31



Design Language

Elements of the Pink design language should look plausible, as if they could exist in the real world.
Elements are represented with “cartoons” or caricatures that indicate function through form. On the
Macintosh and Lisa, buttons had rounded edges and clearly delineated regions and were clicked. Menus
were square with a shadow and contained more than one item and were pulled down. Icons were
cartoons with a variety of shapes but one particular size and couid be dragged. Icons were not drawn as
buttons, nor buttons drawn as menus, and so on.

This applies to the visual behavior of the elements as well; if the element could exist, then it should
behave as that real world element might behave. If a control in the real world flattens when pressed,
then the counterpart in the Pink model should also appear to flatten. On the Macintosh, the model for
controls is based upon highlighting them when the user activates them.

Elements should not only look plausible, but they should provide clues to the user as to thexr function. If
an element is to be i
appearance of the ele
interaction should pra
indication of a grow 2 3
behavior the element reghir eep 6t judged by its first

e this. Indeed, all elemen & a common
t of visual clues. On

st be visible. On the
model, controls h hat delineates the
representation.
block and have a

Given the use of animationfzy;
elements will behave plausibly
represents a transition, like open, th

the model and only noticed if it did not
then it should show progress evenly withou
the user clues as to the kind of operation oc
a recalculation? Animations of realistic oper
that they are occurring; if an icon is animat
the element.

. another

Color is used ’
redundant clue'tt licate edges, regions and functio gr

may be subtlety distinct fro utton element. The edge an alert element ma & a‘color, in addition
to the alert icon, to indicate the kind of alert. The edges of control and the edges of a window will have
different contrast to indicate that the control is contained within the window.

Physical Model

The physical model the Pink look is patterned after is a thin three dimensional block, 1/16” to 1/8”
thick, that has rolled or extruded edges. The rolled edges are smooth with no abrupt planes. The
surface of the block is flat. To show content one exposes the interior of the block. To control the block,
one puts controls on top of the block. This is similar to a TV. One can watch the content which appears
on the inside of the TV set, or control the content with the dials and knobs on the edges of the TV set
frame.

The light source on the block is from the front, approximately centered on the user’s nose. This provides
for even illumination. Shadows, if any, are transparent

® Registered/Restricted Human Interface Architecture March 15,1930  1.3-32



- —
a—

Figure 9. Side view Pink interface objects -

Taxonomy

This section describes all of the generic kmds of objects, operations, and interactions. The large size of
this taxonomy is of great.concern.since. ¢ i heof |

It a large number of ite
Other organizations are

in a way that a user might co
ably better.

Objects

This section organiz
elicit typical organi
(Blue) and are ther¢
detail.

ink objects into seven groups as a user migh user survey designed to
is bei te Lisa and/or Macintosh

nk are explained in more

People

picture, preferences for the system and ap
other machines). Applications should stor

By default, the system contains at least one . : tine,
each should hayeia:c i t for
preferences, i Loy it m i itterns

or anything e}

Person objects are: cess. j i _ s access as
determined by the contento

Environment

The computer object represents the CPU, all attached peripherals including networks (but not the
objects on the network), and all system software including the Finder, drivers, cdevs, and inits,(but not
applications or system utilities). It replaces the Blue system folder and control panel. It provides a
graphical means and indication of what is in the machine (incdluding memory size and boards),
configuration information, what is connected to what and mechanisms for holding and activating both
system software and system level augmentations. The computer object from the start up disk appears on
the desktop. Computer objects on other disks appear in the disk window; they cannot be placed in
folders.

Other environmental objects, e.g. Fonts and Help files, also reside within the computer object.

Document-based applications could also be included here, maybe.

&€ KRegistered/Restricted Human Intertace Architecture March 15, 1990 1.3-33



One network object, currently the ‘phone book’, appears on the desktop to represent all attached
networks and network objects.  References to network objects can be dragged from the phonebook to the
desktop, folders, etc. to provide quick access at later times. The network object cannot be dragged
onto/into a disk, folder, or other container.

Each peripheral attached to the machine or network, e.g. disks, scanners, monitors, etc., is represented
by an object. These objects are normally found within the computer or network objects as appropriate.
These objects can be opened to set configuration and user preference information. (User preference info is
actually stored with the current person object.) Peripheral objects can be moved to the desktop, leaving
a gray place holder behind. The peripherals include: disks, diskette drives, keyboard, mouse,
monitor(s), scanner, printers, other computers, telephones, etc.

The desktop is essentially the same as the Mac desktop except that it remembers the placement of all
objects on it across reboots.

Data

e are three

This groups contains th :
: each other, and

main subdivisions, the the structures that re
the marking tools used :

The basic data obje s include text (characters, words), graphicsy tmaps, shapes, pixels,

overlays), and sound{samples, notes).

(time and
tial 2D, 2

The structures tha
event synchroniza
1/2D, 3D).

.:-»ob_jects include linear

arrays), parallel
tainers), branch 3

The marking tools'in

Tools

Tools are the behavioral objects that a user i and
system software which the user need not se i i i
group includes appliances (whole document m: ] it thi i and

scripts. See the Thor:section, 3.1.1, for a more

Connection;

gardless of the

ly serve to relate otherwise disj :
k), and dataflow

links, references, maps), communication {phoneb

This group containg objects
ose. They include navigati
{(warm/hot links).

Containers

In this group are the objects that hold data and the objects that hold the data holders. The data
holders include documents (documents, drawings, images, stacks, spreadsheets, calendars, notebooks,
scrapbooks, clipboards), annotations, recordings (sounds, animations, video clips, movies, slide shows),
multi-media (may have several physical pieces), stationery, forms, and simulations (maybe this is just
an active document). The holder holders include the desktop, folders, trash can, mailbox, disks (double

grouped?)
Interaction Controls

This last group contains all the objects used for (in)direct manipulation of Pink's virtual reality. They
are all artifacts, i.e. objects that generally do not exist in the real world but which are required by the

& Registered/ Restricted Human Interface Architecture March 15,1990 1.3-34



computer to overcome hardware limitations. Ideally they would exist only in places where comparable
real world objects exist or where Pink has extended the real world metaphor. Included are windows
(windows, dialogs, alerts, utility windows, subwindows, window sets, progress indicators), menus (menu
bar, pull-down, pop-up, tear-off, menu title), buttons (single action, continuous action, check box, radio,
command keys, cursor keys), window parts (scrollbars, grow box, zoom box, close box, window splitters),
virtual track ball, etc.

Operations

Regardless of the actual tasks a person performs, all actions can be classified into one of the following
categories:

¢ Observe gather information through the five senses

* Navigate ascertain current location, navigate in real and symbolic space (of self)
* Jdeate subconscdous generation of ideas, alternatives

* Decide chos

¢ Select ,

¢ Manipulate bjects (other than self)

¢ Communicate

(We ignore essentiall ey don't seem to be

applicable to comput

ning or throwing a

These categories are

Observe p, restart,
Navigate
Ideate
Decide -
Select
Manipulate

aste, repla
otate, flip,
gvert, save v

create, destroy, initi
repair, verify, size,
disconnect, ungroup, urk
Communicate send, get, connect to, disc

Interaction

Regardless of: i ingf : i he person-
to-machine si '

Direct Move, rotate, press, release, click, double click, drag (press, move, release), (press,
hold, release) ‘

Symbolic click-on command, type-in command, dialog, spoken command

Feedback static display, animation, sound, visual change, completed list

® Registered/ Restricted Human Interface Architecture March 15, 1990 1.3-35



#& Registered /Restricted Run Time System March 15, 1990 2.1.1-1






Architecture

The Pink Run Time system will provide Pink with these capabilities

e Shared Libraries of code, providing for small applicatibns, and for
updating the system without breaking applications.

e A storage allocator.
e Semaphores, for use in synchronizing multi-threaded applications.

. Excepﬁon handling, provided in conjunction with the C++ language.

e Libraries of classes that may be dynamically accessed during program

4 Registered /Restricted Run Time System March 15, 1990 211-2






€ Registered /Restricted Utility Classes Thursday, March 1, 1990 21.2-1i






Utility Classes

Arnold Schaeffer x8117

I hate data structures. You probably do too
dealing with the most common data structu
you can because y de will get faster as
classes.

€Registered /Restricted Utility Classes Thursday, March 1, 1990 2.12-ii






Introduction

I hate data structures. You probably do too. Fortunately for you, Pink provides a set of classes for
dealing with the most common data structures you are likely to need. Use these classes whenever
you can because your code will get faster as we make performance enhancements to these “utility”
classes.

The Utility Classes are roughly divided into two sections: the Collection classes and the CS101
classes. The Collection classes provide a set of classes somewhat equivalent to the collection classes
found in Smalltalk. These classes include sets, bags, dictionaries, stacks, deques, queues, priority
queues, dynamic Arrays, sorted sequences and run arrays. The Collection classes are implemented
using the CS101 classes which are “raw” data structure classes like hash tables, linked lists, heaps,
trees, etc. Most users of the Utility Classes should only use the Collection classes. The choice of
which collection class to use allows you to specify the kind of operations you expect to do on a data
set as well as some hints as to the expected size of the data set. The computer can then ch
proper CS101 class to us

Architectural Ov

The Utility Classes ar
particular utility clasg
to perform on the da
classes you will be
used only as imple

hing data. The

ons that you would like
is assumed that the utility
in:thesutility classes are

sically a set of classes for managing an

All of the collection ¢lasses:
baseclasses add protocol for spec
provides methods for adding elementsts
querying whether an object is an element
removing all the elements from a collecti
another collection; destroying (and removin
enumerating over the elements of a collecti

from one ¢
collection;

Deciding what
performing on tl
collection that h
all maintain the order of the elements put into them. Stacks have a policy: the'Tast element
added to it is the first element removed. Queues have a policy that the first element added is the
first element removed. Stacks and queues are good choices when the data you are managing follows
one of these policies. Deques are ordered (like stacks and queues) but there is no implicit element
removing policy; therefore, elements can be added at any place in the deque and removed in any
order. Deques, stacks and queues are all ordered by some external (to the elements) procedure. The
individual elements in these collections have no internal notion of order. Operations on stacks,
queues, and deques that involve adding/removing from the beginning or the end are all O(1).
Operations on stacks, queues, or deques for arbitrary removing/querying are all O(N).

uld use depends
t that order is prese

If the elements of the collection have an external notion of ordering based on an index then there are
two collections available for use. Dynamic Arrays allow elements to be associated with an index.
Adding/Retrieving elements to/from the collection at a specific index is O(1). Growing the array is
very expensive. Run Arrays allow elements to be associated with an index. Run Arrays are very
efficient when there are long runs of the same elements at contiguous index values. All operations
on run arrays are O(logN).

®Registered /Restricted Utility Classes Thursday, March 1, 1990 2.12-1



If the elements have an internal notion of ordering then there are two choices of collections that you
can use. Priority Queues provide a collection where the elements are only partially ordered based on
some internal notion of ordering. For example, many applications require that elements are
processed in some order; however, not necessarily all at once or in fully sorted order. Examples of
this kind of collection could be found in an event scheduling system where the most urgent element
is always scheduled first. SortedSequences provide a collection where the elements are fully ordered
based on some internal notion of ordering. Of course, operations on sorted sequences are more
expensive than operations on a priority queue. This is because there is some overhead to pay for
maintaining the sorted sequence. Operations on priority queues are all O(logN). Operations on
Sorted Sequences are also O(logN); however, there is significant overhead in the balancing
mechanism. Sorted Sequences are optimized for access speed at the expense of update speed (i.e. it
is assumed that access happens more frequently than add or remove).

Unordered collections have no notion of orderin
the elements of the collectiatiif s aridosiiardis
Unordered collections i
support the additional
arrays) associate an ele
to a dictionary involve
given a key.

es (assoc1at1ve
the value. Adding
f a value is possible

n, xor, and difference.
with an element de

Naturally, all of this
are collected must mi
be overridden for
appropriate to the

me for free. In order to acg
efines protocol used
tion, ordering fi

s magic, elements which
n classes. Methods must

i Registered /Restricted Utility Classes Thursday, March 1, 1990 2.12-2



Generic Objects

The class MCollectible defines the generic object class from which all other classes are derived. It
is an abstract class in that many subclasses will redefine some or all of the methods presented below.

MOrderableCollectible should be mixed into objects which might have to be ordered. If you wish
to use the utility classes, your objects should descend from one of these classes.

MCollectible

@OrderableCollectibl

MCollectible

asses are derived. Itis
thods presented below.
ds are described in the

The class MCollectible

an abstract class in

fines the generic object class from whic
many subclasses will redefine some or
There are also meth ible for streaming objects. /]
Cheetah spec. Subc] a.the line:
MCollect subclassNa
in their declaratio
MCollec
in their definition file (.c).

class MCollectible {
public:
MCollectible():
virtual ectible();
virtual ' Hash() ;!
virtual IsEqual
virtual

st MCollect
nst MCollectib
virtual M const; :
inline boolean ator==(const MOrderableCol “ob3);
inline boolean operator!=(const MOrderableCollectible& obj);
}

typedef boolean (MCollectible::* MCollectibleCompareFn) (const MCollectible¥*);
typedef long (MCollectible::* MCollectibleHashFn) ()

boolean MCollectible::IsSame (const MCollectible* obj)
The default function is a pointer comparison.

long MCollectible: :Hash({()

Returns a value suitable for use as a hashing probe for this. The default function will simply return
the address of the object. The default function is almost certainly not adequate if you are overriding
IsEqual because you need to make sure that all objects that “are equal” to each other return the

1. Bold type is used for methods which almost always should be overridden.

¥ Registered /Restricted Utility Classes Thursday, March 1, 1990 2.12-3



same hash value. For example, a TText object would return a hash value computed using the
characters in the string instead of the address of the string.

boolean MCollectible::IsEqual(const MCollectible* obj)

Returns TRUE if obj is isomorphic to this. The default function will throw you into OpusBug and
give you a nasty message. For example, the IsEqual method for TText objects will do a string
comparison. All of the utility classes allow you to specify what method to use when comparing
objects for insertion, deletion, etc.

MCollectible* MCollectible: :Clone() const -
This method is declared and defined automatically when using the MCollectibleDeclarationsMacro.

It is always defined as { return new subclassName (*this); }. This provides a general
polymorphic duplication function.

MOrderableCollec

MOrderableCollecti
which are passed to TE:
MOrderableCollec

sbjects which might w, irdered. Objects

ave

class MOrderabl public MCollectibl;
public:

MOrderableCg

virtual ~MO

virtual boolean rderabl
inline boolean
inline boolean
inline boolean
inline boolean
}

typedef boo * MOrde

boolean MCol . iterThan (const MOrderableCd]
Returns TRUE if ob3j is “greater than” this. The default function will thro L 1nto OpusBug and

give you a nasty message. For example, the IsGreaterThan method for TText objects will do a
string comparison.

boolean MCollectible: :IsLessThan(const MOrderableCollectible* obj)
- Returns TRUE if obj is “less than” this. The default function will throw you into OpusBug and give

you a nasty message. For example, the IsLessThan method for TText objects will do a string
comparison.

¥ Registered /Restricted Utility Classes Thursday, March 1, 1990 21.2-4



Collection Classes

Collection classes are used to group objects in meaningful ways. The system provides
implementations of many of the collection classes from Smalltalk. Use these classes. They will get
faster, smaller, taste better, and less filling. )

TCollection

TCollection

A TCollection represents a group of objec
collection classes inherit methods. There a
Collections all provide a facility for iterating ¢
in the section on_iterators (see page 35).

class TColl

public: :
TCollection (MCollectibleCompareFn testfn);
virtual ~TCollection{();

virtual void Add (MCollectible* obj);

virtual void Add (TCollection* collection);

virtual MCollectible* Remove (const MCollectible& obj):
virtual void RemoveAll () ;

virtual void DeleteAll();

virtual long Count () const;

virtual MCollectible* Member (const MCollectible& obj) const;
virtual TIterator¥* Createlterator() const;

}

TCollection(MCollectibleCompareFn testfn)
Create a new TCollection. All future operations will use testfn for a comparison when needed.

¥ Registered /Restricted Utility Classes Thursday, March 1, 1990 2.12-5



virtual ~TCollection ()
Destroy the mother.

void TCollection::Add(MCollectible* obj)
Add obj to this.

void TCollection::Add(TCollection* collection)

Add all of the objects in collection to this. Essentially equivalent to getting an iterator for the
collection passed in and adding each element in the collection to this.

MCollectible* TCollection::Remove (const MCollectible& obj)

Remove obj from this. Return the object which was actually removed (which if you are using an
IsEqual test function may not be the same as the object passed in only “equal.”)

void TCollection:

Remove all of the obje

the storage that t ight have owned

long TCollection ount () const

Return the number ¢

MCollectiblex
Each object in thi

returned true. REMUTHNE

TIterator* TCollection::Create
This method returns a new iterator which
collection. See the special section on iterato

over the o

TBag

The TBag clas n. It represents an
which objects can‘appea once. Objects which are inserted’
the Hash() method and the TsSame () or IsEqual () method.?

const long kInitialBagSize:;

class TBag: public TCollection {
public:
TBag (MCollectibleCompareFn testFn = &MCollectible::IsSame,
long bagSizeGuess=kInitialBagSize);

virtual ~TBag() ;
virtual void AddWithOccurrences (MCollectible* obj, long number) ;
virtual long OccurrencesOf (const MCollectible* obj) const;

virtual MCollectibleHashFn GetHashFunction(MCollectibleHashFn) const:

2. If you are using an IsEqual TBag, only the first object added that “is equal” to other objects
_ added is retained by the collection and returned as the result of calls to member, remove, etc.
This can make memory management awkward. Think about this when using an “is equal” bag.

®Registered /Restricted Utility Classes Thursday, March 1, 1990 21.2-6



virtual void SetHashFunction (MCollectibleHashFn) ;
}

TBag: : TBag (MCollectibleCompareFn testFn, long bagSizeGuess);
Create a bag which can hold at least bagSizeGuess elements. BagSizeGuess is used to determine
what implementation class to use for bag.

void TBag::AddWithOccurrences (MCollectible* obj, long number);
Add obj to this with number of occurences number.

long TBag::0OccurrencesOf (const MCollectible* obj) const;
Return the number of occurences of obj in this. Zero indicates that obj is not in the bag.

MCollectibleHashFn TBag: :GetHashFunction() const

Set which member fun
&MCollectible: :Has
table). You can use
MCollectibleHash
Most of the time, you

g to the hash
ignature of
d returning a long).

(which is basically a method taking no
) to do this.

TSet

The TSet classis a subclass of*
which objects can appear only once. Obj
Hash () method and the IsSame () or I%

const long kInitialSetSize;

class TSet: Collection {

tén = &MCollect
SetSize):;

virtual ~TSet () ;

virtual void Difference (const TSet& setl):

virtual void Difference (const TSet& setl, TSet& result);
virtual void Intersection(const TSet& setl):

virtual void Intersection(const TSet& setl, TSet& result);
virtual void Union (const TSet& setl);

virtual void Union (const TSet& setl, TSet& result);
virtual void Xor (const TSet& setl);

virtual void Xor (const TSet& setl, TSeté& result);
virtual MCollectibleHashFn GetHashFunction (MCollectibleHashFn) const;
virtual void SetHashFunction (MCollectibleHashFn) ;

}

TSet::TSet (MCollectibleCompareFn testFn, long setSizeGuess);
Create a set which can hold at least setSizeGuess elements. SetSizeGuess is used to determine what
implementation class to use for set.

#Registered/Restricted Utility Classes Thursday, March 1, 1990 212-7



void TSet::Difference(const TSet& setl);:
Destructively modify this to contain a set of elements of this that do not appear in set1.

void TSet::Difference(const TSet& setl, TSet& result):;
After this function is called, result will contain a set of elements of this that do not appear in
setl.

void TSet::Intersection(const TSet& setl);

Destructively modify this to contain everything that is an element of set1 and this.

void TSet::Intersection(const TSet& setl, TSet& result);

After this function is called, result will contain everything that is an element of set1 and this.

void TSet::Union(const TSet& setl);
Destructively modify this thing that is an element of set1 or this.

void TSet::Union(c

After this function is ¢

result) ;

erything that is an ‘etl or this.

void TSet::Xor (co;
Destructively modify
both.

TSet& setl):;

s to contain everything that is an eleme etlor this, but not

void TSet::Xor
After this function.
this, but not bot

MCollectibleHashFn TSet::G

void TSet::SetHashFunction (MColle
Set which member function to call as a has
&MCollectible

Most of the tim

TDictionary

The class TDictionary is a subclass of TCollection. It represents a collection of paired objects
(associations). Because dictionaries are sometimes used to represent a bijective mapping, functions
for retrieving a key given a value are provided along with the usual access functions (however, this
will probably be slow). Objects which are inserted into the Thict ionary should override the

Hash () method and the IsSame () or IsEqual() method. These are used internally by the
TDictionary class. Note: Iterators on the TDictionary class return objects of class TAssoc.

const long kInitialDictionarySize:
class TDictionary: public TCollection {

public:
TDictionary(MCollectibleCompareFn testFn = &MCollectible::IsEqual,

€ Registered /Restricted Utility Classes Thursday, March 1, 1990 2.1.2-8



long dictionarySizeGuess=kInitialDictionarySize);
virtual ~TDictionary():

virtual MCollectible* ValueAt (const MCollectibleé& key) const;
virtual const MCollectible* KeyAt (const MCollectible& val) const;
virtual MCollectible* Rermove (const MCollectible& key):

virtual MCollectiblex* DeleteKey (MCollectible* key):

virtual void DeleteAllKeys () ;

virtual void DeleteAllValues () ;

virtual void AddKeyValuePair {const MCollectible* key,

MCollectible* wval,

boolean replace = TRUE);
virtual MCollectibleHashFn GetHashFunction (MCollectibleHashFn) const;
virtual void SetHashFunction (MCollectibleHashFn) ;

TDictionary::TDicti areFn testFn,

SizeGuess) ;
vSizeGuess elements. B
e for the dictionary.

Create a dictionary whi
used to determine wha

rySizeGuess is

MCollectible* TDig onary: :ValueAt (const MCollectiby;

Return the first ke

MCollectible*
Remove the key, value paxr asso6ia
this call.

MCollectible* TDictionary: :DeleteH
Delete the key from the key, value pair asso
dictionary. Return the value that was removs

MCollectible

If replace=FALSE e pair to the table if there n y,value pair.
Otherwise, if replace-TRUE, add the key, value pair to the hash table. Either way, return the key
that existed (if any) in the hash table before this call. Proper memory management may involve
checking to see if the key returned is “the same” as the key passed in when replacing key, value
pairs.

void TDictionary::DeleteAllKeys ()
Remove all of the entries in the dictionary. Reset the count to be zero. Call the destructor on every
key in the dictionary.

void TDictionary::DeleteAllValues()

Remove all of the entries in the dictionary. Reset the count to be zero. Call the destructor on every
value in the hash table. If you have a value which appears more than once, you will be sorry you
used this method because the utility classes wﬂl delete the same object more than once. This is not
good.

®Registered /Restricted Utility Classes Thursday, March 1, 1990 212-9



MCollectibleHashFn TDictionary::GetHashFunction() const
Return the hash function being used by the hash table.

void TDictionary::SetHashFunction (MCollectibleHashFn)

Set which member function (of the objects in the dictionary) to call as a hash function. By default,
this is set to &MCollectible: :Hash (which is usually overridden in the objects you are adding to
the hash table). You can use any hash function that you like as long as it has the type signature of
MCollectibleHashFn (which is basically a method taking no parameters and returning a long).
Most of the time, you won’t need to do this.

TPriorityQueue

A TPriorityQueue is a subclass of TCollectlon which keeps the elements of the collection

partially ordered based o riority queues are often used when ya must
collect a set of records, t. n collect more, then process n :
There is considerable d ther this class really sh
TCollection since it he user to supply MO
the way in. Objects w;
IsLessThan() and
class. Note: Iterato
Because a TPrior
operation in gene
classes but not as

Collectibles on
3 the IsEquall(),
by the TPriorityQueue
cts “in order.”

a very expensive

ied by the utility

reaterThan () methods. These are used
on a TPriorityQueue class do NOT
nly partlally ordered, thi

class TPriorityQueue
public:
TPrlorltyQueue(MOrderableC
&MOrderabl
virtual ~TPriorityQueue();
virtual void

virtual MQrderableCollectiblex*

virtual Collectible

virtual llectibleg

virtual

virtual yComparlsonFunctlon(M ok mpareFn £n) ;

}

TPriorityQueue: :TPriorityQueue (MOrderableCollectibleCompareFn testFn) ;

Create a new priority queue. Use testFn to determine whether larger objects are removed first or
last. A test of IsLessThan means that larger objects are removed first and smaller objects are
removed last. A test of IsGreaterThan reverses this.

void TPrlorltyQueue :Insert (MOrderableCollectible* obj) ;
Insert obj in this and return it as a result.

MOrderableCollectible* TPriorityQueue::Pop();
Remove the object with the “highest” priority from the priority queue and return it.

MOrderableCollectible* TPriorityQueue::Peek() const;
Return the object with the “highest” priority from the priority queue but don’t remove it.

€ Registered /Restricted Utility Classes Thursday, March 1, 1990 21.2-10



MOrderableCollectible* TPriorityQueue::Replace (MOrderableCollectible* obj);
Roughly equivalent to inserting the obj into the priority queue and then removing the object with the
highest prioriy.

MCollectibleCompareFn TPriorityQueue::GetEqualityComparisonFunction() const
Return the equality comparison function being used by the priority queue.

void TPriorityQueue::SetEqualityComparisonFunction(MCollectibleComparan)

Set which member function to call as the equality comparison function when removing objects from
the queue, checking to see whether a given object is a member, etc. This defaults to IsEqual. Most
of the time you won’t want to change this.

TSequence

A TSequence is an abstr whose elements are ordered

class TSequence:

public:
virtual MCol After (const MColle ¥j) const;
virtual Before (const MCol bj) const;
virtual First() const; :
virtual @ast () const;
virtual . tenate (TS
virtual 1lo encesOf ( i nst;
virtual
virtual Iterat

MCollectible* TSequence::After(co
Return the object found after obj in this o

const
inthis o

ence: :Before (con

const
objin thi :

in this

S

Return the first objé'c

MCollectible* TSequence::Last () const
Return the last object in this.

void TSequence::Concatenate (TSequence* aCollection)
Concatenate aCollection onto the end of this.

long TSequence: :OccurrencesOf (const MCollectible& obj) const
Return the number of times obj isin this.

void TSequence: :Reverse()

this is destructively turned into a collection which contains the same elements as this, but with
the order of the elements reversed.

€ Registered /Restricted Utility Classes Thursday, March 1, 1990 212-11



TSequencelterator* TCollection::Sequencelterator() const

This method returns a new sequence iterator which is suitable for use in iterating over the objects in
the collection. Sequence iterators differ from normal iterators in that they can start at the last object
or the first object and go in either direction. See the special section on iterators on page 35.

TDeque

A TDeque is a subclass of TSequence which is ordered based on the order elements are added to or
removed from the collection. Objects which are inserted into the Theque should override the -
IsSame() or IsEqual () method.

class TDeque: public TSequence {
public:
Theque (MCollectibleCompare
virtual ~TDeque
virtual void
virtual void
virtual MColle
virtual MCollé
virtual void

&MCollectible::IsSame) ;

RemoveFirst () ;
AddAfter (const MCollect

MCollectiblex*
fore(const MCollé
MCollectib

virtual voi

TDeque: : TDequ
Create a new TDeque.

MCollectible* TDeque: :Removelas
Remove the last object in this and return

MCollectible* TDeque: :RemoveFirst

in this and return i

Add the new obje ¢ollection.

void TDeque: :AddBefore (const MCollectibles exist, MCollectible* new)
Add the new object before exist in the collection.

void TDeque::AddLast (MCollectible* obj)
Add ob3j as the last object in the collection.

void TDeque::AddFirst (MCollectible* ob7)
Add ob3 as the first object in the collection.

TStack

A TStack is subclass of TSequence in which the last item added to the stack is the first item taken
out of the stack (LIFO). Objects which are inserted into the TStack should override the IsSame ()
or IsEqual() method. The iterator for a stack will return objects in the order they would be

¥ Registered /Restricted Utility Classes Thursday, March 1, 1990 212-12



returned if repeated Pops were issued to the stack.

class TStack: public TSequence {
public:
TStack (MCollectibleCompareFn testFn = &MCollectible::IsSame);
virtual ~TStack{():
virtual MCollectible* Pop{();
virtual void Push (MCollectible* obj);
}

TStack: :TStack (MCollectibleCompareFn testFn)
Create a new stack. :

void TStack::Push (MCollectible* obj):
Add the object to the top o

MCollectible* TStack

Remove the object on th it. Return NIL ifn

TQueue
A TQueue is a subcl which the first item
taken out of the ques
IsSame () or IsSE
would be returned;

ueue is the first item
dldi ide the
e they

o the stack:

class TQueue: public TSeque
public:
TQueue (MCollectibleCompareFn
virtual ~TQueue():
virtual void Insert (MC
virtual MCo}k tible* Pop():;

&MCO’

ible*

TQueue: : TQuew
Create a new qu

&Fn testFn) ;

void TQueue::Insert (MCollectible* obj);
Add an object to the queue.

MCollectible* TQueue::Pop();
Remove the oldest object in the queue (First In, First Out). Return NIL if nothing is in the queue.

TSortedSequence

A TSortedSequence is a subclass of TSequence in which all of the objects in the collection always
remain sorted. New objects will be inserted in sorted order. All objects in the sequence must be
MOrderableCollectibles. There is considerable debate at this point as to whether this class
really should be a subclass of TSequence since it relies on the good nature of the user to supply
MOrderableCollectibles on the way in. Objects which are inserted into the TSortedSequence

®Registered /Restricted Utility Classes Thursday, March 1, 1990 212-13



should override the IsEqual(), IsLessThan() and IsGreaterThan () methods.

class TSortedSequence: public TSequence {
public:
TSortedSequence (MOrderableCompareFn testFn = &MCollectible::IsLessThan);
virtual ~TSortedSequence();
}

TSortedSequence: :TSortedSequence (MOrderableCompareFn testFn);
Create a new sorted sequence.

TIndexedSequence

A TIndexedSequence is z i d.and.can
be randomly accessed vi

class TIndexedSequ

public:
virtual MCollg Flll(MCollectlble* Obj)
virtual long LowBound () const:;
virtual long. Bound () const;
virtual MCo 1ndex) const
virtual MCo

virtual bo

virtual MCollectibl
virtual void

virtual

ill(MCollectible* o]
This does not duplicate the obje

MCollectible
Fill this with element

er to the object.

long TIndexedSequence: :LowBound();
Return the index of the lowest bound in this collection.

long TIndexedSequence: :HighBound() ;
Return the index of the highest bound in this collection.

MCollectible* TIndexedSequence::At (long index) const;
Return the object in this at the index. If index is past the end of this then FATL.

MCollectible* TIndexedSequence::AtPut(long index, MCollectible* obj):
Add the obj to this at the index. The object that was previously at this index is returned from

AtPut. If index is past the end of the collection then FAIL and do not add this object to the
collection.

®Registered /Restricted Utility Classes Thursday, March 1, 1990 212-14



boolean TIndexedSequence::Find(const MCollectible* obj, long& findresult,

‘ long start=0, long end=0);
If there is an object in this which IsSame or IsEqual (depending on the test function for the indexed
sequence) to obj then return TRUE and set findresult equal to the index of the object. Otherwise
return FALSE. If start or end is specified (as longs), these are used to determine where in the
collection to start and end searching.

MCollectible* TIndexedSequence::AtInsert (long index, MCollectible* obj);
Insert the obj into the TIndexedSequence at the specified index. Effectively, the indexed sequence
is grown one object. If index is out of the bounds of the TIndexedSequence then FAIL.

void TIndexedSequence::Replace (TIndexedSequence* seq, TIndexedSequence* rep,
long seqstart =0, long thisstart=0,

Replace elements in this in rep. Use seqstart, this DS art to

determine where in the s
boolean TIndexedSe edSequence* seq earchresult,
long segstart=0, th
1 of this which matches seq. If thereisn
bcollectlon is found then retu
TRUE as a result of

to start search

ﬂllectlon then the result
f the first object in the
‘Seqstart and thisstart

Search for a subcollec
of this function is FAL
subcollection in searc
can be used to contr

TArray
An TArray is an abstract subclass of TI ence
elements of the sequence via a numerical in rthermo

constant access and update time. Objects wh
IsSame() or IsEqual () method. These ary

public:
TArray (MC &MCollectib
long "in: 7 long offset=0);
virtual ~TArray();
virtual void Grow (long howmuch, long extraspace = 0,
Boolean addToTop = TRUE):
virtual void Compress (long from, long howmuch) ;
virtual MCollectible* Append(MCollectible* obj);
virtual void GrowTo (long maxIndex);
virtual void SetAutoGrowFlag (Boolean autoGrow = TRUE);
virtual Boolean GetAutoGrowFlag () const;

}

TArray: :TArray{(MCollectibleCompareFn testFn,

long initialSize, long offset=0)
Create a new array of size initialSize and fill it initially with NIL. The offset of the first element
of the array is offset.

€ Registered /Restricted Utility Classes Thursday, March 1, 1990 212-15



void TArray::Grow(long howmuch, long extraspace, Boolean addToTop)

Grow the indexed sequence by howmuch. The additional elements can be inserted at the top of the
array or the bottom depending on the value of the addToTop flag. extraspace is the amount of
extraspace to use as a slush fund for future At Insert operations to avoid copying the whole array.

void TArray::GrowTo (long index)
Grow the array in whatever direction is necessary to make index a valid index into the array.

void TArray::Compress(long from, long howmany) -
Compress (remove) entries from the array beginning at entry £from and continuing for howmany
entries.

MCollectible* TArray::Append{(MCollectible* obj)
Shorthand for At Insert (HighBound.( Ly0b:

void TArray::SetAu toGrow = TRUE)
Set the autoGrowFlag, then instead of FA
out of bounds, automa comodate the ind

inserts and puts. Retursis NIL to any At operations past the arra

pan array index is
y, only grow on
virtual” grow).

Boolean TArray
Return the AutoGr

TRunArray

A TRunArray is a subclass of TInde
that tends to be sparse over long runs. T
with a count associated with each one. The
other arrays. The implementation of TRunA:
index and fast insert of an object at a given i
time. (There is 2:5
request a copy:
into the TRun
internally by the

class TRunArray: public TIndexedSequence(
public:
TRunArray (MCollectibleCompareFn testFn = &MCollectible: :IsSame,
long size=1l, long offset =0);
virtual ~TRunArray();
virtual void AtCountPurge (long index, long count):;
virtual MCollectiblex* AtCountReplace (long index, long count,
MCollectible* obj);
virtual MCollectible* AtCountInsert (long index, long count,
MCollectible* objt);

TRunArray: :TRunArray (MCollectibleCompareFn testFn,
long size, long offset = 0);
Create a new run array of size = 1 with offset zero for the first element.

¥ Registered /Restricted Utility Classes Thursday, March 1, 1990 2.12-16



MCollectible* TRunArray::AtCountInsert (long index, long count, MCollectiblex
obj); ‘

Insert a run of obj, count objects long into the run array at the specified index. Effectively, the array
is grown by count objects. If index is out of the bounds of the array then return NIL.

void TRunArray: :AtCountPurge (long index, long count);
Remove the objects in the run array starting at index and continuing until index+count-1. If either
the upper or lower bounds of the element to be removed set is out of the array bounds then return

NIL and do not perform the deletion.

MCollectible* TRunArray‘: :AtCountReplace (long index, long count, MCollectible*
obj);
Loosely equivalent to a call to PurgeAt to remove objects in the run array followed by an Insertat

to replace objects. Return NIL if th d.of the replacement range is out of bounds
Otherwise return obj. :

€ Registered /Restricted Utility Classes Thursday, March 1, 1990 212-17



Simple Classes

These simple classes are used in the implementation of many CS101 classes.

MCollectible

[ TEdge j [TAssoc j @rderableCollectib}

TAssoc

A TAssoc is used to ho
higher level object (e.g.
their own classes migh

TDoubleLink
y, these structures are

y not returned to the, s implementing

class TAssoc : lic MCollectible {
public:
TAssoc () ;
TAssoc (MC , MCollectib
virtual

MCollectible*

TLink
A TLink is primarily v ntation of linked lists. : ,
owned by some other higher level object (e.g. a dictionary) and are usually niot returned to the user.

Users implementing their own classes might wish to use TLinks in their implementations.

class TLink {

public:
TLink () ;
TLink (TLink* link = NIL, MCollectible* obj = NIL);
virtual ~TLink () ;
virtual void SetNext (TLink* link) ;
virtual TLink* GetNext () ;
virtual void SetValue (MCollectible* obj):

virtual MCollectible* GetValue():;

¥ Registered /Restricted Utility Classes Thursday, March 1, 1990 21.2-18



TDoubleLink

A TDoubleLink is primarily used in the implementation of doubly linked lists. Typically, these
structures are owned by some other higher level object (e.g. a dictionary) and are usually not
returned to the user. Users implementing their own classes might wish to use TDoubleLinks in
their implementations. :

class TDoubleLink : public TLink {

public:
TDoublelLink () ; ; i
TDoubleLink (TLink* link = NIL, MCollectible* obj = NIL);
virtual ~TDoubleLink () ;
virtual void SetPrevious (TLink* 1link);

virtual TDoubleLink* GetPrevious():;

TEdge

between the user and
it 1s not part of the

to communicate information about edges
ught of as a copy of some aspect of a gr

A TEdge is an object us
the system. It can be
graph itself because

class TEdge
public:
TEdge () ;
virtual ~TEdge ()’
TEdge (TVertex* from,

TVe

TVertex* GetFrom() ;
TVertex* GetTo ()
WeightType GetWeight():

void SetFrom(TVertex* v
void tTo (TVertex* v)

void ight (WeightT

¥ Registered /Restricted Utility Classes Thursday, March 1, 1990 2.12-19



CS101 Classes

CS101 classes are classes which implement classic computer science data structures. These include .
hash tables, linked lists, trees, graphs, etc. In general, you shouldn’t use these classes directly - they
are used as implementations for the collection classes. The collection classes isolate you from a
particular implementation used for a collection (which will be a CS101 class). For example, a set
could be implemented as a linked list, a c-array or a hash table depending on the operations
performed, number of elements, etc. Eventually, the collection classes will be smart about making
these choices for you automatically based on a specification from the user (the size hint is a start in
that direction).

TLinkedList

@)oubleﬁnkedm}

THashTabl

TBinaryTree

THashTable

The class THashTable is a subclass of MCol _ le to
. Every hash table

entries in the t
controlling wh

call on the TAssoc to get what you want.

const long kDefaultHashTableSize;
const long kDefaultGrowthRate;
const long kDefaultRehashThreshold;

class THashTable: public MCollectible ({
public:
THashTable ( MCollectibleCompareFn testFn = &MCollectible::IsSame,
long tablesize=kDefaultHashTableSize,
long growthrate=kDefaultGrowthRate,
long threshold=kbDefaultRehashThreshold) ;
virtual ~THashTable () ;

¥ Registered /Restricted Utility Classes Thursday, March 1, 1990 21.2-20



virtual long Count () const;

virtual MCollectible* Remove (const MCollectibleé& key):

virtual MCollectible* Delete (MCollectible* key):;

virtual MCollectible¥* Member (const MCollectible& key) const;

virtual void DeleteAll ()

virtual void DeleteAllKeys () :

virtual void DeleteAllValues();

virtual void RemoveAll () ;

virtual void Grow () ;

virtual MCollectible¥* Add (const MCollectible* key, .
‘ MCollectible* value, boolean replace=TRUE)

virtual MCollectible* Retrieve (const MCollectible* key):

virtual long GetGrowthRate () const;

virtual long GetRehashThreshold() const:

virtual void
virtual void
virtual MCollect
virtual void

}

Rate (long rate);

ctlon(MCollectlbleH
ction (MCollecti

THashTable: :THash

le (MCollectibleCompareFn testF

long tablesize, long growt
al tablesme growthrate

ig threshold)
. Return the new

Create a new hash
hashtable. TestFn i
number from 0 to 1{

long THashTable::
Return the number of entries in the has
RemoveAll, DeleteAllKeys or Delet

MCollectible* THashTable: :Remove (

same” as the ke e.(onk . Thi 12t 3 ak if the
hash table had th : ;

, use the Delete method if you wan h table to delete the
actual key before returning the value. You could also call the Member method to retrieve the actual
key in the dictionary before removing it.

MCollectible* THashTable::Delete(MCollectible* key)

Delete any entry for the key in the hash table and removes the value from the hash table. Return
the value removed if there was actually an entry to remove or NIL otherwise. If the key used as a
parameter is the same as the key in the hashtable, it is still deleted. Any operations on this deleted
object will cause the usual storage management problems.

MCollectible* THashTable::Member (const MCollectible& key) const
Each object in this is compared to key using the function testFn. Return the object which was found
which IsEqual or IsSame to the object passed as a parameter. Return NIL if no object was found.

void THashTable: :RemoveAll ()
Remove all of the entries in the hash table. Reset the count to be zero. If you don’t have pointers to

€ Registered /Restricted Utility Classes Thursday, March 1, 1990 2.1.2-21



all of the key, value pairs stored elsewhere in your program, you have a memory leak. You can use

Deleteall,DeleteAllKeys or DeleteAllValues if you would like the utility classes to destroy
the objects in the hashtable.

void THashTable::DeleteAll () .

Remove all of the entries in the hash table. Reset the count to be zero. Call the destructor on every
key and every value in the hash table. If you have a key which also appears as a value or a value
which appears more than once, you will be sorry you used this method because the utility classes will
delete the same object more than once. This is not good.

void THashTable: :DeleteAllKeys ()

Remove all of the entries in the hash table. Reset the count to be zero. Call the destructor on every
key in the hash table.

void THashTable: :De
Remove all of the entries
value in the hash table
used this method becav
good.

he count to be zero. Call the destx
appears more than once, you
lete the same object m¢

ce. This is not

void THashTable:
Force the hash tabl

ow ()
ow by the rehashsize.

MCollectiblex

If replace=FALSE , [ ' 15 lue pair.
Otherwise, if replacs= :
that existed (if any) in the ;
checking to see if the key returned is %
pairs.

long THashTable::GetGrowthRate ()
Return the growth rate for the hash table.

void THashTable::SetRehashThreshold (long threshold)
Set the rehash threshold for the hash table.

MCollectibleHashFn THashTable: :GetHashFunction () const
Return the hash function being used by the hash table.

void THashTable: :SetHashFunction (MCollectibleHashFn)3
Set which member function to call as a hash function. By default, this is set to

&MCollectible: :Hash (which is usually overridden in the objects you are adding to the hash
table). You can use any hash function that you like as long as it has the type signature of
MCollectibleHashFn (which is basically a method taking no parameters and returning a long).

3. D11 may not allow you to set the hash function after there are objects in the hash table. This
bug will be fixed shortly by rehashing the table immediately after a SetHashFunction call.

¥ Registered /Restricted Utility Classes Thursday, March 1, 1990 21.2-22



Most of the time, you won’t need to do this.

TLinkedList

A linked list object is useful for storing lists of MCollectibles. Linked lists are particularly useful
when storage requirements are unpredictable and extensive manipulation of the structure
(insertions, deletions) is required. Objects which are inserted into the linked list should override the
IsSame () or IsEqual () method depending on what test function is passed into the constructor.

class TLinkedList: public MCollectible ({

public:
TLinkedList (MCollectibleCompareFn testFn = &MCollectible::IsSame);

virtual ~TLinkedList () ;
virtual long Be3sn GIESL
virtual MColle

virtual MColl
virtual MColl
virtual void
virtual MCol
virtual
virtual
virtual

RemoveAll (
RemoveFirst () ;
Removelast () ;

virtual

virtual void
virtual void
virtual MCollectible*
virtual MCollectible*
virtual MCollectiblex* First
virtual MCellectible*
virtual

protected:

GetLast () :
SetFirst (TLink¥*) ;
SetLast (TLink*) ;

virtual MakeNewLink (TLink* n = NIL,
MCollectible* v = NIL) const;

virtual TLink* FirstLink():;

virtual TLink* LastLink () ;

virtual TLink* Remove (TLink* 1) ;

virtual TLink* RemoveAfter (TLink* 1);

virtual TLink* RemoveBefore (TLink* 1) ;

virtual boolean AddAfter (TLink* 1, MCollectible* obj):

virtual boolean AddBefore (TLink* 1, MCollectible* ob3j);

}

TLinkedList::TLinkedList (MCollectibleCompareFn testFn);
Create a new linked list and return it as the result. testFn is used by all methods when testing for

€ Registered /Restricted Utility Classes Thursday, March 1, 1990 21.2-23



entries which match.

TLinkedList::~TLinkedList () ;
Destroy the linked list and all the links associated with it; however, the objects in the linked list are
not freed. (The user is responsible for the objects - the system is responsible for the links).

long TLinkedList: :Count () ;
Return the number of elements in the linked list.

MCollectible* LinkedList::Remove (const MCollectiblesg obj,

boolean removeAll=FALSE) ;
Remove the first link which contains obj as the value of its link from the list. If removeAll=TRUE
then remove all links which contain obj as its value. Return the removed object.

MCollectible* LinkedList::RemoveAfter (const MCollectibleg obj);
Remove the link after th b n the removed object.

MCollectible* TLin

const MCollectibl
Remove the object befo: 3

Return the removed

void TLinkedList
Remove all of the obje

emoveAll () ;
in the list.

MColliectible* T,
Remove the first obj

aveFirst () ;
:he removed objec

MCollectiblex* ;
Remove the last object in the

void TLinkedList::DeleteAll ().;
Delete all of the links in the list. Free all
object) as well as the links used to hold the

oolean TLinke t::AddAfter (cons
MCo

the list. If exis

tible* obj
Add obj after e bj does not actii

false; otherwis

AddBefore (const MCollectible& existingObi,
MCollectible* obj);

Add obj before existingObj in the list. If existingObj does not actually exist in the list then return

false; otherwise return true.

boolean TLinkedList

void TLinkedList::AddFirst (MCollectible* obj);
Add obj to the front of the list in a newly created link.

void TLinkedList::AddLast (MCollectible* obj);
Add the obj to the end of the list

MCollectible* TLinkedList::After (const MCollectibles& obj) const:
Return the object after the first occurrence of obj in the list. If there is no object after obj then return
NIL. A

¥ Registered/Restricted Utility Classes Thursday, March 1, 1990 212-24



MCollectible* TLinkedList::Before(const MCollectible& obj) const;
Return the object before the first occurrence of obj in the list. If there is no object before obj then
return NIL.

MCollectible* TLinkedList::First () const; )
Return the first object in the list. If there are no objects in the list, return NIL.

MCollectible* TLinkedList::Last () const;
Return the last object in the list. If there are no objects in the list, return NIL.

void TLinkedList::Rotate(boolean firstBecomesLast=TRUE) ;

If firstBecomesLast=TRUE, the first element in the list becomes the last element, the second
becomes the first, the third becomes the second, and so on. If firstBecomesLast=FALSE, the last
element becomes the first element, the first becomes the second, and so on.

TLink* TLinkedList:
Whenever the TLinkedL,
default implementation ¢
their own kind of TLin

NIL, MCollectiblex* v
ew link, this virtual functi

d 1f they want

TLink* TLinkedL
Return the last link

TLink* TLinked
Sets the first element of the linkeé

TLink* TLinkedList::SetlLast (TLin
Sets the last element of the linked list to be

TLink* TLinkedLi
Remove the link
successful, ret
responsible for
using functions
all of the links. Theref'ore,r

Remove (TL:Lnk*

functions cache a link reference, they m: rea &an:.gling pointer.

TLink* LinkedList::RemoveAfter (TLink* 1);
Remove the link after 1. If1is the last link in the list or 11is not part of the list then return NIL;

otherwise return the deleted link.

TLink* TLinkedList::RemoveBefore(TLink* 1);
Remove the link before 1. If1is the first link in the list or 1 is not part of the list then return NIL;
otherwise return the deleted link.

boolean TLinkedList::AddAfter (TLink* 1, MCollectible* obj);
Add obj after the link 1. Create a new link to contain the obj. If1is not in the list then return false;
otherwise return true.

bboolean TLinkedList::AddBefore (TLink* 1, MCollectible* obj):;
Add obj before the link 1. Create a new link to contain obj. If1is not in the list then return false;

€ Registered /Restricted Utility Classes Thursday, March 1, 1990 2.12-25



otherwise return true.

TLink* TLinkedList::FirstLink();
Return the first link in the list. If there are no links in the list, return NIL.

TLink* TLinkedList::LastLink();
Return the last link in the list. If there are no links in the list, return NIL.

TDoubleLinkedList

A TboubleLinkedList object is useful for storing lists of MCollectibles. TDoubleLinkedLists
are particularly useful when storage requirements are unpredictable and extensive manipulation of
the structure (insertions, deletlons) is required. Also, they are much more efficient (in tlme) than

singly linked lists (TLink
the last accessed object i
Before (as well as Aft
should override the 1

linked list

class TDoubleLink
public: :
TDoubleLinke
virtual ~TDou
virtual
virtual

ist {

(MCollectibleCompareFn testF ectible::IsSame) ;

virtual
virtual
virtual
virtual MCollectible* :
virtual MCollectible* Remo

virtual boolean
virtual

e (const MCok
MCollectib
virtual ddFirst (MCollectible* "o
virtual vo i AddLast (MCollectible* obj) ;i
virtual MCollectiblex* After(const MCollectible& obj) const;
virtual MCollectiblex* Before (const MCollectible& obj) const;

virtual i

virtual MCollectible* First () const;

virtual MCollectiblex* Last () const;

virtual void Rotate (boolean firstBecomesLast=TRUE) ;
protected:

virtual TDoubleLink¥* MakeNewLink (TDoubleLink* previous,

TDoubleLink* next,
MCollectible* value = NIL) const;

4. Unfortunately, this caching can cause some ambiguities when multiple instances of the same

object are in the TDoubleLinkedList. At this point this is not viewed as a problem, only a
feature that people need to be aware of.

¥ Registered /Restricted Utility Classes Thursday, March 1, 1990 212-26



All of the methods of TDoubleLinkedList behave like their counterparts in TLinkedList.

TTree

A TTree is an abstract superclass used as a baseclass for binary trees. TTrees provide some
ordering on their members. Objects which are added to trees should be descended from
MOrderableCollectible. Objects which are inserted into the TTree should override the
IsEqual(), IsLessThan() and IsGreaterThan () methods.

class TTree: public MCollectible {
public:
TTree () ;
virtual
virtual
virtual
virtual
virtual
virtual
virtual voi
virtual voi
virtual

ctible& obj);

RemoveAll () ;
DeleteAll ()

Member (cons tible& obj)

TTree: :TTree();
Create a new tree. Use testFn to
(A test of IsLessThan means that "smal
objects will end up to the right. Usingat

void TTree::Add(MOrderableCollecti@
Add obj to the tree. :
MOrderableC e
Remove the ob ) ‘ e obje d from
the tree or NIL if no‘chyj

void TTree: :RemoveAll ()
Remove all the objects from the tree.

void TTree::DeleteAll ()
Delete all the objects from the tree. Also, deallocate (i.e. call the destructor) on each object in the
tree.

MOrderableCollectible* TTree::Member (const MOrderableCollectible& obj) const
Returns the actual object that is in the tree if the passed in obj “IsEqual” to an object in the tree.
Returns NIL otherwise.

MOrderableCollectible* TTree::First () const
Returns the first object in the tree.

¥ Registered /Restricted A Utility Classes Thursday, March 1, 1990 212-27



MOrderableCollectible* TTree::Last () const
Returns the last object in the tree.

TBinaryTree

A TBinaryTree is a subclass of tree. Each node in a binary tree can hold only one key object, a
pointer to its left child and a pointer to its right child. Objects which are inserted into the
TBinaryTree should override the IsEqual (), IsLessThan() and IsGreaterThan () methods.
These are used internally by the TBinaryTree class. .
class TBinaryTree: public TTree {
public:
TBinaryTree (MOrderableCompareFn fn=&MOrderableCollectible::IsLessThan) ;
virtual ~TBinaryTree(): :

}

TBinaryTree: :TBina sareFn
bleCollectible:,

Tm insertion, sear
cts will end up to the left of the root and: cts will end up to the

reaterThan reverses this).

Use testFn to determi
means that "smaller”

A TRedBlackTre&is an'sub
balanced. This removes any w
normal binary trees. Objects which are
IsEqual(), IsLessThan() and IsGreés
TBRedBlackTree class.

class TRedBla
virtual

TRedBlackTree: :TRedBlackTree ( TOrderableCompareFn
testFn=&MOrderableCollectible: :IsLessThan) ;

Use testFn to determine where in the tree to perform insertion, searches, etc. (A test of IsLessThan

means that "smaller” objects will end up to the left of the root and larger objects will end up to the

right. Using a test of IsGreaterThan reverses this).

THeap

A THeap is a data structure which insures that the elements of the heap are always partially ordered
and balanced. Because heas are only partially ordered, they can be more efficient than
RedBlackTrees if the type of behavior that you want is to be able to add some objects to the heap and
then remove the largest, then add some more, remove next largest, etc. Objects which are inserted
into the THeap should override the IsEqual(), IsLessThan() and IsGreaterThan () methods.

€ Registered /Restricted Utility Classes Thursday, March 1, 1990 21.2-28



const long kInitialHeapSize;

class Heap: public MCollectible {
public: .
THeap (TOrderableCompareFn testFn=&MOrderableCollectible: :IsLessThan,
long heapSize = kInitialHeapSize):
virtual ~THeap () ;
virtual MOrderableCollectible* Pop():;
virtual MOrderableCollectible* Peek() const; -

virtual 1long Count () const;

virtual void RemoveAll () ;

virtual void DeleteAll() ;

virtual void Add (MOrderableCollectible* obj):

virtual MOrderabl {const MOrderableCollectibl

virtual Kconst MOrderableCollect
const;
virtual MColle alityComparisong ;

virtual void sonFunction (MC eComparefFn fn);

}

ble: :IsLessThan) ;
test of IsLessThan
st of

THeap: :THeap (TOr
Use testFn to dete
means that larger o
IsGreaterThanr

ableCompareFn testFn=&MOrderab
' objects are removed fig

MOrderableColle
Remove the object at the top o

MOrderableCollectible* THeap::P
Return the object at the top of the heap. Th

long THeap::Count () const
Return a count

void THeap: :i
Add obj to the heap

MOrderableCollectible* THeap::Remove (const MOrderableCollectible& obj)
Remove obj from the heap. Return the actual object removed (which may not be the same as the
object passed in only “is equal”) or NIL if no object was removed.

MOrderableCollectible* THeap: :Member (const MOrderableCollectible& obj) const
Return true if obj is in the heap.

void THeap::RemoveAll ()
Remove all the objects from the heap.

void THeap: :DeleteAll()
Remove all the objects from the heap. Also, deallocate (i.e. call the destructor) on each object in the
tree.

€Registered /Restricted Utility Classes Thursday, March 1, 1990 2.12-29



MCollectibleCompareFn THeap::GetEqualityComparisonFunction () const
Return the equality comparison function being used by the heap.

void THeap::SetEqualityComparisonFunction (MCollectibleCompareFn)
Set which member function to call as the equality comparison function when removing objects from

the queue, checking to see whether a given object is a member, etc. This defaults to IsEqual. Most
of the time you won’t want to change this.

TGraphs .

A TGraph provides an abstract superclass for all graphs. Objects which are inserted into the graph
should override the Hash () method and the IsSame () method. These are used internally by the
graph class.

const long kExpect
const long kExpect
class TGraph: publ
public:

TGraph ( const
const

virtual ~TGra
virtual bool x{MCollectible* ve
virtual voi MCollectibl
virtual void stible* fr

1g vertices=kExpectedNumberOfVer
g edges=kExpectedAverageNumbe

TRUE) ;

virtual void ctible*
virtual TQueue*

virtual void DepthFirstEaci
virtual void BreadthFirstE:
virtual b IsComplete() ;
}
TGraph ( const "long edges) ;
Create a new gr. h is returned could contair ces and
edges, providing a guess as to.the expected number of vertices and the expectet average number of
edges from each vertex could greatly improve the efficiency of graph operations.

~TGraph() ;
Delete the graph and all the vertices and edges associated with the graph.

boolean TGraph::AddVertex(MCollectible* vertex, boolean replace) ;
Add vertex to this. If vertex already exists in the graph and replace = TRUE then delete the old
vertex and add the new vertex.

void TGraph::RemoveVertex (MCollectible* vertex);
Remove vertex from this.

void TGraph::AddEdge (MCollectible*. from, MCollectible* to, WeightType weight) ;
Add the edge to the graph.

® Registered /Restricted Utility Classes Thursday, March 1, 1990 21.2-30



void TGraph::RemoveEdge (MCollectible* from, MCollectible* to, WeightType
weight) ;
Remove the edge from the graph.

TQueue* TGraph::ShortestPath(MCollectible* vertexl, MCollectible* vertex2);
Return the path in the graph connecting vertexl and vertex2 with the property that the sum of the
weights of the edges is minimized over all such paths. Each RemoveFirst operation on the queue
will remove edges starting at vertexl and moving to vertex2. The user is responsible for freeing this
queue of vertices and edges when it is no longer needed.

void TGraph::DepthFirstEach (TVertexActionFn fn, TQueue* start=NIL);
Iterate over all of the vertices in the graph reachable from the start collection in a depth-first
fashion. Apply fn to each vertex in the graph in this order. If start=NIL then an appropriate
starting set of vertices will be chosen.

void TGraph::Breadth
Iterate over all of the verts
fashion. Apply fn to eac
starting set of vertices

ionFn fn, TQueue* start)
from the start collection i
order. If start=NIL thes

boolean TGraph::I
Return true if there is

mplete () ;
edge from every vertex to every other v

TUndirectedG

A TUndirectedGr
inserted into the graph sho
used internally by the graph class

) meth & are

class TUndirectedGraph: public TG

virtual
virtual i ¥ gTree () ;
virtual b
virtual TSet G ctedComponents () ;
virtual TDeque* onnectedComponents () ;
virtual TSet* ArticulationPoints{();
virtual boolean IsBiconnected():;

}

TUndirectedGraph: : TUndirectedGraph (const long vertices, const long edges):
Create a new graph. While the graph which is returned could contain any number of vertices and
edges, providing a guess as to the expected number of vertices and the expected average number of
edges from each vertex could greatly improve the efficiency of graph operations.

~TUndirectedGraph: :TUndirectedGraph() :
Delete the graph and all the vertices and edges associated with the graph. All edges and
vertices are freed.

€ Registered /Restricted Utility Classes Thursday, March 1, 1990 2.1.2-31



TSet* TUndirectedGraph::MinimumSpanningTree();

Return a set of edges which represents a minimum spanning tree of a weighted graph. A minimum
spanning tree is a collection of edges that connects all the vertices such that the sum of the weights
of the edges is at least as small as the sum of the weights of any other collection of edges that
connects all the vertices. (Real life: I want to wire a group of cities so that each city can reach each
other city and I want to minimize the amount of wire to use.) The user is responsible for freeing this
set of vertices and edges when it is no longer needed.

boolean TUndirectedGraph::IsConnected();
Return true if this is connected. A graph is connected if there is a path from every vertex in the
graph to every other vertex in the graph. -

TSet* TUndirectedGraph::BiconnectedComponents () ;
Return a collection of biconnected components of this. Each object in the set is itself a graph.

Biconnected components of a graph are sets of vertices mutually accessible via two distinct points.
The user is responsible for freeing.the. returned.set.of vertices when it is no longer needed

TDeque* TUndirecte
Return a collection of co . self a TDeque
which represents a cont
TDeque of vertices an

TSet* TUndirecte
Return a collection o
articulation point
there are distinct
biconnected grap i ; 3 e for
freeing the return

h::ArticulationPoints{();
ints of this. Each object

boolean TUndirectedGraph::IsBi
Return true if this is biconnected. A grap
different paths connecting each pair of vert:
are removed, the graph is still connected. (R
that a failure along one point does not leave £

A TDirectedGraph provides an'implementation for a directed graph. Objects which are inserted
into the graph should override the Hash () method and the IsSame () method. These are used
internally by the graph class.

class TDirectedGraph: public TGraph {
public:
TDirectedGraph( const long vertices=kExpectedNumberOfVertices,
const long edges=kExpectedAverageNumberOfEdgesPerVertex) ;
virtual ~TDirectedGraph();
virtual TQueue* TopologicalSort (TQueue* start=NIL);
virtual TSetx* StronglyConnectedComponents () ;
virtual boolean IsStronglyConnected() ;
virtual boolean IsWeaklyConnected() ;
virtual boolean IsAcyclic () ;-

¥ Registered /Restricted Utility Classes Thursday, March 1, 1990 21.2-32



TDirectedGraph: :TDirectedGraph (const long vertices, const long edges) ;

Create a new directed graph (digraph). While the graph which is returned could contain any number
of vertices and edges, providing a guess as to the expected number of vertices and the expected :
average number of edges from each vertex could greatly improve the efficiency of graph operations.

~TDirectedGraph: :TDirectedGraph () ;

Delete the graph and all the vertices and edges associated with the graph. All edges and

vertices are freed.

TQueue* TDirectedGraph::TopologicalSort (const TQueue* start=NIL);

Return an ordering on this such that no vertex in the ordering is before any vertex that points to it.
Each object in the queue is a vertex. Use the start queue as the vertices to begin the topological sort.
If no start queue is provided then some appropriate set of starting nodes will be chosen. (The
appropriate set of nodes will consist of all nodes.of in-degree zero) Note that there is : e way
to perform a topological case,

t a directed acyclic graph (D
NIL would be returned.. n it is no longer
needed.

freeing this queue of verti

TSet* TDirectedGr
Return a collection o
the set is itself a Dir
there is a path fro
of graphs when it i
components in tope

- glyConnectedComponents (
rongly connected components of this. Ea,
dGraph. (Strongly connected compon

vertex w for all vertices.). Th
there may be

“connected component in
h are subgraphs in which
onsible for freeing this set
scted

boolean TDire ;
A graph is strongly connec -
may only be traversed from tail to hea

ges

boolean TDirectedGraph:: IsWeaklyC
A digraph is weakly connected if for every p3 :
may be traversed from tail to head or from h il - i.e. if 1 d for
purposes of this : :

boolean TDix
Return true if t

Random Numbers

TRandomNumberGenerator generates a sequence of pseudo random numbers given an initial seed.
If no initial seed is specified, the system time is used as a seed. The range of random number values
is [0, 2731-1>.

class TRandomNumberGenerator |

public:
TRandomNumberGenerator () ;
TRandomNumberGenerator (long initialSeed) ;
~TRandomNumberGenerator () ;
long Next{();
void Reset();

" long First();

¥ Registered /Restricted Utility Classes Thursday, March 1, 1990 2.1.2-33



protected:
long GetSeed():
void SetSeed(long newlInitialSeed);
}:

TRandomNumberGenerator: : TRandomNumberGenerator ()
Construct a new random number generator. Use the system time as a seed value.

TRandomNumberGenerator: : TRandomNumberGenerator (long initialSeed)
Construct a new random number generator using initialSeed as the seed.

TRandomNumberGenerator: : ~TRandomNumberGenerator ()
Destroy the random number generator.

long TRandomNumberGe
Return the next random

long TRandomNumbe rf
Equivalent to Reset (

void TRandomNumb

Reset the random n  of random numbers.

long TRandomN
Get the initial seed

void TRandomNumberGen
Set the seed used by the random

€ Registered /Restricted Utility Classes Thursday, March 1, 1990 2.12-34



Advanced Topics
Iterators

Earlier versions of the utility classes included an "Each" mechanism for iterating over the objects in
a class. Unfortunately, there are a number of problems with this mechanism (difficult to pass back
information and no closures in C++) that facilitate the need for a more generic mechanism.

All of the classes described in the document have iterator classes defined for them. An iterator for a
particular object will iterate over all of the objects in a class. For example, the TLinkedListIterator
will iterate over each element in the TLinkedList class. Each call to the iterator will return the next
element in the class. For example:

TLinkedList alist = new TLinkedList () ;
// Some linked lis
TLinkedListIterato
MCollectible* foo
while (foo != NI
{

nkedListIterator(alj

The virtual functi he next object

could be:

TIterator* i = Iterator();
MCollectible* e;
boolean done = false;

while ( (¢
{
done = (e->*fn) (some arguments....);
e = i->Next () ;
}
delete i;

}

return done;

}

Objects in the class will be returned with order preserved if the class contains objects which are fully
ordered. For example, linked lists, deques, queues, stacks, binary trees, etc. will return objects "in
order." Hashtables, sets, bags, dictionaries, heaps, priority queues etc. will return objects in some
random (at least to the user) order.

Operations on the collection itself will invalidate all outstanding iterators on the collection until the
iterator resyncs with the collection. This occurs in the calls First and Last. Starting with d11

¥ Registered /Restricted Utility Classes Thursday, March 1, 1990 2.1.2-35



Pink, you can remove an element from the collection using a method of the iterator (Remove). This
automatically resyncs the iterator to the collection; however, all other iterators are invalidated just
as if any operation was done to the collection they are tied to.

class TIterator ({

public:
TIterator():
virtual ~TIterator():;
virtual MCollectible* First{():;
virtual MCollectible* Next () ;
virtual MCollectible* Remove () ;

) .

TIterator::TIterator ()
Create a new iterator.

TIterator::~TItera
Delete the iterator.

MCollectible* TIt
Reset the iterator an

collection if other op¢

‘turn the first element of the collection. he iterator to the

ions on the collection caused the itera

MCollectible* T
Remove the curren} is is the only
way to remove an just as
if any change to the ¢
use of the Remove method o
FAIL.

MCollectible* TIterator::Next () :
Retrieve the next object in the collection a: it. j ‘an

order that reflects the “ordered-ness” of the
elements). Ifth ection has changed (oth
iterator) since First was cal

Subclasses of T

3 TSequencelterator for v objects in a
collection in “back

rds’ than the usual order.

class TSequencelterator : public TIterator {
public:
TSequencelterator():;
virtual ~TSequencelterator();
virtual MCollectible* Last () ;
virtual MCollectible* Previous{() ;

}

TSequencelterator::TSequencelterator ()
Create a new iterator.

TSequencelterator: :~TSequencelterator()
Delete the iterator.

fRegistered /Restricted Utility Classes Thursday, March 1, 1990 2.1.2-36



MCollectible* TSequencelterator: :Last ()
Return the last object in the collection. This resyncs the iterator to the collection if other operations

on the collection caused the iterator to be invalidated.

MCollectible* TSequencelterator::Previous ()

Retrieve the previous object in the collection and return it. The order that ob;ects are retrieved is in
an order that reflects the “ordered-ness” of the collection (or the lack of ordering on the collection
elements). If the collection has changed (other than through the use of the Remove method of this
iterator) since the last time First or Last was called, this method will FAIL.

Garbage Collection

The role of automatic storage management in the C++ world is a very controversial issue. In a
recent paper, "Possible Di
probably not a good fit.

collection techniques pe
make C++ a good garba
fundamental design cha
garbage collector wou
suspect that a garbagy
come to expect from G

night be done, but I's
suming the absenc

Stroustrup adds tha
giving the progra
"garbage collected.
tone) of automatic sto
alludes to some work being don
pointer is an object that acts like a pom :
counted pointer to an object is destroyed, t
count garbage collector).

ummportant,
the usability o

As it stands now, users of these classes should take great care with respe Smory management.
In general, the utlhty classes manage their own memory and never allocate memory that they expect
the user to manage.® Likewise, objects created by the user and put into collections should be
managed by that user. A common error that many people encounter is the following:

TSet* aSet = new TSet ()

TSurrogateTask* aTask = new TSurrogateTask();
aSet->Add (aTask) ;

..much later...

5. The major exception to this rule is the member function, Iterator (), which creates a new
iterator on the heap that it expects the user to manage. If you don’t need the polymorphism
(that is, you know the type of the collection as something other than TCollection), you can

. create an iterator directly as in TDequeIterator anIterator (&aDeque).

¥ Registered /Restricted Utility Classes Thursday, March 1, 1990 212-37



TSurrogateTask* bTask = new TSurrogateTask();
// bTask is equal to aTask but not the same object

// The wrong way unless you know bTask is pointer eqg to aTask
aSet->Remove (bTask) ;
delete bTask;

// The right way in general
TSurrogateTask* someTask = (TSurrogateTask*) aSet->Remove (bTask);
if (someTask != bTask)
delete someTask:;
delete bTask;

Dictionaries are slightly more complicated to deal with because you always receive the old value
back from the call to Remove. This means that the pointer to the key is dropped on the floor by the

utility classes. Use the vy, value pair, delete the key
value to the caller.

®Registered /Restricted Utility Classes Thursday, March 1, 1990 2.1.2-38



€ Registered /Restricted

Cheetah

Wednesday, March 7, 1990






cheeetah n. 1. A long-legged, swift running wild cat,
Acinonyx jubatus, of Africa and southwestern Asia,
that has black spotted, tawny fur and nonretractile
claws and is sometimes trained to pursue game. 2.
Cheap persistent objects for Pink.

€ Registered /Restricted Cheetah Thursday, March 1, 1990 2.1.3-ii






Introduction

cheetah is a set of classes and protocol for use with C++ in the Pink world for saving and restoring objects
to and from a stream. Objects which descend from the appropriate classes and adhere to the proper
protocol can be “flattened” to a stream (memory, a disk file, the network, etc.) and “expanded” on the
other end.

Objects with references to other objects can be flattened and restored easily. Multiple references to the
same object are restored properly. Circular references are also handled in the design of the system. Sets
of objects can be flattened and restored together and repeated references are handled efficiently. cheetah
does not address where objects are stored, how they are found, indexing into a database of objects, or
garbage collection of persistent objects.

Architecture Overview

eature for an object oriented
an across processes, sess
sed by classes which n
ctible can be fl
ointer. This function grovels over the stry
This process results in a linearized form of;
The reverse of this process is to u

Converting objects to a “fla
It allows objects to have a
provides a set of classes a

of objects from classes d
global function, Flatt
referenced by this objec
disk, sent to another
which takes a flatten

g system.
EPUs. cheetah
bility. Instances

rsistent state using a

object and all objects
ich can be stored on

ction Resurrect

The architecture of
ephemeral (in the ¢
concern) as well as#
going to disk to be restor
object when generating a flattened form
designers to provide hints to the system cot
class designer knows that the structure of a
the object and all the objects that the object poir
designer could tell the system this. :

Details

TStream

The TSt ream class provides an abstract protocol for reading and writing data structures. The stream can
be a section of memory, an Opus Message, a disk file or anything else that allows binary representations

of objects to be written to it. TStreamis an abstract superclass. Derived classes of TSt ream should

implement the protocol of TStream. All of the methods in TSt ream signal exceptions when bad things
happen (for example, end of file is reached). All of the read/write methods use a buffered approach for
reading and writing. Virtual functions are called when the buffer is full or empty at which time your
stream can do whatever processing it needs. If no buffering is desired, the size of the buffer can be set to
zero and your virtual functions will be called at every read or write. This design allows the code for
reading and writing to be inline and efficient (no function calls to write or read from a stream except at
overflow or underflow) while also allowing streams to have some virtual behavior.

€ Registered /Restricted Cheetah Thursday, March 1, 1990 2.13-1



typedef size_t StreamPosition;

class TStream : public MCollectible {
public:
virtual ~TStream():

// Non virtual reads and writes for all the primitive types:
// char, short, long (signed and unsigned), float, extended, double, etc.

virtual void Reset () ;

virtual StreamPosition Position():

virtual wvoid ' Seek (StreamPosition position);
virtual void SeekRelative (StreamPosition amount) ;
virtual StreamPosition GetLogicalEndOfStream() ;

virtual StreamPosition GetPhysicalEndOfStream() ;

virtual i Context*) ;

virtual
virtual
virtual
virtual
virtual
virtual
virtual

protected:
TStream(voi
virtual vo;

virtual void

void*

void

void
StreamPosition

void

Overloaded operators for reading (you don’t need to override these - in fact, you can’t):
TStream& operator<<=(char* ¢, TStream& s);

TStream& operator<<=(long& ¢, TStream& s):;

TStream& operator<<=(short& ¢, TStream& s);

TStream& operator<<={char& c¢, TStream& s);

TStream& operator<<=(Boolean& c, TStream& s);

Overloaded operators for writing (you don’t need to override these - in fact, you can’t):
TStream& operator>>=(const char* c¢, TStream& s):

TStream& operator>>=(const long& ¢, TStream& s);

TStream& operator>>=(const short& c, TStream& s);

TStream& operator>>=(const char& ¢, TStream& s);

TStream& operator>>=(const Boolean& ¢, TStream& s);

’

¥ Registered /Restricted Cheetah Thursday, March 1, 1990 213-2



TStream: : TStream(void* bufferStart, StreamPosition howmuch)
You must pass the start of a buffer to use as well as the size of the buffer when creating stream objects.
This buffer will be used for reading and writing. Subclasses will not necessarily export this information

to their clients. To specify no buffering, passing NIL, 0 will work.

void TStream: :Reset ()
Reset the stream. The current position is set to zero.

StreamPosition TStream::Position()
Return the current position of the stream.

void TStream: : Seek (StreamPosition position)
Seek to the specified position. The next read or write will take place from there.

void TStream: : SeekRe
Seek (relative to where you
there.

osition)
nt. The next read or write will

StreamPosition TSti

Return the logical end e'strea

StreamPosition T am: :GetPhysicalEndOfStream()

Return the physical e :
void TStream: :B
This routine is call
should be taken on;
could not be proc

(location, count) should be processed:
buffer length and current buffer start sho

void TStream: :BufferEmpty(void*, S
This routine is called by cheetah when the spect
data to process a request. Appropriate action s

;thie request which couldn’t:
be set approp

upon exit.

void TStream
TContext* TSt 44 : :
Set/Get the context used in reading or writing objects to the stream. Itis on
when writing a set of objects which has multiple references to the same objects.

‘to set the context

void TStream: :SetDeepFreeze (Boolean)

Boolean TStream::GetDeepFreeze ()

Set/Get the “deepF reeze” used in reading or writing objects to the stream. If GetDeepFreeze returns
FALSE, tokens are used to represent the class name. If GetDeepFreeze returns TRUE, strings are used.
When flattening objects which will persist across sessions or machines, GetDeepFreeze should return
TRUE.

void TStream: : SetDeferredWritelist (TDeque®*)

TDeque* TStream::GetDeferredWriteList() const
This list is used internally by the cheetah system.

€ Registered /Restricted Cheetah Thursday, March 1, 1990 2.1.3-3



void TStream: :SetForceFlattenEternalObjects (Boolean)

Boolean TStream::GetForceFlattenEternalObjects() const

Set/Get the flag that determines whether “eternal” objects will be treated as if they were ordinary objects
when writing to the stream. If the flag is true, “eternal” object references are flattened on the stream
much like an ordinary object. If the flag is false, “eternal” object references are noted in the stream and
the “eternal” object is written to where it belongs. More on this in the section on eternal objects.

void* TStream::GetBufferStart() const

void TStream: :SetBufferStart (voidx)

void TStream::IncrementBufferStart (StreamPosition)
StreamPosition TStream::GetBufferLength() const -
void TStream: :SetBufferLength (StreamPosition)

void TStream: :DecrementBufferLength (StreamPosition)

void TStream: :SetBufferWasModified (Boolean modified=TRUE)

Boolean TStream::GetBufferWasModified() const

These routines perform operati ffer start pointer and bulffer length poin
used to determine where t en. These setters/getters should
BufferFull/BufferEmpty r vinter /length before exitin

Global Functions

There are two functio the system which can be used to flatten.

void FlattenPoi
To flatten an object
object to is passed i
stream, set the co 2

argument is used in the case wheére:
stream. The TContext is basically a
assign references to repeated object instan¢
object is to be saved, the TContext canbe g
multiple objects (which might point to overlap

be saved.

ystem. If yo
to be saved);

‘,.-r:sisten’cClaés
ar (1001, 100):

// FlattenPointer two objects with shared parts

TPersistentClassD* d = new TPersistentClassD("me", "cguy", "bguy", a):
TMemoryStream pneuma2 (new char(100], 100);

TContext tim;

pneumal2->SetContext (&tim) ;

FlattenPointer(d, &pneuma?2);

FlattenPointer(a, &pneuma?2);

pneumaZ2->SetContext (NIL) ;

Streams also provide information about whether they are ephemeral (in the case of a memory stream) or
more persistent (as in a disk file). A deepFreeze attribute of the stream is set to true if the flattening
should store the object in its most general form; that is, a form which can be resurrected on another CPU
or saved to disk and resurrected. Objects which are simply sent to another team (for example, in an
Opus/2 message) can use a more compact representation. See the examples section for code which saves
single objects and multiple objects. Note that in any event, the original object is unchanged by the

€ Registered /Restricted Cheetah Thursday, March 1, 1990 2.13-4



process of flattening. The stream has the flattened version of the object at the time of the snapshot.

MCollectible* Resurrect (TStream* fromwhere);
The Resurrect function will take the flattened form of an object and create an MCollectible object
from it. The stream which is passed in contains the flattened form of the object. The context which is
passed in is used in the same manner as above. For example, to resurrect the two objects created in the
example above: :

// Resurrect a single object

TPersistentClassA* A;

pneumal->Reset () ;

A = (TPersistentClassA*) Resurrect (pneumal);

// Resurrect multiple objects from the same stream
TPersistentClassD* D;
pneumal->Rese
TContext cont
pneuma2->SetC
D = (TPersis

(pneuma?l) ;

It is of the utmost impe rder of flattening exactly

in the case of saving a

MCollectible

MCollectible should be mixed int&*
provides a general mechanism for readi

It is only necessary to be a subclass of MColl
that class directly. Classes with base classes o

MCollectible can.still be flattened and resurt
operator>>= & 1 g
descending fro ble). Obj h 3 tible
object, must, of co ctible objects (because flattening
requires calls to F 1 surrect).

typedef TokenID ClassName;

class MCollectiblel {
public:
MCollectible () :
virtual ~MCollectible();

virtual TStreams& ‘operator>>=(TStream& towhere);

virtual TStream& operator<<=(TStream& towhere);

virtual StreamPosition Size (TContext* tim = NIL, Boolean deepFreeze =
FALSE) ;

virtual ClassName GetClassNameAsTokeni);

virtual char* GetClassNameAsString() ;

1. This is the part of MCollectible concerned with flattening objects to a stream and resurrecting them
later. For more information about MCollectible, see the Utility Classes document.

¥ Registered /Restricted Cheetah Thursday, March 1, 1990 2.13-5



virtual Boolean StructureDoesNotHaveRepeatedReferences (Boolean
deepFreeze = FALSE);

// These methods will be discussed later with MEternal.

virtual ObjectID GetObjectID() const;

virtual void SetObjectID (CbjectID) ;

virtual TPersistentContext* GetPersistentContext () const;

virtual void SetPersistentContext (TPersistentContext*) ;
virtual Boolean GetDirty () const;

virtual void SetDirty (Boolean dirty = TRUE) ;

}s; i

Note: When subclassing from MCollectible, include the line:

MCollectibleDeclarationsMacro (myClassName) ;
in the declaration of your class and the line:

MCollectibleDefinitionsMacroimyGlas
in your .c file. :

Name) ;

TStream& MCollecti
This is a workhorse rou

expand method is calle
from its flattened formy.

of class D, has a mem
look like:

TStreamé&
{

am* fromwhere)
“object must have a mé

y the Resurrect procedure as well as dir
r example, if class C is descended from cl

member char, and a pointer to a

his one. This

user to restore an object
B, has a member object d

ts Expand routine would

eam* fromwhe

A::0
B::o
d.operator<<= (frdmy
flong <<= fromwhere;
fChar <<= fromwhere;
e = (E*) Resurrect (fromw
return fromwhere;

:"It must then flatten the
the flatten routine of the m objects. Finally, it must flatten its members.
and references to other obj; mple data types are flattened by writing the

(using the st ream: :Write () member function). References to other objects are flattened by recursively

calling the FlattenPointer routine with the parameters which were passed in. For example, if class C
is descended from classes A and B, has a member object d of class D, has a member long, a member char,

and a pointer to an E object (e) , its Flat ten routine would look like:

TStream& C::operator>>=(TStream* towhere)
{

A::operator>>=(towhere) ;
B::operator>>=(towhere) ;
d.operator>>=(towhere) ;
fLong >>= towhere;

fChar >>= towhere;
FlattenPointer (e, towhere);
return towhere; ‘

¥ Registered /Restricted Cheetah Thursday, March 1, 1990 2.13-6



StreamPosition MCollectible"Size(TContext* tim = NIL, Boolean deepFreeze =
FALSE)

This method returns the size that this object will be when it is flattened in the passed in context. This
routine should probably not be overridden except by the most stalwart subclasses. This is a very
expensive method to call because cheetah needs to flatten the object in order to determine its size. If you

are going to be ﬂattemng the object anyway, a better way of determining the size is to reserve space in the

stream for the size of the object, flatten the object, note the position, seek back to where the size goes,
compute the size (you know the final position and the initial position), and stream it.

const char* MCollectible::GetClassNameAsString()
Return the name of the class as a string.

ClassName MCollectible: :GetClassNameAsToken ()

The default version of this routine calls the GetClassNameAsString command, then asks the token
manager for the token that 1 his cl Subclasses can override this method to cache the tok
This routine actually retu

Boolean MCollectib

he'structure’doestiot have any repeated r gﬁ\er objects (or a

This routine returns tru
If true, there are some optimizations that ;

circular reference to it
you don’t know whet

TContext

TContext is a classiw
provide a mechanism for res

these routines or ever create anything
by passing zero arguments to the constru

typedef long LocalObjectN

class TConte
private:

virtual ~TContext():

virtual long Count () ;

virtual MCollectible* Find(LocalObjectNumber) ;

virtual LocalObjectNumber Add(MCollectible*, Boolean& newentry);

virtual MCollectible* Replace (MCollectible* newobiject,
LocalObjectNumber fred):

virtual Boolean GetMultipleObjectContext () ;

€ Registered /Restricted Cheetah Thursday, March 1, 1990 213-7



Eternal Objects

The data management tools in the toolbox provide methods for the rapid retrieval of an arbitrary object
given an arbitrary key. cheetah specifies the external data format for an object. The integration of the
data management tools with cheetah provide for a simple persistent object system in which objects can be
individualy addressed and brought into memory. A TPersistentContext isa pool of objects in which
any object can be found and mapped into memory given its object id. Objects which live in a
TPersistentContext have MEternal asamixin. When FlattenPointer is called on an “eternal”
object, a reference to the eternal object is put in the stream rather than the flattened version of the object
itself. The eternal object (if dirty) is flushed to the TPersistentContext at this time. When .
Resurrect is called on a stream which contains a reference to an eternal object, the object is returned if
already in memory or loaded from the TPersistentContext if not.

Designing a class of objects which mixin MEternal involves a number of additional decisions for the
class designer. First, pointers to ordinary objects probably should not be flattened as part of the
operator>>= routine of the gbj grdinary object is what is desired. Natu

an eternal object is read ba¢ i
may or may not be aroun
thus the use of the norma;
way to guarantee consistg

TPersistentContex

E'context mechanism
ould only be valid under certain condition

Pointers to other etern
these objects will be g
objects will also be rez
referenced objects a
solve this problem

jects will be handled automatically at fla:
: m that you are writing 4
esired behavior is t
f referencing. Thi
Hdyen in this d

nd time. A reference to
e, all referenced eternal
t object:is loaded in and
rs will

MEternal

ects with the
mixin are flattened to a stream, only a referenc MEtern
assumed that the ME

flattened” on str
will not be “the 0 initially set what px
object is part of, Adg ‘stentContext. To retriev
objectid, ask the TPers xt to retrieve it. To delete the object
TPersistentContext, ask the TPersistentContext to delete it.2 Deleting the object in memory has
no effect on the object in the TPersistentContext. If a change is made to an MEternal object and
you would like to have that change reflected in the TPersistentContext, two things must be done.
First, mark the object as dirty using the SetDirty virtual function. Second, either explicitly flush it to

the context by calling the virtual function Add again or implicitly have it flushed by flattening the object
to a stream (or flattening an object that references it).

2. Note that no guarantees are made that deleting an object from a TPersistentContext is safe - that is,
other objects might reference it and will now have a dangling reference. The problems of garbage
collection across pools of persistent objects would be nice but I don’t have the time or desire to spend

" the next ten years of my life on a research project.

¥ Registered/Restricted Cheetah Thursday, March 1, 1990 2.13-8



#define MEternalMacro() \
virtual ObjectID GetObjectID() const
: { return MEternal::GetObjectID():}:

virtual void SetObjectID(ObjectID id)
{ MEternal::SetObjectID(id);}; .

virtual TPersistentContext* GetPersistentContext() const
{ return MEternal::GetPersistentContext();};

virtual wvoid SetPersistentContext (TPersistentContext* pc)
{ MEternal::SetPersistentContext (pc):}:

virtual Boolean GetDirty() const .
{ return MEternal::GetDirty():;}:

virtual void SetDirty(Boolean dirty = TRUE)
{ MEternal::SetDirty(dirty):}

P R

class MEternal ({
public:

virtual ~MEtern
Object
void
TPers]
void
Bool
voi
virtual TSt
virtual TS

ctID() const;
JectID (ObjectID
rsistentConte
SetPersistentCont
GetDirty() consti

SetDirty (Boole
..operator>>= (TS}

stentContext*) ;

. -

TRUE) ;

protected:
MEternal (ObjectID
}i

Note: When subclassing from MEternal, in

MEternalMacro(): :
in the declaration of your class to automaticall
with the help of the MEternal mixin.

A TPersistentContext is a collection of MEternal objects that can be individually accessed and
retrieved. MEternal objects in one context can reference objects in another persistent context. The
retrievel of objects from a persistent context is via an objectid which is automatically assigned at the time
of insertion. If it is desired, a mapping could be provided from a “name” to an objectid at a higher level
(using the datamanagement tools). Deleting a TPersistentContext only removes it from memory.
Throwing away the file (the “real” persistent context) will really destroy the persistent context.

class TPersistentContext : public MCollectible {
public:
TPersistentContext (char* contextName) ;
virtual ~TPersistentContext ()
virtual MCollectible* Retrieve (ObjectID);

virtual void Add (MCollectiblex*) ;
virtual void Remove (OCbjectID) ;
virtual void Delete (ObjectID);

€ Registered /Restricted Cheetah Thursday, March 1, 1990 2.13-9



virtual Boolean IsEqual (const MCollectible* obj);
virtual long Hash (),
virtual <charc* GetName () ;

// These routines are used internally by cheetah
virtual void DeferredAdd (MCollectible* objAsEternal, TDeque*);
virtual wvoid CommitDeferredRequest (TEternalWrapper*) ;

}:

TPersistentContext::TPersistentContext (char* contextName)
Create a new persistent context or open an existing persistent context named contextName. )

TPersistentContext::~TPersistentContext ()
Destroy the object in memory currently that manages the persistent context.

MCollectible* TPersistentContext;:Retxieve (ObjectID objectID)
Retrieve the object named:

void TPersistentCo
Add (or update) the e
passing an object whic

void TPersisten
Remove the object n

; y the MEternal destructor
to clean up the refere :

context on disk.

void TPersist
Delete the object
delete it from disk.

tent context.

Example use of Eternal Objects

class TArnKey

public:
TArnKey (
~TArnKe
virtual
virtual yperator<<=(TStream&) ;
virtual IsEqual (const MCollectible* ob
virtual long Hash({):

const TTexté& GetText ()
more virtual functions.

MCollectibleDeclarationsMacro (TArnKey) ;
MEternalMacro();

private:
TText fText;
MCollectible* fNextOne;

}:

MCollectibleDefinitionsMacro (TArnKey) ;

¥ Registered /Restricted Cheetah Thursday, March 1, 1990 2.1.3-10



TArnKey: :TArnKey (const TText& someText, MCollectible* nextOne)
TText (someText)
{
fNextOne = nextOne;
SetDirty();
}

TArnKey: :~TArnKey ()
{
} ~

TStream& TArnKey::operator>>=(TStream& towhere)
{
MCollectible: :operator>>=(tovwhere);
MEternal: :operator>>=(towhere);
fText >>= towhere;
FlattenPointer (fN
return towhere;

TStream& TArnKey:igperator<<=(TStream& fromwhere)
MCollectible:
MEternal: :oper
fText <<= fro
fNextOne = R
return fromwh

omwhere) ;

const TText& TArnKey::GetText ()™
{

return fText;

Boolean TAj T ectible* o

long TArnKey: :Hash ()

{
return fText.Hash{();

main ()

{
TArnKey* aKey = new TArnKey(“hello”):
TArnKey* bKey = new TArnKey(“goodbye”, aKey):
TPersistentContext someContext (“myContext”);

someContext .Add (aKey) ; // aKey added to persistent context. assume
// objID = 1 for this example
someContext .Add (bKey) ; // bKey added to persistent context - with

// a reference to aKey. assume objID = 2 for

#Registered /Restricted Cheetah Thursday, March 1, 1990 2.13-11



// this example
delete aKey:;
delete bKey; . // Remocves in memory versions

TArnKey* retval2 = someContext.Retrieve(2);

// Loads in both aKey and bKey and restores
// references properly. Note that aKey was read
// in at this point even though it hasn’t
// been referenced in any code. Look at next
// example to see how fNextOne field could
// be declared in TArnKey to make aKey loaded
// only when referenced.

}

And now, another example using a smart pomter to force objects to be demand loaded (rather than all
referenced objects being loaded when:th = is loaded).

class TSmartPointe
public:
TSmartPointer(

fxtotodis : PersistentCont
llectlble* realObject = NIL);

ible* operator->{()
operator MCo
operator= (M ex);
operator>>=

virtual
virtual
virtual
virtual void
virtual TPersistentCo
virtual void
’ MCollectiblex*
void
MCollectibleDeclarationsMacro

() const
(TPersis L*)

ctible*

private:
MCollec
ObjectID®
TPersisten
}:

tentContext;

MCollectibleDefinitionsMacro (TSmartPointer) ;

TSmartPointer::TSmartPointer (ObjectID objID, TPersistentContext* pc)
{

fObjectID = objID;

fPersistentContext = pc;

fRealObject = NIL;
}

TSmartPointer::TSmartPointer (MCollectible* realObject)
{

fRealObject = realObject:

fPersistentContext = fRealObject- >GetPer51stentContext(),
"fObjectID = fRealObject->GetObjectID();

€ Registered /Restricted Cheetah Thursday, March 1, 1990 213-12



MCollectible* TSmartPointer::operator->()

{
return GetRealObject ()

}

TSmartPointer: :operator MCollectiblex* ()

{
return GetRealObject ()

}

void TSmartPointer::operator=(MCollectible* realObject)
{
SetRealObject (realObject) ;

}

const unsigned char
const unsigned cha

TStream& TSmartPo
{ .
MCollectible:: ¢
if (fPersisten
{
kNotEternal
FlattenPoin
}
else
{

er::operator>>=(TStream& towhersg

r>>

(towhere) ;

kYesEternal >>= towhere;

// This forces a flush.
GetPersist

return towhere;

TStream& TSmartPointer::operator<<=(TStream& fromwhere)
{
MCollectible: :operator<<=(fromwhere) ;
unsigned char delimiter = 0;
delimiter <<= fromwhere;
if (delimiter == kNotEternal)
{
fRealObject = Resurrect (fromwhere) ;
}
else
{
fObjectID <<= fromwhere;
fPersistentContext = new TPersistentContext();

€ Registered /Restricted Cheetah Thursday, March 1, 1990 2.1.3-13



*fPersistentContext <<= fromwhere;

}

return fromwhere;

}

ObjectID TSmartPointer::GetObjectID() const
{

if ((fRealObject != NIL) && (GetPersistentContext () !'= NIL))
return fRealObject->GetObjectID{();
else

return fObjectID;

void TSmartPointer: :SetObjectID (CbjectID objID)
{
fObjectID = objID
if ((fRealObject
{

t->GetObjectID ()

OpusBug ("setob
}

TPersistentConte ISmartPointer: :GetPersistent

TPersistent ersistentCont
if (fRealOb:
{
TPersistentCont :
if (aContext != NIL)
retval = aContext;

}

return retval;

if ((fRealOb:
{

OpusBug ("SetPersistentContext inconsistency");

}

MCollectible* TSmartPointer::GetRealObject ()
{
MCollectible* retval = fRealObiject;

if ((retval == NIL) && (fPersistentContext '= NIL))
{
retval = fPersistentContext->Retrieve(fObjectID);
fRealObject = retval;
}
return retwval;
.

¥ Registered/Restricted Cheetah Thursday, March 1, 1990 2.1.3- 14



void TSmartPointer::SetRealObject (MCollectible* realObject)

{

fRealObject = realObject;
if (fRealObject != NIL)

{

fPersistentContext = fRealObject->GetPersistentContext ();
fObjectID = fRealObject->GetObjectID();

}

Now, if TArnKey is declared like:
class TArnKey : public MCollectible, public MEternal {

the “fNextOne” pointer will automaticallgr €
to fix up the flatten/unflatten operators to s

public:

TArnKey (con ext, MCollectible* nextOne=NIL

ator>>=(TStream&) ;
erator<<=(TStream
Equal (const MColii
Hash () ;
const TTexté& GetText () ;
virtual functions...
M o (TArnKey) ;

obj)

eed

¥ Registered /Restricted Cheetah Thursday, March 1, 1990 2.1.3-15



Why do the cheetah classes look the way they do?

There are a number of goals associated with the interface to developers for cheetah capabilities. I shall
present them here in no particular order:

1. Developers should have to write as little boiler plate code as possible (none would be the ideal case). With
proper development system support, all of the boiler plate code could be automatically gencrated
for any of the schemes presented; however, we can not count on this kind of support. Furthermore,
the best the development system could provide is a default solution which would be
reimplemented in all but the simplest classes.

2. The interface presented should not add any appreciable overhead to the overall execution of cheetah. Any
interface chosen should not require a significant amount of speed or space overhead to the
flattening or expansion of an object. What represents a significant amount of space or speed
overhead is certainly open for interpretation.

3. Semantically different operations on the same class or type should look significantly different. cheetah
provides support for flattening and restoring objects of known type as well as flattening and
restoring objects of potentially unknown type Some believe that flattening an object of unknown
type is a very differer el :
probably be aware
goal.

4. Semantically similar
performed on. Flatte
objectis. Any ob

clairvoyant development
and expand. Flatten and

possible for these if
system, there a

(80% ?) people feel comfortablé

® Registered/Restricted Cheetah Thursday, March 1, 1990 2.13-16



The Ideal Solution

The ideal solution would satisfy the goals above. Ignoring whether or not this solution could be
implemented in C++, the code to flatten a group of objects might look something like:

{

TToken aToken;

TPoint aPoint;

long along;

char aChar;

MResponder¥* aResponder; -
// stuff //

TMemoryStream aStream;
FlattenObject aTok
FlattenObject aLo;
FlattenObject aC
FlattenPointer a

For now, we’ll ignore th:
Let’s look at the code

{

rticular class or type.

// assume aSt

TToken

TPoint

long aLong (: :
char aChar (aStream
MResponder* aResponder =

}

Notice that to expand a set of objects, we call a ructor for
would like to restor "n»ob)ect of unknown type{we know it is

MResponder), v creates an obje
appropriate con

would like to

Without going into‘the detz flatten methods and expand me
expand methods are constr solution certainly satisfies the goal o ewhat nice to look
at. Semantically different operations are distinguishable (FlattenObject vs. FlattenPointer), and
semantically similar operations on different types are performed in the same way. Since I certainly can’t
implement this in any known language, we can’t make any claims about whether this interface adds any
overhead to the flattening and unflattening process. It certainly doesn’t have to. The flatten and expand
methods could be made symmetrical in my mythical language and the developer doesn’t have to write
any boiler plate code.

Unfortunately, we can’t come close to this in C++; however, this so-called “ideal” solution illustrates a
number of important features of a good solution in C++:
1. The same operator is used to flatten an object of any type to a stream.
2. A different operator is used when flattening pointers to objects of unknown type.
3. Constructors are used when expanding objects of any type from a stream.
4. The syntax is such that the flattening of multlple objects to a stream could be written as a single
statement if that is desired.

¥ Registered /Restricted Cheetah Thursday, March 1, 1990 2.1.3-17



Bjarne’s Rules of the Game

Before examining the solution space, here is some information about C++ that is absolutely necessary to
know when designing a solution to this problem. Reader: [ assume that you know C++ already;
however, I will point out a number of subtle and not so subtle “features” that are extremely important
when designing a solution (After each point, say to yourself, “Thank-you Barney” and bang a large mallet
against your head.):

1. C++ provides for constructors of objects only. Built-in types do not have to be initialized and there
is no syntax that looks like a constructor for initializing built-in types in any event.

2. The operator overloading mechanism in C++ allows binary operations to be overloaded as either
member functions taking one argument (the “this” pointer is the first argument) or as a global
functions taking two arguments. This is the only mechanism available which allows an expression
to be written involving built-in types and user defined types and have the expression look the same
independent of the type of the object. An expression, (a >> b) will either execute the global

function operator>> (A&, B&) or the member function A: :operator>> (B&). For built-ins, a
global functions of two arguments is called. For classes, a member function is called.
3. Constructors have a; like type-name (args...)
not possible to have ike an operator (Other langua
to be considered a nstructing the object)

338t itis
‘any method

the order and
tructor. The syntax
“other method.

tly are. Furthermore,
eclass you are pretending
pm classes A and B could be
to the pointer

pointers to the §

the object is.

viewed as an
to the object

are initialized in the order specifi
members in the order specified by t

¥ Registered /Restricted Cheetah Thursday, March 1, 1990 2.1.3-18



Let’s Make A Deal

Now that we know the goals, the ideal solution and the limitations, we should be able to examine the
alternative solutions. I will try to present alternatives in isolation; however, many choices affect other
choices to be made later because C++ is not symmetrical. Let’s start with an apparently easy choice first:
how to flatten objects.

Flatten

If we want semantically equivalent operations to be expressed identically, independent of the type of the
operands, we are left with exactly one choice in C++ on how to do this. We must use operator
overloading for flattening objects and built-in types. If we are willing to accept that objects are written to
a stream one way and built-ins are written to a stream in a different way, the code for writing an object to
a stream would be:

anObject->Flatten (aStream) ;

d be:

, aStream) ;

The code for flattening a

If we are not willing to
in type and a TSt reams
member operator for

purposes of our discu
able to make this ov
stream.? Therefore,
object would be som

or which takes a built-
ientors can define a
n argument. For the

or>>>3 We want to be
fsus a member function of a
he type of the

1ss which can be flattened which takes a
n, we w1ll assume that the chosen opera

At this pomt you re thin [ can live w Mhat's

numbering reflects the or: he object is actually written to the stream here:are a number of
decisions which we would like to make. First: Should we allow multiple objects to be flattened using
an expression which is written in a single statement? The obvious answer is yes; however, because
we’d like to use constructors to expand objects, and constructors are clearly one per statement (and
because of other reasons which will be explained later), this question is not so easy to answer. We can

enforce the choice that is made by returning or not returning a TSt ream& as the result of the operation.

The next question is: What operator should we overload for flattening? Unfortunately, we can’t answer
this question until we answer the previous question because if we only allow a single object to be
flattened per statement then operators which group right to left would not have the obvious advantage.

3. This operator does not exist in C++ and therefore could not be used. We will reveal the choices for
this operator shortly.

4. If it was a member function of a stream, it would not be extensible in the same way. A global
operator (which couldn’t be virtual and therefore wouldn’t work for our scheme anyway) would
have to be defined to flatten your object. This operator would no doubt have to be a friend function
so that it could touch your private parts. This is what Barney’s stream package does. It's ugly. We're
not doing that. We have high standards. We're Apple.

#Registered /Restricted Cheetah Thursday, March 1, 1990 213-19



So, let's assume the answer to the previous question and then try to answer this one. If the answer to the
previous question is that we will not allow multiple flattens in a single statement, then basically any
operator is fair game. We’d probably like to choose one that implies some directionality. Therefore our
choices are the following: :
>, >=, >>, >>=, =>, |, |l

[ can quickly eliminate some of these choices. Using > or >= is unacceptable since they are already
overloaded for MOrderableCollectible objects. Overloading -> is a very bad idea because it alrecady
has a useful meaning for many of the objects we are talking about. Overloading | or | | has the
advantage that it resembles a Unix pipe and that is something that C++ programmers are familiar with.
Overloading >> certainly has the best directionality; however, it might confuse C++ programmers who
use Barney’s stream package since the functionality is similar but the syntax would be opposite of
Barney’s. Overloading >>= has good directionality and it is rarely, if ever, legitimately used; however, it
makes atleast one person in Pink violently retch to the point of not being able to think clearly because we
are overloading one form of assignment. More importantly, we are overloading assignment in a way that
is counter-intuitive since the thing being “assigned into” is on the right hand side rather than the left

If we want to allow multi
right to left or we are forgi
right to leftis >>=. All {]
grouped in a single stat

gle statement, we need an op
the expression. The only ch

renthesis in the case

foups
ove that groups
ple operations are

The next question is h

“Is flattening an obj
an object of known t
automatically be writ
to use the construct
(the actual object co
flattening an objec
known type then g
FlattenPointer (myF«

o we flatten an object of unknown type.5 [

to ask the question,
peration than flattening
information to

e, it is not possible

myPointerToAnObjectOfU

What should the name of the function to flatt
member function
If we don’t really:

Expand

At this point, you are thinking to your self, “Self, these choices weren’t so hard. In any event, it looks like
things will be pretty clean.” Now it is time to start compromising. It is not possible (even if we wanted
to) to make the “expand” operation look the same independent of what we are expanding for a number
of reasons which will all be explained.

Here is where we need to make our first hard choice. Ideally, one would like to view the process of
expanding like a constructor. The argument to the constructor would be a stream. The constructor
would then use the stream to build the object. Unfortunately, you cannot call virtual functions in a
constructor. This is too great a restriction because some classes require that a virtual function be called to
“add” objects to the class when expanding the class from the flattened form. Furthermore, there are no
constructors for built-in types.

5. When [ say unknown type, I really don’t mean it. I mean it is definitely of type MCollectible;
however, we don’t know which derived class it is.

¥ Registered /Restricted Cheetah Thursday, March 1, 1990 2.1.3-20



Alternatively, we could provide a constructor which builds an empty, uninitialized object (much like an
uninitialized built-in), and then call an expand function (in our case an operator so the expressions look
the same). So the question is: “Constructors or operator<<< method?” The advantage of using an
operator is that we could write code like:

{
long along;
TToken aToken;
char aChar;

aChar <<< aToken <<< aLong <<< aStream;

}

The disadvantage is that we need to provide a distinguished constructor or make the expand method
smart enough to deal with an arbitrarily initialized object. (In my example, I've used the constructor
with no arguments. We might not want to grab this one because of its legitimate uses.) Furthermore, it is
less efficient because now structure twice. Once calling constru
second time calling inherite onally, the lack of forced initia ¢
constructors (which is wh or built-in types is a disadyg

mechanism for readi

ices. We could just overload the operato
suggest that you should initialize your vari

If we use constructors, wi

There are basically two
programming style wos

types from a stream.

-ins. Good
following statement.

long alon
aLong <<<

TToken aT

char aChar;
aChar <<< aStream;

Another option is defining conversion operat

which convert streams to built-in types using a i :

disadvantage is that:this is a slimy thing to do i : i d. If

we did this slim ich [ have to adm

in our things is: :
{

long 14
TToken aToken (aStream);
char aChar = char(aStream);

}

As usual, there are two choices for how to read back unknown objects. We could provide an overloaded
operator to read objects back in. However, in order to implement this, we would be forced to change the
runtime of C++ to use a scheme which did not move the “this” pointer in an object.® [ will assume that
this is not practical. Therefore, the only choice is to provide some kind of function which performs the
“new” of the object and calls the constructor. The user will have to write the cast back. Therefore, the
code to bring back an MResponder* of unknown derived type would look like:

MResponder* aResponder = (MResponder*) Resurrect (aStream);

6. You'll have to accept my word on this. Basically, the problem is that we need to do a cast back when
reading in an object of unknown type (actually an MCollect ible*) if we want to store this object as

anything other than an MCollectible*. The only way to write this cast back is to actually write it
in the code as part of an assignment statement. If we changed the runtime, this cast back would be
unnecessary.

¥ Registered /Restricted Cheetah Thursday, March 1, 1990 2.13-21



What should the name of global function to “resurrect” an object be? When there are static member
functions, this can be a static member of MCollectible. For now that is not possible (because you

would need one MCollectible object to resurrect another one). Because this is our only choice for
expanding an object of unknown type (which many consider to be a semantically different operation than
expanding an object of known type) and our desire for symmetry between flatten methods and expand
methods, we should carefully examine our decision for how we want flattening unknown objects to look.

Implementation of operator<<< and operator>>>

All user defined types which want to be flattened to a stream to be restored later must implement a
operator<<< which takesa TStreams asan argument. Also, they need to implement operator>>>

which also take TSt reamé& as an argument (and may also return this depending on whether we allow
more than one flatten per statement). Classes which want to be flattened to streams via a pointer to an

unknown type, must descend fromMCollectibl.

Let’s take a look at a few
class TPoint {
private:
long f£X;
long f£Y;
public:
TPoint () ;
...other con
TStream& ope€

}:

TStream& TPoint::operator<<<(TStr

fX <<< as
fY <K< a
return a

TStream& TPoint::operator>>>(TStream& aStream)
{

fX >>> aStream;

fY >>> aStream;

return aStream;

}

This example illustrates that adding these methods to a class without a vtable does not force this class to
have a vtable and thus adds no overhead to the size of the objects. Reading and writing points to a
stream is trivial as in the following example:

{
// Writing a point
TPoint aPoint (100,200);

7. This will make the operator>>> a virtual operator. Also, there is one other method which must be
overridden (to supply the class name) but that is unimportant for our discussion.

¥ Registered/Restricted Cheetah Thursday, March 1, 1990 2.13-22



aPoint >>> aStream:

// Reading a point
TPoint aPoint;
aPoint <<< aStream;

}

Okay, let’s look at the implementation of the flatten and expand operations for a slightly more
complicated class:

// TView’s lineage is not entirely known; however, we do know that it
// is an MCollectible object. This means that there are additional
// methods that we need to implement but they are not important for
// this example (the additional method is GetClassNameAsString. It
// could easily be op HOOPS.)

class TScrollbar

private:
TPoint fThumb
public:
TScrollbar();

other con
TStream& oper
TStream& ope
... other m

TStream& TScrollbar::operator

{

TView: :operator<<<(aStream) ;
fThumbPosition <<< aStream;
return aStream;

TStream& TSci eam& aStream

{
TView: :operato. :
fThumbPosition >>>“aStream;
return aStream;

1

Now flattening and expanding TScrollbar objects looks identical to all of the other examples. Note
that the order that objects are flattened should follow the order that they are expanded.

Writing or reading an object that is known to be a TScrollbar but could be a subclass of TScrollbar
is accomplished with the following:
{
// Write out a TScrollbar*
TScrollbar* foo;
.. got foo from somewhere.
FlattenPointer (foo, aStream);

€ Registered /Restricted Cheetah Thursday, March 1, 1990 213-23



// Read in a TScrollbar
TScrollbar* aScrollBar = (TScrollbar*) Resurrect (aStream);

}
As a final example, let’s examine a somewhat complicated class:
class MResponder: public MCollectible, public MCollectible {

private:
TToken fInstanceName;
MResponder* fSuperTarget;
protected:

MResponder() ;
. more constructors
public:
TStream& operator<<<(TStream&);
TStream& operator>>>(TStream&) ;
}:

TStream& MResponderx & aStream)

MCollectible: :0p
fInstanceName <<
fSuperTarget
return aStream;

Stream;
Responder*) Resurrect (aStream) ;.

TStream& MRespo tream& aStr

{
MCollectible::
fInstanceName >>> aStrea
FlattenPointer (£SuperTarget,
return aStream;

}

Expanding an MResponder from a stream is

stream or “resur; MResponder fro
protected.

sible. Expa ym a
am is possi i

Conclusion

C++ is an ugly language. The design of the operating system of the 90’s is being driven by a short,
balding, Scandinavian dude currently residing in New Jersey and working for the the phone company.

I really want to know what you think about what was presented here or maybe you have another scheme
entirely. In any event, my current mode of thinking is to make the following choices:

1. Allow multiple flattens in a single statement; however, discourage its use when writing flatten
methods because if you write your own flatten methods like this then it looks less symmetric with
the constructor. I've waffled on this a bit; however, I think it is legitimate to want to write multiple
flattens in a single statement when flattening objects in the rest of your code. It’s quite possible that
symmetry is impossible in these cases anyway since another module, program, etc. could be the one
reading it back in. In that case, you might provide a specification of the format rather than an
actual piece of code. Idon’t know. I still need your help.

2. Since I'm still waffling on number one, I'm still waffling on the operator to use. [ have to admit, I'm

favoring operator>>= and operator<<= even though it makes one person violently ill. [ don't
really like any of the other choices. I'm down on using >> because of its current meaning in C++

@ Registered /Restricted Cheetah Thursday, March 1, 1990 213-24



which is too close to how we want to use it.
Use expand methods because you can’t call virtual functions in constructors.

Encourage the use of FlattenPointer which will be a static member function eventually.
5. The name of the function to bring back an object is Resurrect.

- W

®Registered /Restricted Cheetah Thursday, March 1, 1990 2.1.3-25






& Registered /Restricted Credence Classes March 15, 1990 21441






Credence ERS

Pink CCR Classes

Charles Niemeier
x49209

AT WORK 7/°

® Registered /Restricted Credence Classes March 15, 1990 2142






Introduction

Credence! provides concurrency control and recovery (commonly called CCR) for the Pink
environment. Concurrency control handles the problem of multiple tasks accessing data at the
same time by making it appear, at least to your task, as if no sharing is occurring. Recovery
addresses the problem of failures that leave data in an inconsistent state by making it appear
that failures never occur. Failures, in this paper, include program, power and system failures
but do not include media failures. Most existing CCR software have been components of specific
programs, e.g. a DBMS, for which the CCR design has been tailored. Credence is a set of classes
and protocols that offers CCR functionality for the extensible data types possible in the Pink
world.

You need concurre
different teams, ac
recovery if you wi;
control and reco
Credence proper
discourage the n

han one task , either in the
t least one task is chang

ata st itirressand remain logicall
s not automatic. It takes effort on the par/
opefully, Credence provides a framew
oncurrency control and recov

You need concurrency control when dat
complications caused by reentrancy in a
manage concurrency usually involve som
ink Runtime) to obtain
serial execution, i

ncurrency is su i sible
4 while producmg :

execution.
serxahzable

The most common techniques for concurrency control involve acquiring and releasing locks of
some type. A lock is an abstraction such that when you acquire (or set) it, you have access to
some associated object and prevent others from accessing the object until you release the lock. A
task, which is requesting a lock, is blocked until the task gets the lock. Locks usually have a
type, e.g. read and write locks, that reflects which operation you are about to do. Depending on
the type of the lock, multiple users may be able to concurrently acquire a lock and still preserve
serializability.

TAlthough the etymology is obvious, convention was elected over Mr. Fogerty’s iconoclastic
spelling.

€ Registered/Restricted Credence Classes March 15, 1990 2143



Serializability and locks have their limitations. - For some applications, serializability may
not be desired. The syntactic notion of holding locks also may be too restrictive. For instance, an
operation that balances a tree does not change the semantic content of the tree but a lock on a
node or branch of the tree might prevent the tree balancing operation.

You might still be asking, “But what’s the difference between locks and semaphores?”
Actually, locks are very similar to sharing semaphores but provide the extra baggage to release
locks in a manner that guarantees recoverability and to handle deadlocks.

Recovery :

Failures can can cause logical inconsistencies in data. These inconsistencies can result when two
or more data items, all dependent on each other in some way, must be written to disk but the
disk hardware can not write all items in one fell swoop. Recovery is a guarantee that failures
don’t result in data incQnsi

Transactions

A transaction is a
transaction is a s

th recoverability ap
ence of operations with the following cha

cy control. A

is consistent, which mea r succeeds and

£S.

I'll abbreviate the consistent i
transaction is atomic.2

In terms of what I’ve already presented
serial relative to the operations of some
updates that must all succeed.

ction is that

ycontrol as seen in the definition"of

* A transaction T1 is said to read from transaction T2 if T2 writes some x
which is later read by T1.

¢ A transaction T1 is recoverable iff T1 commits after every transaction from
which T1 read has committed.

IMy definition of atomic differs slightly from that in most database CCR literature which also
includes serializability as a condition for atomicity.

€ Registered /Restricted Credence Classes March 15, 1990 2144



The requirement that a transaction commits after every transaction from which it has read is
sufficient for recoverability but can lead to cascading aborts. We can make our implementation
of recovery easier-by requiring: 1) that a transaction only reads from committed transactions;
and 2) that a transaction can only write x after every transaction that previously wrote x has
committed. The first requirement avoids cascading aborts and the second allows before images
to be used in the log. An execution that meets these two additional requirements is said to be
strict.

Two-Phase Locking

Two-Phase Locking (2PL) is a protocol for using locks that provides serializable concurrency
control and guarantees strictness. The 2PL protocol involves acquiring and releasing locks in two
phases: locks are acquired during the course of a transaction (the first phase) and released, all
at once, at the end of the transaction (the second phase).

Logical Locks

In the database world;Ho¢ rrstatty ed with known ob; rds. How can
we use locks with an extensible type system? One approach is tg.

lock is, basically,

The use of logicaf
data items by u.
indicate a lock #

creativity. For exam
'le Alternativel
tance, block

Distributed Transacti

more than
he non-dis

in a network. Distributed transaction sy
because they need to deal with events li
perational and partiti
4ry to insure that a

tion will oni

ransaction facility.
transactlon

The most important consequence of the lack of distributed transactions is that certain operations
might act differently for local files than for files on Appleshare volumes. For instance, we
expect the Pink file system server to work with the transaction system so that a file system
request made from within a transaction, for instance, truncating a file, would only truly truncate
the file when the transaction commits. This might not be possible with network files.

Architecture

Credence provides classes that provide transactions, recovery, and concurrency control. Classes
are available to create transactions, change files in a recoverable manner, and request 2PL
locks. Moreover, Credence provides a framework for recovery and concurrency control that
allows users to modify the default mechanisms without starting from scratch.

4 Registered/Restricted Credence Classes March 15, 1990 2145



Transactions

Credence provides a class (TTransaction) that allows you to start and end transactions within a
task. There is, at most, one transaction for a task and the transaction is only active for the task
that started it. Methods are available to commit transactions, abort transactions, and find
which transaction, if any, is currently active for the task.

The definition of a transaction involves control flow because, when a transaction aborts, you
typically don’t want to perform the remaining operations in the transaction. For this reason,.
the transaction class uses C++ exceptions to alter the control flow when a transaction aborts and
defines a protocol for handling these exceptions.

Concurrency C

Credence concurrenc
requests for the loc

A central Lock Manager
{TLogicalLock) is provi
est the lock, the req

0 the Lock

2PL locks, you

t the termination of
v abort a transaction

never explicitly r
the transaction. 7
because of pote

A logical lock
specifier. You
The type of a:isk:
with an existing lock :
transactions are requesting them, an
conflict with write locks; write lock
specifier so that a lock on one file does
file. For example, placing lock 0x100 fo

uest, the Lock

Because of the overhead involved, you should not use locks when semaphores will do.

Recovery

Credence provides classes that let you easily access files in a recoverable manner. One concrete
class (TSafeFileSegment) exists that allows you to use memory-mapped files in a normal
fashion and makes changes recoverable with a minimum amount of work. Another concrete
class (TSafeServer) provides a recoverable stream interface to a file that is handled by a
separate team, a data server. You use a data server when you want to share the file between
more than one team, or you don’t want to map the file into your address space, or the file is

larger than a team’s address space (because the data server will use a pool of buffers to access
the file).

® Registered /Restricted Credence Classes March 15, 1990 2146



Credence recovery uses write-ahead logging in which all changes to recoverable objects are first
written in a central, system log. The Credence system provides the facility for recording
changes into the system log and playing back the lock in the event that a transaction aborts or a
system failure occurs. The default type of logging is called physical logging because images of
which bytes changed are saved in the log. Credence Recovery is based on two abstract classes:
MRecoverable and TLogRecord.

Any obiject that is considered recoverable (a disk file) must be an MRecoverable. Any changes to
an MRecoverable results in a log record. The MRecoverable class has a method that outputs the
log record to the log file which must be overridden, thus allowing a subclass to do its own i
logging. MRecoverable hooks itself into the transaction system so that the transaction system
can notify it of events. MRecoverable has methods that are called when transactions start,
commit, and abort since this information is needed if the class is doing its own logging and can
also be useful for other purposes. MSystemRecoverable is a subclass of MRecoverable that uses
the central, system log. The MSystemRecoverable class and the underlying transaction/log
framework is flexible edo, undo/no-redo, and no-undo/:

recovery schemes.>

The type of log rec
what algorithms a
while other schem
images, or both.

le can take many diff;
: nce, some logging se}

se physical log records; some log records
ecords are created by instantiating objec

1S depending on
ogical log records
Ore-images, after-
class of TLogRecord.

The transactiona
transaction ab
that created th
may need to be
transaction system can Tiotk:

subclass, therefore, has method
methods could redo or undo the chang
the system.

ion in the log under — when a

process

TSystemLogRecord is a subclass of TLog

e Credence system &

Also shown s classes that send these m

3The names of these recovery schemes come from whether you need to undo changes by aborted
transactions or redo changes made by committed transactions in order to recover.

& Registered/Restricted Credence Classes March 15, 1990 2.14-7



read/write

requests »
| 4 | TSafeServer

Data

Application -

Data
Server

TTransaction

Start
ommit
bort

TSafeFileSegment

Log
Records

Transaction
Abort

# Registered/Restricted Credence Classes March 15, 1990 2.14-8



Class Diagram

You don't need to know these classes unless you want
custom locking or recovery

(TTransaction

Controll

(TSafeFileSegment )

(TSafeServer )

& Registered /Restricted Credence Classes March 15, 1990 2149



Classes and Methods

TTransaction

A transaction is started by the definition of a TTransaction object. The most important methods
that you will use are the following:

e TTransaction — the constructor starts the transaction

¢ Commit — commits the transaction.

e Abort - aborts the transaction.

* GetActiveTransaction - returns a pointer for the TTransaction active for the
current task.

or this reason, code that in
have real C++ excepti

An exception is raised
should be prepared
Andy’s exceptions
transaction along

3 to use
d committing a

foo()
(

EXCEPT
// put code here
ENDTRY

ansaction
a transac

3 pt to inst

whether a transa b tAC insaction to
find out.

A Preview of Exceptions

The design of C++ exceptions still hasn't stabilized but the Credence classes will use something
similar to the following (based on Stroustrup's design at the time 1 wrote this paper).

There will probably be at least one class, TTransactionException, of which an instance is used to
signal an exception associated with transaction errors. The following example shows how you
would use transactions with exceptions.

foo()
{

TTransaction t;

< Registered /Restricted Credence Classes March 15, 1990 2.1.4-10



// transactional operations

t.Commit () ;

}

catch( TTransactionException p )

{

// put code here to execute if the transaction aborts

}

TSafeFileSegment

The TSafeFileSegment class is used much like a TFileSegment except that changes are atomic.
i ugh streaming operations. Any di
ChangesDone. Any block of COR
eted by calls to the Ch

must be bracketed by
operations that write,

0 bytes within a memory-mapped file
ile(filePtr); // filePtr
stination, 100);

be within
more than o

y-ChangingContents ( or ChangingStream) and Chang; p
disjoint, i.e. a ChangmgContents (ChangingStream) must be followed by a ChangesDone before
you can invoke another ChangingContents (ChangingStream).

TSafeServer

The TSafeServer allows you to access a file atomically through a data server. You can use the
TSafeServer class when you need to share a recoverable object between teams or you don’t want
to map a file into your application’s address space. The methods of this class will send read
and write requests to a data server. All access to the file is via TStream operations. You use the
ChangingStream and ChangesDone functions in the same way as for TSafeFileSegment. The
server team is launched if one doesn’t already exist for the file. The server team will use a pool
of segments to access the file instead of mapping the file completely into the server’s address
space if the file is larger than a team'’s address space.

& Registered/Restricted ' Credence Classes March 15, 1990 2.1.4-1



The data server does not automatically perform concurrency control. However, you can use
TLogicalLock to control concurrent access to a data server. De-coupling locking from data servers
allows greater flexibility in locking while allowing simpler data servers.

Note. [ could design a couple more types of servers if demand warrants. For instance, a server
that only handles write requests because the clients have a read-only, shared segment in their
own address space.

TLock and TLogicalLock

The TLock class is an abstract class that provides the framework for lock-based concurrency
control. The most useful methods of this class are as follows:

* SetLock - set (or acquire) the lock.

ed from TLock that proyids
nponents: a file specifi
the constructor of th

Ogical locks.
alue, and type.
Fock or can be

in the following

As mentioned ea
These component
accessed with get
code:

automatic ransaction terminates

TSurrogateTransaction

When a TTransaction is instantiated, the object is associated with the task that is running and
communication is set up to the Transaction Manager if such communication hasn’t been
established already. The Credence teams, Logger and Lock Manager, deal with these
transactions but don”t want to do the actions mentioned above each time they resurrect a
transaction object. The TSurrogateTransaction class is used for this reason to provide surrogates
for transactions.

€ Registered /Restricted Credence Classes March 15, 1990 2.1.4-12



TLockController and TLogiicalLockControHer

When a TLock is set, it actually sends a request to the global Lock Manger team. The Lock
Manager determines which subclass of TLockController is needed to control requests for the lock
being requested and instantiates a TLockController if one doesn’t already exist.
TLogicalLockController is, naturally, the subclass that handles TLogicalLock requests.

MRecoverable and VMSystemRecoverable .

As mentioned earlier, MRecoverable is a class that you must mix into any object to which you
want to apply recoverable changes. It has the knowledge to hook into the transaction system so
that it can find out about transaction events. You can obtain complete control over logging by
deriving from MRecoverable.. The MSystemRecaverable class is derived from MRecoverab
MSystemRecoverable e with the transaction system
logging process. : '

£ has now been
Record that includes

The abstract MReco:
taken up by the T
the information th

Record class. TSystemLogRecord is a subcl
stem logger needs.

The MSystemRe
explanation. Mo;
performance reg
recoverable o
an MSystemR
are sent to the system gger; iy
not write changes made by uncomimi
safely on disk. For instance, if the virte
changed by a transaction that hasn’t ye
records are written to disk first. The Forc
to disk.

two methods, Checkpoig
‘bf.a log need to check

g, that require somce

TLogR

TLogRecord is pe changc an
MRecoverable, the method is responsible for mstantxatmg the right kind of TLogRecord for the
logging scheme in use for that MRecoverable. The only methods of TLogRecord are as follows:

* Undo - undo the changes represented in this log record.

* Redo - redo the changes represented in this log record.

TSystemLogRecord is an abstract class that inciludes enough information in the log record to
work with the system log.

€ Registered /Restricted Credence Classes March 15, 1990 2.1.4-13



TURLogRecord and TNRngRecord

The TURLogRecord and TNRLogRecord classes are concrete subclasses of TSystemLogRecord
that support undo/redo and no-undo/redo recovery, respectively. These are used within the
transaction/logging system to implement TSafeFileSegment and TSafeServer.

More Things You Need to Know

Classes that use locks must be good citizens. You must make sure that all classes accessing
shared data use a comunon locking scheme. You can use locks in concurrent tasks in a team to
access data in memory. You also use locks by multiple teams to control access to data in a
TSafeServer.

Anyone using MSysteg at the executions are strict. E

strict if one of the fo

edatatsmotused conctrrently, i.e. access i
u use the concurrency control of TLogicallL,
u guarantee strictness with your own ¢

recoverable
are necessary fy
amount of log
copy a file within a transa
log and again into the destin

& Registered /Restricted Credence Classes March 15, 1990 2.1.4-14



Examples

The first example shows how the locking would work for classic database concurrency control.

// Set lock for record “fred” in the file “My File”

/7

foo(const TFile& file)

{ ~
// first, create a lock object (doesn’t set it yet)
TLogicallock myLock (file, 0, kWritelock);

// Use a data base index object capable of mapping a key to a
// record ID value. The record ID will be used as the lock

// value in the.logical. logk.
long value =

set the ock"
.SetLock () ;

// This may b he lock can be set

}

// Set lock on an entire file

/7
const long kWholeFile = OL;

f (const TFi

{
TTr

TLog: kWholeFile, kWr
TRY

//

t.Commit () ;
EXCEPT

error (“transaction aborted unexpectedly!”);
ENDTRY

The next example shows a member function of some random class that writes to a
TSafeFileSegment.

TRandomClass: :WriteRecoverably (TSafeFileSegment& stream)
{ )

TTransaction t;

& Registered /Restricted Credence Classes March 15, 1990 2.1.4-15



TRY
stream.ChangingStream() ;
fFoo >>= stream;
fBaz >>= stream;
stream.ChangesDone () ;
t.Commit () ;
EXCEPT
gprintf (“transaction was aborted\n”);
ENDTRY

The next example shows writing to a TSafeServer. (Notice that the operations are identical to
the stream operations using a TSafeFileSegment.)

TRandomClass: : Serv: :érver& server)

TTransact

borted\n”)

TT TTransaction: :Get

if

EXCEPT
gprintf (“yes, it did abort\n”):

ENDTRY

< Registered /Restricted Credence Classes March 15, 1990 2.1.4-16



Preliminary ERS Apple Confidential Thursday, March 1, 1990 Page i






rce

éﬁ%&

QL

-0

read

gistry and it
| the “

ith the Blue resc

e.
Qe S
53 &
Il
S
g ¥
s,m.m
@S
} =%
828
[wfie)
£t

S E
o P @
h 258
s _z,"n.mmmW* %.Md
mﬁ SOt Y m.u m
~ER wlm 8.
QR
SRS

2.15 - i

Thursday, March 1, 1990

Rainbow Warrior

% Registered /Restricted






Introduction

The purpose of Rainbow Warrior is to provide an “environment variable” registry and notification
system under Pink. The combination of Rainbow Warrior and the “read-only” resource fork provides a
superset of the services available with the Blue resource manager.

Rainbow Warrior provides facilities for accessing and updating environment variables (both system
environment variables and local environment variables). It also provides facilities for receiving
notification when a change is made to an individual variable or a change is made to any variable
belonging to a particular category. For example, applications using this facility can be notified when ncw
fonts are installed in the system or additional shared libraries are available. Rainbow Warrior provides a
stack of environment variables “environments” so applications can shadow variables declared in the
global environment with their own definitions. Finally, clients can enumerate all of the environment
variables or all of the environment variables in a particular category.

A mechanism for pre-change notification and “voting” for a change to be allowed is being considered.

NOTE: This is a very prelir
that a client would use

ample provided and “heade rthe classes

Example

f a TApplication is
There 1is also

// For the purp
// GetEnvironme
// a call in T

ample, assume that:

TEnvironmentSt
TEnvironment* applic:

// applicationEnvironment is al®

// Query for a particular shared
TToken category(“SharedLibrary”) :;
TToken instange{ SpecialTextClasseg
TSharedLibre (TSharedLibs

tance) ;

// Test for the 8" particular shared librar
Boolean exists = environment->Member (category, instance):;

// Check for the user name
TToken userNameCategory(“User Name”);

// The returned TToken object belongs to you.
TText* userName = (TText*) environment->Retrieve (userNameCategory):

// Add an environment variable to the “application environment.” This shadows
// any definition of the same environment variable found in another

// “TEnvironment” further in the “environment stack.” Note that there are

// atleast two other “environments” below the “application environment” in the
// environment stack: the “user environment” and the “system environment.”
TToken userShoeSize (“Shoe Size”);

TCollectibleLong shoeSize(9);

applicationEnvironment->Add (userShoeSize, &shoeSize):

® Registered /Restricted Rainbow Warrior Thursday, March 1, 1990 215-1



// Add an environment variable that is has a category and instance name
TToken category(“SharedLibrary”);

TToken instance (“MySharedLibrary”):;

TSharedLibrary* lib = new TSharedLibrary(....):
applicationEnvironment->Add (category, instance, 1lib);

// Get an iterator to iterate over all of the sharedLibraries.
TIterator* anlterator = environment->Createlterator(“SharedLibrary”):;
TToken* nextLibrary = (TToken*) anlIterator->First():
while (nextLibrary != NIL)
{ .
// Do something - could retrieve the value associated with this,
// etc.
// The “nextLibrary” text object belongs to you
delete nextLibrary
nextLibrary =

// Request notifi onwhens fige is made to
// shared librari
// Assume you havs
TMessageTaskNoti
environment->Not;

Classes
TEnvironment

TEnvironment provides an environment vark
provides methods for adding, updating, remo
the set of environment variables are persistent a _
notified whenew kind of change is made ivi t vari . me”)
or a category of iit.variables (e.g. Font s tent
for the life time i ;

echanism as well
onsidered “newed”

Applications will typic: .ronmentStack which provides a’s

as the functionality of a TEn; nment. All values returned by TEnvironment
objects and should be managed by the caller.

class TEnvironment : public MCollectible {
public:

TEnvironment (char* fileNamel);

TEnvironment () ;

virtual ~TEnvironment (); .

virtual Boolean Add (const TToken& category,
const TToken& instance,
const MCollectible* value,
Boolean replace = TRUE,
const TToken* replaceDetails); .

virtual Boolean Add (const TToken& category,

1. Of course, we will be using whatever class the file system provides for representing a file.

¥ Registered /Restricted Rainbow Warrior Thursday, March 1, 1990 215-2



void

virtual
virtual void
virtual MCollectible*
virtual MCollectiblex*
virtual Boolean
virtual Boolean
virtual Boolean
virtual void
virtual wvoid
virtual TIte
virtual TIte

b

TEnvironmentSta

A TEnvironmentSta
TEnvironmentSta
the top of the stack. ;
top most TEnviro

environment variable is found orai}
exports the interface for iterating over

when an environment variable changes, and

class TEnvironmentStack :

tack()

virtual

public M

onmentStack (

const - MCollectible* value,
Boolean replace TRUE,
const TToken* replaceDetails)
Remove (const TToken& category,
const TToken& instance);
Remove (const TToken& category):
Retrieve (const TToken& category)
Retrieve (const TToken& category,
const TToken& instance) const;
Member (const TToken& category) const;
Member (const TToken& category,
const TToken& instance) const;
Members (const TToken& category,
TCollection& result) const;
NotifyOn (const TNotificationSpecification&):
SELEVOEER nst TNotificationSpecifi :
ator () const;
ator (const TToken

const;

¥

ry) const;

vironments. Accessi
the information i
to access the

Credtelterator () con
telterator (const *
trieve (const TTokené&

onst;

virtual MColle¢ Retrieve (const TToken& category,
const TToken& instance) const;
virtual Boolean Member (const TToken& category) const;
virtual Boolean Member (const TToken& category,
const TToken& instance) const;
virtual void NotifyOn(const TNotificationSpecificationég);
virtual void NotifyOff (const TNotificationSpecificationé&):
virtual wvoid Push (TEnvironment*) ;
virtual const TEnvironment* Pop();
virtual const TEnvironment* Peek();
virtual TIterator* CreateEnvironmentIterator () -const;
virtual void StartHere (const TEnvironment*) const;
}: ’
& Registered /Restricted Rainbow Warrior Thursday, March 1, 1990 215-3



TNotificationSpecification

TNotificationSpecification isan abstract class that contains the protocol for describing when and
how client receive notification when environment variables change. TNotificationSpecification
subclasses will override the Not i fy methods to do the actual notification dispatching. For example, a

subclass of TNot ificationSpecification could supply notification using Opus IPC messages, post
events to an event receiver task or send a packet on the network.

The TNotificationSpecification encapsulates information which describes when notification will
occur. You can request notification based on a particular category (all changes involving the category

FONTS); a particular category and operation (all additions to the category FONTS); a particular category
and instance (all changes involving FONT Helvetical3); or a particular category, instance and
operation (whenever SHARED LIBRARY GoodStuff isupdated).

Synchronous notification
this will be considered

class TNotificati 51ic MCollectibl
public:
enum {kAdd, kRemov
kUpdate, kA
virtual it onSpecification();
virtual : Notify (cong
Not
virtual Notify (cof

virtual const TToken
virtual const TToken¥* :
virtual NotificationKind

protected: :
TNot if ica; - TToken
Notificatio
nst TToken& c
const TToken&

NotificationKind

onSpecification (

TNot

TMessageTaskNotification

TMessageTaskNotification isa notification specification which will perform notification by using an
TNotificationMessage (a kind of MKernelMessage) send to an MMessageTask. The

TNotificationMessage canbe queried to find out what category (and instance) changed as well as the
nature of the change (update, addition or removal).

class TMessageTaskNotification : public TNotificationSpecification {
public: ’
TMessageTaskNotification(const MMessageTask& who,
const TToken& category,
const TToken& instance,

¥ Registered /Restricted Rainbow Warrior Thursday, March 1, 1990 2.15-4



NotificationKind = kAall);
TMessageTaskNotification{const MMessageTask& who,

const TToken& category,

const TToken& instance,

NotificationKind = kall);
virtual TMessageTaskNotification();

override void Notify (const TToken& category,
NotificationKind kind);
override void Notify(const TToken& category,

const TToken& instance, .
NotificationKind kind) ;

TNotificationMessage

TNotificationMessag to an MMessageTask duri

encapsulates the catego

class TNotificati

public:
TNotifica essage (const TToken& categor Token& instance,
NotificationKind =
NIL)
TNotific kAll,
virtual ;]
virtual cons Bk

virtual const TToken
virtual NotificationKin
virtual const TToken*

€ Registered /Restricted Rainbow Warrior Thursday, March 1, 1990 2.15-5






Pink Interna

M. Davis
L. Collins
R. Sonnenschein

< Registered/Restricted International Utilities March 1, 1990 2.1.6-i






Contents

Conf1gurat10n1
Localization Objects....... et eeeeeeeeeiree i raarteteesae e e s ettt e s ieee e anaraeaeaeaeseeaesssannerans 1
Human Interface...............

Presentation Languages
TLocale. v eeeeereeeeeereeeereeeeeeiien et rr e te et anaaeaenes 3

INPUL e
Keyboards ...ooooiiiieiiiniii e eerereeeteeserntaeassnstatissrantesesasatarasensrnrasessienayasanas 4
Creating and Modifying a Keyboard Mappmg .......................................................... 6
Using a Keyboard Mapping ......ieeoeeeeiireiiiie ittt 6
Viewing/Editing A Keyboard.....o i 7
Keyboard Transliteraters..........

.

User Font Editin
Text Analysis....

Pattern Substitution
Text Service Managg
Transliteration..
Character TransCOGINg iussmssnmanns e eeseraaremceeerresssrsnnnceciaces
Character Prop
Word Boundaries i e eenane
Text Collation
Creating ;
Using a TCollater:iiiiiiiiiiiiiiiieeenn
Multiple Languages
Searching......cccceeeuunieen.

Time.ueneieieciveeeeeeeeeeenes eeeereeeteraeanans
Civil Dates..

e 13
e 13

.............. teesececssscsctrsascsascscsrrronsnnesasacis

UNICOA@.uuuiiiiiiiiiiiiiiiiiiiiicc e 24
Background............ eeeereeeenns eeeeeene e heeee et eeea et te e et bt ae et e e e e an e e e e e eas 24
Alternative Standards........ . .
Methods & SEAtUS .ceeviniiiiiiiiiii et e ee e ee s s seseaen s 2D
|55 1= o WSS eereremeennnns e s terereeieeeieeeans eereeeeans 26
The Unicode Repertoire............ tereeereeere e e crreesreerineeennaenns 26

Future Expansion and Character Reglstratlon ........... SN dremreeneesasesteensesanenns 28
Code Assignment......
Details....... S R s

Paragraph/Line Separators...... ............ eereeenns eeeenirerieee e veeeenn 32

Specific Characters.........ccece.....

Ordering of Character SeqUEeNCeS......cooveeirienrecreineennieceeaeenes e O ¥
Sample Code Pages .......ccccceeeneennne. tertreeeennnrere e e ———— SRR X |

cessessns

® Registered/Restricted International Utilities March 1, 1990 2.1.6-ii






Introduction
