68—5—-24-84-1.0/1.0 Text Processing System

IMPORTANT NOTE ABOUT INSTALLATION

TEXT PROCESSING SYSTEM
XENIX 3.0forthe Apple™Lisa2™
May24, 1984

These notes contain information about installing the optional XENIX Text Processing
System. If you wishtoinstallthe Text Processing System atthe sametime asinstalling
the XENIX Operating System, please refer to the Installation Guide in the binder
marked Installation GuidelOperations Guide/User’'s Guide. When installing the
XENIX Text Processing System after you've already installed the XENIX Opmtmg
System, refertothese notes.

READ THE INSTALLATION NOTES IN THEIR ENTIRETY AND MARK SURE

YOU COMPLETELY UNDERSTAND THE INSTALLATION PROCESS

BEFORE INSTALLING THE PRODUCT. Note that you need the XENIX Operating
System in order to use the Text Processing System, so you must install the XENIX
Operating System first.

If you have already installed the XENIX Operating System, and wish to installthe Text
Processing System Package separately, follow this procedure:

1.  Loginasroot(super—user).

2. The floppies are numbered (beginning with 1) and must be installed in
sequential mmeric order. Insert the first Text Processing System floppy
intothe floppy driveand enterthe command:

# /etc/install

3.  Theinstallutility willprompt:
First floppy (y/n)
Enter‘y” andpressRETURN.
4. Theprogram will prompt you for each floppy. Remove the previous floppy

from the floppy drive and insert the next Text Processing Sytem floppy.
" Enter‘y’ inresponseto the prompt (#).

5.  Whenyou have installed the final Text Processing System floppy, enter ‘n’
inresponsetothe prompt.

Note that some filesmay extend from one floppy to the next. Inthiscase, the tar utility
will prompt you in a slightly different fashionthanthe /etc/instali program. Insert the
next floppy and pressRETURN whenthe floppy isproperly inserted andthe floppy door
latchisclosed.

The Samta Cruz Operation XENIX for the Apple Lisa 2






The XENIX"

Text Processing System

Text Processing Guide

for the Apple Lisa 2"

The Santa Cruz Operation, Inc.



Information in this document is subject to change without notice and
does not represent a commitment on the part of The Santa Cruz
Operation, Inc. and Microsoft Corporation. The software described in
this document is-furnished under a license agreement or nondisclosure
agreement. The software may be used or copied only in accordance
with the terms of the agreement.

©The Santa Cruz Operation, Inc., 1984
©Microsoft Corporation, 1983

The Santa Crus Operation, Inc.

500 Chestnut Street

P.O. Box 1900

Santa Cruz, California 95061

(408) 425-7222 - TWX: 910-598-4510 SCO SACZ

UNIX is a trademark of Bell Laboratories
XENIX is a trademark of Microsoft Corporation
Apple, Lisa 2, and ProFile are trademarks of Apple Computer Inc.

Release: 68-5-24-84-1.0/1.0



Contents

1

[ Y
NN L W -

TextProcessingOverview

Introduction 1-1§
BasicConcepts 1-3
FormattingDocuments 1—7
ASampleProject 1-9
Managing Writing Projects  1-11
Summary 1-1§

ToolsFor Writing and Editing

Introduction 2-1

XENIX Commands for Text Processing 2—2
WritingTools 2-8

Usingspell 2—-9

Usingstyleanddiction 2-10

UsingthemmMacros

Getting Started withmm  3—1
BasicFormattingMacros 3-3

Using nroff/troff Commands 3-8
CheckingmmInput Withmmcheck 3—9

mmReference

Introduction 4-1

InvokingtheMacros 4—3
FormattingConcepts 4—7

Paragraphsand Headings 4-—10

Lists 4—18

Displays 4-25

Footnotes 4-31

PageHeadersandFooters 4—34

Tableof Contents 4--38

References 4—40

MiscellancousFeatures 4—41
MemorandumandReleased Paper Styles 4-—46
ReservedNames 4-54

Ermors 4-56

Summary ofMacros, Strings, andNumbechglstcrs 4-62



(7]

i S Y
b e s bt s et D 00 < DN N B WO R

Wt & WD) =
L - N W )

90000000 0000000000 00
O OO\ EWN

Annroff/troff Tutorial

Introduction 5-—1

Inserting Commands 5—2

Point SizesandLine Spacing 5-2
FontsandSpecial Characters 5—4
IndentsandLineLengths 5—7
Tabs S5-—8

Drawing Linesand Characters 5—9
Strings 5-12

Macros 5—-12 .

Titles, PagesandNumbering 5—14
Number Registersand Arithmetic 5—16
Macroswith Arguments S5—17
Conditionals 5-19
Environments 5-21

Diversions 5-21

nroft/troff Reference

Introduction 6—1
Basic FormattingRequests 6—5

Character Translations, Overstrike, and LocalMotions  6—13

Processing Control Facilities 6-—17
Outputand ErrorMessages 6—24

Summary of Escape Sequencesand NumberRegisters 6—26

Formatting Tables

Infroduction 7-1
InputFormat 7-2
Invokingtbl 7-9
Examples 7-—-11
Summary 7-18

- FormattingMathematics

Introduction 8—1
DisplayedEquations 8—2
Basic Mathematical Constructions - 8—3

ComplexMathematical Constructions 8—7
LayoutandDesignof Mathematical Text 8—10

In—LineEquations 8-15
Definitions 8-—16
Invokingeqn 8—17
SampleEquation 8-—18



8.10 ErrorMessages 8—18
8.11 SummaryofKeywordsandPrecedences 8—19

AppendixA  EditingWithsed and awk
Al Introduction A-1I

A.2  EditingWithsed A-1
A.3  PatternMatching Withawk A-—1






Chapter 1
Text Processing Overview

1.1 Introduction  1-1 v
1.1.1 Before YouBegin  1-2
1.1.2 Reading This Manual 1-2

"1.2 Basic Concepts  1-3
1.2.1 Writing Tasks  1-4
1.2.2 Anatomy of aDocument  1-4
1.2.3 Formatting Characteristics 1-5
1.2.4 AnInventory of Tools 1-6

1.3 Formatting Documents  1-7
1.3.1 Themm Macros  1-7
1.3.2 Supporting Tools  1-8
1.3.3 Order of Invoking Programs  1-8

1.4 ASampleProject 1-9
1.4.1 Entering Text and Formatting Commands  1-9
1.4.2 Formatting Text 1-10
1.4.3 Printing the Document 1-11

1.5 Managing Writing Projects 1-11
1.5.1 TheLife Cycleof aDocument 1-12
1.5.2 Organizing Your Project 1-12
1.5.3 Shortcuts: Boilerplates and Cut and Paste 1-14

1.6 Summary 1-15






1.1 Introduction

The XENIX Text Processing System is a collection of powerful tools for
enhancing writing productivity and making the process of document
preparation more efficient. To create documents with the XENIX system, you
will be using special XENIX text processing programs, including text editors and
text formatters. You will also be relying on XENIX system features and utilities
with which you may already be familiar. Whether you have used other text
processing programs or not, this manual provides you with a practical
orientation toward text processing and describes the XENIX tools in detail,
along with examples that illustrate their applications to your writing tasks.
Where possible, strategies are offered for using the XENIX system to best
advantage inyour own environment.

This manual emphasizes the interrelationship of tools and techniques into a
“text processing system’’. Understanding the relationship between these
programs discussed here is as important as learning to use each individual
program. Think of the XENIX system as a ‘“writing environment”. How you
organize this environment is up to you. Once you learn to use your XENIX tools
selectively, and make the right decisions in planning your writing projects
before you begin them, the XENIX system is ultimately more powerful and
flexible than any of the ‘“‘word processing packages” with which you may be
familiar.

This introduction provides you with an overview of text processing with the
XENIX System, including:

e  The text processing conceptsand terms you will need to understand
e Theediting and formatting tools you will be using

e  Thestepsin the processof creating afinished document

e Thestrategies for managing writing projects

As you read the XENIX Tezt Processing Guide remember that the XENIX
system has been evolving over a number of years and that it offers an enormous
range of programs and utilities. Many of the tools introduced here were not
originally designed for text processing—they are general-purpose utilities upon
which all XENIX users depend heavily. Programmers, for example, use the
same text editors and file comparison utilities discussed here to write andrevise
programs. Those programs intended solely for text processing applications,
including the formatters and style analysis programs, have developed
independently of each other. You will often find that their capabilities overlap.
A large part of learning to use your XENIX system successfully is deciding how
to make the various programs and utilities work together.

Do not expect to sit down and learn the XENIX Text Processing System in a
single afternoon. This manual is designed to help you approach a wide range of

1-1



XENIX Text Processing

editing and formatting tools gradually. There are many programs described
here for which you may not have an immediate application, and some you may
never need at all. You need not learn all the material introduced here to
produce professional-quality manuscripts. Choose the tools that will work best
for your-projects. .

1.1.1 Before You Begin

Before you can begin to use your XENIX system effectively as a text-processing
environment, you should already be familiar with the material covered in the
XENIX User’s Guide, particularly:

e The most common XENIX commands
e The XENIX hierarchical file structure

e TheXENIXshell programming language
e Atleast oneof the XENIX text editors

‘Equally important, however, is making use of the power of XENIX as an
operating system by using its features to your advantage. In particular, asyou
begin working with XENIX Text Processing, consider how your work can be
* made easier by utilizing the XENIX hierarchical file structure to organize files
efficiently. Make use of the XENIX shell to “pipe’’ one process to another and
run several processes concurrently. Use the XENIX shell programming
language to create “scripts” for automating your text processing work.
Develop strategies for managing your writing projects beyond merely learning
a collection of commands.

Most importantly, before you begin working with the XENIX Text Processing
System, learn one of the XENIX text editors well enough to feel comfortable
entering and revising document text.

Because there isso much to learn about text processing with the XENIX system,
the best approach is to read through this volume first and decide which editors,
utilities, and formatters best suit your needs. Then learn selectively, but
thoroughly, those tools which are most appropriate. As you become more
experienced, you will develop a feel for which functions work best in which
situations, and you will find new ways to make the writing process more
efficient. You will be continually amazed at how powerful the editors and
related tools can be. ’

1.1.2 Reading This Manual

Thismanual contains the following chapters:



Text Processing Overview

1. Text Processing Overview :
The chapter you are now reading provides you with a general
overview of XENIX text processing: how it works and what kinds of
tasks it can do. The XENIX tools and how they fit into each phase of
document production are described.

2. Writing and Editing Tools
This chapter introduces several XENIX programs which can help
you search for recurring patterns, compare files, and make global
revisions to large files and groups of files. It also introduces three
special writing tools for locating spelling errors and awkward
diction, as well as assessing the readability of a document.

3. Usingmm
This chapter introduces mm, a package of document formatting
requests which simplifies the task of formatting documents.

4. Mm Reference
This chapter is a comprehensive guide to mm.

5. Nroff/Troff Tutorial
This chapter introduces the two XENIX text formatters, nroff and
troff.

6. Nroff/Troff Reference
. This chapter is a comprehensive gulde to the nroff and troff
formatting programs.

7.Formatting Tables
This chapter describes the specialized formatter, .tbl, which
produces effective tablesin documents.

8. Formatting Mathematical Equations
This chapter describes the eqn program which formats
mathematical symbols and equations.

Appendix A: Editing Withsed and awk

This appendix describes how to use the two batch editing programs
sed and awk.

1.2 Basic Concepts

. This section reviews some general text processing terms and concepts,
including the:

—  Typesof writing tasks which can be done with XENIX text processing

—  Partsofadocument

1-3



XENIX Text Processing

—  Design characteristicsof a formatted document

—  Typesof XENIX tools which you will be using

1.2.1 Writing Tasks
You can write, edit, and typeset any manuscript on the XENIX system—
whether a memo, business letter, novel, academic dissertation, feature article
or manual. In some respects this-manual relies more heavily on examples
relevant to technical documentation, because these projects require the
application of the greatest number of XENIX tools, and demand the most
careful planning and strategy in their construction.
1.2.2 Anatomy of a Document -
To fully determine the scope of your formatting needs, let’s look at the partsof
atypical document. Unless you are using your XENIX text processing system to
write memos and letters, you may have some or all of the following in your
documents: :
Front Matter

—  Titlepage

—  Copyright notice or document number

—  Tableof contents

—  Listof tablesor illustrations

—  Foreword

—  Preface

—  Acknowledgements
Body of Text

—  Chaptersor sections

— . Figuresand display

—  Tablesand equations

— Footnotes

—  Running headers and footers



Text Processing Overview

Back Matter
—  Appendices
— Notes
—  Glossary
—  Bibliography
— Index

Your XENIX tools will help you automatically generate many parts of your
document. For example, you will be able to create lists of figures and tables,
and a table of contents as part of the formatting process. You can create and
store in advance a standard copyright notice page (often called a ““boilerplate’)
and change only thatinformation specific to the document.

Even in those sections of your document that must be written from scratchyou
can do much to standardize the ‘‘look” of a preface page, the pagination of an
appendix, or the section numbering and format of a chapter. Once you have

_developed specifications, you can achieve consistency in the production of a
long and complex document, and even produce many documents with the same
specifications, without going through the definition process again. A further
advantage is that you can change your specifications at any time, often without
re-editing the text and formatting commands themselves. Then, you need only
reformat your document and print it.

1.2.3 Formatting Characteristics

There are many characteristics of your finished text that can be controlled with
XENIX formatting tools. Keep in mind, however, that the appearance of your
finished document depends largely on the capabilities of your output device.
To determine the format of your text you will insert commands in your text file
as you write and edit. These commands will be identical, whether you are
planning to produce your document on a lineprinter using the XENIX format ter
nroff, or whether you are sending your document directly to a phototypesetter
using troff. Because a lineprinter cannot do variable spacing, or change the
point size or font of your text, nroff will ignore commands to change point size,
round the parameters of spacing commands to the nearest line unit, andreplace
italics with underlining.

You will also notice qualitative differences in the output. For example, the
justification of text—the spacing of text across the line to preserve a margin—is
considerably less subtle in lineprinter output. Some of the characteristics you
can control with the nroff/troff programs are:

—  Text filling, centering, and justification



XENIX Text Processing

—  Multicolumn output, margin, and gutier width

—  Vertical spacing, linelength, page length,andindentation
— -Fonttype and point size |

— Stylé of page headersand footers

—  Pageandsection numbering

—  Layout of mathematical equations and tables

1.2.4 An Inventory of Tools

When you approach any writing project, you should examine the whole range
of XENIX tools to find those that will work best, just as you might look inside a
toolbox. Although you can often do a job in several ways, there is frequently a
tool, or a combination of tools, designed especially for-that job.

Feel freeto experiment in using the various editors, utilities, and formatters. If
you are cautious about making copies of your files and backing up your XENIX
system’ regularly, you can do little irreversible damage. As you work, you will
gain more confidence and find new solutions.

While it is a good idea to learn to use a few of the XENIX tools skillfully, you
should also work consciously to learn new tools and methods, rather than
depending on a few procedures which you feel you know well. Some XENIX
tools, like the screen editor vi, offer many more commands and functions than
you can comfortably learn at one sitting. You may find yourself relying on a
limited number of commands quite heavily. To prevent this, periodically
review the documentation and force yourself totry new commands

In this manual we will be lookmg at XENIX “tools” which fall into a few basic
categories: :

System features
Aspectsof the XENIX operating system that can be used to enhance
the text processing environment, such as multitasking and the
hierarchical file structure.

Utilities
These include the XENIX text editors (such as vi) and other utilities

that are used for both software development and text processing
(such assort, diff, grep, or awk). -

1-8



Text Processing Overview

Text Processing Tools

These include specislized programs designed solely for text
formatting tasks, including mm, eqn, and tbl and the formatters

style,and diction, which help you edit what you write.

1.3 Formatting Documents

In this section you will be introduced to nroff and troff, the two XENIX
formatting programs. By inserting a series of commands in your text files you
will be able to produce text with justified right margins, automatic page
numbering and titling, automatic hyphenation, and many other special
features. Nroff (pronounced “en-roff’’) is designed to produce output on
terminals and lineprinters. Troff (pronounced “tee-roff’) uses identical
commands to drive a phototypesetter, The two programs are completely
compatible, but because of the limitations of ordinary lineprinters, troff
output can be made considerably more sophisticated. With troff, for example,
you can specify italic font, variable spa¢ing, and point size. If you format the
text using the same macros with nroff, italicized text will be underlined, the
spacing will be approximated, and the text will be printed in whatever size type
the lineprinter offers.

1.3.1 The mm Macros

To use nroff and troff, you must insert a fairly complicated series of
commands directly into your text. These ‘formatting commands” specify in
detail how the final output will Jook. Because nroff and troff are relatively
hard to learn to use effectively, XENIX also offers a package of canned
formatting requests called the mm macros. With mm you can specify the style
of paragraphs, titles, footnotes, multicolumn output, lists and so on, with less
effort and without learning nroff and troff themselves. The mm program
reads the commands from the text, and translates them into nroff/troff
specifications, Mm is described in detail in the next two chapters. It is
recommended that you learn mm first, and use it for most of your formatting

*needs. If you need to fine-tune your cutput, you can add nroff/troff requests
to the text as necessary.

To produce a document with mm, use the command
nroff -mm filename

to view the output on your terminal screen. To store the output of nroffin a
file, use the command line:

nroff -mm filename > outfile

where outfile is the name of the file you wish to designate for the stored output.

1-7



XENIX Text Processing

It is suggested that you give consistent extensions to your input and output
filenames. You might use ‘“.s” for “source’’ as the extension for all input
filenames, and “.mm” as the extension for the names of files which are the
outputof mm. For example,

nroff -mm l.intro.s>intro.mmé&.

Note that the ampersand is used to process the file in the background.

1.3.2 Supporting Tools

In addition to the nroff and troff formatting programs, and the. mm
formatting package, there are also formatting programs to meet some
specialized needs. The eqn program, for example, formats complicated
mathematical symbols and equations. A version of eqn called neqn outputs the
same mathematical text for the more limited capabilities of lineprinter. Eqn is
- a preprocessor. That is, you run eqn first, before nroff /troff, to translate the
commands of the eqn **language” into ordinary nroff/troff requests. The eqn
commands resemble English words {e.g., over, lineup, bold, union), and the
format is speciﬁed much as you might try to describe an equa.tion in
conversation. It is recommended that you delay learning about eqn in detail
until you actually need to use it.

The tbl program is also a preprocessor: tbl commands are translated into
nroff/troff commands to prepare complex tables. Tbl gives a you a high
degree of control over material which must appear in tabular form, by doing all
the computations necessary to align complicated columns with elements of
. varying widths. Like eqn, it requires that you learn another group of
commands, and process your files through another program before. using
nroff/troff.

1.3.3 Order of Invoking Programs

After you have inserted all your formatting commands into the text, you are
ready to process your files, using the XENIX formatting programs. Please note
that it is extremely important to use the various macro packages and
formatters in the correct order. However, you may invoke all these programs
with a single command line, using the XENIX pipe facility. As noted above, you
can invoke the mm macro package along with nroff/troff using a command
suchas:

nroff -mm intro.s>intro.mm
However, if you are using several specialized formatters along with
nroff/troff, the command becomes more complex. You must invoke eqn

before nroff/troff and mm, in order to translate the eqn commands into
nroff/troff specifications before the files are formatted, asin the following:

1-8



Text Processing Overview

neqn intro.s | nroff -mm>intro.mm
If you are using both eqn and tbl, the tbl program should be called first:
- tbl intro.s | neqn|nroff -mm > intro.mm

If you are formatting multicolumn material or tables with nroff you must use
the col (for *‘column”) program. Col processes your text into the necessary
columns, after formatting, asin:

nroff -mm intro.s | col>intro.mm

1.4 A Sample Project

The preparation of every document has several phases: entering and editing
text, checking your draft for spelling errors-and style quality, formatting the
finished version, and printing it on a printer or typesetter. To illustrate the
process of producing a finished document with the XENIX Text Processing
System, let’s look at the steps for creating asimple document one by one.

1.4.1 Entering Text and Formatting Commands

First you must write the text of the document. To do this, you will invoke one
of the XENIX text editors and type the text on the screen. For example, to
produce a memo informing the members of your department that you will be
holding a seminar on the XENIX Text Processing System, you might begin by
typing the following command line:

vi memo.s

You will probably use your editor’s special functions to correct errors and make
revisions as you write, such as deleting words or lines, globally substituting one
word for another, or moving whole paragraphs and sections around in the
document.

If you have used a dedicated word processing system or a microcomputer word
processing program before, note that the XENIX Text Processing System works
somewhat differently. Formatting of text takes place in a ““batch” rather than
an “interactive’” mode. That is, instead of usingspecial function keys to format
your text on the screen as you work, you will be interspersing commands with
ordinary text in your file. Most of these are t wo-letter commands preceded by a
dot (.), that appear at the beginning of text lines. These will be lowercase
letters, if you are using either of the XENIX text formatters, nroff, or troff.

In addition to these two programs, there is another program called mm which

we recommend you use, especially if you are new to text processing. Mm
commands are called “macros’’. These macros, which are generally two upper

1-8



XENIX Text Processing

or lowercase letters preceded by a dot (.), replace whole sequences of nroff and

troff commands, and allow you to reduce the number and complexity of the

commands necessary to format a document. You can use the mm macros

wherever possible and. add extra nroff or troff commands, as necessary, for
fine-tuning the format of your document.

Let’slook at the beginning of a file called memo.e:

.ce
.B MEMO
.sp 2
P
A seminar has been scheduled for Thursday, September 15,
to introduce users to the XENIX Text Processing System.
" It is is intended for all department members
planning to use XENIX for writing or preparing documentation..

The seminar will include the following topics:
AL 1 :
.LI
Reviewing the XENIX file structure and basic commands,
.LI
Using the vi text editor.
.LI
* Formatting documents with mm.
.LE :
P :
The seminar will begin at 9 A.M. and will last approximately
two hours...

_ In the input file above, each paragraph of text begins with the mm paragraph
macro, .P. In the final document, the word “MEMO”’ will appear ¢entered on
the page 2nd in boldface. The nroff/troff command .ce means “center” and
the mm macro .B means “boldface”. The nroff/troff command .sp 2 below
MEMO means‘‘2”spaces

Note the three mm macros.AL, LI, and .LE. These will turn the text following
the words‘‘following topics” into an automatically numbered list.

1.4.2 Formatting Text

Now, let’s format the finished memo into the file called memo.mm using the
following command line:

nrofl -mm memo.s>memo.mm&

1-10



Text Processing Overview

This command invokes the nroff formatter using the mm macro package to
format the file memo.s. When formatted, the memo will be stored in an output
file called memo.mm. If you do not specify an output file, the formatted text
will simply roll acrossyour screen and be lost. Note that the command line ends
with an ampersand (&), an instruction to put the formatting of this file‘‘in the
background”. It is generally a good idea to put formatting jobs in the
background because they will often take several minutes, especially if the file is
long and the formatting relatively complex. If you put the formatting job in the
background, your terminal will remain free for you to do other work on the
system.

1.4.3 Printing the Document
When you are ready to print the memo, use the command
Ipr text.memo.mm

The finished memo looks like this:

MEMO

A seminar has been scheduled for Thursday, September 15,
to introduce users to the XENIX Text Processing System.
It is intended for all department members planning

to use XENIX for writing or preparing documentation.
The seminar will include the following topies:

1. Reviewing the XENIX file structure and
basic commands.

2. Using the vi text editor.
3. Formatting documents with mm.

The seminar will begin at 9 A M and will last
approximately two hours...

1.5 Managing Writing Projects

Once you have mastered one or more of your text editors, and are ready to do

1-11



XENIX Text Processing

extensive writing, revision, and text processing with the XENIX system, it is
time to consider the overall organization of your writing projects. This section
offers some common-sense suggestions for managing and standardizing your
text files to make processing more efficient. Not all of the suggestions and
writing aids discussed here will be equally appropriate in all situations. The
larger.and more complex the writing project, however, the more time and
confusion can be saved by their implementation.

1.5.1 The Life Cycle of a Document

Before you can begin to work successfully with XENIX text processing tools, you
need to determine which tools are appropriate for each phase of a project. This
section discusses the application of XENIX tools to each step in the life cycle of a
document from the first notes you take and outlines you develop, to the
archiving and management of multiple versions and updates.

Every document goes through several phases before it is complete. First, you
must enter the body of the text, using one of the XENIX text editors. As you
write, you will insert formatting commands, or “macros,” which specify in
detail to the formatting programs how the final output should look. In addition
to checking your work for mistakes and spelling errors, you may need to go
through an extensive revision process—the global substitution of one name or
term for another, for instance, or the reorganization of your manuscript using a
“cut and paste” technique.

Depending on the size and scope of your project, you may need to compare text
variants and maintain several versions of your documents. Finally, you will be
producing formatted output, whether it is a one-page business letter produced
on an ordinary lineprinter or a book-length manuscript communicated directly
to a phototypesetter. XENIX provides all the necessary tools for every phaseof
document preparation, and in many cases offers several approaches to each
task.

1.5.2 Organizing Your Project

Organization is a key element of writing projects, especially if you are working
on a large document, or attempting to control many short ones. Text
processing can greatly simplify any writing project if you use common sense in
adapting the wide range of XENIX tools to your work. If you work with many
short memos, letters, and documents that are similar in content but require
constant revision, or if you are involved with the production of book-length
manuscripts, you can easily find yourself swamped by huge files containing
innumerable text variations and fragments. These can become difficult to
control and process. Time you spend defining the scope of your project in
advance is be well rewarded. Decide which files and versions you need to
maintain, and which formatting and error-checking programs you need to use.
Determine in advance, if possible, the style and format of your text.

1-12



Text Processing Overview

Since most documents go through several revisions before they are finished, a
few simple measures make the work of repeated revision considerably easier. If
you are like most people, you rewrite phrases and add, delete, or rearrange
sentences. Subsequent editing of your text will be easier if every sentence starts
on anew line, and if eachline isshort and breaksat a natural place, such as after
asemicolon or comma.

Asyou are editing, you can insert markers in your text, so that you can return
to them later; use an unlikely string as a marker that you can search for easily
using the grep command or your text editor to do a global search. If, for
example, you are unsure of which term to use, or how you want the final text to
look, use a given word, or text formatting macro provisionally, but
consistently. In thisway, a global substitution can be made easily.

You may find that certain global definitions, like the choice of a font for a given
header level, or a commonly used string, may be created at the last minute and
placed at the beginning of your text file. When you are experienced in the use of
macros, you may want to create “template’’ definitions which you use
repeatedly. You can even place your definitions in a separate file to be called
every time you invoke a script you have prewritten for processing your
documents. This will facilitate consistency in your documents and allow
greater flexibility if changes are required. In many cases, you will find that you
can delay your formatting decisions until the document is to be printed or
typeset.

Long documents should be broken down into individual files of reasonable
length, perhaps ten to fifteen thousand characters. Operations on larger files
are considerably slower, and the accidental loss of a small file is. less
catastrophic. If possible, each file should represent a natural boundary in a
document, such as a chapter or section. Develop naming conventions to make
your filenames consistent and self-explanatory, such as:

lintro.s 2.basic.s 3.adv.s

This allows files to be processed in groups with global commands, editing and
shell scripts. You will also be able to see the contents of files and directories at a
glance, and if someone else needs to access your files, they will not be confronted
with filesnamed “aardvark”, “katmandu”, or “‘fred”.

You should also use the XENIX hierarchical file structure to your advantage in
organizing your work, by creating different directories for special purposes.
For example, you may wish to have your source text filesin a different directory
from your formatted output files, or you may find it handy to have “rough” and
“final” draft directories. If your projects grow and change over time, you may
need to maintain several versionsof a document at once.

Unless your project is truly unwieldy, the creation of parallel directoriesshould
provide sufficient organization for storing multiple versions of a document:

1-13



XENIX Text Processing

[ust /[docwriter

| l |
versionl version2 " version3

rog’gh final nroff

Lintro.s Lintro.n
2.basic.s 2.basic.n
3.adv.s - 3.adv.n

If you have created definition files and scripts, such as shell programs for
processing text or sed scripts for making uniform changes (see Appendix A),
place them in yet andther directory. This might also be a good place to add
some “help”’ files, which explain which versions of a document are contained in
the directory or explain formatting procedures.

There are no rules to apply in deciding which procedures will produce

- documentation with the least effort and the fewest errors. How elaborate you
make your procedures depends on the quantity and complexity of the text you
need to process and maintain. The essential point here is the theme of this
entire volume: select the XENIX tools which seem most appropriate and adapt
them to your own specific needs. The more organized and consistent your work
is, the more powerful your use of these tools will become.

1.5.3 Shortcuts: Boilerplates and Cut and Paste

You will almost always find several approaches to any writing or revision you
do with the XENIX system. Begin each writing project by reviewing these
alternatives, and determine which solution requires the least repetitive human
effort and leaves the least room for error. You can increase your productivity,
whether you are writing technical papers, documentation, or many .memos
with similar content, by focusing on writing clearly and concisely, rather than
wasting time on needless duplication of effort. If you proceed in an organized,
consistent way, as outlined in the previous section, you will quickly find that
XENIX offers you many shortcuts. One of these is the concept of the “‘editing
script”. Either of the line editors, ed or ex, can be used to perform a
complicated sequence of editing operations on.a large group of files
simultaneously. These can often be a substitute for the use of a batch editing
facility like sed, or awk.

For example, to change every “Xenix” to “XENIX" in all your ﬁles, create a
seript file with the following lines:

1-14



Text Processing Overview

&/Xenix/s/[XENIX/g
q

Now, you can use the command
ed filename <script

to make this change to any given file. The editor will take its commands from
the prepared script. You can further automate procedures by using the XENIX
shell language to write a shell procedure. For example, you can write a script
which asks XENIX to make the above changes, reformat the entire text, and
print the results. It is even possible to put this procedure in a file to beread by
the at command to do your processing at some other time.

If you must produce many similar documents, or long documents which contain
repeated material, the concept of the “boilerplate’” may already be familiar to
you. Often, information which must be presented in a standardized way can be
stored in a separate file which can be reused as necessary. Not only is this a
valuable shortcut to rewriting, it may be the preferred approach if a complex
display or an example of program text must be reproduced. Using boilerplates
assures consistency and makes subsequent changes to all recurrences of the
copied material much simpler.

1.6 Summary

Here are some hints for making your XENIX Text Processing System work for
you:

— Make your filenames easy to understand, and use a naming
convention that allows you to take advantage of wildcard characters.

—  Create text files of manageable length which represent chapters or
logical divisions in the document; arrange files into directories which

represent major documents or versions so that they can be easily
identified.

—  Create “help” or “README” files in each directory which explain
your text—what version you are writing, what scripts, processors,
and files are needed to successfully produce the document. Use
comment lines in your text to explain organizational details of your
project or any special macros you have created. '

—  Control parallel versions and updates carefully, especially if you are
working on a large project. Use conditional processing in your text
files, copies of text in different directories, and file linking where
appropriate. If you are in doubt about versions of text in different files
use diff to compare text.

1-15



XENIX Text Processing

1-16

When using vi or another text editor to write text, start each sentence
or clause on-a new line.

Identify text and formats which recur in a document or several
documents, and create boilerplates or templates to save work.

Make full use of *‘cut and paste” techniques torearrange materialin a
file, move text between files, or use the same text repeatedly inseveral
places.

Use batch processes like sed, awk, or an ed script to make consistent
changes to alarge number of files.

Use spell, style, and diction regularly to reduce the number of
editorial corrections.

Try to define your production speciﬁcations and style conventions in '
advance; prepare editing scripts to reduce the number of changesyou
need to make individually.

Always use the simplest possible technique to achieve your results.
Use the mm macros where possible, reserving nroff/troff
commands for “fine-tuning” or creating an effect impossible with
mm. If you define a new macro, explain it in a comment hne so it can
bereadily understood.

Avoid running too many formatting processes simultaneously. If
necessary, use the at command to process files at a time when the
system isnot busy.

Protect yourself by backing up your system and user files regularly.
Make copies of files if you are in doubt about whether your procedures
will damage them.



Chapter 2
ToolsFor Writing and Editing

2.1 Introduction 2-1

2.2 XENIX Commands for Text Processing = 2-2
2.2.1 Pattern Recognition: The grep Commands  2-2
2.2.2 File Comparison: diff, diff3, and comm  2-3
2.2.3 Other Useful Commands 2-6

2.3 Writing Tools  2-8
2.4 Using Spell  2-9
2.5 Using Style and Diction 2-10

2.5.1 Style 2-11
2.5.2 Diction 2-18






2.1 Introduction

This chapter introduces you to some XENIX system utilities that can simplify
document editing and revision. It also discusses three special XENIX writing
tools for improving writing style and locating typographical errors in
documents.

Although this chapter focuses on how the XENIX tools are used to accomplish
some common text processing tasks, keep in mind that these tools are XENIX
utilities which are also used by programmersfor searching and editing data and
program text. The emphasis here is on XENIX commands and utilities that can
help you simplify complicated editing procedures, and allow you to work with
many files at once. As you read, it will become apparent that several of the
programs introduced here can be used interchangeably, and that many of these
tasks can also be performed with your text editor. You may also find the two
additional XENIX programs, sed and awk, helpful for making complex changes
to text files. (See Appendix A, “Editing With sed and awk”".)

There are several revision tasks common to all text processing projects. The
larger your project, the more complex these tasks become. For example, you
may often need to change a key term, name, or phrase everywhere it appears,
or locate references to items you need to change or delete. You may need to
compare and contrast multiple versions of your text in order to locate
variations. You may also find that you need to alter some aspect of the text
format to suit production requirements. To do this, you must locate a string—a
word, a phrase, a text formatting macro or any repeated set of characters—
and, if necessary, change it everywhere it appears. Using the XENIX system
tools discussed in this chapter, these changes can be made very rapidly and
consistently.

The first half of this chapter discusses several extremely useful and easy to
learn XENIX commands. If you have read the XENIX User’s Guide, you may
already be familiar with several of them. More detailed information about
these commandsis provided in the XENIX Reference Manual. They include:

—  The commands of the grep family print lines that match a single
specified pattern. When combined with other commands in a shell
procedure and used to process many files at once, the grep commands
become extremely powerful for locating text in large files. Two
variants of grep are also introduced here: egrep, and fgrep.

—  The XENIX file comparison utilities, diff, diff3, and comm. These
utilities compare two or more files and output those lines which are
different. In text processing applications these programs can be
extremely useful for locating variations between several versions of
documents quickly.

— Additional XENIX commands, including sort, which alphabetizes
lines in your text files, we, which counts lines, words, and characters

2:1



XENIX Text Processing

in your text, and cut and paste, commands that duplicate “cut and
paste’’ editing operations.

2.2 XENIX Commands for Text Processing

If you have been working with the XENIX system for a while, you recognize
many of the basic XENIX commands discussed in this section. Since these
commands have a wide range of applications for both programmers and text
processing users, you should learn to use them, whatever work you normally do
on your XENIX system.

2.2.1 Pattern Recognition: The grep Commands

Because of its power to search for patterns in many files at once, grep and its
variants are among the most useful XENIX commands. The members of the
grep family, like the awk program and the batch editor, sed have as their
basis the same principle of pattern recognition as the text editors, ed and vi,
the concept of the regular expression. Each of these programs searches for the
occurrence of a given pattern—a character or group of characters, a word or
word string—and generates a list of those lines containing the same pattern.
Finding all occurrences of some word or pattern‘in a group of files is a common
text processing task. You can easily write a shell script using the grep
command or one of its variants, egrep and fgrep, and quickly search multiple
files. grep searches for the same regular expressions recognized by ed. The
word "grep” stands for

g/refp

that is, "globally” locate and print a regular expression. It does exactly this.
grep searches every line in a set of files for all occurrences of the specified
regular expression. Thus,

grep thing filel file2 file3

finds the pattern "thing” wherever it occurs in any of the files you name (e.g.
filel, file2, file3. If you use the -n option with grep, it willindicate not only the
file in which the line was found but also the line number, so that you can locate
and edit it later. By combining the use of grep with other commands to
generate a shell program that reads and transforms input, large quantities of
text can be processed through multiple searching or editing procedures quickly.

The commands grep, egrep, and fgrep all search one or more files for a
specified pattern. They appear on the command line in the following form:

grep option] expression filename

Commands of the grep family search the files you specify, or the standard
input if you do not specify any files, for lines matching a pattern. Each line is

2-2



Tools For Writing and Editing

copied to the standard output (your terminal screen), but if you are processing
great quantities of.text you should specify a filename in which to store the
results of the grep search.

For example, the command:
grep -n 'system utility’ chap#.s> util

requests that grep command search for the phrase ‘‘system utility” in every
file that begins with the letters "chap” and ends with “s”, and store the
resulting list, with line numbers, in a file called util. Unless the -h option is
used, the filename is given if there is more than one input file.

The difference betwzen the three grep variants is that grep patterns are
limited regular expressions in the style of ed. Egrep patterns are full regular
expressions; it is normally faster, but requires more space. Fgrep only
recognizes fixed strings, rather than regular expressions. See grep(C) for
details.

2.2.2 File Comparison: diff, diff3, and comm

In addition to locating occurrences of particular strings or regular expressions
in your text, you may often find it useful to compare and contrast two or more
similar text files for variations which are not immediately apparent. You can
also use diff to store file versions more compactly. This is accomplished by
storing the output of diff, which would be the differences in that file version,
rather than the file itself. The —e option collects a script of those ed commands
( such as append, change, and delete) which would be necessary to recreate the
revised file from the original.

Another comparison tool, comm, is discussed in this section. Comm is useful
primarily for comparing the output of two sorted lists.

Diff
To use the diff command to compare two files, use the form:
diff —option file! file2

Diff reports which lines must be changed in two files to bring them into
agreement. If you use a dash (-) instead of the first filename, diff will read from
the “‘standard input”. If either file is actually a directory, then whatever file in
that directory which has the same name as the first file named is used. The
normal output contains lines in this format, where n is the linenumber of the
text file:

23



XENIX Text Processing

nl a n3,n4
nl,n2 d n3
nl,n2 ¢ n3,n4

These lines resemble the ed commands which would be necessary to convert
filel into file2. The letters @, d, and ¢ are ed commands for appending,
deleting, and changing, respectively. The numbers after the letters refer to
fle2. By exchanging an “a” command for a “d” command and reading
backward you can convert file2back into file1. Inthose cases where nl =n2or
n3 = n4, the pairs are abbreviated as a single number. Following each of these
lines are printed all the lines that are affected in the first file, flagged by a less-
than sign (<}, then all the lines that are affected in the second file, flagged by a

greater-thansign(>).

For example, you might want to compare two text files, fruit and vegies. The
contents of the file called frust are the lines:

apples
bananas
cherries
tomatoes

The contents of the file called vegresare the lines:

asparagus
beans
cauliflower
tomatoes

If you used the command line
diff fruit vegies>diffile&

the file diffile will contain the list of differences between fruit and vegice which
are the output of the diff program:

1,3¢1,3
<apples
<bananas
<cherries

> asparagus
>beans

> cauliflower

In this case, all the lines in the file vegies are different from the lines in the file

fruit, except line 4, for which no differences are reported. See diff{C) for
options.

2-4



Tools For Writing and Editing

Using Diff3

Diff3 works like diff, except that it compares three files. It has the form:
diff3 —option filel file2 file3

biff3 reports disagreeing ranges of text flagged with the following codes:

all three files differ

filel is different

file3 is different

The change which has occurred in converting a given range of lines in a given
file to some other isreported.

For example, the message
filel : nl a

means text isto be appended after line number nlin file file 1. The message:
filel :nl,n2¢

means that the text to be changed is in the range of linesn1 to line n2. If n1 =
n2, the range may be abbreviated tonl.

The original contents of the range follows immediately after a *“c” indication.
When the contents of two files are identical, the contents of the lower-
numbered file issuppressed.

As in the case of diff, diff3 used with the —e option prints a script for ed that

will incorporate into filef all changes between file2 file8. In other words, it
recordsthe changes that normally would be flagged ====and ====2.

Comm

The comm program selects or rejects lines common to two sorted files. It has
the form:

comm [-option] filel file2

Comm reads filel and file2, and produces a three-column output: linesonly in

2-5



XENIX Text Processing

file1, lines only in file2, and lines in both files. Ordinarily, the lines should be
sorted in ASCII collating sequence, a process which can be carried out using the
sort program before using comm. As in diff and its variants, if you type a
dash (-) instead of a filename, comm will read either file! or file2 from the
standard input.

The possible options with comm are the flags 1, 2, or 3, which suppress
printing of the corresponding column. Thus comm with —12 prints only the
lines common to the two files; comm -23 printsonly lines in the first file but not
in the second. The command comm with the options -123 would print no lines.

2.2.3 cher Useful Commands

In this section a group of XENIX commands that are helpful in text
manipulations are summarized. In each case you may find it helpful to refer to
the XENIX Reference Manual for more information.

Sort

If you have been using your XENIX system for a while, you may have already
learned the sort command. Because of its capacity to alphabetize a list of
items, it can be extremely useful in a variety of text processing situations (e.g.,
alphabetizing the names on a mailing list or the entries in an index). To use
sort, simply type the command

sort filename > list.out

The output file list. out will contain the sorted list.

Like some other XENIX commands, if you use *“~” instead of a filename, sort
will read from the standard input, and unless you direct the output to another
file, the sorted list will appear on your screen. Sort will, by default, sort an
entire line in ascending ASCII collating sequence, including letters, numbers,
and special characters. See sort(C) for alist of available options.

If you need to do repeated sorts by field, you may find it easier to prepare a
simple awk script, as described in “Appendix A”.

Note that if you invoke one or more of the sort options, or use position names,
you must use the following syntax:

sort [-options] [pos] [pos?] [~o output] [filenames)
we
The XENIX command wc counts words, characters, or lines in your files. If, for
example, you are submitting a manuscript to a publisher, an exact word count

may be necessary, or you may want to estimate the number of lines in your file
before you make some critical formatting decision. To use we, type

2-8



Tools For Writing and Editing

we filename

If you give no options, we automatically counts lines, words, and charactersin
the named files, or in the standard input if you do not specify any filenames. It
keeps a total count for all named files, and the filenames will also be printed
along with the counts. The option -l for *‘lines,” option —w for “words” and
option —¢ for “‘characters’ can be also be used in any combination, if you do not
want all three statistics printed. Remember, when doing a word count, that we
will automatically treat as a word any string of characters delimited by spaces,
tabs, or newlines.

Cut and Paste

If you work with large text files, you may find the two XENIX commands, cut
and paste extremely useful. There are, of course, several other ways to
approach “cut and paste” operations with the XENIX system. By now you
should feel fairly confident using one of the XENIX text editors to move blocks of
text, write parts of files to new files, and rearrange lines. Using sort to
alphabetically sort fields within lines, or the awk program to change the order
of fields in a text file are two special cases of cut and paste operations. The two
commands, cut and paste offer a powerful way to rearrange text blocks in a
document.

Cut is a useful shortcut for extracting columns or fields of information from a
file, or for rearranging columns in lines. To invoke cut in its simplest form,

type:
cut [options] file
The cut command will cut out columns from each line of a file. The columns can

be specified as fields separated by a named delimiter or by character positions.
The following options are available:

—clist A list of numbers following —c specifies character positions or
ranges.
—flist A list of numbers following —f is a list of fields, delimited by a

character specified after the —d option.

~dchar A character following the —d option is read as the field delimiter.
The default is the tab character. Spaces or other characters with
special meanings must be surrounded with single quotation marks

0)-

- This option suppresses lines which do not contain the delimiter
character, if the ~f option is invoked.

Either the —c or —f option must be invoked when using cut. Cut is a useful
shortcut for extracting columns or fields of information from a file or re-
arranging columns. '

27



XENIX Text Processing

The paste command performs the reverse operation: it can be used to merge
linesin one or several files. To use paste in its simplest form, type

paste filel file2

Paste will concatenate filel and file2, treating each file as a column or columns
of a table and pasting them together horizontally. As with the cut command,
you can also specify a delimiter character to replace the default tab. You can
even use paste tomerge materialin columnsinto linesin a single file.

The following options are available:
-d The —d option suppresses the tab which automatically replaces the

newline character in the old file. It can be followed by one or more
characters which act as delimiters.

list The list of characters which follow the -d option.

-8 The s option merges subsequent lines, rather than one from each
input file. The tab is the default character, unless a list is specified
with the-d option.

- The dash can be used in place of any filename, to read a line from
the standard input.

2.3 Writing Tools

In the previous sections you were introduced to some common XENIX utilities
that are used both by programmers and text processing users: programs can be
used to search for patterns, do batch editing, or compare two or more files.
These files can contain anything—data, programs, or text. This section
introduces three XENIX programs which have been designed solely for writing
and editing documents:

—  spell, a program that checks for spelling and typographical errorsin
your text files.

-—  style, a program that analyzes the readability of your writing style,
based on statistical measures of sentence length and type.

:— diction, a program that searches for awkward, ambiguous, and
redundant phrases and suggests alternatives.

Think of these programs as “tools” in the same way as the system utilities
discussed earlier in the chapter. The XENIX system will not do your writing for
you, but it will help you rewrite and polish your work efficiently. Asyou read
about these programs, keep in mind that they are not intended to substitute for
careful reviewing, editing, and proofreading by a human being. Use spell,
style, and diction early in the editing process as a preliminary check on your

2-8



Tools For Writing and Editing

work. You will get some interesting feedback on your writing and uncover
recurrent patterns in your word usage and sentence construction, as well as
lccate your common spelling errors. As you are preparing your final draft, you
may find it helpful to use spell again to locate any last-minute typographical
errors.

2.4 Using Spell

You can save a lot of time and grief in proofreading your documents by using
spell. Although not totally infallible, the spell program will find most of your
spelling and typographical errors with a minimum of effort and processing
time. The spell program compares all the words in the text files you specify
with the correctly spelled words in a pre-existing XENIX dictionary file. Words
which neither appear in this dictionary, nor can be derived by the application
of ordinary English prefixes, suffixes, or inflections are printed out as spelling
errors. You can either specify an output file in which to store the list of
misspelled words, or allow them to appear on your screen. For example, to find
the spelling errorsin a file named 1.1ntro.s, type

spell Lintro.s

and a list of possible misspelled words will appear on your screen. You can also
use a command line like

spell #.s>errors&

to check all your files with names ending in *‘.s” at once and output the possible
misspellings into a single file named errore.

Spell ignores the common formatting requests macros from nroff, troff, tbl,
and eqn. It automatically invokes a program called deroff to remove all
formatting commands from the copy of your text file it examines for spelling
errors.

Several options are available. With “spell —v”’, words not literally in the
dictionary are also printed, along with plausible derivations from dictionary
words. The —b option checks British spelling. This option prefers British
spelling variants such as: centre, colour, speciality, and travelled, and insistson
the use of “*-ise’’ in words like ‘“standardise’’.

The XENIX dictionary is derived from many sources, and while it recognizes
many proper names and popular technical terms, it does not include an
extensive specialized vocabulary in biology, medicine, or chemistry. The
XENIX dictionary will not recognize your friends’ names, your company’s
acronyms, and many esoteric words. You will have to examine your list of
spelling “‘errors” critically in this light, then search your text for those words
which really are misspelled. In practice, you may discover that it is difficult to
predict in advance which technical terms, names, and acronyms spell will
uncover in your documents. You may wish to run spell on your files first, then

2-9



XENIX Text Processing

edit the output list, deleting those words which are allowable, before correcting
yourerrors.

2.5 Usixig Style and Diction

This section describes two programs, style and diction. Although these two
programs attempt to critique your writing style, keep in mind that the qualities
which distinguish good writing from bad are not entirely quantifiable. Taste in
writing remains subjective, and different stylistic qualities may be appropriate
to different writing situations. XENIX is neither a literary critic nor your
sophomore English teacher. These tools are best used to eliminate errors and
give you some preliminary assessment of a document’s readability. They are
not intended to substitute for human editing, so be sure to evaluate the results
cautiously.

Both style and diction are based on statistical measures of writing
characteristics—characteristics that can be counted and summarized on your
computer.. With a large number of documents stored on computers it is has
become feasible to study the recurrent features of writing style in a great many
documents. The programs described here use the results of such studies to help
you write in a more readable style, by producing a stylistic profile of writing,
including:

— A measurement of readability, determined on the basis of sentence
and word length, sentence type, word usage, and sentence openers.

— A listing of awkward, ambiguous, redundant and ungrammatical
phrases found in the document.

This will help you evaluate overall document style, and correct or eliminate
poor word choices or awkward sentences. As you work with these programs,
you can accumulate data to provide you with a profile of your writing style
based on all your documents.

Because the style and diction programs can only produce a statistical
evaluation of words and sentences, the term “style’” is defined here in a rather
narrow way: the results of a writer’s particular word and sentence choices.
Although many stylistic judgements are subjective, particularly those
involving word choice, these programs make use of some relatively objective
measures developed by experts.

Three programs have been written to measure someof the objectively definable
characteristics of writing style and to identify some commonly misused or
unnecessary phrases. Although a document that conforms to these stylistic
‘rules is not guaranteed to be ccherent and readable, one that violates all of the
rules will almost certainly be difficult or tedious to read. These programsare:

1. Style, which calculates readability, sentence length variability,
sentence type, word usage and sentence openers. It assumes that the

2-10



Tools For Writing and Editing

sentences are well-formed, i.e. that each sentence has a verb and that
the subject and verb agree in number.

2. Diction, which identifies phrases that reflect dubious usage or seem
unnecessarily awkward.

These programsare described in detail in the following sections.

2.5.1 Style

Style reads a document and prints a summary of sentence length and type,
word usage, sentence openers and ‘‘readability indices.” The readability
indices are tradition school grade levels assigned to a document, based on four
different studies of what makes one style more readable than another. You can
also use the style program to locate all sentences in a document longer than a
given length, those containing passive verb forms, those beginning with
expletives, or those with readability indices higher than aspecified number.

Style, in turn, is based on a system for determining English word classes or
parts of speech called parts. Parts is a set of programs that uses a limited
dictionary of about 350 words and some suffix rules to partially assign word
classes to English text. It then uses experimentally derived rules of word order
to assign word classes to all words in the text. Parts uses a small dictionary
and general rules, and can be used for any subject text with an accuracy rate of
approximately 95%. Style measures have been built into the output phase of
the programs that make up parts. Some of the measures are simple counters of
the word classes found by parts; many are more complicated. For example,
the verb count isthe total number of verb phrases. Thisincludes phraseslike:

has been going
was only going
to go

Each of these phrases counts as one verb.

Whatisa Sentence?

A human reader has little trouble deciding where a sentence begins and ends.
Computers, however, are confused by different uses of the. period character (.)
in constructions like 1.25, A. J. Jones, Ph.d., i.e., or etc. Before attempting to
count the words in a sentence, the text is stripped of potentially misleading
formatting macros. Then style defines a sentence as a string of words ending in
one of the punctuation marks:

The end marker ““/.”may be used to indicate an imperative sentence.
Imperative sentences not marked in this way are not identified. Style
recognizes numbers with embedded decimal points and commas, strings of
letters and numbers with embedded decimal points used in computer filenames,
and alist of commonly used abbreviations. Numbers that end sentencescause a

2-11



XENIX Text Processing

sentence break if the next word begins with a capital letter. Initials followed by
periods are only assumed to be at the end of the sentence if the next word begins
with a capital and is found in the dictionary of function words used by parts.
Asaresult, the periodsin the string

J. D. Jones
arenotread as the ends of sentences, but the period in the following string:
...system H. The...

is assumed to end a sentence. With these rules most sentences are correctly
identified, although occasionally either two sentences are counted as one or a
fragmentisidentified asasentence.

The results of running style are reported in five parts. A typical output might
have values that look like this:

readability grades
{(Kincaid) 12.3 (auto) 12.8 (Coleman-Liau) 11.8 (Flesch) 13.5 (46.3)

sentence info
no. sent 335 no.. wds 7419 av sent leng 22.1 av word leng 4.91 no.
questions 0 no. imperatives 0 no. nonfunc wds 4362 58.8% av leng
6.38 short sent (<17) 35% (118) long sent (> 32) 16% (55) longest
sent 82 wds at sent 174; shortest sent 1 wdsat sent 117

sentence types '
simple 34% (114) complex 32% (108) compound 12% (41)
compound-complex 21% (72)

word usage
verb types as % of total verbs tobe 45% (373) aux 16% (133) inf
14% (114) passives as % of non-inf verbs 20% (144) types as % of
total prep 10.8% (804) conj 3.5% (262) adv 4.8% (354) noun 26.7%
(1983} adj 18.7% (1388) pron 5.3% (393) nominalizations 2% (155)

sentence beginnings
subject opener: noun (63) pron (43} pos (0) ad} (58) art (62) tot 67%
prep 12% (39) adv 9% (31) verb 0% (1) sub_conj 6% (20) conj
1% (5) expletives 4% (13)

Readability Grades

The style program uses four separate readability indices. Generally, a
readability index is used to estimate the grade level of the reading skills needed
by the reader to understand a document. The readability indices reported by
style are based on measures of sentence and word lengths. Although the

2-12



Tools For Writing and Editing

indices themselves do not measure whether the document is coherent and well
organized, high indices correlate with stylistic difficulty. Documents with short
sentences and short words have low scores; those with long sentences and many
polysyllablic words have high scores. Four sets of results computed by four
commonly used readability formulae are reported: the Kincaid Formula, the
Automated Readability Index, the Coleman-Liau Formula, and a version of the
Flesch Reading Ease Score. Because each of these indices was experimentally
derived from different text and subject results, the results may vary. They are
summarized here.

Kincaid Formula

The formula is: Reading Grade=11.8 * syllables per word + .39
words per sentence - 15.58

The Kincaid formula isbased on Navy training manualsranging in
difficulty from 5.5 to 16.3 in grade level. The score reportedby this
formula tends to be in the mid-range of the four scores. Because it is
based on adult training manuals rather than schoolbook text, this
formulais probably the best one to apply to technical documents.

Automated Readability Index (ARI)

The formula is: Reading Grade==4.71 #letters per word +.5 * words
per sentence -21.43

The Automated Readability Index is based on text from grades 0 to
7, and intended for easy automation. ARI tends to produce scores
that are higher than Kincaid and Coleman-Liau but are usually
slightly lower than Flesch.

Coleman-LiauFormula

The formula is: Reading Grade = 5.89 * letters per word - .3 *
sentences per 100 words- 15.8

This is based on text ranging in difficulty from .4 to 16.3. This
formula usually yields the lowest grade when applied to technical
documents.

Flesch Reading Ease Score

The formulais: Reading Score = 206.835 - 84.6 * syllables per word
- 1.015 * words per sentence.

This formula is based on grade school text covering grades 3 to 12.
It is usually reported in the range O (very difficult) to 100 (very

easy).

2-13



XENIX Text Processing

The score reported by style is scaled to be comparable to the other formulas,
except that the maximum grade level reported is set to 17. On the whole, the
Kincaid formula is the best predictor for technical documents; the Flesch score
will generally be the highest for technical documents. Both ARI and Flesch
tend to.overestimate text difficulty; Coleman-Liau tends to underestimate. On
text in the range of grades 7 to 9 the four formulas tend to be about the same.
For easy text, use the Coleman-Liau formula since it is reasonably accurate at
the lower grades.

It is generally safer to present text that is too easy than too hard. If a document
has particularly difficult technical content, especially if it includes a lot of
mathematics, it is probably best to make the text very easy to read. You can
lower the readability index by shortening the sentences and words, so that the
reader can concentrate on the technical content and not the long sentences.
Remember, however, that these indices produce only rough estimates; the
results should not be taken as absolute. If you invoke style with the —r option,
followed by a number, all sentences with an Automated Readability Index
equal to or greater than the number specified will be printed.

Sentencelength and structure

Most authorities on eflective writing style emphasize variety in sentence
length, as well as overall sentence structure. Three simple rules for writing
sentences are:

1.  Avoid the overuse of short simple sentences.
2. Avoid the overuse of long compound sentences.

3. Use various sentence structures to avoid monotony and increase
effectiveness.

Although experts agree that these rules are important, not all writers follow
them in practice. Technical documents often contain sentences that vary little
in length or type. A typical document may have 90% of its sentences about the
same length asthe average, or be made up almost entirely of simple sentences.

The output sections labeled ‘““sentence info” and “‘sentence types” give both
length and structure measures. Style reports on the number and average
length of both sentences and words. It also reports the number of questions and
imperative sentences. The content words in the document are taken to be the
nonfunction words, that is, all the nouns, adjectives, adverbs, and nonauxiliary
verbs. Function words are prepositions, conjunctions, articles, and auxiliary
verbs.

Since most function words are short, they tend to lower the average word
length. The average length of nonfunction words, therefore, is a more useful
measure for comparing word choice of different writers than the total average
word length. The percentages of short and long sentences measure sentence
length variability. Short sentences are those at least five words less than the

2-14



Tools For Writing and Editing

average. Long sentences are those at least ten words longer than the average.
Finally, the length and location of the longest and shortest sentences is
reported in the “sentence information” section. If the flag —1number is used,
style will print all sentenceslonger than the specified number.

Style applies the following rules to the definition of sentence types:
1. Asimplesentence hasone verb and no dependent clause.

2. A complex sentence has one independent clause and one dependent
clause, each with one verb. Complex sentences are found by
identifying sentences that contain either a subordinate conjunction
or a clause beginning with a word like “that” or “who”. The
preceding sentence hassuch a clause.

3. A compound sentence has more than one verb and no dependent
clause. Sentences joined by a semi-colon (;) are also counted as
compound.

4. A compound-complex sentence has either several dependent clauses
or one dependent clause and a compound verb in either the dependent
or independent clause.

Word Usage

The word usage measurements used by style attempt toidentify other features
of writing constructions. In English, there are many alternative ways to say the
same thing. For example, the following sentences all convey approximately the
same meaning but differ in word usage:

—  The cxio program is used to perform all communication between the
systems.

—  The cxio program performs all communications bet ween the systems.
—  The cxio program isused to communicate between the systems.
—  The cxio program communicates between the systems.

—  All communication between the systems is performed by the cxio
program.

"“The distribution of the parts of speech and verb constructions in a document
helps the writer identify the overuse of particular construction. For each
category, style reports a percentage and a raw count of the parts-of speech
used. Although these measures are somewhat crude, they demonstrate
excessive repetition of sentence constructions. In addition to looking at
percentages, it is useful to compare the raw count with the number of
sentences. If, for example, the number of infinitives is almost equal to the
number of sentences, then an unusual number of sentences in the document

2-15



XENIX Text Processing

must contain infinitives, like the first and third sentences in the example above.
Youmay want to change some of these sentencesfor greater variety.

Verbs

To determine the predominant verb constructions in a document, Verb
frequency is measured in several ways. Technical writing, for example, tends
toward passive verb constructions and other usages of the verb “to be”. The
category of verbs labeled “to”’be measures both passives and sentences of the
form:

subject tobe predicate

Whole verb phrases are counted as a single verb. Verb phrases containing
auxiliary verbs are counted in an ‘“aux” category, including verb phrases whose
tense is not simple present or simple past. Infinitives are listed as “inf.” The
percentages reported for these three categories are based on the total number
of verb phrases found. These categories are not mutually exclusive; some
constructions may be in more than one category. For example, ‘‘to be going’’
counts as both ““tobe’” and “inf”’. Use of these three types of verb constructions
varies significantly among different writers.

Style reports passive verbs asa percentage of the finite verbs in the document.
Because sentences with active verbs are easier to comprehend than those with
passive verbs, you should avoid the overuse of passive verbs. Although the
inverted object-subject order of the passive voice seems to emphasize the
object, studies show that comprehension is not significantly affected by word
position. Furthermore, a reader will retain the direct object of an active verb
better than the subject of 2 passive verb. The —p option causes style to print
all sentences containing passive verbs.

Pronouns

Pronouns can add cohesiveness and connectivity to a document by actingasa
shorthand notation for something previously mentioned. They connect the
sentence containing the pronoun with the word to which the pronoun refers.
Although there are other ways to connect ideas, documents with no pronouns
tend to be verbose and to havelittle connectivity.

Adverbs

Adverbs provide transitions between sentences and order in time and space.
Like pronouns, adverbsprovide connectivity and cohesiveness.

Conjunctions
Conjunctions provide logical parallelism between ideas by connecting two or
more equal units. These units may be whole sentences, verb phrases, nouns,

adjectives, or prepositional phrases. The compound and compound-complex
sentences reported under sentence type are parallel structures. Other uses of

2-16



Tools For Writing and Editing

parallel structures are indicated by the degree that the number of conjunctions
reported under word usage exceeds the compound sentence measures.

Nouns and Adjectives

Some writers qualify almost every noun with one or more adjectives. If the

ratio of nouns to adjectives in your text approaches one, it is probable that you

using too many adjectives. Multiple qualifiers in phrases like ‘‘simple linear
.single-link network model” often lend more obscurity than precision to atext.

Nominalizations

Nominalizations are verbs transformed into nouns by the addition of a suffix
like: “ment”, “ance”, “ence”, or “ion”. Examples are accomplishment,
admittance, adherence, and abbreviation. When a writer transforms a
nominalized sentence to a non-nominalized sentence, it becomes more effective.
The noun becomes an active verb and frequently one complicated clause

becomes two shorter clauses. For example

Their inclusion of this provision is admission of the
importance of the system.

could be changed to:
When they included this provision, they admitted the

The transformed sentences are easier to comprehend, even if they are slightly
longer, provided the transformation breaks one clause into two. If your
document contains many nominalizations, you may want to transform some of
the sentences to use active verbs.

Sentence Openers

Another principle of style is the desirability of varied sentence openers.
Because style determines the type of sentence opener by looking at the part of
speech of the first word in the sentence, the sentences counted under the
heading “subject opener’’ may not all really begin with the subject. However, a
large total percentage in this category suggests a lack of variety in sentence
openers. Other sentence opener measurements help determine if there are
transitions between sentences and where subordination occurs. Adverbs and
conjunctions at the beginning of sentences are mechanisms for the transition
.between sentences. A pronoun at the beginning of a sentence shows alink to
something previously mentioned and indicates connectivity.

The location of subordination can be determined by comparing the number of
sentences that begin with a subordinator with the number of sentences with
complex clauses. If few sentences start with subordinate conjunctions then the
subordination isembedded or at the end of the complex sentences. For greater
variety, transform some sentences so that they have leading subordination.

2-17



XENIX Text Processing

The last category of openers, expletives, is commonly overworked in technical
writing. Expletives are the words “it’’ and ‘“‘there”, generally used with the
verb ‘‘to be” in constructions where the subject follows the verb. For example,

There are three streets used by the traffic.
There are too many users on this system.

This construction tends to emphasize the object rather than the subject of the
sentence. The —e option will cause style to print all sentences that begin with
an expletive.

2.5.2 Diction

The diction program prints all sentences in a document containing phrases
that are either frequently misused or indicate wordiness. Diction uses fgrep
to match a file of phrases or patterns to a file containing the text of the
document to be searched. A data base of about 450 phrases has been compiled
as a default pattern file for diction. To facilitate the matching process,
diction changes uppercase letters to lowercase and substitutes blanks for
punctuation before beginning the search for matching patterns. Sincesentence
boundaries are less critical in diction than in style, abbreviations and other
uses of the period character (.) are not treated specially. diction marks all
pattern matchesin a sentence with brackets([]). Although many of the phrases
in the default data base may be correct in some contexts, they generally
indicate an awkward or verbose construction. Some examples of the phrases
and suggested alternatives are:

Phrase: Alternative:
a large number of many
arrive at z decision decide
collect together collect

for this reason s0
pertaining to about
through the use of by or with
utilize use

with the exception of except

All of the following examples contain the repetitious and awkward phrase ‘“the
fact:” -

2-18



Tools For Writing and Editing

Phrase: Alternative:
accounted for by the fact that caused by
an example of this is the fact that  thus

based on the fact that because
despite the fact that although
due to the fact that because

in light of the fact that because

in view of the fact that since
notwithstanding the fact that although

If you have some phrases that you particularly dislike, or feel you use too often,
you may create your own file of patterns. Then, you can invoke the diction
program with the —f

diction -f patternfile

The default pattern file for the diction program will be loaded first, followed
by your pattern file. In this way, you can either suppress patterns contained in
the default file or include your own favorites in addition to those in the default
- file. You can also use the —n option to exclude the default file altogether.

In constructing a pattern file, spaces should be used before and after each
phrase to avoid matching substrings in words. For example, to find all
occurrences of the word “the”, use leading and trailing spaces, so that only the
word “the” is matched and not the string ‘‘the” in words like there, other, and
therefore. Note however, that one side effect of surrounding the words with
spaces is that when two phrases occur without intervening words, only the first
will be matched.

2-19






Chapter 3
Using the MM Macros

3.1 Getting Started withmm 3-1
3.1.1 Inserting mm Macros 3-1
3.1.2 Invokingmm 3-2

3.2 Basic Formatting Macros 3-3
3.2.1 Paragraphs and Headings 3-3
3.2.2 Lists 3-5
3.2.3 Font Changes and Underlining 3-6
3.2.4 Footnotes 3-7
3.2.5 Displaysand Tables 3-7
3.2.6 Memos 3-8
3.2.7 Multicolumn Formats 3-8

3.3 Using Nroff/Troff Commands 3-8

3.4 Checkingmm Input with mmcheck 3-9






3.1 Getting Started with mm

This chapter provides a simple introduction to mm, a macro package which
you can use on your XENIX System with either of the two XENIX formatting
programs, nroff or troff, to produce formatted text for the lineprinter or
typesetter, respectively. The featuresof mm are described comprehensively in
the next chapter, “mm Reference’”. You can learn to use the mm macros
quickly and format text immediately, without learning the more complicated
nroff or troff formatting commands.

The mm program reads the commands you have inserted in your text and
“translates’’ them into nroff or troff commands at the time your text file is
processed. With mm you can specify the style of paragraphs, section headers,
lists, page numbering, titles, and footnotes. You can also produce cover pages,
abstracts, and tables of contents, as well as control font changes and
multicolumn output, and, if you are using mm along with troff to output your
text to a phototypesetter, you can specify variable spacing and the size of your

type.

Although using nroff or troff directly offers you a much wider range of
commands and options, we definitely recommend that you learn and use mm
for most of your formatting needs. Use the nroff and troff requests discussed
in Chapter 5, “The Nroff/Troff Tutorial” and Chapter 6, ‘“Nrofi/Troff

Reference’ only when necessary.

3.1.1 Inserting mm Macros

To use the mm macros to format a document, type in your text normally,
interspersed with formatting commands. Most of these commands consist of
two uppercase letters preceded by a dot (.) and appearing at the beginning of a
line. Instead of indenting for paragraphs, for example, you use the .P macro
before each paragraph, to produce indenting and extra space:

P
To meet the objectives proposed at the meeting...

A single mm macro can often perform a number of formatting functions at
once. In a long document, you might have several sections, each beginning with
anumbered heading, like this

1.0 Saltwater Fishing in the Pacific Northwest
To create thisheader, you would enter:

.H 1 "Saltwater Fishing in the Pacific Northwest”

Not only will mm create a bold heading and leave a space between the heading
and the text which follows, it will also automatically number all the headingsin

3-1



XENIX Text Processing

the document sequentially. Furthermore, if you use the table of contents
macro (.TC) at the end of the document, mm will create a table of contents,
listing all the numbered headings and the pages where they occur.

The mm macros also provide a convenient facility for creating a consistent
format for such document elements as lists and displays. For example, if you
wanted a “‘bullet list” to look like this:

o Convenience
e [Easeofuse
« Portability
you would enter the following text and macros:

.BL

.LI
Convenience
.LI

Ease of use
.LI
Portability
.LE

mm will provide the currentindents, spacing, and bullets.
Note that you you must always begin a document to be formatted with mm
with some macro, rather than an ordinary line of text. You might just start

with a .P command, for example, to begin your document with an ordinary
paragraph. This tellsmm to begin anew page.

3.1.2 Invoking mm

After you have created a file containing text and mm macros, you can format it
with the following command:

nroff -mm filename > filename.mm&
This command line tells the XENIX system that you want to format the
document, using the mm macro package and the nroff formatting program, in
order to prepare it for a letter-quality printer or lineprinter. Once the
document is formatted, it will be stored in filename.mm or whatever file you
name. You can then send it to the printer with the command:

lpr filename.mm

If you are formatting documents for printing on a ty pesetter, you would need to
use the mm macros with the troff program instead:

3-2



Using the MM Macros

troff -mm filename > filename.t

If you have somewhat more complex formatting, such as two-column text,
formatted with the two-column (.2C) macro, or if you have used the table start
(.TS) and table end (.TE) macros to produce multicolumn tabular material,
you must remember to pipe the output through the preprocessor col, in order
to prepare the columnsof text. Your command line might look like this:

nroff -mm filename | col> filename.mm
If you are using the tbl or eqn programs to produce tables and mathematical
equations, you must also process the files through these programs first, using

tbl before eqn, as in the following:

tbl filename|neqn|nroff -mm > filename.mm

3.2 Basic Formatting Macros
The following sections describe the most commonly used mm macros,
including macros to define paragraphs, headings, lists, font changes, displays,

and tables. For more detailed information about each of these macros, read
Chapter 4, “mm Reference’’.

3.2.1 Paragraphs and Headings

With mm, it is easy to specify paragraph and heading style. For example, look
at the following passage:

3-3



XENIX Text Processing

1.0 Paragraphs and Headings

This section describes the types of paragraphs and the
kinds of headings that are available.

1.1 Paragraphs

Paragraphs are specified with the .P macro. Usually, they are
flush left.

1.2 Headings

Numbered Headings
There are seven levels of numbered headings. Level 1 is the
highest; level 7 is the lowest.

Headings are specified with the .H macro, whose first argument is
the level of heading (1 through 7).

Unnumbered Headings
The macro .HU is a special case of .H which creates a heading
with no heading number.

To create thisheading format, you would insert the following in a text file:

.H 2 "Paragraphs and Headings”

This section describes the types of paragraphs and the

kinds of headings that are available.

.H 3 "Paragraphs”

Paragraphs are specified with the .P macro. Usually, they

are flush left.

.H 3 "Headings"

.HU "Numbered Headings”

There are seven levels of numbered headings. Level 1 is the
highest; level 7, the lowest.

P

Headings are specified with the .H macro, whose first argument
is the level of heading (1 through 7).

.HU "Unnumbered Headings”

The macro .HU is a special case of .H which creates a heading
with no heading number.

mm produces these headings in default styles which can be redefined, if
necessary. This is described in detail in Chapter 4, ‘“mm Reference”. The
headings are automatically numbered and are used to print a table of contents,
if the table of contents {.TC) macro is used. The numbers may be altered or
reset with the number register (.nr) request. To restart the numbering of a

3-4



Using the MM Macros

second level heading at 1, you would insert the following command:

.hrHZl

3.2.2 Lists

All list formats in mm have a list-begin macro, one or more list items, each
consisting of a .LI macro followed by the list item text, and the list-end macro
(.LE). In addition to the bullet list demonstrated at the beginning of this
chapter, there is also the dash list, using the list begin macro (.DL) to create a
list format like the bullet list except marked with dashesrather than bullets. A
mark list (ML) is also available, to mark list items with the character of your
choice.

The automatic list (.AL) macro automatically numbers list items in one of
several ways. When specified alone, or followed by *‘1”, the .AL macro numbers
the list items with Arabic numbers. The macro .AL A specifies a list ordered A,
B, C, etc. The macro.AL fcllowed by alowercase a{.AL a}, specifies a, b, ¢, ete.
The macro .AL I numberslist items with Roman numerals. .AL i numbers a list
with lowercase Roman numerals (i, i, iii, ete.)

Numbered lists may be nested to produce outlines and other formats. For
example:

1. IncanArchaeological Sites
A.  Peru
1.  MacchuPicchu
2. Pisac
B. Ecuador

Thisisproduced with:

3-5



" XENIX Text Processing

ALT

.LI

Incan Archaeological Sites
AL A

LI

Peru

AL L

LI

Macchu Picchu
.LI

Pisac

.LE

L1

Ecuador

.LE

.LE

In addition to the numbered and marked lists, mm offers a variable list (-VL)
macro, which is useful for producing two-column lists with indents. The .VL
macrois described in detailin Chapter 4, ““mm Reference”.

3.2.3 Font Changes and Underlining

To produce italics on the typesetter, precede the text to be italicized with the
sequence \fl and follow it with \fR. For example:

\flas much text as you want
can be typed here\fR

Italics are represented on lineprinters and letter-quality printers by
* underlining. The \fR command restcres the normal, usually Roman font.

If only one word is to be italicized, it may be typed alone on a line after a .1
command:

.

.I word

In this case no .R is needed to restore the previous font. The default font is
automatically restored on the next line.

Similarly boldface can be produced by typing: ‘
B

Text to be set in boldface

goes here
R

As with the I macro, a single word can be placed in boldface by placing it alone
on the same line witha .B command.

3-6



Using the MM Macros

3.2.4 Footnotes

Material placed between lines with the footnote start {.FS) and footnote end
(.FE) macros will be collected, and placed at the bottom of the current page.
The footnotes are automatically numbered, or an optional footnote mark may
be used. Thismark follows the FSmacro. For example:

Without further research

FS

As demonstrated by Tiger and Leopard (1975).
FE

the claim could not be substantiated.
However, other studies

FS=

For example, Panther and Lion (1981).

FE

indicated that the correlation was significant.

produces one numbered footnote:
1. As demonstrated by Tiger and Leopard (1975).
"and one marked footnote:

* For example, Panther and Lion (1981).

3.2.5 Displays and Tables

To prepare displays of lines, such as tables, which are to be set off from the
running text, enclose them in the commands .DS and .DE. For example:

.DS
text goes here
.DE

By default, lines between .DS and .DE are left-adjusted. Lines between .DSL
and .DE are also left-adjusted. To get an indented display, use .DSI. You can
also create centered tables with .DS C. For example:

This is a centered display preceded by
a .DS C and followed by a .DE command

or:
This is a left-adjusted display

preceded by a .DS L command
and followed by a .DE command.

37



XENIX Text Processing

Note that the .DS C macro centers each line. You can also use .DS B to make the
display into a left-adjusted block of text and then center that entire block.
Normally a display is kept together on one page. Text within display is
produced in “nofill” mode, that it lines of text are not rearranged.

3.2.6 Memos

If you need to produce many memos in a standardized format, you may find the
memorandum (.MT) type macros useful for creating titling information. Be
warned, however, that because these memorandum types were originally
developed inside Bell Laboratories, some of the possible parameters to this
‘macro automatically print the string “Bell Laboratories” on the memo. To
suppress this, be sure to use the “affiliation” (.AF) macro after an . MT macro,
as follows:

AF "

or, if you wish to have your own company or organization name appear
automatically, use:

AF "Widgets, Ltd.”

There are a number of parameters which substantially change the format and
content of memoranda output and it is critical that you insert the macrosin the
correct order. Therefore, it is important that you read the section on
“Memorandum Type” in Chapter 4, ‘‘mm Reference” before inserting these
macros in memos. Once you have chosen the appropriate type, you should be
able to reuse these macros for all your memos to produce astandard style.

3.2.7 Multicolumn Formats

If you place the command .2C in your document, the document will be printed
in double column format beginning at that point. This feature is generally not
accommodated by ordinary lineprinter facilities, but is often desirable on the
typesetter. The command .1C stops two-column output and returns to one-
column output.

3.3 Using Nroff/Troff Commands

If you want to format text using mm without learning the other formatting
programs, you should become familiar with at least a few simple nroff/troff
commands, which you will probably need to supplement the mm macros.
These work with both typesetter and lineprinter or terminal output:

.bp begin new page.

3-8



Using the MM Macros

.br “break”, that is stop running text from line to line.

.spn insert n blank lines.

3.4 Checking mm Input with mmcheck

The program mmcheck can be used to check the accuracy of your input to
mm, without actually formatting a document. If you use mmcheck regularly,
you will save a great deal of processing time, because you will be able to
“debug” your input file quickly, without running the nroff and troff
programs. To invoke mmcheck, use the command line:

mmcheck filename

The output of mmcheck goes to the standard output (the terminal screen) by
default. mmcheck checks for correct pairing of macros, including .DS/.DE,
.TS/.TE, and .EQ/.EN. It also looks for list specification format, making sure
that every list has a list begin macro (.AL, .DL, .BL, ML, VL, etc.) and alistend
macro (.LE). Normally, mmcheck prints a list of errors and the lines where
they occurred. For example:

chapl.s:
Extra .DE at line 74
539 lines done.

Note, however, that the location of an error may occasionally be obscured. In
the example above, the “‘extra” .DE could actually be caused by a missing .DS.






Chapter 4
MM Reference

4.1 Introduction 4-1
4.1.1 WhyUseMM? 4-1
4.1.2 Organization and Conventions  4-1
4.1.3 StructureofaDocument 4-2
4.1.4 Definitions 4-2

4.2 Invokingthe Macros 4-3
421 TheMMCommand 4-3
422 The-cmor-mmFlags 4-4
4.2.3 Typical CommandLines 4-4
4.24 CommandLineParameters 4-4
4.2.5 Omissionof-cmor-mm  4-6

4.3 Formatting Concepts  4-7
4.3.1 Argumentsand Quoting 4-7
4.3.2 UnpaddableSpaces 4-8
4.3.3 Hyphenation 4-8
434 Tabs 4-9
4.3.5 Bullets 4-9
4.3.6 Dashes, Minus Signs, and Hyphens 4-10
4.3.7 Trademark String 4-10

4.4 Paragraphsand Headings 4-10
4.4.1 Paragraphs 4-10
4.4.2 Numbered Headings 4-12
4.4.3 Appearanceof Headings 4-12
4.4.4 Bold,Italic, and Underlined Headings 4-14
4.4.5 HeadingPoint Sizes 4-14
4.4.6 MarkingStyles 4-15
4.4.7 Unnumbered Headings 4-16
4.4.8 Headingsand the Table of Contents 4-16
4.4.9 First-LevelHeadings and the Page Numbering
Style 4-16
4.4.10 User Exit Macros 4-17



4.5 Lists

4.6

4.7

4.8

4.5.1
4.5.2
4.5.3
4.5.4

4.5.5
4.5.6
4.5.7
4.5.8
4.5.9
4.5.10

4-18
Sample Nested List 4-19
List Item 4-20
ListEnd 4-21
Initializing Automatically Numbered or
Alphabetized Lists 4-21
Bullet List  4-22
Dash List 4-22
Marked List 4-23
ReferenceList 4-23
Variable-ItemList 4-23
List-Begin Macroand Customized Lists 4-25

Displays 4-26

4.6.1
4.6.2
4.6.3
4.6.4
4.6.5

4.6.6

Static Displays 4-26

Floating Displays  4-27

Tables 4-29

Equations 4-30

Figure, Table, Equation, and Exhibit
Captions 4-31

List of Figures, Tables, Equations, and
Exhibits 4-31

Footnotes 4-32

4.7.1

Format of Footnote Text 4-33

Page Headers and Footers 4-34

4.8.1
4.8.2
483
4.8.4
485
4.8.6
4.8.7
488
4.8.9

4.8.10

4.8.11
4.8.12

Default Headers and Footers 4-34

Page Header 4-35

Even-Page Header 4-35

Odd-Page Header 4-35

Page Footer 4-36

Even-PageFooter 4-36

Odd-Page Footer 4-36

Footer on the First Page 4-36

Default Header and Footer With Section-Page
Numbering 4-36

Strings and Registers in Header and Footer
Macros 4-37

Header and Footer Example 4-37
Generalized Top-of-Page Processing  4-37



4.8.13 Generalized Bottom-of-Page Processing 4-38
4.8.14 Topand Bottom Margins 4-38

4.9 Tableof Contents 4-39

4.10 References 4-40
4.10.1 Automatic Numberingof References 4-40
4.10.2 Delimiting Reference Text 4-40
4.10.3 Subsequent References 4-41
4.10.4 Reference Page 4-41

4.11 Miscellaneous Features 4-41
4.11.1 Bold, Italic,and Roman Fonts 4-42
4.11.2 Right Margin Justification 4-43
4.11.3 SCCSRelease Identification 4-43
4.11.4 Two-Column Output 4-43
4.11.5 Vertical Spacing 4-44
4.11.6 Skipping Pages 4-45
4.11.7 Forcingan Odd Page 4-45
4.11.8 Setting Point Size and Vertical Spacing 4-45
4.11.9 Inserting Text Interactively 4-46

4.12 Memorandum and Released Paper Styles 4-47
4.12.1 Title 4-47
4.12.2 Authors 4-47
4.12.3 Technical Memorandum Numbers 4-48
4.12.4 Abstract 4-48
4.12.5 OtherKeywords 4-49
4.126 Memorandum Types 4-49
4.12.7 Date and Format Changes 4-50
4.12.8 AlternateFirst-PageFormat 4-50
4.12.9 Released-Paper Style 4-51
4.12.10 Order of Invocation of Beginning Macros 4-51
4.12.11 Macros for the End of a Memorandum  4-52
4.12.12 Copy to and Other Notations 4-53
4.12.13 Approval SignatureLine 4-54
4.12.14 Forcing a One-Page Letter 4-54
4.12.15 Cover Sheet 4-54

4.13 Reserved Names 4-54
4.13.1 Names Used by Formatters 4-55



4.13.2 NamesUsedby MM 4-55

4.13.3 Names Used by eqn/neqnand tbl 4-56
4.13.4 User-Definable Names 4-56

4.13.5 Sample Extension 4-56

4.14 Errors  4-56
4.14.1 Disappearanceof Output 4-57
4.14.2 MMError Messages 4-57
4.14.3 Formatter Error Messages 4-60

4.15 Summary of Macros, Strings, and Number
Registers 4-62
4.15.1 Strings 4-67
4.15.2 Number Registers 4-68



MM Reference

4.1 Introduction

This chapter is the reference guide for the MM Memorandum Macros. MM
provides a unified, consistent, and flexible tool for producing many common
types of documents, often eliminating the need for working directly with nroff
or troff commands. MM is the standard, general-purpose macro package for
most documents.

Using the MM macros, you can produce letters, reports, techinical memoranda,
papers, manuals, and books. Documents may range in length from single-page
letters to documents that are hundreds of pageslong.

4.1.1 Why Use MM?

There are several reasons why we recommend using MM instead of working
with the formatting programs nroff and troff directly. Theseinclude:

—  You need not be an expert to use MM successfully. If your input is
incorrect, the macros attempt to interpret it, or a message describing
the error isoutput.

—  Reasonable default values are provided so that simple documents can
be prepared without complex sequences of commands.

— Parameters are provided to allow for individual preferences and
requirementsin document styling.

—  The capability exists for expert users to extend the MM macros by
adding new macros or redefining existing ones.

—  The output of MM is device independent, allowing the use of
terminals, lineprinters, and phototypesetters with no change to the
macros.

—  The need for repetitious input is minimized by allowing the user to
specify parametersonce at the beginning of a document.

—  Output style can be modified without making changes to the
documentinput.

4.1.2 Organization and Conventions

Each section of this chapter explains a feature of MM, with the more commonly
used features explained first. You may find you have no need for the
information in the later sections, or for some of the options and parameters
“which accompany even common features. This reference guide is organized so
that you can skim a section to obtain formatting information you need, and

41



XENIX Text Processing

skip features for which you have no use.

4.1.3 Structure of a Document

Input for

a document to be formatted with MM contains four major parts, any

of which is optional. If present, they must occur in the following order:

Parameter-setting. This segment determines the general style and
appearance of a document, including page width, margin
justification, numbering styles for headings and lists, page headers
and footers, and other properties. In this segment, macros can be
added or redefined. If omitted, MM will produce output in a default
format; this segment produces no actual output, but performs the
setup for the rest of the document.

Beginning. This segment includesthose itemsthatoccuronly once, at
the beginning of a document (e.g., title, author’sname, date).

Body. This segment contains the actual text of the document. It may
be as small as a single paragraph, or as large as hundreds of pages. It
may include hierarchically-ordered headings of up to seven levels,
which may be automatically numbered and saved to generate the
table of contents. Also available are list formats with up to five levels
of subordination, which may have automatic numbering, alphabetic
sequencing, and marking. The body may contain various types of
displays, tables, figures, references, and footnotes.

Ending. This segment contains those items that occur only once at
the end of a document. Included here are signature(s) and lists of
notations (e.g., “‘copy to” lists). In this segment, macros may be
invoked to print information that is wholly or partially derived from
the rest of the document, such as the table of contents or the cover
sheet.

The size or existence of any of these segments-dependson the type and length of
the document. Although aspecific item (such as date, title, author’s name) may
be printed in several different ways depending on the document type, it will
alwaysbe enteredin the same form.

4.1.4 Definitions

The following terms are used throughout this chapter:

Formatter Referstoeither of the text-formatting programs nroff or troff.

Requests

42

Built-in commands recognized by the formatters. Although it
may not be necessary to use these requests directly, they are



Macros

Strings

MM Reference

referred to in this chapter.

Named collections of requests. Each macroisan abbreviation for
a collection of requests that would otherwise require repetition.
MM supplies many predefined macros, and you may define
additional macros as necessary. Macros and requests share the
same set of names and are used in the same way.

Provide character variables, each of which names a string of
characters. Strings are often used in page headers, page footers,
and lists. They use the same names as requests and macros. A
string can be defined with the define string(.ds) request, and then
referred to by itsname, preceded by \# for a one-character name
or \#(for a two-character name.

Number registers

Integer variables used for flags, arithmetic, and automatic
numbering. A register can be given a value using a number
register (.nr) request, and can be referenced by preceding its
name by \n for one-character names or \n( for two-character
names.

4.2 Invoking the Macros

This section describes the command lines necessary to MM, with different
options on various output devices.

4.2.1 The MM Command

The MM command is used to print documents using nroff and MM. This
command is equivalent to invoking nroff with the ~-mm flag. Options are
available to specify preprocessing by tbl and/or by eqn/neqn, and for
postprocessing by various output filters, such as col. Any argumentsor flags
not recognized by MM are passed to nroff. The following options can occur in
any order before the filenames:

—e
-t
-c
-E

-y

Invokesneqn.

Invokestbl.

Invokescol.

Invokesthe “—e” option of nroff.

Invokes -mm (uncompacted macros) instead of —cm (See Section
4.2.2 of this manual).

43



XENIX Text Processing

-12 Invokes 12-pitch mode (The pitch switch on the terminal must be
set to 12). '
4;2.2 The —cm or -mm Flags

The MM package can also be invoked by including the —ecm or —mm flag asan
argument to the formatter, asin:

nroff -mm file

4.2.3 Typical Command Lines
The prototype command lines are as follows:
Text without tables or equations:
mm [options] filename
nroff [options] filename
troff [options] filename
Text with tables:
mm -t [options] filename
tbl filename|nroff [options] -mm
tbl filenameltrof [options] -mm
Text with equations:
mm -e [options| filename
neqn filename|nroff [options] -mm
eqn filename|troff [options] -mm
Text with both tables and equations:
mm -t -e [options] filename
tbl filename|neqn|nroff [options] -mm
tbl filenameleqn|troff [options] -mm
If two-column processing is used with nroff, either the -c¢ option must be
specified to MM or the nroff output must be postprocessed by col.
4.2.4 Command Line Parameters
Number registers hold parameter values that control variousaspectsof output

style. Many of these can be changed within the text files with number register
{.nr) requests. In addition, some of these registers can be set from the command

44



MM Reference

line itself, a useful feature for those parameters that should not be permanently
embedded within the input text itself. If used, these registersmust be set on the
command line or before the MM macro definitionsare processed. These are:

-rAn

-rCn

-rD1

-rEn

-rLk

-rNn

-rOk

For n =1, this has the effect of invoking the .AF macro without an
argument.

Nsets the type of copy (e.g., DRAFT) to be printed at the bottom of
each page:

n=1 For OFFICIAL FILE COPY
n==2 For DATEFILE COPY

n=3  For DRAFT with single-spacing and default paragraph
style

n = 4 For DRAFT with double-spacing and 10-space
paragraphindent

Sets “debug mode”. This flag requests the formatter to continue
processing even if MM detects errors that would otherwise cause
termination. It also includes some debugging information in the
default page header.

Controls the font of the Subject/Date/From fields. If n = 0 these
fields are bold (default for troff) and if n = 1 they are regular text
{default for nroff).

Sets the length of the physical page to k lines. For nroff, k is an
unscaled number representing lines or character positions; for
troff, k must be scaled. The default valueis 66 lines per page.

Specifies the page numbering style. When n = 0 (default), all pages
get the (prevailing) header. When n = 1, the page header replaces
the footer on page 1 only. When n = 2, the page header is omitted
from page 1. When n = 3, section-page numbering occurs. When n
= 4, the default page header is suppressed, but user-specified
headers are not affected. When n =5, section-page and section-
figure numbering occurs.

The contents of the prevailing header and footer do not depend on
the value of the number register N; N only controls whether and
where the header (and, for N =3 or 5, the footer) is printed, as well
as the page numbering style. In particular, if the header and footer
values are null, the value of Nisirrelevant.

Offsets output k spaces to the right. For nroff, these values are

unscaled numbers representing lines or character positions. For
troff, these values must be scaled. This register is helpful for

45



XENIX Text Processing

adjusting output positioning on some terminals. If this register is
not set on the command line the default offset is.75 inches. NOTE:
The register name is the capitalletter (O), not the digit zero (0).

-tPn Specifies that the pages of the document are to be numbered
starting with n. This register may also be set via a.nrrequestinthe
input text.

-rSn Sets the point size and vertical spacing. The default nis 10, i.e., 10-

point type on 12-point leading (vertical spacing), giving 6 lines per
inch. This parameter applies to troffonly.

-rTn Provides register settings for certain devices. If n =1, then the line
length and page offset are set to 80 and 3, respectively. Setting n to
2 changes the page length to 84 lines per page and inhibits
underlining. The default value for nis0. This parameter applies to
nroffonly. :

-rUl Controls underlining of section headings. This flag causes only
letters and digits to be underlined. Otherwise, all characters
(including spaces) are underlined. This parameter appliesto nroff
only.

-tWk Sets page width (i.e., line length and title length) to k. For nroff, kis
an unscaled number representing lines or character positions; for
troff, kmust be scaled. Thisregister can be used to change the page
width from the default value of 6.0 inches (60 charactersin 10 pitch
or 72 charactersin 12 pitch).

4.2.5 Omission of -cm or -mm

If many arguments are required on the command line, it may be convenient to
set up the first (or only) input file of a document as follows:

.ss 18

.so fusrflib/tmac/tmac.m
.ss 12

remainder of text

In this case, do not use the ~cm or -mm flags (or the MM or mm¢t commands);
the .so request has the equivalent effect. The registers must beinitialized before
the .so request, because their values are meaningful only if set before the macro
definitions are processed. When using this method, it is best to put into the
input file only those parameters that are seldom changed. For example:

46



MM Reference

.nr W 80

.r O 10

.ar N3

.so Jusr/lib/tmac/tmac.m

.H 1 "INTRODUCTION"

specifies, for nroff, a line length of 80, a page offset of 10, and section-page
numbering.

4.3 Formatting Concepts

The normal action of the formatters is to fill output lines from one or more
input lines. The output lines may be justified so that both the left and right
marginsare aligned. Asthe lines are being filled, words may also be hyphenated
as necessary. It is possible to turn any of these modes on and off. Turning off fill
mode also turnsoff justification and hyphenation.

Certain formatting commands (both requests and macros) cause the filling of
the current output line to cease. Printing of a partially filled output line is
known as a “‘break”. A few formatter requests and most of the MM macros
cause a break.

While formatter requests can be used with MM, they occasionally have
unpredicted consequences. There should be little need to use formatter
requests. The macros described in this section should be used in most cases
because you will be able to control and change the overall style of the document
easily and specify complex features, such as footnotes or tables of contents, -
without using intricate formatting requests. A good rule is to use direct nroff
and troff requests only when absolutely necessary.

To make future revision easier, input lines should be kept short and should be
broken at the end of clauses; each new full sentence should begin on a new line.

4.3.1 Arguments and Quoting

For any macro, a ““null argument” is an argument whose width is zero. Suchan
argument often has a special meaning; the preferred form for anull argument is
double quotation marks (”). Omitting an argument is not the same as
supplying a null argument. Furthermore, omitted arguments can occur only at
theend of an argument list, while null arguments can occur anywhere.

Any macro argument containing ordinary (paddable) spaces must be enclosed
in' double quotation marks, (*“”’). Otherwise, it will be treated as several
‘separate arguments. A double quotation mark (") is a single character that
must not be confused with two apostrophes or acute accents (**), or with two
graveaccents('").

47



XENIX Text Processing

Double quotation marks (") are not permitted as part of the value of a macro
argument or of a string that is to be used as a macro argument. If you must, use
two grave accents{ ') and/or two acute accents ( **) instead. Thisrestriction is
necessary because many macro arguments are processed (interpreted) several
times. For example, headings are first printed-in the text and may be reprinted
in the table of contents. ,

4.3.2 Unpaddable Spaces

When output lines are justified to give an even right margin, existing spacesin a
line may have additional spaces appended to them. This may affect the desired
-alignment of text. To avoid this problem, it is necessary to be able to specify a
space that cannot be expanded during justification, i.e., an “unpaddable
space”. There are several ways to do this. First, you may type a backslash (\)
followed by a space. This pair of characters generates an unpaddable space.
Second, you may sacrifice some seldom-used character to be translated into a
space upon output. Because this translation occurs after justification, the
chosen character may be used anywhere an unpaddable space is desired. The
tilde ( ") isoften used for this purpose. To use it in this way, insert the following
line at the beginning of the document:

tr”

If a tilde rust actually appear in the output, it can be temporarily recovered by
inserting :

.tr

before the place where it is needed. Its previous usage is restored by repeating
the .tr °, but only after a break or after the line containing the tilde has been
forced out. Use of the tilde in this way is not recommended for documents in
which the tilde is used within equations.

4.3.3 Hyphenation

The formatters do not perform hyphenation unless the user requests it.
Hyphenation can be turned on in the body of the text by specifying

.nr Hy 1

at the beginning of the document. If hyphenation is requested, the formatters
will automatically hyphenate words as needed. However, you may specify the
hyphenation points for a specific occurrence of any word by using a special
character known as a “hyphenation indicator” (initialy, the two-character
sequence \%), or you may specify hyphenation points for a small list of words
(about 128 characters).

48



MM Reference

If the hyphenation indicator (initially, the two-character sequence \ %) appears
at the beginning of a word, the word is not hyphenated. It can also be used to
indicate legal hyphenation point(s) inside a word. In any case, all occurrences
of the hyphenation indicator disappear on output.

The user may specify a different hyphenation indicator with the command:
HC [hyphenation-indicator]

The caret (") is often used for this purpose; this is done by inserting the
following at the beginning of a document:

HC "

Note that any word containing hyphens or dashes—also known as em
dashes—will be broken immediately after a hyphen or dash if it is necessary to
hyphenate the word, even if the formatter hyphenation function is turned off.

Using the .hw request, you may supply a small list of words with the proper

hyphenation points indicated. For example, to indicate the proper
hyphenation of the word “‘printout”, you may specify:

.hw print-out

4.3.4 Tabs

The macros .MT, .TC, and .CS use the .ta request to set tab stops, and then
restore the default values of tab settings. Setting tabs to other than the default
valuesis the user’s responsibility.

Note that a tab character is always interpreted with respect to its position on
the input line, rather than its position on the output line. In general, tab

characters should appear only on lines processed in no-fill mode. The tbl
program changes tab stops but does not restore the default tab settings.

4.3.5 Bullets
A bullet (o) is often obtained on a typewriter terminal by using the letter o
overstruck by a 4. For compatibility with troff, a bullet string is provided by
MM. Rather than overstriking, use the sequence:

\*(BU

wherever a bullet is desired. Note that the bullet list (.BL) macro uses this
string to automatically generate bullets for the list items.

49



XENIX Text Processing

4.3.6 Dashes, Minus Signs, and Hyphens

Troff has distinct graphics for a dash, a minus sign, and a hyphen, while nroff

does not. If you intend to use nroff only, you can use the minus sign (-) for all

three. v

If you plan to use both formatters, you must be careful in preparing text.

Unfortunately, these characters cannot be represented in a way that is both

compatible and convenient. Try the following:

Dash Use \*(EM for each text dash for both nroff and troff. This string
generates an em dash (—) in troff and two dashes (--) in nroff.
Note that the dash list (.DL) macro automatically generates the em
dashes for the listitems.

Hyphen  Use the hyphen character (~) for both formatters. Nroff will print
it asis, and troff will print a true hyphen.

Minus Use \- for a true minus sign, regardless of formatter. Nroff will
ignore the \, while troff will print a true minussign.
4.3.7 Trademark String

The trademark string \*(Tm places the letters TM one half-line above the text
that it follows. For example, the input:

The XENIX\#(Tm System Reference Manual.
yields: ‘
The XENIX™ System Reference Manual.

4.4 Paragraphs and Headings

Thissection describes simple paragraphs and section headings.

4.4.1 Paragraphs
The paragraph macroisused to begin two kinds of paragraphs:

Pltype]
one or more hnes Of text.

In a ‘‘left-justified” paragraph, the first line begins at the left margin, while in
an “indented” paragraph, it isindented five spaces.

4-10



MM Reference

A document hasa default paragraph style obtained by specifying .P before each
paragraph that does not follow a heading. The default style is controlled by the
number register Pt. The initial value of Pt is 0, which always provides left~
justified paragraphs. All paragraphs can be forced to be indented by i msertmg
the following at the beginning of the document:

.nr Py 1

All paragraphs will be indented except after headings, lists, and displays if the
following:

ar Pt 2
isinserted at the beginning of the document.

The amount 2 paragraph is indented is contained in the register Pi, whose
default valueis 5. Toindent paragraphs by 10 spaces, for example, insert:

.nr Pi 10

at the beginning of the document. Both the Pi and Pt register values must be
greater than zero for any paragraphs to be indented.

The number register Ps controls the amount of spacing between paragraphs.
By default, the Ps register is set to 1, yielding one blank space (1/2 vertical
space}. Values that specify indentation must be unscaled and are treated as
“character’’ positions, i.e., as a number of ens. In troff, an en is the number of
points (1 point = 1/72-inch) equal to half the current point size. In nroff,anen
isequal to the width of a character.

Regardless of the value of Pt, an individual paragraph can be forced to be left-
justified or indented. .P always forces left justification; .P 1 always causes
indentation by the amount specified by the register Pi. If .P occurs inside a list,
the indent (if any) of the paragraphisadded to the current list indent.

Numbered paragraphs may be produced by setting the register Np to 1. This
produces paragraphsnumbered within first level headings, e.g., 1.01, 1.02, 1.03,
2.01.

A different style of numbered paragraphsisobtained by using the

.nP
macro rather than the .P macro for paragraphs. This produces paragraphs
that are numbered within second level headings and contain a double-line

indent in which the text of the second line is indented to be aligned with the text
of the first line so that the number stands out. For example:

411



XENIX Text Processing

.H 1 "FIRST HEADING"
.H 2 "Second Heading”
.npP

one or more lines of text

4.4.2 Numbered Headings
The heading macro has the form:

.H level [heading-text] [heading-suffix]
zero or more lines of text

The .H macro provides seven levels of numbered headings. Level 1 is the
highest; level 7 the lowest. The keading-suffiz is appended to the heading-tezt
and may be used for footnote marks which should not appear with the heading
text in the table of contents. You will not need to insert a.P macro aftera .Hor
.HU macro, because the .H macro also performs the function of the .P macro. If
a.P followsa H, the .Pisignored.

The effect of .H varies according to the level argument. First-level headingsare
preceded by two blank lines {one vertical space); all others are preceded by one
blank line. '

.H1hkeading-teat
Gives a bold heading followed by a single blank line. The following
text begins on a new line and is indented according to the current
paragraph type. Full capital letters should normally be used to
make the heading stand out.

H2 keading-teat
Yields a bold heading followed by a single blank line. The following
text begins on a new line and is indented according to the current
paragraph type. Normally, initial capitalsare used.

Hn heading-tezt ‘
Where n is a number greater than 3 and less than 7, produces an
underlined (italic) heading followed by two spaces. The following
text appearson the same line.

Appropriate numbermg and spacing (horizontal and vertxcal) occur even if the
heading textisomitted from an .Hmacro.

4.4.3 Appearance of Headings
You can modify the appearance of headings quite easily by setting certain

registers and strings at the beginning of the document. In this way you can
quickly alter a document’s style because the style control information is

412



MM Reference

concentrated in afew lines, rather than distributed throughout the document.

A first-level heading normally has two blank lines (one vertical space)
preceding it, and all others have one blank line. If a multiline heading splits
across pages, it is automatically moved to the top of the next page. Every first-
level heading may be forced to the top of a new page by inserting

.anrEjl

at the beginning of the document. Long documents may be made more
manageable if each section starts on a new page. Setting Ej to a higher value
has the same effect for headings up to that level; i.e., a page eject occurs if the
heading levelisless than or equal to Ej.

Three registers control the appearance of text immediately following an .H
macro. They are heading break level (Hb), heading space level (Hs), and post-
heading indent (Hi).

If the heading level is less than or equal to Hb, a break occurs after the heading.
If the heading level is less than or equal to Hs, a blank line is inserted after the
heading. Defaultsfor Hb and Hs are 2. If a headinglevel is greater than Hb and
also greater than Hs, then the heading (if any) is run into the following text.
With these registers, you can separate headings from text consistently
throughout the document, and allow for easy alteration of whitespace and
header emphasis.

For any stand-alone heading, i.e., a heading not run into the following text, the
alignment of the next line of output is controlled by the register Hi. If Hi is 0,
text is left-justified. If Hiis 1 (the default value), the text isindented according
to the paragraph type as specified by the register Pt. Finally, if Hiis 2, text is
indented to line up with the first word of the heading itself, so that the heading
number standsout more clearly.

For example, to cause a blank line to appear after the first three headinglevels,
to have no run-in headings, and to force the text following all headings to be
left-justified (regardless of the value of Pt), the following lines should appear at
the top of the document:

arHs 3
arHb 7
arHi 0

The regist,er Hc can be used to obtain centered headings. A heading is centered
if its level is less than or equal to He, and if it is stand-alone. Hc is 0 by default
(no centered headings).

4-13



XENIX Text Processing

4.4.4 Bold, Italic, and Underlined Headings

: Any heading that is underlined by nroff ismade italic by troff. The string HF
‘(heading font) containsseven codesthat specify the fontsfor heading levels 1-7.

Levels 1 and 2 are bold; levels 3 through 7 are underlined in nroff and italicin
troff. The user may reset HF asdesired. Any value omitted from the right end
of the list is taken to be 1. For example, the following would result in five bold
levelsand two nonunderlined (Roman) levels:

dsHF 33333

Nroff can underline in two ways. The underline (.ul) request underlines only
lettersand digits. The continuous style (.cu) request underlines all characters, .
including spaces. By default, MM attempts to use the continuous style on any
heading that is to be underlined and is short enough to fit on a single line. If a
heading istoo long, only letters and digits are underlined.

Using the -rU1 flag when invoking nroff forces the underlmmg of only letters
and digitsin all headings.

4.4.5 Heading Point Sizes

If you are using troff, you may specify the desired point size for each heading
level with the HP string, as follows:

.ds HP [ps1] [ps2] [ps3] [ps4] [psS] [ps6] [psT]

By default, the text of headings(.Hand .HU) is printed in the same point size as
the body except that bold stand-alone headings are printed in a size one point
smaller than the body. The string HP, similar to the string HF, can be specified
to contain up to seven values, corresponding to the seven levels of headings.
For example

.ds HP 12 12 11 10'10 10 10

prints the first two heading levels in 12;point type, the third heading level in
11-point type, and the remainder in 10-point type. The specified values may
also be relative point-size changes, e.g.:

.dsHP +2 +2-1-1

f absolute point sizes are specified, those sizes will be used regardless of the

point size of the body of the document. If relative point sizes are specified, then
the point sizesfor the headings will be relative to the point size of the body, even
if the point size of the body is changed. Omitted or zero values imply that the
default point size will be used for the corresponding heading level.

4-14



MM Reference

Note

When you change the point size of headings, vertical spacing remains
unchanged. Therefore, if you specify a large point size for a heading,
you must also increase vertical spacing (with .HX and/or .HZ) to
prevent overprinting.

4.4.6 Marking Styles

The heading mark macro has the form:
HM [arg}] ...[arg7]

to change the heading mark style of a heading. The registers named H1
through H7 are used as counters for the seven levels of headings. Their values
are normally printed using Arabic numerals. The heading mark style ((HM)
macro allows this choice to be overridden. This macro can have up to seven
arguments; each argument is astring indicating the type of marking to be used.
Omitted values are interpreted as 1; illegal values have no effect. The values
available are: '

Value Interpretation

1 Arabic (default for all levels)

0001 Arabic with enough leading zeroes to get specified digits
A Uppercase alphabetic

2 Lowercase alphabetic

1 Uppercase Roman

i Lowercase Roman

By default, the complete heading mark for a given level is built by
concatenating the mark for that level to the right of all marks for all levels of
higher value. To inhibit the printing of successive heading level marks, i.e., to
obtain just the current level mark followed by a period, set the heading-mark
type (Ht) register to 1.

For example, a commonly used outline style is obtained by:

HMIA1lai
.nr Ht 1

415



XENIX Text Processing

4.4.7 Unnumbered ﬁeadings
The unnumbered heading macro has the form:
-HU heading-text o

It produces unnumbered heads. .HU is a special case of .H; it is handled in the
same way as .H, except that no heading mark is printed. In order to preserve
. the hierarchical structure of headings when .H and .HU macros are intermixed,
each .HU heading is considered to exist at the level given by register Hu, whose
initial valueis 2. Thus, in the normal case, the only difference between:

.HU heading-text
and
.H 2 heading-text

is the printing of the heading mark for the latter. Both have the effect of
incrementing the numbering counter for level 2, and resetting to zero the
counters for levels 3 through 7. Typically, the value of Hushould be set to make
unnumbered headings (if any) be the lowest-level headings in a document. .HU
can be especially helpful in setting up appendices and other sections that may
not fit wellinto the numbering scheme of the main body of a document.

4.4.8 Headings and the Table of Contents

The text of headings and their corresponding page numbers can be
automatically collected for a table of contents. This is accomplished by
specifying in the register Cl what level headings are to be saved, then invoking
the .TC macro at the end of the document. '

Any heading whose level is less than or equal to the value of the contents level
(CL)register issaved and printed in the table of contents. The default value for
Clis2;i.e., the first two levels of headings are saved.

Because of the way the headings are saved, it is possible to exceed the
formatter’s storage capacity, particularly when saving many levels of many
headings while also processing displays and footnotes. If thishappens, an ‘“Out
of temp file space’ message will occur; the only remedy is tosave fewer levelsor
tohave fewer words in the heading text.

4.4.9 First-Level Headings and the Page Numbering Style
By default, pages are numbered sequentially at the top of the page. For large

documents, it may be desirable to use section-page numbering where the
section is the number of the current first-level heading. This page numbering

416



MM Reference

style can be achieved by specifying the -rN3 or -rN5 flag on the command line.
As a side effect, this also sets Ej to 1, so that each section begins on a new page.
The page number is printed at the bottom of the page, so that the correct
section number is printed.

4.4.10 User Exit Macros

This section is intended only for users who are accustomed to writing formatter
macros. With .HX, .HY and .HZ you can obtain control over the previously
described heading macros. You must define these macros yourself and use them
in the form:

.HX dlevel rlevel heading-text
.HY dlevel rlevel heading-text
.HZ dlevel rlevel heading-text

The .H macro invokes .HX shortly before the actual heading text is printed; it
calls .HZ as its last action. After .HX is invoked, the size of the heading is
calculated. This processing causes certain features that may have been
included in .HX, such as .ti for temporary indent, to be lost. After the size
calculation, .HY isinvoked so that you may specify these featuresagain. Allthe
default actions occur if these macros are not defined. If you define HX, .HY, or
.HZ, your definition is interpreted at the appropriate point. These macros can
therefore influence the handling of all headings, because the HU macro is
actually aspecial case of the .H macro.

If the user originally invoked the .H macro, then the derived level dlevel and the
real level rlevel are both equal to the level given in the .H invocation. If you
originally invoked the .HU macro, dlevelisequal to the contents of register Hu ,
and rlevelis 0. In both cases, heading-tezt is the text of the original invocation.

By the time .H calls \HX it has already incremented the heading counter of the
specified level, produced a blank line (vertical space) to precede the heading,
and accumulated the heading mark, i.e., the string of digits, letters, and periods
needed for a numbered heading. When .HX is called, all user-accessible
registersand strings can be referenced as well as the following:

string }0
If rlevel is nonzero, this string contains the heading mark. If rlevelis
0, this string is null.

register ;0
This register indicates the type of spacing that is to follow the
heading. A value of 0 means that the heading is run-in. A value of 1
means a break (but no blank line) is to follow the heading. A value of
2 means that a blank line is to follow the heading.

string }2
If register ;0 is 0, this string contains two unpaddable spacesthat will

417



. XENIX Text Processing

be used to separate the heading from the following text. If register ;0
isnonzero, thisstring isnull.

register ;3

Thisregister contains an adjustment factor for an .ne request issued
before the heading is actually printed. On entry to .HX, it has the
value 3 if dlevel equals 1, and 1 otherwise. The .ne request is for the
following number of lines: the contents of the register ;0 taken as
blank lines (halves of vertical space), plus the contents of register ;3
asblank lines (halves of vertical space) plus the number of lines of the
heading. ‘

The user may alter the valuesof }0, }2, and ;3 within .HX as desired. If youuse
temporary string or macro names within .HX, choose them carefully.

HY is called after the .ne is issued. Certain features requested in .HX must be
repeated. For example:

© .de HY
Af \\$1=3 .ti 5n
P

HZ is called at the end of .H to permit user-controlled actions after the heading
is produced. For example, in a large document, sections may correspond to
chapters of a book, and you may want to change a page header or footer. For
example:

.de HZ
Af \\$1=1 .PF” "*Section \\$2""
P

4.5 Lists

This section describes the kinds of lists which can be obtained with the MM
macros, including automatically numbered and alphabetized lists, bullet lists,
dash lists, lists with arbitrary marks, and lists starting with arbitrary strings
(e-g., with terms or phrases to be defined).

In order to avoid repetitive typing of arguments to describe the appearance of
items in a list, MM provides a convenient way to specify lists. All lists are
composed of the following parts:

— A “list-initialization” macro that controls the appearance of the list

{e.g. line spacing, indentation, marking with special symbols, and
numbering or alphabetizing).

4-18



MM Reference

—  One or more “list item” macros, each followed by the actual text of
the corresponding listitem.

—  The “list end” macro that terminates the list and restores the
previousindentation.

Lists may be nested up to five levels. The list-item (.LI) macro saves the
previous list status (e.g., indentation, marking style, etc.); the list-end (.LE)
macro restores it. The format of a list is specified only once at the beginning of
list. You may also create your own customized sets of list macros with
relatively little effort.

4.5.1 Sample Nested List

The input for several lists and the corresponding output are shown below. The
AL and .DL macros are examples of the “list-initialization’’ macros. Here is
some sample input text:

AL A

.L1

This is an alphabetized item.

This text shows the alignment of the second line of the item.
The quick brown fox jumped over the lazy dog’s back.

.AL

.LI

This is a numbered item.

This text shows the alignment of the second line of the item.
The quick brown fox jumped over the lazy dog’s back.

.DL

.L1

This is a dash item.

This text shows the alignment of the second line of the item.
The quick brown fox jumped over the lazy dog’s back.
LI+1

This is a dash item with a plus as prefix.

This text shows the alignment of the second line of the item.
The quick brown fox jumped over the lazy dog’s back.

LE

.L1

This is numbered item 2.

.LE

.L1

This is another alphabetized item, B.

This text shows the alignment of the second line of the item.
The quick brown fox jumped over the lazy dog’s back.

.LE

P

This paragraph appears at the left margin.

419



XENIX Text Processing
The output locks like this:

A. This is an alphabetized item. This text shows the alignment of the
second line of the item. The quick brown fox jumped over the lazy
dog’s back.

1. This is a numbered item. This text shows the alignment of
the second line of the item. The quick brown fox jumped
over the lazy dog’sback.

—  Thisis a dashitem. This text shows the alignment
of the second line of the item. The quick brown fox
jumpedover the lazy dog's back. :

+—  Thisis a dash item with a plus as prefix. This text
shows the alignment of the second line of the item.
The quick brown fox jumped over the lazy dog’s
back.

2. Thisisnumbereditem 2.

B.  Thisis another alphabetized item, B. This text shows the alignment
of the second line of the item. The quxck brown fox jumped over the
lazy dog’sback.

This paragraph appears at the left margin.

4.5.2 List Item
The list item macro hasthe form:

.LI [mark] [1]
one or more lines of text that make up the list item.

The .LI macro is used with all lists. It normally causes the output of a single
blank line before itsitem, although this may be suppressed. If no arguments are
given, it labels its item with the “‘current mark” which is specified by the most
recent list-initialization macro. If a single argument is given to .LI, that
argument is output instead of the current mark. If two arguments are given,
the first argument becomes a prefix to the current mark, thus allowing you to
emphasize one or more items in a list. One unpaddable space is inserted
between the prefix and the mark. For example:

420



MM’ Reference

.BL

LI

This is a simple bullet item.

.LI +

This replaces the bullet with a plus.
LI+1

But this uses plus as prefix to the bullet.
.LE

Thisyields:
e Thisisasimple bullet item.
+  Thisreplacesthe bullet with a plus.
+e¢  Butthis uses plus as prefix to the bullet.
Note that the mark must not contain ordinary (paddable) spaces, because
alignment of items will be lost if the right margin is justified. If the “current
mark’’ in the current list is a null string, and the first argument of .LI isomitted
or null, the resulting effect is that of a ‘‘hanging indent”, i.e., the first line of the
following text is outdented, starting at the same place where the mark would
havestarted.
4.5.3 List End
The list end macro has the form:
.LE (1}
The list end macro restores the state of the list to that existing just before the
most recent list-initialization macro call. If the optional argument is given, the
.LE outputs a blank line. You should use this option only when the .LE is
followed by running text, but not when followed by a macro that produces
blank lines of itsown, such as .P, .H,or .LL.
.H and .HU automatically clear all list information, so you may omit the .LE(s)
that would normally occur just before either of these macros. This is not
recommended, however, because errors will occur if the list text is separated
from the heading at some later time (e.g., by insertion of text).

4.5.4 Initializing Automatically Numbered or Alphabetized Lists

The list initialization macro for numbered lists has the form:

.AL [type] [text-indent] [1]

421



XENIX Text Processing

The .AL macro is used to begin sequentially numbered or alphabetized lists. If
there are no arguments, the list is numbered and text isindented by Li, initially
6 spaces from the indent in force when the .AL is called, thusleaving room for a
space, two digits, a period, and two spaces before the text. Values that specify
indentation must be unscaled and are treated as character positions, i.e., as the
number of ensin troff.

Spacmg at the beginning of the list and between the items can be suppressed by
setting the list space (Ls) register. Ls is set to the innermost list level for which
spacmg is done. For example:

anrlks 0

specifies that no spacing will occur around any list items. The default value for
Lsis 8 (which is the maximum list nesting level).

The type argument may be given to obtain a different type of sequencing, and

its value should indicate the first element in the sequence desired, (i.e., it must

bel, A, a,1, or i). Note that the 0001 format is not permitted. If type is omitted

or null, then 1 is assumed. If tezt-indentis non-null, it is used as the number of

spaces from the current indent to the text, it is used instead of Li for this list
“only. If tezt-indentis null, then the value of Li will be used.

If the third argument is given, a blank line will not separate the itemsin the list.
Ablank line willoccur before the first item, however.
4.5.5 Bullet List
The list-initialization macro for a bullet list has the form:
.BL [text-indent] [1]

.BL begins a bullet list, in which each item is marked by a bullet (o) followed by
one space. If tezt- mdent is non-null it overrides the default indentation—the
amount of paragraph indentation as given in the register Pi. In the default case,
the text of bullet and dash lists lines up with the first line of indented

paragraphs. If a second argument is specified, no blank lines will separate the
itemsin the list.

4.5.86 Dash List
The list-initialization macro for dash lists hasthe form:
.DL [text-indent] [1]

.DLisidentical to.BL, except that a dash is used instead of a bullet.

422



MM Reference

4.5.7 Marked List
The form of the list-initialization macro for a marked list is:
ML mark [text-indent] [1]

ML is much like .BL and .DL, except that it requires an arbitrary mark, which
may consist of more than asingle character. Text isindented tezt-indentspaces
if the second argument is not null; otherwise, the text is indented one more
space than the width of the mark. If the third argument is specified, no blank
lines will separate the items in the list. Note that the mark must not contain
ordinary (paddable) spaces, because alignment of items will be lost if the right
margin is justified.

4.5.8 Reference List
The list-initialization macro for areference list has the form:
RL [text-indent] [1]

A RL macro begins an automatically numbered list in which the numbers are
enclosed by square brackets ([]). The tezt-indent may be supplied, asfor .AL. If
omitted or null, it is assumed to be 6, a convenient value for lists numbered up
t0 99. If the second argument is specified, no blank lines will separate the items
in the list.

4.5.8 Variable-Item List
The list-initialization macro for a variable-item list is:
.VL text-indent [mark-indent] [1]

When a list begins with a .VL, there iseffectively no current mark; it isexpected
that each .LI provides its own mark. This form is typically used to display
definitions of terms or phrases. Mark-indent gives the number of spaces from
the current indent to the beginning of the mark, and it defaults to 0 if omitted
or null. Tezt-indent gives the distance from the current indent to the beginning
of the text. If the third argument is specified, no blank lines will separate the
itemsin the list. Hereis an example of . VL usage:

4-23



XENIX Text Processing

tr

VL 20 2

.LI mark~1

Here is a description of mark I;

mark 1 of the .LI line contains a tilde translated

to an unpaddable space in order to avoid extra spaces
between the mark and 1.

.L1 second “mark

This is the second mark, also using a tilde translated
to an unpaddable space. '
.LI third "mark “longer "than"indent:

This item shows the effect of a long mark; one space separates the mark
from the text.

LI~

This item has no mark because the

tilde following the .LI is translated into a space.

.LE
Thisyields:
mark”1 Here is a description of mark 1; mark 1 of the .LI line
contains a tilde translated to an unpaddable space in
order to avoid extra spaces between the mark and 1.
- second “mark This is the second mark, also using a tilde translated to :

an unpaddable space.

k third mark “longer “than “indent This item shows the effect of a long mark;
onespace separates the mark from the text.

N This item has no mark because the tilde following the
.Llistranslated into aspace.

The tilde argument on the last .LI above is required; otherwise a hanging indent
would have been produced. A hanging indent is produced by using .VL and
calling .LI with no argumentsor with a null first argument. For example:

.VL 10

.LI

Here is some text to show a hanging indent.
The first line of text is at the left margin.
The second is indented 10 spaces.

.LE

yields:

Here is some text to show a hanging indent. The first line of text is at
the left margin. The second is indented 10 spaces.

424



MM Reference

Note that the mark must not contain ordinary (paddable) spaces, because
alignment of items will be lost if the right margin is justified.

4.5.10 List-Begin Macro and -Customized Lists
The list-begin macro has the form:
LB text-indent mark-indent pad type [mark| [LI-space] [LB-space]

The list-initialization macros should be adequate for most cases. However, if
necessary, you may obtain more control over list layouts by using the basic
list-begin macro .LB.

A tezt-indent argument gives the number of spaces that the text is to be
indented from the current indent. Normally, this value is taken from the
register Li for automatic lists and from the register Pi for bullet and dash lists.
The combination of mark-tndent and pad determines the placement of the
mark. The mark is placed within an area (called ‘‘mark area”) that starts
mark-indent spaces to the right of the current indent, and ends where the text
begins tezt-indent spaces to the right of the current indent. The mark-indent
argument is typically 0. Within the mark area, the mark is left-justified if pad
is 0. If pad is greater than 0, then n blanks are appended to the mark; the
mark-sndent value is ignored. The resulting string immediately precedes the
text. That is, the mark is eflectively right-justified pad spaces immediately to
the left of the text.

Type and mark interact to control the type of marking used. If type is 0, simple
marking is performed using the mark character(s) found in the mark
argument. If type is greater than 0, automatic numbering or alphabetizing is
done, and mark is then interpreted as the first item in the sequence to be used
for numbering or alphabetizing (i.e., it is chosen from the set 1, A, a, 1, 1).

Each nonzero value of type from 1 to 6 selects a different way of displaying the
items. The following table shows the output appearance for each value of type:

Type Appearance

1 X.

2 x)

3 (x)

4 fx}

] <x>
6 {x}

The mark must not contain ordinary (paddable) spaces, because alignment of
items will be lost if the right margin is justified.

LI-space gives the number of blank lines (halves of a vertical space) that should

be output by each .LI macro in the list. If omitted, LI-space defaults to 1; the
value 0 can be used to obtain compact lists. If LI-space is greater than 0, the .LI

4-25



XENIX Text Processing

macro issues a .ne request for two lines just before printing the mark. LB-
epace, the number of blank lines to be output by .LB itself, defaults to 0 if
omitted.

There are three reasonable combinations of LI-space and LB-space. The
normal case is to set LI-space to 1 and LB-space to 0, yielding one blank line
before each item in the list; such a list is usually terminated with 2 .LE 1 to end
the list with a blank line. For a more compact list, set LI-space to 0 and LB-
spaceto 1, and, again, use .LE 1 at the end of the list. The result is a list with one
blank ]me before and after it. If you set both LI-space and LB—space t0 0, and
use .LE to end thelist, a list without any blank lines will result.

4.6 Displays

Displays are blocks of text that are to be kept together rather than split across
pages. MM provides two styles of displays: a “static” (.DS) style and a
“floating” (.DF) style. In the static style, the display appears in the same
relative position in the output text as it does in the input text. If the display will
not fit in the space remaining on a page, it will be shifted to the top of the next
page. This may result in extra whitespace at the bottom of some pages. In the
floating style, the display floats through the input text to the top of the next
page if there is not enough room for it on the current page; thus the input text
that follows a floating display may precede it in the output text. A queue of
floating displays is maintained so that their relative order isnot disturbed.

By default, a display is processed in no-fill mode, with singlespacing, and is not
indented from the exlstmg margins. You can specxl‘y indentation or centering,
as well as fill- mode processing.

Displays and footnotes can never be nested in any combination. Although lists
and paragraphs are permitted, no headings (.H or .HU) can occur within
displaysor footnotes.

4.6.1 Static Displays

A static display macro has the form:

DS [format] [fill] [rindent]
one or more lines of text

.DE

A static display is started by the .DS macro and terminated by the .DE macro.
With no arguments, .DS will accept the lines of text exactly asthey are typed
{no-fill mode) and will not indent them from the prevallmg left ‘margin
indentation or from the right margin. The rindent argument is the number of
characters that the line length should be decreased, i.e., an indentation from
the right margin. This number must be unscaled in nroff and is treated asens.
It may be scaled in troff or else it defaults to ems.

4-26



MM Reference

‘The format argument to .DS is an integer or letter used to control the left
margin indentation and centering. The format argument can have the
following meanings:

Code Meaning

A No indent

OorL No indent

lorl Indent by standard amount
20r C Center each line

3or CB Center as a block

The fill argument is also an integer or letter and can have the following
meanings:

Code Meaning
“n -fill mode
O or N No-fill mode
lorF Fill mode

Omitted arguments are interpreted as zero.

The standard indentation is taken from the Siregister which is initially set at 5.
Thus, by default, the text of an indented display aligns with the first line of
indented paragraphs, whose indent is contained in the Piregister. Eventhough
their initial values are the same, these two registers are independent of one
another.

The display format value 3 (CB) centers the entire display as a block (as
opposed to .DS 2and .DF 2, which center each line individually). Thatis, all the
collected lines are left-justified, and the display is centered based on the width
of the longest line. This format must be used in order for the eqn/neqn mark
and lineup feature to work with centered equations.

'By default, a blank line is placed before and after displays. The blank lines
before and after static displays can be inhibited by setting the register Ds to 0.

4.6.2 Floating Displays
The floating display macro has the form:

.DF [format] [fil}] [rindent]
one or more lines of text

.DE

A floating display is started by the .DF macro and terminated by the .DE
macro. The arguments have the same meanings as for .DS (see Section 4.6.1,
“Static Displays’), except that for floating displays, indent, no indent, and
centering are always calculated with respect to the initial left margin, because
the prevailing indent may change between the time when the formatter first

427



XENIX Text Processing

reads the floating display and the time that the display is printed. One blank
line alwaysoccurs both before and after a floating display.

You may control output positioning of floating displays through two number
‘registers, De and Df. When a floating display is encountered by nroff or troff,
it is processed and placed into a queue of displays waiting to be output.
Displays are removed from the queue and printed in the order that they were
entered in the queue, which is the order that they appear in the input file. If a
new floating display is encountered and the queue of displays is empty, the new
display is a candidate for immediate output on the current page. Immediate
output is governed by the size of the display and the setting of the Df register.
The De register controls whether or not text will appear on the current page
after afloating display hasbeen produced.

The settings for the De register are as follows:

0 Default: No special action occurs.
-1 A page eject will always follow the output of each floating display,
so only one ﬁoatmg dlsplay will appear on a page and no text will
followit.

The settings for the Df register are asfollows:

0 Floating displays will not be output until end of section (when using
section-page numbering) or end of document.

1 Outputs the new floating display on the current page if there is

room, otherwise hold it until the end of the section or document.

2 ' Outputs exactiy one floating display from the queue at the top of a
new page or column (when in two-column mode).

3 Outputs one floating display on current page if there is room.
Outputs exactly one floating display at the top of a new page or
column.

4 Outputs as. many displays as will fit (at least one), starting at the

top of a new page or column. Note that if register De isset to 1, each
display will be followed by a page eject, causing a new top of page to
be reached, where at least one more display will be output.

5 Default. Outputs a new floating display on the current page if there
isroom. Outputs as many displaysas will fit starting at thetop of a
new page or column. Note that if register De isset to 1, each display
will be followed by a page eject, causing a new top of page to be
reached, where at least one more display will be output.

Note: any value greater than 5 is treated as the value 5.

4-28



MM Reference

The .WC macro may also be used to control handling of displays in double-
column mode and to control the break in the text before floating displays.

As long as the queue contains one or more displays, new displays will be
automatically added to the queue, rather than be output. When a new page is
started (or when at the top of the second column in two-column mode}, the next
display from the queue will be output if the Df register has specified top-of-page
output. When a display isoutputitisremoved from the queue.

When the end of a section (when using section-page numbering) or theend of a
document is reached, all displays are automatically output and removed from
the queue. This will occur before an .SG,.CS, or .TC macrois processed.

A display fits on the current page if there is enough room to contain the entire
display on the page, or if the display is longer than one page in length and less
than half of the current page has been used. Wide (full page width) display will
never fitin the second column of a two-column document. '

4.6.3 Tables
The table macro has the form:

.TS [H]

global options;
column descriptors.
title lines

[ TH[N]

data within the table.
.TE

The table start (.TS) and table end {.TE) macros allow use of the tbl processor.
They are used to delimit the text to be examined by the tbl program as well as
to set proper spacing around the table. The display function and the tbl
delimiting function are independent of one another, however. In order to keep
together blocks that contain any mixture of tables, equations, filled and unfilled
text, and caption lines, the .TS-.TE block should be enclosed within a display
(.DS-.DE), as each display is always treated as a unit. Floating tables may be
enclosed inside floating displays (.DF-.DE). (For more information on displays,
see Section 4.6, “Displays”.)

The macros .TS and .TE also permit processing of tables that extend over
several pages. If a table heading is needed for each page of a multipage table,
use the argument H with the . TS macro (as above). Following the options and
format information, the table heading is ty ped on as many lines as required and
followed by the .TH (table header) macro. The .TH macro must occur when
.TS H is used. Note that this is not a feature of tbl, but rather of MM macro
definitions.

429



XENIX Text Processing

The table header macro .TH may take as an argument the letter N. This
argument causes the table header to be printed only if it is the first table header
on the page. This option is used when it is necessary to build long tables from
smaller . TS H-.TE segments. For example:

TSH .

global options;
column descriptors.
Title lines

.TH

data

.TE

.TSH

global options;
column descriptors.
Title lines

.THN

data

.TE

This causes the table heading to appear at the top of the first table segment, and
no heading to appear at the top of the second segment when both appear on the
same page. However, the heading will still appear at the top of each page that
the table continues onto. This feature is used when a single table must be
broken into segments because of table complexity (for example, too many
blocks of filled text). If each segment had its own . TS H-TH sequence, each
segment would have its own header. However, if each table segment after the
first uses . TS H.TH N then the table header will only appear at the beginning of
the table and the top of each new page or column that the table continues onto.

4.6.4 Equations
The equation macro has the form:

DS1
EQ [label]
equation(s)

.DE

The equation formatters eqn and neqn use the the equation start ((EQ) and
equation end (.EN) macros as delimiters in the same way that tbl uses .TS and
.TE; however, .EQ and .EN must occur inside a .DS-.DE pair. There is an
exception to this rule: if .EQ and .EN are used only to specify the delimiters for
in-line equations or to specify eqn/neqn “defines”, .DS and .DE must not be
used; otherwise, extra blank lines will appear in the output.

The .EQ macro takes an argument that will be used as a label for the equation.
By default, the label appears at the right margin in the vertical center of the

4-30



MM Reference

general equation. The Eq register may be set to 1 to set the label at the left
margin. The equation is centered for centered displays; other wise, the equation
isadjusted to the opposite margin from the label.

4.6.5 Figure, Table, Equation, and Exhibit Captions

The macrosfor captions have the form:

FG [title] [override] [flag]

.TB {title] [override] [flag
.EC [title] [override| [flag
EX {title} [override] {flag

The figure title (.FG), table title (.TB), equation caption (.EC), and exhibit
caption (.EX) macros are normally used inside .DS-.DE pairs to automatically
number and title figures, tables, and equations. They use registersFg, Tb, Ec,
and Ex, respectively. Asan example, the macro:

.FG ”This is an illustration”
yields:
Figure 1. This is an illustration

Instead .of ‘‘Figure”’ TB prints “TABLE"’; .EC prints “Equation”, and .EX
prints “Exhibit”. Output is centered if it can fit on a single line; otherwise, all
lines but the first are indented to line up with the first character of the table
title. The format of the numbers may be changed using the .af request of the
formatter. The format of the caption may be changed from “Figure 1. Title” to
“Figure 1- Title’’ by setting the Of register to 1.

The override string is used to modify the normal numbering. If flag is omitted
or 0, override is used as a prefix to the number; if flagis 1, override is used asa
suffix; and if flag is 2, override replaces the number. If the -rN5 flag is given,
section-figure numbering is set automatically and the override string is
ignored.

As a matter of style, table headings are usually placed ahead of the text of the
tables, while figure, equation, and exhibit captions usually occur after the
corresponding figures and equations.

4.6.6 List of Figures, Tables, Equations, and Exhibits

Lists of Figures, Tables, Equations, and Exhibits may be obtained. They willbe

printed after the Table of Contentsis printed if the number registersLf,Lt, Lx,
andLearesetto 1. Lf,Lt, and Lx are 1 by default; Le is0 by default.

4-31



XENIX Text Processing

The titles of these lists may be changed by redeﬁmng the following strings
which are shown here with their default values:

.ds Lf LIST OF FIGURES

.ds Lt LIST -OF TABLES

.ds Lx LIST OF EXHIBITS
.ds Le LIST OF EQUATIONS

4.7 Footnotes

There are two macros that delimit the text of footnotes, a string used to
automatically number the footnotes, and a macro that specifies the style of the
footnote text. Like displays, footnotes are processed differently from the body
of the text.

Footnotes may be automatically numbered by typing the three characters
“\*F” immediately after the text to be footnoted, without any intervening
spaces. This will place the next sequential footnote number (in a smaller point.
size) a half-line above the text to be footnoted. :

There are two macros that delimit the text of each footnote:

.FS [label]
one or more lines of footnote text
.FE

The footnote start (.F'S) macro marks the beginning of the text of the footnote,
and the footnote end (.FE) macro marks its end. The label on .FS, if present,
will be used to mark the footnote text. Otherwise, the number retrieved from
the \*F will be used. Automatically numbered and user-labeled footnotes may
be intermixed. If a footnote is labeled .F'S the text to be footnoted must be
followed by ‘“label,”” rather than by \*F. The text between .FS and .FE is
processed in fill mode. Another .FS, a.DS, or a .DF are not permitted between
the .FS and .FE macros. Automatically numbered footnotes may not be used
for information, such as the title and abstract, to be placed on the cover sheet,
but labeled footnotes are allowed. Similarly, only labeled footnotes may be
used with tables. Here are two examples:

1. Automatically numbered footnote:

This is the line containing the word \*F
F§

This is the text of the footnote.

FE

to be footnoted.

432



MM Reference

2. Labeled footnote:

This is a labeled*

FS*

The footnote is labeled with an asterisk.
FE

footnote.

The text of the footnote (enclosed within the .FS- FE pair) should immediately
follow the word to be footnoted in the input text, so that \*F or label occurs at
the end of a line of input and the next line is the .FS macro call. It is also good
practice to append an unpaddable space to ‘‘label” when it follows an end-of-
sentence punctuation mark (i.e., period, question mark, exclamation point).

4.7.1 Format of Footnote Text

The footnote format macro has the form:
.FD |[arg] [1]

Within the footnote text, you can control the formatting style by specifying
text hyphenation, right margin justification, and text indentation, as well as
left- or right-justification of the label when text indenting is used. The .FD
macro isinvoked to select the appropriate style. The first argument should be a
number from the left column of the following table. The formatting style for
each number is given by the remaining four columns. For further explanation
of the first two of these columns, see the definitions of the .ad, .hy, .na, and .nh
requests. :

ARGUMENT | FORMATTING STYLE

0 .nh | .ad | text indent | label left-justified
1 .hy | .ad | text indent | label left-justified
2 .nh | .na | text indent | label left-justified
3 .hy | .na | text indent | label left-justified
4 .nh | .ad | no indent label left-justified
5 Jhy | .ad | no indent label left-justified
6 .nh | .na | no indent label left-justified
7 .hy | .na | no indent label left-justified
8 .nh | .ad | text indent | label right-justified
9 .hy | .ad | text indent | label right-justified
10 .nh | .na | text indent | label right-justified
11 .hy | .na | text indent | label right-justified

If the first argument to .FD is out of range, the effect is as if FD 0 were specified.
If the first argument is omitted or null, the efect is equivalent to .FD 10 in nroff
and to .FD 0in troff; these are also the respective initial defaults.

4-33



XENIX Text Processing

If a second argument is specified, then whenever a first-level heading is
encountered, automatically-numbered footnotes begin again with 1. This is
most useful with the section-page page numbering scheme. Asan example, the
input line:

FD" 1

maintains the default formatting style and causes footnotes to be numbered
beginning with 1 after each first-level heading.

For long footnotes that continue onto the following page, it is possible that, if
hyphenation is permitted, the last line of the footnote on the current page will
be hyphenated. Except for this case (which you can change by specifying an
even-numbered argument to .FD), hyphenation across pages is inhibited by
MM.

Footnotes are separated from the body of the text by a short rule. Footnotes
that continue to the next page are separated from the body of the text by a full-
width rule. In troff, footnotes are set in type that istwo points smaller than the
pointsize used in the body of the text.

Normally, one blank line (a three-point vertical space) separates the footnotes
when more than one occurs on a page. To change this spacing, set the register
Fstothe desired value. For example:

.nr Fs 2

will cause two blank lines (a six-point vertical space) to occur between
footnotes.

4.8 Page Headers and Footers

Text that occurs at the top of each page is known as the “page header”. Text
printed at the bottom of each page is called the ““page footer”. There can be up
to three lines of text associated with the header: every page, even pageonly, and
odd page only. Thus the page header may have up to two lines of text: the line
that occurs at the top of every page and the line for the even- or odd-numbered
page. The same is true for the page footer. When not qualified by “even” or
“odd”, “header” and “footer’” will mean those headers and footers that occur
on every page. The default appearance of page headers and page footers is
described here, followed by the methods for changing them.

4.8.1 Default Headers and Footers
By default, each page has a centered page number as the header. There isno

default footer and no even/odd default headers or footers, except with section-
page numbering.

4-34



MM Reference

In a memorandum or a released paper, the page header on the first page is
automatically suppressed, if a break does not occur before MT is called. Since
they do not cause a break, the header and footer macros are permitted before
the MT macro call.

4.8.2 Page Header

The page header macro has the form:

PH [arg]

For thisand for the .EH, .OH, .PF, .EF, and .OF macros, the argumentis of the
form:

"’left-part’center-part’right-part’”
If it is inconvenient to use the apostrophe (') as the delimiter {because it occurs
within one of the parts), it may be replaced uniformly by any other character.
On output, the parts are left-justified, centered, and right-justified,
respectively.
The .PH macro specifies the header that is to appear at the top of every page.
The initial value is the default centered page number enclosed by hyphens. The
page number contained in the P register is an Arabic number. The format of
the number may be changed by the .af request.
If ““debug mode” is set using the flag -rD1 on the command line, additional
information, printed at the top left of each page, is included in the default
header.
4.8.3 Even-Page Header
The even-page header macro has the form:

.EH [arg]
The .EH macro supplies 2 line to be printed at the top of each even-numbered
page, immediately following the header. Theinitial value isablank line.
4.8.4 Odd-Page Header
The odd-page header macro has the form:

.OH |arg]

Thismacroisthe same as .EH, except that it appliesto odd-numbered pages.

435



XENIX Text Processing

4.8.5 Page Footer

The form of the page footer macro is:
.PF [arg]

The .PF macro specifies the line that isto appear at the bottom of each page. Its
initial value is a blank line. If the -rCn flag isspecified on the command line, the
type of copy follows the footer on a separate line. In particular, if -rC3 or -rC4
(DRAFT) is specified, then the footer is initialized to contain the date, instead
of being a blank line.

4.8.6 Even-Page Footer
The even-page footer macro hasthe form:

EF [arg]
The .EF macro supplies a line to be printed at the bottom of each even-
numbered page, immediately preceding the footer. The initial value is a blank
line.
4.8.7 Odd-Page Footer
The odd-page footer macro has the form:

.OF |arg]
This macro is the same as .EF (described in Section 4.8.6), except that it applies
to odd-numbered pages.
4.8.8 Footer on the First Page
By default, the footer on the first page is a blank line. If, in the input text, you
specify .PF and/or .OF before the end of the first page of the document, then
these lines will appear at the bottom of the first page. The header (whatever its
contents) replaces the footer on the first page only if the -rN1 flag isspecified on
the command line.
4.8.9 Default Header and Footer With Section-Page Numbering
Pages can be numbered sequentially within sections. To obtain thisnumbering
style, specify ~-rN3 or -rIN5 on the command line. In this case, the default footer

is a centered section-page number (e.g., 7-2) and the default page header is
blank.

4-36



MM Reference

4.8.10 Strings and Registers in Header and Footer Macros

String and register names may be placed in the arguments to the header and
footer macros. If the value of the string or register is to be computed when the
respective header or footer is printed, the invocation must be escaped by four
backslashes. This is because the string or register invocation is actually
processed three times: as the argument to the header or footer macro; in a
formatting request within the header or footer macro; and in a .tl request
during header or footer processing.

For example, the page number register P must be escaped with four
backslashes in order to specify a header in which the page number is to be
printed at the right margin:

'PH ”"’Page \\\\npl’!

This creates a right-justified header containing the word “Page” followed by
the page number.

4.8.11 Header and Footer Example

The following sequence specifiesblank lines for the header and footer lines, page
numberson the outside edge of each page (i.e., top left margin of even pages and
top right margin of odd pages), and “Revision 3” on the top inside margin of
each page:

PH"
.PF "7
.EH "’\\\\nP”Revision 3"
.OH "’Revision 3”\\\\nP”

4.8.12 Generalized Top-of-Page Processing

This section and the next are intended only for users accustomed to writing
formatter macros. During header processing, MM invokes two user-definable
macros. One, the .TP macro, isinvoked in the environment of the header. The
JPX macro may be used to provide text that is to appear at the top of each page
after the normal header and that may have tab stops to align it with columns of
text in the body of the document.

The effective initial definition of .TP (after the first page of a document) is: '

437



XENIX Text Processing

.de TP
.sp 3

A \\e(eht
ife’tl
ifo’tl
.sp 2

The string }t contains the header, the string }e contains the even-page header,
and the string }o contains the odd-page header, as defined by the PH, .EH, and
.OH macros, respectively. To obtain more specialized page titles, you may
redefine the .TP macro to cause any desired header processing. Note that
formatting done within the .TP macro is processed in an environment different
from that of the body. ‘

For example, to obtain a page header that includes three centered lines of data,
say, a document’s number, issue date, and revision date, you could define .TP
as follows:

k .de TP

.sp
.ce 3

777-888-999

Iss. 2, AUG 1977
Rev. 7, SEP 1977

.sp

4.8.13 Generalized Bottom-of-Page Processing

The bottom start macro has the form:

.BS ,
zero or more lines of text

.BE
Lines of text that are specified between the bottom-block start (.BS) and
bottom-block end (.BE) macros will be printed at the bottom of each page after
the footnotes (if any), but before the page footer. This block of text is removed
by specifying an empty block, i.e.:

.BS
.BE

4.8.14 Top and Bottom Margins

The vertical margin macro has the form:

438



MM Reference

.VM |top] [bottom)]

The vertical margin (.VM) macro allows you to specify extra space at the top
and bottom of the page. This space precedes the page header and follows the
page footer. The .VM macro takes two unscaled arguments that are treated as
v’s. For example:

VM 1015

adds 10 blank lines to the default top of page margin, and 15 blank lines to the
default bottom of page margin. Both arguments must be positive (default
spacing at the top of the page may be decreased by redefining .TP).

4.9 Table of Contents

The table of contents for a document is produced by invoking the table of
contents {.TC) macro. The table of contents is produced at the end of the
writing process because the entire document must be processed before the table
of contents can be generated. The table of contents macro has the form:

.TC [slevel] [spacing] [tlevel] [tab] [head]] ... [headT]

The .TC macro generates a table of contents containing the headings that were
saved for the table of contents as determined by the value of the Cl register.
The arguments to .TC control the spacing before each entry, the placement of
the associated page number, and additional text on the first page of the table of
.contents before the word “CONTENTS”.

Spacing before each entry is controlled by the first two arguments; headings
whose level is less than or equal to slevel will have spacing blank lines (halves of
a vertical space) before them. Both sleveland spacing default to 1. This means
that first-level headings are preceded by one blank line. Note that slevel does
not control what levels of heading have been saved; that is controlled by the
setting of the Clregister.

The third and fourth arguments control the placement of the page number for
each heading. The page numbers can be justified at the right margin with
either blanks or leader dots separating the heading text from the page number,
or the page numbers can follow the heading text. For headings whose level is
less than or equal to tlevel (default 2), the page numbers are justified at the right
margin. In this case, the value of tab determines the character used to separate
the heading text from the page number. If tab is O (the default value}, dots (i.e.,
leaders) are used; if tab is greater than 0, spaces are used. For headings whose
level is greater than tlevel, the page numbers are separated from the heading
text by two spaces(i.e., they are ragged right).

All additional arguments (e.g., headl, head2), if any, are horizontally centered
on the page, and precede the actual table of contents itself.

4-39



XENIX Text Processing

If the .TC macro is invoked with at most four arguments, then the user-exit
macro .TX is invoked (without arguments) before the word “CONTENTS” is
printed; or the user-exit macro .TY isinvoked and the word “CONTENTS” is
not printed. By defining .TX or .TY and invoking .TC with at most four
arguments, you can specify what needs to be done at the top of the (first) page of
the table of contents.

By default, the first level headings will appear in the table of contents at the left
margin. Subsequent levels will be aligned with the text of headings at the
preceding level. These indentations may be changed by defining the Ci string
which takes a maximum of seven arguments corresponding to the heading
levels. It must be given at least as many arguments as are set by the Cl register.
The arguments must be scaled. For example, with Cl =5,

.ds Ci .25i .51 .751 11 1i
or
.ds Ci 0 2n 4n 6n 8n

Two other registers are available to modify the format of the table of contents,
Oc and Cp. By default, table of contents pages will have lowercase Roman
numeral page numbering. If the Oc register is set to 1, the .TC macro will not
print any page number but will instead.reset the P register to 1. It is your
responsibility to give an appropriate page footer to place the page number.
Ordinarily the same .PF used in the body of the document and exhibits will be
-adequate. The List of Figures and List of Tables will be produced separately
~ unless Cp is set to 1 which causes these lists to appear on the same page as the
table of contents.

4.10 References

There are two macros that delimit the text of references, a string used to
automatically number the references, and an optional macro that produces
reference pages within the document.

4.10.1 Automatic Numbering of References

Automatically numbered references may be obtained by typing \#(Rf
immediately after the text to be referenced. This places the next sequential
reference number (in a smaller point size) enclosed in brackets a half-line above
the text to be referenced.

4.10.2 Delimiting Reference Text

The RS and .RF macros are used to delimit text for each reference. They have
the following form:

4-40



MM Reference

A line of text to be referenced.\*(Rf
RS [string-name]

reference text

.RF

4.10.3 Subsequent References
.RS takes one argument, a ‘‘string-name”’. For example:

RS AA
reference text
.RF

The string AA is assigned the current reference number. It may be used later in
the document, as the string call \*(AA to reference text which must be labeled
with a prior reference number. The reference is output enclosed in brackets a
half-line above the text to be referenced. No.RS or RF is needed for subsequent
references.

4.10.4 Reference Page

An automatically generated reference page is produced at the end of the
document before the table of contents and the cover sheet are output. The
reference page is entitled “References”. This page contains the reference text
(RS/RF). The user may change the reference page title by defining the Rp
string. For example,

.ds Rp "New Title”

The optional reference page (.RP) macro may be used to produce reference
pages anywhere within a document (i.e., within heading sections).

.RP [argl] [arg2]

These arguments allow the user to control resetting of reference numbering
and page skipping. The first argument with a value of 0 indicates that the
reference counter is to be reset; this is the default. A value of 1 indicates that
the counter will not be reset. In the second argument, a value of 0 causes a
following .SK; a value of 1 does not cause an .SK. .RP need not be used unless
you want to produce reference pageselsewhere in the document.

4.11 Miscellaneous Features

In this section a number of MM features to control font, spacing, justification,
multiple-column output and page skipping are discussed.

4-41



XENIX Text Processing

4.11.1 Bold, _ltalic, and Roman Fonts
Font changes are obtained with the following macros:

B [bold-arg] [previous-font-arg] ...
I [italic-arg] [previous-font-arg] ...
R

When called without arguments, .B changes the font to bold and .I changes to
italic (troff) or underlining (nroff). This condition continues until the
occurrenceof 2 .R, when the regular Roman fontisrestored. Thus,

|
here is some text.
.R

yields:
here is some teat.

If B or .Iis called with one argument, that argument is printed in the
appropriate font (underlined in nroff for .I). Then the previous font is restored
(underlining is turned off in nroff). If two or more arguments (maximum 6) are
givento a.Bor I, the second argument is then concatenated to the first with no
intervening space (1/12-space if the first font is italic), but is printed in the
previous font; and the remaining pairs of arguments are similarly alternated.
For example:

JTitalic ™ text ” right -justified
produces:
ttalic text right-justified

These macros alternate with the prevailing font at the time they are invoked.
To alternate specific pairs of fonts, the following macrosare available:

IB
BI
IR
RI
RB
BR

Each takes a maximum of 6 arguments and alternates the arguments between
‘the specified fonts. Note that font changesin headings are handled separately.

4-42



MM Reference

4.11.2 Right Margin Justification

The justification macro has the form:
.SA [arg]

The .SA macro is used to set right-margin justification for the main body of
text. Two justification flags are used: “‘current’’ and ‘‘default”. .SA 0 setsboth
flags to no justification (i.e., it acts like the .narequest). .SA 1 is the inverse: it
sets both flags to cause justification, just like the .ad request. However, calling
.SA without an argument causes the current flag to be copied from the default
flag, thus performing either an .na or .ad, depending on what the default is.
Initially, both flags are set for no justification in nroff and for justification in
troff.

In general, the request .na can be used to ensure that justification is turned oﬁ‘,
but .SA should be used to restore justification, rather than the .ad request. In
this way, justification or lack thereof for the remainder of the text is specified
by inserting .SA Oor .SA 1once at the beginning of the document.

4.11.3 SCCS Release Identification

The string .ft 1 E contains the SCCS Release and Level of the current version
of MM. For example, typing:

This is version \*(RE of the macros.
ﬁroduces:

This is version 15.110 of the macros.
This information is useful in analyzing suspected bugsin MM. The easiest way
to have this number appear in your output is to specify -rD1 on the command
line, which causes the string RE to be output aspart of the page header.

4.11.4 Two-Column Output

MM can print two columnson a page:

2C :
text and formatting requests (except another .2C)

1C

The .2C macro begins two-column processing which continues until a .1C
macro is encountered. In two-column processing, each physical page is thought
of as containing two columnar pages of equal (but smaller) page width. Page
headers and footers are not affected by two-column processing. The .2C macro

443



XENIX Text Processing

daes not balance two-column output.

It is possible to have full page width footnotes and displays when in two column
mode, although the default action is for footnotes and displays to be narrow in
two column'mode and wide in one column mode. Footnote and display width is
controlled by the width control ((WC) macro, which takes the following
arguments:

N. Normal default mode
WF Wide footnotes always {even in two-column mode)
~-WF Default: turns off WF (footnotes follow column !fxode, wide in 1C

mode, narrow in 2C mode, unlessFF isset)

FF First footnote; all footnotes have the same width as the first
footnote encountered for that page

-FF Default: turns off FF (footnote style follows the settings of WF or
: -WF)

WD Wide displays always(even in two column mode)

-WD  Default: Displays follow whichever column mode is in effect whenb

the display isencountered

For example: ' WC WD FF will cause all displays tobe wide, and all footnoteson

a page to be the same width, while .WC N will reinstate the default actions. If

conflicting settings are given to .WC the last one is used. Thatis, WC WF -WF
_hastheeffect of WC-WF.

4.11.5 Vertical Spacing

The vertical space macro has the form:
.SP [lines]

The .SP macro avoids the accumulation of vertical space by successive macro
calls. Several .SP calls in a row produce not the sum of their arguments, but
their maximum; i.e., the following produces only 3 blank lines:

SP2
SP 3
.SP

There are several ways of obtaining vertical spacing, all with different effects.
The .sp request spaces the number of lines specified, unless no-space (.ns) mode
is on, in which case the request is ignored. The .ns mode is typically set at the
end of a page header in order to eliminate spacing by a.sp or .bp request that

4+4



MM Reference

just happens to occur at the top of a page. The .ns mode can be turned off with
the restore spacing (.rs) request.

Many MM macros utilize .SP for spacing. For example, .LE 1 immediately
followed by .P produces only a single blank line between the end of the list and
the following paragraph. An omitted argument defaults to one blank line (one
vertical space). Negative arguments are not permitted. The argument must be
unscaled but fractional amounts are permitted. Like .sp, .SP is also inhibited
by the .nsrequest.

4.11.8 Skipping Pages
The skip page macro has the form:

.SK |[pages]
The .SK macro skips pages, but retains the usual header and footer processing.
If pagee is omitted, null, or 0, .SK skips to the top of the next page unless it is
currently at the top of a page, in which case it does nothing. .SK nskipsn pages.
That is, .SK always positions the text that follows it at the top of a page, while
.SK 1 always leaves one page that is blank except for the header and footer.
4.11.7 Forcing an Odd Page
The odd page macro has the form:

.OP
This macro is used to ensure that the following text begins at the top of an odd-
numbered page. If currently at the top of an odd page, no motion takes place. If
currently on an even page, text resumes printing at the top of the next page. If
currently on an odd page (but not at the top of the page) one blank page is
produced, and printing resumeson the page after that.
4.11.8 Setting Point Size and Vertical Spacing
In troff, the default point size (obtained from the register S) is 10, with a
vertical spacing of 12 points. The prevailing point size and vertical spacing
may be changed by invoking the .S macro:

.S [point size] [vertical spacing]

The mnemonics, D for default value, C for current value, and P for previous
value, may be used for both point size and vertical spacing arguments.

Arguments may be signed or unsigned. If an argument is negative, the current
value is decremented by the specified amount. If the argument is positive, the

4-45



XENIX Text Processing

current value is incremented by the specified amount. If an argument is
unsigned, it is used as the new value. .S without arguments defaults to previous
(P). If thefirst argument is specified but the second argument (vertical spacing)
isnot then the default (D) value is used. The default value for vertical spacing is
always 2 points greater than the current point size value selected. Footnotes
‘are printed in a size 2 points smaller than the point size of the body, with an
additional vertical spacing of 3 points between footnotes. A null (*”) argument
for either the first or second argument defaults to the current (C) value.

4.11.9 Inserting Text Intéractively
The read insertion macro hasthe form:
.RD [prompt] [diversion] [string]

The read insertion macro (.RD) allows you to stop the standard output of a
document and to read text from the standard input until two consecutive
newlines are found. When the newlines are encountered, normal output is
resumed. ' '

.RD follows the formatting conventions already in effect. Thus, the examples
below assume that the .RD is invoked in no fill mode (.nf). The first argument is
a prompt which will be printed at the terminal. If no prompt is given, .RD
signals the user with a bell on terminal output.

The second argument, a diversion name, allows the user to save all the entered
text typed after the prompt. The third argument, a string name, allows the
user to save for later reference the first line following the prompt. For example:

.RD Name aa bb
produces

Name: C. R. Jones
16 Densmore St,
Kensington

The diversion aa contains:
C. R. Jones
16 Densmore St,
Kensington

The string bb contains C.R. Jones.

A newline followed by a CNTRL-D (ASCI end-of-file) also allows you to
resume normal output.

4-46



MM Reference

4.12 Memorandum and Released Paper Styles

MM lets you specify a style for amemorandum or technical paper with a macro
that controls the layout of heading information (e.g. title, author, date, etc.) on
the first page or cover sheet. The information is entered in the same way for
both styles; an argument indicates which style is being used. The macros used
to specify paper style are described in this section.

Note that it is critical to enter the macros in the order prescribed here. If
neither the memorandum nor released-paper style is desired, the macros
described below should be omitted from the input text. If these macros are
omitted, the first page will simply have the page header followed by the body of
the document. :

4.12.1 Title

The title macro hasthe form:

.TL
one or more lines of title text

The title of the memorandum or paper follows the .TL macro and is processed
in fill mode. On output, the title appears after the word “subject” in the
memorandum style. In the released-paper style, the title is centered and bold.

4.12.2 Authors
The author macro has the form:

AU name [initials]
AT [title] ...

Aseparate AU macroisrequired for each author named.

The .AT macro is used to specify the author’s title. Up to nine arguments may
be given. Each will appear in the Signature Block for memorandum style on a
separate line following the signer’s name. The .AT must immediately follow
the .AU for the given author. For example:

AU "C. R. Jones” [initials] [loc] [dept] [ext] {room]
AT "Editor-in-chief”

In the ‘‘from” portion for the memorandum style, the author’s name is followed
by location and department number on one line and by room number and
extension number on the next. The x for the extension is added automatically.
The printing of the location, department number, extension number, and room
number may be suppressed on the first page of a memorandum by setting the

+47



XENIX Text Processing

register Au to 0; the default value for Auis 1. Arguments7 through 9 of the .AU
macro, if present, will follow this ‘normal” author information in the “from”
portion, each on a separate line. If your organization hasa numbering scheme
for memoranda, engineer’s notes, etc., these numbers are printed- after the
~ author’s name.- This can be done by providing extra arguments to the .AU
macro.

. The name, initials, location, and department are also used in the Signature
Block described below. The author information in the from portion, as well as
the names and initials in the Signature Block will appear in the same order as
the . AUmacros. :

The names of the authors in the released-paper style are centered below the
title.

4.12.3 Technical Memorandum Numbers

The technical memorandum macro has the form:
.TM [number] ...

If the memorandum is a Technical Memorandum, the TM numbers are
supplied via the .TM macro. Up to nine numbers may be specified. For
‘example:

.TM 7654321 77777777

If present, this macro will be ignored in papers assigned the released-paper or
external-letter styles.

4.12.4 Abstract

The abstract macro has the form:

.AS [arg] [indent]
text of the abstract
AE

Three styles of cover sheet -are available: Technical Memorandum,
Memorandum for File, and released-paper. On the cover sheet, the text of the
abstract follows the author information and is preceded by the centered and
underlined (italic) word “ABSTRACT".

The abstract start (.AS) and abstract end (.LAE) macros bracket the abstract.

The abstract is optional except that for the Memorandum for File style no
cover sheet will be produced unlessan abstract is given.

4-48



MM Reference

A combination of the first argument to .AS and the use of the .CS macro (see
Section 4.12.15) controls the production of the cover sheet. If the first
argument is 2, a Memorandum for File cover sheet is generated automatically.
Any other value for the first argument causes the text of the abstract to be
saved until the .CS macro is invoked, then the appropriate cover sheet (either
Technical Memorandum or released paper depending on the .MT type) is
generated. Thus, .CS is not needed for Memorandum for File cover sheets.
Notations, such as a copy to list, are allowed on Memorandum for File cover
sheets. The NS and .NE macrosare given following the AS2and .AE.

The abstract is printed with ordinary text margins. An indentation to be used
for both margins can be specified as the second argument for .AS. Values that
specify indentation must be unscaled and are treated as character positions,
i.e., as the number of ens. Headings and displays are not permitted within an
abstract.

4.12.5 Other Keywords
The keyword macro hasthe form:

.OK [keyword] ...
Topical keywords should be specified on a Technical Memorandum cover sheet.
Up to nine such keywords or keyword phrases may be specified asarguments to
the .OK macro; if any keyword contains spaces, it must be enclosed within
double quotation marks. ‘
4.12.6 Memorandum Types
The memorandum type macro has the form:

MT [type] [addressee]
The .MT macro controls the format of the top part of the first page of a

memorandum or of a released paper, as well as the format of the cover sheets.
Legal codes for type and the corresponding valuesare:

Code Value

MT " No memorandum type is printed
.MT 0 No memorandum type is printed
MT MEMORANDUM FOR FILE
MT 1 MEMORANDUM FOR FILE
MT 2 PROGRAMMER'S NOTES
MT 3 ENGINEER’S NOTES

MT 4 Released-paper style

MT 5 External-letter style

MT "string”  String

4-49



XENIX Text Processing

If type indicates a memorandum style, then the value will be printed after the
last line of author information. If type is longer than one character, then the
string itself will be printed. For example:

.MT "Technical Note #5”

A simple letter is produced by calling .MT with a null (but not omitted!) or zero
argument.

The second argument to MT is used to give the name of the addressee of a
letter. The name and page number will be used to replace the ordinary page
header on the second and following pages of the letter. For example,

.MT 1 " Charles Jones”
produces

Charles Jones - 2
asthe header on the second page.

This second argument may not be used if the first argument is 4 (the released-
paper style).

In the external-letter style (MT 5), only the title (without the word “subject:”)
is printed in the upper left and right corners, respectively, on the first page.
You would normally use this style with preprinted stationery that has the
company name and address already printed on it.

4.12.7 Date and Format Changes

By default, the current date appears in the date part of a memorandum. This
can be overridden by using:

.ND new-date ’

The .ND macro alters the value of the string DT, which is initially set to the
current date. ‘

4.12.8 Alternate First-Page Format

You can specify that the words *‘subject”, “date”, and “from” be omitted in
the memorandum style by using the alternate format (.AF) macro. Unless you
use the .AF macro, with your own company name as an argument, ‘‘Bell
Laboratories” will automatically. be printed as the company name on any
papers which begin with .MT macros. Therefore, you will alwayswant to use:

4-50-



MM Reference

.AF [company-name]

If an argument is given, it replaces “‘Bell Laboratories’ without affecting the
other headings. The .AF with no argument suppresses “Bell Laboratories’’ as
well as the ““subject’”, “date”, and ““from” headings. The use of .AF with no
arguments isequivalent to the use of -rAl on the command line, except that the

" latter must be used if it is necessary to change the line length and/or page offset
(which default to 5.8i and 1i, respectively, for preprinted forms). The
command line options-rOk and -rWk are not effective with .AF.

The only .AF option a;;propriate for troff is to specify an argument to ieplace
“Bell Laboratories’ with another name.

4.12.9 Released-Paper Style

The released-paper style isobtained by specifying:
MT 4 [1]

This results in a centered, bold title followed by centered names of authors.
The location of the last author is used as the location following ‘Bell
Laboratories’ unless .AF is used to specify a different company. If the optional
second argument to .MT 4 is given, Then the name of each author is followed by
the respective company name and location. Information necessary for the
memorandum style but not for the released-paper style is ignored. The
Signature Block macros and their associated lines of input are also ignored
when the released-paper style is specified.

In addition to using the .AF macro to specify your company name, you can
define a string with a two-character name for your address before each .AU.
For example:

.TL

A Learned Treatise

.AF "Getem, Inc.”

.ds XX 22 Maple Avenue, Sometown 09999”
AU "F. Swatter” ** XX

.AF "Profit Associates”

AU "Sam P. Lename” " CB

MT 41

4.12.10 Order of Invocation of Beginning Macros

The macros described in this section must be given in the following order if they
are used to define document style:

4-51



XENIX Text Processing

.ND new-date

.TL

one or more lines of text
.AF [company-name]
.AU name [initials] [loc] [dept] [ext] [room] [arg] [arg) [a.rg]
AT [title] ...

™ [number]

.AS [arg] [indent]

one or more lines of text
AE

NS [arg]

one or more lines of text
.NE

.OK [keyword] ...

MT [type] [addressee]

The only required macros for a memorandum or a released paper are .TL, .AU,
and .MT; all the others (and their associated input lines) may be omitted if the
features they provide are not needed. Once .MT has been invoked, none of the
above macros (except .NS and .NE) can be reinvoked because they are removed
from the table of defined macrosto save space.

4.12.11 Macros for the End of a Memorandum

At the end of a memorandum (but not of a released paper), the signaturesof the
authors and a list of notations can be requested. The following macros and
their input are ignored if the released-paper style isselected. A signature block
macrois provided in the form:

FC [closing]
.SG [arg] [1]

FC prints “Yours very truly’’ as a formal closing. It must be given before the
.SG which prints the signer’s name. A different closing may be specified as an
argument to .FC. .SG prints the author name(s) after the formal closing (or the
last line of text). Each name begins at the center of the page. Three blank lines
are left above each name for the actual signature. If no argument is given, the
line of reference data (e.g., location code, department number, author’sinitials,
and typist’sinitials) will not appear following the last line.

A first argument is treated as the typist’s initials, and is appended to the
reference data. A null argument prints reference data with nelther the typist’s
initials nor the preceding hyphen.

If there are several authors and if the second argument is given, then the

reférence data is placed on the same line as the name of the first author, rather
than on the line that hasthe name of the last author.

4-52



MM Reference

The reference data contains only the location and department number of the
first author. Thus, if there are authors from different departments or from
different locations, the reference data should be supplied manually after the
invocation (without arguments) of the .SG macro.

4.12.12 Copy to and Other Notations
The notation macro has the form:

.NS [arg] , :
zero or more lines of the notation
.NE

After the signature and reference data, many types of notations may follow,
such as a list of attachments or copy to lists. The various notations are
obtained through the .NS macro, which provides for the proper spacing and for
breaking the notations across pages, if necessary.

The codes for arg and the corresponding notations are:

Code Notations

NS™” Copy to

.NSo Copy to

.NS Copy to

NS 1 Copy (with att.) to
NS 2 Copy (without att.) to
.NS3 - Att.

.NS 4 Atts.

.NS5 Enc.

.NS6 Enecs.

NS7 Under Separate Cover
.NS8 - Letter to

.NS 9 Memorandum to

.NS ”string”  Copy (string) to

If arg consists of more than one character, it is placed within parentheses
between the words *“Copy’’ and “to”’. For example:

.NS "with att. 1 only”

generates “Copy (with att. 1 only) to” as the notation. More than one notation
may be specified before the .NE occurs, because a .NS macro terminates the
preceding notation, if any. ~

The .NS and .NE macros may also be used at the beginning following .AS and
.AE to place the notation list on the Memorandum for File cover sheet. If
notations are given at the beginning without .AS 2, they will be saved and
output at the end of the document.

4-53



XENIX Text Processing

4.12.13 Approval Signature Line

The approval signature macro has the form:
.AV " Jane Doe”

It can be used to provide a space for an approval signature next to the printed
name.

4.12.14 Forcing a One-Page Letter

At times it is useful to get a bit more space on the page, by forcing the signature
or items within notations onto the bottom of the page, so that the letter or
memo is just one page in length. This can be accomplished by increasing the
page length through the —rLn option, e.g. -rL90. This has the effect of making
the formatter believe that the page is 90 lines long and therefore giving it more
- room than usual to place the signature or the notations. This will only work for
asingle-page letter or memo.

4.12.15 Cover Sheet
The cover sheet macro has the form:
.CS [pages] [other] [total] [figs] [tbls] [refs]

The .CS macro generates a cover sheet in either the Technical Memorandum
(TM) or released-paper style. Allof the other information for the cover sheet is
obtained from the data given before the MT macro call. If a TM style isused,
the .CS macro generates the “Cover Sheet for Technical Memorandum”. The
data that appears in the lower left corner of the TM cover sheet (the number of
pages of text, the number of other pages, the total number of pages, the number
of figures, the number of tables, and the number of references) is generated
automatically. These values may be changed by supplying the appropriate
arguments to the .CS macro. Any values that are omitted will be calculated
automatically (0 is used for other pages). If the released-paper style is used, all
arguments to .CS are ignored.

4.13 Reserved Names

If you are extending, changing, or redefining existing MM macros, use the legal
names listed in this section. The following conventions are used in this section
to describe legal names:

4-54



MM Reference

Digit

Lowercase letter

Uppercase letter

Any letter or digit (any alphanumeric character)
Special character (any nonalphanumeric character)

L N

Allother charactersare literals (i.e., stand for themselves).
Note that “request”, ‘‘macro”, and “‘string’’ names are kept by the formatters

in a single internal table, so that there must be no duplication among such
names. “Number register’’ names are kept in a separate table.

4.13.1 Names Used by Formatters

These are the names of the registers and requests used by nroffand troff.

Requests

aa (most common)

an (only one, currently: .c2)
Registers

aa(normal)

.x (normal)

.s(only one, currently: .$)
% (page number)

4.13.2 Names Used by MM

These are the names of the macros, strings, and registers used by MM.

Macros
AA (most common, accessible to user)
A (less common, accessible to user)
)x (internal, constant)
>x (internal, dynamic)
Strings

AA (most common, accessible to user)

A (less common, accessible to user)

ix (internal, usually allocated to specific functions throughout)
}x (internal, more dynamic usage)

Registers Aa(most common, accessible to users)
An (common, accessible to user)
A (accessible, set on command line)
:x (mostly internal, rarely accessible, usually dedicated)
;x (internal, dynamic, temporaries)

4-55



XENIX Text Processing

4.13.3 Names Used by eqn/neqn and tbl

The equation preprocessors, eqn and neqn, use registers and string names of
the form nn. The table preprocessor, tbl, uses the following names:

a at+ a | nn #a ## # #° "a T& TW

4.13.4 User-Definable Names

None of the above may be used to define your own extensions. To avoid
problems, use names that consist either of a single lowercase letter, or of a
lowercase letter followed by anything other than a lowercase letter. The
followingisasample naming convention, where acan be any letter:

For macros use a lowercase letter, followed by an uppercase letter (aA),
or an uppercase letter followed by a lowercase letter (Aa).

For strings use a, followed by a parenthesis (), a bracket (]}, or a brace

)

Forregisters  use alowercase letter followed by an uppercase letter (aA).

4.13.5 Sample Extension

The following is an example of how MM macro definitions may be extended.
Thissequence generates and numbers the pages of appendices:

arHul
.nra0
.de aH
.nr a +1
.nrPO

JPH " *““Appendix \\na - \\\\\\\\rP ”

.SK

HU "\\$1”
After the above initialization and definition, each call of the form .aH ‘‘title”’
begins a new page (with the page header changed to “Appendix a -n ”*) and
generates an unnumbered heading of “title,” which, if desired, can be saved for

the table of contents. Those who wish Appendix titles to be centered must, in
addition, set the register Hc to 1.

4.14 Errors

When a macro discovers an error, a break occurs in processing. To avoid

4-56



MM Reference

confusion regarding the location of the error, the formatter output buffer
(which may contain some text) is printed and a short message is printed giving
the name of the macro that found the error, the type of error, and the
approximate line number (in the current input file) of the last processed input
line. Processing terminates, unless the register D has a positive value. In the
latter case, processing continues even though the output is guaranteed to be
deranged from that pointon.

Note that the error message is printed by writing it directly to the user’s
terminal. If either tbl or eqn/neqn, or both are being used, and if the -olist

option of the formatter causes the last page of the document not to be printed, a
harmless ‘‘broken pipe”’ message results.

4.14.1 Disappearance of Output
This usually occurs because of an unclosed diversion (e.g., a missing .FE or
" .DE). Fortunately, the macros that use diversions are careful about it, and they
check to make sure that illegal nestings do not occur. If any message is issued
about a missing .DE or .FE, the appropriate action is to search backwardsfrom
the termination point looking for the corresponding .DS, .DF, or .FS.
The following command:

grep -n "\.[EDFT|[EFNQS]” files ...
prints all the .DS, .DF, .DE, .FS, .FE,.TS, .TE, .EQ, and .EN macros found in
the files, each preceded by its filename and line number in that file. This listing
can be used to check for illegal nesting and/or omission of these macros.

4.14.2 MM Error Messages

Each MM error message consists of a standard part followed by a variable part.
The standard part is of the form:

ERROR:input line n
The variable part consists of a descriptive message, usually beginning with a
macro name. The variable parts are listed below in alphabetical order by
macro name, each with a more complete explanation:
Check TL, AU, AS, AE, MT sequence
These macros for the beginning of a memorandum are out of sequence.

AlL:bad arg:value

The argument to the .AL macroisnot one of 1, A, a, I, or i. The incorrect
argument is shown as value.

457



XENIX Text Processing

CS:cover sheet too long

The text of the cover sheet is too long to fit on one page. The abstract
‘should be reduced or the indent of the abstract should be decreased.

DS:too many displays

More than 26 floating displays are active at once, ie., have been
accumulated but not yet output.

DS:missing FE

A display starts inside a footnote. The likely cause is the omission (or
misspelling) of a .FE to end a previous footnote.

DS:missing DE

.DS or .DF occurs within a display, i.e., 3 .DE has been omitted or
mistyped.

DE:noDS or DF active

.DE hasbeen encountered but there has not been a previous .DS or .DF to
matchit.

FE:noFS
FE has been encountered with no previous .FS to match it.
FS:missing FE

A previous.FS was not. matched by a closing .FE, i.e., an attempt is being
made to begin afootnote inside another one.

FS:missing DE

A footnote starts inside a display, i.e., 2 .DS or .DF occurs without a
matching .DE.

H:bad arg:value

The first argument to .H must be a single digit from 1 to 7, but value has
been supplied instead.

H:missing FE
A heading macro (.Hor .HU) occursinside a footnote.

H:missing DE

4-58



MM Reference

"~ Aheadingmacro (.Hor .HU) occursinside a display.
H:missing arg
.Hneedsatleast 1 argument.
HU:missing arg
.HU needs 1 argument.
LB:missing arg(s)
.LBrequiresat least 4 arguments.
LB:too many nested lists
Another list was started when there were already 6 active lists.
LE:mismatched
.LE has occurred without a previous .LB or other list-initialization
macro. Although this is not a fatal error, the message is issued because
there almost certainly exists some problemin the preceding text.
LI:no lists active
.LI occurs without a preceding list-initialization macro. The latter has
probably been omitted, or has been separated from the .LI by an
intervening .H or .HU.
ML:missing arg
ML requires at least 1 argument.
ND:missing arg
.NDrequires 1 argument.
SA:bad irg:value

The argument to .SA (if any) must be either 0 or 1. The incorrect
argument is shown as value.

SG:missing DE
.SG occursinside a display.
SG:missing FE

.SG occursinside a footnote.

4-59



XENIX Text Processing

SG:no " authors
.SG occurs without any previous .AU macro(s).
VL:missing arg

.VL requires at least 1 argument.

4.14.3 Formatter Error Messages

Most messages issued by the formatter are self-explanatory. Those error
messages over which the user has some control are listed below.,

Cannot doev
Caused by setting a page width that is negative or extremely short,
setting a page length that is negative or extremely short, reprocessing a
macro package (e.g. performing a a macro package that was requested
from the command line), or requesting the -sl option to troff on a
document thatislonger than ten pages.

Cannot execute filename
Given by the .!request if it cannot find the filename.

Cannot open filename
Issued if one of the files in the list of files to be processed cannot be opened.

Exception word list full

Too many words have been specified in the hyphenation exception list
{via.hw requests).

Line overflow
The output line being generated was too long for the formatter’s line
buffer. The excess was discarded. See the “Word overflow” message
below.

Nonexistent font type
Arequest hasbeen made to mount an unknown font.

Nonexistent macro file

The requested macro package does not exist.

4-60



MM Reference

Nonexistent terminal type
The terminal options refers to an unknown terminal type.

Out of temp file space
Additional temporary space for macro definitions, diversions, etc. cannot
be allocated. This message often occurs because of unclosed diversions
(missing .FE or .DE), unclosed macro definitions (e.g., missing **..”), or a
huge table of contents.

Too many page numbers
The list of pages specified to the formatter —o option is too long.

Too many string/macro names

The pool of string and macro names s full. Unneeded strings and macros
can be deleted using the .rm request.

Too many number registers

The pool of number register names is full. Unneeded registers can be
deleted by using the .rr request.

Word overflow

A word being generated exceeded the formatter’s word buffer. The excess
characters were discarded. A likely cause for this and for the “Line
overflow’’ message above are very long lines or words generated through
the misuse of \ ¢ or of the .cu request, or very long equations produced by
eqn or neqn.

4-61



XENIX Text Processing

4.15 Summary of Macros, Strings, and Number
Registers

The following is an alphabetical list of macro names used by MM. The first line
of each item gives the name of the macro and a brief description. The second
line shows the form in which the macro is called. Macros marked with an
asterisk are not, in general, invoked directly by the user. They are “‘user exits’’
called from inside header, footer, or other macros. '

1C  One-column processing
.1C

2C  Two-columnprocessing
.2C

AE Abstractend
AE

AF - Alternate format of “Subject/Date/From” block
.AF [company-name]

AL Automatically-incremented list start
.AL [type] [text-indent] [1]

AS Abstractstart
" .AS]arg] [indent]

AT Author’stitle
AT [title] ...

AU Authorinformation
.AU name [initials] [loc] [dept] [ext] [room] [arg] [arg] [arg]

AV Approvalsignature
AV [name]

‘"B Bold :
.B [bold-arg] [previous-font-arg] [bold] [prev] [bold] [prev]

BE Bottomend
.BE

BI  Bold/Italic
Bl [bold-arg] [italic-arg] [bold] [italic] [bold] [italic]

BL Bulletliststart
.BL [text-indent] [1]

462



BR
BS
cs

'DE
DF
DL
DS
EC
EF

EH

FC
FD
FE

FG

MM Reference

Bold/Roman
.BR |bold-arg] [Roman-arg] [bold] [Roman] [bold] [Roman]

Bottom start
.BS

Cover sheet .
.CS [pages] [other] [total] [figs] [tbls] [refs]

Display end
.DE

Display floating start
.DF [format] [fill] [right-indent]

Dash list start
DL [text-indent] |1}

Display static start
.DS [format] [fill] [right-indent]

Equation caption
.EC [title] [override] [flag]

Even-page footer
.EF [arg]

Even-page header
.EH [arg]

End equation display
EN

Equation display start
.EQ [label]

Exhibit caption
EX[title] joverride] [flag]

Formal closing
FC|closing]

Footnote default format
FD|arg] [1]

Footnote end
FE

Figure title
FG [title] [override] [flag]

4-83



XENIX Text Processing

FS

H

HC

HZ

LB

LC

LE

LI

4-64

Footnote start
JFS|label]

Heading—numbered
.Hlevel [heading-text] [heading-suffix]

Hyphenation character
.HC [hyphenation-indicator]

Heading mark style (Arabic or Roman numerals, or letters)
.HM [argl]... [arg7]

Heading—unnumbered
.HU heading-text

Heading user exit X (before printing heading)
.HX dlevel rlevel heading-text

Heading user exitY (before printing heading)
.HY dlevel rlevel heading-text

Heading user exit Z (after printing heading)
.HZ dlevelrlevel heading-text

Italic (underline in nroff)
Ifitalic-arg] [previous-font-arg] [italic] [prev] [italic] [prev]

Italic/Bold
IB [italic-arg] [bold-arg] [italic] [bold] [italic] [bold]

Italic/Roman
IR [italic-arg] [Roman-arg] [italic] [Roman] [italic] [Roman]

List begin
.LB text-indent mark-indent pad type [mark] [LI-space] [LB-space]

List-status clear
LC [list-level]

List end
.LE[1]

List item
.LI|mark] [1]

Marked list start



MT

NS
nP
OF
OH
- 0K

-OP

PF
PH

PX

RB

RD

MM Reference

ML mark [text-indent] [1]
Memorandum type

MT [type] [addressee]

or MT [4][1]

Newdate
ND new-date

Notation end
.NE

Notation start
.NS|[arg]

Double-line indented paragraphs
.nP

Odd-page footer
.OF [arg]

Odd-page header
.OH [arg]

Other keywords for TM cover sheet
.OK [keyword] ...

Odd page
.OP
Paragraph
P [type]

Page footer
PF [arg]

Page header
PH |arg]

Page-header user exit

PX

Return to regular (Roman) font (end underlining in nroff)

Roman/Bold
-RB [Roman-arg] [bold-arg] [Roman] [bold] [Roman] [bold]

Read insertion from terminal
.RD [prompt] [diversion] [string]

4-85



XENIX Text Processing

RF

RI

RL

RP

RS

SA

SG

SK

SP

TB

TC

TE

TH

TL

™

TP

4-66

Reference end
.RF

Roman/Italic

.RI[Roman-arg] [italic-arg] [Roman] [italic] [Roman)] [nta]xc]

Reference list start
.RL [text-indent] [1]

Produce reference page
.RP [arg] [arg]

Reference start
RS [string-name]

Set troff point size and vertical spacing
.S [size] [spacing]

Set adjustment (right margin Justxﬁcntlon) default
.SA [arg]

Signature line
SG [arg] [1]

Skip pages
.SK [pages]

Space—vertically
.SP [lines]

Table title
.TBtitle] [override] [flag]

Table of contents

.TC [slevel] [spacing] [tlevel] [tab] [headl] [head2] [head3] [head4] [head5]

Table end
.TE

Table header
.TH[N]

Title of memorandum
.TL [charging-case] [filing-case]

Technical Memorandum number(s)
.TM [number]...

Top-of-page macro
.TP



TS

2

MM Reference

Tablestart

TS [H]

Table-of-contents user exit

TIX

Table-of-contents user exit (suppresses “CONTENTS”)
TY

Variable-item list start
.VL text-indent [mark-indent] [1]

Vertical margins

VM [top] [bottom]

Width control
.WC [format]

4.15.1 Strings

The following is an alphabetic list of string names used by MM, giving foreach a
brief description and aninitial default value.

Ci
F

DT
EM

Le
Lf
Lt
Lx

Contentsindent up toseven arguments for heading levels.
Footnote numberer.

In nroff: \u\\n+(:p\d

In troff: \v’-.4m’\s-3\\n+9:p\s0\v’.4m’

Date. The current date, unless overridden.

Em dash string. Used by both nroffand troff

Heading font list, up to seven codes for heading levels 1 through 7
3322222 (levels 1 and 2 bold, 3-7 underlined in nroff, italic in
troff)

Heading point size list, up to seven codes for heading levels 1
through 7

Title for LIST OF EQUATIONS
Title for LIST OF FIGURES
Title for LIST OF TABLES
Title for LIST OF EXHIBITS

4-67



XENIX Text Processing

RE SCCSRelease and MM
Release Level

Rf Reference numberer

Rp Title for References

Tm Trademark string places the letters “TM half a line above the text
that it follows

4.15.2 Number Registers

This section provides an alphabetical list of register names, giving for each a
brief description, initial (default) value, and the legal range of values (where
|m:n] meansvaluesfrom m to ninclusive).

Any register having a single-character name can be set from the command line.
An asterisk attached to a register name indicates that that register can be set
only from the command line or before the MM macro definitions are read by the
formatter.

A Handlespreprinted forms
0,{0:2)

Au Inhibits printing of author’s location, department room, and extension
in the from portionof a memorandum
1,[0:1]

C  Copy type{Original, DRAFT, etc.)
0(Original), [0:4]

Cl  Contentslevel (i.e.,level of headings saved for table of contents)
2,[0:7)

Cp Placement of List of Figures, etc.
1(on separate pages), [0:1]

D  Debugflag
0,[0:1]

De Display ejectregister for floating displays
0,[0:1]

Df Display format register for floating displays
5, [0:5]

Ds Static display pre- and post-space
1,[0:1]

4-68



Ej

Eq

Ex

Fg

Fs

MM Reference
Equation counter, used by .EC macro
0,[0:?],incremented by 1 for each .EC call.

Page-ejection flag for headings
0 (noeject), [0:7]

Equation label placement
0 (right-adjusted), [0:1]

Exhibit counter, used by .EXmacro
0,{0:?],incremented by 1 for each .EX call.

Figure counter, used by .FG macro
0, [0:?], incremented by 1 for each .FG call.

Footnote space (i.e., spacing between footnotes)
1,[0:7]

H1-H7 Heading counters for levels 1-7

Hb
He

Hi

Hy

Le

0, [0:?], incremented by .H of corresponding level or .HU if at level given
by register Hu. H2-H7 are reset to 0 by any heading at a lower-numbered
level.

Heading break level (after .Hand .HU)
2,10:7]

Heading centering level (for Hand .HU)
0 (no centered headings), [0:7]

Heading temporary indent (after .Hand .HU)
1(indent as paragraph), [0:2]

Heading space level (after .Hand .HU)
2 (space only after H1and .H2),[0:7]

Heading type (for .H: single or concatenated numbers)
0(concatenated numbers: 1.1.1, etc.), [0:1]

Heading level (for unnumbered heading .HU)
2(.HU at the same level as .H 2), [0:7]

Hyphenation control for body of document
0 (automatic hyphenation off), [0:1]

Length of page
66, {20:?] (11j, [2i:?] in troff these values must be scaled.

List of Equations
0 (list not produced) [0:1]

4-69



XENIX Text Processing

Lt
Li
Ls
Lt

Lx

of

Ps

Pt

Si

470

List of Figures
1 (list produced) [0:1]

List indent
6, [0:7]

List spacing between items by level
5 (spacing between all levels)

List of Tables
1(list produced) [0:1]

List of Exhibits
1(list produced) [0:1]

Numbering style
0, [0:5]

Numbering style for paragraphs
0 (unnumbered) [0:1]

Offset of page
.75i, 10:7] (0.5i, [0i:?] in troff

Table of Contents page numbering style

_ 0(lowercase Roman), [0:1]

Figure caption style
0(period separator), [0:1]

Page number, managed by MM.
0,[0:?)

Paragraph indent
5,{0:7]

Paragraph spacing
1(one blank space between paragraphs), [0:7)]

Paragraph type
0 (paragraphs always left-justified), [0:2]

Point size
10, [6:36]

Standard indent for displays
5,[0:7]

Type of nroff output device
0, [0:2]



Tb

MM Reference
Table counter
0, [0:?], incremented by 1 for each.TB call.

Underlining style for . Hand .HU
0(continuous underline when possible}, [0:1]

Width of page (line and title length)
6i, [10:1365] {64, [2i:7.54i] in troff

+N1






Chapter b
Using Nroff/Troff

5.1 Introductio‘n 5-1

5.2 Inserting Commands 52
5.3 Point Sizes andLine Spacing  5-2
5.4 Fontsand Special Characters  5-4
5.5 IndentsandLineLengths 5-6
56 Tabs 5-8
5.7 DrawingLines and Characters 5-9
5.8 Strings 5-11
5.9 Macros 5-12
5.10 Titles, Pages and Numbering 5-14
5.11 Number Registers and Arithmetic 5-15
’5.12 Macros with Arguments 5-17
5.13 Conditionals 5-19
5.14 Environments 5-20

5.15 Diversions 5-21






Using Nroff/ Troff

5.1 Introduction

Nroff and troff are the XENIX text formatting programs for producing high-
quality printed output on the lineprinter and phototypesetter, respectively.
Commands in the two formatting programs nroff and troff are identical,
although those specifications which are impossible to achieve on a
lineprinter—like changes in point size, font, or variable spacing-—are either
approximated or ignored by nroff. The output of nroff and troff may look
dramatically different, but this is largely the result of the limitations of
conventional lineprinters. In this chapter, the two programs will be treated
together; the names nroff and troff are used synonymously. Commands not
recognized by nroff or which result in significantly different output will be
noted.

Wherever possible, you should avoid using nroff or troff directly. In many
ways, nroff and troff resemble computer assembly languages: they are
powerful and flexible, but they require that many operations must be specified
at a level of detail and complexity too difficult for most people to use effectively.
That is why it is suggested that you use the MM macro package instead. If you
must deal with specialized text, you can use the eqn macros for typesetting
mathematics and the tbl program for producing complex tables. Eqn and tbl
are discussed in Chapters 10 and 11 of this manual.

For producing running text, whether or not it contains mathematics or tables,
you will ordinarily want to use the MM macro package, described in Chapter 3,
“Using the MM Macros’ and Chapter 4, ‘MM Reference’.

All these macro packages offer the capability of meeting most formatting
requirements. You may find you have little or no need to use nroff/troff
directly. The macros define formatting rules and operations for specific styles
of documents. The definitions are concise: in most cases two-letter commands.
In those cases where an existing macro will not do the job, the solution isnot to
write an entirely new set of nroff/troff instructions from scratch, but to make
small adaptations to macros you are already using.

This chapter is meant to introduce you to the formatting possibilities of
nroff/troff. It does not discuss every command or operation in detail. The
emphasis is on demonstrating simple and commonly used specifications, with
- examples of some of the variationsyou may need to create.
The following topics are introduced in this tutorial:
—  Specifying point size, fonts, and special characters

—  Determiningline spacing, line lengths, indents, and tabs

-——  Usingstring definitionsand macros

51



XENIX Text Processing

—  Specifying title and paginationstyles

—  Specifying conditionals, environments, and diversions

5.2 Inserting Commands

To use nroff or troff you intersperse formatting commands with the actual
text you want printed, just asyou did with MM commands described in the last
chapter. You will notice that nroff and troff commands are in lowercase, so
you will not confuse them with the MM macros. Most nroff and troff
commands are placed on a line separate from the text itself, beginning with a
period, one command per line. For example, if you had a file that contained the
following lines:

Some text.

.ps 14

Some more text.
the .ps command would instruct troff to change the point size, that is, the size
of the letters being printed, to 14 point {one point is 1/72-inch). Your output
would look like this:
Some text. SOome more text.
If you were to use nroff to output this same file to the lineprinter, nroff would
ignore the .ps command and you would see no difference in the size of your
letters.
Some nroff/troff commands do occur in the middle of a line. To produce

This line contains font and point size changes.
you have to type

This \fBline\fR contains \fIfont and \s+2point size\s-2 changes.
The backslash character ‘*\” is used to introduce nroff/troff commands and
special characters within a line of text.
5.3 Point Sizes and Line Spacing
As we just saw, point size and vertical spacing are not normally controllable in
nroff (lineprinter) output. In troff, the command .ps sets the point size. One

point is 1/72-inch, so 6-point characters are at most 1/12-inch high, and 36-
point charactersare 1/2-inch. There are 15 point sizes available, asillustrated:

5-2



Using Nroff/Troff

6 point: In Xanadu did Kubhia Khan...

7 point: In Xanadu did Kubhla Khan...

8 point: In Xanadu did Kubhla Khan...

9 point: In Xanadu did Kubhla Khan...

10 point: In Xanadu did Kubhla Khan...

11 point: In Xanadu did Kubhla Khan...
12 point: In Xanadu did Kubhla Khan...

14 point: In Xanadu did Kubhla Khan...
16 point 18 point 20 point

22 24 28 30

If the number after .psis not one of these legal sizes, it is rounded up to the next
valid value, to a maximum of 36. If no number follows .ps, troff reverts to its
previoussize. Troff begins with a default point size of 10.

Point size can also be changed in the middle of a line or even a word with the in-
line command ‘“\s”. To produce

The XEND( system is derived from the UNIX system.
type
The \s12XENIX\s8 system is derived from the \s12UNIX\s8 system.

The \s should be followed by a legal point size. An \s0 causes the size torevert
toitsprevious value. An\s1011 means‘‘size 10, followed by an 11,

Relative size changes are possible. The following

The \s+2XENIX\s-2 system

increases the point size by two points, then restores it. The amount of the
relative change is limited to a single digit.

Another feature to consider is the spacing between lines, which is set
independently of the point size. Vertical spacing is measured from the bottom
of one line to the bottom of the next. The command to control vertical spacing
is .vs. For running text, it is usually best to set the vertical spacing about 20%
bigger than the point size.

For example, to use what typesetters call““9on 11, that s, 2 point size of 9 with
avertical spacing of 11, you would insert the following commands:

53



XENIX Text Processing

.ps 9
.vs 11p

If you do not specify a point size or vertical spacing, troff'automatically uses 10
on 12,

Point size and vertical spacing make a substantial

dlﬁle;e)nce in the amount of text per square inch. (This is 12
on

Point size and vertical spacing make a substantial difference in the amount of text per square inch. For example, 10 on
12uses about t wice as much space as 7on 8. Thisis 6on7, which is even smaller, and packs alot more words perline.

When you use the commands .ps and .vs without numbers, troff reverts to the -
previoussize and vertical spacing.

The .sp command can be used to get vertical space. Without a number, it gives
you one blank line (one unit of whatever .vs has been set to). The sp can be
followed by a unit specification:

.sp 2i
means “two inches of vertical space’’. The command:

.sp 2p
means “two points of vertical space’’. The command:

.sp 2

means “‘two vertical spaces” of whatever size .vs is set to. Be careful to specify
the correct unit of space.

Troffalso understands decimal fractions in most commands, so

.sp 1.51
is a space of 1.5 inches. Scaling (designating a unit of measure such as inches,
points, or picas) can also be used after .vs to define line spacing, and in fact after
most commands that deal with physical dimensions.
5.4 Fonts and Special Characters
The phototypesetter is limited to four different fonts at any one time.
Normally three fonts (Roman, italic and bold) and one collection of special
characters are permanently mounted. What these fonts will actually look like

depends on your own typesetting equipment. Here are the Roman, italic, and
bold character sets:

5-4



Using Nroff/Troff

abcdefghijklmnopgrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abedefghigkimnopqretuvwzyz 0128456789
ABCDEFGHIJIKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Troff prints in Roman by default, unless instructed otherwise. To switch into
bold, use the.ft (font) command

ftB
and for italics,
Jt 1

*To return to roman, use .ft R; to return to the previous font, whatever it was,
use either .ft P or just .ft. The underline command .ul causes the nextinputline
to print in italics. The .ul can be followed by a count to indicate that more than
one line is to be italicized.

Fonts can also be changed within a line or word with the in-line command ““\f”.
The words

boldface text
are produced with
\fBbold\fIface\fR text

There are other fonts available besides the standard set, although only four can
be mounted at any given time. The command .fp tells troff what fonts are
physically mounted on the typesetter:

fp3H

says that the Helvetica font is mounted on position 3. Appropriate .fp
commands should appear at the beginning of your document if you do not use
the standard fonts.

It is possible to print a document by using font numbers instead of names. For
example, \f3 and .ft 3 mean ‘“whatever font is mounted at position 3”’. Normal
settings are Roman font on 1, italic on 2, bold on 3, and special on 4. An
approximation of bold font can also be created by overstriking letters with a
slight offset. Thisis done with the command .bd.

Special characters have four-character names beginning with **\(”, and they
may be inserted anywhere. In particular, Greek letters are all of the form
“\(*-", where ““~”" is an uppercase or lowercase Roman letter similar to the
Greek. Toget

5-5



XENIX Text Processing

Z(aXp) = o
in troff we have to type

\(*S(\(*2\(mu\(*b) \(\(-> \(if

which is a series of special characters:

\(+5 T
( (

\(+2 o
\(mu X
\(*b 1
) )

\(j) -
\(if 00

You could also use the mathematical typesetting program eqn to achieve the
same effect:

SIGMA ( alpha times beta ) -> inf

Whether you choose to use eqn or the troff special character set should depend
on how often you use Greek or other special characters.

Nroff and troff treat each four-character name as a single character. Some
characters are automatically translated into others: grave and acute accents
{apostrophes) become open and close single quotation marks (¥); the
combination of single quotation marks is generally preferable to the double
quotation mark character. ("). A typed minus sign becomes a hyphen -. To
print an explicit minus sign, use “\-”’. To print a backslash, use “\e”.

5.5 Indents and Line Lengths

Troff starts with a default line length of 6.5 inches. To reset the line length, use
the .1l (line length) command, asin

A1 6i

to indicate a line length of 6 inches. The length can be specified in the same
waysas the space (.sp) command, ininches, fractions of inches, or points.

The maximum line length provided by the typesetter is 7.5 inches. To use the
full width, however, you will have to reset the default physical left margin,
which is normally slightly less than one inch from the left edge of the paper.
Thisis done with the page offset (.po) command:

.po 0

5-6



Using Nroff/Troff

This sets the offset as far to the left asit will go.

The indent (.in) command causes the left margin to be indented by a specified
amount from the page offset. If we use .in to move the left margin in, and .1l to
move the right margin to the left, we can make offset blocks of text. For
example,

.in 0.6i

11-0.61

text to be set into a block
1 4+0.6i

.in -0.61

will create a block that looks like this:

Pater noster qui est in caelis sanctificetur nomen tuum;
adveniat regnum tuum; fiat voluntas tua, sicut in caelo, et in
terra... Amen.

Notice the use of + and - to specify the amount of change. These change the previous
setting by the specified amount, rather than just overriding it. The distinction is
quite important: .1l +1i makes lines one inch longer than current setting; .1l 1i makes
them one inch long. If no argument is specified with .in, .11, and .po, troff reverts to
the previous value.

Toindent a single line, use the temporary indent (.ti) command. The default unit for
.ti, as for most horizontally oriented commandssuch as .1, .in, .po, isanem. Anemis
roughly the width of the letter m in the current point size. Although inches may seem
a more intuitive measure to nontypesetters, ems are a measure of size that is
proportional to the current point size. If you want to make text that keeps its
proportions regardless of point size, you should use ems for all dimensions. Ems can
be specified in the same way as pointsor inches:

.t 2.5m
Lines canalso be indented negatively if the indent is already positive:

ti -0.31
causes the next line to be moved back three tenths of an inch. You can make a
decorative initial capital, indent a whole paragraph, and move the initial letter back
witha.ti command:

Pater noster qui. est in caelis sanctificetur nomen tuum;

adveniat regnum tuum;

fiat voluntas tua, sicut in caelo, et in terra. ... Amen.

Thisisachieved with the following:

57



" XENIX Text Processing .

J1-0.3i
A

in +3i
.ti -0.3i

The P is made bigger with a “\s36P\s0”. It also has been moved down from its
normal position with a local motion, as described in Section 5.7, “‘Drawing Lines and
Characters”.

5.6 Tabs

Tabs can be used to produce output in columns, or to set the horizontal position of
output. Typically, tabs are used only in unfilled text. Tab stops are set by default
every 1/2-inch from the current indent, but can be changed with the .ta command.
To set stops every inch, for example, use:

.ta 1i 2i 3i 4i 5i 6i

The stops are left-justified, as they are on a typewriter, so lining up columns of right-
justified numbers can be painful. If you have many numbers, or if you need more
complicated table layout, don’t attempt to use nroff or troff commands: Use the tbl
program instead. (See Chapter 7, “Formatting Tables”.)

For a handful of numeric columns, you can precede every number by enough blanks
to make it line up when typed:

.nf
.ta 11 21 3i

1tab 2tab 3
40 tab 50 tab 60
700 tab 800 tab 900
A

Then change each leading blank into the string “\0”. This is a character that does
not print, but that has the same width asa digit. When printed, this will produce

1 2 .3
40 50 60
700 800 900

It is also possible to fill up tabbed-over space with a character other than a space by
setting the “tab replacement character” with the tab character (.tc) command:

.ta 1.51 2.5
e \(ru
Name tab Age tab

produces

5-8



Using Nroff/Troff

Name Age

To reset the tab replacement character to a blank, use .tc with no argument. Lines
can also be drawn with the \l command, described below.
5.7 Drawing Lines and Characters
Troff provjdes a way to place characters of any size at any place, as in the examples
Area = 1r° and the big P in the Paternoster (See Section 5.5). Commands can be
used to draw special charactersor to give your output a particular appearance. Most
of these commands are reasonably straightforward, but look rather complicated.
For example, without eqn, subscripts and superscripts are most easily done with the
half-line local motions \u and \d. To go back up the page half a point-size, insert a \u
at the desired place; to go down, insert a \d. Thus

Area = \(*pr\u2\d
produces

Area = 1rr2
To make the 2smaller, bracket it with

\s-2...\s0

Since \u and \d are relative to the current point size, be sure to put them either both
inside or both outside the size changes, or the results will be unbalanced.

If the space given by \u and \d doesn’t look right, the \v command can be used to
request an arbitrary amount of vertical motion. The in-line command

\v’(amount)’

causes motion up or down the page by the specified amount. For .example, to move
the P in Pater, the following isrequired:

ta 1i

.in +0.6i \"move paragraph in
11 -0.3i \"shorten lines

i -0.3i \"move P back
\v’'1’\s36P\s0\v’\-1’ater noster qui est

in caelis ...

The backslash \” is a troff command that causes the rest of the line to be ignored. It
is useful for adding commentsto the macro definition.

5-9



XENIX Text Processing

A minus sign, after “\v’”’ causes upward motion, while no sign or a plus sign causes
downward motion. Thus “\v'~1'" causes an upward vertical motion of one line
space.

There are many other waysto specify the amount of motion:

\v'0.17’
\v'3p’
\v’-0.5m’

and so on are all legal. Notice that the specifiers, i for inches, p for points or m for
ems, go inside the quotation marks. Any character can be used in place of the
quotation marks, as well asin any troff commands described in this section.

Since troff does not take within-the-line vertical motions into account when figuring

out where it is on the page, output lines can have unexpected positions if the left and

right ends aren’t at the same vertical position. Thus\yv, like \uand\d, should always

balance upward vertical motion in a line with the same amount in the downward
direction.

Arbitrary horizontal motions are also available: \h is quite analogous to \v, except
that its default scale is ems instead of line spaces. The specification \h’-0.11’ causes a
backwardsmotion of a 1/10-inch.

Frequently \h is used with the width function \w to generate motions equal to the
width of some character string. The construction

\w’thing’

is a number equal to the width of thing in machine units (1/432-inch). All troff
computations are actually done in these units. To move horizontally the width of an
X,yOu can use:

\h’\w’x’u7

As we mentioned above, the default scale factor for all horizontal dimensionsis m for
ems, so here u for machine units must be specified, or the motion produced will be far
too large. Nested quotation marks are acceptable to troff; be careful to supply the
right number.

There are also several special-purpose troff commands for local motion. We have
already seen \0, which is an unpaddable whitespace of the same width as a digit.
Unpaddable means that it will never be widened or split across a line by line
justification and filling. There is also \(space), which is an unpaddable character the
width of a space, \|, which is half that width, \ ", which is one quarter of the width of a
space, and \&, which has zero width. This last one is useful, for example, when
entering a text line which would otherwise begin with a dot (.).

The command *\o”, used like

5-10



Using Nroff/Troff

\o’set of characters’

causes up to 9 characters to be overstruck, centered on the widest. This can be used
for accents, asin:

syst\o”e\(ga"me t\o"e\(aa”I\o"¢\(aa” phonique
which makes:

systéme t€léphonique
The accents are treated by troff as single characters.

You can make your own overstrikes with another special convention, \z, the zero-
motion command, which suppresses the normal horizontal motion after printing the
single character x, so another character can be laid on top of it. Although sizes can be
changed within \o, it centers the characters on the widest, and there can be no
horizontal or vertical motions, so \z may be the only way to get what youwant.

You can create rather ornate overstrikes with the bracketing function \b, which piles
up characters vertically, centered on the current baseline. Thus you can get big
brackets by constructing them with piled-up smaller pieces:

{1}

by typingin this:

\B\ IR\ R\ 1B\ \1e\(If x \B\(re\(e1\b™\(rt\(rk\(rb’

Troff also provides a convenient facility for drawing horizontal and vertical lines of
arbitrary length with arbitrary characters. \I' 1’ draws a line one inch long, like
this: . The length can be followed by the character to use if the
isn’t appropnate For example, \V 0.5i.” draws a half-inch line of dots: .. .
The construction \L is entirely analogous, except that it draws a vertical line mstead
of horizontal.

5.8 Strings

Obviously, if a paper contains alarge number of occurrences of an acute accent over a
letter e, typing \0”e\’ ” for each occurrence would be a great nuisance. Fortunately,
nroff and troff provide a facility for storing any string of text in a string definition.
Strings are among the nroff and troflf mechanisms that allow you to type a
document with less effort and organize it so that extensive format changes can be
made with few editing changes. Strings are defined with the define (.ds) command.
Thereafter, whenever you need to use the string, you can replace it with the
shorthand you have defined. For example, the line:

5-11



XENIX Text Processing

dse\o"e\'"
defines the string e to have the value €.
String names may be either one or two characters long. To distinguish them from
normal text, single-character strings must be preceded by ‘“\*” and double-
character strings by “\#(”’. Thus, to use the definition of the string e as above, we can
say t\*el\*ephone. If a string must begin with blanks, define it by using a double
quotation mark to signal the beginning of the definition. For example,

dsxx” text

defines the string “xx” as the word “‘text’’ preceded by several blanks. There is no
trailing quote; the end of the line terminates the string.

A string may actually be several lines long; if troff encounters a \ at the end of any
line, it is thrown away and the next line added to the current one. So you can make a
long string simply by ending each line but the last with a backslash:

.ds xx this is a very long string\

continuing on the next line\

and on to the next

Strings may be defined in terms of other strings, or evenin terms of themselves.

5.9 Macros
In its simplest form, a macro is just a shorthand notation—somewhat like a string.

For example, suppose we want every paragraph in a document to start with a space
and atemporary indent of twoems: -

.sp
.t 4+2m

Tosave typing, we could translate these commands into one macro:
P

which troff wouldinterpret exactly as

.sp
.41 +2m

If you first define it with the .de command, the macro .P can replace the longer
specification: .

5-12



Using Nroff/Troff

deP

.sp
41 +2m

The first line names the macro, in this case .P for paragraph; it is in uppercase to
avoid conflict with any existing nroff or troff command. The last line marks the end
of the definition. In between is the text, which is simply inserted whenever troff sees
the command or macro call .P. A macro can contain any mixture of text and
formatting commands. The definition of .P naturally has to precede its first use.
Namesarerestricted to one or two characters.

Using macros for commonly occurring sequences of commands not only saves typing,
but it makes later changes much easier. Suppose we decide that the paragraph
indent is too small, the vertical space is much too big, and roman font should be
forced. Instead of changing the whole document, we need only change the definition
of .P to something like

.deP \" paragraph macro
.Sp 2p

.t +3m

ftR

and the change takeseflect everywhere the .P macroisinvoked.

As another example of a macro definition, consider these two which start and end a
block of offset, unfilled text:

.de BS \" start indented block
.sp

.nf

.in +0.3i

.de BE \” end indented block
.sp

5

.in \(mi0.3i

Now we can surround text with the commands .BS and.BE to create indented blocks.
Uses of .BS and .BE can be nested to get blocks within blocks. To change the indent,
it is only necessary to change the definitions of .BS and .BE, not every occurrence of
the indent in the entire document. ‘

The macro package MM, as well as the two specialized macro packages, tbl and eqn,
.are simply very large collections of macro definitions which replace more
cumbersome arrays of nroff and troff commands. One thing to keep in mind when
you consider defining a new macro, is that unless you are doing something quite
unusual, an MM macro probably already exists for that purpose. So check your
documentation carefully before reinventing the wheel.

5-13



XENIX Text Processing

5.10 Titles, Pages and Numbering

None of the features described in this section are automatic. You may wish to copy
these specifications literally until you feel more comfortable with these commands.
For example, suppose you want to have a title at the top of each page. You have to
give the actual title, along with instructions about when to print it, and directions for
its appearance. First, anew page (NP) macro can be created to process titlesand the
like at the end of one page and the beginning of the next:

.de NP

’bp

’sp 0.51

.t]1 ’left top’center top’right top’
’sp 0.31

To start at the top of a page, a begin page (.bp) command should be included, which
causes a skip to the top of the next page. Then we space down half an inch, use the
title (.t]) command to print the title and space another 0.3 inches. '

To ask for .NP at the bottom of each page, we need to specify that the processing for a
new page should start when the text is within an inch of the bottom of the page. This
is done with a when (.wh) command:

.wh \-1i NP

(Note that no dot is used before NP; this is simply the name of a macro, not a macro
call.) The minus sign means “measure up from the bottom of the page,” so -1i means
oneinch from the bottom.

The .wh command appears in the input outside the definition of .NP; typically the -
input would be

~ .de NP
macro defined here

-wh -1i NP

As text is actually being output, nroff/troff keeps track of its vertical position on
the page, and after a line is printed within one inch of the bottom, the .NP macro is
activated. The .NP macro causes a skip to the top of the next page, then prints the

* title with the appropriate margins. All the input text collected but not yet printed is
flushed out as soon as possible, and the next input line is guaranteed to start a new
line of output; a break is caused in the middle of the current output line when a new
page is started. The leftover part of that line is printed at the top of the page,
followed by the next input line on a new output line. Using \(fm instead of dot {.) for a
command tells nroff and troff that no break is to take place; the output line
currently being filled should not be forced out before the space or new page. For
example, \(fmbp and \(fmsp are used here instead of .bp and .sp.

5-14



Using Nroff/Troff

The list of commands that cause a break isshort:
.bp .br .ce .fi .nf .sp .in .ti

All others cause no break, regardless of whether you use a period (.) or a°’. If you
really need a break, add a.br command at the appropriate place.

If you change fonts or point sizes frequently , you may find that if you cross a page
boundary in an unexpected font or size, your titles come out in that size and font
instead of what you intended. Furthermore, the length of a title isindependent of the
current line length, so titles will come out at the default length of 6.5 inches unless
you change it, which is done with the.lt command. There are several ways to correct
point sizes and fonts in titles. The simplest way is to change .NP to set the proper size
and font for the title, then restore the previous values, like this:

.ta 8i

.de NP

" bp

’sp 0.51

ftR \” set title font to Roman
.ps 10 \” and size to 10 point

dt6i  \” and length to 6 inches

.tl ’left’center’right’

.ps \” revert to previous size
ftP \" and to previous font
‘sp 0.3i

This version of NP does not work if the fields in the .t! command contain size or font
changes.

To get afooter at the bottom of a page, you can modify .NP so it does some processing
before the’ bp command, or split the job into a footer macro invoked at the bottom
margin and a header macro invoked at the top of the page.

Output page numbers are computed automatically starting at 1, but nonumbersare
printed unless you ask for them. To get page numbers printed, include the character
“0%"” in the .tl line at the position where you want the number to appear. For example

.tl 7’- % -’l
centers.the page number inside hyphens. You can set the page number at any time
with either .bp n, which immediately starts a new page numbered n, or with .pnn,
which sets the page number for the next page but doesn’t cause a skip to the new
page.
5.11 Number Registers and Arithmetic

Troff uses number registers for doing arithmetic and defining and using variables.
Number registers, like strings and macros, are useful for setting up a document so it

5-15



XENIX Text Processing

is easy to change later, as well as for doing any sort of arithmetic computation. Like
strings, number registers have one- or two-character names. They are set by the .nr
command, and are referenced by \nz (one-character name) or \n{zy (two-character
name).

There are quite a few pre-defined number registersmaintained by troff, among them
% for the current page number, .nl for the current vertical position on the page; .dy,
.mo and .yr for the current day, month and year; and .s and .f for the current point
-size and font. Any of these can be used in computations like any other register, but
some, like .sand.f, cannot be arbitrarily changed with an .nr command.

~ In MM, most significant parameters are defined in terms of the values of a handful of
number registers. These include the point size for text, the vertical spacing, and the
line and title lengths. To set the point size and vertical spacing for the following
paragraphs, for example, you could say

.nr PS¢
.nr VS 11

This would set the pointsize to 9 and the vertical spacing to 11 points.
The paragraph macro.Pis defined as follows:

.ta li

.de.P

N .ps \\n(PS \"- reset size
~vs\\n(VSp \” spacing
Dt R

" font
.sp 0.5v \” half a line
.ti +3m

This sets the font to Roman and the point size and line spacing to whatever values are
stored in the number registersPS and V8.

Two backslashes are required to quote a quote. That is, when nroff or troff
originally read the macro definition, they peel off one backslash to see what is coming
next. Toensure that another is left in the definition when the macro is actually used,
we have to put two backslashes in the definition. If only one backslash is used, point
size and vertical spacing will be frozen at the time the macro is defined, not when it is
used. ’

Protection with extra backslashes is only needed for \n, \#, \$, and \ itself.
Commands like \s, \f, \h, \v, 2nd so on do not need an extra backslash, since they are
converted by nroffand troff to aninternal code when they are read.

Arithmetic expressions can appear anywhere that a number is expected. For
example,

.nr PS \\n(PS-2

5-16



Using Nroff/Troff

decrements PS by 2. Expressions can use the arithmetic operators +, -, *, /, %
(mod), the relational operators >, >=, <, <==, =, and != (not equal), and
parentheses.

There are a few things to consider in using number register arithmetic. First,
number registers hold only integers. Nroff/troff arithmetic uses truncating integer
division. Second, in the absence of parentheses, evaluation is done left-to-right
without any operator precedence, including relational operators. Thus

7s-443/13

becomes “~1’. Number registers can occur anywhere in an expression, and so can

scale indicators like p, 1, m, and so on. Although integer division causes truncation,

each number and its scale indicator is converted to machine units (1/432-inch) before
* any arithmetic is done, so 1i/2u evaluates to 0.5 correctly.

The scale indicator u (for " units”) often has to appear when you wouldn't expect it--
in particular, when arithmetic is being done in a context that implies horizontal or
vertical dimensions. For example,

A 7if2u
Asafe rule is to attach a scale indicator to every number, even constants.
For arithmetic done within a .nr command, there is no implication of horizontal or
vertical dimension, so the default units are units, and 7i/2 and 7i/2u mean the same

thing. Thus

.or 11 712
1 0u

is sufficiently explicit as long asyou use u with the .l command.

5.12 Macros with Arguments

You can define macros that can change from one use to the next according to
parameters supplied as arguments. To make this work, you need two things: first,
when you define the macro, you must indicate that some partsof it willbe provided as
arguments when the macro is called. Second, when the macro is called you must
provide actual arguments to be plugged into the definition.

Toillustrate, let’s define a macro .SM that will print its argument two points smaller
than the surrounding text. The definition of .SM is

.de SM
\s-2\\$1\s+2

Within a macro definition, the symbol \\$n refers to the nth argument that the
macro was called with. Thus \\$1 is the string to be placed in a smaller point size

5-17



XENIX Text Processing

when .SM is called.

. The following definition of .SM permits optional second and third arguments that
will be printed in the normal size:

.de SM
\\$3\s-2\\$1\s+2\\$2

Arguments not provided when the macro is called are treated as empty. It is
convenient to reverse the order of arguments because trailing punctuation is much
more common than leading. The number of arguments that a macro was called with
is available in number register $.

For example, let’s define a macro .BD to create a bold Roman for troff command
names in text. It combines horizontal motions, width computations, and argument
rearrangement.

.de BD
\E\NESVI\\ST\R'\-\w\\$ u+ 1u’\\$1\[P\\$2

The \h and \w commands need no extra backslash, as we discussed earlier in this
section. The \& is there in case the argument begins with a period.

Two backslashes are needed with the \\$n commands to protect one of them when
the macro is being defined. Consider.a macro called .SH which produces section

headings rather like those in this paper, with the sections numbered automatically,
and the title in bold in a smaller size. You would use it in this form:

.SH 7"Section title ...”

If the argument to amacro is to contain spaces, then it must be surrounded by double
quotation marks.

Here is the definition of the .SHmacro:

.ta .751 1.151

.nr SHO \” initialize section number
.de SH

.sp 0.3i

ftB

.nr SH \\n(SH+1 \” increment number
.ps \\n(PS-1 \" decrease PS
\\n(SH. \\$1 \” number. title

.ps \\n(PS \” restore PS

.sp 0.3i

ftR

The section number is kept in number register SH, which is incremented each time

5-18



Using Nroff/Troff

just before it is used. Note that a number register may have the same name as a
macro without conflict, but a string may not.

We used \\n(SH instead of \n(SH and \\n(PS instead of \n(PS. If we had used \n(SH,
we would get the value of the register at the time the macro was defined, not at the
time it was used. Similarly, by using \\n(PS, we get the point size at the time the
macroiscalled.

Asan example that doesnot involve numbers, recall the NP macro whichhad a
.t] 'left’center’right’

We could make these into parameters by using instead
M\ LT\\*(CT\\*(RT’

so the title comes from three strings called LT, CT and RT. If these are empty, then
the title will be a blank line. Normally CT would be set with something like

ds CT -%-

but you can also supply private definitions for any of the strings.

5.13 Conditionals

To cause the .SH macro to leave two extra inches of space just before section 1, but
nowhere else, you can put a test inside the .SH macro to determine whether the
section number is 1, and add some space if it is. The .if command provides a
conditional test just before the heading lineisoutput:

Af \\n(SH=1 .sp 2i \" first section only

The condition after the .if can be any arithmetic or logical expression. If the
condition is logically true, or arithmetically greater than zero, the rest of the line is
treated as if it were text. If the condition is false, or zero or negative, the rest of the
line is skipped. It is possible to do more than one command if a condition is true.
Suppose several operations are to be done before section 1. One possibility is to define
amacro.S1 andinvokeitif we are about to dosection 1, asdetermined by an .if:.

.de St

--- processing for section 1 ---
de SH
if \\n(SH=1 "S1

519



XENIX Text Processing

An alternate way is to use the extended form of the .if, like this: -

Af \\n(SH=1 \{--- processing
for seetion 1 ----\}

The braces \{ and \} must occur in the positions shown or you will get unexpected
extralinesin your output.

Nroff and troff also provide an if-else construction. A condition can be negated by
preceding it with!; we get the same effect as above by using

if \\n(SH>1 .51

There are a handful of other conditions that can be tested with .if. For example, you
may need to determine if the current page is even or odd. The following conditionals
give facing pages different titles when used inside an appropriate new page macro.

.if e .tl ’even page title”
if o .tl ”odd page title”

Two other conditions, which you will find useful when you need to process text for
both lineprinter and typesetter, are n and t. These can be used to indicate conditions
dependent on whether troff or nroff are being invoked.

Af t troff input ...
Af n nroff input ...

Finally, string comparisons may be made in an .if statement. The following
comparison does “input” if string 1 is the same as string 2:

e&.if ’'stringl’string2’ input

The character separating the strings can be anything reasonable that is not
contained in either string. The strings themselves can reference strings with \*,
arguments with \$, and soon.

5.14 Environments

In an earlier section, the potential problem of going across a page boundary was
mentioned: parameters like size and font for a page title may be different from those
in effect in the text when the page boundary occurs. Nroff/troff provides a way to
deal with this and similar situations. There are three environments that have
independently controllable versions of many of the parameters associated with
processing, including size, font, line and title lengths, fill or no-fill mode, tab stops,
and even partially collected lines. Thus the titling problem may be solved by
processing the main text in one environment and titles in a separate environment
with its own suitable parameters.

5-20



Using Nroff/Troff

The environment command .ev n shifts to environment n; 2 must be 0, 1 or 2. The
command .ev with no argument returns to the previous environment. Environment
names are maintained in a stack, so calls for different environments may be nested
and called in order. If, for example, the main text is processed in environment 0,
which is where troff begins by default, we can modily the new page macro .NP to
process titlesin environment 1 like this:

.de NP

evl \” shift to new environment

¢ 6i \” set parameters here

St R

.ps 10

... any other processing ...

v \” return to previous environment

It is also possible to initialize the parameters for an environment outside the .NP
macro, but the version shown keeps all the processing in one place to make it easier to
understand and change.

5.15 Diversions

In page layout there are numerous occasions when it is necessary to store some text
for a period of time without actually printing it. Footnotes are the most obvious
example: the text of the footnote usually appears in the input long before the place on
the page where it is to be printed is reached. In fact, the place where it is output
normally dependson how big it is. The footnote text must be preprocessed at least to
the extent that its size is determined.

Nroff and troff provide a mechanism called a diversion for doing this processing.
Any part of the output may be diverted into a macro instead of being printed, and
then at some convenient time the macro may be put back into the input. The
command .di zy begins a diversion. All subsequent output is collected into the macro
zy until the command .di with no arguments is encountered. This terminates the
diversion. The processed text is available at any time thereafter, simply by giving
the command:

Xy

The vertical size of the last finished diversion is contained in the built-in number
register dn.

For example, suppose we want to implement a keep-release operation, so that text
(such as a figure or table) between the commands .KS and .KE will not be split across
a page boundary. Clearly, when a KSisencountered, we have to begin diverting the
output so we can find out how big it is. Then when a KE is seen, we decide whether
the diverted text will fit on the current page, and printiteither thereifit fits, or at the
top of the next page if it doesn’t. We could use the following to define .KSand .KE:

5-21



XENIX Text Processing

.de KS
.br

ev 1
A

di XX

.de KE

br

.di

Af \\n{dn>=\\n(.t .bp
.nf

XX

v

\” start keep

\” start fresh line

\” collect in new environment
\" make it filled text

\” collect in XX

end keep

\" get last partial line

\" end diversion

\” bp if doesn’t fit

\” bring it back in no-fill

\” text

\” return to normal environment

Recall that number register nl is the current position on the output page. Since
output was being diverted, this remains at its value when the diversion started. The
amount of text in the diversion is stored in dn. Another built-in register, .t is the
distance to the next trap, which we assume is at the bottom margin of the page. If the
diversion is large enough to go past the trap, the .if is satisfied, and a .bp is issued
automatically. In either case, the diverted output is then brought back with X3 It
is essential to bring it back in no-fill mode so nroff/troff will do no further

processingon it.

The definition of .KS and .KE is only intended as an example to demonstrate the
~ power of diversions. You will find the .KS and .KE macros already defined in the MM

macro package.

5-22



Chapter 6
Nroff/Troff Reference

6.1 Introduction  6-1
6.1.1 Invokingnroffand troff  6-1
6.1.2 Technical Information 6-2

6.2 Basic Formatting Requests  6-5
6.2.1 Font and Character Size Control  6-5
6.2.2 Page Control 6-6
6.2.3 Text Filling, Adjusting, and Centering = 6-7
6.2.4 Vertical Spacing  6-9
6.2.5 LineLength and Indenting 6-10
6.2.6 Tabs, Leaders, and Fields 6-11
6.2.7 Hyphenation 6-12
6.2.8 ThreePart Titles 6-12
6.2.9 OutputLine Numbering 6-13

6.3 Character Translations, Overstrike, and Local Motions -
6-13
6.3.1 Input/Output Conventions and Character
Translations 6-13
6.3.2 Local Motions and the Width Function 6-15
6.3.3 Overstrike, Bracket, Line-drawing, and Zero-width
Functions 6-16

6.4 Processing Control Facilities 6-17
6.4.1 Macros, Strings, Diversions, and Position Traps -
6-17
6.4.2 Number Registers 6-21
6.4.3 Conditional Acceptance of Input 6-22
6.4.4 Environment Switching 6-23
6.4.5 Insertions From the Standard Input  6-23
6.4.6 Input/Output File Switching 6-24
6.4.7 Miscellaneous Requests  6-24

6.5 Output and Error Messages 6-24



6.6 Summary of Escape Sequences and Number Registers -
6-26 ,
6.6.1 Escape Sequences for Characters, Indicators, and
Functions 6-26 :
6.6.2 Predefined General Number Registers 6-28
6.6.3 Predefined Read-Only Number Registers 6-28



8.1 Introduction

Nroff and troff are the XENIX text processing formatting programs. Nroff can
be used to output text to terminals, lineprinters, and letter-quality printers.
Troff can be used to output text to a number of phototypesetters and laser
printers. Both programs use identical commands, which are interspersed with
lines of text. The commands used by both programs allow you to control the
style of headers and footers, footnotes, paragraphs, and sections. You may
specify font and point size, spacing, multiple column output, and local motions
to create overstriking and line drawing effects.

Because nroff and troff are highly compatible with each other, it is almost
always possible to prepare input acceptable to both. By using conditional
input, you may add commands which are specific to either program.

6.1.1 Invoking nroff and troff

The general form of invoking the formatters on the command line is:
nroff options files

or
troff options files

where options represents any of a number of option arguments and files
represents a list of files containing the document to be formatted. An argument
consisting of a single minus sign (-) is taken to be a filename corresponding to
the standard input. If no filenames are given, input is taken from the standard
input. The options may appear in any order so long as they appear before the
filenames. They are:

~olsst Prints only pages whose page numbersappear in list, which consists
of comma-separated numbers and number ranges. A number range
has the form N-M and means pages N through M; an initial ~N
means from the beginning to page N, and a final N- means from N

to the end.
-nN Numbersfirst generated page N.
-sN Stops every N pages. Nroff will halt prior to every N pages(default

N=1) to allow paper loading or changing, and resume upon receipt
of a newline. Troff will stop the phototypesetter every N pages,
produce a trailer to allow changing cassettes, and will resume after
the phototypesetter “start” buttonispressed.

-mname Prependsthe macrofile /uer/lib/tmac.name to the input files.

6:1



XENIX Text Processing Guide

-mcname Same as above, but uses a compacted form of Jusr/lib/tmac.name

for efliciency.
~-raN Register aissetto N.
- Readsthe standard input after the input filesare exhaustefl.
-q Invokes the simultaneous input-output mode of the rd request.

The following options are recognized by nroffonly:
-Tname Specifies the name of the output terminal type.

- Produces equally-spaced words in adjusted lines, using full
terminal resolution. ’

The following options are recognized by troffonly:

-t Directs output to the standard output instead of the
phototypesetter.

-f Refrains from feeding out paper and stopping phototypesetter at
the end of the run.

-w Waits until phototypesetter is available, if currently busy.

-b Reports whether the phototypesetter is busy or available. No text
processing isdone.

-a Sends a printable ASCII approximation of the results to the
standard output.

-pN Prints all characters in point size N while retaining all prescribed

spacings and motions, to reduce phototypesetter elapsed time.

Note that each option must be invoked asa sepaiate argument.

6.1.2 Technical Information

The input to the formatters consists of text lines interspersed with control lines
that set parameters or otherwise control later processing. Contro! lines begin
with a “control character”, usually a period (.) or a single quotation mark (),
followed by a one- or two-character name that specifies a basic “request” or the
substitution of a user-defined “macro” in place of the control line. The single
quotation mark control character (’) suppresses the ‘‘break function,”” which is
the forced output of a partially filled line caused by certain requests. The
control character may be separated from the request or macro name by
whitespace (spaces and/or tabs) for esthetic reasons. Names must be followed
by either a space or a newline. Control lines with unrecognized names are

6-2



Nroff/Troff Reference

ignored.

Various special functions may be introduced anywhere in the input by means of
an “‘escape’’ character, normally the backslash (\). For example, the function
\nR causes the interpolation of the contents of the number register Rin place of
the function; here R is either a single character name as in \nx, or a left-
parenthesis-introduced, two-character name as in \n(xx.

Troff uses 432 units to the inch, corresponding to the Wang Laboratories
phototypesetter which has a horizontal resolution of 1/432-inch and a vertical
resolution of 1/144-inch. Nroff uses 240 units to the inch internally,
corresponding to the least common multiple of the horizontal and vertical
resolutions of various typewriter-like output devices. Troff rounds horizontal
and vertical numerical parameter input to the actual horizontal and vertical
resolution of the typesetter. Nroff similarly rounds numerical input to the
actual resolution of the output device indicated by the —~T option.

Both Nroff and troff accept numerical input with the appended scale
indicators shown in the following table, where S is the current type size in
points, V is the current vertical line spacing in basic units, and C is a nominal
character width in basic units, asshown below:

Scale Number of basic units
Indicator Meaning Troff Nroff
i Inch 432 240
c Centimeter 432x50/127 | 240x50/127
P Pica=1/16inch 72 240/6
m Em = S points 6xS C
n En=Em/2 3xS C,sameasEm
p Point =1/72inch | 6 240/72
u Basic unit 1 1
v Vertical linespace | V \'%
none | Default

In nroff, both the em and the en are taken to be equal to the C, which is output-
device dependent; common values are 1/10- and 1/12-inch. Actual character
widths in nroffneed not be all the same and constructed characterssuchas->
{—) are often extra wide. The default scaling is ems for the horizontally-
oriented requests and functions, including:

Al.in .ti .ta.lt .po .me \h \};

Vs is the scaling for the vertically-oriented requests and the following
functions:

.pl .wh .ch .dt .sp .sv .ne .rt .ev \v \x \L
p is the scale for the .vsrequest; and uisthe scale for the requests.nr, .if; and .ie.

All other requests ignore any scale indicators. When a number register

6-3



XENIX Text Processing Guide

containing an already appropriately scaled number is interpolated to provide
numerical input, the unit scale indicator u may need to be appended to prevent
an additional inappropriate default scaling. The number N, may bespecified in
decimal-fraction form but the parameter finally stored isrounded to an integer
number of basic units.

The “absolute”position indicator (|) may be prepended to a number N to
generate the distance to the vertical or horizontal place N. For vertically
oriented requests and functions, |N becomes the distance in basic unitsfrom the
current vertical place on the page or in a “‘diversion” to the vertical place N,
For all other requests and functions, |N becomes the distance from the current
horizontal place on the input line to the horizontal place N.

For example,
sp |3.2¢

will space in the required direction to 3.2 centimeters from the top of the page.
Wherever numerical input is expected an expression involving parentheses, the
arithmetic operators (+, -, {, * %) and the logical operators (<, >, <=,

">=, =, ==, & (and), : (or)) may be used. Except where controlled by
parentheses, evaluation of expressions is left-to-right; there is no operator
precedence. In the case of certain requests, an initial 4+ or - is stripped and
interpreted as anincrement or decrement indicator respectively.

For example, if the number register x contains 2 and the current point size is 10,
then

1 (4.25i+2P+3)/2u
setsthe line length to 1/2 the sum of 4.25 inches + 2 picas + 30 points.

Note: numerical parameters are indicated here in two ways. +N means that
the argument may take the forms N, +N, or -N and that the corresponding
effect isto set the affected parameter to N, toincrement it by N, or to decrement
it by N respectively. Plain N means that an initial algebraic sign is not an
increment indicator, but merely the sign of N. Generally, unreasonable
numerical input is either ignored or truncated to a reasonable value. For
example, most requests expect to set parameters to non-negative values;
exceptions are .sp, .wh, .ch, .nr, and .if. The requests.ps, .ft, .po, .vs, .ls, .1], .in
and.lt restore the previous parameter value in the absence of an argument.

Single-character arguments are indicated by single lowercase letters, and one-

or two-character arguments are indicated by a pair of lowercase letters.
Character string arguments are indicated by multicharacter mnemonics.

6-4



Nroff/Troff Reference

6.2 Basic Formatting Requests

The following sections describe the commonly used nroff and troff formatting
requests.

6.2.1 Font and Character Size Control

The troff character set includes a regular character set plus a Special
Mathematical Font character set—each having 102 characters. All ASCI
characters are included, with some on the Special Font. With three exceptions,
the ASCII characters are input as themselves, and non-ASCII characters are
input in the form \(xx where xx is a two-character name. The three ASCII
exceptions are mapped as follows:

ASCIlInput  Printed by troff
Character Name

‘ . acuteaccent

* graveaccent

- minus

The characters’, ¢, and - may be input as \’, \', and \- respectively or by their
names. The ASCH characters @, #,”,",%, <, >,,{,},, ", and _exist only on
the Special Font and are printed as a 1-em space if that font is not mounted.
Nroff understands the entire troff character set, but can in general print only
ASCH characters, such characters as can be constructed by overstriking or
other combinations, and those that can reasonably be mapped into other
printable characters. The exact behavior is determined by a driving table
prepared for each device. The characters’, !, and -print as themselves. The
default mounted fonts are Roman (R}, italic (I), bold (B), and the Special
Mathematical Font (S) on physical typesetter positions 1, 2, 3, and 4
respectively.

The current font, initially Roman, may be changed (among the mounted fonts)
by use of the .ft request, or by imbedding at any desired point either \fx,\f(xx,
or \fN where x and xx are the name of amounted font and N isa numerical font
position. It is not necessary to change to the Special font; characters on that
font are handled automatically. A request for a named but unmounted font is
ignored. Troff can be informed that any particular font is mounted by use of
the .fp request. The list of known fonts is installation-dependent. Nroff
understandsfont control and normally underlinesItalic characters.

Character point sizes are typically in the range 6-36 (1/12- to 1/2-inch). The .ps
request is used to change or restore the point size. Alternatively the point size
may be changed between any two characters by imbedding a\sN at the desired
point to set the size to N, or a \s£N (1 <N <9) toincrement/decrement the size
by N; \sO restores the previous size. Requested point size values that are
between two valid sizes yield the larger of the two. The current size is available
inthe .sregister. NrofTignores type size control.



XENIX Text Processing Guide

.ps

ssN

esFNM

.bdFN

.bdSFN

ftF

IpNF

Has an initial value of 10. Point size set to 2 N. Alternatively imbed
\sN or \sxN. Any positive size value may be requested; if invalid,
the next larger valid size will result, with a maximum of 36. A
paired sequence +N, -N will work because the previous requested
value is also remembered. Ignored in nroff. If no argument is
given, .pshas the previous value.

Has an initial value of 12/36 em. Space-character size isset to N/36
ems. This size is the minimum word spacing in adjusted text.
Ignored in nroff. If no argument is specified, the requestisignored.

Initially off. Constant character space (width) mode is set on for
font F (if mounted); the width of every character will be taken to be
N/36 ems. If M is absent, the em is that of the character’s point size;
if M is given, the em is M points. All affected characters are
centered in this space, including those with an actual width larger
than this space. Special Font characters occurring while the
current font is F are also so treated. If N is absent, the mode is
turned off. The mode must be in effect when the characters are
physically printed. Ignoredinnroff.

Initially off. The charactersin font F will be artificially emboldened
by printing each one twice, separated by N-1 basic units. A

- reasonable value for N is 3 when the character size is in the vicinity

of 10 points. If N is missing the embolden mode is turned off. The
mode must be in effect when the characters are physically printed.
Ignored in nroff. :

Initially off. The charactersin the Special Font will be emboldened
whenever the current font is F. The mode must be in effect when the
charactersare physically printed.

Initially Roman. Font changed to F. Alternatively, imbed \{F. The
font name P isreserved tomean the previous font. If no argument is
specified, previous font is assumed.

Initially R, I, B, S. Font position. This is a statement that a font
named F is mounted on position N (1-4). It is a fatal error if Fis not
known. The phototypesetter has four fonts physically mounted.
Each font consists of a film strip which can be mounted on a
numbered quadrant of a wheel. This request is ignored if no
arguments are given.

6.2.2 Page Control

Top and bottom margins are not automatically provided. It is standard
procedure to define two macros and set traps for them at vertical positions 0
{top) and -N (N from the bottom). A pseudo-page transition onto the first page
occurs either when the first break occurs or when the first nondiverted text

6-6



Nroff/Troff Reference

processing occurs. Arrangements for a trap to occur at the top of the first page
must be completed before this transition.

.plN

.bpxN

.pnzN

.poxN

.neN

.mk R

Tt+N

Page length set to + N, initially 11inches. The internal limitation is
about 75 inches in troff and about 136 inches in nroff. The current
page length is available in the .p register. The default scale
indicator is v.If no argument is given, 11 inches is assumed.

Begin page, initially N=1. The current page is ejected and a new
page is begun. If + N is given, the new page number will be £N. The
default scaleindicatorisv.

Page number, initially N=1. The next page (when it occurs) will
have the page number £N. A .pn must occur before the initial
pseudo-page transition to effect the page number of the first page.
The current page number is in the % register.

Page offset, initially 0. The current left margin is set to £N. The
troff initial value provides about 1 inch of paper margin including
the physical typesetter margin of 1/27-inch. In troff the maximum
line-length + page-offset is about 7.54 inches. The current page
offset isavailable in the .o register.

Need N vertical space. If the distance D to the next trap position is
less than N, a forward vertical space of size D occurs, which will
spring the trap. If there are no remaining traps on the page,D isthe
distance to the bottom of the page. If DKV, another line could still
be output and spring the trap. In a diversion, D is the distance to
the diversion trap, if any, or is very large. If no argument is
specified, N=1V.

Marks the current vertical place in an internal register (both
associated with the current diversion level), or in register R, if
given.

Returns upward only to a marked vertical place in the current
diversion. If £Nis given, the placeis N from the top of the page or
diversion or, if N is absent, to a place marked by a previous .mk.
Note that the .sp request may be used in all cases instead of .rt by
spacing to the absolute place stored in an explicit register.

68.2.3 Text Filling, Adjusting, and Centering

Normally, words are collected from input text lines and assembled into an
output text line until some word doesn’t fit. An attempt is then made to the
. hyphenate the word in an effort to place a part of it onto the output line. The
spaces between the words on the output line are then increased to spread out
the line to the current line length minus any current indent. A word is any
string of characters delimited by the space character or the beginningor end of

6-7



XENIX Text Processing Guide

the input line. Any adjacent pair of words that must be kept together (neither
split across output lines nor spread apart in the adjustment process) can be tied
together using the unpaddable space character (backslash-space). The
adjusted word spacings are uniform in troff and the minimum interword
spacing can be controlled with the .ss request. In nroff, they are normally
nonuniform because of quantization to character-size spaces; the commandline
option -e causes uniform spacing with full output device resolution. Filling,
adjustment, and hyphenation can all be prevented or controlled. The text
length on the last line output is available in the .n register, and text baseline
position on the page for this line is in the .nl register. The text baseline high-
water mark (lowest place) on the current page is in the .hregister.

An input text line ending with ., ?, or ! is taken to be the end of a sentence, and
an additional space character is automatically provided during filling. Multiple
interword space characters found in the input are retained, except for trailing
spaces; initial spaces also cause a break. When filling is in effect a \p may be
embedded or attached to a word to cause a break at the end of the word and
have the resulting output line spread out to fill the current line length.

A text input line that happens to begin with a control character can be printed
as a text line by prefacing it with the nonprinting, zero-width filler character
\&. Another method is to specify output translation of some convenient
character into the control character using .tr.

The copying of an input line in no-fill mode can be interrupted by terminating
the partial line with a \c. The next encountered input text line will be
considered to be a continuation of the same line of input text. Similarly, a word
within filled text may be interrupted by terminating the word and line with \¢;
the next encountered text will be taken as a continuation of the interrupted
word. If the intervening control lines cause a break, any partial line will be
forced out along with any partial word.

.br Break. The filling of the line currently being collected is stopped
and the line is output without adjustment. Text lines beginning

with space characters and empty text lines (blank lines) also cause a
break.

A Fill subsequent output lines. Initially fill is on. The register .uis1in
fill mode and 0 in nofill mode.

.nf Nofill. Initially, fill is on. Subsequent output lines are neither filled
nor adjusted. Input text lines are copied directly to output lines
without regard for the current line length.

.ade Line adjustment is begun. If fill mode is not on, adjustment will be
deferred until fill mode isback on. If the type indicator cis present,
the adjustment type is changed in the following ways: ] to adjust
left-margin only, r to adjust right margin only, c to center,bor nto
adjust both margins. If ¢ is absent the line remainsunchanged. -



Nroff/ Troff Reference

.na Noadjust. Initially, set to adjust. Adjustment is turned off; the
right margin will be ragged. The adjustment type for .ad is
unchanged. Output line filling still occurs if fill mode ison.

.ce N Initially off. Center the next N input text lines within the current
line-length minus indent. If N=0, any residual count is cleared. A
break occurs after each of the N input lines. If the input line is too
long, it will be left-adjusted.

8.2.4 Vertical Spacing

The vertical spacing {V) between the baselines of successive output linescan be
set using the .vs request with a resolution of 1/144-inch = 1/2 point in troff,
and to the output device resolution in nroff. V must be large enough to
accommodate the character sizes on the affected output lines. For the common
type sizes (9-12 points), usual typesetting practice is to set V to 2 points greater
than the point size; troff default is 10-point type on a 12-point spacing. The
current Vis available in the .v register. Multiple-V line separation (e.g. double
spacing) may be requested with.Is.

If 2 word contains a vertically tall construct requiring the output line
containing it to have extra vertical space before and or after it, the extra line
space function \x’N’ can be imbedded in or attached to that word. In this and
other functions having a pair of delimiters around their parameter, the
delimiter choice is arbitrary, except that it can’t look like the continuation of a
number expression for N. If N is negative, the output line containing the word
will be preceded by N extra vertical space; if N is positive, the output line
containing the word will be followed by N extra vertical space. If successive
requests for extra space apply to the same line, the maximum values are used.
The most recently utilized post-line extra line space is available in the .a
register.

A block of vertical space is ordinarily requested using .sp, which honors the no-
space mode and which does not space past a trap. A contiguous block of vertical
space may be reserved using .sv. The following requests control vertical
spacing:

wsN Initially 1/6-inch or 12 points. Set vertical baseline spacing size V.
Transient extra vertical space available with \x’N".

Is N Initially N=1. Line spacing set to £N. Vs (blank lines) are
appended to each output text line. Appended blank lines are
omitted, if the text or previous appended blank line reached a trap
position. Space vertically in either direction. If N is negative, the
motion is backward (upward) and is limited to the distance to the
top of the page. Forward (downward) motion is truncated to the
distance to the nearest trap.

6-9



XENIX Text Processing Guide

sp N Space vertically in either direction. If N is negative, the motion is
backward (upward) and is limited to the distance to the top of the
page. Forward (downward) motion is truncated to the distance to
the nearest trap. If no-space mode is on, no spacingoccurs.

svN Save a contiguous vertical block of size N, If the distance to the next
trap is greater than N, N vertical space is output. No-space mode
has no eflect. If this distance is less than N, no vertical space is
immediately output, but N is remembered for later output.
Subsequent .sv requests will overwrite any still remembered N. '

.08 Output saved vertical space. No-space mode has no effect. Used to
finally output a block of vertical space requested by an earlier .sv
request.

.ns No-space mode turned on. When on, the no-space mode inhibits.sp

requests and .bp requests without a next page number. The no-
space mode is turned-off when a line of output occurs, or with..rs.

xS Restore spacing. The no-space mode is turned off.

blank line Causesabreak and output of ablank line exactly like.sp 1.

6.2.5 Line Length and Indenting

The maximum line length for fill mode may be set with .II. The indent may be
set with .in; an indent applicable to only the next outputline may be set with .ti.
The line length includes indent space but not page offset space. The line length
minus the indent is the basis for centering with .ce. The effect of .1}, .in, or .tiis
delayed if a partially collected line exists, until after that line is output. In fill
mode the length of text on an outputline is less than or equal to the line length
minusthe indent. The currentline length and indent are available in registers.l
and .i respectively. The length of three-part titles produced by .tl is
independently set by .lt.

JIEN Initially 6.5 inches. Line length is set to £ N. In troff the maximum
line-length + page-offset is about 7.54 inches. Without an
argument, this means the previous line length.

intN Initially N=0. Indent is set to £N. The indent is prepended to each
output line. Without an argument, this meansthe previousindent.

tiEN Temporary indent, The next output text line will be indented a
distance £N with respect to the currentindent. The resulting total
.indent may not be negative. The current indent is not changed.
Without an argument, the request isignored.

6-10



Nroff/Troff Reference

6.2.8 Tabs, Leaders, and Fields.

The ASCII horizontal tab character and the ASCII SOH (leader) character can
both be used to generate either horizontal motion or a string of repeated
characters. The length of the generated entity isgoverned by internal tab stops
specifiable with .ta. The default difference is that tabs generate motion and
leaders generate a string of periods; .tc and .lc offer the choice of repeated
character or motion. There are three types of internal tab stops: left adjusting,
right adjusting, and centering. In the following table D is the distance from the
current position on the input line (where a tab or leader was found) to the next
tab stop; the next string consists of the input characters following the tab (or
leader) up to the next tab (or leader) or.end of line; and W is the width of next-
string.

Tab' | Length of motionor Location of
type repeated characters next string
Left D : Following D
Right D-W. Right adjusted within D
Centered D-W/2 Centered on right end of D

The length of generated motion can be negative, but the length of a repeated
character string cannot be. Repeated character strings contain an integer
number of characters, and any residual distance is prepended as motion. Tabs
or leaders found after the last tab stop are ignored, but may be used as next-
string terminators.

Tabs and leaders are not interpreted in copy mode. \t-and \a alwaysgeneratea
noninterpreted tab and leader respectxvely, and are equivalent to actual tabs
andleadersin copy mode.

A field is contained between a pair of field delimiter characters, and consists of
substrings separated by padding indicator characters. The field length is the
distance on the input line from the position where the field begins to the next
tab stop. The difference between the total length of all the substrings and the
field length is incorporated as horizontal padding space that is divided among
the indicated padding places. The incorporated padding is allowed to be
negative. For example, if the field delimiter is # and the padding indicatoris *,
## " xxx“right# specifies a right-adjusted string with the string zzz centered in
the remaining space. The following requestsare recognized:

.taNt... ~Setstab stops and types. t==R, right adjusting; t==C, centering; t
absent isleft-adjusting. Trofftabstops are preset every 0.5inches,
nroff every 0.8 inches. The stop values are separated by spaces,
and a value preceded by + is treated as an increment to the
previousstop value.

tee The tab repetition character becomes ¢, or is removed specifying
motion.

6-11



XENIX Text Processing Guide

dece The leader repetition character becomesec, orisremoved specxfymg
motxon

fcab The field delimiter is set to a; the padding indicator is set to the
space character or to b, if given. In the absence of arguments the
field mechanismis turned off.

_ 8.2.7 Hyphenation

Automatic hyphenation can be switched off and on. When switched on with
.hy, several variants may be set. A hyphenation indicator character may be
imbedded in a word to specify desired hyphenation points, or may be
prepended to suppress hyphenation. In addition, the user may specify a small
exception word list.

Only words that consist of a central alphabetic string surrounded by (usually
null) nonalphabetic strings are considered candidates -for automatic
hyphenation. Words that were input containing hyphens (minus), em-dashes
(\(em), or hyphenation indicator characters —such as mother-in-law—are
always subject to splitting after those characters, whether automatlc
hyphena.tlon isonoroff.

.nh Initially hyphena.tion ison. Automatic hyphenation is turned off.

by N Automatic hyphenation is turned on for N> 1, or off for N=0. If
N=2, last lines {ones that will cauge a trap) are not hyphenated.
For N==4 and 8, the last and first two characters respectively of a
word are not split off. These values are additive; i.e., N=14 will
invoke all three restrictions.

hee ‘ Hyphenation indicator character is set to ¢ or to the default \&
The mdxcat.or does not appear inthe output.

.hw wordl... Specify hyphenation points in- words with imbedded minus signs.
Versions of a word with variousendingsare implied.

8.2.8 Three Part Titles

The titling function .tl provides for automatic placement of three fields at the
left, center, and nght of a line with a title-length specifiable with .1t. .tl may be
used anywhere, and is independent of the normal text collectmg process. A
common use is in header and footer macros.

.tl'left’center’right’ ’
The strings left, center, and right are respectively left-adjusted,
centered, and right-adjusted in the current title length. Any of the
strings may be empty, and overlapping is permitted. If the page-
number character {initially %) is found within any of the fields it is

612



Nroff/ Troff Reference

replaced by the current page number having the format assigned to
the register %. Any character may be used as the string delimiter.

pcec The page number character is set to ¢, or removed. The page-
number register remains %.

JtxN Initially 6.5 inches. Length of title set to £N. The line length and
the title length are independent. Indents do not apply to titles; page
offsets do.

6.2.9 Output Line Numbering

Automatic sequence numbering of output lines may be requested with .nm.
When in effect, a three-digit Arabic number plus a digit-space is prepended to
output text lines. The text lines are thus offset by four digit-spaces, and
otherwise retain their line length; a reduction in line length may be desired to
keep the right margin aligned with an earlier margin. Blank lines, other
vertical spaces, and lines generated by .tl are not numbered. Numbering can be
temporarily suspended with .nn, or with an.nm followed by a later .nm+0. In
addition, a line number indent I, and the number-text separation S may be
specified in digit-spaces. Further, it can be specified that only those line
numbers that are multiples of some number M are to be printed (the others will
appear asblank number fields).

.nm+N  Line number mode. If £Nisgiven, line numberingis turned on, and
the next output line numbered is numbered £ N. Default valuesare
M=1, S=R, and I==0. Parameters corresponding to missing
arguments are unaffected; a non-numeric argument is considered
missing. In the absence of all arguments, numbering is turned off;
the next line number is preserved for possible further use in number
register In.

.nnN The next N text output lines are not numbered.

6.3 Character Translatians; Overstrike, and Local
Motions

The troff functions described in the following sections apply to the processing
of specialized text, including special characters and lines of variable length.
Also described are methods for producing special effects in text, by changing
the position of text relative tolines and using offsets to create bold effects.

6.3.1 Input/Output Conventions and Character Translations
The newline delimits input lines. In addition, the ASCII characters STX, ETX,

ENQ, ACK, and BEL characters are accepted, and may be used as delimiters or
translated into a graphic with.tr. Allothersareignored.

"~ 6-13



XENIX Text Processing Guide

The troff escape character backslash (\) introduces escape sequences—- causes
the following character to mean another character, or to indicate some
function, The backslash (\) should not be confused with the ASCII control
character ESC of the same name. The escape character \ can be input with the
. sequence \\. The escape character can be changed with .ec, and all that has
been said about the default \ becomes true for the new escape character. The
sequence \e can be used to print whatever the current escape character is. If
necessary or convenient, the escape mechanism may be turned off with .eo, and
restored with .ec.

.ecc Setsescape character to\, or to ¢, if given.
.€0 Turnsthe escape mechanism off.

Five ligatures are available in the current troff character set: fi, fl, f, Fi, and fli.
They may be inputin nroff with \{fi, \(8,\(ff, \(Fi, and \(F] respect.ively

The llgature mode is normally on in troff, and automatxcally invokes hgatures
during input. The ligature request is:

g Ligature mode is turned on if N is absent or nonzero, and turned off
if N=0. If N=2, only the two-character ligatures are automatically
invoked. Ligature mode is inhibited for request, macro, strxng,
register, or filenames, and in copy mode. No effectin nroff.

Unlessin copy mode, the ASCII backspace‘character isreplaced by a backward
horizontal motion having the width of the space character. Nroff
automatically underlines characters in the underline font, specifiable with uf,
normally on font position 2. In addition to .ft and \fF, the underline font may
. be selected by .ul and .cu. Underlining is restricted to an “output-device-
dependent subset of reasonable characters.

.ulN Initially off. Underlinesin nroff (italicizes in troff) the next Ninput
text lines. ‘Actually, switches to underline font, saving the current
font for later restoration; other font changes within the span ofa.ul
will take effect, but the restoration will undo the last change.
Output generated by .tl is affected by the font change, but does not
decrement N. If. N> 1, there is the risk that a trap interpolated
macro may provide text lines within the span; environment
switching can prevent this.

.cuN Initially off. A variant of .ul that causes every character to be
underlined in nroff. Identical to.ulin troff.

afF Inmally italic. Underlme font set to F. In nroff, F may not be on
position 1.

Both the control character dot (.) and the no-break control character (*) may be

changed, if desired. Such a change must be compatible with the design of any
macros used in the span of the change, and particularly of any trap-invoked

6-14



- Nroff/ Troff Reference

macros.
..ccc The basic control character isset to ¢, or reset todot (.).
€2 ¢ The nobreak control character is set to ¢, or reset to single

quotation mark ().

One character can be made to stand in for another character using .tr. All text
processing (e.g., character comparisons) takes place with the input (stand-in)
character, which appears to have the widthof the final character. The graphic
translation occursat the moment of output (including diversion).

.tr abed.. Translates a to b, ¢ to d, ete. If an odd number of characters is
given, the last one will be mapped into the space character. To be
consistent, a particular translation must stay in effect from input to
output time.

Aninput line beginning with a\!isread in copy mode and transparently output
(without the initial \!); the text processor is otherwise unaware of the line's
presence. This mechanism may be used to pass control information to a post-
processor or toimbed control linesin a macro created by a diversion.

Comments and concealed newlines may appear in text. Anuncomfortably long
input line that must stay one line (e.g., a string definition, or nofilled text) can
be split into many physical lines by ending all but the last one with the escape \.
The sequence \(newline) is always ignored——except in a comment. Comments
may be imbedded at the end of any line by prefacing them with \”. The newline
at the end of a comment cannot be concealed. A line beginning with \” will
appear as a blank line and behave like .sp 1; a comment can be on a line by itself
if the line beginswith .\".

8.3.2 Local Motions and the Width Function

The functions \v'N’ and \h’N’ can be used for local vertical and horizontal
motion respectively. The distance N may be negative; the positive directions
are rightward and downward. A local motion is one contained within a line.
and otherwise within a line balance to zero. The vertical motionsare:

\v'N’ Move distance N

\u 1/2-em up in troff; 1/2-line upin nroff
\d 1/2-em downin troff; 1/2-line down in nroff
\r 1emup in troff; 1line upinnroff

The horizontal motions are:

615



"XENIX Text Processing Guide

\l'N'’  Movedistance N

\&pace Unpaddable space-size space

\0 Digit-sized space .
\| 1/6-em space in troff; ignored in nroff

\’ 1 /12-em space in troff;ignored in nrqﬂ'

The width function \w’string’ generates the numerical width of string (in basic
units). Size and font changes may be safely imbedded in string, and will not
affect the current environment. For example, .ti-w’1.’u ¢ould be used to
temporarily indent leftward a distance equal to the size of the string “1.”

The width function also sets three number registers. The registersst andsb are
set to the highest and lowest extent of string relative to the baseline; then, for
example, the total height of string is \n(stu-\n(sbu: In troff the number .
register ctis set to a value between 0 and 3: 0 meansthat all of the charactersin
string were short lowercase characters without descenders (e.g., €); 1 means
that at least one character has a descender {e.g., y ); 2 means that at least one
character is tall (e.g., H); and 3 means that both tall characters and characters
with descenders are present. The escape sequence \kx will cause the current
honzontal posmon inthei mput line to be stored in regxster X.

6.3.3 Overstnke, Bracket, Lme—drawmg, and Zero-wlclth
Functions

Automatically centered overstriking of up to nine charactersis provided by the
overstrike function \o’string’. The characters in string are overprinted with
centers aligned; the total width is that of the widest character. String should
not contain local vertical motion. The function \zc will output ¢ without
spacing over it, and can be used to produce left-aligned overstruck
combinations. »

The Special Mathematical Font contains a number of bracket construction
pieces( (4y3{}] L] [1) that can be combined into various bracket styles. The
function \b'string’ may be used to pile the characters in s¢ring vertically (the
first character on top and the last at the bottom); the characters are vertically
separated by 1 em and the tota.l pile is cenbered l/2-em a.bove the current
baseline.

The function \l Nc¢’ will draw a string of repeated c¢’s towards the right for a
distance N. (\l is \lowercase L). If ¢ looks like a continuation of an expression
for N, it may be insulated from N with a \&. If ¢ is not specified, the _(baseline
rule) is used (underline character in nroff). If N is negative, a backward
horizontal motion of size N is made before drawing the string. Any space
resulting from N/(size of c) having a remainder is put at the beginning (left end)
of the string. In the case of characters that are designed to be connected such as

6-16



Nroff/ Troff Reference

baseline-rule (_), underrule (_), and root-en {7), the remaining space is covered
by overlapping. If N is less than the width of ¢, a single ¢ is centered on a
distance N. '

The function \L'N¢’ will draw a vertical line consisting of the (optional)
character ¢ stacked vertically apart 1 em (1 line in nroff) with the first two
characters overlapped, if necessary, to form a continuous line. The default
character is the box rule (\(br); the other suitable character is the bold vertical
(\(bv). The line is begun without any initial motion relative to the current base
line. A positive N specifies a line drawn downward and a negative N specifies a
line drawn upward. After the line is drawn no compensating motionsare made;
the instantaneous baseline is at the end of the line. The horizontal and vertical
line drawing functions may be used in combination to produce large boxes. The
zero-width box-rule and the 1/2-em wide underrule were designed to form
corners when using 1 em vertical spacings.

6.4 Processing Control Facilities

The following sections describe nroff and troff requests and facilities for
controlling the processing of text.

6.4.1 Macros, Strings, Diversions, and Position Traps

A ““macro’’ is a named set of arbitrary lines that may be invoked by name or
witha trap. A “string” is a named string of characters, not including a newline
character, that may be interpolated by name at any point. Request, macro,
and string names share the same name list. Macro and string names may be one
or two characters long and may usurp previously defined request, macro, or
string names. Any of these may be renamed with .rn or removed with .rm.
Macros are created by .de and .di, and appended to by .am and .da; .di and .da
cause normal output to be stored in a macro. Strings are created by .ds and
appended to by .as. A macro is invoked in the same way as a request; a control
line beginning with .xx will interpolate the contents of macro xx. The
remainder of the line may contain up to nine arguments. The strings x and xx
are interpolated at nay desired point with \*x and \*(xx respectively. String
referencesand macro invocations may be nested.

Duﬁng the definition and extension of strings and macros(not by diversion) the
input is read in copy mode. The input is copied without interpretation except
that:

—  The contents of number registersindicated by \n are interpolated.

—  Stringsindicated by \# are interpolated.

—  Argumentsindicated by \$ areinterpolated.

6-17



XENIX Text Processing Guide

—  Concealednewlinesindicated by \newline are eliminated.
—  Commentsindicated by \” are eliminated.

— \t and \a are interpreted as ASCI horizontal tab and SOH
respectively.

— \\isinterpreted as\.
— \.isinterpreted as dot (.).

These interpretations can be suppressed by prepending a\. For example, since
\\ mapsinto a \, \\n will copy as \n; this will be interpreted as a number
register indicator when the macro or stringisreread.

When a macro is invoked by name, the remainder of the line is taken to contain
up to nine arguments. The argument separator is the space character, and
arguments may be surrounded by quotation marks to permit imbedded space
characters. Pairs of double quotation marks may be imbedded in double-
quoted arguments to represent a single quotation mark. If the desired
arguments won't fit on a line, a concealed newline may be used to continue on
the next line.

When a macro is invoked the input level is pushed down and any arguments
available at the previous level become unavailable until the macro is
completely read and the previous level is restored. A macro’s own arguments
can be interpolated at any point within the macro with \$N, which interpolates
the Nth argument {1<N<9). If an invoked argument doesn’t exist, a null
string results, For example, the macro xx might be defined as

.de xx \” begin definition
Today is \\$1 the \\$2.
\"end deﬁmtlon
and called with
.xx Monday 14th
to produce the text
Today is Monday the 14th.

Note that the \$ was concealed in the definition with a prepended \. The
number of currently available argumentsis in the .$ register.

No arguments are available at the top (nonmacro) level in this implementation.

Because string referencing is implemented as an input-level push down, no
arguments are available from within a string.  No arguments are available
within a trap-invoked macro.

6-18



Nroff/Troff Reference

Arguments are copied in copy mode onto a stack where they are available for
reference. The mechanism does not allow an argument to contain a direct
reference to a long string (interpolated at copy time) and it is advisable to
conceal string references (with an extra \) to delay interpolation until
argument reference time.

Processed output may be diverted into a macro for purposes such as footnote
processing or determining the horizontal and vertical size of some text for
conditional changing of pages or columns. A single diversion trap may be set at
a specified vertical position. The number registers .dn and .dl respectively
contain the vertical and horizontal size of the most recently ended diversion.
Processed text that is diverted into a macro retains the vertical size of each of
its lines when reread in no-fill mode, regardless of the current value of V.
Constant-spaced (.cs) or emboldened (.bd) text that is diverted can be reread
correctly only if these modes are again or still in effect at reread time.

Diversions may be nested and certain parameters and registers are associated
with the current diversion level (the top nondiversion level may be thought of
as the Oth diversion level). These are the diversion trap and associated macro,
the no-space mode, the internally saved marked place (see .mk and .rt), the
current vertical place (.d register), the current high-water text baseline (.h
register), and the current diversion name (.2 register).

Three types of trap mechanisms are available—page traps, a diversion trap,
and an input line count trap. Macro invocation traps may be planted using .wh
at any page position including the top. This trap position may be changed using
.ch. Trap positions at or below the bottom of the page have no eflect unless or
until moved to within the page or rendered effective by an increase in page
length. Two traps may be planted at the same position only by first planting
them at different positions and then moving one of the traps; the first planted
trap will conceal the second unless and until the first one is moved. If the first
one is moved back, it again conceals the second trap. The macro associated
with a page trap is automatically invoked when a line of text is output whose
vertical size reaches or sweeps past the trap position. Reaching the bottom of a
page springs the top-of-page trap, if any, provided there is a next page. The
distance to the next trap position is available in the .t register; if there are no
traps between the current position and the bottom of the page, the distance
returned is the distance to the page bottom.

A macro-invocation trap effective in the current diversion may be planted
using .dt. The .t register works in a diversion; if there is no subsequent trap a
large distance is returned. For a description of input line count traps, see .it
below. :

.dezzyy Defineorredefine the macro zz. The contentsof the macro begin on
the next input line. Input lines are copied in copy mode until the
.definition is terminated by aline beginning with .yy, whereupon the
macro yyis called. In the absence of yy, the definition is terminated
by a line beginning with two dots (..). A macro may contain .de
requests provided the terminating macros differ or the contained

6-19



XENIX Text Processing Guide

definition terminator is concealed. The dots can be concealed as
\\.. which will copy as\..and be reread asdots(..).

.am 2z yy Apbend to macro.

.ds 2z string Define a stnng XX containing string. Any initial double quotat,xon

mark instring isstripped off to permit initial blanks.

.as zzstring Append string to string zz.

Jm zz

.rn zz yy

.di zz

dazz

whNzz

.chzzN

.dt N zz

itNzz

em 2

8-20

'Remove request, macro, or string. The name xx is removed from

the name list and any related storage space is freed. Subsequent
references will have no effect.

Rename request, macro, or stnng zz to yy. If yy exists, it is first
removed.

Divert output to. macro xx. Normal text processing occurs during
diversion except that page offsetting is not done. The diversion ends
when the request .di or .da is encountered without an argument;
extraneous requests of this type should not appear when nested
diversionsare being used.

Divert, appending to zz.

Install a trap to invoke zz at page position N; a negative N will be
interpreted with respect to the page bottom. Any macro previously
planted at N isreplaced by 22. A zero N refers to the top of a page.
In the absence of zz, the first found trap at N, if any, isremoved.

Change the trap position for macro xx to N. In the absence of N, the
trap isremoved.

Install a diversion trap at position N in the current diversion to
invoke macro zz. Another .dt will redefine the diversion trap. If no
arguments are given, the diversion trap isremoved.

Set an input line count trap to invoke the macro xx after N lines of
text input have been read (control or request lines don’t count).
The text may be in-line text or text interpolated by in-line or trap-

" invoked macros.

The macro 2z will be invoked when all input hasended. The effect is
the same as if the contents of xx had been at the end of the last file
processed.



Nroff/ Troff Reference

8.4.2 Number Registers

A variety of parameters are available to the user as predefined, named number
registers. In addition, the user may define his own named registers. Register
names are one or two characters long and do not conflict with request, macro,
or string names. Except for certain predefined read-only registers, a number
register can be read, written, automatically incremented or decremented, and
interpolated into the input in a variety of formats. One common use of user-
defined registers is to automatically number sections, paragraphs, lines, ete. A
number register may be used any time numerical input is expected or desired
and may be used in numerical expressions.

Number registers are created and modified using .nr, which specifies the name,
numerical value, and the auto-increment size. Registers are also modified, if
accessed with an auto-incrementing sequence. If the registers x and xx both
contain N and have the auto-increment size M, the following access sequences
have the effect shown: ’

Effect on Value
Sequence Register Interpolated
\nx none N
\n{xx none N
\n+x xincremented by M N+M
\n-x x decremented by M N-M
\n+(xx | xxincremented by M N+M
\n-(xx xx decremented by M N-M

When interpolated, a number register is converted to decimal (default),
decimal with leading zeros, lowercase Roman, uppercase Roman, lowercase
sequential alphabetic, or uppercase sequential alphabetic according to the
format specified by .af.

.nr R+ NM The number register R is assigned the value £ N with respect to the
previous value, if any. The increment for auto-incrementing is set
toM.

.afRec Assign format ¢ toregister R. The available formats are:

Numbering
Format Sequence
1 |0,1,2345,.
001 | 000,001,002,003,004,005,...

i 0,i,ii,iii,iv,v,...
I 0L IOLIV,V,...
a 0,3,b,c,...,2,33,ab,...,22,224,...

A |0ABC,..2ZAAAB,. 22 AAA,... |

An Arabic format having N digits specifies a field width of N digits.
The read-only registers and the width function are always Arabic.

6-21



XENIX Text Processing Guide

rr R Remove register R. If many registers are being created
dynamically, it may become necessary to remove no longer used
registersto recapture internal storage space for newer registers.

6.4.3 Conditional Acceptance of Input

In the following; ¢ is a one-character, built-in condition name, ! signifies not, N
is a numerical expression, stringl and string2 are strings delimited by any
nonblank, non-numeric character not in the strings, and tezt represents what is
conditionally accepted. ' '

Afctezt ,
If condition c is true, process tezt as input; in multiline case, use -
\{text\}.

Aflctezt
If condition cis false, process tezt.

Lif N tezt

Ifexpression N >0, process teat.

Af!N test

Ifexpression N <0, processteat.

if’stringl’string?2’ tezt
If stringl identical to string2, processteazt.

Aft'stringl’string?2’ test
If string 1 notidentical to string2, process tezt.

dectest :
“If” portion of if-else; all above forms (like if).

eltest
“Else” portion of if-else.

There are several built-in condition names:

o Current page number isodd
e Current page number iseven
t Formatter is troff

n ‘Formatterisnroff

If condition ¢ is true, or if the number N is greater than zero, or if the strings
compare identically (including motions and character size and font), test is
accepted as input. If a! precedes the condition, number, or string comparison,

- 6-22



Nroff/ Troff Reference

the sense of the acceptance isreversed.

Any spaces between the condition and the beginning of tezt are skipped over.
The tezt can be either a single input line (text, macro, or whatever) or anumber
of input lines. In the multiline case, the first line must begin with a left delimiter
\{ and the last line must end with a right delimiter \}.

The request .ie (if-else) is identical to .if except that the acceptance state is
remembered. A subsequent and matching .el (else) request then uses the
reverse sense of that state. .ie-.el pairs may be nested.

6.4.4 Environment Switching

A number of the parameters that control text processing are gathered together
into an environment, which can be switched by the user. Partially collected
lines and words are in the environment. Everything else is global; examples are
page-oriented parameters, diversion-oriented parameters, number registers,
and macro and string definitions. All environments are initialized with default
parameter values.

.evN Initially N=0. Environment switched to environment where Nisin
the range 0-2. Switching is done in push-down fashion so that
restoring a previous environment must be done with .ev with no
parametersrather than aspecific numeric reference.

8.4.5 Insertions From the Standard Input

The input can be temporarily switched to the system standard input with .rd,
which will switch back when two newlines in a row are found (the extra blank
line is not used). This mechanism is intended for insertions in documentation
containing standard formats. The standard input can be the terminal, a pipe,
or afile.

.rd prompt Readsinsertion from the standard input until two newlinesinarow
are found. If the standard input is the user’skeyboard, a prompt (or
a BEL) is written onto the terminal. The .rd request behaves like a
macro, and arguments may be placed after the prompt.

.ex Exit from either nroff or troff. Text processing is terminated
exactly asif allinput had ended.

If insertions are to be taken from the terminal keyboard while output is being
printed on the terminal, the command line option —q will turn off the echoing of
keyboard input and prompt only with BEL. The regular input and insertion
input cannot simultaneously come from the standard input.

6-23



XENIX Text Processing Guide

8.4.6 Input/Output File Switching
The following requests control the switching of input and output files;

.50 filename :
Switch source file. The top input (file reading) level is switched to
filename. The effect of a .s0 encountered in a macro is not felt until
the input level returns to the file level. When the new file.ends,
input is again taken from the original file. .so’s may be nested.

.nx filename
: Next file is filename. The current file is considered ended, and the
input isimmediately switched to filename.

.piprogram
: Pipe output to program in nroff only. This request must occur

before any printing occurs. No arguments are transmitted to

program. : '

'6.4.7 Miscellaneous Requests

.mccN  Specifies that a margin character ¢ appear a distance N tothe right
of the right margin after each nonempty text line (except those
produced by .tl). If the output line is too long, the character will be
appended to the line. If N is not given, the previous N is used; the
initial Nis0.2inchesinnroff, and 1 em in troff.

.tm string After skipping initial blanks, etring (rest of line) is read in copy
mode and written on the user’s terminal.

igyy Ignores input lines. The .ig request behaves exactly like .de except
that the input is discarded. The input isread in copy mode, and any
auto-incremented registers will be affected.

.pmt Prints macros. The names and sizesof all of the defined macros and
strings are printed on the user’s terminal; if tis given, only the total
of the sizes is printed. The sizes are given in blocks of 128
characters.

Al Flushes output buffer. Used in interactive debugging to force
output.

8.5 Output and Error Messages

The output from .tm, .pm, and the prompt from .rd, as well as-various error
messages are written onto the standard message output. The latter isdifferent

- 624



Nroff/Troff Reference

from the standard output, where nroff formatted output goes. By default,
both are written onto the user’s terminal, but they can be independently
redirected.

Various error conditions may occur during the operation of nroff and troff.
Certain less serious errors having only local impact do not cause processing to
terminate. Two examples are word overflow, caused by a word that is too large
to fit into the word buffer (in fill mode), and line overflow, caused by anoutput
line that grew too large to fit in the line bufler; in both cases, a message is
printed, the offending excess is discarded, and the affected word or line is
marked at the point of truncation with a * in nroff and a ¢ in troff. The
program continues processing, if possible, on the grounds that output useful for
debugging may be produced. If a serious error occurs, processing terminates,
and an appropriate message is printed. Examples are the inability to create,
read, or write files, and the exceeding of certain internal limits that make future

6-25



XENIX Text Processing Guide
output unlikely to be useful.

6.6 Summary of Escape Sequences and Number
Registers

8.6.1 Escape Sequences for Characters, Indicators, and Functions

6-26



Nroff/Troff Reference

Sequence

\b’abe...”
\¢
\d

\Ix, \f(xx,\fN
\h'N’

\kx

\I'N¢’

\L'N¢’
\nx,\n(xx
\o'abc...’

N\

. \;N, \sxN
\t

}u’N’
\w’string’
§x’N’

\{

\(newline)

Meaning

\(to preventor delay the interpretation of \)
Printable version of the current escape character
Acute accent ('); equivalent to \(aa

Grave accent (*); equivalent to \(ga

Minussign (-) in the current font

Period (.)

Unpaddable space-size space character

Digit width space

1/6-em narrow space character (zero width in nroff)
1/12-em half-narrow space character (zero width in nroff)
Nonprinting, zero-width character

Transparent line indicator

Beginning of comment

Interpolate argument (1<N<9)

Default optional hyphenation character

Character named xx

Noninterpreted leader character

Bracket building function

Interrupt text processing

Forward(down) 1/2 em vertical motion (1/2line in nroff)
Change to font named x or xx, or position N

Local horizontal motion; move right N (negative left)
Mark horizontalinput place in register x

Horizontal line drawing function (optionally with ¢)
Vertical line drawing function (optionally with ¢)
Interpolate number register x or xx

Overstrike charactersa, b, ¢

Break and spread output line

Reverse 1 em vertical motion (reverse line in nroﬁ')
Point size change function

Noninterpreted horizontal tab

Reverse 1/2-em vertical motion (1/2-line in nroff)
Local vertical motion; move-down N (negative up)
Interpolate width of string

Extraline space function (negative before, positive after)
Print ¢ with zero width (without spacing)

Begin conditional input

End conditionalinput

Concealed (ignored) newline

X, any character not listed above

8-27



"XENIX Text Processing Guide
8.8.2 Predefined General Number Regfsters

%  Currentpage number

ct Character type (set by width function)

dl  Width(maximum)oflast completed diversion

dn  Height (vertical size) of last completed diversion

dw  Current day of the week (1-7)

dy  Currentday of the month (1-31)

hp  Currenthorizontal placeoninput line

In Output line number

mo = Currentmonth (1-12)

nl  Vertical position of last printed text baseline

sb  Depthofsing below base line (generated by width function)
st Height of string above base line (generated by width function)
yr  Last two digitsof current year

6.6.3 Predefined Read-Only Number Registers

Number of arguments available at the current macro level
Set to 1in troff, if-aoptionused; 1 innroff

Available in horizontal resolution in basic units

Set to 1in nroff, if - T option used; always 0 in troff
Available vertical resolution in basic units

Post-line extra line space most recently utilized using \x’N’
Number of lines read from currentinput file

Current vertical place in current diversion; equal to nl, if no diversion
Current font as physical quadrant

Text baseline high-water mark on current page or diversion
Current indent

Current line length

Length of text portion on previousoutput line

Current page offset

Current page length

Current pointsize

Distance to the next trap

Equal to 1in fill mode and 0 in no-fillmode

Current vertical line spacing

Width of previous character

Reserved version-dependent register

Reserved version-dependent register

Nameof current diversion

bk gegouygob~=bapobddiginbee

6-28



Chapter 7
Formatting Tables

7.1 Introduction 7-1

7.2 InputFormat  7-2
7.2.1 Options 7-3
7.2.2 Format 7-3
7.2.3 Additional Features 7-5
7.2.4 Data 7-7
7.2.5 Additional Command Lines  7-9

7.3 Invoking Thl 7-10
7.4 Examples 7-11

7.5 Summary of tbl Commands 7-18






Formatting Tables

7.1 Introduction

By now, you have a firm grasp of most of the principles and techniques of using
XENIX text processing successfully. By using the mm macro package, along
with nroff/troff commands, you should be able to achieve precise control of
almost any formatting task. However, there are two formatting needs which
may be best met with two specialized XENIX formatting programs:

e Formatting tables or other complicated multicolumn material
o  Setting mathematical equations

In this chapter, the program tbl, the table formatting program, isintroduced.
Eqn, the mathematics formatting program, is discussed in Chapter 8. Unless
you anticipate using tables or equations fairly extensively in your work, you
may wish to postpone or skip reading about tbl and egn. Although both
programs use commands which are easy to learn and use, you should expect to
spend several hours on each program—reading these instructions, learning the
commands, and testing them out with your output device. If you need to create
tablesor equationsin your documents, the effort of learning tbl and eqn will be
well rewarded. You will soon be able to produce high-quality, consistent output
withrelatively little work.

Both tbl and eqn are ““preprocessors’—that is, you insert commandsinto your
text as you are preparing it, just as you would if you were using mm. These
commands are translated by the tbl and eqn programs into sequences of
nroff/troff commands, without altering either the body of your text or other
formatting commands. Your file is then processed through the nroff or troff
programs themselves.

You will find tbl especially useful in preparing charts, multicolumn list
summaries, and other tabular material. It will give you a high degree of control
over complicated column alignment, and it will calculate the necessary widths
of columns, when the elements are of varying lengths. Tbl also allows you to
draw horizontal lines, vertical lines and boxes in order to highlight your
material. Although the effects will be somewhat limited if you are working with
an ordinary lineprinter or similar device, you will obtain extremely high quality
results when outputting tables to phototypesetter.

Because the tbl program works by isolating the tabular material from the rest
of the file, and then creating the necessary nroff or troff commands, the rest of
the file is left intact for other programs to format. Thusyou can use tbl along
with the equation formatting program eqn or various layout macro packages
like mm, without duplicating their functions. You need only be careful to
invoke the various programs in the correct order.

The latter part of this chapter is devoted to some examples—in each case, the

text input is paired with the resulting output. You may find that at first you
learn the features of tbl best by examining these examples and copying those

7-1



XENIX Text Processing

formatting instructions for examples which resemble your own tables.
However, first read the rules for preparing tbl input, so you have a general idea
of how to invoke the tbl program, and an overview of the possible options and
formats.

7.2 Input Format

The input to tbl is text for a document, with tables preceded by a .T'S (table
start) command and followed by a .TE (table end) command. Tbl processes
the text and formatting commands within these two commands, generating
nroff/troff formatting commands. The .TS and .TE lines are also copied so
that nroff and troff page layout macros can use these lines to delimit and place
tables as necessary. In particular, any arguments on the .TS or .TE lines are
copied but otherwise ignored, and may be used by document layout macro
commands.

The format of the input is:

text

Each table will contain text, options, and formatting specifications:

TS
options;
format.
data
.TE

Each table is independent, and must contain formatting information followed
by the data to be entered in the table. The formatting information, which
describes the individual columns and rows of the table, may be preceded by
options that affect the entire table.

Each table may contain global options, a format section describing the layout
ofindividual table entries, and then the text to be printed The format and data
are always required, but not the opmons The various parts of a table are
described in the following sections.



Formatting Tables

7.2.1 Options

There may be a single line of options which aflects the whole table. If present,
this line must immediately follow the .TS line and must contain alist of option
names separated by spaces, tabs, or commas, and must be terminated by a
semicolon. The allowable optionsare:

center

Centers the table (default isleft-adjust)
expand

Makesthe table as wide asthe current line length
box

Encloses the table in a box
allbox

Encloseseachitem in the tablein a box
doublebox

Encloses the table in two boxes
tab (x)

Uses x instead of tab to separate dataitems
linesize (n)

Setslinesor rules in n point type
delim (zy)

Recognizes zand yasthe eqn delimiters.

The tbl program tries to keep boxed tables on one page by issuing appropriate
.ne commands. These requests are calculated from the number of lines in the
tables, and if there are spacing commands embedded in the input, these
requests may be inaccurate. To ensure the correct format on one page, you can
surround the table with the display macros .DS and .DE.

7.2.2 Format

The format section of the table specifies the layout of the columns. Each line in
this section corresponds to one line of the table. The last format line applies to
all the remaining lines in the table. Each line contains a keyletter for each
column of the table. It is good practice to separate the key letters for each
column by spaces or tabs. The keyletters, which may be either uppercase or
lower case, are: :

Lorl
Indicates a left-adjusted columnentry



XENIX Text Processing

Rorr
Indicates aright-adjusted column entry

Corc
Indicates a centered column entry

Norn
Indicates a numerical column entry, to be aligned with other
numerical entries so that the units digits of numbers line up

Aora
Indicates an alphabetic column; all corresponding entries are aligned
on the left, and positioned so that the widest is centered within the
column

Sors

Indicates a spanned heading, i.e., the entry from the previous column
continues across this column

Indicates a vertically spanned heading, i.e., the entry from the
previous row continues down through this row. (Not allowed for the
first row of the table.)

When you are aligning numerical information, a location for the decimal point
is sought. The rightmost dot adjacent to a digit is used as a decimal point; if
there is no dot adjoining a digit, the rightmost digit is used for the units; if no
alignment is indicated, the item is centered in the column. However, the special
nonprinting character string “\&” may be used to override dots and digits, or
to align alphabetic data; this string lines up where a dot normally would, and
then disappears from the final output. In the example below, the items shown
at the left will be aligned (in a numerical column) as shown on the right:

input tblformat

13 13
4.2 4.2
26.12 26.12
abe abe

- abe\& abe
43\ &3.22 433.22
749.12 749.12

Note that if numerical text is used in the same column with wider left-adjusted
(L) or right-adjusted (R) type table entries, the widest number is centered
relative to the wider left-adjusted or right-adjusted items (L is used instead of 1
for readability; they have the same meaning as keyletters). Alignment within
the numerical items is preserved, in the same way as using the A format.
However, alphabetic subcolumns requested by the keyletter are alwaysslightly
indented relative toL items; if necessary, the column width isincreased to force

7-4



Formatting Tables

this. This is not true for n type entries. Do not put N and A type entriesin the
same column.

To make your table formatting information more readable, you should
separate the keyletters describing each column with spaces. The layout of the
keyletters in the format section resembles the layout of the actual datain the
table. The end of the format section of the table specification is indicated by a
period. For example, asimple format might look like this:

css

l'nn.
This specifies a table of three columns. The first line of the table contains a

heading centered across all three columns; each remaining line contains a left-
adjusted item in the first column followed by two columnsof numerical data.

Hereis asample table in thisformat:

Overall title

Item-a 34.22 9.1
Item-b 12.65 .02
Items: c,d,e 23 5.8
Total 69.87 14.92

Note that instead of listing the format of successive lines of a table on
consecutive lines of the format section, successive line formats may be given on
the same line, separated by commas. In the example above, the format might
have been written:

css,Inn.

7.2.3 Additional Features

There are some additional features of the keyletter system:

Horizontal Lines
A keyletter may be replaced by an underscore (_) to indicate a
horizontal line in place of the corresponding column entry, or by an
equal sign (=) to indicate a double horizontal line. If an adjacent
column contains a horizontal line, or if there are vertical lines
adjoining this column, this horizontal line is extended to meet the
nearby lines. If any data entry is provided for this column, it is
ignored and a warning message is printed.

Vertical Lines

A vertical bar (]} may be placed between column keyletters. This

7-5



XENIX Text Processing

will cause a vertical line between the corresponding columns of the
table. A vertical bar to the left of the first keyletter or to the right
of the last one produces aline at the edge of the table. If two vertical
bars appear between keyletters, a double vertical line is drawn.

Space Between Columns

A number may follow the keyletter. This indicates the amount of
separation between this column and the next column The number
normally specifies the separation in ens (one enisabout the width of
the letter n), or more precisely, an en is a number of points (1 point

= 1/72-inch) equal to half the current type size. If the “expand”
option is used, then these numbers are multiplied by a constant so
that the table is as wide as the current line length The default
column separation number is 3. If the sepa.ratlon is changed, the
largest space requested prevails.

Vertical Spanning

Normally, vertically spanned items extending over several rows of
the table are centered in their vertical range. If a keyletter is
followed by t or T, any corresponding vertically spanned item will
begin at the top line of its range.

Font Changes

A keyletter may be followed by a string containing a font name or
number preceded by the letter f or F. This indicates that the
corresponding column should be in a different font from the default
font (usually Roman). All font names are one or two letters; a one-
letter font name should be separated from whatever follows by a
space or tab. Font change commands given with the table entries
will override these specifications.

Point Size Changes

A keyletter may be followed by the letter p or P and a number to
indicate the point size of the corresponding table entries. The
number may be a signed digit, in which case it is taken as an
increment or decrement from the current point size. If both a point
size and a column separation value are given, one or more blanks
must separate them.

Vertical Spating Changes

A keyletter may be followed by the letter v or V and a number to
indicate the vertical line spacing to be used within a multiline
corresponding table entry. The number may be a signed digit, in
which case it is taken as an increment or decrement from the
current vertical spacing. A column separation value must be



Formatting Tables

separated by blanks or some other specification from a vertical
spacing request. Thisrequest hasno effect unlessthe corresponding
tableentry isa text block.

Column Width Indication

A keyletter may be followed by the letter w or W and a width value
in parentheses. This width is used as a minimum column width. If
the largest element in the column is not as wide as the width value
given, the largest element is assumed to be that wide. If the largest
element in the column is wider than the specified value, its width is
used. The width is also used as a default line length for included
text blocks. Normal troff units can be used to scale the width
value; the default is ens. If the width specification is a unitless
integer the parentheses may be omitted. If the width value is
changed in a column, the last value given controls.

Equal Width Columns

A keyletter may be followed by the letter e or E to indicate equal
width columns. All columns whose keylettersare followed byeor E
are made the same width. This allows you to get a group of
regularly spaced columns.

The order of the above features is immaterial; they need not be separated by
spaces, except as indicated above to avoid point size and font change
ambiguities. Thus a numerical column entry in italic font and 12-point type
with a minimum width of 2.5 inches and separated by 6 ens from the next
column could be specified as

np12w(2.5i)f1 6

Note the following format defaults: Column descriptors missing from the end of
a format line are assumed to be L. The longest line in the format section,
however, defines the number of columns in the table; extra columns in the data
areignored silently.

7.2.4 Data

The text for the table is typed after the format specification. Normally, each
table line is typed as one line of data. Very long input lines can be broken: any
line whose last character is a backslash (\) is combined with the following line
(andthe backslash vanishes). The data for different columns (the table entries)
are separated by tabs, or by whatever character has been specified in the tabs
option. There are a few special cases:

Troff commands within tables

An input line beginning with a dot (.) followed by anything but a

77



XENIX Text: Processing

number is assumed to be a command to troff and is passed through
unchanged, retaining its position in the table. For example, space
within a table may be produced by .sp commandsin the data.

Full Width Horizontal Lines

Aninput line containing only the underscore (_) or equal sign (=) is
taken to be a single or double line, respectively, extending the full
width of the table. '

Single Column Horizontal Lines

An input table entry containing only the underscore or equal sign
character is taken to be a single or double line extending the full
width of the column. Such lines are extended to meet horizontal or
vertical lines adjoining this column. To obtain these characters
explicitly in a column, either precede them by “\&” or follow them
by aspace before the usual tab or newline, :

Short Horizontal Lines

Aninput table entry containing only the string *\ " istakentobea
single line as wide as the contents of the column. It is not extended
to meet adjoining lines.

Vertically SpannedItems

An input table entry containing only the character string “\*”
indicates that the table entry immediately above spans downward
over thisrow. It is equivalent to the table format keyletter.

Text blocks

In order to include a block of text as a table entry, precede it by T{
andfollow it by T}. Thus the sequence

I
block of
text
T}...

is the way to enter, as a single entry in the table, something that
cannot conveniently be typed as a simple string between tabs, Note
that the T} end delimiter must begin a line; additional columns of
data may follow after a tab on the same line. If more than twenty
text blocks are used in a table, various limits in the troff program
are likely to be exceeded, producing diagnostics such as “too many
string/macro names” or ‘‘too many number registers.”



Formatting Tables

Text blocks are pulled out from the table, processed separately by
troff, and replaced in the table as a solid block. If no line length is
specified in the block of text itself, or in the table format, the
default is to use § L times C / (N+1) § where L is the current line
length, Cis the number of table columns spanned by the text, and N
is the total number of columns in the table. The other parameters
used in setting the block of text are those in effect at the beginning
of the table. These include the effect of the .TS macro and any table
format specifications of size, spacing and font, using the p,v and f
modifiers to the column keyletters. Commands within the text
block itself are also recognized. However, troff commands within
the table data but not within the text block do not affect that block.

Note the following limitations. Although any number of lines may be present in
a table, only the first 200 lines are used in calculating the widths of the various
columns. A multipage table may be arranged as several single-page tables if
this proves to be a problem. Other difficulties with formatting may arise
because in the calculation of column widths all table entries are assumed to be
in the font and size being used when the .TS command was encountered. Not
included in the calculation are font and size changes indicated in the table
format section and within the table data. Therefore, although arbitrary troff
requests may be sprinkled in a table, care must be taken to avoid confusing the
width calculations; use requestssuch as.ps with care.

7.2.5 Additional Command Lines

If the format of a table must be changed after many similar lines, as with sub-
headings or summarizations, the .T& (table continue) command can be used to
change column parameters. The outline of such a tableinputis:

.TS
options ;
format .
data
T&
format .
data
T&
format .

data
.TE

Using this procedure, each table line can be close to its corresponding format
line. It is not possible to change the number of columns, the space between
columns, the global options such as box, or the selection of columns to be made
equal width.

7-9



XENIX Text Processing

7.3 Invoking Tbl
Youcanruntblonasimple table with the command
tbl input-file | troff

but for more complicated use, where there are several input files, and they
contain equations and mm commands as well as tables, the normal command
would be

tbl file-1 file-2. . . | eqn | troff -mm

The usual options may be used on the troff and eqn commands. The usage for
nroff is similar to that for troff.

For the convenience of users employing line printers without adequate driving
tables or post-filters, there is a special -TX command line option to tbl which
produces output that does not have fractional line motionsinit. Theonly other
command line option recognized by tbl is-mm which fetches the mm macro
packages.

When you are using both eqn and tbl on the same file, tbl should be used first.
If there are noequations within tables either order works, but it is usually faster
to run tbl first, since eqn normally produces a larger expansion of the input
than tbl. However, if there are equations within tables (e.g. when you are using
the eqn delim command), tbl must be first or the output will be scrambled.
(See Chapter 8, ‘“‘Formatting Mathematics.”) You must also be cautious of
using equations in n-style columns; this is nearly always wrong, since tbl
attempts to split numerical format items into two parts and this is not possible
with equations. Give the delim(xx) tbl option instead; this preventssplitting of
numerical columns within the delimiters. For example, if the eqn delimiters
are $$, giving delim($$) a numerical column such as “1245 $+- 16$” will be
divided after 1245, not after 16.

Tbl limits tables to twenty columns; however, use of more than 16 numerical
columns may fail because of limits in troff, producing the ‘‘too many number
registers’’ message. Troff number registersused by tbl must be avoided by the
user within tables; these include two-digit names from 31 to 99, and names of
the forms #x, x+, x|, "x, and x~, where x is any lowercase letter. The names
#7t, #-, and #" are also used in certain circumstances. To conserve number
register names, the n and a formats share a register; hence the restriction that
they may not be used in the same column.

For aid in writing macros, tbl defines a number register TW which is the table
width; it is defined by the time that the .TE macro is invoked and may be used
in'the expansion of that macro. To assist in laying out multipage boxed tables
the macro T+# is defined to produce the bottom lines and side lines of a boxed
table, and then invoked at the of the table. By using this macro in the page
footer a multipage table can be boxed. In particular, the mm macros can be

7-10



Formatting Tables

used to print a multipage boxed table with a repeated heading by giving the
argument H to the . TS macro. If the table start macro is written

.TSH
aline of the form
.TH

must be given in the table after any table heading (or at the start if none).
Material up to the .TH is placed at the top of each page of table; the remaining
linesin the table are placed on several pagesasrequired.

7.4 Examples

Here are some examples illustrating features of tbl. The symbol(@in the input
represents a tab character.

Input:

TS

box;

cece

L '
Language®AuthorsQRuns on

Fortran@Many@Almost anything

PL/1GIBM(3360/370

COBTL(11/45,H6000,370

BLISS@Carnegle-MellonOPDP- 10,11

IDSGHoney well(®H6000

Pascal@Stanford@370

.TE

Output:

Language Authors Runs on
Fortran Many Almost anything
PL/1 IBM 360/370
C BTL 11/45,H6000,370
BLISS Carnegie-Mellon  PDP-10,11
IDS Honeywell H6000
Pascal Stanford 370

-1



XENIX Text Processing

Input:
.TS
allbox;
css
ccce
nnn.
AT&T Common Stock
Year(QPrice@Dividend
197141-54(3$260
241-542270
3(D46-55(P287
4(940-533324
5(45-523340
6(D51-59(P95+
.TE
* (first quarter only)
Output:

AT&T Common Stock
Year | Price | Dividend
1971 | 41-54 $2.60

2 | 41-54 2.70
3 | 46-55 2.87
4 | 40-53 3.24
5 -| 45-52 3.40
6 | 51-59 .95+

7-12

* (first quarter only)




Formatting Tables

Input:

.TS

box;

css

cle|e

1]1]n.

Major New York Bridges

Bridge@Designer(Length

Brooklyn®J A Roebling®1595
Manhattan®G Lindenthak31470
WilliamsburgQL L Buck(®1600

Queensborough@Palmer &(31182
~ (@ Hornbostel

A01380
Triborough®0 H Ammann(_

0383

Bronx Whitestone®0 H Ammann(®2300
Throgs Neck®0 H Ammann(31800

George Washington@®0 H Ammann(3500

.TE
Output:
aj ew !o;_:}_g Qr!'ggeg
Bridge Designer Length
Brooklyn J. A. Roebling 1595
Manhattan G. Lindenthal 1470
Williamsburg L. L. Buck 1600
Queensborough Palmer & 1182
Hornbostel
1380
Triborough 0. H. Ammann
383
Bronx Whitestone 0. H. Ammann 2300
Throgs Neck 0. H. Ammann 1800
George Washington | O. H. Ammann | 3500

7-13



XENIX Text Processing

Input:
.TS

ce
np-2|nj.
Stack
€)

1346
a_
2323
a_
315
a_
40065
Q.
5321
a_
.TE
Output:

Stack
46
23
15

6.5
2.1

(- I I TR

7-14



Input:
.TS
box;
LLL
LL_
LL|LB
LL_
LLL.
january@februaryQmarch
aprilQmay
june@july®Months
august{Pseptember
october@november(Pdecember
TE
Output:
january february march
april may
june july Months
august september
october _november  december

Formatting Tables

7-15



- XENIX Text Processing

Input:

.TS
box;
cfBsss.

Composition of Foods

- .T&
clcss
c|ess
c Jecfe fe

FoodQPercent by Weight

a_
Q *@Protein@FatQCarbo-
\"O\ O\ Qhydrate

T&
i'[n|n|n
ApplesQ.40. 5313.0
Halibut(18.435.2Q). .
Lima beans(®7.5Q. 8@"" 0
Milk(®3.334.0035.0
Mushrooms@3.50.4(36.0
Rye bread®9.00.6(352.7
. TE
Output:
Composition of Foods
: Percent by Weight
Food Protein | Fat lgv ?:::;
Apples .4 .5 13.0
Halibut 18.4 5.2
Lima beans 7.5 8 22.0
Milk 3.3 4.0 5.0
Mushrooms | 3.5 4 6.0
Rye bread 9.0 .6 52.7

7-16




Input:

TS
allbox;
efl s s

Formatting Tables

¢ ew(li) ew(li)

1p9 1p9 1p9.

New York Area Rocks
Era@Formation(Age (years)
Precambrian@Reading Prong®> 1 billion
Paleozoic®Manhattan Prong(3400 million
MesozoicOT{

.na

Newark Basm, incl.

Stockton, Lockatong, and Brunswick
formations; also Watchungs

and Palisades.

T}3200 million

Cenozoic(PCoastal PlainQT{

On Long Island 30,000 years;
Cretaceous sedlments redeposnted
by recent glaciation.

.ad
T}
Output:
Neu York Area Rocks
Era Formation Age (years)
Precambrian | Reading Prong > 1 billion
Paleozoic Manhattan Prong 400 million
Mesozoic Newark Basin, incl. 200 million
Stockton, Lockatong, and Brunswick
formations; also Watchungs
and Palisades.
Cenozoic Coastal Plain On Long Island 30,000 years;
Cretaceous sediments redeposited
by recent glaciation.

717




XENIX Text Processing

7.6 Summary of tbl Commands

" Command Meaning
aA Alphabetic subcolumn
allbox Draws box around all items
b B Boldface item
box Draws box around table
cC Centered column '
center Centers table in page
doublebox Doubled box around table
e E Equal width columns
| expand Makes table full line width _
fF Font change
il Italic item
1L Left adjusted column
n N Numerical column
nnn Column separation
pP Point size change
rR Right adjusted column
s S Spanned item
t T Vertical spanning at top
tab (2) Change data separator character

$fat roman "T{"* " fat roman "T}"

B Text block

vV Vertical spacing change
w W Minimum width value
22 Included troff command
] Vertical line

1l Double vertical line

A Vertical span

\" Vertical span

== Double horizontal line
$fat " "8 Horizontal line

$fat "\ "$ Short horizontal line

7-18



Chapter 8

Formatting Mathematics

8.1
8.2

8.3

8.4

8.5

8.6
8.7

8.8

Introduction  8-1
Displayed Equations  8-2

Basic Mathematical Constructions  8-3
8.3.1 Subscripts and Superscripts  8-3
8.3.2 Bracesfor Grouping 84

8.3.3 Fractions 8-5

8.3.4 SquareRoots 86

8.3.5 Summation and Integrals &7

Complex Mathematical Constructions  8-7
8.4.1 BigBrackets, Parentheses, and Bars  8-7
8.4.2 Piles 8-8

8.4.3 Matrices 8-9

8.4.4 Lining Up Equations 8&-10

Layout and Design of Mathematical Text 8-11

8.5.1 Input Spaces 8-11

8.5.2 Output Spaces 8-11

8.5.3 SpacesBetween Special Sequences 8-11

8.5.4 Symbols, Special Names, and Greek Characters -
8-12

8.5.5 Size and Font Changes 8-12

8.5.6 Diacritical Marks 8-14

8.5.7 Quoted Text 8-14

8.5.8 Local Motions 8-15

In-line Equations 8-15
Definitions 8-16

Invokingeqn 8-18



8.9 SampleEquation 8-18
8.10 Error Messages 8-19

8.11 Summary of Keywords and Precedences 8-20



8.1 Introduction

In the previous chapter you were introduced to the tbl program, a special
preprocessing formatting program which helps you design and create
professional-looking tables in documents. This chapter describes another
preprocessor: eqn, a program that simplifies the task of formatting complex
mathematical equations and printing special symbols. Once again, unless you
need to use mathematical equations or special symbols in your documents, you
can postpone or skip reading abouteqn.

Like tbl, eqn is a “preprocessor” —that is, you must embed commandsin the
text as you are preparing it, along with mm macros and nroff/troff
commands. The eqn macros are then translated by the eqn program into
nroff/troff commands, without altering either the body of the text or other
formatting commands. The file is processed through the nroff or troff
programs themselves to produce final output.

The uses of eqn are fairly specialized—you may simply not need to format
equations. However, eqn offers you precise control over line spacing, which is
suitable to formulas and subscripting, necessary for documents in such fields as
chemistry and physics. You also have such special character sets as the Greek
alphabet available to you.

The design of the eqn program makes it relatively easy to learn. Wherever
possible, the formatting commands resemble ordinary English words(e.g. over,
lineup, bold, union), and the format is specified much as you might try to
describe an equation in conversation. If you are faced with the task of
typesetting equations, you will soon appreciate how quickly you can specify
even complicated equations requiring unusual line motions, such as arrays,

Mathematical equations are notoriously difficult to format by conventional
typesetting methods. With the help of the XENIX program eqn, however, you
will quickly learn to use troff to typeset mathematical equations directly to a
phototypesetter. Eqn employs a language which is quite easy to use, even if
you have know little about either mathematics or typesetting. In a half hour or
so, you should be able to learn enough of the language to set equations like

lim (tan z)"®%% = 1 or equationslike:
-7 f2

St
G(Z) = ¢b® G(2) — exp Z l;c — H eSkZ*/k

k21 £>1
[1 s §222 ]1 S,7 Sk ]
ottt gt

s % 5.

E 5 o
m>0 bk, k.20 1k 2%k, m "k
kt2bt  4mk =m




XENIX Text Processing

The same commands may also be used with the XENIX formatter nroff to
format mathematical expressions for lineprinters. To do this, invoke the
program neqn instead of eqn. The same limitations (inability to change font
and point size, and do variable spacing, etc.) apply to any text output to a
lineprinter. The resulting output from neqn, however, is usually adequate for
proofreading.

Asyou work with eqn, remember that the eqn program itself knows relatively
little about mathematics. In particular, mathematical symbols like +, -, X,
and parentheses have no special meanings. Eqn will set anything that looks
like an equation, regardless of whether it makes sense mathematically.

To use eqn on your XENIX system, type
eqn file | troff -mm
This command line processes file with eqn, then pipes the resulting output file

to the troff program.

8.2 Displayed Equations

To tell eqn where a mathematical expression begins and ends, surround it with
the commands .EQ and .EN. Thus, if you type the lines

EQ
X==y+2
.EN

your output will look like:
z=y+z

The .EQ and .EN are not processed by eqn. If you want to specify centering,
numbering, or other formatting features for your mathematical text, you will
need to enter the appropriate formatting commandsin your text. If you want,
you can add nroff/troff commands, but it is far simpler to use mm. mm
provides commands which allow you to center, indent, left-justify and number
equations.

You can give the .EQ command an argument that is treated as an arbitrary
equation number which will be placed in the right margin. For example, the
input

EQ7

x =1(y/2) + y/2

EN

produces the output

8-2



Formatting Mathematics

z=fy/2)+y/2 7
Note that .EQ is an mm macro. In other computer systems’ macro packages it
may have a different meaning.

8.3 Basic Mathematical Constructions

This section describes how eqn can be used to handle the following frequently
used mathematical constructions:

subscripts and superscripts
grouping

fractions

square roots

summation and integrals

8.3.1 Subscripts and Superscripts

To get subscripts and superscripts into mathematical text, use sub and sup.
For example, the following

xsup 2+ ysubk
produces

i+yk
Eqn supplies all the commands for size changes and vertical motions to make
the output look right. The words sub and sup must be surrounded by spaces.
For example:

X sub2
will give you zsub2 instead of 5. Furthermore, don’t forget to leave a space or
a tilde to mark the end of a subscript or superscript. Note that if you use an
expression like

y = (x sup 2)+1
you will get

y=(M

instead of

8-3



XENIX Text Processing

y=(#)+1

Subscripted subscripts and superscripted superscripts can also be created. The
following

x sub i sub 1
produces
z,l

A subscript and superscript on the same object are printed one above the other
if the subscript comes first. For example,

x sub i sup 2
produces

z
Other t};an in this special case, sub and sup group to the right, so xsupy subz
means 2 *,not 2¥,. :
8.3.2 Braces for Grouping
Normally, the end of a subscript or superscript is marked simply by a blank,
tab, or tilde. If youneed to produce a subscript or superscript with blanksin it,
you can use braces ({}) to mark the beginning and end of the subscript or
superscript. For example:

e sup {i omega t}
produces: ’

ewt

Braces can always be used to force eqn to treat an expression as a unit, or just
to make your intention perfectly clear. When you use braces:
x sub {isub 1} sup 2

produces

7

b1

The same text without braces:

8-4



Formatting Mathematics

x sub i sub 1 sup 2
produces

T2
1

Braces can occur within bracesif necessary:

e sup {i pi sup {rho +1}}
resultsin

1

em"’
The general rule is that anywhere you could use a single item like x, you could
also use any complicated expression, if you enclose it in braces. Positioning and
size will be taken care of by eqn.
You will need to make sure you have the right number of braces. If for some
reason you need to print braces, enclose them in double quotations ("), like ” {”.
8.3.3 Fractions
To make afraction, use the word “over.”’ For example:

at+bover2c=1

produces

b
a+—2-c-—1

The line is made the right length and positioned automatically. You can use
braces to make clear what goesover what:

{alpha + beta} over {sin(x)}
is '

a+p
sin(z)

If you have both an over and a sup in the same expression, eqn does the sup
before the over, so

-b sup 2 over pi

8-5



XENIX Text Processin g

is
—b?
n

instead of

2

47
The rules of precedence that control which operation will be done first are
summarized at the end of this chapter. If you are in doubt, however, use braces
to make clear what you mean.:
8.3.4 Square Roots
To draw asquare root, use “‘sqrt’’. For example

sqrt a+b + 1 over sqrt {ax sup 2 +bx+c}

produces

1
Vet bt
: \/a?+bz+c

You should note, however, that the square roots of tall quantities often do not
look good. A square root big enough to cover the quantity is too dark and
heavy. For example

sqrt {a sup 2 over b sub 2}

produces

a

b

You are better off writing big square roots as the power 1/2. For example, you
could use '

{(a sup 2 /b sub 2 ) sup half
to produce

(a*fb)



Formatting Mathematics

8.3.5 Summation and Integrals

Summations, integrals, and similar constructions can be produced with egn.
For example

sum from i=0 to {i= inf} x sup i

produces
=00
)
1=0

Braces are used here to indicate where the upper part i==00 begins and ends.
No braces were necessary for the lower part 1=0, because it contained no
blanks. Braces never hurt, and if the from and to parts contain any blanks, you
must use braces around them. The from and to parts are optional, but if both
are used, they have tooccurinthatorder.
Other useful characters can replace the sum, including:

int prod wunion inter

These become, respectively,

Jmun

The expression before the “from’’ can be anything, including an expression in
braces. The from-to expression can often be used in unexpected ways. For
example

lim from {n -> inf} x sub n =0

_produces

lim z,=0
n—Q0

8.4 Complex Mathematical Constructions

This section describes how to use eqn to produce more complicated
mathematical constructions, including piles and matrices, often surrounded by
brackets, parenthesesor bars.

8.4.1 Big Brackets, Parentheses, and Bars

8-7



XENIX Text Processing

To get big brackets ([ }), braces ({ }), parentheses {( }}, and bars (||} around
things, use the left and right commands. For example

left { aover b + 1 right } -
“==" left { ¢ over d right )
+ left [ e right ]

produces

[roi-E

The resulting brackets are big enough to cover whatever they enclose. Other
characters can be used besides these, but they probably won’t look very good.
One exception is the floor and ceiling characters. Forexample

left floor x over y right floor
<= left ceiling a over b right ceiling

produces

g

Please note that braces are typically bigger than brackets and parentheses,
because the number of pieces is incremented by two (three, five, seven, etc.)
while the number of pieces in a bracket is incremented by one (two, three, etc.).
Also, big left and right parentheses often look poor, because of character set
limitations.

The right part may be omitted: aleft expression need not have a corresponding
right expression. If the right part is omitted, put braces around the thing you
want the left bracket to encompass. Otherwise the resulting brackets may be
too large. If you want to omit the left part, things are more complicated,
because technically you can’t have a right without a corresponding left.
Instead you have to say

left " ..... right )

The left ”” means a ‘‘left nothing”. This satisfies the rules without affecting
your output. ‘

8.4.2 Piles

There is a facility for making vertical piles of things with several variants. For
example:

8-8



Formatting Mathematics

AT="left [

pile { a above b above ¢ }

" pile { x above y above z }
right |

will produce

az
A=]by
2z

You can have as many elements in a pile asyou want. They will be centered one

above another, at the right height for most purposes. The keyword above is

used to separate the pieces; braces are used around the entire list. The elements
.of apile can be as complicated as needed, and may even contain more piles.

Three other forms of pile exist: “Ipile’”” makes a pile with the elements left-
justified; “rpile” makes a right-justified pile; and “cpile’’ makes a centered pile,
just like pile. The vertical spacing between the pieces is somewhat larger for I-,
r- and cpiles than it is for ordinary piles. For example

roman sign (x) ="
left {
Ipile {1 above 0 above -1}
“" Ipile
{if"x>0 above if"x=0 above if"x<0}

creates the pile

1ifz>0
sign(z) =1{0 if z=0
-1ifz<0

Note that the left brace has no matching right one.

8.4.3 Matrices

It is also possible to make matrices. For example, to make a neat array like
7, &
'

use



XENIX Text Processing

matrix {
ccol { x sub i above y sub i }
ccol { x sup 2 above y sup 2 }

This produces a matrix with two centered columns. The elements of the
columns are then listed just as for a pile, each element separated by the word
above. You can also use lcol or rcol to left or right adjust columns. Each

column can be separately adjusted, and there can be as many columns as you
like.

The reason for using a matrix instead of two adjacent piles is that if the
elements of the piles do not all have the same height, they will not line up
properly. A matrix forces them to line up, because it looks at the entire
structure before deciding what spacing to use. A word of warning about
matrices: each column must have the same number of elementsin it.

8.4.4 Lining Up Equations

Sometimes it is necessary to line up a series of equations at some horizontal
position, such as at an equal sign. This is done with two operations called
“mark”and “lineup.” The word mark may appear once at any place in an
equation. It remembers the horizontal position where it appeared. Successive
equations can contain one occurrence of the word lineup. The place where
lineup appearsis made to line up with the place marked by the previous mark if
at all possible. Thus, for example, you can say

EQ

x+y mark =z
.EN
EQ
X lineup = 1
.EN

to produce

ty==z
=1

Note that mark does not look ahead, so
x mark =1
x+y lineup =3

will not work, because there is not room for the x+y part after the mark
remembers where thexis.

8-10



Formatting Mathematics

8.5 Layo‘ut and Design of Mathematical Text

The following sections describe the format and layout control features of eqn.

8.5.1 Input Spaces

Eqn ignores spaces and newlines within an expression. If you have any of the
following equations between .EQ and .EN commands,

x=y+2
or
X=y+2
or
x =Y
+z

they will all produce the same output:

=y+z
Therefore, use spaces and newlines freely to make your input equations
readable and easy to edit.
8.5.2 Output Spaces
To get extraspacesinto the your output, use a tilde (") for each space you want:
xX"="y +"2
Thisproduces
z=y+z
You can also use a caret (), which produces a space half the width of a tilde.
Tabs may be used to position pieces of an expression, but the tab stops must be
set with the troff tab (.ta) command.
8.5.3 Spaces Between Special Sequences
If you need to separate a special sequence of characters, you will have to make

this clear to eqn. You can either surround a special sequence with ordinary
spaces, tabs, or newlines, or make special words stand out by surrounding them

8-11



XENIX Text Processing

with tildes or carets, as in the following:
“="2"pi"int sin"("omega’t”) " dt
The tildes not only separate the words sin, omega, etc., but also add extra
spaces, one space per tilde:
g=2n [sin(wt)dt

Special words can also be separated by braces({ }) and double quotation marks

C)-

8.5.4 Symbols, Special Names, and Greek Characters

Eqn knows some mathematical symbols, some mathematical names, and the
Greek alphabet. For example,

x==2 pi int sin (‘omega t}dt
produces
z==2n [sin(wt)dt

Here you need input spaces to tell eqn that int, pi, sin and omega are separate
entities that should get special treatment. The sin, digit 2, and parentheses are
set in Roman type instead of italic; pi and omega are translated into Greek; int
becomes the integral sign.

When in doubt, leave spaces around separate parts of the input. A common
error is to type f(pi) without leavmg spaces on both sides of the pi. If you do
this, eqn does not recognize pi as a special word, and it appears as f{pi) instead
of f{r). A complete list of eqn names appears at the end of this chapter. You
can also use troff names for anything eqn doesn’t know about.

8.5.5 Size and Font Changes

By default, equations are set in 10-point type; standard mathematical
conventions determine which characters are in Roman and which are in italic.
If you are dissatisfied with the default sizes and fonts, you can change them
using the commands size n and roman, italic, bold and fat. Like sub and sup,
size and font changes affect only what follows immediately and then revert to
the default. Thus :

bold x y

is

812



Formatting Mathematics

Xy
and

size 14 bold x =y +
size 14 {alpha + beta}

gives

x=y+a’+,6
You can use braces if you want to apply a change to something more
complicated than a single letter. For example, you can change the size of an
entire equation with

size 12 { ... }

Legalsizes are: 6, 7,8, 9,10, 11,12, 14, 16, 18, 20, 22, 24, 28, and 36. You can also
change the size by a given amount; For example, you can say

size+2
to make the size two pointsbigger, or
size-3

to make it three points smaller. The advantage of this method is that you do
not need to know what the current size is.

If you are using fonts other than Roman, italic and bold, you can say font X
where X is a one character troff name or number for the font. However, since
eqn is designed for Roman, italic and bold, other fonts may not give quite as
good an appearance.

The fat operation takes the current font and widens it by overstriking: fat grad
is 7 and fat {xsubi}is z;.

If an entire document is to be in a nonstandard size or font, you need not write
out asize and font change for each equation. Instead, you can set a “global” size
or font which thereafter affects all equations. At the beginning of any equation,
you might say, for instance,

EQ
gsize 16
gfont R
EN

to set the size to 16 points and the font to Roman. In place of R, you can use any

8-13



XENIX Text Processing

troff font name. The size after gsize can be a relative change with + or -.

Generally, gsize and gfont will appear at the beginning of a document but they
can also appear throughout a document: the global font and size can be changed
asoften as needed. For example, in a footnote you will typically want the size of
equations to match the size of the footnote text, which is two points smaller
than the main text. Don’t forget to reset the global size at the end of the
footnote.

8.5.8 Diacritical Marks

There are several words that produce diacritical markson top of letters:

].

x dot

x dotdot
x hat

x tilde

x vec

x dyad
x bar

x under

.

(IR FHR ST N

The diacritical mark is automatically placed at the correct height. The “bar”
and ‘‘under” are made the right length for the entire construct, asin Z¥y+2;
other marksare centered.
8.5.7 Quoted Text
Any input eritirely within quotes (”...” } is not subject to any of the font changes
and spacing adjustments normally done by the equation setter. Thisprovidesa
way to do your own spacing and adjusting if needed. For example

italic "sin(x)” + sin (x)
produces

sin(z)+sin(z)

Quotation marks are also used to get braces and other eqn keywords printed.
For example

”{ size alpha }"
produces
{ sizealpha }

Similarly

8-14



Formatting Mathematics

roman " { size alpha }”
produces

{size alpha }
The construction "” can be used as a place-holder when eqn syntax requires
something, but you don’t actually want anythingin your output. For example,
to make

He

you can’t just type
sup 2 roman He

because a sup hasto be a superscript on something. Thusyoumust say
"7 sup 2 roman He

"To get aliteral quotation mark, use the sequence \”.

8.5.8 Local Motions

Although eqn tries to get most things at the right place on the paper, it isn’t
perfect, and occasionally you will need to tune the output to make it just right.
Small extra horizontal spaces can be obtained with tildes (") and carets("). You
can also say “back n” and “fwd n” tc move smal! distances horizontally. The n
is the distance to be moved in 1/100 em units (2n em is about the width of the
letter m). Thus “back 50" moves back about half the width of an m. Similarly
you can move things up or down with ““up n”’ and “down n.”’ As with sub or sup,
the local motions affect the next thing in the input. This ¢can be a complex
expression, aslong asitisenclosedinbraces.

8.8 In-line Equations

In a mathematical document it is often necessary to follow mathematical
conventions in the body of the text, as well as in display equations. For
example, you may need to make variable names like z italic. Although this
could be done by surrounding the appropriate parts with .EQ and .EN, the
continual repetition of .EQ and .EN is a nuisance. Furthermore, this implies a
displayed equation.

Eqn provides a shorthand for short in-line expressions. You can define two
characters to mark the left and right ends of an in-line equation, and then type
expressions right in the middle of text lines. To set both the left and right
characters to percent signs, for example, add to the beginning of your
document the three lines

8-15



XENIX Text Processing

EQ
delim %%
EN

Having done this, you create text like

Let %alpha sub i% be the primary variable, and let %beta% be zero.
Then we can show that %x sub 1% is %>=0%.

Thisproduces:

Let @, be the primary variable, and let 8 be zero. Then we can show
that z; is 2>0.

This works as you might expect: spaces, newlines, and so on are significant in
the text, but not in the equation part itself. Multiple equations can occur in a
single input line.

Enoughroomis lneft before and after aline that contains in-line expressions that

something like Z z,does not interfere with the lines surroundingit.
=1 :

To turn off the delimiters, use:

EQ
delim off
.EN

Do not use braces, tildes, carets, or double quotation marks as delimiters; these
have special meanings.

8.7 Definitions

Eqn allows you to give a frequently used string of characters a name, and
thereafter just type the name instead of the whole string. For example, if the
sequence

xsubisub 1+ ysubisub1

appears repeatedly throughout a pa.pér, you can save retyping it each time by
defining it like this:

.EQ
define xy ’xsubisubl + ysubisub I’
EN

This makes xy a shorthand for whatever characters occur between the single
quotation marks in the definition. You can use any character instead of

8-16



Formatting Mathematics

quotation marks to indicate the ends of the definition, so long as that character
does not appear inside the definition.

You can use xy like this:

EQ
f(x) = xy ...
EN

Each occurrence of xy will expand into the string of characters you defined. Be
careful to leave spaces or their equivalent around the name when you actually
use it, so eqn will be able to identify it asspecial.

There are several things to watch out for. First, although definitions can use
previous definitions, asin:

EQ
define xi *xsubi’
define xil ’xisub 1’
.EN
don’t define something in terms of itself. You cannot use
define X ’ roman X’
because thisdefines Xin termsof itself. If you say
define X ’roman "X"’
however, the quotation marks protect the second X, and everything works fine.
Eqn keywords can be also be redefined. You canmake / meanover by saying
define / ’over’
*or redefine over as/ with
define over '/’
If you need to print a symbol one way on a terminal and another way on the
typesetter, it is sometimes worth defining a symbol differently for neqn and
eqn. This can be done with “ndefine” and “tdefine.” A definition made with
ndefine only takes effect if you are running neqn. If you use tdefine, the

definition only applies for eqn. Names defined with ““define’’ apply to botheqn
and neqn.

8-17



XENIX Text Processing

8.8 Invoking eqn
Toprint a document that contains mathematics on the typesetter, use
eqn files | troff

If there are any troff options, place them after the troff part of the command.
For example,

- eqn files | troff -mm files
Toprint equationson a lineprinter or similar device, use
neqn files | nroff -mm files

The language for equations recognized by neqn is identical to that of eqn,
although of course the output is more restricted.

Eqgn and neqn can be used with the tbl program for setting tables that contain
mathematics. Use tbl before eqn like this:

tbl files | eqn | troff -mm
tbl files | neqn | nroff -mm
.8.9 Sample Equation

Now that you are familiar with the features of eqn, here is the complete input
text for the three display equationsat the beginning of this chapter:

8-18



Formatting Mathematics

EQ

G(z)"mark =" esup { In " G(z) }

“=" exp left (

- sum from k>=1 {S sub k z sup k} over k right )

“=" prod from k>==1 e sup {S sub k z sup k /k}

.EN

EQ

lineup = left (1 4+ Ssub 1z +

{Ssub1sup2zsup?2}over2 + ..right)

left (14 { Ssub 2z sup 2 } over 2

+ { Ssub 2 sup 2 zsup 4} over { 2 sup 2 cdot 2! }

+ ... right ) ...

.EN

EQ

lineup = sum from m>=0 left (

sum from

pile { ksub1 ksub2,. ksubm >=0

above

k sub 1 +2k sub 2 + ... +mk sub m =m}
S sub 1 sup {k sub l}}over}lsupksublksubl!;"
Ssub 2 sup {ksub2} } over {2supk sub2ksub 2!}~

{ S submsup {ksubm} } over {msupk submksubm !}

right ) z sup m

.EN

8.10 Error Messages
If you make a mistake in an equation, such asleaving out a brace or having one
too many braces or having a sup with nothing before it, eqn will respond with
the message

syntax error between lines x and y, file
where x and y are the lines between which the trouble occurred, and file is the
name of the file in question. The line numbers are only approximate, so check
nearby lines as well. You will receive self-explanatory messages if you leave out
a quotation mark or try to runeqn on a nonexistent file,
If you want to check a document before actually printing it try:

eqn files > /dev/null
This will throw away the output but print the error messages.
If you use something like dollar signs as delimiters, it is easy to leave one out.

The program eqncheck checks for misplaced or missing dollar signs and
similar errors.

8-19



XENIX Text Processing

In-line equations are limited in size because of an internal buffer in troff. If you
get the message “word overflow”, you have exceeded this limit. If you print the
‘equation as a display this message will usually go away. The message
“line”’overflow indicates you have exceeded an even bigger buffer. The only
cure for thisis to break the equation into two separate ones.

Also, eqn does not break equations by itself; you must split long equations up
across multiple lines by yourself, marking each by a separate .EQ ...EN
sequence. Eqn warns about equationsthat are too long to fit on one line.

8.11 Summary of Keywords and Precedences

If you don’t use braces around expressions, eqn will do operations in the order
shown in this list.

dyad vec under bar  tilde hat dot dotdot
fwd back down up

fat roman italic  bold size

sub " sup sqrt over

from to

These operations group to theleft:
over sqrt left right
" Allothers group to the right.

Digits, parentheses, brackets, punctuation marks, and these mathematical
words are converted to Roman font when encountered:

sin cos tan sinh cosh tanh arc
max min lim log In exp
Re Im and if for det

These character sequences are recognized and translated as shown.

>=
<=
1=
+_
->
<-
<<
>>
inf
partial
half
prime

To@8 YA T LAV



Formatting Mathematics

2

approx
nothing
cdot
times
del
grad
yeuy

sum

int
prod
union
inter

OCHE—T 1dd X

To obtain Greek letters, simply spell them out in whatever case you want:

DELTA A iota L
GAMMA T kappa K
LAMBDA A lambda A
OMEGA ( mu ©
PHI ¢ nu v
Pl In omega w
PSI v omicron 0
SIGMA z phi ¢
THETA © pi n
UPSILON T psi ¥
XI g rho P
alpha a sigma c
beta B tau T
chi X theta @
deita 6 upsilon v
epsilon € xi I3
eta n zeta ¢
gamma n

These are all the wordsknown to eqn except for characters with names:

8-21



XENIX Text Processing

8-22

above
back
bar

bold

ccol

- ¢col

cpile
define
delim
dot

dotdot
down
dyad

fat

font
from
fwd
gfont
gsize
hat

italic

leol

left

lineup
lpile size
mark
matrix
ndefine
over

pile

reol
right

- roman

rpile

sqrt
sub
sup
tdefine
tilde

to
under
up
vec

}
oy



Appendix A
Editing with Sed and Awk

A.l1 Introduction  A-1

A.2 Editing Withsed A-1
A.2.1 Overall Operation  A-2
A.2.2 Addresses  A-3
A.2.3 Functions A-5

A .3 Pattern Matching Withawk A-12
A.3.1 Invokingawk A-13
A.3.2 Program Structure A-13
A.3.3 Recordsand Fields A-13
A.3.4 Printing A-14
A.3.5 Patterns A-15
A.3.6 Actions A-17






A.l1 Introduction

This appendix describes two XENIX utilities that allow you to perform large-
scale, noninteractive editing tasks:

—  Sed, a noninteractive, or “batch”, editor which is useful if you must
work with large files or run a complicated sequence of editing
commandson afile or group of files.

— Awk, which searches numerics, logical relations, variables, and
particular fields within lines of text.

Although you can perform many of the same tasks with grep, sort, and the
variants of diff, you will find that these two programsoffer an added facility for
the processing of complicated changes to large files, or many files at once. Sed is
very handy for large batch editing jobs, but if you choose not to learn it, many
of the same tasks can be performed with ed scripts. The awk program offers
several features not available with the other tools described in this chapter, but
it issomewhat more complicated to learn and use.

A.2 Editing With sed

The sed program is a noninteractive editor which is especially useful when the
files to be edited are either too large, or the sequence of editing commands too
complex, to be executed interactively. sed works on only a few linesof input at
a time and does not use temporary files, so the only limit on the size of the files
you can process is that both the input and output must be able to fit
simultaneously on your disk. You can apply multiple " global” editing functions
to your text in one pass. Since you can create complicated editing scripts and
submit them to sed as a command file, you can save yourself considerable
retyping and the possibility of making errors. You can also save and reuse sed
command files which perform editing operations you need to repeat frequently.

Processing files with sed command files is more efficient than using ed, even if
you prepare a prewritten script. Note, however, that sed lacks relative
addressing becauses it processes a file one line at a time. Also, sed givesyou no
immediate verification that a command has altered your text in the way you
actually intended. Check your output carefully.

The sed program is derived from ed, although there are considerable
differences between the two, resulting from the different characteristics of
interactive and batch operation. You will notice a striking resemblance in the
class of regular expressions they recognize; the code for matching patterns is
nearly identical for ed and sed.



XENIX Text Processing

A.2.1 Overall Operation

By default, sed copies the standard input to the standard output, performing
one or more editing commands on each line before writing it to the output.
Typically, you will need to specify the file or files you are processing, along with
the name of the command file which contains your editing script, as in the
following:

sed -f script filename

The flags are optional. The -n flag tells sed to copy only those lines specified by
~p functions or -p flags after -s functions. The -e flag tells sed to take the next
argument as an editing command, and the -f flag tells sed to take the next
argument as a filename. (This file must contain editing commands, one to a
line.) '

The general formatof ased editing command is:

addressl,address2 function arguments
In any command, one or both addresses may be omitted. A function is always
required, but an argument is optional for some functions. Any number of
blanks or tabs may separate the addresses from the function, and tab

charactersand spacesat the beginning of lines are ignored.

Three flags are recognized on the command line:

-n Directs sed to copy only those lines specified by p functions or p
flags after s functions.

-e Indicates that the next argument is an editing command.

-f Indicates that the next argument is the name of the file which

containsediting commands, typed one to aline.

Sed commands are applied one at a time, generally in the order they are

encountered, unless you change this order with one of the ““flow-of-control”
*functions discussed below. Sed works in two phases, compiling the editing

commands in the order they are given, then executing the commands one by
" one toeach line of theinput file.

The input to each command is the output of all preceding commands. Even if
you change this default order of applying commands with one of the two flow-
of-control commands, t and b, the input line to any command is still the output
of any previously applied command.

You should also note that the range of pattern match is normally one line of

input text. This range is called the ““pattern space.”” More than one line can be
read into the pattern space by using the N command described below in

A-2



A.l Introduction

This appendix describes two XENIX utilities that allow you to perform large-
scale, noninteractive editing tasks:

—  Sed, a noninteractive, or “batch”, editor which is useful if you must
work with large files or run a complicated sequence of editing
commandson afile or group of files.

—  Awk, which searches numerics, logical relations, variables, and
particular fields within lines of text.

Although you can perform many of the same tasks with grep, sort, and the
variants of diff, you will find that these two programs offer an added facility for
the processing of complicated changes to large files, or many files at once. Sed is
very handy for large batch editing jobs, but if you choose not to learn it, many
of the same tasks can be performed with ed scripts. The awk program offers
several features not available with the other tools described in this chapter, but
it issomewhat more complicated to learn and use.

A.2 Editing With sed

The sed program is a noninteractive editor which is especially useful when the
files to be edited are either too large, or the sequence of editing commands too
complex, to be executed interactively. sed works on only a few linesof input at
a time and does not use temporary files, so the only limit on the size of the files
you can process is that both the input and output must be able to fit
simultaneously on your disk. You can apply multiple "global” editing functions
to your text in one pass. Since you can create complicated editing scripts and
submit them to sed as a command file, you can save yourself considerable
retyping and the possibility of making errors. You can also save and reuse sed
command files which perform editing operations you need to repeat frequently.

Processing files with sed command files is more efficient than using ed, even if
you prepare a prewritten script. Note, however, that sed lacks relative
addressing becauses it processes a file one line at a time. Also, sed givesyou no
immediate verification that a command has altered your text in the way you
actually intended. Check your output carefully.

The sed program is derived from ed, although there are considerable
differences between the two, resulting from the different characteristics of
interactive and batch operation. You will notice a striking resemblance in the
class of regular expressions they recognize; the code for matching patterns is
nearly identical for ed and sed.



XENIX Text Processing

A.2.1 Overall Operation

By default, sed copies the standard input to the standard output, performing
one or more editing commands on each line before writing it to the output.
Typically, you will need to specify the file or files you are processing, along with
the name of the command file which contains your editing script, as in the
following:

sed -f script filename

The flags are optional. The -n flag tells sed to copy only those lines specified by
—~p functions or -p flags after -s functions. The -e flag tells sed to take the next
argument as an editing command, and the -f flag tells sed to take the next
argument as a filename. (This ﬁle must contain edntms commands, one to a
line.)

The general formatof a sed editing command is:

addressl,address2 function arguments
In any command, one or both addresses may be omitted. A function is always
required, but an argument is optional for some functions. Any number of
blanks or tabs may separate the addresses from the function, and tab

charactersand spacesat the beginning of lines are ignored.

Three ﬁggé arerecognized on the command line:

-n * Directs sed to copy only those lmes specified by p functions or p
o ﬁags after s functions.
‘-e  Indicatesthat the next argument is an editing command.
-f Indicates that the next argument is the name of the file which

" containsediting commands, typed one to aline.

Sed commands are applied one at a time, generally in the order they are
encountered, unless you change this order with one of the ‘‘flow-of-control”
*functions ‘discussed below.- Sed works in two phases, compiling the editing
commands in the order they are given, then executing the commands one by
" ‘one toeach line of theinput file. ,

The input to each command is the output of all preceding commands. Even if

you change this default order of applying commands with one of the two flow-

of-control commands, t and b, the input line to any command is still the output
" of any previously applied command.

You should also note that the 'rangevbf pattern match is normally one line of

input text. This range is called the “pattern space.” More than one line can be
read into the pattern space by using the N command described below in

A-2



Editing with Sed and Awk

“Multiple Input-Line Functions”.

The rest of this section discusses the principles of sed addressing, followed by a
description of sed functions. All the examples here are based on the following
lines from Samuel Taylor Coleridge’s poem, “Kubla Khan’":

In Xanadu did Kubla Khan

A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

For example, the command
2q

will quit after copying the first two lines of the input. Using the sample text, the
result will be:

In Xanadu did Kubla Khan
A stately pleasure dome decree:

A.2.2 Addresses

The following rules apply to addressinginsed. There are two waysto select the
lines in the input file to which editing commands are to be applied: with line
numbers or with ‘“‘context addresses”. Context addresses correspond to
regular expressions. The application of a group of commands can be controlled
by one address or an address pair, by grouping the commands with curly braces
({ })- There may be 0, 1, or 2 addresses specified, depending on the command.
The maximum number of addresses possible for each command isindicated.

Aline number is a decimal integer. Aseachline isread from the input file,a line

number counter is incremented. A line number address matchesthe input line,

causing the internal counter to equal the address line-number. The counter

runs cumulatively through multiple input files; it is not reset when a new input

file is opened. A special case is the dollar sign character ($) which matches the
. last line of the last input file.

Context addresses are enclosed in slashes (/). They include all the regular
expressions common to both ed and sed:

1.  Anordinary characterisaregular expression and matches itself.

2. Acaret (") at the beginning of a regular expression matches the null
character at the beginning of a line.



XENIX Text Processing

3. A dollar sign ($) at the end of a regular expressxon matches the null
character at the end of a line.

4.  Thecharacters\n match an embedded newline character, but not the
newline at the end of a pattern space.

5.  Aperiod (.) matches any character except the terminal newline of the
pattern space. .

6. A regular expression followed by a star (*) matches any number,
including 0, of adjacent occurrences of the regular expression it
follows.

7. Astring of charactersinsquare brackets ([]) matchesany character in
the string, and no others. If, however, the first character of the string
isa caret ("), the regular expression matches any character except the
charactersin the string and the terminal newline of the pattern space.

8. A concatenation of regular expressions is a regular expression which
matches the concatenation of strings matched by the components of
the regular expression.

9.  Aregular expression between the sequences “\(” and *“\)" isidentical
in effect to itself, but has side-eflects with the s command. Note the
following specification.

10. The expressxon \d means the same strmg of characters matched by an
expression enclosed in \(2nd ) earlier in the same pattern. Here “d”
is a single digit; the string specified is that beginning with the “dth”
occurrence of \( counting from the left. For example, the expression
“\(-*\)\1 matches a line beginning with two repeated occurrences of
the same string.

11.  The null regular expression standing alone is equivalent to the last
regular expression compiled.

For a context address to “match” the input, the whole pattern within the
address must match some portion of the patternspace. If you want to use one of
the special characters literally, that is, to match an occurrence of itself in the
input file, precede the character with abackslash (\) in the command.

Each sed command can have 0, 1, or 2 addresses. The maximum number of
allowed addresses is included. A command with no addresses specified is
applied to every line in the input. If a command has one address, it is applied to
all lines which match that address. On the other hand, if two addresses are
specified, the command is applied to the first line which matches the first
address, and to all subsequent lines until and including the first subsequent line
which matches the second address. An attempt is made on subsequent lines to
again match the first address, and the process is repeated. Two addresses are
separated by a comma. Here are some examples:

A-4



Editing with Sed and Awk

[an/ Matches lines 1, 3, 4 in our sample text
/an.#an/ Matches line 1
[ an/ Matches no lines

[/

Matches all lines

/r*an/  Matches lines 1,3, 4 (number = zero!)

A.2.3 Functions

All sed functions are named by a single character. They are of the following
types:

Whole-line oriented functions add, delete, and change whole text
lines.

Substitute functions search and substitute regular expressions within
aline.

Input-output functionsread and write lines and/or files.

Multiple input-line functions match patterns that extend across line
boundaries.

Hold and get functions save and retrieve input text for later use.

Flow-of-control functions control the order of application of
functions.

Miscellaneous functions.

Whole-Line Oriented Functions

d

Deletes from the file all lines matched by its addresses. No further
commands will be executed on a deleted line. As soon as the d
function is executed, anew lineisread from the input, and thelist of
editing commands is restarted from the beginning on the new line.
The maximum number of addressesis two.

Reads and replaces the current line from the input, writing the
current line to the output if specified. The list of editing commands
is continued following the n command. The maximum number of
addressesis two.

Causes the text to be written to the output after the line matched
by its address. The a command is inherently multiline; The a
command must appear at the end of a line. The text may contain
any number of lines. The interior newlines must be hidden by a
backslash character (\) immediately preceding each newline. The
text argument is terminated by the first unhidden newline, the first
one not immediately preceded by backslash. Once an a function is

A-5



XENIX Text Processing

successfully executed, the text will be written to the output
regardless of what Jater commands do to the line which triggered it,
even if the line is subsequently deleted. The text is not scanned for
address matches, and no edltms commands are attempted on it,

-nor does it cause any change in the line-number counter. Only one

address s possible.

When followed by a text argument it is the same as the a function,
except that the text is written to the output before the matched
line. It has only one possible address.

The ¢ function deletes the lines selected by its addresses, and
replaces them with the linesin the text. Like thea and i commands,
¢ must be followed by a newline hidden with a backslash; interior
newlines in the text must be hidden by backslashes. The ¢
command may have two addresses, and therefore select a range of
lines. If it does, all the lines in the range are deleted, but only one
copy of the text is written to the output, not one copy per line
deleted. Asin the case of a and i, the text isnot scanned for address
matches, and no editing commands are attempted on it. It does not
change the line-number counter. After a line has been deleted by a
¢ function, no further commands are attempted on it. If text is
appended after a line by a or r functions, and the line is
subsequently changed, the text inserted by the ¢ function will be
placed before the text of the a or r functions.

Note that when you insert text in the output with these functions, leading
blanks and tabs will disappear in all sed commands. To get leading blanks and

tabs into th

e output, precede the first desired blank or tab by a backslash; the

backslash will not appear in the output.

For example, the list of editing commands:

n
a\
XXXX

~d

applied to our standard input, produces:

In Xan
XXXX
Where
XXX

adu-did Kubhla Khan

Alph, the sacred river, ran

Down to a sunless sea.

In this particular case, the same effect would be produced by either of the two
following command lists:



Editing with Sed and Awk

or

n
e\
XXXX

Substitute Functions The substitute function(s) changes parts of lines
selected by a context search within the line, asin:

(2)s pattern replacement flags substitute

The s function replaces part of a line selected by the designated pattern with
the replacement pattern. The pattern argument contains a pattern, exactly
like the patterns in addresses. The only difference between a pattern and a
context address is that a pattern argument may be delimited by any character
other than space or newline. By default, only the first string matched by the
patternisreplaced, except when the —goption is used.

The replacement argument begins immediately after the second delimiting
character of the pattern, and must be followed immediately by another
instance of the delimiting character. The replacement is not a pattern, and the
characters which are special in patterns do not have special meaning in
replacement. Instead, the following characters are special:

. Isreplaced by the string matched by the pattern.

\d dis a single digit which isreplaced by the dth substring matched by
partsof the pattern enclosed in \( and \). If nested substringsoccur
in the pattern, the dth substring is determined by counting opening
delimiters.

Asin patterns, special characters may be made literal by preceding them with a
backslash (\)-

A flag argument may contain the following:

g Substitutes the replacement for all nonoverlapping instancesof the
pattern in the line. After a successful substitution, the scan for the
next instance of the pattern begins just after the end of the inserted
characters; characters put into the line from the replacement are
notrescanned.

p Prints the line if a successful replacement was done. The p flag

causes the line to be written to the output if and only if a
substitution was actually made by the s function. Notice that if

A-7



XENIX Text Processing

w file

several s functions, each followed by a p flag, successfully
substitute in the same input line, multiple copies of the line will be
written to the output: one for each successful substitution.

Writes the line to a file if a successful replacement was done. The
—w option causes lines which are actually substituted by the s
function to be written to the named file. If the filename existed
before sed isrun, it isoverwritten;if not, the file iscreated. A single
space must separate ~w and the filename, The possibilities of
m