Introduction:

Suppo‘rt aﬂdEnhancc New Hardwam
itegraa&n Challenge 4
0 Suppdit and Enhance 1 Megabyte MacititdShes. .

Illustraﬁgns S
Macintosh: Ggmcalggy
Decision Tree. ‘

Big Bang Key. Features i
Operating System
Imaging, P g
Des Op SGWICQS E H :‘ g"ﬁ - f# i &
System Integr tion [e e

Where. we will:be ., T g

Schedules o

ERSs
A. Graphics

32-Bit Quickdraw

Skia

Monitors CDev

Video /%oftware Madne;s f;he Iéoxroi‘ Cohtinues

Harpo/Topan and;:o oftware upport L

Video Cogﬁ g ROM Spftware Specification

*Video Con guranon R@M 86ftware Specification - - Délta Guide

B. Fonts

Bass 1.0 (Intelligent Forit Sﬁahhg Techhology fot Macintosh) Extemzil Refereﬁce
Specification v. 1.2

Bass System Software Interface (sub-ers) |

The Bass Project Font Instfiiction Set ahd Interpretet Sub ERS

* Denotes change since last release of table of contents:
4 Coifidential Pagé |

.C. Printing

LasweWriter 6.0 ERS Version 0.2

Ginsu Project ERS Version 0.1

Ginsu User Interface ERS Version 0.3

The Ginsu Architecture Just-Poured-Concrete Version”
Imaging Engine, Ginsu Project Proposal Version 1.0d8
Ginsu Application Interface January 13, 1989

D. International

Boffin (a.k.a. Layout Manager)
Everest (a.k.a. Language Manager)
Script Manager 3.0

TextEdit 3.0

InfoWorld (a.k.a. Multiscript System)
Script System Core

Unicodes/Uniform Character Codes

E. Toolbox i

Toolbox Overview
Diet Coke
Glass Plus %,
Snarfman (a.k.a SQL Comiecuﬂty)
Esperanto (a.k.a. DDIF) ------
Sound % ;
MACE (Macintosh Audlo Compressxon/Expansxon

Help Manager Human Interface ERS

Help Manager Programmer’s ‘Toolbox: Interface ERS

F. Finder & Applications

Finder Overview:

Multi-Disk Installer
Furnishings 2000/New Finder
The Blue Interface Group - New Chooser Design
MacroMaker 1.1

Esprit Support

PictWhap

Pat

CyberBash

FontUtility 2.0

CloseView 1.1

* Denotes change since last release of table of contents.

& Confidential ~ Page 2

G. CPUs & ROMs

Esprit ROM

Cobra II/Spin ROM

Jaws (a.k.a. Universal ROM)
FourSquare/F19 ROM
Remote Booting

Gestalt
H. OS Kemel

File Systems Management
MS-DOS External File System
HFS Enhancements
*MacVM, Virtual Memory for Macintosh
MultiFinder 6.1
*MultiFinder 7.0
Interprocess Communication Facility
System Segmentation

Desktop Manager

I.1/O

Asynchronous SCSI Man‘ager
Time Manager .
HDSC Setup/ HDSC Dnv.)
SCSI Bus Rover Ea .

Slot Manager Fi

IOP Manager R
IOP SWIM Driver
IOP ADB Driver Tr—

E-Disk Driver

DebugUtil

Device Manager

Serial Driver

o5

AR RSN RIXPARIPIRTIPY
o

J. Networking & Communications

*AppleShare 1989 - The Holy Grail
976 (Remote AppleTalk Network)
Calvin and Hobbes

AppleTalk 2.0

Serial IOP ERS

* Denotes change since last release of table of contents.

& Confidential Page 3

*Product Plan

Notes
Dependencies

* Denotes change since last release of table of contents.

"
¢ H
H
R § %
H § H
H § i
3 § 3
H § &
i h s sannne o
§ H -~ &
i i 5 #
H i H &
H s Tnane, I
b e, #
L o, r ;
“.,\
"
., N
. s,
5, K
1y 3 # &
% 3 S
H H H
H 4 & #
* - Fi re
i $ H H
b4 3 3 & H
kS N]
H o, i
Wi H
h &
", o 3
RO e
S 5

& Confidential Page 4

The Blue Book
1/19/89

by: Sheila Brady
Amy Rapport
Maura McNamara
The Blue Group
Charlie Oppenheimer

Statement of purpose

The Blue Book is a collection of documents that describe the Blue Macintosh System
Software strategy and the contents of “Big Bang”. Big Bang is the System Software release slat-
ed to ship in October of 1989. In addition to Big Bang there are features discussed which will
ship shortly before or after October. Much of this introductory section has been gleaned from
Charlie Oppenheimer’s Blue System Software Product Plan. The complete Product Plan, which
goes into depth on these and other issues, can be found in the back of this book.

Disclaimer

Big Bang is injthe development phgse and fhe contents of the docutents you will be reading
will be updated as fhe work progresses] Pleasq digest this information yvith an understanding that
these are evolving floc "
chime in!

Confidentiality

Overall Goals for
The Big Bang release is an evolutionary release. Our goals are to:

 Answer developers’ needs with more functionality
* Build an EVEN MORE user friendly system ~
+ Improve performance and efficiency of our system for the customer base in general
» Continue to support the full Macintosh line (1 megabyte, floppy-only systems and up)
 Maintain compatibility for the existing applications base by
Adding functionality invisibly and painlessly where possible
Requiring application rewrite only to take advantage of new features
Avoiding changing the programming model

With Big Bang we hope to continue to provide a friendly and responsive system software
package for our existing customer base. We are stretching the existing boundaries of
Macintosh System Software with incremental additions for more powerful internal integration

- (New Finder, Ginsu). At the same time we are positioning the Mac to leverage off of the capabil-
ities of the outside world through the addition of SQL API, the Language Manager, IPC, etc. We
are laying the foundation for Pink’s arrival with coordinated Blue/Pink efforts in Printing, the
Finder, and International. Last but not least, we are attempting to complement the new CPUs
with features such as Extended Memory. We are attempting to add more functionality without
unreasonably burdening the smaller systems. :

& Confidential Page 1

Challenges for Big Bang

There are a number sticky problems to reconcile in the Big Bang release.
« Provide a minimum set of customer releases

» Support, and enhancement of new Hardware

« Integration of Software features to provide the most holistic product

« Support for the 1Mb world

The Challenge to Provide a Minimum Number of Customer Releases

Macintosh System Software has been requested to not put out too
many releases every year. Extra releases cause havoc with the
customer base, and in the field. This puts us in a challenging
position, because most new pieces of hardware need
complementary pieces of system software. We also want to
minimize the dependency that other projects (CPUs in

particular) have upon us, so that we can be driven in our

designs by the best software solution, and ngt B} the best

market window for a partiqular CPU. Our tactig

ber of releases is a con-
the vagaries of engineer-

sheuld iroprove turn-arounty
stant challenge as Hardwarg

A variety of new CPUs are racing (plodding?marching?)to
completion now. We must map their likely completion dates
against our proposed release timeframes. This is a complicated
equation. We must make sure that the H/W is completely supported
in the matching system software release. It must also be adequately
tested. We have to avoid holding up the hardware with our software, but we
also have to continue to add our software functionality to the future software
releases. We have to maximize the effort made in the Software Testing World
across all CPUs. And we know from past releases about the limitations of the
number of disks that can be built in parallel. (none.) Sometimes this implies that
the hardware will wait for the software, which is so far not culturally acceptable in Apple soci-
ety. : :

Outlined here are the currently known considerations that we have taken into account in resolv-
ing our future release strategy.

1) It takes 6 months from alpha ROM to shipping with a Golden System Disk.

2) The Cobra I ROM should be done earlier than FourSquare and Spin, and will therefore not
be a 'Universal' ROM for those machines.

3) Cobra Il alpha is Feb. 15 '89, and Golden System Disk is August '89.

4) Spin will be much later (Jan 1 '90) due to remote booting. (If remote booting is to happen, we

¢ Confidential Page 2

need to get resources committed now!)

5) FourSquare schedule is uncertain, and is hard to plan for at this time.

6) Since FourSquare and Spin and F19 occur in late '89- early ‘90, they should be targeted for
the first 'Universal ROM, and they should contain all Big Bang features. They should ship
with the Big Bang system disk.

7) The above conclusions make using a July Antares System Disk for Esprit & Cobra II diffi-
cult. We propose delay of Esprit to match the Cobra II schedule so Antares can cover both.

Noting the above conditions, we have two viable approaches for our release strategy over the
next 10-12 months. As the hardware and software schedules become more certain, we will select
the best course of action.

Approach #1

isk CPU’ssupported Keatures Date
6.0.4 Harpo & Cobrall ~ H/W support only July/August ‘89
7.0 Big Bang October ‘89
7.0.1 F-19 and/or 4 square H/W support January ‘90

This approach implies 3 System disks in 1 year. (Maura - 1 disk is in January!)

or.. ;

Approacl! #2

6.1 Har;
7.0 F-19

uly/August ‘89
January ‘90

the inclusion of exnded
The Software Integration Challenge

We are making some drastic and aggressive changes to the internals Eg @ &

of the Blue System software. For these changes to work, and for the &

system to play together in a reasonable manner in it’s final release, Yﬁ

we need to pay particular attention to integration issues early in the

game. We have dependency meetings weekly, and the project leaders ﬁ

and managers are trying to identify and track all the open issues

across the groups. We hope to head off some of the problems that The SoFwaty INTLGRMI®

would normally appear at the end of the project by carefully thinking CHALLENGE
through these issues at the beginning. This is still the most difficult
technical challenge of this project.

The Challenge to Support and Enhance 1 Megabyte Macintoshes

The Big Bang system will likely need two megabytes to
operate effectively with medium to large applications like
HyperCard, PageMaker, FullWrite, PixelPaint, and so on.
One-megabyte system support is required because of the
large installed base of one-megabyte systems and because
over 50% of systems forecasted for late 1989 sales will stillbe one-megabyte configurations. In
addition, we hope to continue to have one system software platform for all Macintoshes.

@& Confidential Page 3

A single software platform means that
» our customers don't have to choose which system software to install,
» our developers can write for only one platform (not 1 meg & > 1 meg systems),
« our field service people don't have to support two system software sets in the field,
e our factory doesn't have to build and track two systems,
- our documentation people don't have to document two systems,
« our Networking groups don't have to write two types of networking packages,
* our testing group doesn't have to test two systems,
« our international groups don't have to localize two systems, and
« Software Engineering doesn't have to support two sets of sources.

Unfortunately, though one system for both 1 meg and > 1 meg machines might be desirable, it
might also be impossible. With the additional capabilities that we are adding, there may be no
way to fit the system into the 256K allocated on the 1 megabyte machine.

We plan to explore all possible methods of providing full support to the 1 meg systems before re-
ducing their set of system software functionality and finally giving up and going to a dual sys-
tem. The exact set of functions and exact implementation to be delivered to one-megabyte

The following diagrams ill
systems) strategy questions

1) Freeze is a strutegy that says qui new A / , .
! Mb Macintosh Plus runm\ e
is: Add all the new {catures Possj i i ;
size. This would restrict the functionality of the high end machmes
by the limitations of the 1 megabyte machines.

2) Good Fairy is the strategy where System Software v7.0 in the
standard system for all Macintosh computers. The standard system
must work on a 1 Mb Macintosh Plus with Hypercard. As larger
applications run out of memory the system automatically castrates
itself by removing functionality. This is technically the most difficult k
of all the possible solutions.

<X

3) Bifurcation means we will support two systems. v6.x must work
on a 1 Mb Macintosh Plus running HyperCard. This release is
maintained and shipped as the standard 1Mb system. New features
must be retrofitted if they can into this release (NuFinder, Drivers).
System Software v7.0 must work on a 1 Mb Macintosh Plus with a
512K application. This release is extended as the standard greater
than 1Mb system.

Option: “Diet Bifurcation” Equivalent to above except that the

v6 x release exists with minimum maintenance required to support CPUs

€ Confidential Page 4

4) Diet Applications System v6.x is replaced by v7.x. System v7.x is the standard system for
all Macintosh computers. This system should work on a 1 Mb Macintosh Plus with a 512K ap-
plication. Huge applications (primarily HyperCard) have to run in approximately 512K if they
want to run on one megabyte machines which means that they may have to go on a diet.

Kt
iye i~ e*

iiin e
kY

Voo ooy

57

& Confidential Page 5

Macintosh Geneology

Lisa .
16K ROM

L. LaMar & G. Calenda
12/15/88

Mac512k e
128K ROM
Ptch 0075
N
987 Mac II 020
198 Mac 5% IMB
15 =] 256K ROM
286K ROM - Ptch 0178
_oopepssie | Yo S L o e o] - - — — =
Mac IIx
1988 41\:;
256K ROM
Ptch 01
______ — e e — L _OverPtch _ _ _| _ _ _ _ _
Cobra II 036
1989 : 4MB
SE/SD. t 512K ROM
IMB | Mongoose 030 Ptch 0479
256KROM Al M Video
Ptch 0276 =] 256K ROM 4SQ/F19 030
Over Ptch gvc:rol}t’c: 4MB
$12K ROM
Harpo @L Video ROM ? Ptch 047A
iMB = EtherNet
IMB Spin 030
Pich 6379 256K R;)M <IMB
Ptch 0178 512K ROM
Over Ptch | =—— Y
Remete Boot
1990
Confidential

Is it worth the effort to try to have a single

system for the 1 MB and > 1MB Macs?
Yes! No!
(For a Hum@ Interface Basclipc of Bass, NuFinder w/
Must we keep Hibemation & Setaside, Ginsu, Line Layout, &
the app space to the Always MultiFinder)
No! current size? Yes!
Try to increase the vi tem space w/
Diet Apps demand segment swapRing. 90% New Effort -
Big apps don't run. 10% The Cramus team!
(We piss off some Try to increase virtupl systpg
users) demand paging witl
Consider new ROMs Jor 1
We 1bose some
Succepsful? effort and are forced L |
Yes! l No! to Bifurcation
Partly... Do we want to try to
suppert the 1 MB
machines at all?
Yes! No!
Freeze Good Fair
Stip one great Auto-configuragion of §.0 basi
system! features :
Evcrygm ishappy Advanced feature Bifurcation Diet Bifurcation

for now! w/ : .
6.0.x for 1 MB Lock 6.0
7.0 for >1 MB forever.

No more
Hard on Apple software mods
We are all heros! An OK Compromise! & the User fo'l:.MB
(Some apps may have machines.
to shed a few ounces..)

(Unlikely)

Big Bang key features
Macintosh system software covers these four functional areas:

Operating System

The two priorities for operating systems development in FY89 are 32-Bit Addressing and
Interprocess Communications (IPC). 32-Bit Addressing will allow our 68020/030 machines to
accommodate more than 8 megabytes of address space, which will support larger applications
and more concurrently active applications. IPC will provide the means for applications to send
messages to one another and to leverage off each other’s functionality. IPC will also act as an
enabling technology for user scripting and will allow developers to write more modular
applications. Virtual memory is the next highest development priority.

Imaging
We will have two releases of new imaging functionality during FY89. In the spring, we

will ship 32-bit QuickDraw and a color PostScript LaserWriter driver as installable extensions to

System 6.0.3. This will extend Apple’s lead in color functionality and provide for photo-quality

color on high-end systems. With Big Bang, Apple will deliver an open-format outline font

system, the “Layout” manager, and several i important extensions to QuickDraw. Outline fonts

- will give users more flexibility in dealmg wash=font sizes and styles The layout manager will
give developers a standar¢way ely Jayout t£x S

; ace Toolbox Aser Ytilities, and Application
Utilities. With Big Bang we Want to sim] lify systm setup ang/systenf management functions as
. : ' ew Finder is our highest
priority in Desktop Services. Nelw Findg will unjfy most syftem fugctions into one consistent
interface and will provid NQICP i
for Finder expansion. Othé
program (easier system setup) e Fuage Manager (standard text-processing services like
spell-checking and thesaurus for applxcatxons), an API for access to remote SQL databases, user
interface extensions, and Interapplication Communications (“hotlinks” for applications).

.
fu
~
g5
£,
=
(7]
g
-~
g
(1))
o
. <
bd
52
o
w
Q
=h
L:.__"!
@
[72]
o>l
=]
o
~—t
=
o)
=
o
S
=
w

System Integration

The two big efforts in System Integration for 1989 are the new Print Architecture (code
named Ginsu), which will allow Macintosh to support a greater range of output devices and will
provide improved device control, and the File System Manager in combination with the DOS
File System, which will provide Macintosh desktop access to MS-DOS disks with Superdrive.
(Currently the MS-DOS project is unstaffed)

Where we will be

With the delivery of Big Bang, we will have delivered a major step forward in the
evolution of Macintosh system software. We will reap these important benefits:

. Macintosh will have the ability to support larger, more complex applications. (32-Bit
Addressing)

e We will see applications beginning to work cooperatively. (IPC, IAC)

° We will have the best color support in our product class. (32-Bit QuickDraw, Color
PostScript Driver)

. Users will have much greater flexibility in dealing with font sizes and styles. (Outline

& Confidential Page 6

Fonts)

. Macintosh will be easier to set up and use. (NewFinder, Installer 3.0)

. Spell-checking and other text services will be a pervasive Macintosh application feature.
(Language Manager)

. Many applications will support dynamic data insertions or “hot links.” (IAC)

. Applications will begin to make use of remote SQL databases. (SQL Interface)

. There will be a greater range of output device choices for Macintosh. (NewPrint
Architecture)

. Non-Macintosh file systems will be better integrated with Macintosh than on their native
machines. (File System Manager)

With this set of expanded features, we will have major product introduction opportunity.

.

& Confidential Page 7

Schedules will be distributed at a
later date. |

.

5

Video Software Madness - The Horror Continues

Product Engineering— Graphics Software Group
January 19, 1989

Overview

This document describes a number of modifications that Apple is making to
the specification for all Macintosh II video drivers, many of which are
directed toward improving support for Jackson Pollack devices (16- and 32-bit
chunky pixels, and extended frame buffers) This paper is not intended as a
full implementation speaﬁcatxon but as a prehmmary introduction to the
general direction of the changes Informatmn m this. document is subject to
change. I Y,

If you don't like scary mavzes or" the system bomb box, skzp ahead to “The
Solution” overleaf. Im headed there now /

The Nightmare

So you're crankmg along at 3AM trying to put those final
touches on your MacWorld demo. You were skeptical of the
marketing manager's request that you add an Australian sunset
splash screen to your boot block configuration program, but it
seemed like a good idea after you found out you'd get a high
ticket video card, and, since nobody could find a picture, you'd
have to go to Australia to take the picture yourself. So you got
the picture, got the card, and installed Jackson Pollock software
so you could use it. And it looked fantastic, too. Until now.
SysError city. And for some reason (not our fault), you can’t
boot off your trusty hard disk. So you do what you'd always do-
whip out that handy System 6.0.3 floppy and boot your machine
up. But hey, what happened? The system starts booting but
then it crashes! You try other disks- always the same problem.
Finally you yank out that new 32-bit video card and you're able
to boot again. But you'll never trust that darn 32-bit stuff again...

January 19, 1989 32-Bit Video Drivers - Rev 2.0 page 1
Apple Computer, Inc.

The Problem

Hopefully this will never happen to you. But if it does, here's why
everything seems to go wrong.

In a nutshell, the problem is due to the Mac II CPU ROM's 24-bit addressed
nature. Mac IIs normally run in 24-bit addressing mode for compatibility
with existing Mac software. For normal displays, the IMB address space
available for a video card frame buffer was reasonable, since Color QuickDraw
could only support displays of 8-bits/pixel or less. With the advent of Jackson
Pollack software, and support for 32-bit chunky pixels, the frame buffer size
limitation becomes a major problem, severly limiting the possible display
size. To alleviate this problem, the Jackson Pollack software switches the

hardware to a true 32-bit’ addressing mode at blit titie; allowitig frame buffers
to occupy up to 16MB of the 68020 address siaace The video conﬁguranon
ROM data structures were extended to notxfy the CPU at startup that a Jackson
accessed in 32-b1t mode, pnmarxly by setting a

Pollack frame buffer wasAto

structure.

This all worked prettii' well, with the“one sticky point. béing the fact that it was
potentially dangerous for one of these 32-bit addressed frame buffers to be
accidentally accessed in 24-bit address mode, since that would translate into a
wild write into unprotected space. Outside of applications that directly access
frame buffers (highly discouraged, and pretty difficult to do anyway), the only
problems for these cards would arise if a 32-bit accessed card were the boot
device, since the "Welcome to Macintosh" message would be written before
Jackson Pollack had been patched in. A Secondarylnit mechanism was added
to the Slot Manager to allow this message to be suppressed, and to allow a 32-
bit accessed card to be the sole card in a system.

Releases of Jackson Pollack prior to version d3.3 did not include support for
Secondarylnits, whose absence was the cause of the crashing system in the
scenario above. Had this code been in place, the card would never have been
~ activated, preventing the crash, but rendering the card useless, even though
the lower pixel depths were, at least in theory, accessable.

January 19, 1989 32-Bit Video Drivers - Rev 2.0 | page 2
Apple Computer, Inc.

The generation of cards which lack SecondaryInit are particularily
troublesome. Setting the f32BitMode unconditionally generates a 32-bit DCE
base address well before there is any way to tell if Jackson Pollack software will
be loaded. If the software was not present, then the first write to the frame
buffer is potentially catastrophic. As our poor programmer found out above,
the majority of the bootable floppies in the world do not include the Jackson
Pollack patch and easily throw the system into this inoperable condition.
Although this is a System configuration problem, it creates the appearance of
bad hardware or faulty software, which are both highly user-UNfriendly
situations. .

The Solution

at startup, the decxsxcm to sw1tch to a 32-b1t addressed mode can be deferred
until Secondarylnit whxch can p051t1ve1y identify/ 'the presence of Jackson
Pollack software. With- this addition;-any card that has at least one 24-bit
addressable video mode can work on any Macintosh II. If that machine has
Jackson Pollack software, then additional features may be available. This card
will also work when booted with any system disk.

This enhancement is accomplished with a few additions to the configuration
ROM, some extensions to the Slot Manager, and a bit more code in Jackson
Pollack. In addition to the sRsrc lists that contain all modes that are available
with 32-bit addressing (which are unchanged), a new video sRsrc list that
contains only modes that can be accessed in 24-bit mode (and doesn't have
£32BitMode on) is included in the sRsrc directory. On future machines that
have Jackson Pollack and the new Slot Manager in ROM, this new sRsrc list is
unnecessary and can just be deleted by the Primarylnit code. For current CPU
ROMs, the 32-bit addressed sRsrcList is excised to prevent the problems
mentioned at the beginning of this document.

System patches, Jackson Pollack and the new Slot Manager are loaded next,

January 19, 1989 Stay On Target - Rev 2.0 page 3
Apple Computer, Inc.

then the SecondarylInit code is run. As part of the Secondarylnit, the card can
test for Jackson Pollack (compare trap vector $AB03 equal to
_Unimplemented)! and, if present, can delete the 24-bit addressed sRsrcList.
At this point, the 32-bit sRsrc list can be added back into the system by another
new Slot Manager call, _sInsertSRTRec. If this was the boot device, the Slot
Manager takes care of updating the information in the DCE; other video
devices are not yet open. If the Jackson Pollack patches are not loaded, then
the SecondaryInit is not run, and the card uses only the 24-bit compatible
sRsrcList. Notice that under this model, cards that are written in full
compliance with the original Jackson Pollack driver specification or that have
no 24-bit addressable modes will also work, although they will be completely
inactive in non-Jackson Pollack systems. Existing minor space-only cards
remain unchanged.

Here's how the card configuration seqéence iooks in a little more detail:
1) The machine powers up- and runs CPIY dxagnostlcs ;
2) Primarylnit ¢ode from each slcat ROM is executed iny ‘ascending order.

a) The Pr lmaryIrut code calls _sVersion (a new ‘slot manager trap)
to determine the revision Ievel of thé ROM Slot Manager. If
the versxon returned is 2 or greater; ‘then thlS card is plugged
into a* machme that has- the new Slot Manager and Jackson
Pollack résident.in-ROM, and can‘leave-the video sRsrcList that
includes 32-bit addressed modes directly and return seSuccess
(=1) in the seStatus field of the sExec block.

. b) If the new Slot Manager is in not in ROM, then _sVersion will
return an error code (because it was unimplemented). If the -
video card has an sRsrcList that is compatible with 24-bit
addressing, then it should leave that list installed and return
seStatus=seSuccess.

o If the card has no 24-bit compatible video modes, it should
return the special value that signifies that it should be invalid
until SecondarylInit (seStatus=$8001). If Jackson Pollack is not
present, then this card will not be useable.

d) Normal hardware initialization and screen graying should be
performed at this time.

3) The boot card's driver is opened and it's gDevice is created.

1 It's unlikely that the Secondarylnit would be called if Jackson Pollack was not present since
they are bundled together, however, it's safer to verify that all is well.

January 19, 1989 32-Bit Video Drivers - Rev 2.0 page 4
Apple Computer, Inc.

4) The happy Mac and "Welcome to Macintosh” messages are displayed
and the system begins to load MacsBug and System Patches. '
5) Jackson Pollack and the new Slot Manager are loaded.
6) Secondarylnits are executed in ascending slot order.
a) The presence of Jackson Pollack is verified.
b) If a 24-bit sRsrc list was passed from PrimaryInit, it is removed.
¢) The 32-bit sRsrc list is added in via _sInstallSRTRec.
d) Any additional initialization is performed.
e) Secondarylnit returns seStatus=seSuccess.
7) The Slot Manager fixes any system data structures affected by the
switch.
8) The remaining video drivers are opened.
9) INITs are executed. The first.. InitGraf (in the INIT calling
routine) cau$és thé screen conﬁguranon 6 beinitialized; based on the
scrn resourcé This sets all drsplays to their previous depths
10) The first apphcatlon 15,)1aunched i 4

All the nitty-gritty detaxls 4bout" how to fmd the values to pass will be covered
in the full spec1f1catxon : :

More Informatlon About Dnvers m Dlrect Mode

The original 32-bit drivers paper did not include specifics on extensions to the
driver in support of direct mode devices. Here's that information.

SetMode - The SetMode call is extended to allow 16- and 32-bit/pixel modes
to be selected. When a direct pixel mode is selected, in addition to
changing the screen depth, the color table is written with black->white
ramps (black at the low end of the CLUT, reversed from grayscales in
indexed mode where white has pixel value zero). The current gamma
table should be applied during this operation. All video modes in an
sRsrc list should have the same base address.

SetEntries — The SetEntries control call is never called by the ROM for direct
or fixed device types, and applications that call the SetEntries control call
should test the target gDevice's gdType before making this call (the Color
Manager's high-level SetEntries call honors this convention). If

January 19, 1989 32-Bit Video Drivers - Rev 2.0 page5
Apple Computer, Inc.

SetEntries is called while in direct mode, it should return a ctlBad error
code. There is no way to directly set an arbitrary CLUT location with a
particular RGB when in direct mode, although color table animation
effects are possible when using the SetGamma call. SetEntries is
constrained in this way because its color table must be kept as part of the
gDevice device pixMap for Jackson Pollack to correctly map colors, and, in
direct devices, the destination color table is implied, not explicit. .

SetGamma - In the photorealistic applications that are the mainstay of direct
color devices, gamma correction is particularily important to avoid
oversaturated output. The gamma data structures are unchanged for
direct video modes. The SetGamma call is also unchanged when the
driver is in a non-direct mode. When in direct mode, the SetGamma call
not only sets the gamma ¢otrection ﬁata table; biit séts the CLYT with the
same linear grayscale ramps set in the SetMode call, again applying the
gamma correction; Unlike indexed modg, rote that the’ SefGamma call
need not be followed by a SetEntries call (but can be)for the new Gamma
table to take effect; Thi routine can ‘be used for limited psuedo-color table
animation, but apg,.l.. cations th%t use tig\is feature_;féke»r:;ésponsibility for the
screen effects. ¢

In addition to the \Ei“ef.ir_;i«tj__gg_k_g,,f.,.»g-a‘“f“fima corredtion. for direct devices, the
SetGamma call has also undergone some general extensions for all video
drivers. In particular, if NIL is passed as the gamma table pointer, then the
driver should reset its default gamma correction table. If -1 is passed as the
gamma table pointer, the driver should set a linear uncorrected gamma
table. In both cases, the driver's internal copy of the gamma table should
be updated to match the latest state.

The new Monitors cdev will allow a user to specify the default gamma
table resource to be applied on a device-by-device basis. Third parties can
supply this resource in an extensions file similar to a cdev containing
device specific data. |

Due to its omission from the current documentation, gamma information
is a little hard to come by. Contact DTS for the latest version of Gamma
Correction in the Macintosh 11 which explains gamma correction and the
data structures. ' ‘

January 19, 1989 32-Bit Video Drivers - Rev 20 page6
Apple Computer, Inc.

Other Fun Stuff

Here are a few other features which are coming soon to a Jackson Pollack
release near you. These features are available to all graphics cards, not just
direct devices.

Video mode families - Currently, the system allows only one video sRsrc list
to be present per gDevice. With the Jackson Pollack release, cards will be
able to have multiple sRsrc lists available which describe alternative
modes which the card can support. A new Slot Manager routine,
_sSetsRsrcState, will allow the card software to specify inactive sRsrc
lists which are not "seen" by standard Slot Manager calls such as
_sGetNextsRsrc unless a special flag is set. The new Montors cdev will
allow selection among: the-active arrd inagtive.sRsrc.lists...This feature will
allow a user to select between underscan ‘and overscan modes on an NTSC
dxsplay, for example Wthh WS not possrble before.” Smc‘e the Foolbox is

realized unt1l the next reboet

The implementation of this feature xs very sumlar to/ the method
described above for 24->32-bxt addressmg sw1tth1ng {For current ROMs, all
video sRsrc lists except the’ currentfy chosen vxdeo sRsrc list are deleted in
Primarylnit. If the new SIst’ Manager is present "and SecondaryInit is
executed, then the inactive modes can be added back in with
_sInsertSRTRec and then inactivated with _sSetsRsrcState. If the
Primarylnit detects the presence of the new Slot Manager in ROM (with
_sVersion), then the invalidation can be performed in PrimaryInit.

When selecting the lists to delete, insert, or inactivate, it is important to
follow this simple rule: All inactivated sRsrcs presented in Monitors
should be displayable on the current monitor connected to the system.
Users should not be able to select an alternate video mode that would
render the screen unviewable. For example, if a card supported the Apple
HiRes RGB display, underscan RS170, and overscan RS170, if an Apple
RGB monitor were connected, both RS170 resources should be deleted. If
an RS170 display were connected, then the non-interlaced list should be
deleted and one of the interlaced modes inactivated. Cards intended for
use with multisync monitors could inactivate modes of different timings,
but should verify the presence of a compatible monitor if possible.

January 19, 1989 32-Bit Video Drivers - Rev 2.0 page 7
Apple Computer, Inc.

scrn invalidation - Due to popular demand, a video card will be able to
invalidate the scrn resource programmatically. Typically, this is most
useful to cards that support different sized monitors or multiple screen
sizes on a single monitor. When the PrimaryInit code of the card senses
that the monitor connected to the card has changed, it can invalidate the
scrn resource by calling _Invalscrn. When QuickDraw detects that this
bit is set, it will disregard the current scrn configuration, until a new scrn
resource is built by Monitors. As with the video mode family support,
scrn invalidation is targeted toward cards that can identify the type of
monitor connected.

Card Names and Icons — New versions of the Monitors cdev will display a
manufacturer-specific-icon- embedded in the-configuration-data structures
“as well as the board name string. "[’o mclude a developer 1con, include an
OSLstEntry whose! spID is’ sRsrcIcon and wf\ose offset pomts toa

points to an xmage of a cien resource Gf size 32"32 You may want to
consider how this‘icort-will logk in vanous p1xel depths Also be sure that
the board name and versmn stnngs dre up to date (1 e don't leave "Toby

stupid).

January 19, 1989 32-Bit Video Drivers - Rev 2.0 page8
Apple Computer, Inc.

Gamma Correction in the Macintosh II

Product Engineering — Graphics Software Group
January 19, 1989

An important part of the device-independent graphics model of Color
QuickDraw is that all colors specified by applications are absolute
specifications; that is, from the application’s view, a single color specification
will appear as a uniform color across devices which have different color
response. In the multiple-screen Mac II video environment, these differences
in color response must be handled by the system since the application does
not "see" the different screens; and’ does not;have-a-chance-to-perform screen-
by-screen corrections; The act of lmearxzmg 'the color response (Qr gray-scale -
response) is called gamma correction, and is currently performed by the

vxdeo driver for eacH dxcrplay devxcé conflgured in the system Thls document

Macintosh II.

What is Gamma Correctlon" ‘

The phosphors on the face of the monitor tube lummesce when struck by the
beam of the electron gun sweeping out the scanlines. By increasing the
intensity of the beam, the phosphor dot luminesces more brightly, and by
reducing the intensity of the beam, the phosphor glows less brightly.
Unfortunately, the output of the phosphor is not directly proportional to the
impinging beam strength. The response of the phosphors usually looks
something like this:

=
k7]
g
€
=]
-4
Electron Beam Strength
January 19, 1989 Gamma Correction ; page 1

Apple Computer,Inc.

where the dotted line shows ideal linear response, and the solid line
approximates the observed response of a normal phosphor. This response
characteristic is due to physical phenomena and can be described via a gamma
function. Subijectively, this causes the colors on the screen to appear darker
than expected. Based on this behavior, an inverse gamma correction function
can be applied to compensate for this non-linear response: '

Luminosity

{ i >
'Elec{roﬁ Bgam $tre?g.'fﬁs.,,mm.@m.,‘.A.»va....d,.

Here, the solid line agaifi ';}g}z;eseﬁ'z§"‘tlle uncorrected ghf)sp}x"ar response, the
large dotted line is the inverse gamma function, andsthe fine dotted line is
the resultant, linearized color response. |

The appropriate ini’zgrse gamma fung_;i'én can be deterﬁlined mathematically,
given the appropriaté“""'da,t,gn,§_Vlgggt,,..t~h“éwphosphorsﬁ;a__l:;gmwgirer, in the current Mac
II cards, the data is determined empirically, using a photometer to measure
the response characteristic on a calibrated system. Gamma correction values
determined by mathematical means are supported by the gamma data
structures (see below), but must be implemented by the driver that this table
is intended for.

In the current implementation of the video drivers, gamma correction is
applied to requested absolute colors immediately before they are set in the
color look up table (CLUT), by the SetEntries control call. More specifically,
some number of high-order bits are extracted from the red, green, and blue
channels and used as an index into tables of corrected values. These values
are then placed into the hardware, yielding corrected output. On the
Macintosh II Video Card (the TFB card), the high eight bits of each channel is
used to reference the gamma table.

There are a number of minor shortcomings of this implementation. First,
there is not absolute symmetry between the SetEntries control call, which sets

January 19, 1989 Gamma Correction page 2
Apple Computer,Inc.

the CLUT, and the GetEntries status call, which reads the CLUT hardware,
since the gamma correction took place as part of the SetEntries call. Also, the
uncorrected values are generally unrecoverable (although a copy of the
absolute colors are always available in the GDevice structure). Finally, it is
most desirable to extract more bits as an index to the gamma table than the
number of bits of color information that will be set in the CLUT to avoid a
loss of color resolution after correction. For example, the TFB card has an
eight-bit per channel CLUT, but only uses the most significant eight bits of the
(sixteen-bit) channel information to perform the gamma lookup. At lower
intensities, the gamma correction increases the distance between adjacent
values, and as a result, on the TFB card, some dynamic range is lost at the
lower intensities. This could be corrected by extracting nine or ten bits of
“channel information rather than eight and using a larger gamma correction
table, but this option.was.declined-t feduce.gamma.table.size....

RSN ARSI
- >

The GammaTbl Data Structm*e

The structure 1tse1f has- been a bIt of a mystery, as Lt is no’t defmed in either
Inside Macintosh, Val’ii'ﬁ’te 5 or Cards and Drxvers Thls is the structure:

record Gammamable of.

gVersion '?“lnteger, “{gtab version, currently 0}

gType : integer; {drHwId value}

gFormulaSize : integer; ' {size of formula data,below}
gChanCnt : integer: {# of component channels}]
ghataCnt : integer: {# of values per channel}
gbhataWidth : integer: {size of data in tables}
gFormulaData : array {0.. gFormulaSize)] of byte; {data for

gamma calculation formula}l
gDhata : array (0.. gDataCnt] of byte; {gamma
correction lookup tables}

end;

In this structure, gVersion represents the gamma table format version,
which is O for all current cards. The gType field holds the drHwid |
value for this board, to identify the board that this table was measured for.
Note that this means that a single gamma table can't directly be shared
between two different cards, even if they both have the same CLUT
response curve (which is usually linear). This allows the data in

January 19, 1989 Gamma Correction page 3
Apple Computer,Inc.

the gamma table to be in an appropriate form for varying hardware (i.e,
a card could have four-bit/channel DACs and might prefer gamma data in
‘the range $0..$F rather than $0..$FF).

gFormulaSize defines the number of bytes occupied by the
gFormulaData field. On Apple's current video cards, gamma correction is
performed by modifying the values loaded into the CLUT by the SetEntries
control call to approximate linear response on the display. On these
systems, the gamma correction table acts as a final lookup data table that
translates the requested color into closest available linearized level. These
gamma table values are determined empirically by measuring the output
of a calibrated display. More sophisticated systems may choose an
alternative to this simple lookup-mechanism, for instance,

calculating gamma correction factors based on a mathematical response
function. By default the TEB.card iuses a smgle -correction tabfe for all
three channels. No calculatlens are perfermed on the’ mcommg color
table other than sxmple lookup. Cards can remember the specific monitor
configuration at the begmmng of the' ‘gFormu laDdta fxeld allowing it to
identify and use only gamma ‘tables developed for the currently connected
monitor. ' : : {]

gChanCnt is the ﬁ'ﬁinbe;._.eof-v.ledﬁﬁp tables in i;ﬂat-‘a-;g below. If there is
more than one channel of gamma correction data, then the R, G,and B
tables follow each other respectively at the end of the structure.

gDatacCnt is the number of discrete lookup values included in each of the
channel's correction table. It is always equal to 28DataWidth but refers to
number of bytes that this channel's data occupies.

gDataWidth describes the number of significant bits of information
available in each entry in a channel's correction table. The data always
appears as gDatawidth bits, right-justified in a field which is the next
larger number of bytes than gbatawidth. Since it is rare to have devices
have more than 8-bits of CLUT resolution, virtually all devices pack their
correction data into bytes.

gData is actual correction table data itself. If there is more than one
channel's information, each table follows the next in R,G,B order. The
standard tables included in Apple's driver have only one table, which is

January 19, 1989 Gamma Correction page 4
Apple Computer,Inc.

applied to all three output channels. Since Pascal cannot express variable
size fields in record structures, the independent channels are not
individually named. '

'gama’ Resource Format
In addition to the RAM data structure for gamma tables covered above, there
is a standard resource format for gamma table resources. Like many other

resource templates, the gamma structure is an image of the RAM form stored
in resource format. There are no changes.

Using Gamma Correc:txon

Gamma correction is. always applied- by the TFB video driver. At driver open
time, the driver is usually.initialized with a-linear (non~torrectmg) gamma
table. When _InitGraf is called, the ' scrn screen confxguraﬁon resource is
read from the systent file. This’ tesourcé (described in Inszde Macintosh,
Volume 5) includes information about the size and or1entatxon of the
different monitors COnflgured mto the system, mcludmg their last video
mode (pixelsize), coler table; 4nd gamma table. /If there is no 'gama’ resource
id specified, or the speafxed id-is fiot present, thei & default gamma table,
'gama’'=0 is loaded from the system file and used (this is the table. calculated
for the TFB card). If the specified resource is found, then the appropriate
resource is loaded, and a control call is issued to the driver to make this the
current gamma table. Unfortunately, there is currently no tool to allow the
'gama’ id to be set short of modifying the 'scrn’ resource directly (Note - the
new Monitors cdev will provide this facility). To facilitate the usage of the
gamma table, there are two calls in the standard video driver routines that set
the gamma table (control call 4, SetGamma) and retrieve the pointer to the
current gamma table (status call 6 on TFB rev 2 drivers and up). These calls
simply take and return a pointer to a GammaTbl structure.

January 19, 1989 Gamma Correction ; page>5
Apple Computer,Inc.

Driver Functionality :

SetGamma / Control code = 4 : This routine sets the card's gamma correction
table by copying the supplied table to the driver's private table. The
csParams field of the control parameter block has a pointer to a gamma
table block (csGTable). This block consists solely of a pointer to the gamma
table data structure. For devices in an indexed pixel mode, this routine
merely loads the gamma data into the driver's private copy for application
on the next SetEntries call. Since direct devices do not respond to the
SetEntries call, when in these modes SetGamma generates a linear ramp
in each channel then writes these values into the CLUT, applying the
gamma correction at that time. Unlike normal ramps in indexed mode,
the ramp applied in direct mode places level 0 in the lowest posmon of the
CLUT and $FF in thée highest ad&ress (for 8—bit DACs):

SetGamma routing unprove useabahty If NIL is paSSed it the SetGamma
Control parameter; bloeK as the new table address,, then the driver will set
the gamma to the 1',_ "'"";al gamma table, which was loaded at driver Open
time. If POINTER(1)is passed in the control parameter block, then the
driver will set the correctygn fable to’ ‘be linear; and uncorrected Use of this
option will guarant'ee that all p0551ble gray levels that the card can produce
are available, however, 1mages drawn on this screen are not being gamma

corrected.

-

January 19, 1989 Gamma Correction page 6
‘ Apple Computer,Inc.

Harpo/Topanga Video Software Support

David Fung ;
Graphics Software Group
January 6, 1989

Overview

This document describes the system software environment in support of the
Harpo and Topanga display systems. It includes a brief description of the
hardware, the specifics of the software implementation, and an analysis of
some implications of the hardware design on software and the user interface.

Hardware Description R B
Harpo is the 68000-based.portable. Matmtosh It features.a. 640*4@0 active
matrix LCD display | bul}.t into.the case. Theé. IOpanga v1deo ccmverter is an
optional add-on the Harpo which alldws the Harpo to. drlve a variety of CRTs,
specifically, 67Hz non-mterlaced t1m1ng compatlble with the Mac II Hi-Res
Monitors (640%480 pxxels), NTSC dlsplays (512*400) ‘and PAL (640*480)
displays, selected by physncal switches. Although Topanga includes an
internal frame buffer, this: frame buffer is not acce551ble from the CPU bus,
and always displays the same data-ds is present: fin-the. Harpo CPU. Unlike
typical Mac II video hardware, the Topanga produces actual composite video
signals rather than timing-compatible RGB signals (which must be encoded to
composite video to be displayed on a television set). In addition, composite
output of the Topanga is always convolved to reduce flicker on these
interlaced displays.

Topanga does not include any software-accessable control registers. As such,
software cannot identify the presence of a Topanga, the type of monitor
connected, or the video output mode selected. Similarly, the Harpo cannot
modify the state of the Topanga converter (i.e., the Harpo cannot defeat
convolution via software switch). This is considerably different than the
Macintosh II environment which is generally fully controlled from software,
and has implications on the operation of the hardware to the Harpo user.

David Fung Harpo/Topanga Video Software Support January 17, 1988
DRAFT 1.0 Apple Computer Confidential page 1

Software Description

The software support for Harpo video output consists of two major groups of
modifications. First, there are Harpo-specific modifications to QuickDraw and
the start code that allow the screen size to be settable to one of the various
resolutions. The second group of modfications update the Window and
Menu managers on all CPUs to allow the curvature of the corners of the
desktop to be settable. In addition, some amount of support for these
modifications is required in the Harpo cdev.

On non-Color QuickDraw Macintoshes, the size and shape of the display is
defined by a bitmap data structure, created in the QuickDraw A5 globals on
each _InitGraf call. InitGraf constructs this bitmap, called ScreenBits,
from a number of low-memory locations; ScrnBase provides the frame
buffer base address, ScreenRow provides the rowbytes of the display, the
screen height from Maxy,.and.the screen width from MaxX...QuickDraw can
draw to a frame buffér described by any reasonable combination @f these
values. In the current start code, these low-rnemory gIobaIs args Set up from
($27?), Wthh selects the desrred set of parameters for the glebals The specific
values for the globals in‘each mode are hsted below

The Harpo frame buffer is; de51gned to dlsplay 64@ plxels per line with no
unused space betweén, scanhnes The “Topanga c:onverter always expects the
video data to come out of a franié buffer of this format. All the video displays
supported by the Topanga are different in size than the Harpo LCD. The Mac
II monitor has the same scanline length, but is 80 scanlines taller. In this case,
the Topanga adds additional black lines to the top and the bottom of the
Harpo's display. Similarly, PAL composite displays have the same scanline
length, but 86 extra scanlines which are also blacked out above and below the
active display. The NTSC display has a smaller display area than the LCD,
and require that a centered, reduced version of the desktop be drawn in the
frame buffer. To generate such a display, ScreenBits is set up so that the
bounds rectangle reflects the reduced screen size, but rowbytes is unchanged,
and the base address is offset to the starting position of the reduced size
display. In this case, the area surrounding the reduced display should be filled
with solid black in order to darken the screen area out to the corners of the
CRT. Here are the appropriate bitmap definitions for the four displ}ay' modes:

David Fung ' Harpo/Topanga Video Software Support January 17, 1988
DRAFT 1.0 Apple Computer Confidential page 2

For the Harpo Built-in LCD Display:
hcSernCfg = 0
scrnBase = $FA0000
screenRow = 80
MaxX = 640
MaxY =400

- For the Macintosh II Hi-Res Display :
hcSernCfg =1
scrnBase = $FA0000
screenRow = 80
MaxX = 640
MaxY =400 (80 lines are blacked)

For NTSC Display: . :
heSernCfg=2 | |
S CrnB Age $F AGOOS # . &

screenRow ="80..

MaXX 512

MaxY 400

For PAL Dlsplay]

thcrang 3

scrnBase = $FA0000

screenRow =80

MaxX = 640

MaxY = 400 (86 lines are blacked)

Since all drawing is clipped to screenBits.bounds, in NTSC mode, it is
sufficient to blank the screen edges once at startup. The screen parameters
code only reads hcScrnCfg; it is set only by the Harpo cdev. The Mac Toolbox
currently does not allow changes to the size of the desktop, and, as such,
screen mode changes cannot take effect until the next reboot.

Rounded corners on the desktop are a fixture of the Macintosh user interface.
The presentation of the corners is affected by write-to-black nature of the LCD.
To improve the appearance of the display, the rounding of the desktop when
displayed on the LCD should be done in white rather than black. When

David Fung ' Harpo/Topanga Video Software Support January 17, 1988
DRAFT 1.0 Apple Computer Confidential page 3

Topanga output is selected, the Window Manager should revert to a black
surround. ‘

The code changes in this area are straightforward. The _InitWindows
routine is modified to test the hcScrnCfg global. If hcScrnCfg =0, the LCD
display is selected, and the desktop is framed in white. If hcScrnCfg is non-
zero, then a Topanga display is primary, and the framing is performed in
black to mask the non-linearities in the edges of the CRTs.

Finally, there are a number of changes to the drawing of the various graphic
elements to accomodate the specifics of the display. In particular, the
menubar is given and one-pixel frame to define it against the non-rounded
background. This frame will be inset by one, which will have a minor effect
on menu title positioning.

Human Interface Considerations’ 4
Switch select has to be ' conﬁrmed"
No recognition of cormected momtor

Display looks bad when, alternate is selected

David Fung Harpo/Topanga Video Software Support January 17, 1988
DRAFT 1.0 Apple Computer Confidential page 4

The Jackson Pollock
Product Plan
-0r-

Why 32-Bit QuickDraw is Not Just for the Low End

I. Introduction

"Jackson Pollock" is the codename of the project to extend QuickDraw to support up
to 24 bits of color. In addition to the 24 bits, it will support the movement of an additional
byte of information that is typically used by applications developers as an "alpha channel" or
a transparency mask. While the 32-Bit QuickDraw code is 32 bit clean, it is NOT necessary
to have a 32 bit clean system in order to run it. This code will be supported on all machines
that have Color QuickDraw, specifically 020 and 030 class Macintoshes.

II. Objectives
The objectives of the Jackson Pollock project are:

1) to substantially raise the competitive stakes of color in the personal computer market;
2) to make extensive color capability a standard on all color Macintosh computers.

QuickDraw is currently under a great deal of scrutiny in the personal computer market.
In the area of basic primitives, drawing commands such as lines and curves, QuickDraw is
i T N e o alaiad Do

significantly behind PostScriptauaning-onlidix-pased d-Rrescntation
Manager in the IBM-compaible market. At presgnt, the nd in ogitline font
capability. Other than the cplor changes made td the M tle hag’been
shown to customers and deyeloffers to change the percepti fhtosl(is standing

still in graphics.

The area in which thd
in that of color and bitmappeth ics. Bpth Preseptation Manager and/Display PostScript
have significant problems ip+ tation ofjcolor. Whil aim to have 24 bit

support, it has yet to be defnonstra 3 ptarting with a devige-independent model
has caused them to basically s ability y6 manipulag image pr "bitmapped"
graphics. Thus, the move thgu i ,KDraw is anfattempt fo push our competitive
position to the limits. By beinPthe.qn stms company tdthoromghly support this level of

color, we have positioned the Macintosh as the machine for which to do color development,
unlike the PS/2, Sun or NeXT systems.

At the time this project began, it appeared that additional changes to the graphics
system would not be achieved until at least the beginning of 1990. Thus, the project was
begun as an interim measure to produce features that developers were demanding. Over forty
people from 28 companies attended the original developer meeting held under nondisclosure
during MacWorld--January, 1988.

In order to maintain a uniform platform for development, a goal which reduces
Apple's maintenance costs, the intention is to fold this code into Color QuickDraw.
Customers using color systems and color applications require more than 1 megabyte of
memory. As the cost of video cards supporting 24 bits of color drops due to competition
and the declining price of RAM, and as 24 bit scanners and color printers become available, it
is believed that this will be the most desirable configuration. In fact, with improved printer
grivers, it will be possible to get incredible color output on printers that cost as little as

1000.

In addition, supporting one Color QuickDraw rather than two separate bodies of code
is seen as critical to the long term success of the project. Apple has rarely had more than one
person working full-time on QuickDraw, and there have been times when there were no
engineers responsible for Apple's core graphics system.

III. Benefits of 32-Bit QuickDraw

The chief benefit of 32-Bit QuickDraw to Apple's customers is that it takes the lid off
the number of colors a customer can use. Smooth shading or transitions are possible in the
simplest graphs and slides without dithering. Finally, lifelike images can be displayed. Even
customers with eight bit video cards can take advantage of the functionality and manipulate
24 bit images with standard color paint packages, scanners and printers that have been
modified to support 32-Bit QuickDraw.

It also alleviates some of the demand for higher resolution devices. Perceived image
resolution is a function of two variables, the dots per inch and the color depth. While the
Macintosh is currently being assailed for its lack of resolution independence, the level of
depth Apple provides on the Macintosh produces startlingly high quality images without
significantly changing the dots per inch on the screen. In addition, as with LaserPrinters,
there is a cost/quality tradeoff in getting more dots onto the screen. While Apple has not yet
pushed the dots per inch technology to its limit, with up to 24 bits of color, Apple has pushed
the color depth. In fact, the value of extending to 32-Bit QuickDraw is in part that we have
pushed that envelope to its limit. We will be able to add additional functionality to the other
eight bits at a later date.

The most obvious exigermg markets for 32-Bit QuickDraw are Desktop Publishing,
Desktop Prfsentations, video and Film Production, and Scientifiy Visualization. In

Publishing pnd Vid oy is usefpl fo ¢ ijjages from natural sources.
For Presentatiops etpfr-fOr prodjicin , pdmps” from one color to
another. Fihall its.of color makekgghnti Zeasigh to visualize for many

Rabling technology, imdge vjbualization can be expected to

release. The additiomareight bits will be moved around without adding additional
functionality. The PICT file format will be extended to support the 32 bit data. Three
compression types have been defined.

In addition to drawing with more colors, 32-Bit QuickDraw adds the following
features:
* Support for very large frame buffers
(devices requiring more than 1meg of video RAM)
* Support for direct devices
(devices that do not look up colors with an index into a table)

This implementation is targeted at all CPU's with a 68020 or greater processor. It
assumes that such CPU's have more than 1 meg of memory. QuickerDraw enhancements
will be spread across all cases (bits per pixel) to achieve optimal performance across 4, 16
and 24 bits per pixel. Itis expected to run under A/UX v1.1with little or few changes.

To see 24 bits of color requires a change to the Monitors CDEV to support video cards
of up to 32 bits per pixel. In addition, the General file must be changed: so that the pattern
editor continues to work. Finally, some minor changes will be made to the Palette Manager
to keep it from doing anything wrong in 24 bit mode. The three files, "Monitors,"
"General," and "32-Bit QuickDraw," must be dragged into a System 6.0.3 folder to be
installed. When 32-Bit QuickDraw is successfully installed at Startup, the icon will become a
color icon.

32-Bit QuickDraw does not require a 32 bit clean system to run. However, it does run

in 32 bit mode. In each QuickDraw call, it always switches the machine into 32 bit
addressing mode before drawing and restores the system to the previous mode afterward.
All pointers passed to 32-Bit QuickDraw are assumed to be valid 24 bit addresses—they are
translated to valid 32 bit addresses via a new trap (_Translate24t032 = $AB03). The
presence of this trap is sufficient evidence that Jackson Pollack is available. On future
machines which natively run in 32 bit mode, the address translation trap and

_SwapMMUMode should be replaced with an RTS.

Additional parts of the system that have been affected by the Jackson Pollock project
include the Slot Manager, AppleShare, and the SwapMMUMode trap. Slot Manager
extensions are necessary to allow the use of a 32-bit addressed video card as the boot (or
only) screen. It may also be possible to support Rev-A Mac IT roms. 32-Bit QuickDraw
installs a patch to _Open (when necessary) to suppress the AppleShare activity arrows on 32-
Bit Adressed screens. The SwapMMUMode trap is patched to prevent the loss of ASC
interrupts on MaclI's eith HMMUs. The color PostScript LaserPrinter driver designed by
the Print Shop will support printing of 32-Bit QuickDraw images.

In addition, it would be desirable to have some minor acceleration hooks put into
QuickDraw that would allow QuickDraw to achieve the best performance p0531blc on
standard industry coprocess ergd a minor.ohy hanges to

* Size

The anticipated size ,
development of a stand-alo ch the shipping patch size may De as lafge as 90k. Specd Vs
Space tradeoffs have beenfapproaghed witlf a bias tpwards spegd.

* Speed

The code runs some han 8 bj¥code, whiclf is to befexpected. However,
drawing a 24 bit deep image W 24 bit screen. DAMhile-dEpth conversion will
always be slower than native blits, opnmlzdtlons for common cases will be made.

* Color WYSIWYG.

While it will be possible to print 24 bit color images with the Color PostScript Printer
Driver, nothing will be done in the short term to ensure that the colors on the screen are well-
represented by the colors on the printer.

* Testing

Testing does not require a 24 bit video card but does benefit from it. At present, there
is a very low supply of these cards, both within Apple and in the developer community.
Should testing appear to be incomplete, the project's shipment will be held up.

« All of QuickDraw in Patches.

To achieve the implementation, all of QuickDraw must be patched and put in a file that
is easily transportable. The issue as to how to keep the code from being immediately
disassembled is being investigated.

VI. Apple Projects Affected

Apple currently has one project under development that depends on this code. A video
card in design in SEG and planned for shipment in fall of 1989 is depending on the
widespread release of 32-Bit QuickDraw prior to its introduction to drive the card's success.
Expected price of the card is $1300; it will support 24 bit color on standard Apple color
monitors. Originally intended as the video card to drive the Testarossa monitor project, it
will also support 8 bits per pixel on large screen, color monitors.

In addition, the Mirus film recorder, a QuickDraw film printer, is supporting slides
that can display 24 bit color. In fact, slides with only 256 colors do not give the perception
of high quality that this low cost film recorder needs to be successful.

Color scanners and frame grabbers are additional types of hardware that are currently
on the market from third parties. Apple itself has plans to do projects such as these that will
be introduced after 1989.

VII. Product Schedule

This project was announced publicly at the Spring Developers conference in 1989 as it
was one of very few definite features intended for the September system disk. Due to the
slipping of System 6.0, the schedule on the project slipped. It is currently intended to be
finished as of March 15, 1989 (see attached schedule). However, complete testing will have
a substantial impact on its release date.

The last seeding occurred Januvary 11th. This version resembles the final version in
that 6.0.3 supports the installation of 32-Bit QuickDraw by the dragging of icons into the
System Folder. The patch icon will turn into color when it is actually installed.

Testing will proceed from December through February. Aside from having Tester
Doug Rosenberg and two tegersjfrom SIAC in SQA working on it full-time, the Product

Third partidsll be sho \ing 32- B tQutckme Ompatg le products at MacWorld. 32-Bit

developers throu gh APDA. Llcenem g of the three files will be readlly available to developers
interested in redistributing it with a copy of System 6.0.3. The patch files will also be
distributed to all significant user groups and all dealers, and they will be posted to all bulletin
boards currently supporting Apple software licensing. An additional promotional flier on the
benefits of 32-Bit QuickDraw will be made available to dealers and user groups.
Documentation and instructions on installation will be included in a "Read Me" file on the
disk for customers.

Stkic

ABOUT SKIA..........covuenens ceasreerersi s a et aaes R cersereaeaiaas .1
Read these two pages to fmd out all about Skia.

THE MATHEMATICAL FOUNDATION OF SKIA...........ccourvnnee. SRR |
The Coordinate Plane.........iinneieniiiseceiscssenesesenesesesesesnse veeene3
Skia Geometric Structures........cceveenenererenennes veererersersaereseaesrsaens ceerriesrnes 3

GRAPHIC ENTITIES....ocoititerirreienireensiiserinnessissessssssisssesssssesssssssssesssesess O
Bit IMAEES...cvirircniiietiteirtetccteest et sn e e n s ness s s nass ere?
Regions and Skia Shapes..... e r s s s sttt sssesens 8

THE DRAWING ENVIRONMENT..........cccouevreererrrennes reraerestseaeasae s aersae 10

TRANSFORMS.........covuemrmcnrnrennnne creeerereasase e esrenaes . 12
UsIng Transforms.........cueuiicuiniiniiisiisiiiisisssssnesssesssssssssssssassesens 14
Transforms and Bitmaps........ccceuveueiiiriinennniencnctsteese et 16
Devices and gDeviCes..........uieieieireeceeininsessssssse e 17

STYLES .ottt ssssessiseas s asissnsasssssssssssssssssnsassessssssssasssnes 18
Algorithmic Text Faces.........cccoceuecvnrnneene. O 21

Shape Routines

Lines......c........ reeeestetsbe et st et bes s benene ertesus e aensae e beas s nesaeses 35
ReCLANGIES......ovnireiireiriict st nne 37
Ovals and Rounded-Corner Rectanglesccvwrimsrecmcssensnsennne 37
Arcs, Curves, and Wedges........ccoiiiincinnnncisninnse s
Polygons and Paths..........iiice e
BItMaPS ...ttt e
TOXE ettt bbb
PICEUTES ..ttt st
Shape Operations..........cocuveuiieiieinireiniiesie s ssssesssssssesssnsanes
Calculations with Rectangles

Operations on GEeOMELTY........coovviiiriinierceciciese s sssenese 49
Operations on Contours, Vectors and Control Points........ resscenee PRI |
Shape Utilities........cocovevirinirirniciiiiiencsesenen. R SR, .53
TIaANSTOIMS ...ttt sess e sessscstassssssses 55
Operations on Shapes and Transforms...........ccoeueeeveeiiiiniinieiensnenes 57
Ports and the Transform’s Port List ..., 60

Skia Table of Contents 12/16/88 Apple Confidential

Styles.......uue.e. srrstorsesermastsnsesesssassitatasseasasars easR iR se RS aS S SR bt e ren e enses 61
Operations on Styles

COlOT TADIES.....cotrieriiererrtereeeee ettt s e eeeeaeesassessene e ssasans
Converting Between Local and Global Coordinatescccevueveruenee.. 73
Devices.......... reereraeerseires bttt e bt e e s et e es e e s essteaseeraseraeseerseeraesanesasaensasas .73
Resources.
CUSTOMIZING SKIA OPERATIONS .
Skia’s Interpretation of QuickDraw Routines........ cerereeneanas creerversennes ...80
SKIA INTERFACE SUMMARY.......coevrveveversrrereenene ceeveenrens cesvesaenen cereresneneas 90
Constants......cceceeevrenevenees cevonesseennesnees reeeorenessesneranenans ceeerennas cerssnrsnanonnans90
Data Types vosssassnsnnersrasensresessrssernasasns e sennans S 93
Routines.................. ceerennsons R reestssesasssesunesesnesanensan cresererenes ceveenesnrsneasnenee 95
a
=]
a
a
a

Skia Table of Contents 12/16/88 Apple Confidential

This document describes, as the third-party developer would see them, Skia and the differences
between QuickDraw and Skia. It documents the new features that Skia provides. Reading this
assumes a good working knowledge of QuickDraw; words and diagrams in Inside Macintosh,
volumes I, Il and IV are not duplicated here.

Please forward all comments to: Cary Clark x43887, 27-A], or AppleLink FAIRMAN.M.

Skia is being developed in C, so this documentation presents Skia and QuickDraw from a C
point of view. New routines are given with C prototypes, and new structures are given in their
C type format. Pascal exceptions are noted as appropriate.

ABOUT SKIA

Skia is a QuickDraw-call compatible graphics package that provides an advanced feature set to
new Macintosh applications. Skia is accessed through an augmented QuickDraw interface, and
requires an existing application to be re-compiled or re-assembled. Skia is intended to run on
any Macintosh (Plus, SE, II, portable, or future 68030) with a hard disk. Since Skia is written in
C, it can be ported to the AMD 29000 graphlcs accelerator, as well as the Apple I GS, Newton,
Draco, or any future Apple hardwj i

will be upgraded
(Rhoda).

¢ fixed poi
* device indepe

* new pr1m1t1ves aths (including Bass outlines), curves
¢ off-screen bitmap support

¢ drawing can be clipped to characters, bitmaps, paths

* PostScript-like features such as line joins, endcaps and dashing

¢ pattern, dashing, join and endcap capabilities beyond PostScript

¢ path following (e.g. text drawn around a circle)

* custom text styles, character placement and drawing modes

* length and area primitives

¢ faster algorithms for hairline drawing and repetitive drawing

* rotation, scaling, skewing, perspective -- full 3x3 transformations

¢ device independent clipping, framing, path following, hit-testing

¢ device independent patterns, region operations

¢ uniform interface available for all drawing primitives

¢ error detection and routing

* editable, parse-able pictures

¢ graphics accelerator support

¢ advanced window support, including panning, split panes, and zooming
¢ additional arithmetic modes and user definable drawing modes

Skia Project Summary 12/16/88 -1- Apple Confidential

e bitmap output (for screens and QuickDraw-style printers)
¢ Skia primitive output (for Skia remote imaging and Skia printers)
¢ line and cubic Bézier curve output (for PostScript printers)

Skia is staffed by Cary Clark, Michael Fairman and David Van Brink. Skia’s product manager
is Laurie Girand. The Skia project is in the Graphics Software Group, headed by Jim Batson.
Skia will be shipped to a select group of developers along with the “Big Bang” Alpha System
7.0. Skia will be functional by the “Big Bang” release time frame.

Skia is estimated to be around 300K of object code on any given implementation. To
accommodate small memory machines, Skia can be segmented to allow a small, single
segment, memory resident footprint; this implementation detail is not visible to the user, and is
not required on larger memory machines. Skia also supports disk-based data such as pictures,
regions and bitmaps, to accommodate limited memory applications.

Skia does not require hardware floating point support or virtual memory; Skia can, however,
benefit from both. Skia does not require the Macintosh memory model, although it is
compatible with it. Skia is compatible with Bass outline fonts, and can accept Bass outlines as
an internal data type.

Because it reuses the QulckDra ainte exisdng pplic ion q use Skia by

existing calls.

Skia does not attempt to be “pixel-p€ {th QuickDraw. Thus/a thic){ framed rectangle,
polygon and region with the samgejnput co-odinates pffect the s3 ixfls under Skia (where
as they may affect 3 different sfts of Nixels unftler QuigkDraw).

Skia compatible applications:

* interface with Skia throughtts interfaces on #e€ QuickDraw, which
permits the application to interface through changing data structures) This will affect
practically all applications.

* anticipate that a few QuickDraw calls are ignored, or their meaning is changed slightly.
The application may be affected by Skia’s interpretation of a shape’s geometry. See the
routines section for full details.

* written in Pascal require references to a few data types to be changed.

To make the QuickDraw to Skia transition as painless as possible, an MPW tool will be
provided to do as most of the manual editing changes, and to identify parts of the program that
are incompatible with Skia.

Note: This document does not include the necessary changes to Toolbox Utilities (fix math),

the matrix math package, the Font Manager, the Color Manager, the Palette Manager, the
Device Manager or the Window Manager.

Skia Project Summary 12/16/88 -2- Apple Confidential

THE MATHEMATICAL FOUNDATION OF SKIA

The Coordinate Plane

Skia expands QuickDraw’s coordinate plane by expanding the grid coordinates to long integers
(in the range of +2540699648). Grid coordinates default to fixed point numbers (16.16), defining
a range of +32768.

To help specify fixed-point constants, a simple macro is introduced:

#define f(a,b) (((long) (a) << 16) + (b))
This allows f(1,0) to mean 1.0.

Pascal note: there is no equivalent to this mechanism in Pascal. For small integers
hexadecimal strings can do the job. For instance, 1.0 and 2.0 are equivalent to $10000
and $20000.

In addition to the coordinate plane in local space, Skia defines a separate coordinate plane in
global space.

-!!2768.0

L —

\ -32768.0

e

-32768.0 | ey +32768.0 .| +32768.0
\/
r \ system andfiser
32768. transformafions +32768.0
Local Cooxdinates Bounds Global Coordinates Bounds

Global space is also fixed point; each device visible to Skia occupies space in this fixed point
plane. Global space is like the view of the devices presented by “Monitors”; the device’s
rectangle describes how big a picture or page the device can display, but says nothing of the

- resolution of the picture. Global space is mapped to device space by a matrix supplied by the
device; in device space, 1.0 is normally equal to the size of one pixel. Applications normally
work in local space, but will want to know about the properties of global space, and less often,
device space.

ki tri ructur

All geometry is specified to Skia in terms of one or more x-y coordinate pairs, called control
points. For instance, a line has two control points that define the line segment, and a rectangle
has two control points that define opposing corners of the rectangles. Control points define the
geometry relative to the other points within the geometric structure.

Skia 12/16/88 -3- Apple Confidential

Skia defines points, rectangles and regions as geometric structures, just like QuickDraw. All of
Skia’s structures are described by fixed-point coordinates instead of integers. Additionally,
Skia provides public geometric structures for lines, curves, ovals, polygons and paths. These
structures contain only geometry, and say nothing of the position, resolution, color and
clipping relative to the structure is drawn.

The geometry engine within Skia allows the user to manipulate and inquire about the geometry
of a shape. Skia needs no more information about the shape than the values of the control
points to perform these manipulations and inquiries. Skia maintains the highest precision
possible when performing geometric manipulations.

For instance, it is possible to define a polygon and then clip it to some other shape, rotate it,
and get the rectangle that defines the resulting bounds without any reference to the device
world.

Points

Skia supports QuickDraw points, which have two 16 bit integers, as well a new type, which
contains two 32 bit long integers. Skia mamtams the QuickDraw definition of the coordinate
origin and direction. Like Quic esfa pixel id lines, and
for the point to be located on th upper left boundafy of a pixel. (See Inside Macintosh, I-140,
figure 3.) The format of a Skia poi

typedef struct {
fixed x;
fixed y;

} point;

Note that the order is different{from QuickDraw. All few data sfructurgs introduced by Skia
list the x element first, then the\y elerent.

e RaR———
Pascal note: this data type is called skiaPoint in Pascal.

Rectangles

Skia supports QuickDraw rectangles, which have four 16 bit integers, as well as Skia’s fixed
point version, which have four 32 bit long integers. The Skia rectangle structure looks like:

typedef struct {
fixed 1left;
fixed top;
fixed right;
fixed Dbottom;
} rectangle;

Note that the order of the elements is different from QuickDraw.

Skia 12/16/88 -4- Apple Confidential

Lines, Curves and Ovals

typedef struct {
point start;
point end;

} line;

Note that lines do have direction; that is, reversing the start and end of a line may cause the line
to behave differently when drawn. (For instance, dashing begins at the start of a line.)

typedef struct {
point start;
point control;
point end;

} curve;

The curve described by these three points is a quadratic Bézier. (More about that later.)

typedef struct {
fixed 1left;
fixed top;
fixed right;
fixed bottom;

} oval;

Note that both thd rec
bottom definition,

data structure:

typedef st
long vectors;
point vector([];
} polygon;

Pascal note: this data type is called skiaPolygon in Pascal.

This, like the QuickDraw polygon, defines a single contour. Additionally, a new data structure
allows more than one contour to be specified within a polygon:

typedef struct {
long contours;
polygon contour(];
} polygons;

This describes the result of the union of two polygons, for instance. Both polygon and
polygons types are provided as a convenience; the polygon type implicitly specifies a single
contour.

Skia 12/16/88 -5- Apple Confidential

Polygons can have curved segments; when they do, they’re called paths.

typedef struct {

long vectors;
long controlBits{];
point vector(];

} path;

A path is identical to a polygon, except it has an array of bits that specify when a vector point is
on the curve or off the curve. Two consecutive points on the curve form a straight line. A
point off the curve causes the path to diverge toward that point, and then back to the next point
on the curve, in a smooth, continuous sweep, as described above under “Curves”.

u}

point 2

DV_\
| point 3

When two consecutive points are off the curve, @e7pecify a point on the curve, halfway in

between them.

point |
Like polygons, paths may have Yyore thew-efie contgdr:

typedef struct {

long contours;
path contour(];
} paths;

For example, some outline characters, such as the letter @, have two contours.

Polygons and paths may be defined by creating a new shape, and adding other shapes to it.
Polygons and paths may also be defined by a static array of control bits and vectors.

GRAPHIC ENTITIES

Skia introduces a few new terms to the bitmap fray, so here’s a summary to help sort things
out:

* A bitmap structure is a small record which the programmer can directly manipulate.
¢ A bit image is the actual bits pointed to by a bitmap structure.

Skia 12/16/88 -6- Apple Confidential

¢ A bitmap shape is a container passed as to all shape operations (Draw, Rotate, etc.)

Bit Images

Skia maintains the QuickDraw definition of a bit image.

The values returned by the Toolbox Utility ScreenRes are obsoleted by the multiple device
environment. See the section on “Devices”.

Bit Maps

Skia changes the QuickDraw definition of a bitmap, rendering the old bitmap structure
obsolete. To make full use of bitmaps, new applications should convert over to the new bitmap

type.

Since Skia allows local coordinates to be specified by a transform, Skia introduces a new
bitmap type that omits the integer bounding rectangle. (The rectangle is replaced by a clipping
shape located in the transform.) Additionally, this bitmap includes the pixel size, that is, the
physical bits per pixel.

typedef $truct {

*

. /*
rowWidth;

/*

sho /*
sho /*
sho /*
} bitmap;
A\ ,
Pascal no(a: this@e is calfed skiaBit}(’ap in Pascal.
Note: For opﬁmaMowWidth field should be a long multiple, although Skia

will work with row widths that are odd word multiples.

The offset allowed by the rectangle associated with a QuickDraw bitmap is kept in the default
transform, or the transform associated with the Skia bitmap shape. The Skia bitmap can also
specify, through the transform, a rotation, scaling and non-rectangular clipping.

The color table which maps the bitmap’s pixel values to RGB colors is kept in the style. See the
discussion on Styles, below.

The QuickDraw global, screenBits, should not be accessed since it can not describe a multiple
device environment. See the section on “Devices”.

Skia allows bitmaps to be transformed, either as a geometric operation, which produces a new

bitmap, or as a drawing operation, which causes the transformed bitmap to be displayed. The
section on “Transformations”, below, discuss the possible effects on bitmaps.

Skia 12/16/88 -7- Apple Confidential

Skia allows bitmaps to describe the current clipping region. See the section on
“Transformations”.

Regions and Skia Shapes

Skia greatly expands the functionality of regions. Skia regions, in addition to be composed of
lines, polygons, ovals, roundRects and other regions, can be composed of text, bitmaps, arcs,
curves, paths and even pictures. In addition to creating regions by calling routines that draw,
Skia regions can be defined by data structures. Skia regions may be parsed and edited. Skia
regions can be scaled, rotated and otherwise transformed without loss of information. Skia
regions can control the direction of pen movement while drawing to allow shapes to follow a

path. Skia regions are generally more compact than QuickDraw regions. Skia regions are
unlimited in size, and maybe disk based.

To avoid confusion between the properties of Skia regions and QuickDraw regions, a Skia

region is referred to as a shape. Shape better describes what a region is; an encapsulation of
geometry. A shape contains a geometry structure, and a pointer to a transform and a style.

shape—]
/ N

. 1.
lﬁ”e mansiorm
\/ geometric

strugture

Shapes are defined by:

#define RgnHandle sha

typedef struct {
long dummy ;
} **shape;

Shapes are not necessarily pointed to by handles. A RgnHandle may be a reference value for a
shape located in the memory managed by a graphics accelerator. Skia shapes have no public
data structure (not even a length or bounding box), so the definition look like:

Note: The internal format for shapes, like all Skia data structures, is not accessible to the
application. The data can be parsed and edited procedurally, however.

Note: the minimum shape size is not 10 bytes, like QuickDraw regions. Macintosh Memory
Manager calls should not be used to allocate, re-size or get the size of Skia data structures.

Skia 12/16/88 -8- Apple Confidential

metri ructur n raphic Entities as Sh

Any graphic entity or geometric structure can be encapsulated in a shape, a one-size-fits-all
container. To specify that a dots are to be used to dash a line, for instance, the dots must be
contained in a shape. A QuickDraw region is exactly the same as a shape; that is, a region
contains a series of geometries specified by drawing commands, and the region allows the
geometries to be further manipulated or drawn. Shape is used here so that the restrictions
contained within old QuickDraw regions do not confuse the Skia user.

Each shape has a type. The permissible types are:

typedef enum {
noType,
emptyType,
pointType,
lineType,
arcType,
curveType,
rectangleType,
ovalType,

polygonType,

or implementation.

QuickDraw uses special values of rectangles and regions to describe empty areas, or areas that
fill the entire global coordinate space. Skia provides the specific shape entities empty and full
to describe these instead. This provides a more compact form for these common constructs,
and avoids problems described in Inside Macintosh caused by wide open regions. Skia also
provides an inverse operator that allows the space outside a geometry or graphic entity to be
operated on, rather than the inside.

hi titi R I

Skia supports drawing and manipulating all graphics types in memory and on disk; this is
described in more detail later in the sections on pictures and shapes.

Skia 12/16/88 -9- Apple Confidential

THE DRAWING ENVIRONMENT

A grafPort is a collection containing the default transform, the default styles and some other
global state.

grafPort
/ / AN
default transform default fill style default bitmap style
default frame style default text style

Skia fragments the QuickDraw grafPort into several pieces to allow drawing state to be set with
more modularity. These pieces are the transform, which contains a 3 x 3 matrix and a clipping
shape, the style, which contains the pen’s color, dash pattern, pen thickness and the like; the
port, which contains the window-relevant matrix and clipping, and the device, which contains
the hardware-relevant matrix and clipping. Drawing is usually affected by only one transform

and one style, but it can be direc er pf porti.a.nd.dmnms——\

transform stylg— Eof' /évice
AR N 4 I Za U N4 ; AN
clip matrix color) /me é\p matr ip matrix

— /
port A) device,
port ore 3&4&/

attxutes

Simplified GrafPort Components

Any shape, when drawn, is first clipped to the transform’s clipping shape; the output is
mapped according to the transform’s matrix; it is then mapped by the port’s matrix, then
clipped to the port’s clipping shape. This is equivalent to the operation of QuickDraw’s
clipRgn and visRgn. The drawing can be further transformed and clipped by the device. See
“Transformations” for more information.

GrafPorts are defined as:
typedef struct {
long dummy;
} **grafPort;
Note that grafPorts can no longer be explicitly declared as part of the global or local stack
frame in an application. Although the grafPort definition is an indirect pointer structure, it is

Skia 12/16/88 -10- Apple Confidential

not necessarily a handle. To create, manipulate, query or destroy a grafPort, a Skia (or
QuickDraw) call must be made. Since grafPorts are normally allocated by the Window
Manager, this should not affect most applications. How it affects the Window Manager is the
subject of another document.

The important components of a grafPort, the transform and styles do not have public data
structures. Transforms and styles look like:

typedef struct ({
long dummy ;
} **transform;

typedef struct {
long dummy ;
} **style;

Pascal note: the Style data type in QuickDraw is the set of text face variations, so there
is a name collision with the Skia style type. The Skia interface for Pascal therefore
changes Style to oldStyle; any references to Style in your existing Pascal source will have
to be changed for the source to be compiled under Skia.

grafPort field explanation

device no equivalent in Skia. This has historically been used only by the
printing model, which is changed for Skia. See the section on
“Printing”.

portBits equivalent to the device’s bitmap.

portRect roughly equivalent to the bounding rectangle of the clip in the

transform when it is thought of as defining the drawable area of a
bitmap; it is roughly equivalent to the port’s clipping bounds when it is
thought of as defining the writable area of a window. Skia’s design
simplifies the number of clipping bounds QuickDraw provides; for that
reason, there is no direct equivalent of a portRect.

visRgn equivalent to the port’s clipping shape.

Skia 12/16/88 -11- Apple Confidential

clipRgn equivalent to the transform'’s clif)ping shape.
bkPat equivalent to the pattern contained by the default fill style
fillPat equivalent to the pattern contained by the default frame style

fgColor, bkColor equivalent to the colors contained by the default styles. All styles
: contain one or more colors in a color table. QuickDraw drawing modes
select how the colors are interpreted.

colrBit no equivalent. Skia does not support a multiple plane model.

patStretch no direct equivalent. Skia does support scaling all drawing, including
patterns. See “Transforms”.

picSave, rgnSave, have global equivalents, accessible procedurally, that specify polySave
whether a drawing operation draws, or is added to a shape, or both.

grafProcs Skia has nine steps to every drawing operation, and any of the nine can
be augmented or replaced by the user. See “Customizing Skia” for

more details. /7

TRAMNSFORMS , e / [/

A transform is a description of ¢
shape when it is drawn.

Skia introduces a 3 x 3 matrix tjat allyws, in afidition fo QuickDrAw translation, scaling,

B EE

original shape scaling rotation skewing perspective

Note that scaling also allows mirroring; all shapes drawn, including bitmaps, can be distorted
to be upside-down, right-to-left, or both. This is accomplished by passing negative values for
scale factors.

The matrix is a part of the transform. Many transforms can exist at one time, although Skia

creates only one transform for all standard drawing to use. The application may create
additional transforms, and assign them to particular shapes or groups of shapes.

Skia 12/16/88 -12- Apple Confidential

When text is drawn, the matrix rotates and translates the characters in the text string. Since
follow paths also can rotate and translate text, it is important to understand how the two work
together.

First, the clipping specified by the transform is applied to the shape. Next, the coordinates
within the shape are transformed as specified by the matrix. The shape is then translated to the
beginning of the follow path, so that the (0,0) coordinate corresponds to the beginning of the
shape. Finally, each point within the shape is fit to the path -- the horizontal value of the point
determines how far the shape travels down the path, and the vertical value determines how far
the point is positioned perpendicular to the path.

>
TMVAW o°
E
ABCD -90° rotation 6"&
normal text in matrix path to follow text along path

Skia maintains QuickDraw’s notion of the local and global coordinate systems. Shapes, style
geometries and the transform’s clip are specified in the local coordinate system. Ports and
devices are specified in the global dinate system. The transform and view’s matrices

i rdinafe system to the global §oordinate system.

aw, the upper left corner of the
portBits.bounds ig the left corner of #he bi/image; in Skia, an identity matrix

coordinates is tha equiv the graPort’s porfRect. The device’s bounds, transformed the
i i ds. Since the matrix may specify
rotation, skew or perspective, either transformed rectangle is not necessarily rectangular.

The example in Inside Macintosh involving SetOrigin is best stated under Skia by changing the
transform associated with the drawing instead. (You'll need to look at the original example to
follow this.)
Given that:

SetOrigin(90,80)
in the QuickDraw chapter (page 1-154) is the same as:

SetOrigin (gamePort”.portRect.left - 10, gamePort”.portRect.top - 20);

then the equivalent Skia call would be:
Offset (nil, £(10,0), £(20,0));

where the nil parameter causes the default transformation matrix to be affected, and

Skia 12/16/88 -13- Apple Confidential

£(10,0), £(20,0)
define the fixed point numbers 10.0 and 20.0.

This would have the effect of changing the matrix from:

a*

1.0 O 0 1.0 0 0
0 1.0 O to: 0 10 O
0 0 1.0 100 200 1.0

Unlike QuickDraw, changing the local coordinates meaning this way does not change the
values inside any shape or rectangle. Although at first this may seem confusing, the intent of
Skia is to simplify QuickDraw’s coordinate systems and allow more powerful methods of
translating one coordinate system to another.

Analogous to QuickDraw, the shapes and clips defined by the user can be thought of to stick to
the local coordinate system. The port and device’s clips can be thought of as sticking to the
global coordinate system, frequently the screen.

QuickDraw’s LocalToGlobal anf orocal copvert afpo ooTdMate system to
the other. Skia’s shapes often hpve many points, sg, rathe than callmg LocalToGJ)obal for each,
more powerful calls are providdd tg m locpl tg

Using Transforms

A transform can affect a shape i : first, the tra can distort the
shape’s geometry itself. That ig, a sh 1 to produge a different shape. This class
of operation is done by Skia’s geomet e. Secgnd, the trghsform fan affect the way a
shape is drawn; that is, the shapg can be rotated difterently in global cdordinates than it

appears in local coordinates. This Sperstiertsdone by Skia’s Forrete g engine. These two
capabilities are available in parallel, but Skia does not require the application use either or both.
Rather, the interfaces allow the application to choose which manipulation best suits their
needs.

The Transform’s Port List

A port is an association of the mapping and clipping from local coordinate space to global
coordinate space.

A shape is defined in local coordinate space. Local coordinate space is unbounded, and the
values of the coordinate serve only to define the shape with respect to itself. A transform gives
different shapes meaning with respect to each other. All shapes sharing the same transform are
drawn to the same scale. Inside the transform is a structure called the port list. Each port
contained in the port list is a mapping of the local coordinate space that shapes are defined in
to the global coordinate space that devices are defined in.

Skia 12/16/88 -14 - Apple Confidential

X,y (no units) x',y' (fixed point coordinates) x"y' inches :
“SEmmmniEst.
. &
local coordinates after transform global coordinates ¢ i,

The transform, in addition to determining the mapping of local coordinates to global
coordinates, specifies the local clip and through the port list, the global clip.

A
L)

transform’s cli

Each transform ¢

¢ & & o o

A transform typically contains only one port; this makes the drawing most like the classic black
and white QuickDraw. Color QuickDraw can draw on more than one device at a time; this is
analogous to a transform having several ports, one for each device the window crosses onto.

Skia allows ports to be very flexible.

¢ Any number of ports can be associated by the application (or by the Window Manager)
with a transform.

* Ports can be assigned to one or more transforms; each transform maintains its own
unique port list.

¢ Ports may overlap.

* The same device can have more than one port.

This flexibility makes it easy to implement split screens or drawing to simultaneous full page
views and editing views.

Skia 12/16/88 -15- Apple Confidential

Transforms and Bitmaps

Whenever a bitmap is transformed, it may be necessary to combine old pixels into new ones.
Skia uses a point sampling filter to create a new transformed bit image. The application may
specify the filter themselves. See “Customizing Skia” for more details.

The geometry engine allows clipping and matrix operations to be applied to shapes. This has
some special implications for bitmaps. For instance, if a bit image is scaled, the block of
memory containing the image will grow or shrink (possibly moving) to accommodate the new
size. Other direct transformations will additionally cause a new clip shape to be created (or
combined with the existing one) which masks out the unused area surrounding the image. The
following diagrams show the components generated:

original image rotated image new clip shape

In this case and most others, the]bo
one, and the following size charge (

e newfimgfe is not the gamesSize as the old
his cas sults in sompéthing like this:

B, New width

7/
7
wbiay mau

Note: Skia can only re-size the bit images that it allocates. Bit images allocated by the
application must be re-sized by the application.

Operations on Bitmaps

Skia supports performing the union, intersect, difference and xor operation on shapes,
including bitmaps. Each operation takes two operands and returns a destination shape. When
one of the source operands is a bitmap then the destination shape is always a bitmap. The
difference operator (A - B) is affected by the order of the operands, and does not allow A to be a
geometry and B to be a bitmap. All other operations are commutative and, given that one of
the operands is a bitmap, always return a bitmap shape.

Skia 12/16/88 -16- Apple Confidential

Clipping a Bitmap and Bitmap Clipping

Combining a bitmap and a geometry is implemented by combining the bitmap’s clip with the
geometry after finding the minimum enclosing rectangle of the two. If the bitmap was
allocated by Skia, the size of the bitmap may be changed by the operation. Clipping a bitmap
creates a irregularly-bound subset of the original bit image:

If the bitmap is clipped directly, then the bit image is modified so that the bounding box of the
bit image is the size of the resulting clipping shape. The transform associated with the bitmap
then points to the shape that describes how the bit image is clipped. The clip’s bounds always
fit inside the bit image’s bounds. The hidden pixels are still in the bit image, untouched; the

" clip in the transform pointed to by the bit image masks them out.

through and white bits 0B gthem. This monochrome mask is maintained as a separately in
the transform. -

Skia does not support clipping a shape containing a geometric structure to a bitmap, returning
a new shape. Skia also does not support turning a bitmap into a geometric structure, a path
made up of many small rectangles.

Devices and gDevices

A device is a software description of all or part of global coordinate space.

Skia integrates the Color QuickDraw device model into the overall coordinate transformation.
Like all Skia data structures, the device structure is not directly accessible, but can be examined

and changed through a procedural interface.

Each device contains:

Skia 12/16/88 -17 - Apple Confidential

* a clipping shape in global coordinate space (which is normally rectangular)

* a 3x3 matrix which specifies the resolution and position relative to other devices
* a color table which describes the hardware characteristics as currently configured
* abitmap

Skia extends the device model. Skia devices:

* exist on all machines supporting Skia (not just under Color QuickDraw).
* may allow support for a secondary screen, for flip-frame animation.
* can be used as off-screen bitmaps.

Off-screen Bitmaps

Since transforming at draw time can be slow, Skia provides a mechanism for recording the
intermediate image to assist in routine tasks such as updating a window. A new device can be
created that includes a frame buffer that is not connected to any hardware display; this frame
buffer is an off-screen bitmap. Off-screen bitmaps typically mirror actual hardware devices,
but are not required to do so.

To draw into an off-screen bitmap assoCiatps a po al.caardinates into the
newly created device’s global cdordinates. Typical

ap forouble buiffering, Skia fuppofts using off-screen
bitmaps to backup completely or partially obsfured windows. Toackup the portion of a
window obscured by a menu, f6r instance, thd application (or th¢’Menu/Manager, if extended)

screen bitmap. (In this exampl gCures the window Heneath it is left up to the
Window Manager.) When the merttr xwsed; the area undertiremrehu can be restored from
the off-screen bitmap.

SKIA STYLES

A style is the collection of state that applies color, pen thickness, dashing, patterns and so on
when a geometry is drawn. Four default styles are created when Skia is initialized, and new
styles can be created explicitly or by applying style operations to shapes. For instance,

shape myRectangle = NewRectangle (boxData);
SetColor (myRectangle, red, nil);

causes myRectangle, initially assigned the default fill style, to be assigned a newly created style
that differs from the default fill style in that the first entry in its color table is red.

SetStyle (myOval, CurStyle (myRectangle));

Skia 12/16/88 -18- Apple Confidential

causes myOval to share the same style as myRectangle.
SetPen (CurStyle (myRectangle), £(2,0));

sets the pen thickness for the style shared by myRectangle and myOval to 2.0.
SetPen (myRectangle, £(3,0));

sets the pen thickness for the style pointed to by myRectangle to 3.0. It will duplicate the style
since the style was shared by between myRectangle and myOval.

Dispose (myOval) ;
Dispose (myRectangle);

in addition to throwing away the oval shape and rectangle shape throws away the red style
with a pen thickness of 2.0 and the red style with a pen thickness of 3.0, since both style owner
counts went to zero. Every style, including the default styles, have owner counts, that is, how
many shapes and global references point to the style.

Pen Characteristics

Skia’s style specifies the graphics “pep”. Mgny styles can exist at orle time; normally one each

exists for all framq an -

will choose the sa

Skia’s pen can have a loGation/as set by the Movefand MdveTo calls; normally, the pen follows
the shape, and dodnot need a se te location.f A stylefcan also have a path to follow; in this
case, the shapes are a ong the path as théy are drawn.

The pen size is one-dimensional, and specifies the thickness of the line or curve drawn. The
drawing mode is treated the same as in QuickDraw. The pen’s pattern is treated similarly to
QuickDraw; additionally, Skia provides a one dimensional dashing shape. A dash shape,
unlike a pattern, is rotated to be parallel to the pen as it moves down the line or curve and are
scaled to the line thickness.

Skia provides control for what is drawn when the pen turns a corner. The drawing at the
corners are called joins. Skia also provides control for what is drawn at the beginning or
ending of a line segment that does not close a shape; these are the start cap and end cap.

As in QuickDraw, the style mode determines how the shape affects the pixels already in the bit
image, and the style visibility determines if the shape is drawn or hidden.

Skia 12/16/88 -19- Apple Confidential

Text Characteristics

Skia uses Bass outline scaling to generate shapes to define characters. If the Bass font is not
available, the bitmap font is used instead. Skia takes the character glyph index and horizontal
and vertical offsets determined by the Layout Manager, and draws the character that has been
grid-fitted to the device by Bass.

Skia provides for clipping to text as well as filling and framing it. Skia supports the
QuickDraw faces Bold, Italic (Oblique), Underline, Shadow, Outline, Extend and Condense as
well as providing an extensible text face mechanism.

Since text are shapes, text can be dashed, arbitrarily transformed, filled with a pattern, or
algorithmically distorted in any way that a shape can be affected.

Characters and strings may be drawn fit to a bounding box, or follow a path.

Skia defers the script and font naming and interface issues to Bass and the Layout Manager.

Follow Path

‘In QuickDraw, text is drawn at
horizontally by the character’s
in the style called the follow path.
oriented to be upright with resppct

path to follow text plong thp path

(Jumping the gun a little bit, since dashing is discussed below:) The follow path works pretty
much like dashing in reverse; rather than fitting the dashing shape to the path to be drawn, the
follow path treats the shape to be drawn as the dashing pattern and fits it to the path. Follow
paths are different from dashing in that the shape does not repeat, it is not scaled by the pen
thickness, and it is not clipped to the thickness of the path. Follow paths also keep track of the
last shape drawn, so that successive shapes may advance down the same path if they share the
same style.

AN N
ANV / A
several shapes drawn pattern to follow

Skia 12/16/88 -20-- Apple Confidential

Algorithmic Text Faces ‘

Skia text faces are algorithms that, given a shape (usually a path) and xy advance, can produce
a new shape and a new xy advance. Applications can add new faces, but they are only
available system wide if the they are installed as an executable resource in the system file.
Pictures can contain these code resources as well, so that the face can be ported to other
systems capable of executing it. If the face is not available, the system defaults to plain text.

Text faces can apply to any geometry, but only fonts can be affected by Bass to take advantage
of geometric distortions to make a face look best. Faces may not be applicable to bitmaps
(depending on the face implementation).

Text faces can have any number of parameters, and can specify their ranges and the default
setting. The parameters’ settings can be overridden by the font and by the application.

The current QuickDraw faces are interpreted as follows:

Face Meaning Parameter Default Setting
Condense horizontal compression reduced width 1/12 * point size
Extend horizontal expansion added width 1/12 * point size
Bold fa i £ 1/12* point size
Italic hdrizontal skew (oblidue) [angle of skewing 10.0°
Underline lirje(s) under the charjacter [pen thi 1/12 * point size
1
1/12 * point size
1/2 baseline + descender
false
Outline 1/12* point size
Shadow (-1/12,-1/12) * point size
entry 1 of the color table
The application of t s for old Text are in the order shown above. Skia

calls allow the algorithms to be applied in any order, and for the same algorithm to be applied
more than once. A structure in the style, a face list, carries the face order and parameters.

Text faces are implemented as named resources. New faces can be added by adding new
resources to the system folder or the picture, and can be selected by a menu through the
Resource Manager call AddResMenu.

The resource contains a list of machine types, and an executable code block for each machine
type. The code includes a data table of preferences, including whether the style operates on
single characters or entire strings. The style takes a shape (which may be a list of shapes), a
destination shape, the advance width/height table, and a variable length parameter list (which
may be 0). See “Customizing Skia”, below.

Text Size and Space Extra

As in QuickDraw, the size in the text style is specified in typographic points, approximately
1/72 of an inch.

Skia 12/16/88 -21- Apple Confidential

Space extra and character extra are under the jurisdiction of the layout manager?

Patterns

Patterns, as defined under Classic QuickDraw, approximate color, such as gray, halftones and
repeating bitmaps of a set size. Under Color QuickDraw, patterns can be more flexibly sized
and colored, but are still bitmaps. Patterns under Skia refer only to arbitrary repeating shapes,
where the shape can be a bitmap.

A Skia pattern is not limited to a particular size, as in QuickDraw, or a particular multiple, as in
Color QuickDraw. A pattern can be defined to be resolution independent. A pattern consists
of a shape to be repeated, and two vectors, described by a two points, that describe how the
patterns are repeated. The vectors can be thought of as describing a grid of parallelograms,
where the pattern is drawn at every intersection.

pattern shape

pattern vectors patte

hve morg than onefcolor b

Since patterns can be pictures, fa
shapes into a picture.

patteyn can grouping the colored

The generality of Skia patterns obsolete
QuickDraw pixel patterns.

€ed for QuickDraw patterns and Color

GENERAL DISCUSSION OF DRAWING

Drawing occurs:
* once per port defined by the current transform

¢ inside the bit images defined by the current set of devices, in the coordinate system
defined by the concatenation of matrices

e always within the intersection of the device and port clip shapes, also intersected by the
transform’s clip shape mapped into global coordinate space

Skia 12/16/88 -22- Apple Confidential

* at the coordinates defined by the shape, or, in the case of some line and curve calls,
between the former pen position and the new pen position; in either case, the coordinates
are transformed by the concatenation of the transform, port and device matrices.

¢ always with the current style’s color and mode, and usually with the style’s pattern,
dashing, pen size, pattern, caps, and joins.

Skia enhances polygons to allow the specification of more than one contour; each contour can
be drawn in a different color. Skia also enhances bitmaps and text, allowing them to specify
clipping areas. In addition to QuickDraw’s lines, shapes and text, Skia adds curves (defined as
quadratic Béziers) and paths (polygons with curved segments).

Lines

Lines are defined by two points, in two different ways: as always, they can be defined by the
current pen location and the destination location. Or, like rectangles, they can be specified by
the two points that make up the line structure:

typedef struct {

point start
poifpt S3etow
} line;

Skia lines are des
the starting and e

anglg whose sides are centered on

Unlike QuickDraw, Skia does not cause anything to draw if a line’s starting and ending points
are the same. Skia only turns on the pixels whose centers are surrounded by the rectangle.

Skia 12/16/88 -23- Apple Confidential

@
S @,»@ 7
EEEE
Olole
EE R
P @ @@ =
RSO

&)

Pixels affected by a line draw

Lines can have caps; a line cap is a shape drawn at each end of the line. The shape is scaled by
the pen thickness, and rotated by the angle at which the line is drawn.

.

end cap

start cap ne drawn wi and end caps

Lines can be dashed; a dashing shape is drawn, clipped to the line, advanced by a specified
width.

[@]mAV Q@Q<

[
dashing shape
dash

Py

advance width

" line to dash

Eill Fram h

Skia allows the frame of any shape to be inside, centered on, or outside the bounding rectangle:

Skia 12/16/88 - 24- Apple Confidential

Solid Shapes and Framed Shapes

Skia causes the outline of every shape to be drawn within the shape’s bounds (if desired)
without exception.

A corner of a shape, can be drawn using a standard join, or a join shape.

flat join custom join
Text drawing used the path tofele iti i is provided to make text fit
a bounding box. Unlike QuickDraw, any drawing in Skla can be specified to advance the pen
location. The pen follows a path, pointed to by the current style, that describes the current pen
position and direction. The distance the pen is moved down the path is called the advance
width. Fonts include default advance widths for characters. Shapes add the spacing
information in the style to the horizontal extent of their bounding box to determine their
advance width. The application may intercept and tailor advance widths as text and shapes
are drawn.

Iransfer Modes

Each style, whether the style is used to draw lines and shapes, text, or bitmaps, has a mode.
The eight QuickDraw pat modes are identical to their source counterparts. Six of the eight
QuickDraw source modes turn into copy, while the two xor modes turn into the Color
QuickDraw hilite mode. The copy, or, bic and not modes affect how the color table assigns
colors to indices. :

Skia 12/16/88 -25- ' Apple Confidential

Transfer mode Action

copy use color table to color destination

or use only contours with a color index = 0 to color destination (with color 0)
Xor exchange all occurrences of color index = 0 with color index =1 (hilite)
bic use only contours with a color index = 0 to color destination (with color 1)
notCopy use color table to color destination (invert color table entries 0 and 1)
notOr use only contours with a color index =1 to color destination (with color 0)
notXor exchange all occurrences of color index = 0 with color index =1 (hilite)
notBic use only contours with a color index =1 to color destination (with color 1)

Normally, an application would use only copy, and would change the color table in the style to
change the color of the shapes drawn.

Xor is special because it does not necessarily provide the expected results when used on a
destination bit image which is more than 1 bit deep; for that reason, the hilite mode is used
instead. Hilite is implemented with the xor instruction in 1 bit, providing the same
performance as the QuickDraw srcXor mode.

Skia supports the Color QuickDraw arithmetic modes addOver, addPin, subOver, subPin, max,
min, transparency and blend.

Skia introduces some ngw transfer modes t}at tak¢ advantage of color andl reduce the need for
off-screen bitmaps.

Transfer mode Agtio

reverseSubPin estination, pin um value
reverseSubOver stination, ovgfflow Allowed
saveAndCopy savebits after uhdoing lhst draw wi is ghape; apply normal copy
eraseAndCopy ase pyevious position pf shape; dfaw neyv position in copy
The application may inkoduc er modes #s well. [Custom transfer modes are
implemented similarly to es; a special ontains the transfer routine, it

is found by name, and is called by Skia directly. The transfer routine is passed a horizontal
slab of pixels to draw, and has access to the device’s bit image. This is discussed in greater
detail under “Customizing QuickDraw under Skia”.

rawing i |

Skia maintains the Color QuickDraw RGB color model. Like all other Skia data structures, the
color table has no public fields:

typedef struct {
long dummy;
} **colorTable;

Color tables contain one or more colors, defined by either an index or a 48 bit RGB
specification, exactly the same as QuickDraw:

Skia 12/16/88 -26- Apple Confidential

typedef struct {
unsigned short red;
unsigned short green;
unsigned short blue;
} rgbColor;

typedef struct {
unsigned short index;
rgbColor rgb;

} colorSpec;

Color tables for styles specify color selection. Color tables for ports specify color filtering.
Filtering specifies the portlon of the RGB cube that is allowed for drawing, and whether
drawing outside of the filter is ignored or mapped within the filter. Color tables for devices
specify hardware color availability. Color tables contain:

¢ an optional color table type (direct, fixed or indexed; point, line, plane or volume)
¢ one or more RGB or index (or both) specifications
¢ optional color attributes per color (courteous, dithered, tolerance, explicit, animated)

Color tables for styles are mterpreted as desired (or actual) pomts w1th1n the RGB color cube.
Color tables for ports ar thdr desirpe-poinis-oi-desizad-cejor lines, planes or
volumes described by thpir vertices.

lor in Bitm

A bitmap’s pixel values gre p¥pped Yo RGB cJors by the colfr tablg in the default style. The
color table represents the eXact set of cplors for|the image afd are fnatched to each device's

The style also contains:

¢ the transparent pixel value
¢ whether the bitmap is indexed or direct

Note: Bitmaps of 16 and 32 bits per pixel are assumed to always be direct; bitmaps of 1 to 8
bits per pixel are assumed to always be indexed.

PICTURES

Skia enhances pictures by making them editable and parse-able. The picture can be thought of
as a list of entries, where any entry may be a shape, or another list. In this way a hierarchy of
drawing may be built up. Like QuickDraw pictures, Skia pictures allow one program to draw
something defined in another program without having to know about what’s being drawn.

Skia 12/16/88 -27 - Apple Confidential

picture
N
shape picture

S

shape shape

In addition to the QuickDraw method of picture definition, Skia allows shapes to be added to a
picture, inserted into or extracted out of a picture. Skia allows pictures to be added to pictures,
and for each picture’s transformation to be respected, no matter how deep the nesting goes.

Every element in a picture can have a transform and a style associated with it. The transform is
concatenated with the picture’s transform; the style overrides the picture’s style. The same
shape can be added to the same picture more than once, and each instance can have a unique
or shared transform or style, or none at all.

picture | /1

The picture can use the transform’s matrix to specify the translation and scaling as an
alternative to using the picture’s frame and the rectangle passed to DrawPicture.

Pictures have no size limit, and may be resident on disk when they are edited or drawn.
Procedural parsing eliminates the need for making the internal format of a picture public.

Comments are special entries in a picture; they are enhanced in that they may include code that
is executed when the picture is drawn.

SKIA WITHIN AN EXISTING QUICKDRAW APPLICATION

Including “skia.h” causes the application to use Skia when it is compiled (“skia.p” if Pascal, or
“skia.a” if assembly). An application may have portions that call QuickDraw directly, and
portions that only use Skia, as long as those sections are in different source files. The data
created by one portion won’t be exchangeable with the other, however.

Skia 12/16/88 : -28- Apple Confidential

For example, an application only interested in adding rotation to drawing can do so by:
* Including “skia” where appropriate in the source header files
* Running the appropriate MPW tools to replace accesses to QuickDraw structures with
QuickDraw and Skia routine calls
¢ Adding a new call to rotate the default transform

This application would be interested in reading the section on “Operations on Shapes and
Transforms”, below, but wouldn’t have to read or know anything else.

QuickDraw compatibility will be expanded in this section as the Skia project develops.

Printing

Skia maintains device independent descriptions of all geometries and colors that can be drawn;
this can make the Printing Manager’s job easier by reducing the amount of guessing necessary
to produce the best looking output.

Like QuickDraw, Skia allows all calls to be mtercepted through a mechamsm similar to the
QuickDraw bottlenecking r StPmizing ai
allows its structures to be parsed, so that pictyfes, fo mstance, can be read i any order Skia
also prov1des geometry quries that allow thefbound}

from top to bottom.

Skia 12/16/88 -29- Apple Confidential

SKIA ROUTINES

About ti llin nventi

Skia is different from QuickDraw in that it does not allow the user to read or write the internal
data structures directly. Thus all Skia calls have routines that set the data structures, as well as
return their current values. These Set and Cur calls have a convention by which the parameters
are passed, and how Skia interprets nil or 0 passed in the place of an expected parameter.

Many calls that change the contents of a Skia data structure are of the form:
void SetThing(thing affected, params...); /* this is not a real call */
If the thing affected is intended to be a transform:

o If the thing affected is nil, then SetThing affects the default transform.

e If the thing affected is a shape, then SetThing affects the transform associated with the
shape.

¢ If the parameters are nil or zero, then that part of the transform is reset to its initial
condition.

The routine SetTransform

¢ If the parameters are nil (where nil is mappropnate) a warmng is posted.
If the thing affected is intended to be a port or a device:

» If the thing affected is 0, negative, or out of range, no action occurs and a warning is
posted.
o If the parameters are nil, then that part of the port or device is set to its initial condition.

Calls that return the current contents of a Skia data structure are of the form:

thing CurThing(thing queried, params *...); /* not a real call */

These calls fill in one or more parameters from thing queried. The information stored in the
pointer passed after the thing queried is also the function result.

* If the thing queried is intended to be a style or a transform, then nil queries the logical
default, and passing a shape queries the style or transform associated with the shape.

Skia Routines 12/16/88 -30- Apple Confidential

* Passing nil for a parameter defeats filling in the parameter pointer. This will return nil
and post a warning if the first parameter is nil and the routine returns a shape,
transform or style.

e If the parameter is a shape pointer and non-nil, the indicated shape is reused; if nil, the
shape is allocated.

The routine CurClip, below, has examples of these rules.

Error Routines

Skia provides warning and error routines for all QuickDraw calls. A warning is generated
when Skia detects a nonsense or do-nothing call. An error is generated when Skia detects an
unexpected or out of range value within a data structure, or when a system call like memory
allocation fails. Skia detects implementation restrictions and out or range or nil parameters,
but can be mislead by faulty data caused by illegally accessed or damaged internal structures.

Most Skia routines can post warnings; fewer post errors. A call to a routine will generate only

one error or warning, even if more than one error could have occurred. Warnings can be safely
1gnored by an application, although warnings can help debug apphcanons Errors are less easy
to ignore, and some errors are unrecove

Error returns the error ast routje to post aif error. Errors are sticky; that is, the
error code is not cleared b completion —Only InitSkia and Error clear
the error code. If a non-nil pointer is passed, Error also returns a pointer to the shape was
passed to the call that generated the error, or nil if none.

warning Warning (shape *guiltyParty);

Warning works the same way as Error. Error and Warning differ only in the severity of the
problem. Warnings can be ignored, but errors are less likely to be recoverable.

void IgnoreWarning(warning warningNo);

IgnoreWarning specifies that if the warning indicated is encountered, no warning is posted.
The main use for IgnoreWarning is to ignore intentional errors while debugging.
IgnoreWarning is also used internally to prevent warnings internal to Skia from interfering
with user warnings. IgnoreWarning saves warning numbers in a limited size queue, so that up

Skia Routines 12/16/88 -31- Apple Confidential

to 16 warnings can be ignored at one time. Overflowing the queue does not itself produce a
warning; it merely overwrites the oldest warning to ignore.

void ErrorProc(void (*userFunction) ());

The routine passed to ErrorProc is called if an error is encountered. The error routine is passed
the offending shape, if any, and the error code. Passing nil to ErrorProc removes the error
routine.

The error routine passed must be of the form:

void MyErrorProc(shape guiltyParty, error errNo);

Note: without an error routine, Skia will cause the application to quit, via a call to ExitToShell,
when an error is encountered. Even with an error routine, the caller will not always continue
to execute. Most callers will return to their caller (generally the application), but some callers,
such as attempts for memory allocation, will cause the application to quit even if an error
routine is in place. It is up to the error routine to clean up the stack, correct the error condition
and restart the call if it is desirable to do so.

The routine passed to WarnipgProc is called if an . The warning
routine is passed the offendi the warning code, default shape or value
that would have been retjurned ing nil t\WarningProcr the warning routine.

hape default);

Note that the warning routt n a function r

alid warning routine might
look like:

shape MyWarning(shape, warning, shape);
static shape MyWarning(aShape, errCode, defaultReturn)
shape aShape, defaultReturn;
warning errCode;
{
/* ... your warning code here */

return defaultReturn;
}

The default shape will be nil if the calling function expects to return an integer value.

Like errors, warnings cause the call which generated the warning to exit to its caller. Unlike
errors, warnings return valid data for the thread of execution to continue.

Skia Routines 12/16/88 -32- Apple Confidential

itiglizati
void InitSkia(void);

InitSkia allocates and initializes all Skia data structures the first time called. It re-initializes all
Skia data structures each additional time called. InitSkia additionally notes on the Macintosh II
if the machine is in 32 bit mode; if so, Skia assumes that all future Skia calls within that
application will be made in 32 bit mode.

void ExitSkia(void);

ExitSkia de-allocates all Skia data structures allocated by InitGraf and, if appropriate, switches
back to the addressing mode present when InitGraf was called.

Skia Shape Routines
shape New (shapeType);

New creates a new shape of the specified type, and assigns it the default transform and the
default fill style. The sha e

y foPgeometry-less
shapes of type emptyType afd fullType. Other typesvi ipg, since their geometry

New2 creates a new shgpe of the specfi , and assigns it thfe default transform and the

Note: This is intended for points; other types will post a warning, since there is either too little
or too much information to define their geometry.

shape New4 (shapeType, fixed, fixed, fixed, fixed);

New4 creates a new shape of the specified type, and assigns it the default transform and the
default frame style. The shape defaults to framed.

Note: This is intended for lines, rectangles and ovals; other types will post a warning, since
their is either too little or too much information to define their geometry.

shape NewMany (shapeType, long count, ...):

NewMany creates a new shape of the specified type, and assigns it the default transform and a
default style. The default style for points, lines, arcs and curves is the frame style; for

Skia Routines 12/16/88 -33- Apple Confidential

rectangles, ovals, polygons, paths and text the default style is fill style; for pictures, the default
style is set to nil; and for bitmaps the default style is the bitmap style.

Note: Any type that specified with too many or too few parameters will post a warning. A
picture may have only shapes as valid parameters; other parameters will post an error. Care
must be exercised when passing parameters in this way to paths or polygons to ensure that the
contour count and the vector count match the number of parameters passed.

void Dispose (shape);

Dispose throws away the indicated shape, and decrements the owner counts of the shape’s
style and transform.

void DisposeAt (shape *);

DisposeAt works just like Dispose; it allows the shape variable declared to be assigned nil. As
an example: '

shape myShape = nil;/* the declaration of myShape */

/* code/that [may use myShape {(or may not) */

DisposeAt (&mypha

void Set2(shape, £t

void Set4d (shape, fixed, fixed, fixed, fixed);

Set4 changes the geometry of a shape of type lineType, rectangleType or ovalType. A polygon
or path shape will scale their bounds to equal the indicated rectangle. If the type is pointType,
the first two parameters will change the point geometry and a warning will be posted. Any
other type will post a warning without affecting the shape.

void SetShape(shape destination, shape source);

SetShape copies the geometry one shape into another, changing the type of the destination
shape to the type of the first. It does not affect the transform, style or fill attributes of either
shape.

Skia Routines 12/16/88 -34- Apple Confidential

void CopyTo (shape destination, shape source);

CopyTo creates a new shape which has the same geometry, style and transform of the original.
For bitmaps, CopyTo does not copy the bit image, only the fields of the bitmap.

Note: CopyTo, like all Skia calls, affects the first shape parameter passed. The QuickDraw
CopyRgn call affects the second parameter passed.

void CopyDeepTo (shape destination, shape source);

CopyDeepTo works the same way as CopyTo, except in the case of bitmaps or pictures that
contain bitmaps; in these cases the bit image associated with the bitmap is copied as well. Skia
allocates the space for the bit image copy.

void Draw (shape):;

Draw draws the indicated shape with it’s style and transform. All of the possible graphic types
that Skia knows how to draw can be drawn with Draw. The shape specifies the type of data to
be drawn. The type can be any of the graphic types: emptyType, pointType, lineType,
arcType, curveType, rectangleType, polygemlype, pathType, textType, pictureType or
fullType.

that the shape
is interpreted. The style
line thickness, point size

and so on. The transform alSo indicate ing fakes place in
Another way to draw ig to pasg the g b be drawji to onefof the following routines
DrawPt, DrawLine, DraWArec, le, DrawPolygon, DrawPolygons,

Lines

shape NewlLine(line *linePts);

NewLine creates a new shape of type lineType. Itis assigned the default transform and the
default frame style. The shape defaults to frame. Note that filled lines would not draw
anything, since the line is infinitely thin. Filled lines are not allowed.

void SetLline (shape, line ¥*);

SetLine changes the shape’s type to lineType, and copies the line structure into it.

Skia Routines 12/16/88 -35- Apple Confidential

void DrawLine(line *);

DrawLine draws a line using the current default transform and style. See the Draw routine for .
more details.

void FixLineTo (fixed, fixed);

void FixLine (fixed, fixed);

Line and LineTo draw a line and move the path to follow to the pen position. The follow path
is reset.

These work the same as the QuickDraw equivalents; they take 32 bit long integer arguments
instead of 16 bit. The arguments are fixed point numbers in the standard 16.16 format.

See also CurLine, listed under Polygons and Paths.

Alternatives to “New”

Given:

shape myShape}
fixed startX,|start¥, endX,]endyY

These calls also create a fewl]li

myShape = New e line da itgelf is undefined */
myShape = New i staryX, start endY) ;
And given:

line myLine
These routines cast an existing shape into a line: B

Type (myShape, lineType); /* the data may be a nonsense line */
or:

SetLine (myShape, &myLine);

or:

Set4 (myShape, startX, startY, endX, endY); /* if myShape is a line */

See the individual routines for how they work and their restrictions.

Skia Routines 12/16/88 -36 - Apple Confidential

tangl
shape NewRectangle (rectangle *);
NewRectangle encapsulates the rectangle geometry into a shape, and assigns it the default

transform and the default fill style. The shape defaults to fill, so that it represents a solid
rectangle.

void SetRectangle (shape, rectangle *);

SetRectangle changes the specified shape into a rectangle type and sets the geometry as
specified. :

void DrawRectangle (rectangle *, shapeGeometry);

DrawRectangle draws a rectangle using the current default transform. The shapeGeometry

parameter determines whether to use the default frame style or the default fill style. See the
Draw routine for more details.

rner Rectangles ,

void SetOval (shape, oval *); —

SetOval changes the shape into an oval type and sets the geometry accordingly.

void DrawOval (oval *, shapeGeometry);
DrawOval draws an oval using the current default transform. The shapeGeometry parameter

determines whether to use the default frame style or the default fill style. See the Draw routine
for more details.

Skia Routines 12/16/88 -37- Apple Confidential

shape NewRoundRect (rectangle *, point *ovalSize);

NewRoundRect encapsulates the rounded-corner rectangle geometry into a shape, and assigns
it the default transform and the default fill style. The shape defaults to fill, so that it represents
a solid rounded-corner rectangle. The shape is of type pathType.

void SetRoundRect (shape, rectangle *, point *ovalSize);

SetRoundRect changes the shape to a path type and sets the geometry to a rounded-corner
rectangle.

void DrawRoundRect (rectangle *, point *ovalSize, shapeGeometry);

DrawRoundRect draws a rounded-corner rectangle using the current default transform. The
shapeGeometry parameter determines whether to use the default frame style or the default fill
style. See the Draw routine for more details.

Ar nd W

FrameArc, PaintArc, ErageArc, InvertArc, F; lArc

NewArc encapsulates t
the default frame style.

An arc is defined by an upright ellipse segment that passes through the curve’s end points and
is tangent to the lines formed by the endpoints and the control point.

void SetArc(shape, curve *);
SetArc sets the shape to an arc type and sets the geometry accordingly.

Skia Routines 12/16/88 -38- Apple Confidential

void DrawArc (curve *);

DrawArc draws an arc using the current default transform and frame style. See the Draw
routine for more details.

shape NewWedge (curve *);

NewWedge encapsulates the pie-slice shaped geometry into a shape, and assigns it the default
transform and the default fill style. The shape defaults to fill, so that it represents a solid
wedge. The shape is of type pathType.

0

‘‘‘‘‘‘‘‘
St H SIotioel
e A : PO

A wedge is defined as by an
segments that meet at the

void DrawWedge (curve *, shapeGeometry);

DrawWedge draws a pie-slice shaped wedge using the current default transform and frame
style. See the Draw routine for more details.

shape NewCurve (curve ¥*);

NewCurve encapsulates the quadratic Bézier geometry into a shape, and assigns it the default
transform and the default frame style.

Skia Routines 12/16/88 -39 - Apple Confidential

A curve is defined as a parabolic segment that passes through the curve’s end pbints and is
tangent to the lines formed by the endpoints and the control point.

void SetCurve(shape, curve *);

SetCurve sets the shape to a curve type and sets the geometry accordingly.

void DrawCurve (curve *);

DrawCurve draws a quadratic Bézier usi e current default transform and frame style. See
the Draw routine for mofe detatls.

P ns an

polygon. NewPolygon
example:

‘/* outside of a routine ... */
long myTriangle[] = {4 /* number of points */,
{o, 0}, {£(10,0), £(20,0)}, {£(20,0), £(10,0)}, {0,0}};

/* ... inside a routine */
shape myPoly = NewPolygon((polygon *) myTriangle);
shape NewPolygons (polygons *);

NewPolygons encapsulates the polygon geometries into a shape, and assigns it the default
transform and the default filling style. The shape defaults to fill, so that it represents several
solid polygons. NewPolygons is useful when the data describes more than one contour. Both
NewPolygon and NewPolygons produce a shape of polygonType.

Skia Routines 12/16/88 - 40 - Apple Confidential

shape NewPath(path *);

NewPath encapsulates the path geometry into a shape, and assigns it the default transform and
the default filling style. The shape defaults to fill, so that it represents a solid path. NewPath
assumes the newly created shape will have only one contour.

shape NewPaths (paths *);

NewPaths encapsulates the path geometries into a shape, and assigns it the default transform
and the default filling style. The shape defaults to fill, so that it represents several solid paths.
NewPaths is useful when the data describes more than one contour. Both NewPath and
NewPaths produce a shape of pathType.

void SetPolygon (shape, polygon *);
void SetPolygons (shape, polygons *);

These routines change the specified shape into a polygon type and sets the geometry as
specified.

void SetPath (shape,| path *); i
void SetPaths(shape], paths *);

These routines change the

void DrawPolygons (

These routines draw polygons a s using the current default transform.. The default
frame or fill style is chosen according to the shape geometry. See the Draw routine for more
details.

Bitmaps
shape NewBitmap (bitmap *);

NewBitmap creates a bitmap. The parameter passed is a pointer to a bitmap structure whose
width, height, and pixel size fields should be correctly initialized for the dimensions of the
image. The base address field can either be a pointer to a pre-allocated block of memory or nil,
in which case Skia will attempt to create storage for the image based on its dimensions and also
calculate the necessary rowWidth field rounded up to a long word boundary. The newly
allocated pixels are not initialized. Skia keeps track of how the base address was allocated so
that Skia will only dispose of the bit image if it allocated memory for it. If the rowWidth is set
to zero, then it is calculated correctly to accommodate the width and pixel size fields.

Skia Routines 12/16/88 -41 - Apple Confidential

Note: A bitmap with a rowWidth smaller than the bitmap width has an undefined drawing
behavior.

void SetBitmap (shape, bitmap *);

SetBitmap changes the bitmap fields after the shape has been created. If Skia allocated the
bitmap, the bit image can be re-sized by changing the rowWidth and height fields. This does
not scale the image; the area the image can occupy is changed (like changing the number of
pages in an existing document). The new pixels allocated, if any, are not initialized. This is
useful when the system is keeping track of the image's memory since it will automatically
move it around as needed. Finally, changing the depth of a bitmap by changing its pixelSize
field and calling SetBitmap() will expand or compress the image. This also involves
redistributing the colors in its style if the image's depth is decreased.

Note: Changing only the base address of the bitmap so that it points to another bit image does
not invalidate any internal state kept from the last Draw call of that bitmap. This supports the
rapid display of bitmaps sometimes called for in animation.

Note: If you change the width field and if Skia allocated the bit image, then you may want to
set the rowWidth field to zero to cause it fja he recalculated.

void CurBitmap (shape,

CurBitmap copies the bifn the shape into the jidicgfed bitmap structure. To
determine how much mgmo ge occuyies, simply mu}fi e rowWidth field times
the height field. The bit e may bymanipwated directly/oy usjhg the base address and

rowWidth values. The b, ddress of]a given Jpixel is detgrmined by:

baseAddr + (y p4sition € rowWidth) +Ax positiory* pixelJize / 8)

void DrawBitmap (bitmap *);

DrawBitmap draws a bitmap using the current default transform and style. See the Draw
routine for more details. :

Reset and CopyTo also affects bitmap shapes in special ways; see “Skia Shape Routines”.

Text
shape NewText (char *text, short length);

NewText creates a new shape of type textType. It is assigned the default transform and the
default text style. The shape defaults to fill, so that the text outline is filled when it is drawn.

Skia Routines 12/16/88 -42 - Apple Confidential

void SetText (shape, char *text, short length);

SetText changes the shape type to textType, and copies the indicated text into the shape.

short CurText (shape, char *text);
CurText returns, for shapes of type textType, the length of the text. If the text parameter is non-

nil, the text from the shape is copied into the storage pointed to by the parameter. It is up to
the user to allocate the correct size storage.

shape NewLayout (layout *text);
void SetLayout (layout *text);
long CurLayout (layout *text);
void Drawlayout (layout *text):
The Layout Manager defines the layout structure, that defines a 16 bit glyph code, a horizontal and

vertical character placement, and a glyph font feeg/algorithmic face selector per character. Skia will
support this format as soon

ictur

parameter is zero, then the resource name is used instead.

short Save (shape picture, short ID, char *name);

Save saves the picture to disk and returns the resource ID. If the resource ID is zero, the name
is used instead. If the name parameter is nil, then a unique resource ID is generated.

long AddToPicture (shape picture, shape toAdd, transform, style);

AddToPicture adds a shape to a picture with a special transform or style. The index of the new
element is returned.

AddTo also adds shapes to a picture;

AddToPicture (myPict, myShape, nil, nil);

Skia Routines 12/16/88 -43 - Apple Confidential

is the same as:

AddTo (myPict, myShape);

void InsertPicture(shape picture, long index, shape toAdd, transform,
style);

InsertPicture allows shapes to be added anywhere inside a picture. Insert performs the same
function, without specifying a special transform and style.

Extract allows shapes to be removed from a picture. See “Polygons and Paths” above for Insert
and Extract.

void SetPicture(shape picture, long index, shape *, transform *,
style *);

SetPicture changes the shape, style or transform (if the parameters are not nil) at the given
index within the picture. If the shape, style or transform parameter passed is nil, then that
parameter for this element is left unchan If the style or transform point to nil, then the
overriding style or transform’is removed. Iffthe shgpe is points to nil, thenjthe element is
deleted from the picture.

style *);

For each parameter not o nil, CyrPicturegreturns th¢/shape/style and transform at the

Shape Operations
void SetType (shape, shapeType);

SetType changes the shape passed to the indicated type. SetType seldom affects the values of
the control points, except in the case of rectangles and ovals, which are set to the bounding
boxes of other shapes. SetType adapts the existing geometry to the new type, if possible.

old type new type action

any type same type warning: type_already_set

emptyType not fullType warning: new_shape_contains_invalid_data

line ... pathType pointType set to upper left corner of bounding box
pointType line ... rectangle set both points to point value

rectangle ... path lineType set to line from upper left to lower right of bounds
point ... line arc ... curve duplicate missing end points

Skia Routines 12/16/88 -44 - Apple Confidential

arc, curve curve, arc change type only; control points remain unchanged
polygonType arc... curve keep the first 3 points as control points

line ... pathType rectangleType set to shape bounds

point ... rectangle polygon ... path set to 1 contour == shape

polygonType pathType set to path with all control points on the curve
pathType polygonType set to polygon that connects all control points
bitmapType point ... path warning: new_shape_contains_invalid_data
textType point ... polygon warning: new_shape_contains_invalid_data
textType pathType outline of text characters

pictureType point ... path warning: new_shape_contains_invalid_data
point ... path bitmap ... picture warning: new_shape_contains_invalid_data
fullType notemptyType warning: new_shape_contains_invalid_data

shapeType CurType (shape);

CurType returns the shape type contained within a given shape.

void SetAttributes(shape, shapeAttributes);

SetAttributes sets the sh tebrlletgrmine . T teeylocking and caching.

typedef enum |
noAttri
cache =
lock =

keepRemot e
} shapeAttri

Here are the attributes’

attribute

lock Determines whether the geometric or bitmap structure can be
changed by a shape operation. If the geometry is locked, the
transform may be affected instead.

cache Determines whether the geometric or bitmap structure uses
additional memory to draw, to speed subsequent drawing.

keepDirect Specifies that the structure and associated state should be
maintained by the main processor. This is particularly important to
ensure that the bit image allocated by Skia is accessible by the
application.

keepRemote Specifies that the structure and associate state should be maintained

by a graphics accelerator or other remote device, if possible. This
allows placing a priority on which shapes the accelerator memory
maintains locally.

Skia Routines 12/16/88 -45- Apple Confidential

The default attributes value is noAttributes.

shapeAttributes CurAttributes (shape);

CurAttributes returns the current attributes for the specified shape.

void SetGeometry (shape, shapeGeometry);

SetGeometry changes the interpretation of the geometry inside a shape to frame (to a stroke
with a given pen thickness), or to fill (filling the area bounded by the pen) as the pen moves
from one control point to the next. Framing makes sense for lines, arcs, curves, and so on
through paths; filling makes sense for only closed shapes; rectangles and ovals, polygons and
paths only if the contour starts and ends at the same point. Frame and fill do not mean
anything to bitmaps, text or pictures.

Framing comes in several flavors: the normal frame centers the frame about the geometry so
that the pen width extends to either side; insideFrame makes the frame work like QuickDraw
rectangles and regions, so the frame never extends the size of the bounding box; outsideFrame
does the opposite, and always increases the size of the bounding box.

Fill comes in several flaviors: the normal fillfuses tHe xor or even-odd rule}o determine when
the shape should be fillel. WindingNumbdrFill uges the winding numbeplrule, and inverseFill
causes everything outside offthe shape to be filled

xor fill (also called even-odd fill) winding number fill faieaa inverse fi
The shapeGeometry enumerated type looks like:

typedef enum {
noGeometry,
insideFrame,
frame, /* centered frame */
outsideFrame,
£ill, /* xor fill */
windingNumberFill,
inverseFill
} shapeGeometry;

Skia Routines 12/16/88 - 46 - Apple Confidential

Note: Text can be stroked by applying an outline style; pictures can be stroked by affecting the
entries within the picture.

Note: SetGeometry does not affect the style of the shape.

shapeGeometry CurGeometry (shape);

CurGeometry returns the current geometry for a shape.

void SetUser (shape, char *data, lQng length);

SetUser copies the specified data to the user field within the shape.

long CurUser (shape, char *data);

CurUser returns the length of the user data contained within the shape. If the data parameter
is not nil, the user data is copied to the memory pointed to by the data parameter.

Note: it is up to the call Tafe me ive f} er.data.

the user allocated it, Reset has no effec)).

If a transform cast into & shapqis pasged, Resef sets the tyansforth’s matrix to identity and its
clip to wide open.
If a style cast into a shape is passed, Reset sets the pen size to 1.0, the pen mode to copy,
deletes the pattern, join, dash and cap shapes, sets the frame position to center, and sets the
curve error to 1/16th. Reset does not affect the color, luminance, dither size, pen position,
follow path or other style attributes.

If nil is passed, Reset affects the default transform and all four default styles.

void Changed(shape);
Changed lets Skia know that some data structure within the shape has been changed by the

application directly. The only time an application is required to make this call is after writing
to a bit image contained within a bitmap shape.

Skia Routines 12/16/88 -47 - Apple Confidential

void Simplify (shape);

Simplify converts a shape into its simplest and smallest description. Simplify removes
duplicate points from polygons or paths, connects successive contours that end and begin in
the same place, and re-types shapes from paths to polygons, rectangles, ovals, curves, lines,
points and so on as appropriate.

Simplify does not affect pictures, text or bitmaps.

void Primitive (shape);

Primitive converts a shape into a primitive description that describes how the shape will be
drawn.

All drawing in Skia is implemented by a few simple primitives: hairlines, hair-curves, filled
shapes, and bitmaps. Hairlines are and hair-curves are the thinnest perceivable line or curve.
All shapes are drawn by reducing them to one of these primitives. See also UserPrimitive,
under “Customizing Skia”, below.

extern void Cache(

until the shape is chang
shape draw differently.

application is low on spage.

Use the SetAttributes call to cause a shape to be always cached.

void DisposeCache (shape);
DisposeCache deletes any temporary memory or cached data associated with a shape.

Use the SetAttributes call to clear the cache bit to avoid building a cache when the shape is
drawn the next time.

Note: all shapes require temporary memory to draw. The memory is allocated and then
associated with the shape to avoid a re-allocation the next time the shape is drawn. Cached
shapes allocate even more memory to speed drawing; bitmaps that are transformed cache their
intermediate transformed bits, and filled and framed shapes cache a compressed bitmap
description. These intermediate caches can slow down drawing if the shape is drawn only
once (since it takes time to build the intermediate cache), but can speed operations like
updating windows where the same information is drawn more than once.

Skia Routines 12/16/88 -48 - Apple Confidential

i with Rectangl

boolean SectR2(rectangle *sourcel, rectangle *source2);

SectR2 returns true if rectangles sourcel and source?2 intersect.

boolean SectR3(rectangle *sourcel, rectangle *source2,
rectangle *destination);

SectR3 works the same as SectR2; additionally, it returns the intersection the the rectangle
destination.

boolean SectRP (rectangle *, point *);

SectRP returns true if the point intersects the rectangle.

boolean ContainsR2 (rectangle * ainer, rectangle *source);

ContainsR2 returns true |f the container recthngle sfarrounds the source redtangle.

void UnionR3(rectahgl
*source?2);

*destinatyon, rectangle cel, rectangle

UnionR3 combines sour d sourcep and stdres the resyflting rfctangle in destination.

void UnionR2 (recta i on, rec source) ;

UnionR2 combines destination and source and stores the resulting rectangle in destination.

QOperations on Geometry
void AddTo (shape dest, shape add);

AddTo allows the geometry to be added to the end of any existing region. If the first control
point added matches the last control point in the shape, the last contour is extended; otherwise,
a new contour is added to the shape. AddTo may promote the shape to a polygonType or a
pathType.

See Insert to add new control points in the middle of a shape.

Skia Routines 12/16/88 -49- Apple Confidential

void Inset (shape, long h, long v);

Inset creates a new shape with all of its control points inside the old points by the given
distances. For shapes with multiple contours, each contour is sized so that the bounding box of
the contour is smaller.

void Sect (shape destination, shape source);

Sect intersects the source shape with the destination shape, and stores the resulting shape in the
destination.

void Union(shape destination, shape source);

Union combines the source shape with the destination shape, and stores the resulting shape in
the destination shape.

void Diff (shape destination, shape source);

Diff subtracts the source shape from the #&65nation
destination shape.

he resulting shape in the

ReverseDiff subtracts thq degffnation§hape fr 3 And stores the resulting

void Xor (shape de

Xor exclusive-ors the source and destination shapes and stores the result in the destination
shape. -

void Invert (shape destination);

Invert changes the shape to describe the coordinate space currently unaffected by it. See also
“Shape Attributes”, above.

boolean SectPoint (shape, point *);

SectPoint returns true if the point intersects the shape. See also MatchPoint, below.

boolean SectRectangle (shape, rectangle *);

SectRectangle returns true if the rectangle intersects the shape.
Skia Routines 12/16/88 -50 - Apple Confidential

boolean RectangleContains (rectangle *container, shape source);

RectangleContains returns true if the shape is contained by the rectangle.

Operations on Contours, Vectors and Control Points

void SetCVPoint (shape, long contour, long vector, point *);
void SetIndexPoint (shape, long index, point *);

These two routines allow an individual control point within the shape to be changed.
SetCVPoint takes the contour number and vector number, and SetIndexPoint takes a point
index. Contour numbers may make changing polygons and paths easier.

void Insert (shape, long index, shape toAdd);

Insert works similar to AddTo, described above; it allows the geometry to be added anywhere
inside the shape. Insert does not replace any of the current geometry; it expands the shape to
make room for the new ipfarmation ofres the geomaets index forward, to
make space for the new dd sh pe, then the contour
is broken and a new con : ¢ speciffed ipd

Note: Insert will create p \the first and last pgifits ifthe added shape match
the current point exactly.

Extract creates a new shape™ s~t1Te contents of alexistirtg shape with one or more
contours extracted from an existing shape. The specified geometry is removed from the source
shape. The destination parameter may be nil, or may point to nil; in the latter case, the shape
will be allocated as needed. The firstPoint parameter determines where to begin in the shape;
the numPoints determines the number of points to copy. The shape is returned if the operation
completed without error. Extract may reduce the number of contours if the points on either
side of the extraction match exactly.

long Contours (shape);

Contours returns the number of contours in a shape.

long Points(shape, long contour);

Points returns the number of points in a contour in a shape. If zero is passed for the contour
parameter, it returns the total number of points in a shape.

Skia Routines 12/16/88 -51- Apple Confidential

long Index(shape, long contour, long vector);

Index returns the index within a shape that corresponds to the start of the specified vector
within the specified contour.

boolean CurControl (shape, long index);

CurControl returns whether the specified point within a shape is on or off the curve.

void CurPoint (shape, long index, point *);

CurPoint returns the point corresponding to the specified index within the shape.

void Curline (shape, long index, line *);

CurLine returns a line begmnmg at the specxfled index within a shape; the line may degrade to
a point (both points equa

Note: If the shape is of ty
curveType, the index par
beginning or end of the ¢
to 4; this returns the app

Warnings: bad_para

void CurCurve (shap

CurCurve returns a curve beginning at the specified index within a shape; the curve may A
degrade to a point (all three points equal) or a line (the last two points equal) if a true curve is
not present in the contour at the requested index.

void CurRectangle(shape, long startIndex, long numberOfPoints, rectangle
*);

CurRectangle returns the bounding rectangle for the subset of points within a shape as

specified.

void CurPolygon (shape, long startIndex, long numberOfPoints, polygon *);

CurPolygon returns the subset of control points as specified. If the points requested exceed the
number of points available in the contour, then a warning is posted.

Skia Routines 12/16/88 -52- Apple Confidential

void CurPolygons (shape, long startIndex, long numberOfPoints,
polygons *);

CurPolygons works the same as CurPolygon, returning multiple contours if appropriate.

void CurPath (shape, long startIndex, long numberOfPoints, path *);

CurPath works like CurPolygon, except it returns an array of control bits as well.

void CurPaths (shape, long startIndex, long numberOfPoints, paths *);

CurPaths works like CurPath, returning multiple contours if appropriate.

long MatchPoint (shape, point *, long foundIndices([]):

MatchPoint returns the number of points within the shape that match the specified point. If
provided, the indices of the points found are stored in the supplied array. It is up to the user to
allocate a large enough array to hold the

long MatchRectanglg rectangle

MatchRectangle returns fhe number of poin¥g within the shap
specified rectangle. If prpvidet], theYdices ol\the points foupd areftored in the supplied
array. Itis up to the user rge endugh array t indi

Shape Utilities

long Size (shape);

Size returns the memory occupied by a shape.

long SizeCache (shape);

SizeCache returns the memory occupied by a shape and its cache state. The difference between
Size and SizeCache can be immediately recovered by the NoCache call. Skia treats cache
memory as purgeable; cache is always disposed when additional memory is required.

fixed Time (shape);

Time returns the estimated time required to draw the specified shape, in seconds. Time returns
a number from 0 seconds to 9 hours, in 15 microsecond intervals.

Skia Routines 12/16/88 -53- Apple Confidential

boolean Validate (shape);

Validate checks the integrity of a shape and of all of the data structures pointed to by the shape.
Validate is intended primarily for debugging Skia applications, and may be called by the
application’s error and warning routines.

=

boolean Equal (shape, shape);

Equal returns true if the geometry of two shapes is the same.

fixed Length (shape);

Length returns the length of the perimeter of a shape. The length of a point is always zero. The
length is pinned to the largest representable fixed point value (about +32768).

float FloatLength (shape);

FloatLength returns a single-precision length.

fixed Area (shape);

Area returns the area en
of a point, line, arc or cu
point value.

long GlobalArea (shape, long portOrder);

GlobalArea returns the number of pixels that a shape, drawn through a particular port,
touches.

void Bounds (shape, rectangle *);

Bounds returns the bounding rectangle of the shape.

Skia Routines 12/16/88 -54- Apple Confidential

void LocalBounds (shape, rectangle *);

LocalBounds returns the bounding rectangle of the shape as drawn in local coordinates; that is,
after all of the style information such as joins, caps, dashing, follow paths and so on has been
applied.

void GlobalBounds (Ehape, long portOrder, rectangle *);

GlobalBounds returns the bounding rectangle of the shape, in the specified port, as drawn in
global coordinates. The bounds correspond to the extent of the pixels affected by drawing this
shape through the specified port.

Iranstorms

transform NewTransform(fixed [3]([3], shape clip):

NewTransform creates a transform, which encapsulates the indicated matrix and clip shape.
The parameters passed may be nil; this defaults to the identity matrix, and a wide open clip.
The clip shape is copied mto the transform so that the orxgmal chp shape can be changed or
thrown away without aff . The SRS stis-initially empty. The
owner count is set to 1.

void DisposeTransfg¢rm

DisposeTransform decre S the owYer couny, and if it is z ows away the indicated
transform. Disposing a trgngform doesinot affeft the ports prt list.

DisposeTransformAt works just like DisposeTransform; it allows the shape variable declared to
be assigned nil. See the example under DisposeAt.

transform CopyToTransform(transform destination, transform source);
CopyToTransform creates a copy of source and deposits it in destination. The copy is also a
function result. If destination is nil, then a new transform is created, and its owner count is set
to 1. If the destination already exists, the source transform’s matrix, clip and view list is copied
into the destination transform, but the destination owner count is not affected.

warnings: transform_passed_equals_nil

errors: illegal_type_for_transform

Skia Routines 12/16/88 -55 - Apple Confidential

void SetTransform(shape, transform);

SetTransform removes the transform already associated with the shape, and the indicated
transform is attached to the shape instead, and the transform’s owner count is incremented. If
this is the shape is the only owner of the transform, the transform is deleted.

transform CurTransform(shape);

CurTransform returns the transform associated with a shape.

void SetDefaultTransform(transform);

SetDefaultTransform changes the default transform to the specified transform.

transform CurDefaultTransform(void);

CurDefaultTransform returns the current default transform.

void SetTransformCk rgnsforit;, SHEpe CIip/,

SetTransformClip sets th tr
clip.

SetTransformCli

If a transform is passed i d of the dffected dhape, all shfipes sifaring that transform will be
clipped to the same shape.

SetTransformCN

(nil,
If nil is passed for the affected shape, the default transform is affected instead.
SetTransformClip (myShape, nil);

If nil is passed for the clip shape, the affected shape’s clip is set to be wide open. See also the
example below.

shape CurClip(shape orTransform, shape *clip);

CurClip copies the clip owned by the shape’s transform into the clip shape.
CurClip ((shape) myTransform, &myClip);

A transform can be passed instead of a shape.

CurClip(nil, &myClip);
Skia Routines 12/16/88 - 56 - Apple Confidential

If nil is passed for the shape, the default transform’s clip is returned instead.
shape myClip = nil;

A pointer to the clip is passed, so that the clip shape does not have to be created before the
CurClip call is made; the clip shape call should be initialized to nil when declared.

if (CurClip (myShape, &myClip))

CurClip returns the value of the copy to allow quick tests of whether the clip exists or not.

void SetMatrix(shape orTransform, fixed[3][3]);
SetMatrix sets the transformation’s matrix to the indicated values. If a shape is passed as a

parameter, and its transform is shared, then the transform is duplicated before the matrix is
affected.

void CurMatrix (shape orTransfo fixed{3]1[3));

CurMatrix returns the vglues contained in tle trangform’s matrix.

Offset moves the shape
the resulting shape would ide-efthe coordinate ounds, then the shape or
transform is left unmodified and-a warning is posted. If the shape is a bitmap, then the shape’s
transform is modified instead, creating a new transform if it is shared.

void Rotate (shape orTransform, fixed degrees);

Rotate rotates the shape about its center, or rotates the transform about (0,0). Note that the
angle is passed in degrees, not radians. This convention was chosen to allow the exact
specification of 180° rotation, without requiring an approximation of n. See Offset.

void RotateAbout (shape orTransform, fixed degrees, fixed h, fixed v);

RotateAbout rotates shapes or transforms about the specified point. See Offset.

Skia Routines 12/16/88 -57- Apple Confidential

void Skew (shape orTransform, fixed xSkew, fixed ySkew);

Skew is also called oblique, an algorithmic method of creating an Italic text face. Skew skews
the shape about its center, or skews the transform about (0,0). See Offset.

void SkewAbout (shape orTransform, fixed xSkew, fixed ySkew, fixed h,
fixed v);

SkewAbout skews shapes or transforms about the specified point. See Offset.

void Scale(shape orTransform, fixed hScale, fixed vScale);

Scale scales the shape about its center, or rotates the transform about (0,0). Note that negative
values for hScale and vScale are perfectly legal; they specify mirroring horizontally or
vertically. See Offset.

void ScaleAbout (shape orTransform, fixed hScale, fixed vScale, fixed h,
fixed v);

ScaleAbout scales shapes or transforms 566 7t the specifi

void Perspect (shapp ofTransform, fra : i ract
yPerspective);

Perspect puts shapes in perspecti sets thi transform to graw if perspective. The meaning
of the xPerspective and yP&fspective i not intitively obvigus. VAlid values range from -1.0 to
1.0; zero causes no persp€ctiR to hapgen, and J1.0 squashgs the efitire shape into a line. See

Offset.

void Vanish(shape orTransform, fixed horizon, fixed az