
HIGH PERFORMANCE

LEVEL II COBOL™

OPERATING GUIDE

Version 2.0

HIGH PERFORMANCE

LEVEL II COBOL™

Operating Guide

(For use with the UNIX™

Operating System)

Version 2.0

Micro Focus Ltd

i

Issue 1
February 1984

COBOL is an industry language and is not the property of any company or
group of companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the
CODASYL Programming Language Committee as to the accuracy and functioning of
the programming system and language. Moreover, no responsibility is assumed
by any contributor, or by the committee, in connection herewith.

The authors and copyright holders of the copyrighted material used herein:

FLOW-MATIC (Trademark for Sperry Rand Corporation) Programming for the
Univac I and II, Data Automation Systems copyrighted 1958, 1959, by
Sperry Rand Corporation; IBM Commercial Translator Form No. F28-8013,
copyrighted 1959 by IBM; FACT, DS 127 AS260-2760, copyrighted 1960 by
Minneapolis-Honeywell.

have specifically authorized the use of this material in whole or in part,
in the COBOL specifications. Such authorization extends to the reproduction
and use of COBOL specifications in programming manuals or similar
publications.

Micro Focus has made every effort to ensure that this manual is correct and
accurate, but reserves the right to make changes without notice at its sole
discretion at any time.

The software described ,in this document is supplied under a license and may
be used or copied only in accordance with the terms of such license, and in
particular any warranty of fitness of Micro Focus software products for any
particular purpose is expressly excluded and in no event will Micro Focus be
liable for any consequential loss.

Note that the following are registered trademarks:

LEVEL II COBOL™ (LEVEL II COBOL), FORMS-2™ (FORMS-2), and Ai\JIMATOR™
(ANIMATOR) are trademarks of 'Micro Focus.
UNIX is a trademark of Bell Laboratories.
DEC is a trademark of Digital Equipment Corporation.
ADM-3A is a trademark of Lear Siegler, Inc.
DPPX is a trademark of the IBM Corporation.
IBM is a trademark of the IBM Corporation.

~COPYRIGHT 1984 by Micro Focus Ltd.

ii

LEVEL II COBOL OPERATING GUIDE

VERSION 2.0

AMENDMENT RECORD

Amendment
Number Dated Inserted by Signature Date

~

iii

PREFACE

This manual describes operating procedures for the UNIX resident releases of
the LEVEL II COBOL Version 2.0 compiler and Run-Time System (RTS).

The compiler converts LEVEL II COBOL source code into an intermediate code.
This intermediate code can then be interpreted by the Run-Time System.
Alternatively, the intermediate code can be converted by the native code
generator into the machine code for your processor. This native code can
then be run under the control of the Run-Time System.

This manual describes the steps needed to compile a program, generate native
code, and execute the intermediate or native code, including all necessary
linkage and run-time requirements. Operation of the run-time interactive
debug package is also described.

CONTENTS

This manual contains the following chapters and appendices:

"Chapter 1. Introduction", gives a general description of the LEVEL II
COBOL system and its input and output files, plus a step-by-step outline for
the compilation and execution of some sample interactive programs.

"Chapter 2. Compiler Controls", describes compiler commands, directives and
listing formats.

"Chapter 3. Native Code Generator Controls", describes native code
generator commands and directives.

"Chapter 4. Run-Time System Controls", gives general instructions for
running programs and console operation.

"Chapter 5. Interaction in Application Programs", describes in detail the
extended ACCEPT and DISPLAY facilities provided in LEVEL II COBOL for easy
manipulation of data via the CRT.

"Chapter 6. Interactive Debugging", describes the use of the facilities
provided for interactive debugging.

"Chapter 7. MUlti-Language Call
availab Ie to invoke other COBOL
languages from a main program.

Facilities", describes the facilities
programs or programs written in other

"Chapter 8. LEVEL II Application Design Considerations", describes
segmentation (overlaying) and usage" of COMP data items in COBOL programs to
produce more efficient code.

"Chapter 9. File and Record Locking for Indexed Files", describes
multi-user file and record locking features for indexed files. A file
locking demonstration program, lockdemo.cbl, is also explained in detail.

iv

"Chapter 10. Terminal Configuration Considerations", describes how the
Run-Time System operates with various types of terminals.

"Chapter 11. Incorporating FORMS-2 Utility Program Output", describes the
use of output from the FORMS-2 screen formatting utility program.

"Appendix A. Summary of Compiler Directives", summarises the compiler
directives available for the LEVEL II COBOL compiler.

"Appendix B. Compile-Time Errors", lists the error numbers and
descriptions reported by the compiler at compile time.

"Appendix C. Summary of Native Code Generator Directives", summarises the
directives aVpilable for the native code generator.

"Appendix D. Code Generation Errors", lists the error numbers and
descriptions reported by the native code generator during code generation.

"Appendix E. Run-Time Errors", lists the error numbers and descriptions
reported by the Run-Time 'System during program execution.

"Appendix F. Operating System Errors", is a listing of the messages for
errors originating in the UNIX operating system.

"Appendix G. Interactive Debug Commands", summarises the commands that can
be used with the LEVEL II COBOL interactive debug option.

"Appendix H. Terminal Configuration Issues", describes how to add a new
type of terminal to the configuration file.

"Appendix I. UC Berkeley Termcap", contains the documentation from UC
Berkeley on the termcap terminal capability description file.

"Appendix J. LEVEL II COBOL in the UNIX Environment", summarises the
difference betweeen this LEVEL II COBOL implementation and others with which
you may be familiar.

"Appendix K. lockdemo Source Code", provides the source listing of
lockdemo.cbl, the record locking demonstration program, which is explained
in Chapter 9.

v

NOTATION IN THIS MANUAL

Throughout this manual, the following notation is used to describe the
format of data input or output:

1. When material is enclosed in square brackets], it is an
indication that the material is an option which may be included
or omitted as required.

2. The symbol « after a CRT entry or command format in this manual
indicates that the CR (carriage return) or equivalent data input
terminator key must be pressed to enter the command.

3. All numbers are in decimal unless otherwise stated.

Headings are presented in this manual in the following order of importance:

CHAPTER n l
TITLE)

ORDER ONE HEADING
ORDER TWO HEADING
Order Three Heading
Order Four Heading

Chapter Heading

Text 1 line down

Changes issued as part of an Addendum are identified by the addendum number
printed at the bottom of the changed page. It is suggested that Add~ndum
page change instructions are filed ,at the back of the manual as a detailed
record. Page iii is provided as a record of all amendments to your copy of
the manual.

Related Publications

For details of the LEVEL II COBOL language, refer to the document:

LEVEL II COBOL Language Reference Manual

For details of the UNIX operating system, error messages and file
structures, refer to the UNIX Programmer's Manual.

vi

TABLE "OF CONTENTS

CHAPTER 1

INTRODUCTION

GENERAL DESCRIPTION

THE DEMONSTRATION PROGRAMS

GETTING STARTED

COMPILATION
CODE GENERATION
EXECUTION

Calculate the Value of PI
Stock Control Program 1
Stock Control Program 2

PROGRAM DEVELOPMENT CYCLE
PROGRAM PREPARATION CONSIDERATIONS

CHAPTER 2

COMPILER CONTROLS

COMMAND LINE SYNTAX
DIRECTIVE AND OPTION INPUT FORMAT
COMPILER DIRECTIVES LIST

EXCLUDED COMBINATIONS

COMPILER COMMAND LINE EXAMPLES
DICTIONARY CONTROL
SUMMARY INFORMATION ON STANDARD OUTPUT
LISTING FORMATS

CHAPTER 3

NATIVE CODE GENERATOR CONTROLS

COMMAND LINE SYNTAX
CODE GENERATOR DIRECTIVES
GENERATING SEGMENTED COBOL PROGRAMS

vii

1-1

1-2

1-2

1-2
1-3
1-3

1-4
1-4
1-5

1-6
1-7

2-1
2-2
2-2

2-7

2-8
2-8
2-8
2-9

3-1
3-1
3-3

CRAPTER 4

RUN-TIME SYSTEM CONTROLS

COMMAND LINE SYNTAX 4-1

THE DEBUG PARAMETER 4-1
THE SWITCH PARAMETERS 4-2
THE PROGRAM PARAMETERS 4-2
RUN-TIME FLAGS 4-2

Exclusive Indexed Sequential Access Method (Isam) Flag 4-3

Memory Allocation (-m) Flag 4-3

COMMAND LINE EXAMPLES 4-4

CHAPTER 5

INTERACTION IN APPLICATION PROGRAMS

CRT SCREEN HANDLING
CURSOR CONTROL FACILITIES
DISPLAYING DATA ON THE SCREEN

CLEARING THE SCREEN
DISPLAYING SINGLE ITEMS
DISPLAYING MORE COMPLEX SCREENS
DISPLAYING HIGHLIGHTED TEXT

ACCEPTING DATA ENTERED AT A CRT

ACCEPTING AN ELEMENTARY ITEM
ACCEPTING A GROUP ITEM
CURSOR BEHAVIOUR DURING AN ACCEPT
EXPLICIT CURSOR POSITIONING

INTRODUCTION

THE P COMMAJ.'lD
THE G COMMAND
THE X COMMAND
THE D COMMAND
THE A COMMAND
THE S COMMAND

CHAPTER 6

INTERACTIVE DEBUGGING

viii.

5-1
5-2
5-3

5-3
5-3
5-4
5-5

5-5

5-5
5-6
5-7
5-7

6-1

6-2
6-3
6-3
6-4
6-4
6-5

THE '.' COMMAND
THE T COMMAND
THE Q COMMAND
THE B COMMAND
THE E COMMAND
THE M COMMAND
THE L COMMAND
THE $ COMMAND
THE C COMMAND
THE ; COMMAND

CHAPTER 7

MULTI-LANGUAGE CALL FACILITIES

6-5
6-5
6-5
6-6
6-6
6-6
6-7
6-7
6-7
6-7

INTRODUCTION 7-1
CALLING COBOL PROGRAMS 7-1

FORMAT OF LEVEL II COBOL CALL 7-1
FORM OF LEVEL II COBOL PROGRAMS 7-1
RUN-TIME PROGRAM LINKAGE 7-1
SAMPLE APPLICATION - USER INTER-PROGRAM COMMUNICATION 7-2
THE CANCEL STATEMENT 7-3
LIMITATIONS OF CALL 7-4

CALLING RUN-TIME SUBROUTINES 7-5

IMPLEMENTATION 7-5

CHAPTER 8

LEVEL II COBOL APPLICATION DESIGN CONSIDERATIONS

INTERMEDIATE OR GENERATED CODE?
SEGMENTATION (OVERLAYING)
PRODUCING COMPACT AND EFFICIENT CODE

OPTIMISING INTERMEDIATE CODE
OPTIMISING GENERATED CODE

Alphanumerics
Numerics
Subscripts and Indexes
COMP Subset and Control Flow
Tips for Writing a Program

ix

8-1
8-2
8-3

8-3
8-6

8-6
8-6
8-7
8-7
8-8

CHAPTER 9

FILE AND RECORD LOCKING FOR INDEXED FILES

KERNEL LOCKING
CREATION LOCKING
ISAM FILE LOCKING FUNCTIONS
FILE LOCK MODES

EXCLUSIVE RECORD LOCKING
AUTOMATIC RECORD LOCKING
MANUAL RECORD LOCKING

TYPES OF FILE LOCK
INDEXED FILE SPECIFICATION

ENVIRONMENT DIVISION
PROCEDURE DIVISION

The COMMIT Statement
The ROLLBACK Statement

ERROR STATUS
FILE LOCK COMPILER CONTROLS

THE FILESHARE COMPILER DIRECTIVE

THE LOCKDEMO DEMONSTRATION PROGRAM

USING LOCKDEMO
OPERATING LOCKDEMO AS A-SECOND USER
PROGRAM SOURCE DESCRIPTION

RUN-TIME ERRORS ORIGINATING IN THE ISAM MODULE

CHAPTER 10

TERMINAL CONFIGURATION CONSIDERATIONS

OVERVIEW
TERMCAP FILE

CHAPTER 11

INCORPORATING FORMS-2 UTILITY PROGRAM OUTPUT

INTRODUCTION
SCREEN LAYOUT FACILITIES
GENERATED PROGRAMS

11-1
11-1
11-2

9-1
9-1
9-2
9-2

9-2
9-2
9-2

9-3
9-3

9-3
9-6

9-7
9-7

9-7
9-8

9-8

9-9

9-10
9-11
9-12

9-15

10-1
10-2

APPENDIX A.

SUMMARY OF COMPILER DIRECTIVES

APPENDIX B.

COMPILE-TIME ERRORS

APPENDIX C.

SUMMARY OF NATIVE CODE GENERATOR DIRECTIVES

APPENDIX D.

CODE GENERATION ERRORS

APPENDIX E.

RUN-TIME ERRORS

APPENDIX F.

OPERATING SYSTEM ERRORS

APPENDIX G.

INTERACTIVE DEBUG COMMANDS

APPENDIX H.

TERMINAL CONFIGURATION ISSUES

APPENDIX I.

UC BERKELEY TERMCAP

APPENDIX J.

LEVEL II COBOL IN THE UNIX ENVIRONMENT

APPENDIX K.

LOCKDEMO S.OURCE CODE

xi

Figue

1-1
7-1

Table

2-1
5-1
9-1
9-2

9-3

ILLUSTRATIONS

Title

Program Development Cycle
Sample CALL Tree Structure

TABLES

Title

Excluded Combinations of Directives
Cursor and Function Control Keys
Record Lock for Committable Indexed Files
Record Lock for Uncomittable/Unrestricted

Indexed Files
File Lock for Indexed Files

xii

1-8
7-2

2-7
5-2
9-5

9-6
9-6

CHAPTER 1

INTRODUCTION

GENERAL DESCRIPTION

COBOL (COmmon Business Oriented Language) is the most widely and extensively
used language for the programming of commercial and administrative data
processing. LEVEL II COBOL is a compact interactive standard COBOL language
system.

The LEVEL II COBOL compiler converts LEVEL II COBOL source code into an
intermediate code. This intermediate code may be submitted as input to the
native code generator, which will generate the equivalent machine code for
your processor type. Either the intermediate code or the native code is
then executed by the Run-Time System (RTS).

LEVEL II COBOL programs can be created by using the standard UNIX text
editor to produce LEVEL II COBOL source files. The compiler translates these
source files into intermediate code files. These files consist of
instructions for an abstract "virtual machine" implemented by the RTS. Thus,
intermediate-code files specify operations that the machine-specific RTS
interprets and implements.

A listing of the LEVEL II COBOL program is provided during compilation,
including any error messages produced by the compiler. The listing also
provides addresses for use with the interactive debug 'utility (see
Chapter 6). To execute the program after compilation is finished, invoke the
RTS by using the cbrun command followed by the intermediate code file name
as an argument.

You can often considerably improve the run-time speed of your programs by
using the native code generator to turn your intermediate code into the
machine code specific to your processor. The native code generator will
provide an assembly listing of the generated code that it produces, for
documentary purposes. You execute a generated code program in exactly the
same way as an intermediate code program, using cbrun followed by the name
of the file containing the generated code.

Generated code is not necessarily always preferable to intermediate code.
Chapter 8, APPLICATION DESIGN CONSIDERATIONS, includes a brief discussion on
when it is worth while producing a generated code version of your program.
The section PROGRAM DEVELOPMENT CYCLE, later in this chapter, shows at what
point you should use the native code generator.

The LEVEL II COBOL system also provides a powerful utility program called
FORMS-2. FORMS-2 allows the user to define the screen layouts to be used in
a LEVEL II COBOL application. Screen layouts are created by simply typiRg
them in on the CRT. FORMS-2 can also be used to automatically generate a
program that can create and maintain data files based on these screen
formats.

1 ...; 1

The RTS executes either the intermediate code file produced by the compiler
or the generated code file produced by the native code generator. In
addition to standard ANSI COBOL statements, LEVEL II COBOL provides many
extensions for interactive programs. The RTS requires knowledge of the
terminal type for these features, which is obtained by use of the termcap
configuration file and associated utilities.

If your terminal is not listed in the configuration file provided, see
Chapter 10 and Appendices H and I for information on how to include it. In
order for the RTS to access the terminal type, the TERM shell variable must
be set to the terminal code. If the Bourne shell is in use, it should be
placed in the environment by use of the "export" command. Again, see
Chapter 10 and Appendices H and I for more information. Additional
information can be obtained from the UNIX. Programmer's Manual.

THE DEMONSTRATION PROGRAMS

Three demonstration programs, pi.cbl, stockl.cbl and stock2.cbl,. are
supplied in source form. They may be used to familiarize oneself with the
system. A multi-user test program for the Indexed Sequential Access Method
(ISAM) is also supplied.

GETTING STARTED

COMPILATION

The first thing to do is to compile all of the demonstration programs. These
are the files with the extension ". cbl". Your current directory should
contain these files. If not, you will need to provide the full path name to
these files wherever the file name is required.

EXAMPLE:

cobol stockl.cbl«

When compilation completes, the output should be:

* LEVEL II COBOL V2.0 Copyright (c) 1982 Micro Focus Ltd
* Compiling stockl.cbl
* ERRORS=OOOOO DATA=Ol024 CODE=005l2 DICT=04'949: 21506/26455 GSA FLAGS=OFF

A listing of the current directory will show that two new files exist:
stockl.LST, which is the list file, and stockl.INT, which contains the
intermediate code. The programs stock2.cbl and pi.cbl can be compiled in the
same manner.

1 - 2

When stock2 is compiled you will notice three additional lines of output to
the terminal, which indicate that an error was detected in the program. The
message produced by the error is:

MOVE GET-INPUT TO TF-DATE.
103*******************
** Operand has wrong data-type, is not declared or "." missing

The first line is a copy of the line where the error was detected. The
second line contains the error number. The third line is the error message.
A complete listing of error numbers and messages can be found in
Appendix B. The error above was deliberately included in the program to
provide a demonstration of the compiler's error message format, and
does not interfere with the correct operation of the rest of the program.
Note that compilation errors do not prevent the creation of an intermediate
code file. The offending statements produce no-ops, that is, the
operation code for "do nothing and continue". The intermediate code file
will generally execute, though probably not correctly if errors are
present. You are advised not to run intermediate code produced by a
compilation with errors.

CODE GENERATION

If you wish, you can take the further step of generating native code
versions of the demonstration programs. For example:

cgen pi.INT

will take the intermediate code produced by the compiler for pi. cbl and
produce the equivalent machine code program. The .INT extension is not
strictly necessary, since the native code generator will automatically
append this extension if it is missing.

When code generation is complete, a listing of your current directory should
show the presence of the file pi.GNT, which contains the generated code for
pi. INT.

EXECUTION

To execute a program, type:

cbrun

with the appropriate file name as an argument. The file may be an
intermediate code file (extension .INT) or a generated code file (extension
.GNT). If there is no extension, the run-time system will first search for
the file itself, then the file name with .GNT appended, then the file name
with .INT appended.

The following programs have been included to provide a demonstration of the
LEVEL II COBOL system.

1 - 3

Calculate the Value of PI

cbrun pi« (or cbrun pi.INT« or cbrun pi.GNT«)

This clears the screen and displays the lines below with different initial
numerical values. These are then overwritten with each iteration of the loop
that calculates pi.

CALCULATION OF PI

NEXT TERM IS 0.000000000000

PI IS 3.141592653589

The execution of the program terminates when NEXT TERM reaches zero.

Note that the RTS, in order to execute pi, must be aware of certain features
of the particular terminal being used. Terminal features are used in a file
named "termcap", which the RTS refers to when executing pi. This is
described more fully in Chapter 10, and Appendices H and I. Briefly,
however, if the RTS responds with an error number 191 when "cbrun pi" is
attempted, then either: 1) the TERM variable is not set and is not present
in the "environment" (for example, the appropriate shell commands for the
Bourne shell might be "TERM=adm31; export TERM"), or 2) the terminal type is
not defined in termcap. If the RTS responds with error number 192, this
means that the complete set of required capabilities is not defined in
termcap for your terminal.

Stock Control' Program 1

To run the stock control program,
type:

cbrun stockl«

This clears the screen, followed by -

STOCK CODE
DESCRIPTION
UNIT SIZE

<
<
<

>

>
>

This is a skeleton data entry program in which stock recprds are created on
a file in stock code order.

It also allows you to check out the cursor control and input validation
functions. Refer to Table 5-1, Cursor and Function Control Keys, for the
cursor control keys on some common terminals.

1 - 4

Using the cursor control keys you may move forward and backward from one
data input field to the next, or forward and backward non-destructively one
character position at a time within input fields. You may also move the
cursor directly to the first character position in the first data input
field, usually with a HOME key. You should note that the RETURN key, or
other equivalent, is used to enter the completed data record (which consists
of all of the fields displayed) and not the cursor control keys.

In this example the STOCK CODE and DESCRIPTION fields are alphanumeric (PIC
X), which means that they will accept any printable character that is typed
in. UNIT SIZE on the other hand, is a numeric field (PIC 9), and only digits
are accepted. Consequently, the entire field must be filled by numerics,
i.e. all" " (space) characters must be written over by numerics. Otherwise
the input will be rejected when RETURN is pressed. Leading zeros must
therefore be entered for smaller numbers, or fields may be automatically
justified using the "Left Zero" cursor control key (usually the decimal
point).

This program also creates an indexed sequential file called STOCK. IT,
together with its index called STOCK.IT.idx.

To create a record, key the data into the unprotected fields delimited by
"<" and ">". When a record is complete, press the RETURN kay and the record
will be entered in the data file. The unprotected areas will then be space
filled ready for the next record to be entered if no errors are detected by
the program. If the record remains displayed, the record was incorrectly
keyed and must be corrected. This is done by using the cursor controls to
move to the position of the error and typing over the existing characters
with the correction. Pressing RETURN again will result in the record being
accepted if there are no remaining detectable errors.

The execution of the program is terminated by pressing RETURN with the STOCK
CODE field left blank. The program will then respond with "END OF PROGRAM"
and terminate.

Stock Control Program 2

cbrun stock2«

This clears the screen followed by -

GOODS INWARD
STOCK CODE < >
ORDER NO < >
DELIVERY DATE MM/DD/YY
NO OF UNITS < >

1 - 5

This is a skeleton stock data input program in which the stock records
created by stockl can be accessed. The program updates the inventory record
by entering goods received. It also creates a transaction file with the name
STOCK.TRS.

The same cursor control features are present as in stockl. Note that the
DELIVERY DATE has a different method of prompting than has so far been used,
where the values are entered by typing over the letters with the indicated
information.

If the input fields are accepted and if the 'STOCK CODE corresponds to one in
the file created by stockl, then the relevant information from that file
will be displayed along with a request for a yes or no response as to
whether the information is correct and should be entered in the files. Any
response other than "y" (or "y") will cause the program to discard the
update and start over again.

The program is terminated by entering all spaces for the stock code in the
same way as for the stockl program.

PROGRAM DEVELOPMENT CYCLE

Figure 1-1 shows the typical development cycle for a LEVEL II COBOL program.
There are two distinct phases in the cycle:

1. The testing phase. In this phase, you compile your original COBOL
source, editing and re-compiling as necessary to remove syntax
errors. You then run the intermediate code program with various
sets of test data to demonstrate the logical correctness of your
program. At this stage you will probably use an interactive
debugging tool to' assist you in locating and correcting logic
errors; this may be the LEVEL II COBOL interactive debugging
facility described in Chapter 6, or the ANIMATOR debugging tool
(provided it is available on your implementation).

2. The production phase. When you are satisfied that your program is
logically correct, you have two alternatives:

* Use the tested intermediate code program as the final working
program.

* If you decide, on the basis of the considerations set out in
Chapter 8, that your progrClm will run more efficiently as
native machine code, you can submit the tested intermediate
code to the native code generator, and use the resul ting
generated code as the final working program.

1 - 6

PROGRAM PREPARATION CONSIDERATIONS

The following should be noted:

1. The compiler rejects most non-alphanumeric characters within the
source-code file (e.g. the Tab character) unless these are
embedded in literal strings.

2. Lower-case characters in source-code files are generally accepted
by the compiler. This is because the compiler considers lower and
upper case characters to be identical in most cases. So, for
example, a variable can be defined with ~pper case letters and
can subsequently be used throughout the program in either upper or
lower case. See Appendix J for more information.

1 - 7

Figure 1-1. A Typical Development Cycle.

Testi ng Phase

y

Production Phase

COBOL SOURCE EDIT

COMPILE

•
INTERMEDIATE

CODE

ANIMATOR OR
INTERACTIVE

DEBUG

A
Are there

Still Bugs?>

y
N

STABLE
INTERMEDIATE

CODE

Will It Run

I

< Better As '> .N------......
Native Code?

'y'
y
+

GENERATE

+
GENERATED

CODE

~
RUN----------------~

1 - 8

•

CHAPTER 2

COMPILER CONTROLS

COMMAND LINE SYNTAX

The operation of the LEVEL II COBOL compiler is controlled by directives,
most of which control the listing format. The compiler requires that these
directives (such as NOLIST) be placed after the source file name on the
connnand line. As a convenience to UNIX users, an alternative syntax is
provided. This alternative allows short, dash-prefixed single character
option flags to represent some of the standard directives. The "cobol"
command translates these flags into the standard directive format before
actually executing the compiler.

Either of the following command line formats may be used:

cobol prog.cbl [options]
cobol [options] prog.cbl

In these examples:

[directives]«
[directives]«

"prog.cbl" should be the name of a program file which contains LEVEL II
COBOL statements. NOTE: file names beginning with a " . " (for
example, the path specification " .. /prog. cbl") may be used here.
After compilation, the intermediate code file will reside in the same
directory as the source code file.' The ".cbl" suffix is optional
but strongly recommended for the names of files containing COBOL source
code.

U[options]" is a sequence of zero or more flags, each equivalent to a
directive. Note that some directives do not have an option flag
equivalent. Options are described alongside the directives to which
they correspond.

"[directives]" consists of a sequence consisting of zero or more LEVEL II
COBOL directives. The details of the input format for these directives
are described in detail below, and the available directives are listed
in the subsequent section.

2 - 1

DIRECTIVE AND OPTION INPUT FORMAT

The UNIX style If_It prefixed command flags may be used anywhere in the
command line, and more than one option specification character may be placed
after a single "_". For example, "-fc" is equivalent to If_f _c". Where, in
the list below, there is an available UNIX-style command flag it is shown
beneath the COBOL-style directive, with its equivalent meaning, e.g:

-c = COPYLIST

means the command flag -c is equivalent to the COBOL-style directive
COPYLIST.

Each COBOL-style compiler directive must be separated by one or more spaces.

Where directives have parentheses, the left-hand parenthesis may occur any
number of spaces after the body of the directive. Also, spaces are allowed
within the parentheses. Parentheses in a command line create an additional
problem in a UNIX environment, since they must be quoted or escaped to
prevent their interpretation by the shell. This is shown in the following
examples, all of which are acceptable and equivalent.

cobol prog.cbl "DATE(7-JAN)"
cobol prog.cbl DATE\(7-JAN\)
cobol prog.cbl DATE"(7-JAN)"

COMPILER DIRECTIVES LIST

A condensed version of this list is provided in Appendix A for convenient
reference.

"&" or \&

[NO] ALTER

Returns control to the operating system, i. e. cancels this
command sequence. Note that this must be quoted to avoid
interpretation by the shell.

Continuation character, if followed by a carriage return this
permits the command sequence to continue on the following
line. Note that i~dividual directives may not be split over
more than one line. Each line of directives will be accepted
or rej ected before the compiler allows the input of the
continuation line.

NO ALTER prohibits the use of ALTER statements wi thin the
program being compiled. This allows the compiler to operate
more efficiently.

The default is ALTER.

2 - 2

[NO] ANIM

[NO] BRIEF

[NO] COMP

Causes the program to be compiled in a manner suitable for
later animation. See the manual LEVEL II COBOL ANIMATOR
Operating Guide for more details. This directive is useful
only if ANIMATOR is available with this implementation.

By default this directive is off unless ANIMATOR is
available, in which case it is on.

Error numbers only are produced on the listing and console,
i.e. the text of error messages is suppressed.

By default this directive is off unless no error message file
can be found.

Causes the compiler to generate much more compact and
efficient code for certain statements involving PIC 9(2) COMP
and PIC 9(4) COMP data items. See Chapter 8 for full
details. The reason for this directive is that the efficient
code leads to non-standard behaviour in cases of numeric
overflow; the compiler cannot allow this to happen unless you
give this directive, meaning either that you know your
statements will not lead to numeric overflow (in which case
the semantics of your program will remain strictly in accord
with the ANSI standard, while at the same time giving you the
advantage of the extra efficiency), or alternatively that
you mean to take advantage of the defined but non-standard
behaviour on overflow.

By default this directive is off.

[NO] COPYLIST ["integer"]

-c = COPYLIST
Causes the contents of any files named in COpy statements to
be listed.

By default this directive is off.

Whatever the state of this directive, the name of any copy
file open at the time a page heading is output will be listed
as part of the heading.

2 - 3

The optional integer, which must be zero or 50-99, allows the
selection of particular segments with this directive. Zero
means all root segments. For example: .

COPYLIST "53" causes COPYLIST to be set in the
identification division and in Segment 53 but not
otherwise.

NO COPYLIST "53" causes COPYLIST to be set in Segment 53
only.

No integer may be specified if the -c notation is used.

[
NO CRTWIDTH]

CRTWIDTH "integer"

Specifies the width of the user" screen in characters. This
is used in Format 1 (standard ANSI) DISPLAY statements to
enable the user to plan the separation points in display of
data-items too long to fit on one physical CRT line.

By default this directive is set to 128.

Turning the directive off (NO CRTWIDTH) causes Format 1
DISPLAY statements to be rejected. Not using DISPLAY
statements saves space in memory due to the control tab les
not being required.

DATE "string"

[NO] ECHO

-k = NOECHO

Causes the "string" to be used in place of the comment entry
in the DATE-COMPILED paragraph (if present). Specifying NO
DATE causes spaces to be used.

If the directive is omitted the comment entry (if present) is
used.

Causes error lines and flags to be echoed to the conso le.
Each error will result in the source line producing it, the
error number and (unless BRIEF is set) an explanatory
message, being printed on the console.

By default, this directive is on.

2 - 4

LNOj ERRL1~T

-e = ERRLIST
Causes the listing to be restricted to those COBOL lines
containing syntax errors or flags, together with associated
error messages.

By default this directive is off, i.e. a full list is
produced.

FILESHARE
Enables specification of file and record locking syntax for
indexed files (see Chapter 7).

If this directive is specified the following directives are
also available:

COMMIT (INDEXED)

RESTRICT (INDEXED)

changes the default file-type for indexed
files to committable.
changes the default file-type for indexed
files to restricted.

NO FLAG

-f =

FLAG It LOW It

L-I
H-I
HIG
L/II
IBM

Causes the output of GSA compiler certification flags during
compilation for all features higher than the specified level:

LOW
L-I
H-I
HIGH
L/II

IBM

GSA Low-level
GSA Low-Intermediate-level
GSA High-Intermediate-level
GSA High-level
LEVEL II COBOL extensions to ANSI COBOL
standard X3.23 1974 (see the LEVEL II COBOL
Language Reference Manual).

IBM-compatible non-standard COBOL (see the
LEVEL II COBOL Language Reference Manual,
Appendix J).

By default this directive is off.

FORM]
FORM "integer"

NO FORM
Specifies the number of lines per page of the listing.
"integer" must be at least 3.

By default, 60 lines are printed per page.

2 - 5

One form-feed character is always produced at the head of the
listing file but if NO FORM is used no further form-feed
characters and no page headings are produced in the body of
the listing.

If the listing is directed to the console (by use of the LIST
directive) then the first form-feed character is replaced by
a blank line.

rNO INT]
LINT "filename"

-i = NOINT

NO ~LIST ~
~PRINT~

Specifies the file to be used to hold the intermediate code
output by the compiler; if the specified file exists, it will
be overwritten.

NO INT (or -i) suppresses the production of an intermediate
code file (i.e. the compiler is used for syntax checking
only) •

By default the compiler adds . INT to the source-file name,
replacing any existing file-name extension.

Note that if "filename" is specified ·without a "." suffix,
then a suffix must be added later, or the RTS will be unable
to find the file, and will respond with an error. The
Run-Time System (RTS) assumes a file has the suffix .INT.

~ LIST ~ tId . ."
~PRINTS est~nat~on

-1 = LIST ":CO:"
-n = NOLIST

Specifies the destination of the listing file, if an existing
file is specified, it will be overwritten. The destination
may be omitted, in which case the listing is directed to
standard output.

NO LIST
PRINT suppresses the production of a listing.

If "destination" is ": CO:" (or -1 is specified) then the
listing is directed to the standard output - usually your
terminal; if it is ":LP:", the listing is directed to a file
on disk, which may be printed off if required.

2 - 6

[NO] QUAL

[NO] REF

[NO] RESEQ

-r = RESEQ

If no directive is specified, the compiler forms a file name
by adding . LST to the source-file name. If a directive is
specified with no filename, the console will be used.

NO QUAL prohibits qualified data-names or procedure-names in
the program being compiled. This allows the compiler to
operate more effectively.

The default is QUAL.

Causes four-digit location addresses to be included on the
right hand side of the listing file. Note that a listing
with location addresses may be required in order to identify
the locations reported in RTS error messages.

By default this directive is off.

Causes the compiler to generate COBOL line sequence numbers,
starting at 10 in increments of 10.

By default this directive is off.

EXCLUDED COMBINATIONS

Certain of these directives may not be used in combination. Table 2-1 shows
the directives that are excluded if the directive shown adjacent in the left
hand column is specified.

Table 2-1. Excluded Combinations of Directives

DIRECTIVE EXCLUDED DIRECTIVES

ANIM NOCRTWIDTH

NOLIST LIST
PRINT
[NO] FORM
RESEQ
COPYLIST
ERRLIST
[NO]REF

ERRLIST RESEQ
COPYLIST
[NO]REF

2 - 7

COMPILER COMMAND LINE EXAMPLES

The following command line is an example of the standard LEVEL II COBOL
format:

cobol prog.cbl NOREF NOFORM RESEQ«

This will cause a listing file to be created with sequence numbers,
and no addresses or page headers in the listing. It will also create a
line-numbered version of the source file. This output format will
allow the listing to be used as the source file for the next attempt to
compile the program, after any errors and error messages are edited out,
and the three trailing lines at the end of the prog.LST file are deleted.

The following is an example of the alternative cobol command line format:

cobol -i prog.cbl«

The -i option causes the source file to be checked for syntax errors
only; no intermediate code is generated 0

DICTIONARY CONTROL

The LEVEL II COBOL compiler uses a virtual memory mechanism for dictionary
control (symbol table) handling. The RTS creates a dictionary file called
"/ tmp/ cobdNNNNN", where NNNNN is the process I.D. Individual b locks are
buffered in memory as needed. The buffer area is usually resident in
dynamically allocated memory, but this can vary depending on the type of
installation.

The "-d" flag, which affects certain internal parameters, must be passed to
the RTS for correct execution of the compiler. It is automatically provided
in cobol.c, the C program used to initiate compilation.

The virtual dictionary size defaults to 30,000 byte·s, and has a maximum
limit of 65,000. It may be set, for example, to 60,000 with a flag to the
RTS of the form "-dv60000". Note that this flag may be passed to the RTS
from the cobol command line.

SUMMARY INFORMATION ON STANDARD OUTPUT

The compiler's initial response to an input command line should be:
* LEVEL II COBOL V2.0 Copyright (c) 1982 Micro Focus Ltd

Each directive is then acknowledged by the compiler on a separate line, and
is either ACCEPTED or REJECTED. After all the directives have been
acknowledge.d, . the compiler opens its files and starts to compile. At this
point it displays the message:

* Compiling prog.cbl

2 - 8

If any file fails to open correctly, the compiler displays:

Open fail : <filename>

The compilation is aborted, returning control to the operating system. "'Open
fail" results, for example, if the source file is located in another
directory, or if the file name was typed incorrectly.

For each error that occurs during compilation, the line
displayed along with an error number and an error message
compile-time errors can be found in Appendix B).

is normally
(a list of

When the compilation is complete the compiler displays the message:

**ERRORS=nnnn DATA=nnnn CODE=nnnn DICT=used:free/total GSA FLAGS= nnn

where:
ERRORS

DATA

CODE

DICT

GSA FLAGS

LISTING FORMATS

denotes the number of errors found

denotes the size of the data area of the generated
program

denotes the size of the code area of the generated
program

denotes the number of bytes used, the number rema~n~ng
free in the data dictionary, and the total (i.e.
DICT=used:free/total)

if FLAG(level) is specified, this indicates the number
of features used which were not allowed at the given GSA
level.

The general layout of the list file is as follows:

* LEVEL II COBOL V2.0
* 000001 statement 1

OOOOOn statement n

<filename> PAGE: nnnn

* LEVEL II COBOL V2.0 REVISION n URN AA/OOOO/AA
* Compiler Copyright (c) 1982 Micro Focus Ltd
* ERRORS=nnnn DATA=nnnn CODE=nnnn DICT=used:free/total GSA FLAGS= OFF

2 - 9

The first two lines of title information are repeated for each page. The
final line is the same as on the terminal.

Note that, if you specify the REF directive during compilation, a
hexadecimal value denoting the address of each dataname or procedure
statement appears to the right of the page. Addresses of datanames are
relative to the start of the data area, while addresses of procedure
statements are relative to the start of the code area. There is some
overhead at the start of the data area, and a few bytes of initialization
code at the start of the procedure area for each SELECT statement.

2 - 10

CHAPTER 3

NATIVE CODE GENERATOR CONTROLS

COMMAND LINE SYNTAX

The command line, the means by which you invoke the native code generator,
specifies the intermediate code file to be used as generator input, and the
way in which the code generator processes the intermediate code file.

The code generator command line format is:

where

and

cgen prog.INT [options] [directives] «

prog.INT is the name of the input (intermediate code) file,

directives is an optional sequence of code generator directives. Each
directive must be separated by one or more spaces. If the command line
is too long to fit on a single line, it may be continued by typing an
ampersand u&" followed by carriage return and continuing the command
on a further line. For those directives that take parameters in
brackets, the left bracket may occur after zero, one or more spaces
following the directive name.

As with the compiler directives, some of the code generator directives have
UNIX style option equivalents (see the next section).

Note that if you do not include the .INT extension in the input file
name, the code generator will append it automatically.

CODE GENERATOR DIRECTIVES

Round brackets or double quotes are used to delimit the parameters of some
directives. For parameters in quotes, the content of the parameter is
retained fully. Brackets, quotes, and the & directive will need to be
escaped to avoid premature evaluation by the shell, as with compiler
directives (see Chapter 2).

The available code generator directives are:

[NO] ASM

-a=ASM Specifies whether or not you require an assembly listing. The code
generator listing file contains full details of all generated code in
mnemonic form. If NOASM is specified with LIST, it contains only the
code generator identity, command line details and summary statistics.

By default this directive is off.

3 - 1

BELL]
BELL "integer"

Defines the character used to cause the "bell"
audible warning) to sound. "integer" is the
decimal.

The default is 07.

(i.e. the terminal's
ASCII character in

Tunring the directive off (NOBELL or BELL "a" causes no bell character
to be set).

[NO] CHECK

-c= NOCHECK

Specifies checking of run-time limit violations e. g. PERFORM stack,
table bounds.

NO CHECK suppresses such run-time checks.

If no directive is specified, checking takes place.

FORM 1
FORM "integer':.!
NOFORM

Specifies the number of lines per page of the listing. "integer" must
be at least 3.

By default, 60 lines are printed per page.

A form-feed character is always produced at the head of the listing
file unless NO FORM is used. NO FORM specifies that no form-feed
characters or page headings are produced anywhere in the listing.

If the listing is directed to standard output (by use of the LIST
directive), interpretation of the form-feed character is dependent on
your particular CRT.

[NO] GNT[(external-file-name)]
"external-file-name"

-g= NOGNT·

Specifies the file to which the generated code program is directed, if
the file exists, it will be overwritten.

NO GNT suppresses the generation of an output file (i. e., the code
generator is used for assembly code listing generation only).

By default the code generator adds .GNT to the source-file name,
replacing any existing file-name extension.

3 - 2

r[NO] LIST .]
LIST r(dest~nat7on)J

~'des tl.natl.on"

-1= LIST":CO:"
-n= NOLIST

Specifies the file to which the code generator listing is to be
directed, if the file exists it will be overwritten.

The destination may be a printing device, i. e., the printer or the
console.

NO LIST suppresses the production of a listing.

If no directive is specified', the code generator forms a file name by
adding .GRP to the source file name. If a directive is specified with
no file name, the console is used.

PAGETHROW "integer"

Specifies the ASCII character code for physical page throw on the
printing device. The character code is expressed in decimal.

The default is 12.

GENERATING SEGMENTED COBOL PROGRAMS

Segmented COBOL Programs are compiled into a root intermediate code file
(usually taking the default .INT file extension) and a further intermediate
code file for each overlay segment. There is also an inter-segment
reference (ISR) file. The overlay segments have file extensions from .150
to .199, corresponding to the COBOL segment numbers, and the ISR file has
the extension .ISR.

When a segmented program is generated only the name of the root segment
intermediate code file is specified in the command line. The code generator
uses this name and establishes from the ISR file which overlay segments are
present and generates all the segments in a single run. The output files
mirror the input files: a root (. GNT) file, overlays with extensions from
.GSO to . G99, and a generated inter-segment reference file with extension
.GSR.

Each COBOL segment appears separately in the code generator listing file.

If further overlaying is required due to memory limitations more files are
generated. See Chapter 8.

3 - 3

3 - 4

· CHAPTER 4

RUN-TIME SYSTEM CONTROLS

COMMAND LINE SYNTAX

The Run-Time System (RTS) is invoked and controlled by means of a command
line.

The command line syntax for running a LEVEL II COBOL object program is as
follows:

cbrun [debug-param] [switch-param] prog [prog-params]«

In this example:

"prog" is the name of the intermediate or generated code file.
specify no extension, the RTS treats the file name as follows:

If you

1. It searches for the named file (that is, the file without any
extension).

2. If this fails, the RTS appends .GNT to the file name and searches
for the corresponding generated code file.

3. If this fails, the RTS appends .INT to the file name and searches
for the corresponding intermediate code file.

If you do specify an extension, the RTS will immediately search for the
appropriate file.

"[debug-param]" consists of "+D" for the LEVEL II COBOL interactive
debugger. This may only be specified if the program is an intermediate code
program.

n[switch-params]" may be used to control program options.

"[prog-params)" are string values or file names to be used by the program as
parameters.

All arguments must be separated by spaces.

These command line options are explained further in the following sections.

THE DEBUG PARAMETER

The optional debug parameter +D may be used to invoke the LEVEL- II COBOL
interactive debug package, which is documented in Chapter 6. This is
distinct from ANSI debug (+DB) , which is considered a switch parameter, and
is batch-oriented.

Interactive debug is not supported for generated code.

4 - 1

THE SWITCH PARAMETERS

LEVEL II COBOL includes the facility of controlling events in a program at
run time depending on whether or not you set programmable switches, as
described in the SPECIAL-NAMES section in the LEVEL II COBOL Language
Reference Manual. You set these switches at run time by use of the switch
parameter to the cbrun command.

A switch parameter is either of the following:

+DB

[+/-IN

Turns on the ANSI COBOL debug facility.

N is an integer in the range 0-7. '+' turns on the
switch, and '-' turns off the switch; the default is
that all switches are off. These switches can be
specified in any order, and the last appearance of any
specific number takes precedence.

See examples later in this chapter.

THE PROGRAM PARAMETERS

These are any additional parameters required by the program, frequently the
names of files to be accessed. Parameters can be accessed from the command
line in either of two ways:

1. If the COBOL program opens the file name ": CI:" for reading, and
this file is specified ORGANIZATION LINE SEQUENTIAL, then the
first READ from this file will access command line parameters.

2. ACCEPT FROM CONSOLE also reads from the ": CI:" device, so the
first ACCEPT FROM CONSOLE will access parameters. Note that
ACCEPT without a FROM clause is by default ACCEPT FROM CONSOLE,
unless CONSOLE IS CRT is specified in the SPECIAL-NAMES section~

ACCEPT FROM CRT will .!!.2! access command line parameters e Pay special
attention to ACCEPTs without a FROM clause, since they mayor may not access
command line parameters, depending on the inclusion in the program of
CONSOLE IS CRT.

4 - 2

RUN-TIME FLAGS

These are flags passed to the COBOL RTS at run time.

Exclusive Indexed Sequential Access Method (ISAM) Flag

The '-S ' or 'single user' flag is intended primarily for systems using
creation locking. It is a run time flag that reduces the number and
frequency of disk accesses required for ISAM locking. This is accomplished
by locking a file at the first ISAM request and unlocking it only after the
file is closed. Note that, after the lock is set, requests from outside
processes will 'sleep' until the lock is removed or an interrupt is issued.
No diagnostic is given as to the lock status. Also, care should be taken to
remove the lock file in 'fisam' if it remains due to premature program
termination (See Chapter 9).

The intent is that users who are certain that no other process will be
accessing their data files can get quicker ISAM response. However, the files
are in fact locked and protected from other processes which are following
the correct locking protocol.

It is possible to specify the method of file locking with the 'LOCK MODE IS'
phrase listed in the source program (see the LEVEL II COBOL Language
Reference Manual for more information). The '-S' flag will override such
usage.

Memory Allocation (-m) Flag

The RTS requires a data area procured by use of the sbrk(II) routine.
Normally the RTS grows to use the maximum data address space available,
up to about 64K. There is, however, a command line flag to limit this
request:

cbrun -mNNNNN prog

where NNNNN is a decimal number greater than about 8000, which
corresponds to the highest address at which to try to set the "break".
If the sbrk() call fails, it is attempted at least once at a lower
position. This flag would be useful in a loaded or limited-memory
environment when it is known that less memory is needed (i.e. small
programs). If small programs are the rule, an installation should
consider adding this flag as a default in the cbrun and cobol programs.
Users could still get the maximum if their use of "-m" were the last one
on the final command line. Caution should be exercised; if the break
is set too low, some peculiar behaviour may occur.

4 - 3

COMMAND "LINE EXAMPLES

cbrun +D+l +2 +3 prog.GNT«

This loads the generated code of the program "prog" with interactive
debugging, and the programmable switches 1, 2 and 3 set.

A debug initial display appears on the terminal.

cbrun prog.INT 1 2«

This loads the program "prog" from the intermediate file produced by the
compiler and passes the user program parameters 1 and 2 to the program prog.
Debug is omitted.

cbrun -2 +5 -7 +7 +DB prog.INT«

This loads the program "prog" from the intermediate file produced by the
compiler, with programmable switches 5 and 7 on and 2 off.
Note that the last setting of switch 7 is accepted.
Switches 1, 3, 4, and 6 are off by default.
The ANSI debug run-time switch is also set.

4 - 4

CHAPTER 5

INTERACTION IN APPLICATION PROGRAMS

CRT SCREEN HANDLING

COBOL is traditionally a batch processing language; LEVEL II COBOL extends
the language to make it interactive. LEVEL II COBOL offers many facilities
for automatic formatting of a screen and facilitates keying of input.

You can specify areas of the screen into which you are able to key data, and
also whether such data is numeric or alphanumeric. You do this by defining
the screen as a record in the DATA DIVISION in which the data 'fields
correspond to the input area and FILLER's correspond to the rest of the
screen.

An ACCEPT statement makes use of a data item description to input the
character positions corresponding to variables with elementary data-names.
Conversely, a DISPLAY statement outputs only from non-FILLER fields in the
record description which it uses. You can thus easily build up complex
conversations for data entry and transaction processing.

While data is being keyed, you have full cursor manipulation facilities,each
variable acting as a tab stop. Non-numeric digits may not be entered into
fields defined as numeric. Finally, when you have checked that the data is
correct, press the RETURN key and the data becomes available to the program.
Because all characters are transferred to the appropriate area as they are
keyed in, there is no transmission delay.

The following facilities are available for screen layout and formatting:

1. Screen as a record description

2G FILLER

3. REDEFINES

4G AT line column

5. CURSOR addressing

6. Character highlighting

7. Clear screen

8. Numeric validation of PIC 9(n) fields

9. Automatic editing of numeric edited data-items

10. De-editing of numeric edited to numeric data-items

5 - 1

CURSOR CONTROL FACILITIES

During execution of ACCEPT statements the cursor is manipulated on the CRT
screen by the cursor control keys on the console keyboard as shown in
Table 5-1.

Table 5-1. Cursor and Function Control Keys

Function ADM-3A Hazeltine
1520

DEC
VT-lOO

--
Begin first field ASHIFT/HOME HOME PF1

Begin next field AJ D arrow D arrow

Begin previous field AK U arrow U arrow

Forward Space AL R arrow R arrow

Backward Space AH L arrow L arrow

Column Tab AI TAB TAB

Left Zero Fill

Data Entry
Terminator RETURN RETURN RETURN

Notes:

1. Where A is specified, you must press the "CTRL" (control) key, ho ld
it down and simultaneously press the character key. Back one space
for ADM-3A is thus both the "CTRL" and the H character keys.

2. DECIMAL-POINT IS COMMA may be specified in the user program, in which
case, the "," character is used for Left Zero Fill.

3. The arrow keys are: D-down, U-up, R-right and L-left.

5 - 2

DISPLAYING DATA ON THE SCREEN

The first step in making your LEVEL II COBOL program interactive is to
decide what messages and prompts you want to be displayed on the screen to
guide the operator and what action you want the operator to take at each
point. This section describes the display facilities. Please note that, as
most terminals scroll upwards as a result of a character appearing in the
final character position (i.e. bottom right of the screen) it is not
possible to use this character position as part of a DISPLAY.

CLEARING THE SCREEN

Unless 'you are deliberately displaying something upon a screen which you
have already displayed, and you know. what the result will be, it is
advisable to clear the screen before any display. The statement:

DISPLAY SPACE.
or

DISPLAY SPACES.

causes the entire screen to be cleared.

DISPLAYING SINGLE ITEMS

Single text strings such as single prompts or messages can be displayed very
easily by using the AT clause to specify the coordinates of the start of the
display item on the screen. For example:

DISPLAY data-item-1 AT data-item-2

where data-item-2 is PIC 9999, the most significant two digits specify a
line number in the range 01 to the maximum number of lines on the screen.
The least significant two digits specify a column number in the range 01 to
the maximum number of characters per line on the screen. Both numbers are
in decimal.

Data-item-1 is the text to be displayed. For example, the following code
causes the message SELECT ONE OF THE FOLLOWING ITEMS to be displayed on line
5 of the screen, beginning in character position 5:

ENVIRONMENT DIVISION.
SPECIAL-NAMES.
CONSOLE IS CRT.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 DISPLAY-ITEM-l

VALUE "SELECT ONE OF
PIC X(33)

THE FOLLOWING ITEMS".

5 - 3

PROCEDURE DIVISION.
START-OF-PROGRAM.

DISPLAY SPACES.
DISPLAY DISPLAY-ITEM-l AT 0505.

Using the DISPLAY ... AT ... statement, a screen full of information could be
built up, one item at a time.

DISPLAYING MORE COMPLEX SCREENS

When several items are to be displayed, many DISPLAY ... AT ... statements may
be required. This can be simplified by declaring FILLER items to fill the
intervening gaps, thus requiring only one DISPLAY statement.

For example, to generate:

SELECT ONE OF THE FOLLOWING ITEMS

1. FOOTBALL SCORES
2. TENNIS RESULTS
3. GOLF NEWS
4. EXIT

the following program could be used (for an 80 column screen).

ENVIRONMENT DIVISION.
SPECIAL-NAMES.
CONSOLE IS CRT.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 DISPLAY-ITEM-l.

03 DISPLAY-ITEM-l-l PIC X(33)
VALUE "SELECT ONE OF THE FOLLOWING ITEMS".

03 FILLER PIC X(128).
03 DISPLAY-ITEM-1-2 PIC X(18)

VALUE "1. FOOTBALL SCORES".
03 FILLER PIC X(62).
03 DISPLAY-ITEM-1-3 PIC X(17)

VALUE "2. TENNIS RESULTS",
03 FILLER PIC X(63).
03 DISPLAY-ITEM-1-4 PIC X(12)

VALUE I' '3. GOLF NEWS".
03 FILLER PIC X(68).
03 DISPLAY-ITEM-l-S PIC X(7)

VALUE "4. EXIT".

5 - 4

PROCEDURE DIVISION.
START-OF-PROGRAM.

DISPLAY SPACES.
DISPLAY DISPLAY-ITEM-1 AT 0505.

FILLER items are never actually displayed, not even as spaces, so whatever
was on the screen before a DISPLAY will still be displayed in the places
covered by FILLER items.

DISPLAYING HIGHLIGHTED TEXT

If the CRT-UNDER clause is used in a DISPLAY statement, the data item is
displayed highlighted (provided that your CRT supports this facility, which.
may be underlining or reverse video characters).

ACCEPTING DATA ENTERED AT A CRT

After you set up and display a screen and prompt the operator to enter some
data, the data must be ACCEPTED. Please note that, as most terminals scroll
upwards as a result of a character appearing in the bottom right character
position, it is not possible to use this character position as part of an
ACCEPT.

There are two types of items that may be accepted: elementary data-items and
group-items.

ACCEPTING AN ELEMENTARY ITEM

The statement:

ACCEPT MYDATA

places the cursor at the HOME position and accepts the character string
keyed in by the operator until this is terminated by RETURN. This string is
directly transferred into the data-item MYDATA, left aligned if too short.
MYDATA is then checked against its declaration in the DATA DIVISION and any
format errors are reported.

If the AT clause is used, the value of the data-item in the AT clause
defines the start position of the ACCEPT data item. This data-item must be
PIC 9999, where the most significant two digits define a line number in the
range 01 to the maximum number of lines on the screen, and the leas t
significant two digits define a column number in the range 01 to the maximum
number of characters per line on the screen. If the data item contains zero
or spaces, it is treated as 0101 or, in other words, HOME. The cursor will
be positioned at the start of the data item to be accepted, i.e. the
position defined by the AT clause (but see Explicit Cursor Positioning).

5 - 5

For example:

ACCEPT.MYDATA AT 1021

positions the cursor, at character position 21 on line 10 and accepts
whatever is entered there by the operator.

ACCEPTING A GROUP ITEM

Accepting a group item is a little more complex. The group item must be
declared in the WORKING-STORAGE SECTION of your program; it will probably
bear some resemblance to the data declaration used to generate the DISPLAY
screen, except that data items in one will probably be filler fields in the
other. It may, in this case, be worth redefining the original DISPLAY group
item as the ACCEPT group item. For example:

ENVIRONMENT DIVISIONG
SPECIAL-NAMES.
CONSOLE IS CRT.
DATA DIVISION.
WORKING STORAGE SECTION.
01 DISPLAY-ITEM-l

03 FILLER PIC X(324).
03 DISPLAY-ITEM-l-1 PIC' X(33)

VALUE "SELECT ONE OF THE FOLLOWING ITEMS".
03 FILLER PIC X(128).
03 DISPLAY-ITEM-1-2 PIC X(18)

VALUE "1. FOOTBALL SCORES".
03 FILLER PIC X(62).
03 DISPLAY-ITEM-1-3 PIC X(17)

VALUE "2. TENNIS RESULTS".
03 FILLER PIC X(63).
03 DISPLAY-ITEM-1-4 PIC X(12)

VALUE "3. GOLF NEWS".
03 FILLER PIC X(68).
03 DISPLAY-ITEM-1-5 PIC X(7)

VALUE "4. EXIT".
01 ACCEPT-ITEM-1 REDEFINES DISPLAY-ITEM-l.

03 FILLER PIC X(504).
03 ACCEPT-ITEM-1-1 PIC X.
03 FILLER PIC X(79).
03 ACCEPT-ITEM-l-2 PIC X.
03 FILLER . PIC X(79).
03 ACCEPT-ITEM-1-3 PIC X.
03 FILLER PIC X(79).
03 ACCEPT-ITEM-l-4 PIC X.

PROCEDURE DIVISION.
START-OF-PROGRAM.

DISPLAY SPACES.
DISPLAY DISPLAY-ITEM-l.
DISPLAY ACCEPT-ITEN-I.

5 - 6

In the same manner as DISPLAY ••• AT ... the AT clause may be used to define
the initial position of the data, thus avoiding an initial FILLER item in
the data declaration. The default position for AT is HOME. HOME will also be
used if the position defined by AT is outside the physical bounds of the
screen.

CURSOR BEHAVIOR DURING AN ACCEPT

Unless explicitly postioned by the program, the cursor will initially be
placed at the start of the first data-item to be accepted. While the
operator is entering data in response to an ACCEPT, the cursor-will advance
character by character. If data is entered that does not completely fill the
data item, the operator must advance the cursor to the next data item either
by advancing one space at a time to the end of the current data item or by
using the advance-one-field key. The cursor will not move into FILLER items.
At the end of the last data item of a group the cursor will remain in the
last character position and the bell will be sounded when any character is
typed. The last character typed is the one that will be accepted. Data entry
to a group item is terminated by RETURN.

When designing an interactive LEVEL II COBOL program, you should adopt a
consistent approach to ACCEPT statements. A number of individual ACCEPTS on
the same screen will require the operator to press RETURN at the end of each
one, a group ACCEPT performing the same function will require the operator
to tab forward from field to field (if the fields are not completely filled
by the data entered) and only press RETURN at the end of the last field. A
mixture of these approaches in anyone program or suite of programs would be
confusing for an operator, and should therefore be avoided.

EXPLICIT CURSOR POSITIONING

You can exercise explicit control over the cursor by using the "CURSOR IS
data-name" clause in the SPECIAL NAl-lES paragraph. The data-name must be a
PIC 9999 item, where the most significant two digits define a line number in
the range 01 to the maximum number of lines on the screen, and the least
significant two digits define a column number in the range 01 to the maximum
number of characters per line on the screen. On executing an ACCEPT
statement, the cursor is moved to the character position defined by the
CURSOR data item (if the CURSOR data-item contains zero or spaces or is
undefined, HOME is used by default). Any AT clause in the ACCEPT statement
still defines the position of the data items on the screen; the CURSOR
data-item merely positions the cursor. If the defined position is either
outside the physical bounds of the screen or outside the limits of the group
item or elementary data item being ACCEPTED, the position is ignored and the
start of the first data item is used instead-.

If the defined position is in a FILLER item, the cursor moves to the
beginning of the next data item. If there is no further data item, the
cursor returns to the beginning of the first data item on the screen.

5 - 7

On return from an ACCEPT statement the CURSOR data item contains the address
of the final position of the cursor on the screen.-

One example of the use of this facility is that in menu-type operations the
operator need only move the cursor to a position on the screen corresponding
to the selection required. The operator's choice can then be determined by
the returned value of the CURSOR data item.

If, in this type of operation, there is one choice per line, the resulting
line number could be used for a DEPENDING ON clause and the default choice
could be determined by explicitly positioning the cursor on one of the
choices before the ACCEPT statement.

Note that in order to use the CURSOR data-item for cursor positioning the
data item must contain a value other than zero or spaces. If the CURSOR data
item contains zero or spaces, it will not be updated with cursor positions
after ACCEPT statements.

The following program could be used to display the sports screen shown
earlier and to call a subroutine depending on the response.

5 - 8

ENVIRONMENT DIVISION.
SPECIAL-NAMES.
CURSOR IS CURSOR-POSITION.
CONSOLE IS CRT.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 CURSOR-POSITION.

03 CURSOR-LINE
03 CURSOR-COLUMN

01 DISPLAY-ITEM-l.

PIC 99.
PIC 99.

03 FILLER PIC X(324).
03 DISPLAY-ITEM-l-1 PIC X(33)

VALUE "SELECT ONE OF THE FOLLOWING ITEMS".
03 FILLER PIC X(128).
03 DISPLAY-ITEM-1-2 PIC X(18)

VALUE "1. FOOTBALL SCORES".
03 FILLER PIC X(62).
03 DISPLAY-ITEM-1-3 PIC X(17)

VALUE "2. TENNIS RESULTS".
03 FILLER PIC X(63).
03 DISPLAY-ITEM-1-4 PIC X(12)

VALUE "3. GOLF NEWS".
03 FILLER PIC X(68).
03 DISPLAY-ITEM-1-5 PIC X(7)

VALUE "4. EXIT".
03 DISPLAY-ITEM-1-6 PIC X(32)

VALUE "POSITION CURSOR AND PRESS RETURN".
01 ACCEPT-ITEM-l REDEFINES DISPLAY-ITEM-1.

03 FILLER PIC X(504).
03 ACCEPT-ITEM-1-1 PIC X.
03 FILLER PIC X(79).
03 ACCEPT-ITEM-1-2 PIC X.
03 FILLER PIC X(79).
03 ACCEPT-ITEM-1-3 PIC X.
03 FILLER PIC X(79).
03 ACCEPT-ITEM-1-4 PIC X.

PROCEDURE DIVISION.
START-OF-PROGRAM.

DISPLAY SPACES.
DISPLAY DISPLAY-ITEM-l.
MOVE 0625 TO CURSOR-POSITION.
ACCEPT ACCEPT-ITEM-1.
SUBTRACT 6 FROM CURSOR-LINE.

~ CURSOR da ta items

"DISPLAY item

ACCEPT item

GO TO FOOTBALL-SCORES, TENNIS-RESULTS, GOLF-NEWS,
FINISH-OFF DEPENDING ON CURSOR-LINE.

5 - 9

5 - 10

CHAPTER 6

INTERACTIVE DEBUGGING

INTRODUCTION

Two levels of debugging are available to the programmer. Full ANSI debug is
available, including optional "debugging lines" that are included if the
DEBUGGING MODE switch is present in the SOURCE-COMPUTER sentence. The second
is the interactive debug package that is included at run time under the
control of the user (see Chapter 2, COMMAND LINE SYNTAX). In certain
implementations the ANIMATOR debugging package may also be available.

Note that interactive debug will only work for intermediate code programs;
it cannot be used in conjunction with generated code programs.

Note that the interactive debug package reads its commands from the standard
input (the ":CI:" device). Consequently, interactive debug may be confusing
with programs that read from the standard input (":CI:" reads or ACCEPT's);
this includes programs that access program parameters from the command line.

When debug is invoked, it will announce its presence as follows:

cbrun +D stockl«
COBOL Debug Mark 1.0
?

-command line
-title response
-prompt

You now have the following debug commands available, for all of which the
lower case letter is accepted:

P Displays the current program counter (pc)

G - Breakpoint at specified address

x - Execute one LEVEL II COBOL statement at a time

D - Display 16 bytes of a specific address in the DATA DIVISION

D, - Display the next 16 bytes in the DATA DIVISION

A - Replace contents of a memory location by a hexadecimal value or
ASCII character

6 - 1

S - Set start of block for correction or display

/ - Display bytes in block above

- Change bytes in block above

T - Trace paragraphs up to breakpoint specified

Q - Quit interactive debug.

B - Execute statements until the value of a specified memory location
changes.

E - Execute statements until the value of a specified memory location
changes to a specified value

L - Output one Carriage Return/Line Feed

M - Define debug command macro with name specified

$ - End macro definition

C - Displays specified character

- Precedes comment to describe a macro just entered

A description of the use of each of these debug commands follows.

THE P COMMAND

The P command displays the address at which the program counter currently
points, i.e. where the current instruction is in the PROCEDURE DIVISION
code of a program. This hexadecimal address is that printed in the right
hand column of a program listing. Note that by default the compiler does not
produce the hexadecimal address in the listing. The addressing is produced
using the REF directive (See Chapter 2).

EXAMPLE:

At the start of a program the pc is at 0000 as shown below:

NOTE:

?P«
0000

?

-command
-current pc
-prompt

The location given by the 'p' command is relative to the start o·f the
PROCEDURE DIVISION. All numbers in the debug package are expressed as
hexadecimal values.

6 - 2

THE G COMMAND

The G command executes from the current pc until the pc reaches the value in
the parameter to 'G'. If this value is not the address of an executed
instruction, the breakpoint is never reached and the program continues.

EXAMPLE:

If a breakpoint is required at PARA-22 in the following code:

PARA-22.
ADD I TO COUNT.
MOVE FIELD-I TO FIELD-2.

the following command is typed:

?G OI7A«
?

Ol7A
Ol7B
OIBC

hex address

The display of the second question mark above indicates that the G command
has executed completely and thus the breakpoint has been reached.

NOTE: Exactly four hexadecimal digits must be keyed for an address value.

A check on the " current address at this point by use of the P command
would be as follows:

?P«
Ol7A

THE X COMMAND

'-returns pc

When a suspected error is reached, single instructions can be stepped
through one at a time by use of the X command. After each COBOL instruction
is executed, the hexadecimal number printed is the address of the first
statement on a line. Where COBOL operations are made up of several
individual primitive instructions, DEBUG may appear to halt in the middle of
a line. If this occurs, press RETURN again.

EXAMPLE:

To single step over the MOVE instruction in the example above the X
command sequence would be used as follows:

?X«
OIBC

6 - 3

THE D' COMMAND

To display bytes in the DATA DIVISION, the 'D' command can be used. This
displays 16 bytes from the address specified (again the address is derived
from the information on the listing). It displays each byte as a hexadecimal
value plus an ASCII equivalent if it is printable.

EXAMPLE:

Given the following COBOL data division segment:

02
02
02

FIELD-1 PIC XXX VALUE "ABC".
FIELD-2 PIC XXX VALUE "XYZ".
FIELD-3 PIC X(80) VALUE SPACE.

The D command would be used as follows:

?D 0030«
41-A 42-B 43-C 41-A 42-B 43-C 20- 20- 20-

After a D command has been used, the command

?D,

0030
0033
0036

may be used repeatedly to display the next 16 bytes.

THE A COMMAND

The A command is used to amend data at a specified memory location. This
correction facility allows continued running even if a bug has produced an
erroneous result.

EXAMPLE:

This command may be used to replace the first character "A" of FIELD-l
with the character "Gu • The value supplied may be a two character hex
value or an ASCII character preceded by a double quote, e.g. 47 or
"G.

?A 0030 47« -amend byte
?D 0030«
47-G 42-B 43-C 41-A 42-B 43-C 20- 20- 20-

?

h - !.J.

THE S COMMAND

Where a number of corrections are required, DEBUG allows specification of a
working register that contains an address. This address can be set or
incremented and the contents can be displayed or modified immediately by use
of the S command. The address and contents can then be displayed by keying
, /' .
EXAMPLE:

To display the first byte of FIELD-l the operation would be as follows:

?S 0030«
?/«
0030 47-G

?

THE '.' COMMAND

-load address
-display

To amend the byte at the current location
the working register.

, ,
is used; this also increments

EXAMPLE:

To change FIELDl to "DEF" the display would be:

?S 0030«
?44.45.46«
?D 0030«
44-D 45-E 46-F

?

To increment the working register without amending

THE T COMMAND

-load address
-modify

the byte use
, , ,. .

An advanced form of the G command is the T command. This also executes up
to a breakpoint in the PROCEDURE DIVISION, but also prints the· address of
each paragraph encountered.

EXAMPLE:

?T 017B« -trace up to 017B

THE Q COMMAND

The Q command causes exit from execution of debug and the COBOL program.

6 - 5

THE B COMMAND

The B command allows execution from the current pc until the value of a
specified memory location changes.

EXAMPLE:

Assume the following pieces of COBOL code in the DATA DIVISION and
PROCEDURE DIVISION respectively:

02
02
02

PARA-22.

FIELD-l PIC XXX VALUE "ABC".
FIELD-2 PIC XXX VALUE "XYZ".
FIELD-3 PIC X(80) VALUE SPACE.

ADD 1 TO COUNT.
MOVE FIELD-I TO FIELD-2.

Then the B command would be used as follows:

0030
0033
0036

Ol7A (hex address)
Ol7B
Ol8C

?B·0033«
OIBC 4l-A
?

- detect first move to FIELD-2
- display of pc and value moved

THE E COMMAND

The E co~and allows halting a program when a specified memory location
takes on a specified value. In the example above:

?E 0033 "A«
OIBC 41-A
?

THE M COMMAND

- detect "A" move to FIELD-2
- display of pc and value moved

You will find that some debug command sequences are used often when
debugging. If these sequences are long, it can become tiresome typing them
in. To QVer..;ome this and to allow the development of complex debugging
sequences debug permits the definition of macros comprised both of basic
operations and other macros. Macros are given names of one character.

Macros are introduced by the M command followed immediately by the macro
name.

6 - 6

EXAMPLE:

To define a macro to execute up to 0 18C, display the value at 0030,
then single-step and display again, the following would be typed:

?MZ G 018C
?

D0030 L X D 0030 $«

To invoke this macro its name is typed as follows:

?Z«
41-A 42-B 43-C 58-X 59-Y 5A-Z
0190
41-A 42-B 43-C 41-A 42-B 43-C
?

- first display

- second display

There are two other commands introduced in this macro: Land $.

THE L COMMAND

The L command merely forces a carriage return and line feed to be output on
the console.

THE $ COMMAND

The $ command ends a macro definition.

THE e COMMAND

To allow macro writers to output characters to the console, the command 'e'
is provided. This outputs its parameter on the console.

EXAMPLE:

?e "A«
A
?

THE ; COMMAND

To improve readability of macros, comments may be inserted. These are
introduced by the character ';' and terminated by carriage return.

EXAMPLE:

?M2 D 0030 X L D 0030 $; Run'macro«

Macro names must be letters only. Lower case letters are converted
internally to upper case.

6 - 7

If an error is made in typing in a macro, it may be re-entered. However,
there is only a finite amount of macro space, and space is not released if a
macro is re-entered. If the space runs out or the maximum nesting of macros
is exceeded, the message STACK OVERFLOW will appear. After this overflow
crash has occurred, the debug system will return to command mode and will
generally tidy up the stack to allow you to continue. However, if more
serious crashes occur, i.e. those with no message, then the system will not
recover.

For a convenient reference to debug commands see Appendix G.

6 - 8

CHAPTER 7

MULTI-LANGUAGE CALL FACILITIES

INTRODUCTION

LEVEL II COBOL enables segmented COBOL programs to be called from a main
application program, and also enables programs written in other languages to
be called from a main COBOL application program.

CALLING COBOL PROGRAMS

An application written in COBOL may be arranged into a number of separate
COBOL programs, which communicate and invoke each other by use of the COBOL
CALL verb.

FORMAT OF LEVEL II COBOL CALL

The general format of the LEVEL II COBOL CALL verb is given in the LEVEL II
COBOL Language Reference Manual.

FORM OF LEVEL II COBOL PROGRAMS

Each program in a LEVEL II COBOL application suite must be written in COBOL
and with the exception of the main program should have a LINKAGE SECTION in
the DATA DIVISION with which to communicate with other COBOL programs.

A COBOL program that is CALLed by the main program of a segmented
application may be an intermediate code program or a generated code program;
that is, the two types may be freely mixed in an application. However, the
intermediate or generated code file must be accessible at run time.

RUN-TIME PROGRAM LINKAGE

Run-time execution of the COBOL verb CALL depends on the parameter used by
the call. COBOL programs and C language subroutines, or subroutines in other
languages, can be called.

When the parameter is an alphanumeric quantity its value is interpreted as a
filename and the appropriate file of intermediate or generated code is
loaded into memory and executed. If the filename includes an extension, the
appropriate intermediate (. INT) or generated (. GNT) code file is located.
However, if there is no extension, the Run-Time System (RTS) uses the
following convention:

1. It tries to find the specified file.

2. If this fails, it appends .GNT to the filename and tries to find
the reSUlting generated code file.

7 - 1

3. If this fails, the RTS appends .INT to the filename and tries to
find the resulting intermediate code file.

When the parameter is a numeric quantity, its value is interpreted as a call
number to a run-time subroutine table, and the corresponding machine code
subroutine is executed. However, the subroutine must first have been
incorporated into the RTS (See 'CALLING RUN-TIME SUBROUTINES, below).

EXAMPLE LINKAGE

PROCEDURE DIVISION.

CALL "subitm.INT" USING .•.

CALL "10" USING ..•

For the first CALL in this example to perform correctly the file subitm.INT
must be present in the current directory and must contain a compiled COBOL
program. For the second CALL to perform correctly the RTS must contain a
machine code subroutine arranged as subroutine 10.

SAMPLE APPLICATION - USER INTER-PROGRAM COMMUNICATION

Figure 7-1 shows a sample CALL "tree".

Figure 7-1. Sample CALL Tree Structure.

The main program A, which is permanently resident in memory, calls B, C, or
H, which are subsidiary and stand-alone functions within the application.
These programs call other specific functions as follows:

7 - 2

B calls D, E and F
C calls X, Y or Z conditionally and K or L conditionally
H calls K
K calls M, N or Q conditionally
L calls M if it needs to.

As the function B, C and H are stand-alone, they do not need to be
permanently resident in memory together, and can therefore be called as
necessary using the same physical memory when they are called. The same
applies to the lower functions at their level in the tree structure.

In the example shown in Figure 7-1, the use of CALL and CANCEL would need to
be planned so that a frequently called subroutine such as K would be kept in
memory to save load time. On the other hand, because it is called by C or H
it cannot be initially called without C or H in memory, i.e., the largest of
C or H should call K initially so as to allow space. It is important also
to avoid overflow of programs. At the level of X, Y and Z it does not
matter in which order loading takes place, because they do not make calls at
a lower level.

Called programs that open other files should be left in memory. This avoids
them having to re-open files on every call. EXIT does not close files but
CANCEL does.

THE CANCEL STATEMENT

The CANCEL statement releases memory occupied by the cancelled program and
closes any files opened by it. If a tree structure of called independent
programs is used as shown above, each program can call the next dynamically
by using the technique shown in the following sample coding:

WORKING STORAGE SECTION.
01 NEXT-PROG PIC X(20) VALUE SPACES.
01 CURRENT-PROG PIC X(20) VALUE "FSTPRG.INT".
PROCEDURE DIVISION.
LOOP.

CALL CURRENT-PROG USING NEXT-PROG.
CANCEL CURRENT-PROG.
IF NEXT-PROG = SPACES STOP RUN.
MOVE NEXT-PROG TO CURRENT-PROG.
MOVE SPACES TO NEXT-PROG.
GO TO LOOP.

7 - 3

The actual programs to be run can then specify their successors as follows:

LINKAGE-SECTION.
01 NEXT-PROG PIC X(20).

PROCEDURE DIVISION USING NEXT-PROG.

MOVE "FOLLOW.INT" TO NEXT-PROG.
EXIT PROGRAM.

You can see that in this way, each independent segment or sub-program
cancels itself and changes the name in the CALL statement to call the next
one by use of the USING phrase.

LIMITATIONS OF CALL

Any number of COBOL programs and C subroutines can be CALLed from a COBOL
program. Operational limitations on CALL are as follows:

1. The CALLed intermediate or generated code program file must be
present at the time of the first CALL to the file.

2. There must be room available in memory for the program to be
loaded.

3. Run-time subroutines must be pre-configured into the RTS.

The memory constraints are aided by the following:

1. The ON OVERFLOW verb detects whether a CALL has failed due to lack
of available memory space.

2, The CANCEL verb reclaims unused storage when executed at run time.

With these facilities available, large and complex LEVEL II COBOL
application program suites can be run. System designers in particular should
realize that the total size of the application is not constrained by the
intrinsic hardware environment.

i I.

CALLING RUN-TIME SUBROUTINES

The RTS has been designed to allow the incorporation of user-written
subroutines within the run-time system itself; these can then be accessed by
user programs utilizing the COBOL CALL verb with a numeric argument. In this
way, functions for which COBOL is not appropriate, (such as low-level data
conversion), may be written in C, or some other language.

The issued RTS contains no user routines, and so an attempted CALL with a
numeric argument will result in an RTS error. The Installation Guide
describes the steps necessary to incorporate user routines into your RTS.

IMPLEMENTATION

When the RTS processes the intermediate code for a CALL, it goes through an
internal CALL executor, which determines the type of c~l and accesses the
appropriate table to find the routine. All of the arguments following USING
are COBOL data names; the absolute addresses of these items are placed in
the global calargv[] array, and the count is assigned to calargc. These are
analogous to the argv/argc structure with which a C program is invoked. For
instance, if a COBOL program included the following sentence:

CALL "1" USING A, B.

then calargv[O] would contain the address of data item A, calargv[l] would
contain the address of data item B, and calargc would have the value 2. The
data items may be numeric or alphanumeric strings. Note that if CaMP
variables are used, attention must be paid to the fact that the byte order
may differ from that of the machine. In COBOL, the highest order byte is
always first.

If the CALL parameter is numeric, as in the example above, this indicates
that the call is to a user routine in the RTS, rather than to another COBOL
program, and the xequcall() function is called. This function contains only
a single "switch" statement; each "case" in this statement is a call to a
user subroutine.

7 - 5

7 - 6

CHAPTER 8

LEVEL II COBOL APPLICATION DESIGN CONSIDERATIONS

Anyone designing a COBOL application program requires it to make efficient
use of the space and facilities available. This chapter is written for
someone designing an application to be written in LEVEL II COBOL and
describes:

* The factors that you must consider when deciding whether or not to
produce a generated code version of your programs.

* The technique of segmentation (dividing large programs into
smaller uni,ts).

* Some ways of producing more compact and efficient code.

INTERMEDIATE OR GENERATED CODE?

A generated code program will usually execute more quickly than an
intermediate code program. The Run-Time System (RTS) , recognising a
generated code file, can execute each generated code instruction directly on
the host processor rather than having to interpret it.

However, there is a qualification to this. Input-output operations are
still handled interpretively by the RTS. Consequently, a program that is
"1-0 bound" (that is, spends most of its time moving data to and from files
and devices rather than performing arithmetic on it) will derive relatively
little benefit in speed from code generation. Only programs that are
"processor bound" (that is, spend most of their time operating on data
rather than transferring it) are likely to increase their run-time speed
significantly as a result of code generation.

Another consideration is space. Since intermediate code is very compact,
the generated code version of a program will take up more space than its
intermediate code equivalent. In fact, the only difference between an
intermediate and generated code file lies in the code area of the file; the
data areas are identical. Typically, the code area of a generated code
program will be a little less than twice 'the size of the code area of the
equivalent intermediate code program.

In summary, code generation is worth while if:

*

*

Your program is "processor bound" rather than "I-O bound".

You have enough memory and disk space available to cope with the
space overheads of generated code. You should allow for the code
area of an intermediate code file to approximately double in size
in the generated code version.

8 - 1

There is also the consideration that you cannot use interactive debug or, if
available, ANIMATOR with a generated code program. However, this is less
important, since code generation should really only be considered when an
application has been thoroughly tested.

If your program is quite large, it is likely that you have designed it in
separate segments (see the next section, SEGMENTATION (OVERLAYING)). Since
a segmented program may freely mix intermediate and generated code, you have
the opportunity to use code generation on just those parts of the
application that will most benefit from it. For example, input/ output
routines could be left as intermediate code, while pure processing routines
could be optimised by code generation.

SEGMENTATION (OVERLAYING)

LEVEL II COBOL enables a COBOL program with a large PROCEDURE DIVISION to be
divided into a COBOL program with a small PROCEDURE DIVISION and multiple
overlays containing the remainder of the PROCEDURE DIVISION. The resident
part is known as the permanent segment and the overlays are known as
independent segments.

By use of the LEVEL II COBOL segmentation feature, all of the PROCEDURE
DIVISION can be loaded into the available memory. However, because it cannot
be loaded all at once, it is loaded one segment at a time to achieve the
same effect in the reduced memory space, as shown below.

In the case of a COBOL segmented program, the compiler allows space for the
largest segment in that program:

-Segment 1-
---PERMANENT SEGMENT----Segment 2--

-Segment 3-------
-Segment 4----

<---------maximum 60K bytes------------>

This is the maximum of the abstract machine per called program.

8 - 2

It may be less on some machines. For a segmented program, the beginning
of each segment in the PROCEDURE DIVISION is denoted in the LEVEL II COBOL
source code by a SECTION label. For example:

SECTION 52.
MOVE A TO B.
etc.

SECTION 62.
MOVE X TO Y.
etc.

Segmentation can be applied only to the PROCEDURE DIVISION. The
IDENTIFICATION, ENVIRONMENT and DATA DIVISIONs are common to all segments;
in addition there may be a common PROCEDURE DIVISION. All this common code
is known as the permanent segment. Control flow between permanent and
independent segments is fully specified in the LEVEL II COBOL Language
Reference Manual.

PRODUCING COMPACT AND EFFICIENT CODE

This section offers some advice on how to improve the run-time performance
of intermediate and generated code.

OPTIMISING INTERMEDIATE CODE.

Declaring data items to have usage CaMP causes them to be stored compactly
in the minimum number of bytes needed to accomodate in binary format the
largest number allowed by the PICTURE string. Note that an eight-bit byte
is assumed by the LEVEL II COBOL system. However, declaring usage CaMP does
not automatically ensure that arithmetic on such items will be efficient as
well as compact. Except for the special cases detailed below, arithmetic on
CaMP data items is done by expanding them in internal registers to BCD
format, and re-converting to CaMP when storing the result.

Efficient coding (known as CaMP code) is available for the following types
of statements, provided the data is in the correct format (the CaMP compiler
directive need not be specified).

8 - 3

1 •

2.

source target

. where either both source and target are PIC 9(2) COMP, or both are PIC
9(4) COMP or the source is an unsigned integer literal less than 256
and the target is PIC 9(2) COMP, or the source is an unsigned integer
literal less than 65536 and the target is PIC 9(4) COMP and there is no
ON SIZE ERROR clause.

~MULTIPLY~
~ DIVIDE)

source target

where both source and target are PIC 9(4) COMP and there is no ON SIZE
ERROR clause.

In such cases arithmetic is done on one- or two-byte binary quantities
without overflow checking and with binary wrap-around in eight or 16
bits.

3. MOVE source TO target

where the source and target satisfy the rules given above for ADD and
SUBTRACT.

In this case the MOVE is a one- or two-byte transfer without data
conversion.

4. Comparisons of the form

left-operand relation right-operand

where the operands again sat:i.sfy the rules given above for ADD and
SUBTRACT except that either (not just the left- hand one, but not both)
-may be a literal.

This yields a raw binary one- or two-byte comparison.

5. Finally, even more compact and efficient code is generated for a
statement of the form

IF operand relation literal GO TO label

where the operand is declared as PIC 9(2) COMP and is
data-item in the WORKING-STORAGE· section. The literal is
unsigned integer less than 256, and there is no ELSE clause.
known as a "Special IF".

the first
also an
This is

In case 4, the efficient code can be generated even when the comparison is
just one of a sequence connected by AND/OR; however, format 5 is totally
specific.

8 - 4

Code compiled for these statement formats runs considerably faster than
equivalent non-compact code, so it is worth taking care to use these formats
where possible. However, we must now examine the interaction between the
semantics detailed above and the ANSI COBOL specification. The specific code
facilities detailed below will be enabled only if the COMP directive is
specified in the co~and line (See Chapter 2). The following considerations
are relevant:

1. If there is an ON SIZE ERROR clause, the target must not be affected if
there is numeric overflow; COMP code is never generated in such a
case. However, if there is no ON SIZE ERROR clause, the result on
numeric overflow is implementor-defined.

In LEVEL II COBOL using COMP code, the result is defined as above, i.e.
binary-byte oriented arithmetic with 8 or 16 bit wrap-around.

You may decide to take advantage of this extra level of definition as a
LEVEL II COBOL extension, although your programs may not then be
portable to other ANSI COBOL compilers because you will be depending on
a feature that is undefined in ANSI COBOL; alternatively, if you know
that your arithmetic statements will not lead to numeric overflow, your
programs will be portable in any case.

2. Unsigned subtraction: when the result is negative, ANSI COBOL requires
that the absolute value is stored. COMP code stores the two's
complement result. Because of this conflict with ANSI COBOL semantics,
COMP code is never generated for SUBTRACT statements unless you specify
the COMP directive to the compiler; you should do this either when you
know your unsigned COMP subtractions will not underflow (in which case
your programs compiled with COMP code will remain portable) or when you
wish to take advantage of the non-standard behavior on underflow.

3. Truncation on MOVE literal: in the statement:

MOVE literal TO target

where the target is PIC 9(2) COMP and 99 < literal < 256 or the target
is PI,C 9(4) COMP and 9999 < literal < 65536, ANSI COBOL requires that
the literal is truncated to the number of decimal places specified for
the target. COMP code does not truncate, but stores the binary value.
As in case 2 above, because of this conflict the compiler will not
generate COMP code for this form of statement unless, for either of the
reasons described above, you specify the COMP directive.

If ANIMATOR is to be used, it should be noted that the COMP code generated
for the special IF statment involving the first byte of working-storage
causes the whole statement, including the GO TO, to appear to ANIMATOR as a
single operation, so that in single-stepping the cursor will not stop on the
GO TO. Because of this anomaly, CaMP code is not generated for this format
unless you specify the COMP directive.

8 - 5

OPTIMISING GENERATED CODE

Alphanumerics

COBOL statements such as MOVE and COMPARE on alphanumeric data-items can be
improved at run time. In generated code, these statements are converted to
string instructions or copy loops.

Comparisons involving a collating sequence are
greater speeds than intermediate code. This
sequence is checked after every mismatch.

Numerics

Two-Operand MOVE, ADD and SUBTRACT Statements

slower, but
is because

still run at
the collating

Two-operand instructions on numeric data-items are especially optimized by
code generation. Generally, this means that statements such as:

MOVE A TO B.
ADD A TO B.
SUBTRACT A FROM B.

can be highly optimised if the source and target are of the same usage and
alignment, and if the data-items are unsigned or have the default sign
(trailing included).

These kinds of operation are optimised if the usage is COMP or DISPLAY.
COMP is much faster than DISPLAY, and both are faster than the general
arithmetic operations described in the next section. These special
optimisations do not apply if the usage is COMP-3, although the speed of
COMP-3 operations is improved (see the LEVEL II COBOL Language Reference
Manual for more information on COMP-3).

NOTES:

1. At code generation, a literal source is altered to match the usage
and alignment of the target. This is because MOVE t ADD and
SUBTRACT operations on similar data-items are· optimised with
generated code.

2. MOVE statements involving a similar source and target are
particularly fast when generated, because this statement involves
no arithmetic.

30 MOVE statements where the USAGE is COMP are less efficient if the
data-item has to be truncated.

Q. _ k

General Arithmetic Statements

MULTIPLY, DIVIDE, COMPUTE and more complex MOVE, ADD and SUBTRACT statements
can have run-time speeds improved by code generation. Statements such as:

MOVE A TO B,C.
ADD A,B TO C.
SUBTRACT A FROM B,C.
MULTIPLY A BY B.
DIVIDE A INTO B GIVING C.
COMPUTE A = B+C.

all run faster when generated, although these statements are not as fast as
two-operand ADD, SUBTRACT and MOVE statements. Generally, where MOVE, ADD
and SUBTRACT statements have more than one source, these run slower than
simple statements such as ADD A TO B.

For these general arithmetic statements, where the usage is COMP, run-time
speeds are slower than usage DISPLAY or COMP-3.

Subscripts and Indexexes

Generation can improve the run-time speeds of COBOL code containing
data-items that are subscripted or indexed. Subscripted or indexed
data-items whose usage is COMP have very fast run-time speeds with generated
code. Similarly, where the usage is DISPLAY or COMP-3, the run-time speed
is improved, although not as fast as usage COMP.

COMP Subset and Control Flow

COBOL programs containing code written in COMP subset are optimised by
generation. The previous section describes COMP subset in the section on
producing compact and efficient code. Similarly, statements controlling the
flow of the program (PERFORM, GO TO, IF ••. THEN, etc.) are optimised by
generation. This is because the generator can convert these statements into
a very few machine instructions.

8 - 7

Tips for Writing a Program

You can optimise COBOL programs by following these guidelines when writing a
program:

1. Use two-operand arithmetic as much as possible.

2. Use source and target data-items of the same usage and alignment.

3. Select USAGE DISPLAY and. USAGE CaMP carefully to greatly increase the
speed of execution. CaMP data-items execute at the fastest speeds if
two-operand arithmetic statements are used; DISPLAY is fastest when
the more complex arithmetic statements are used.

4. For the highest performance, use
speeds, the COBOL program must
operations within the subset.
suitable for general ~pplications

the CaMP subset. To achieve maximum
be carefully written to use only

Generally, the COMP subset is not
programs.

Q - Q

CHAPTER 9

FILE AND RECORD LOCKING FOR INDEXED FILES

The file and record locking features discussed here are based on the IBM
8100 DPPX multi-user specification, where all the file sharing attributes
are specified by the user through COBOL language syntax and appropriate
semantics. This release implements selected locking capabilities according
to the above specification.

New and existing LEVEL II COBOL programs must be compiled with the FILESHARE
directive (See Chapter 2) to enable extended locking syntax. Also, you must
modify file error status actions to take advantage of file and record
locking features (See ERROR STATUS later in this chapter).

There are two types of file locking: kernel locking and creation locking.

KERNEL LOCKING

If your UNIX system provides kernel locking, the UNIX kernel will provide
the necessary internal mechanisms for handling the file and record locks
used by LEVEL II COBOL programs.

CREATION LOCKING

Creation locking is a method by which files and records can be locked in
systems that do not provide some form of kernel locking. The mechanism
involves the creation of two disk files, one in the current directory and
one in the /isam (for Indexed Sequential Access Method) directory.

The file created in the current directory has the ".lok" suffix attached to
the basename of the data file (e.g. basename.lok). It contains a lock table
that indicates individual file and record locks held by the run units
accessing the file. The ".lok" file is always present, but the values
contained there change as locks are acquired and released. This file should
not be removed, as all processes that access the data file also use the same
lock file.

The file created in the /isam directory contains lock files that are
essentially semaphores indicating that a particular indexed sequential file
is being accessed. In this way, no two processes have access to a "busy"
indexed sequential file at the same time. The lock is acquired by a run unit
automatically upon entry to the ISAM package in the Run-Time System (RTS)
and is released automatically upon exit. However, care should be taken to
manually remove the appropriate lockfile in the /isam directory if one
remains due to premature program termination. The name of the lockfile
indicates the process that acquired it.

9 - 1

ISAM FILE LOCKING FUNCTIONS

A lock is a mechanism that regulates concurrent access to a file or record.
This allows integrity to be maintained in an environment in which concurrent
run units may access the same file. A run unit is a set of one or more
object programs that function as a unit within one user environment at run
time. Locking protects a file or record in use from the updating operations
of concurrent run units, i.e. other user programs. A file lock is associated
with a file, and a record lock is associated with a record.

A run unit holds a file lock for each file that is open to the run unit.
The lock mode and type of lock for timeshared files are determined by:

1. A statement in the file control entry, as described in this
chapter.

2. Compile-time parameters specified as part of the compiler command
line.

FILE LOCK MODES

File lock modes are specified in the SELECT clause of the FILE-CONTROL
paragraph.

EXCLUSIVE RECORD LOCKING

When a run unit holds an exclusive lock, concurrent run units are prevented
from opening the file that is locked. This also prevents individual record
locking from occurring within the file. A non-exclusive file lock allows
concurrent run units to open the file associated with this run unit. Record
locking can therefore occur within this file.

AUTOMATIC RECORD LOCKING

A record is automatically locked whenever it is accessed by a run unit.

MANUAL RECORD LOCKING

A record is locked by an access only if the statement causing the access
specifically locks the record.

9 - 2

TYPES OF FILE LOCK

There are three types of file lock that can be specified by the user in the
compiler command line:

1 • Restricted. A restricted file is one that can be exclusively
locked to one run unit.

2. Uncommittable. An uncommittable file is one that can be shared
with a record locked to one unit. The lock is released upon the
next access of that run unit to the file containing the record.

3. Committable. A committable file is one that can have several
records locked to one run unit. Locks are not released until the
next "quiet point", i.e. after run unit termination or immediately
after a commitment. Note that this differs from the DPPX
definition of committable.

By default, indexed files are uncommittable. For details of changing the
defaults by the cobol command, see Chapter 2.

INDEXED FILE SPECIFICATION

The default lock mode is AUTOMATIC for files with ORGANIZATlON INDEXED,
whether in 1-0, INPUT or OUTPUT mode. A record lock is thus acquired by the
execution of the READ and START statements referencing the file. It is only
released on nex~ access t;o the file, i. e. at the end of execution of the
next 1-0 statement that references the file.

The COBOL syntax for locking of indexed files is specified in the
ENVIRONMENT and PROCEDURE divisions as shown below.

ENVIRONMENT DIVISION

Extra COBOL syntax is not mandatory to specify locking, as the default is
AUTOMATIC. The file control entry format is shown below:

9 - 3

FILE-CONTROL.

SELECT file-name

ASSIGN TO sexternal file name literal~ [se~ter~al-f~17-name-literal~ J
lfile-identifier 5 , lf~le-~dent~f~er

;ORGANIZATION IS INDEXED

ACCESS MODE IS

;LOCK MODE IS

·1 SEQUENTIAL~
RANDOM
DYNAMIC

1
EXCLUS IVE ~
AUTOMATIC
MANUAL

;RECORD KEY IS data-name

[ALTERNATE RECORD KEY IS data-name-2 [with DUPLICATES] ... J

[FILE STATUS IS data-name]

The full specification of the file control entry is contained in the
LEVEL II COBOL Language Reference Manual.

The only part of the file control entry that is specific to locking is the
LOCK MODE clause. When this clause is omitted, LOCK MODE IS AUTOMATIC is
assumed.

When LOCK MODE IS EXCLUSIVE is spec.ified, an exclusive file lock is acquired
by the run unit when the file is opened. While a run unit hold~ an exclusive
file lock, concurrent run units cannot open the associated file, and record
locking does not occur within that file.

When LOCK MODE IS AUTOMATIC or LOCK MODE IS MANUAL is specified, a
non-exclusive file lock is acquired by the run unit when the file is
opened. While a run unit holds a non-exclusive file lock, concurrent run
units can open the associated file, and record locking may occur. However,
other run units are prevented from opening the file with an exclusive lock.

If LOCK MODE IS AUTOMATIC is specified for an unrestricted/ file, and the
file is open for 1-0, a record lock is acquired by the execution of the
READ, WRITE, REWRITE and DELETE statements referencing the file.

9 - 4

If LOCK MODE IS MANUAL is specified for an unrestricted file, a record lock
is acquired by the execution of a READ statement referencing the file only
if the READ statement includes the WITH LOCK phrase. Note that if a file is
open, 1-0 with a record locked any attempt to read the record will result in
the RTS error number 68 -- record locked. This is true even if the READ
statment does NOT contain the "WITH LOCK" phrase.

Tables 9-1, 9-2, and 9-3 describe when record and file locks are acquired
and released.

Table -9-1. Record Lock for Committable Indexed Files.

Statement Lock Mode Opened Lock Acquired

READ WITH KEPT LOCK AUTOMATIC 1-0 Yes
AUTOMATIC INPUT No
MANUAL 1-0 Yes
MANUAL INPUT Yes

READ (without AUTOMATIC 1-0 Yes
WITH KEPT LOCK) AUTOMATIC INPUT No

MANUAL 1-0 No
MANUAL INPUT No

START, WRITE AUTOMATIC/ Any of Yes
DELETE, REWRITE MANUAL the OPEN

options

9 - 5

Table 9-2. Record Lock for Uncommittable/Unrestricted Indexed Files.

Statement Lock Mode Opened Lock Acquired

READ WITH LOCK AUTOMATIC 1-0 Yes
AUTOMATIC INPUT No
MANUAL 1-0 Yes
MANUAL INPUT No

READ (without AUTOMATIC 1-0 Yes
WITH LOCK) AUTOMATIC INPUT No

MANUAL 1-0 No
MANUAL INPUT No

START, DELETE AUTOMATIC/ 1-0 Yes
WRITE, REWRITE MANUAL

START AUTOMATIC/ INPUT No
MANUAL

WRITE AUTOMATIC/ OUTPUT No
MANUAL

NOTE: A record lock for an uncommittable file is acquired for a START or
READ statement and is released on the next 1-0 request for the file. For a
record lock acquired by a WRITE, REWRITE, or DELETE statement, a lock is
released at the end of the execution of this 1-0 statement.

Table 9-3. File Lock for Indexed Files.

File Type Acquired at Released

Commi t tab Ie OPEN At CLOSE.

Uncommittable OPEN At CLOSE.

PROCEDURE DIVISION

There are two statements specific to locking in the PROCEDURE DIVIS ION:
COMMIT and ROLLBACK. Note that this implementation differs from the IBN 8100
DPPX specification of COMMIT and ROLLBACK, in that "all file modifications
happen immediately.

9 - 6

The COMMIT Statement

The COMMIT statement releases record locks and specifies a quiet point.
Execution of the COMMIT statement has no effect in programs containing only
uncommittable files.

Format: COMMIT

Execution of the COMMIT statement causes the following action to occur:

1. All record locks in the committable files held by the run unit are
released.

2. A new quiet point is established for the run unit.

For each committable file open to the run unit, the position of the current
record pointer is undefined.

If the execution of the COMMIT statement is unsuccessful, the run unit is
abnormally terminated.

The ROLLBACK statement

Execution of the ROLLBACK statement has no effect. This means that other
users do, not have access to a copy of the original record after changes have
been written to it. Other users do, however, have 'read only' access to the
modified record.

Format: ROLLBACK

ERROR STATUS

Programs that intend to update indexed data files and which need to use
locking must provide routines for handling any non-fatal errors that may
arise. Programs handle such errors by the inclusion of the FILE STATUS IS
identifier-name line in the SELECT statement for the appropriate file. In
addition, appropriate code must be provided in the PROCEDURE DIVISION to
handle specific returned error values. Omission of the FILE STATUS IS phrase
can cause non-fatal ISAM errors to be treated as fatal.

When STATUS has been selected and an error occurs, status bytes 1 and 2
together provide a description of the error (See the LEVEL II COBOL Language
Reference Manual for more information). When status byte 1 is returned with
a "9" due to an ISAM error, status key 2 will contain a letter in the range
A through H. The decimal value of the ASCII representation of the returned
character corresponds to the run-time system error number. For example, "9D"
represents RECORD-LOCKED. See Appendix E for a complete list of run-time
errors.

9 - 7

The RTS itself takes no action on non-fatal errors when STATUS has been
selected except in the following cases:

10 For imperative statements following INVALID KEY and AT END (when these
are provided in 1-0 statements).

2. For USE ••• procedures in the DECLARATIVES SECTION (for errors which set
status byte 1 to "2". So, if STATUS has been selected, the program must
explicitly check the status after every statement where an error might
arise. In addition, a default mechanism should be provided for graceful
termination of the program in case of unanticipated error conditions.

If at any stage the record pointed to by a currently running program has
been deleted by another program, the current program's record pointer will
be updated to point to the next record in the file.

If, however, a lock is encountered on attempting to access a record (i.e., a
"D" is returned as error status key 2), the current record pointer is
undefined except in the case of:

READ NEXT or START KEY IS NOT

In these cases, the current record pointer is updated as if the lock had not
been encountered and the operation had completed.

FORMS-2 users should note that the ISAM maintenance programs generated by
FORMS-2 do not select STATUS bytes, and thus require some additional
programming to use record locking. Otherwise,· the RECORD-LOCKED condi tion
will be a fatal I~ error resulting in an RTS error message stating that the
record was locked, and termination of the program.

FILE LOCK COMPILER CONTROLS

Compilation of user programs that incorporate automatic uncommittable file
locking is exactly as for single-user COBOL programs. This default type of
lock for files with indexed organization can be altered, however, by use of
a directive in the compiler command line.

See Chapter 2 for a full description of these directives.

THE FILESHARE COMPILER DIRECTIVE

In order to use the extended file and record locking syntax described in
this manual, a program must be compiled with the FILESHARE directive. See
Chapter 2 for information on how to do this.

9 - 8

There are two directives that can change the default lock mode for indexed
files:

COMMIT" (INDEXED)"

which means "treat indexed files as committable", and:

RESTRICT" (INDEXED)"

which means "treat indexed files as restricted.

THE LOCKDEMO DEMONSTRATION PROGRAM

Lockdemo is a data entry program that creates name and address records in an.
indexed sequential data file, "customer", together with this file's index,
"customer. idx". It specifically tests automatic locking for uncommittable
files, which is the default for indexed files.

After a record has been entered or altered on the screen, it is processed by
positioning the cursor to the appropriate selection asterisk on the screen
and pressing the RETURN key.

The operator has the following selections:

Display NEXT Record
FIND specified record
ENTER a new record
UPDATE an existing record

These correspond to the COBOL 1-0 functions:

READ NEXT
READ by key
WRITE
REWRITE

To select the file process required, and also to move the cursor from one
data input field to another, the operator uses LEVEL II COBOL cursor control
functions. These are usually the arrow, tab, and home keys. However, the
keys that control these functions may be different on different terminals;
refer for more information to Chapters 5 and 10.

Using cursor control functions, the operator may "tab" the cursor forward
and backwar.d from one data input field to the next. The cursor may also be
moved forward and backward in data input fields, non-destructively, one
character position at a time.

It may be HOMEd to the first character position in the first data input
field. In addition, there is a numeric validation on the telephone field
which permits onlY'numeric characters to be entered.

9 - 9

USING LOCKDEMO

To use the record locking demonstration program first compile the program
and then type:

cbrun lockdemo«

This loads lockdemo for User-l. To demonstrate locking, another user must
execute lockdemo concurrently. Type on another terminal:

cbrun lockdemo«

which loads lockdemofor User-2.

This clears the screen, then displays the following:

LOCKING DEMONSTRATION PROGRAM .

This program demonstrates the use of record locking facilities using an IS&~
file and 1-0 access mode. You can specify actions as follows:

* NEXT record * FIND record * ENTER record * UPDATE record * EXIT
(Position cursor over appropriate asterisk and press RETURN)

NAME:
ADDRESS:

TELEPHONE:
--

(Last action was , and it)

To create a record, move the cursor into the data area and key data into the
unprotected areas defined by square brackets. When a record is complete,
move the cursor to the "ENTER record" asterisk and press RETURN. The record
will be written to disk. If it was correctly entered, the unprotected areas
will then be space filled and ready for the next record to be entered.

To find a particular record, move the cursor to the NAME field and key the
name only followed by the RETURN key. Move the cursor to the asterisk for
"FIND record lt and press RETURN. The appropriate record will then be
displayed.

If you try to FIND a record that does not exist, a message is displayed:

INVALID ACTION: UPDATE NEW OR ENTER EXISTING RECORD

9 - 10

If you reach end-of-file, the message:

END OF FILE -- FIND, ENTER OR EXIT OPTIONS

is displayed.

To alter a record once it has been found, change the appropriate field,
select the UPDATE record option and press RETURN.

To display the next record at any time, select "NEXT" (to which the cursor
returns by default after any action) and press RETURN. If the end of file
has been reached, the END OF FILE message will be printed. -If "NEXT" is
requested again, however, the pointer will return to the beginning of the
file and the first record will be displayed.

After any file process, the line beneath the data entry screen:

(Last action was , and it)

is completed with the appropriate action (selection) and either COMPLETED or
FAILED, as the case may be.

If you press RETURN with the cursor in the data entry area a message is
displayed:

POSITION CURSOR AT ACTION POSITION AND TRY AGAIN

You have not lost the data in the data fields. Move the cursor to the
desired selection and press RETURN.

OPERATING LOCKDEMO AS A SECOND USER

Having performed the operations given ~bove as User-l, you will have built a
data file and written a few records, and the record currently being accessed
will be non-exclusively locked by User-i. Non-exclusive locking enables
files to be opened, but individual records are locked if currently being
accessed by another user.

Move to the User-2 terminal and ENTER a new record. Note that the file will
be opened and the record written to disk. Now try to access (with "FIND" or
"NEXT") the record that is currently displayed on the terminal of User-i.
The line beneath the data entry area will be displayed as:

(Last action was "selection", and it LOCKED)

where "selection" is "FIND" or "NEXT".

Another message will then be displayed after any disk access failure:

RECORD LOCKED - FIND, ENTER OR EXIT OPTIONS

9 - 11

You can now try again to access the locked record by pressing RETURN. If
the record is still locked the error display is repeated.

To terminate the run on any terminal, select the EXIT option and press
RETURN •

PROGRAM SOURCE DESCRIPTION

The program listings are reproduced in Appendix K. The features are
described in this section and are cross-referenced to the source code. The
COBOL data description code for the display screen is copied in from the
FORMS-2 generated 10ckdemo.DDS file at compile time; details of such files
can be found in the LEVEL II COBOL FORMS-2 Utility Manual.

4he first thing to notice on the listings is the OPTIONS SELECTED line which
shows that the option RESEQ was selected at compile time in the compiler
command line. This resulted in the line numbers on the left of the listings
being generated in sequence.

In this program the IDENTIFICATION DIVISION, which is not mandatory in LEVEL
II COBOL, has been used only to name the program.

In the ENVIRONMENT DIVISION the SPECIAL-NAMES paragraph specifies two LEVEL
II COBOL extensions to standard COBOL: CONSOLE IS CRT specifies that you
wish to use the extension that enables records to be entered as individual
screens of data; CURSOR IS CURSOR-POSITION specifies a named area (COBOL
data item) that will contain the position of the cursor on the screen at any
time during the program execution. The data-item is defined in the DATA
DIVISION following the ENVIRONMENT DIVISION.

The next section in the ENVIRONMENT DIVISION specifies input/output handling
in the program, which includes access to the terminal and the disk file. The
name given to the disk file for internal use in the program is CUSTOMER-FILE
and this is assigned to the external operating system file "customer". The
organization is specified as INDEXED (sequential) with DYNAMIC ACCESS,
allowing records to be accessed sequentially or at random by key. The
data-item to contain the key by which records will be found is named
CUST-KEY; the data-item to contain the status code that the operating system
returns after each file access is named FILE-STATUS. Both these items are
defined later in the DATA DIVISION.

The DATA DIVISION defines all the named data areas to be used in the
program.

1"\ 1 "

The FILE SECTION provides an FD (File Description) that specifies
132-character records, and describes the record format in detail. Each
record is to consist of the five fields:

CUST-KEY
ADDR-1, -2 and -3

TELENO

(30 characters)
(lines of the address, 30 characters
each field)

(the telephone number, 12 characters)

The WORKING-STORAGE SECTION defines all the data areas that are to be
reserved for use in the program. The first area is that reserved for the
data entry screen, included directly by the COpy statement. The code thus
copied is shown exactly as it was generated by the FORMS-2 utility. Notice
that COpy statements can be included anywhere as a separate line of a LEVEL
II COBOL program to copy in COBOL code from other sources.

The FILE-STATUS data-item already mentioned is then defined as two separate
items, STATUS-1 and STATUS-2. The COBOL standard defines these two
characters; status character 1 can only be numeric, whereas status character
2 is implementor-defined. The locking mechanism returns the character "D" if
a record is locked by another user, and we therefore allow for alphanumeric.
The data-item LOCKED is then defined to contain the value "D" for comparison
in the locking test routine.

The CURSOR-POSITION item, already mentioned, is then defined as two
two-digit numeric fields that will contain the cursor position during
execution of the program. These fields are RRCC, the row and column numbers
of screen position, respectively.

The level 01 item MESSAGES defines all the me~sages to be displayed that are
not defined as part of the screens generated by FORMS-2.

The MESSAGE-POSITION data-item defines the fixed screen positions (in the
coordinates format already described) for direct comparison by the
cursor-position detecting routine within the program.

The PROCEDURE DIVISION specifies the procedural part of the program and
consists of a series of statements that specify program actions. In this
program there are fifteen separate paragraphs, each with a self-explanatory
label, e.g. START-PROCEDURE, ENTRY, etc.

These are individually described below:

In the START-PROCEDURE paragraph, the fixed text screen LOKDMO-OO is
displayed while the data file is opened. Notice that the file is opened for
1-0, which means that if the file does not exist, it will be created. The
"file" will consist of two external files, customer and customer. idx,
because it was specified as INDEXED SEQUENTIAL. The creation of these files
is done automatically by the RTS.

The CHECK-STATUS paragraph is performed next in order to determine whether
the file has opened correctly.

9 - 13

In the ENTRY paragraph, the first cursor position in the variable data
screen is moved into the CURSOR-POSITION item. This is necessary to indicate
that the CURSOR-POSITION variable is to be updated automatically. Its
initial value was ZERO, indicating that updating was not required.

The data entry screen LOKDMO-O 1 is then superimposed on the fixed text
screen in order to position the cursor at the first press-selection
position. The redefinition of the main screen' LOKDMO-OO by LOKDMO-O 1 and
LOKDMO-02 updates the data entered, and any error messages are updated or
blanked out as appropriate each time the ENTRY routine is returned to.

-The data entry screen is then accepted and, depending on cursor position,
the appropriate processing paragraph is entered.

In each of the file processing paragraphs NEXT-RECORD, FIND-RECORD,
NEW-RECORD, and UPDATE-RECORD, the action is basically the same. The
action-selected message is moved to the display field LOKDMO-OI-OOll, which
is then displayed. The file process is executed, allowing appropriate error
conditions, i.e. end of file, invalid key entry, locking and error status
checking.

Notice that in the case READ NEXT, the end of file action is specified in
the associated START statement, and is specified as invalid key. In the
other cases the invalid key condition is specified in the I/O statement
itself and arises if the CUST-KEY field is blank or contains data that does
not match any of the key fields in the file. In the event of these
"errors", control is passed to ERROR-RETRY.

Locking is checked for by comparing status byte 2 with the constant value
"D" as stored in the data-item LOCKED. If LOCKED has been returned, control
is then passed to RECORD-LOCKED. The status bytes are checked after all I-O
processes.

The contents of the file area in memory must be updated either before or
after I/O, as relevant. This is done in the paragraphs IN- or OUT-TRANSFER.
The IN- and OUT-TRANSFER paragraphs are a series of MOVE statements to move
data in or out of the screen data area from or to the file data area.
Finally, if successful, the COMPLETED message is displayed.

The FILE-END paragraph defines the action taken if a READ NEXT process
encounters end of file. The FAILED message is then displayed and an end of
file error message (MESSAGE-2) is displayed beneath the data entry screen as
part of screen redefinition LOKDMO-02.

The ERROR-RETRY paragraph displays the FAILED message and the "invalid
action" message (MESSAGE-l), returning control to ENTRY; the operator can
then retry or change the action.

The CHECK-STATUS paragraph displays the FAILED message and the "disk error"
message (MESSAGE-3) and terminates the program via the STOP-IT paragr?-ph.
This indicates that a fatal error has occurred. The program terminates and
control returns to the operating system.

a _ 1/1

RECORD-LOCKED displays the LOCKED message (MESSAGE-13) before returning to
ENTRY. The user can then try the same access again until the record is
unlocked by the other program, or choose another action.

NOT-ACTION blanks out the "action taken" message, displays the "position
cursor correctly" message (MESSAGE-12) and returns to ENTRY to repeat the
input.

END-IT displays the EXIT selection and drops control into STOP-IT. This
closes the file, displays the COMPLETED message and then performs a delaying
process so that the operator can see the screen before it is blanked, and
before control is returned to the operating system. The delay is achieved by
specifying the performance of IN- and OUT-TRANSFER one hundred times in
order to prevent the screen from "disappearing" before the operator has
noticed and read it.

RUN-TIME ERRORS ORIGINATING IN THE ISAM MODULE

Run-time errors are listed in Appendix E. Note that error 68, "record
locked", will arise only if programs are not using STATUS as discussed
above. Note also that error 188, "filename too big" will arise if indexed
filenames are too long; pathnames may be longer, but the actual basename
must be 10 characters or less. ISAM file names are limited to 10 characters
on UNIX systems to allow for the addition of the ".idx" suffix.

9 - 15

9 - 16

CHAPTER 10

TERMINAL CONFIGURATION CONSIDERATIONS

OVERVIEW

The use of the LEVEL II COBOL extensions to the ACCEPT and DISPLAY verbs
requires knowledge of the particular CRT (VDU) being used. The Run-Time
System (RTS) must be able to use terminal capabilities such as cursor
addressing and highlighting, for which the terminal control strings vary
greatly from one terminal type to another. In addition, the terminal's HOME
and cursor control keys (arrow keys, or their equivalents) must be
recognized so the proper action can be taken (e. g . to move cursor to the
start of the next field).

The RTS has been written so that the user may use ACCEPT and DISPLAY
statements with a minimum of special action to interface with the specific
terminal being used. In UNIX systems, the terminal type is established from
the TERM variable in the user's shell environment, which in turn should be
established by the shell during the login process (this is generally done by
executing a user's ".profile"). This TERM variable gives the user's terminal
type in a well defined and specific code. The RTS uses this code to look up
terminal capabilities in the termcap file, which is derived from the
University of California at Berkeley /etc/termcap file. If the terminal
type is in this file, the RTS will retrieve the required sequences. If the
terminal type is not in this file, RTS error 191 will occur.

The user may add terminal types to this file by using the information in the
remainder of this chapter and Appendices H and I.

There may be some cases when you wish to use the terminal capabilities set
in the local environment (TERMCAP on V7 UNIX systems) as opposed to those
in the issued termcap. When this is the case, it is necessary to modify
cbrun.c, the C program that initiates program execution. You must modify the
portion of the code that nullifies the TERMCAP variable. After the
modification is complete, you must "make" and "install" the new version.

10 - 1

TERMCAP FILE

A list of the terminal capability descriptions required by the LEVEL II
COBOL RTS is included in Appendix H, and a copy of the UC Berkeley termcap
documentation is included in Appendix I. Some systems may already have a
/etc/termcap, but this is not always useable, as many of the capabilities
(e.g. input sequences for the arrow keys) may not be correctly defined. For
this reason, the RTS uses the issued termcap file where the entries are
known correct and complete for use with LEVEL II COBOL. All of the terminal
capability descriptions used in this file are explained in the Berkeley
documentation. If the required capabilities are present in / etc/ termcap,
the two termcap files may be linked, or the TERMCAP variable may specify an
alternate file.

10 - 2

CHAPTER 11

INCORPORATING FORMS-2 UTILITY PROGRAM OUTPUT

INTRODUCTION

The FORMS-2 utility program offers two major facilities to LEVEL II COBOL
users:

1. You can define screen layouts 'to be used in a LEVEL II COBOL
application by simply keying the text at the keyboard, and so
producing a model form on the screen.

2. You can automatically generate programs to manipulate data input
using the created form. In particular, indexed sequential files
can be generated and maintained automatically, and these files can
be used with LEVEL II COBOL programs.

The FORMS-2 utility is available as a separate software package, and is
documented in the FORMS-2 Utility Manual.

SCREEN LAYOUT FACILITIES

The FORMS-2 screen layout facility generates source COBOL record
descriptions for screen layouts.

You have three major facilities available:

1. You may store an image copy on disk of the form you have just
defined for subsequent use in this or another FORMS-2 run. The
image can pe printed to obtain a hard copy, using the O/S standard
file print utility program.

2. You may generate LEVEL II COBOL source code for the data
descriptions required to define the form just created. This may
then be included into a LEVEL II COBOL program by use of the COpy
verb.

3. You may choose to generate a Check Out program, which allows
duplication of many machine conversations that would ,take place
during a run of the application being designed.

All that you have to do to incorporate FORMS-2 screen layout output in a
program is to specify the FORMS-2 output file name (filename. DDS) in a COBOL
"COPY" statement. Obviously, data item names in the user program must be
specified to correspond with those generated from a user-specified base name
by FORMS-2. Details of FORMS-2 name generation are given in the FORMS-2
Utility Program User's Guide.

EXAMPLE:

000000 COpy "demo.DDS"

11 - 1

GENERATED PROGRAMS

The FORMS-2 utility is capable of generating a COBOL program (the .GEN file
option), which maintains data entered in the created forms in an INDEXED
SEQUENTIAL file, with automatic generation of file names from a
user-supplied base name. These files comply with the standards in use by the
operating system under which LEVEL II COBOL is being used.

No special programming is required to use the FORMS-2 generated database.
These files can be full maintained interactively using the program generated
with the FORMS-2 utility. In addition to creating the ISAM files, this
program includes the following facilities:

1. Insertion of new records

2. Insertion of the same data in records with different keys

3. Display of any selected records (full inquiry facility)

4. Insertion or amendment of records dependent on their key

5. Deletion of records

6. Read and display next record or a message if end of file detected

7 . Terminate run

Details of the FORMS-2 indexed sequential file handling facilities are given
in the FORMS-2 Utility Manual.

1 1 - 2

APPENDIX A

SUMMARY OF COMPILER DIRECTIVES

Note that where parentheses are specified for use with a directive, they
must either be surrounded by quote characters, e.g. "(string)", or
escaped, e. g. \(string \), to prevent their interpretation by the shell
command line processor. For a detailed explanation of the acceptable formats
for these options see Chapter 2.

REFERENCE TABLE OF DIRECTIVES

Table A-l. Reference Table of Directives.

Directive

[NO] ALTER
[NO] AN 1M

[NO] BRIEF
[NO] COMP
[NO] COPYLIST ["n"]

-c

ro CRTWIDTH]
CRTWIDTH "n"
DATE "string"

[NO] ECHO
-k

[NO] ERRLIST
-e
FILE SHARE

- NO FLAG -
" " FLAG 'LOW

lL-I
H-I I
HIGHI

(L/II - 'IBM I -
ro FORM

.. n ..] FORM
-f

Use

Allow ALTER statements
Compile suitable for later use with

ANIMATOR

Suppress error messages
Use computational sub-set
List COpy files [for segment "n"]
synonym for COPYLIST

Set width of CRT to "n"

Use "string" for comment-entry in

Default

ON
ON if
ANIMATOR
available
OFF
OFF
OFF

ON
n = 128

DATE-COMPILED paragraph ON
Echo errors to console ON
Synonym for NOECHO
List only errors and flags OFF
Synonym for ERRLIST
Enables file + record locking syntax OFF
also enables directives COMMIT(INDEXED)
and RESTRICT(INDEXED) to change the
default file-type for indexed files.

Flag code higher than level indicated OFF

Suppress headers and form-feeds ON
Set length of page = lin" lines n=60
Synonym for NOFORM

A - 1

I

Directive Use Default

ON

[NO INT j Specify intermediate code filename
= source

I~T "filename" filename
-~ Synonym for NOINT

If no
-NO ~LIST ~ - Specify listing requirements directive:

PRINT aNt i.e.
filename
= source

~LIST ~["filename"] filename

.. PRINT _ If
directive
but no
filename:
filename
=
standard
output

-1 Synonym for LIST":CO:"
-n Synonym for NOLIST

[NO] QUAL Allows qualified data-names and ON
procedure-names

[NO] REF Insert addresses on listing OFF I
[NO] RESEQ Resequence source file OFF

I

A - 2

APPENDIX B

COMPILE-TIME ERRORS

The error numbers and messages as printed by the LEVEL II COBOL compiler
are listed below.

ERROR DESCRIPTION

01 Compiler error; consult Technical Support
02 Illegal format Data-name
03 Illegal format : Literal, or invalid use of ALL
04 Illegal format : Character
05 Data-name not unique
06 Too many data or procedure names declared
07 Illegal character in column 7 or continuation error
08 Nested COpy statement or unknown COpy file specified
09 ' .' missing
10 Statement starts in wrong area of source line

22 DIVISION missing
23 SECTION missing
24 IDENTIFICATION missing
25 PROGRAM-ID missing
26 AUTHOR missing
27 INSTALLATION missing
28 DATE-WRITTEN .missing
29 SECURITY missing
30 ENVIRONMENT missing
31 CONFIGURATION missing
32 SOURCE-COMPUTER missing
33 OBJECT-COMPUTER/SPECIAL-NAMES clause error
34 OBJECT-COMPUTER missing

36 SPECIAL-NAMES missing
37 SWITCH clause error or system name/mnemonic name error
38 DECIMAL-POINT clause error
39 CONSOLE clause error
40 Illegal currency symbol

42 DIVISION missing
43 SECTION missing
44 INPUT-OUTPUT missing
45 FILE-CONTROL missing
46 ASSIGN missing
47 SEQUENTIAL or RELATIVE or INDEXED missing
48 ACCESS missing on indexed/relative file
49 .SEQUENTIAL or DYNAMIC missing or > 64 alternate keys

B-1

50
51
52
53
54
55
56
57
58
59

Illegal ORGANIZATION/ACCESS/KEY combination
Unrecognized phrase in SELECT clause
RERUN clause syntax error
SAME AREA clause syntax error
Missing or illegal file-name
DATA DIVISION missing
PROCEDURE DIVISION missing or unknown statement
Program collating sequence not defined
EXCLUSIVE, AUTOMATIC or MANUAL missing
Non-exclusive lock mode specified for restricted file

DIVISION missing
SECTION missing

62
63
64
65

File-name not specified in SELECT stmt or invalid CD name
RECORD SIZE integer missing or line sequential rec > 1024
bytes

66 Illegal level no (01-49),01 level reqd,or level hierarachy
wrong

67
68
69
70
71
72
73
74

FD, CD or SD qualification syntax error
WORKING-STORAGE missing
PROCEDURE DIVISION missing or unknown statement
Data description qualifier or '.' missing
Incompatible PICTURE clause and qualifiers
BLANK illegal with non-numeric data-item
PICTURE clause too long
VALUE with non-elementary item,wrong data-type
truncated

75 VALUE in error or illegal for PICTURE type
76 Non-elementary item has FILLER/SYNC/JUST/BLANK clause
77 Preceding item at this level has> 8192 bytes or 0 bytes
78 REDEFINES of unequal fields or different levels
79 Data storage exceeds 64K bytes

81 Data description qualifier inappropriate or repeated
82 REDEFINES data-name not declared
83 USAGE must be COMP,DISPLAY or INDEX
84 SIGN must be LEADING or TRAILING
85 SYNCHRONIZED must be LEFT or RIGHT
86 JUSTIFIED must be RIGHT
87 BLANK must be ZERO
88 OCCURS must be numeric, non-zero, unsigned or DEPENDING

or value

89 VALUE must be literal, numeric literal or figurative constant
90 PICTURE string has illegal precedence or illegal char
91 INDFXED data-name missing or already declared
92 Numeric-edited PICTURE string is too large

101 Unrecognized verb
102 IF ELSE mismatch
103 Operand has wrong data-type or is not declared
104 Procedure name not unique
105 Procedure name same as data-name

B-2

106 Name required
107 Wrong combination of data-types
108 Conditional statement not allowed in this context
109 Malformed subscript
110 ACCEPT/DISPLAY wrong or Communications syntax incorrect
111 Illegal syntax used with 1-0 verb
112 Invalid arithmetic statement
113 Invalid arithmetic expression
114 Compiler error; consult Technical Support
115 Invalid conditional expression
116 IF stmts nested too deep, or too many AFTERs in PERFORM stmt
117 Incorrect structure of PROCEDURE DIVISION
118 Reserved word missing or incorrectly used
119 Too many subscripts in one statement
120 Too many operands in one statement
121 LOCK clause specified for file with lock mode EXCLUSIVE
122 KEPT specified for uncommittable file
123 KEPT omitted for committable file

141 Inter-segment procedure name duplication
142 IF •••• ELSE mismatch at end of source input
143 Operand has wrong data-type or not declared
144 Procedure name undeclared
145 INDEX data-name declared twice
146 Bad cursor control : illegal AT clause
147 KEY declaration missing or illegal
148 STATUS declaration missing
149 Bad STATUS record
150 Undefined inter-segment reference or error in ALTERed para
151 PROCEDURE DIVISION in error
152 USING parameter not declared in LINKAGE SECTION
153 USING parameter not level 01 or 77
154 USING parameter used twice in parameter list
155 FD missing

157 Incorrect structure of PROCEDURE DIVISION

160 Too many operands in one statement

B-3

APPENDIX C

SUMMARY OF NATIVE CODE GENERATOR DIRECTIVES

Note that where parentheses are used with a directive, they must either be
surrounded by quotes (e.g. "(string)") or escaped (e.g. (string), to
prevent their interpretation by the UNIX shell. For a detailed description
of the acceptable formats see Chapter 3.

REFERENCE TABLE OF DIRECTIVES

Directive

[NO] ASM
-a

([NO] BELL 1
l BELL "n'j

[NO] CHECK

-c

[[NO] ~g: "n"]
-f

[[NO] g:~ " filename.j

-g

Use

Specify assembly listing requirements
Synonym for ASM

Suppress or request finish bleep
Define n = Bell character

Specify checking of run-time limit
violations
Synonym for NOCHECK

Suppress listing headers and form feeds
Let length of 'page = "n" lines
Synonym for NOFORM

Suppress code generation output file
Specify file for generated code
Synonym for NOGNT

LIST - Specify listing requirements
LIST ~(destinatiOn)~

"destination" ..
-1 Synonym for LIST":CO:"
-n Synonym for NOLIST

PAGETHROW "n" Specify ASCII character code for
physical printer page throw

c - 1

Default

OFF

ON
7

ON

ON n=60

ON

ON

12

c - 2

Error
Number

o

1

2

4

5

6

7

8

9

10

11

APPENDIX D

CODE GENERATION ERRORS

Message Notes

Illegal error number Call to error procedure with unknown
error number

Illegal intermediate code Intermediate code operation
invalid - input file may corrupt

Site setup bad index Initialisation of optimisation
tables. Same leading code occurs
twice.

Site setup bad code

Invalid NK descriptor

Dynamic storage overflow

ISR with invalid segment

Initialisation of optimisation
tables. Code value out of range.

Numeric operation with invalid
constant descriptor.

May be caused by attempt to generate
a program that is too large or
complex, or by limitations of
memory.

Inter-segment reference file has
segment number that is not zero or
50 to 99. ISR file may be corrupt.

Unprocessed transient code A transient code has been left
unprocessed. Usually caused by
errors or missing rules in
optimisation tables.

Expected symbol not found Dictionary (dynamic memory) search
fails to find item that should be
present.

Input file is generated
Code

Generated code exceeds
64K bytes

Code generator output used as input.

Attempt to generate too large
output program without artificial
segmentation feature available.

D - 1

12

13

14

15

16

Illegal action number

Condition stack overflow

Input file not
intermediate code
or wrong version
number

Too many segment breaks

Too many output segments

Action routine specified in tables
but not provided in action routine
procedure.

IF statements nested too deeply in
COBOL program. Limit is 64 nested
conditions.

The input file specified does not
contain intermediate code, or the
code generator version differs from
that of compiler used to produce the
intermediate code. May be caused by
the incorrect use of the VERSION
command.

Automatic segmentation allows 10
output segments per input segmente
Error 15 means this limit has been
exceeded. A possible solution is to
divide the input into more and
smaller segments using COBOL
segmentation.

Automatic segmentation allows up to
200 generated output segment files.
Error 16 means that this limit has
been exceeded.

D - 2

APPENDIX E

RUN-TIME ERRORS

RUN TIME ERRORS

Error Description

001 Not owner of file
002 No such file
003 Too many ISAM files, or no such process
005 Physical I/O error
009 Incorrect mode or file descriptor
013 Attempt to access a file with incorrect permission
017 File already exists
021 File is a directory
024 Too many open files
028 No space on device
030 File system is read only
065 ISAM - File locked
066 ISAM - Attempted to add duplicate record key
067 ISAM - File not open
068 ISAM - Record locked
069 ISAM - Illegal argument to ISAM module
070 ISAM - Too many files open
071 ISAM - Bad ISAM file format
072 ISAM - End of file
073 ISAM - No record found
074 ISAM - No current record
075 ISAM - Data file name too long
076 ISAM Can't create lock file in /isam
077 ISAM - Internal ISAM error
078 ISAM - Illegal key descriptor
079 ISAM - Is primary key
080 ISAM - Non-exclusive access
081 ISAM - Key already exists
150 ISAM - ANIMATOR load error
151 Random read on sequential file
152 Rewrite on file not opened I/O
153 Subscript out of range
154 Perform nesting exceeds 22 levels
155 Illegal command line
156 Invalid file operation
157 Object file too large
158 Rewrite on line sequential file
159 Malformed line sequential file
160 Overlay loading error
161 Illegal intermediate code
162 Arithmetic overflow or underflow
164 Specified call code not supplied

E - 1

165 Incompatible releases of compiler and RTS
166 Attempt to open file which is already open
170 Illegal operation in indexed,sequential
172 Attempt to call active program
173 Intermediate code file not found
174 Intersegment reference table not found
180 COBOL file malformed
181 Fatal file malformation
182 Open CI or CO in wrong direction
183 Attempt to open LS file for 1-0
184 Accept/Display 1-0 error
185 Can't load COBOL RTS module
186 Internal RTS error - should not occur!
187 Version 3 subset error
188 Filename too big-
189 Intermediate code load error
190 Too many arguments to CALL
191 Terminal type not defined, or not in termcap file
192 Required terminal capability description missing
193 Null file name used in a file operation
194 Memory allocation error
195 Dictionary error
196 Not implemented in this RTS release

ERROR REPORTING

When the RTS detects a fatal error, it prints out the general category of
error along with an associated filename; e. g. "Load error on file pi. INT" .
It then prints out the error code and the current pc. Finally, it looks up
the error code in a system error file (/usr/libl coboll cblerrs) and prints
out the associated message; these are identical to those in the above table.
There are two types of run-time errors: recoverable and fatal.

* Fatal errors

Fatal errors may be signalled from the operating system or from
the RTS. Fatal errors cause a message to be output to the console
which includes a three-digit er'ror code and reference to the COBOL
statement in which it occurred. These fall into two classes:

(i) Exceptions: these cover arithmetic overflow, subscript out
of range, too many levels of perform nesting.

(ii) 1-0 errors: input-output errors for which STATUS has not
been selected.

* Recoverable errors

If the COBOL programmer has selected STATUS for a file then it is
assumed that any non-fatal errors will be handled by the
application program, and no action is taken. If the programmer
has not selected STATUS, the program will exit. The program
overleaf indicates a method by which STATUS can be tested.

APPENDIX F

OPERATING SYSTEM ERRORS

These errors appear in the same format as the LEVEL II COBOL errors.
Conventionally, error numbers 1-64 are reserved for the operating
system. If an error appears that is not in the following list, it may be
looked up in Volume 1, section II of the UNIX Programmer's Manual.

Users of other LEVEL II COBOL systems should note that the UNIX error
return for a non-existent file is 2, and that programs that check for a
specific error return from another operating system may not work correctly.

Error

1
2
3
5
9

13
17
21
24
28
30

Description

Not owner of file
No such file
Too many ISAM files, or no such process
Physical I/O error
Incorrect mode or file descriptor
Attempt to access a file with incorrect permission
File already exists
File is a directory
Too many open files
No space on device
File system is read-only

F - 1

F - 2

APPENDIX G

INTERACTIVE DEBUG COMMANDS

COMMAND EFFECT

A data-ref val Change value at address given to val (data division)

B data-ref Execute until data-ref changes.

C val Display ASCII character corresponding to val

D data-ref Display 16 bytes from address given

D, Display next 16 bytes

E data-ref val' Execute until data-ref equals val. (data division)

G proc-ref

L

M name

P

S data-ref

T proc-ref

X

$

/

• val

where:

Execute from current position until address reached

Output carriage return/line feed to console

Start definition of macro

Display current program counter

Set work register to address given

Trace all paragraphs executed up to address

Execute one instruction

End macro definition

Display byte at address in work register

Change byte at address in work register to val
and increment register

Increment work register

Start comment - line up to carriage return

data-ref
proc-ref
val

16 bit hex value (4 digits) in data area
16 bit hex value (4 digits) in code area
8 bit value (2 hex digits) or double quotes
and an ASCII char (e.g. "A)

name single ASCII character in code area

G - 1

G - 2

APPENDIX H

TERMINAL CONFIGURATION ISSUES

The Run-Time System (RTS) will configure itself at run time for your
terminal. The UC Berkeley termcap format and termlib accessing routines are
used to accomplish this (See Appendix I). The terminal capability data that
are required by the RTS reside in file /usr/lib/cobol/termcap.

Here we list the capability entries used and/or required by the RTS,
along with any assumptions made about terminal characteristics.

Where terminal control characteristics are variable, either by switch
settings or by the input of certain control sequences, care must be
taken to ensure the correspondence between these settings and the termcap
file entries.

REQUIRED ENTRIES

*

*
*

*

*
*

*

*
*

*

*

Ii - the number of lines on the terminal.

co - the number of columns on the terminal.

bs or bc - bs if terminal backspaces with CTRL-H, bc if a
different sequence is required.

up - sequence to move cursor up one line, same column.

cl - sequence to clear screen, cursor left at home.

cm - sequence to move cursor to an addressed screen location.

kl - sequence sent by left-arrow key.

kr - sequence sent by right-arrow key.

ku - sequence sent by up-arrow keye

kd - sequence sent by down-arrow key.

kh - sequence sent by home key.

H - 1

OPTIONAL ENTRIES

* so - sequence to turn on "hiliting", (e.g. reverse video) .

* se - sequence to turn off "hiliting".

* sg number of screen positions taken by the "hiliting"
sequences.

ASSUMPTIONS

* the sequence sent by the return key is CTRL-M.

* the sequence sent by the tab key is CTRL-I.

* the sequence to ring the bell or beeper is CTRL-G.

H - 2

APPENDIX I

liC BERKELEY TERMCAP

NAME

termcap - terminal capability data base

SYNOPSIS

/etc/termcap

DESCRIPTION

Termcap is a data base describing terminals. Terminals are described in
termcap by giving a set of capabilities which they have, and by
describing how operations are performed. Padding requirements and
initialization sequences are included in termcap.

Entries in termcap consist of a number of '.' separated fields. The
first entry for each terminal gives the names which are known for the
terminal, separated by 'I' characters. The first name is always 2 characters
long and is used by older version 6 systems which store the terminal type in
a 16 bit word in a systemwide data base. The second name given is the most
common abbreviation for the terminal, and the last name given should be a
long name fully identifying the terminal. The second name should contain no
blanks; the last name may contain blanks for readability.

CAPABILITIES

(P) indicates padding may be specified
(P*) indicates that padding may be based on no. lines affected

Name Type Pad? Description

ae str (P) End alternate character set
al str (P*) Add new blank line
am bool Terminal has automatic margins
as str (P) Start alternate character set
bc str Backspace if not AH
bs bool Terminal can backspace with AH
bt str (P) Back tab
bw bool Backspace wraps from column o to last column
CC str Command character in prototype if terminal

settable
cd str (P*) Clear to end of display
ce str (P) Clear to end of line
ch str (P) Like em but horizontal motion only, line stays

same

1-1

cl str
cm str
co num
cr str
cs str
cv str
da bool
dB num
db boo 1
dC num
dc str
dF num
dl str
dm str
dN num
do str
dT num
ed str
ei str
eo str
ff str
hc bool
hd str
ho str
hu str
hz str
ic str
if str
im bool
in bool
ip str
is str
kO-k9 str
kb str
kd str
ke str
kh str
kl str
kn num
ko str
kr str
ks str
ku str
10-19 str
Ii num
11 str
ma str
mi bool
ml str
mu str
nc bool

(P*)
(P)

(P*)
(P)
(P)

(P*)

(P*)

(P*)

(P)

(P*)

Clear screen
Cursor motion
Number of columns in'a line
Carriage return, (default AM)
Change scrolling region (vt100), like cm
Like ch but vertical only.
Display may be retained above
Number of millisec of bs delay needed
Display may be retained below
Number of millisec of cr delay needed
Delete character
Number of millisec of ff delay needed
Delete line
Delete mode (enter)
Number of millisec of nl delay needed
Down one line
Number of millisec of tab delay needed
End delete mode
End insert mode; give "ei=:" if ic
Can erase overstrikes with a blank
Hardcopy terminal page eject (default AL)
Hardcopy terminal
Half-line down (forward 1/2 linefeed)
Home cursor (if no cm)
Half-line up (reverse 1/2 linefeed)
Hazeltine; can't print -'s
Insert character
Name of file containing is
Insert mode (enter); give "im=:" if ic'
Insert mode distinguishes nulls on display
Insert pad after character inserted
Terminal initialization string
Sent by "other" function keys 0-9
Sent by backspace key
Sent by terminal down arrow key
Out of "keypad transmit" mode
Sent by home key
Sent by terminal left arrow key
Number of "other" keys
Termcap entries for other non-function keys
Sent by terminal right arrow key
Put terminal in "keypad transmit" mode
Sent by terminal up arrow key
Labels on "other" function keys·
Numb0r of lines on screen or page
Last line, first column (if no cm)
Arrow key map, used by vi version 2 only
Safe to move while in insert mode
Memory lock on above cursor.
Memory unlock (turn off memory lock),
No correctly working carriage return

(DM2500,H2000)

1-2

nd
nl
ns
os
pc
pt
se
sf
sg
so
sr
ta
tc
te
ti
uc
ue
ug
ul

up
us
vb
ve
vs
xb
xn
xr
xs

xt

str
str
bool
bool
str
bool
str
str
num
str
str
str
str
str
str
str
str
num
bool

str
str
str
str
str
bool
bool
bool
bool

bool

(P*)

(P)

(P)
(P)

Non-destructive space (cursor right)
Newline character (default \n)
Terminal is a CRT but doesn't scroll.
Terminal overstrikes
Pad character (rather than null)
Has hardware tabs (may need to be set with is)
End stand out mode
Scroll forwards
Number of blank chars left by so or se
Begin stand out mode
Scroll reverse (backwards)
Tab (other than AI or with padding)
Entry of similar terminal - must be last
String to end programs that use cm
String to begin programs that use cm
Underscore one char and move past it
End underscore mode
Number of blank chars left by us or ue
Terminal underlines even though it doesn't

overstrike
Upline (cursor up)
Start underscore mode
Visible bell (may not move cursor)
Sequence to end open/visual mode
Sequence to start open/visual mode
Beehive (fl=escape, f2=ctrl C)
A newline is ignored after a wrap (Concept)
Return acts like ce \r \n (Delta Data)
Standout not erased by writing over it

(HP 264?)
Tabs are destructive, magic so char

(Teleray 1061)

The following entry, which describes the Concept-lOO, is among. the more
complex entries in the termcap file as of this writing. (Note that this
particular concept entry is outdated, and is used as an example only.)

cllclOOlconceptlOO:is=\EU\Ef\E7\E5\E8\El\ENH\EK\E\200\Eo&\200:\
. :al=3*\EAR:am:bs:cd=16*\EAC:ce=16\EAS:cl=2*AL:cm~\Ea%+ %~ :co£80:\

:dc=16\E~A:dl=3*\EAB:ei=\E\200:eo:im=\EAP:in:ip=16*:litF24:mi:nd=\E=:\
:se=\Ed\Ee:so=\ED\EE:ta=8\t:ul:up=\E;:vb=\Ek\EK:xn:

Note that entries may continue onto multiple lines by giving a \ as the last
character of a line, and that empty fields may be included for readability
(here between the last field on a line and the first field on the next).
Capabilities in termcap are of three types: Boolean capabilities which
indicate that the terminal has some particular feature, numeric ~apabilities
giving the size of the terminal or the size of particular delays, and string
capabilities, which give a sequence which can be used to perform particular
terminal operations.

1-3

All capabilities have two letter codes. For instance, the fact that the
Concept has "automatic margins" (i.e. an automatic return and linefeed
when the end of a line is reached) is indicated by the capability am.
Hence the description of the Concept includes am. Numeric capabilities
are followed by the character 'U' and then the value. Thus co which
indicates the number of columns the terminal has gives the value '80' for
the Concept.

Finally, string valued capabilities, such as ce
sequence) are given by the two character code, an
ending at the next following ':'.

(clear to end of line
'=', and then a string

A delay in milliseconds may appear after the '=' in such a capability,
and padding characters are supplied by the editor after the remainder of
the string is sent to provide this delay. The delay can be either a
integer, e.g. '20', or an integer followed by an '*', i.e. '3*'. A '*'
indicates that the padding required is proportional to the number of
lines affected by the operation, and the amount given is the
per-affected-unit padding required. When a '*' is specified, it is
sometimes useful to give a delay of the form '3.5' specify a delay per
unit to tenths of milliseconds.

A number of escape sequences are provided in the string valued
capabilities for easy encoding of characters there. A \E maps to an ESCAPE
character, AX maps to a control-x for any appropriate x, and the sequences
\n \r \t \b \f give a newline, return, tab, backspace and formfeed.
Finally, characters may be given as three octal digits after a \, and the
characters A and \ may be given as \A and ~. If it is necessary to place a
: in a capability it must be escaped in octal as \072. If it is necessary
to place a null character in a string capability it must be encoded as \200.
The routines which deal with termcap use C strings, and strip the high bits
of the output very late so that a \200 comes out as a \000 would.

We now outline how to prepare descriptions of terminals. The most
effective way to prepare a terminal description is by imitating the
description of a similar terminal in termcap and to build up a
description gradually, using partial descriptions with ex to check tha t
they are correct. Be aware that a very unusual terminal may expose
deficiencies in the ability of the termcap file to describe it or bugs
in ex. To easily test a new terminal description you can set the
environment variable TERMCAP to a pathname of a file containing the
description you are working on and the editor will look there rather
than in termcap. TERMCAP can also be set to the termcap entry itself to
avoid reading the file when starting up the editor. (This only works on
version 7 systems.)

I - 4

BASIC CAPABILITIES

The number of columns on each line for the terminal is given by the co
numeric capability. If the terminal is a CRT, then the number of lines on
the screen is given by the Ii capability. If the terminal wraps around to
the beginning of the next line when it reaches the right margin, then it
should have the am capability. If the terminal can clear its screen, then
this is given by the cl string capability. If the terminal can backspace,
then it should have the bs capability, unless a backspace is accomplished by
a character other than AH (ugh) in which case you should give this character
as the bc string capability. If it overstrikes (rather than clearing a
position when a character is struck over) then it should have the os
capability.

A very important point here is that the local cursor motions encoded in
termcap are undefined at the left and top edges of a CRT terminal. The
editor will never attempt to backspace around the left edge, nor will it
attempt to go up locally off the top. The editor assumes that feeding
off the bottom of the screen will cause the screen to scroll up, and the
am capability tells whether the cursor sticks at the right edge of the
screen. If the terminal has switch selectable automatic margins, the
termcap file usually assumes that this is on, i.e. am.

These capabilities suffice to describe hardcopy
terminals. Thus the model 33 teletype is described as

t3133Itty33:co#72:os

while the Lear Siegler ADM-3 is described as

clladm313llsi adm3:am:bs:cl=AZ:li#24:co#80

CURSOR ADDRESSING

and "glass-tty"

Cursor addressing in the terminal is described by a cm string
capability, with printf (3s) like escapes %x in it. These substitute to
encodings of the current line or column position, while other characters
are passed through unchanged." If the cm string is thought of as being a
function, then its arguments are the line and then the column to which
motion is desired, and the % encodings have the following meanings:

%d as in printf, 0 origin
%2 like %2d
%3 like %3d
%. like %c
%+x adds x to value, then %.
%>xy if value> x adds y, no output.
%r reverses order of line and column, no output
%i increments line/column (for 1 origin)
%% gives a single %
%n exclusive or row and column with 0140 (DM2500)
%B BCD (16*(x/10)) + (x%10), no output.
%D Reverse coding (x-2*(x%16)), no output. (Delta Data).

I - 5

Consider the HP2645, which, to get to'row 3 and column 12, needs to be sent
\E&a12c03Y padded for 6 milliseconds. Note that the order of the rows and
columns is inverted here, and that the row and column are printed as two
digits. Thus its cm capability is "cm=6 \E&%r%2c%2Y" The Microterm ACT-IV
needs the current row and column sent preceded by a AT, with the row and
column simply encoded in binary, "cm=AT%. %. n Terminals which use " need to
be able to backspace the cursor (bs or bc), and to move the cursor up one
line on the screen (up introduced below). This is necessary because it is
not always safe to transmit \t, \nAD and \r, as the system may change or
discard them.

A final example is the LSI ADM-3a, which uses row and column offset by a
blank character, thus "cm=\E=%+ %+ "

CURSOR MOTIONS

If the terminal can move the cursor one position to the right, leaving
the character at the current position unchanged, then this sequence
should be given as nd (non- destructive space). If it can move the
cursor up a line on the screen in the same column, this should be given
as up. If the terminal has no cursor addressing capabili ty, but can home
the cursor (to very upper left corner of screen) then this can be given
as ho; similarly a fast way of getting to the lower left hand corner can
be given ,as 11; this may involve going up with up from the home
position, but the editor will never do this itself (unless 11 does)
because it makes no assumption about the effect of moving up from the
home position.

AREA CLEARS

If the terminal can clear from the current position to the end of the
line, leaving the cursor where it is, this should be given as ce. If
the terminal can clear from the current position to the end of the
display, then this should be given as cd. The editor only uses cd from
the first column of a line.

INSERT/DELETE LINE

If the terminal can open a new blank line before the line where the
cursor is, this should be given as al; this is done only from the first
position of a line. The cursor must then appear on the newly blank
line. If the terminal can delete the line which the cursor is ..>n, then
this should be given as dl; this is done only from the first position on
the line to be deleted. If the terminal can scroll the screen
backwards, then this can be given as sb, but just al suffices. If the
terminal can retain display memory above then the da capability should
be given; if display memory can be retained below then db should be
given.. These let the edit~r understand that deleting a line on the
screen may bring non-blank lines up from below or that scrolling back
with sb may bring down non-blank lines.

I - 6

INSERT/DELETE CHARACTER

There are two basic kinds of intelligent terminals with respect to
insert/ delete character which can be described using termcap. The most
common insert/ delete character operations affect only the characters on
the current line and shift characters off the end of the line rigidly.
Other terminals, such as the Concept 100 and the Perkin Elmer Owl, make
a distinction between typed and untyped blanks on the screen, shifting
upon an insert or delete only to an untyped blank on the screen which is
either eliminated, or expanded to two untyped blanks. You can find out
which kind of terminal you have by clearing the screen and then typing
text separated by cursor motions. Type" ab c def" using local cursor
motions (not spaces) between the "abc" and the "def" Then position the
cursor before the "abc" and put the terminal in insert mode. If typing
characters causes the rest of the line to shift rigidly and characters
to falloff the end, then your terminal does not distinguish between
blanks and untyped positions. If the "abc" shifts over to the "def"
which then move together around the end of the current line and onto the
next as you insert, you have the second type of terminal, and should
give the capability in, which stands for "insert null" If your terminal
does something different and unusual then you may have to modify the
editor to get it to use the insert mode your terminal defines. We have
seen no terminals which have an insert mode not not falling into one of
these two classes.

The editor can handle both terminals which have an insert mode, and
terminals which send a simple sequence to open a blank position on the
current line. Give as im the sequence to get into insert mode, or give
it an empty value if your terminal uses a sequence to insert a blank
position. Give as ei the sequence to leave insert mode (give this, with
an empty value also if you gave im so). Now give as ic any sequence
needed to be sent just before sending the character to be inserted.
Most terminals with a true insert mode will not give ic, terminals which
send a sequence to open a screen position should give it here. (Insert
mode is preferable to the sequence to open a position on the screen if
your terminal has both.)
If post insert padding is needed, give this as a number of milliseconds
in ip (a string option). Any other sequence which may need to be sent
after an insert of a single character may also be given in ip. It is
occasionally necessary to move around while in insert mode to delete
characters on the same line (e.g. if there is a tab after the insertion
position) • If your terminal allows motion while in insert mode you can
give the capability mi to speed up inserting in this case. Omitting mi
will affect only speed. Some terminals (notably Datamedia' s) must not
have mi because of the way their insert mode works.

Finally, you can specify delete mode by giving dm and ed to enter and
exit delete mode, and dc to delete a single character while in delete
mode.

I - 7

HIGHLIGHTING, UNDERLINING, AND BELLS

If your terminal has sequences to enter and exit standout mode these can
be given as so and se respectively. If there are several flavors of
standout mode (such as inverse video, blinking, or underlining - half
bright is not usually an acceptable "standout" mode unless the terminal

,is in inverse video mode constantly) the prefered mode is inverse video
by itself. If the code to change into or out of standout mode leaves
one or even two blank spaces on the screen, as the TVI 912 and Teleray
1061 do, this is acceptable, and although it may confuse some programs
slightly, it can't be helped.

Codes to begin underlining and end underlining can be given as us and ue
respectively. If the terminal ha~ a code to underline the current
character and move the cursor one space to the right, such as the
Microterm Mime, this can be given as uc. (If the underline code does
not move the cursor to the right, give the code followed by a
nondestructive space.)

If the terminal has a way of flashing the screen to indica te an error
quietly (a bell replacement) then this can be given as vb; it must not
move the cursor. If the terminal should be placed in a different mode
during open and visual modes of ex, this can be given as vs and ve, sent
at the start and end of these modes respectively. These can be used to
change, e.g., from a underline to a block cursor and back.

If the terminal needs to be in a special mode when running a program
that addresses the cursor, the codes to enter and exit this mode can be
given as ti and tee This arises, for example, from terminals like the
Concept with more than one page of memory. If the terminal has only
memory relative cursor addressing and not screen relative cursor
addressing, a one screen-sized window must be fixed into the terminal
for cursor addressing to work properly. If your terminal correctly
generates underlined characters (with no special codes needed) even
though it does not overstrike, then you should give the capab ili ty ul.
If overstrikes are erasable with a blank, then this should be indicated
by giving eo.

1-8

KEYPAD

If the terminal has a keypad that transmits codes when the keys are
pressed, this information can be given. Note that it is not possible to
handle terminals where the keypad only works in local (this applies, for
example, to the unshifted HP 2621 keys). If the keypad can be set to
transmit or not transmit, give these codes as ks and ke. Otherwise the
keypad is assumed to always transmit 0 The codes sent by the left arrow,
right arrow, up arrow, down arrow, and home keys can be given as kl, kr,
ku, kd, and kh respectively. If there are function keys such as fa, fl,
eo., f9, the codes they send can be given as kO, kl, ••• , 1.<90 If these
keys have labels other than the default fa through f9, the labels can be
given as 10, 11, 0 .• , 19. If there are other keys that transmit the
same code as the terminal expects for the corresponding function, such
as clear screen, the termcap 2 letter codes can be given in the ko
capability, for example, "ko=cl, 11, sf, sb:" which says that the terminal
has clear, home down, scroll down, and scroll up keys that transmit the
same thing as the cl, 11, sf, and sb entries.

The ma entry is also used to indicate arrow keys on terminals which have
single character arrow keys. It is obsolete but still in use in version
2 of vi, which must be run on some minicomputers due to memory
limitations. This field is redundant with kl, kr, ku, kd, and kh. It
consists of groups of two characters. In each group, the first
character is what an arrow key sends, the second character is the
corresponding vi command. These commands are h for kl, j for kd, k for
ku, I for kr, and H for kh. For example, the mime would be
:ma=AKjAZkAXI: indicating arrow keys left (AH), down (~K), up (AZ), and
right (AX).

MISCELLANEOUS CONSIDERATIONS

If the terminal requires other than a null (zero) character as a pad,
then this can be given as pc.

If tabs on the terminal require padding, or if the terminal uses a
character other than AI to tab, then this can be given as tao

Hazeltine terminals, which don't allow tilde characters to be printed
should indicate hz. Datamedia terminals, which echo carriage-return
linefeed for carriage return and then ignore a following linefeed should
indicate nco Early Concept terminals, which ignore a linefeed
immediately after an am wrap, should indicate xn. If an erase-eol is
required to get rid of standout (instead of merely writing on top of
it), xs should be given. Teleray terminals, where tabs turn all
characters moved over to blanks, should indicate xt. Other specific
terminal problems may be corrected by adding more capabilities of the
form x.

I - 9

Other capabilities include is, an initialization string for the
terminal, and if, the name of a file containing long initialization
strings. These strings are expected to properly' clear and then set the
tabs on the terminal, if the terminal has settable tabs. If both are
given, is will be printed before if. This is useful where if is
/usr/lib/tabset/std but is clears the tabs first.

If there are two very similar terminals, one can be defined as being
just like the other with certain exceptions. The string capability tc
can be given with the name of the similar terminal. This capability
must be last and the combined length of the two entries must not exceed
1024. Since termlib routines search the entry from left to right, and
since the tc capability is replaced by the corresponding entry, the
capabilities. given at the left· override the ones in the similar
terminal. A capability can be cancelled with xx@ where xx is the
capability. For example, the entry

hnI2621nl:ks@:ke@:tc=2621:

defines a 2621nl that does not have the ks or ke capabilities, and hence
does not turn on the function key labels when in visual mode. This
is useful for different modes for a terminal, or for different user
preferences.

FILES /etc/termcap file containing terminal descriptions

BUGS

Ex allows only 256 characters for string capabilities, and the
routines in termcap do not check for overflow of this buffer. The
total length of a single entry (excluding only escaped newlines)
may not exceed 1024. The ma, vs, and ve entries are specific to
the vi program. Not all programs support all entries. There are
entries that are not supported by any program.

I - 10

APPENDIX J

LEVEL II COBOL IN THE UNIX ENVIRONMENT

THE CONSOLE

In LEVEL II COBOL, and throughout this manual, the term "console" refers to
the user's terminal, not to the system console as might be expected by those
more familiar with UNIX usage.

DEVICES

Built into the compiler and Run-Time System (RTS) is the concept of certain
devices. You may write a program that will read from the Console In device
(":CI: n), or write to the Console Out or Error devices (":CO:" and ":CE:").
A COBOL program running on UNIX that uses these devices as file names will
access the standard input and output, and error output, respectively, since
these are connected to your terminal, unless redirected. In addition, the
file name n:LP: n is recognized as a printer-type file; if this is used as
the name of a sequential file all writes will cause printer-type carriage
control to be applied to the records. As discussed in Chapter 4, if the file
name n: CI:" is declared ORGANIZATION LINE SEQUENTIAL, then the first : CI:
read in the program will access the command line arguments. Note that ACCEPT
FROM CONSOLE will do the same, but ACCEPT FROM CRT will not.

DATA FILES

ANSI COBOL defines the concepts of sequential, relative, and indexed
sequential files, all containing fixed length records. To this, LEVEL II
COBOL adds a line sequential (LS) file type, which is variable length
records in standard·UNIX text file format. LS files (such as LEVEL II COBOL
source and listing files) consist of lines of text each terminated with a
newline character.

Sequential files consist of fixed length records with no terminators;
the lack of newline characters (unless they have been explicitly placed
there by the COBOL program) means that UNIX utilities such as grep and
sort may not work on sequential type files. Relative files consist of fixed
length records with a i-byte terminator; if a particular numbered record is
present in the file, this terminator will be a newline charac ter. If a
record is logically not present in the file, the record and terminator will
be all nulls (ASCII 0). COBOL relative files must not be changed by any
utility that removes nulls, such as the editor.

J - 1

COMMAND LINES AND SPECIAL CHARACTERS

As already discussed in Chapter 2, certain characters may be important to
the shell or command line handler on your system. Consequently, these must
be masked when used in command lines. See the shell or command line handler
documentation for your system for further details.

CHANGE OF TERMINAL MODE FOR LEVEL II ACCEPT/DISPLAY

-Normal terminal interfacing is performed by the UNIX operating system in a
mode ref-erred to as "cooked". It is in this mode that the operating system
interprets such terminal functions as Interrupt, Quit, CTRL-D (EOF) , CTRL-S
(XOFF), CTRL-Q (XON) , Tab, etc.

When a COBOL application program . calls for ACCEPT or DISPLAY UPON CRT,
the COBOL run-time sysfem takes more control over tty handling. The RTS sets
the terminal from "cooked" mode to a special mode. Look in the LEVEL II
COBOL Language Reference Manual for more information on ACCEPT/DISPLAY UPON
CRT statements. Some "cooked" terminal functions such as those mentioned
above may no longer operate, or may only operate in certain cases. For
example, a CTRL-D (normally interpreted by the UNIX operating system as an
end of file) is not defined in the Language Reference Manual, and is
therefore not interpreted by the RTS.

On V7 systems the following terminal characters are processed:

Pause (XOFF)
Continue (XON)
Interrupt
Quit

CTRL-S
CTRL-Q
Rubout (or Delete)
CTRL-\ or CTRL-SHIFT-L

When a COBOL application program calls for ACCEPT or DISPLAY UPON
CONSOLE (after there has already been a call to ACCEPT or DISPLAY UPON CRT)
RTS routines attempt to simulate UNIX "cooked" processing. Thus, terminal
functions work as they do with the UNIX operating system. This RTS
simulation, however, has two major differences:

1. Tabs are expanded to one spa~e instead of to one tab stop as by
the UNIX operating system.

2. No lower-to-upper case mapping, as occurs for "stty lease".

TYPE-AHEAD

Type-ahead refers to characters entered on the terminal that have not yet
been read by a program. Note that while a COBOL program is runriing, any
type-ahead will be flushed upon the first execution of an ACCEPT or DISPLAY
UPON CRT statement, so in general type ahead should be avoided before the
first ACCEPT FROH CRT.

J - 2

OVERFLOW OF MEMORY

Several error messages (for example, the failure to load a CALL'ed
module) may be the result of an overflow of the allocated memory area,
although the message may not state this explicitly. You should suspect this
problem whenever a large but otherwise correct intermediate code file fails
to load.

J - 3

J - 4

APPENDIX K

LOCKDEMO SOURCE CODE

The source code for the COBOL program "lockdemo" is reproduc.ed below;
this includes lockdemo.DDS, which was generated by the FOR}lS-2 utility
program.

IDENTIFICATION DIVISION.
PROGRAM-ID. LOCKING-TEST.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.

CONSOLE IS CRT
CURSOR IS CURSOR-POSITION.'

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT CUSTOMER-FILE ASSIGN "customer"
ORGANIZATION INDEXED
ACCESS DYNAMIC
RECORD KEY CUST-KEY
STATUS FILE-STATUS.

DATA DIVISION.
FILE SECTION.
FD CUSTOMER-FILE;
01 CUSTOMER-RECORD.

RECORD 132.

03 CUST-KEY PIC X(0030).
03 CUST-DAT.

05 ADDR-1 PIC X(0030).
05 ADDR-2 PIC X(0030).
05 ADDR-3 PIC X(0030).
05 TELENO PIC 9(0012).

WORKING-STORAGE SECTION.
COpy "lockdemo.DDS".
01 FILE-STATUS.

02 STATUS-1
02 STATUS-2

01 LOCKED
01 CURSOR-POSITION
01 MESSAGES.

PIC 9.
PIC X.
PIC X
PIC 9(4)

VALUE "D".
VALUE O.

03 MESSAGE-1 PIC X(Sl) VALUE
"OR ENTER EXISTING RECORD".

"INVALID ACTION: UPDATE NEW

03 MESSAGE-2 PIC X(41) VALUE "END OF FILE - FIND, ENTER 0
"R EXIT OPTIONS".
03 MESSAGE-3 PIC
03 MESSAGE-4
03 MESSAGE-S
03 MESSAGE-6

X(39) VALUE "DISK ERROR - EXITING".
PIC X(6) VALUE" NEXT "
PIC X(6) VALUE" FIND"
PIC X(6) VALUE" NEW "

K - 1

03 MESSAGE-7 PIC X(6)
03 MESSAGE-8 PIC X(6)
03 MESSAGE-9 PIC X(9)
03 MESSAGE-I 0 PIC X(9)
03 MESSAGE-i1 PIC X(9)
03 MESSAGE-12 PIC X(S3)
"ION POSITION AND TRY AGAIN".

VALUE
VALUE
VALUE
VALUE
VALUE
VALUE

"UPDATE".
" EXIT H.

"COMPLETED" .
"LOCKED If.

n FAILED " .
"POSITION CURSOR AT ACT

03 MESSAGE-i3 PIC X(43) VALUE "RECORD LOCKED - FIND,
"ENTER OR EXIT OPTIONS".

01 MESSAGE-POSITION.
03 ACTION-POS-l
03 ACTION-POS-2
03 ACTION-POS-3
03 ACTION-POS-4
03 ACTION-POS-5

PROCEDURE DIVISION.
START-PROCEDURE.

DISPLAY SPACE.
DISPLAY LOKDMO-OO.

PIC
PIC
PIC
PIC
PIC

OPEN 1-0 CUSTOMER-FILE.
PERFORM CHECK-STATUS.

ENTRY.

9(4)
9(4)
9(4)
9(4)
9(4)

VALUE 0801.
VALUE 0817.
VALUE 0832.
VALUE 0848.
VALUE 0865.

MOVE ACTION-POS-l TO CURSOR-POSITION.
DISPLAY LOKDMO-Ol.
ACCEPT LOKDMO-Oi.
MOVE SPACES TO LOKDMO-02-0001, LOKDMO-02-0002.
DISPLAY LOKDMO-02.
IF CURSOR-POSITION EQUAL ACTION-POS-2 GO TO FIND-RECORD.
IF CURSOR-POSITION EQUAL ACTION-POS-3 GO TO NEW-RECORD.
IF CURSOR-POSITION· EQUAL ACTION-POS-4 GO TO UPDATE-RECORD.
IF CURSOR-POSITION EQUAL ACTION-POS-5 GO TO END-IT.
IF CURSOR-POSITION GREATER ACTION-POS-S GO TO NOT-ACTION.

NEXT-RECORD.
MOVE MESSAGE-4 TO LOKDMO-OI-OOli.
DISPLAY LOKDMO-Ol.
START CUSTOMER-FILE KEY GREATER THAN CUST-KEY

INVALID GO TO FILE-END.
READ CUSTOMER-FILE NEXT.
IF STATUS-2 EQUA~ LOCKED GO TO RECORD-LOCKED.
PERFORM CHECK-STATUS.
PERFORM IN-TRANSFER.
DISPLAY LOKDMO-Ol.
MOVE MESSAGE-9 TO LOKDMO-02-0001.
DISPLAY LOKDMO-02.
GO TO ENTRY.

FIND-RECORD.
PERFORM CLEAR-FIELDS.
MOVE MESSAGE-5 TO LOKDMO-OI-OOll.
DISPLAY LOKDMO-Ol.
MOVE LOKDMO-OI-0006 TO CUST-KEY.
READ CUSTOMER-FILE INVALID GO TO ERROR-RETRY.

K - 2

IF STATUS-2 EQUAL LOCKED GO TO RECORD-LOCKED.
PERFORM CHECK-STATUS.
PERFORM IN-TRANSFER.
DISPLAY LOKDMO-Ol.
MOVE MESSAGE-9 TO LOKDMO-02-000l.
DISPLAY LOKDMO-02.
GO TO ENTRY.

NEW-RECORD.
MOVE MESSAGE-6 TO LOKDMO-Ol-OOll.
DISPLAY LOKDMO-Ol.
PERFORM OUT-TRANSFER.
WRITE CUSTOMER-RECORD INVALID GO TO ERROR-RETRY.
IF STATUS-2 EQUAL LOCKED GO TO RECORD-LOCKED.
PERFORM CHECK-STATUS.
MOVE MESSAGE-9 TO LOKDMO-02-000l.
PERFORM CLEAR-NAME THROUGH CLEAR-FIELDS.
DISPLAY LOKDMO-02.
GO TO ENTRY.

UPDATE-RECORD.
MOVE MESSAGE-7 TO LOKDMO-Ol-OOll.
DISPLAY LOKDMO-Ol.
PERFORM OUT-TRANSFER.
REWRITE CUSTOMER-RECORD INVALID GO TO ERROR-RETRY.
IF STATUS-2 EQUAL LOCKED GO TO RECORD-LOCKED.
PERFORM CHECK-STATUS.
MOVE MESSAGE-9 TO LOKDMO-02-000l.
DISPLAY LOKDMO-02.
PERFORM CLEAR-NAME THROUGH CLEAR-FIELDS.
GO TO ENTRY.

IN-TRANSFER.
MOVE CUST-KEY TO LOKDMO-Ol-0006.
MOVE ADDR-I TO LOKDMO-Ol-0007.
MOVE ADDR-2 TO LOKDMO-Ol-OOOS.
MOVE ADDR-3 TO LOKDMO-Ol-0009.
MOVE TELENO TO LOKDMO-OI-OOlO.

OUT-TRANSFER.
MOVE LOKDMO-OI-0006 TO CUST-KEY.
MOVE LOKDMO-OI-0007 TO ADDR-l.
MOVE LOKDMO-OI-0008 TO ADDR-2.
MOVE LOKDMO-OI-0009 TO ADDR-3.
MOVE LOKDMO-OI-OOIO TO TELENO.

CLEAR-NAME.
MOVE SPACE TO LOKDMO-OI-0006.

CLEAR-FIELDS.
MOVE SPACE TO LOKDMO-Ol-0007.
MOVE SPACE TO LOKDMO-Ol-OOOS.
MOVE SPACE TO LOKDMO-Ol-0009.
MOVE .SPACE TO LOKDMO-Ol-OOlO.

FILE-END.
MOVE MESSAGE-ll TO LOKDMO-02-0001.
MOVE MESSAGE-2 TO LOKDHO-02-0002.

K - 3

DISPLAY LOKDMO-02.
PERFORM CLEAR-N&~E THROUGH CLEAR-FIELDS.
MOVE ZERO TO CUST-KEY.
GO TO ENTRY.

ERROR-RETRY.
MOVE MESSAGE-II TO LOKDMO-02-0001.
MOVE MESSAGE-l TO LOKDMO-02-0002.
DISPLAY LOKDMO-02.
GO TO ENTRY.

CHECK-STATUS.
IF STATUS-l NOT EQUAL ZERO

MOVE MESSAGE-II TO LOKDMO-02-0001
MOVE MESSAGE-3 TO LOKDMO-02-0002
DISPLAY LOKDMO-02
GO TO STOP-IT.

RECORD-LOCKED.
MOVE MESSAGE-IO TO LOKDMO-02-0001.
MOVE MESSAGE-13 TO LOKDMO-02-0002.
DISPLAY LOKDMO-OZ.
PERFORM CLEAR-FIELDS.
GO TO ENTRY.

NOT-ACTION.
MOVE SPACES TO LOKDHO-02-0001.
MOVE MESSAGE-12 TO LOKDMO-OZ-OOOZ.
DISPLAY LOKDMO-OZ.
GO TO ENTRY.

END-IT.
MOVE MESSAGE-8 TO LOKDMO-OI-OOll.
DISPLAY LOKDMO-OI.

STOP-IT.

LOCKDEHO.DDS

CLOSE CUSTOMER-FILE.
MOVE MESSAGE-9 TO LOKDMO-02-0001.
DISPLAY LOKDMO-OZ.
PERFORM IN-TRANSFER THRU OUT-TRANSFER 100 TI:vlES.
DISPLAY SPACE.
STOP RUN.

01 LOKDMO-OO
03 FILLER PIC X(0184).
03 LOKDMO-OO-OOOI PIC X (0031) VALUE "LOCKI:TG DEHONSTE ... ;.TIIJ:;
"PROGRAM " .
03 FILLER PIC X(OlOS).
03 ;LOKDMO-Ou-0002 PIC X(0074) VALUE ;'This program demonstra
"tes the use of record locking facilities using an "
03 FILLER PIC X(0006).
03 LOKDMO-OO-0003 PIC·X(0030) VALUE "IS&'l Eil<~ 2.r'.d I-J :1-:ce
"ss mode.".

K - 4

03 FILLER PIC X(0002).
03 LOKDMO-OO-0004 PIC X(003S) VALUE "You can specify action
Its as follows:".
03 FILLER PIC X(0093).
03 LOKDMO-OO-OOOS PIC X(0013) VALUE "* NEXT record".
03 FILLER PIC X(0003).
03 LOKDMO-OO-0006 PIC X(0013) VALUE "* FIND record".
03 FILLER PIC X(OOOZ).
03 LOKDMO-OO-0007 PIC X(0014) VALUE "* ENTER record".
03 FILLER PIC X(0002).
03 LOKDMO-00-0008 PIC X(OOlS) VALUE "* UPDATE record".
03 FILLER PIC X(OOOZ).
03 LOKDMO-OO-0009 PIC X(0006) VALUE n* EXIT".
03 FILLER PIC X(0018).
03 LOKDMO-OO-OOIO PIC X(0060) VALUE "(Position cursor over
"appropriate asterisk and press RETURN)".
03 FILLER PIC X(009Z).
03 LOKDMO-OO-OOll PIC X(0080) VALUE ,,----------------------
"--"
03 FILLER
03 LOKDMO-OO-OOIZ
03 FILLER
03 LOKDMO-OO-0013
03 FILLER
03 LOKDMO-OO-0014
03 FILLER
03 LOKDMO-OO-001S
03 FILLER
03 LOKDMO-OO-0016
03 FILLER
03 LOKDMO-00-0017
03 FILLER
03 LOKDMO-OO-0018
03 FILLER
03 LOKDMO-OO-0019
03 FILLER
03 LOKDMO-00-0020
03 FILLER
03 LOKDMO-OO-0021
03 FILLER
03 LOKDMO-OO-0022
03 FILLER
03 LOKDMO-OO-OOZ3
03 FILLER
03 LOKDMO-OO-0024

PIC X (0009) .
PIC X(OOOS) VALUE "NAME:".
PIC X(0006).
PIC X(OOOl) VALUE "[".
PIC X(0030).
PIC X(OOOl) VALUE "J".
PIC X(0037).
PIC X(0008) VALUE "ADDRESS:".
PIC X(0003).
PIC X(OOOl) VALUE "[".
PIC X(0030).
PIC X(OOOl) VALUE "J".
PIC X (0048) .
PIC X(OOOl) VALUE "[".
PIC X(0030).
PIC X(OOOl) VALUE "J".
PIC X(0048).
PIC X(OOOl) VALUE "[".
PIC X(0030).
PIC X(OOOl) VALUE "J".
PIC X(0037).
PIC X(OOlZ) VALUE "TELEPHONE: [If.
PIC X(OOlZ).
PIC X(OOOl) VALUE "J".
PIC X(0046).
PIC X(0080) VALUE ,,----------------------

I' __ II

03 FILLER PIC X(0089).
03 LOKDMO-OO-OOZS PIC X(0016) VALUE "(Last action was".
03 FILLER PIC X(0007).
03 LOKDMO-OO-OOZ6 PIC X(0008) VALUE " , and it".
03 FILLER PIC X(OOlO).

K - 5

03 LOKDMO-OO-0027 PIC X(OOOl) VALUE ")".
01 LOKDMO-01 REDEFINES LOKDMO-OO

03 FILLER PIC X(0560).
03 LOKDMO-01-OOOl PIC *.
03 FILLER PIC X(0015).
03 LOKDMO-01-0002 PIC *.
03 FILLER PIC X(0014).
03 LOKDMO-01-0003 PIC *.
03 FILLER PIC X(0015).
03 LOKDMO-01-0004 PIC *.
03 FILLER PIC X(0016).
03 LOKDMO-OI-OOOS PIC *.
03 FILLER PIC X(0276).
03 LOKDMO-01-0006 PIC X(0030).
03 FILLER PIC X(0050).
03 LOKDMO-OI-0007 PIC X(0030).
03 FILLER PIC X(0050).
03 LOKDMO-01-0008 PIC XC-0030).
03 FILLER PIC X(OOSO).
03 LOKDMO-OI-0009 PIC X(0030).
03 FILLER PIC X(OOSO).
03 LOKDMO-Ol-OOlO PIC 9(0012).
03 FILLER PIC X(0233).
03 LOKDMO-Ol-OOll PIC X(0006).

01 LOKDMO-02 REDEFINES LOKDMO-OO
03 FILLER PIC X(148l).
03 LOKDMO-02-0001 PIC X(0009).
03 FILLER PIC X(OllO).
03 LOKDMO-02-0002 PIC X(0071).

K - 6

